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Abstract
This thesis aims to evaluate the legitimacy of the role attributed to an elas-
tic scattering procedure as an hypothetical ”Entanglement (creation and en-
hancement) Machine” (EceM). We study such a collision in the framework
of Q.F.T (Quantum Field Theory), where the interaction is given by the
coupling between two scalar fields, Alice’s (A) and Bob’s (B) with a φ4 in-
teraction.

Using the Von Neumann entropy as a measure of entanglement, which we
call the ”Entropy of Entanglement” (SE), we calculate (SE)in from a state
of momenta before the collision (”in-state”) and (SE)out from the state of
momenta after the collision (”out-state”) to determine,

(∆SE) ≡ (SE)out − (SE)in.

Thus, we can determine the entanglement between subsystems A and B in
the degrees of freedom of momentum before and after the states ”enter”
the EceM and judge how well the collision behaves as one, knowing that
(∆SE) > 0 is the condition that must be met.

We separate the calculation into two distinct case studies:

-When the ”in-state” is separable;
-When the ”in-state” already has some degree of entanglement;

As such we can analyse if the scattering procedure behaves differently
when it has to create entanglement from scratch or enhance the already
existing one.

(∆SE) is shown to have an explicit dependence on the velocities of the CM
(center of momentum) frame which corresponds to the momenta of the initial
state, and on the coupling of the interaction (λ). These variables could be
interpreted as ”parameters” of the machine, which we can regulate to create
the best possible configuration. We analyse the collision diagrammatically,
computing up to 1-loop contributions when the ”in-state” is separable. Thus,
we can compare how this changes the ”performance” of the machine, and how
the parameters for the best possible outcome vary.
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Chapter 1

Introduction
Note: In this work natural units (h̄ = c = kB = 1) are used unless stated
otherwise

Quantum Information can be traced back as far as 1935, to the origi-
nal paper of Einstein-Podoslky-Rosen (EPR) [1] in which they proposed a
gedankenexperiment which has, for more tan eighty years now, challenged
physicists to reevaluate the most intricate properties of Quantum theory.
They concluded that either single particle entanglement was impossible or
the quantum mechanical description of reality was incomplete, which in turn
was refuted by Bohr. Thirty years after the EPR paper, J. Bell [2] established
an inequality whose violation excludes local realistic theories and validates
a spooky action at a distance. Such mathematical formulation has paved
the way for Bell test experiments which settle the quantum theory debate
between Einstein and Bohr. Experiments carried out at Orsay in 1982 by
Aspect, Grangier, Roger and Dalibard [3] showed a violation of Bell’s in-
equalities using calcium atoms excited to a particular state, from which the
atoms decay by emitting two photons in opposite directions entangled in po-
larization. They concluded that such a pair of entangled photons should be
considered as a global, inseparable quantum system.

Whilst quantum information was originally formulated in terms of non-
relativistic quantum mechanics, recent years have seen increasing research
interest in placing quantum information within the more fundamental frame-
work of quantum field theory. Relativistic quantum information aims to un-
derstand the relationship between special and general relativity and quantum
information theory. Quantum entanglement bits (e-bits) are key resources
in quantum communication and quantum computation. Relativistic quan-
tum information plays a key role in studying important current issues like,
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CHAPTER 1. INTRODUCTION

quantum cryptography, quantum teleportation, quantum computation and
quantum metrology [4] both in inertial and noninertial frames. For instance,
in [5] it was pointed out that gravity or noinertial motion may serve to
enhance quantum information protocols. Questions such as how different
partitions of momentum/spin entanglement of relativistic particles or Bell
inequalities behave under Lorentz transformations have become important
[6]. Quantum entanglement also serves as a tool to cosmology, since in the
early universe, the energy content was largely dominated by highly entangled
quantum field background [7]. Even though experimental evidence show that
primordial perturbations have undergone quantum-to-classical transition by
some decoherence mechanism, some quantum correlations could in principle
linger, in the case of weakly interacting fields, and encode information about
the evolution of the universe [8, 9]. The appropriate theoretical framework to
study all of this phenomena is quantum field theory, as such, having an un-
derstanding how entanglement is described within such a context is of prime
importance.

There is also a particular interest in the study of relativistic scattering
when one has access to a subset of states in the context of quantum in-
formation theory. It is rigorously formulated in the framework of Dyson’s
S-matrix in relativistic quantum field theory [10]. Therefore, entanglement’s
creation/enhancement in particle decays and collisions can be derived in a
complete quantum relativistic framework.

There is an abundance of applications of scattering and entanglement
creation/enhancement. For instance, the degree of entanglement created in
fermionic scattering within quantum electrodynamics was analysed in [11]
and a study of entropy variation between initial and final states asymptotic
states to leading order in perturbation theory appears in [12]. In [13] they
concluded that for a low energy regime that the differential cross section
can be written as a function of the degree of entanglement of the incoming
photons. An enhancement of the cross section was observed for photons
prepared in a symmetric Bell state in their polarizations as compared with
the factorized state.

Then it is the aim of this thesis to add a contribution to the already es-
tablished works in this field, by providing a detailed analysis of entanglement
creation/enhancement by calculating the entropy variation in the scattering
of interacting scalar particles in a fully quantum field theoretical framework.

Using the S-matrix formalism, we derive the final state to 1-loop order in
perturbation theory and express the entropy variation of the reduced state

16



CHAPTER 1. INTRODUCTION

as a function of the degree of entanglement of the initial states. We show
in Chapter5 that, such correlations between the parties show explicit depen-
dence on the speed (energy) between the colliding particles.

1.1 Structure

The thesis is organized as follows:

In Chap.2 we present a broad and self-contained overview of entangle-
ment, which we expand into Chap.3, where we present the notion of Entan-
glement Monotones and their applicability’s. In Chap.4 we define the nec-
essary formalism used to study entanglement in the framework of quantum
field theory. In Chap.5 we present the ”bulk” of the calculations separated
in two different case studies, one considering and initial separable state and
one considering an initial entangled state. Finally, in Chap.6 we present our
conclusions and proposals for possible future work.

17
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Chapter 2

Introduction to Quantum
Entanglement

There are mainly two approaches to address the subject of quantum entan-
glement in an introductory fashion. The first is an historical approach, which
starts from the paradoxes that the ”Spooky action at a distance” causes [1],
and builds from there a chronological exposition of the pertinent insights
people had about the subject, culminating in Bell’s inequalities. These open
the door to study the crucial impact that non-local correlations have on the
data pertaining to specially arranged quantum states [2]. Since the existence
of non-local correlations is at the core of quantum entanglement, the next
step is the need to set up the mathematical framework to study these, which
is presently still a subject in active development [14, 15, 16, 17].

The other way starts almost exactly at this point, ignoring the deep con-
ceptual introduction and possible philosophical implications. It is assumed
the reader is convinced that quantum entanglement is alive and well and is
not a product of inaccuracies in our description of reality (meaning quan-
tum theory). Adopting this route, one should focus on a didactic way to
address the basic concepts needed to introduce the subject of entanglement
as clearly as possible in a rigorous mathematical way. Although interesting,
the first route would lead to a lengthy exposition and wouldn’t add any par-
ticular insight to the scope of this work, since we treat entanglement in a
very pragmatic way.

19



CHAPTER 2. INTRODUCTION TO QUANTUM ENTANGLEMENT

We take Entanglement to be a property that quantum systems may ex-
hibit, which can be calculated and ”measured” 1, and we want to see how it
behaves in some specific situations. Thus, we shall choose the second way of
introducing the subject and show the reader ”the basic rules of the game”
with examples, without going deep into the philosophy of it.

2.1 Presenting Alice and Bob:

It takes two to Tango, at least.

The study of entanglement is to a large extent the general study of the
influence that quantum systems have on one another (this will become more
apparent in the subsequent sections). In physics we are aware that when
figuring out how systems are made of smaller components, that sometimes
the whole might be greater that the sum of its parts, or maybe less. For
instance, the mass of an atomic nucleus is not just the sum of the mass of
it’s nucleons, one has to take in account the energy that binds them together
among other things in order to have an accurate description of the system’s
mass. Figuring how systems combine to produce larger systems is essential
in physics, and such a thing is more subtle than what it might appear at first,
specially in quantum mechanics. Then if we are trying to find what influence
quantum systems have on one another, we should have at least two of these,
they are typically called Alice’s and Bob’s system. The systems in principle
have no restrictions on what they could be, one could just be a particle and
the other a black-hole or even the rest of the universe, but for now we’ll
start with something easier and suppose that both Alice and Bob are trying
to describe one electron each. Before jumping into the description of the
general composite quantum system of Alice and Bob it’s better to define
some basic characteristics of Alice’s and Bob’s sub-systems independently.

1One has to be careful when using such terms loosely, of course entanglement is not
an observable and cannot be measured in the same way as, for instance, energies can. We
say Entanglement is ”measured” in a more broad sense of the word, entanglement is not
something which a system possesses but is instead a ”behaviourism” of the system, it can
be displayed in varying degrees and witnessed by appropriate measurement of the system’s
observables, in that sense we ”measure” Entanglement.
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CHAPTER 2. INTRODUCTION TO QUANTUM ENTANGLEMENT

2.1.1 Mathematical Interlude:

Operators, vectors and the Hilbert space

A pure2 quantum state can be characterized as a vector of an N -dimensional
Hilbert space (H), hence, just like any kind of vector the state can be con-
structed as superposition of N orthogonal base vectors that span the space
(a basis). It can be shown that the eigenvectors of any given Hermitean op-
erator in H can be used to construct such a basis of the space. Let Â be any
operator of the kind in Alice’s space HA, with the collection of eigenvectors
∀i {|ai〉}, which can also be called the base states of the quantum state due
to their fundamental nature. We then have the eigenvalue equation,

Â |ai〉 = Ai |ai〉 , (2.1)

where Ai is the eigenvalue associated with state |ai〉. By using this collection
of eigen-states, we can write down Alice’s general description of a quantum
state,

|ψ〉A =
∑
i

αi |ai〉 , (2.2)

where αi is the projection coefficient of the state into the base state |ai〉,
i.e αi = 〈ai|ψ〉A; |αi|2 is interpreted as the probability of |ψ〉 being in that
said base state. Since the state |psi〉 exists, the probability to find it in a
given base state is related to the fact that if it is ”somewhere” and one looks
”everywhere”, it must be found for sure; this is stated mathematically by the
normalization condition

∑
i |αi|2 = 1.

Hermitean operators are intimately related to observables, they are their
mathematical representations in Hilbert space, for instance Â relates to the
observable A like [18],

〈A〉av = A〈ψ| Â |ψ〉A . (2.3)

〈A〉av is the average value of the observable A (also know as expectation
value) if the observable should be measured when the quantum system is in
the state |ψ〉A.

2 The ”pure” is to distinguish from other type of quantum states called ”mixed”
quantum states, which have their own special properties which we will study later on.
For now when we say a ”quantum state” it is implied that we are talking about a pure
quantum state.
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CHAPTER 2. INTRODUCTION TO QUANTUM ENTANGLEMENT

It is clear that if the system happens to be in a base state |ai〉 of Â, then
that the measurement of the observable will give for sure Ai, otherwise it will
give a weighed average over all possible eigenvalues of the base states of the
system.

Evidently all these steps can be taken for Bob as well. The equivalent
results in his system are compared to Alice’s in the following table,

Alice Bob

Space HA HB

Operator Â B̂
Basis ∀i {|ai〉} ∀i {|bi〉}

State |ψ〉A =
∑

i αi |ai〉 |ψ〉B =
∑

i βi |bi〉

Normalization
∑

i |αi|2 = 1
∑

i |βi|2 = 1

〈Observable〉 〈A〉 = A〈ψ| Â |ψ〉A 〈B〉 = B〈ψ| B̂ |ψ〉B

Table 2.1: Alice Vs. Bob

Until this point we have kept things quite general since we haven’t yet
specified the nature of the quantum systems they aim to study. Each of their
own space’s HA and HB have a general number of dimensions denoted by
NA and NB. Likewise, the operators Â and B̂ could be any operator they
wish.

Now that Alice and Bob have all the necessary tools to study their own
independent quantum systems we can proceed to combine their systems into
some other large composite system.
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CHAPTER 2. INTRODUCTION TO QUANTUM ENTANGLEMENT

Combining Systems

How do we combine quantum systems to make larger ones? Intuitively one
has an idea how to create such a composite space when combining classical
systems. For instance, say Alice wants do describe a regular coin toss, where
the only possibilities are either heads (H) or tails (T ). Such classical systems
can be described by means of a set where the possible outcomes are its
elements, in this case the set is {HA, TA}. She could then describe her system
schematically in a simple way, imagine that she decided to represent the
elements of the set in this box like manner,

HA TA

Table 2.2: Heads or Tails: Table of the possible outcomes of Alice’s coin toss.
Each possible state is given a probability P (HA), P (TA).

Now suppose Bob also wants decides to do the same,

HB TB

Table 2.3: Heads or Tails: Table of the possible outcomes of Bob’s coin toss.
Each possible state is given a probability P (HB), P (TB).

It’s not so difficult to imagine what the possibilities would be if they
decided to study their coin tosses as a whole system (we denote it as AB)
instead of separately. It would look something like,

Alice
Bob

HB TB

HA HA;HB HA;TB
TA TA;HB TA;TB

Table 2.4: Heads or Tails: Table of the possible outcomes of AB’s coin tosses.
Each possible state is given a probability P (HA;HB), P (HA;TB), P (TA;HB),
P (TA;TB). Since the processes are independent the probabilities factorize i.e
P (HA;HB) = P (HA)P (HB).

Each box now represents a specific configuration of the possible outcomes
the joint system AB could produce.

23



CHAPTER 2. INTRODUCTION TO QUANTUM ENTANGLEMENT

This sort of operation we performed informally can be generalized in a
mathematical rigorous way to any number of subsystems and to an arbitrary
number of dimensions of each subsystem. The operation is called a tensor
product, in this case between two systems, A and B, which is usually denoted
as A⊗B.

When we talk about the number of dimensions of a system we mean the
minimum ”blocks of information” necessary to have a complete description
of the system, in a set this means the elements that compose the entire
set, and in a vector space the number of vectors necessary to form an or-
thogonal basis. For instance, in one coin toss we have a full description of
the possible outcomes with just two elements {H,T} with two coin tosses
we need to have four {HH,HT, TH, TT}, this is because when ”multiply-
ing” the systems with one another we also multiplied the number of di-
mensions of both systems. Then the number of dimensions of a general
composite AB system (NAB), is given by NAB = NA × NB. This is not
so difficult to realize, since the tensor product is a generalized product, we
should expect that the regular numbers ( like the number of dimensions)
attached to the product would just come out in a regular multiplication
operation. If we had more than two sub-systems we would just need to mul-
tiply them as well, but the composite system is only composed of two sub-
systems (Alice’s and Bob’s), we usually call this kind of system Bi-partite.

As it turns out this operation also holds true when combining quantum
systems, the main difference is that the systems being ”multiplied” aren’t
just sets but vectors spaces, and consequently the ”blocks of information”
aren’t elements of sets but base vectors of a vector space, this will later on
prove to be a source of peculiar characteristics in the composite system.

In the framework of quantum mechanics we have the composite system of
Alice and Bob given by, HAB = HA⊗HB, where again, NHAB

= NHA
×NHB

.
We can easily construct a state |ψ〉AB ∈ HAB which is given by,

|ψ〉AB = |ψ〉A ⊗ |ψ〉B ; (2.4)

Such a state is aptly called , product state or separable state. The general
description of such a state is,

|ψ〉AB =
∑
i,j

αiβj |ai bj〉 ; (2.5)
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CHAPTER 2. INTRODUCTION TO QUANTUM ENTANGLEMENT

|ai bj〉 is a short notation for |ai〉 ⊗ |bj〉. We can immediately observe that
the tensor product of the two basis of the sub-systems also forms a basis
in the composite system. Then, even though |ai bj〉 has two labels it only
represents one state in the composite system.

Product States and Observables

We shall comment on some characteristics of these product states. First, it
can be shown that if |ψ〉A and |ψ〉B are both normalized, |ψ〉AB is immediately
normalized with the same set of normalization conditions (see Appendix).

Now we suppose Alice wants to measure an observable of her choice, when
the quantum state in question is a product state like in (2.5) but Bob doesn’t,
this is described in terms of operators as,

Â ⊗ 1B,

1B is the identity operator in Bob’s space, it’s meant to show that he doesn’t
want to do anything to the system. We want to find,

AB 〈ψ| ˆA⊗ 1B |ψ〉AB . (2.6)

Since each operator only exists in their own respective space, A only acts on
states of HA, likewise B only acts on states of HB. Then it can be easily seen
that the previous expression reduces to,

A 〈ψ| Â |ψ〉A B〈ψ|1B |ψ〉B = 〈A〉av; (2.7)

Likewise, in the case when Bob wants to measure something, 1A ⊗ B̂,

A 〈ψ|1A |ψ〉A B〈ψ| B̂ |ψ〉B = 〈B〉av; (2.8)

This is to say, Alice and Bob will get exactly the same expected value of the
observable whether the system is in the product state or their own personal
states |ψ〉A (for Alice), and |ψ〉B (for Bob). There’s really no surprise here,
this is the quantum mechanical counterpart to the previous classical example
of the coin toss. To illustrate this let us suppose we assign value (V ) to each
face of the coin, for example,

V (T ) = +1; V (H) = −1;
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If we pick a configuration out of Table 2.4 like (HA;TB), Alice ”measures”
V (HA) = −1 in certainly the same way as if she had studied her own coin
toss and the outcome had been (HA) from Table 2.2, the same is true for
Bob.

Now imagine both Alice and Bob want to measure their respective ob-
servables, the operator which translates this is, Â ⊗ B̂, or just ÂB̂. At this
point we aren’t surprised to see that the result will be,

〈AB〉av = A 〈ψ| Â |ψ〉A B〈ψ| B̂ |ψ〉B = 〈A〉av〈B〉av (2.9)

We can write the previous equation as,

〈AB〉av − 〈A〉av〈B〉av = 0, (2.10)

But, the right hand side of the previous equation isn’t always zero. It’s usu-
ally called the Correlation between the observables A and B, and it’s only
zero when the values factorize. The reason the values factorize in such a
way stems from the fact that the probability distributions which describe
such observables also factorize, we have already seen this example in the coin
toss, and in fact we can confirm this easily. Suppose, 〈VA〉av and 〈VB〉av are
the averages values that Alice and Bob get, respectively, in a N number of
coin tosses, if N is high enough both would be zero since there’s one-half
probability of getting either heads or tails - What would the value 〈VAVB〉av

be in the same circumstances ? Since we know that the coin tosses are inde-
pendent, the probabilities factorize and we get exactly the same probabilities
for the outcomes of coin A and coin B which implies the average value will
also be zero, thus having

〈VAVB〉av = 〈VA〉av〈VB〉av = 0;

So just like we’ve seen in this classical example it seems that when a quan-
tum system is in a product state both observers measure un-correlated ob-
servables, the reason is obviously the same as in the classical example since
this stems from the fact that the ”function of probability”3 |ψ〉AB factorizes
into |ψA〉 |ψB〉.

3Although in this form the state doesn’t have the explicit form of an analytic function,
with an appropriate choice of basis we could describe the state as a function, ψ(x) or ψ(p)
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Classical Correlations

We shall take (2.10) and generalize it into,

〈AB〉av − 〈A〉av〈B〉av = C(A,B), (2.11)

where C(A,B) is the Correlation between observable A and B.
In what scenario could C(A,B) be different from zero? Imagine that

Alice and Bob instead of coin tossing are interested in studying those power
ball machines, each of them puts a ball inside one of these machines with a
+1 printed on one and a −1 printed on the other. The machine randomly
selects one ball which Alice takes and Bob takes the remaining one. On
average 〈VA〉av and 〈VB〉av will be zero, just like the coin tossing case. But
what about 〈VAVB〉av ? This time it won’t be zero, because regardless of who
gets what, the product of both values will always be −1, so,

〈VAVB〉av − 〈VA〉av〈VB〉av = −1;

Thus one can appreciate that unlike the observables in the coin tossing exam-
ple these are perfectly correlated. One wonders in what situation we might
find such a thing in the quantum case.

2.1.2 Spin-12 Systems

At this point we’re going to commit ourselves to a specific quantum system
to analyse, as it should be. We can only take things in a general way so
far, eventually we have to make up our minds on what physical system we’re
actually talking about.

A spin-1
2

system has two dimensions, since it only takes a collection of
two base states to characterize all possible states in which the system could
be. These two base states are usually denoted as the up-state, |u〉, and
the down-state |d〉. As we stated before, such base states are eigenvectors
of a Hermitean operator which relates to some observable, the observable
in question is the particle’s spin component along a given axis. If we say
without loss of generality that such an axis is the ẑ axis, then the operator
in question is the known σ̂z spin operator, and the base states are states
which correspond to eigenvalue +1 in the positive direction of ẑ, |u〉, and −1
in the negative direction, |d〉. Even though σ̂z is an operator which relates
to a certain observable component of spin which we want to measure(along
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the ẑ axis), and also whose eigenvectors serve as a basis, a particle’s spin is
mathematically a 3-vector and it isn’t fully described if we are only equipped
to measure one of it’s components, we should also have operators which relate
to the other observable components along the vectors which form the basis
of a 3-vector spin. Since one operator is already defined to be the component
along the ẑ axis, the other two are obviously going to be along the x̂ axis (σ̂x)
and the ŷ axis (σ̂y)axis. We should mention that σ̂z isn’t special, we could
just as well have used the eigenvectors of the other two operators as base
states for the spin system, but usually picking σ̂z is a preferred convention
when defining the base states in which we measure the 3 different components
of spin. Generally we say the state is ”quantized along the ẑ-axis”, this choice
implies that we can’t measure all 3 components of the system simultaneously,
because only one set of base states is available for each operator, in this case
the ẑ-axis base states.

The specifics of the spin-1
2

system in which Alice and Bob want measure
their particle’s spin is present below in a table similar to Table.2.1,

Alice Bob

Space HA, NA = 2 HB, NB = 2

Operators σ̂x,σ̂y, σ̂z τ̂x,τ̂y,τ̂z

Basis {|u〉A , |d〉A} {|u〉B , |d〉B}

State |ψ〉A = αu |u〉A + αd |d〉A |ψ〉B = βu |u〉B + βd |d〉B
Normalization |αu|2 + |αd|2 = 1 |βu|2 + |βd|2 = 1

〈Observable〉 〈σi〉av = A〈ψ| σ̂i |ψ〉A |i=x,y,z 〈τi〉av = B〈ψ| τ̂i |ψ〉B |i=x,y,z

Table 2.5: Alice spin-1
2

system Vs. Bob spin-1
2

system

We should comment that τ̂i is very much the same operator as σ̂i, but in
order to distinguish them between Alice’s and Bob’s spin operator we decided
to represent them with different Greek letters, an A or B subscript would’ve
done the job but the notation would have become too over-encumbered.

Pauli Matrices and Spin observables

σ̂x, σ̂y and σ̂z (or τ̂x, τ̂y and τ̂z ) are operators that Alice (Bob) uses to describe
the observables that she (he) may want to measure, such operators have a
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matrix representation form. The matrices which represent these operators
are widely known as the Pauli matrices which are,

σ̂x =

(
0 1
1 0

)
; σ̂y =

(
0−i
i 0

)
; σ̂z =

(
1 0
0 −1

)
; (2.12)

If we adopt the column vector representation of the base states,

|u〉A =

(
1

0

)
; |d〉A =

(
0

1

)
; 4 (2.13)

We can easily deduce the following relationships between the base states and
the operators,

σ̂z |u〉A = |u〉A ; σ̂z |d〉A = − |d〉A ;

σ̂x |u〉A = |d〉A ; σ̂x |d〉A = |u〉A ;

σ̂y |u〉A = i |d〉A ; σ̂y |d〉A = −i |u〉A ;

(2.14)

The relationships are all equivalent for (τ̂x,τ̂y,τ̂z) and |u〉B, |d〉B. Now we can
find the general form of the average values of the operators,

〈σi〉av = A〈ψ| σ̂i |ψ〉A |i=x,y,z ; 〈τi〉av = A〈ψ| τ̂i |ψ〉A |i=x,y,z ; (2.15)

We find them to be,

〈σx〉av = α∗uαd + α∗dαu;

〈σy〉av = i(α∗dαu − α∗uαd);

〈σz〉av = |αu|2 − |αd|2;

(2.16)

〈τx〉, 〈τy〉 and 〈τz〉 have the exact same form, we just have to change the
coefficients to the appropriate coefficients of Bob’s space (β’s instead of α’s).
The previous set of equations give the form of the average values for the
different spin components when the system is in a general state |ψ〉A prepared
along the ẑ axis. Now, if we take the observables expectation values, square
them and add them all up we realize, that regardless of what values we have

4Notice that 〈u|d〉 = 〈d|u〉 = 0, as it should be since they’re orthogonal.
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for the coefficients the end result will always be 1, due to the normalization
conditions. i.e

〈σx〉2av + 〈σy〉2av + 〈σz〉2av = 1. (2.17)

This relationship has exactly the same form as the quantum angular mo-
mentum conservation in terms of the Pauli matrices (except for some con-
stants). Spin is a quantum number which is very intimately related to angu-
lar momentum since the mathematics that describe them both are the same,
this relationship could be thought as a ”Spin Conservation Principle” which
translates the fact that for each specific combination of coefficients we might
choose, there is an orientation n̂ for which our state behaves as an eigenvec-
tor of the spin component along that vector. For instance if αu = αd = 1√

2
,

we get that 〈σz〉av = 〈σy〉av = 0 and 〈σx〉av = 1. This means if the state is
prepared with the said coefficients it’s equally probable to measure the spin’s
component along the ẑ and ŷ as either ”up” or ”down”, but if we measure it
along the x̂ axis it will be for sure ”up”. This is true because

σ̂x |ψ〉A = |ψ〉A ; For, |ψ〉A =
1√
2

(|u〉A + |d〉A);

Thus |ψ〉A is an eigenvector of σ̂x, and as such the observable’s expectation
value will be the eigenvalue of the state (i.e +1).

Entangled Spin States

Let us suppose we construct a product state between |ψ〉A and |ψ〉B,

|ψ〉A ⊗ |ψ〉B = {αu |u〉A + αd |d〉A} ⊗ {βu |u〉B + βd |d〉B} ,

we get,

|ψ〉AB = αuβu |u u〉+ αuβd |u d〉+ αdβu |d u〉+ αdβd |d d〉 ; (2.18)

Which clearly has the form of (2.5). This expression gives the general form
of a product state in AB for a system of two spins (one for Alice and one for
Bob). From this expression we can produce any number of states we would
like, for instance, say we know that αd = 0 for a given state, we call it |φ1〉AB.
The state is,

|φ1〉AB = αuβu |u u〉+ αuβd |u d〉 ; (2.19)
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Imagine that βd = 0 for another state, let’s call it |φ2〉AB,

|φ2〉AB = αuβu |u u〉+ αdβu |d u〉 ; (2.20)

These are two perfectly acceptable product states that exist in AB.
Remembering our classical example in the Combining Systems subsec-

tion, when we figured out how to study the two coin tosses as a whole system;
We had a table of all the necessary elements in order to have a complete
description of the combined system, there were no ”blocks of information”
missing. We can appreciate this because the underlying mathematical struc-
ture of the theory we used when describing the system doesn’t provide us
with any operations to expand the number of states inhabiting the composite
system, by adding to the collection of states we already had directly from the
tensor product. To clarify: Imagine we take two members of the set from the
composite system, say, (HA, TB) and (HA, HB). Could we make something
out of these two elements with any kind of operation such that the end result
is a different but also viable element in the composite ? No, there isn’t;5

But in the quantum case, is this also true ? Most certainly not. Since
we know quantum states are vectors in the Hilbert space and the algebra of
vectors allows us to perform operations that produce a vector in the same
space, then we could very well take any two vectors like the ones we calcu-
lated, |φ1〉AB,|φ2〉AB and subtract them, such that we have,

|φ1〉AB − |φ2〉AB = αuβd |u d〉 − αdβu |d u〉 ; (2.21)

This vector rightfully belongs in HAB, but the curious thing about it is that,
there is no available choice of coefficients such that you can create the state
(2.21) out of (2.18), so this state clearly isn’t a product state but something
else, we call this an entangled state.

An entangled state, by definition, is any state of a composite system which
isn’t a product state. This means that it cannot be decomposed as a tensor
product of the sub-systems states alone, this is something which is manifestly
different from what we were used to seeing until this point. We said that
the superposition of vectors would produce curious results and here it is,
the entanglement of states; A phenomenon of quantum mechanics with no

5 Imagine we add them up like this, (HA + HA, TB + HB); This doesn’t have any
meaning in terms of our set, it’s probably an element of a different set pertinent to a
different system, but not to our own.
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classical counter-part6, we now realize that in the coin tossing example(and
in fact, any classical system) every state is a product state.

We define (2.21) as,∣∣E−0 〉 = αuβd |u d〉 − αdβu |d u〉 ; (2.22)

Let’s go back to (2.18) and try other combinations of coefficients to see
what we get. If for instance we say that now the ”up” coefficients (αu, βu)
are the ones which are null, for αu = 0 we have the state |φ3〉AB,

|φ3〉AB = αdβu |d u〉+ αdβd |d d〉 ; (2.23)

And for βu = 0 the state |φ4〉AB,

|φ4〉AB = αuβd |u d〉+ αdβd |d d〉 ; (2.24)

Subtracting them like we did before we get,

|φ3〉AB − |φ4〉AB = −
∣∣E−0 〉 ,

so we have the same result with a minus sign. Changing the coefficients
which are null from ”down” to ”up” only adds a global negative factor to the
sate. We can try more combinations of adding and subtracting these states
to find more entangled states, as long as we make sure we are using states
which have a mixed restriction on the coefficients (one α and β), because
otherwise this would just retrieve us a formula of the type of (2.18). We can
try then,

|φ3〉AB − |φ2〉AB = αuβu |u u〉 − αdβd |d d〉 :=
∣∣E−1 〉 ;

Which is another entangled state. If we change the phase between the
base sates in

∣∣E−0 〉, from a minus to plus sign, the resulting state would be
the symmetric equivalent of state

∣∣E−0 〉 and also an entangled state, we call it

6Not unlike entanglement, the principle of ”quantum superposition” also stems from
the vectorial like nature of the quantum sates. In fact, just as a state |ψ〉 is given by a
superposition of its base states, so can entangled state can also be seen as a superposition
of separable states (2.21). The major difference is that in a regular superposition, of a
given quantum sate, the interference is only between the eigenstates that form a basis
of one operator, and in entanglement there needs to be at least two distinct bases of
eigenstates in the superposition, which correspond to the observables of each observer in
the subsystems.
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∣∣E+
0

〉
. Likewise, if we change the phase in

∣∣E−1 〉, we would get an entangled
state

∣∣E+
1

〉
. Until this point we have the following collection of entangled

states in the AB-spin system, and they are,∣∣E−0 〉 = αuβd |u d〉 − αdβu |d u〉 ;∣∣E+
0

〉
= αuβd |u d〉+ αdβu |d u〉 ;∣∣E−1 〉 = αuβu |u u〉 − αdβd |d d〉 ;∣∣E+

1

〉
= αuβu |u u〉+ αdβd |d d〉 ;

(2.25)

If we say that,

αu = βu = αd = βd =

(
1√
2

)( 1
2

)

, (2.26)

the states in (2.25) become maximally entangled states, known as Bell
States7.

The states in (2.25) also form a complete set, 8 this means any other
entangled or separable state we could concoct can be described as a combi-
nation of these four states. For instance, imagine we add |φ1〉AB and |φ2〉AB,
with the choice of coefficients of (2.26), we get,

2√
2
|u u〉+

1√
2
|u d〉+

1√
2
|d u〉 ,

which is also an entangled state, albeit, with a different structure from the
ones in (2.25), because we can factorize at least part of it,

1√
2
|u〉A ⊗ (2 |u〉B + |d〉B) +

1√
2
|d u〉 ,

so they cant ever be perfectly correlated (i.e maximally entangled). Such a
state can be written as combination of the Bell states as,

∣∣E+
0

〉
+
∣∣E−1 〉+∣∣E+

1

〉
,

7The name is attributed to them because they violate Bell’s theory maximally. Entan-
glement is not a on/off type of thing, depending on the values of coefficients, some states
might be ”more” or ”less” entangled. As it turns out these states are maximum entangled
when all their coefficients are 1√

2
.

8This is true because the sates are linearly independent from each other and we could
construct a orthogonal basis out of them to describe any vector.
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which means then that a combination of maximally entangled states won’t
be maximally entangled if the result isn’t of the form of the states in (2.25).

But why can’t these entangled states be represented in the same way as
separable states ? An entangled state is, for all purposes, just a quantum
state, which happens to exists in a composite system of various subsystems.
To see why this is so, let us write the most general state in a given composite
system,

|Γ〉 =
∑
i

γi |i〉 (2.27)

Where
∑

i |γi|2 = 1, if it’s normalized. When studying the previous compos-
ite spin system HAB, i ∈ (1, 4). The state becomes,

|Γ〉AB = γ1 |1〉+ γ2 |2〉+ γ3 |3〉+ γ4 |4〉 (2.28)

Labels are just labels, we can very well use two labels for each state reminis-
cent to what we had for the spin system before, such that,

|Γ〉AB = γuu |u u〉+ γud |u d〉+ γdu |d u〉+ γdd |d d〉 ; (2.29)

The normalization condition becomes,

|γuu|2 + |γud|2 + |γdu|2 + |γdd|2 = 1.

Comparing with the general form of a product state (2.18), which is com-
pletely normalized by

|αu|2 + |αd|2 = |βu|2 + |βd|2 = 1,

we notice that the general state |Γ〉AB in the composite system needs two
more parameters to be fully described than |ψ〉AB. It seems Alice and Bob
aren’t able to create mathematically the most general state in the composite
system only from the information necessary to create the most general state
in their respective subsystems, indeed it seems the sum of the parts does not
make the whole. This is something which will be reinforced later on when
we try to compute observables of systems in entangled states.

From (2.29) with an appropriate choice of coefficients we can reproduce
any of the entangled states we calculated before. If we set

γuu = γdd = 0; γud = αuβd; γdu = −αdβu
we get

∣∣E−0 〉, and so forth, but there is no choice one can make of α’s and
β’s to get such a state. So the reason entangled states can’t be represented
in the same way as product states, is that such states need more information
to be fully described, information which is out of Alice’s and Bob’s reach.
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Observables and Quantum Correlations

Imagine a quantum system of two electrons in a entangled state, like
∣∣E−0 〉

when αuβd = αdβu = 1√
2
; which is definitely a possible state for the electrons

to be at9, then it stands to reason that if the electrons are in this state,
Alice(Bob) could try to measure an observable with her(his) apparatus, like
a spin component of one of the electrons along a given axis. We use the same
form of operator as before, σ̂z ⊗ 1B, and calculate the expectation value of
one of the Alice’s spin components along the ẑ axis,

〈σz〉av =
〈
E−0
∣∣ σ̂z ⊗ 1B

∣∣E−0 〉 (2.30)

=
1

2

(
〈u d| − 〈d u|

)(
|u d〉+ |d u〉

)
= 0.

It appears that it’s as likely for the spin along the ẑ axis to be up or down.
What about, 〈σx〉av and 〈σy〉av ?

〈σx〉av =
〈
E−0
∣∣ σ̂x ⊗ 1B

∣∣E−0 〉 (2.31)

=
1

2

(
〈u d| − 〈d u|

)(
|u d〉 − |u u〉

)
= 0.

〈σy〉av =
〈
E−0
∣∣ σ̂y ⊗ 1B

∣∣E−0 〉 (2.32)

=
1

2

(
〈u d| − 〈d u|

)(
i |d d〉+ i |u u〉

)
= 0.

Then, 〈σx〉av = 〈σy〉av = 〈σz〉av = 0, which is something quite surprising
because the observables don’t agree with the ”Spin Conservation Principle”
(2.17). It appears that if the system is in such a state then Alice can’t
predict what the spin component will be no matter the direction she tries
to measure it. This state has no predictive powers whatsoever in regard
to Alice’s (or Bob’s) observables in their own subsystems, which is quite
odd because according to the principles of quantum mechanics the system’s
quantum state is the most one can know about it. At this point we are
witnessing first hand the counter intuitive nature of entanglement, just like
the saying goes, ”one can know everything there is to know about a system
and know nothing about its parts”.

9For instance, in the quantum description of the interaction between a proton and an
electron in the Hydrogen atom, which explains the Hyperfine Splitting phenomenon, an
electron is in a state of this kind. We will explore this example in more detail, later on.
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Now imagine both Alice and Bob want to measure some component of
spin along the same axis, let us say the ẑ axis, the operator will be σ̂z τ̂z, and
we have,

〈σzτz〉av =
〈
E−0
∣∣ σ̂z τ̂z ∣∣E−0 〉 (2.33)

=
1

2

(
〈u d| − 〈d u|

)(
− |u d〉+ |d u〉

)
= −1.

The same is also true for 〈σyτy〉av and 〈σxτx〉av. If we look back at (2.11),
we notice that in this case,

〈σzτz〉av − 〈σz〉av〈τz〉av = C(σz, τz) (2.34)

C(σz, τz) = −1

All pairs of observables are perfectly correlated. As we can see the state
gives us information about the observables ((σzτz), etc), unfortunately for
Alice and Bob all the state provides us with, is the information that when-
ever Alice measure spin up, Bob measure spin down for sure, (and vice-versa)
but there’s no predictive information on what only one of the spins will be
if they measure it by itself, because the outcome will bear this intrinsic ran-
dom behaviour in its statistical distribution. It seems Alice and Bob need
each other in order to calculate this kind of composite observable by com-
paring their own measurements, there’s no other way to make sense out of
it. This is the nature of quantum entanglement, it’s this strange behaviour
that emerges when we try to measure observables when the system is in such
a state. It’s as if the ”true” quantum system exists by default in the higher
dimensional Hilbert space, and we get a glimpse of the ”projection” of the
state in the lower dimensions that are accessible to the specific experimental
configurations of the sub-systems, and only by comparing the said ”projec-
tions” do we get the full picture. Sometimes we can recreate the picture by
ourselves (separable system), but other times it won’t be enough and we’ll
need more information (entangled system).

Before, we said the composite observables can’t be measured by Alice or
Bob alone. But is this really true ? We know that in some type of systems
like two neighboring electrons in an Ising chain or even the Hydrogen atom,
which for all purposes is an electron/proton system, a part of the Hamiltonian
operator is proportional to the product of the the spin operators for each of
the particles of the subsystems. In the Hydrogen atom example, suppose
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Alice’s subsystem is the electron and Bob’s the proton. If the atom is the
energy ground state (E0) and in some entangled spin state |ψ〉AB, with the
interaction part of Hamiltonian given by ,

Ĥ − Ĥ0 ∝ σ̂e · τ̂p; (2.35)

One might wonder if Alice could by her own means (without Bob) determine
what the composite observables of spin are, by measuring the variation of
the energy of the system, because

E − E0 = 〈ψ| Ĥ − Ĥ0 |ψ〉AB ∝ 〈σe · τp〉av.

And even though this is an entangled system in terms of the spin states, it’s
also just a regular atom whose energy transitions can be easily measured. But
knowing 〈σ · τ〉av doesn’t relate in any way to being more close in knowing
the components separately (〈σxτx〉av, 〈σyτy〉av, 〈σzτz〉av), which can only be
described by the appropriate measurement by both Alice and Bob, as we
said. There’s no other way around, like it or not.

Mixed States and Density operators

As it has already been mentioned throughout, there’s a lack of information
that hinders the measurement of the sub-systems observables if the composite
system happens to be in an entangled state. But how does this manifests itself
in terms of the states ? We already know that we can’t measure accurately
the observables, but the question now is; is there a way to describe the
entangled state, even if incompletely in a sub-system ? It can’t be described
as a ”regular” quantum state because we know that by definition,

|Γ〉AB 6= |ψ〉A ⊗ |ψ〉B (2.36)

where |Γ〉AB is an entangled state, so it definitely can’t be a vector in the
subspace. Fortunately there is a different kind of formalism used to describe
states which aren’t ”regular”, such states are called mixed states, as opposed
to the ”regular states” which are the already mentioned pure states.

To understand what a mixed state is imagine the following: Alice prepares
a system, but she is sloppy and she isn’t too sure the if system will be in the
state |ψ1〉A like she intended, because there’s also a chance that it could be
in some other state |ψ2〉A, due to an error in the preparation. How can she
describe this ”mixing”, if she weighs in the fact that there’s a 2

3
probability
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that the system is in |ψ1〉A, and 1
3

in |ψ2〉A ? Imagine she would try to
describe the system as,

2

3
|ψ1〉A +

1

3
|ψ2〉A

Well, this doesn’t cut it at all. A sum of this kind will produce just another
vector representing a different state based on the principle of quantum su-
perposition, and not a combination of the two possible states in which the
system could be. We need to find another approach. Luckily, there is a kind
of operator which ”encodes” classical probabilities on the different states in
which the system could be. Such operators are called density operators and
they are given by the external product of the state vector with it’s dual,

|ψ1〉A → A |ψ1〉 〈ψ1|A ; |ψ2〉A → A |ψ2〉 〈ψ2|A ; (2.37)

Thus the general density operator (ρ) of the mixed system is given by,

ρ =
2

3
A |ψ1〉 〈ψ1|A +

1

3
A |ψ2〉 〈ψ2|A (2.38)

This seems adequate. It says the system is in either state |ψ1〉A with prob-
ability 2

3
or state |ψ2〉A with probability 1

3
, but now the states are described

by their density operators instead of vectors so they don’t add up. We can
generalize this for any distribution of probability for each state and for any
number of states,

ρ =
∑
i

Pi |ψi〉 〈ψi| , (2.39)

where Pi is the classical probability of the system being in the |ψi〉 state,
which should add up to unity summing over all the states. Since we have a
new way of writing states we could define the condition of separability (2.4)
in terms of these operators as well. A state is separable if its density operator
in the composite space (ρAB) can be written like,

ρAB = ρA ⊗ ρB. (2.40)

Why is it useful to have this depiction of states in the context of entanglement
? It seems this is a good way to describe systems whose complete informa-
tion is lacking, and we are already well assured that lack of information is
very important in entanglement, as we’ll see ”the forced projection” of an
entangled state into the lower dimensions of the subsystem is represented by
a mixed state and as such must be described by a density operator.
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What is this ”forced projection” we’ve been talking about ? Imagine, we
have the state, ∣∣E−0 〉 =

1√
2

(
|u d〉 − |d u〉

)
, (2.41)

and we want to describe such a state as it is seen by Alice or Bob, we know
the state doesn’t factor out like a product state, so we must forcefully rid
ourselves from the sub-subsystem we don’t want. What we do is to trace out
the system that we want to make disappear, similarly as when one integrates
over a variable of some function and the function ceases to have that explicit
dependence. The process is as follows, first we calculate the density operator
of the entangled state, which in this case is,

ρAB :=
∣∣E−0 〉 〈E−0 ∣∣ =

1

2

(
|u d〉 〈u d| − |u d〉 〈d u| − |d u〉 〈u d|+ |d u〉 〈d u|

)
;

(2.42)
Now we create the tracing out operator, which is similar to a normal trace but
only acts on one of the bases of the composite system, just like the operators
defined in the subsystems (e.g σz for Alice and τz for Bob). Let’s say we
create the operator such that it traces over Bob’s space, then whatever we’re
left with will be something that only exists in Alice space. The operation
gives,

TrB(ρAB) =
∑
n

B 〈n| ρAB |n〉B =
1

2

(
A |u〉 〈u|A + A |d〉 〈d|A

)
, (2.43)

the crossed terms vanish due to the orthogonality conditions. This obviously
looks just like (2.38), and has the form of a mixed state. This is usually called
the reduced density operator, but we’ll just call it Alice’s density operator.
So we have TrB(ρAB) = ρA, and not surprisingly, TrA(ρAB) = ρB, and this
is the way we can represent some entangled state by means of states of the
sub-system alone.

At this point we’re going to present some properties of density operators,
which are meaningful to use later on. A density operator ρ defined for a pure
state |ψ〉 is,

ρ = |ψ〉 〈ψ| ,
as we’ve stated. It can be easily seen that ρ2 = ρ, for a pure state. For
a mixed state this is not true, we have instead ρ2 < ρ. The condition of
normalization,

〈ψ|ψ〉 = 1 becomes, Tr(ρ) = 1,
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as a direct implication of ρ2 = ρ we also get that Tr(ρ2) = 1 for a pure
state. From ρ2 < ρ we get Tr(ρ2) < 1 for a mixed state. It can be shown
that, if ρAB is the density operator of the entangled state

∣∣E−0 〉, defined as
ρAB =

∣∣E−0 〉 〈E−0 ∣∣ then,

〈A〉av =
〈
E−0
∣∣ Â ⊗ IB ∣∣E−0 〉 = Tr

(
ρAB(Â ⊗ IB)

)
= Tr(ρAÂ), (2.44)

which is a pretty useful formula for finding the average values of observables.
Obvious the same is also true for Bob,

〈B〉av =
〈
E−0
∣∣ IA ⊗ B̂ ∣∣E−0 〉 = Tr

(
ρAB(IA ⊗ B̂)

)
= Tr(ρBB̂), (2.45)

This process of tracing out is actually a clever way to know if some state
which a priori we aren’t sure about, is in fact entangled or not. It might seem
cumbersome at this point that such a procedure is needed, because all the
states we have showed and worked with were simple enough to check imme-
diately if they are entangled or not. But in reality, when they become more
complex either by increasing the number of dimensions and/or sub-systems
of the composite system, figuring out if a state is entangled becomes some-
thing hard to do, impossible , actually, without a more formal mathematical
way to do so. The process is quite straightforward, conceptually speaking,
you do this operation and if the density operator (ρ) that comes out is one
which corresponds to a pure state (ρ2 = ρ) then it means the state in the
composite space was a product state, and if it correspond to a mixed state
(ρ2 < ρ) it means the state was an entangled state.

It’s easy to see why, imagine you have a state |ψ〉AB in a bi-partite space
and you don’t know if it’s entangled or not, but you know if it is separable
there must be some decomposition like |ψ1〉A ⊗ |ψ2〉B, you just can’t seem
to find the states, but you know they exist. If you construct the operator of
such a state, this gives,

ρAB = ρ1A ⊗ ρ2B , (2.46)

which is just the separability condition in terms of density operators, again
you don’t know how this decomposition takes place. But surely, if you trace
out ρAB,

TrB(ρAB) =
∑
n

ρ1A 〈n| ρ2B |n〉 (2.47)

if the operators are normalized we get ρ1A , which is defined as A |ψ1〉 〈ψ1|A,
thus, is a pure state and we can check this by the properties of the pure state
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operators. If ρ1A is mixed, it means the operator couldn’t be written like
( 2.46). The generalization of this idea, of testing to see if a certain state
is entangled or not will be expanded in the next chapter where we present
different ways to ”measure” entanglement. Such a criterion is very important
because it gives us tools to test the existence of entanglement and even to
calculate to what degree the states exhibit this behaviour. We until this point
have always picked states with the appropriate coefficients so that they are
maximally entangled to show the most drastic examples of this behaviour,
but it is not true that for a state to be considered an entangled state that
it has to be ”maximally entangled”. For instance if we write the state

∣∣E−0 〉
with coefficients, αuβd =

√
2
3
, αdβu =

√
1
3

∣∣E−0 〉 =

√
2

3
|u d〉 −

√
1

3
|d u〉 ; (2.48)

it will also be an entangled state, but in this instance the observables (σz, τz)
won’t have a perfect correlation, we can calculate it to be, C(σz, τz) = −8

9
.

The knowledge of the subsystems observables is not completely lacking as
well, from (2.16) we find〈σx〉av = 〈τx〉av = 〈σy〉av = 〈τy〉av = 0, but 〈σz〉av = 1

3

and 〈τz〉av = −1
3
. If we sum the squares of the expected values to check the

”Spin Conservation Principle” we see that it gives for both Alice and Bob 1
9
,

so it isn’t 1 but it also isn’t 0.
As we can see states can be ”more” or ”less” entangled, finding methods

to find which states are which will be important.
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Chapter 3

A deeper look at Entanglement

3.1 Entanglement Monotones

Entanglement monotone is the general name used to refer to a specific cri-
terion used in either testing or measuring entanglement. The name derives
from the fact that such mathematical functions are constructed to remain
unchanged (monotonous) under operations which are understood to preserve
the entanglement of a system.

There are quite a fair amount of different monotones, but they could be
separated in two groups: The ones which are qualitative and behave like
an on/off type of functions, testing if there is or there isn’t entanglement,
but offering no way to differentiate between the degree of entanglement;
And the ones which retrieve a number and measure the entanglement in the
system by quantifying ”how much” entangled the state is. We have already
encountered in the previous chapter examples of these two kinds, applicable
to isolated systems (explained in the footnotes). The qualitative one was the
process of checking if the reduced density operator was a pure state or not,
if it was mixed we knew that the state in composite system was entangled,
but we didn’t know how much it was1. The other one was the function
of correlations between any two observables C(A,B), which behaves like a
monotone for entangled states if the composite systems aren’t interacting2,

1Of course this is only true if there isn’t an environment causing ”noise” in one of the
subsystems, which could ”mix” the pure state. In such a situation we wouldn’t be able to
tell if the state in the composite system was entangled or not.

2This is because the correlation function measures all kinds of correlations, either
classical (local) or quantum (non-local), but if the systems aren’t interacting then we can

43



CHAPTER 3. A DEEPER LOOK AT ENTANGLEMENT

as we saw

C(σz, τz) = −1 when the state is:
1√
2
|u d〉 − 1√

2
|d u〉 ;

and,

C(σz, τz) = −8/9 when the state is:

√
2

3
|u d〉 −

√
1

3
|d u〉 ;

This means the last state was less entangled than the previous one, which
was actually perfectly entangled.

Obviously quantifiable monotones provide us with more information, but
it’s worth mentioning that even from the perspective of a quantifiable mono-
tone that it doesn’t matter in what state a system might be if the state is
entangled to the same degree as some other state; e.g.

∣∣E−0 〉 and
∣∣E+

0

〉
are

different states but both are maximally entangled for (αuβd = αdβu = 1√
2
)

, then, according to any monotone these states are indistinguishable. If we
used a monotone which could quantify the degree of entanglement it would
accuse the same value for both states, in this case the maximum value it
could register for that specific system, and the other kind would just say
that it is indeed entangled.

We should also mention that, depending how certain monotones may be
constructed, they don’t necessarily have to agree with one another 100%
on how they order the states in terms of the degree of entanglement, they
should agree on the condition which gives the maximum entanglement and
the condition of no entanglement (separability) though, if they are to be
consistent with one another 3. Thus it’s important that if we want to compare
measurements of entanglement, that these should be done with the same
monotone, or monotones which we know have a 1 to 1 correspondence.

The research field of these criteria is still very much pertinent nowadays,
and we’re still a long way from finding a fail-proof general monotone which
can be applied to any sort of system without failing. There is an abundance
of monotones which behave appropriately when dealing with systems of low

safely assume that local correlation aren’t an issue.
3But in fact even this isn’t guaranteed. For big enough dimensions some measurements

don’t even agree on what is or isn’t entangled, creating special kinds of entanglement only
detected for specific monotones (like PPT entanglement (ref.)), but this doesn’t concerns
us though because we are not going to be in that regime.
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complexity (i.e low dimensions and few subsystems like 2⊗2, 2⊗3, or 2⊗2⊗2)
but have issues with higher number of degrees of freedom which have greater
complexity, [19]. They either cease to be sufficient and only become necessary
conditions, (i.e They can prove that there is entanglement but they can’t
prove that there isn’t ) or could stop working altogether. On the other hand,
the ones which are mathematically sound in a more broad range (usually
of the qualitative kind) are virtually useless since they’re stated in a very
abstruse mathematical manner and aren’t applicable.

We choose to present a ”standard” quantifiable monotone which is the
one we’re going to use afterwards in the scope of this work, known as the
Von Neumann Entropy of Entanglement.

The Von Neumann Entropy: Entropy of Entanglement

The Entropy of entanglement4 (SE), is one of most well known monotones
and a ”go to” measurement due to it’s characteristics: A fairly easy ap-
plicability, conceptual similarities with the regular thermodynamic entropy,
and being the quantum analog of the classical Shannon information entropy.
(ref.) Also it’s specially easy to compute for bi-partite systems, although
one still has to be careful in this scenario if the number of dimensions of the
subsystems are too big because, as we will see, the entropy diverges loga-
rithmically with the number of dimensions of a system. The Von Neumann
entropy is generally defined as follows,

SV = −Tr(ρ log ρ). (3.1)

Then, for a given composite bi-partite system whose density operator is
ρAB, an unequivocal measure of entanglement of this system is given by

SE = −Tr(ρA log ρA), (3.2)

where ρA stands for the reduced density operator defined earlier as TrB(ρAB),
and log is the natural base logarithm. This is called the entropy of Entan-
glement.

4Although there are other kinds of monotones with ”Entropy” in the name, like the
” Relative entropy of entanglement”, or ”Renyi entropy of entanglement” etc. which
could rightfully also be denoted as ”entropy of entanglement”, in the context of this work
since no other monotone is going to be used, it’s implicit that when we say Entropy of
entanglement that we are talking about Von Neumann’s Entropy of Entanglement.
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The entropy is defined in terms of Alice’s reduced density operator, but as
is usual we could have chosen to have it defined with Bob’s reduced density
operator. The previous expression of the entropy can still be written in
a more low-level form, which is the one typically used when doing actual
calculations. One knows from linear algebra that, if some given matrix is
diagonal then the diagonal entries are the eigenvalues of the said matrix. As
long as rhoA is a diagonalizable square matrix, it can be expressed in terms
of its eigenvectors by,

ρA =
∑
i

Ai |ai〉 〈ai| , (3.3)

where Ai is the eigenvalue in the ith entry of the matrix, interpreted as the
probability for Alice’s subsystem to be in |ai〉 〈ai|, as can be seen directly if
we compare (3.3) to (2.39).

Since the log of a diagonal matrix is equal to the matrix of the log of the
elements, we can easily see that (3.2) becomes,

SE = −
∑
i

(Ai logAi); (3.4)

If ρA is diagonal, Ai is the ith entry of the matrix. But it doesn’t need
to be, because if we know that it’s diagonalizable we only need it to be an
eigenvalue of the matrix.

There are some properties which can be stated immediately about the
entropy. Like all measures of entanglement this monotone should be zero
when the system is in a state which is separable, and have its maximum
defined when the state is maximally entangled. The entropy of entanglement
is a quantifiable extension of the qualitative measure we mentioned before in
the previous chapter, when we checked to see if the reduced density operator
was mixed or pure, but now we can compute the degree of ”mixedness” with
this measure, which equates to the degree of entanglement of the composite
system.

As argued in last section of Chapter2, if ρA is pure than the state is not
entangled, which should mean that SE = 0. Let’s see if (3.4) respects this:
Looking at (3.3), we know that if the operator is to be a pure state it needs
to take the form,

ρA = Ai |ai〉 〈ai| ,

where |ai〉 can be any eigenvector. In matrix representation, all the entries
are null except the ith entry which is the eigenvalue Ai. If the operator
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is normalized then from the condition Tr(ρA) = 1 comes out directly that,
Ai = 1. Then (3.4) takes the form,

SE = −1 log 1− (n− 1) · lim
x→0

(x log x) (3.5)

The first term obviously is zero. The second term, where n is the total
number of entries of the matrix, which are all null except for one, is also zero
since the limit converges to zero. Then, like we expected SE = 0 when the
reduced density operator is a pure state, which means the composite system
is separable.

Now we proceed to obtain the expression for the maximum of the entropy
of entanglement.

As we saw previously, a maximally entangled state (Bell state) in a com-
posite system of 2×2 dimensions is given by the collection of states in (2.25)
for (αuβd = αdβu = 1√

2
). We can generalize the collection of states as,

1√
2

(
|1〉+ |2〉

)
; (3.6)

(we’re only considering the symmetric states, to get the antisymmetric case
we just have to substitute the plus with a minus sign). Here |1〉 and |2〉 are
any two base states which cannot be factorized simultaneously. One could
guess that a maximally entangled state in a system of 3×3 dimensions should
be given by,

1√
3

(
|1〉 + |2〉+ |3〉

)
; (3.7)

and this is happens to be true. In fact for a given general composite bi-partite
system, of NAB = NA×NB dimensions, a general Bell state is given by [20],

|B〉 =

(
1√
NAB

) 1
2

i=
√
NAB∑

i=1

|i〉 ; (3.8)

If we are in the special case where NA = NB we could just could call it N ,
and NAB = N2, which sets,

|B〉 =
1√
N

i=N∑
i=1

|i〉 ; (3.9)
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The corresponding operator is given by,

|B〉 〈B| = 1

N

i=N∑
i=1

|i〉
j=N∑
j=1

〈j| ; (3.10)

which can be written as,

|B〉 〈B| = 1

N

i=N∑
i=1

|i〉 〈i|+ (crossed terms); (3.11)

If at this point we apply the tracing operator over Bob’s space, we get that
Alice’s reduced density operator is,

ρA =
1

N

i=N∑
i=1

|ai〉 〈ai| ; (3.12)

As we expected the crossed terms vanish when we calculate the trace. The
state |ai〉 corresponds to Alice’s eigenvector, which was contained in the
eigenvector |i〉 of the composite space. As we can see such operator is a
N ×N diagonal matrix, whose entries are 1

N
for all N diagonal elements. If

we apply (3.4) we get that,

SE = −N ×
( 1

N
log

1

N

)
= logN ; (3.13)

This is the maximum value of the entropy for a given maximally entangled
system. Which shows that for a system of the kind n⊗ n when n→∞, SE
diverges.

Usually the entropy is redefined, such that for a closed quantum system
of dimension N its maximum value should be 1 5 for a maximally entangled
state, (i.e it has the same upper and lower bound as the function of correla-
tions). This is easily obtained by taking the N based logarithm. Such that
logN N = 1. Although if we are going to compare results of the entropy
where the system isn’t closed for all degrees of freedom we should stick with
the ”universal” natural based logarithm.

5Actually, it’s the absolute value of the entropy that should have a maximum value of
1, because the entropy could be negative depending on the convention).

48



CHAPTER 3. A DEEPER LOOK AT ENTANGLEMENT

Let’s see if this checks out for a simple example. Choosing the already
familiar

∣∣E−0 〉 state with, (αuβd = αdβu = 1√
2
),

∣∣E−0 〉 =
1√
2

(
|u d〉 − |d u〉

)
, (3.14)

where it’s reduced density operator was already calculated in the previous
chapter as,

ρA =
1

2

(
A |u〉 〈u|A + A |d〉 〈d|A

)
This in matrix form is given by, (

1
2

0
0 1

2

)
; (3.15)

Then evaluating the entropy in a 2 based logarithm we have the expression,

SE = −1

2
log2

1

2
− 1

2
log2

1

2

=
1

2
log2 2 +

1

2
log2 2 = 1,

as it should. The value registered for this monotone is the same value as
the correlation between two given observables measured in a system which
is maximally entangled, actually the correlation was negative but we could
have defined it the other way around, so it doesn’t make any difference. But
don’t get yourself fooled, this doesn’t mean that for any other state that the
two measures will produce the same value, in fact if we calculate the entropy
for the state, ∣∣E−0 〉 =

√
2

3
|u d〉 −

√
1

3
|d u〉 , (3.16)

we get SE ∼ 0.92 which is not the same as the value for the correlation which
we calculated in the last chapter to be 8

9
, in module.

Actually we can calculate a simple plot of the general function of entropy
for a 2 dimensional system in terms of it’s eigenvalues (probability). We know
that every reduced operator written in terms of it’s eigenvectors is going to
be of the form,

ρA = Pu |u〉 〈u|+ (1− Pu) |d〉 〈d| ,
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if the operator is to be normalized, because the eigenvalues represent a prob-
ability, so they must sum to unity. This implies then that the general form
for the entropy is given by,

SE = Pu log2 Pu + (1− Pu) log2(1− Pu)

If we plot the function SE(Pu) we have,

Figure 3.1: SE(Pu)
Entropy as a function of the probability Pu; Pd is given by (1-Pu)

As we can see the maximum entanglement is when Pu = Pd = 0.5 like
we calculated, and the distribution is symmetric because, when we go to the
right of the middle point, the values of Pd are equal to the value Pu to the
left because Pd = (1− Pu).

In the case of the other state Pu = 2
3
, which if you look at the plot it

seems to agree with the value we calculated, SE ∼ 0.92. Everything check’s
out.
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3.2 Entanglement and Decoherence

Thermodynamic Entropy Vs. Entropy of Entanglement

In the beginning of this chapter we stated that the thermodynamic entropy
is closely related to the entropy of entanglement without any explanation.
Here will see what’s similar between them and perhaps more importantly
what is different.

If we consider a classical system in the context of statistical mechanics,
we have a collection of states 6 which are also called micro-states, in the sense
that they could have various ”micro-configurations” capable of reproducing
the same thermodynamical observable of a ”macro-state”, like the average
energy of a gas. A given micro-state i of probability pi is associated to a
given energy Ei. The Gibbs Thermodynamic Entropy of such a system is
defined as(natural units),

SG = −
∑
i

pi log pi (3.17)

Well, this has exactly the same form as (3.4). Then, it’s easy to understand
why the function (3.4), and consequently (3.2) are also called ”entropy”.
But in what way are they different ? The differences arise from the distinct
mechanisms associated with the calculation of the probability in either case.
In the thermodynamic entropy, due the high number of states inhabiting the
system, the values of pi are associated with a distribution of probabilities
(Boltzmann’s for classical examples), such that the probability for a given
micro-state i is defined to be,

pi ∝ e−Ei/T ;

Where T is the thermodynamic temperature of the ”macro-state”.
The probability Pi from (3.4) should in principle respect the same prop-

erties as pi ∝ e−Ei/T from (3.17), but we don’t have an enough number of
states to apply any sort of statistical treatment in the quantum example
because we can’t define the necessary thermodynamical variables (i.e tem-
perature) to compute the probability in this way. We have to find a different
mathematical formalism altogether, for this case. This formalism gets it’s

6These states are not the same states of quantum mechanics since they don’t represent
vectors of any sort but only an element of a given set, just like the coin example.
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bearings in the vector like nature of quantum states and is of course the defi-
nition of a density operator for a given quantum state, whose eigenvalues are
the probabilities to be in some specific base state. So you see, although the
mathematical function is the same, the context in which we find ourselves
and the restrictions imposed by the nature of the systems we’re trying to
describe provides a very different approach to the same expression.

In summary: When ρ in (3.1) represents a microcanonical or canoni-
cal ensemble, the von Neumann entropy gives the thermodynamic entropy.
When it represents the reduced density matrix describing a subsystem A of
the composite system AB, the von Neumann entropy quantifies the entan-
glement between A and B, and is called the entropy of entanglement (3.2)
[21].

Coherent states and Decoherence

There is another important aspect that we should address. Until this point we
have always been in the idealised framework of ”noiseless quantum theory”[20].

The ”noise” is in respect to the local interactions that the environment
has with the entangled system. Such local interactions are detrimental to
entanglement because it causes decoherence on the quantum states. Until
this point we have never mentioned this said ”decoherence”; Because we
have made throughout the implicit idealization that the quantum systems
only interact to become entangled, and then they go on their way without
interacting ever again, either with themselves or with anything else, so they
are ”noiseless”.

Although decoherence doesn’t play a huge part in the scope of this work,
it is something worth mentioning in order to better understand the nature of
our results further on. We aren’t going explore this concept in much detail,
we only add a brief description of the way it works, why it is detrimental to
quantum entanglement and, as such, why it’s existence provides an intrinsic
difference to the behaviour of the entropy of entanglement as compared to
thermodynamic entropy.
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CHAPTER 3. A DEEPER LOOK AT ENTANGLEMENT

”Decoherence” is just a coined term that translates to the phenomenon
of coherence loss. Then, to better understand what is decoherence in the
context of quantum mechanics, one has to know what properties characterize
a coherent quantum state, and see how such a state ceases to have those
properties.

Suppose we have a state |ψ〉. This state is said to be coherent if, for
some amount of time δt, we let the it evolve and it always has the same
”interference pattern” for all times in δt. This occurs if and oly if, the relative
phase between the base states remain the same throughout all times. Thus,
it’s a direct implication that any stationary state is a coherent state.[ref]

The process of decoherence is the loss of such an interference pattern
by offsetting the relative phase of wave-functions between themselves. This
destroys the character of quantum superposition, and consequently of entan-
glement.

Like entanglement the process of decoherence can be gradual, it doesn’t
have to be an all or nothing proposition. This is explained due to the fact that
the process of decoherence can be thought as the ”unreachable” information
that gets entangled with the environment [22].

Let’s expand on this; Although entanglement is essentially non-local it
emerges from the the inner works that occur when things interact locally
on the quantum level7, so in the same sense that Alice’s and Bob’s elec-
trons might become entangled between themselves if they interact, so can
they become entangled with the environment by interacting with it. What
is the difference ? One can book-keep (more or less) the entanglement be-
tween various system components if the degrees of freedom are limited and
as such, write down a quantum state accordingly and compute the entangle-
ment of the system. This isn’t possible in the infinite amount of the degrees
of freedom that the surrounding environment has, where the information gets
”scrambled” exponentially fast [23] and cannot be used.

The ”environment” is a relative thing, as far as entanglement goes every-
thing which can’t be mathematically included in the general description of
the pure entangled state is ”environment”.

7Local doesn’t mean that it has to be exclusively with one another. For instance,
the phenomenon of superconductivity which is explained by the BSC theory uses the
concept of a ”Cooper pair” which is basically an entangled pair of electrons, such a pair
doesn’t become entangled by direct interaction of the electrons but rather by a mediated
interaction of the lattice phonon’s. But it’s also local nonetheless [24].
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Imagine we have a pair of spin-1
2

particles, A and B, which are maxi-
mally entangled. Sometimes A and B are also called qubit’s (it derives from
quantum-bit and it’s a general term used to refer to any 2D quantum sys-
tem), and the maximally entangled pair of qubit is is called and ”ebit” (from
entangled bit). Suppose that ebit unbeknownst to us interacts very briefly
with another spin-1

2
particle (qubit), and that particle becomes entangled

with the e-bit (this in reality creates a triple of entanglement between the 3
particles )but the way entanglement is shared is not completely at random,
there are inequalities that must be fulfilled; For instance, ”the principle of
entanglement’s monogamy” which is stated as: ”If two qubits A and B are
maximally quantum correlated they cannot be correlated at all with a third
qubit C” [25]; which is to say the ebit cannot become entangled with an-
other particle and still continue to be an ebit. This entails that if we go
measure again the entangled pair that the entropy of entanglement won’t be
a maximum, so the particle that interacted caused decoherence by becoming
entangled with the pair and disappearing.

After the interaction the ”complete quantum system” of spins, couldn’t
be described in a 2⊗ 2 but only in 2⊗ 2⊗ 2 Hilbert space. In this sense the
role of the ”environment” was played by a single particle.
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Chapter 4

Entanglement in Quantum
Field Theory

4.1 Brief introduction

The framework in which we aim to study entanglement in this thesis is Quan-
tum Field Theory (QFT), and this chapter serves to introduce the formalism
needed in this context. We aren’t going to introduce the subject in such
a self contained manner as we did previously with quantum entanglement,
for various reasons, mainly that, this subject is more widely known and is
easier to find didactic and comprehensive literature which relates well to the
scope of this work. We recommend further reading for those which might
be unfamiliar with the theme, like Peskin and Schroeder [26] which provides
an introductory and broad overview of the subject. A deeper analysis on φ4

theories is found in [27], which was heavily used for revision throughout this
thesis.

QFT provides us with a fruitful formalism when dealing with the field–particle
correspondence on the quantum level. This is made possible by quantizing
the fields which are associated with the particles they aim to represent, thus
we are able to treat a particle or collection of particles as discrete excitations
of their respective fields. There is a particular useful tool in QFT, which
we are very interested in, the Ŝ matrix formalism used to study scattering
phenomena between particles. We’re going to focus mainly on this formalism
for obvious reasons, since our goal in this work is to study entanglement of
particles submitted to a certain type of collisions.

55



CHAPTER 4. ENTANGLEMENT IN QUANTUM FIELD THEORY

4.1.1 Laying down the foundations

Suppose we have two general fields φA and φB, which are the fields used to
represent the particles associated with Alice’s and Bob’s subsystems, respec-
tively (the blue and red particles in the previous chapter’s example).

φA and φB don’t have to be equal since they don’t need to represent the
same kind of particles. But let’s assume they do represent the same type of
particles, which are only distinguished for the fact that they exist in different
subsystems with different observers studying their behaviour, like we did in
Chapter2.

How can Alice (or Bob) use this abstract field notion to represent the
particles in their subsystems? Burrowing from the mathematics of ladder
operators in regular quantum mechanics, they can define a creation (c†~k) and

annihilation operator (c~l) for their fields, with the commutation relationship

[c~l, c
†
~k
] = 2E~k(2π)3δ(3)(~k −~l). (4.1)

Thus, we can define mathematically a given state of an n number of
particles with momenta ~k as, ∣∣n~k〉 = (c†~k)

n |0〉

The operator (c†~k) is applied an n number of times, and for each time it raises

from the vacuum-state a particle of momentum ~k.
But we are specially interested in the case when both Alice and Bob only

have a particle each in their respective subsystem, a 1⊕ 1 Fock space as it’s
usually called. Then from the previous expression we for n = 1,∣∣1~k〉 = (c†~k) |0〉 ;
When the state that gives us the occupation number for a given momentum
~k is only occupied by one particle, then that single excitation mode can be
interpreted as representing the quantum state of that specific momentum(
i.e.
∣∣1~k〉 = | ~k 〉

)
. So, we define a general state of momentum in Alice’s

subspace as,

|~p1〉A =
√
E~p1c

†
~p1
|0〉A ; 1. (4.2)

1The energy factor is only introduced in the definition of the state to be in accordance
with Lorentz invariant factor in the definition of the field of (4.3)
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Where c†~p1 is the creation operator for mode ~p1, defined by means of Alice’s

field which we introduce at this point as a spinless (scalar) field2

φ̂A(x) =

∫
d3 ~p1

(2π)3

1

2E ~p1

(
c ~p1e

−i ~p1·~x + c†~p1e
i ~p1·~x
)

; (4.3)

We get the same for Bob’s description, if we set A → B and ~p1 → ~p2.
The state is,

|~p2〉B =
√
E~p2c

†
~p2
|0〉B ; (4.4)

With the field,

φ̂B(x) =

∫
d3 ~p2

(2π)3

1

2E ~p2

(
c ~p2e

−i ~p2·~x + c†~p2e
i ~p2·~x
)

; (4.5)

The overlap (inner product) between any two given states (defined in the
previous manner) can be calculated using (4.1) to be,

〈~q |~p 〉 = 2E~p(2π)3δ(3)(~q − ~p ) (4.6)

4.1.2 The Scattering Procedure

The formalism of the Ŝ matrix is quite straightforward to understand in a
conceptual manner. We have the two particles (one for Alice and one for Bob)
”going in”, the said particles are in some quantum state usually called the
in-state, defined as |Ψ〉in. After the interaction a certain number of particles
”go out”3 in the out-state defined as |Ψ〉out, which is related to the in-state

2 At this point we diverge from the examples of exclusively entangled spin states
which we introduced in the previous chapters. Now the particles that Alice and Bob are
describing don’t have spins, but there’s no need for worrying, entanglement is something
which can happen for all types of degrees of freedom associated with the descriptions of
the quantum systems under study. In this case it will be momentum states which could
become entangled.

3The ”going in” and ”going out” relates to the fact that the particles are arriving or
leaving a given region of space-time where there is a specific event happening, in this case
a collision. Different events(interactions) might have different needs as to how ”close” they
need to be in order for them to take place, and how ”far” they need to be for the interaction
to stop, this depends for instance on the couplings strengths on the interactions. Thus
to avoid those difficulties, such states are defined as asymptotic states, which are defined
infinitely far away in space and time before the interaction (in-state) and infinitely far
away in space and time after the interaction (out-state), in this way whatever happens in
the middle is nothing which we should concern ourselves with.
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as such,
|Ψ〉out = Ŝ |Ψ〉in .

We are specially interested in elastic scattering so we have an extra re-
striction to impose upon the character of the collision; The same type and
number of particles that go in should come out, such that the out-state |Ψ〉out
can also be described by the single modes of the Alice’s and Bob’s fields.

We can represent this diagrammatically by,

�
φA(p1)

φA(q1)

φB(p2) : |Ψ〉in |t→−∞

φB(q2) : |Ψ〉out |t→+∞

Ŝ

(time is upwards)

Figure 4.1: Scattering diagram.
φA(p1), φB(p2) are the excitation modes of 4-momenta p1 and p2, for Alice’s
and Bob’s fields, respectively, which correspond to their incoming particles
described by the asymptotic state |Ψ〉in. φA(q1), φB(q2), correspond to the
modes of the fields which relate to the outgoing particles which are described
by the asymptotic state |Ψ〉out. The ”blob” is supposed to represent a black
box which encodes the ignorance at this point, about the inner workings of
the collision.

We should comment why only the channel,

φAφB → φAφB,

is being taken into account in the study of this collision. One might ask, why
not collisions also of the form,

φAφA → φBφB, or φBφB → φAφA ?

Although these collisions are completely respectable in terms of elastic scat-
tering they aren’t pertinent to the study of entanglement, because entangle-
ment is enabled by the ”mixing” of the degrees of freedom in the different
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subsystems, for that to happen they must interact. So we must have a colli-
sion of the type

φAφB → φAφB,

because this is the one which corresponds to the interaction of Alice’s and
Bob’s subsystem. We have already restricted our collision to some extent by
specifying the characteristics of the fields/particles in the asymptotic states,
but we are still completely unsure about the nature of the interactions that
take place inside the ”blob”, (i.e the nature of Ŝ).

Scattering matrix and the φ4 interaction

The Scattering matrix (Ŝ) is defined as,

Ŝ = 1 + iT̂ . (4.7)

Where (iT̂ ) is the transfer matrix,

〈 ~q1 ~q2 | iT̂ | ~p1 ~p2 〉 = (2π)4δ(4)(p1 + p2 − q1 − q2)iM(p1p2→q1q2), (4.8)

iM is the part which represents the algebra of the collision’s dynamics, but
to calculate it we have to know what interactions are taking place inside the
”blob” such that we could produce this collision with the desired asymptotic
states.

For the kind of fields we’re dealing with, there’s usually a type of inter-
action called the φ4 interaction (or quartic interaction), which conceptually
pertains a number of interesting phenomena in scalar field theory. Thus, the
model we are going to consider is the already well known complex φ4 model,
whose action is given by,

A = −
∫
d4x(

1

2
∂µφ

∗∂µφ−m2φ∗φ− λ

4
(φ∗φ)2. (4.9)

Where λ is the coupling constant of the field, which gives the strength of the
interaction.

The choice of a complex model is appropriate because we have two real
fields φA, φB, and we can define the complex field as, φ = φA+ iφB. In terms
of Alice’s and Bob’s real fields the action (4.9) becomes,

A = −
∫
d4x

1

2
∂µφA∂

µφA+
1

2
∂µφB∂

µφB−m2(φ2
A+φ2

B)−λ
4

(φ2
A+φ2

B)2. (4.10)
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Where the interaction term is given by,

(φ∗φ)2 = (φ2
A + φ2

B)2 = φ4
A + φ4

B + 2φ2
Aφ

2
B.

Any coupling of the previous form can occur between the fields inside the
”blob”, so to produce the collision we desire. But there are an infinite number
of ways in which the fields could couple according to the said interaction. How
do we proceed do calculate such a thing ?

Diagrammatic Expansion

There’s an approach based on the fact that we can treat Ŝ as an infinite sum
of terms around powers of the coupling constant λ , like,

Ŝ = 1 + f (1)λ+ f (2)λ2 + (...) (4.11)

Where f (n) is the complex function for all the possible contributions of λn

interactions. If we compare the previous series with the definitions of Ŝ (4.7)
and iT̂ (4.8), we notice the series is of the form,

〈 ~q1 ~q2 | Ŝ | ~p1 ~p2 〉 = 1+(2π)4δ(4)(p1+p2−q1−q2)[iM(tree)+iM(1-loop)+O(λ3)]
(4.12)

Where we are are ignoring the terms of O(λ3) and higher. Each of these
terms can be represented diagrammatically by means of Feynman diagrams,
and by using Feynman’s rules we find what the iM amplitudes are. Bearing
in mind the restrictions on the interactions we get the following diagrams:
Tree-level term proportional to λ,

�
φA(p1)

φA(q1)

φB(p2)

φB(q2)

(time is upwards)

Figure 4.2: Tree-level contribution.
This is the simplest way the particles can interact. The diagram is propor-
tional to λ since it only has one inner vertex.
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The next term in the expansion correspond to all the possible4 1-loops
diagrams which are proportional to λ2 . They are represented as,

�φA φB

φA(p1)

φA(q1)

φB(p2)

φB(q2)

��
φA;B

φA;BφA(p1)

φA(q1)

φB(p2)

φB(q2)

��
φA

φBφA(p1)

φB(q2)

φB(p2)

φA(q1)

(time is upwards)

Figure 4.3: 1-loop contributions.
These are the only three topologically different 1-loop diagrams that

respect the interactions terms. They are known as the s-channel, t-channel
and u-channel, respectively. They are proportional to λ2 since they have

two inner vertices.

We will stop here because higher loop diagrams would be proportional to
powers of λ which we are ignoring. We can apply the Feynman rules for φ4

theory, and calculate iM for both cases (See Appendix);
In Tree-level we have,

iM(tree) = −2iλR +O(λ2
R); (4.13)

And in 1-loop,

iM(1-loop) = −4i(
λR
4π

)2 · (3G(t) + 2G(u) +G(s) + 2) +O(λ3
R), (4.14)

The coupling has a subscript R to evidentiate that it’s redefined by the
process of renormalization. But from here on out, we’ll only use λ. The
arguments of the G function, u,t and s are the Mandelstam variables defined
as,

t = (p1 − q1)2, u = (p1 − q2)2, s = (p1 + p2)2

4There is actually another legitimate type of diagram, called the ”tadpole” diagram
which is a self-interacting diagram on the external legs. But these diagrams aren’t going
to affect the overall collision since they disappear in the process of renormalization.
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The function is given by the expression,

G(x) = −2 +

√
1− 4m2

x
· log (

√
1− 4m2

x
+ 1√

1− 4m2

x
− 1

), (4.15)

for x ∈ {s, t, u}.

If we set,

F(s, t, u) ≡ 4 · (3G(t) + 2G(u) +G(s) + 2), (4.16)

then we have a more compact form of (4.14), we sum it to (4.13) and get,

iM(tree+1-loop) = −2iλ− i( λ
4π

)2 · F(s, t, u) +O(λ3). (4.17)

Which gives that the expansion for the scattering matrix in (4.12) is now
given by,

Ŝ = 1 + (2π)4δ(4)(p1 + p2 − q1 − q2)[−2iλ− i( λ
4π

)2 · F(s, t, u)] (4.18)

So now, we have our scattering matrix and consequently our collision com-
pletely defined.

Comment on Unitarity

An important feature in QFT is the existence on the vacuum state. This state
interacts in a dynamical manner with the existing particle states, which pro-
vides a volatile stage of action where particles can be absorbed and emitted
by the vacuum in all sort of manners, this volatility creates possible prob-
lems in the preservation of the normalization of systems, a must if one is
to give any physical interpretation to the results. Thus, in order to impose
a legitimate physical interpretation on any phenomena in QFT, one should
be careful as to see if the probability at a given value of energy is prop-
erly normalized at all times, since generally the number of particles aren’t
conserved.

For example, in regular quantum mechanics if we have a normalized and
closed quantum system it will remain normalized throughout time, because
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the time evolution operator is unitary (a property which preserves the nor-
malization of the state), and since the state is also closed there will be no
change in the particles content.

When dealing with scattering (in QFT), unitarity is also a preferred fea-
ture of the Ŝ matrix. Since we can’t book-keep the intermediary ”zoo” of
particles during the collisions, we need to be assured that such interactions
don’t affect the end points so that the probabilities of the ”in” and ”out”
states are consistent with each other, even if they have a different number
of particles (i.e are normalized to all the possible outcomes that the collision
could produce).

The condition of unitarity for a given matrix is that it’s hermitean con-
jugate is also it’s own inverse. Then if Ŝ is unitary Ŝ†Ŝ = 1 is true. Let’s
imagine then that Ŝ is indeed unitary, and we write the matrix as the series,

Ŝ = 1 + f (1)λ+ f (2)λ2 + (...); (4.19)

The fact is that although Ŝ is unitary, only the infinite sum of the terms
amounts necessarily to an unitary operator. It is not generally true that if
we stop at any give term of the expansion that the approximation needs to
be unitary as well.

So we can’t assume that the approximation (4.18) is unitary. How does
this affect the results ? Fortunately, we are restricting ourselves to the spe-
cific scenario where the space in which the initial and final states exist is
a (1+1)-particle Fock space, such that the particle content is bound to be
the same before and after the collision. As long as we’re in a regime of the
interaction which respects our restriction, that no particles are created or
absorbed in the asymptotic states and we normalize them to the same val-
ues of probability, we’ll have an ad-hoc recovered ”unitarity” on such states,
which would legitimize the physical interpretation of the results [12].

There exist precise methods which we’ll not pursue in this work, where
we could evaluate for what values of λ the regime of ”weak-coupling” is valid.
Such methods are derived from the Optical Theorem [26]. A rough estimate
for the allowed values of lambda is obtained in Chapter5.
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The Road-map for the Calculation

We have already determined the nature of the scattering matrix and this
point we should reflect on what we want to find, and how to calculate it, in
order do devise a road-map of the steps we need to take to get there.

We want to calculate the variation of the entanglement’s entropy (∆SE)
during an elastic scattering process described by the said Ŝ matrix.

From the previous chapters one knows that, if we have a given state |Ψ〉AB
we can find the entropy by calculating it’s density operator ρAB and tracing it
out with respect to one of the subsystems to get the reduced density operator
(e.g ρA) to input it into the entropy formula (3.2). Thus we need to proceed
in this fashion for both the ”in-state” (|Ψ〉in) and the ”out-state” |Ψ〉out), and
subtract the values we get for the entropy to compute the entropy’s variation
(∆SE) caused due the scattering process. Then the entropy will be given by,

∆SE = SE (out) − SE (in) (4.20)

We synthesize the necessary steps of the process in an visual manner
bellow,

Figure 4.4: Road-Map for the Calculation.
The necessary steps that we have to take in order to get to the desired

result of computing the variation of the entanglement’s entropy (∆SE).
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Mathematical Interlude: QFT considerations

We already performed these operations before, but there’s some aspects in
which this case differs from the examples of the previous chapters (like the one
in (2.43) ); We are now dealing in a continuous basis of momenta as opposed
to a discrete basis of spins. This difference must be taken into account in
our calculations. For instance, the tracing operator was previously given by,

TrB(ρAB) =
∑
n

B〈n| ρAB |n〉B . (4.21)

If we adopt the usual convention in QFT of changing the summation into an
integral over the infinite amount of degrees of freedom,∑

n

→
∫ +∞

−∞

d3~n

(2π)3
, (4.22)

we get,

ρA = TrB(ρAB) =

∫ +∞

−∞

d3~n

(2π)3

B〈~n|ρAB |~n〉B
2E~n

. (4.23)

The additional energy factor was introduced to cancel the factor in the
state definition (4.2). This factor preserves the covariant nature of QFT
because d3~n/(2π)32E~n is a Lorentz invariant integration variable [12].

Attributing the covariant properties to the states themselves, we take the
inner product,

〈~q |~p 〉 = 2E~p(2π)3δ(3)(~q − ~p ) (4.24)

This is equivalent to say,

〈~q |~p 〉 =
√

2E~p(2π)3

√
2E~q(2π)3δ(3)(~q − ~p ) (4.25)

If we define,

|~p〉µ :=
|~p〉√

2E~p(2π)3
, (4.26)

we have,
µ〈~q |~p 〉µ = δ(3)(~q − ~p ). (4.27)

This relationship is much more similar to the typical one in regular quantum
mechanics 〈i|j〉 = δij. The trace would also be given by,

TrB(ρAB) =

∫ +∞

−∞
d3~n B

µ〈~n|ρAB |~n〉µB, (4.28)
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which also bears a resemblance to (4.21), where the summation is substituted
only by the integral. So, if one considers that the states themselves are
defined in such a way the operations don’t have to account for covariance.

We will derive some results using this notation, but afterwards we’ll revert
to using the regular states as they were defined in (4.21).

If we try to calculate the inner product of |~p〉µ with itself, and assuming
that the state is normalized to unity, we should get 1. But we can easily see
that ,

µ〈~p |~p 〉µ = δ(3)(0), (4.29)

which is a divergence. To countour this issue, we introduce the definition of
the phase space volume defined as,

L3 = (2π)3δ3(0). (4.30)

From the definition of (4.26), one gets that the inner product is,

〈~p |~p 〉
2E~p

= L3 ⇔ 〈~p |~p 〉
L32E~p

= 1 (4.31)

which can still be written as,

〈~p|√
L32E~p

· |~p〉√
L32E~p

= 1. (4.32)

So, generally one should use this expression whenever the need arises for cal-
culating any kind of inner product between two equal vectors. For instance,
the nth diagonal element of the density operator ρ in matrix form would be
given by,

ρn =
〈~n | ρ |~n 〉√

2E~nL3
√

2E~nL3
. (4.33)

This is an expression we’ll use quite often to calculate the elements of the
matrix to plug into the entropy expression.

If we are dealing with the originally defined states then the operators
should bear the burden of a covariant description. As such this translates
into the integration over a given momentum to be defined as,∫ +∞

−∞

d3~n

(2π)3

1

2E~n
. (4.34)

Then the projection operator changes like,
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P̂ =
∑
n

|n〉 〈n| →
∫ +∞

−∞

d3~n

(2π)3

|~n〉 〈~n|
2E~n

, (4.35)

which means that the general description of |Ψ〉out = Ŝ |Ψ〉in, when projecting
the state into the a two labeled momentum basis, will be of the form,

|Ψ〉out =

∫ +∞

−∞

d3~q1

(2π)3

1

2E~q1

d3~q2

(2π)3

1

2E~q2

|~q1, ~q2 〉 〈 ~q1, ~q2 | Ŝ |Ψ〉in . (4.36)

This will be the starting point for the calculation of the entropy of the
final state.
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Chapter 5

Entanglement’s Entropy: The
Calculation

As we said in the previous chapter, we’re going to measure the state in a basis
of momenta, a two labeled orthogonal infinite basis. The general description
of such a projection for the state after the collision (out-state) is given by
(4.36). At this point we should define exactly the state |Ψ〉in. We are going
to separate this calculation in two distinct case studies: first we’ll assume
that the initial state is a product state; afterwards we’ll assume the initial
state to be an entangled state. We’re motivated to do this because intuitively
we expect that there might be some differences in the processes of the overall
phenomena, since we’ve found throughout this work that entangled states
are of an intrinsically different nature than product/separable states. This
approach will allow us to separate the scattering process into the two regimes
of the EceM, i.e. creating entanglement versus enhancing the already existing
one.

5.1 |Ψ〉in is separable

Looking back at our initial definition of a product state, (2.4), we can accord-
ingly to these properties construct a given state in the composite system,

|~p1 ~p2〉AB = |~p1〉A ⊗ |~p2〉B , (5.1)

where the subsystem states were defined in the previous chapter.
Then we can input the state |Ψ〉in defined as (5.1) into (4.36), and get,
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|Ψ〉out =

∫ +∞

−∞

d3~q1

(2π)3

1

2E~q1

d3~q2

(2π)3

1

2E~q2

|~q1 ~q2 〉 〈 ~q1 ~q2 | Ŝ | ~p1 ~p2 〉 . (5.2)

We will need to solve this last expression to compute the entropy of the
out-state, but before tackling this somewhat strenuous task we will com-
pute the initial entropy, which we’ll need in order to calculate the variation.
Recalling a general result of Chapter2, we found that the entropy of entangle-
ment of any separable state is given by (3.5).Then it’s a direct consequence
that SE (in) = 0 and, as such, ∆SE = SE (out).

We revert our attention to the expression (5.2), which is quite over-
encumbered. We will rearrange it so to become less eye strenuous without
having to write everything explicitly. This integration spans various domains
pertaining to specific states configurations, there are 4 different contributions
for each of the different cases:

- One for when the new state has the same labels as the state being

projected i.e: |~q1 ~q2 〉
∣∣∣∣
~q1= ~p1, ~q2= ~p2;

;

-Two for when the new state has one of the labels equal but the other
one different from the state being projected,

i.e |~q1 ~q2 〉
∣∣∣∣
~q1 6= ~p1, ~q2= ~p2;

and |~q1 ~q2 〉
∣∣∣∣
~q1= ~p1, ~q2 6= ~p2;

;

-One for when the new state has both labels different than the state being

projected, i.e |~q1 ~q2 〉
∣∣∣∣
~q1 6= ~p1, ~q2 6= ~p2;

;

We then might think in separating (5.2) into 4 parts, but a more careful
look into the results reveals that the contributions which have all except one
momenta equal, vanish. This is due to the nature of Ŝ,

〈 ~q1 ~q2 | Ŝ | ~p1 ~p2 〉 ∝ δ(3)(~q1 + ~q2 − ~p1 − ~p2),
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with, ~q1 = ~p1 and ~q2 6= ~p2 yields,

δ(3)(~q2 − ~p2),

which gives zero (if ~q1 6= ~p1 and ~q2 = ~p2 the result is the same). Then we
actually just have to separate the integral into 2 parts. A term stemming
from the projection onto a state with equal labels to the state being projected
and one being projected to a different labeled state,

|Ψ〉out = |~p1 ~p2 〉+

∫
~q1 6= ~p1;~q2 6= ~p2

d3~q1

(2π)3

d3~q2

(2π)3

|~q1 ~q2 〉 〈 ~q1 ~q2 | Ŝ | ~p1 ~p2 〉
2E~q12E~q2

. (5.3)

The first term doesn’t have an explicit integration anymore, because we al-
ready integrated the inner product with the operator Ŝ = 1 + iT̂ inside, for
which only the identity term contributes.

If in the second term of (5.3) we write Ŝ = 1+iT̂ , we notice that iT̂ is the
one which produces a non-null result. This is because the identity operator
leaves the state unchanged and in this scenario the new state was made so
to be different from the old one. The second term becomes,∫

~q1 6= ~p1;~q2 6= ~p2

d3~q1

(2π)3

d3~q2

(2π)3

|~q1 ~q2 〉 〈 ~q1 ~q2 | iT̂ | ~p1 ~p2 〉
2E~q12E~q2

(5.4)

=

∫
~q1 6= ~p1;~q2 6= ~p2

d3~q1

(2π)3

d3~q2

(2π)3

|~q1 ~q2 〉 (2π)4δ(4)(p1 + p2 − q1 − q2)iM(p1p2→q1q2)

2E~q12E~q2

.

Then (5.3) becomes,

|Ψ〉out = |~p1 ~p2 〉 +

∫
~q1 6= ~p1;~q2 6= ~p2

d3~q1

(2π)3

d3~q2

(2π)3

|~q1 ~q2 〉 (2π)4δ(4)(p1 + p2 − q1 − q2)iM(p1p2→q1q2)

2E~q12E~q2

.

(5.5)
We separate the δ(4) into

δ(3)(~p1 + ~p2 − ~q1 − ~q2)δ(E ~p1 + E ~p2 − E~q1 − E~q2)
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in order to integrate over∫
d3~q2

(2π)3
δ(3)(~p1 + ~p2 − ~q1 − ~q2),

which by the properties of the delta function, ~q2 → ~p1 + ~p2 − ~q1. After the
integration we have,∫

~q1 6= ~p1

d3~q1

(2π)3

|~q1, ~p1 + ~p2 − ~q1 〉 [(2π)δ
′
E]iM(p1p2→q1q

′
2)

2E~q12E ~p1+ ~p2−~q1
, (5.6)

where,
q
′

2 := (E ~p1+ ~p2−~q1 , ~p1 + ~p2 − ~q1)

is a 4-vector modified by the integration.
We also use the short notation δ

′
E for δ(E ~p1 + E ~p2 − E~q1 − E ~p1+ ~p2−~q1).

Adding the two terms we get,

|Ψ〉after = |~p1 ~p2 〉+

∫
~q1 6= ~p1

d3~q1

(2π)3

|~q1, ~p1 + ~p2 − ~q1 〉 [(2π)δ
′
E]iM′

2E~q12E ~p1+ ~p2−~q1
. (5.7)

5.1.1 The Center of Momenta (CM) frame

Although at this point it’s not explicitly necessary to turn to the CM frame in
order to evaluate the integrals, we will soon encounter unnecessary difficulties
if we keep things as general as they are. We make the decision to go to the CM
frame to facilitate an easier approach to solving the integrals. Then, all the
dynamical variables associated with momenta and energy will be calculated
in the CM, and hence all aspects of the results will be pertinent only to the
CM frame. In the CM frame,

~p := ~p1 = −~p2 ⇒ |~p1| = |~p2| = |~p|; (5.8)

~q := ~q1 = −~q2 ⇒ |~q1| = |~q2| = |~q|;

Which means that the initial state is,

|Ψ〉in = |~p,−~p〉 . (5.9)
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And also from fact the particles are all of the same mass,

E ~p1 = E ~p2 := E~p; (5.10)

E~q1 = E~q2 := E~q;

From now on we should remember that, ”Our systems is being studied in
the CM frame”. Then if we evaluate (5.7) in the CM we get,

|Ψ〉out = |~p, −~p 〉 + i

∫
~q 6=~p;

d3~q

(2π)3

|~q, −~q 〉 (2π)δEM
(2E~q)2

, (5.11)

where M≡M(p,−p→q,−q). Because,

q
′

2 := (E ~p1+ ~p2−~q1 , ~p1 + ~p2 − ~q1)
CM−−→ (E−~q,−~q) ≡ −q.

Also the delta function of energy becomes,

δ
′

E
CM−−→ δ(2E~p − 2E~q) := δE

So, (5.11) is the general description of the out-state projected into a basis
from the perspective of the CM frame. This is the expression which we will
use to carry on the calculation.

Following the next step in fig.(4.4) we need, ρout = |Ψ〉out out〈Ψ|. In order
to do that we defined the dual bra vector of (5.11),

〈Ψ|out = 〈 ~p, −~p | − i
∫
~l 6=~p

d3~l

(2π)3

〈~l, −~l |(2π)δ
(l)
EM∗

(l)

(2E~l′ )
2

. (5.12)

We explicitly put a different variable ~l integrating over the space, so that we
don’t get confused on what terms belong to what integration. The operator
is given explicitly as,
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ρout = |~p, −~p 〉 〈 ~p, −~p | +
∫

~q 6=~p; ~l 6=~p

d3~q

(2π)3

d3~l

(2π)3

(2π)2
(
δEδ

(l)
E MM∗

(l)

)
(2E~q)2(2E~l)

2
|~q −~q 〉 〈~l, −~l |

(5.13)
+(Crossed Terms).

We didn’t write the crossed terms explicitly because they disappear in the
process of calculating the reduced density operator. This is easily noticeable
because the two crossed terms will be proportional to either to

δ(3)(~q − ~p), or δ(3)(~l − ~p),

and since we would integrate over domains, where ~q 6= ~p; ~l 6= ~p, this would
obviously give zero.

We now shall use the previous expression derived for the trace in QFT
(4.23), and apply it to the operator (5.13),

(ρA)out = TrB(ρout) =

∫ +∞

−∞

d3~n

(2π)3

B〈~n|ρout |~n〉B
2E~n

. (5.14)

We will have two terms. The first one is given by,

∫ +∞

−∞

d3~n

(2π)3

B〈~n |~p, −~p 〉 〈 ~p, −~p |~n〉B
2E~n

=

∫ +∞

−∞

d3~n

(2π)3

〈~n | − ~p 〉 〈 − ~p | − ~n 〉
2E~n

| ~p 〉 〈 ~p | .

(5.15)
Using the inner product, 〈~q |~p 〉 = 2E~p(2π)3δ(3)(~q − ~p ),

=

∫ +∞

−∞
d3~n 2E~n(2π)3

(
δ(3)(~n− ~p )

)2 | ~p 〉 〈 ~p | .

The integration over one delta function sets ~n → ~p, but we still have a
remaining δ(3)(0), and since it’s multiplied by (2π)3, the result for the first
term will be, 2E~pL

3 | ~p 〉 〈 ~p |. The second term will take a bit more of
work. Explicitly we have,

∫ +∞

−∞

d3~n

(2π)3

1

2E~n

∫
~q 6=~p; ~l 6=~p

d3~q

(2π)3

d3~l

(2π)3

(2π)2
(
δEδ

(l)
E MM∗

(l)

)
(2E~q)2(2E~l)

2
〈~n |−~q 〉 〈−~l | ~n 〉 |~q 〉〈~l | .

(5.16)
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We integrate first over the l space using the delta δ(3)(~n+~l) that comes from

the inner product 〈 − ~l | ~n 〉 = 2E~n(2π)3δ(3)(~n + ~l). The integration sets
~l→ −~n which accordingly gives,

∫ +∞

−∞

d3~n

(2E~n)2

∫
~q 6=~p

d3~q

(2π)3

(2π)2
(
δE δ

(n)
E MM∗

(n)

)
(2E~q)2

〈~n | − ~q 〉 |~q 〉 〈−~n .|

We can switch the order of integration and integrate over the space of n
using the delta δ(3)(~n+ ~q) which stems from the inner product 〈~n | − ~q 〉 =
2E~q(2π)3δ(3)(~n+ ~q).

The integration sets −~n→ ~q and we have,∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 |M|2

(2E~q)3
|~q 〉 〈~q | ,

since it turns out that, ~q = ~l, and as such δ
(l)
E = δE and M(l) =M.

By adding this term to the first term, we get that Alice’s reduced density
operator is,

(ρA)out = 2E~pL
3 | ~p 〉 〈 ~p |+

∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 |M|2

(2E~q)3
|~q 〉 〈~q | ; (5.17)

As one can appreciate |M|2 is given by MM∗, which implies that M is
generally a complex function. And in fact, the expression for M in 1-loop
(4.14) is complex, because F(u, t, s) defined in chapter 4, (4.16), is a complex
function. Although obviously in tree-levelM is real since it’s just a constant.
Having this general expression for the reduced density operator, now we will
plug in the values of M for both the tree-level case and the tree-level plus
1-loop corrections.

5.1.2 Calculating (SE)out in Tree-level

We want to perform this calculation for the Tree-level approximation. In
tree-level we have,

iM(tree) = −2iλ,
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and as such
|M|2 = 4λ2.

We input this into the expression and get,

(ρA)out = 2E~pL
3 | ~p 〉 〈 ~p |+

∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 |~q 〉 〈~q |
(2E~q)3

(
4λ2
)
; (5.18)

The operator is not normalized, and we stressed previously the impor-
tance for it to be. Then we can write the normalized operator in compact
notation as,

(ρA)out = N
(
| ~p 〉 〈 ~p | (2E~pL3) + I2

)
. (5.19)

Where N is the normalization constant and I2 ,

I2 ≡
∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 |~q 〉 〈~q |
(2E~q)3

(
4λ2
)
, (5.20)

the subscript in the integral notation is equal to the power of λ, inside the
integral.

We need to find the value for N , by using the normalizing condition we
introduced in Chapter2, we know that Tr(ρ) = 1 for a normalized ρ. Then

N =
1

Tr(ρA)out
.

If we trace the operator (5.19) we have two terms. The first one is,

Tr(ρA)out = 2E~pL
3

∫ +∞

−∞

d3~n

(2π)3

〈~n| ~p 〉 〈 ~p |~n 〉
2E~n

= (5.21)

2E~pL
3

∫ +∞

−∞
d3~n(2π)32E~n(δ(3)(~n− ~p))2.

The integration over one of the delta’s sets ~n→ ~p, and we get afterwards the
factor (2π)3δ(3)(0) so that the end result is, (2E~pL

3)2. Thus, we find that

N =
1

(2E ~p2L
3)2 + 〈I2〉

.
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Here we have defined the implicit trace over I2 to be,∫ +∞

−∞

d3~n

(2π)3

〈~n| I2 |~n〉
2E~n

≡ 〈I2〉 (5.22)

Explicitly the normalized operator is,

(ρA)
(n)
out =

| ~p 〉 〈 ~p | (2E~pL3) + I2

(2E ~p2L
3)2 + 〈I2〉

, (5.23)

where we’ve put the superscript (n) in the operator to indicate that it’s
already normalized.

If we factor out (2E ~p2L
3)2 in the denominator, we can write the expression

for the operator still in the form,

(ρA)
(n)
out =

| ~p 〉 〈 ~p |
(2E~pL3)(1 +Atree)

+
I2

(2E~pL3)2(1 +Atree)
, (5.24)

with,

Atree ≡
〈I2〉

(2E~pL3)2
. (5.25)

We shall proceed to calculate 〈I2〉, we write (5.22) explicitly,

∫ +∞

−∞

d3~n

(2π)3

1

2E~n

∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 〈~n |~q 〉 〈~q | ~n〉
(2E~q)3

(
4λ2
)

= (5.26)

∫
~q 6=~p

d3~q

(2π)3

∫ +∞

−∞
d3~n

(
2πδE

)2
(2π)3

(
δ(3)(~n− ~q)

)2

(2E~n)(2E~q)

(
4λ2
)
; (5.27)

Again we integrate d3~n over one delta such that, ~n → ~q and have a term
(2π)3δ(3)(0). The result is,

〈I2〉 =
L3

(2π)

∫
~q 6=~p

d3~q
δ2(2E~q − 2E~p)

(2E~q)2

(
4λ2
)
. (5.28)

We need to calculate this integral, but we have a delta function whose
arguments are energies and we are integrating over momenta, we need to
take this into consideration. First we go to spherical coordinates,
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∫ +∞

−∞
d3~q →

∫ +∞

0

d|~q| · q2

∫ 2π

0

dφ

∫ π

0

dθ sin θ .

Since there is no dependency in θ and φ in the expression for 〈I2〉, the
integration over the angles is isotropic and yields 4π.

We use the relativistic relationship between momentum and energy q2 =
E2
~q −m2, and notice that,

|~q |d|~q | = E~q dE~q.

So using this identity the integration becomes,

4π

∫ +∞

m

dE~q (E~q

√
E2
~q −m2).

If we substitute this in (5.28) we get the integral,

〈I2〉 = (2λ2)L3

∫ +∞

m

dE~q

√
E2
~q −m2)

δ2(2E~q − 2E~p)

(E~q)
. (5.29)

We can now integrate the delta, which sets E~q → E~p with an additional
factor of 1

2
, due the following property of the delta function,∫ +∞

−∞
δ[c(x− x0)]f(x)dx =

f(x0)

c
;

Then we have the following result,

〈I2〉 =
L4λ2

2π

|~p|
E~p

=
L4λ2

2π
|v~p|. (5.30)

The extra factor of L came from the 2πδ(0), and we have used the fact
that,

|~p|
E~p

=
mγ~p|v~p|
mγ~p

= |v~p|,

where γ~p is the Lorentz factor associated with momentum ~p.
If we substitute (5.30) into (5.25) we find that,

Atree =
λ2

8π

|v~p|
(Ē~p)2

; (5.31)

Where we have defined, Ē~p ≡ E~pL = γ~pm̄, if m̄ = mL , in order to absorb
the divergences.
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Entropy in Tree-level

Alice’s out-state reduced operator is completely defined at this point, with
(5.24) and (5.31). We are endowed with all the information needed to calcu-
late the entropy. Let’s look at the expression (5.24) and write I2 explicitly,

(ρA)out =
| ~p 〉 〈 ~p |

(2E~pL3)(1 +Atree)
(5.32)

+
1

(2E~pL3)2(1 +Atree)

∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 |~q 〉 〈~q |
(2E~q)3

(
4λ2
)
;

Clearly the operator in matrix form is a diagonal operator, and as such,
we can use the expression for the entropy (3.4), which in this context will be
given by,

SE = −
∑
i

(ρi log ρi) = −ρp log ρp−
L3

(2π)3

∫ +∞

−∞
d~k (ρk log ρk); With, k 6= p .

(5.33)
Here the elements of the operator are given by (4.33),

ρn =
〈~n | ρ |~n 〉√

2E~nL3
√

2E~nL3
, (5.34)

such that,

(ρp)out =
〈 ~p | (ρA)out | ~p 〉√
2E~pL3

√
2E~pL3

=
〈 ~p | ~p 〉 〈 ~p | ~p 〉

(2E~pL3)2(1 +Atree)
=

1

1 +Atree
; (5.35)

The first term of the entropy is calculated to be,

− ρp log ρp = − 1

1 +Atree
log

(
1

1 +Atree

)
=

log(1 +Atree)
1 +Atree

. (5.36)

Now for,

(ρk)out =
〈 ~p | (ρA)out | ~p 〉√
2E~pL3

√
2E~pL3

(5.37)

with, ~k 6= ~p, we get,

4λ2

(2E~kL
3)(2E~pL3)2(1 +Atree)

∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 〈~k |~q 〉 〈~q |~k 〉
(2E~q)3

;
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As usual we integrate ~q over one of the deltas, such that ~q → ~k. And we
get,

(ρk)out =

(
2πδ(2E~k − 2E~p

2E~k2E~pL
3

)2
4λ2

1 +Atree
, (5.38)

which means the second term of the entropy is given by,

− L3

(2π)3

∫
~k 6=~p
d~k

(2πδ(2E~k − 2E~p
2E~k2E~pL

3

)2 4λ2

1 +Atree
log[
(2πδ(2E~k − 2E~p)

2E~k2E~pL
3

)2 4λ2

1 +Atree
];

= − L−3λ2

8πE~p(1 +Atree)

∫
~k 6=~p
d~k

(δ(2E~k − 2E~p
E~k

)2

log[
(2πδ(2E~k − 2E~p)

2E~k2E~pL
3

)2 4λ2

1 +Atree
];

We solve this integration in the same manner as before, when calculating
〈I2〉 by changing the integration over the momenta to an integration over
the energies,

− L−3λ2

2E~p(1 +Atree)

∫ +∞

m

dE~q

√
E2
~q −m2

E~q
δ2(2E~k − 2E~p) log[

(2πδ(2E~k − 2E~p)

2E~k2E~pL
3

)2 4λ2

1 +Atree
];

Integrating over the delta of the energy, we set E~q → E~k with the 1
2

factor.
After multiplying with the appropriate (2π) constants we have the following
expression,

λ2|v~p|
log
(
(4Ē4

~p(1 +Atree))/λ2
)

8πĒ2
~p(1 +Atree)

,

Adding to the first term of the entropy we finally have,

∆SE = (SE)out =
log (1 +Atree)

1 +Atree
+ λ2|v~p|

log
(
(4Ē4

~p(1 +Atree))/λ2
)

8πĒ2
~p(1 +Atree)

. (5.39)
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5.1.3 Calculating (SE)out with 1-loop Corrections

Now we will proceed to add 1-loop corrections to see how this changes the
results. The result of iM from the 1-loop diagrams was calculated in (4.14)
to be,

iM(1-loop) = −i( λ
4π

)2 · F(s, t, u).

Then the amplitude with 1-loop corrections is,

iM(tree+1-loop) = −2iλ− i( λ
4π

)2 · F(s, t, u) (5.40)

where we defined F(s, t, u) in (4.16) to be,

4 · (3G(t) + 2G(u) +G(s) + 2)

with,
t = (p1 − q1)2, u = (p1 − q2)2, s = (p1 + p2)2.

And the function,

G(x) = −2 +

√
1− 4m2

x
· log (

√
1− 4m2

x
+ 1√

1− 4m2

x
− 1

),

for x ∈ {s, t, u}.

But we are in the CM frame, and we should compute the variables ac-
cordingly.

Mandelstam variables in the CM

Bearing in mind the CM considerations,

~p := ~p1 = −~p2 ⇒ |~p1| = |~p2| = |~p|;

~q := ~q1 = −~q2 ⇒ |~q1| = |~q2| = |~q|;
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we find that,

s = p2
1 + p2

2 + 2p1 · p2 = 2m2 + 2(E2
~p + |~p |2) = 4(m2 + |~p |2),

u = p2
1+q2

2−2p1·q2 = 2m2−2
(
E~pE~q+|~p ||~q | cos(θ)

)
= 2m2−2

(
E~pE~q+|~p|

√
E2
~q −m2 cos(θ)

)
,

t = p2
1+q2

1−2p1·q1 = 2m2−2
(
E~pE~q−|~p ||~q | cos(θ)

)
= 2m2−2

(
E~pE~q−|~p|

√
E2
~q −m2 cos(θ)

)
.

So, the Mandelstam variables are actually functions of θ and E~q, where
θ is the scattering angle between ~p and ~q. This means that, F(s, t, u) can be
defined as the functional,

F(s, t, u) ≡ F [s, t(θ, E~q), u(θ, E~q)] (5.41)

But, as we have seen previously in the Tree-level calculation, when we
integrate over a given delta of energy δ(E~q − E~p), as we’ll do further on, we
set E~q → E~p. This will eliminate the explicit dependence of the Mandelstam
variables in the energy E~q, and the functional becomes,

F [s, t(θ), u(θ)]. (5.42)

Thus, we will evaluate explicitly this functional, since when the need
arises in the upcoming calculations for an explicit substitution, this will be
the form it takes.

What are the functions t(θ), and u(θ) ? We take the expressions we
calculated before for u and t, and substitute E~q → E~p which give,

u = −2|~p |2(1 + cos θ) ≡ u(θ);

t = −2|~p |2(1− cos θ) := t(θ);

s = 4(m2 + |~p |2);

The s stays unchanged, but the other two expressions are significantly
simpler.

What is the expression for F [s, t(θ), u(θ)] ? Writing them out in terms of
the G(x) function we have, that,

F [s, t(θ), u(θ)] = 12G[t(θ)] + 8G[u(θ)] + 4G(s) + 8

We can easily check that substituting the functions and inputting them
into the functional we have,
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G[t(θ)] = −2 +

√
2/|v�p|2 − (1 + cos θ)

1− cos θ
log

√
2/|v�p|2−(1+cos θ)

1−cos θ
+ 1√

2/|v�p|2−(1+cos θ)

1−cos θ
− 1

; (5.43)

G[u(θ)] = −2 +

√
2/|v�p|2 + (−1 + cos θ)

1 + cos θ
log

√
2/|v�p|2+(−1+cos θ)

1+cos θ
+ 1√

2/|v�p|2+(−1+cos θ)

1+cos θ
− 1

;

And also,

G(s) = −2 + |v�p| log (
|v�p|+ 1

|v�p| − 1
).

So we have F calculated explicitly at this point. We mentioned earlier in
the beginning of the section that F is complex. This is seen as follows. An
inspection on both expressions, G[t(θ)] and G[u(θ)], reveal that they’re real
for all possible combination of values in the domain of the variable θ an the
parameter |v�p|2. We can see a specific graphical representation for a specific
value of the parameter,

Figure 5.1: Evaluation of G[t(θ)], G[u(θ)] for all values of their domain in θ
in the specific case where |v�p| = 0.8;

But what about G(s) ? Looking at the expression,

G(s) = −2 + |v�p| log (
|v�p|+ 1

|v�p| − 1
)
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it’s easy to see that the logarithm is a complex number, since its argument
is negative, as |v~p| < 1. .

We shall treat this inconvenience by separating the domains for which the
function produces imaginary and real parts. The logarithm can be re-written
as,

log (−1 · 1 + |v~p|
1− |v~p|

) = log
(
eiπ
)

+ log
1 + |v~p|
1− |v~p|

= iπ + log
1 + |v~p|
1− |v~p|

.

Then we have that,

G(s) = −2 + |v~p| log
1 + |v~p|
1− |v~p|

+ iπ|v~p|, (5.44)

such that,

Re {G(s)} = −2 + |v~p| log
1 + |v~p|
1− |v~p|

, and, Im {G(s)} = π|v~p|.

This implies that,

Re {F [s, t(θ), u(θ)]} = 12G[t(θ)] + 8G[u(θ)] + 4Re {G(s)}+ 8 (5.45)

= 12G[t(θ)] + 8G[u(θ)] + 4|v~p| log
1 + |v~p|
1− |v~p|

,

and,
Im {F [s, t(θ), u(θ)]} = 4π|v~p|. (5.46)

We have F = Re {F}+ iIm {F} fully described, to be used in the calcu-
lation of |M(tree+1-loop)|2.
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(ρA)out with 1-loop corrections

From

iM(tree+1-loop) = −2iλ− i( λ
4π

)2F

we calculate |M|2 =M(tree+1-loop)M∗
(tree+1-loop),

=
(
−2λ−(

λ

4π
)2F

)(
−2λ−(

λ

4π
)2F∗

)
= 4λ2 +2λ(

λ

4π
)2(F+F∗)+(

λ

4π
)4|F|2

(5.47)

= 4λ2 + 4λ(
λ

4π
)2 Re {F}+ (

λ

4π
)4(Re2 {F}+ Im2 {F}).

Take notice though that at this point the functions inside the functional
F are still dependent explicitly on E~q, so we can’t substitute it with the
expressions we calculated before when under the assumption that E~q →
E~p. But since we know the functional will take the form of the previously
calculated expressions further on we will be able to substitute them after
integrating the delta which sets E~q → E~p.

From the expression for the reduced density operator,

(ρA)out = 2E~pL
3 | ~p 〉 〈 ~p |+

∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 |M|2

(2E~q)3
|~q 〉 〈~q | , (5.48)

where we use 5.47.
We have the normalized operator,

(ρA)out = N ( | ~p 〉 〈 ~p | (2E~pL3) + I2 + I3 + I4). (5.49)

Where I2 is defined in the same way as before and ,

I3 ≡
∫
~q 6=~p

d3~q

(2π)3

| ~q 〉 〈 ~q | [(2π)δ(E)]2

(2E~q)3

(
4λ(

λ

4π
)2Re {F}

)
;

I4 ≡
∫
~q 6=~p

d3~q

(2π)3

| ~q 〉 〈 ~q | [(2π)δ(E)]2

(2E~q)3

(
λ

4π

)4

(Re2 {F}+ Im2 {F});

Following the same procedure as in the Tree-level calculation, by applying
the normalization condition to find N we get,
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ρAout =
| ~p 〉 〈 ~p | (2E~pL3) + I2 + I3 + I4

(2E~pL3)2 + 〈I2〉+ 〈I3〉+ 〈I4〉
. (5.50)

Here similarly to 〈I2〉 in (5.28), we have,

〈I3〉 ≡
L3

(2π)

∫
~q 6=~p

d3~q
δ2(2E~q − 2E~p)

(2E~q)2

(
4λ(

λ

4π
)2 Re {F}

)
; (5.51)

〈I4〉 ≡
L3

(2π)

∫
~q 6=~p

d3~q
δ2(2E~q − 2E~p)

(2E~q)2
(
λ

4π
)4
(
Re2 {F}+ Im2 {F}

)
; (5.52)

Take notice that, 〈I2〉, 〈I3〉 and 〈I4〉 are exactly the same integral aside
the algebraic part pertinent to the dynamics of the collision.

We can still take (5.50) and rearrange it in a similar manner as in the
Tree-level case by factoring the energy in the denominator and separating
the terms,

ρAout =
| ~p 〉 〈 ~p |

(2E~pL3)(1 +A1loop)
+ (5.53)

1

(1 +A1loop)

(
I2

(2E~pL3)2
+

I3

(2E~pL3)2
+

I4

(2E~pL3)2

)
,

where,

A1loop ≡
〈I2〉

(2E~pL3)2
+

〈I3〉
(2E~pL3)2

+
〈I4〉

(2E~pL3)2
.

We already have 〈I2〉 calculated, now we need to calculate 〈I3〉 and 〈I4〉
in order to have A1loop completely defined.
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Calculation of 〈I3〉

Remembering that,

F(s, t, u) ≡ F [s, t(θ, E~q), u(θ, E~q)]; (5.54)

〈I3〉 = 4λ(
λ

4π
)2 L3

(2π)

∫
~q 6=~p

d3~q
δ2(2E~q − 2E~p)

(2E~q)2
Re {F [s, t(θ, E~q), u(θ, E~q)]} ;

(5.55)
We change the integration over momenta to energies,

λ(
λ

4π
)2L3

∫ π

0

dθ sin θ

∫ +∞

m

dE~q

√
E2
~q −m2

E~q
δ2(2E~q − 2E~p) Re {F [s, t(θ, E~q), u(θ, E~q)]} ;

(5.56)
We can’t integrate the solid angle isotropically because there’s a θ depen-
dency inside the real part of F . We integrate over one energy delta and as
expected set E~q → E~p. Such that we have,

〈I3〉 = λ(
λ

4π
)2L

4

4π
|v~p|

∫ π

0

dθ sin θ Re {F [s, t(θ), u(θ)]} ; (5.57)

And at this point the real part of the functional is indeed given by the
previous expression we calculated in full,

Re {F [s, t(θ), u(θ)]} = 12G[t(θ)] + 8G[u(θ)] + 4|v~p| log
1 + |v~p|
1− |v~p|

.

Thus, the integration over the angle θ of F is given by,

∫ π

0

dθ sin θ Re {F [s, t(θ), u(θ)]} = 12

∫ π

0

dθ sin θG[t(θ)] + 8

∫ π

0

dθ sin θG[u(θ)]

(5.58)

+4

∫ π

0

dθ sin θ|v~p| log
1 + |v~p|
1− |v~p|

The last term has no dependency in θ so the integration just produces a
factor of 2.
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The first term could be rewritten as,

I(u,t) ≡
∫ π

0

dθ sin θ
(
12G[t(θ)] + 8G[u(θ)]

)
Where the functions are given, as we know,

G[t(θ)] = −2 +

√
2/|v~p|2 − (1 + cos θ)

1− cos θ
log

√
2/|v~p|2−(1+cos θ)

1−cos θ
+ 1√

2/|v~p|2−(1+cos θ)

1−cos θ
− 1

; (5.59)

G[u(θ)] = −2 +

√
2/|v~p|2 + (−1 + cos θ)

1 + cos θ
log

√
2/|v~p|2+(−1+cos θ)

1+cos θ
+ 1√

2/|v~p|2+(−1+cos θ)

1+cos θ
− 1

;

And also,

G(s) = −2 + |v~p| log (
|v~p|+ 1

|v~p| − 1
).

We perform this calculation using Mathematica by inputting the functions
explicitly and integrating over θ. Which produces,

I(u,t) = 6
(
− 10 + log

1/|v~p|+ 1

1/|v~p| − 1

(
4

|v~p|

)
+ (

1

v2
~p

− 1)

(
log

1/|v~p|+ 1

1/|v~p| − 1

)2 )

−4
(

15− log
1/|v~p|+ 1

1/|v~p| − 1

(
−4

|v~p|

)
− (

1

v2
~p

− 1)

(
log

1/|v~p|+ 1

1/|v~p| − 1

)2 )

= (−120+log
1/|v~p|+ 1

1/|v~p| − 1

(
40

|v~p|

)
(
10

v2
~p

−10)

(
log

1/|v~p|+ 1

1/|v~p| − 1

)2

+8|v~p| log
1 + |v~p|
1− |v~p|

).

Then we calculate,

〈I3〉 =
L4

4π
λ(

λ

4π
)2|v~p|(−120 + log

1/|v~p|+ 1

1/|v~p| − 1

(
40

|v~p|

)
+ (5.60)

+(
10

v2
~p

− 10)

(
log

1/|v~p|+ 1

1/|v~p| − 1

)2

+ 8|v~p| log
1 + |v~p|
1− |v~p|

).
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If we call part of the expression with the explicit dependence on |v~p|, f(|v~p|),
then we have in compact notation,

〈I3〉 =
L4

4π
λ(

λ

4π
)2f(|v~p|), (5.61)

If we compare with the result for 〈I2〉, which we calculated to be

〈I2〉 =
L4λ2

2π
|v~p|. (5.62)

We realize that both expressions have the same form: dimensionally they’re
the same and have the appropriate powers of λ corresponding to their sub-
scripts, multiplied by an explicit function of |v~p|, which in the case of 〈I3〉 is
f(|v~p|) and 〈I2〉 just |v~p| itself.

We have calculated 〈I2〉, 〈I3〉, we’re just missing 〈I4〉.

Calculation of 〈I4〉

The first part of the calculation will be inherently the same as with 〈I3〉,
changing the variable of integration to the energy ( E~p) and integrating over
one of the delta’s such that E~q → E~p. We aren’t going to write all the
intermediary steps again, instead we start from the equivalent of (5.57) for
this case,

〈I4〉 = (
λ

4π
)4 L

4

16π
|v~p|

∫ π

0

dθ sin θ
(

Re2 {F [s, t(θ), u(θ)]}+Im2 {F [s, t(θ), u(θ)]}
)

;

(5.63)
We know the real part squared is,

Re2 {F [s, t(θ), u(θ)]} =
(

12G[t(θ)] + 8G[u(θ)] + 4|v~p| log
1 + |v~p|
1− |v~p|

)2

,

and the imaginary part is,

Im2 {F [s, t(θ), u(θ)]} = 16π2|v~p|2;

The imaginary part squared is not dependent of θ so the integral of that part
is going produce a factor of 2. The expression is given by,∫ π

0

dθ sin θ
(

Re2 {F [s, t(θ), u(θ)]}
)

+ 32π2|v~p|2.
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What about the first term ? It’s easy to see that the expression for Re2 {F [s, t(θ), u(θ)]}
will become quite complicated, and unfortunately no analytical solution of
the integral can be found. We will have to compute numerically the integra-
tion on θ, but obviously the result also depends on the parameter |v~p|, so we
will have to carry on the calculations with the implicit integration until it’s
time to extract numerical results for specific values of the velocity parame-
ter. We define a compact notation so that we don’t have to keep writing the
expression in it’s integral form,

I|v~p| ≡
∫ π

0

dθ sin θ
(

Re2 {F [s, t(θ), u(θ)]}
)

; (5.64)

We have 〈I4〉 calculated as,

〈I4〉 = (
λ

4π
)4 L

4

16π
|v~p|
(
I|v~p| + 32π2|v~p|2

)
(5.65)

Although the expression still has an implicit integration, we know the re-
sult will surely yield an expression dependent only on the velocity parameter.
Then if we compare the previously calculated expressions for 〈I2〉 and 〈I3〉,
we realize that 〈I4〉 has the same structure as well.

We have all the necessary integrals calculated in order to characterize
fully the expression for Alice’s reduced density operator, (5.53).

We can determine A1loop, which was previously defined as,

A1loop =
〈I2〉

(2E~pL3)2
+

〈I3〉
(2E~pL3)2

+
〈I4〉

(2E~pL3)2
.

Substituting into the previous expression,

〈I2〉 =
L4λ2

2π
|v~p|.

〈I3〉 =
L4

4π
λ(

λ

4π
)2f(|v~p|),

〈I4〉 = (
λ

4π
)4 L

4

16π
|v~p|
(
I|v~p| + 32π2|v~p|2

)
We have,

A1loop =
λ2

8π

|v~p|
Ē~p

+
λ

16π

(
λ

4π

)2
f(|v~p|)
Ē2
~p

+

(
λ

4π

)4 |v~p|
(
Iv~p + 32π2v2

~p

)
64πĒ2

~p

. (5.66)

90



CHAPTER 5. ENTANGLEMENT’S ENTROPY: THE CALCULATION

As such we have the operator completely defined,

(ρA)out =
| ~p 〉 〈 ~p |

(2E~pL3)(1 +A1loop)
+ (5.67)

+
1

(1 +A1loop)

(
I2

(2E~pL3)2
+

I3

(2E~pL3)2
+

I4

(2E~pL3)2

)
;

Writing the integrals explicitly we have,

(ρA)out =
| ~p 〉 〈 ~p |

(2E~pL3)(1 +A1loop)
+ (5.68)

+
1

(2E~pL3)2(1 +A1loop)

∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 |~q 〉 〈~q |
(2E~q)3

×

×
(
4λ2 + 4λ(

λ

4π
)2Re {F}+ (

λ

4π
)4(Re2 {F}+ Im2 {F}

)
;

The real and imaginary parts inside the integral can’t be substituted at this
point by any of the expressions we calculated before, because they are still
explicitly dependent on the energy, as such in order to simplify the notation
we define the following expression,(

4λ2 + 4λ(
λ

4π
)2Re

{
F [s, t(θ

′
, E~q), u(θ

′
, E~q)]

}
+ (5.69)

+(
λ

4π
)4(Re2

{
F [s, t(θ

′
, E~q), u(θ

′
, E~q)]

}
+

+Im2
{
F [s, t(θ

′
, E~q), u(θ

′
, E~q)]

})
≡ Ω[s, t(θ

′
, E~q), u(θ

′
, E~q)]

We explicitly denote this angle θ
′
, so that there’s no confusion with the

angle θ still present in the implicit integration I|v~p|.
The operator can be written more succinctly as,

(ρA)out =
| ~p 〉 〈 ~p |

(2E~pL3)(1 +A1loop)
+ (5.70)

+
1

(2E~pL3)2(1 +A1loop)

∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 |~q 〉 〈~q |
(2E~q)3

(
Ω[s, t(θ

′
, E~q), u(θ

′
, E~q)]

)
;

And now we can calculate the entropy associated with this operator.
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Entropy with 1-loop corrections

Alice’s reduced operator with 1-loop corrections is completely defined and we
shall proceed to calculate the entropy associated to it. The same principles
apply as with the Tree-level calculation, the density operator is obviously
diagonal. As such, the entropy will still be given by,

SE = −
∑
i

(ρi log ρi) = −ρp log ρp −
L3

(2π)3

∫ +∞

−∞
d~k (ρk log ρk); With, k 6= p.

(5.71)
Where the elements are given by (4.33),

ρn =
〈~n | ρ |~n 〉√

2E~nL3
√

2E~nL3
. (5.72)

If we look back at the operator in Tree-level (5.32) and compare it with
the operator with 1-loop corrections (5.70), we realize that the first term is
exactly the same if Atree → A1loop. So we can deduce that the corresponding
element of the matrix will be also of the same form, and consequently the
entropy term derived from it as well. Let’s see if this is true.

Using (5.70) as the expression for (ρp)out (i.e to 1-loop),

(ρp) =
〈 ~p | (ρA)out | ~p 〉√
2E~pL3

√
2E~pL3

=
〈 ~p | ~p 〉 〈 ~p | ~p 〉

(2E~pL3)2(1 +A1loop)
=

1

1 +A1loop

; (5.73)

As such we calculate the first term of the entropy to be,

− ρp log ρp = − 1

1 +A1loop

log

(
1

1 +A1loop

)
=

log(1 +A1loop)

1 +A1loop

. (5.74)

This is exactly the same term as the entropy in the Tree-level case, but
now with A1loop instead of Atree.

The second term of the operator (5.70) seems to be more complicated
than the one from (5.32). In fact the term is indeed more cumbersome
algebraically but the expression for the element associated with it will be of
the same form as in the Tree-level case. We get that (ρk) is given by,

1

(2E~kL
3)(2E~pL3)2(1 +Atree)

∫
~q 6=~p

d3~q

(2π)3

(
2πδE

)2 〈~k |~q 〉 〈~q |~k 〉
(2E~q)3

Ω[s, t(θ
′
, E~q), u(θ

′
, E~q)];
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We integrate ~q over one of the deltas, such that ~q → ~k. And we get,

(ρk) =

(
2πδ(2E~k − 2E~p

2E~k2E~pL
3

)2 Ω[s, t(θ
′
, E~k), u(θ

′
, E~k)]

1 +A1loop

. (5.75)

If we are to compare this formula with the one calculated earlier for the
same element in the Tree-level calculation, we realize that it’s exactly the
same if 4λ2 → Ω[s, t(θ

′
, E~k), u(θ

′
, E~k)].

Using this expression and inputting it into the pertinent part of (5.71)
we calculate the second term of the entropy to be,

− L3

(2π)3

∫
~k 6=~p
d~k

(2πδ(2E~k − 2E~p
2E~k2E~pL

3

)2 Ω[s, t(θ
′
, E~k), u(θ

′
, E~k)]

1 +A1loop

×

× log[
(2πδ(2E~k − 2E~p)

2E~k2E~pL
3

)2 Ω[s, t(θ
′
, E~k), u(θ

′
, E~k)]

1 +A1loop

];

We calculate the integral in the same manner as before. First we change
integration into spherical coordinates and then change the variable of mo-
menta to energy,

− L−3

16E~p(1 +A1loop)

∫ π

0

dθ
′
sin θ

′
∫ +∞

m

dE~q

√
E2
~q −m2

E~q
δ2(2E~k − 2E~p)×

×Ω[s, t(θ
′
, E~q), u(θ

′
, E~q)]× log[

(2πδ(2E~k − 2E~p)

2E~k2E~pL
3

)2 Ω[s, t(θ
′
, E~q), u(θ

′
, E~q)]

1 +A1loop

],

which we then integrate over the delta of energy to set E~k → E~p. This
eliminates the explicit dependence on the energy inside the Mandelstam func-
tions of the functional, which produce

Ω[s, t(θ
′
), u(θ

′
)] =

(
4λ2 + 4λ(

λ

4π
)2Re

{
F [s, t(θ

′
), u(θ

′
)]
}

+ (5.76)

+(
λ

4π
)4(Re2

{
F [s, t(θ

′
), u(θ

′
)]
}

+ Im2
{
F [s, t(θ

′
), u(θ

′
)]
})

,

this expression can be explicitly calculated by using the algebraic relation-
ships we found previously. One major difference in this calculation from the
Tree-level one is that, when changing over to spherical we couldn’t integrate
the solid angle isotropically, because there is an explicit dependence on θ

′
.
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So there’s an additional integration that we need to solve, and once again as
it were the case when trying to calculate A1loop an analytical solution won’t
be possible. We present this term of the entropy in it’s integral form,

|v~p|/64π

(Ē~p)2(1 +A1loop)

∫ π

0

sin θ
′
Ω[s, t(θ

′
), u(θ

′
)] log [

16(Ē~p)
4(1 +A1loop)

Ω[s, t(θ′), u(θ′)])
]dθ

′
.

Adding to the first term, we have

∆SE 1loop = SE (out) =
log (1 +A1loop)

(1 +A1loop)
+ (5.77)

|v~p|/64π

(Ē~p)2(1 +A1loop)

∫ π

0

sin θ
′
Ω[s, t(θ

′
), u(θ

′
)] log [

16(Ē~p)
4(1 +A1loop)

Ω[s, t(θ′), u(θ′)])
]dθ

′
.

This is the variation of the entropy of entanglement for an initial separable
state to 1-loop. It is completely defined knowing that, A1loop is given by the
expression (5.66) and Ω[s, t(θ

′
), u(θ

′
)] by (5.76), with imaginary and real

parts determined in (5.45) and (5.46).
It’s interesting to note that if we take the limiting case where the 1-loop

contributions are zero, which is equivalent to say, Ω[s, t(θ
′
), u(θ

′
)]) → 4λ2

and A1loop → Atree then we reproduce the previous result of the entropy
variation for Tree-level,

∆SE tree = (SE)out =
log (1 +Atree)

1 +Atree
+ λ2|v~p|

log
(
(4Ē4

~p(1 +Atree))/λ2
)

8πĒ2
~p(1 +Atree)

,

(5.78)
which gives positive reinforcement that the calculations are coherent.
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Cross Sections

We have reasons to believe there might be some relationship between the
variation of entropy and the differential cross-section, since both of these
entities are proportional themselves to |M|2. We will try to find this rela-
tionship. If we take the expression (5.78) and expand it for the case when A
is small enough, which is up to (λ ∼ 2). The expression will become,

∆SE tree =
4λ2

32π

(
|v~p|
Ē2

)
(1− log 4λ2 + log 16Ē4).

Knowing that the definition of the differential cross-section in the CM is,(
dσ

dΩ

)
CM

=
|M|2

64π2E2
~p

, (5.79)

it can be promptly seen that for |M|2 = 4λ2 ,

∆SE tree =

(
dσ

dΩ

)
CM

2π

L2
|v~p| log

(
4Ē4e

λ2

)
.

Thus the profile of the variation of the entropy of entanglement has an
intimate relationship of proportionality with the collision’s differential cross-
section. At least for the regime in question of weak coupling, which is re-
spected as long as the collision remains purely elastic (see ”Comment on
Unitarity”, Chapter4). This provides an inkling onto a possible mechanism
to measure the variation of entropy by experimentally measuring the cross
sections of such elastic collisions.

We could integrate it still so that we get it in terms of the total cross-
section σCM , since there’s no dependence on any angle we just have to divide
by 4π, thus getting,

∆SE tree =
(σCM

2L2

)
|v~p| log

(
4Ē4e

λ2

)
(5.80)

If we add the loop corrections to the calculation, |M|2 will become more
complicated and it’s not so easy to factor out the terms pertaining to the
cross-section to give the entropy in such a form. But we can still find a
relationship between these two entities. The total cross section is ,

σCM =
1

64π2E2
~p

∫
dφdθ sin θ|M|2 =
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1

32πE2
~p

∫ π

0

dθ sin θ

(
4λ2 + 4λ

(
λ

4π

)2

Re {F}+

(
λ

4π

)4 (
Re2 {F}+ Im2 {F}

))
.

These integrals have been solved before.

σCM =
1

32πE2
~p

(
8λ2 + 4λ

(
λ

4π

)2

f(|v~p|) +

(
λ

4π

)4

(IvCM
+ 32π2|v~p|2)

)
,

comparing this expression with the one for A (5.31) we easily notice that,

Atree =
σCM
2L2
|v~p|.

Now, let us take the general form of the entropy with 1-loop corrections
(5.77) and expand it for a small A, the formula will be such that when we
substitute it with this last equality we get,

∆S1loop =
σCM
2L2
|v~p| · log (16Ē4e)− |v~p|

64πĒ2

∫ π

0

sin θ
′
Ω[s, t(θ

′
), u(θ

′
)]× (5.81)

× log Ω[s, t(θ
′
), u(θ

′
)]dθ

′
+O(A2).

The way in which the variation of the entropy is related to the total cross
section is not so evident in this case. It doesn’t factor out directly as with
the previous case in Tree-level.

For Ω[s, t(θ
′
), u(θ

′
)]→ 4λ2 (Tree-level) there’s no θ

′
dependency and the

logarithm can be taken out from the integral, which reduces to,

∆SE tree =
(σCM

2L2

)
|v~p| log

(
4Ē4e

λ2

)
. (5.82)

Again reproducing the Tree-level result.
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5.1.4 Graphical Solutions

In order for us to be able to get graphical solutions we must choose a proto-
type, to avoid the divergences in the expressions. We previously defined,

Ē~p = E~pL = γ~pm̄

Where we said that m̄ = mL. Now we choose the specific value for which,
m̄ = 1 such that,

Ē~p = γ~p =
1√

1− v2
~p

.

Then in both expressions of the variation, in Tree-level and to 1-loop,

∆SE 1loop = SE (out) =
log (1 +A1loop)

(1 +A1loop)
+

|v~p|/64π

(Ē~p)2(1 +A1loop)

∫ π

0

sin θ
′
Ω[s, t(θ

′
), u(θ

′
)] log [

16(Ē~p)
4(1 +A1loop)

Ω[s, t(θ′), u(θ′)])
]dθ

′
.

∆SE tree = (SE)out =
log (1 +Atree)

1 +Atree
+ λ2|v~p|

log
(
(4Ē4

~p(1 +Atree))/λ2
)

8πĒ2
~p(1 +Atree)

.

We shall set,

Ē~p →
1√

1− v2
~p

;

Such that, both entropies will becomes functions of the velocity ∆SE tree(|v~p|)
and ∆SE 1loop(|v~p|). And our plots will be of the variation as a function of
the said velocity, for various values of λ. But to what values of λ is the calcu-
lation valid ? We know that lambda should converge since the contributions
of the higher order terms need to be increasingly smaller, that is a necessity
imposed by the diagrammatic expansion we made on Ŝ.
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We have found a conservative 1 upper bounded limit of λ = 2 by looking
at the behavior of the graphical solutions themselves.

All the graphics are of the form (∆SE vs |v~p|). The Tree-level contribution
is in orange and the ”complete” contribution (which is the Tree-level with
the higher 1-loop corrections) is in blue. Beneath every graph we’re going to
present the maximum values for both terms of ∆SE and the corresponding
preferred velocity for which the the maximum occurs (|v∗~p|). The graphics
are,

Figure 5.2: ∆SE(|v~p|), λ = 0.5

Máx.∆SE Tree = 0.01824; |v∗~p| = 0.67453
Máx.∆SE complete = 0.02216; |v∗~p| = 0.66639

1 This means that it was estimated in a cautious manner, using the optical theorem
[26], bearing in mind the relation between entropy of entanglement and cross section (5.82).
With basis on the values of the velocities obtained at the maximum of entaglement for a
given coupling, see fig.(5.6), this yields λ 2.
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Figure 5.3: ∆SE(|v~p|), λ = 1

Máx.∆SE Tree = 0.05308; |v∗~p| = 0.71553
Máx.∆SE complete = 0.06772; |v∗~p| = 0.70653

Figure 5.4: ∆SE(|v~p|), λ = 1.5

Máx.∆SE Tree = 0.09484; |v∗~p| = 0.75226
Máx.∆SE complete = 0.12344; |v∗~p| = 0.74568
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Figure 5.5: ∆SE(|v~p|), λ = 2

Máx.∆SE Tree = 0.13979; |v∗~p| = 0.78434
Máx.∆SE complete = 0.17956; |v∗~p| = 0.78386

As we can see the 1-loop corrections always increase the variation of the
entropy, and this increment gets bigger as λ values increase (as one would
expect). It seems that there is always a ”preferred” velocity of entanglement
for which the variation is maximum (|v∗~p|), and there’s an explicit dependence
of such a velocity on the coupling constant, it increases with it. The 1-loop
corrections also seems to indicate that the preferred velocity is lower than
the result produced by the Tree-level contribution.

We are going to analyse the evolution of the preferred velocities (|v∗~p|),
associated to the Tree-level and 1-loop contributions, plotted against the
coupling constant (λ). We use more values of λ than the ones present in the
previous plots of the entropy’s variation, in order to better evaluate the way
the velocity evolves. The values of |v∗~p| in Tree-level are represented by discs,
and the values with 1-loop corrections by squares,
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Figure 5.6: |v∗~p| vs. λ : Tree-level(Discs) and 1-loop(Squares)

By looking at the collection of values for |v∗~p| in Tree-level and 1-loop, we
witness they evolve in pretty much the same way, as it should be, since
both calculations aim to describe the same phenomena. But just like we
witnessed before, the contributions of 1-loop corrections evidently show that
the preferred velocity is always a bit smaller than the values predicted by
the Tree level calculation, almost in a constant manner until ≈ λ = 1.5,
at that point the gap between the velocities starts to become smaller and
when λ = 2 it’s virtually non existent. Actually we should stress that in
this region one isn’t entirely sure if the ”weak coupling” approximation is
completely respected, so it might be that this behaviour changes because
we are leaving the region for which the unitarity is respected. At least in
the regime of ”weak coupling”, it seems that the profile of the evolution of
such velocities in 1-loop could be approximately given by the profile of the
Tree-level calculation with a negative ”shift” applied to it.
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Now we analyse the evolution of the maximum values the entropy’s vari-
ation plotted against λ.

Figure 5.7: Máx(∆SE) vs. λ : Tree-level(Discs) and 1-loop(Squares)

The values of Máx(∆SE) also increase for small values of λ approximately
in the same way, and the values computed for 1-loop are only marginally
higher than the Tree-level ones until λ = 0.5. After λ = 0.5 the difference in
the contributions starts increased with λ and the maximum difference is of
order ≈ 0.05.

At this point we realize that the scattering procedure behaves appropri-
ately as an EceM, and it seems the velocity parameters of the ”machine”
change the optimum configuration for which it produces the best possible
outcome, depending on whether one considers only the Tree-level result or
take the 1-loop corrections into account. The results seem to indicate that
the EceM ”works better” when 1-loop corrections are included. Two effects
are at work. First one sees from fig.(5.7) that for a fixed value of the cou-
pling, a larger entropy of entanglement is obtained when they are taken into
account. Secondly, as indicated in fig.(5.6), their inclusion lowers the CM ve-
locities needed to reach the maximum of entanglement, as compared to the
case at Tree-level. This is interesting to know because even if the velocities
differ by amounts as low as ≈ 0.01 near |v~p| = 0.7 ( in the case of λ = 1 for
example), there would be energies differences of order ≈ 0.025 × (mass) to
get the maximally entangled result.
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5.2 |Ψ〉in is Entangled

Now we’ll proceed with the calculation of the entropy’s variation, just like
before, with the added difference that the in-state is entangled before the
collision as opposed to the separable state used previously. This implies that
we have a non null (SE)in, which we have to calculate as well with (SE)out,
in order to determine ∆SE.

What kind of entangled state are we talking about ? We propose the
following state,

|Ψ〉in = αp |~p1, ~p2〉+ αk |~k1, ~k2 〉 , for all
{
~p1 6= ~k1; ~p2 6= ~k2

}
; |αp|2 + |αk|2 = 1.

(5.83)
Here the inequality constraints on the momenta won’t allow for the fac-

torization of the base states. We shall comment on the choice of the proposed
entangled state. This state is akin to the entangled states showed in Chap-
ter2 when we presented entanglement for spin-1

2
systems, but there’s one

major difference to take into account, which is the number of dimensions of
the Hilbert spaces.

Such states of Chapter2 existed in a 4-dimensional (2⊗ 2) Hilbert space
and we realized that there were a limited amount of states that had no degree
of factorization, they were

∣∣E−0 〉, ∣∣E+
0

〉
,
∣∣E−1 〉 and

∣∣E+
1

〉
, 4 of them because

the system was described by a 4-dimensional Hilbert space.

But what about our system in the space of momenta ? We know this space
to be infinite, because unlike spin-1

2
which has only two degrees of freedom

(i.e up/down) (and hence it only takes two base states to characterize the full
space), momentum has an infinite amount of degrees of freedom and as such
it stands to reason that there could be an infinite amount of states which
could not be factored in any way. This is true and the fact is that the state
(5.83) is just one of an infinite amount of entangled states possible. We could
keep adding two labeled states forever (since the basis is infinite we wouldn’t
run out of vectors) and impose the inequality conditions for every label. Then
for every new state added we would have a different entangled state and we
would end up with an infinite amount of them. Unluckily there is no apparent
easy way to describe all the degrees of the most general description of a state
like this. Thus we decide to pick simplest possible entangled state. A state
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which is by no means invalid since, as we’ll see, it can be reduced to known
special cases and still produce curious results different than a separable state.

5.2.1 Calculating (SE)in

The first thing we shall do is to go to the CM frame, such that the state
becomes,

|Ψ〉in = αp |~p,−~p〉+ αk |~k,−~k 〉 , ∀
{
~p 6= ~k

}
; |αp|2 + |αk|2 = 1. (5.84)

Following the recipe (4.4), we now need to calculate the density operator
of |Ψ〉in, to be able to compute it’s entropy.

We calculate the density operator ρin,

ρin = |Ψ 〉 inin 〈 Ψ| =
(
αp |~p,−~p〉+ αk |~k,−~k 〉

)(
〈~p,−~p|α∗p + 〈~k,−~k |α∗k

)
(5.85)

= |αp|2 |~p,−~p〉 〈~p,−~p|+ αpα
∗
k |~p,−~p〉〈~k,−~k |+

+αkα
∗
p |~k,−~k 〉 〈~p,−~p|+ |αk|2 |~k,−~k 〉 〈~k,−~k | ,

for
{
~p 6= ~k;

}
.

Now we trace over to calculate Alice’s reduced operator, using the trace
operator (4.23). It’s noticeable that the crossed terms will be null due the
conditioning inequalities. That is, the result of such inner products will be
proportional to δ(3)(~p− ~k), and we know that ~p 6= ~k, so they’re bound to be
zero.

From the first term we get,

|αp|2
∫ ∞
∞

d3~n

(2π)3

|~p〉 〈~p|
2E~n

(
2E~p(2π)3δ(3)(~n+ ~p)

)2
. (5.86)

Integrating we set, n→ −~p, and it yields,

|αp|22E~pL
3 |~p〉 〈~p| .

Similarly the second term is,

|αk|22E~kL
3 |~k 〉 〈~k | .
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Then we get that Alice’s normalized operator is,

(ρA)in = N
(
|αp|22E~pL

3 |~p〉 〈~p|+ |αk|22E~kL
3 |~k 〉 〈~k |

)
. (5.87)

Now we calculate the constant N by using the condition Tr(ρ(A in)) = 1.
The tracing over these states are the same has the ones we calculated in the
reduced operator just now, so the factors that come out of it are going to be
the same. We then have,

N =
1

(L3)2
(
|αp|2(2E~p)2 + |αk|2(2E~k)

2
) ,

if we substitute it in the operator’s expression we have Alice’s operator given
by,

(ρA)in =
|αp|22E~p |~p〉 〈~p|+ |αk|22E~k |~k 〉 〈~k |
(L3)

(
|αp|2(2E~p)2 + |αk|2(2E~k)

2
) ; With {~p 6= ~k}. (5.88)

We can rewrite the expression in the form,

(ρA)in =
|~p〉 〈~p|

(L3)(2E~p) (1 + 1/C)
+

|~k 〉 〈~k |
(L3)(2E~k) (1 + C)

. (5.89)

Where we defined

C ≡ |αp|
2

|αk|2

(
E~p
E~k

)2

=
|αp|2

|αk|2

(
1− v2

~k

1− v2
~p

)
. (5.90)

With the reduced density operator we are capable of determining the
entropy. Note that the terms in this operator are exactly of the same form
of the first terms of the operators that we calculated before (see (5.32)), as
such it’s a direct consequence that the elements of the operator, ρp and ρk
are equivalent to those elements. They are,

ρp =
1

1 + 1/C
,

and

ρk =
1

1 + C
,
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.
The operator is diagonal so the entropy is defined as,

(SE)in = −ρp log ρp − ρk log ρk (5.91)

Substituting the elements we have,

(SE)in =
log (1 + 1/C)

1 + 1/C
+

log (1 + C)
1 + C

(5.92)

Comment on C

Before plotting the entropy as a function of C, we want to do a qualitative
analysis of it’s domain to see what values it takes.

By looking at the expression,

C ≡ |αp|
2

|αk|2

(
E~p
E~k

)2

=
|αp|2

|αk|2

(
1− v2

~k

1− v2
~p

)
.

it’s a direct consequence that C must be positive, because |αp|2
|αk|2

is a ratio of
probabilities and we know that the velocities are restricted to take values
between 0 and 1 (they are in units of c). Is there any upper bound on the

values that it can take ? Ignoring |αp|2
|αk|2

which are just constants, we look at
the nature of, (

1− v2
~k

1− v2
~p

)
.

We are always free to pick ever increasingly bigger values of |v~p| up to
1, such that the denominator becomes as small as desirable. And we can
pick ever increasingly smaller values of |v~k| down to 0 so that the numerator
becomes as big possible, as such the ratio of the numerator and denominator
can take any numbers without any upper bound, which implies C can take
any values approaching 0 and ∞.

Let’s suppose that |αp|2|v~p| � |αk|2|v~k|, since none of these values can be
equal to 1, this is the same as saying |αk|2|v~kCM

| � 1, then

C ∼ |αp|2(1− v2
~p),
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and
1/C ∼ 1/|αp|2(1− v2

~p).

It is evident that for increasing values of |αp|2|v~p|, 1/C approaches zero
and C approaches ∞. We take the expression for the entropy and substitute
it with the limiting case C → ∞,

(SE)in =
log (1)

1
+

log (1 + C→∞)

1 + C→∞
The first term vanishes immediately and the second one takes the same

form as the following limit,

lim
x→∞

log x

x
= lim

x→∞

1

x
= 0.

Which implies that SE in → 0 when C approaches infinity. But the argu-
ment also holds true if we had said |αk|2|v~k| � |αp|2|v~p| which would imply
C approached 0.

Then we expect that the entropy plotted as a function of C will be such
that when C � 1 ( or C � 1 ) it will approach zero. Which means that, the
bigger the difference of the weighed CM velocities of the particles in a quan-
tum superposition of the proposed entangled state, lesser the entanglement
witnessed by an observation made in one of the subsystems.

We can also determine the value for which the entropy is maximum by
computing the derivative of the expression in order to C and finding it’s the
zeros, but that won’t be necessary if take a careful look at the expression (in
base of log2),

(SE)in =
log2 (1 + 1/C)

1 + 1/C
+

log2 (1 + C)
1 + C

We know the entropy to be a maximum if SE in = 1, and there’s only
one possibility for that to happen, the function has to take the form log2(2)
which we can easily see only happens if C = 1.So we have that the condition
for a maximally entangled state of the form we presented is C = 1.

Now we pose the question, is there any choice of values pertinent to the
characterization of the entangled sate which might impose a restriction such
that this condition can’t be met ? This is to say, for any choice of the
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velocities(energies) and the probabilities coefficients is it possible to have a
maximum entangled state of the form we proposed initially?

One can appreciate that for any choice of non null values of αp and αk
we can get a maximum entangled state for an appropriate choice of veloc-
ities values. This becomes evident if we take the condition for maximum
entanglement,

|αp|2

|αk|2

(
1− v2

~k

1− v2
~p

)
= 1,

and rewrite it as,

(1− |αp|2)(1− v2
~p) + |αp|2(v2

~k
− 1) = 0, |αp|2 ∈ (0, 1)

(we substituted |αk|2 = 1− |αp|2).

This is the equation of a line segment between two points, one is negative
(v2
~k
− 1) and the other one is positive(1− v2

~p), so regardless what their values

there is always one value of |αp|2 where the line passes trough the origin,
hence the condition of maximum entangled is satisfied.

The symmetric case is of particular interest because it retrieves a familiar
state. If we assume |αp|2 = |αk|2 = 0.5, the point when the line crosses the
origin is when |v~p| = |v~k|, since the two points are at the exact same distance
on either side of the origin. But we have to remember this is only allowed if
~p 6= ~k .

We know that |v~p| is the absolute value of velocity associated with the
3-momentum vector present in the subscript, so we can have the condition
of maximum entanglement in the symmetric case |v~p| = |v~k| respected, if

~p 6= −~k. Which gives a special case of the state (5.84),

|Ψ〉in =
1√
2
|~p,−~p〉+

1√
2
|− ~p, ~p〉 . (5.93)

This is quite familiar, in fact, it has exactly the same form as one the Bell
sates we encountered in Chapter2,∣∣E+

0

〉
=

1√
2
|u d〉+

1√
2
|d u〉 ;

But again there is a major difference, the state (5.93) even though nor-
malized to the the two kets which we used to describe it, represents an infinite
collection of possible momentum states.
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There is also another issue, the state (5.93) is just a special case of all
the possible maximally entangled symmetric states. We can appreciate this
by looking at the equations that relate the absolute values of momentum to
their respective values of the velocity,

|~p| = γm|v~p|;

|~k| = γm|v~k|,

since both masses in the expressions are the same ,

|~p| = |~k| ⇒ |v~p| = |v~k|.

Thus we can get the general condition for maximum entanglement with-
out breaking the inequality ~p 6= ~k, if we consider |~p| = |~k| and explicitly
θp 6= θk, which are the angles of the respective vectors2.

If we take the state (5.84)

|Ψ〉in =
1√
2
|~p,−~p〉+

1√
2
|~k,−~k 〉 , for all

{
~p 6= ~k

}
, (5.94)

and write it explicitly in terms of the 3-vector components,

|Ψ〉in =
1√
2
|(|~p|, θp); (|~p|, π − θp)〉+

1√
2
|(|~k|, θk); (|~k|, π − θk)〉 ,

for all
{
~p 6= ~k

}
.

If we set |~p| = |~k| , and say without loss of generality that θp = 0 and θk = θ,
we get,

|Ψ〉in =
1√
2
|(|~p|, 0); (|~p|, π)〉+

1√
2
|(|~p|, θ); (|~p|, π − θ)〉 ,

for all {θ ∈ (0, 2π)} .

So we have a continuous amount of maximum entangled states spanning
for all the possible values of θ , and we can appreciate that the sate (5.93)

which occurs when ~p = −~k is just the special case when θ = π. But apart

2 Even though we are dealing with 3-vectors we assume that φp = φk = 0 without loss
of generality.
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from that one, there is a continuous amount of symmetric states which also
produce a maximally entangled state.

We show this in a visually in a figure that represents the superposition
of the states,

Figure 5.8: Pictorial view of the states superposition in the CM frame.

We can see that in the case of |~p| = |~k|, the superposition corresponds to a
maximally entangled state as long as θ 6= 0 or any integer multiple of 2π. If

that would happen the vectors would lie on top of each other and there
would only be one state ;

If by chance θ = 0, the two states would reduce to a single state because
the inequality would not longer be met and thus we would get separable
state. But the angles only have to be different in the symmetric case, if the
coefficients weren’t the same we would need different velocities in order to get
C = 1, in that case even if θ = 0 we would have an entangled state because
the inequality would be respected since |~p| 6= |~k|.
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If generally we aren’t in the symmetric case how can we get the limiting
separable state ?

Remember that we commented that the entropy goes to zero if the relative
difference of the weighed velocities would become to big, this is because the
greater the difference the closer it gets to the limiting case of one of the
coefficients being zero which would produce a separable state. And in fact
if either αp, αk → 0 regardless of what values the velocities have we can see
from the expression,

C ≡ |αp|
2

|αk|2

(
E~p
E~k

)2

=
|αp|2

|αk|2

(
1− v2

~k

1− v2
~p

)
, (5.95)

that C is either going to be 0 or infinite, producing a null entropy which we
know to be a sufficient condition for separability. Thus, it’s good to know
that the limit to get a separable case is to set one of the coefficients to zero.
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Graphical Solutions to (SE)in

Firs we plot the expression for the entropy (SE)in

log (1 + 1/C)
1 + 1/C

+
log (1 + C)

1 + C
,

as a function of C we calculate it in logarithmic base of 2 so that the maximum
value is 1,

Figure 5.9: SE in(C).
It shows it’s maximum for C = 1, as it was expected. We present values

only up to C = 1 as it’s evident that it’s behaviour when C � 1 (or C � 1)
takes the limit zero.

It seems our analysis was correct, the entropy has it’s maximum for C = 1
and it’s limiting cases is also in agreement it our predictions.

It’s interesting to compare this graph with the graph we obtained in
Chapter3 for the entropy of a given two-dimensional state fig.(3.1). There
is an evident difference, the plot of the distribution against the variable
C is not symmetric, this is because the particles can have a continuum of
possible momentum’s and incidentally those values when used to create the
variable C ( which is a probability) produce a greater number of values higher
than 1. thus creating an asymmetric distribution. In the other graph of
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the spin-1
2

system we had symmetric distribution of entropy, because the
probabilities were associated with a finite collection of spin eigenvalues which
were symmetric around 0.5.

Now we will calculate the symmetric contour plot of the entropy (|αp|2 =
|αp|2 = 0.5) as a function of both velocities associated with each state, |v~p|
and |v~k|,

Figure 5.10: (SE)in(|v~p|, |v~k|).
The diagonal line |v~p| = |v~k| represents the maximum entropy (SE)in = 1.
This was expected since in the symmetric case |v~p| = |v~k| implies C = 1 .

113



CHAPTER 5. ENTANGLEMENT’S ENTROPY: THE CALCULATION

5.2.2 Calculating (SE)out

Determining (ρA)out

Now that we have a complete description of what the entropy of entanglement
is before the collision, we are ready to proceed to the calculation of the
entropy after the collision.

From here on out we will perform the calculations for the symmetric case,
we assume |αp|2 = |αp|2 = 0.5. This is in order to make the exposition of
the intermediary calculations less cumbersome and easier to follow by not
having to track explicitly the coefficients. But in the end we will also present
the result of (SE)out with the coefficients explicitly in order to compare the
expressions.

The starting point for this calculation is the same as it was before,

|Ψ〉out = Ŝ |Ψ〉in (5.96)

By substituting with the proposed entangled state it follows that,

|Ψ〉out =
(∫ +∞

−∞

d3~q1

(2π)3

1

2E~q1

d3~q2

(2π)3

1

2E~q2

|~q1 ~q2 〉 〈 ~q1 ~q2 | Ŝ | ~p1 ~p2 〉 (5.97)

+

∫ +∞

−∞

d3~q1

(2π)3

1

2E~q1

d3~q2

(2π)3

1

2E~q2

|~q1 ~q2 〉 〈 ~q1 ~q2 | Ŝ | ~k1
~k2 〉

)1

2
,

remembering of course that
{
~p1 6= ~k1; ~p2 6= ~k2

}
. These two integrals are of

the same form the previous case, but now we have two of them. The tech-
niques we used before still apply, hence we can write the expression in the
form,

|Ψ〉out =
(
| ~p1 ~p2 〉+

∫
{(~q1 6=~p1,~k1);(~q2 6=~p2,~k2)}

d3~q1

(2π)3

d3~q2

(2π)3

|~q1 ~q2 〉 〈 ~q1 ~q2 | iT̂ | ~p1 ~p2 〉
2E~q12E~q2

(5.98)

+ | ~k1
~k2 〉+

∫
{(~q1 6=~p1,~k1);(~q2 6=~p2,~k2)}

d3~q1

(2π)3

d3~q2

(2π)3

|~q1 ~q2 〉 〈 ~q1 ~q2 | iT̂ | ~k1
~k2 〉

2E~q12E~q2

)1

2
.

Or in a compact notation,

|Ψ〉out =
(
| ~p1 ~p2 〉+ | ~k1

~k2 〉+ Ip + Ik
)1

2
. (5.99)
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Where,

Ip ≡
∫

{(~q1 6=~p1,~k1);(~q2 6=~p2,~k2)}

d3~q1

(2π)3

d3~q2

(2π)3

|~q1 ~q2 〉 〈 ~q1 ~q2 | iT̂ | ~p1 ~p2 〉
2E~q12E~q2

;

Ik ≡
∫

{(~q1 6=~p1,~k1);(~q2 6=~p2,~k2)}

d3~q1

(2π)3

d3~q2

(2π)3

|~q1 ~q2 〉 〈 ~q1 ~q2 | iT̂ | ~k1
~k2 〉

2E~q12E~q2

.

Knowing the strenuous algebra that arouse in the previous calculation
when taking 1-loop corrections, we decide to simplify our task and calculate
only Tree-Level contributions this time . In Tree-Level, we have ,

〈 ~q1 ~q2 | iT̂ | ~p1 ~p2 〉 = −2iλ(2π)4δ4
(
p1 + p2 − (q1 + q2)

)
〈 ~q1 ~q2 | iT̂ | ~k1

~k2 〉 − 2iλ(2π)4δ4
(
k1 + k2 − (q1 + q2)

)
.

After we integrate the 3-momentum part in both integrals,
∫
d3~q2δ

3(~p1 + ~p2 − ~q1 − ~q2)

in Ip, and
∫
d3~q2δ

3(~k1 + ~k2 − ~q1 − ~q2) in Ik we have,

Ip =

∫
{~q1 6=~p1,~k1}

d3~q1

(2π)3

|~q1 ~p1 + ~p2 − ~q1 〉 (−2iλ2πδEp)

2E~q12E ~p1+ ~p2−~q1
;

Ik =

∫
{~q1 6=~p1,~k1}

d3~q1

(2π)3

|~q1
~k1 + ~k2 − ~q1 〉 (−2iλ2πδEk

)

2E~q12E ~k1+ ~k2−~q1
;

where,

δEk
≡ δ(E ~k1

+E ~k2
−E~q1 −E ~k1+ ~k2−~q1); δEp ≡ δ(E ~p1 +E ~p2 −E~q1 −E ~p1+ ~p2−~q1)

At this point we can drop the subscript in q1 and add both integrals,

Ip,k = −2iλ

∫
{~q 6=~p1,~k1}

d3~q

(2π)3

1

2E~q

(
|~q, ~k1 + ~k2 − ~q 〉 (2πδEk

)

2E ~k1+ ~k2−~q
+
|~q, ~p1 + ~p2 − ~q 〉 (2πδEp)

2E ~p1+ ~p2−~q

)
;

(5.100)
as such the state (5.99) can be written as,

|Ψ〉out =
(
| ~p1 ~p2 〉+ | ~k1

~k2 〉+ Ip,k
)1

2
. (5.101)
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Now we proceed to calculate the density operator, |Ψ〉 out out 〈Ψ|, which
gives,

ρout =
(
|~p1 ~p2〉 〈~p1 ~p2|+ |~k1

~k2 〉 〈 ~k1
~k2|+ (5.102)

+Ip,kI†p,k
)1

4
+ (crossed terms).

Where hermitean conjugate is,

I†p,k = 2iλ

∫
{~q′ 6=~p1,~k1}

d3~q
′

(2π)3

1

2E~q′

(
〈 ~q′ , ~k1 + ~k2 − ~q|(2πδE′

k
)

2E ~k1+ ~k2−~q′
+
〈 ~q′ , ~p1 + ~p2 − ~q

′|(2πδE′
p
)

2E ~p1+ ~p2−~q′

)

Just like before and for the same reasons, the crossed terms are going to
disappear when we calculate the reduced density operator. At this point it is
convenient to go to the CM frame, such that the operator becomes explicitly,

ρout =
(
|~p − ~p〉 〈~p − ~p|+ |~k − ~k 〉 〈~k − ~k|+ (5.103)

+4λ2

∫
{~q 6=~p,~k}

d3~q

(2π)3

1

(2E~q)2

∫
{~q′ 6=~p,~k}

d3~q
′

(2π)3

| ~q′ , −~q 〉 〈 ~q′ , −~q|
(2E~q′ )

2
(2π)2 6 δ′E 6 δE

)1

4
+

+(crossed terms).

Where,

6 δ′E 6 δE ≡
(
δE′

k
+ δE′

p

)(
δEk

+ δEp

)
,

with δEk
= δ(2E~q − 2E~k), and δEp = δ(2E~q − 2E~p).

We apply the tracing operator over Bob’s space (4.23) in the usual way.
The first two terms are exactly of the same form as the first term of the
density operator in the separable case, as such the result of tracing out this
term will give the equivalent form of the first term in the reduced operator
(5.17). They will be,

(|~p〉 〈~p| (2E~p)L3 + |~k 〉〈~k|(2E~k)L
3

Tracing over the integral term evaluated in the CM is also very similar
to the tracing over the integral term in the separable case, in fact the only
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difference is that in this case the term has two delta’s of energy, but aside
from that it is exactly the same, if we look at the second term of (5.17) by
comparison we get that,

4λ2

∫
{~q 6=~p,~k}

d3~q

(2π)3

|~q〉 〈~q|
(2E~q)3

(2π 6 δE)2 ;

By adding the two terms we get that the normalized operator is given by,

(ρA)out =
N
4

(
|~p〉 〈~p| (2E~p)L3 + |~k 〉〈~k|(2E~k)L

3+ (5.104)

+4λ2

∫
{~q 6=~p,~k}

d3~q

(2π)3

|~q〉 〈~q|
(2E~q)3

(2π 6 δE)2

)
;

If we expand
(6 δE)2 = δ2

Ep
+ δ2

Ek
+ 2δEpδEk

We have,

(ρA)out =
N
4

(
|~p〉 〈~p| (2E~p) + |~k 〉〈~k|(2E~k)+ (5.105)

+4λ2

∫
{~q 6=~p,~k}

d3~q

(2π)3

|~q〉 〈~q|
(2E~q)3

(2πδ(2E~q − 2E~p))
2 +

+4λ2

∫
{~q 6=~p,~k}

d3~q

(2π)3

|~q〉 〈~q|
(2E~q)3

(
2πδ(2E~q − 2E~k)

)2
)

3.

Now we find N , using the condition for normalization Tr(ρ(A) out) = 1.
Once again, the first two terms are equal to the first term of the reduced
density operator in the separable case, and we also notice that the integral
terms are as well, such that the tracing out would produce an integration
like 〈I2〉.

3The delta’s crossed term is peculiar since it only contributes when velocities are the
same, this is called a removable discontinuity. In the present work we will ignore this term
because it’s existence doesn’t affect the general profile of all the other points in the entropy,
and we aren’t able to give a fair treatment to it, and an appropriate interpretation.
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Remembering that the constant of normalization in Tree-level for the
separable case was given by,

1

(2E ~p2L
3)2 + 〈I2〉

.

With,

〈I2〉 =
L4λ2

2π
|v~p|. (5.106)

By comparison we get that in this case,

N =
4

(2E~pL3)2 + (2E~kL
3)2 + λ2

2π
L4(|v~p|+ |v~k|)

Now we have Alice’s the density operator completely defined, we can
compute the entropy.

Calculation of the Entropy

The expression of the entropy will be,

(SE)out = −
∞∑
i

(ρi) log ρi = −ρp log ρp (5.107)

−ρk log ρk −
L3

(2π)3

∫ +∞

−∞
ρn log ρndn

These matrix elements will be calculated in the same fashion as previously,
by using (4.33) we calculate ρp which is the element correspondent to the first
term to be,

ρp =
1

1 + 1
C + λ2

8πĒ~p
(|v~p|+ |v~k|)

,

and ρk (corresponding to the second term),

ρk =
1

1 + C + λ2

8πĒ~k
(|v~p|+ |v~k|)

.
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These enter into (5.107) as,

log
(

1 + 1
C + λ2

8πĒ2
~p
(|v~p|+ |v~k|)

)
1 + 1

C + λ2

8πĒ2
~p
(|v~p|+ |v~k|)

(5.108)

and

log
(

1 + C + λ2

8πĒ2
~k

(|v~p|+ |v~k|)
)

1 + C + λ2

8πĒ2
~k

(|v~p|+ |v~k|)
, (5.109)

respectively.
The last term is the rest of the matrix’s trace. To find it it we first need

to compute the general element ρn which we calculate it to be,

ρn =
(2π)2

(
δ2(2E~p − 2E~n) + δ2(2E~k − 2E~n)

)
L6(2E~n)2

(
(2E~k)

2 + (2E~p)2 + λ2

2πL2 (|v~p|+ |v~k|)
)

For simplicity let’s call the denominator D(E~n). Inputting this into the
expression into (5.107) we get,

− L3

(2π)3

∫
(2π)2δ2

Ep
+ (2π)2δ2

Ek

L6D(E~n)
log

(2π)2δ2
Ep

+ (2π)2δ2
Ek

L6D(E~n)
d3~n (5.110)

To solve this integral we separate it into the two different integrals like,

− L3

(2π)3

∫
(2π)2δ2

Ep

L6D(E~n)
log

(2π)2δ2
Ep

+ (2π)2δ2
Ek

L6D(E~n)
d3~n+

− L3

(2π)3

∫
(2π)2δ2

Ek

L6D(E~n)
log

(2π)2δ2
Ep

+ (2π)2δ2
Ek

L6D(E~n)
d3~n

These types of integrals are familiar, we solved them in the exact same
situation in the separable case. We won’t do it again here because there’s
nothing new besides the fact that now we have to calculate two instead of
just one. The process is the same, we go to spherical coordinates and switch
to an integration over energies in order to integrate the delta function of
energy, but now we have two different delta’s, one for each integral. The
solution is given by,
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λ2|v~p|
log
(

(4Ē4
~p + 4Ē2

~pĒ
2
~k

+ Ē2
~p
λ2

2π
(|v~p|+ |v~k|))/λ2

)
2π
(

4Ē2
~p + 4Ē2

~k
+ λ2

2π
(|v~p|+ |v~k|)

) +

+λ2|v~k|
log
(

(4Ē4
~k

+ 4Ē2
~pĒ

2
~k

+ Ē2
~k

λ2

2π
(|v~p|+ |v~k|))/λ2

)
2π
(

4Ē2
~p + 4Ē2

~k
+ λ2

2π
(|v~p|+ |v~k|)

)
By adding this term to (5.108) and (5.109) we find that,

SE out =
log
(

1 + 1
C + λ2

8πĒ2
~p
(|v~p|+ |v~k|)

)
1 + 1

C + λ2

8πĒ2
~p
(|v~p|+ |v~k|)

+ (5.111)

+

log

(
1 + C + λ2

8πĒ2
~kCM

(|v~p|+ |v~k|)
)

1 + C + λ2

8πĒ2
~k

(|v~p|+ |v~k|)
+

+λ2|v~p|
log
(

(4Ē4
~p + 4Ē2

~pĒ
2
~k

+ Ē2
~p
λ2

2π
(|v~p|+ |v~k|))/λ2

)
2π
(

4Ē2
~p + 4Ē2

~k
+ λ2

2π
(|v~p|+ |v~k|)

) +

+λ2|v~k|
log
(

(4Ē4
~k

+ 4Ē2
~pĒ

2
~k

+ Ē2
~k

λ2

2π
(|v~p|+ |v~k|))/λ2

)
2π
(

4Ē2
~p + 4Ē2

~k
+ λ2

2π
(|v~p|+ |v~k|)

)

Bear in mind that since we are in the symmetric case, C =
(

1−v2~k
1−v2

~p

)
.
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We present the general formula for any αp and αk,

(SE)out =
log
(

1 + 1
C + λ2

8πĒ2
~p
(|v~p|+ |αk|2

|αp|2 |v~k|)
)

1 + 1
C + λ2

8πĒ2
~p
(|v~p|+ |αk|2

|αp|2 |v~k|)
+ (5.112)

+
log
(

1 + C + λ2

8πĒ2
~k

( |αk|2
|αp|2 |v~p|+ |v~k|)

)
1 + C + λ2

8πĒ2
~k

( |αk|2
|αp|2 |v~p|+ |v~k|)

+

+λ2|αp|2|v~p|
log
(

(4Ē4
~p + 4 |αk|2

|αp|2 Ē
2
~pĒ

2
~k

+ Ē2
~p
λ2

2π
(|v~p|+ |αk|2

|αp|2 |v~k|))/λ
2
)

2π
(

4|αp|2Ē2
~p + 4|αk|2Ē2

~k
+ λ2

2π
(|αp|2|v~p|+ |αk|2|v~k|)

) +

+λ2|αk|2|v~k|
log
(

(4Ē4
~k

+ 4 |αp|2
|αk|2

Ē2
~pĒ

2
~k

+ Ē2
~k

λ2

2π
(|v~k|+

|αp|2
|αk|2
|v~k|))/λ2

)
2π
(

4|αp|2Ē2
~p + 4|αk|2Ē2

~k
+ λ2

2π
(|αp|2|v~p|+ |αk|2|v~k|)

)
And now, C = |αp|2

|αk|2

(
1−v2~k
1−v2

~p

)
.

Obviously if we set |αp|2 = |αk|2 we get the symmetric case expression,
but more interestingly if we set any of the two coefficients to zero we get
SE out of the separable state (computed to Tree level of course). Imagine
for instance that we say |αk|2 = 0 and |αp|2 = 1. The last term is seen to
promptly disappear, also since |αk|2 = 0 implies that C → ∞ and as such
the second term also goes to zero. We are left with the first and the third
term which are,

(SE)out =
log
(

1 + λ2

8πĒ2
~p
(|v~p|

)
1 + λ2

8πĒ2
~p
(|v~p|)

+ (5.113)

+λ2|v~p|
log
(

(4Ē4
~p + Ē2

~p
λ2

2π
(|v~p|))/λ2

)
2π
(

4Ē2
~p + λ2

2π
(|v~p|)

)
And if we remember that,

Atree =
λ2

8π

|v~p|
Ē~p

,

we realize that the surviving terms take the form,
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(SE)out =
log (1 +Atree)

1 +Atree
+ λ2|v~p|

log
(
(4Ē4

~p(1 +Atree))/λ2
)

8πĒ2
~p(1 +Atree)

,

which is exactly the same as (5.39).
We already have the final entropy, in order to compute the variation we

just need to subtract (SE)in, (5.92. Thus getting,

∆S = (SE)out − (SE)in =
log
(

1 + 1
C + λ2

8πĒ2
~p
(|v~p|+ |αk|2

|αp|2 |v~k|)
)

1 + 1
C + λ2

8πĒ2
~p
(|v~p|+ |αk|2

|αp|2 |v~k|)
+ (5.114)

+
log
(

1 + C + λ2

8πĒ2
~k

( |αk|2
|αp|2 |v~p|+ |v~k|)

)
1 + C + λ2

8πĒ2
~k

( |αk|2
|αp|2 |v~p|+ |v~k|)

+

+λ2|αp|2|v~p|
log
(

(4Ē4
~p + 4 |αk|2

|αp|2 Ē
2
~pĒ

2
~k

+ Ē2
~p
λ2

2π
(|v~p|+ |αk|2

|αp|2 |v~k|))/λ
2
)

2π
(

4|αp|2Ē2
~p + 4|αk|2Ē2

~k
+ λ2

2π
(|αp|2|v~p|+ |αk|2|v~k|)

) +

+λ2|αk|2|v~k|
log
(

(4Ē4
~k

+ 4 |αp|2
|αk|2

Ē2
~pĒ

2
~k

+ Ē2
~k

λ2

2π
(|v~k|+

|αp|2
|αk|2
|v~k|))/λ2

)
2π
(

4|αp|2Ē2
~p + 4|αk|2Ē2

~k
+ λ2

2π
(|αp|2|v~p|+ |αk|2|v~k|)

)
−
(

log (1 + 1/C)
1 + 1/C

+
log (1 + C)

1 + C

)
.

With, C = |αp|2
|αk|2

(
1−v2~k
1−v2

~p

)
.

5.2.3 Graphical Solutions

Again, in order to be able to get graphical solutions we use the prototype
m̄ = 1. We will present first contour plots for the symmetric case for the
same values of lambda as in the previous case with the separable initial
state. As we will see changing the parameters won’t change the maximums
values registered for the entropy’s variation for the same λ, so the values
the coefficients have won’t matter when comparing the maximum values.
Then we present some variations of |αk|2 and |αp|2 as it’s interesting to see
that although the entropy’s variation maximum value doesn’t alter when we
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change these parameters, that the domains of the velocities for which the
such maxima occur have an explicit dependence on them.

Figure 5.11: ∆SE(|v~p|, |v~k|) for λ = 0.5 and |αp|2 = |αk|2 = 0.5.

Máx.∆SE ∼ 0.025,
for|v~p| ∈ (∼ 0.5,∼ 0.75), |v~k| ∈ (∼ 0.5,∼ 0.75)

That is, there is a domain of certain velocities values which produce the
same result of the entropy’s variation. The domain pertinent to the maximum
value of the variation is symmetric because we are in the symmetric case.
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In the case of λ = 1 we have,

Figure 5.12: ∆SE(|v~p|, |v~k|) for λ = 1 and |αp|2 = |αk|2 = 0.5.

Máx.∆SE ∼ 0.07,
for|v~p| ∈ (∼ 0.45,∼ 0.85), |v~k| ∈ (∼ 0.45,∼ 0.85)

Here the domain’s area for the maximum variation got bigger, which
means that there is a higher combination of values which produce the maxi-
mum value of the entropy’s variation.
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In the case of λ = 1.5 we have,

Figure 5.13: ∆SE(|v~p|, |v~k|) for λ = 1.5 and |αp|2 = |αk|2 = 0.5.

Máx.∆SE ∼ 0.012,
for|v~p| ∈ (∼ 0.4,∼ 0.9), |v~k| ∈ (∼ 0.4,∼ 0.9)

Here the domain’s area for the maximum variation still got bigger, which
means that there is even a higher combination of values which produce the
maximum value of the entropy’s variation.
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In the case of λ = 2 we have,

Figure 5.14: ∆SE(|v~p|, |v~k|) for λ = 2 and |αp|2 = |αk|2 = 0.5.

Máx.∆SE ∼ 0.012,
for|v~p| ∈ (∼ 0.5,∼ 0.95), |v~k| ∈ (∼ 0.5,∼ 0.95)

It appears that in the last value for λ we took, the area for the maximum
variation got smaller.
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It’s interesting to plot a graph similar to (5.7), but instead of comparing
the 1-loop and Tree level values for the maximum variation in the separable
case, we compare the maximum values for the Tree level in the separable and
entangled case. It is as follows,

Figure 5.15: Máx(∆SE) vs. λ : Separable initial state(Discs) and Entangled
initial state (Squares).

There is an undeniable resemblance in this graph and the one in (5.7), the
Tree level results of the initial entangled state are almost exactly the same
as the 1-loop corrections on the separable state. One wonders if this result is
incidental to this particular case or is a consequence of a deeper relationship
between the scattering processes to be explored. Unfortunately at this point
we can’t do much more than guess.
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Now we would like to present an asymmetric case for λ = 1, and |αp|2 =
0.2, |αk|2 = 0.8,

Figure 5.16: ∆SE(|v~p|, |v~k|) for λ = 1 and |αp|2 = 0.2, |αk|2 = 0.8

Máx.∆SE ∼ 0.07,
for|v~p| ∈ (∼ 0.3,∼ 0.9), |v~k| ∈ (∼ 0.6,∼ 0.8)

As you can see, the maximum value for the variation still remains the
same, as with all of the values pertinent to the different domains. The differ-
ence is in the domains themselves, which are no longer symmetric, they are
extended to values of the velocity which has the lower weight associated with
it, in this case |v~p|. This is because the velocity is ”less important”, since
it’s contributions are not going to be of the same order has the contributions
of |v~k|, and as such can have a higher range of values without changing the
outcome of the variation. On the other hand, the range of values which |v~k|
can take are more restrict.

128



CHAPTER 5. ENTANGLEMENT’S ENTROPY: THE CALCULATION

If we plot the graph with opposite coefficients |αp|2 = 0.8, |αk|2 = 0.2, we
get the symmetric distribution for the domains of the entropy,

Figure 5.17: ∆SE(|v~p|, |v~k|) for λ = 1 and |αp|2 = 0.8, |αk|2 = 0.2

Máx.∆SE ∼ 0.07,
for|v~k| ∈ (∼ 0.3,∼ 0.9), |v~p| ∈ (∼ 0.6,∼ 0.8)

We end here the exposition of the results, and in the next chapter we will
present our conclusions.
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Chapter 6

Conclusions

6.1 The Scattering Process as the EceM

We performed a detailed study of the variation of the von Neumann en-
tanglement entropy in the elastic scattering process for a bipartite system
comprised of two interacting scalar fields, A and B, to one loop order in
perturbation theory. By constructing the final state and the reduced den-
sity matrix of the subsystem A via the S-matrix formalism in quantum field
theory, we quantified the entanglement generated when we scatter a sepa-
rable or an entangled momentum initial state. As such we investigate the
plausibility of using this phenomenon as an hypothetical ”Entanglement cre-
ation/enchancement Machine” (EceM), and by looking at the results in the
previous chapter it seems that the role although adequate is not optimal,
since the maximum of the variation is only ∼ 0.15

The correlations between Alice and Bob show explicit dependence on the
speed (energy) between the colliding particles in a different manner if the
initial state is separable or entangled, which indicates that the configuration
of the parameters for the optimum output of the EceM is different if it’s
creating or enhancing entanglement.

In the case of the separable initial state, the 1-loop corrections indicate
that the preferred velocity (|v∗~p| )which creates the maximum entanglement
output, is marginally lower than the one predicted by the Tree-level calcula-
tion, in the regime of weak coupling.
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The maximum of the entropy’s variation for same coupling values is ap-
proximately 1.5 times higher when the initial state is entangled than when it
is separable. This means that the collision has a better performance as the
EceM when enhancing already existing entanglement, than creating it from
scratch. This difference becomes more accentuated as λ increases.

If the initial state is entangled, the domain of the velocities |v~p|, |v~k| for
which this peak occurs is strongly influenced by the respective weights as-
sociated with the initial states. This entails that there is a greater degree
of possible manipulation on the initial entangled state, so that it can repro-
duce the same outcome of the maximum values of the variation. That is, the
machine has more combinations for which we can alter the parameters, such
that the output of entanglement is the same.

When the initial state is separable we notice that there is an increase in
the values for the variation in 1-loop comparatively to Tree-level. This could
be due to the nature of the model we used. Being a self-coupling model there
is no background, and as such no apparent means of decoherence imposed
on the system. Then much in the same light as thermodynamical entropy,
this seems to suggest a kind of 2nd Law of Thermodynamics, for if there is
no means for ∆SE to be negative, then for every interaction the system has
it’s bound to increase for irreversible operations.
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6.2 Further Work

There are a few interesting possible routes which one could pursue to add to
the body of this work. We present the most pertinent ones, in no particular
order:

-Trying to define a relationship between ∆SE and the Cross-Section of
the interaction for an initial entangled state to determine how the different
cross-sections relate to each other. Alternatively, thinking about the initial
entangled state as a ”bound entangled pair” (e-bit), and trying to find the
decay rate of the ”particle” in the case where the constituent ”qubits” interact
weekly in an elastic manner;

-Trying to quantify the decoherence of a collision in this model by study-
ing the example in Chapter3 of an ”e-bit” colliding with a ”q-bit”;

-Applying the same formalism with a non-flat metric, and see how the
effects of gravity might influence the ”machine”;

-Applying this formalism to different kinds of non-self coupling models to
see if having different kind of virtual particles mediating the interaction could
produce a variation of the entropy with a different kind of profile. Verifying
if there are regimes for which the variation could possibly be negative by
means of the decoherence;

-Applying this formalism to photons (or some fermionic model) in order
to study states which beside the spins are also entangled in momenta, and
witness if the different observables starting from the same set of conditions
(e.g maximally entangled) behave differently when submitted to the same
interaction.
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Appendix A

Derivations

A.1 Calculation of iM to 1-loop

The diagrammatic expansion to 1-loop is given by the following Dyson series,

Figure A.1: Pictorial Dyson Series
Expansion to 1-loop of the diagrams we aim to calculate.

Such diagrams represent integrals that must be solved. The 1-loop contri-
butions have a factor of 1

2
which factorizes from the coupling constant. Each

diagram has a respective C with a subscript pertaining to it’s very chan-
nel (the tree-level doesn’t have a subscript) which is it’s Symmetry Factor,
a number that accounts for all the topologically equivalent ways the same
diagram can be drawn, and weighs it in in the series.

We’ll pick just a single 1-loop diagram and carry out it’s integration
explicitly, since the other two are solved exactly in the same manner and the
tree-level one is trivial.
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Suppose we solve the t-channel diagram. Ignoring the symmetry factor
for the present time we have,

Figure A.2: Momentum labeled t-channel.
We put arrows on the external and internal legs, so that we can visualize

the ingoing and outgoing momenta.

By using the Feynman rules for a φ4 theory [27],

-For each vertex,

(iλ)(2π)4δ(4)(4-momentum conservation on the vertex);

-For each propagator with inner momentum k,

i

k2 −m2 + iε
;

-Integration over all of the internal momenta;
Applying these rules to the tree-level diagram is quite straightforward.

Since there aren’t any propagators we just get, iM(tree) = −2iλ which was
what we presented in Chapter4 in (4.13).

In the 1-loop diagrams one proceed as follow. We analyze the t-channel
in detail, but we’ll later see that every calculation can easily generalized to
any of the other two 1-loop diagrams. We get that the analytical form of the
integral is,

It =

∫
d4k

(2π)4

d4k
′

(2π)4
(iλ)2(2π)4δ(4)(p1 + k

′ − q1 − k) (A.1)
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×(2π)4δ(4)(p2 + k − q2 − k
′
)

(i)2

(k2 −m2 + iε)(k′ 2 −m2 + iε)

After integrating over the space of k
′

we get,

It = (2π)4δ(4)(p1 + p2 − q1 − q2)× (A.2)∫
d4k

(2π)4

(λ)2

(k2 −m2 + iε)
(
(k + q1 − p1)2 −m2 + iε

)
The integral is a Transfer Matrix (iT̂ ) element and as such it has the

form,

〈q1 q2| iT̂ |p1 p2〉 = (2π)4δ(4)(p1 + p2 − q1 − q2)iMp1 p2→q1 q2 .

Then we can say that,

It = (2π)4δ(4)(p1 + p2 − q1 − q2)Mt, (A.3)

where Mt is the pertinent part of the dynamics for this specific channel
given by,

Mt =

∫
d4k

(2π)4

(λ)2

(k2 −m2 + iε)
(
(k + q1 − p1)2 −m2 + iε

) (A.4)

The other channels will be of the same form but the integrals will be
different. Mt is the integral we need to calculate.

This integral exists in the complex plane, to avoid complications with the
poles when solving it we go to the real plane by applying a Wick rotation.
A Wick rotation is a Lorentz invariant transformation from the complex to
the real plane, defined for a 4-vector in Minkowski metric as,

(ds)2
M = (dt)2

M − (d~x)2 Wick−−−−→
rotation

(ds)2
E = (idt)2

E − (d~x)2, (A.5)

which gives the relationship,

(ds)2
M

Wick−−−−→
rotation

−(ds)2
E. (A.6)

Here the M and E subscripts denote Minkowski and Euclidean space, re-
spectively. The Wick rotation can be generalized for any 4-vector in the same
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way. In momentum space, (p0)M → −i(p0)E. We apply the transformation
to the previous propagators inside the integral,

1(
(k0)2 − (~k)2 −m2 + iε

) Wick−−−−→
rotation

1(
− (k0)2

E − (~k)2 −m2
) = − 1(

kE +m2
)

The other propagator also becomes similarly,

− 1(
k + (q1 − p1)

)2

E
+m2

This means the integral (A.4) in Euclidean space becomes,

Mt =

∫
d4kE
(2π)4

λ2(
k2
E +m2

)((
k + w

)2

E
+m2

) , with, w = (q1 − p1); (A.7)

We’ll drop the subscript since it’s implicit for all calculations that we are in
Euclidean space.

Regularization of the Integral

Even though we are in the real plane, the integral still diverges logarithmically
due to the ratio between the powers of momentum in the propagators and
the dimension of integration [27]. As such we need to regularize the integral.

This is usually done by either changing the nature of the propagators,
for instance, by introducing auxiliary fields (like the Pauli-Villars approach),
or changing the dimension of integration (like the dimensional regularization
approach). We use the dimensional regularization approach, whose principle
is quite simple; Since the ratio between the dimensions of integration and
the powers of momentum make the integral diverge, we decide to analyze
it in an appropriate chosen dimension of d = 4 − ε, because the integral
converges for 2 < d < 4. We’ll use the Gamma function (Γ) to isolate
the poles stemming from the divergent part, which will be absorbed in the
renormalization process (see below). The remaining part converges at d=4,
i.e. as ε→ 0.

We introduce the Gamma function,

Γ(p) =

∫ ∞
0

dx e−ax xp−1. (A.8)
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Used in the following relationship [27],

∫ ∞
0

ddk

(2π)d
1(

k2 + 2kp+m2
0

)n =
Γ(n− d

2
)

Γ(n)

(m2
0 − p2)(d/2−n)

(4π)d/2
. (A.9)

We need the previous expression to calculate the integral, it gives a rela-
tionship between the kind of expression we have of the integral (A.7), and a
computable general expression using the Gamma function.

In order to put the integral (A.7) exactly in the form as it’s presented in
the left hand side of (A.9), we will use Feynman’s trick ,

1

ab
=

∫ 1

0

dx(
ax+ b(1− x)

)2 .

In our case we set, a ≡ (k+w)2 +m2 and b ≡ (k2 +m2). Expanding the
denominator and substituting it into (A.7),

Mt =

∫ 1

0

dx

∫ ∞
0

ddk

(2π)d
λ2(

k2 + 2kwx+m2 + w2x
)2 , with, w = (q1 − p1);

(A.10)
Comparing with (A.9), we see that p = wx, m2

0 = m2 + w2x, and n = 2. As
such we can substitute the expression integrated over k with the right hand
side of (A.9), using the appropriate equalities. We get,

Mt = λ2

∫ 1

0

dx
Γ(2− d

2
)

Γ(2)

(m2 + w2x− (wx)2)(d/2−2)

(4π)d/2
; (A.11)

For d→ 4− ε and knowing that Γ(2) = 1, we get the expression,

Mt =
( λ

4π

)2

Γ
( ε

2

)∫ 1

0

dx
( 4π

m2 + w2x(1− x)

)ε/2
; (A.12)

Where Γ
(
ε
2

)
= { 2/ε + ψ(1) + O(ε) } [27], and ψ(1) is the known Eu-

ler–Mascheroni constant.

At this point we shall introduce an arbitrary scale µ by means of a redef-
inition of the coupling constant. We have

λR = µd−4 ⇔ λ = λR µ
ε
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Then (A.12) becomes,

Mt = { 2/ε+ψ(1) +O(ε) }
(λRµε

4π

)2
∫ 1

0

dx
( 4π

m2 + w2x(1− x)

)ε/2
, (A.13)

we can still manipulate the expression in the following way,

Mt = µε
(λR

4π

)2

{ 2/ε+ ψ(1) +O(ε) }
∫ 1

0

dx
(
µ2 4π

m2 + w2x(1− x)

)ε/2
.

(A.14)
If we expand the expression inside the integral in powers of ε up to O(ε2)

we get

1− ε

2

∫ 1

0

log
(m2 + w2x(1− x)

4πµ2

)
+O(ε2),

multiplying it by the expression inside the brackets gives,

Mt = µε
(λR

4π

)2

{ 2/ε+ψ(1)−
∫ 1

0

log
(m2 + w2x(1− x)

4πµ2

)
} +O(ε). (A.15)

Since we will later set ε→ 0, every power higher or equal to ε will disappear.
The integral of the logarithm function has the form of the following tabulated
integral, ∫ 1

0

dx log
(

1 +
4

a
x(1− x)

)
= −2 +

√
1 + a log

√
1 + a+ 1√
1 + a− 1

.

We can write the integral in (A.15) as,

Mt = log
m2

4πµ2
+

∫ 1

0

dx log
(

1 +
4

a
x(1− x)

)
; Where, a =

4m2

w2
. (A.16)

Also realizing that −w2 = t ≡ (p1 − q1)2 (which is also for the other Man-
delstam variables in their respective channels), we have,

M(t) = µε
(λR

4π

)2

{ 2/ε+ ψ(1)−
(

log
m2

4πµ2
+G(t)

)
} (A.17)
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Where G(t), is given by the general expression (4.15),

G(x) = −2 +

√
1− 4m2

x
· log (

√
1− 4m2

x
+ 1√

1− 4m2

x
− 1

), for x = t.

Since the analytic solution of the integral is a function of the variable t,
we dropped the subscript and represented explicitly the dependence.

It can be easily appreciated that all of these steps are exactly the same
as if we had picked any of the other two diagrams, the only difference would
be that instead of having a dependence on t, it would either be on u or s,
depending on the channel.

Renormalization

Although we already have an analytical solution, there are still divergences
present in the expressions. But it’s noticeable that these expressions are all
of the form,

M(t) =M(t)D +M(t)C .

Meaning, we have the sum of both the divergent and the convergent parts
discriminated in the expression. In order get the convergent part we have to
pick an appropriate point t

′
, such thatM(t

′
) =M(t)D, in order to calculate

the convergent part, as such,

M(t)C =M(t)−M(t
′
).

This point is called the ”Renormalization point”, and we have to pick one
also for M(s) and M(u). There is no single point that must be necessarily
chosen, but a conventional one is t = u = 0 and s = 4m2.

We then have,

M(t)C =M(t)−M(t = 0);

M(u)C =M(u)−M(u = 0);

M(s)C =M(s)−M(s = 4m2);

Substituting the expressions explicitly, and evaluating for each respective
point whilst taking the limit ε→ 0 we get that,

141



APPENDIX A. DERIVATIONS

M(t)C =
( λ

4π

)2

G(t); M(u)C =
( λ

4π

)2

G(u); M(s)C =
( λ

4π

)2(
2 +G(s)

)
;

Which means that the algebraic form of the expansion presented in fig.(A.1)
is given by,

iM(tree +1loop) = −iCλ− i

2

( λ
4π

)2
(
CtG(t) +CuG(u) +Cs(G(s) + 2)

)
(A.18)

Symmetry Coefficients

The symmetry coefficients are weights attributed to the diagrams in the
expansion. We use the interaction picture and calculate them by seeing how
many ways we could have constructed the same diagram with all the fields
at our disposal. For instance let us take the s-channel diagram,

Figure A.3: s-channel

We take the fields on the external points and the internal points (which
we name k and p), and write them all out,

φA(p1)φB(p2)φA(q1)φB(q2)

∫
d4p : φ

(1)
A : φ

(1)
B : φ

(2)
A : φ

(2)
B : ×2

∫
d4k : φ

(1)
A : φ

(1)
B : φ

(2)
A : φ

(2)
B : ×2,

where the expressions in colons mean normal ordering. Then contractions
are performed only among fields pertaining to different momenta.

We have put labels in the fields of the internal points to book keep them.
Each term has a factor of 2 which comes from the interaction term in the La-
grangian. The group of fields under d4p integral depend all on the momentum
p, whereas the fields under integral d4k depend on momentum k.

142



APPENDIX A. DERIVATIONS

We contract the internal fields first. Let’s take the φ
(1)
A field of the internal

point p, which can contract with any other two fields, φ
(1)
A and φ

(2)
A of the

internal point k, so we have 2 possibilities. But, suppose it would be φ
(2)
A of

the internal point p, that contracted with the fields in point k, in exactly the
same manner, this would give a total of 4 combinations. The combinations
for the internal fields φB are the same, so we have a total of (4× 4) possible
combinations for all the internal fields contractions. After the internal fields
are coupled with each other, we couple the external fields. Even though there
are all of these possibilities, there are only going to be two couplings in the
internal fields, so when we couple the external fields we can choose if the
first field couples with some field in point p or point k, so we still have an
additional factor of 2

We then have that,
Cs = (4× 4)× 2× 4,

the 4 stems from the two 2′’ from the Lagrangian factor multiplying. We can
write it still, Cs = (24 × 4)(2).

Now the u-channel,

Figure A.4: u-channel

We write it all down, and it’s exactly the same as before,

φA(p1)φB(p2)φA(q1)φB(q2)

∫
d4p : φ

(1)
A : φ

(1)
B : φ

(2)
A : φ

(2)
B : ×2

∫
d4k : φ

(1)
A : φ

(1)
B : φ

(2)
A : φ

(2)
B : ×2

But, in fact, there’s one symmetry in this diagram which does not exist
in the previous one, which is that if we perform an inversion on all the fields
(i.e φA ↔ φB) we would get also a topologically equivalent diagram. This
adds an extra factor of 2.
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We then have,

Cu = (4× 4)× 4× 4 = (24 × 4)(2)(2)

Now the t-channel,

Figure A.5: t-channel

The inner fields in this diagram are of a different nature than the previous
ones, for they are entirely composed of either φA’s or φB’s.

We write it all down, in the case of the φA’s,

φA(p1)φB(p2)φA(q1)φB(q2)

∫
d4p : φ

(1)
A : φ

(2)
A : φ

(3)
A : φ

(4)
A :

∫
d4k : φ

(1)
A : φ

(1)
B : φ

(2)
A : φ

(2)
B : ×2

Notice that the terms corresponding to the inner point p don’t have the
factor of 2, because interactions of this type in the Lagrangian don’t have
any additional factor.

We contract the fields in the internal points, suppose we pick φ
(1)
A of point

p, he has two possibilities to couple with the φA fields in point k, and since we
have 4 different φA fields in point p we have a total of (2× 4) combinations,
on the first couple and 3 on the second one.

The external φA fields have two possible choices when coupling with the
remainder internal fields, as well as the φB fields. Then we still have (2× 2)
more possibilities. This diagram also has an inversion symmetry, so that’s
another factor of 2, not forgetting the factor do 2 stemming from the inter-
action term from the Lagrangian, in the internal point k.

We then get,

Ct = (2× 4)× 3× 2× 2××4 = (24 × 4)(2)(3)

We still have the Tree-level contribution,
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Figure A.6: Tree level

There are no internal fields, so the fields associated with the internal point
are the external ones. We have,

φA(p1)φB(p2)φA(q1)φB(q2)

∫
d4k : φ

(1)
A : φ

(1)
B : φ

(2)
A : φ

(2)
B : ×2

We have two possibilities for each external field when coupling with the
internal field, which sets,

C = (2× 2× 2) = 23

.
Substituting all of the coefficients in the expression (A.18), we get,

iM(tree +1loop) = −i23λ− i
( λ

4π

)2
(24× 4)

(
3G(t)+2G(u)+G(s)+2

)
(A.19)

The Lagrangian was defined initially with a factor of 1
4
so to cancel with

the factorizing part of the coefficients. As such, if we set λ → λ/4 we get,

iM(tree +1loop) = −i2λ− i
( λ

4π

)2
(4)

(
3G(t) + 2G(u) +G(s) + 2

)
(A.20)

Which is exactly what we have in (4.17).
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