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Abstract

Geometric computer vision is strongly based in point primitives in problems of cali-

bration, Structure-from-Motion (SfM), and registration. The reason for this is that

points are the most fundamental primitive that is always present in images. There

are other sorts of primitives that can be used, either ones that often arise in man-

made environments and that are composition of points, such as lines and planes,

or primitives that have a differential character such as affine matches or normals,

encoding how surfaces vary locally. In this thesis, we explore these alternative prim-

itives, showing that in the specific contexts of calibration, SfM and registration they

can be advantageous with respect to the dominating trend.

The first line of work concerns the calibration of heterogeneous sensor arrange-

ments. We start by developing a method for calibrating a camera-depth sensor pair,

based on a novel 3D plane registration algorithm, that is able to provide results as

accurate as the state-of-the-art using about 1/6 of the input images. This impor-

tant improvement enables the extension of the calibration approach to the case of

non-overlapping Field-of-View (FoV) through mirror reflections, whereas methods

that require many more images easily lead to a prohibitive total number of frames

to be acquired. By applying a similar extension to the state-of-the-art approach for

calibrating camera-Laser RangeFinder (LRF) pairs, we achieve, for the first time, an

algorithm that is able to calibrate any sensor arrangement - with or without over-

lapping FoV - comprising cameras, LRFs and depth sensors, as long as a camera is

involved in the system.

Plane primitives are also used in the task of SfM and 3D modelling. In these

contexts, they lead to advantages over point primitives that include being able to

deal with situations of lack of texture, perceptual aliasing, high surface slant, wide-

baseline and presence of dynamism in the scene, while providing visually pleasant

reconstructions. Thus, and knowing that man-made environments are dominated

by planar surfaces, we propose two pipelines that accomplish SfM using these primi-

tives. Experiments clearly demonstrate that all these problems are efficiently tackled

with planes, with the proposed pipelines significantly outperforming state-of-the-art

point-based approaches in challenging situations.

The relations between an Affine Correspondence (AC) and the fundamental ge-

ometry have recently been derived [12]. This new result motivated our third topic

of research, where we study how ACs constrain the homography and the epipolar



geometry. We show that ACs, that are currently discarded after performing point

association, contain extremely useful information that can reduce the combinatorics

of SfM and enable fast and reliable segmentation of planes. This led to the develop-

ment of a new monocular Visual Simultaneous Localization and Mapping (vSLAM)

pipeline that provides a dense Piecewise Planar Reconstruction (PPR) of the scene

and significantly outperforms another competing monocular SfM method.

The final subject of research of this thesis is 3D point cloud registration. This

is a topic with important applications in object detection and recognition, tracking,

Simultaneous Localization and Mapping (SLAM) and even medical endoscopy. We

propose to solve the coarse alignment of point clouds in arbitrary initial positions

by extracting pairs of oriented points, i.e. points with associated normals. Our

method greatly benefits from a new smart indexing technique for extracting pairs of

points proposed in the Super4PCS algorithm [79] that works solely with points. A

comparison with this method shows that including normals leads to similar or higher

accuracies in less than 1/5 of the time when working with noisy depth-camera scans.

Speed ups of over 100× are achieved for noise-free datasets.
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Resumo

A visão por computador geométrica é fortemente baseada em primitivas de pontos

em problemas de calibração, estrutura por movimento e registo. A razão para isto é

que os pontos são a primitiva mais fundamental que está sempre presente nas ima-

gens. Existem outros tipos de primitivas que podem ser usadas, tanto as que surgem

em ambientes criados pelo Homem e que são a composição de pontos, tal como linhas

e planos, como as que têm um carácter diferencial, tal como correspondências afim e

normais que codificam a maneira como as superf́ıcies variam localmente. Nesta tese,

exploramos estas primitivas alternativas, mostrando que nos contextos espećıficos

de calibração, estrutura por movimento e registo podem ser vantajosas em relação

à tendência dominante.

A primeira linha de trabalho diz respeito a calibração de conjuntos de sensores

heterogéneos. Começamos por desenvolver um método para calibrar um par câmara-

sensor de profundidade, baseado num algoritmo novo de registo de planos 3D, que

consegue produzir resultados tão precisos como o estado-da-arte usando acerca de

1/6 das imagens de entrada. Esta melhoria importante permite a extensão do

método de calibração para o caso em que os campos de visão dos sensores não

se sobrepõem, através de reflexões de espelhos, enquanto que os métodos que ne-

cessitam de muitas imagens de calibração facilmente originam um número total de

imagens a serem adquiridas que é proibitivo. Aplicando uma extensão semelhante

ao método do estado-da-arte em calibração de pares câmara-telémetro laser, obte-

mos, pela primeira vez, um algoritmo que é capaz de calibrar qualquer conjunto

de sensores - com ou sem sobreposição dos campos de visão - contendo câmaras,

telémetros laser e sensores de profundidade, desde que uma câmara esteja envolvida

no sistema.

Primitivas de planos são também usadas nas tarefas de estrutura por movimento

e modelação 3D. Nestes contextos, estas primitivas têm vantagens em relação a

primitivas de pontos que incluem serem capazes de lidar com situações de falta de

textura, aliasing perceptual, declive das superf́ıcies elevado, distância entre câmaras

grande e presença de dinamismo na cena, enquanto produzem reconstruções visual-

mente agradáveis. Assim, e sabendo que os ambientes criados pelo Homem são

dominados por superf́ıcies planares, propomos dois esquemas de estrutura por movi-

mento a partir destas primitivas. Os resultados experimentais mostram com clareza

que todos estes problemas são eficazmente corrigidos usando planos, e que os esque-

mas propostos funcionam melhor que os algoritmos do estado-da-arte baseados em

pontos em situações desafiantes.
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As relações entre correspondências afim e a geometria fundamental foram recen-

temente derivadas em [12]. Este novo resultado motivou o nosso terceiro tópico de in-

vestigação, onde estudamos como as correspondências afim restringem a homografia

e a geometria epipolar. Mostramos que as correspondências afim, que actualmente

são descartadas depois da associação de pontos, contêm informação extremamente

útil que pode reduzir a combinatória em estrutura por movimento e permitem uma

rápida e fidedigna segmentação de planos. Isto levou ao desenvolvimento de um

novo esquema monocular de SLAM (Localização e Mapeamento Simultâneos) visual

que origina reconstruções densas da cena em planos e funciona significativamente

melhor do que um método competitivo de estrutura por movimento monocular.

O último assunto de investigação desta tese é o registo de nuvens de pontos

3D. Este é um tópico com aplicações importantes em detecção e reconhecimento de

objectos, seguimento, SLAM e até endoscopia médica. Propomo-nos a resolver o

alinhamento grosseiro de nuvens de pontos em posições iniciais arbitrárias através

da extracção de pares de pontos orientados, i.e. pontos com normais associadas. O

nosso método beneficia bastante de uma nova técnica de indexação inteligente para

extrair pares de pontos proposta no algoritmo Super4PCS [79] que trabalha somente

com pontos. Uma comparação com este método mostra que incluir normais origina

precisões semelhantes ou superiores em menos de 1/5 do tempo, quando trabalhamos

com dados ruidosos adquiridos por câmaras de profundidade. Acelerações de mais

de 100× são obtidas em datasets sem rúıdo.
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Chapter 1

Introduction and Motivation

Images are 2D representations of a 3D reality. There is loss of information and

recovering a 3D description of the observed scene is of great interest. This often

requires intrinsic camera calibration in order to infer meaningful metric information

from 2D images. When working with multiple sensors, extrinsic calibration is also

necessary so that the sensor setup works as a whole. These are all well studied

problems in computer vision as can be seen by the numerous publications about

topics like calibration, SfM, 3D reconstruction, and registration. Although most of

these works are strongly based in point primitives, there are other sorts of primitives

that can be used, either ones that are a composition of points that often arise in man-

made environments, such as lines and planes, or primitives that have a differential

character such as affine matches or normals that encode how surfaces vary locally.

Many sensor calibration approaches work by extracting keypoints from images

for finding both the intrinsic and extrinsic parameters. This is commonly done

when calibrating cameras by using a planar checkerboard pattern [122, 133, 146].

Other sensor arrangements have also been calibrated by extracting keypoints, such

as RGB-D cameras [20] and camera-LRF pairs [87]. However, attempts to perform

the intrinsic and extrinsic calibration of heterogeneous sensor setups using other

primitives have been done. In [52,53], a Kinect sensor is calibrated by registering 3D

planes and the LRF-camera pair calibration in [135] is accomplished by registering

3D lines with 3D planes. These are relatively recent research directions and there

still is an interest in pursuing them since the existing methods either require many

images to perform well [52, 53] or do not work in general configurations (e.g. when

the sensors’ FoVs do not overlap) [53, 135].

SfM is another relevant research subject that consists in recovering the motion
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of a camera from the image information it acquires and simultaneously obtain some

sort of 3D modelling of the observed scene. Typically, it is assumed that the ob-

served scene is rigid and SfM is accomplished from a sequence of images acquired

by a moving monocular camera. In the last few years the paradigm has been ex-

tended to either accommodate different sensor modalities, e.g. passive stereo [44]

or, more recently, RGB-D [29], or to relax the rigidity assumption by considering

multiple rigid motions [108,126,134], areas of non-rigid deformation [72], or even no

rigidity at all [19,41,91]. Despite the diversity in acquisition setups and rigidity/non-

rigidity assumptions, one factor remains the same: all the proposed approaches are

point-based. The information that is extracted from images are keypoints that can

potentially be associated, with the local patches surrounding them being used simply

as a signature. The algorithms work globally over these points.

Methods and approaches for carrying SfM and 3D modelling in general that use

image primitives other than keypoints is something that has been scarcely explored

in the past, with most existing works being limited to the use of lines [10, 21, 111].

Bartoli and Sturm [10] propose a multi-view algorithm for recovering the structure

and motion from line correspondences. Camera motion estimation is performed by

computing trifocal tensors for triplets of consecutive images. Later, Schindler et

al. [111] extend the work of Bartoli and Sturm [10] by introducing additional con-

straints on the orientations of lines in a 3D urban environment, leading to simpler

representations of lines. More recently, Chandraker et al. [21] used line matches

in two stereo pairs (4 images), to compute the camera pose in indoor office envi-

ronments. Unlike the previous methods that required a minimum of 3 monocular

views, this method requires only 2 stereo pairs for estimating the camera motion.

Moreover, the authors use infinite lines, overcoming the problem of the quality of

reconstruction being limited by the accuracy of detecting end-points.

Another important topic of research in computer vision is 3D point cloud reg-

istration, having several applications in object modelling, detection and recogni-

tion, tracking, and SLAM. Similarly to the case of SfM, 3D registration is typi-

cally solved using solely 3D points, either by performing a coarse alignment with

RANdom SAmple Consensus (RANSAC)-based schemes [1, 79, 85, 128], or by per-

forming fine alignments by minimizing error metrics such as the Euclidean distance

between corresponding points [14, 96]. Few works solve the registration problem

using other primitives. Examples include works that find correspondences between

pairs of points augmented with normals and possibly colour information [22,27,138]

for computing the rigid transformation to align point clouds in arbitrary initial po-
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sitions. However, the majority of these algorithms are applied in object detection

and recognition, and not only include time-consuming offline procedures but also

require that the source and target point clouds have sufficient overlap.

The reason why most of the research on calibration, SfM and 3D registration

so far focuses in using points is that they are the most fundamental primitive that

is always present in images. Note that other primitives such has lines or regions

are groups of points and can be divided into this simpler primitive. Nevertheless,

and despite the understandable reasons for the dominance of point features, we

believe that it is worth exploring alternative primitives, such as planes, regions and

normals, that in specific contexts of application can be advantageous with respect

to the dominating trend.

1.1 Thesis outline and contributions

In this thesis, we analyse until which extent the use of features other than keypoints

may help in solving the problems of calibration, SfM, 3D reconstruction and regis-

tration. These problems are addressed using planes, affine regions and normals, and

the main contributions are presented in the next chapters as follows:

Chapter 2 shows an elegant formulation for computing the rigid motion from plane

matches. This is explored for calibration in this chapter and for SfM in man-

made environments using RGB-D cameras and stereo pairs in Chapter 3. The

calibration algorithm is further extended to calibrate multi-modal sensor ar-

rangements with non-overlapping FoV. The detailed contributions are the fol-

lowing:

• A new optimal minimal solution for registering two sets of corresponding

3D planes that is, for the first time, explained in the dual projective space.

• A new method for calibrating a color-depth camera pair which outper-

forms the state-of-the-art method [53], requiring about 1/6 of the num-

ber of input frames and running in 1/30 of the time. This is accom-

plished by a new optimization step that prevents the calibration to suffer

from a drift in scale, as well as a method for estimating a depth distor-

tion model which significantly improves the calibration accuracy. The

calibration toolbox corresponding to this algorithm can be accessed at

http://arthronav.isr.uc.pt/~carolina/kinectcalib/.
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• An accurate, easy to use method that combines different modules for

accomplishing the extrinsic calibration of sensor setups comprising cam-

eras, depth sensors and LRFs with non-overlapping FoV. The toolbox

implementing this method is available in http://arthronav.isr.uc.

pt/~carolina/toolbox_multimodal/.

The contents in this chapter led to the articles [99, 100].

Chapter 3 describes an hierarchical RANSAC scheme for computing the camera

motion from planes extracted from the scene. This scheme is employed in

two pipelines that combine the benefits of PPR and plane-based odometry

by recovering both structure and motion from plane-primitives. It is shown

that using planes as opposed to points not only enables to handle situations

that cannot be handled by the latter, but also improves overall accuracy while

providing visually pleasant reconstructions. Our contributions are:

• A robust scheme that performs plane registration to estimate the relative

camera pose. It works in a hierarchical manner in the sense that it uses

as many planes as possible to perform the computation and point cor-

respondences are only extracted when strictly necessary. When 3 plane

correspondences are available, it makes use of the plane registration al-

gorithm proposed in Chapter 2. Solutions for the cases of 1 and 2 plane

correspondences are also proposed.

• A pipeline that detects the scene planes from images acquired by an RGB-

D camera and uses the proposed hierarchical scheme for initializing the

camera motion. The initial estimate is refined in a photo-geometric opti-

mization step that takes full advantage of the plane detection and simulta-

neous availability of depth and visual appearance cues. Experiments show

that it is as accurate as state-of-the-art point-based approaches when the

camera displacement is small, and significantly outperforms them in case

of wide-baseline and/or dynamic foreground. This pipeline is available

in http://arthronav.isr.uc.pt/~carolina/kinect_odometry/.

• A pipeline for PPR and camera motion estimation that takes as input a

sequence acquired by a calibrated stereo rig. The planes are extracted in

each stereo pair using SymStereo [4] and the camera motion is initialized

using the new hierarchical scheme. The camera motion and the planes

are refined simultaneously using a new formulation of a multi-modal fit-

ting approach that allows linking, fusing, and back-propagating plane

4

http://arthronav.isr.uc.pt/~carolina/toolbox_multimodal/
http://arthronav.isr.uc.pt/~carolina/toolbox_multimodal/
http://arthronav.isr.uc.pt/~carolina/kinect_odometry/


hypotheses across stereo pairs. A new Markov Random Field (MRF) for-

mulation, specific for sequential PPR, that handles low-textured regions

and ensures coherence in visibility across views is proposed.

• A dataset containing several sequences acquired with 3 different stereo

camera setups made available to the research community in http://

montecristo.co.it.pt/PPR_Rec/.

This material led to the works [98, 104,105].

Chapter 4 shows that ACs, that are currently discarded after performing point

association, contain extremely useful information that can reduce the combi-

natorics of SfM and enable fast and reliable segmentation of planes, without

the need of generating homography hypotheses. This led to the development

of a new monocular SLAM pipeline that provides a dense PPR of the scene.

In detail, our contributions are:

• The characterization of the family of homographies compatible with an

AC and the subsequent demonstration that an AC puts 3 constraints on

the epipolar geometry. These constraints can be directly used for esti-

mating the essential and the fundamental matrices, from 2 and 3 ACs,

respectively, by simply applying the 5-point [119] and the 7-point [47] al-

gorithms. Using this approach, we propose a robust scheme for estimating

the essential matrix from 2 ACs that greatly benefits from the reduced

combinatorics and is extensively tested against the 5-point method [88]

in real sequences. This provides experimental evidence that ACs are a vi-

able alternative to Point Correspondence (PC)s for visual odometry and

can be highly advantageous in the presence of many outliers as it happens

in scenes with multiple moving objects and/or deformable surfaces.

• The derivation, for the first time, of the constraints that must be ver-

ified by a PC or AC to be compatible with the 2-parameter family of

homographies associated with an initial AC. These are used as a metric

for segmenting correspondences according to planes present in the scene.

Comparative experiments show the benefits of this direct metric with

respect to sophisticated global multi-model fitting approaches [71] that

require the generation of hypotheses.

• The development of πMatch, a new monocular vSLAM pipeline that

makes use of the proposed plane segmentation method. It is able to
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decide about multiple motion situations (e.g. dynamic foreground, pure

rotation of camera, etc.) and provides a dense PPR of the scene. Ex-

periments show the superiority of our approach w.r.t. state-of-the-art

monocular methods [44].

These contributions were published in the articles [101,102].

Chapter 5 describes a 3D registration method that works by extracting pairs of

oriented points, i.e. points with associated normals, for computing the rigid

transformation. A comparison with the state-of-the-art method [79], that

works solely with points, shows that including normals leads to similar or

better results in less than 1/100 of the time in noise-free synthetic datasets.

The computational speed up for real datasets is over 19 times.

This material was recently submitted to an international robotics conference [103].

Chapter 6 presents some concluding remarks.

1.2 Notation

Scalars are represented by plain letters, e.g. x, vectors are indicated by bold symbols,

e.g. x, and matrices are denoted by letters in sans serif font, e.g. R. Planes are

represented by a 4D homogeneous vector that is indicated by an uppercase Greek

letter, e.g. Π. Sets of intrinsic parameters and point clouds are defined by uppercase

calligraphic letters, e.g. I,P. The symbol = will be used to denote strict equality

and ∼ to represent equality up to scale between projective representations.
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Chapter 2

Plane Registration in the Dual

Space and Applications in

Calibration

Plane registration in 3D has applications in areas such as computer vision, com-

puter graphics and robotics. In particular, it has been used in the past for sensor

calibration [53], where the authors propose a linear sub-optimal solution for this

task. In this chapter we propose a new minimal solution for 3D plane registration

that is used in the calibration of cameras and depth sensors. We start by giving

an elegant formulation of the problem in the dual space (Section 2.1), and propose

a fast and accurate method for the intrinsic and extrinsic calibration of a Kinect

sensor (Section 2.2). This calibration approach is afterwards extended to handle

situations of sensor arrangements with non-overlapping FoV. Similarly, the state-

of-the-art solution for the calibration of camera-LRF pairs [135] is also extended to

handle situations of disjoint FoVs. The outcome is a new method for calibrating

multi-modal sensor arrangements - that include cameras, LRFs and depth sensors -

with non-overlapping FoV that works effectively in scenarios for which there is no

simple solution in the current state-of-the-art (Section 2.3).

Notation: In this chapter, entities in LRF reference frame are represented using
′ and in depth camera reference frame using̊ , e.g. Π′ and Π̊. With abuse of notation,

the pose and the homography will be denoted by the same symbol, whenever it is

convenient.
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Figure 2.1: The relative pose estimation can be cast as a point registration problem
in the dual projective space P3∗ that maps points Πi into points Π̊i. The factor-
ization T̊−T ∼ SB allows the rotation and translation components to be computed
separately.

2.1 Plane registration in the dual space

The rigid transformation T̊ between two reference frames, with

T̊ =

[
R̊ t̊

0 1

]
, (2.1)

where R̊ is the rotation matrix and t̊ the translation vector, can be estimated by

solving a 3D plane registration problem. The goal is to find the transformation T̊

that satisfies the condition

Π̊i ∼

[
R̊ 0

−̊tTR̊ 1

]

︸ ︷︷ ︸
T̊−T

Πi, i = 1, 2, 3, (2.2)

where Πi ∼ [ni 1]T and Π̊i ∼ [̊ni 1]T are the planes represented in each reference

frame, in homogeneous coordinates, with normal vectors ni and n̊i, respectively.

Knowing that points and planes are dual entities in 3D - a plane in the projective

space P3 is represented as a point in the dual space P3∗, and vice-versa - Equation 2.2

can be seen as a projective transformation in P3∗ that maps points Πi into points

Π̊i. As shown in Figure 2.1, the transformation T̊−T can be factorized into a rotation

transformation B, mapping points Πi into points Π̂i, and a projective scaling S that

maps points Π̂i into points Π̊i:

B =

[
R̊ 0

0 1

]
, S =

[
I 0

−̊tT 1

]
, (2.3)
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where I is the 3× 3 identity matrix. B can be computed from K = 2 point-point

correspondences but S requires K = 3 correspondences to be estimated. An easy

two-step process to perform the registration is presented:

1. Since the length of a vector is not changed by rotation, ni and n̊i are nor-

malized, and an algorithm derived from [55] for computing a transformation

between two sets of unitary vectors is applied. From Equation 2.2, it is known

that this transformation is a pure rotation, and thus the translation component

is not computed.

2. The computation of the projective scaling S that maps points Π̂i into points

Π̊i, with Π̂i = BΠi, i = 1, 2, 3, is done similarly to [135]. We can write

Π̊i ∼ SΠ̂i, yielding

µi

[
n̊i

1

]
=

[
I 0

−̊tT 1

][
R̊ni

1

]
, (2.4)

where µi is an unknown scale factor. From the top three equations we can

write

µi =
n̊T

i Rni

n̊T

i n̊i
,

and replacing in the bottom one, it comes that

n̊T

i n̊in
T

i R̊
T̊t− n̊T

i n̊i + n̊T

i R̊ni = 0. (2.5)

Each pairΠi, Π̊i gives rise to a linear constraint in the entries of the translation

vector t̊, which can be computed by t̊ = A−1c, with

A =



n̊T
1 n̊1 0 0

0 n̊T
2 n̊2 0

0 0 n̊T
3 n̊3






nT
1

nT
2

nT
3




︸ ︷︷ ︸
Ni

R̊
T, c =




n̊T
1 n̊1 − n̊T

1Rn1

n̊T
2 n̊2 − n̊T

2Rn2

n̊T
3 n̊3 − n̊T

3Rnc3


 . (2.6)

It comes in a straightforward manner that if the 3 normals do not span the entire

3D space, then Ni is rank deficient and the computation of the translation becomes

underdetermined. This occurs when either all the normals are coplanar or all the

planes are parallel.
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2.2 Fast calibration of RGB-D cameras

Nowadays, the joint information provided by cameras and depth sensors has applica-

tions in areas including scene reconstruction, indoor mapping, and mobile robotics.

The Kinect is a camera pair capable of providing such information. Its depth sensor

consists of a projector that emits a dot pattern which is detected by an infrared (IR)

camera. The Kinect has been used for multiple purposes including 3D modelling

of indoor environments [50], and SfM [115]. Most of these applications require the

camera pair to be calibrated both intrinsically and extrinsically. The intrinsic cali-

bration consists in determining the parameters that enable to convert measurement

units into metric units. The extrinsic calibration consists in locating the sensors in

a common coordinate frame, for them to function as a whole.

The Kinect is a device for the consumer market of games and entertainment.

The intrinsic parameters of both depth and color cameras, as well as their relative

pose, are pre-calibrated in factory and recorded in the firmware. Average values

for these parameters are known by the community and commonly used in robotic

applications [20]. However, it is well known that these parameters vary from device

to device, and that the factory presets are not accurate enough for many applica-

tions [50,115]. This justifies the development of calibration methods for the Kinect,

or of methods to refine and improve the accuracy of the factory presets.

Authors have tried to independently calibrate the intrinsics of the depth sensor

and color camera, and then register both in a common reference frame [109, 141].

As pointed out by Herrera et al. [53], the depth and the color camera must be

calibrated together both because the accuracy in the color camera propagates to the

depth camera, and because all available information is being used.

Depth sensors may present depth distortions which decrease their accuracy. This

is the case of the Kinect device which has shown radially symmetric distortions [115]

that are not corrected in the manufacturer’s calibration. Herrera et al. [52] firstly

proposed an algorithm that calibrates not only the cameras’ intrinsics, but also the

parameters that convert kdu into meters. Zhang and Zhang extend this work by con-

sidering point correspondences between color and depth images, showing improved

accuracy. However, neither methods deal with the depth distortion.

Smisek et al. [115] observed that the Kinect exhibited residuals for close range

measurements, and were the first to propose considering both distortion in the pro-

jection and in the depth estimation. The depth distortion was estimated for each

pixel by averaging the metric error, after carrying the intrinsic and extrinsic cali-
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brations of the device. More recently, another depth distortion correction procedure

was proposed by Herrera et al. [53], which leads to improved accuracy. They ini-

tially estimate the intrinsics and the plane pose from homographies computed using

plane-to-image correspondences. The extrinsic calibration is carried by registering

the 3D planes estimated in color and depth camera coordinates. Due to the high

number of parameters to be optimized, they use an iterative refinement step that

optimizes the parameters alternately. Unfortunately, in order to effectively model

the depth camera parameters, including the distortion term, it requires many images

(≥ 20). Also, its iterative optimization step is highly time consuming. Due to its

high accuracy, we build on this contribution and downsize the calibration pipeline

to enhance usability.

As in [53], the color camera is calibrated from plane-to-image homographies

which enable to know the pose of the calibration plane in the color camera reference

frame. Concerning the depth camera, we use the preset values to reconstruct 3D

points, and compute the calibration plane pose using a standard fitting algorithm.

Computation of the extrinsic calibration is accomplished by performing plane regis-

tration. While Herrera carries the registration using a sub-optimal linear algorithm,

we use the minimal solution proposed in Section 2.1 in a hypothesize-and-test frame-

work. This provides better initializations of the relative pose, which facilitate the

subsequent steps. All parameters are optimized in a bundle adjustment step which

considers metric information in order to avoid a drift in the disparity to depth con-

version. We use the depth distortion model presented in [53], which has shown to

yield good accuracy. However, unlike Herrera’s method, we estimate the model’s

parameters in an open-loop, making our approach much less time consuming.

This pipeline leads to improvements in usability without sacrificing the final

accuracy. The improvements are both in terms of decreasing the number of input

images by a factor of 6, and reducing the computational time by a factor of 30.

Our method, as Herrera’s method, can be used with more than one color camera.

However, in this work, we only consider the Kinect’s color camera in the experiments.

2.2.1 Background

2.2.1.1 Projection model

In this work, the intrinsic parameters of the color camera are modelled as in [49],

where both radial and tangential distortions are considered. Let Xc = [Xc, Yc, Zc]
T

be a 3D point in the camera reference frame. The normalized image projection of
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Xc is xn = [xn, yn]
T, with xn = Xc/Zc and yn = Yc/Zc. Including lens distortion, it

comes that

xk = (1 + kc1r
2 + kc2r

4 + kc5r
6)xn + dx, (2.7)

where r2 = x2n + y2n and dx is the tangential distortion. The pixel coordinates

xc = [xc, yc]
T of the projection of Xc on the image plane are

[
xc

yc

]
=

[
fcx 0

0 fcy

][
xk

yk

]
+

[
ccx

ccy

]
, (2.8)

where fc = [fcx, fcy] are the focal lengths, and cc = [ccx, ccy] is the principal point.

We refer to the set of intrinsic parameters of the color camera by I = {fc, cc,kc}.

The pixel coordinates of the projection of the 3D point Xd in depth camera

coordinates can be obtained using a model similar to the color camera’s one. The

parameters fd and cd are the focal length and the principal point of the depth camera,

respectively. Since considering the distortion in the depth camera does not improve

accuracy significantly, kd is set to zero.

2.2.1.2 Depth measurements

The Kinect’s depth sensor consists of an IR camera which detects a constant pattern

emitted by a projector. It delivers depth information in disparity units (kdu) which

must be converted into metric units (meters). This can be done by using a scaled

inverse of the format

z =
1

c1du + c0
, (2.9)

where c0 and c1 are part of the depth camera’s intrinsics. Depth z is obtained from

du, which is the undistorted disparity, i.e., after performing distortion correction.

The Kinect’s depth sensor presents a depth distortion which has been modelled by

Herrera et al. [53]:

du = d+ D(xd, yd)e
α0−α1d, (2.10)

where d is the disparity returned by the Kinect in pixel [xd, yd], D contains the

spatial distortion pattern, and α = [α0, α1] models the decay of the distortion ef-

fect. We refer to the set of intrinsic parameters of the depth camera by I̊∗ =

{fd, cd,kd, c0, c1,D, α}.
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Camera Pair

Depth sensor

Camera

Figure 2.2: The color and depth cameras are related by a rigid transformation
T̊. Both sensors observe the same planar surface, allowing the computation of the
extrinsic calibration.

2.2.1.3 Herrera’s method

Herrera et al. [53] recently proposed a new method for calibrating a color-depth

camera pair, as well as a new explicit distortion correction term for the Kinect de-

vice, which significantly improves accuracy. They use a setup identical to Figure

2.2, where all cameras observe a planar checkerboard pattern from multiple views,

which are used for calibrating the sensors. A diagram of Herrera’s method is shown

in Figure 2.3, where it can be seen that the initialization steps can be performed

by two different methods, yielding two versions of the method to which we refer

by Herrera and Herrera I. The remaining steps do not depend on how the initial

estimate was obtained, and constitute the non-linear minimization.

Initial estimation

The color camera intrinsics can be initialized using Zhang’s method [146]. The

checkerboard corners are extracted from the intensity images and, using known cor-

ner positions in the checkerboard reference frame, both the intrinsic parameters and

the plane to image homographies can be estimated. This leads to the initialization

of I and Πi, for all input images i.

The same method can be applied to estimate the depth camera parameters and

homographies using plane corners [53]. From these initial parameters, it is possible

to obtain an estimate for the expected depth of each selected corner. The corre-

sponding measured disparities can be used for determining an initial guess for c0

and c1, using Equation 2.9. Thus, by setting D and α to zero, an initialization of
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Figure 2.3: Calibration algorithms: two versions of Herrera’s method (named Her-
rera and Herrera I), and our method.

I̊∗ and Π̊i is obtained. This initialization procedure is used in Herrera’s method, as

depicted in Figure 2.3. However, it produces a very rough initial estimate, especially

if the number of calibration planes is small. Thus, since there exist publicly available

values for the intrinsics of the Kinect device, in method Herrera I these are used,

and the extrinsic calibration step is skipped since estimates for I̊∗ and T̊ are known.

Extrinsic calibration

In method Herrera, it is necessary to explicitly compute the relative pose between

the sensors T̊. From Figure 2.2, it is evident that the checkerboard and calibration

plane reference frames are not aligned, and thus there is not a common reference

frame between the two sensors. This means that is it not possible to find T̊ by sim-

ply chaining transformations Πi and Π̊i. However, T̊ can be found through plane

registration, since it is known that both planes are coplanar. Herrera et al. use a

linear sub-optimal algorithm to carry this estimation.

Non-linear minimization

The non-linear minimization of Herrera’s method consists of 3 steps, as shown in

the diagram of Figure 2.3. It aims to minimize the weighted sum of squares of the

measurement reprojection errors over all parameters (I, I̊∗, T̊, and Πi for all cali-
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bration images). For the color camera, the error is the Euclidean distance between

the measured corner position x̂c and its reprojected position xc (first term of Equa-

tion 2.11). For the depth camera it is the difference between the measured disparity

d̂ and the predicted disparity d. The errors are normalized using each measurement

variance σ2. It comes that the cost function is

c =

∑
||x̂c − xc||

2

σ2
c

+

∑
(d̂− d)2

σ2
d

. (2.11)

The optimization process is divided into three steps: firstly, only I̊∗ and T̊ are

optimized to account for the fact that they are poorly initialized; secondly, Equa-

tion 2.11 is minimized over all the parameters, except for D; lastly, D is optimized

independently for each pixel. The two last steps are repeated until convergence is

reached.

2.2.2 Proposed calibration method

We propose a new calibration method that consists of four main consecutive steps:

an initial estimation of the intrinsic and extrinsic parameters, a non-linear minimiza-

tion, and a depth distortion model estimation. Figure 2.3 shows a block diagram of

our method, which presents a simpler framework than Herrera’s. Our optimization

procedure consists of only one step, and a depth distortion model is estimated using

the optimized parameters.

2.2.2.1 Initialization of intrinsic calibration

For the color camera, the initial estimation of I and Πi for all calibration images is

done as described in the previous subsection, for which we use Bouguet’s toolbox [17].

We redefine the intrinsic parameters of the depth camera as I̊ = {fd, cd,kd, c0, c1}

because we do not consider depth distortion terms. They are initialized using preset

values, which are publicly available for the Kinect [20].

2.2.2.2 Initialization of extrinsic calibration

For each input disparity map i, the plane corners are extracted, defining a polygon.

For each point xd inside the polygon, the corresponding disparity d is used for

computing a depth value zd using Equation 2.9, where d = du since the measured

disparities are used. The correspondences (xd, yd, zd) are used for computing 3D
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Figure 2.4: The problem of occurring a drift in scale. The pose of grid in the color
camera reference frame is fixed, while the depth camera may observe the calibration
plane at different depths.

points Xd originating a 3D point cloud. To each 3D point cloud, a plane is fitted

using a standard total least squares algorithm, yielding Π̊i.

The plane registration algorithm proposed in Section 2.1 provides the extrinsic

calibration of a camera and a depth sensor in the case of K = 3 correspondences.

For K > 3 pairs of planes, each triplet of plane-plane correspondences gives rise to

one solution, and the best estimation can be found using an hypothesize-and-test

framework:

1. For each possible triplet of pairs of planes Πi, Π̊i, a transformation T̊ is

estimated.

2. For each solution T̊, the depth camera coordinates Π̊∗
i for all Πi are computed

using Equation 2.2, and the euclidean distance di in the dual space between

the computed Π̊∗
i and Π̊i is determined.

3. Each solution is ranked by rank(T̊) =
∑

imax(t, di), where t is a predefined

threshold. The correspondences for which di < t are considered as inliers.

4. Find T̊ for which rank(T̊) is minimum.

After obtaining an initial estimation for the transformation T̊, and a set of inlier

correspondences, a bundle adjustment procedure is performed.
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2.2.2.3 Non-linear minimization

It was experimentally observed that under poor initialization and a small number

of images, Herrera’s method tends to drift in depth. After careful analysis, we came

up with an hypothesis for this observation. From Equation 2.9, it can be seen that if

c0 and c1 are affected by a scale component, an error in the extrinsic calibration will

occur, while the reprojection error does not change. Figure 2.4 depicts the problem,

where it can be seen that a scale drift will cause the pose of the calibration plane

w.r.t. the depth camera Π̊∗
i to be incorrectly estimated, while its pose relative to

the color camera Πi is not affected. This automatically originates an erroneous

estimation of the relative pose, represented by T̊∗.

Thus, we change the cost function 2.11 by adding a term that accounts for the

difference between the Euclidean distances between points of an object λ and the

measured distances between those points λ̂. Our objective function is, then,

min
I,I̊,T̊,Πi

e =

∑
||x̂c − xc||

2

σ2
c

+

∑
(d̂− d)2

σ2
d

+ β|λ̂− λ|2, (2.12)

where β is a weighting factor which should be sufficiently high. This information

could be included as a hard constraint. However, since we do not know how accurate

the measurements are, we decided to include it as a penalty term. This means that

our algorithm requires at least one image of an object with known dimensions, for

avoiding the calibration to drift in scale.

2.2.2.4 Depth distortion model estimation

The optimized intrinsic and extrinsic calibrations can be used for estimating the

depth distortion model of Equation 2.10. Note that it can be rewritten as

du = d+W(xd, yd)e
−α1d, (2.13)

where W(xd, yd) = D(xd, yd)e
α0 .

For a pair of disparity maps where a given pixel xd belongs to the calibration plane

in both maps, there are two correspondences (d̃1, d1) and (d̃2, d2), where d is the

measured disparity and d̃ is the expected disparity computed by knowing the plane
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equation. Using the two correspondences, we can write the system of equations




d̃1 − d1 = W(xd, yd)e

−α1d1

d̃2 − d2 = W(xd, yd)e
−α1d2

(2.14)

and find α1 by

α1 =
ln d̃1−d1

d̃2−d2

d2 − d1
. (2.15)

For every possible pair of correspondences, we compute an estimate for α1 and

consider their average as the final result.

Knowing α1, W can directly be estimated for the pixels which belong to a known

plane. For pixel (xd, yd), if more than one value is found, the average of all values

is considered. Although it is not possible to find individual estimates for α0 and D,

this method allows to recover the whole depth distortion function. Like Smisek et

al. [115], we perform the estimation in open-loop. However, since we use Herrera’s

model, we obtained better accuracy.

2.2.3 Experimental results

Two sets of experiments were conducted in order to compare the accuracy of Her-

rera’s method, which has been released as a toolbox, and our method. The first one

uses the dataset included in the toolbox, and shows extensive results with a vary-

ing number of calibration images. The second set uses a small number of images

acquired by another Kinect, in order to further validate the results.

2.2.3.1 Herrera’s dataset

The dataset comprises image-disparity map pairs for 70 distinct plane poses, with

the images being both acquired by the Kinect’s color camera and an external high

resolution camera. We selected 10 image-disparity map pairs acquired by the Kinect

(validation set) and used the rest of the data as input to the original Herrera algo-

rithm, that was executed with and without distortion correction (DC). Figure 2.5

shows the reprojection error measured for the validation set, where it can be seen

that the latter is substantially more accurate than the former. We will consider this

last calibration result as being close to the ground truth, and refer to it as pseudo

ground truth, given the large amount of data and the use of a high resolution camera.

However, it is merely indicative, since we do not know how exact the calibration is.
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Figure 2.5: Average RMS reprojection errors in kdu obtained with the validation set
of 10 images. All calibrations were performed without distortion correction (DC),
except for one using a dataset with 60 plane poses (pseudo ground truth).

(a) Translation error (b) Rotation error

(c) Error in c0 (d) Error in c1

Figure 2.6: Errors relative to the pseudo ground truth obtained without performing
distortion correction.
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Figure 2.7: Average run times obtained with our method, for increasing number of
calibration images.

The estimations by the different methods are compared against this one. From the

test set we selected 20 image-disparity map pairs acquired by the Kinect. These

pairs were grouped in sets of K = 4, 5, . . . , 15, and we randomly picked 50 sets for

each value of K. For each group of input images, we ran the calibration using Her-

rera I and our method. The initial values were sampled from a uniform distribution

with amplitude equal to 5% of the original value. The idea was to evaluate the

robustness to poor initialization.

For each trial, we evaluated the result in terms of reprojection error, using the

10 validation images, and in terms of extrinsics, by comparing with the pseudo

ground truth. Figures 2.5 and 2.6 show the average errors for increasing number of

K input images. Results clearly show that under the same conditions, our method

systematically outperforms Herrera’s method, which is not capable of producing

acceptable results with small datasets (≤ 8 calibration images). Our method, on

the other hand, yields good results with only 6 calibration images. Although the

initial estimates are very poor, both methods are capable of converging during the

optimization phase. Figure 2.7 shows the average run times of our method, when

using fixed initial parameters or parameters sampled from a uniform distribution.

When the parameters are not fixed, a poorer initial estimation may be obtained,

leading to higher run times in the optimization step. However, this is a low time

consuming method since it never exceeds 30 seconds. Using the results obtained with

calibration sets of more than 7 images, we estimated the depth distortion model with

2 images of a wall at different depths. The average RMS reprojection errors for the

validation images are shown in Figure 2.8a. It can be seen that the model was

correctly estimated since the reprojection errors significantly decreased. This can

be confirmed in Figure 2.8 where the average reprojection errors obtained in each
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(a) Average results (b) Our without DC (c) Our with DC (d) Pseudo GT

Figure 2.8: Results obtained with Herrera’s dataset. (a) Average and per-pixel
RMS reprojection errors obtained with the validation set for (b) our method without
distortion correction (DC), (c) our method with DC, and (d) the pseudo groud truth.

Our Method
method Herrera I

No DC 0.495◦ 0.743◦

With DC 0.369◦ 0.602◦

Table 2.1: Average angular error between
all possible pairs of 10 reconstructed
planes.

Our Method
method Herrera I

No DC 1.54 kdu 4.08 kdu
With DC 1.20 kdu 3.61 kdu

Table 2.2: Average RMS reprojection er-
rors obtained with the validation set of 6
images acquired by our Kinect.

pixel, for the 10 validation images, are shown. It can be seen that before correcting

the distortion, a radial pattern of the residuals is observed. After applying the

distortion correction, the reprojection errors significantly decrease, and the pattern

obtained becomes very similar to the pseudo ground truth’s. The estimation of the

model with 2 images takes about 10 seconds, so that the overall run time is of about

30 seconds for 15 calibration images. Herrera’s method, however, is much more time

consuming, taking about 3 minutes with 20 images.

2.2.3.2 Our dataset

In this set of experiments, we acquired a dataset of 14 images, of which 8 were used

for calibration and 6 for validation. We used the 8-image dataset for calibrating

the camera pair with ours and Herrera I method, both with and without distortion

correction. Note that our estimation of the depth distortion model is done with the

8 images of the calibration set. The quality of the depth camera’s intrinsic calibra-

tion is assessed by reconstructing the planes of a flight of perpendicular stairs, and

computing the angles between all possible pairs of planes (Figure 2.9a). These are

compared with 90◦ if the planes are orthogonal, and 0◦ if they are parallel. Results

in Table 2.1 show that, although both methods perform well, ours yields smaller
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Our method Herrera's method

(a) Reconstruction of a flight of stairs

Our method Herrera's method Herrera's method with DC

(b) Overlaid depth maps with the RGB images
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(c) Overlaid depth maps with the RGB images

Figure 2.9: (a) Reconstruction of a flight of stairs yielded an average angular error
between all possible pairs of planes of 0.495◦ with our method and 0.743◦ with
Herrera’s method. Note that a slight misalignment is observed when the depth
map is overlaid with the RGB image using Herrera’s solution, confirming it is less
accurate than ours. This inaccuracy is evident in (b), where the depth maps are
overlaid with the RGB image of an object with holes. While our method provides
a good alignment, Herrera’s method does not, and performs worse when distortion
correction (DC) is applied. (c) Examples of RGB images - acquired in scenarios with
very different depths and object shapes - overlaid with the corresponding depth maps
using the calibration obtained with our method (top row) and Herrera’s method
(bottom row), both without DC.

angular errors in average. Applying distortion correction leads to a more accurate

reconstruction in both cases. Average Root Mean Square (RMS) reprojection er-

rors were computed for the validation set and results are shown in Table 2.2. As

expected, our method outperforms Herrera’s since the calibration set is not large

enough for it to produce good results.

Although using distortion correction leads to an improvement in the accuracy for

both methods, Figure 2.9 shows that in Herrera’s method, it leads to a poorer extrin-

sic calibration. The 3D points computed from the disparity image are represented in

color camera coordinates, to which colors are assigned. A correct calibration should

align the intensity image with the depth map. Results with our method show that
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LRF

Depth sensor

Cam
era

Figure 2.10: Example of a heterogeneous sensor network with non-overlapping FoV
placed in a moving platform.

the misalignment is very slight, while for Herrera’s method it is significant, and is

larger when using distortion correction. This indicates that Herrera’s method is not

able to properly model the depth distortion with small datasets.

2.3 Calibration of multi-modal sensor arrangements with

non-overlapping FoV

Many applications in robotics and intelligent transportation systems (ITS) require

the use of multiple sensors that can be of the same modality (homogeneous sen-

sor networks) [90,93,110] or of different modalities (heterogeneous or hybrid sensor

setups) [15, 26, 61]. These setups must be calibrated both intrinsically and extrinsi-

cally. The literature in extrinsic calibration is vast and includes methods for finding

the relative pose between sensors of different modalities [53,135]. However, most of

these solutions require the FoV to overlap and cannot cope with situations in which

sensors are observing different, disjoint parts of the scene (see Figure 2.10).

Regarding homogeneous sensor setups, stationary camera networks are used in

surveillance and object tracking [93], while multi-camera rigs allow for the coverage

in vehicles of the whole surrounding environment [90]. In [6], Auvinet et al. describe

a system that uses multiple active cameras for reconstructing the volumes of bodies

in motion from the acquired depth maps. Its main application is in gait analysis

which has become an increasingly interesting area of research. LightSpace [140]
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combines depth cameras and projectors to provide interactivity on and between

surfaces in everyday environments, allowing a convincing simulation of the manip-

ulation of physical objects. In [76], planar mirrors are employed for image-based

camera localization and 3D scene reconstruction. The usage of mirrors relates with

multi-camera systems since each mirror allows the camera to capture an extra view,

working as another camera. The literature also reports heterogeneous sensor setups

comprising both combinations of color cameras1 and LRF, and combinations of color

and depth cameras. Color camera and LRF networks have recently been used in

object classification for the construction of maps of outdoor environments [26], by

integrating visual and shape features. In [97], these features are combined for pedes-

trian detection in urban environments. With the intent of building a reliable and

real-time multi-target tracking system, the fusion of laser and visual data is per-

formed in [144]. In [61], multiple color and depth cameras are used for generating

high-quality multi-view depth, allowing for the construction of 3D video.

For most of these applications the relative pose between sensor nodes must be

known in advance in order for the acquired multi-modal information to be fused and

the platform to work as a whole. There are several methods for performing both

intrinsic and extrinsic calibration of color cameras, LRFs, and depth cameras. A

brief overview of current approaches to calibrate either sensors of the same modality,

or mixtures of two modalities is now provided. Table 2.3 summarizes the results of

this overview clearly showing that the majority of existing solutions are unable

to handle the problem of generic extrinsic calibration between sensors of different

modalities with non-overlapping FoV.

1. Color Camera Calibration: The literature is vast but explicit methods using

a known checkerboard pattern are specially popular because they are stable,

accurate, and the calibration rig is easy to build. Bouguet’s camera calibration

toolbox [17] implements Zhang’s method [146] that, given 3 or more images,

estimates the intrinsic parameters, as well as the poses of the checkerboard

with respect to the camera. These poses can be used to find the relative

rigid displacement between different camera nodes (extrinsic calibration) by

simply assuring that some planes are simultaneously observed across different

nodes. However, there are camera networks for which the FoVs of the different

nodes do not overlap. This happens either in surveillance, where many times

a broad region must be covered with a small number of cameras [59,93], or in

1The term color camera is used when referring to regular cameras, either RGB or grayscale, in
order to better distinguish from depth cameras.
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Table 2.3: Methods for calibrating multi-sensor systems.

Color Cam. LRF Depth Cam.

Bouguet [146] X

O
ve
rl
ap

Vasconcelos [135] X X

Herrera [53] X X

Rodrigues [107] X

N
on

O
ve
rl
ap

Bok [15] X X

Our X X

Contribution X X

robotics, whenever cameras are placed to obtain an omni-directional view of

the scene around the vehicle [90]. A possible solution in these cases is to use

mirrors for computing the pose with respect to an object that is outside the

FoV [54,70,107,121]. The idea has been first used in [70] to calibrate a camera

network with the pose of the object being estimated from a minimum of 5

mirror reflections. Sturm et al. [121] proved that such relative pose could be

determined from a minimum of 3 images and Rodrigues et al. [107] introduced

a minimal, closed-form solution for the problem that outperforms the methods

suggested in [70, 121]. An exhaustive experimental evaluation showed that in

practice 5 to 6 reflections are more than enough to obtain very stable and

accurate results.

2. Color Camera - LRF Calibration: Zhang and Pless [145] proposed a practical

method for the extrinsic calibration of a color camera and a LRF that uses

at least 5 images of a known checkerboard pattern. Later on, Vasconcelos

et al. [135] described a minimal solution for the problem leading to a robust

algorithm that clearly outperforms the method in [145]. These solutions only

deal with the overlapping case. More recently, an algorithm for calibrating a

color camera and a LRF whenever their FoVs do not intersect was proposed

[15]. The method makes assumptions about the relative pose between the

checkerboard and the environment’s structure that may be difficult to satisfy

in small or cluttered spaces. Moreover, due to these assumptions, the sensor

platform must move in order to acquire calibration data. In case of large

platforms, such as ground vehicles, this method is not appropriate since it

would be extremely difficult to acquire the required calibration data in different
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positions and orientations. In this section, the method [135] is extended to the

non-overlapping case, providing a simple solution that works for any color

camera - LRF configuration that can be attached to either a small or a large

platform.

3. Color Camera - Depth Camera Calibration: Scene reconstruction from a color

- depth camera pair measurements requires the system to be calibrated, both

intrinsically and extrinsically. Kinect cameras have a standard calibration

from factory that is not accurate enough for many situations. As mentioned

in Section 2.2, Herrera et al. [53] have recently modelled the Kinect’s depth

camera distortion and proposed a method for calibrating a depth camera and

additional color cameras whose FoV overlap. Its main strength is in an explicit

depth distortion term. Unfortunately it requires many images (over 20) and

it is not prepared for handling non-overlapping situations. We tackle the first

issue by making use of our new calibration method for color camera - depth

camera pairs proposed in Section 2.2, that has proven to perform accurately

with only 6 to 10 calibration images. In this section, this new approach is

extended to the non-overlapping case, solving the calibration problem for any

possible sensor configuration.

This section revisits the problem of the extrinsic calibration of multi-sensor ar-

rangements that can comprise color cameras, LRF, and/or depth cameras. It builds

on recent results for estimating the pose of an object observed by a color camera

through planar mirror reflections [107] and proposes a systematic, practical ap-

proach for calibrating mixtures of color cameras, LRFs, and depth cameras with

non-overlapping FoV. A thorough experimental assessment of the solution that en-

ables to decide about the number of mirror reflections N and object views M or K

that are needed to reach a certain accuracy level is presented, as well as an experi-

ment of the calibration of the sensor platform in Figure 2.10 with an application in

SfM that evinces the usefulness of heterogeneous sensor systems. The method uses

a checkerboard pattern as calibration object and handles situations for which there

is no simple, effective solution in the state-of-the-art.

2.3.1 Camera pose estimation from mirror reflections

It can be shown that the image acquired by a camera looking at a planar mirror is

equivalent to the image that would be acquired by a virtual camera placed behind

the mirror plane. In this case, the virtual and real cameras have the exact same
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Figure 2.11: Object B is seen by camera Cr through N planar mirror reflections Φi,
originating N virtual cameras Ĉi. Our goal is to find the pose M of the real camera
Cr with respect to object B.

intrinsic parameters and their local reference frames are related by a symmetry

transformation S with respect to the mirror plane. Rodrigues et al. [107] propose to

freely move a planar mirror in front of a camera in order to obtain images of an object

that lies outside the FoV. It was shown that, given N ≥ 3 images, it is possible to

estimate the rigid displacement M between camera and object (Figure 2.11), as well

as the plane coordinates of the N mirrors. Since their algorithm will be extensively

used to accomplish the extrinsic calibration of sensors with non-overlapping FoV,

this section overviews its steps.

2.3.1.1 Review of the algorithm presented in [107]

Figure 2.11 shows an object B being observed by camera Cr through N planar

mirror reflections. Each virtual camera Ĉi is originated by the mirror plane Φi,

which is uniquely defined by its unitary normal vector −→n i, and the scalar euclidean

distance di, with i = 0, . . . , N−1. The pose of the object Pi in each virtual camera

reference frame is determined by either applying the PnP algorithm [46], in case B

is a known 3D object, or by estimating and factorizing a planar homography [47],

in case B is a plane surface. For the sake of convenience we always use a planar

checkerboard pattern as calibration object. With abuse of notation, the pose and

the homography will be denoted by the same symbol, whenever it is convenient.

Given the N ≥ 3 object poses Pi, Rodrigues et al. [107] choose a reference virtual
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view and determine the position of the corresponding mirror plane. Let Ĉ0 be the

reference camera. The first step is to compute the relative pose Ti of the remaining

virtual views, which can be easily accomplished by applying the following formula:

Ti = P
−1
i P0, i = 1, 2, . . . , N − 1. (2.16)

It can be shown that each rigid motion Ti gives rise to two independent linear

constraints on the parameters of the mirror plane Φ0 that can be stacked for the

N−1 motions, originating a system of linear equations. The least squares solution

can be found by applying SVD, and Φ0 is computed. The symmetry transformation

S0, that relates the reference frames of virtual camera Ĉ0 and real camera Cr, is

given by:

S0 =

[
I− 2−→n 0

−→n
T

0 2d0
−→n 0

0 1

]
. (2.17)

This symmetry matrix is involutory, meaning that S0 = S
−1
0 . From P0 and S0, the

pose M of the object B comes in a straightforward manner as:

M = S0P0. (2.18)

Note that due to the mirror reflection, if the reference frame Cr is right-handed, then

the reference frame Ĉ0 is left-handed, and vice-versa, making the multiplication in

Equation 2.18 to be defined this way. To improve robustness, this algorithm is

performed N times independently, each time considering a different virtual camera

as the reference frame. Then, the average of all estimations of M is considered.

A singular configuration occurs whenever all the mirror planes intersect into a

single line in 3D. This can be caused by either rotating the mirror around a fixed-

axis, or when the reflection planes are all parallel (the intersection line is at infinity).

2.3.1.2 Calibration of cameras with non-overlapping FoV

As explained in [107], the fact that it is now possible to determine the pose of

an object M that is outside the camera’s FoV enables the extrinsic calibration of

cameras that do not observe overlapping regions of the scene.

Consider the situation of Figure 2.12 where cameras CF and CB, mounted on a

platform, observe object B directly and through mirror reflections, respectively. The

extrinsic calibration D can be carried by computing MF and MB, and then finding

D = M
−1
F MB. MF can be computed as a planar homography using a standard
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Figure 2.12: The extrinsic calibration D is accomplished by showing the object
directly to camera CF (checkerboard image on the right) and showing it through
mirror reflections to camera CB (checkerboard images on the left).

Camera

LRF

LRF

Camera

(a) Camera and LRF mounted on
a platform

'

O'

b

Camera

LRF

(b) Relative pose T′ between
camera and LRF

(c) Line intersections in the scan
plane Σ′

Figure 2.13: (a) The extrinsic calibration in [135] is carried by moving a checkerboard
pattern in front of both color camera and LRF. (b) The color camera C that observes
plane Πi and the LRF O′ that sees line L′

i are related by a transformation T′. (c)
Lines L′

i lie in the scan plane Σ′ and intersect in points P′
ij , which define the

directions d′
ij with the origin of the LRF reference frame O′.

approach [146], while estimating MB is performed using the algorithm from [107].

In practical terms, according to [107], for N = 6 mirror views it is possible to

achieve subpixel accuracy, corresponding to a rotation error slightly below 1◦ and a

translation error of approximately 3.5%.

2.3.2 Extrinsic calibration of a color camera and a LRF

Let us now consider the problem of finding the extrinsic calibration T′ between a

color camera C and a LRF O′ as illustrated in Figure 2.13.

Vasconcelos et al. [135] have recently shown that a color camera and a LRF can

be calibrated from a minimum of M = 3 images of a planar grid. The problem

of finding T′ is cast as the problem of registering a set of planes Πi, i = 1, 2, 3,

expressed in color camera coordinates, with a set of 3D lines L′
i, i = 1, 2, 3 in the
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LRF coordinate system. They show that there are 8 solutions, with the correct one

being selected by an additional plane-line correspondence.

We start by reviewing the algorithm [135] and then extend the method to the

case of non-overlapping FoV by using mirror reflections.

2.3.2.1 Review of the algorithm presented in [135]

Consider M planes Πi ∼ [nT

i 1]T, i = 1, 2, . . . ,M expressed in color camera coordi-

nates and the corresponding lines L′
i, expressed in LRF coordinates, where L′

i is the

locus of intersection between Πi and the scan plane Σ′, as shown in Figure 2.13b.

Vasconcelos et al. [135] show that the relative rotation R′ can be determined by

solving the system of non-linear equations





α12d12 = R′T(P′
12 +m′)

α13d13 = R′T(P′
13 +m′)

α23d23 = R′T(P′
23 +m′)

, (2.19)

where dij is the direction of the line where planes Πi and Πj intersect, P′
ij is the

point in plane Σ′ where lines L′
i and L′

j meet, m′ is an unknown vector and αij

are unknown scalars that assure algebraic equality. The authors observed that the

system of equations 2.19 corresponds to solving the P3P problem [46] for determining

the relative pose between a color camera and an object from 3 object-image point

correspondences. Figure 2.13c shows the nature of this P3P problem, where the

virtual perspective camera is centered in point m′ where planes Π′
i intersect, dij

play the role of image points and P′
ij of object points. P3P enables to find the

relative orientations R′T and the position m′ of the intersection of the 3 planes in

LRF coordinates.

Finally, to find the translation t′, it is shown in [135] that it suffices to compute

t′ = A−1c with A and c defined as in Equation 2.6 after substituting n̊i by n′
i, for

i = 1, 2, 3, where n′
i refers to the normal to plane Π′

i, expressed in LRF coordinates.

A discussion about the singular configurations of this method is given in [135].

In general terms, whenever the lines where the checkerboard planes intersect are

parallel, or the checkerboard planes intersect in a point that lies in the danger

cylinder (refer to [135]) a singular configuration occurs.

The registration procedure originates a total of R ≤ 8 rigid transformations T′
i

that align 3 planes with 3 coplanar lines. For sets with M > 3 plane-line correspon-

dences, the best solution is chosen in a hypothesize-and-test framework to select
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Figure 2.14: Calibration of a color camera - LRF setup in case of non-overlapping
FoV. It is shown how to determine the pose Πi of the checkerboard in color camera
coordinates from N mirror reflections Φij . The line segment between the red dots
in the LRF readings plot corresponds to the calibration plane.

inliers, which are then used in a bundle adjustment step to refine the solution. This

is done by simultaneously minimizing the reprojection error and the distance to LRF

depth measurements. According to [135], a total of M = 5 checkerboard planes are

sufficient for achieving good accuracy.

2.3.2.2 Calibration of a color camera - LRF pair with non-overlapping

FoV

As shown in the scheme of Figure 2.14, the checkerboard pattern is placed in front

of the LRF and, for each pose Π′
i, i = 1, . . . ,M , the color camera observes the

pattern through N mirror reflections Φij , j = 1, . . . , N . The coordinates of the

checkerboard plane Πi in the color camera reference frame can be found using the

method described in Section 2.3.1. By applying this algorithm for retrieving each

plane pose, the extrinsic calibration between the color camera and the LRF can

be directly obtained by using the method from [135]. Note that, in order to be

possible to perform such a calibration, a minimum of 9 images are necessary, since

the algorithm presented in [107] (reviewed in Section 2.3.1) requires N ≥ 3 mirror

reflections and the algorithm from [135] (reviewed in Section 2.3.2.1) requires P ≥ 3

plane poses. However, and as discussed before, in practice more images are required

to obtain robust, accurate results.

The first step for performing the extrinsic calibration is to find an initial estima-

tion. In this case, it is done similarly to the method from [135], having the difference

that planes Πi are determined from the algorithm described in Section 2.3.1 and

not directly from plane-to-image homographies. A refinement step is then applied to

minimize the reprojection errors in the color camera and LRF. The minimization is
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performed over the parameters T′, inlier planes Πi and corresponding mirror poses

Φij , and the color camera’s intrinsic parameters K,

min
T′,Πi,Φij ,K

e = eLRF + keCAM , (2.20)

where k is a weighting parameter. The LRF residue eLRF is the sum of the squared

distances between the points Q̃′
ik, obtained by mapping planes Πi into the LRF

reference frame and intersecting with the directions r′k in the scan plane Σ′, and the

points Q′
ik that are reconstructed from the depth readings (refer to Figure 2.13b):

eLRF =
∑

i

∑

j

||Q′
ik − Q̃′

ik||
2. (2.21)

In the present case of a non-overlapping configuration, since the checkerboard images

result from mirror reflections, the reprojection error of the color camera is computed

differently, when compared to the algorithm proposed in [135]. The virtual camera

relative to the mirror pose Φij is computed by using transformation S0 in Figure

2.11, which is a reflection about a plane. Since the virtual cameras “observe“ the

checkerboard directly, they are used for computing the reprojection errors of the

plane-to-image homographies, yielding eCAM . Note that the computation of the

color camera residue depends on the intrinsic parameters K, so that this formulation

allows to refine both the intrinsic and the extrinsic calibrations. The main steps of

the proposed method are outlined in Algorithm 1.

2.3.2.3 Experimental results for non-overlapping FoV

The method proposed by Vasconcelos et al. [135] is able to achieve robust, accurate

results for the LRF-color camera pair calibration in an overlapping configuration

from M ≥ 6 checkerboard images. In the case of non-overlapping FoV, besides the

rigid displacement T′ between the sensors, the pose of the checkerboard Π, which is

observed through mirror reflections, in color camera coordinates, must be estimated.

Rodrigues et al. [107] show that in practice N ≥ 6 virtual views are required for the

estimation to be reasonably accurate.

In this section a real experiment with ground truth is carried, not only to validate

the approach presented in Section 2.3.2.2, but also to assess the number of M ×N

images that are necessary in practice to obtain a certain degree of accuracy.

A setup that has overlapping FoV was used in order to enable calibration with

the algorithm of Section 2.3.2.1 that works as ground truth. A dataset of M = 12
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Algorithm 1: New method for the calibration of a color camera - LRF pair
with non-overlapping FoV

Inputs: Scan plane Σ′, lines L′
i and object poses in relation to the virtual

cameras Pij , i = 1, . . . ,M, j = 0, . . . , N − 1
Output: Extrinsic calibration T′, mirror poses Φij , and planes Πi

1. Compute each plane pose Πi using the method from [107] (reviewed in
Section 2.3.1).

2. Use the algorithm presented in [135] (reviewed in Section 2.3.2.1) for
initializing the extrinsic calibration T′ from the obtained planes Πi and
the input lines L′

i.

3. Refine the estimated transformation T′, planes Πi, mirror poses Φij , and
color camera intrinsics K in a bundle adjustment step as defined in
Equation 2.20.

direct image-LRF cuts was collected for calibrating the sensor pair. Without moving

the color camera with respect to the LRF, we collected a second dataset where the

checkerboard is observed by the color camera through mirror reflections in order to

mimic the non-overlapping situation. A total of M = 12 checkerboard poses with

each pose being observed by N = 12 mirror reflections was acquired.

In order to find the number of checkerboard poses M and mirror reflections N

required to obtain accurate results, M = 4, . . . , 8 and N = 3, . . . , 8 were considered,

and for each of the 30 possible combinations of M and N , 50 calibrations sets

of M checkerboard poses and N corresponding image reflections were randomly

selected. The average rotation and translation errors with respect to the ground

truth obtained with these calibration sets are shown in Figure 2.15. It can be seen

that using M < 6 checkerboard poses or N < 6 mirror reflections frequently leads to

translation errors over 4%. This can be explained by the fact that, in average, not

even the original methods perform more accurately with less images. Note that, as

observed in experiments performed with the original methods, the rotation error is

always relatively low (below 2.4◦). Moreover, using the minimum number of mirror

reflections (N = 3) provides poor results, as reported in [107]. However, the method

was able to achieve very accurate results, with translation errors of approximately 1%

and rotation errors up to 1◦ with datasets of 7 or more checkerboard poses and mirror

reflections. A good compromise would be to use a dataset of 36 images, consisting

of M = 6 checkerboard poses and N = 6 mirror reflections, as the obtained average
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(a) Rotation error (◦) (b) Translation error (%)

Figure 2.15: Extrinsic calibration errors obtained with the LRF-color camera pair
in a non-overlapping configuration, for varying number of checkerboard poses and
virtual views.

errors are of about 3.5% in translation and 1.26◦ in rotation. Thus, in overall terms,

the results are satisfactory and prove that, for carefully chosen checkerboard and

mirror orientations, the extrinsic color camera - LRF calibration can be accurately

achieved using small datasets.

2.3.3 Extrinsic calibration of a color camera and a depth camera

In this section the calibration of a color camera - depth camera pair when their

FoVs do not overlap is considered. A similar approach to the one proposed in

section 2.3.2 is considered: using mirror reflections for enabling the color camera to

observe a calibration target placed in the FoV of the depth camera.

As described in Section 2.2, Herrera et al. [53] recently proposed a method for

solving this problem in the case of overlapping FoV, using as depth camera the

Kinect. They showed that jointly calibrating both sensors improved accuracy, as

opposed to a separate calibration, and proposed a new depth distortion model for

the depth camera. Unfortunately, their method requires K > 20 images of a checker-

board to provide good results. The straightforward extension to the non-overlapping

case would lead to the need of collecting at least 120 images because of the mirror

reflections. Thus, we consider the modified version of Herrera’s method proposed in

Section 2.2, which is able to achieve comparably accurate calibration results using

only about 6 images, favouring calibration both in overlapping and non-overlapping

situations. This section presents the extension of this new method to the non-
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Depth camera

measurements
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Figure 2.16: Calibration of a color-depth camera pair in a non-overlapping configu-
ration, similar to the color camera - LRF situation of Figure 2.14.

overlapping case.

2.3.3.1 Calibration in the case of non-overlapping FoV

Calibrating a depth and a color camera with non-overlapping FoVs is done in an

analogous manner as for the LRF case (Section 2.3.2.2). Figure 2.16 shows that

the checkerboard pattern is moved in front of the depth camera and, for each plane

pose Πi, the color camera observes the pattern through N mirror reflections Φij .

Again, the checkerboard poses with respect to the color camera are computed using

the algorithm reviewed in Section 2.3.1, and the extrinsic calibration between the

color camera and the depth camera is carried using the new method described in

the previous section. However, and as previously explained in Section 2.3.2.2, since

mirror reflections are being used for estimating the checkerboard poses Πi, the first

term of the error function in Equation 2.12, which corresponds to the color camera

reprojection error, must be changed. The virtual camera corresponding to mirror

pose Φij is computed using transformation S0 in Figure 2.11, and used for finding

the reprojected pixel positions xc that appear in Equation 2.12. Moreover, since the

mirror positions Φij are being taken into account, these are also refined, along with

I, I̊, T̊ and Πi.

For a non-overlapping configuration, the extrinsic calibration of a color camera

and a depth camera requires a minimum of 9 images since the algorithm in Sec-

tion 2.3.1 needs N ≥ 3 mirror reflections and the present method requires K ≥ 3

checkerboard poses.

2.3.3.2 Experimental results for non-overlapping FoV

The method presented in Section 2.2, that works with sensors whose FoVs overlap,

reported accurate results for datasets of 6 image-disparity maps pairs. As in Section
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(a) Rotation error (◦) (b) Translation error (%)

Figure 2.17: Extrinsic calibration errors obtained with the color camera - depth
camera pair in a non-overlapping configuration, for varying number of checkerboard
poses and virtual views.

2.3.2.3, the purpose of this experiment is both to validate the approach and to

assess the number of checkerboard poses and mirror reflections required to produce a

certain accuracy, when working with a non-overlapping configuration. We performed

similarly as in Section 2.3.2.3, concerning the sensor setup and dataset acquisition.

Our ground truth is the result of the calibration performed with the method of

Section 2.2, with our dataset.

A total of 50 calibration sets were randomly selected for each combination of

K = 3, . . . , 8 checkerboard poses and N = 3, . . . , 8 mirror reflections. These sets

were used as input to the method from Section 2.3.3.1 and the average rotation and

translation errors are presented in Figure 2.17. The overall conclusions are the same

as in Section 2.3.2.3. For datasets using less than 6 checkerboard and mirror poses,

the translation errors tend to be higher than 4% and the rotation errors slightly over

2◦. Increasing the number of acquired images to 36 (K = 6 and N = 6) leads to

average errors of 3.6% and 1.9◦ in translation and rotation, respectively. This is an

acceptable result for many applications. However, when higher accuracy is required,

increasing the number of checkerboard poses and the number of mirror reflections

up to 8 originates results with errors smaller than 1.5% in translation and 1.6◦ in

rotation.

Remark that in general, the errors obtained with the color camera - depth camera

pair are slightly larger than the ones obtained with the color camera - LRF pair.

This can be explained by the fact that in the first there are more parameters to

be optimized, requiring more images to achieve the same accuracy. However, this
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(a) Overlaid LRF readings (b) Overlaid depth map

Figure 2.18: LRF readings (a) and depth map (b) overlaid with the mirror reflections
using the known mirror pose. Different colors identify different measured depths.

difference is not significant and good results can be achieved with calibration sets

comprising the same number of images.

2.3.4 Application scenario

In this section, the heterogeneous sensor setup shown in Figure 2.10 is calibrated,

having the FoVs of all sensors non-overlapping. A first set of calibration data was

acquired by moving the checkerboard pattern in front of the LRF, and moving a

mirror in front of the color camera so that it observes reflections of the pattern. The

checkerboard is placed in M = 8 positions and, for each position, N = 5 mirror

reflections are acquired. An identical calibration set is acquired for the depth-color

camera pair. The methods described in Sections 2.3.2.2 and 2.3.3.1 are used for

calibrating each sensor pair.

In order to assess the quality of the calibration, and due to the absence of ground

truth, the LRF readings and the depth maps were overlaid with the RGB image of

a mirror reflection for which the mirror pose was known. This is shown in Figure

2.18, where it can be seen that a good alignment is obtained, indicating that both

the mirror poses and the extrinsic calibration are well estimated. For the LRF case

(Figure 2.18a), an object with an hole was used so that it can be seen that the

depth variations between consecutive readings are aligned with the locations that

correspond to transitions between the object and the plane behind it.

For the second part of the experiment (Figure 2.19), the platform travelled a

short path in a corridor with parallel walls and 180 cm of width, so that the LRF

and the depth camera observed one of the walls. Using the estimated depth camera
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Figure 2.19: The setup of Figure 2.10 moved through a corridor with parallel walls,
with the LRF and depth camera pointing to each wall. 5 sets of measurements were
acquired. By representing both planes in color camera coordinates, it is possible
to estimate the platform motion and obtain textured reconstructions of all scene
planes. The color camera positions corresponding to the first, third and fifth views
are represented by red camera symbols.

intrinsic parameters, the wall plane observed by the depth camera was reconstructed.

Moreover, the relative pose between the LRF and the depth camera was used for

representing the LRF measurements in the depth camera coordinates. The angular

and distance errors between the reconstructed plane and line were then computed,

in degrees and percentage, respectively, for each of the 5 acquisitions, showing the

results in the first two rows of Table 2.4. Due to noise in the data, slightly different

results were obtained for different views. However, the accuracy of the calibration

can be confirmed by the good results achieved in all cases.

This configuration can be used for obtaining a textured piecewise planar recon-

struction of the scene. The procedure was the following:

1. Using the color camera, the homography of the floor plane was estimated from

points with known distances.

2. Using the assumption that the two walls are parallel, the plane that contains

the line reconstructed by the LRF and that is as parallel as possible to the

plane reconstructed by the depth camera was estimated.

3. All the planes were represented in the camera reference frame, and the areas

corresponding to each plane in the RGB image were manually segmented and

reconstructed.

This procedure enables to have a set of planes represented in the same reference

frame for each of the 5 platform positions shown in Figure 2.19. Since the plane
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Table 2.4: Angular (eα) and distance (ed) errors between reconstructed lines and
planes observed from 5 different views. Angular errors between the floor plane and
the wall planes reconstructed by the depth camera (eg1) and the LRF (eg2).

View 1 2 3 4 5

eα(
◦) 0.11 0.33 0.34 0.16 0.47

ed(%) 0.97 1.72 1.24 1.33 1.50

eg1(
◦) 0.1967 0.4512 0.2116 0.3769 0.1615

eg2(
◦) 0.1951 0.4538 0.7642 0.4201 0.2053

correspondences between different views are known, the minimal solution proposed

in [98] was applied for computing the platform motion. In this case there are only two

correspondences of non-parallel planes (the floor and the walls), so it is necessary

to extract one point correspondence for computing all 6 degrees-of-freedom. The

extracted point correspondences are shown in Figure 2.19 with identifying colors.

This example is particularly interesting because the complete lack of texture in

the wall planes hampers the reconstruction using RGB cameras, and thus sensors

that provide depth measurements are required. Figure 2.19 shows the segmented

regions corresponding to each plane (top row), and the obtained 3D model after

concatenating the individual reconstructions using the estimated platform motion

(bottom row). Qualitatively, by observing the alignment between the individual 3D

models, particularly in the area surrounding the door entrance, it can be seen that

the registration was well performed. The green ellipse corresponds to the area of

misalignment between planes, which, as can be seen, is very slight. This indicates

that the platform motion estimation is accurate, which could not have been possible

if the surface planes or the extrinsic calibration had been poorly recovered. In

quantitative terms, this reconstruction was assessed by computing the angular errors

between the floor plane and the reconstructed wall planes, shown in the last two rows

of Table 2.4. Errors below 0.8◦ were always achieved, being another indicative that

the reconstruction, and thus the extrinsic calibration, is accurate. Note that each

plane was recovered using one of the sensors independently and only a good extrinsic

calibration would provide small errors. The results confirm that this kind of sensor

setup can indeed be used for obtaining accurate reconstructions of the scene, even

in situations of lack of texture.

In general, the good results obtained prove that the proposed method is practical,

effective and useful, solving a problem that so far did not have a simple solution.
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2.4 Conclusions

In this chapter we present a novel minimal, optimal solution for registering 3D planes

across different reference frames by formulating the registration problem in the dual

projective space. It is integrated in a new fast and accurate method for the intrinsic

and extrinsic calibration of a Kinect sensor that achieves high accuracy using only 6

to 10 image-disparity pairs of a planar checkerboard pattern. We build on the recent

work of Herrera et al. [53] that uses a large number of input frames and multiple

iterative minimization steps for obtaining very accurate calibration results. Besides

using the new solution for 3D plane registration, we propose other modifications to

this estimation pipeline that dramatically improve stability, usability, and runtime:

(i) including a metric constraint during the iterative refinement to avoid a drift in

the disparity to depth conversion; and (ii) estimating the parameters of the depth

distortion model in an open-loop post-processing step. Comparative experiments

show that our pipeline can achieve a calibration accuracy similar to [53] while using

less than 1/6 of the input frames and running in 1/30 of the time.

Finally, this chapter builds on recent results in object pose estimation using

mirror reflections to provide an accurate and practical solution for the extrinsic cali-

bration of mixtures of color cameras, LRFs, and depth cameras with non-overlapping

FoV. The method is able to calibrate any possible sensor combination as far as the

setup includes at least one color camera. The technique is tested in challenging

situations not covered by the current state-of-the-art, proving to be practical and

effective.
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Chapter 3

SfM using Plane Primitives in

RGB-D and Passive Stereo

Although multi-view stereo and odometry from RGB-D sequences have been in-

tensive fields of research in the last few decades, current methods still have dif-

ficulty in handling situations of weak or repetitive texture, variable illumination,

non-lambertian reflection, and high surface slant [40]. In this context, it makes

sense to explore the fact that man-made environments are usually dominated by

large plane surfaces to improve the accuracy and robustness of 3D reconstruction.

This is the key idea behind the so-called Piecewise-Planar Reconstruction (PPR)

methods that use the strong planarity assumption as a prior to overcome the above

mentioned issues [3,37,38,40,81,114,139]. In addition, piecewise-planar 3D models

are perceptually pleasing and geometrically simple, and thus their rendering, stor-

age, and transmission is substantially less complex when compared to conventional

point-cloud models [2, 116].

Although the aforementioned works are mainly multi-view stereo methods, the

usefulness of plane primitives is not limited to multi-view stereo reconstruction as

shown by recent works in SLAM for RGB-D cameras that estimate the motion from

plane correspondences [123]. Taguchi et al. highlight that plane features are much

less numerous than point features, favouring fast correspondence and scalability, and

that the global character of plane-primitives helps avoiding local minima issues [123].

Also, man-made environments are often dominated by large size planes that enable

correspondence across wide baseline images and, since plane-primitives are mostly

in the static background, the motion estimation is specially resilient to dynamic

foreground.
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This chapter describes two pipelines that combine the benefits of PPR and plane-

based odometry by recovering both structure and motion from plane-primitives.

One algorithm receives as input an image sequence acquired by a calibrated RGB-

D camera (Section 3.2), while the other works with a calibrated passive stereo rig

(Section 3.3), and both output the camera motion and the 3D planes in the scene.

Assuming that we have a sensor, that can be either an RGB-D or a stereo camera,

and that we can detect planes, in Section 3.1 we describe how to associate and

compute the relative camera motion from these planes.

3.1 Relative motion from plane primitives

Consider two consecutive cameras Ci and Ci+1 and two sets of plane detections. Let

Π
(i)
k ∼ [nT

k 1]T and Π
(i+1)
k ∼ [̊nT

k 1]T, with k = 1 . . .K be putative plane corre-

spondences across the two pairs. Our objective is to use these plane correspondences

to estimate the relative pose (Ri, ti) between the two cameras. In [45], it was first

shown that two sets of 3D planes can be registered in a closed-form manner from a

minimum of 3 correspondences as long as their normals span the entire 3D space.

More recently, Taguchi et al. [123] used this registration algorithm as a starting

point for their plane-based SLAM method for RGB-D cameras. They studied the

singular configurations and showed how to use reconstructed 3D points to disam-

biguate the motion whenever the information provided by planes was insufficient.

We revisit this registration problem and show how to disambiguate the motion by

directly using image point correspondences, in order to avoid having to reconstruct

points and introduce extra sources of noise.

3.1.1 Relative pose from 3 plane correspondences

Whenever there are 3 plane correspondences that span the entire 3D space, the

relative pose between cameras i and i + 1, Ri, ti, is estimated using the minimal,

optimal solution proposed in Section 2.1, where Ri and ti are represented by R̊ and

t̊, respectively. In this case, Ni in Equation 2.6 has rank 3 and the translation is

fully determined.

3.1.2 Relative pose estimation in case Ni has rank 2

The matrix of the normal vectors Ni can have rank 2 whenever there are only two

corresponding planes available or the three planes have a configuration such that
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their normals are coplanar. An example of this situation happens when at least

two planes are parallel. The rotation Ri is estimated using Horn’s algorithm [55]

since two corresponding planes suffice. However, there is a 2D space for the trans-

lation, and thus there is one remaining Degree-of-Freedom (DoF) to be estimated.

Given an image point correspondence x(i),x(i+1) between the two cameras Ci and

Ci+1, the translation ti can be fully determined by stacking the epipolar constraint

x(i+1)TEix
(i) = 0, where Ei = [ti]×Ri is the essential matrix, to the two linear

constraints in Equation 2.6.

3.1.3 Relative pose estimation in case Ni has rank 1

Whenever there is a single plane correspondence or the putative plane correspon-

dences are all parallel, the registration leads to the computation of 2 DoF for the rota-

tion. In this case Ni has rank 1, and thus 1 DoF for the translation can be estimated.

We show for the first time that in this case the relative pose can be determined from

a minimum of 3 additional image point correspondences x
(i)
k ,x

(i+1)
k , k = 1 . . . 3. Re-

lated to this problem is the work described in [34], where a minimal solution for the

case of two known orientation angles is given. Our problem differs from it because

we have an extra constraint for the translation.

Our reasoning is explained in the 3D space instead of the dual space as in Sec-

tion 2.1. Both cameras Ci and Ci+1 are independently rotated so that their z axes

are aligned with the plane normal, through transformations Pi and Pi+1. This im-

plies that the rotated cameras become related by an unknown rotation around the

z axis, Ru(θ), and a translation tu = [tx ty tz]
T, where tz can be computed as

follows. In the rotated configuration, Equation 2.2 becomes




0

0

z2

1



∼

[
Ru 0

−[tx ty tz]Ru 1

]



0

0

z1

1



. (3.1)

Thus, tz can be determined by tz = −
z1/z2−1

z1
. The remaining 3 DoF (θ, tx and ty) can

then be determined from 3 point correspondences using the epipolar constraint. The

essential matrix Ei has a simplified form as in [34], allowing the epipolar constraint

to be written as W[tx ty 1]T = 0, where the 3× 3-matrix W depends on θ, which

can be computed using the hidden variable method. This originates up to 4 solutions

for the motion in the rotated configuration, Tu. The real motion Ti can then be
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Figure 3.1: A descriptor is computed for the plane triplets and used in a nearest-
neighbours approach for finding putative matches between the planes. Similarities
between angles in the descriptor give rise to different hypotheses, depicted by the
points near planes Ω1 and Ω2 and line L.

retrieved by simply computing Ti = P
−1
i+1TuPi.

3.1.4 Robust algorithm for computing the relative pose

Our relative pose estimation algorithm uses an hierarchical RANSAC scheme that

works by considering the maximum number of planes present in the image pair,

and only using point correspondences when strictly necessary. It first attempts

to compute the pose from 3 plane correspondences, using subsequently less plane

correspondences in case of failure, meaning that it tries to carry the registration

with 2 planes and 1 point, and if this fails, with 1 plane and 3 points.

The method starts by building a descriptor (refer to Figure 3.1)) for matching

triplets of planes, which consists of the 3 angles between the plane normals sorted by

increasing value, in both cameras. Putative matches are established using a nearest

neighbours approach. Remark that the descriptor implicitly establishes plane cor-

respondences between elements in the triplet and that typically there is a relatively

small number of triplets for each view. In case the angles in the descriptor are suf-

ficiently different from each other, the descriptor establishes plane correspondences

directly. However, if two of the angles are similar, two possible sets of element-wise

correspondences are considered. This is the case in Figure 3.1 where the point in

the descriptor space is close to plane Ω2 that defines α1 = α2 (and identical for

plane Ω1 that defines α2 = α3). Similarly, if all three angles are close, six possible

hypotheses for matches must be considered. This is the case when the point is close

to the line L that defines α1 = α2 = α3.

For each triple correspondence, a solution is computed using the procedure in
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subsection 3.1.1. For each model, patches in camera Ci are projected to camera

Ci+1 using the homography induced by the plane containing the patch. Patches

with photo-geometric error below a pre-defined threshold are considered as inliers,

and used for computing a score ǫ.

The pose estimation is performed in a RANSAC framework. If there are no

matching triplets of planes or the number of inliers for the computed solutions

originates too low scores, the algorithm attempts to use 2 plane correspondences.

A descriptor consisting of the angle between the 2 plane normals is considered for

both cameras and matches are established using a nearest-neighbours approach.

Since there is only one angle, each match gives rise to two hypotheses. A local

feature detector (Speeded Up Robust Features (SURF) [11]) is used for extracting

point features and solutions are computed in a RANSAC framework from two planes

and one point correspondences (subsection 3.1.2). The models’ inliers are computed

as in the previous stage. Similarly, if there are no acceptable corresponding pairs

of planes, the motion is estimated using one plane and three point-correspondences,

as described in subsection 3.1.3. Note that in theory the scoring metric might fail

if the planes surfaces lack texture. An hybrid score metric that mixes planes and

points raises other type of issues, such as normalization. The metric used in this

work always provided acceptable results, and thus it was kept unaltered.

3.2 SfM in case of RGB-D cameras

Visual odometry is the process of estimating the motion of a robot using the input of

a single or multiple cameras attached to it. It has important applications in robotics,

for control and navigation in the absence of an external reference system. Typical

visual odometry systems can be split into 3 steps: (1) feature tracking/matching

between images; (2) estimation of the camera motion inside a random-sample based

procedure for robustness against outlier matches, and (3) optimization using bundle-

adjustment for refining the camera poses. Research has been made in order to tackle

this problem using RGB cameras [56, 66]. However, these methods face significant

challenges including the reconstruction of textureless regions. RGB-D sensors, such

as the Microsoft Kinect and the Asus Xtion Pro Live, cope with this issue since they

provide the 3D geometry and the visual appearance of the scene simultaneously.

Odometry systems that operate with such information are, therefore, different from

the monocular systems, since depth information can be explored for providing reli-

able camera poses and 3D reconstructions.
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Several researchers have focused on the problem of odometry and SLAM for

RGB-D sensors [29, 51, 63, 118, 124]. Endres et al. [29] proposed a two-fold SLAM

system for RGB-D sensors. On the front-end, the spatial relation between adja-

cent RGB-D images is established by extracting and matching image features. The

matches are then used to estimate the relative transformation between sensor poses

using a RANSAC-based procedure. The back-end of the SLAM system optimizes

the pose observations with a graph-optimization procedure to keep long-term re-

liable reconstructions. A similar work to [29] was presented by Henry et al. [51].

Their approach uses sparse feature matches to compute an initial pose estimate

using RANSAC, which is refined using an Iterative Closest Point (ICP) procedure.

Steinbruecker et al. [118] proposed a photo-consistency approach that aims to

find the best transformation between two sequential RGB-D frames. For robustness

against large image displacements, the optimization is carried from a coarse-to-

fine image resolution. This approach was then generalized by Kerl et al. [63] by

including a probabilistic derivation and by showing how motion priors can be used

to further improve the performance of [118]. Kerl et al. also study the performance

of different outlier weighting functions, concluding that weighting outlier pixels with

t-distribution in conjunction with motion priors leads to the best performance.

Most of these methods run in real-time and provide accurate estimations for

high frame rate acquisitions and moderate sensor velocity. However, they are not

able to properly cope with large displacements between consecutive frames. In [118],

it has been experimentally shown that the performance of the method degrades as

the frame interval increases, which is equivalent to decreasing the frame rate of the

acquisition, or increasing the sensor velocity.

In this section, we propose a new odometry method which uses both depth

and color information for extracting planes from the scene, and the relative pose

estimation between consecutive frames is cast as a plane registration problem. In

the absence of the minimum number of required planes, 2D point correspondences

are extracted for finding the remaining DoF. This procedure allows the method to

cope with large baselines, since it only requires that there exists a few plane and/or

point correspondences.

The algorithm uses the hierarchical scheme described in Section 3.1 for estimat-

ing the camera motion. As a final step, we perform the refinement of the initial

estimation by minimizing the photometric error. The algorithm estimates the entire

motion of the sensor using only the information acquired from pairs of consecutive

frames, and no prior knowledge is considered. This is an important difference in our
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method since all the motion estimation is performed pairwise, whereas in the state-

of-the-art methods temporal information is often explored to enforce smoothness in

the trajectories.

Closely related with this work is the paper by Taguchi et al. [124] that, to the

best of our knowledge, is the first work that proposes plane-based SLAM for RGB-D

sensors. It uses both points and planes as primitives, and the registration of 3D data

in different coordinate systems provides the relative pose estimation. Although our

method also relies on planes and points for achieving the pose estimation, registration

is performed pairwise and not in relation to a global map. Moreover, we only use

points if strictly necessary, as opposed to Taguchi’s method. Also, our points are

not reconstructed, being more robust to measurement errors. Another key difference

is the refinement step, where in [124] a bundle-adjustment procedure to minimize

error between points (and between points and planes) is performed, whereas in our

method photo-consistency is used.

We validated our approach on three image sequences from dataset [120], as well

as on a sequence acquired at high resolution by our Kinect device. For all the

sequences, the performance of our approach was compared to the state-of-the-art

method presented in [63]. We found that we achieve similar accuracy for small cam-

era displacements, significantly outperforming [63] in the presence of wide baselines.

3.2.1 Pipeline

This section describes a new method for estimating an RGB-D sensor’s motion from

the acquired color image-depth map pairs. For each pair of RGB-D images, two main

consecutive steps are performed: an estimation of the sensor’s relative pose between

the two frames, and a refinement of this initial estimation. The reconstruction of

the whole trajectory of the sensor is achieved by using only the pairs of consecutive

frames, and does not take into account any prior information.

3.2.1.1 Relative pose estimation

The initialization step starts by segmenting the planes present in both RGB-D im-

ages, which is performed by using the method proposed by Taylor and Crowley [125].

Then, the relative pose estimation is initialized using the algorithm described in Sec-

tion 3.1, by considering the image patches centred in each segmented plane. The

transformation with the highest score ǫ is selected for further refinement.
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3.2.1.2 Pose refinement with photo-consistency

The relative pose estimation carried using the segmented planes can be affected

by noise in the plane segmentation step. To refine the initial estimation, we use

an intensity-based registration procedure. In the perspective case, two images qf

and qs of two planes Π(i) and Π(i+1), respectively, are related by an homography

qf ∼ Hqs of the form:

H = K

[
Ri + ti

ñT

df

]
K
−1, (3.2)

where K represents the camera intrinsics, df = 1/||n|| the distance of the plane to

the origin of the reference frame, and ñ represents the unitary normal vector. By

performing a normalization of qf ∼ Hqs to non-homogeneous coordinates, we can

define a 2D warping function w(qf ; p) = Ψ
(
K

[
Ri + ti

ñT

df

]
K−1qf

)
, with Ψ denot-

ing the normalization to non-homogeneous coordinates, and p being the warping

parameter vector that encodes 3 parameters for camera rotation, 3 for translation,

and 3 for the plane structure.

Given the 2D warping function w(qf ;p), it is possible to define a cost function

describing the sum of squared differences between the pixels of a planar patch in the

reference, If , and incoming, Is, images:

γ =
∑

qf ∈N

[
Is(w(qf ; p))− If (qf )

]2
, (3.3)

with N denoting a plane integration region. Since an initialization p of the pa-

rameter vector is already known from previous steps, we iteratively solve for δp

increments on the warp parameters, with Equation 3.3 begin approximated by

γ =
∑

qf ∈N

[
Is(w(qf ; p + δp))− If (qf )

]2
≈

≈
∑

qf ∈N

[
Is(w(qf ;p)) +∇Is

∂w

∂p
δp− If (qf )

]2
. (3.4)

By differentiating γ with respect to δp, we obtained a closed form solution for δp:

δp = H−1
∑

qf∈N

[
∇Is

∂w(qf ; p)

∂p

]T(
If (qf )− Is(w(qf ; p))

)
, (3.5)

with H being a 1st order approximation of the Hessian matrix [9], and the parameter

vector being additively updated pj+1 ← pj + δp at each iteration j. For robustness
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against a noisy camera motion initialization, we use a coarse-to-fine registration

framework. We build an image pyramid by down-sampling the original image by

factors of 2 (we use 3 pyramid levels). We start by optimizing the parameters at the

coarsest level. After convergence (or a maximum number of iterations is reached),

the resulting parameters are used to initialize the next pyramid level. The algorithm

proceeds until the original image resolution is reached.

As explained in [8, 78], if only one plane is available it is impossible to estimate

the 9 parameters of p from the 8 non-linear constraints of the homography. In such

cases we fix the initial depth of the plane, and optimize the remaining 8 parameters

of the warping function. In cases of multiple plane optimization, where the camera

extrinsic parameters are the same for all the segmented planes, we adopt two different

warping functions [78] that enable to estimate the camera motion globally for all

the features being tracked:

H
(1) = K(Ri +

ti
df1

ñT

1 )K
−1, H

(k) = K(Ri +
ti
df1

df1
dfk

ñT

k )K
−1, k > 1. (3.6)

With such parametrization, we end up with a total of 6 × 3k − 1 parameters to

optimize per frame pair. The parameter updates are computed using the Schur

complement to explore the sparsity of the system. For further details on how to

compute the parameters, we refer the reader to [8, 78].

3.2.2 Experimental results

In this section we conduct two sets of experiments to validate the proposed method in

real scenarios. The first set uses a benchmark dataset with ground truth trajectories

[120], while in the second we perform a loop-closure experiment with large baseline

between frames.

3.2.2.1 Benchmark validation

The quantitative evaluation of our method is performed on 3 sequences from the

TUM RGB-D dataset [120]. For simulating different camera velocities, we conduct

the experiments by leaving out intermediate frames. We evaluate the pairwise cam-

era motion estimations by computing the angular difference between the estimated

and ground truth rotation matrix, and the norm of the difference between the esti-

mated and ground truth translation vector. For comparison we use the dense visual
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Figure 3.2: Benchmark validation. The first row shows a sample image of each
sequence, and the second and third rows show the rotation and translation error per
frame, respectively. The graphics show the performance of the different methods for
different frame intervals. The last row shows some statistics regarding each dataset.
We show the average number of frames per sequence, the average percentage of cases
using points for computing the camera motion, the average number of planes used
for registration, and, finally, the average percentage of outlier observations of our
optimization step.
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odometry (DVO) algorithm proposed by Kerl et al.1.

Figure 3.2 shows the results for this controlled set of experiments. Dataset

FR3 structure is dominated by large support textured planes without any oc-

clusion. We can observe that the DVO algorithm shows good performance for the

smallest frame interval. As we increase the baseline between frames, its performance

starts to degrade due the larger number of outlier image pixels used for the global

image registration. Our method presents an almost constant performance for all the

baselines. In this particular dataset, the optimization by plane registration enables

to estimate the camera rotation with a median error of less than 0.5 degrees, which

is within the measurement error of the sensors used to compute the ground truth

camera poses [120].

Dataset FR2 desk was acquired in a typical office environment, where planar

surfaces present low texture (e.g. tables, monitor and floor). This places some chal-

lenges to our local photo-consistency optimization step. We observed this by the

larger number of outliers in the box-plots when compared with the DVO algorithm,

where photo-consistency is performed using all the available image pixels. By in-

spection of the results, we observed that the outlier estimations are mainly due to

small support planes that, in conjunction with the noise from the initial estimation,

do not allow enough overlap between views to successfully perform the registration.

Overall, our algorithm performs better than the DVO for large baselines, being

consistently better in rotation across all the baselines tested.

Finally, in the FR3 dynamic we validate our algorithm in a dynamic scene

with two persons moving and partially occluding the surrounding environment. In

this sequence, the camera has been rotated along the principal axes, with a minimal

translation amplitude (≈ 5 mm between camera poses). We can observe that our

method clearly outperforms the DVO algorithm in terms of rotation accuracy across

all the baselines, and in translation for the large baseline sequences. Despite DVO’s

poor performance in rotation, the algorithm is capable of providing good translation

estimations. We believe this is a consequence of the motion priors used in the

optimization step. Since the translation vector is always very small, the probabilistic

filter, due the absence of reliable observations, probably favors the current state

keeping the translation vector almost unchanged across frames. Figure 3.3 shows

the 3D reconstruction obtained with the two methods for the sequence with 3 frames

of interval, where DVO provides the lowest error in rotation. Since our algorithm is

based on planes, which typically remain static, the camera motion recovery is less

1We use the source code provided by the authors at https://github.com/tum-vision/dvo
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(a) Ground truth (b) Our-Optim (c) DVO

Figure 3.3: 3D reconstruction for the FR3 dynamic dataset. The figure shows the
3D reconstruction computed with (a) ground truth camera poses, (b) our method
with optimization, and (c) the DVO method. The quality of the 3D reconstruction
indicates that our algorithm is more robust than DVO for scenes with dynamic
motion.

error prone and less influenced by the dynamic motion in the scene. This can be

clearly seen by the accuracy of the 3D reconstruction where our method reconstructs

the 2 existing monitors, while the DVO’s reconstruction presents ”phantoms” due

to the poor inter-frame registration.

Note that none of the individual estimates where computed using only points.

In every pair of frames of all three sequences, the algorithm was able to identify at

least one plane correspondence.

3.2.2.2 Loop-closing experiment

In this experiment we navigate with a hand-held Kinect in a corridor to perform a

loop-closed trajectory. This dataset is extremely challenging with difficult illumi-

nation conditions (see Figure 3.4a for some sample images), low texture, and fast

camera motion (the images were acquired at 3Hz with a resolution of 1280×1024).

Figure 3.4b shows the trajectory estimation for the different algorithms tested.

Our algorithm enables to keep a reliable trajectory estimation, with a consistent

smooth transition between frames. The DVO method diverges after the first couple

of frames, providing an erroneous trajectory. We believe this happens due to the

large baseline between frames, which results in a large number of outlier pixels

introduced in the DVO registration process.

Finally, we show in Figure 3.4c the epipolar geometric error to provide a quanti-
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Figure 3.4: Loop closing experiment with N = 59 images. (a) shows some images
of the sequence, (b) shows the estimated trajectories, and (c) compares the epipolar
error of the different methods. The trajectory obtained with our method almost
closes the loop.

tative error of the pairwise motion estimations. We use SURF to establish putative

matches, which are filtered using a RANSAC procedure with the fundamental ma-

trix. The inlier points are used to compute the Sampson distance for each method.

We observe that our optimization procedure greatly improves our initial estima-

tions. The epipolar errors obtained with the DVO algorithm justify the erroneous

trajectory provided by this method.

Our algorithm was fully implemented in Matlab, taking in average 3 seconds per

image pair, while the DVO algorithm runs at 30Hz. We believe that an optimized

C++ implementation of our algorithm can achieve more than 10Hz.

3.3 SfM in case of passive stereo

Unlike the previous section where plane detection is trivial from the depth infor-

mation provided by RGB-D cameras, in this section we propose to perform SfM in

the case of passive stereo, where plane extraction is not as straightforward. The

proposed pipeline combines the benefits of PPR and plane-based odometry by re-

covering both structure and motion from plane-primitives. It receives as input an

image sequence acquired by a calibrated stereo rig and outputs the camera motion

and 3D planes in the scene. These planes are segmented in each stereo pair, and the

final piecewise-planar model is obtained by simply concatenating the PPR results

from consecutive frames.

The pipeline builds on the work of Antunes et al. [3] in PPR from semi-dense

depth estimation using the SymStereo framework, which proved to outperform com-
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peting methods for the case of two calibrated views [4]. We start by running a

simplified version of Antunes’s algorithm in each input stereo pair and use these ini-

tial plane detections to compute the relative pose between consecutive frames using

the hierarchical scheme described in Section 3.1.

The next step is the joint refinement of camera motion and initial plane detec-

tions to obtain a coherent piecewise-planar model of the scene. In general, inde-

pendent stereo detections of the same 3D plane are slightly different and must be

merged into a single hypothesis before proceeding to bundle adjustment [40]. More-

over, it often happens that the same plane is wrongly reconstructed in a faraway view

and correctly detected in a closer view, which means that the first plane hypothesis

must be discarded and replaced by the second. We show that linking, fusing, and

back-propagating plane hypotheses across stereo pairs can be conveniently formu-

lated as a multi-model fitting problem that is efficiently solved using global energy

minimization [25, 58, 71]. Thus, we propose to carry the joint refinement of motion

and structure using the Propose Expand and Re-estimate Labels (PEaRL) frame-

work [58] that alternates between a discrete optimization step, whose objective is to

re-assign plane hypotheses to stereo pairs, and a continuous bundle adjustment step

that refines the reconstruction results using the symmetry-energies arising from the

initial semi-dense depth estimations [3, 5].

As a final step, the 3D plane surfaces detected in the scene are segmented in each

stereo pair through dense labelling of the pixels. This can be accomplished using a

standard MRF formulation, as proposed in [5, 40], with a data-term that quantifies

label likelihood based on left-right photo consistency, and a smoothness term for

regularization. We verified that these prior methods have difficulties in handling

low-textured regions, where photo-consistency is ambiguous, and do not take into

account coherence in visibility across successive frames. This section proposes a new

MRF formulation, specific for sequential PPR, and that largely solves the above

mentioned issues.

Our work relates with previous methods for PPR [37, 38, 40, 81, 114, 139] that

operate in a batch manner by first applying point-based SfM to estimate the relative

pose between monocular views [116], and then reconstructing the plane surfaces from

all images in simultaneous. Unlike these methods, the algorithm herein described

carries the 3D modelling in a sequential manner using a sliding window approach

to concatenate the contributions of consecutive stereo pairs. This is an important

difference that enables applications in visual odometry and SLAM. Thus, and since

the method enables to estimate the relative pose between successive stereo pairs,
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it relates with prior works on visual odometry [28, 44, 62, 89]. We ran comparative

experiments against the broadly used LIBVISO2 algorithm [44] that confirm the

benefits of using plane-primitives, as opposed to image point matches, to recover

the camera motion. In particular our method outperforms point-based methods in

several circumstances such as wide baseline, repetitive appearance, low texture and

specularities.

Since one relevant contribution of the proposed pipeline is the dense plane la-

belling of image pixels using MRF, it is worth reviewing previous formulations for

the same purpose. In [114], Sinha et al. present an MRF formulation where the

data term includes not only photo-consistency cues but also cues of geometric prox-

imity between points and lines and free space violation. Inspired by this idea, the

modification to the data term of the MRF proposed in this section consists in using

the previously computed semi-dense labelling information [3] to decrease the cost

of certain pixel assignments, which avoids violation of free-space and enables the

labelling of low texture regions where photo-consistency alone leads to ambiguous

results. In [40], Gallup et al. use a multi-view plane linking step that enforces global

consistency across overlapping views. However, and since in our case the MRF op-

timization is independently performed in each stereo pair for the sake of scalability,

inconsistencies may occur with different labels being assigned to the same structure

in different views. This issue is tackled in a novel post-processing step that modifies

the dense labelling of each view independently, by using the information from the

dense labelling of another view that overlaps with the first.

3.3.1 Background

This section gives a brief review of background concepts that are useful for better

understanding the proposed pipeline. We shortly discuss the PEARL algorithm for

geometric multi-model fitting, where the fitting is formulated as an energy-based

optimization problem. Then, an overview of the two-view PPR framework proposed

in [3] is provided.

3.3.1.1 Energy-based multi-model fitting

The authors of [58] discussed that methods that greedily search for models with

most inliers while ignoring the overall classification of data are inappropriate for

multi-model fitting, and formulating the fitting as a labelling problem with a global

energy function is preferable. Following this, they propose the PEaRL algorithm
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that consists in 3 steps:

1. Propose an initial set of models (labels) P from the observations.

2. Expand the label set for estimating the spatial support (inlier classification).

3. Re-estimate the inlier models by minimizing some error function.

Given an initial model set P, the multi-model fitting is cast as a global optimization

where each model in P is interpreted as a label l. Consider that d ∈ D is a data

point and that ld is a label in P assigned to d. The objective is to compute the

global labelling l = {ld|d ∈ D} such that the following energy is minimized:

E(l)=
∑

d∈D

Dd(ld)

︸ ︷︷ ︸
data term

+λS

∑

d,e∈N

Vd,e(ld, le)

︸ ︷︷ ︸
smoothness term

+ λL · |Fl|︸ ︷︷ ︸
label term

, (3.7)

where N is the neighbourhood system considered for d, Dd(ld) is some error that

measures the likelihood of point d belonging to ld, and Vd,e is the spatial smoothness

term that encourages piecewise smooth labelling by penalizing configurations l that

assign to neighbouring nodes d and e different labels. The label term is used for

describing the data points using as few models as possible, with Fl being the subset

of different models assigned to the nodes d by the labelling l (refer to [58]). In order

to handle outlier data points in D, the outlier label l∅ is used.

Energies containing only data and smoothness terms can be minimized using

α-expansion [18]. In case all the terms of Equation 3.7 are taken into account, the

energy can be optimized using an extension of α-expansion proposed in [58]. On

the other hand, if the smoothness term is not considered, the problem becomes an

Uncapacitated Facility Location (UFL) instance, which can be solved very efficiently

using the message passing inference algorithm [71].

The third step of PEaRL consists in re-estimating the model labels l in P, given

the non-empty set of inliers. The new set of labels is then used in a new expand step,

and the algorithm iterates between discrete labelling and model refinement until the

energy of Equation 3.7 stops decreasing.

3.3.1.2 Pixel-wise plane labelling

Given a finite set of plane hypotheses contained in the scene, the final step of many

existing PPR algorithms is to assign one of these planes to each pixel of the input

images. For this purpose, a standard MRF formulation involving only the data and
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Figure 3.5: Two-view semi-dense PPR as described in Section 3.3.1.3. The inlier
set of planes, along with the corresponding energies, is the input to the proposed
pipeline. In the semi-dense labelling, each pixel of the cyclopean eye is assigned a
plane label, each of which is identified with a color.

smoothness terms in Equation 3.7 is employed. The nodes p are the image pixels,

and the labels l ∈ P are the plane hypotheses, where the label set P contains the

scene planes P0 and the infinite plane Π∞. The data term is defined as

Dp(l) =

{
min(ρ(l), ρm) if l ∈ P

αρm if l = l∅
, (3.8)

where ρ(l) is the photo-consistency between the pixels in the two views put into

correspondence by the plane associated to label l, ρm truncates the cost and α <

1. For measuring the photo-consistency the matching cost Zero-mean Normalized

Cross-Correlation (ZNCC) is used. The smoothness term is defined as in [40].

3.3.1.3 Two-view semi-dense PPR

The first step of the proposed pipeline consists in obtaining a semi-dense PPR of

the scene for each stereo pair. The method described in [3] was chosen for this

purpose, mainly due to two characteristics: the fact that it was specifically designed

for using two views, while other existing methods receive multiple images as input;

and because superior results in terms of accuracy were reported when compared to

other PPR methods [40,114]. The 3 major steps of the pipeline presented in [3] and

illustrated in Figure 3.5 are as follows.

Step 1 Stereo-Rangefinding along virtual cut planes: Antunes et al. [4] have in-

troduced a new stereo cost function, dubbed SymStereo, that is particularly well

suited for estimating depth along a virtual cut plane passing in-between cameras.

The approach uses a symmetry-based metric for obtaining an energy function that

encodes the likelihood of each point in the virtual plane being a 3D point of the

scene. In other words, the contour where the cut plane meets the scene should be a

ridge of maxima in the energy function.
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Step 2 Detection of plane hypotheses: Knowing that the intersections of the vir-

tual planes with the planes in the scene are lines, the energy computed in Step 1 is

used as input to a Hough transform for extracting line segments. Each pair of lines

provides a plausible plane hypothesis.

Step 3 Discrete-Continuous optimization: Let us assume a pencil of virtual cut

planes Φj intersecting the baseline in its midpoint. This can be thought of as an

image created by a virtual camera that is located between the cameras (cyclopean

eye), where each pixel is originated from the back-projection ray dj,r, corresponding

to the intersection between the epipolar plane Ψr and the virtual plane Φj . In [3],

the multi-plane fitting problem of assigning a plane label to each pixel of the cyclo-

pean eye is formulated using the PEaRL algorithm, with an energy formulation as

the one in Equation 3.7. Since we use their method in an initialization stage, we

downsized the energy formulation by ignoring the smoothness term. In this case,

the problem is reduced to an UFL instance and the solver of [71] can be used. This

modification provides a less accurate but sufficiently good semi-dense PPR of the

scene, being about 40% faster.

3.3.2 Overview of the problem and proposed solution

We propose a structure and motion framework that is able to automatically recover

the camera positions and orientations along with a PPR of the scene from a stereo

sequence. The explanation is given for a two-stereo pair sequence, being extended

to longer sequences in a straightforward manner.

The starting point is a semi-dense PPR obtained for each stereo pair using a

simplified and computationally more efficient version of the method proposed in [5],

as summarized in Section 3.3.1.3. Due to its simplicity, problems such as spuri-

ous plane detections, inaccuracies due to e.g. low texture and slant, may occur.

The reconstruction in Figure 3.6a presents some of these issues: the red plane in

view 1 is inaccurately recovered due to its long distance to the camera, there is

over-segmentation of the frontal plane, and the pink plane in view 2 is incorrectly

segmented due to low texture and poor illumination. The output of this step is a set

of plane hypotheses, with each reconstructed line contour assigned to one of these

hypotheses.

The relative motion between consecutive stereo pairs is determined by registering

plane hypotheses. This requires an algorithm for associating and registering planes

across frames, as well as strategies to identify situations where plane information

is insufficient and must be complemented with point correspondences. The method
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(a) Starting point (b) Motion estimation + standard MRF

(c) PEaRL + standard MRF (d) PEaRL + proposed dense labelling

Figure 3.6: Segmentation and reconstruction results obtained in different scenarios:
(a) Planes detected in each view independently, where a standard MRF is used only
for visualization purposes. (b) Result obtained when applying a regular MRF after
the motion initialization. (c) PEaRL refinement followed by a regular MRF. (d)
Result obtained when applying the proposed pipeline with the new MRF formula-
tion. In all cases, lines with colors corresponding to the detected vertical and nearly
vertical planes are shown in the top view of the 3D models.

Figure 3.7: Different stages of the proposed pipeline. The planes detected in each
view are used for the relative pose estimation. The pose and the plane hypotheses
are refined in a discrete-continuous optimization step and a final MRF is used for
dense labelling. Scene planes are identified with colors.
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for carrying this step is described in Section 3.1. Given the relative motion between

frames, the plane hypotheses arising from each pair can be represented in a common

reference frame and dense pixel labelling can be carried using a standard MRF

formulation as defined in Section 3.3.1.2. The problem is that the same 3D plane

can give rise to multiple labels not only when it is detected in both views but also due

to inaccuracies in the plane and relative motion estimation. Figure 3.6b illustrates

this situation, where it can be seen that there is over segmentation in the plane

labelling, and the reconstruction contains spurious planes.

As a consequence, a mechanism for merging plane hypotheses and back-propaga-

ting information across views, while simultaneously refining the camera motion and

plane positions is required. This is achieved using the PEaRL algorithm reviewed

in Section 3.3.1.1. It consists of a discrete optimization - planes detected in cameras

Ci and Ci+1 are assigned to pixels of the cyclopean eye, by minimizing an energy

function in the format of Equation 3.7 - followed by the joint continuous optimization

of the chosen planes and the relative pose. Further details are given in Section 3.3.3.

Having the planes and camera motion accurately determined allows using a stan-

dard MRF to obtain a correct dense labelling. However, and as observed in Figure

3.6c, this is not always the case as can be noticed in the labelling of the left wall and

the floor. These problems have two main reasons: low-textured surfaces may cause

photo-consistency to fail, and since the optimization is carried individually for each

stereo pair, it might occur that the labelling becomes inconsistent across frames,

leading to visibility issues. They are tackled in a final dense labelling step that

includes an MRF segmentation followed by a novel post-processing step. Details on

this new method are given in Section 3.3.4. By concatenating the individual recon-

structions, it is possible to obtain a dense PPR for the complete sequence. Using

this new method, the result in Figure 3.6d is obtained, where all the occlusions have

been corrected.

As depicted in Figure 3.7, the solutions proposed for tackling all the aforemen-

tioned problems are concatenated in a pipeline that takes as input the semi-dense

labelling of each stereo pair and a set of plane hypotheses, and outputs the correct

dense labelling of a sequence of stereo pairs.

3.3.3 Discrete-continuous bundle adjustment

This section describes the optimization step that is carried for jointly refining the

motion and the PPR. The previous single stereo PPR and relative pose estimation

steps yield two sets of planes defined in the reference frames of cameras Ci and
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Ci+1, Π
(i)
k , k=1 . . .Ki and Π

(i+1)
k , k=1 . . .Ki+1, respectively, and an estimate for

the relative pose Ri, ti between the cameras. The optimization is achieved using the

PEaRL algorithm (Section 3.3.1.1). The initial set of plane models P0 for PEaRL

is the union of the (Ki+Ki+1) planes detected in each stereo pair separately. Then,

consider the cyclopean eye relative to camera i, whose back-projection rays are

denoted by d
(i)
j,r, where r indexes a particular epipolar plane (refer to Section 3.3.1.3).

The objective is to estimate the point on d
(i)
j,r that most likely belongs to a planar

surface. This problem is cast as a labelling problem, in which the nodes of the graph

are the back-projection rays d
(i)
j,r ∈ D, and to which we want to assign a plane label

l
d
(i)
j,r

. The set of possible labels is F = {P0, l∅}, where l∅ is the discard label and

is used for identifying non-planar structures. This labelling problem is solved by

minimizing an energy function E in the form of Equation 3.7, where the data and

smoothness terms are modified such that they sum over the whole stereo sequence,

becoming

∑

i

∑

d
(i)
j,r∈D
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(i)
j,r

(l
d
(i)
j,r
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∑
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∑
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(i)
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(l
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(i)
j,r

, l
e
(i)
j,r
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︸ ︷︷ ︸
Smoothness Term

,

respectively, where N is the 4×4 neighbourhood of d
(i)
j,r and V is the spacial smooth-

ness term. The data term D
d
(i)
j,r

for the back-projection ray d
(i)
j,r is defined as

D
d
(i)
j,r

(l)=

{
min(1− E

(i)
j (r, xl), τ) if l∈P0

τ if l= l∅

where the coordinate xl is the column defined by the hypothesis l, corresponding

to the intersection of d
(i)
j,r with the plane indexed by l. Using the camera pose, we

can transform the planes detected in the stereo rig i+1 to the stereo rig i, and vice

versa. This allows us to use all the structure information available simultaneously

and reconstruct planes in a particular view even if they were detected by a different

camera. The smoothness term V is used to describe the relationships between nodes.

No penalization is assigned to neighbouring nodes receiving the same plane label,

while in the case of one node obtaining the discard label, a non-zero cost is added

to the plane configuration l. For each camera i, the smoothness term V is defined

as in [3], which encourages label transitions near crease or occlusions edges. For

further details refer to that work.
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Figure 3.8: Back-propagation of planes across stereo pairs: a closer view of the door
plane allows its correct detection and propagation to previous stereo pairs.

The output of this step is a set of planes shared by cameras Ci and Ci+1. Given

the inliers of a particular plane label l, the corresponding energies E(i) that come

from SymStereo can be recomputed to enhance the likelihood measure with respect

to a particular range of slant values [5]. These energies are used in the third step of

PEaRL. Let Πl be the plane associated to l to which has been assigned a non-empty

set of inliers D(l) = {d ∈ D|ld = l}. All the inlier planes {Πlk} and the relative

pose Ri, ti are refined simultaneously by minimizing the error function:

{R∗
i , t

∗
i , {Π

∗
lk
}} = min

Ri,ti,{Πlk
}

∑

i

∑

k

∑

d
(i)
j,r∈D(l)

(
1− E

(i)
j (r, xΠlk

)
)
+ δeph, (3.9)

where xΠlk
is the column defined by the intersection of d

(i)
j,r withΠlk , δ is a parameter

that is zero whenever the optimization is carried out using 3 shared planes that span

the 3D space and larger than zero otherwise, and eph is the photo-consistency error

computed in a planar patch. The new set of plane labels P1=
{
Π∗

lk

}
is then used in

a new expand step, and we iterate between discrete labelling and plane refinement

until the α-expansion optimization does not decrease the energy E.

A sliding window approach is applied where at most one relative pose is refined.

The exchange of planes between cameras, illustrated in Figure 3.8, has an important

role in the 3D modelling process since it allows planar surfaces that are only properly

detected in subsequent frames to be back-propagated and accurately reconstructed

in previous images. Remark that plane information is only exchanged between

different cameras inside the sliding window. In order to have plane propagation

across distant views, a final PEaRL step using a significantly larger sliding window
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is applied to the whole sequence.

3.3.4 Dense labelling formulation

Commonly, the planes are densely segmented in each stereo pair using a standard

MRF labelling as described in Section 3.3.1.2. Since its data cost solely relies on

photo-consistency cues, this formulation tends to provide inaccurate labellings in

cases of lack of texture or presence of non-planar surfaces at long distances. The

result was not only the reconstruction of non-planar objects such as trees and pedes-

trians, but also the existence of occlusions and areas that failed to be reconstructed.

Two new improvements to the described dense labelling framework are proposed

for overcoming these issues. The first one consists in changing the data cost in

the MRF formulation, whereas the second is a post-processing step that ensures

coherence across views.

3.3.4.1 Updated data term

The standard MRF formulation described in Section 3.3.1.2 does not handle cases

of textureless regions since the photo-consistency measure (ZNCC) becomes infinity

in those regions due to the null variance. This often leads to pixels in textureless

regions being discarded because they are assigned the highest cost ρm, although

the correct plane hypothesis is in the label set. Figure 3.9a shows such an example

where a large part of the white wall is not reconstructed. This is an important issue

as it occurs frequently in outdoor scenarios. One possible solution to the problem

would be to increase the penalty for plane change in the smoothness term, which

will tend to extend neighbour planes to the textureless region. However, this has

many disadvantages including the possibility of reconstructing non-planar objects

and not recovering small planes.

Since the SymStereo framework [4] is able to handle low texture, the planes in

these regions are correctly detected. Also, the semi-dense labelling in textureless

areas is correct, as shown in Figure 3.9b. Although this information has not been

used in the dense labelling step, it is relevant since it already solves part of the

problem. Thus, it is proposed to incorporate the semi-dense labelling information

in the MRF formulation by changing its data cost with the intent to enforce coher-

ence between the semi-dense and dense labellings. The smoothness term then plays

the role of extending the labelling to neighbouring pixels. This results in a more

robust framework that includes not only photo-consistency cues but also, indirectly,
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(a) Standard MRF

green

red

0.8

0.6

0.4

0.2

0Standard MRF New MRF

(b) Semi-dense labelling (c) New MRF

Figure 3.9: (a) Due to the lack of texture, the white wall is not fully reconstructed
when using the standard MRF formulation. (b) Data cost of each pixel, for two
different labels corresponding to a scene plane, obtained with a standard MRF (left
column) and new the MRF formulation (right column). The color corresponding
to each plane in the semi-dense labelling (top image) is indicated next to the data
cost matrices. The color bar corresponds to the matching cost. (c) The new MRF
assigns the correct label to the textureless pixels.

symmetry ones that come from SymStereo [4].

The data cost in Equation 3.8 is modified by decreasing the cost of pixel p and

its neighbours being assigned label f if p was assigned that label during the semi-

dense labelling. In other words, let us first consider the set of all pixels pi that were

assigned label f in the semi-dense labelling, and define the n× n neighbourhood of

each pixel as N f
pi

and the union of all these neighbourhoods as Uf . If a given pixel

p belongs to Uf , the cost of that pixel being assigned label l = f is decreased by a

constant value λ. Also, if a pixel was discarded in the semi-dense labelling, i.e. if

f = l∅, it and its neighbours have a constant data cost for all plane labels. The new

data cost is then defined as

Dp(l)=





max (min(ρ(l), ρm)−λ, 0) if l ∈ P ∧ p ∈ U l

αρm if l = l∅ ∨ p ∈ U l∅

min(ρ(l), ρm) otherwise

, (3.10)

where λ is the parameter that controls the decrease in the cost and α < 1. Another

parameter to be controlled is the size n of the neighbourhood that corresponds to

the thickness of lines of pixels whose data cost is decreased. This parameter must
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be tuned by taking into account the density of virtual cut planes, meaning that

the higher the density, the thinner the lines can be. The remaining parameters are

defined as in Section 3.3.1.2.

Remark that if a pixel of the cyclopean eye is assigned label f 6= l∅, its location

in image I is computed from the corresponding plane equation. On the other hand,

pixels assigned the discard label l∅ are not reconstructed and thus their location in

the reference image I is not known. This issue can be tackled by making use of the

symmetry energies delivered by SymStereo, as they provide the matching likelihood

of pairs of pixels in the stereo views. For each pixel of the cyclopean eye assigned

l∅, the maximum value of the energy is considered, providing a match. This allows

the pixel to be reconstructed and then back-projected on the image I, allowing its

location to be estimated.

Figure 3.9b shows the semi-dense labelling and the data costs computed with

the standard MRF, in the left column, and the new MRF, in the right column, for

each detected plane. It can be seen that, for each label, the data costs obtained with

the new formulation are different from the original ones since lower values have been

assigned to pixels with that label in the semi-dense labelling. In particular, for the

green plane (last row), almost all pixels have a very high cost using the standard

MRF, whereas with the new one, many pixels are assigned significantly lower costs,

originating the reconstruction of the whole surface, as shown in Figure 3.9c. Also,

pixels that had previously been discarded are assigned a high cost for all labels, as

can be seen in the image area near the cars.

3.3.4.2 Label consistency across views

In image sequences, a correct labelling of all frames is the one in which correspond-

ing areas in different views have the same label, i.e., represent the same plane. The

discrete optimization step already greatly solves this problem since it selects the

plane set that better describes the scene from multiple views. However, as shown

in Figure 3.6c, a standard MRF for computing the dense labelling may originate

inconsistencies in small areas of the images, leading to problems such as occlusions

and the reconstruction of non-planar objects. In this section a post-processing step

that enforces consistency across two consecutive views is proposed. The dense la-

belling of each view is modified independently, by using the information from the

labelling of the other view. We refer to the image of camera Ci by Ii, and to its

dense labelling by Di. The procedure is described for the labelling of I1, D1, being

applied similarly for D2. It is as follows:
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Initial Labelling Final LabellingRegions of Inconsistency

(a) Correction of an occlusion

Initial Labelling Final LabellingRegions of Inconsistency

(b) Vegetation removal

Figure 3.10: New post-processing step applied after the MRF labelling to ensure
label consistency across frames. The initial dense labelling of each of the two frames
(images on the left) is modified by finding the areas of disagreement between labels
(images in the middle) and changing them so that corresponding areas in the scene
have the same label (images on the right). This allows to correct problems of (a)
occlusion and (b) the reconstruction of non-planar objects such as vegetation.

1. Reconstruct the points in image I1 from the assigned plane labels and represent

the dense labelling of I1 in C2, referred to as D2
1.

2. Find the areas of inconsistency between D2
1 and D2 by finding the pixel loca-

tions where the assigned labels are different. In Figs. 3.10a and 3.10b these

areas are shown in red in the middle images.

3. The labels of pixels that belong to these areas must be modified so that there

is coherence across views. The proposed approach for performing this modi-

fication treats the discard and non-discard labels differently. Two labels are

considered for each of these pixels, l21 and l2, that correspond to D2
1 and D2.

If l2 = l∅, then l1 is also set to l∅, where l1 is the label corresponding to l21 in

image I1. Thus, the discard label l∅ works like an absorbing element. The al-

ternative would be to consider l∅ as a neutral element, which is not appropriate
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Figure 3.11: Example of a case where a legitimate occlusion originates label incon-
sistency. The proposed approach detects that this occlusion is a legitimate one and
does not change the labels of the corresponding pixels.

as justified next.

4. Otherwise, if l2 6= l21 ∧ l2 6= l∅ ∧ l21 6= l∅ the point that is being analysed is

reconstructed using both l2 and l21. The distances of both 3D points to camera

C2 are computed and l1 is set to the label that yields the shortest distance. The

reasoning is that, in general, closer surfaces are reconstructed more accurately

than farther ones.

Note that there are cases in which having label inconsistency between views is

correct. Figure 3.11 illustrates such an example. Two cameras observe a scene that

contains two walls. While camera C1 only observes the farther wall, as shown by

the blue line, camera C2 views both of them since they are inside its Field-of-View

(FOV), depicted by the green line. The area in red shows the region where there

is overlap of the cameras’ FOVs, originating label inconsistencies since different

surfaces are being observed. However, the points that belong to the closer wall

viewed by camera C2, when projected on the image plane of camera C1, fall outside

its FOV. Thus, our post-processing step does not modify the labellings in this case,

being able to distinguish between legitimate and non-legitimate occlusions.

The described procedure allows to achieve consistency in all pixels of two views,

enabling the correction of possible reconstruction errors. Figure 3.10 depicts two

different common errors that can occur: occlusions and reconstruction of non-planar

objects. In Figure 3.10a, although all label assignments are correct for the first view,

some pixels that belong to the wall were incorrectly assigned to the door plane in

the second view. This generates an occlusion since the area that is incorrectly

reconstructed cannot be observed by any of the cameras as it is occluded by the

wall. Correcting the labelling so that it becomes coherent across frames yields an

accurate reconstruction without occlusions. Figure 3.10b depicts an example where

a non-planar object (vegetation) is assigned to an existing plane when it is observed
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(a) No post-processing

(b) l∅ as absorbing element (c) l∅ as neutral element

Figure 3.12: Reconstruction results obtained when (a) not using the proposed post-
processing step, (b) using the post-processing step as it is proposed, and (c) using
the post-processing step with the alternative of considering the discard label as a
neutral element.

from a long distance, and only correctly discarded in a closer view. By ensuring

consistency across frames, all of the pixels belonging to the tree become discarded,

originating a reconstruction without non-planar objects. Remark that this only

happens because the discard label is being considered as an absorbing element. As

mentioned before, it could instead work as a neutral element, and discarded pixels

in one view that originated inconsistencies would be assigned the other label. In

Figure 3.12, concatenated reconstructions are shown for three different scenarios. It

can be seen in Figure 3.12b that using the proposed post-processing step - discard

label as an absorbing element - originates the complete removal of pedestrians,

but has the disadvantage of also removing the surrounding parts corresponding

to the wall, caused by the fact that the pedestrians are moving. If the discard

label was considered as a neutral element (Figure 3.12c), the outcome would be the

reconstruction of the same pedestrian in both views, becoming visible in different
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positions along the same plane. Although this can be an interesting application

in certain cases, considering l∅ as a neutral element would cause the vegetation in

Figure 3.10b to be reconstructed in both views, which is a very poor approximation.

Since this is a situation that happens very often in urban scenes, the choice of

considering the discard label as an absorbing element is more appropriate.

3.3.5 Experimental results

This section reports several experiments that validate the Piecewise Planar Stere-

oScan (PPSS) framework and compares its performance against conventional point-

based methods, more specifically against the LIBVISO2 [44] that is a widely used

method for visual odometry using passive stereo. We started by running tests us-

ing the publicly available KITTI dataset [43] but soon realised that its sequences

are not well suited to evaluate methods that rely in plane primitives as opposed to

points. Although KITTI comprises sequences acquired in urban environment, the

building facades providing the plane surfaces to be used by PPSS are in general

too far away to be properly reconstructed. The reason for this is that the baseline

between stereo cameras is small and only enables accurate depth estimation up to

13 meters [39]. The short baseline favours point-based methods because it provides

large image overlap and prevents changes in perspective that can hamper match-

ing. Unfortunately, it proved to be unsuitable to evaluate a method relying in plane

primitives. Nevertheless, and for the sake of completeness, section 3.3.5.1 presents

some results using the KITTI dataset.

In the absence of a suitable public dataset, we decided to collect our own se-

quences using three distinct camera setups whose characteristics are summarized in

the table of Figure 3.13a. Setup S1 is a Bumblebee camera from PointGrey that

was used to collect indoor sequences. The other two setups consist of a pair of

synchronized cameras mounted on the roof of a vehicle whose images were care-

fully calibrated and rectified using standard methods. In setup S2 the cameras were

mounted in a forward looking position, while in S3 the cameras were pointing to

the right side of the vehicle (Figure 3.13b). Please note that the sequences acquired

by S2 are challenging for most stereo methods because the image of the building

facades are highly slanted.

The implementation of the PPSS pipeline for these experiments was done in

MATLAB and the current computation time in a regular PC is around 60s for pair

of stereo frames. This means that, for a sequence of N frames, the recovery of camera

motion, detection of plane surfaces in the scene, and dense labelling of all images
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Setup S1 S2 S3

Brief PtGrey Vehicle Vehicle
Description Bumblebee Forward Lateral

Resolution 1024×384 1142×410 1187×436
Baseline 24cm 80cm 80cm

FPS - 7.5 7.5

Max. Range 10.3m 30.3m 31.6m

(a) Specifications of the acquisition setups

Left Right

Left Right

(b) Cameras mounted on a car and respective acquired stereo pair

Figure 3.13: (a) Information about image resolution, stereo camera baseline, acqui-
sition rate and maximum range for accurate depth estimation for the 3 acquisition
setups. The maximum range is computed by considering a depth error of 2% and
a disparity error of 0.6 pixels.(b) Vehicle setups S2 and S3 with a corresponding
acquired stereo pair enclosed in a black and red box, respectively.

takes about (N − 1) × 60s, which is way above the near real-time performance of

point-based methods for visual odometry. It is true that the two approaches are

not directly comparable in the sense that PPSS provides a complete, visual pleasing

3D model of the scene while conventional VO outputs a sparse 3D point could.

Nevertheless, it is acknowledged that computation time is for the moment a weakness

that must be improved in future work namely by exploring parallel computing (e.g.

GPU). This is out of the scope of this article, whose objective is to introduce and

provide experimental evidence on the advantages of using plane primitives in SfM

applications.

3.3.5.1 Experiments with the KITTI dataset

A set of 3 sequences of the KITTI dataset containing buildings was selected for

testing both PPSS and LIBVISO2 [44]. It was observed that using the original

sequences, LIBVISO2 performed more accurately than our method, originating av-

erage errors of approximately 2% in translation and 0.1◦ in rotation, as opposed to

6% in translation and 0.5◦ in rotation for PPSS. As discussed before, the reason for
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Figure 3.14: Results on a sequence of the KITTI dataset [43], using a sampling of
frames that originates an average distance between consecutive frames of about 4
meters. LIBVISO2 outperforms our method when there is significant overlap be-
tween frames (as a consequence of straight movement) but diverges otherwise, while
our method still provides acceptable results. It can be seen that LIBVISO2’s perfor-
mance degrades between keyframes 99 and 125, where a large rotation component
is observed. It did not even provide an estimate for the camera motion between
frames 99 and 116.

this is that KITTI clearly favours a point-based approach due to its small baseline

and high frame rate.

In order to assess the performance with smaller amounts of data, and create

difficulties to LIBVISO2, we sampled the sequences by considering only every fifth

frame (corresponds to about 4 meters between consecutive frames). We observed

that LIBVISO2 has good performance when the combination of camera motion and

scene structure results in images with much overlap, even if the camera translation

is high, yielding similar errors as the ones obtained with the complete sequences

(about 2% in translation and less than 0.1◦ in rotation). However, otherwise it easily

diverges, as shown in Figure 3.14 where it was not able to estimate the camera motion

near the curve. As expected, reducing the number of frames did not influence the

performance of PPSS as it properly handles situations of wide baseline. Thus, the
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average errors in the motion estimation were nearly the same as the ones obtained

for the complete sequences.

3.3.5.2 Experiments to evince the benefits of PPSS

This section presents a set of experiments on short stereo sequences selected with

the intent to show the different features and advantages of the proposed method.

A comparison with the point-based method LIBVISO2 [44] is given whenever it

manages to provide a motion estimation. In those cases, the images of the 3D

reconstructions include camera symbols in red and blue, if they were computed using

PPSS or LIBVISO2, respectively. The left images of the stereo pairs are shown with

the overlaid MRF labelling, where each color identifies one plane. The same color

across images corresponds to the same plane. The sequence of images is sorted from

left to right and top to bottom, and the cameras are numbered accordingly.

Figure 3.15a shows a 5-frame stereo sequence that was acquired with significant

overlap in order to illustrate the exchange of planes between frames. It can be seen

that in the first stereo pairs, the top plane of the entrance has very small image

support, and thus cannot be recovered. Moreover, the back plane (containing the

door) is poorly estimated since it is only observed from a long distance. These two

planes are correctly reconstructed in the last frame, and back propagated to the

initial frames, providing an accurate reconstruction of the whole scene. Our method

and LIBVISO2 provided very similar results.

A 5- and a 6-stereo pair sequence of scenes with the presence of perceptual

aliasing were acquired with stereo cameras S3 and S1, respectively. Results in Fig-

ure 3.15b show that our method was able to provide accurate reconstructions of

the scenes. In the first example, it properly distinguished between the road (green)

and side walk (orange) planes. In the second, it managed to accurately align the

floor tiles. This is due to the fact that the algorithm requires only one correct point

correspondence to be extracted since there are always at least two non-parallel plane

correspondences between stereo pairs for estimating the camera motion. On the con-

trary, LIBVISO2 performed poorly on these sequences, not being able to estimate

some relative poses and providing inaccurate results for the remaining ones. This is

a consequence of the perceptual aliasing as most of the extracted point matches are

incorrect.

A sequence of six stereo pairs with minimum overlap was acquired, originating a

detailed reconstruction of a door (Figure 3.15c). It can be seen that the white low-

textured walls and the small interior planes were accurately recovered. LIBVISO2
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(e) Image specularities and high slant

Figure 3.16: Example cases to illustrate (a) the backpropagation of planes, the
presence of (b) perceptual aliasing, (c) small overlap and low texture, (d) non-
planar objects (vegetation), and (e) image specularities where the proposed plane-
based method performs accurately, while the point-based method LIBVISO2 [44]
fails. Red and blue camera symbols show the relative pose estimated using the
proposed method and LIBVISO2, respectively. In (e), the image specularities are
shown without the overlaid label and encircled in red for better visualization.

failed to find sufficient point correspondences for estimating the camera motion and

thus camera symbols are not shown. Our approach computed the camera motion

using correspondences of two planes and one point, as there are no triplet corre-

spondences in consecutive stereo pairs.

The outdoor example in Figure 3.15d shows that our method is able to cor-

rectly distinguish between planar and non-planar objects, which can be used to

automatically remove trees and vegetation from the final 3D model. The fact that

the vegetation occupies a large part of the camera’s field of view leads to a large

percentage of incorrect point matches. Thus, LIBVISO2 provided very poor results

for the estimation of the relative pose. As an example, camera 3 appears to be in

an impossible position since it is in the vegetation’s location.

Figure 3.16e shows results on the reconstruction of a scene with specular reflec-

tions. The acquired images (with camera S1) show that the floor plane works like a

mirror, reflecting the objects above it. Despite these specularities, PPSS performed

well, providing a good reconstruction of the whole scene. LIBVISO2 was only able

to properly estimate the camera motion between the first two positions, as there

is significant overlap. It diverged in the last position due to the large difference in

scale, originating incorrect point matches.

The last example is a 19-stereo pair sequence of an indoor scene acquired with
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Figure 3.17: A challenging sequence of 19 stereo pairs presenting variable illumi-
nation and very low texture conditions was acquired, originating a partial recon-
struction of a room. Since the camera motion is mainly composed of a rotation
component, only 4 camera positions are shown in the top view of the reconstruc-
tion. LIBVISO2 failed to provide an estimation in most cases, so camera poses are
not included. It is shown that our algorithm works in different illumination condi-
tions (frames 18 and 19), small overlap (frames 15 and 16) and low texture (white
walls and ceiling). The top row includes sampled images of the sequence indicating
the order in which they were acquired and processed.

camera S1, that illustrates that PPSS is adequate for reconstructing a full indoor

room with a relatively small number of images. As shown in Figure 3.17, this is a

challenging sequence presenting variable illumination, very low textured surfaces and

small overlap between consecutive images. Our algorithm successfully recovered all

the relative camera poses, yielding an accurate and almost complete reconstruction of

the room. The reconstruction shows that the ceiling plane is not perfectly recovered.

However, a good approximation is obtained, which is impressive given the lack of

texture. Due to the difficult conditions of this dataset, LIBVISO2 was only able to

compute 6 out of the 18 motions, with an average error of 24 cm in translation and

4.3◦ in rotation when compared to our solution.
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Modality Method No. Ims

LIBVISO2 Point based [44] 1370

Ds Plane based 380

Ds (Opt.) Ds w/ final PEaRL 380

Df Plane based 1370

Df (Opt.) Df w/ final PEaRL 1370

(a) Different modalities of methods and datasets, with
the corresponding number of stereo frames (column No.
Ims)

LIBVISO2 LIBVISO2

(b) Rotation and translation errors

(c) 3D model

Figure 3.18: (a) Description of the different modalities of methods and datasets used,
and (b) corresponding rotation and translation loop closing errors. Small rotation
errors yield small standard deviations in the translation errors. Since the translation
error depends on the rotation, the median value in the translation errors distribution
(red mark) should be considered when assessing the quality of the motion estimation.
(c) Full 3D reconstruction using modalities Df (Opt.) and Ds (Opt.). Selected
areas are shown in greater detail. Videos of the 3D reconstructions obtained for
Ds (Opt.) and Df (Opt.) can be accessed in https://youtu.be/wrBaV7O1Q7Q and
https://youtu.be/IhELZ3-wPU0, respectively.
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3.3.5.3 Experiment in 3D urban modelling from street viewpoint

This experiment consists in the camera motion estimation and reconstruction of a

1370-frame sequence acquired with stereo camera S2. The sequence corresponds to

a 1100-meter loop-closing path of the city of Coimbra. This is a very challenging

sequence not only because it was acquired with a forward-looking camera - making

the building facades highly slanted - but also because it is a very curvy path in a

hilly area of Coimbra, as can be seen in Figure 3.18c. The presence of dense vegeta-

tion in some areas and moving vehicles and pedestrians further hampers the camera

motion estimation and reconstruction processes.

Note on the metrics used to quantify accuracy

Due to the absence of ground truth, the quality of the motion estimation is measured

quantitatively by computing the loop closing error in the following way. Let Ti be

the estimated camera motion between positions i and i + 1. For a sequence of F

frames, the loop closing error is computed as the relative rotation and translation

between the 4× 4 identity matrix I4 and the transformation

Te =

(
F−1∏

i=1

Ti

)
TF , (3.11)

where TF is the pose between position F and position 1. Since matrix multiplication

does not have the commutative property, different errors will be obtained if we

consider different starting points. Note that varying the starting point translates

into a cycling permutation of the product defined in Equation 3.11. Although the

norm of the translation component in Te varies with the starting point, the angle

of rotation θ associated with the rotation component Re does not. From Rodrigues’

rotation formula, θ is computed by

θ = cos−1

(
1

2
(tr(Re)− 1)

)
, (3.12)

which, as can be seen, only depends on the trace tr of matrix Re. Since the trace

has the cyclic property, meaning that it is invariant under cyclic permutations, the

trace of transformation Te, and consequently of its rotation component Re, does not

vary with the starting point. This explains why the rotation error θ is invariant

under different starting points. Thus, it suffices to present information about the

translation error as a function of the starting position.
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Results

Our algorithm was tested not only using the complete 1370-frame sequence, referred

to as Df , but also using a subsequence Ds which is the result of sampling Df by

considering every fourth frame. This sampling is equivalent to acquiring the sequence

with a frame rate of about 2fps, or driving 4 times faster. The complete sequence Df

was acquired at an average speed of 21.7km/h, which means that directly acquiring

Ds could have been done by driving at about 78km/h. Refer to the table in Figure

3.18a for more details on the different modalities. Results obtained with LIBVISO2

for sequence Ds are not presented because it diverged in many cases and was not

even able to provide an estimation in almost 10% of the relative motions due to the

lack of sufficient point correspondences.

Figure 3.18b shows the translation error distributions and rotation errors ob-

tained with our method when using sequences Df and Ds, before and after the final

optimization step, and with LIBVISO2 (which used sequence Df ). Considering the

sampled sequence Ds, the camera moved an average of 2.9m and rotated an average

of 3.4◦ between consecutive poses. However, in over 10% of the relative poses the

displacement was larger than 3.9m and the rotation was over 8.5◦. It can be seen

that even without the final optimization step, PPSS outperforms LIBVISO2 in the

estimation of the rotation component. The optimization step, which was performed

with a sliding window of 6 frames, significantly improved the results. When us-

ing the complete sequence Df , a very small rotation error was obtained, leading to

translation errors with a small standard deviation. Remark that despite providing

a smaller minimum translation error, LIBVISO2 performs worse than our method

as the median error is considerably larger. Since the translation value is affected by

errors in the rotation, a large rotation error may lead to small translation errors,

depending on the starting position, not meaning that the overall result is better.

The superior results of our method can be explained by the fact that this particu-

lar sequence is very challenging, presenting many curves and significant variations

in height. Due to the low acquisition frame rate, consecutive stereo pairs some-

times present small overlap, preventing LIBVISO2 from extracting enough point

correspondences to accurately estimate the camera motion.

In Figure 3.18c a top view of the full 3D model is given, with some areas in

a different perspective. Each area is shown for both the sampled (Ds) and the

complete (Df ) sequence with optimization, enclosed in a light green and cyan ellipse,

respectively. These detailed views show that reducing the number of frames has
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some negative effects on the quality of both the reconstruction and camera motion

estimation. Firstly, it can be seen that the moving vehicle was included in the

reconstruction when using Ds but not when using Df . This can be explained by

the fact that it was detected in several frames of Df , and, since the frontal plane is

moving, it is not shared across frames, being discarded. The second example shows

that a large plane is missing from the reconstruction with Ds. The reason is that this

plane is far from the camera, not being observed from a proper viewpoint in Ds. The

last example corresponds to a very challenging part of the path consisting of only

faraway planes in a sharp turn. Using a sampled dataset hampers the odometry

process, as can be seen by the misalignment of the building and car planes. In

conclusion, reconstruction results obtained with Ds are slightly inferior not only

due to the decreased quality of the camera motion estimation but also because

less details are recovered. However, such a small dataset still provided good results,

showing that a plane-based approach can be very superior to point-based ones, being

useful in applications that require working with small amounts of data.

3.4 Conclusions

In this chapter we first propose to solve the relative pose estimation problem from

plane-primitives by (i) establishing plane correspondences across cameras (RGB-D

or passive stereo), and (ii) determining the motion whenever the available planes

do not fully constrain the problem [123]. The first issue is efficiently solved by

matching triplets of planes using the angles between their normals. Concerning

the second issue, it is shown that the undetermined situations can be overcome by

either using 2 planes and 1 image point correspondence, or 1 plane and 3 image

point correspondences We derive closed-form minimal solutions for these cases and

apply them in a hierarchical RANSAC that estimates the relative pose using point

matches only when strictly necessary.

This novel relative pose estimation scheme is used in two SfM pipelines that

take as input an image sequence either acquired by an RGB-D camera (Section 3.2)

or a stereo camera (Section 3.3) and output the camera motion and the 3D planes

in the scene. Experimental results show that the proposed pipelines outperform

competing methods in cases of low or repetitive texture, variable illumination, high

surface slant, dynamic foregrounds and wide baseline.
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Chapter 4

Theory and Practice of SfM

from Affine Correspondences

An AC, denoted in this chapter by (x,y,A), consists in a PC across views plus a

2 × 2 affine transformation A that maps image points in the neighbourhood of x

into image points around y (see Figure 4.1). Since an affine map describes well

the warp undergone by a local image patch while the camera moves, the concept

of AC is broadly used for tracking and/or matching points across views [9, 82], or

estimating similarity models as in [94], where local transformations are exploited

for geometrical alignment. However, and despite ACs being often readily available,

mainstream methods for relative pose estimation, such as [47, 48, 119], use as only

input the PCs (x,y), completely disregarding the information about local affine

maps.

This fact has been noticed by previous authors that conducted seminal research

in jointly using PCs and affine maps for SfM. Perdoch et al. [92] and Riggi et al. [106]

proposed to use ACs for generating additional PCs and estimate the epipolar geom-

etry. However, these new matches are mere approximations that do not necessarily

correspond to correct PCs. Koser [68] studied the relationships between ACs and

homographies and advanced a single point method to compute the relative pose

between a plane and a camera [69]. Recently, Bentolila and Francos proved that 1

AC puts 3 constraints on the fundamental matrix [12]. Despite these seminal works,

neither the theory relating ACs with multi-view geometry is fully understood, nor

exist practical algorithms such that ACs can become an effective alternative to PCs

in SfM pipelines.

The most obvious benefit in using ACs is that models can be estimated from fewer
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Figure 4.1: Images I1 and I2 are provided by two cameras related by R, t that
observe the same scene. They are used for extracting point (z,w) and affine (x,y,A)
correspondences. In this configuration, since the tangent plane to the surface in
points x and z is the same, both the point match and the AC are compatible with
homography H.

correspondences. Thus, and since SfM pipelines invariably comprise an iterative step

of sample-and-test (e.g. RANSAC [33]), robustness and complexity can dramatically

improve by reducing the number of possible combinations, as it happened in the past

with the introduction of minimal solvers [88]. These advantages can be specially

useful for applications with high combinatorics as it often arises in problems of multi-

model fitting or single-model fitting with high percentages of outliers. Examples for

the former are applications in plane detection [98] or multibody SfM [112], and for

the latter the case of SfM in scenes dominated by deformable surfaces [73].

This chapter starts by deriving both new and known relations for characterizing

the family of homographies compatible with an AC in a unified, systematic way

(Section 4.1). From the obtained relations, constraints on the epipolar geometry

and the homography are derived in Sections 4.2 and 4.3, respectively, leading to

new algorithms for recovering the camera’s relative pose and for segmenting planes

in the scene. In Section 4.4 we make use of the new plane segmentation approach and

propose a complete vSLAM pipeline that relies on plane features, named πMatch.

4.1 Geometric relations between ACs and homographies

In this section, theoretical results on the relationship between ACs and homographies

are presented. We start by reviewing background concepts and afterwards show how

an AC constrains the homography.

Consider the setup of Figure 4.1 where two cameras, related by a rotation R and

a translation t, observe a scene, originating images I1 and I2. Let (x,y,A) be an

AC such that the patches surrounding x and y are related by a non-singular 2 × 2
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matrix A, with

x =
[
x1 x2

]T
,y =

[
y1 y2

]T
,A =

[
a1 a3

a2 a4

]
. (4.1)

For a point correspondence (u,v) in the patch, it comes that

v = Au+ (y − Ax). (4.2)

Let us also assume that the patches are related by an homography

H ∼



h1 h4 h7

h2 h5 h8

h3 h6 h9


 , (4.3)

such that in non-homogeneous coordinates

v = f(u) = δ−1
u

[
h1u1+h4u2+h7 h2u1+h5u2+h8

]T
, (4.4)

where δp = h3p1 + h6p2 + h9. As first proposed by Koser et al. [67, 69], approx-

imating Equation 4.4 using the first-order Taylor expansion around x yields v =

f(x) + Jf (x)(u − x), where Jf is the Jacobian of f . Knowing that f(x) = y, the

expression can be written as

v = Jf (x)u+ (y − Jf (x)x). (4.5)

Relating Equations 4.2 and 4.5, it can be seen that A = Jf (x), meaning that the

affine transformation A is the Jacobian of the homography defined in point x.

4.1.1 2-parameter family of homographies

The result introduced by Koser et al. [67, 69] allows the homography to be defined

as a function of the AC. From y = f(x), two constraints on the parameters of the

homography are obtained. This allows (h7, h8) to be written as

[
h7

h8

]
=

[
(h3 − h1)x1 + (h6 − h4)x2 + h9

(h3 − h2)x1 + (h6 − h5)x2 + h9

]
. (4.6)
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Replacing this result in Equation 4.4, the Jacobian becomes

Jf (x) = δ−1
x

[[
h1 h4

h2 h5

]
− y

[
h3 h6

]]
, (4.7)

which, since Jf (x) = A, yields that

[
h1 h4

h2 h5

]
= δxA+ y

[
h3 h6

]
. (4.8)

Replacing the results of Equations 4.6 and 4.8 in the homography 4.3, it comes that

the AC (x,y,A) induces a two-parameter family of homographies H defined as

H ∼ δx

[
A y − Ax

0 1

]
+

[
y

1

] [
h3 h6 h9 − δx

]
. (4.9)

Note that this is a two-parameter family since, although there are 3 unknowns,

there are only 2 DoFs because H is defined up to scale. Several authors [12, 67, 69]

suggest to make h9 = 1 in order to fix the scale factor, which has the drawback of

not avoiding singular configurations. H is non-singular whenever A is full rank and

δx 6= 0. In order to assure that H is always full rank, we introduced the following

change of parameters: 

g3

g6

g9


 =



1 0 0

0 1 0

x1 x2 1






h3

h6

h9


 , (4.10)

which leads to

H ∼ g9

[
A y−Ax

0 1

]
+

[
y

1

] [
g3 g6 −x1g3−x2g6

]
. (4.11)

Making g9 = 1 fixes the scale factor and avoids singular configurations, yielding

H(g;x,y,A) =

[
A+ ygT y − (A+ ygT)x

gT 1− gTx

]
, (4.12)

with g =
[
g3 g6

]T
.

In case H is a perspectivity, there are 4 solutions that can be determined by

solving two second-order equations in g that force the first and second columns of H

to have the same norm and be orthogonal. Note that this generalizes the result by
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Koser and Koch [69] that requires the origin of plane coordinates to be coincident

with x.

4.2 Epipolar geometry using ACs

It has recently been shown by Bentolila and Francos [12, 13] that one AC yields 3

linear constraints on the terms of the fundamental matrix F. Their method follows a

sequence of steps including: (i) coordinate shifting so that the origin is the center of

an AC; (ii) estimation of the epipole location ep by intersecting 3 conics computed

from the 3 ACs; (iii) estimation of two PCs through line intersection for finding

an homography H; (iv) computing F = [ep]× H. This method does not make direct

use of the linear constraints since they were derived only for the AC centred in the

origin, requiring many small steps to achieve an estimation of F. Also, it is not clear

how it could be adapted to the calibrated case, for the estimation of the essential

matrix E.

We propose a new formulation for the estimation of the epipolar geometry from

ACs by deriving the linear constraints in the original coordinate system. The new

method does not require any of the steps proposed in [12], being much more straight-

forward and easier to implement. Moreover, it can be applied both to the uncali-

brated and calibrated cases. This section concludes with an algorithm for estimat-

ing the essential matrix from 2 ACs that is extensively tested against the 5-point

method [119] in real sequences. This work provides for the first time convincing

experimental evidence that ACs are a viable alternative to PCs for visual odometry

and can be highly advantageous in the presence of many outliers as it happens in

scenes with multiple moving objects and/or deformable surfaces.

It is known that an homography compatible with a fundamental or an essential

matrix verifies the condition HTT + TTH = 0, for T = F,E, respectively. We will

derive the constraints for the case of E, with

E =



e1 e4 e7

e2 e5 e8

e3 e6 e9


 . (4.13)

Consider the 2-parameter family of homographies induced by an AC (x,y,A) in

Equation 4.12. The matrix equation HTE+ ETH = 0 yields 9 equations, 6 of which
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are linearly independent and can be written as




q1 q2 g3 0 0 0 0 0 0

0 0 0 q3 q4 g6 0 0 0

q3 q4 g6 q1 q2 g3 0 0 0

q5 q6 γ 0 0 0 q1 q2 g3

0 0 0 q5 q6 γ q3 q4 g6

0 0 0 0 0 0 q5 q6 γ




︸ ︷︷ ︸
N

e = 0, (4.14)

where γ depends on the unknown g, γ=1−g3x1−g6x2, qi, i = 1, . . . , 6 are defined

as q1=a1+g3y1, q2=a2+g3y2, q3=a3+g6y1, q4=a4+g6y2, q5=y1γ−a1x1−a3x2 and

q6=y2γ−a2x1−a4x2, and e is the vectorization of E by columns. Due to the sparse

nature of matrix N, it is possible to combine the 6 equations in order to eliminate

the two unknowns g3, g6. Right-multiplying the system of Equation 4.14 by the

following matrix C

C=




x21 x22 x1x2 x1 x2 1

−g6x
2
1 −x2(g6x2−2) −x1(g6x1−1) −g6x1 1−g6x2 −g6

−x1(g3x1−2) −g3x
2
2 −x2(g3x1−1) 1−g3x1 −g3x2 −g3




(4.15)

yields three equations that only depend on the terms of the AC (x,y,A):




x1y1 x1y2 x1 x2y1 x2y2 x2 y1 y2 1

a3x1 a4x1 0 y1+a3x2 y2+a4x2 1 a3 a4 0

y1+a1x1 y2+a2x1 1 a1x2 a2x2 0 a1 a2 0


 e=0 (4.16)

It can be seen that, as expected, the first equation corresponds to the point match.

It is also important to note that the simplicity of matrix N is due to the change of

variables that was performed when representing the homography (Equation 4.10).

Moreover, solving for g using the first two equations in system 4.14 and substituting

in the third, yields, after some algebraic manipulation, det(E) = 0.

All the derivations obtained up to this point are valid both for the essential and

fundamental matrices. Thus, since one AC provides three linear equations in the

form of Equation 4.16, the 7-DoFs matrix F can be determined from 3 ACs and

the 5-DoFs matrix E from a minimum of 2 ACs. A total of 9 and 6 equations are

obtained in the uncalibrated and calibrated cases, respectively, meaning that either

the 8-point or the 7-point solvers [47] can be used in the former case and the 6-
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point or 5-point solvers [119] in the latter. Section 4.2.1 presents experiments on

the estimation of the essential matrix using 5 PCs and 2 ACs, in both rigid and

non-rigid scenarios.

Note that Equation 4.14 can be interpreted the opposite way: suppose we know

the epipolar geometry, E or F, and an AC, and wish to find the homography H

compatible with both. Rewriting Equation 4.14 for isolating the unknown g, a non-

homogeneous system of 6 equations linear in the terms of g is obtained. Solving for

g and substituting in Equation 4.12, allows for H to be fully determined.

4.2.1 Experiments

In order to assess the validity of using ACs extracted from any kind of scene, an

experiment was conducted where the epipolar geometry is estimated in sequences

with planes, without planes, and hybrid. Moreover, motivated by the fact that our

proposed 2-AC algorithm significantly reduces the combinatorics of the essential

matrix estimation problem when compared to the state-of-the-art 5-point algorithm,

we evaluated the performance of both methods in the presence of outliers and/or

few input matches. Such conditions may occur in scenarios with very low textured

surfaces where it is difficult to extract features and/or much deformation caused

by the movement of pedestrians, vegetation in the wind, etc.. Thus, in the first

experiment we injected outliers and decreased the size of the data set, while in the

second two real sequences dominated by large deformations were considered.

In all experiments, affine covariant features are extracted with the Hessian Laplace

detector [83, 132] using the VLFeat library [136]. The affine part of the ACs, A, is

refined by minimizing the photo-geometric error for increasing the estimation accu-

racy. The maximum number of iterations in the optimization was set to 10 in order

to assure fast computation. Point normalization a la Hartley is always used before

any linear estimation.

A total of 6 equations in the form of Equation 4.16 are obtained from 2 ACs. Our

proposed method selects 5 out of the 6 equations for generating up to 10 solutions

for E using the solver [119] and the remaining - that must be one corresponding to

a point match - for selecting the best solution using the reprojection error. The 5-

point algorithm used is the one proposed in [119]. As a final step for both methods,

an iterative refinement was performed with the inlier matches.

The first experiment reports results on 3 sequences from [120], where the first

only contains planes, the second contains both planar and non-planar objects and

the third does not have any planar surfaces (Figure 4.2). The size of the data set was
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Figure 4.2: Experiment on the estimation of E for 3 sequences of the dataset from
[120]. The number of input correspondences was reduced from 100 to 50, 25 and 12,
and outliers were injected so that they constituted 0%, 30%, 60%, and 90% of the
input set, originating 16 different configurations. For each sequence, color plots of
the RMS rotation and translation errors are included - where the colors between the
16 error values were obtained by interpolation, for visualization purposes -, as well
as boxplots corresponding to the diagonal configurations for both the 5-point (blue)
and the proposed 2-AC (red) algorithms. Computational times for the complete
sequences and average number of iterations of MSAC per image pair are shown.

reduced from 100 correspondences down to 12 by randomly sampling data points

from the original set, and outliers were injected by adding noise sampled from a uni-

form distribution of mean 0 and standard deviation 5 pixels. In Figure 4.2, results

are shown for our proposed method and for the 5-point algorithm using as input

the PCs from the extracted ACs. However, we also performed tests by using as

input Scale-Invariant Feature Transform (SIFT) features and 6 PCs extracted from

the 2 ACs, as proposed in [12]. These results are not shown because they compare

unfavourably to the 5-point and 2-AC algorithms, respectively. For the first case,
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2AC Left 2AC Right

5pt Left 5pt Right

Figure 4.3: Experiment on the estimation of the essential matrix for a 220-image
sequence (trajectories on the left) and a 600-image sequence (trajectories on the
right) from the dataset presented in [32]. The estimation was performed for the
left and right channels of the stereo pairs independently. The trajectories recovered
for each channel, for the proposed 2-AC algorithm and the 5-point algorithm are
identified with colors. For each sequence, an example showing the inlier (blue) and
outlier (red) points is given. The stereo pair channel and used method are identified
with a coloured circle.

using SIFT features provides a decrease in computational time of about 20% but

originates a decrease in accuracy of approximately 9% in translation and 25% in

rotation. When extracting points from the ACs, besides this extra overhead, the

average error also increased (3.8% in translation and 19.6% in rotation). From Fig-

ure 4.2 it can be seen that the 5-point algorithm is slightly superior when working

with large input sets and low percentages of outliers, being, however, similar to the

proposed 2-AC method for the first sequence. This implies that the quality of the

ACs in this sequence is higher. Another important observation is that our method is
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significantly more resilient to outliers and small data sets. As an example, the RMS

error in translation never exceeds 25◦ while the 5-point algorithm frequently reaches

errors over 60◦. Concerning the number of MSAC iterations, it becomes clear that

the large decrease in the size of the minimum set of correspondences from 5 to 2

significantly favours a robust estimator. In relation to computational time, the dis-

crepancy is not so evident due to the overhead of AC refinement. However, for large

data sets with high percentages of outliers, the 2-AC method still is computationally

more efficient.

The last experiment shown in Figure 4.3 compares the performance of the 5-point

algorithm with the proposed 2-AC method in two sequences dominated by strong

deformations [32]. They were acquired with calibrated stereo cameras, allowing the

estimation of E individually for each channel. Results show that the trajectories ob-

tained with our method are much more similar and smoother than the ones obtained

with the 5-point algorithm, suggesting the superiority of the 2-AC approach. This

can be confirmed by the examples that show how the 5-point method tends to select

as inliers matches that belong to pedestrians or moving objects. From the known

extrinsic calibration of the stereo cameras, it is possible to compute the estimation

error between left and right channels, for each image. It was observed that similar

error distributions were obtained for both methods, with the exception that the pro-

posed method yields less outliers in the distributions. For the first sequence, using

2 ACs and 5 PCs originated 6 and 22 outliers, respectively. For the second, our

method originated large errors in only 4 frames, while the 5-point algorithm failed

14 times, of which 3 were rotation errors over 30◦. It is important to note that small

between-channels errors are obtained whenever a method incorrectly chooses inliers

in the same moving objects. The examples in Figure 4.3 show that this happens

often for the 5-point method, leading to trajectories that are not smooth.

The experiments reported in this section confirm that using 2 ACs as opposed to

5 PCs in the estimation of E brings important benefits when dealing with scenarios

where it is difficult to extract valid correspondences.

4.3 Homographies using ACs

This section derives, for the first time, the constraints that must be verified by a PC

or an AC to be compatible with the 2-parameter family of homographies associated

with an initial AC. These constraints have a clear geometric interpretation and can

be used as a metric for segmenting correspondences according to planes present in
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the scene. Comparative experiments show the benefits of this direct metric with

respect to sophisticated global multi-model fitting approaches [71] using the 4-point

algorithm for homography estimation [47].

4.3.1 Using PCs to constrain the homography

The two-parameter family of homographies in Equation 4.12 can be further con-

strained by using PCs. Consider an additional match (z,w), as depicted in Fig-

ure 4.1, which is used to determine the homography H(g;x,y,A) by estimating g.

Although at first (z,w) may appear to provide two constraints in H that should

suffice to uniquely determine g, this is not the case as proven next.

Assume that (z,w) is compatible with H such that

k
[
wT 1

]T
= H(g;x,y,A)

[
zT 1

]T
, (4.17)

with k being a scale factor. From Equation 4.12, it comes in a straightforward

manner that k = gT(z− x) + 1, which, by replacing in Equation 4.17, yields

(w − y)(z− x)Tg = A(z− x)− (w − y). (4.18)

Two important facts arise from Equation 4.18. The first is that since (w−y)(z−x)T

is a rank-1 matrix, it can be concluded that a point match (z,w) only puts one

constraint in g. Thus, two point correspondences are required to fully constrain

H(g;x,y,A). The second fact is that the span S of matrix (w − y)(z − x)T is 1-

dimensional, with S = λ(w − y), ∀λ ∈ R, which means that H is compatible with

(z,w) iff A(z − x) − (w − y) ∈ S. In other words, (z,w) is compatible with the

homography H iff the following holds

(w − y)TPA(z− x)=0, with P=

[
0 1

−1 0

]
(4.19)

Note that the geometric meaning of Equation 4.19 is that vectors c1 = A(z − x)

and c2 =
[
w2 − y2 −(w1 − y1)

]T
must be orthogonal. This finding allows using

the angle between c1 and c2 as an error metric for checking compatibility between a

PC and an homography induced by an AC. PCs not verifying Equation 4.19 cannot

lie in a plane that contains the 3D point that gives rise to the AC. Although the

condition is necessary but not sufficient to assure coplanarity, it can be used as an

error metric for plane segmentation or tracking tasks. Section 4.3.3.1 validates the
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practical usefulness of the metric in a planar segmentation experiment.

4.3.2 Estimating the homography using ACs

Instead of using PCs, an additional AC can be applied to further constrain the

homography H(g;x,y,A). Let (z,w,B) be an extra AC that lies in the same plane

as (x,y,A), or that corresponds to the same plane tangent to the surface in the

point of correspondence. This implies that there must be a choice of parameters

g,m such that H(g;x,y,A) = kH(m; z,w,B), where k is a scale factor.

Considering the homography as represented in Equation 4.12, the relations k =

1 + gT(z−x) and g=km are obtained. Replacing in Equation 4.12, and making

M=
(
(z−x)Tg

)
B, it comes

kH(m;B, z,w)=

[
B+M+wgT w−Bz−Mz−gTxw

gT 1− gTx

]
. (4.20)

Since it is known that H(g;x,y,A)=kH(m; z,w,B), the following system of six equa-

tions is obtained

A−B−(w−y)gT−M = 0

y−Ax−(w−Bz) + (w−y)xTg+Mz = 0
. (4.21)

This allows the computation of the 2 unknown terms of the homography, g, from

linear least squares. Therefore, replacing in Equation 4.12 or 4.20, H becomes fully

determined.

As previously observed, each AC yields 6 constraints on the parameters of the

homography H. Thus, two distinct ACs yield 12 restrictions, allowing 4 constraints

to be written in the terms of (x,y,A) and (z,w,B) because the homography has

only 8 DoFs. Using the first matrix equation of system 4.21 to substitute M and

(w−y)gT in the second, it yields two conditions as the one in Equation 4.19 in the

terms of A and B, respectively. This is expected since, by construction, the point

match of one AC is compatible with the homography induced by the other. The

remaining two constraints can be obtained by determining g from e.g. the first two

equations in the first matrix equation and replacing the solution in the last two.

After some algebraic manipulation, this procedure yields the last matrix equation

in System 4.22. Thus, the 4 conditions for (x,y,A) and (z,w,B) to be compatible
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with the same homography are

(w − y)TPA(z− x) = 0

(w − y)TPB(z− x) = 0[
s+a2b3−a3b2 −(a1b3−a3b1)

a2b4−a4b2 s−(a1b4−a4b1)

]

︸ ︷︷ ︸
L

(w−y) = 0, with

s= [−a2+b2 a1−b1](w−y)−(a1b2−a2b1)(x1−z1)
(x2−z2)

. (4.22)

Note that, as reasoned for Equation 4.19, the last matrix constraint means that both

vectors lT1 and lT2 , corresponding to the first and second rows of the 2× 2 matrix L,

respectively, must be orthogonal to (w−y). Thus, in this case, there are 4 different

angles that can be combined to provide an error metric of compatibility between

two ACs and an homography. Since more information is being included, this metric

should be more robust than the one computed solely from PCs. Experiments in

Section 4.3.3.1 on planar segmentation confirm this hypothesis.

4.3.3 Experiments in homography estimation

This section reports two experiments for testing the validity and usefulness of the

theoretical results on homographies. The first one consists in performing planar

segmentation on images that contain between 3 and 5 planes, both by formulating

the problem as an UFL1 problem that can be solved using message passing [71]

and by using the novel error metrics proposed in Sections 4.3.1 and 4.3.2. The

second experiment assesses the accuracy of homography estimation using 1 AC plus

2 PCs and 2 ACs and compares it with the 4-point linear algorithm applied in an

MSAC-framework [130].

4.3.3.1 Segmentation of PCs and ACs

This experiment consists in the planar segmentation of all visible planes in 30 ran-

domly sampled pairs of images from a sequence of the RGB-D dataset [120]. Ground

truth segmentation was obtained using the method proposed in [125]. For each plane

in an image pair, a reference AC was chosen by selecting the one that yielded the

smallest photo-consistency error from the set of ACs belonging to that plane. Since

multiple planes are being segmented simultaneously, this task is a multi-model fit-

1A global formulation (UFL) is much more effective for multi-modal fitting than greedy gener-
alizations of RANSAC such as [147].
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A B C D E

UFL Metric

A B C D E

UFL Metric

A B/C

D E

Figure 4.4: Experiment on planar segmentation using 5 different methods: A: 4
points UFL, B: 1 AC + 2 points UFL, C: 2 AC UFL, D: 1 AC + 2 Metric, E: 2 AC
Metric. Segmentation errors and computation times are shown for each method.
Planes are identified with colors and the reference AC is depicted with a lighter
shade of the same color.

ting problem that can be cast as an UFL problem [71]. The goal is to assign each

correspondence (client) to an homography hypothesis (facility), while simultane-

ously using as few hypotheses as possible. Our data cost matrix is created using

the symmetric transfer error (STE) [47], and homography hypotheses are generated

using the three minimal sets of 4 PCs, 1 AC plus 2 points (Section 4.3.1) and 2 ACs

(Section 4.3.2). These three methods are referred to as A, B and C in Figure 4.4,

respectively. Each homography hypothesis is generated by using the reference AC

plus 3 PCs, 2 PCs or 1 AC randomly selected, for methods A, B and C, respectively.

For each plane, 50 hypotheses were generated from this procedure, yielding a total

of 50 × no. of planes + 1 labels per image pair due to the inclusion of the discard

label.

An alternative way of performing planar segmentation is by using the constraints
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derived in Sections 4.3.1 and 4.3.2 that must be verified for an homography induced

by an AC to be compatible with a point match and another AC, respectively (meth-

ods D and E in Figure 4.4). In this case, explicit estimation of the homography is

not required as only the constraint is used. For the case of PCs, it consists in two

vectors a and b that must be orthogonal. Thus, for each point match the error is

simply e = 90 − ∠(a,b). When working with ACs, a stronger error metric may be

used. In this case, 4 angular constraints were derived, yielding 4 errors e which are

combined by taking their weighted mean that accounts for the quality of the ACs,

computed from photo-consistency. In both cases, the constraints are computed be-

tween the reference AC and all remaining correspondences. Labelling is performed

by assigning correspondences that yield errors below a pre-defined threshold (1◦ in

our experiments) to the plane and if a correspondence is assigned more that one

label, the one that yielded the smallest error is chosen.

Segmentation errors and computation times are shown for each method in Fig-

ure 4.4. The first conclusion is that the proposed error metrics effectively segment

all the planes in the scene, being much more accurate and faster than the more

sophisticated UFL approach. Moreover, when formulating the segmentation task

as a UFL problem, it can be seen that it is significantly better to use either the 1

AC plus 2 PCs or the 2 ACs minimal solutions than the 4-point algorithm. This

is expected for two main reasons. The first is that the former solutions require less

correspondences to be selected, increasing the probability of all correspondences be-

ing in the same plane. The second is that as an AC imposes 6 restrictions on the

homography as opposed to 2 for a point match in method A, it is more likely that

correct solutions will be chosen for methods B and C.

4.3.3.2 Structure-from-Motion

The homography associated to the checkerboard plane in Figure 4.5 is estimated for

12 different image pairs from dataset [120]. For each one, a reference AC on the

plane was chosen as described in the previous experiment. The homography H is

estimated using 7 different methods, 5 of which rely on the robust estimator MSAC

[130] for selecting the inlier correspondences. Methods A, B and C in Figure 4.5

consist on using the reference AC and randomly selecting the rest of the required

correspondences for estimating H from 4 points [47], 1 AC plus 2 points and 2 ACs,

respectively. Methods F and G correspond to methods B and C with a prior planar

segmentation using PCs and ACs, respectively, with the proposed metric. Finally,

methods D and E are the simplest since they perform planar segmentation and
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MSAC Segm. Segm.+MSAC

A B C D E F G
MSAC Segm. Segm.+MSAC

A B C D E F G
MSAC Segm. Segm.+MSAC

Figure 4.5: Results of homography estimation for a 12-image dataset from [120]
using 7 different methods: A: 4 points MSAC, B: 1 AC + 2 points MSAC, C: 2 AC
MSAC, D: 1 AC + 2 points Planar segmentation, E: 2 AC Planar segmentation,
F: 1 AC + 2 points Planar segmentation & MSAC, G: 2 AC Planar segmentation
& MSAC. Coloured boxplots were used for better visualization, where the 4-point
method corresponds to red and the methods using 1 AC + 2 points and 2 ACs are
shown in shades of blue and green, respectively. Rotation, translation and plane
normal errors are given in degrees. For the last two, the error is the angle between
the estimated and ground truth vectors. The table shows the average number of
iterations and computation time of a pair of images. Inlier and outlier points and
the reference AC are shown in blue, red and green.

estimate H from the inlier correspondences.

The estimated homography is decomposed into a rotation, a translation known

up to a scale factor and the plane normal. The test images contain ground truth

rotation and translation. The ground truth plane equation is computed using the

method presented in [125]. Presenting information on the quality of the plane normal

estimation is relevant since, as observed in Figure 4.5, there are sets of matches that

may provide homographies which originate small errors in rotation and translation

but estimate the plane normal very poorly. This is very evident for method A both

due to the combinatorics of the problem and because the reference AC only puts

two constraints on H in this case, meaning that there are homographies that do not

correspond to real scene planes that may originate minima in the cost function of

MSAC.

The results in Figure 4.5 also show that method E performs better than method

D, which is coherent with the results from the previous experiment. When combining

the segmentation with an MSAC, a significant increase in the accuracy is obtained,

being this the best choice of methods for the task of estimating H. Finally, the table
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shows that as the minimum required number of matches decreases, less iterations of

MSAC are used, occurring an almost immediate convergence when applying a prior

segmentation step.

4.4 πMatch: monocular vSLAM and PPR using fast

plane correspondences

Monocular vSLAM is the process of estimating the camera position and orientation

while building 3D maps of the environment, from a single camera. Although there

has been intensive research on this topic, current methods still face several chal-

lenges and difficulties, including (i) presence of outliers, (ii) dynamic foregrounds

and pure rotation of the camera, (iii) large baselines, (iv) scale drift, (v) density

of 3D reconstruction, and (vi) computational efficiency. Nowadays, existing meth-

ods for monocular vSLAM follow two distinct approaches: feature extraction and

direct image alignment. Each paradigm is effective in solving some of these chal-

lenges but, to the best of our knowledge, there is no monocular vSLAM algorithm

that is able to tackle all these issues. While feature-based methods work on top of

extracted features and are usually robust to outliers by applying RANSAC-based

schemes [44], direct methods perform whole image alignment and cannot handle

outliers [23, 30, 86]. Moreover, the former work with wide baselines and provide

sparse reconstructions, as opposed to the latter that require small baselines, which

is typically accomplished by high frame rates that tend to limit image resolution,

and provide dense scene models. All feature-based methods [24, 65] perform track-

ing and mapping as separate tasks. This greatly reduces the complexity of the

problem, allowing them to work in real-time. On the other hand, direct methods

such as [86, 95] compute dense depth maps using variational approaches which are

computationally expensive and require powerful GPUs to achieve real-time perfor-

mance. Only recently, direct methods that estimate semi-dense depth maps have

been proposed [23, 30, 31], allowing real-time operation on a CPU. Most feature-

based monocular methods assume there is significant camera translation and that

the scene is mainly rigid for applying epipolar geometry. However, there might be

situations where this does not hold and a scheme to robustly estimate the camera

motion is desirable. Both direct and non-direct methods perform poorly in the pres-

ence multiple motions and tend to drift in scale. While there is no explicit solution

for the first problem in the state-of-the-art, the last issue is typically solved using

prior information such as the height of the camera [44,117] or the existence of loop
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(a) Img. pair w/ matched ACs

(b) PEaRL (0.22 s) (c) T-Linkage (7.67 s)

(d) PEaRL (4.36 s) (e) Affinity Prop. (0.20 s)

Figure 4.6: Plane segmentation problem solved using different methods: (b)
PEaRL [58] with 300 homography hypotheses, (c) T-linkage [75] with 300 hypothe-
ses, (d) PEaRL with 5000 hypotheses, and (e) affinity propagation [36]. The com-
putational times of PEaRL and T-linkage hamper real-time performance. On the
contrary, affinity propagation is fast and is able to detect all the planes present in
the image. Red points correspond to outliers.

closures for performing global optimization [30].

Performing PPR in monocular sequences has never been much explored due

to the difficulties in detecting planes without knowing the camera motion. One

possibility would be to use an hypothesize-and-test framework, such as RANSAC, to

fit homographies, but this lacks robustness and is time consuming [58]. Other greedy

methods such as J-linkage [129] or its continuous relaxation T-linkage [75] could also

be used but they still suffer from low computational efficiency (Figure 4.6c). An

alternative would be to use discrete optimization to replace greedy methods by a

global scheme such as PEaRL [58] but, although there are improvements, the results

are still not satisfactory (Figs 4.6b and 4.6d).

In the previous section, we defined an error metric that allows to quickly seg-

ment ACs in planes, without the need to generate homography hypotheses as in

hypothesize-and-test approaches. In this section, we build on this result and pro-

pose a complete vSLAM pipeline that relies on plane features, named πMatch. ACs

are extracted and quickly clustered into coplanar regions using affinity propaga-
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tion [36] (Figure 4.6e) based on the new metric. For each plane cluster, a fast,

robust scheme estimates the corresponding homography, which is decomposed into

two solutions for rotation R and translation t (Section 4.4.1.1). The obtained motion

hypotheses are used as input to a PEaRL formulation that merges close motions and

decides about multiple motion situations (e.g. dynamic foreground, pure rotation of

camera, etc.) (Section 4.4.1.2). Given the refined camera motion, the initial plane

hypotheses are also merged and refined in a PEaRL framework, and, as an option,

used as input to a standard MRF formulation [5, 40] for dense pixel labeling and

subsequent PPR (Section 4.4.1.3). This two-view pipeline is applied to each image

pair, providing camera motion estimations up to scale. As a final step, we use a fast

scheme for scale estimation based on the minimization of the reprojection error that

benefits from the high accuracy in the estimation of R and t. This is followed by a

discrete optimization step for improving the final PPR of the scene (Section 4.4.3).

πMatch makes considerable advances in handling the aforementioned difficulties,

being advantageous with respect to the state-of-the-art methods (Table 4.1).

4.4.1 Two-view SfM and PPR using πMatch

We propose πMatch, an SfM framework that is able to automatically recover the

camera motion and a PPR of the scene from a monocular sequence. For each image

pair, ACs are extracted and used for computing the error metric of compatibility

between two ACs and an homography proposed in Section 4.3.2. These measures

of similarity between pairs of ACs are used for segmenting planes by Affinity Prop-

agation (AP) [36]. A robust MSAC scheme [130] is then applied to each cluster

for filtering out outliers. This step provides a plane segmentation and a set of mo-

tion hypotheses, from which the ones present in the image pair are selected in a

PEaRL [58] framework. The dominant one, which is assumed to be the camera mo-

tion, is identified and refined. Another PEaRL step is applied for plane merging and

refinement, and a final standard MRF [5, 40] can be used for dense pixel-labeling.

Figure 4.7 shows the sequence of steps of the proposed pipeline. The next subsec-

tions detail each building block using the image pair of Figure 4.6 as an illustrative

example.

4.4.1.1 Generation of motion hypotheses

For each pair of ACs, we compute the error metric proposed in Section 4.3.2 by taking

the average of the errors obtained for each condition, which are the values of the
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Table 4.1: Advantages of the proposed method πMatch over existing feature-based
and direct methods.

Feature-based Direct πMatch
Robust to outliers + - +

Dynamic foreground/pure rotation - - +
Wide baselines + - +

Scale drift problem Camera height Loop closure No priors
Model density - + +

Computational efficiency Real-time Parallelizable Near real-time

Image

pair
AC extraction

Metric computation

& affinity propagation

Homography MSAC

for each cluster

PEaRL for motion 

selection and 

refinement

PEaRL for plane

merging and

refinement

ACs N clusters

2N motion 

hypotheses

N outlier-free 

clusters

MRF for pixel

labeling
3D model

Section 2.1

Section 2.2Section 2.3

(optional)

Figure 4.7: Pipeline of the proposed method πMatch for two-view SfM and PPR.
ACs are used for segmenting the scene into planes and providing motion hypotheses.
The existing motions are selected in a PEaRL framework, and the dominant one is
identified and refined. Plane hypotheses are generated from the clustering result and
the refined motion, and PEaRL is again used for plane segmentation and refinement.
A standard MRF scheme can be used for dense pixel-labeling.

expression on the left-hand side of each equation in the system of equations 4.22. For

C ACs, this results in a C×C matrix of similarities between pairs of ACs, which is fed

to an AP method [36] for clustering the ACs into scene planes. Since all data points

are assigned to a cluster, the obtained segmentation contains outliers. Moreover,

there are cases in which AP tends to oversegment, providing several clusters that

correspond to the same scene plane. This is shown in Figure 4.8a, where the ground

plane is segmented into 3 different clusters and there are data points incorrectly

labeled.

In order to filter out outliers, each cluster is used as input to a MSAC framework

for homography estimation. We consider the minimal set of 2 ACs for generating

homography hypotheses as proposed in Section 4.3.2, which provides a speed-up of

approximately 3× when compared using a 4-point minimal set of point correspon-

dences. Also, since each MSAC is performed for each cluster independently, they

can run in parallel, significantly speeding up the process.

The output of this MSAC step is a set of homographies and corresponding outlier-
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(a) Affinity propagation (b) MSAC (c) Motion segmentation

(d) Plane merging (e) MRF and 3D model

Figure 4.8: Results for the image pair in Figure 4.6a after each step of the
pipeline. (a) AP tends to oversegment and does not identify outliers. (b) A ro-
bust scheme is required for filtering each cluster. (c) The best motion hypothesis is
selected and (d) plane segmentation is performed, where the original plane hypothe-
ses are merged. (e) πMatch provides an accurate 3D model of the scene from only
two views. Colors across images identify planes. Outliers are shown in red.

free clusters (Figure 4.8b). Decomposing each homography yields two solutions for

the camera rotation R, translation t, and plane n, up to scale [74].

4.4.1.2 PEaRL for motion selection

Cases in which the camera motion is a pure rotation must be correctly identified since

nor the scene planes neither the scale of translation can be recovered, and schemes

must be devised to overcome this problem (Section 4.4.3). The previous step of

the pipeline outputs N outlier-free clusters and 2N motion hypotheses. Firstly, the

motions that correspond to pure rotations are identified. This is done by considering

the corresponding homography H and computing the distance between the identity

matrix I and the matrix HHT. We opted to use metric Φ4 proposed in [57] for

computing this distance as it is the most computationally efficient. Homographies

for which this distance lies below a pre-defined threshold are decomposed and only

the rotation component is considered by setting t = 0.
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There may be more than one motion present in the image due to moving objects

in the foreground. In case these objects are planar, they will be identified by the

plane segmentation step of the pipeline. Thus, a scheme to decide which planes

correspond to rigid structures is required. We propose to solve this problem by

selecting the motions present in the image in a PEaRL framework, and afterwards

identifying the camera motion. The motion selection task can be cast as a labeling

problem where the nodes of the graph are the point correspondences p, to which

a label lp must be assigned. The label set L = {{R0, T0}, l∅} consists of the set of

motion hypotheses {R0, T0} and the discard label l∅. This labeling problem is solved

by minimizing an energy function E defined by

E(l) =
∑

p

Dp(lp)

︸ ︷︷ ︸
Data term

+λS

∑

(p,q)∈N

wpqδ(lp 6= lq)

︸ ︷︷ ︸
Smoothness term

+ λL|Ll|︸ ︷︷ ︸
Label term

, (4.23)

where λS and λL are weighting constants, l is the labeling being analysed, N is the

neighbourhood of p, weights wpq set penalties for each pair of neighbouring data

points p,q, and δ is 1 whenever the condition inside the parentheses is satisfied and

0 otherwise. The data term Dp is defined as the STE if the label corresponds to

a pure rotation and the Sampson distance [47] otherwise. Two nodes p and q are

neighbours if they belong to the same cluster from the set of clusters provided by

the MSAC step (Section 4.4.1.1). We set wpq = 1, meaning that an equal penalty

is set to all neighbours. This definition of neighbourhood forces points belonging to

the same scene plane to be assigned the same motion label. Finally, the label term

forces the algorithm to use as few motion hypotheses as possible. Due to the small

size of the label set (typically 8-14 motion hypotheses), this discrete optimization

step is very fast. Figure 4.8c shows that the algorithm selected only one motion and

some points were assigned the discard label l∅. If more than one motion is chosen,

the one to which more clusters are associated is selected as the camera motion. In

case this is satisfied by more than one hypothesis, the one to which more points were

assigned is considered. The camera motion is finally refined with the selected inliers

in a standard bundle adjustment with point correspondences.

4.4.1.3 Plane refinement and PPR

Having the refined camera motion, the final step of the two-view pipeline is to merge

and refine the initial plane hypotheses obtained from the AP step. This can only be

done if the camera motion is not a pure rotation. Otherwise, the algorithm stops.
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For each cluster associated to the camera motion, a plane hypothesis is generated

by reconstructing its points and finding the 3D plane that best fits the point cloud

by linear least squares. From the set of plane hypotheses P0, the objective is to

find the minimum number of planes that best describes the scene. Similarly to

Section 4.4.1.2, this task can be cast as a labeling problem where the goal is to

assign each point p to a label from the label set P = {P0, l∅}. Again, this is solved

by minimizing an energy function E defined as in Equation 4.23, where the data

cost is the STE obtained for the homographies computed using the refined camera

motion and the plane hypotheses. In this case, our set of neighbours (p,q) ∈ N is

determined by a Delaunay triangulation of points to account for possible small errors

in the initial plane segmentation. The weights wpq are defined as the inverse distance

between points p and q because closer points are more likely to belong to the same

plane. Figure 4.8d shows that the three initial plane hypotheses belonging to the

ground plane were correctly merged into one plane, allowing its proper estimation.

Also, some incorrectly labeled points in the MSAC stage (Figure 4.8b) were now

assigned the correct label. Each selected plane is then refined in an optimization

scheme that minimizes the STE. Since each plane is refined independently, this

procedure can be performed in parallel, providing a significant speed-up. As a final

step, a dense pixel labeling can be obtained using a standard MRF formulation [5,40].

Figure 4.8e shows that the proposed method is able to provide an accurate and

visually pleasing dense PPR from only two views.

4.4.2 Two-view experimental results

In this section, we apply the proposed two-view pipeline to 4 different example

scenarios (Figure 4.9) and show the obtained results after each step. The first three

examples were selected from the KITTI dataset [42,43] and illustrate cases of normal

motion, dominant dynamic foreground caused by a large vehicle moving, and static

camera. The last example is the situation of a moving camera observing multiple

planar motions, and was selected from the Hopkins dataset [131].

In all experiments, affine covariant features were extracted with the Difference

of Gaussians operator using the VLFeat library [136]. We limit the number of

extracted ACs to approximately 500 for computational efficiency. We used the

publicly available implementations of AP [35] and graph cut optimization [137] for

the PEaRL steps. The estimations of the relative rotation R and translation t up

to scale are compared with the ground truth RGT and tGT . The error in rotation

(eR) is quantified by the angular magnitude of the residual rotation RTRGT and the
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2

3
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Figure 4.9: Image pairs with the extracted ACs for 4 different scenarios: 1 - normal
motion, 2 - dominant dynamic foreground, 3 - static camera/pure rotation, and 4
- four motions besides the camera motion. Examples 1 to 3 are from the KITTI
dataset [42,43] and Example 4 is from the Hopkins dataset [131]. πMatch is applied
to each scenario and the results are shown in Figures 4.10 and 4.11.

error in translation et is defined as the angle between vectors t and tGT . In all

experiments, red points correspond to outliers.

Figure 4.10 shows the outcome of each step of the pipeline for the KITTI image

pairs. The first example corresponds to the most common scenario of a moving

camera and static scene. AP initially segmented the scene into 7 clusters which

were then merged into 6 clusters corresponding to different scene planes. Not only

the larger planes corresponding to the ground and building façade were recovered,

but also the smaller orange plane was accurately estimated, as shown in the 3D

model of Figure 4.10b. Moreover, the camera motion was accurately estimated:

eR = 10e−3◦, et = 1.2◦.

Example 2 illustrates the case of dominant dynamic foreground, where AP de-

tects 5 different clusters, 2 of which correspond to the moving vehicle. The PEaRL

step described in Section 4.4.1.2 correctly detects two motions in the image, where

the one to which more clusters are associated is selected as the camera motion. Af-

ter refinement with the inliers (magenta points in the third row) the rotation and

translation errors are eR = 14e−3◦ and et = 0.98◦, respectively. 3 planes are then

segmented in the image, with the remaining points being labeled as outliers. A

final 3D model of the scene is shown in Figure 4.10b, where it can be seen that

even the faraway plane corresponding to building façade is accurately estimated.

VISO2-Mono uses a scheme for detecting if the camera motion is too small, provid-

ing the identity matrix as the result for the camera motion in those cases. For this

image pair, although the true translation has a norm of ||tGT || = 46.4 cm, VISO2-
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(a) Results for each step of the pipeline. Red points correspond to outliers.

1 2

(b) Final 3D model

Figure 4.10: (a) Results obtained after each step of the proposed pipeline for the
first 3 scenarios in Figure 4.9. Since scenario 3 corresponds to a static camera, the
planes cannot be estimated and thus the last two steps are not performed. (b) PPR
obtained for scenarios 1 and 2.

Mono identified this case as small motion and did not provide an estimation. By

increasing the threshold, we forced VISO2-Mono to estimate the camera motion and

observed that it selected many points on the moving vehicle as inliers, providing a

poor estimation of the camera motion: eR = 1.99◦, et = 77.9◦ and ||t|| = 11.1 m.

The third example corresponds to the case of static camera. In fact, there is a

residual rotation which allows the scene to be correctly segmented into planes and

the camera rotation to be accurately estimated (eR = 40e−4◦). However, since the

translation component is negligible, it is not possible to estimate the scene planes.
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AP MSAC Motion Planes

Figure 4.11: Results obtained for the scenario of presence of multiple motions in
Figure 4.9. The dominant motion is selected as the one which has the largest number
of associated clusters, which, in this case, does not correspond to the camera motion.
This leads to the segmentation of only one plane in the last step of the pipeline, and
all remaining correspondences being assigned as outliers (red).

Table 4.2: Computational times on an Intel Core i7 3.4 GHz

AC extraction Metric computation Homography Motion Plane Total
& matching & affinity prop. MSAC segment. merging

0.21 s 0.20 s 0.08 s 0.07 s 0.09 s 0.65 s

By forcing VISO2-Mono to provide an estimation for the camera motion, poor results

were obtained: eR = 0.03◦, et = 26.0◦ and ||t|| = 69.3 cm.

Figure 4.11 shows example 4 that consists in a moving camera observing 4 dif-

ferent planar motions. It can be seen that 7 clusters were initially segmented, and

5 different motions were correctly detected by the PEaRL framework described in

Section 4.4.1.2. Since the larger plane was initially segmented into two clusters, its

motion is incorrectly identified as the camera motion and only this plane is seg-

mented in the final step. In this case, the rigid structure has little image support,

so a more sophisticated scheme for identifying the camera motion is required. A

possibility would be to used temporal consistency as proposed in [73].

Table 4.2 shows the computational times of each step of the proposed pipeline.

Except for the C++ implementation of the graph cut optimization [137], the rest of

the algorithm is implemented in Matlab. We believe that a C++ implementation

of the whole algorithm would allow it to reach a frame rate of 5− 10 fps.

4.4.3 vSLAM pipeline

In this section we describe our proposed method πMatch that takes as input a

sequence of images and outputs the camera motions and a PPR of the scene. We

presented in Section 4.4.1 a two-view pipeline that takes as input a pair of images

and outputs the camera motion, with the translation estimated up to scale, along
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with the PPR of the scene. In order to be able to work with image sequences, the

relative scale of translation between motions must be estimated.

For every two consecutive motions (Ri, ti) and (Ri+1, ti+1), where (Ri, ti) is the

motion between frames i and i+1, the scale of translation si+1
i is estimated by fixing

the norm of ti and computing the new translation vector si+1
i ti+1. We consider

point tracks between frames i and i+2 and start by reconstructing the 3D points in

frames i and i+1 using motions (Ri, ti) and (Ri+1, ti+1), respectively. We consider

as inliers the 3D points whose reprojection error lies below a pre-defined threshold.

We observed that the accurate estimation of the rotation and direction of translation

allows a good selection of inliers. The two sets of reconstructed 3D points Xi and

Xi+1 correspond to the same scene points represented in different reference frames.

Thus, using motion (Ri, ti), Xi can be represented in reference frame i+1, and scale

si+1
i is initialized by taking the median of the element-wise ratio

X′
i

Xi+1
, where X′

i =

RiXi + ti. Scale si+1
i is then refined by minimizing the maximum reprojection error

of the 3D points X′
i in frames i+1 and i+2, computed using motion (Ri+1, s

i+1
i ti+1):

si+1
i

∗
= min

si+1
i

∑

k

(
max(di+1

k , di+2
k )

)2
, (4.24)

where dik is the reprojection error of point k in frame i. Due to the good selection

of inliers, this procedure provides accurate results. Also, since we only optimize one

parameter, the computational time of this refinement step is very low (approximately

18 ms in our experiments). For images in which the camera motion is a pure

rotation, the scale is not estimated. When the camera resumes the movement, the

scale is determined using the new motion and the previous one which was not a pure

rotation. This scheme allows the relative scale information to be kept through the

whole sequence.

The last step of the pipeline concerns the refinement of the piecewise planar

structure by selecting the best planes across multiple frames. This is an adapta-

tion of the discrete optimization step proposed in Section 3.3 for stereo sequences,

where we propose to refine the camera motion and the PPR in a PEaRL frame-

work by considering multiple stereo pairs simultaneously. In this case, for the sake

of computational efficiency and since both the camera motion and the planes have

already been refined, we propose to include a final discrete optimization step in a

sliding window approach for improving the overall PPR. As explained in Section 3.3,

optimizing over multiple frames allows the backpropagation of planes, significantly

improving the accuracy and visual perception of the 3D model. Figure 4.12 depicts
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... +

Relative scale estimation & Discrete Optimization

...

Figure 4.12: The two-view pipeline described in Section 4.4.1 is a applied to each
new image pair and its scale is estimated. This allows to select the best planes
across multiple views in a PEaRL framework. An important advantage is the back-
propagation of planes: the fronto-parallel plane corresponding to the building façade
(cyan in the output images) is correctly detected in the incoming image and back-
propagated to previous images. Colors identify planes in the output images. Red
identifies outlier points.

this advantage, where it can be seen that the fronto-parallel plane of the build-

ing façade is detected in the new image and backpropagated to the previous one,

providing a much more realistic 3D model.

We formulate this discrete optimization as a labeling problem where the goal is

to minimize an objective function E defined as

E(l) =
∑

i

∑

pi

Dpi(lpi)

︸ ︷︷ ︸
Data term

+λS′

∑

i

∑

(pi,qi)∈N ′

wpiqiδ(lpi 6= lqi)

︸ ︷︷ ︸
Smoothness term

+ λL′ |Ll|︸ ︷︷ ︸
Label term

, (4.25)

where the label set is the union of the planes detected in each image pair i separately

(L = {
⋃

iΠ
i, l∅}), the nodes p

i are the point correspondences in all images i and λS′

and λL′ are weighting constants. We use the refined motions Ri, ti, s
i+1
i to represent

the planes in the label set in all reference frames i and compute the STE for defining

the data cost Dpi . The neighbourhood N ′ is defined by Delaunay triangulation of

the points in each image i. We also define as neighbours the points pi and qi that

correspond to the same point track, and set the weight wpiqi to a large value in

this case. This forces points belonging to the same track to be assigned the same

label across frames. The remaining weights wpiqi are inversely proportional to the

distance between pi and qi. In our experiments, for a sliding window of 5 frames (4

camera motions) this optimization took around 50 ms.
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Figure 4.13: Results obtained on 4 sequences of the KITTI dataset [42, 43] using
the monocular method VISO2-Mono [44], the stereo method VISO2-Stereo [44],
and our proposed monocular method πMatch. The bar plots and caption (b) show
the average rotation and translation errors computed using the metric proposed
in [43]. The boxplots show the distribution of rotation (eR) and translation (et)
errors computed for each image pair.

4.4.4 Large-scale experiments

This section reports experiments on 4 sequences of the KITTI dataset [42, 43] per-

formed with the monocular method VISO2-Mono [44], the stereo method VISO2-

Stereo [44], and our proposed method πMatch. Figure 4.13 shows the results ob-

tained for the 3 methods, with the errors being quantified using the error metric

described in Section 4.4.2 and the metric proposed in [44].

The first observation is that, when compared to the other monocular method

VISO2-Mono, our method is far more superior in the estimation of rotation and

translation. Regarding the scale estimation, while VISO2-Mono uses information

about the height of the camera, πMatch does not make any prior assumptions and
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Figure 4.14: PPR of the 268-frame sequence in Figure 4.13a. A proper alignment of
the individual PPRs of each image pair is observed, confirming the good quality of
the scale estimation step. Some areas are shown in greater detail.

still significantly outperforms this method. Moreover, another important observation

is that for the 3 shortest sequences, πMatch also manages to outperform the stereo

method VISO2-Stereo, being particularly more accurate in the estimation of the

rotation. This demonstrates the effectiveness of our proposed motion hypotheses

generation and selection scheme.

Regarding the 1100-frame sequence, the trajectory makes it evident that VISO2-

Stereo outperforms our method. However, from the boxplots showing the individual

rotation eR and translation et errors, it can be seen that πMatch provides more

accurate estimations, leading to the conclusion that the reason for the overall inferior

performance of our method is some inaccuracy in the scale estimation. We observed

that the estimation of the scale is frequently very accurate, and only fails in few

cases. Due to the propagation of error, one poorly estimated scale will influence all

subsequent ones, which does not happen in stereo methods. In order to illustrate this

fact, we show in Figure 4.13b the trajectories for the same sequence after removing

the first 300 frames, where it can be seen that the πMatch outperforms VISO2-

Stereo. For this sub-trajectory, VISO2-Stereo provided an error of 23e−3 ◦/m in

rotation and 2.55% in translation while our method was more accurate: 50e−4 ◦/m

in rotation and 1.96% in translation.

In Figure 4.14, the PPR obtained for the 268-frame sequence demonstrates not

only the accuracy of our method but also the importance of the last discrete op-

timization step, where the best planes across multiple frames (5 in this case) are

selected. Since we are simply concatenating the individual PPRs for each image

pair, the final 3D model would be visually significantly worse if this optimization

stage had not been used. This experiment shows that πMatch performs accurate

109



vSLAM and dense PPR from monocular sequences, significantly outperforming the

monocular method VISO2-Mono, and also being superior in the estimation of rota-

tion to the state-of-the-art stereo system VISO2-Stereo.

4.5 Conclusions

We investigate the use of ACs in homography and essential matrix estimation and

show that both can be accomplished from as few as 2 ACs, benefiting hypothesize-

and-test schemes. The geometric insights provided two new error metrics that proved

to be very useful in the clustering of points in planes. Also, we derive, for the first

time, the general linear constraints for an AC to be compatible with an epipolar

geometry. A particular case for these constraints was determined in [12, 13] that is

only valid when the coordinate system is centred in the AC. The proposed approaches

are successfully applied in planar segmentation and homography estimation tasks, as

well as in conventional SfM. In the latter case, our method compares very favourably

with the state-of-the-art 5-point algorithm in the presence of high percentages of

outliers and/or small input data sets.

In addition, we describe the first feature-based pipeline for vSLAM and dense

PPR from a monocular sequence. It works by extracting ACs and employing a new

error metric for detecting scene planes. These planes are used for generating motion

hypotheses that allow not only the accurate estimation of the camera motion, but

also of other motions present in the image, in a PEaRL framework. The refined

camera motion and initial plane hypotheses are used in another PEaRL scheme,

yielding good PPRs of the scene from two views. The extension to longer sequences

is done by estimating the scale between every two consecutive image pairs, and a final

discrete optimization step allows the exchange of planes between frames, providing

improved PPR results. The final experiment shows that scale drift may occur due

to a few poor estimations of the scale of translation. As future work, we intend to

devise a method to overcome this problem by making use of the detected planes.

The idea is that since planes are more constant over time than points, using plane

correspondences across frames could significantly reduce the scale drift. The total

execution time of πMatch mainly implemented in Matlab is approximately 0.72 s.

We will implement a C++ version of the pipeline, which we expect to run in about

5− 10 fps.

110



Chapter 5

Point Cloud Registration using

Normals

3D Registration is the process of finding the rigid transformations (rotation and

translation) that best align two or more point clouds such that their overlapping

areas match as well as possible. 3D Point cloud registration is a well studied prob-

lem in the computer vision literature due to its important applications in object

modelling, detection and recognition, tracking, and SLAM.

The oldest and best established algorithm for solving the point cloud registration

problem is ICP [14]. It works iteratively by alternating between finding the points

in the target 3D model that are closest to the source point cloud, estimating a new

pose by minimizing a cost function, and re-aligning the two point clouds using the

new pose estimation, until convergence. Since it relies in iterative optimization, if

the initialization is poor, it might converge to local minima.

Many authors have worked in improving the resilience of ICP to outliers and

missing data, often observed in 3D scans. Examples include the work by Mitra et

al. [84] where local quadratic approximations of the squared distance function are

used. Also, Bouaziz et al. presented SparseICP [16] that formulates the registra-

tion problem using sparsity-induced norms. More recently, an efficient Sparce ICP

method [77] was devised by including a Simulated Annealing search. Similarly to the

standard ICP, all of these methods require good initialization of the rigid transforma-

tion. Other works, such as Go-ICP [142,143], have tried to avoid the initialization is-

sue by assuring global convergence. Go-ICP is based on a branch-and-bound scheme

that searches the entire 3D motion space, with a local ICP included for speed-up.

Unfortunately, this requires large overlap between the point clouds, which does not
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always happen due to occlusions or acquisitions in very different viewpoints, and

scales poorly, becoming prohibitive for large datasets.

In order to avoid the requirements of good initialization and large overlap, some

authors have suggested to find sparse correspondences between point clouds and use

them in an hypothesize-and-test framework, like RANSAC, to perform an initial

alignment that is subsequently refined by ICP. Such approaches handle completely

misaligned point clouds, do not require the point clouds to have large overlap, and

are inherently robust to outliers. The difficulty is in establishing plausible corre-

spondences between point clouds. It is well known that a rigid transformation that

aligns two point clouds can be computed in a closed form manner from 3 correct

3D point correspondences [55]. Thus, a naive approach could consist in selecting 3

random points in one point cloud and searching for all possible triplets in the other.

This search would have complexity of O(N3), with N being the number of points in

the second model, easily becoming prohibitive. This chapter proposes a method to

address this issue, which we call 2-Point-Normal Sets (2PNS).

An approach inspired by what is commonly done in 2D images is to find salient

regions/landmarks in the point clouds, characterize them by a descriptor for perform-

ing association and establish alignment hypotheses for each match in a RANSAC-like

framework or using voting-based pose estimation [22, 27, 138]. Such approaches fail

mainly because point clouds are often smooth and/or noisy, which hampers finding

repeatable saliences that can be matched.

Aiger et al. [1] proposed a framework, dubbed 4-Point Congruent Sets (4PCS),

that, given 4 coplanar points in one point cloud, it enables to exhaustively search

for correspondences in the other point cloud with a complexity of O(N2). The key

idea is to use the relations between 4 coplanar points to define affine invariants

that are preserved by a rigid displacement. These invariants are used to speed

up search, enabling to decrease complexity by an order of growth when compared

with the naive approach. More recently, Mellado et al. proposed the Super4PCS

algorithm [79] that decreases complexity from quadratic to linear time by using a

number of improvements in the search stage. 4PCS and Super4PCS have inspired the

Super Generalized 4PCS [85] and the works by Theiler et al. [127,128]. The former

removes the coplanarity constraint and considers general 4-point bases that lead to

speed-ups up to 6.5× when compared to Super4PCS. The latter extract keypoints

on LiDAR point clouds and apply the 4PCS algorithm for robust registration.

In this chapter, we advance the Super4PCS framework by using not 4 points
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to establish an alignment hypothesis but 2 points and its normals. The normals to

points in a point cloud are relatively inexpensive to compute [7,64] and have already

been used in the context of registration mainly to define local descriptors [22,27,113,

138]. We show that it is possible to compute the rigid transformation R, t from 2

points and 1 normal and that matching 2 points+normals can be significantly more

efficient and robust than searching for sets of 4 points forming a congruent base.

The results show that we can obtain speed-ups up to two orders of magnitude in

noise-free datasets and up to 5.2× in Kinect scans with respect to Super4PCS, while

improving robustness and alignment accuracy.

Since our proposed method is based on the Super4PCS algorithm, we start by

revisiting the 4PCS algorithm and its improvements in Section 5.1. Our new method

is presented in Section 5.2 that includes a detailed description of the differences w.r.t.

Super4PCS for all the steps. Section 5.3 reports two sets of experiments that confirm

the efficiency of our proposed method. A comparison with the original algorithm

Super4PCS is provided in all cases. This method is chosen as baseline of compar-

ison, instead of the recent developments that led to the Super Generalized 4PCS

algorithm [85], mainly because Super4PCS is a more consolidated framework that,

unlike Super Generalized 4PCS, has public implementations available. Moreover the

method herein proposed has, similarly to Super Generalized 4PCS, the advantage of

not requiring planar points (it only uses two points so planarity issues do not apply)

and experiments show that it provides speed ups over Super4PCS that are signif-

icantly above the ones claimed in Super Generalized 4PCS. Section 5.4 concludes

this chapter with some future research directions.

5.1 Review of Super4PCS [79]

Global 3D point cloud registration works by finding putative point correspondences

between point clouds that enable to establish alignment hypotheses. These hypothe-

ses are ranked according to some metric and the transformation T with the highest

score is then refined by ICP. Since a rigid transformation can be estimated from a

minimum of 3 points [55], a naive approach would try to perform exhaustive search

of triplets with a runtime complexity of O(N3), N being the size of the point cloud.

The algorithms 4PCS [1] and later Super4PCS [79] work with sets of 4 points, instead

of 3, to make the search easier.

Let P and Q be the source and target point clouds, respectively, to be registered.

The goal of 4PCS and Super4PCS is to find the transformation T that best aligns
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them by solving the Largest Common Pointset (LCP) problem: maximize the car-

dinality of a transformed subset of P according to the property that every point in

that subset is within a predefined distance to Q. These methods make no assump-

tion about the starting poses of the point clouds and are able to handle situations

of small overlap. Also, they favour the use of points in the cloud that are far apart

in order to increase resilience to noise and outliers.

5.1.1 The original 4PCS algorithm

The 4PCS algorithm solves the global 3D registration problem by using coplanar sets

of 4 points, rather than the minimum sets of 3 points, allowing the employment of a

technique that efficiently matches pairs of affine invariant ratios in 3D. The approach

works by selecting a base of 4 coplanar points in the source point cloud P and finding

all the 4-point sets in the target point cloud Q that are approximately congruent

with the base, i.e. related by rigid transformations. For each potential 4-point set

from Q, the aligning transformation T is computed and the best transformation

according to the LCP score is retained. This process is repeated in a RANSAC [33]

scheme until a good solution is found, or a maximum number of iterations is reached.

The first step of each RANSAC iteration is the selection of a random base of 4

coplanar points from P. The algorithm starts by randomly selecting 3 points from P

that yield a wide triangle. This is done by testing a set of randomly chosen triangles

and retaining the widest one. However, due to the possible small overlap between

the source and target point clouds, the size of the triangle must be below a certain

threshold. The fourth point in the quadrilateral is selected as one that is close to

be planar to the other 3 but still not too close to them. This is done by testing all

the points in P and picking the one that best fits the criteria. Thus, the runtime

complexity of this stage is O(S), where S is the number of points in P.

Let B = {A,B,C,D} in Figure 5.1 be the randomly selected coplanar base in

source P, such that AB intersects CD in the intermediate point E. The key idea

explored by the authors is that the ratios

r1 =
||A−E||

||A−B||
and r2 =

||C−E||

||C−D||
(5.1)

remain invariant under affine transformations, and hence under rigid motion. Since

distances are also preserved under rigid transformations, these 4 invariants (r1, r2, d1 =

||A−B||, d2 = ||C−D||) are used to constrain the search for congruent 4-point sets

in target Q. The algorithm starts by extracting all pairs of points at distance d1 or
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Figure 5.1: A source P (pink) and a target Q (blue) point clouds are shown with
the corresponding 4-point sets used by 4PCS and Super4PCS. Super4PCS finds all
pairs at distance d1 in the target point cloud by centring a sphere of radius d1 in all
points and selecting the points that intersect with the point cloud.

d2 from Q, which is done in O(N2) time, where N is the cardinality of Q. For each

extracted pair (Q1,Q2) ∈ Q with distance d1 or d2, the intermediate points E1 and

E2 are computed:

E1 = Q1 + r1(Q2 −Q1) and E2 = Q1 + r2(Q2 −Q1). (5.2)

The authors explore the fact that two pairs that have their E1 and E2 coincident

form a 4-point base that is related with B by an affine transformation. Thus, the

intermediate points obtained from pairs at distance d1 are used for building an

approximate range tree structure (RS) in R
3, which takes O(M logM) to be built,

where M is the number of pairs, and has a query time of O(logM +K), K being

the number of points to be reported. The intermediate points that arise from pairs

at distance d2 are used as queries in this tree, yielding K 4-point sets from the

retrieved pairs. Since affine invariants were used, the set of extracted bases contains

sets which are not related by a rigid transformation. These are then removed in

a verification step that takes O(K) time, by using the angle φ between the line

segments (Figure 5.1), which is preserved under rigid transformations.

The authors claim that for large dense data sets, a heavy uniform sampling of the

point clouds can be performed in order to use only a small fraction of the points for

computing the alignment, and the full data set is then employed for the computation

of the LCP. Experiments reported in the paper show that using as few as 5% of the

data points is sufficient. It is the use of the LCP measure that makes the method

resilient to such heavy uniform sampling.
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5.1.2 Super4PCS

Recently, Mellado et al. [79] proposed the Super4PCS algorithm that builds on 4PCS

and decreases its complexity to O(N + M + K). This is done by solving the two

main bottlenecks of 4PCS which are the pair extraction stage and the large number

of reported congruent sets which leads to an expensive verification step to remove

non-rigid invariant 4-point candidates.

Efficient pair extraction (in O(N) time) is achieved by finding the points close

to the spheres centred in Qi ∈ Q and with radius d1 ± ǫ and d2 ± ǫ, where ǫ

is a tolerance considered due to the noise in the data. Figure 5.1 illustrates this

procedure, depicting a sphere of radius d1 centred in an arbitrary point Qi. The

point cloud Q is organized in a 3D grid, subdivided recursively and the intersection

between the set of spheres and the subdivided volumes is computed. Pairs are then

built between the points lying in the intersected volumes and the sphere centres.

Concerning the second bottleneck, the authors’ idea is to extract the exact set

of congruent 4-point bases that only contains rigid-invariant candidates, avoiding

the need to have a verification/filtering step. A quadrilateral is congruent to the

base selected from P if it is composed of pairs with the correct length (d1 and d2),

and if the angle φ between these pairs is similar to the angle formed by the two

pairs in the base. This is accomplished as follows: each pair is represented by its

intermediate point E, computed as in Equation 5.1.1, and its orientation, and the

pairs at distance d1 are hashed by this position and orientation, with the directions

being mapped to a spherical map. In the query stage, the position E is used to

access cells in a regular grid, such that the retrieved points lie in the same cell as the

query. Also, the corresponding spherical map is queried using a d2 pair direction to

find all pairs with angle φ w.r.t. the query direction. This is done by intersecting

a cone of aperture 2φ around the query direction with the spherical map. This

stage has runtime complexity O(M +K) due to the point retrieval and query of the

spherical map steps.

Figure 5.2a shows the sequence of steps of a complete RANSAC iteration of

Super4PCS. Since normals are often available for point clouds, or can be easily com-

puted, they can be used to further prune the number of extracted pairs. Whenever

this information is available, Super4PCS includes it by computing the angle θ1 and

θ2 between the normals of pairs of points with distance d1 and d2, respectively, and

filtering the extracted pairs such that θ1 and θ2 are similar to the corresponding

angles between the normals of the base set extracted from P. We will consider this

version of Super4PCS with normals throughout this chapter.
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Extract pairs with distance     (and angle    )

Extract pairs with distance     (and angle    )

Find congruent quadrilaterals

For all extracted 4-point sets:

    Compute    from 3 matching points

    Compute LCP

(a) Super4PCS

Select random pair in 

Compute distance    , angle between

normals    and 3 extra angles

for the selected pair

Extract pairs with distance   , angle

and that verify 3 extra angles 

For all extracted pairs

    Compute    from 2 matching points and 

    1 matching normal - 2 solutions

    Compute LCP for both solutions

Half the

complexity

(b) Our method

Figure 5.2: Sequence of steps of a complete RANSAC iteration of (a) Super4PCS
and (b) our method. The stages that were modified are identified in green and the
ones that were removed are shown in red.

5.2 2-Point-Normal Sets (2PNS)

In this section we present 2PNS, our global 3D registration method that builds on

the Super4PCS method reviewed in the previous section. Motivated by the fact

that normals to point clouds can be computed in a robust, inexpensive manner, we

propose to use them to solve the alignment problem. It can be shown that the rigid

transformation T can be computed from 2 points plus the normal at one of these

points. Thus, instead of searching for quadrilaterals, we look just for pairs of points

using their normals to decide if they are a plausible match. This dramatically reduces

the combinatorics of the search leading to a simpler, substantially less complex

algorithm, as shown in Figure 5.2b that presents the scheme of a complete RANSAC

iteration of our method. The modified and removed steps w.r.t. Super4PCS are

highlighted in green and red, respectively, in Figure 5.2a.

This section starts by describing how normals can be computed, presents the

search algorithm, shows how to compute the alignment from 2 points and 1 normal,

and finally makes a comparative analysis of complexity with respect to Super4PCS.

5.2.1 Computing normals

Point cloud normal estimation has been a well-studied problem due to its impor-

tant applications in areas such as object detection, segmentation, surface fitting

and registration [7, 60, 64]. According to a recent work that compares several ap-

proaches for surface normal estimation in point clouds, the most accurate method is
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PlanePCA [60], an optimal total least squares solution. Let S = {X1,X2, . . . ,XN},

Xi ∈ R
3 be a point cloud and Xi the reference point whose normal ni we wish to

estimate. Also, let Pi = {Pi1,Pi2, . . . ,Pik},Pij ∈ S,Pij 6= Xi be the k points in the

neighbourhood of Xi, which are commonly found using standard nearest neighbours

searches with kd-trees. PlanePCA aims to find the direction of minimum variance

in the neighbourhood P
+
i = [Xi,Pi1,Pi2, . . . ,Pik]

T, having an objective function

defined by

F (ni) = ||[P
+
i − P̄

+
i ]ni||2, (5.3)

P̄
+
i being a matrix containing the mean vector of P+

i in every row. The singular

vector of [P+
i −P̄

+
i ] associated with the smallest singular value minimizes the function

in Equation 5.3. Since this is equivalent to taking the principal component with the

smallest variance after performing Principal Component Analysis (PCA) on P
+
i , this

method is termed PlanePCA.

Since the direction of the normal is not recovered - its symmetric is also a solution

- there are always two solutions for the unitary normal vector. This is important

because normals are used in our proposed method in the estimation of the rotation

R and symmetric vectors lead to different solutions, as shown next. A scheme for

forcing coherent directions of all normals in the two point clouds being registered

could be devised, for instance by computing each point cloud’s centroid and making

the normal vectors point in that direction. However, since we are dealing with cases

of very small overlap, this could introduce errors and thus we opted to work with

the two solutions for the normal vectors.

2PNS fails whenever normals are not properly estimated. This may occur if the

point cloud is too sparse or strongly dominated by sharp edges and corners. However,

both cases rarely occur, either in real or synthetic scenarios, with the point clouds

being often sufficiently dense and containing many smooth regions.

5.2.2 The 2PNS search to obtain putative matches

At each RANSAC iteration, our method starts by extracting a random pair of points

and the corresponding normals from the source point cloud P. These entities are

shown in Figure 5.3, where P is the pink point cloud, (A,B) is the pair and nA,nB

the two respective normals. Since we establish alignment hypotheses from 2 corre-

sponding points and its normals, it is important that all the pairs extracted from

the target point cloud Q, shown in blue in Figure 5.3, are congruent with the base

pair extracted from P, i.e. can be aligned by a rigid transformation.
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Figure 5.3: A source (pink) and a target (blue) point clouds are shown with the
corresponding pairs of points and normals. These two pairs are the only informa-
tion used for computing the rigid transformation between the two point clouds, as
opposed to Super4PCS that requires the extraction of 4-point bases.

Super4PCS extracts pairs that have a distance d = ||A − B|| and an angle

θ = ∠(nA,nB). However, it is known that using only these two rigid invariants

leads to a set of extracted pairs that may contain instances that can never be aligned

by a rigid transformation. Thus, we propose to perform the search for pairs that

verify not only the conditions for d and θ, but also for 3 extra angles, namely the

angle of the first normal with the line segment joining the two points, the angle of

the second normal with the line segment, and the angle between the two normals

projected onto the plane orthogonal to line segment. Since angles are preserved

under rigid transformations, these 5 invariants are used for extracting congruent

pairs in the target point cloud Q, using the method explained in Section 5.1.2. Due

to the possible presence of noise and outliers in the data, a tolerance γ is considered,

which can vary between 5◦ and 20◦, depending on the quality of the input data.

5.2.3 Estimation of R, t

Let (A′,B′), with normals nA′ and nB′ , be a pair of points in the target point cloud

Q congruent with the selected pair in the source P, as shown in Figure 5.3. The

rigid transformation is estimated by first centring the two pairs in the origin (using

their centroids) and then computing the rotation R. This is done in two steps: first

the rotation Rα that aligns the vectors v1 = B−A and v2 = B′ −A′ is estimated;

then the rotation Rβ that aligns the normal vectors is determined. The final rotation

R comes from R = RβRα.

Figure 5.4a illustrates the estimation of Rα. This is a simple rotation to align

two vectors, defined by the rotation axis ωα = v1 × v2 and the rotation angle α =
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(a) Estimation of α (b) Estimation of β

Figure 5.4: The rotation R is computed in two steps, by first determining (a) the
rotation Rα that aligns the two vectors connecting the 3D points and then (b) the
rotation Rβ that aligns the normal vectors.

cos−1(v1 · v2). Rα is determined using Rodrigues’s formula. Let n∗
P = RαnP ,P =

A,B be the rotated normal vectors as depicted in Figure 5.4b. Rβ can be found

by rotating an angle β around axis v2. In order to find β, we project the normal

vectors n∗
A and nA′ onto the plane defined by the rotation axis v2 and compute the

angle between the projected vectors. Rβ has only one unknown parameter, so one

normal suffices to fully determine the rotation (it could be done using n∗
B and nB′).

The solution for Rβ corresponding to the other solution for the normal vector

(the symmetric one) is computed from the angle β′ = π − β since the projected

vector also becomes symmetric. A new solution for R is estimated, and thus this

method always provides 2 solutions for the rigid transformation.

After knowing R, the translation t is estimated from R and the translation vectors

used for centring the two pairs in the origin.

5.2.4 Comparison of complexity with Super4PCS

Since our proposed method is based on the Super4PCS algorithm, making use of one

of its main strengths that is a fast scheme for extracting pairs of points according

to a distance and an angle, in the present section we highlight the differences w.r.t.

Super4PCS that yielded our much simpler and faster approach. The improvements

are in avoiding extra computation while selecting a random base in P, reducing

in half the pair search and not requiring a congruent set extraction stage. On

the down side comes the fact that for each pair there are two motion solutions that

must be verified, whereas Super4PCS generates only one, but this overhead is largely
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compensated by the improvements above, as shown in the experimental section.

5.2.4.1 Selection of the base from the source point cloud

Both our and the Super4PCS algorithms start by extracting a base from the source

point cloud P. While the Super4PCS requires a 4-point coplanar base, our method

simply extracts a random pair of points.

The Super4PCS’s procedure of extracting a coplanar quadrilateral from P is

described in Section 5.1.1. It runs in O(S) time because the algorithm goes through

all the points in P to find the fourth point in the base. On the other hand, our

method simply selects a random pair of points by testing a set of pairs and choosing

the widest one. This distance has an upper bound to account for the overlap between

the point clouds. Since we are not going through the whole point cloud, this stage

is very fast and runs in O(1) time, being independent of the size of P. Remark that

since our base is a line, instead of a quadrilateral, we can choose a wider segment

than the length of the quadrilateral sides and still find an overlapping area. Wider

bases lead to smaller numbers of congruent sets, and thus the algorithm runs faster

and more robustly [1].

5.2.4.2 Congruent set extraction

The modification to the pair extraction stage consists in performing it only once,

instead of twice as in the Super4PCS algorithm, and by using 5 rigid invariants (a

distance plus 4 angles), instead of 2, to constrain the search. This happens because

we are working with a 2-point base, instead of a 4-point base that is decomposed

into two pairs of points. It is important to notice that, while it is not required to

include the normals of the points as input to the Super4PCS algorithm, when this

information is available, the method uses it to further constrain the search. This is

indicated with parentheses in Figure 5.2a.

In Super4PCS, the pair extraction stage runs in O(N) time, where N is the

number of points in the target PC Q. Since our method performs the pair extraction

process only once, it has half the computational complexity of Super4PCS, running

in half the time.

Besides extracting pairs in the target Q, Super4PCS has a subsequent stage for

finding congruent sets. This is necessary because generating candidate quadrilaterals

based solely on the distance (and possibly the angle between normals) invariant

would produce sets of congruent bases with many candidates not related by rigid
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transformations. This congruent set extraction stage has a runtime complexity of

O(M +K) which is not included in our algorithm.

5.2.4.3 Estimation of R

The final modification performed to Super4PCS is the process of estimating the rigid

rotation R. In the original algorithm, this is performed with Horn’s method [55] using

3 out of the 4 points of the quadrilateral and provides a unique solution. In our case

there are two solutions as explained in Section 5.2.3. For the same number K of

congruent bases, this would lead to twice the computational complexity. However,

due to the significant decrease in complexity in the other stages of the pipeline, the

final runtime is still significantly lower. Also, since we are working with 2-point

bases, wider bases can be used, yielding less candidates. Experiments in the next

section show how our method is able to achieve similar results to Super4PCS while

being approximately 3.6×−5.2× faster when using Kinect scans and even achieving

speed ups of two orders of magnitude in noise-free datasets.

5.3 Experiments

This section reports a set of experiments performed on several point clouds with

different sizes, percentages of overlap and levels of noise. The performance of our

proposed method is assessed in terms of speed and robustness, and compared with

the state-of-the-art method Super4PCS [79] that served as a starting point for our

algorithm. The first set of experiments was performed on the models shown in

Figure 5.5 and we report both the alignments obtained for a search limited in time,

which is relevant for applications with real-time requirements, and the best possible

results when the execution time is not constrained. Since there is ground truth, we

show a quantitative evaluation. The second set of experiments consisted in aligning

several scans acquired with a Kinect camera, with both methods, and the qualitative

results are shown. All these datasets were downloaded from [80].

We used the C++ source code for the Super4PCS algorithm available in [80] and

made the necessary modifications to implement our method. For all point clouds,

the normals to each point were computed using the PlanePCA algorithm described

in Section 5.2.1 with a neighbourhood of 20 points. All tests were performed on a

AMD Quad-Core Processor A6-3400M with a speed of 2.30 GHz and 6GB of RAM.
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Figure 5.5: Different models with small overlap (≤ 30%) used for testing our
proposed method and the Super4PCS algorithm. All datasets were downloaded
from [80] and contain ground truth.

5.3.1 Quantitative evaluation

The first set of experiments consisted in performing the alignment of the 4 models

in Figure 5.5 with both our method and Super4PCS, for 10 random initial positions

of the point clouds. As explained in [1], since the LCP measure is being used as the

metric for selecting the best alignment hypothesis, Super4PCS and 2PNS allow a

very heavy sampling of the point clouds. The approximate size of the point clouds

and the number of samples used are shown in Figure 5.5. We show quantitative

results as the angular magnitude of the residual rotation between the ground truth

and the estimated rotations, eR, in degrees, and the norm of the difference between

the ground truth and the obtained translation vectors, et, in percentage. We started

by analysing how well both methods perform when the maximum execution time is

limited. We used a threshold of 1 s for the head and bird datasets, 2 s for the phone
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(a) Rotation error (◦) (b) Translation error (%)

(c) LCP (%)

Figure 5.6: Results obtained with our and the Super4PCS methods for the 4 models
in Figure 5.5 by limiting the maximum execution time as follows: Head - 1 s, Phone
- 2 s, Bird - 1 s, Bubba - 3 s.

and 3 s for the bubba point set, as they have decreasing percentages of overlap.

Figure 5.6 shows the distributions of the best LCPs achieved by RANSAC in

each run, and the rotation and translation errors for all models, without any ICP

refinement. The first observation is that, in the same amount of time, our method

significantly outperforms Super4PCS, providing much smaller rotation and transla-

tion errors and larger LCPs. More importantly, unlike Super4PCS, our method was

able to provide acceptable results as can be seen in Figures 5.6a and 5.6b that the

maximum median rotation and translation errors are below 5◦ and 5%, respectively.

Also, it never diverged, with the maximum errors being eR = 8.4◦ and et = 13.8%.

In Figure 5.7, we show examples of the alignments obtained with Super4PCS

and our method in the experiment with limited time, for all models. The point

clouds, in arbitrary initial positions, are accurately aligned when using our method,

which significantly facilitates a subsequent step of ICP refinement. On the other

hand, the alignment provided by Super4PCS is very poor, as initially shown in the

boxplots of Figure 5.6, not being sufficiently accurate for a subsequent refinement

124



In
it

ia
l 

P
o
s
it

io
n

A
li
g
n
m

e
n
t 

b
y

S
u
p
e
r4

P
C

S

A
li
g
n
m

e
n
t 

b
y

2
P
N

S

Figure 5.7: Alignment results and corresponding LCP and rotation and transla-
tion errors (without ICP) obtained with Super4PCS and our method 2PNS in the
experiment with limited time.

to be applied. This experiment demonstrates that in applications that require fast

processing, our method can be used as it very quickly provides sufficiently good

results for a refinement step to converge to the global minimum.

In order to evaluate the best performance in terms of accuracy of alignment

that both our and the Super4PCS methods are able to achieve, we removed the

time limit and tested the methods with the same parameters as in the first part of

this experiment. Results are shown in Figure 5.8 and include not only rotation and

translation errors and the best LCP, but also the distribution of the execution times.

As expected, the accuracy of Super4PCS dramatically increased, reaching me-

dian errors of less than 4◦ and 10% in rotation and translation, respectively, as

opposed to errors over 100◦ and 200% that were obtained in some cases of the first

part of this experiment. The increase in the LCP is coherent with this decrease in

the registration errors. However, despite running for over 15 minutes, Super4PCS

still did not manage to converge to a good solution in a few initial poses of the phone

and bubba datasets due to the very small overlap. As an example, the divergence

cases for the bubba dataset corresponded to alignments similar to the one shown in

Figure 5.7, due to the symmetric nature of the model that yields a local minimum.

On the other hand, our method was able to achieve good solutions in all cases in less

than 30 seconds for the bubba dataset and less than 10 seconds for the other ones.

For the less problematic datasets head and bird, both methods performed well, with
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(a) Rotation error (◦) (b) Translation error (%)

(c) LCP (%) (d) Time (seconds)

Figure 5.8: Best possible results obtained with our and the Super4PCS methods
using the same configuration parameters as the experiment corresponding to Fig-
ure 5.6, but without setting a maximum execution time threshold.

our method being able to find slightly better solutions (with larger LCPs) in about

30% and 13% of the time, respectively.

In order to estimate the speed ups achieved by our method, for the sake of

fairness, we measured the time it requires to reach solutions as good as Super4PCS’s,

i.e. to achieve values of LCP equal to the ones obtained by Super4PCS. Table 5.1

shows these values, as well as the ones computed using the time corresponding to

the best results that are shown in Figure 5.8. For the bubba and phone datasets,

we were able to achieve speed-ups of 117× and 58×, respectively. The reason for

these very high speed-ups is that these are synthetic noise-free datasets, and thus

we can be very restrictive in selecting the threshold for extracting congruent pairs,

leading to very few high-quality candidates for providing alignment hypotheses, and

thus significantly decreasing computational time. For the bird and head datasets, our

algorithm runs 19.2× and 7.8× faster, respectively, which is significantly better than

the speed up reported for the Super Generalized 4PCS method [85] that is between

1.3× and 6.5×. Remark that the results provided in [85] are only for datasets with
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Table 5.1: Speed-ups obtained by out method w.r.t. Super4PCS, for each model,
by measuring the computational time to achieve both the best possible LCP, corre-
sponding to the results in Figure 5.8, and the same LCP as Super4PCS.

Head Bird Phone Bubba

Best LCP 3.6× 7.4× 22.8× 30.8×
Same LCP as Super4PCS 7.8× 19.2× 58.1× 117×

more than 30% of overlap, suggesting that the method is not able to perform well

for smaller overlaps. Also, for some models shown in [85], Super4PCS outperforms

Super Generalized 4PCS, whereas our method is always superior. This indirect

comparison to Super Generalized 4PCS shows the superiority of our approach w.r.t.

both state-of-the-art methods.

To conclude, this experiment demonstrates the importance of our new method

as it shows that it is able to achieve similar or even better results than Super4PCS

in a fraction of the time. Also, by limiting the execution time, while Super4PCS

clearly fails, our method still performs well, with only a slight decrease in accuracy.

This means that our method is very fast in finding a proper solution and increasing

the execution time simply leads to more accuracy, which may not be crucial since

the method performs coarse alignment and should be followed by a refinement step.

5.3.2 Experiments on Kinect scans

The second set of experiments consisted in registering several scans acquired by a

Kinect of an office and a hall. Since there is no ground truth, we show the alignments

obtained with Super4PCS and our method in Figure 5.9. For the sake of fairness, we

used the same degree of sampling in both methods and did not limit the execution

time. Also, all results are shown without any ICP refinement.

Overall, both methods were able to correctly align all the Kinect scans in the

two examples of Figure 5.9, with our method being slightly more accurate, especially

in the hall sequence (Figure 5.9b), as shown in the areas identified with ellipses.

Regarding the office dataset in Figure 5.9a, while Super4PCS took approximately

36 s to align all 6 scans, our method was 3.6 times faster, requiring only 10 s. A better

alignment can be observed in the table and window areas in the output provided by

our algorithm. In the 5-scan hall example (Figure 5.9b), our method also provides

an overall more accurate alignment not only in the stairs and the fire extinguisher

areas but also in the other end of the point cloud, near the chair and the wire on

the floor. Super4PCS and our method took 57 s and 11 s, respectively, to align the
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Super4PCS Our method

Input scans

(a) Registration of 6 Kinect scans acquired in an office

Super4PCS Our method

Input scans

(b) Registration of 5 Kinect scans acquired in a hall

Figure 5.9: Registration results obtained using Super4PCS and our method on two
datasets with 5 and 6 Kinect scans. The total execution times were (a) Super4PCS
- 36s, our method - 10s, and (b) Super4PCS - 57s, our method - 11s. Registration
is performed for every pair of consecutive input scans. The sequences of scans are
sorted from left to right and top to bottom.

5 scans, corresponding to a speed up of 5.2×. The state-of-the-art algorithm Super

Generalized 4PCS [85] reports a speed up of 4× w.r.t. Super4PCS in a sequence of
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scans acquired with the Kinect. Again, our method is superior since we are able to

perform 5.2× faster.

Although our method still performs significantly faster than Super4PCS on these

real datasets, it can be noticed that the decrease in computational time is not as

evident as in the experiments from Section 5.3.1. This is due to the fact that, unlike

most of the models used in the first set of experiments, these Kinect scans are noisy

and possibly contain outliers, providing a less accurate estimation of the normals.

Thus, the angular threshold used for extracting congruent sets has to be relaxed,

leading to more alignment hypotheses and hence a higher computational time. By

achieving speed ups of up to 5.2×, this experiment confirms that including normals in

the estimation of rigid transformations is very beneficial since very accurate results

are obtained while significantly decreasing computational time. Since there are

established algorithms for normal estimation, as long as the point cloud is sufficiently

dense (as happens in the case of scans acquired with depth cameras), we believe there

is no obvious reason for performing the registration using only points.

5.4 Conclusions

In this chapter we propose 2PNS, a new method that significantly advances the

state-of-the-art in terms of global 3D registration of point clouds in arbitrary ini-

tial poses. Due to the important improvements provided by the recent algorithm

Super4PCS [79] w.r.t. previous methods, our modifications to this method yielded

a very fast approach that is able to register 3D point clouds in arbitrary positions

and with small overlap. Experiments show that our method performs better than

Super4PCS, providing more accurate alignments, in approximately 1/5 of the time

when working with scans acquired by depth cameras that are contaminated by noise

and outliers.

As future work, we intend to study until which extent working simultaneously

with multiple bases randomly extracted from the source point cloud is beneficial.

The idea is that, since there would be multiple hypotheses for the base, computa-

tional time would not be wasted in testing all the sets congruent to a base that

is noisy or does not correspond to an overlapping area. We believe that this can

provide a significant increase in computational efficiency.
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Chapter 6

Conclusions

In computer vision, the problems of calibration, SfM and registration are commonly

solved using the most fundamental primitive: keypoints. The main goal of this thesis

is to fulfill these tasks using alternative primitives, such as planes, affine regions or

normals, motivated by the various advantages this brings.

In Chapter 2, we propose to calibrate a camera-depth sensor pair using planes.

This is accomplished through the registration of a set of corresponding planes that

span the entire 3D space. We developed a new minimal solution for this problem

that provides better initializations of the extrinsic calibration, when compared to

competing methods, facilitating subsequent steps. We also proposed a new optimiza-

tion step that prevents the calibration from drifting in scale, as well as a method

for estimating a depth distortion model which significantly improves the calibration

accuracy. All these contributions led to a fast and accurate calibration approach

that outperforms the state-of-the-art methods when working with small datasets.

The ability to perform accurate calibration of a camera-depth sensor pair from a

small number of images motivated the development of a more general method that

is able to calibrate heterogeneous sensor arrangements comprising cameras, LRFs

and depth sensors in non-overlapping configurations. Since the extrinsic calibration

in case of non-overlapping FoV is accomplished from mirror reflections, it is crucial

that the conventional extrinsic calibration methods use a small number of object im-

ages, otherwise the total number of frames to be acquired becomes prohibitive. Our

new calibration method is tested successfully in an application scenario for which

there is no simple solution in the current state-of-the-art.

Chapter 3 also explores the use of planes in a different computer vision problem:

SfM and 3D reconstruction. Plane-based registration is advantageous with respect to
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point-based registration because: (i) plane-primitives have a more global character,

which helps avoiding local minima issues, (ii) scenes are often dominated by large

planes, which allow correspondence between wide-baseline frames, (iii) plane primi-

tives are typically in the static background, which improves odometry robustness to

possible dynamic foreground, and (iv) the fact that the number of plane-features is

much smaller than point-features favours faster correspondence and scalability under

increasing image resolution. Motivated by all these advantages, we developed an hi-

erarchical RANSAC-based scheme for camera motion estimation that favours the use

of planes and only extracts point correspondences when the plane surface configura-

tion is insufficient to determine motion with no ambiguity. This scheme is employed

in two different pipelines that take as input a sequence of frames and output the

camera motion and a reconstruction of the scene. While the first was developed for

RGB-D cameras, where plane detection is relatively straightforward from the depth

information, the second works with a calibrated stereo rig and plane detection is

not trivial, requiring a more sophisticated approach such as [3]. Also, for refining

the camera motion, the RGB-D pipeline uses simple optimization scheme based on

minimizing the photo-geometric error. On the other hand, the stereo pipeline jointly

refines the motion and the structure within a PEaRL framework [58] that alternates

between discrete optimization to enforce coherent PPR across stereo frames, and

continuous bundle adjustment to improve the accuracy of the results. The final

dense labelling is accomplished by a new procedure that enforces global consistency,

allowing cases of poor reconstruction and occlusions to be corrected. Both the RGB-

D and the stereo pipelines have proven to be advantageous in cases of wide-baseline,

dynamic foreground, weak texture when compared to state-of-the-art point-based

approaches.

Despite the advances provided by these two pipelines, there is room for improve-

ment. In future work, we intend to improve our RGB-D algorithm for dealing with

partial plane occlusions by using a robust cost function in the optimization, and

by including motion priors to increase the performance in small baseline situations.

Regarding the stereo pipeline, since we are using a straightforward MATLAB im-

plementation, its current runtime is prohibitive for real-time applications. Thus, we

intend to develop a parallel version of the pipeline to be ran in the GPU (note that

the initial PPR is computed for each stereo rig independently) in order to decrease

computational time.

The new primitive that is explored in Chapter 4 is affine regions. Hypothesize-

and-test frameworks for robustly determining the camera pose and scene structure
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(SfM), either by homography or epipolar geometry estimation, have well established

minimal solutions in the state-of-the-art. The importance of using minimal algo-

rithms, as opposed to over-determined solutions, is to reduce the combinatorics of

the hypothesize-and-test stage. Although the existing solutions have led to several

successful systems, we argue in Chapter 4 that the combinatorics is still too high

in certain applications and show that both homography and epipolar geometry es-

timation can be accomplished from as few as 2 ACs. The geometric insights led to

approaches that are successfully applied in planar segmentation and homography

estimation tasks, as well as in conventional SfM. Motivated by the good perfor-

mance of our new plane segmentation scheme, we proposed the first feature-based

pipeline for vSLAM and dense PPR from a monocular sequence based on ACs,

named πMatch. It contains two consecutive PEaRL steps, where the first selects

the motions present in the image and the second performs plane merging, yielding

good PPRs of the scene from two views. Experiments show the superiority of our

approach when compared to other competing monocular systems.

A large-scale experiment shows that scale drift may occur due to a few poor

estimations of the scale of translation. To overcome this issue, we intend to use

plane correspondences across frames since they are more constant over time than

points. Also, we expect to achieve an execution rate of about 5 − 10 fps after

implementing the pipeline in C++.

Finally, Chapter 5 investigates the use of normals in 3D point cloud coarse

registration. The proposed method builds on a recent point-based pipeline that uses

smart indexing for extracting pairs of points in a point cloud [79]. Our method,

that is significantly simplified due to the use of only pairs of points, instead of

quadrilaterals as in [79], greatly benefits from this pair extraction scheme, being very

fast and robust to small overlap. Experiments show that our method is as accurate

as [79], taking at most 1/5 of the time. There are still possible improvements that can

be applied to this method. As an example, we intend to analyse if it is advantageous

to work with multiple pairs extracted from the source point cloud simultaneously,

such that computational time is not spent in testing all the sets congruent to a base

that is noisy or does not correspond to an overlapping area.
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