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Abstract
The axonal growth is an important and complex biological process, essential to the human

physiology. Recent discoveries have provided evidences that mRNA translation in neurons
occurs not only in the cell body but also in the growth cone, the structure responsible for axon
guidance and consequent growth.

The existing mathematical models only touch the surface of this notions and, most of the
time, they do not delve into the possible correlation between them. The aim of this project
is to enlighten some computational concepts to further explore some of the complexities of
axonal growth.

The first presented model is about the 3D morphology changes, namely the protrusions
that arise, from mechanical forces originated in the actin filaments, at the growth cone. These
filopodia search for cues and connect the cell to the surrounding environment.

Later, the 2D model regards the inner workings of the cell: the transport of mRNA from
the nucleus to the tip of the axon, which occurs with the help of microtubules, coupled with
the neuronal growth dependent on external stimuli.

Although the first model did not have a successful solution, the second is stable and can
be a starting foundation to more complex models that are biologically relevant.
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Resumo
O crescimento axonal é um processo biológico importante e complexo, essencial para

a fisiologia humana. Descobertas recentes demonstraram que a tradução de mRNA em
neurónios ocorre não só no corpo celular como também no cone de crescimento, a estrutura
responsável pela orientação axonal e seu consequente crescimento.

Os modelos matemáticos actualmente existentes apenas abordam uma pequena parte dos
conceitos e, usualmente, negligenciam a possivel correlação entre os mesmos. O objectivo
deste projecto é demonstrar alguns conceitos computacionais por forma a poder explorar
mais profundamente algumas das complexidades do crescimento axonal.

O primeiro modelo apresentado prende-se com as mudanças morfológicas a 3D, nomeada-
mente as protrusões, que procuram estímulos exteriores e ligam a célula ao meio que a rodeia,
que surgem no cone de crescimento devido a forças mecânicas originadas por filamentos de
actina.

Em seguida, o modelo 2D tem em conta o funcionamento interno da célula: o transporte
do mRNA do núcleo para a extremidade do axónio, que ocorre com a ajuda de microtúbulos,
acoplado ao crescimento neuronal dependente de estímulos externos.

Embora com o primeiro modelo não se tenha conseguido alcançar resultados satisfatórios,
o segundo é estável e pode ser um bom ponto de partida para modelos mais complexos e
relevantes do ponto de vista biológico.
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Chapter 1

Introduction

1.1 Biological Background

1.1.1 Concepts

The nervous system is the most complex assembly of organs in the human body. It is
responsible for emotions, reactions to external stimuli and defines each person’s personality.
The nervous system is currently a target of intense investigation. However, a big part of its
functionality is still unknown and with the advancement of technology there is an increased
but still partial understanding of what happens with its components.

Neurons are the basic unit of the nervous system. They comprise three parts: cell body,
dendrites and axon. Although the most commonly known image of these cells is very sim-
ple, in reality they present very complex shapes and can be as small as 1 mm or as large as
1 m. Each cell’s shape is usually directly related to its function and neurons are not an ex-
ception. As their function is to pass on information to other cells, they are very long so as
to reach the extremities of the human body and can be very branched in both dendrites and
axon terminals with the intent of establishing communication with a greater number of cells
around them. Unlike some other types of cells, neurons maintain their overall shape during
the entirety of their lifetime [1].

The intricacies of cell shape are controlled by a cytoskeleton which is, analogously to the
entire human body, the skeleton of the cell. This structure has more functions than just struc-
tural organization within the cell, but it is also responsible for cellular transport, division and
morphology. The three main components of the neuron’s cytoskeleton are microtubules, mi-
crofilaments and neurofilaments. In this work, we present a detailed view of microtubules,
although some concepts regarding microfilaments will also be explained [1].

Microtubules (MT) have a polymer of 50kDa tubulin subunit as the core structure. The
protofilaments are composed by α and β tubulin, 13 of which compose a hollow tube. These
structures are a critical part of neuronal polarity, as they present a plus and a minus end. In
axons, they are organized with the plus end pointing towards the terminal. The polymeriza-
tion is said to occur in the plus end due to its faster growth regarding the minus end. It’s the
equilibrium between assembly and disassembly at each end that defines a critical concentra-
tion for consistent microtubule growth. Axonal and dendritic MTs are not continuous from
the terminals to the cell body but rather dashed-like, nor are they associated with any visible
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FIGURE 1.1: Distribution and dynamics of cytoskeletal elements in the growth
cone. Globular actin (G-actin) can be incorporated into F-actin at the leading edge
of the filopodium in response to attractive cues. Repulsive cues support the dis-
assembly and retrograde flow of G-actin toward the lamellapodium. Organized
microtubules make up the cytoskeletal core of the axon, while more broadly dis-
persed, dynamic microtubules or microtubule subunits are found in apposition to

F- and G-actin in the lamellapodium. Adapted from [4].

organizing structure such as a MTOC (MT organization centre) [2]. Besides being structural
elements, they also act as tracks for organelle and vesicle traffic along axons.

Microfilaments (MF) are actin composed cytoskeleton structures. G-actin monomers form
an F-actin polymer. Their concentration increases in developmental structures called neurites,
most of which later transform into dendrites while only one of them, assisted by a substruc-
ture named growth cone (GC), will make the axon [1].

Axons reach the previously mentioned dimensions by growing at the tip due to the GC,
which is composed by two different parts: a smooth region named lamellapodium and finger-
like regions named filopodia [3]. The GC navigates by chemotaxis, i.e., it moves in response to
chemical signals in the tissues it grows through. However, since distinct neurons have differ-
ent functions, they express different receptors at the GCs and can connect to different cells.
These structures can respond to signals differently, whether by chemical attraction, repulsion
or simply bypassing them. The membrane protrusions appear due to the underlying actin
dynamics: the rapid polymerization of actin microfilaments leads to a protrusion, followed
by MT elongation and movements to the site (see Figure 1.1). Although MTs do not reach
the tip of the GC, they are essential to its progress. Once the GC reaches the target cell, the
synapses are formed and the structure disappears.

A very important function of the cytoskeleton, mainly the MTs, is the aforementioned
axonal transport. It can be anterograde or retrograde, respectively from the cell body to the
axon terminal and reverse. The transport happens due to the binding of molecular motors
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(kinesin, dynein and myosin) to the cytoskeleton and to the cargo, which happens due to
their use of ATP hydrolysis energy. The transport can either be fast (i.e. in the case of kinesins
that bind vesicles and organelles) or slow (e.g. when cytoskeleton proteins are transported
along the so called slow components of cell transport). The rate of the latter process limits
both axonal growth and regeneration [1].

An important biological concept to retain is about protein synthesis. It starts with the ge-
netic information stored in the deoxyribonucleic acid, also known as DNA. In the nuclei, this
information is partially copied into a slightly different type of molecule, the ribonucleic acid
or RNA, through a process known as transcription. These information chains then leave the
nuclei. In the cytoplasm, the different types of RNA modulate the synthesis. In this work, we
focus on the messenger RNA, or mRNA, which contains the genetic copy of the gene for the
wanted protein. It then happens the second step of protein synthesis: the translation. With
the help of other molecules, e.g. a two-part ribosome, this strand is translated into a protein:
each three nucleobases (basic building blocks of the DNA and RNA) form a codon which is
translated into the correspondent aminoacid, the monomer of proteins [5]. However, there
are also some portions of the mRNA that are untranslated regions (UTR). These regions can
contain important information, e.g. the set amount of time the mRNA is available for trans-
lation [6].

It was thought for a long time, with the discovery of all these concepts, that in the ax-
ons, the actin dynamics occurred as such: the actin mRNA was translated in the cell body,
formed MF and only then the MF sections were transported as polymers to the axon ter-
minals. However, in the past decade, some new evidences enlightened a new theory: local
mRNA translation and the theory of decentralization [6]. As neurons can be very long cells,
it is most natural that there is some degree of compartmentalization [7]. As the terminals can
be far from the cell body, they are easily isolated. The local mRNA translation can explain
the fast neuronal response and adaptation to external stimuli [8], such as the de novo protein
synthesis (synthesis from individual monomers and not from recycling proteins after some
degradation) that was previously unknown to occur away from the cell body. Furthermore,
it was demonstrated that the attraction between growth cones and neurotrophic factors is
heavily blocked by the presence of translation inhibitors [9].

Local mRNA translation appears to be an evolutionarily conserved mechanism that de-
centralizes genomic information and delegates its control to subcellular compartments. It
is a very adaptable mechanism linking extrinsic signals in the surrounding tissues to the
functional response of the neuron. It is easy to see the connection between this theory and
the development of an axon [10]: the GC reacts to stimuli, eliciting asymmetric localization
and translation of β-actin (isoform of actin in the cytoskeleton) mRNA and actin regulators
(such as RhoA, associated with cytoskeleton regulation specially in actin fibers formation,
and cofilin, which binds actin, disassembling the filaments) on the side closest to the external
signal, causing the structure to change direction according to the environment (Figure 1.2).

The translation of the different types of proteins heavily depends on both the chemical
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FIGURE 1.2: Growth cone guidance scheme: an external stimuli promotes
changes in localization and subcellular translation of mRNA. A polarizing stim-
ulus promotes asymmetrical localization and mRNA translation of β-actin and
actin regulators in the region nearest to the stimuli, contributing to the polarized

and directional cellular movement. Adapted from [11].

cue present in the environment and the type of receptors in the cell membrane. For example,
the mentioned actin mRNA can be triggered by substances like netrin-1 but not by Sema3A
[6] and, on the other hand, the regulators (RhoA, cofilin) can be translated in the presence
of the latter but not the former. This sustains the theory that different neurons will respond
differently to the same surrounding stimulus.

The localization happens after the normal process of the mRNA exiting the nuclei. It
is believed that, afterwards, translational repressors silence the mRNA [12], which is later
involved by a vesicle, along with other important translational cargo like ribosomes or reg-
ulators like RNA-binding proteins (RBP), which recognize specific RNA sequences. These
granular bundles are referred to as transport ribonucleoprotein particles (mRNPs) [12].

This new vesicle will then bind molecular motors, usually kinesins even though the bun-
dle can recruit more than one or even change their properties so as to control its own localiza-
tion. Later, the vesicle will undertake fast transport along the microtubules until they reach
the translational site. It is believed that this information is encoded in specific UTRs named
zip codes[11]. These sequences also act as translational repressors, which make them essen-
tial for the mRNA localization.

Besides the local control of translation in response to external cues, there are several other
advantages to this localization: there is an increased local cost effectiveness (production of
several copies from the same mRNA strand), it prevents proteins from acting ectopically (i.e.
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not in the intended site), facilitates the assembly of macromolecules locally (with the presence
of many mRNA strands and the aforementioned cost effectiveness) and presents the proper-
ties of newly synthesized proteins [7].

In sum, there are several processes that contribute to the localization: nuclei exportation,
localized protection from degradation, polarized active transport mediated by molecular mo-
tors and localized anchorage.

1.1.2 Diseases and Motivation

Aging is a process particularly severe to the brain. A lot of degenerative diseases are its di-
rect result and most of them are irreversible. Although the most publicly known pathologies
occur in the central nervous system (CNS), mainly in the brain cortex, such as Alzheimer’s,
Parkinson’s or autism, there are others affecting the peripheral counterpart (PNS).

Peripheral neuropathies are a set of diseases affecting neurons and their connection to
other tissues, which might impair sensation or movement, depending on the type of neu-
ron affected [3]. There are several types of peripheral disorders, which can be inherited or
due to other diseases such as diabetes, autoimmune diseases or infections. Some disorders
can be characterized by axonopathy (the dysfunctionality of the axon) while others are pre-
dominantly demyelinating. Some of these diseases are characterized by ataxia, a symptom
consisting of abnormality in controlling and coordinating movements.

It is important to note that axonal protein synthesis is elicited in response to injury and
plays very important roles in axon regeneration and maintenance [13] (see Fig. 1.3), mainly
due to the fact that a growth cone is essential for a successful recovery of the injured connec-
tions [14]. Moreover, there are new studies indicating that dysfunctional RNA localization
and translation represent one of the most common molecular pathologies of neurodevelop-
mental and neurodegenerative diseases, such as autism (CNS) or ataxias (PNS) [7].

Although recent studies have helped unravel these diseases and advances in a cure for
each of them, the available technology and knowledge is still not enough [16]. To quantita-
tively predict the mechanisms regulating neurons and particularly the axon is a step forward
in this direction. If we can understand its process and development, maybe the cure is closer
than expected.

Nowadays, experimental biology is not an isolated subject to study diseases, but can be
complemented by others. The mathematical modelling and consequent computational coun-
terpart of each process within a cell and also their interconnection is a way to understand
how it works with several advantages: it takes less time, less investment and everything can
be manipulated much more easily, including parameters that are experimentally impossible
to test. Modelling also allows to propose beforehand which parameters are more important
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FIGURE 1.3: Transports of mRNAs into axons. Schematic of a PNS neuron in pan-
els A-C with sources of mRNAs and ribosomes indicated by the arrows. Injury
of the axon recruits mRNAs into translation helping to initiate the regenerative
response [14]. The concentration of mRNA can be from pre-existing (dormant, as
seen in (A)) or from injury-induced transcriptional events mRNA, according to
the external stimuli (B-C). Individual classes of mRNAs and their RBPs are color-
coded for transport stimulus: grey = constitutively transported, while the others
are transported in response to external growthcues: red = positive and blue =

negative. Adapted from [15].
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and should be under focus experimentally. So, with the results from the computational cal-
culations we can enlighten the biological model and, in return, biological data can tune the
mathematical model, pushing each other forward.

In this work, we propose mathematical ways to model both the actin dynamics in filopodia
with the associated membrane expansion and the axonal growth and mRNA localization in
a neuron, while focusing on a few details, such as the transport of the genetic information to
the axon terminal or the advancement of the tip regarding external stimuli.

1.2 Overview of Models

As mentioned in the last section, many of the biological mechanisms involved in axonal
growth were only recently discovered. However, as cell biology is a very interesting and
rapidly developing area, it was always appealing to mathematical model its intricacies and
as such there have been different models presented to explain the different parts of the com-
plexity of a living cell. In this section, some of the main ideas will be explained and the
evolution of models throughout the years will be described.

One of the key concepts regarding the modelling for this particular subject is to under-
stand that a neuron is biologically compartmentalized and, as such, can either be represented
as an entire cell or as one of its individual components (e.g., the growth cone), and how it not
only grows but also polarizes and moves in accordance to external stimuli.

The first step towards modelling the cell is understanding that, mathematically, it repre-
sents a region delimited by a frontier: the membrane. However, it is not isolated and maybe
influenced by different external stimuli, such as chemical signals. Defining the shape of a cell
and how it interacts with the environment will determine its evolution through space and
time simulations.

The modelling of a membrane is done by considering it a moving deformable domain.
There are four main basic computational techniques to model this problem: the Lagrangian
marker method (a simple model which considers the border to be a set of Lagrangian marker
points that move according to a given velocity inherent to the problem), the level set method
(the boundary is considered to be the level set of a function that describes the distance of any
point in the domain from the boundary), phase-field method (considers a order parameter
that differs in domains, e.g. inside or outside the cell, with the membrane being the interface
between both) and Cellular Potts model (stochastic method that represents the expansion or
retraction of the edge of the cell domain) [17].

Most of the mathematical models nowadays regard general ideas or a specific part of the
problem. Some are more focused on the axon guidance [18, 19, 20, 21, 22, 23], others on the
growth and morphology of the axon [24, 25, 26]. There are a few about the actin dynamics
in the process [27], specially inside the filopodia [28, 29], while different articles consider the
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cargo transport along microtubules and the axon [30, 31, 32]. More recently, there have been
some studies considering more than one of these topics and therefore resulting in a more
complex model of the biological system [33, 34, 35]. All of these examples will be further
explained in the subsections below.

1.2.1 Axon Guidance, Growth and Morphology

As there are many computational approaches to solve biological problems, there are also
several mathematical tools which can provide different answers to the existing questions. In
this subsection, a brief explanation of some of these paths regarding axonal guidance, growth
and morphology will be provided.

Regarding axon guidance, some simple models were developed describing state vectors
and concentration of cues in the environment [18] which were later considered as a backbone
of the investigation in the field and consequently influencing many other works.

Recently, one of the biggest approaches to this problem has been by considering the ax-
onal growth and guidance as a stochastic problem since it is an event dependent on random
variables, as it is nearly impossible to specifically predict where the neurites will appear and
later which one will be the axon, or which trajectory the GC will have [19, 20, 21] even if we
know where are the chemoattraction and repulsion signals. These models are based on dis-
tinct probabilities for each of the events happening while the axon grows and travels through
its environment, whether by considering mainly the external cues [20] or the internal re-
sponse of the GC [19]. More recently, a model has been developed to further explain how the
axon guidance happened with an apparent saturation and with so, and comparing to in vivo
results, found a realistic and precise predictive model of growth cone trajectories [22].

As for computational advances in axonal growth and guidance modelling, for example,
there has been software developed, considering the main internal/external mechanisms and
environmental elements of the process [23]. Although this software can be useful for rough
simulations, it is a very basic view becoming deprecated as new discoveries have been made
ever since its development.

The morphology of the axon is not the same throughout the entire process and can be
divided into simple stages such as neurite initiation, neurite elongation, axonal guidance and
synapse formation in the end [24]. Recently, promising modelling studies have been focused
primarily on the GC shape during axon guidance by analysing the set of possible shapes
that it can have, and understanding the oscillation of form in axon guidance dynamics [26].
Other computational techniques have been applied to further understand this morphological
changes, such as the phase-field method used to understand axonal extensions in cells [25].
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1.2.2 Intracellular Dynamics

When approaching a complex subject such as the internal dynamics of a cell, it is neces-
sary to understand that a particular set of reactions will not be isolated from the rest. There-
fore, computational and mathematical models usually just recreate the reactions and forces
as a whole throughout the cell and not particularly molecule by molecule. For example, con-
sidering a phase-field approach in a cell motility model coupled with actin flow, adhesion
and morphology [27], the equations depict the lamellopodium as a part of the cell with slightly
different cytoplasmic characteristics. This is, however, a good example of a model that accu-
rately describes the biological results using a relatively simple set of equations.

There are, however, studies which focus in a smaller part of the cell, namely the filopodia.
As it has a different actin and microtubule behaviour in comparison with the rest of the cell,
the hypothesis about its functioning can be tested using mathematical methods. For example,
Naoz et al. have been studying and tuning the filopodia models throughout the years: firstly,
testing the protein localization at the tip by molecular motors and actin threadmilling [28],
and later further exploring the role of actin polymerization in the protrusions, elaborating a
general model that can explain several morphological features of a filopodium [29], such as the
protrusion force caused by the actin polymerization and the friction between the consequent
actin fiber and underlying cytoplasm.

As aforementioned, neurons are very long and compartimented cells. Therefore, the
transport of substances from the cell body to the extremities is a crucial part of their dy-
namics. Usually, this type of modelling is done resorting to Partial Differential Equations
(PDE), solved using numerical integration methods. The models usually consider equations
of axonal reaction-diffusion-advection, the three principal components of the dynamics of
transported cargo. Zadeh et al. [30] presented a consistent model for general cargo transport,
along with parameter estimation in accordance to imaging results.

Recently, with the advances in biology regarding mRNA localization, some studies have
surfaced considering not only mRNA diffusion throughout the cell body but also advection
along the microtubules. These studies were either focused on a more mathematical view of a
simple cell, considering microtubules as a vector field and its interaction with the concentra-
tion of mRNA, either free or linked [31], or simply by considering the transport of the mRNP
[32].

1.2.3 Composite Models

Although the previously mentioned topics have been studied almost independently, more
recently there have been emerging mathematical models that connect the two essential parts
of the mechanisms.
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Najem and Grant [33] developed a phase-field model that coupled both internal actin dy-
namics and axonal growth. Based on a free energy functional (further explained in the chap-
ter below), they propose a set of equations to model axonal growth, while distinguishing the
GC from the rest of the cell as a different phase. However, the limitations of the model, albeit
simple, are very hard to overcome as they only managed to model a one-dimensional growth
of the cell. More recently, and with a bigger focus in the GC shape, Diehl et al. [34] have
developed an efficient simulation of tubulin-driven (the monomers of MT) axonal growth,
where it is shown that not only the initial growth is fast, but the active transport is more im-
portant for velocity than diffusion itself and that the polymerization ratio at the GC does not
influence its final shape.

Furthermore, an algorithm was developed to simulate a difficult pathology: axon regen-
eration after glial scar, which is a phenomenon that happens when there is a CNS injury and
glial cells (supporting cells of the nervous system that maintain homeostasis, produce myelin
and also protect neurons) form a dense barrier that prevents axons from easily passing by
[35]. It is a three-dimensional numerical simulation with a method that handles complicated
boundary conditions and allows several different simulations while changing environmental
parameters.

Although some of this studies provide a detailed description of a biological process, there
is still room for improvement and further investigation may allow new results and ideas to
emerge.
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Chapter 2

Mathematical and Computational
Methods

The main goal in this project is to develop a mathematical model that can successfully
simulate in detail the mRNA translation and consequent actin dynamics coupled to axonal
growth. However, to do so, two different ideas were pursued: from here onwards named
3D Shape and Forces Model and 2D mRNA Transport Model. The first model is designed
to simulate the mechanical forces of a protrusion growth in the cell, along with membrane
expansion and the forces produced by the actin filaments. In the second model, the aim is to
simulate the axonal transport of both mRNA and proteins (specifically, actin filaments) cou-
pled to the growth itself.

2.1 The Phase-Field Method

Both of the models have the same simulation method behind: the Phase-Field Method
(PFM) [36]. The idea is to consider the modelling system as a heterogeneous mixture of two
(or more) domains defined by an order parameter, φ, that evolves through space and time,
and can characterize the change from one phase to the other. This parameter is constant in the
bulk of each phase, which interact through a thin frontier. Furthermore, the PFM can be seen
as a tool that allows the interface between the phases to evolve according to the simulated
model.

Usually, PFM are described by a free energy functional, i.e., a function whose input is not
a single number but rather an entire function. By the minimization of the functional, the dy-
namics of the order parameter are controlled by a set of non-linear PDEs. Even for the most
complex equation, the integration can be done by simple mathematical methods, such as the
time-dependent Euler algorithm. In other words, to solve these types of problems, all equa-
tions in the system are written in relation to the order parameter and solved for the entire
system with small time steps.

In a real model, the interface thickness ε can be really small, approximately 10−10m = 1Å
for mixtures but bigger in case of cell membranes. As for the PFM, the order parameter varies
between the absolute values in each phase within a length of small size ε. In the limit where
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the thickness is close to zero, the PFM dynamics are equivalent to the real results.

The principal idea is to find an expression for the time and space evolution of the order
parameter and it can be achieved using the Ginzburg-Landau (or Cahn-Hilliard) free energy
functional E[φ]. This expression depends on the entire spacial configuration of the φ field.
Further considerations of functional calculus can be seen in the Appendix section A.3. This
free energy functional implements an energy cost which depends on the interface length,
therefore contributing to a minimization of its length.

The order parameters can be regarded as either conserved or non-conserved. If they are
conserved, the φ equation can be obtained using Model B, which considers:

∂φ

∂t
= ∇ ·

(
K∇δE

δφ

)
(2.1)

with K the mobility and E the free energy functional. The main disadvantage of this
method is the quadruple derivative than can occur if a Laplacian operator is present in the
expression for the functional derivative. The dynamics of non-conserved order parameters,
Model A, are given by

∂φ

∂t
= −M δE

δφ
(2.2)

where M is the mobility. In order to preserve the total mass of the system, a Lagrangian
multiplier term of the form λ

∫
φ(~r)dV can be added to the free energy.

2.2 3D Shape and Forces Model

There are several approaches to model the mechanical forces of actin in the membrane.
First, however, it is necessary to find a stable cell membrane model and, more specifically,
a three dimensional one. Looking into the existing literature and considering membranes
as fluids, red-blood cells can be an example of a good membrane model, since that at equi-
librium they present an "unswollen" shape by minimizing their free energy with respect to
both surface area and volume, minimizing the integral of the local curvature on the mem-
branes, explained by Canham and later by Helfrich [37]. The Canham-Helfrich energy has
been used to simulate different types of cells or vesicles. A phase-field method description of
the Canham-Helfrich free energy has also been implemented [38], so this seems a particularly
good mathematical model to start with.

The principal idea is to find a stable model for the cell itself [38] and further develop a
method by applying mechanical forces to the surface, analogous to how the actin filaments
form protrusions in filopodia [39].

In the model proposed by Campelo et al. [38], the free energy E is proportional to the
square curvature of the membraneH : the energy is the same for either a negative or a positive
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n̂

FIGURE 2.1: The normal vector n̂ is perpendicular
to the surface at a given point.

curvature
E =

∫
H2dS. (2.3)

The local curvature is described as a variation of the normal vector (Fig. 2.1), H = ∇ · n̂.

The backbone of the model presented in this section is initially set in the resulting equa-
tion of the minimization of the free energy functional proposed by Campelo et al., which is
obtained by setting the phase field function ψ[φ] to zero:

ψ[φ] = −φ+ φ3 − ε2∇2φ = 0 (2.4)

with ε being the interface width. In one dimension, the former equation can be simplified
to yield

d2φ

dx2
=

1

ε2
(
−φ+ φ3

)
(2.5)

which has a tanh-like solution (see Appendix A, equation (A.12)). Substituting 1
ε2

= 2a2 ⇔
a = 1√

2ε
, the order parameter function can be described as

φ(x) = tanh

(
1√
2ε
x

)
. (2.6)

However, the goal of this model is to represent the cell in three dimensions. As such, φ
will be described as a function of the distance d(~r) to the interface

φ(d(~r)) = tanh

(
1√
2ε
d(~r)

)
. (2.7)

As the distance to the interface is constant (namely, zero) at the said interface, the distance
gradient is perpendicular to the surface itself, thus is the same as the normal vector in each
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interface point, i.e.,∇d(~r) = n̂. The curvature can therefore be given as H = ∇ · n̂ = ∇2d(~r).

To arrive at a final equation for the curvature, the next step is to derive φ with respect to
the spatial coordinates, which is further developed in the Appendix section A.5.1. This way,
the Laplacian of φ is given by:

∇2φ =
1√
2ε

(
1− φ2

)
∇2d(~r) +

1

ε2
(∇ · d(~r))2

(
−φ+ φ3

)
. (2.8)

The first part of this equation has the intended term ∇2d(~r), which can be isolated from
the rest. Another important detail is that, as ∇ · d(~r) = n̂, then (∇ · d(~r))2 = n̂ · n̂ = 1. With
all things considered, the expression for the curvature H is

H = ∇2d(~r) =

√
2ε

(1− φ2)

(
∇2φ− 1

ε2
(
−φ+ φ3

))
⇔

⇔ H =

√
2

ε (1− φ2)
(
φ− φ3 + ε2∇2φ

) (2.9)

which is proportional to the left hand side of the Equation (2.4). The main goal is to use the
φ field to write the membrane free energy. For this, the Dirac’s delta function (see Appendix
section A.4) will be used

E =

∫
H2δ (~r − ~rs) dS. (2.10)

Since the order parameter function can be considered approximately as a Heaviside func-
tion, a good representation of the delta function needed would be:

δ (~r − ~rs) ≈ N (∇φ)2 = N

((
1− φ2

)
√

2ε
∇ · d(~r)

)2

= N

(
1− φ2

)2
2ε2

=
N

2ε2
sech4

(
d(~r)√

2ε

)
(2.11)

where N is a constant and using the fact that (∇ · d(~r))2 = 1. Also, the approximation
is valid in the limit where ε → 0. N can be easily determined by normalizing (2.11) (see
Appendix A, equation (A.18)). The inverse of the solution of the underlying integral (see
Appendix section A.5.2), N , can than be plugged into equation (2.11), resulting in:

δ (~r − ~rs) =

(
1− φ2

)2
2ε2

3ε

2
√

2
=
(
1− φ2

)2 3

4
√

2ε
. (2.12)

Now, the free energy equation can be updated and further developed, as the idea is to
have a general model for both bending energy and applied forces

E ∝
∫
H2δ (~r − ~rs) d~r ≈

≈
∫

2

ε2 (1− φ2)2
(
φ− φ3 + ε2∇2φ

)2 (
1− φ2

)2 3

4
√

2ε
d~r =

=

∫
3

2
√

2ε3

(
φ− φ3 + ε2∇2φ

)2
d~r.

(2.13)
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And thus, the free energy of the system is defined by

E =

∫
3

2
√

2ε3

(
φ− φ3 + ε2∇2φ

)2
d~r +

∫
3

4
√

2ε
~r · ~F

(
1− φ2

)2
d~r. (2.14)

For simplicity, the constant terms of the previous equation will be redefined as k1 = 3
2
√
2ε3

and k2 = 3
4
√
2ε

. The second term reproduces the work exerted on the membrane by a force of

density ~F .

Although finding an equation for the free energy was the main focus of the mathematical
process above, the simulation PFM is applied to the time and space evolution of the order
parameter φ. As the free energy functional has a Laplace operator, the best way to simulate
the system is by using an approximation of Model A physics, considering:

∂φ

∂t
= −δE

δφ
. (2.15)

Using functional calculus (as presented in the Appendix section A.3), it is easier to obtain
the intended expression, which will give how much the energy varies if φ changes in every
point of the space

δE =

∫
δE

δφ
δφd~r. (2.16)

So far, the free energy expression (2.14) comprises two terms: the bending energy and
the applied forces. However, before implementing the external forces to the system, it is
necessary to first preserve both volume and surface area as the cell boundary is a stabilized
membrane. The final expression will then be composed by four terms:

δE

δφ
=
δEb
δφ

+
δEf
δφ

+
δEv
δφ

+
δEs
δφ

(2.17)

with Eb the bending energy, Ef the applied forces energy, Ev related to the conservation
of volume and Es related to the conservation of surface area. The development of the ex-
pressions is further explored in the Appendix section A.5.3. The first two parts of the above
equation can be already shown as they have been previously demonstrated in this section,
and were deduced in the Appendix equations (A.29) and (A.30) respectively, giving

δEb
δφ

= 2k1
[(
φ− φ3 + ε2∇2φ

) (
1− 3φ2

)
+ ε2∇2

(
φ− φ3 + ε2∇2φ

)]
(2.18)

and
δEf
δφ

= −4k2(~r · ~F )
[(

1− φ2
)
φ
]
. (2.19)

For the conservation of volume, the bulk property needed is the pressure, P . The idea is
that for the same pressure, a larger volume will diminish the overall energy. Therefore, if the
volume is decreased during the simulation, an increase in pressure can compensate. As for
the PFM, to calculate the volume of the structure, one can only consider the order parameter
inside the cell, i.e., above the environment value (which, in this case and later explained, will
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be φoutside = −1). As such, the energy will be

Ev = −P
∫ (

1 + φ

2

)2

(2− φ)d~r (2.20)

which guarantees the above conditions as the volume is the sum of all the order param-
eters of the system that are different from −1, and is negative as φ is never greater than 1.
After the demonstration of the Appendix equation (A.31), the final expression will be:

δEv
δφ

= −3

4
P
(
1− φ2

)
. (2.21)

Finally, to achieve surface area stabilization, the essential property is the surface tension
σ. As it is a property that will only act on the surface, the simplest way to guarantee it is to
apply the delta function previously demonstrated

Es = σ

∫
δ (~r − ~rs) d~r = σk2

∫ (
1− φ2

)2
d~r. (2.22)

This only applies to when the order parameter is different from the outside and the inside
of the cell, meaning that it will only apply to the surface, as intended. In the Appendix
equation (A.32), it is demonstrated how to get the partial derivative needed, obtaining

δEs
δφ

= −4σk2
[(

1− φ2
)
φ
]
. (2.23)

In the former expressions, both the pressure P and surface tension σ act as Lagrange
multipliers throughout the simulation. The equation for the spacial and temporal evolution of
the order parameter φ are now concluded and as such the simulations can proceed, something
to be further explained on the computational simulations chapter.

2.3 2D mRNA Transport Model

The second model will focus more on the biological concept of mRNA localization by ax-
onal transport. This approach is slightly different: instead of developing a brand new model,
the option was to adapt and implement two different models into a new and unified one. For
the axonal growth, the model will be adapted from the angiogenesis model by Travasso et al.
[40] while the microtubule transport will be inspired in the model by Szymanska et al. [31],
with a phase field adaptation based on the articles by Kockelkoren et al. [41].

The phase field model chosen can be adapted to describe axonal growth. This model is
constituted by two PDEs that here will describe the time evolution of the two components of
the system: the attractive chemical cue outside the cell, T , and the shape of the neuron, given
by an order parameter φ evolution in all the space. The model also has two other equations
that address the dynamics of the GC: one describes its velocity ~vGC and the other its order
parameter φGC .
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In this model and analogously to the biological one, the chemical signal evolution heavily
depends on both diffusion of the growth factor throughout the environment surrounding the
cell and its consumption by the neuron

∂

∂t
T = ∇ · (Di(~r)∇T )− αTTφΘ(φ). (2.24)

The diffusion coefficient, Di(~r), depends on the type of chemical cue present in the environ-
ment, although in this model it is considered a constant. The second term is the consumption
of the signal by the growing cell, with αT the consumption rate. The Θ represents a Heaviside
function (see Appendix section A.4).

The time evolution of the order parameter φ is as follows, considering both a dynamic
and a proliferative term

∂

∂t
φ = M∇2

(
−φ+ φ3 − ε∇2φ

)
+ αp(T )φΘ(φ). (2.25)

The dynamics are described by the previously mentioned Model B physics. M represents
the mobility coefficient for the growth cone and αp the growth rate.

The GC will advance at a determined velocity, ~vGC , that proportionally depends on the
growth factor G = |∇T |

d

dt
~r = ~vGC = χ∇T

[
1 +

(
Gm
G
− 1

)
Θ (G−Gm)

]
. (2.26)

with χ the chemotactic response of the membrane of both the GC and the rest of the axon,
while Gm is the minimum value to trigger a chemotactic response of the cell.

However, the velocity equation above does not influence either of the other two afore-
mentioned equations, only because it is not a general parameter but rather a GC one. With
that said, this particular part of the neuron will have a different order parameter, inversely
proportional to the velocity but also dependent on the growth rate of the axon.

φGC =
αp(T )πRGC

2|~vGC |
(2.27)

with RGC the radius of the growth cone. In this model, the morphology of this structure
is not considered, as the only focus will be on the dynamics and therefore it can be simplified
into a circumference.

Finally, in this part of the model, there is also a microtubule formation which is basically
the log of positions of the GC, in the middle of the axon, which will be further described in
the simulation method.

The second part of the model has to do with the internal dynamics of actin. The equations
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for the time evolution of both proteins and mRNA, whether free or bounded to the micro-
tubules, are inspired by the equations developed by Szymanska et al. [31]. However, these
equations have to be adapted to the PFM. The approach used is very similar to the one de-
veloped by Kockelkoren et al. [41], which implies the multiplication of the internal equations
by the order parameter, localizing the concentrations inside the cell.

Firstly, the mRNA originates in the nucleus and diffuses throughout the cell. Later, when
it encounters the microtubules, it binds them and after a while, it is freed to be translated at
the necessary location. There is, however, a different decay rate for each type of mRNA: if
it is bounded, it will be more protected from decaying and therefore will last longer. When
applying the PFM, the free mRNA concentration is obtained by mfΦ, where mf is a field that
will be calculated. In this equation, Φ = 1+φ

2 is equal to zero outside the cell and equal to
1 inside the cell. Therefore, the concentration of the free mRNA is located only inside. The
diffusion equation is written for mfΦ, as mf can be different from zero outside the cell, as
seen in the Appendix section A.6.1:

∂

∂t
mf =

kd
Φ
∇2 (mfΦ)− λfmf − γmfξ

(
Mm −ml

Mm

)
+
βm (1− ξ)ml

ξΦ
(2.28)

with kd the diffusion constant, λf the free mRNA decay, βm the probability of unbinding
of the mRNA to the microtubule, ξ the microtubule density function, γ a binding constant
and Mm the maximum concentration of linked mRNA for each point (i, j). It is easy to see
all life stages of the free mRNA: the diffusion term, the decaying term (where λ represents
the probability of decay) and the terms related to the dynamics with the microtubules: the
binding (proportional to the concentration of free mRNA, the presence of microtubules and
the cutoff term representing the maximum concentration of linked mRNA) and finally the
unbounding (with a probability βm of unbinding, depending on the microtubule density).

The microtubules are not present only at the centre of the axon but also can appear closer
to the membranes. The microtubule density function is a Gaussian function, centred in the
microtubule created with the axonal growth.

The equation for the time evolution of the linked mRNA has symmetrical counterparts to
some of the terms (binding/unbinding). However, the mRNA no longer diffuses but rather
travels through the microtubules. As the linked mRNA only depends on the presence of
microtubules, the equation will be independent of the order parameter Φ:

∂

∂t
ml = −∇ ·

(
vm

(
Mm −ml

Mm

)
mlv

)
− λfml + γmfΦξ

(
Mm −ml

Mm

)
− βm (1− ξ)ml

ξ
(2.29)

where vm is the absolute value of the velocity of the linked mRNA, v the vector field of the
microtubules and λl the linked mRNA decay. This final model is the adaptation of the afore-
mentioned methods, which allows both an axon growth and guidance while complementing
it with the local mRNA translation occurring along the axon and mainly in the GC.
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Chapter 3

Computational Simulations

Although the presented models are described by different conditions and equations, they
were both developed using the C programming language. In addition, the integration of the
PDEs was done using a time-step dependent algorithm, namely the explicit Euler Method
(see Appendix section A.7). The flow chart for the integration is represented in the Figure 3.1.

The programs were divided between several functions. For example, each mathematical
operator (e.g. Laplacian, divergence - see Appendix section A.8) had its own function, as well
as the initialization of variables and systems or any sort of matrix calculations. There were,
however, some functions common to both the simulations.

As the implementation was done in C,each matrix was represented by a double or triple
pointer of base type double, which represented either a 2D or a 3D system. A pointer is a vari-
able that indicates the direct address of the memory location of another variable. In the case
of a 2D matrix, it works as a pointer that indicates the address of a list of pointers (a "vector"),
and each of the pointers in that list indicates a list of values. At the end of the program, how-
ever, there is also the implementation of a function which aims to free the memory allocated
for each matrix, therefore allowing other processes to use it.

Some other matrix-related functions are important, namely one to assign a value to all the
points in the matrix or printing the said matrix into a file, so it can be later analysed. There
are, also, small functions to implement simple matrix relations, such as multiplication, addi-
tion, or even a dot product between two small vectors.

Lastly, it is relevant to refer that the boundary conditions for both models are periodical,
meaning an object disappearing in one boundary will appear with the same dynamical con-
ditions in the other.

In this chapter, as the evolution of the models was progressive, both the simulation and
their results will be presented, along with the discussion for each topic.
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Initialize variables,
matrix M , t = t0

t < tmax

f(M, t) = d
dtM(t)

M(t + ∆t) =
M(t) + ∆t · f(M, t)

Increase time variable
t → t + ∆t

End program

yes

no

FIGURE 3.1: Flowchart of a basic Euler method algorithm, considering matrix M ,
time variable t, time step ∆t and function f(M, t) computed for each point in the

(discrete) space.
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FIGURE 3.2: Initial Condition for the 3D Shape and Forces Model. The
parallelepiped in the centre of the figure represents the region for φ = 1.

3.1 3D Shape and Forces Model

The principal idea for this model is to consider the cell as a region in the three dimen-
sional space. To have a successful model, each of the different components of the mathemat-
ical method has to be progressively tested to guarantee the stability of the simulation. As the
total energy equals the sum of the different energies, it was necessary to confirm that each
stage was done properly before advancing. In the next subsections, each of the steps will be
further explained and analysed. The initial conditions for the simulations are presented in
Table 3.1.

As shown in Figure 3.1, the first step is to initialize the variables which in this case will
be defining the order parameter for the entire system, which will be φ = 1 inside the cell and
φ = −1 outside. The length of each cell side was calculated pondering both area and volume

considerations, so as to force the spherical proportionality V = 1
6

(
A3

π

) 1
2 between the two

(see Appendix section A.5.4). As the first input is the initial intended surface area, the rest is
calculated afterwards.

As it was previously stated, the computational program is implemented according to the
Euler algorithm. The equations explained in the previous chapter are applied as demon-
strated in the flowchart in Figure 3.3, although each part is further explored below.
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TABLE 3.1: Initial Conditions for the 3D Model Simulations. These are the
optimal initial conditions for the model, even though there are constants not
used in the all the simulations: k2 and αV are not used in the first simulation, αA

is only used in the last two simulations. * - Although this value is represented
as an initial condition, it is only activated later in the simulation (explained in

the subsection 3.1.3) and not when t = 0.

∆t 0.005
∆x 1

Box Size 100x200x120
Initial Area 10000

Maximum Volume ≈ 94032
Initial Volume ≈ 56419
X Side Length 50
Y Side Length ≈ 57.97
Z Side Length ≈ 19.47

ε 1
k1 1
k2 2
αV 0.0005
αA 0.0005*

Temporary
matrix with(

φ− φ3 + ε2∇2φ
)

for each (i, j, k)

Temporary
matrix with

∇2
(
φ− φ3 + ε2∇2φ

)
for each (i, j, k)

Update the ma-
trix with the

energy equation

Time iteration

FIGURE 3.3: Flowchart for the matrices involved in the iterations for the 3D Shape
model.
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FIGURE 3.4: Time evolution of the 3D Shape, with only the bending en-
ergy activated. The colorbar represents the positive range of the order

parameter, i.e., the interior of the cell.

3.1.1 Simulation 1 - Bending Energy

The first part of the simulation is about having a stable 3D shape so as to guarantee that
all the further steps occur correctly. In this step, the order parameter equation is only rep-
resented by ∂φ

∂t = − δEb
δφ (Equation 2.18) . In Figure 3.4, the time evolution of the shape for

t = 25.005, t = 50.000, t = 100.005 and t = 200.505 is represented. As it is clearly visible in
the graphics from Figure 3.5, the time evolution of both area and volume is not stable, which
is why the next steps are important.

The initially parallelepiped shape will tend to round its corners, as the stabilizing shape
with the minimum bending energy is a sphere. This tendency will be constant throughout
the rest of the simulations.

3.1.2 Simulation 2 - Volume Conservation

As of now, the equation representing the order parameter has another term for the en-
ergy: the volume stabilization using the bulk pressure P . However, this is not a constant but
rather a variable whose value is updated with each iteration. It consists in a constant αv times
the difference between the ideal (initial) volume Vi and the actual volume from the previous
iteration.



24 Chapter 3. Computational Simulations

FIGURE 3.5: Time evolution of the surface area and volume of the 3D
shape, with only the bending energy activated. Both appear to have
monotone behaviours: the surface area is decreasing and the volume

increasing.
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FIGURE 3.6: Time evolution of the 3D Shape, with the bending energy
and volume conservation activated. The colorbar represents the posi-

tive range of the order parameter, i.e., the interior of the cell.

P (t+ ∆t) = P (t) + αV (Vi − Vold). (3.1)

The volume is calculated each iteration as

Vold =
∑
i,j,k

(
1 + φ

2

)2

(2− φ) . (3.2)

In other words, for each t, the program starts with a variable Vold = 0 and, for each point
(i, j, k), adds the above term and then calculates the new pressure. The results of the simula-
tion with the two first energy terms ( δEb

δφ from Equation (2.18) and δEv
δφ from Equation (2.21))

are presented in Figure 3.6, for t = 25.005, t = 50.000, t = 100.005 and t = 200.505.

Although the shape is very similar to the previous simulation, the volume is stable through-
out the time evolution, as seen in Figure 3.7. However, it is still quite visible that the surface
area is not stabilized.
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FIGURE 3.7: Time evolution of the surface area and volume of the 3D
shape, with the bending energy and volume conservation activated.

While the surface area is decreasing, the volume is stabilized.
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3.1.3 Simulation 3 - Surface Area Stabilization

The last step before applying forces to the system is the total surface area conservation
throughout time. As stated before, it depends on the surface tension σ which, in turn, rep-
resents a proportionality to the difference between the intended surface area and the one
calculated in the latest iteration

σ(t+ ∆t) = σ(t) + αA (Ai −Aold) . (3.3)

However, this term is only activated after a certain time as passed (≈ t = 3.55, value
obtained from several runs of Simulation 1) to make sure the volume is already stabilized.
The surface area is calculated as

Aold = k2
∑
i,j,k

(
1− φ2

)2
. (3.4)

Similarly to the volume, the sum represents the addition of the above term in each point
(i, j, k). In Figure 3.8 is represented the simulation with the three energy terms, for t = 25.005,
t = 50.000, t = 100.005 and t = 200.505, with the consequent surface area and volume graph-
ics in Figure 3.9.

The shape of the cell is much less deformed with both terms activated, as it is visible
comparing the Simulation 3 Figure 3.8 with Simulation 1 Figure 3.4 and Simulation 2 Figure
3.6. As the shape stabilization was achieved, the mechanical forces can now be applied so as
to try to create the protrusion.

3.1.4 Simulation 4 - Mechanical Forces

To implement the final term of the equation, the mechanical forces were constricted to a
region in the space, with interface present, and where there are force vectors. The interaction
of the force vectors with the membrane acts like represented in equation (2.19): the scalar
product between the force density vector ~F and the vector ~r for each point (i, j, k). As a side
note, it is easy to observe that the order parameter dependence is the same as the one for the
surface area (see Equations (2.19) and (2.23)). The results for the simulation, with t = 11.000,
t = 12.000, t = 13.000 and t = 14.000, are present in Figure 3.10.

The results are not at all the expected. The time frame shown is much smaller than the
previous simulations because the next iteration resulted in a complete interface destruction.
In other words, although the first three terms of the equation alone produce a stable result,
when the forces are added, the interaction does not work properly. The hyperbolic tangent
profile does not survive the introduction of this energy term. Due to time constraints, this
simulation could not be further explored. It also had the characteristic of being extraordinar-
ily slow. In all the simulations ran, the steady state was not achieved even after several days
running. With this in mind, a new model was developed and simulated, originating different
type of results with a different approach.
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FIGURE 3.8: Time evolution of the 3D Shape, with the bending energy,
volume conservation and surface area stabilization activated. The col-
orbar represents the positive range of the order parameter, i.e., the inte-

rior of the cell.
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FIGURE 3.9: Time evolution of the surface area and volume of the 3D
shape, with the bending energy, volume conservation and surface area
stabilization activated. The conservation of both volume and surface
area is indeed achieved after a while, since the activation of the sur-
face area term in the equation happens after the initial stabilization of

volume.
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FIGURE 3.10: Time evolution of the 3D Shape, with all the components
of the equations activated. The colorbar represents the positive range

of the order parameter, i.e., the interior of the cell.
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3.2 2D mRNA Transport Model

Although the first model presented in this work was made entirely from the beginning
by the author, this second one will be implemented differently. As the first part of the model
was an adaptation from the work by Travasso et al. [40], the computational counterpart was
also an adaptation from their work, functioning almost as a black box for this model (Figure
3.11).

Initially, the neuron starts as a circumference with φ = 1 and the rest of the system as
φ = −1 (see Figure 3.12). Around the matrix there are growth factors that induce the forma-
tion of the GC. As soon as it is formed, it starts moving away from the cell body and thus
creating the beginning of the axon.

Each centred position of the GC will be registered as the coordinates for the microtubules,
present in the middle of the axon. After a few iterations, the mRNA transport program will
be activated.

First of all, the value interval of the order parameter is changed to φ → Φ ∈ [0, 1] for
simplification in the implementation of the equations. The next step is the formation of the
microtubule vectors and density function. Each MT is initially represented as a vector calcu-
lated with the coordinates from the point lying five positions ahead, i.e., that links positions
by which the GC has passed through, separated by five units. Afterwards, a diffusion process
is applied to guarantee both continuity of the vector field as well as for it to be more biologi-
cally relevant: the MT are displayed throughout the axon, with a larger concentration in the
middle. The MT density function, ξ, is obtained from this diffusion process.

The initial conditions for the mRNA concentration matrices depend on whether it is the
first run of the program or not. Basically, if there are already existing matrices from previous
runs then they will be the initial conditions for the present run. Otherwise, the matrices start
with mf = 1 in a centred circumference, the nucleus, and mf = 0 everywhere else, while the
concentration for linked mRNA will be zero in the entire system. The values for the other
variables are presented in Table 3.2.

As mentioned before, there is a part of the cell body that is analogous to the nucleus. With
a radius of 10 points, it is the only part of the cell where there is no mRNA decay, meaning it
only diffuses from there and the value is always a constant in said region. The linked concen-
tration only depends on the presence of microtubules and, as such, it is always zero inside
the cell body.

The equations are only calculated for each point (i, j) where the value of φ is above the
threshold (shown in Table 3.2), so as to avoid numerical problems arising from divisions by
numbers close to zero. The components of the equations that are divided by the MT density
function also follow the same rule, since ξ > 0 only at the axon.



32 Chapter 3. Computational Simulations

Iteration of the
Growth Program

Vector forma-
tion from the
microtubules

t = 0

First run
of the

program

Initializing matrices:
mf = 1 in the middle
ml = 0 everywhere

Resuming the
last values for

both mf and ml

t < tmax

Implementation of
the mRNA equations

Increase time variable
t → t + ∆t

yes
no

no

yes

FIGURE 3.11: Flowchart for the 2D mRNA Transport Model. The red block repre-
sents the program for the axonal growth, while the blue blocks represent the steps

in the modelling of the mRNA transport.
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FIGURE 3.12: Initial Condition for the 2D Model. The colorbar repre-
sents the order parameter. Although in this part the interval is [−1, 1],

further ahead it will be shifted to the interval [0, 1]

TABLE 3.2: Constants for the 2D Model Simulations. These are the optimal
values for the model, obtained from both literature [31] and by trial-error with

the simulations.

Box Size 300x300
∆t 0.005
∆x 1
kd 10
λf 0.005
γ 1
M 1
βm 0.01
vm 1
λl 0.001

Nucleus radius 10
Threshold 10−8
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FIGURE 3.13: First iteration of the 2D Model. Top left: Neuron and
Microtubule Density, the neuron matrix is between the interval [0, 1].
Top right: Total mRNA concentration (linked + free) in the cell. Bottom
left: Free mRNA concentration, only in the "nucleus". Bottom right:

Linked mRNA concentration, which is zero in the entire system.

Afterwards, the Euler algorithm is applied. Some temporary matrices are calculated, such
as the Laplacian for the free mRNA concentration or the divergence for the linked mRNA.
When the transport program reaches the maximum time, it allows the growth to continue by
running some iterations of the axonal growth code. The cycle ends when the growth maxi-
mum time is reached.

In Figure 3.13, it is possible to see the initial conditions for a first run of the mRNA trans-
port model, which happened at the iteration number 23000 of the axonal growth program.

After a few iterations, the free mRNA diffuses from the centre and reaches the tip of the
MT density. In that case, as shown in Figure 3.14, the linked mRNA concentration is no longer
zero, although still very small. From now on, the free mRNA also appears in the axon, outside
the cell body: the unbinding term of the linked mRNA equation is activated. It is possible to
see, when t reaches tmax that the linked mRNA has reached the final end of the MT (Figure
3.15). At that point, the program ends and the growth continues for more iterations, before
the transport is activated again.

When the transport program is re-initiated, it recovers the last position of the concen-
tration, calculates the new vectors and continues the transport as if there was no stop. In
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FIGURE 3.14: After a few iterations of the 2D Model, there are some no-
table changes. Top left: Neuron and Microtubule Density, the neuron
matrix is between the interval [0, 1]. Top right: Total mRNA concentra-
tion (linked + free) in the cell. Bottom left: Free mRNA concentration,
now not only in the cell body but also has been unbounded from the MT
in the axon. Bottom right: Linked mRNA concentration, only present

in the MT density function area.
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FIGURE 3.15: Last iteration of the first run of the mRNA transport pro-
gram. Top left: Neuron and Microtubule Density, the neuron matrix
is between the interval [0, 1]. Top right: Total mRNA concentration
(linked + free) in the cell. Bottom left: Free mRNA concentration. Bot-

tom right: Linked mRNA concentration.

Figures 3.16 and 3.17, it is represented the third run of the program (first and last iteration,
respectively, with the last concentration values of the second run as the starting point). After
a while, it again reaches the end of the MT and by the end of both programs, the axon has
grown along with the regular and consistent transport of the mRNA, as envisioned at the
start (Figure 3.18).

The results of this model agreed with what was expected: with a stabilized cell, a vector
field for the MT and a consequent MT density function, the equations worked properly and
the mRNA transport was successful from the nucleus to the GC, a great foundation for more
complex models.
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FIGURE 3.16: First iteration of the third run of the mRNA transport
program. Top left: Neuron and Microtubule Density, the neuron ma-
trix is between the interval [0, 1]. Top right: Total mRNA concentration
(linked + free) in the cell. Bottom left: Free mRNA concentration. Bot-

tom right: Linked mRNA concentration.
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FIGURE 3.17: Last iteration of the third run of the mRNA transport
program. Top left: Neuron and Microtubule Density, the neuron ma-
trix is between the interval [0, 1]. Top right: Total mRNA concentration
(linked + free) in the cell. Bottom left: Free mRNA concentration. Bot-

tom right: Linked mRNA concentration.
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FIGURE 3.18: Last iteration of the last run of the mRNA transport pro-
gram. Top left: Neuron and Microtubule Density, the neuron matrix
is between the interval [0, 1]. Top right: Total mRNA concentration
(linked + free) in the cell. Bottom left: Free mRNA concentration. Bot-

tom right: Linked mRNA concentration.
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Chapter 4

Conclusions and Future Work

The local mRNA transport in neurons and particularly in axonal growth is a very recent
discovery in the field. As such, the data that can be obtained from experimental work is still
far from providing all the needed information and therefore can not be properly used to tune
mathematical models quantitatively, only with qualitative approximations. In the foreseeable
future, there will be many possibilities to perfect the simulations here presented, resulting in
the natural improvement of these mathematical models.

The 3D shape model was ambitious from the start: not only was it a novel idea as it was
also implemented in three dimensions. In other words, a new model, without guarantee of
successful results, implemented for a number of dimensions that increases significantly the
time required for each simulation in comparison to other models of the same structure.

The time frame constraint was inevitable. Each simulation, with thousands of iterations
and up to the fourth derivative each, was a slow process and the program debugging was
done in a span of several days as each run took close to a day. And although the first three
parts of the modelling were successful and a stable cell shape achieved, which by itself is a
great foundation for further work, the fourth was an unsuccessful successor. The interaction
between the mechanical forces and the interface caused the destruction of the latter and con-
sequently of the entire system.

Without the time setback, the model can be further developed if the mechanical forces are
more thoroughly looked into and if the simulations can occur for an unbounded amount of
time. The main question remaining is how does the interaction with the forces destroy the
otherwise stable interface, with perhaps some focus on the implementation of said forces in
the computational model.

The approach for the 2D mRNA Transport model was completely different. The main
focus was a proof of concept: the inner works of the cell could and do influence the outcome
of the morphological growth, which was clearly seen by joining two different type of models
into one. While this was successfully reached in this model, there are many ways to further
explore and pursue this concept.

The morphological counterpart, that in this case was adapted from a model of a com-
pletely different type of biological system, could possibly be adapted from already existing
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and successful neuronal growth models, such as the one by Najem and Grant [33].

Regarding the pure aspects of this model, some features could be added to improve the
biological veracity: the mRNA binding, unbinding and even production depends on the ex-
ternal stimuli (in this particular case, the attractive growth factors) and the movement of the
GC depends on the concentration of both mRNA and proteins, which have to be incorporated
into the model, either by transport from the cell body to the GC or by production via mRNA
(translation of the localized mRNA).

Concluding, while the first model was unsuccessful at the end, the second proved to be
a starting ground to model a recently discovered and particularly difficult biological process,
which can be further explored in future investigations.
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Appendix A

Mathematical Formulas and
Deductions

A.1 Vector Calculus

Vector ~A with coordinates (x, y, z). s a common variable. Function f .

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂ (A.1)

d

ds

(
f ~A
)

=
df

ds
~A+ f

d ~A

ds
(A.2)

∇ ·
(
f ~A
)

= ∇f · ~A+ f∇ · ~A (A.3)

A.2 Useful Mathematical Equalities

Functions f ,g.
(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 (A.4)

∫
fgdx =

(∫
fdx

)
· g −

∫ (∫
fdx′

)
g′dx (A.5)

sinh ax =
eax − e−ax

2
(A.6)

cosh ax =
eax + e−ax

2
(A.7)

d

dx
sinh ax = a cosh ax (A.8)

d

dx
cosh ax = a sinh ax (A.9)

tanh(ax) =
sinh ax

cosh ax
(A.10)
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d

dx
tanh(ax) =

a cosh(ax)2 − a sinh(ax)2

cosh(ax)2
= a− a tanh(ax)2 (A.11)

d2

dx2
tanh(ax) =

d

dx

(
a− a tanh(ax)2

)
= 2a2

(
− tanh(ax) + tanh(ax)3

)
(A.12)

A.3 Functional Calculus

A functional F is a function whose argument is an entire function instead of a single num-
ber. Given a quantity f that depends on the space function φ(x), the functional F [φ(x)] can
be, for example, F [φ(x)] =

∫
f(φ(x))dx [36].

The minimization of a functional F [φ(x)] in relation to φ(x) is obtained via variational
derivatives, by

δF [φ(x)]

δφ
= 0. (A.13)

And, finally, the definition of variational calculus theory:

δF [φ(x)] = F [φ+ δφ]− F [φ] =

∫
V

(
δF

δφ
δφ+ . . .

)
dV. (A.14)

As for a practical example, givenF [φ] =
∫

(∇φ)2dx and the approximation δF =
∫
δF
δφ δφdV ,

F [φ+ δφ] =

∫
(∇(φ+ δφ))2 dV =

∫
(∇φ)2dV +

∫
2∇φ∇δφdV ⇔

⇔ F [φ] + δF =

∫
(∇φ)2dV +

∫
2∇φ∇δφdV ⇔

⇔ δF =

∫
2∇φ∇δφdV.

(A.15)

Integrating by parts (see Equation A.5), and as the frontier conditions are periodical:

δF =

∫
2∇2φδφdV =⇒ δF

δφ
= 2∇2φ. (A.16)

A.4 Dirac’s delta function and Heaviside function

The Dirac’s delta function or δ function is a linear function, that is defined by

δ(x) =

0 x 6= 0

∞ x = 0
(A.17)

and ∫ ∞
−∞

δ(x)dx = 1. (A.18)

The most important property of this function, in relation to the work presented in this
thesis, is the following ∫

f(x)δ(x− x0)dx = f(x0), (A.19)
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or the analogous for more dimensions∫
f(~r)δ(~r − ~rs)dV = f(~rs) (A.20)

which allows the calculation of the value of any function f at the determined point x0 or
distance ~rs.

Another important characteristic of the delta function is that it represents the derivative
of the Heaviside function, Θ.

d

dx
Θ(x) = δ(x). (A.21)

This function, also known as the step function, is defined by the following conditions:

Θ(x− x0) =

1 x ≥ x0
0 x < x0

. (A.22)

In other words, the function takes the value 0 when the argument is negative and 1 oth-
erwise.

A.5 3D Shape and Forces Model

A.5.1 Deriving φ with respect to the space variables

∂iφ = ∂i

(
tanh

(
1√
2ε
d(~r)

))
=

(
1− tanh2

(
1√
2ε
d(~r)

))
1√
2ε
∂id(~r)⇔

⇔ ∂iφ =
1√
2ε

(1− φ2)∂id(~r)

(A.23)

∂j∂iφ = ∂j

(
1√
2ε

(
1− tanh2

(
1√
2ε
d(~r)

))
∂id(~r)

)
=

=
1√
2ε

(
1− tanh2

(
1√
2ε
d(~r)

))
∂j∂id(~r) + · · ·

· · ·+ 2

(
1√
2ε

)2(
− tanh

(
1√
2ε
d(~r)

)
+ tanh3

(
1√
2ε
d(~r)

))
∂jd(~r)∂id(~r)⇔

⇔ ∂j∂iφ =
1√
2ε

(
1− φ2

)
∂ijd(~r) +

1

ε2
(
−φ+ φ3

)
∂id(~r)∂jd(~r)

(A.24)

A.5.2 Integrating (∇φ)2

∫ ∞
−∞

1

2ε2
(
1− φ2

)2
dx =

∫ ∞
−∞

1

2ε2

(
1− tanh2

(
1√
2ε
x

))2

dx (A.25)
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Considering u = x√
2ε

and du = dx√
2ε∫ ∞

−∞

√
2ε

2ε2
(
1− tanh2 (u)

)2
du (A.26)

and further v = tanh(u) with dv =
(
1− tanh2(u)

)
du =

(
1− v2

)
du, changing the limits

from ]−∞,∞ [ to ]− 1, 1 [∫ 1

−1

√
2

2ε (1− v2)
(
1− v2

)2
dv =

∫ 1

−1

√
2

2ε

(
1− v2

)
dv =

=

√
2

2ε

[
2−

(
13

3
− (−1)3

3

)]
=

2
√

2

3ε

(A.27)

A.5.3 Free Energy Functional Calculation

Note: As δφ is infinitesimal, all of the terms with its order equal or above 2 will be disre-
garded.

Considering only the bending energy:

Eb[φ+ δφ] =

∫
k1

(
φ+ δφ− (φ+ δφ)3 + ε2∇2 (φ+ δφ)

)2
d~r =

= k1

∫ (
φ+ δφ−

(
φ3 + 3φ2δφ+ 3φδφ2 + δφ3

)
+ ε2∇2φ+ ε2∇2δφ

)2
d~r =

= k1

∫ ((
φ− φ3 + ε2∇2φ

)
+
(
δφ− 3φ2δφ+ ε2∇2δφ

))2
d~r =

= k1

∫ (
φ− φ3 + ε2∇2φ

)2
d~r + k1

∫
2
(
φ− φ3 + ε2∇2φ

) (
δφ− 3φ2δφ+ ε2∇2δφ

)
d~r ⇔

⇔ δEb = k1

∫
2
(
φ− φ3 + ε2∇2φ

) (
1− 3φ2

)
δφd~r + k1

∫
2
(
φ− φ3 + ε2∇2φ

)
ε2∇2δφd~r.

(A.28)
The second term in the right part of the last equation can be easily solved into the type of

expression intended by integrating by parts twice. The ending result for the bending energy
of the membrane is

δEb =

∫
2k1

((
φ− φ3 + ε2∇2φ

) (
1− 3φ2

)
+ ε2∇2

(
φ− φ3 + ε2∇2φ

))
δφd~r ⇔

⇔ δEb
δφ

= 2k1
[(
φ− φ3 + ε2∇2φ

) (
1− 3φ2

)
+ ε2∇2

(
φ− φ3 + ε2∇2φ

)]
.

(A.29)

The applied forces energy is determined by:

Ef [φ+ δφ] = k2

∫
~r · ~F

(
1− (φ+ δφ)2

)2
d~r =

= k2

∫
~r · ~F

((
1− φ2

)
− 2φδφ

)2
d~r = k2

∫
~r · ~F

((
1− φ2

)2 − 4
(
1− φ2

)
φδφ

)
d~r =

= k2

∫
~r · ~F

(
1− φ2

)2
d~r − 4k2

∫
~r · ~F

(
1− φ2

)
φδφd~r ⇔

⇔ δEf = −4k2

∫
~r · ~F

(
1− φ2

)
φδφd~r ⇔

δEf
δφ

= −4k2(~r · ~F )
[(

1− φ2
)
φ
]
.

(A.30)



A.5. 3D Shape and Forces Model 47

Volume conservation term defined as:

Ev[φ+ δφ] = −P
∫

(1 + φ+ δφ)2

4
(2− φ− δφ)d~r =

= −P
∫ (

1 + φ2
)2

+ 2 (1 + φ) δφ

4
(2− φ− δφ)d~r =

= −P
∫ (

1 + φ

2

)2

(2− φ)d~r + P

∫ (
1 + φ

2

)2

δφd~r − P

2

∫
(1 + φ)(2− φ)δφd~r ⇔

⇔ δEv = −3

4
P

∫ (
1− φ2

)
δφd~r ⇔

⇔ δEv
δφ

= −3

4
P
(
1− φ2

)
.

(A.31)

And, finally, the surface area conservation term is obtained by

Es[φ+ δφ] = σk2

∫ (
1− (φ+ δφ)2

)2
d~r = σk2

∫ ((
1− φ2

)
− 2φδφ

)2
d~r =

= σk2

∫ ((
1− φ2

)2 − 4φδφ
(
1− φ2

))
d~r =

= σk2

∫ (
1− φ2

)2
d~r − 4σk2

∫
φ
(
1− φ2

)
δφd~r ⇔

⇔ δEs = −4σk2

∫
φ
(
1− φ2

)
δφd~r ⇔

⇔ δEs
δφ

= −4σk2
[(

1− φ2
)
φ
]
.

(A.32)

A.5.4 Volume and Surface Area Considerations

As the idea is to minimize the bending energy of the cell, and having into consideration
that the spherical shape has the minimum value, the cell sides were chosen so as to accom-
modate the proportionality between both the surface area Amax = 4πr2 and the maximum
volume Vmax = 4

3πr
3:

Vmax =
1

6

(
A3

π

) 1
2

. (A.33)

It is important to note that cells are not spheres and therefore the volume chosen was
smaller. Here, the selected volume fraction is 0.60. In other words, the initial volume is
V = 0.6Vmax

Considering the sides a, b, c of the parallelepiped region, its volume is V = abc and the
correspondent surface area is A = 2(ac + bc + ab). Defining a as a predefined number and
considering c = V

ab , b can be obtained by

A = 2
V

b
+ 2

V

a
+ 2ab⇔ Ab = 2V + 2

V b

a
+ 2ab2 ⇔

⇔ b =

(
A− 2VA

)
±
√(

A− 2Va
)2 − 16aV

4a

(A.34)

subject to the constraint that
(
A− 2Va

)2 − 16aV > 0.
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A.6 2D mRNA Transport Model

A.6.1 Applying PFM to the mRNA Equations

The first change is that the time derivative is not applied to mf but to its product by φ

∂

∂t
mfΦ = mf

∂

∂t
Φ + Φ

∂

∂t
mf . (A.35)

However, as in this part of the model the order parameter is approximated to a constant
field and, therefore, the first part of the right hand side is null.

Φ
∂

∂t
mf = kd∇2(mfΦ)− λfmfΦ− γmfΦξ

(
Mm −ml

Mm

)
+
βm(1− ξ)ml

ξ
⇔

⇔ ∂

∂t
mf =

kd
Φ
∇2(mfΦ)− λfmf − γmfξ

(
Mm −ml

Mm

)
+
βm(1− ξ)ml

Φξ
.

(A.36)

The equation for the concentration of linked mRNA is not affected in the same way as this
mRNA does not depend on the order parameter. The only term to be influenced by Φ is the
binding, i.e., when a fragment of the free mRNA links the MT, as this quantity is represented
as mfΦ.

A.7 Euler Method

There are many ways to try to solve differential equations and are usually based off on
the idea of finding the best approximation for the derivative of a function x(t). This is found
by using the Taylor expansion, as the first term x(t0) is already known

x(t+ ∆t) = x(t) +
d

dt
x(t)∆t+

1

2

d2

dt2
x(t)∆t2 +

1

6

d3

dt3
x(t)∆t3 + · · · . (A.37)

The Euler method is an explicit numerical algorithm to solve such differential equations.
As it only considers the first order term of the series, it is a very simple model to implement,
which usually is only recommended for simple implementations and exploratory work

x(t+ ∆t) = x(t) +
d

dt
x(t)∆t. (A.38)

Please note, as the time step ∆t in this type of algorithms is constant, it does not adapt to
the necessity of more or less points throughout the time evolution of the system.

A.8 Mathematical Operators Implementation

As it can be seen throughout the equations of both models, there are some mathematical
operators applied, namely different variations of the ∇ symbol. This represents a simple no-
tation for the vector represented in the equation (A.1). In this work, it can either represent the
gradient of a function (the result is a vector), the divergence of a vector (which is simply the
scalar product and as such the result is a scalar) or as the scalar operator Laplacian, resulting
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in the sum of the second partial derivatives of a function.

To implement these operators, they first have to be discretized. The best way to do so is by
using the Taylor expansion for the function, so as to obtain a spacial definition for each value
in a matrix. The expansions, representing only the first terms (second order discretization) as
greater orders of the steps ∆x and ∆y can be considered insignificant, are:

f(i+ 1, j) = fi,j + ∆x
∂f

∂x
+

∆x2

2

∂2f

∂x2
,

f(i− 1, j) = fi,j −∆x
∂f

∂x
+

∆x2

2

∂2f

∂x2
,

f(i, j + 1) = fi,j + ∆y
∂f

∂y
+

∆y2

2

∂2f

∂y2
,

f(i, j − 1) = fi,j −∆y
∂f

∂y
+

∆y2

2

∂2f

∂y2
.

(A.39)

The idea is to sum the i and j variations (which, if infinitesimal are approximately the
x and y derivatives) so as to obtain and isolate the differential terms needed. For example,
applying the discretization to the Laplacion ∇2f = ∂2f

∂x2
+ ∂2f

∂y2
works as such: from the sum

of the two top equations in the aforementioned expression, the expression for ∂2f
∂x2

can be
obtained and analogously for the bottom two. Assuming ∆x = ∆y, the intended Laplacian
expression is:

∇2f =
1

∆x2
(f(i+ 1, j) + f(i− 1, j) + f(i, j + 1) + f(i, j − 1)− 4f(i, j)) . (A.40)

Which means that the Laplacian applied to each point (i, j) depends on its neighbours.
Computationally, it is significantly easier to implement this notation to a discrete matrix. As
the mathematical operators applied depend on the neighbours, it is important to guarantee
that the changes are not influencing the current matrix, i.e., at any given iteration of the pro-
cess, there are two separate matrices (one with the previously calculated values and the other
with the values currently being computed) so as to guarantee that the new matrix will not be
affected by the changes occurring at the current time step.
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