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Resumo
A modelação matemática é uma ferramenta poderosa que permite a

representação virtual de fenómenos físicos e biológicos complexos e con-
tribui para a compreensão do papel de cada sub fenómeno e da in�uência
dos parâmetros do modelo no seu comportamento global. Para além
disso, pode ser usada na construção de novos protocolos médicos, novos
dispositivos para aplicação de fármacos e no planeamento de novas ex-
periências e tratamentos.

Este trabalho é dedicado ao estudo da libertação controlada de fárma-
cos a partir de dispositivos iontoforéticos. O transporte do fármaco e a
sua absorção são favorecidos por campos elétricos. O fenómeno de liber-
tação de fármaco é descrito por equações de convecção-difusão acopladas
em que o coe�ciente convectivo é de�nido pela equação de Nernst-Planck.

Iniciamos este trabalho com um modelo simpli�cado em que admiti-
mos que o fármaco está em contacto com o tecido alvo. Neste caso,
é estabelecida uma fórmula explícita para a concentração obtida uti-
lizando a análise de Fourier. Na parte central do trabalho, o compor-
tamento qualitativo do problema acoplado é analisado de um ponto de
vista analítico e numérico. São estabelecidas estimativas de energia que
nos permitem caracterizar a massa de fármaco absorvida. No ponto de
vista numérico, é proposto um método de diferenças �nitas e são estu-
dadas as suas propriedades de estabilidade e convergência. Resultados
numéricos que ilustram o comportamento qualitativo do sistema com-
plexo são apresentados.

Palavras Chave: Libertação de fármacos, Iontoforese, Equação de Nernst-Plack,

Equações de convecção-difusão acopladas

Abstract
Mathematical modelling is a powerful tool that allows a virtual repre-

sentation of complex physical and biological phenomena and contributes
to the understanding of the role of each phenomenon and the in�uence of
the parameters of the model in its global behavior. Furthermore, it can
be used to help the design of new protocols, new drug delivery devices
and plan new experiments and treatments.

This work is devoted to the study of the controlled drug delivery
from iontophoretic systems. The drug is entrapped in a reservoir which
is in contact with a target tissue. The drug transport and its absorption
are enhanced by an applied electric �eld. The drug release is described
by coupled convection-di�usion equations, being the convective velocities
given by the Nernst-Planck equation.
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We start by considering a simpli�ed model where the drug is in contact
with the target tissue. In this case, an explicit expression for the drug
concentration is obtained using Fourier analysis. In the main part of
this work, the qualitative behavior of the coupled problems is analysed
from theoretical and numerical points of view. Energy estimates are
established that allow the characterization of the absorbed drug mass.
From a numerical point of view, a �nite di�erence method is proposed
and its stability and convergence are established. Numerical results that
illustrate the qualitative behavior of the drug concentration are included.

Keywords: Drug delivery, Iontophoresis, Nernst-Planck equation, Coupled convection-

di�usion equations
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Chapter 1

Introduction

Medical treatments using preparations for the skin, such as ointments and salves,

are among the �rst to be recorded in medicine history. The transdermal route for

drug delivery has since been one of the most used even today, mostly because of it's

easy access and also for being potentially non-invasive. However, skin is foremost an

important barrier in our defense system and, as such, constitutes an hindrance to

most drugs by impeding the permeation and preventing them to reach the circulatory

system in su�cient quantities.

To tackle this obstacle, several methodologies to increase skin permeation have

been developed ([7]). Without being exhaustive, we mention: the use of chemical

agents, even though an ideal chemical for penetration enhancement is hard to �nd;

the sonophoresis, which uses ultrasound waves to stimulate micro-vibrations within

the skin epidermis and creates a convective transport of the permeant across the

skin; microneedles have also been used to bypass the stratum corneum (SC) through

various techniques, such as coating the microneedles with the drug, or even using

dissolvable microneedles with biodegradable polymeric materials ([15]) and letting

the drug di�use through the skin into the circulatory, after inserting them through

the SC; the use of nanocarriers, the most used for transdermal drug delivery are lipo-

somes, dendrimers, nanoparticles and nanoemulsions ([12]); and �nally, a technique

called iontophoresis, which consists in an application of a low electrical potential

gradient over extended periods of time via an electrical circuit constituted by two

oppositely charged drug reservoirs placed on the skin surface.

The last method, which is the object of this work, became popular at the be-

ginning of the 20th century through the work of LeDuc (1900). The electric �eld

created enhances the �ux or rate of absorption of ionic solutes into the skin. By al-

ternately applying and terminating the current, one can have a greater control over

the quantities of drug administered. A similar method called electroporation consists

of applying a higher electrical potential gradient over shorter periods of time, which
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Chapter 1 Introduction

�breaks� the cell membrane down and forms nano-scale defects or �pores� in the mem-

brane ([1],[2], [3], [20]). Iontophoresis can be used in conjunction with electroporation

and the previously refered methods. It should be remarked that iontophoresis is also

applied to treat pancreatic cancer, using chemotherapy to shrink the tumor or to

stop it's growth ([4]), therefore making some patients eligible to surgery which oth-

erwise would not be. Ocular iontophoresis has been investigated to treatments such

as dry eye syndrome. Dentistry has also recurred to iontophoretic uses in treating

hypersensitive dentin, oral ulcers and delivering local anesthetics ([13]). Another im-

portant application regards the reverse iontophoresis, an alternative for non-invasive

clinical and therapeutic drug monitoring ([7],[5]).

Some of the iontophoretic systems use stimuli-responsive polymers, where the

drug is entrapped, that are able to respond to the modi�cation of external envi-

ronment like electric �elds, pH, and temperature. Electric �elds are an attractive

stimulus because they can be precisely controlled, and the drug delivery responses

can be predicted.

Each of the above applications involve complex phenomena. For instance, in

transdermal drug delivery enhanced by an electric �eld, the drug leaves the poly-

meric matrix, enters the stratum corneum and is transported through the skin to

reach the circulatory system. In both media the transport occurs by passive di�u-

sion, electromigration-migration of ions due to the electric �eld, and electroosmosis-

transport due the solvent movement ([10], [17], [19]).

Let us consider a coupled system: a reservoir containing a charged drug which

is in contact with a target tissue. In iontophoresis procedure, a small electric �eld

is applied to the coupled system. If the drug molecules are positively charged, then

the anode is in contact with the reservoir and the cathode is in an opposite position.

The generated electric �eld induces a convective �eld in the system that depends

on the drug molecules' valence, intensity of the electric �eld, temperature, electric

conductivity of both media and drug di�usion in the medium ([10],[11]).

Mathematical modelling is a powerful tool that allows a virtual representation of

the physical and biological phenomena involved and contributes to the understanding

of the role of each phenomenon, the in�uence of the parameters of the model in its

global behavior and to justify experimental data. Furthermore, it can be used to help

the design of new protocols, new drug delivery devices and plan new experiments

and treatments.
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1.0

The main objective of this work is the mathematical modelling of the drug re-

leased from a polymeric matrix and its entrance in a target tissue when the ion-

tophoresis procedure is used. In this case, the drug delivery from a polymeric device

is enhanced by an electric �eld of low intensity, which is applied during long pe-

riods of time, and its entrance in a target tissue is also enhanced by the electric

�eld. The mathematical model is characterized by partial di�erential equations that

describe the transport through the media-polymeric matrix and target tissue, and

the evolution of the electric �eld which is described by the Laplace equation in both

media. The electric potential induces a convective �eld that enhances the drug

transport. Then, the time-space evolution of the drug in both media is described

by convection-di�usion equations and additional conditions: initial, boundary and

interface conditions ([11]).

This work is organized as follows. In Chapter 2 we consider the case in which the

drug is in direct contact with the target tissue, with an electrode inside the target. An

analytical study is presented regarding existence and uniqueness of a solution of the

convection-di�usion equation, and the obtained solution is illustrated. In Chapter

3 the more complex case of a drug encapsulated in a reservoir is studied. Solving

the coupled problem for the electric �eld, the convective �eld is explicitly given and

the electric �eld and drug equations are replaced by coupled convection-di�usion

equations. Energy estimates are obtained and used to guarantee the uniqueness and

stability of the coupled model, as well as to compute lower bounds for the absorbed

drug. As we are not able to obtain an explicit expression for the drug concentration,

we introduce an explicit Euler method, that allow us to compute an approximation

for the solution. The stability and convergence of the proposed numerical method

are presented. Some numerical results obtained with Matlab are also included. We

observe that part of these studies were published in [8]. In Chapter 4 we present

some conclusions.
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Chapter 2

Drug in contact with the target

tissue

2.1. Introduction

The main objective of this Chapter is the study of the situation when the drug is

constantly being delivered directly to the target tissue. To enhance the drug di�usion,

we assume that an electric �eld is applied. In this case the drug mass �ux J has

two main contributes: the Fick's mass �ux and a convective mass �ux induced by

the electric �eld. Here we shall neglect the osmotic mass �ux and assume that the

target tissue is an isotropic medium. This last assumption allow the replacement of

the 3D model by a 1D model. The iontophoretic device is considered with the anode

and cathode placed in the intended direction of the drug and opposite to each other,

with one being implanted in the intended target. This can be the case as in the

administration of cytotoxic therapies ([4]). This Chapter is organized as follows: in

Section 2.2 we present the evolution of the drug concentration. The construction of

the solution of the initial value problem introduced in the previous Section is made

using the method of separation of variables in Section 2.3. This construction allows

us to illustrate the drug concentration behavior in Section 2.4 and the response to

the changes of some parameters.

2.2. Evolution of the drug concentration

Let c(x, t) (g/m3) represent the drug concentration in x ∈ [0, `] at time t ≥ 0. In

x = 0 we have the point of contact between the drug and the tissue and in x = ` the

point of desired absorption as in �gure 2.1. Consider cext to be the concentration

of drug molecules at x = 0. At the initial time t = 0 we do not have any drug in

the tissue and we assume that the drug is completely absorbed at x = `. These

assumptions can be summarized by

c(0, t) = cext , t ≥ 0 , c(`, t) = 0 , t ≥ 0 , c(x, 0) = 0 , x ∈ (0, `) . (2.1)
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Anode/
Cathode

Cathode/
AnodeTissue

x = 0 x = `

Figure 2.1: Considered model.

The drug mass �ux (gm−2 s−1) is given by the Nernst-Planck equation

J = −D∇c− vc , (2.2)

where D (m2 s−1) is the di�usion coe�cient and v the convection velocity induced

by the applied electric �eld

v =
zDF

RT
∇Φ (2.3)

where z denotes the valence of the drug molecules, F the Faraday constant (9.6485×

104 Coulomb/mol), T the temperature (K) in the tissue, R the gas constant (8.31446

JK−1mol−1) and Φ (V) the electric potential.

The mass conservation law dictates

∂c

∂t
+∇ · J = 0, (2.4)

and from (2.2) we obtain

∂c

∂t
= ∇ · (D∇c) +∇ · (vc) . (2.5)

Next we shall compute the gradient of the potential. We assume that during the

period of application, Φ does not change over time. Then

∆Φ = 0 , in (0, `) . (2.6)

Since the applied potential is known,

Φ(0) = Φ0 Φ(`) = Φ1 , (2.7)

we obtain

v =
zDF

RT

Φ1 − Φ0

`
. (2.8)

Regarding the ionic valance z and the potential di�erence ∇Φ, we make the

following observation. If the ionic specie has a positive electric charge, one needs

to generate a potential di�erence by placing the anode in the left-hand side of the
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x = 0

+ + -

x = `

Figure 2.2: Scheme for a positively charged drug.

x = 0

- - +

x = `

Figure 2.3: Scheme for a negatively charged drug.

target tissue and the cathode in the opposite side. In �gure 2.3 we illustrate the

converse situation for a negative ionic valence.

Finally we conclude from (2.5) and (2.1), and considering the 1D simpli�cation,

that the evolution of the drug concentration is described by the following initial and

boundary value problem

∂c

∂t
= D

∂2c

∂x2
+

∂

∂x
(vc) in (0, `)× R+

c(x, 0) = 0, x ∈ (0, `)

c(0, t) = cext , c(`, t) = 0, t ∈ R+
0

. (2.9)

2.3. Existence and uniqueness results

In what follows we will study the existence and uniqueness of the solution of the

IBVP (2.9). We start our analysis by assuming that solutions for this problem exist

and we will prove the uniqueness of such a solution.

Theorem 1. The IBVP (2.9) has at the most one solution c(t) ∈ H2(Ω) and
∂c

∂t
(t) ∈

L2(Ω).

We shall use the following notations: for t ∈ R+
0 , by c(t) we denote the function

c(t) : [0, `]→ R

x 7→ c(x, t).

Let L2(0, `) be the usual space of square integrable functions with the usual inner

product ( , ) and norm ‖ . ‖. By H1(0, `), H1
0(0, `) we represent the usual Sobolev

spaces.
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Suppose that c satis�es the Dirichlet homogenous boundary conditions and the

initial condition holds as stated in (2.9). Then, from (2.5) we obtain

(c′(t), w) + (D∇c(t),∇w) + (∇vc,∇w) = 0 , ∀w ∈ H2(0, `) (2.10)

If (2.9) has two solutions c1 and c2, then c = c1−c2 satis�es (2.10). Consequently,

taking w = c we get

1

2

d

dt
||c(t)||2 +D||∇c(t)||2 + (vc(t),∇c(t)) = 0

and since

(vc(t),∇c(t)) ≤ v2

4ε2
||c(t)||2 + ε2||∇c(t)||2

∀ε ∈ R\ {0}, we obtain

1

2

d

dt
||c(t)||2 + (D − ε2)||∇c(t)||2 − v2

4ε2
||c(t)||2 ≤ 0 . (2.11)

Choosing ε2 = D we establish

1

2

d

dt
||c(t)||2 − v2

4D
||c(t)||2 ≤ 0 , ∀t > 0 . (2.12)

Gronwall's lemma allow us to obtain the following estimate

||c(t)||2 ≤ e
v2

4D
t||c(0)||2 , ∀t ≥ 0 . (2.13)

Inequality 2.13 leads to the uniqueness of the solution of the IBVP (2.9) and

its stability. In fact, if c1 and c2 are both solutions of (2.9) with di�erent initial

conditions, then

||c1(t)− c2(t)||2 ≤ e
v2

4D
t||c1(0)− c2(0)||2 , ∀t > 0 . (2.14)

Consequently, we conclude that we have stability, but only in bounded time intervals.

Let us now show that a solution of the problem exists.

Theorem 2. The function c(x, t) = `−x
` cext + eαx+βt

∑+∞
n=0 an(t)sin(nπx` ), (x, t) ∈

[0, `]× R+
0 with

• an(t) = Bn
e−βt − e−d(nπ

`
)2t

d(nπ` )2 − β
+ e−d(nπ

`
)2tan(0) ,

• an(0) = −2cext
`

e−α``(eα`nπ(α`(−2 + α`) + n2π2)− 2α`nπ cos(nπ)

((α`)2 + (nπ)2)2

• Bn =
2vcext
`2

(
nπ`(1− eα` cos(nπ)

(nπ)2 + (α`)2

)
,
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2.3 Existence and uniqueness results

• α = − v
2D and β = − v2

4D ,

satis�es the convection-di�usion equation (2.9) and the initial conditions in the sense

that the boundary conditions hold.

Proof. We start by reducing the boundary condition to a homogenous boundary

condition considering w = c− w0, where

w0(x) =
`− x
`

cext .

As we have

∂w

∂t
=

∂c

∂t
− ∂w0

∂t
=
∂c

∂t

= D
∂2c

∂x2
+

∂

∂x
(vc)

= D
∂2w

∂x2
+

∂

∂x
(vw) +

v

`
cext ,

we conclude for w
∂w
∂t = D ∂2w

∂x2
+ ∂

∂x(vw) + v
` cext in (0, `)× R+

w(x, 0) = − `−x
` cext , x ∈ (0, `)

w(0, t) = 0 , w(`, t) = 0 , t ∈ R+

. (2.15)

To remove the term ∂
∂x(vw) we introduce the new variable w(x, t) = eαx+βtg(x, t),

where α and β will be �xed later. Then we have

∂w

∂t
(x, t) = βeαx+βtg(x, t) + eαx+βt∂g

∂t
(x, t)

∂w

∂x
(x, t) = αeαx+βtg(x, t) + eαx+βt

∂2w

∂x2
(x, t) = α2eαx+βtg(x, t) + 2αeαx+βt ∂g

∂x
(x, t) + eαx+βt ∂

2g

∂x2
(x, t) .

From equations (2.15) and dividing by eαx+βt on both sides we obtain

∂g

∂t
(x, t) = g(x, t)

(
Dα2 + vα− β

)
+
∂g

∂x
(x, t)(2αD+v)+

∂2g

∂x2
(x, t)D+

v

`
cexte

−αx−βt .

Fixing α = − v
2D and β = − v2

4D we get for g the following IBVP
∂g
∂t (x, t) = D ∂2g

∂x2
(x, t) + v

` cexte
−αx−βt , (x, t) ∈ (0, `)× R+

g(x, 0) = − `−x
` cexte

−αx , x ∈ (0, `)

g(0, t) = 0 , g(`, t) = 0 , t ∈ R+

. (2.16)
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We prescribe for the solution of (2.16) the following form

g(x, t) =

+∞∑
n=1

an(t) sin
(nπx

`

)
. (2.17)

Let f(x, t) = v
` cexte

−αx−βt. Then f(x, t) = e−βtf(x) where

f(x) =
+∞∑
n=1

Bn sin
(nπx

`

)
and Bn, the Fourier coe�cients of f(x), are given by

Bn =
2vcext
`

(
nπ(1− e−α` cos(nπ)

(nπ)2 + (α`)2

)
.

We establish in what follows, a di�erential equation for the Fourier coe�cients

an(t). We have

∂g

∂t
(x, t) =

+∞∑
n=1

a′n(t) sin
(nπx

`

)
.

From the di�erential equation for g we deduce

+∞∑
n=1

a′n(t) sin
(nπx

`

)
= −D

+∞∑
n=1

an(t)
(nπx

`

)2
sin
(nπx

`

)
+ e−βt

+∞∑
n=1

Bn sin
(nπx

`

)
.

Therefore, we are led to the following di�erential equation

a′n(t) = −D
(nπx

`

)2
an(t) + e−βtBn (2.18)

which is complemented by the Fourier coe�cients of g(x, 0) given by

an(0) = −2cext
`

e−α``(eα`nπ(α`(−2 + α`) + n2π2) + 2αn`π cos(nπ))

((α`)2 + (nπ)2)2
. (2.19)

Solving the initial value problem (2.18), (2.19) we obtain

an(t) = Bn
e−βt − e−d(nπ

`
)2t

d(nπ` )2 − β
+ e−d(nπ

`
)2tan(0) .

Since w = c− w0, then

c(x, t) = w(x, t) + w0(x) = eαx+βtg(x, t) + w0(x) ,

that is,

c(x, t) =
`− x
`

cext + eαx+βt
+∞∑
n=1

an(t) sin
(nπx

`

)
, x ∈ [0, `] , t ≥ 0 . (2.20)

It remains to check if c is indeed a solution of the IBVP. We prove in what follows

that g(x, t) exists for x ∈ [0, `], t ≥ 0, that is, the series in the right-hand side of

(2.20) is uniformly convergent in [0, `]× [γ, T ] for γ > 0, γ < T and a �xed T .

10



2.3 Existence and uniqueness results

We remark that for x ∈ [0, `]× [γ, T ] we have∣∣∣an(t) sin
(nπx

`

)∣∣∣ ≤ const [( n

n2 + α′

)(
1

n2 − β′

)
+ e
−d

(
n2π2

`

)(
n3 + n

(α̂+ n2)2

)]
for convenient constants α′, α̂, β′ and for n ≥ n0 such that n2 − β′ > 0. In the last

inequality and in what follows we denote const also a convenient constant.

As
∑+∞

n=n0

n
(n2+α′)(n2−β′) and

∑+∞
n=n0

e
−d

(
n2π2

`

)
n3+n

(α̂+n2)2
are convergent series, we

conclude that
∑+∞

n=1 an(t) sin
(
nπx
`

)
is uniformly convergent in [0, `] × [γ, T ] and so,

it de�nes a continuous function in [0, `] × [γ, T ]. Finally, we conclude that g exists

and is continuous in [0, `]× R+.

Following the previous procedure for

+∞∑
n=1

a(i)
n (t)

(
d

dx

)j
sin
(nπx

`

)
, x ∈ (0, ` , t ∈ [γ, T ] ,

it can be shown that
∂i+jg

∂xi∂tj
exists and is continuous in (0, `)× R+.

By the construction of the ordinary di�erential problem for an(t), it is easy to

conclude that g satis�es the di�erential equation of the IBVP (2.16).

We will now prove that g satis�es the initial condition in (2.16) in the sense that

(2.16) holds. Let Ψ ∈ L2(0, `). We have

lim
t→0+

(g(t),Ψ) = lim
t→0+

+∞∑
n=1

an(t)

∫ `

0
Ψ(x) sin

(nπx
`

)
dx

= lim
t→0+

`

2

+∞∑
n=1

an(t)bn .

We show now that
∑+∞

n=1 an(t)bn is a continuous function for t ≥ 0. We have

|an(t)bn| ≤ const
(

n

n2 + α′
1

n2 − β′
+

n3 + n

(α̂+ n2)2

)
|bn|

for t ≥ 0 and n ≥ n0. Consequently

m∑
n=n0

|an(t)bn| ≤ const

m∑
n=n0

(
n

n2 + α′
1

n2 − β′
+

n3

(α̂+ n2)2

)
|bn|

≤ const

(
m∑

n=n0

n2

(n2 + α′)2(n2 − β′)2
+

n6

(α̂+ n2)4

) 1
2
(

m∑
n=n0

|bn|2
) 1

2

.

As
∑m

n=n0

n2

(n2+α)2(n2−β)2
and

∑m
n=n0

n3

(α+n2)4
are convergent sequences because the

corresponding series are convergent, and
∑m

n=n0
|bn|2 is convergent because Ψ ∈

L2(0, `), then
∑+∞

n=1 |an(t)bn| is convergent for t ≥ 0, and consequently
∑+∞

n=1 an(t)bn

is a continuous function for t ≥ 0.
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Chapter 2 Drug in contact with the target tissue

Using the previous property, we have

lim
t→0+

(g(t),Ψ) =
`

2

+∞∑
n=1

an(0)bn

= (g(0),Ψ) .

2.4. Qualitative behavior

In Theorem 2 we have presented an explicit expression for the drug concentration c

using a Fourier series. Considering a �nite number of terms of such series, we obtain

an approximation for c. Here we shall consider N = 2000, that is

c2000(x, t) =
`− x
`

cext + eαx+βt
2000∑
n=1

an(t) sin
(nπx

`

)
.

In what follows we illustrate the behavior of c2000 for di�erent values of the

parameters of the model. We start by illustrating the e�ect of the convection term,

induced by the electric �eld. We have taken cext = 1 (g/m2), D = 10−11 (m2/s),

` = 1.13× 10−3 m and z = −1. On �gure 2.4 we present c2000(t) for di�erent values

of t and with v = 0, a di�usion process. In �gure 2.5 we present the concentration

c2000 when electromigration is present, with Φ0 = −0.02 V and Φ1 = 0.02 V. We

observe an increase in concentration levels in the last case, when compared to only

di�usion illustrated in �gure 2.4.

Figure 2.4: Evolution of the concentration between 3 hours with just di�usion.

In �gure 2.6 we illustrate the e�ect of the electric potential. In this �gure we

plot the drug concentration c2000, using the same value for D = 10−11, with di�erent

12



2.4 Qualitative behavior

Figure 2.5: Evolution of the concentration between 3 hours with electromigration.

`∇Φ = 0.02, 0.04 and 0.08, after the same time t = 3 h. We observe that as `∇Φ

increases, higher values of concentration are obtained.

Figure 2.6: Concentration after 3 hours with di�erent potentials.

The e�ect of the di�usion coe�cient in the transport process is illustrated in

�gure 2.7, where we use for the same Φ0 = −0.02 and Φ1 = 0.02, di�erent values of

D = 10−11, 2× 10−12 and 5× 10−11.

As we can see, small increases in the potential and the di�usion coe�cient lead

to a general increase of the concentration after some time, whereas small decreases

lead to a decrease of the concentration.

We will now turn our attention towards the stationary solution of the problem.

13



Chapter 2 Drug in contact with the target tissue

Figure 2.7: Concentration after 3 hours with di�erent di�usion coe�cients.

Solving ∂c
∂t = 0 we obtain

c(x) =
cext

1− e
v∗`
D

(
e
v
D
x − e

v∗`
D

)
, x ∈ [0, `] .

Note that, from the expression for v in (2.8), the electric potential can in�uence

the stationary solution. In fact, we can see that a higher electrical potential leads to

higher stationary concentration levels. Furthermore, observing the expression for v

we can say that the di�usion coe�cient does not in�uence the stationary state. In

�gures 2.8 and 2.9 we plot the stationary solutions for `∇Φ = 0 and `∇Φ = 0.04

respectively.

Figure 2.8: Stationary state of concentration with `∇Φ = 0.
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Figure 2.9: Stationary state of concentration with `∇Φ = 0.04.
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Chapter 3

Drug in a polymeric reservoir

3.1. Introduction

In this Chapter we assume that the drug is contained in a polymeric reservoir which

is in contact with the target tissue. The electric �eld is generated applying the

cathode (anode) in the reservoir and the anode (cathode) in the oposite site, in

the target tissue depending on the electric charge of the drug as it was observed

in Chapter 2. Since we assume isotropic media, the 3D physical model can be

replaced by a 1D physical model as the one illustrated in �gure 3.1. As the drug

transport in the reservoir and in the target tissue is enhanced by the electric �eld,

the drug mass �ux Ji, i = r, s, has two main contributions, which are induced by

the Fickian transport and electromigration as in Chapter 2. We assume that the

two media have di�erent di�usion and electrical conductivity coe�cients. These

assumptions lead to two di�erent Laplace equations for the electric potential that

are coupled by transference conditions at the contact boundary. The evolution of

the drug concentration is described by two convection-di�usion equations that are

coupled by transference conditions at the contact boundary.

The main objective of this Chapter is the study of the drug concentrations in dif-

ferent scenarios and it is organized as follows. In Section 3.2 we establish the coupled

model for the drug concentration. The stability analysis is presented in Section 3.3

using the energy method. The energy estimates are used in Section 3.4 to compute

lower bounds for the absorbed drug mass. A semi-analytical approach to solve the

drug coupled problem is presented in Section 3.5 which is a natural extension of the

one presented in Chapter 2. We remark that due to it's complexity, we do not use

such approach to solve the drug distribution. We introduce in Section 3.6 an explicit

numerical method for the coupled convection-di�usion equations. The stability of

the methods and its convergence are established under convergence assumptions on

the time and space step sizes. Numerical results illustrating the drug distribution in

di�erent scenarios are included in Section 3.7.
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Chapter 3 Drug in a polymeric reservoir

Anode/
Cathode

Cathode/
AnodeReservoir Tissue

x = 0 x = `1 x = `2

Figure 3.1: Considered coupled model.

3.2. The coupled drug distribution model

As illustrated in �gure 3.1 we consider [0, `1] to be the reservoir and [`1, `2] the target

tissue, with x = `1 the contact point, and denote cr(x, t) the drug concentration in

x ∈ [0, `1] and cs(x, t) the drug concentration in x ∈ [`1, `2] at time t ≥ 0. We

assume that the left-hand side of the reservoir is isolated and the drug molecules

that reach the boundary x = `2 are immediately removed. In the domains (0, `1)

and (`1, `2) a di�usion process takes place enhanced by the electric �eld generated

by the applied electric potential Φ at x = 0 and x = `2, respectively, Φ0 and Φ1. We

assume that the polymeric matrix of the reservoir and the target tissue have di�erent

electric conductivities σr and σs (S/m), respectively, as well as the drug has di�erent

di�usion coe�cients in both media, Dr and Ds, respectively.

The electric �eld in each medium is given by Ei = σi∇Φi, i = r, s and, neglecting

the electroosmosis transport, the drug mass �ux in the reservoir Jr and in the target

tissue Js are given by

Ji = −Di∇ci − vici, i = r, s , (3.1)

where ci denotes the drug concentration in the medium i = r, s and vi is given by

vi =
zDiF

RTi
∇Φi, i = r, s , (3.2)

where z denotes the valence of the drug molecules, F the Faraday constant, Ti the

temperature in the medium i = r, s, and R the gas constant.

Solving the electric potential from the Laplace equation, with boundary condi-

tions Φr(0) = Φ0 and Φs(`2) = Φ1 and assuming at x = `1 the continuity of the

potentials and continuity of the electric �eld, the electric potentials Φi, i = r, s, are

described by the systems 
∇ · (σr∇Φr) = 0 in (0, `1)

Φr(0) = Φ0

(3.3)
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3.2 The coupled drug distribution model

and 
∇ · (σs∇Φs) = 0 in (`1, `2)

Φs(`2) = Φ1

, (3.4)

coupled with the transition conditions
Φr(`1) = Φs(`1) (continuity of the potential)

σr∇Φr(`1) = σs∇Φs(`1) (continuity of the electric �eld)

. (3.5)

We remark that the �rst condition of (3.5) can be seen on as the limit of the Robin

type condition

Jr(`1) = α(Φr(`1)− Φs(`1)) (3.6)

when α→ +∞.

The mass conservation law on each medium

∂ci
∂t

+∇ · Ji = 0, i = r, s, (3.7)

together with (3.1) give us the convection-di�usion equations, for ci, i = r, s,
∂cr
∂t

= ∇ · (Dr∇cr) +∇ · (vrcr) in (0, `1)× R+

Dr∇cr(0, t) + vrcr(0, t) = 0, t ∈ R+
0

(3.8)

and 
∂cs
∂t

= ∇ · (Ds∇cs) +∇ · (vscs) in ∈ (`1, `2)× R+

cs(`2, t) = 0, t ∈ R+
0

. (3.9)

System (3.8), (3.9) is complemented with the following interface conditions
γcr(`1, t) = cs(`1, t) (continuity of the concentration)

Jr(`1, t) = Js(`1, t) (continuity of the mass �ux)

, (3.10)

with γ ∈ [0, 1], and initial condition
cr(x, 0) = cr,0, x ∈ (0, `1)

cs(x, 0) = 0, x ∈ (`1, `2)

. (3.11)

Conditions (3.11) mean that the reservoir is initially with a homogeneous drug

distribution and that the target tissue is empty.
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Solving the potential problems (3.3), (3.4) and (3.5) we obtain
Φr(x) =

Φ1 − Φ0

`1 + σr
σs

(`2 − `1)
x+ Φ0, x ∈ [0, `1)

Φs(x) =
σr
σs

Φ1 − Φ0

`1 + σr
σs

(`2 − `1)

(
x− `2

)
+ Φ1, x ∈ [`1, `2]

. (3.12)

From (3.12) and (3.2) we deduce the convective velocities
vr =

DrzF

RTr

Φ1 − Φ0

`1 + σr
σs

(`2 − `1)

vs =
DszF

RTs

σr
σs

Φ1 − Φ0

`1 + σr
σs

(`2 − `1)

. (3.13)

Finally the drug distribution in he reservoir r and in the target tissue s is described

by (3.8)-(3.11) with the convective velocities given by (3.13).

3.3. Stability analysis

To study the stability of the coupled IBVP (3.8)-(3.11), (3.13) we introduce the space

V = {w ∈ H1(0, `2) : w(`2) = 0}. Let D and v be de�ned by

D =


Dr, x ∈ (0, `1)

Ds, x ∈ (`1, `2)

, v =


vr, x ∈ (0, `1)

vs, x ∈ (`1, `2)

.

Then we replace the coupled IBVP for the drug evolution by the following initial

value problem: �nd, for each t ∈ R+, c(t) ∈ V such that c′(t) ∈ L2(0, `2) and

(c′(t), w) = −(D∇c(t),∇w)− (vc(t),∇w), t ∈ R+, ∀w ∈ V, (3.14)

where (., .) denotes the usual inner product in L2(0, `2), and

c(0) = cr,0 in [0, `1], c(0) = 0 in (`1, `2]. (3.15)

The drug distribution is then de�ned by

cr(t) = c(t) in [0, `1], cs(t) = c(t) in [`1, `2].

To study the stability of the weak problem (3.14)-(3.15) we recall that the fol-

lowing Friedrich-Poincaré inequality

‖w‖2 ≤ `22
2
‖∇w‖2, w ∈ V, (3.16)

holds. In the next results we establish energy estimates for c(t) :
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3.4 An estimate for the absorbed mass

Theorem 3. If c(t) ∈ V is a solution of (3.14), (3.15) then

‖c(t)‖2 ≤ e

(
− 2

`22
mini=r,sDi+maxi=r,s

v2i
Di

)
t
‖c(0)‖2, t ∈ R+

0 . (3.17)

Proof. Taking in (3.14) w = c(t) we have

d

dt
‖c(t)‖2 = −2‖

√
D∇c(t)‖2 − 2(vc(t),∇c(t)). (3.18)

As

2(vc(t),∇c(t)) ≤
∑
i=r,s

(
v2
i

1

2ε2
i

‖c(t)‖2i + 2ε2
i ‖∇c(t)‖2i

)
,

with εi 6= 0, where ‖.‖i, for i = r, s, denotes the L2 norm in the reservoir and in the

target tissue, respectively, we deduce

d

dt
‖c(t)‖2 ≤

∑
i=r,s

((
− 2Di + 2ε2

i

)
‖∇c(t)‖2i + v2

i

1

2ε2
i

‖c(t)‖2i
)
.

If we �x now ε2
i =

1

2
Di, then we establish

d

dt
‖c(t)‖2 ≤

∑
i=r,s

(
−Di‖∇c(t)‖2i +

v2
i

Di
‖c(t)‖2i

)
,

that implies
d

dt
‖c(t)‖2 ≤ −min

i=r,s
Di‖∇c(t)‖2 + max

i=r,s

v2
i

Di
‖c(t)‖2.

Applying the inequality (3.16) we obtain

d

dt
‖c(t)‖2 ≤

(
− 2

`22
min
i=r,s

Di + max
i=r,s

v2
i

Di

)
‖c(t)‖2

that leads to (3.17).

From Theorem 3 we conclude the stability of the IBVP (3.14), (3.15) for bounded

time intervals and if c(t), c̃(t) ∈ V are solutions of this problem then c(t) = c̃(t).

3.4. An estimate for the absorbed mass

The upper bound (3.17) can be used to study the qualitative behavior of the drug

mass inside of the coupled system and the absorbed drug. Let

M(t) =

∫ `2

0
c(x, t) dx, t ∈ R+

0 ,

be the drug mass in the coupled system. As

M(t) ≤
√
`2‖c(t)‖,

from Theorem 3 we obtain an upper bound for such mass.
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Corollary 1. Under the assumptions of Theorem 3, we have

M(t) ≤
√
`2e

1
2

(− 2

`22
mini=r,sDi+maxi=r,s

v2i
Di

)t
‖c(0)‖, t ∈ R+

0 . (3.19)

Moreover, if

maxi=r,s
v2i
Di

Di
<

2

`22
, i = r, s, (3.20)

then

lim
t→∞

M(t) = 0 exponentially. (3.21)

Let Mabs(t) be the absorbed mass. We have

Mabs(t) = M(0)−M(t), t ∈ R+
0 .

and consequently

Mabs(t) ≥M(0)−
√
`2e

1
2

(− 2

`22
mini=r,sDi+maxi=r,s

v2i
Di

)t
‖c(0)‖, t ∈ R+

0 . (3.22)

We remark that condition (3.20) can be a reasonable assumption at least for thin

reservoirs where `1 is small.

To obtain a second estimate for M(t), we need to improve the estimate (3.17).

From (3.18) we deduce

d

dt
‖c(t)‖2 ≤ −2 min

i=r,s
Di‖∇c(t)‖2 + 2`2 max

i=r,s
|vi|‖c(t)‖‖∇c(t)‖,

that leads to

d

dt
‖c(t)‖2 ≤

(
− 2 min

i=r,s
Di +

√
2`2 max

i=r,s
|vi|
)
‖∇c(t)‖2.

Assuming that
|vi|
Di

<
2
√

2

`2
, i = r, s, (3.23)

we obtain
d

dt
‖c(t)‖2 ≤

(
− 2 min

i=r,s
Di +

√
2`2 max

i=r,s
|vi|
) 2

`22
‖c(t)‖2,

and �nally

‖c(t)‖2 ≤ e
2

`22
(−2 mini=r,sDi+

√
2`2 maxi=r,s |vi|)t‖c(0)‖2, t ∈ R+

0 . (3.24)

From the previous considerations we conclude that under the condition (3.23),

we have

M(t) ≤
√
`2e

1

`22
(−2 mini=r,sDi+

√
2`2 maxi=r,s |vi|)t‖c(0)‖, t ∈ R+

0 , (3.25)
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and

Mabs(t) ≥M(0)−
√
`2e

1

`22
(−2 mini=r,sDi+

√
2`2 maxi=r,s |vi|)t‖c(0)‖, t ∈ R+

0 . (3.26)

The condition (3.23) is less restrictive than the condition (3.20) and the upper bound

of (3.19) for the drug mass in the reservoir-target tissue is grater than the upper

bound in (3.25). To conclude this Section we �nally observe that the estimates

(3.22) and (3.26) allow the evaluation of lower bounds for the absorbed massMabs(t)

provided that such lower bounds are positive.

In �gure 3.2 we plot the absorbed mass computed numerically using the numerical

method that will be studied in Section 3.6 and the lower bounds (3.22) and (3.26) for

`1 = 10−3, `2 = 1.2× 10−3, Tr = Ts = 310.15, σr = 1.5× 10−5, σs = 10−7, cr,0 = 1,

Dr = 0.65× 10−10, Ds = 1× 10−10, Φ0 = −0.0001, Φ1 = 0.0001 and z = −1 in a 6

hour iontophoresis procedure.

We observe that, from lower bound (3.22), after 6h the absorbed mass is greater

that 0.8mg and after 4h it is already at least 0.6mg, while from (3.26) we conclude

that after 6h it is greater than 0.5mg, being the absorbed mass approximately 0.9mg.

Figure 3.2: Absorbed mass at x = `2 with the obtained lower bounds.

3.5. A semi-analytical Fourier method

In what follows we use the method of separation of variables to construct a solu-

tion for the coupled IBVP (3.8)-(3.11), (3.13). We remark that in [18] the same

methodology was used for a coupled problem.
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Assuming that ci(x, t) = Mi(x)Ni(t), for i = r, s, we obtain

M ′′i +
vi
Di
M ′i = λiMi, N

′
i = DiλiNi, i = r, s . (3.27)

Considering the new variables x̃ =
x− `1
`1

and M̃i(x) = e
− vi

2Di
x
Mi(x), for i = r, s,

we can write the following spatial eigenvalue problems

M̃ ′′r = λ̃rM̃r, x̃ ∈ (−1, 0), M̃ ′′s = λ̃sM̃s, x̃ ∈ (0, ˜̀) (3.28)

with λ̃i =
v2i

4Di
+ λi, for i = r, s, that are coupled with the following conditions

DrM̃
′
r(−1) + 3vr

2 M̃r(−1) = 0

γM̃r(0) = M̃s

DrM̃
′
r(0) + 3vr

2 M̃r(0) = DsM̃
′
s(0) + 3vs

2 M̃s(0)

M̃s(˜̀) = 0

. (3.29)

To obtain the desired Fourier series we need to solve (3.28) and (3.29). Let

us suppose that λ̃i < 0, otherwise we obtain an exponential representation of M̃i,

i = r, s. Replacing λ̃i by −λ̃2
i , i = r, s, in (3.28) we obtain the eigenfunctions

M̃i(x̃) = ai cos(λ̃ix̃) + bi sin(λ̃ix̃), i = r, s . (3.30)

From conditions (3.29) we can write the linear system for ar, br, as and bs
Drkr sin(λ̃r) +

3vr
2

cos(λ̃r) Drλ̃r cos(λ̃r) +
3vr
2

sin(λ̃r) 0 0

γ 0 −1 0

3vr
2

−Drλ̃r − 3vs
2

Dsλ̃s

0 0 cos(λ̃s ˜̀) sin(λ̃s ˜̀)




ar

br

as

bs

 =


0

0

0

0


(3.31)

System (3.31) admits the following solution
as = γar

br =
3vr
2

(1−γ)+Dsλ̃scotg(λ̃s ˜̀)

Drλ̃r
ar

bs = −γcotg(λ̃s ˜̀)ar

(3.32)

for as ∈ R if and only if the matrix of this system is singular, that is,(
Drλ̃r cos(λ̃r) +

3vr
2

sin(λ̃r)

)(
γDsλ̃s cos(λ̃s ˜̀) + sin(λ̃s ˜̀)

3(γvs − vr)
2

)
+(

Drkr sin(λ̃r) +
3vr
2

cos(λ̃r)

)
(−Drλ̃r sin(λ̃s ˜̀)) = 0 (3.33)
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As we have

Ni(t) = eDiλitNi(0), i = r, s ,

we obtain

ci(x, t) = eDiλitNi(0)Mi(x), i = r, s .

The �rst interface condition at x = `1 holds if and only if

γeDrλrtNr(0)Mr(0) = eDsλstNs(0)Ms(0) .

As γM̃r(0) = M̃s(0) we conclude that

M̃s(0)
[
eDrλrtNr(0)− eDsλstNs(0)

]
= 0

which implies M̃s(0) = 0 or eDrλrtNr(0) = eDsλstNs(0). Since M̃s(0) = 0 leads to

the null solutions M̃i, i = r, s, we set

eDrλrtNr(0) = eDsλstNs(0)

for any initial condition. This implies in particular that

Drλr = Dsλs . (3.34)

Equations (3.33) and (3.34) should lead to a set of eigenvalues λi, i = r, s, and

then using (3.32), the corresponding eigenfunctions M̃i, i = r, s are obtained. Finally

using Ni, i = r, s, we obtain ci, i = r, s.

The procedure described before, requires the use of a numerical method to solve

equations (3.33) and (3.34) because we are not able to obtain explicit expressions

for λr and λs. Then, using the corresponding values, we get the corresponding

eigenfunctions.

The complexity of the presented Fourier method is a motivation for the next

section, where we present a numerical method to solve the IBVP (3.8) - (3.10).

3.6. A discrete approach

3.6.1. An explicit Euler method

Let T > 0 be �xed and Q = [0, `2] × [0, T ]. Given N ≥ 4 and M ≥ 1 integers, let

h = `2/N and ∆t = T/M , we de�ne the non-uniform mesh Q∆t
h on Q by

Q∆t
h = {(xi, tm) : x1 = 0; xN = `2; xi+1−xi = hi, 0 ≤ i ≤ N ; tm = m∆t, 0 ≤ m ≤M}
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x0

x1

x2

x3 x4 . . .

xN1−1

xN1

xN1+1

. . . xN

h

Figure 3.3: Spatial grid.

where x0 is an auxiliary point, xN1 is the transition point and hi is given by

xi+1 − xi = hi =


h
2 , i ∈ {0, 1, N1, N1 + 1}

h, i ∈ {2, ..., N1 − 1, N1 + 2, ..., N}
. (3.35)

The spatial grid is illustrated in �gure 3.3.

By D+
x , D

−
x we denote the usual forward and backward �nite di�erence operators

on space respectively. The �rst and second order centered �nite di�erence operators

are denoted by Dc
x and D2

x, respectively. Finally we introduce the notation for the

backward �nite di�erence operator in time D−t . By Umi,l we represent the approxi-

mation of the solution for ci(xl, tm), for i = r, s de�ned by


D−t U

m
r,i = DrD

2
xU

m
r,i +Dc

xvrU
m
r,i , i ∈ {1, ..., N1 − 1}

U0
r,i = cr,0 , i ∈ {1, ..., N1 − 1}

DrD
c
xU

m
r,1 +

vr(Umr,0+2Umr,1+Umr,2)

4 = 0 , m ≥ 0 ,

(3.36)


D−t U

m
s,i = DrD

2
xU

m
s,i +Dc

xvsU
m
s,i , i ∈ {N1 + 1, ..., N − 1}

U0
s,i = 0 , i ∈ {N1 + 1, ..., N − 1}

Ums,N = 0 , m ≥ 0 ,

(3.37)

with the transition conditions
DrD

−
x U

m
r,N1

+ vr
Umr,N1−1+Umr,N1

2 = DsD
+
x U

m
s,N1

+ vs
Ums,N1

+Ums,N1+1

2 , m ≥ 0

γUmr,N1
= Ums,N1

, m ≥ 0 .

(3.38)

To obtain a matrix representation of the �nite di�erene method, we start by

solving the last equation of (3.36) for Umr,0. We obtain

Umr,0 =
2vrh

4Dr − vrh
Umr,1 +

4Dr + vrh

4Dr − vrh
Umr,2

and considering now this expression in the �rst equation of (3.36) for i = 1 we deduce

Umr,1 =

(
1− 8Dr

∆t

h2
+ 2Dr

∆t

h

)
Um−1
r,1 + 2

∆t

h2
(4Dr + vrh)Um−1

r,2 .
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3.6 A discrete approach

Taking i = 2 in the �rst equation of (3.36) we get

Umr,2 =
2

3

∆t

h2
(4Dr − vrh)Um−1

r,1 +

(
1− 4

∆t

h2
Dr

)
Um−1
r,2

+
2

3

∆t

h2
(Dr + vrh)Um−1

r,3 .

For i ∈ {3, ..., N1 − 2} we have

Umr,i =
∆t

h2
(Dr − vrh))Um−1

r,i−1 +

(
1− 2

∆t

h2
Dr

)
Um−1
r,i

+
∆t

h2
(Dr + vrh))Um−1

r,i+1 .

From the system (3.38) we obtain

Um
r,N1

=

(
4Dr − vrh

4(γDs +Dr) + (vr − γvs)h

)
Um
r,N1−1

−
(

4Ds + vsh

4(γDs +Dr) + (vr − γvs)h

)
Um
s,N1+1 .

Considering this result in the �rst equation of (3.36) for i = N1 − 1 and in the �rst

equation of (3.37) for i = N1 + 1 we establish

Um
r,N1−1 =

2

3

∆t

h2
(2Dr − vrh)Um−1

N1−2

+

(
1− 4

∆t

h2
Dr +

2

3

∆t

h2
(2Dr + vrh)(4Ds − vsh)

4(Dr + γDs) + h(vr − γvs)

)
Um−1
r,N1−1

+
2

3

∆t

h2

(
(2Dr + vrh)(4Ds + vsh)

4(Dr + γDs) + h(vr − γvs)

)
Um−1
s,N1+1

and

Um
s,N1+1 =

2

3

∆t

h2

(
(2Ds − vsh)(4Dr − vrh)

4(Dr + γDs) + h(vr − γvs)

)
Um−1
r,N1−1

+

(
1 + 4

∆t

h2
Ds +

2

3

∆t

h2
(2Ds − vsh)(4Ds + vsh)

4(Dr + γDs) + h(vr − γvs)

)
Um−1
s,N1+1

+
2

3

∆t

h2
(2Ds + vsh)Um−1

s,N1+2 .

Finally when i ∈ {N1 + 2, ..., N − 1} we have

Ums,i =
∆t

h2
(Ds − vsh)Um−1

s,i−1 +

(
1− 2

∆t

h2
Ds

)
Um−1
s,i

+
∆t

h2
(Ds + vsh)Um−1

s,i+1 ,

respectively.

The previous system can be rewritten in the following equivalent form

Um+1 = Ah,∆tU
m, m = 1, . . . ,M , (3.39)

where Umi = Umr,i, for i ∈ {1, . . . , N1 − 1}, Umi = Ums,i, for i ∈ {N1 + 1, . . . , N} and

U0 is known.
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3.6.2. Stability

From (3.39) we obtain

∥∥Um+1
∥∥
∞ ≤ ‖Ah,∆t‖

m
∞
∥∥U0

∥∥
∞ .

Then

‖Um‖∞ ≤
∥∥U0

∥∥
∞ (3.40)

provided that ‖Ah,∆t‖∞ ≤ 1. Inequality (3.40) means that that the operator Ah,∆t

is stable.

In what follows we take γ = 1. Recalling the observations from �gures 2.2 and

2.3, and taking into account that vi is given by (3.13), we have vi < 0, for i = r, s.

We shall impose a set of conditions on the time and space step sizes that lead to

‖Ah,∆t‖∞ ≤ 1.

Let A1 be the �rst line of Ah,∆t. We have

‖A1‖1 = 2
∆t

h2
|4Dr + vrh|+ |1− 2

∆t

h2
(Dr − vrh)| .

If

h <
4Dr

−vr
(3.41)

and

2
∆t

h2
(4Dr − vrh) < 1 (3.42)

we get ‖A1‖1 = 1.

For the second line of Ah,∆t we deduce

‖A2‖1 = 2
∆t

h2
(4Dr − vrh) +

∣∣∣∣1− 4
∆t

h2
Dr

∣∣∣∣+
2

3

∆t

h2
|2Dr + vrh| .

If

h <
2Dr

−vr
(3.43)

and
∆t

h2
<

1

4Dr
(3.44)

we can conclude ‖A2‖1 = 1. We remark that (3.43) implies (3.41), while (3.42) and

(3.43) implies (3.44).

For the lines Ai, i ∈ {3, . . . , N1 − 1} of matrix Ah,∆t we have

‖Ai‖1 = 2
∆t

h2
(Dr − h

vr
2

) +

∣∣∣∣1− 2
∆t

h2
Dr

∣∣∣∣+
∆t

h2
|Dr + vrh|

and conditions (3.44), (3.43) allow us to write ‖Ai‖1 = 1.
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3.6 A discrete approach

For the line AN1−1 we deduce

‖AN1−1‖1 =
2

3

∆t

h2
(2Dr − vrh)

+

∣∣∣∣1− 4
∆t

h2
Dr +

2

3

∆t

h2

(2Dr + vrh)(4Dr − vrh)

4(Dr +Ds) + h(vr − vs)

∣∣∣∣
+

2

3

∆t

h2

∣∣∣∣ (2Dr + vrh)(4Ds + vsh)

4(Dr +Ds) + h(vr − vs)

∣∣∣∣ .
If vs − vr > 0 then for h < 4(Dr+Ds)

vs−vr , h < 2 Dr
−vr ,

∆t
h2
< 1

4Dr
and h < 4Ds

−vs we obtain

‖AN1−1‖1 =
2

3

∆t

h2
(2Dr − vrh) + 1− 4

∆t

h2
Dr +

2

3

∆t

h2
(2Dr + vrh)

4(Dr +Ds)− h(vr − vs)
4(Dr +Ds) + h(vr − vs)

≤ 1− 4
∆t

h2
Dr +

8

3

∆t

h2
Dr

≤ 1 .

The line AN1 satis�es

‖AN1‖1 =
2

3

∆t

h2

(2Ds − vsh)(4Dr − vrh)

4(Dr +Ds) + h(vr − vs)

+

∣∣∣∣1− 4
∆t

h2
Ds +

2

3

∆t

h2

(2Ds − vsh)(4Ds + vsh)

4(Dr +Ds) + h(vr − vs)

∣∣∣∣
+

∣∣∣∣23 ∆t

h2
(2Ds + vsh)

∣∣∣∣ .
Since vi < 0 for i = r, s, h < 2Ds

−vs , h <
4(Dr+Ds)
vs−vr , ∆t

h2
< 1

4Ds
, we obtain ‖AN1‖1 ≤ 1.

For i ∈ {N1 + 1, . . . , N − 1}, the lines Ai−1 satisfy

‖Ai−1‖1 =
∆t

h2
|(Ds − vsh)|+

∣∣∣∣1− 2
∆t

h2
Ds

∣∣∣∣+
∆t

h2
(Ds + vsh) .

Assuming h < Ds
−vs ,

∆t
h2
< 1

2Ds
we get ‖Ai−1‖1 = 1, for i ∈ {N1 + 1, . . . , N − 1}.

The following proposition summarizes the previous conclusions:

Proposition 1. If γ = 1, vs − vr > 0, where vr and vs are de�ned by (3.13) and

h < 2 min
i=r,s

Di

−vi
, (3.43)

∆t

h2
< min

i=1,2

1

4Di
, (3.44) h ≤ 4(Dr +Ds)

vr − vs
, (3.45)

then the �nite di�erence scheme (3.39) is stable. If vs − vr < 0 then the scheme is

stable under the assumptions (3.43) and (3.44).

In �gure 3.4 we plot the drug concentration obtained with parameters which

violate condition (3.44). We used `1 = 10−3, `2 = 1.2 × 10−3, Tr = Ts = 37oC,

Dr = 10−11, Ds = 10−12, σr = 1.5 × 10−5, σs = 10−7, c(x, 0) = 1, x ∈ (0, `1),

c(x, 0) = 0, x ∈ (`1, `2), z = −1, Φ0 = −0.5, and Φ1 = 1. The discretization

parameters where N = 65,M = 10000 which leads to h ≈ 1.85×10−5 and ∆t = 2.16.

We remark the instability that is observed near the point x = `2.
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Chapter 3 Drug in a polymeric reservoir

Figure 3.4: Representation of the instability.

3.6.3. Convergence

The convergence analysis is based on the stability Proposition 1 and in the consis-

tency of the method (3.39). By Th,∆t we represent the truncation error induced by

(3.39). Let elh,∆t(xi, tm), l = r, s be the error of the numerical approximation Umi ,

for i = 1, . . . , N1 − 1, N1, N1 + 1, . . . , N . The errors eh,∆t and Th,∆t satisfy

• DrD
c
xe
r
h,∆t(x1, tm) + vr

erh,∆t(x0, tm) + 2erh,∆t(x1, tm) + erh,∆t(x2, tm)

4

= Th,∆t(x1, tm) ,

• D−t erh,∆t(xi, tm) = DrD
2
xe
r
h,∆t(xi, tm) +Dc

x(vre
r
h,∆t(xi, tm))

+ Th,∆t(xi, tm), i = 2, 3, . . . , N1 − 1 ,

• γerh,∆t(xN1 , tm) = esh,∆t(xN1 , tm) ,

• DrD
−
x e

r
h,∆t(xN1−1, tm) + vr

erh,∆t(xN1 , tm) + erh,∆t(xN1 , tm)

2

= DsD
+
x e

s
h,∆t(xN1 , tm) + vs

esh,∆t(xN1 , tm) + esh,∆t(xN1+1, tm)

2

+ Th,∆t(xN1−1, tm) ,

• D−t esh,∆t(xi, tm) = DsD
2
xe
s
h,∆t(xi, tm) +Dc

x(vse
s
h,∆t(xi, tm))

+ Th,∆t(xi, tm), i = N1 + 1, . . . , N − 1 .

30



3.6 A discrete approach

It is easy to show that

D−t cl(xi, tm) =
∂cl
∂t

(xi, tm) +O(∆t) , (3.46)

D+
x cl(xi, tm) =

∂cl
∂x

(xi, tm) +O(hi+1) , (3.47)

D−x cl(xi, tm) =
∂cl
∂x

(xi, tm) +O(hi) , (3.48)

Dc
xcl(xi, tm) =

∂cl
∂x

(xi, tm) +O
(
hi+1 − hi

2
+

h3
i+1 + h3

i

6(hi+1 + hi)

)

=
∂cl
∂x

(xi, tm) +


O
(
h2
)
, hi = hi+1

O (h) , hi 6= hi+1

, (3.49)

D2
xcl(xi, tm) =

∂2cl
∂x2

(xi, tm) +O
(
hi+1 − hi

3
+
hih

4
i+1 + hi+1h

4
i

12(hi + hi+1)

)

=
∂2cl
∂x2

(xi, tm) +


O
(
h2
)
, hi = hi+1

O (h) , hi 6= hi+1

, (3.50)

for i ∈ {1, . . . , N1 − 1} if l = r and i ∈ {N1 + 1, . . . , N − 1} if l = s, with m ∈

{1, . . . ,M}. From the previous considerations, it is easy to conclude

Th,∆t(xi, tm) =


O (h+ ∆t) , i ∈ {2, N1 − 1, N1 + 1}, m ∈ {1, . . . ,M}

O
(
h2 + ∆t

)
, i /∈ {2, N1 − 1, N1 + 1}, m ∈ {1, . . . ,M}

(3.51)

which leads to |Th,∆t(xi, tm)| = O(h+ ∆t), for i = 1, 2, . . . , N − 1.

Let eh,∆t(tm) be de�ned as Um. Then it can be shown that

eh,∆t(tm) = Ah,∆t eh,∆t(tm−1) + ∆t T̃h,∆t(tm) , (3.52)

where T̃h,∆t(tm) depends on Th,∆t(tm) and satis�es
∥∥∥T̃h,∆t(tm)

∥∥∥
∞

= O (h+ ∆t).

From (3.52) we obtain

‖eh,∆t(tm)‖∞ ≤ ‖Ah,∆t‖∞ ‖eh,∆t(tm−1)‖∞ + ∆t
∥∥∥T̃h,∆t(tm)

∥∥∥
∞
.

Under the assumptions of Proposition 1, we deduce

‖eh,∆t(tm)‖∞ ≤ ‖eh,∆t(tm−1)‖∞ + ∆t
∥∥∥T̃h,∆t(tm)

∥∥∥
∞

and it follows that

‖eh,∆t(tm)‖∞ ≤ T max
1≤j≤M

∥∥∥T̃h,∆t(tj)∥∥∥
∞

(3.53)

because ‖eh,∆t(t0)‖∞ = 0. Inequality (3.53) means that the proposed method is

convergent.
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Chapter 3 Drug in a polymeric reservoir

In what follows we illustrate the convergence of the method under the assump-

tions stated in Proposition 1.

An illustration of the spatial order of convergence and associated error in norm

‖·‖∞ is given in comparison with a solution obtained with very small h = 4.6 ×

10−6 and ∆t = 0.165. In �gures 3.5 we plot the reference solution and numerical

approximations obtained with `1 = 10−3, `2 = 1.2 × 10−3, Tr = Ts = 37oC, Dr =

10−11, Ds = 10−12, σr = 1.5 × 10−5, σs = 10−7, c(x, 0) = 1, x ∈ (0, `1), c(x, 0) =

0, x ∈ (`1, `2), z = −1, Φ0 = −0.05, Φ1 = 0.05 and T = 6h. As it can be seen, an

increase of the number of spatial points leads to a decrease of the associated error.

Figure 3.5: Error of the approximation.

In �gure 3.6 we plot the errors ‖eh,∆t(T )‖∞.

Figure 3.6: Spatial error.
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3.7. Numerical Results

The objective of this Section is the illustration of the behavior of the drug concen-

tration for the parameters previously used in the convergence experiments.

In �gure 3.7 we plot the drug concentration when vi = 0, i = r, s, this means

that the transport phenomena occur only by di�usion. As time evolves, the value

of the drug concentration decreases, mainly in the reservoir. To illustrate the e�ect

of the electric �eld, we plot in �gure 3.8 the numerical results obtained considering

Φ0 = −0.05 and Φ1 = 0.05. From �gures 3.7 and 3.8 we conclude that the drug

release from the reservoir as well as the entrance in the target tissue and absorption

in x = `2 is enhanced by the applied potential. The drug concentrations obtained

with Φ0 = −0.5, Φ1 = 1 are plotted in �gure 3.9. From the �gures 3.7 - 3.9 we can

infer that an increase of the strength of the electric �eld is followed by a decrease of

the drug concentrations.

The absorbed mass drug at x = `2, M(t), is presented in �gure 3.10 for vr =

vs = 0. The corresponding absorbed mass when an electric potential is applied, for

Φ0 = −0.05, Φ1 = 0.05 and Φ0 = −0.5, Φ1 = 1 are plotted in �gures 3.11 and 3.12.

As before, we conclude that as the electric �eld increases, the drug delivery process

increases as well, and consequently, the absorbed mass. The same conclusions are

obtained from �gures 3.13 - 3.15, where we plot the mass drug �uxes at x = `2.

Figure 3.7: Drug concentration in the coupled system with di�usion only.
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Chapter 3 Drug in a polymeric reservoir

Figure 3.8: Drug concentration in the coupled system with Φ0 = −0.05, Φ1 = 0.05.

Figure 3.9: Drug concentration in the coupled system with Φ0 = −0.5, Φ1 = 1.

Figure 3.10: Absorbed mass at x = `2 with di�usion only.
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Figure 3.11: Absorbed mass at x = `2 with Φ0 = −0.05, Φ1 = 0.05.

Figure 3.12: Absorbed mass at x = `2 with Φ0 = −0.5, Φ1 = 1.

Figure 3.13: Drug �ux at x = `2 with di�usion only.
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Figure 3.14: Drug �ux at x = `2 with Φ0 = −0.05, Φ1 = 0.05.

Figure 3.15: Drug �ux at x = `2 with Φ0 = −0.5, Φ1 = 1.
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Conclusions

In this work we studied the drug delivery of electric charged drugs from a polymeric

reservoir and its entrance in a target tissue. To enhance the di�usion transport in the

reservoir and in the target tissue, an applied potential is considered. This potential

induces a convective mass �ux that increases the drug release.

To simplify our study, in Chapter 2 we assume that the drug is in contact with

the target tissue and that the drug release is described by a convection-di�usion

equation where the convective velocity is given by the Nernst-Planck equation. In

Chapter 3 we consider that the drug is contained in a reservoir which is in contact

with the target tissue. In this case, the drug transport and its absorption in by the

target tissue is described by two convection-di�usion equations that are coupled at

the contact boundary. In both chapters we consider isotropic media which lead to

1D mathematical models, and the absorption of the drug in the target tissue was

de�ned by a homogenous Drichlet boundary condition.

Two questions need to be object of study: the drug release of a polymeric reser-

voir when the drug absorption is described by a Robin boundary condition and when

an anisotropic media is considered. This last assumption leads to 2D and 3D math-

ematical models.

The drug release was studied during a continuous period of application of the

electric potential. In iontophoretic applications, the potential is applied during a

certain time period which is followed by a rest period. This means that the boundary

conditions de�ning the electric potentials are step functions. In the near future we

intend to extend the obtained results to these more realistic situations.
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