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Abstract

This work addresses the problem of stiffness estimation for robotic tasks.
Online stiffness estimation can be used to improve force tracking in explicit
force control schemes being also important for realistic haptic feedback in
telemanipulation tasks. It also enables accurate stiffness mapping and sim-
ulation of environment dynamics. Many applications involving contact can
benefit from stiffness estimation. For instance, improved force tracking is
useful to handle fragile organic tissues in robotic-assisted minimally inva-
sive surgery. Enhanced haptic feedback allows the surgeon to have a better
perception of contact forces, improving safety and allowing finer control.
Environment stiffness estimation is useful in diagnosis, helping to detect
pathologies through stiffness variations. Furthermore, accurate tissue simu-
lation can be used in training and in task design. Applications of stiffness
estimation, however, are not restricted to the medical area. These can be
found in other contexts, such as industrial robotics. Examples include tasks
involving contact, such as polishing or object assembly, that can benefit from
improved force tracking. Also, inspection of object stiffness may be useful
for quality control purposes. Many authors have described stiffness estima-
tion as a complex problem. This complexity arises from multiple factors,
where sensorial information with a poor signal-to-noise ratio is a major one.
Uncertainty in the environment geometry is also relevant, as it obscures the
relative positioning of the end-effector w.r.t. the environment, creating dif-
ficulties to detect free-space/contact transitions. This may be problematic,
since most estimation techniques require accurate identification of the initial
contact point.

In this thesis, three new online stiffness estimation algorithms are devel-
oped for robotic interaction tasks. These algorithms completely prevent the
dependency on environment position-based data, relying instead on force-
based data to obtain the stiffness estimation. Two different approaches
have been adopted. The first relies on the availability of explicit models of
the control system and environment while the second uses implicit models
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trained with sensorial data. Two estimation algorithms, ASBA and COBA,
were developed upon model-based techniques, while a third one, ANNE, re-
lies on sensor-based techniques. ASBA is a stiffness estimator based on the
active-state inspection of an active observer used in the control loop. The
estimation is obtained by comparing the active state with theoretical predic-
tions for different mismatches between nominal and real stiffnesses. COBA
is a stiffness estimator based on the analysis of the output of two force ob-
servers, each tuned with a different nominal parameter. The estimation is
obtained by considering the force prediction error of both observers. Finally,
ANNE is an estimator supported by artificial neural networks (ANNs). It
is composed of a layer of ANNs, whose outputs are combined by a fusion
module that produces the final estimation. Theoretical analysis, simulation
and experimental results are provided, demonstrating that these techniques
can effectively achieve environment stiffness estimation. The algorithms des-
cribed in this work present a contribution to online stiffness estimation in
robotic tasks involving interactions with unstructured and unknown envi-
ronments where contact geometrical data is unavailable or unreliable.



Resumo

Este trabalho aborda a estimação da rigidez do ambiente em tarefas robóticas.
Estimações da rigidez obtidas em tempo-real podem ser utilizadas para obter
controlo expĺıcito de força de alta qualidade, bem como para melhorar a
telepresença em sistemas de telemanipulação hápticos. Também tornam
posśıvel a inspeção e o mapeamento da rigidez do ambiente. Podem ser
identificadas várias aplicações que beneficiam de estimação da rigidez. Por
exemplo, no contexto de robótica médica, tarefas de cirurgia minimamente
invasiva assistidas por telemanipulação robótica, beneficiam de controlo de
força preciso quando envolvem o manuseamento de tecidos orgânicos frágeis.
Por outro lado, melhorias a ńıvel da resposta háptica permitem ao cirurgião
ter uma melhor perceção da força aplicada, aumentando assim a segurança
e permitindo um controlo mais fino da operação. O mapeamento da rigidez
do ambiente pode ser útil para efeitos de diagnóstico, enquanto que sim-
ulações rigorosas de tecidos podem ser usadas para efeitos de treino ou
de planeamento de tarefas. Porém, as aplicações de estimação da rigidez
não são restritas à área médica. Podem ser encontradas noutros contex-
tos, como na robótica industrial. Exemplos incluem tarefas que envolvem
contacto e beneficiam de controlo de força preciso, tais como polimento ou
montagem de objectos. A identificação da rigidez pode também ser útil para
controlo de qualidade. Muitos autores descreveram a estimação da rigidez
como um problema complexo. Esta complexidade resulta de diversos fac-
tores, dos quais se destaca a utilização de dados sensoriais com uma relação
sinal-rúıdo fraca. Incerteza na geometria do ambiente é também um fac-
tor relevante, porque torna dif́ıcil a identificação da posição relativa entre
o ambiente e a ferramenta acoplada à última junto do robô, complicando a
detecção de transição entre operação em contacto e espaço livre. Isto pode
ser problemático, dado que a maior parte das técnicas de estimação requer
identificação precisa do ponto de contacto inicial.

Nesta tese, são propostos três algoritmos novos para estimação da rigidez
em tarefas robóticas com contacto. Estes algoritmos evitam a dependência

v



vi

de informação relativa à posição do ambiente, usando apenas informação de
força para obter a estimação. Foram seguidas duas abordagens distintas,
sendo que a primeira é baseada em modelos do ambiente e sistema de con-
trolo e a segunda é em modelos impĺıcitos treinados com dados sensoriais.
Os dois primeiros algoritmos, ASBA e COBA, são baseados na primeira
abordagem, enquanto o terceiro, ANNE, é baseado na segunda. ASBA é
um estimador baseado na inspeção do estado adicional de um observador
ativo usado na malha de controlo. A estimação é obtida comparando esse
estado com previsões teóricas obtidas para diferentes cenários de desalinha-
mento entre a rigidez nominal, usada no projeto de controlo, e a rigidez real
do ambiente. O algoritmo COBA é um estimador baseado na análise da
sáıda de dois observadores de força calibrados com parametrizações distin-
tas. A estimação é obtida a partir do erro de estimação de força de ambos
os observadores. Por fim, o algoritmo ANNE é baseado em redes neuronais.
É composto por uma camada de redes neuronais, cujas sáıdas são combi-
nadas num módulo de fusão que produz a estimação final. São apresentadas
análises teóricas e resultados de simulação e experimentais. Estes demons-
tram que os métodos propostos são capazes de estimar, de forma adequada,
a rigidez do ambiente. Uma contribuição destes algoritmos é permitir a
estimação da rigidez em tarefas robóticas que envolvem contacto com am-
bientes desconhecidos e pouco estruturados, para os quais a informação que
descreve a geometria do contacto não está dispońıvel ou é pouco fiável.



Symbols and Abbreviations

General abbreviations
ANN Artificial Neural Network
ANNE Artificial Neural Network Estimator
AOB Active OBserver
ASBA Active State Based Algorithm
COBA Candidate Observer Based Algorithm
FOB Force OBserver
LSE Least Squared Error
MIMO Multiple-Input and Multiple-Output system
MRAC Model Reference Adaptive Control
MSE Mean Square Error
RLS Recursive Least Squares
RMIS Robotic-assisted Minimally Invasive Surgery
SNR Signal-to-Noise Ratio
WAM Whole Arm Manipulator

Time
t continuous time

k subscript k means discrete time index
Ts sampling time
Td system time delay

General representation
â estimate of scalar, vector or matrix a
ix upperscript ith identifies the row of vector x

t subscript t refers to task space

vii



viii

Position data
X0 robot and object initial contact task position
Xt end-effector task position

Stiffness-based variables
Ks real system stiffness
Ksn nominal system stiffness (used by the control design)
∆Ks stiffness mismatch (∆Ks = Ks −Ks)

K̂s,k system stiffness estimation at time instant k

Robot modeling
q joint coordinate vector
q̇ joint velocity vector
q̈ joint acceleration vector
Λt(q) mass matrix in the task space
M(q) mass matrix in the joint space
V (q̇, q) Coriolis and centrifugal vector in the joint space
G(q) gravity vector in the joint space
Jt(q) Jacobian matrix

System discrete state-space matrices, vectors and scalars
Φ system state transition matrix
Γ command matrix
C output matrix
xk system state vector at iteration k
yk system output (force) at iteration k
d number of extra states due to Td

System continuous state-space matrices and vectors
A system state transition matrix
B output matrix
x(t) system state vector at time instant t
y(t) system output at time instant t

Control signals and variables
G(s) linearized system plant, for each task dimension
KD damping loop gain
τf time constant
τ vector of joint input torques
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τc computed torque vector
f∗ system acceleration input
Ft control force in task space
Fc,t commanded force in the task space
uk system command input

State feedback
Lr state feedback gain matrix
L1 DC gain (1st element of Lr)

Active observer
x̂k system state estimation vector
p̂k active (or extra) state of the AOB
Qnoise system noise matrix
Rnoise measurement noise matrix
Kk Kalman gains
Pk state covariance matrix
ξk stochastic input representing model uncertainties
ηk stochastic input representing measurement uncertainties
Φsn nominal system state transition matrix
Γsn nominal command matrix
Csn nominal output matrix
Φn augmented nominal system state transition matrix
Γn augmented nominal command matrix
Cn augmented nominal output matrix

Task specification
fk input force
rk reference force (rk = L1fk)
Fe force applied by the robot on the environment

Disturbance signals
ũk disturbed system command input
pk equivalent disturbance referred to system input
pk(o) disturbance due to factors other than ∆Ks 6= 0
pk(∆Ks) disturbance due to stiffness mismatch

ASBA terms
∆rk reference difference (∆rk = rk − rk−1)
Ksc candidate stiffness value for Ks
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S set of candidate stiffnesses
IKsn,Ksc p̂k curve for Ks = Ksc, computed offline, for an unitary input step

p̂Ksn,Ksc

k p̂k curve for Ks = Ksc, computed online, for a custom input signal
TLSE time interval for LSE analysis
w time interval for convolution computation
w2 time interval for IKsn,Ksc computation
to number of samples with stable estimations for validation

purposes, in overestimated stiffness cenarios
tu number of samples with stable estimations for validation

purposes, in underestimated stiffness cenarios
TL reference variation threshold
TI time interval to compute the IKsn,Ksc curve

COBA terms

c subscript c refers to variables of a candidate FOB
Ksc FOB candidate stiffness (Ksci refers to FOBi)
∆Ksc FOB stiffness mismatch (∆Ksci = Ks −Ksci refers to FOBi)
Φc FOB state transition matrix (Φci refers to FOBi)
∆Φc FOBi state transition matrix mismatch
Kc FOB gain vector (1Kc and 2Kc are for the first two FOB states)
yc,k FOB force estimation (yci,k refers to FOBi

xc,k FOB state vector (xci,k refers to FOBi)
1xc,k 1st state of xc,k FOB force estimation (1xci,k refers to FOBi)
∆xc,k FOBi state mismatch (∆xci,k refers to FOBi)
1∆xc,k 1st state of ∆xc,k FOB force error (1∆xci,k refers to FOBi)
uc,k FOB command input
∆uc,k uncompensated additional disturbance at uc,k
Gk mismatch gradient
1Gk 1st state of Gk force error gradient
Gmin minimum threshold to assess the stiffness estimation
Wk disturbance induced offset
1Wk 1st state of Wk force error offset
λ1,λ2 eigenvalues of Wk transition matrix

ANNE terms

K
(j)
T nominal stiffness value used for ANN(j) training

ANN K
(j)
T ANN trained with Ksn = K

(j)
T

K̂
(j)
s,k stiffness estimation provided by ANN K

(j)
T



xi



xii



Contents

Acknowledgments i

Abstract iii

Resumo v

Symbols and Abbreviations vii

Contents xii

List of Figures xvii

List of Tables xxi

List of Algorithms xxiii

List of Theoretical Results xxv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges in Stiffness Estimation . . . . . . . . . . . . . . . 2

1.3 Applications of Stiffness Estimation . . . . . . . . . . . . . . 5

1.4 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Contact Dynamics Modeling . . . . . . . . . . . . . . . . . . . 10

2.2.1 Continuous Contact Modeling . . . . . . . . . . . . . . 11

2.2.2 Friction Models . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Control Approaches for Constrained Tasks . . . . . . . . . . . 13

xiii



xiv CONTENTS

2.3.1 Passive Compliance and Indirect Force Control . . . . 14

2.3.2 Direct Force Control . . . . . . . . . . . . . . . . . . . 15

2.4 Contact Parameter Estimation . . . . . . . . . . . . . . . . . 16

2.4.1 Recursive Least Squares . . . . . . . . . . . . . . . . . 16

2.4.2 Adaptive Control . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 Artificial Neural Networks . . . . . . . . . . . . . . . . 18

2.4.4 Other Approaches . . . . . . . . . . . . . . . . . . . . 18

2.4.5 Geometric Uncertainty in Estimation Tasks . . . . . . 19

2.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Robotic Control Architecture 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Control Architecture . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 System Plant in the Task Space . . . . . . . . . . . . . 22

3.2.2 Control Design . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Stiffness Adaptation . . . . . . . . . . . . . . . . . . . 30

3.3 System Plant with Disturbances . . . . . . . . . . . . . . . . 30

3.3.1 Stiffness Mismatch Disturbance . . . . . . . . . . . . . 30

3.3.2 Additional Disturbances . . . . . . . . . . . . . . . . . 31

4 Model-Based Estimation 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 ASBA: Active State Based Algorithm . . . . . . . . . . . . . 34

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.3 Active State Computation . . . . . . . . . . . . . . . . 36

4.2.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.5 Illustrative Example . . . . . . . . . . . . . . . . . . . 40

4.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 COBA: Candidate Observer Based Algorithm . . . . . . . . . 45

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Description . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.3 Illustrative Example . . . . . . . . . . . . . . . . . . . 49

4.3.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . 50

4.3.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Sensor-Based Estimation 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . 58



CONTENTS xv

5.3 ANNE: Artificial Neural Network Estimator . . . . . . . . . . 60

5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.3 Training and Testing . . . . . . . . . . . . . . . . . . . 65

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Simulation Results 67

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Effect of Parameter Mismatch in Dynamic Response . . . . . 70

6.3.1 Stiffness Mismatch Effect . . . . . . . . . . . . . . . . 70

6.3.2 Combined Damping and Stiffness Mismatch Effect . . 72

6.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 ASBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.1 Overestimated Stiffness Scenario . . . . . . . . . . . . 75

6.4.2 Underestimated Stiffness Scenarios . . . . . . . . . . . 75

6.5 COBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.5.1 Contact with Homogenous Environments . . . . . . . 79

6.5.2 Contact with Heterogenous Environments . . . . . . . 81

6.5.3 Free-Space/Contact Transitions . . . . . . . . . . . . . 83

6.6 ANNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Experimental Results 89

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.1 Teleoperation Architecture . . . . . . . . . . . . . . . 91

7.2.2 Virtual and Real Environments . . . . . . . . . . . . . 92

7.3 COBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.1 WAM Robot Interaction with Virtual Objects . . . . . 92

7.3.2 WAM Robot Interaction with Real Objects . . . . . . 99

7.3.3 Free-Space/Contact Transitions . . . . . . . . . . . . . 100

7.3.4 Comparison With Position-Based Approach . . . . . . 104

7.4 ANNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.4.1 WAM Robot Interaction with Virtual Objects . . . . . 105

7.4.2 WAM Robot Interaction with Real Objects . . . . . . 110

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



xvi CONTENTS

8 Conclusions 117
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 122

A Theoretical Results 125
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2 Theoretical Results for ASBA . . . . . . . . . . . . . . . . . . 126
A.3 Theoretical Results for COBA . . . . . . . . . . . . . . . . . . 130

A.3.1 Ideal Conditions . . . . . . . . . . . . . . . . . . . . . 130
A.3.2 Non-ideal Conditions . . . . . . . . . . . . . . . . . . . 133

Bibliography 137



List of Figures

3.1 WAMTM arm developed by Barrett Tecnology®, Inc.. . . . . 22

3.2 Robot with computed torque control in the task space (top)
for each task dimension (bottom). . . . . . . . . . . . . . . . 23

3.3 G(s) with state feedback from an AOB observer. . . . . . . . 26

3.4 Nominal terms involved in the nominal stiffness update process. 30

3.5 G(s) representation with stiffness mismatch disturbance. . . . 31

3.6 Real plant with stiffness mismatch and other disturbances. . . 31

4.1 ASBA Algorithm embedded in the control loop. . . . . . . . . 36

4.2 Illustration of the time intervals associated with ASBA oper-
ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Active state behavior with two different scenarios of stiffness
mismatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 IKsn,Ksc curves. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Forces and AOB active state. . . . . . . . . . . . . . . . . . . 42

4.6 Candidate active states and their difference w.r.t. the actual
active state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Error analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 COBA architecture embedded in the control loop. . . . . . . 47

4.9 Forces and FOB force errors. . . . . . . . . . . . . . . . . . . 49

4.10 Graphical representation of COBA. . . . . . . . . . . . . . . . 50

4.11 COBA stiffness estimations. . . . . . . . . . . . . . . . . . . . 51

4.12 COBA inputs under ideal operating conditions. . . . . . . . . 52

4.13 COBA inputs under non-ideal operating conditions. . . . . . 55

5.1 Perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 ANNE embedded in the control loop. . . . . . . . . . . . . . . 61

5.3 ANNE architecture. . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 ANN K
(j)
T topology. . . . . . . . . . . . . . . . . . . . . . . . 63

xvii



xviii LIST OF FIGURES

6.1 Simulation platform. . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Simulation platform used to assess ASBA, COBA and ANNE. 69

6.3 Stiffness mismatch effects in the dynamic response: an illus-
trative example. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Damping and stiffness mismatch effects in the dynamic res-
ponse: an illustrative example. . . . . . . . . . . . . . . . . . 73

6.5 ASBA - scenario with severely overestimated stiffness, with
Ksn = 5000 [N/m] and Ks = 500 [N/m]. . . . . . . . . . . . . 76

6.6 ASBA - scenario with severely underestimated stiffness, with
Ksn = 200 [N/m] and Ks = 1300 [N/m]. . . . . . . . . . . . . 77

6.7 ASBA - scenario with severely underestimated stiffness, with
Ksn = 3000 [N/m] and Ks = 6000 [N/m]. . . . . . . . . . . . 78

6.8 COBA - two scenarios with underestimation of stiffness. . . . 80

6.9 COBA - matching stiffness scenario. . . . . . . . . . . . . . . 81

6.10 COBA - two overestimated stiffness scenarios. . . . . . . . . . 82

6.11 COBA - heterogeneous system stiffness. . . . . . . . . . . . . 83

6.12 COBA - free-space/contact transition. . . . . . . . . . . . . . 84

6.13 ANNE - simulation results for untrained data. . . . . . . . . . 87

7.1 Teleoperation architecture of an existing robotic platform at
ISR-Coimbra. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Environment used in COBA and ANNE experiments. . . . . 93

7.3 COBA - WAM robot interacting with virtual planes in mis-
matching stiffness scenarios with a sinusoidal input force. . . 96

7.4 COBA - WAM robot interacting with virtual planes in match-
ing stiffness scenarios with a sinusoidal input force. . . . . . . 97

7.5 Analysis of dominant disturbance when a WAM robot inter-
acts with a virtual plane with up and down sinusoidal move-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6 COBA - WAM robot interacting with a pillow. . . . . . . . . 100

7.7 COBA - WAM robot interacting with a sponge. . . . . . . . . 101

7.8 COBA - WAM robot interacting with a book. . . . . . . . . . 102

7.9 COBA - free-space and contact transitions between a WAM
robot and a sponge. . . . . . . . . . . . . . . . . . . . . . . . 103

7.10 Position-dependent RLS: free-space and contact with a sponge.104

7.11 Average values of stiffness estimations computed by three
ANNs: ANN400, ANN800 and ANN1200. . . . . . . . . . . . 107

7.12 ANN400, ANN800 and ANN1200 results for robot interac-
tions with a virtual object. . . . . . . . . . . . . . . . . . . . 108



LIST OF FIGURES xix

7.13 ANN400, ANN800 and ANN1200 average estimation results
for three different experiments. . . . . . . . . . . . . . . . . . 108

7.14 ANNE results (average values) for three different configura-
tions of the fusion module. . . . . . . . . . . . . . . . . . . . . 109

7.15 ANNE - Stiffness estimation results with objects of stiffnesses
in the range 300− 1300 [N/m]. . . . . . . . . . . . . . . . . . 110

7.16 WAM robot interaction with a pillow: ANN1500 results. . . . 111
7.17 WAM robot interaction with a book: ANN2000 results. . . . 112
7.18 ANNE - WAM robot interaction with a sponge. . . . . . . . . 113



xx LIST OF FIGURES



List of Tables

5.1 Average correlation results of force-based variables. . . . . . . 62

6.1 Simulation results - common control design and system para-
meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 ASBA simulation results - design parameters. . . . . . . . . . 74
6.3 COBA simulation results - design parameters. . . . . . . . . . 79
6.4 ANNE simulation results - design parameters. . . . . . . . . . 85

7.1 Experimental results - common control design and system
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 COBA experimental results - design parameters. . . . . . . . 94
7.3 ANNE experimental results - design parameters. . . . . . . . 106
7.4 ANNE - fusion module parameter Âk. . . . . . . . . . . . . . 109
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1.1 Motivation

The objective of this work is to develop techniques for estimating the stiff-
ness of contact objects in robotic interaction tasks. Stiffness measures the
resistance of materials to deformation in response to applied forces. Accu-
rate knowledge of stiffness (and other contact parameters) can be impor-
tant for the performance of robotic tasks involving explicit force control,
although stiffness is the most important contact parameter for tasks with
low dynamics. This is especially the case when model reference adaptive
control (MRAC) architectures are considered. Mismatches between the real
and nominal (that is, the stiffness value used in control design) stiffnesses
can degrade force tracking and provoke bouncing and instability once con-
tact is established between the manipulator and the environment. Accurate
parameter knowledge is also relevant for improving telepresence in haptic
feedback systems. Examples of tasks where these factors are relevant can
be found in the area of telemanipulated robotic-assisted minimally invasive
surgery (RMIS). In these tasks, accurate force tracking is essential to avoid

1
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damage to fragile organic tissues, while high quality haptic feedback is of
benefit to the surgeon controlling the manipulator. A stiffness mismatch
scenario, i.e, one where the real stiffness value is different from the nominal
stiffness used in control design, can be represented by

Ks = Ksn + ∆Ks, (1.1)

with Ks being the real system stiffness1, Ksn the nominal stiffness and ∆Ksn

the stiffness mismatch. The impact of contact parameter mismatch in force
tracking behavior is explored in Section 6.3 and can be summarized in this
way:

� Increased mismatch results in increased deviation from the expected
behavior, decreasing dynamic consistency of the system response.

� The underestimated scenario is the critical situation for stability [20].

This motivates the development of stiffness estimation algorithms to cope
with unknown system stiffness, guaranteeing dynamic consistency in the
force response and system stability. However, some issues make stiffness
identification a challenging task in practice. These are addressed in the
next section.

1.2 Challenges in Stiffness Estimation

Many authors have described stiffness estimation as a relevant and complex
problem [2, 106]. This complexity arises from multiple factors, such as sen-
sorial information with poor signal-to-noise ratio (SNR) or limited accuracy
of joint encoders. Uncertainty in the environment geometry is also relevant,
as it obscures the relative positioning of the end-effector w.r.t. the envi-
ronment, creating difficulties to detect free-space/contact transitions. This
may be problematic, since most estimation techniques require accurate iden-
tification of the initial contact point. A position-based approach to obtain
this information would be to contrast the end-effector position with known
information describing the geometry of the environment. However, this may

1The system stiffness Ks is the combined stiffness of the manipulator/environment
pair. It is the actual parameter being estimated and the one relevant for force control
purposes. If the stiffness of the manipulator is significantly higher than the stiffness of
the environment Kenv, then Ks ≈ Kenv. Since rigid body dynamics are assumed, we
commonly use the terms system stiffness, contact stiffness, object stiffness or environment
stiffness interchangeably.
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not be an option if the environment is poorly known or unknown, making it
challenging to estimate the environment stiffness in these scenarios. Zero-
crossing detection of force would allow such transitions to be detected, but
force sensors are noisy, subjected to bias and may return non-null forces even
in free-space operation, obscuring the exact instant of transition. This prob-
lem is exacerbated for low contact forces. These issues can be illustrated by
considering a direct estimation approach using Hooke’s Law along a single
dimension. Hooke’s Law is a linear model that relates applied force with
deformation along an uncoupled dimension and stiffness coefficient. If Fe is
the force applied by the robot on the environment, Ks the system stiffness
coefficient, Xt is the current robot end-effector position and X0 is the initial
contact position, then Hooke’s Law states that

Fe = Ks(Xt −X0). (1.2)

The estimation K̂s can be given by

K̂s =
F̂e

(X̂t − X̂0)
, (1.3)

where F̂e is obtained by force sensing and X̂t comes from robot forward
kinematics. The estimation X̂0 could be obtained from geometric informa-
tion if the relative positioning of the end-effector and object is well-known.
However, if such information is not readily available, indirect contact posi-
tion estimation approaches must be adopted. A viable approach entails the
use of force information to detect the moment of free-space/contact transi-
tion and estimating X0 with the end-effector position at that instant. This
approach, however, can suffer from some drawbacks, namely:

� Uncertainty in detection of contact - Low SNR of the measured force
makes zero-crossing detection unreliable. Contact episodes could be
detected in free-space operation and, conversely, contact might not be
properly detected, especially if low forces are applied. Delayed (or an-
ticipated) detection of zero-crossing causes an erroneous initial contact
position estimation X̂0. It will be maintained while the interaction
is not broken, biasing the estimation throughout the entire contact
episode. Subsequent contact with the same object may result in a
different initial contact position estimation, resulting in inconsistent
estimations for the same object.

� Limited encoder resolution - The resolution of joint encoders may be
insufficient to properly account for minimal displacements that occur
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in contacts with very stiff surfaces [2, 106]. Variations of the measured
force F̂e might occur without any discernible change in the estimated
position X̂t [20].

While the latter problem hardly occurs in soft environments, the former one
still poses considerable practical difficulties. These can be overcome in tasks
where the object geometry is static and well-known (as is the case of many
industrial machining tasks) or if it is possible to start the task with the end-
effector already placed at the initial contact position (as assumed in many
estimation works). However, in some tasks (e.g., RMIS), these assumptions
do not hold and another approach to stiffness estimation is warranted. It
might be argued that more complex and presumably more accurate contact
models could be considered instead of (1.2), however, two points should be
considered:

1) High order contact terms can be ignored for tasks with low dynamics.
Non-linear contact models bring additional precision and complexity, but
(1.2) is in practice a useful approximation of the real behavior that is
frequently adopted for the design of control systems. In this work, (1.2)
matches the contact model used in the control design.

2) More importantly, these problems are not concerned with the specific
formulation of the contact model itself, but with the data required by
the estimator. For example, some approaches based on non-linear visco-
elastic contact models [43, 35, 41] are more accurate than (1.2), but they
require the availability of force and object position w.r.t. the robot and
velocity data, being subject to the same type of practical difficulties.

Keeping this in mind, this work focuses in developing online stiffness esti-
mation algorithms based on force data, not requiring object position infor-
mation. In this way, less sensorial information is required and some of the
difficulties described above can be avoided, broadening the range of appli-
cations where online stiffness estimation can be employed. Two approaches
are successfully explored:

1) Using explicit mathematical models of the control system and contact
interaction.

2) Using implicit mathematical models, trained with sensorial information.

An advantage of explicit models is that certain properties of the estimation
can be mathematically derived and proven. Two algorithms are developed
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with the first approach. One is based on contrasting the active state of the
AOB with the predicted response for several mismatching stiffness scenarios,
while the other is based on force observers. Estimation techniques based on
implicit models do not require explicit modeling, making them less depen-
dant on a specific control approach. An estimator based on artificial neural
networks is developed with this approach.

1.3 Applications of Stiffness Estimation

Techniques for the estimation of stiffness and other contact parameters have
found application in diverse areas:

� Telepresence - Environment estimation techniques are often used in
teleoperation tasks, to achieve high quality haptic feedback and im-
proved telepresence. Examples can be found in [37, 112, 68, 79, 122].
Dupont et al. [37] outline a general process of environment identifi-
cation in teleoperation tasks, composed of task decomposition, data
segmentation and property estimation, illustrating it with the estima-
tion of the mass of a picked up object. Wang et al. [112] describe how
the estimation techniques presented in [67] can be used to construct a
discretized model of task space parameters during teleoperation tasks.
A similar approach is presented in [68], including a method for detect-
ing time dependant environment variations. Misra and Okamura [79]
use the estimation techniques described in [94] to improve force track-
ing in a bilateral telemanipulation setup. Zarrad et al. [122] discuss
the use of state-space based Kalman techniques to identify contact
parameters and ensure stability and telepresence.

� Force tracking - A common motivation for adopting environment pa-
rameter estimation techniques is improving the performance of explicit
force control schemes. These are usually designed and analyzed consi-
dering the model of the environment is known and available, typically
resulting in the use of control laws dependent on nominal environ-
ment parameters. Force tracking performance and contact stability
are therefore dependent on the accuracy of such parameters. Many
examples of estimation approaches applied to force tracking problems
can be found in the literature [60, 20, 113].

� Simulation - Simulation of robotic interactions with complex envi-
ronments can be important for supporting the design of robotic tasks,
especially when operation in unusual, unsafe or high-risk environments
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is required. Examples include planning of space station operations
[114] or virtual human tissue simulation, as proposed in [79].

� Environment inspection - The estimated parameters can provide
useful insights about the environment the manipulator interacts with.
For example, in the industrial domain, the stiffness estimation can be
a relevant variable for controlling the quality of a manufactured object.
In tasks involving contact with live animal tissue, the estimation can
be used to detect anomalous and potentially pathological irregularities.

1.4 Key Contributions

This section highlights the main contributions of this work. These can be
aggregated into the three new force-based stiffness estimation techniques
herein proposed:

1) The stiffness estimation algorithm ASBA
The Active State Based Algorithm (ASBA) estimates the stiffness by
analyzing the evolution of the active state of an Active OBserver (AOB)
and comparing it with the expected behavior for several potential stiff-
ness mismatch scenarios, computed analytically from known models. The
main results and the ASBA description, including a theoretical discussion
and simulation results, have been presented in [23, 25]. The latter work
received the Best APCA Student Paper Award from Portuguese Associ-
ation of Automatic Control - APCA (National Member Organization of
IFAC – International Federation of Automatic Control).

2) The stiffness estimation algorithm COBA
The Candidate Observer Based Algorithm (COBA) is the second algo-
rithm for stiffness estimation. It uses two force observers with different
candidate stiffnesses to infer the correct system stiffness. The theoretical
grounds of this algorithm are presented, as well as experimental results.
This algorithm addresses some limitations of earlier efforts, by having
comparably negligible time and space-footprint, improving online oper-
ation and also addressing the issue of estimating under non-ideal (dis-
turbed) conditions. The theoretical exposition of the algorithm, as well
as simulation, validation and experimental results have been published
in [21, 22, 24, 26, 27].

3) The stiffness estimation algorithm ANNE
The Artificial Neural Network Estimator (ANNE) is the third estima-
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tion technique, also independent of the object position. It is based on ar-
tificial neural networks and, unlike ASBA and COBA, it does not require
explicit system or contact models. The estimator is trained to identify
the stiffness using sensorial data. The estimator includes an input buffer
with current and past force-based data, as well as a bank of feedforward
ANNs and a fusion module. Simulation and experimental results demon-
strate appropriate estimation behavior. One interesting aspect of ANNE
is that, by not requiring explicit modeling, its dependency on a specific
control architecture is reduced.

1.5 Thesis Structure

Chapter 2 provides background on related work such as contact modeling,
force control and contact parameter estimation. In Chapter 3, the robotic
control architecture targeted in all theoretical and experimental analysis
is presented. It is based on feedback linearization and state-space Kalman
techniques, including an AOB observer for feedforward disturbance compen-
sation. Chapter 4 describes the model-based algorithms ASBA and COBA.
ASBA is based on the least square error analysis of the extra state of the
active observer and COBA is based on force observers. The algorithm de-
scriptions can be found, as well as the relevant theoretical analysis and
results. Chapter 5 presents the sensor-based estimation algorithm ANNE,
based on multiple neural networks. It includes the description of the process
of network input selection, as well as the overall architecture that fuses the
outputs of multiple networks into a single estimation result. Simulation and
experimental results are discussed in Chapter 6 and Chapter 7, respectively.
Chapter 6 presents simulation tests for all algorithms. The interaction of a
robot with the environment is simulated, based on the explicit force control
architecture described in Chapter 3, with the Matlab Simulink tool. The
impact of parameter mismatch in the force tracking dynamics is presented.
Then, the behavior of the estimation algorithms in nearly ideal conditions is
explored. Chapter 7 presents and discusses COBA and ANNE experimental
results, including the validation and test of both algorithms. The valida-
tion is performed through WAM robot interactions with virtual objects and
algorithm results are also analysed when the WAM robot interacts with
real objects. Free-space/contact experiments are also presented. Chapter 8
concludes this thesis and discusses possible directions for future work. The
Appendix collects proofs of relevant theoretical results.
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2.1 Introduction

In this chapter, an overview of related work is presented. It is focused on
the following three main topics:

1) Contact modeling - Hooke’s Law, introduced in Chapter 1, is a simple
linear approximation of a very complex physical phenomenon. Other
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proposals in the literature provide alternative formulations, including
viscous and nonlinear terms. This overview is necessary because many
different models are assumed in works concerned with contact parameter
estimation.

2) Force control - Robotic force control is an important area of application
for contact parameter estimation techniques. The experimental results
described in this work are obtained with a robotic platform with direct
force control capabilities. This overview presents a broad view of this
field, so that proper context of application can be better understood.

3) Contact parameter estimation - The practical relevance of contact
parameter estimation has resulted in many publications in this field
throughout the past decades. In this section, major approaches to es-
timation are presented and the work in this thesis is related to open
issues.

Section 2.2 presents a survey on contact modelling, while an overview of
force control and contact parameter estimation techniques is provided in
sections 2.3 and 2.4, respectively.

2.2 Contact Dynamics Modeling

Impact and contact are complex physical phenomenon involving two or more
bodies that come into touch. The term impact is commonly used to refer to
episodes of very short duration, typically involving significant accelerations
and forces of impulse-like nature, while contact is more commonly used
to describe a state of continuous collision over an extended time period.
Correspondingly, two modelling approaches can be found in the literature.
The first category includes the impact-momentum or discrete techniques
[61, 41, 102, 118, 89, 101, 65]. These are based on the analysis of energy
transfer and restitution. They are used to model the impact of rigid bodies,
by describing the relation between their pre-impact and post-impact physical
states. Secondary phases such as sticking and sliding can also be considered.
The second category includes the continuous approaches [61, 41, 6, 9] (also
known as compliant or force-based approaches) and is based on the analysis
of the force behaviour during the interval of contact. While discrete tech-
niques presume near instantaneous duration of contact episodes, continuous
approaches do not require such an assumption, and are correspondingly more
capable of representing prolonged contact situations.
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2.2.1 Continuous Contact Modeling

This work is concerned with robotic tasks involving prolonged contact with
the environment. Continuous contact models are therefore more suited for
the purposes of this work. Unlike discrete models, in these the deformation
of bodies must be explicitly accounted for, as the normal contact force is
related to the local indentation and its ratio of change [6, 9]. The simplest
of continuous models, known as Hooke’s Law, is described by

Fn = Kδ, (2.1)

where Fn is the normal contact force, K is the stiffness and δ is the local
indentation. It represents a linear spring, with perfectly elastic contact and
no energy dissipation. While it is a simplified model of reality, Hooke’s Law
is nevertheless useful in practice in robotic system control design, as it is
amenable to analytical treatment and, more importantly, includes the stiff-
ness parameter, that dominates force response for prolonged contacts with
low indentation velocity. Low contact velocity is typical in most robotic
interaction scenarios, to avoid damage to the manipulator or environment.
Hooke’s Law can be generalized to account for energy dissipation by in-
cluding a linear damping component, obtaining the Kelvin-Voigt (or spring-
dashpot) model [42]

Fn = Bδ̇ +Kδ, (2.2)

where B is the damping coefficient, and δ̇ is the time derivative of the inden-
tation. However, the linear damping term introduces physically unrealistic
force behavior:

� The damping term generates a discontinuous force at the beginning of
impact, due to non-null contact velocity.

� As the force due to the elastic term gradually decreases just before
contact is broken at the end of a contact episode, the result will be
dominated by a negative force holding the objects together, generated
by the damping term.

Additionally, it has been demonstrated experimentally that the coefficient
of restitution, used in discrete techniques to model energy loss during im-
pact, should be dependent on velocity [41]. However, this is not the case
if the equivalent coefficient of restitution is computed assuming a contact
described by a spring-dashpot model [42]. Nevertheless, despite these short-
comings, it is a popular modelling option [50, 62, 111, 78], since it is a
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simple linear model that allows energy dissipation in a perfectly elastic con-
tact to be accounted for. Other linear contact models can be constructed
by alternative combinations of linear spring and damper elements. These
include the so-called Standard Linear Solid model, a parallel composition of
a Hookean spring and a single spring-dashpot element, and its generaliza-
tion, the Maxwell-Wiechert model (or generalized Maxwell model), which
includes an arbitrary number of the latter elements [13]. A nonlinear gener-
alization of Hooke’s Law, also ignoring energy dissipation, is Hertz’s model
(also known as the power law model) [46]

Fn = Kδm. (2.3)

Unlike Hooke’s Law, it describes a nonlinear relation between local indenta-
tion and normal force, with K and m depending on geometrical and material
properties of the colliding bodies. These parameters can be computed an-
alytically for specific conditions of axisymmetric contact of certain solids,
such as sphere-sphere central collision [63], however no solution exists in the
general case. By adding a damping term to Hertz’s Law, energy dissipation
can be modelled. A simple extension is the impact-pair model, described
by Dubowski and Freudenstein [36], where a linear damping term is added
to a nonlinear Hertzian spring. However, just like in the case of the Kelvin-
Voigt model, the linear dampers introduce unrealistic force discontinuities.
To address these problems, Hunt and Crossley proposed in [51] a nonlinear
damping term, obtaining the model in (2.4),

Fn = Bδpδ̇n +Kδm. (2.4)

This model addresses limitations of the Kelvin-Voigt and impact-pair mo-
dels by making damping depend on indentation, ensuring continuous force,
beginning and ending at zero in every contact episode, although negative
sticking forces may still be generated. Applications of Hunt-Crossley’s model
can be found in [75, 72, 62, 111]. An alternative model, based on similar
principles but different formulation of the nonlinear damping term was des-
cribed by Lee and Wang in [64]. All the above models consider elastic
contact. Adaptation to plastic contact can be achieved by differentiating
the models of the compression and restitution phases of contact, accounting
for persistent deformation of the material [65, 1]. In practice, these models
are less commonly used, not only because of parameterization difficulties
but also because persistent deformation is not expected nor relevant in most
applications [41]. Analytical parameterization of Hertz’s model in generic
contact scenarios is not possible. An alternative approach for representing
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nonlinear elastic behaviour is the empiric model described in [73, 71]. This
model attempts to relate the stiffness coefficient to the area of contact A,

Fn = K(A)δ, (2.5)

where K(A) is proportional to the square root of A and dependent of contact
geometry and material properties of the colliding objects.

2.2.2 Friction Models

Regardless of the specific continuous model chosen to represent the con-
tact dynamics, several alternatives are available for representing the effect
of frictional forces. Friction models provide only approximations of the
outcome of a complex physical phenomenon. The simplest and more com-
monly used friction model is provided by the well known Coulomb’s Law
[41, 62, 111, 78]. Static friction (or dry, or traction) represents friction force
between two sticking objects (i.e: in contact with no relative motion), while
kinetic friction represents frictional force during sliding movement. Both
kinetic and maximum static friction are proportional to the normal force
and oppose tangential movement. If vt is the tangential velocity and µk and
µs are the dimensionless kinetic and static friction coefficients, respectively,
then the kinetic friction Ffk is described by

Ffk = −sgn(vt)(µkFn), (2.6)

while the maximum threshold for static friction is represented by

Ffs ≤ µsFn. (2.7)

Coulomb’s friction model generates unrealistic force discontinuities in the
transition from sticking to sliding motion. Alternative nonlinear models have
been proposed to address these issues, such as the Karnopp model [54, 87],
which makes friction also dependent on overall non-frictional force, or the
bristle model, which models friction as being dependent on the integral of
tangential velocity up to a saturation limit [44, 33, 73, 114, 41]. Both models
ensure continuity in the vicinity of vt = 0, while the latter also allows the
friction force to be defined explicitly during the sticking phase.

2.3 Control Approaches for Constrained Robotic
Tasks

Earlier research efforts on the control of robotic manipulators were concerned
with motion control, that is, the tracking or regulation of end-effector or joint
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trajectories [95]. However, manipulator motion may be constrained by the
physical environment. While the trajectory may be planned to navigate the
manipulator in such a way that unintended collisions with the environment
are avoided, this may not be sufficient in practice: the environment may
not be well known in advance and some tasks may require operation in sig-
nificantly constrained spaces, making occasional fortuitous contact with the
environment a possibility due to imperfect motion tracking. Furthermore,
some tasks, such as polishing, cutting or pushing an object, inherently re-
quire interaction of the manipulator with the environment. A pure motion-
based controller may perform poorly if the manipulator enters contact with
the environment, generating random forces and torques that may damage
the environment or manipulator. This problem is exacerbated as the (stiff)
manipulator enters contact with stiff environments, as the generated forces
can be of high magnitude.

2.3.1 Passive Compliance and Indirect Force Control

One approach for handling contact between the environment and the ma-
nipulator is to fit the latter with passive mechanical interaction devices pro-
viding the required compliance with the environment, effectively reducing
the equivalent contact stiffness (other contact parameters may also be mod-
ulated in this way) [31]. Passive compliance is a simple strategy, which does
not impair motion tracking performance and addresses the primary concern
of conditioning the contact forces. However, this approach may not be suffi-
ciently flexible for handling different tasks with diversified compliance para-
meter requirements. To overcome this, several control techniques, referred
to collectively as compliance control or indirect force control, were devised.
In these, compliant behaviour is obtained by active control action rather
than specialized physical interfaces. In stiffness control [90], the manipula-
tor behaves as a linear spring in contact situations, according to a control
parameter, the active stiffness. Motion tracking performance degrades with
lower active stiffness, so a trade-off between compliance and tracking perfor-
mance is required. Impedance control generalizes this approach, by allowing
the contact behaviour to follow that of a mass-spring-damper system with
customizable parameters [47, 56, 48, 55]. Tuning these parameters, however,
can be challenging, because good motion tracking and disturbance rejection
in free-space are obtained at the cost of compliant contact behaviour, and
vice-versa. Although adaptive impedance techniques have been proposed
[57, 15], the main improvements are related to robustness to manipulator
model uncertainty rather than enhanced free-space tracking and contact
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compliance. Admittance control addresses the latter problem by separat-
ing motion control from impedance control. Rather than tracking reference
position and orientation, a high-bandwidth inner loop tracks the position
resulting from an outer impedance control loop. The inner loop uses a stiff
parameterization so that good disturbance rejection and position tracking
is achieved in free-space, while the outer loop ensures that the required
dynamic response is obtained in contact.

2.3.2 Direct Force Control

While passive compliance and indirect force control techniques allow the
contact dynamics to be specified, forces are not explicitly controlled and
are therefore potentially unbounded. Additionally, indirect approaches are
unsuitable for interaction tasks that require fine control over applied forces.
In these cases, direct force control, offering explicit force tracking, is the
preferable alternative [117, 76, 86]. Contact is a significantly complex phys-
ical phenomenon, so design of explicit force control techniques is usually
based on some simplifying assumptions. Typically, the robot is assumed to
be perfectly rigid and contact is approximated by a linear model [97], such
as Hooke’s Law or Kelvin-Voigt’s model [42]. Plastic deformation effects
are also ignored, assuming a scenario of perfectly elastic contact. Hybrid
force/motion control approaches attempt to decouple the motion control
from force control [86]. In force/velocity control, interaction tasks are de-
fined in the force and velocity-controlled subspaces, typically in a reference
frame that is convenient to the task at hand [76, 32, 10]. Using a nominal
model of the manipulator dynamics, an inner loop decouples and linearizes
the robot dynamics at the acceleration level [121, 77, 100]. An outer loop
is responsible for ensuring disturbance rejection and force/velocity track-
ing, by means of appropriate proportional, derivative and integral action. If
the force derivative is available, asymptotic tracking of a desired force tra-
jectory is possible in interactions with compliant environments. However,
force sensors are noisy so direct measurements are often eschewed in favour
of model-based computation of the derivative using joint velocities and an
estimate of the environment stiffness along the constrained direction. In this
case, the dynamics of force tracking are affected by the quality of the stiff-
ness parameter estimation. Force/position control is also possible, by using
the direct kinematic model to obtain the required position feedback from
joint position measurements. Some approaches are based on parallel, rather
than nested, force/position control loops [11, 12]. In this case, force control
is made dominant over position control by the use of integral action on the
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force error [115]. Typically, force control designs use proportional-integral
strategies to achieve zero steady state error. However, configuration of the
feedback gains is dependent on estimations of the environmental parameters.
In this way, the dynamic response can be adversely impacted by estimation
errors, leading to poor tracking performance or even instability. The sig-
nificance of this problem increases with the stiffness of the environment, as
the control action may be insufficient to deal with the faster force dynamics
and instability may arise. Passivity-based approaches, based on Lyapunov
techniques, have also been applied to design hybrid force/motion control of
robotic manipulators [96]. By not requiring inverse-dynamics linearization,
these techniques tend to be more robust to manipulator modelling errors.
MRAC techniques have also been used for achieving direct force control
[108, 69, 116, 120]. In these techniques, control is based on a nominal model
of manipulator and environment dynamics. Robustness can be achieved by
active control action, using state-space Kalman techniques [8], to ensure that
system behaviour closely follows the specified model, ensuring the designed
closed-loop behaviour is achieved [20]. However, this compensation may
be insufficient for achieving high quality force tracking or even stable be-
haviour, in the presence of large parameter mismatches between the real and
nominal model parameters. Stiffness mismatches are the primary concern.
If stiffness is underestimated, the dynamics of the contact force are much
faster than anticipated, leading to high transient forces, bouncing and even
contact instability in more severe cases. The previous discussion highlights
a problem prevalent with direct force control approaches: instability may
arise during contact episodes, due to uncertainty in the contact parameters
[38, 3, 109]. Strategies based on online adaptation of the control law can
be used to address this problem, if techniques are available for providing
estimations of the required parameters during online operation.

2.4 Contact Parameter Estimation

Many works concerned with estimation of the environment parameters have
been described in the literature. These works can be differentiated according
to the contact models being assumed, the estimation approach and interac-
tion control system used to obtain the data.

2.4.1 Recursive Least Squares

A large number of works focuses on the use of recursive least squares tech-
niques (RLS) [66] to identify the contact parameters, considering different
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contact models and control approaches. RLS techniques are powerful tools
for parameter identification tasks. Depending on the specific approach, con-
vergence can often be proved, although assumptions such as unbiased data
and persistent excitation may be required.

Linear Models

Most works are based on linear contact models. In [67], Love and Book use
a multiple-input and multiple-output (MIMO) RLS approach to address the
problem of adapting the parameters of an impedance controller (a linear
mass-spring-damper model) to variations in the environment impedance.
Wang et al. proposes adaptive control techniques for improving force track-
ing performance, using estimations obtained by RLS techniques with time-
varying forgetting factors, in order to improve estimation convergence speed
[113]. A similar technique is described in [59], where a speed-dependent for-
getting factor is complemented with a discontinuity detection mechanism,
allowing past data to be quickly discarded in contact transitions, further
improving estimation responsiveness.

Nonlinear Models

Nonlinear contact models have also been addressed. Diolaiti et al. proposed
the use of dual recursive RLS estimators for estimating the parameters of
Hunt Crossley’s contact model [35]. Haddadi et al. expanded this work by
reducing dependency on initial conditions, improving estimation consistency
[43]. In [106], Verscheure et al. employ a total least squares estimator to
identify the contact parameters of an environment modelled by an Hertzian
spring.

2.4.2 Adaptive Control

Another class of estimators are based on parameter adjustment in adaptive
control approaches. Kim et al. [60] extend the active stiffness control stra-
tegy by including an adaptive variable stiffness coefficient based on force
data, while a similar approach, with a different formulation requiring force
and position data, is proposed for a general impedance control architecture
by Seraji and Colbaugh [94]. A sliding force controller using a gradient-
based adaptation of the stiffness parameter is described by Tsaprounis and
Aspragathos [104]. Convergence of estimation in adaptive control techniques
is usually supported by analysis based on Lyapunov’s theory. This may en-
tail strong assumptions, such as sustained small velocities and large force
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variations, as observed in [60]. Alternatively, as in [104], estimation stability
may be demonstrated, but not convergence.

2.4.3 Artificial Neural Networks

Artificial neural networks have also been applied to stiffness estimation and
related problems. A systematic approach to modelling environment vari-
ables with ANNs is discussed in [74]. In [80], a force controller includes a
stiffness estimation module, which requires the use of object position and
force data and is based on three interconnected neural models. The con-
troller receives the desired grasping force and computes control signals ac-
cordingly, using stiffness estimation. ANNs are adopted in [81] to account for
nonlinear environment stiffness in light-emitting diode lens polishing tasks
with numerical control machines. Two ANNs with two hidden layers are
trained: one for pressing and the other one for unpressing actions. These
networks compute the effective stiffness at each time instant, which is then
used to adapt control laws. These networks receive only the contact force:
the reference force is assumed to be known and constant. Free-space/contact
transitions are not considered, since the tool is always in contact with the
environment.

2.4.4 Other Approaches

Other estimation approaches can also be found. Erickson et al. presents an
offline signal processing technique, where the stiffness and damping para-
meters are identified from the system natural frequency and damping ratio,
determined from the system step response [39]. Yamamoto et al. presents a
multi-estimator technique [119]. Rather than identifying the model parame-
ters, in this approach several candidate Kelvin-Voigt models with different
fixed parameterizations are considered. The best estimator is selected by
integrating the estimation error of each model with an exponentially decay-
ing factor. Most estimation approaches address the problem of identifying
contact parameters in single-point contact scenarios. Weber et al. present
an identification framework to address the problem of identifying intervals of
single-point contact in complex contact scenarios, potentially involving mul-
tiple contact points, allowing standard single point identification techniques
to be used [114].
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2.4.5 Geometric Uncertainty in Estimation Tasks

With a few exceptions noted bellow, many approaches presented so far fo-
cus on contact model parameter identification presuming the availability of
geometrical information, such as the relative position of the environment
w.r.t. the manipulator end-effector. Results are typically collected with si-
mulations or via experimental setups where the manipulator begins at rest
in unstretched contact, so no impact occurs and geometrical uncertainty
is mitigated. These conditions are not representative of practical scenar-
ios, however, and geometrical uncertainty is a significant practical obstacle
to high-quality estimation. Some works attempt to address this issue by
combining contact parameter estimation with estimation of the geometrical
parameters. Examples of this approach can be found in [94, 107, 122]. The
Lyupanov-based technique described in [94] includes estimation of stiffness
and geometrical information. In [107], a dual RLS estimator is used for
similar purposes, while [122] achieves the same objective using state-space
Kalman techniques. However, the estimation of geometrical parameters in a
contact situation is in itself a difficult, ill-posed problem, with observability
conditions that may not be attained in contact situations [107, 45]. This
motivates approaches that completely avoid reliance on geometrical parame-
ters. One of the earliest example of such approach can be found in Love and
Book [67], where differentiation is used to eliminate position dependence.
However, this creates dependency on the force derivative signal, which is
also a significant practical obstacle, as it is known to be an extremely noisy
signal. To mitigate ill-conditioning of measured geometric data when in
contact with very stiff surfaces, Kikuuwe et al. [59] considers a virtual robot
end-effector position, computed by adding to the end-effector position a
virtual displacement, based on a parameterized virtual impedance model.
However, results can be sensitive to the parameterization of this model, and
no clear tuning guidelines are provided. The signal processing algorithm
described in [39] also avoids geometric information by requiring only force
data. However, it is an offline technique, making it unsuitable for control
adaptation purposes. The adaptive stiffness control strategy described by
Kim et al. [60] is based on force data only, but parameter convergence
assumes sustained small velocities and large force variations. Another ap-
proach can be found in [20], where a sigmoid-like function, dependant on
force data only, is tuned experimentally to provide an estimation of the
system stiffness leading to good control results. Marked improvements in
force response are obtained, indicating good estimation performance, but a
significant number of parameters must be empirically tuned to obtain these
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results.

2.5 Contributions

Although many estimation approaches independent of geometric informa-
tion have been proposed, it remains challenging to simultaneously address a
significant number of practical concerns: independence of noisy data (e.g.,
force derivative), suitability for online implementation, having simple tun-
ing guidelines and minimizing assumptions on contact dynamics. This work
seeks to develop novel online stiffness estimation techniques addressing these
issues, enabling the use of estimation techniques in practical settings where
it would be challenging to do so with current techniques.
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3.1 Introduction

Some robotic manipulation tasks such as tele-echography and robotic-assisted
minimally invasive surgery, greatly benefit from stiffness estimation algo-
rithms, not only to boost control performance but also to potentiate the
haptic telepresence needed by the surgeon. A robotic platform installed at
the Medical Robotics and Assistive Technologies R&D Group, from Insti-
tute of Systems and Robotics of Coimbra (ISR-Coimbra), has been used
in telemanipulation tasks, such as tele-ecography [91], but without online
estimation of contact parameters. The work presented in this thesis aims

21
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to endow the existing robotic platform with this important capability. Ac-
cordingly, the corresponding control setup has been targeted in all theoret-
ical and experimental analysis, even though the proposed techniques may
be portable to other control architectures. This chapter details the target
control architecture. This chapter is organized as follows. The control ar-
chitecture description is given in Section 3.2 and Section 3.3 presents the
system plant considering the presence of disturbances.

3.2 Control Architecture

This section describes the control architecture in the task space of the robotic
platform used in this work: a WAM� robot, shown in Fig. 3.1. Section 3.2.1
presents the system plant in the task space and Section 3.2.2 shows the
control design, which takes into account discrete state space control. Sec-
tion 3.2.3 explains how to conduct the nominal stiffness adaptation.

Figure 3.1: WAMTM arm developed by Barrett Tecnology®, Inc..

3.2.1 System Plant in the Task Space

Fig. 3.2 presents our robotic manipulator with computed torque control
in the task space [20, 58]. The robot dynamic model is well known and
provided by the manufacturer (Barret Technology®, Inc.). It is used for
feedback linearization to achieve a decoupled double integrator behavior in
the task space [52, 98, 29, 99, 53].
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Robot with Computed−Torque Control in the Task Space
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Figure 3.2: Robot with computed torque control in the task space (top)
for each task dimension (bottom). The robot plant is linearized and decoupled
to achieve a double integrator behavior. The commanded force Fc,t includes the
compensation of the environment force (−Fe). The computed-torque τc compen-
sates for Coriolis, centripetal and gravity forces (V̂ (q̇, q) and Ĝ(q)). q is a set of
joint coordinates describing robot position. Λ̂t, Jt and Xt are the mass matrix in
the task space, the Jacobian matrix and the end-effector Cartesian position, respec-
tively. G(s) is the system plant for each task dimension and it includes a stiffness
contact model with stiffness Ks, a damping loop with gain KD, the system time
delay Td and the decoupled linearized plant.

Robot Dynamics in the Task Space

In free space, the dynamic equations of a rigid robotic manipulator1 can
be described by Euler-Lagrange’s equation (frictions and disturbance inputs
are not represented) [40, 93, 110, 34, 28, 92]

M(q)q̈ + V (q̇, q) +G(q) = τ, (3.1)

1Rigid body dynamics has been considered, since the manipulator is very stiff compared
to the workspace.
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where q is the vector of joint angles, M(q) is the mass matrix, the vector
V (q, q̇) represents Coriolis and centrifugal forces, andG(q) represents gravity
forces. τ is the vector of joint control input torques to be designed. When
the robot end-effector is in contact with the environment, an external force
Fe is applied to the end-effector and it is included in (3.1) as

M(q)q̈ + V (q̇, q) +G(q) + JTt (q)Fe = τ, (3.2)

where Jt(q) is the Jacobian matrix corresponding to the end-effector [99].
In our robotic setup, we pre-compensate the Coriolis and gravity forces with
the corresponding estimated terms V̂ (q̇, q) and Ĝ(q). We also compensate
the environment reaction force with F̂e. F̂e corresponds to the AOB first
state (it can also be given by a filtered version of the measured force). Taking
into account these compensations, and representing the term M̂(q)q̈ by τ

′

as

τ
′

= M̂(q)q̈, (3.3)

we obtain [93, 98],

τc = τ
′
+ V̂ (q̇, q) + Ĝ(q) + JTt (q)F̂e. (3.4)

To control the contact force at the robot end-effector, while compensating
the dynamic effects of the robot, a task space description of the dynamics
is required [58, 70]. Therefore, projecting (3.3) into the task space, the
corresponding task space control force Ft becomes

Ft = Λ̂t(q)Ẍt − Λ̂(q)J̇t(q)q̇, (3.5)

where Λ̂t(q) and Xt are, respectively, the estimated mass matrix and the
end-effector position in the task space. From (3.4) and (3.5), the computed
torque command τc results in

τc = JTt (q)(Ft + F̂e) + V̂ (q̇, q) + Ĝ(q). (3.6)

Defining Fc,t as the commanded force in the task space as

Fc,t = Ft + F̂e, (3.7)

then (3.6) is equivalent to (as represented in Fig. 3.2)

τc = JTt (q)Fc,t + V̂ (q̇, q) + Ĝ(q). (3.8)
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Decoupled Control

If the desired plant is

Ẍt = f∗t , (3.9)

i.e., a decoupled system with unitary mass for each Cartesian dimension,
then, the commanded torque τc should be computed as ((3.5),(3.6),(3.8))

τc = JTt (q)
(

Λ̂t(q)f
∗
t − Λ̂t(q)J̇t(q)q̇ + F̂e

)
+ V̂ (q̇, q) + Ĝ(q). (3.10)

In this way, we obtain a decoupled linearized plant (with a double integrator
behavior) for each Cartesian dimension, as represented in Fig. 3.2.

3.2.2 Control Design

The system plant G(s) is controlled with explicit force control in the task
space. State feedback is implemented and the system state is estimated by
a stochastic disturbance observer - the AOB, as represented in Fig. 3.3.

Plant Discretization

The contact is modelled by a spring with stiffness Ks. Assuming perfect
feedback linearization and taking into account the system time delay Td and
the damping loop with gain KD, the system plant transfer function G(s) for
each Cartesian dimension becomes

G(s) =
Y (s)

U(s)
=

Kse
−sTd

s(s+KDe−sTd)
. (3.11)

Y (s) and U(s) are the output and input of G(s), respectively. The damping
loop allows velocity feedback, important when the robot end-effector moves
in free-space. For low values of Td, which is the case of our robotic platform,
(3.11) can be approximately given by [20]

G(s) ≈ Kse
−sTd

s(s+KD)
. (3.12)

The equivalent temporal representation of (3.12) is

ÿ +KDẏ = Ksu(t− Td), (3.13)

where u and y are respectively the plant input (command input) and output
(output force). Defining the state variables x1 as the output force y and x2
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Figure 3.3: G(s) with state feedback from an AOB observer. fk and yk
are the input and output forces, respectively, and uk is the command input. p̂k is
the AOB extra state used for disturbance compensation. Lr is the state feedback
gain and L1 is the first element of Lr.

as its derivative ẏ, (3.13) can be rewritten as

{
ẋ(t) = Ax(t) +Bu(t− Td)
y(t) = x1(t)

, (3.14)

where

x(t) =

[
x1(t)
x2(t)

]
, A =

[
0 1
0 −KD

]
and B =

[
0
Ks

]
. (3.15)

Discretizing with sampling time Ts [4], (3.14) becomes

{
xk = Φxk−1 + Γuk−1
yk = Cxk

, (3.16)

with

xk =




x∗k
uk−d

...
uk−1


 , Γ =




0
...
0
1


 and C =




1
0
...
0




T

. (3.17)

The vector x∗k represents the system core state. It includes 1xk and 2xk,
the first and second state, respectively, representing the force and force
derivative. The other d extra states uk−i (i = {1, · · · , d}) are due to Td, and
yk is the measured force. The term d is computed from

Td = (d− 1)Ts + γ, 0 < γ ≤ Ts. (3.18)
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Φ, Γ and C represent the state transition, command and measurement dis-
crete state-space matrices. Φ is given by

Φ =




Φ1 Γ1 Γ0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0



, (3.19)

where Φ1, Γ1 and Γ0 are defined by

Φ1 = eATs = φ(Ts), (3.20)

Γ1 = φ(Ts − γ)

∫ γ

0
φ(λ) dλ B, (3.21)

and

Γ0 =

∫ Ts−γ

0
φ(λ) dλ B. (3.22)

The matrix φ(t) is given by

φ(t) =

[
1 (1− e−KDt)/KD

0 e−KDt

]
. (3.23)

Our robotic platform has Td = Ts resulting, from (3.18),

d = 1. (3.24)

Consequently, Φ, Γ and C become

Φ =




1 (1− e−KDTs)/KD Ks(Ts + e−KDTs − 1)/KD

0 e−KDTs Ks(1− e−KDTs)
0 0 0


 , (3.25)

Γ =




0
0
1


 and C =

[
1 0 0

]
. (3.26)
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State Feedback with an Active Observer

Our linearized plant, represented in discrete state-space by (3.16), (3.25) and
(3.26), is controlled with state feedback from an observer. To estimate the
system state and to deal with disturbances, such as higher order dynamics,
applied external forces, unmodeled terms and parameter mismatches, we use
the AOB observer (see Fig. 3.3).

� State Feedback
The state feedback gain matrix Lr is tuned by Ackermann’s formula
[4] to achieve a critically damped response with time constant τf . L1

represents the first element of Lr and is also used to compensate the
DC term.

� Active Observer
The AOB is a MRAC technique based on extended state estimation,
requiring knowledge of contact parameters for force control [20, 16,
17]. Besides the stochastic estimation of xk, the AOB has an extra
state p̂k that estimates and compensates an equivalent disturbance
referred to the system input. The ideal performance is obtained if the
stiffness used in the nominal plant Ksn matches the system stiffness,
i.e., Ksn = Ks. Otherwise, the control performance is degraded to
the point where instability can arise for severe parameter mismatch
[20]. The stochastic design of the AOB involves the design of Kalman
matrices Qk (model uncertainty) and Rk (measure uncertainty) for the
AOB context. Some robotic applications based on the AOB can be
found in [14, 18, 19, 5, 83, 20, 85, 84, 82].

Consider the system plant G(s), represented by (3.17), plus stochastic
inputs ξk and ηk

{
xk = Φxk−1 + Γuk−1 + ξk
yk = Cxk + ηk

. (3.27)

The stochastic inputs ξk and ηk represent model and measurement un-
certainties, respectively. Controlling this system through state feed-
back from an AOB, the state estimate of (3.27) is given by

[
x̂k
p̂k

]
= Φn

[
x̂k−1
p̂k−1

]
+ Γnrk−1 +Kk(yk − ŷk), (3.28)

and the output force ŷk is given by

ŷk = Cn

(
Φn

[
x̂k−1
p̂k−1

]
+ Γnrk−1

)
, (3.29)



3.2. CONTROL ARCHITECTURE 29

with

Φn =

[
Φsn − ΓsnLr 0

0 1

]
, (3.30)

Γn =

[
Γsn
0

]
and Cn =

[
Csn 0

]
. (3.31)

The real matrices Φ, Γ and C represented in (3.27) are now replaced
by the homologous nominal matrices Φsn, Γsn and Csn, respectively.
Γsn and Csn are equal to Γ and C. Φsn differs from Φ by replacing the
unknown real stiffness value Ks by a nominal stiffness value Ksn. Kk

are the Kalman gains and reflect the uncertainty associated to each
state, which is a function of ξk and ηk [8]. It is computed by

Kk = P1kC
T [CP1kC

T +Rnoise]
−1, (3.32)

where

P1k = ΦnPk−1Φ
T
n +Qnoise, (3.33)

and

Pk = P1k −KkCP1k. (3.34)

Qnoise and Rnoise are, respectively, the system noise matrix and the
measurement noise matrix [16].

In our robotic platform, Φsn is given by (from (3.25))

Φsn =




1 (1− e−KDTs)/KD Ksn(Ts + e−KDTs − 1)/KD

0 e−KDTs Ksn(1− e−KDTs)
0 0 0


 .

(3.35)
Knowing (3.24), the system state estimated by the AOB of our system
plant has dimension four, as represented by (3.36),

x̂k =




1x̂k
2x̂k
uk−1
p̂k


 . (3.36)

The first two states represent the estimated end-effector force and its
derivative. The third state appears due do the system time delay and
the fourth state is the AOB extra state.
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Figure 3.4: Nominal terms involved in the nominal stiffness update pro-
cess.

3.2.3 Stiffness Adaptation

Stiffness adaptation (i.e., update of the nominal stiffness value Ksn by the
current estimation of Ks) can be achieved by updating the control laws
accordingly [17, 20]. In Fig. 3.4, the dotted arrows represent the terms
that are dependent on the nominal stiffness value and should be updated.
The update involves the recalculation of the feedback gain matrix Lr, the
adaptation of Φsn (and consequently Φn) and, inherently, the Kalman gains
since they depend on Φn [17].

3.3 System Plant with Disturbances

Many different disturbances, such as measurement noise or modeling errors,
can cause the system to deviate from the ideal behavior. The lumped ef-
fect of disturbances can be represented by an equivalent disturbance signal
referred to the system input. In subsequent chapters, it will be useful to
distinguish between disturbance components due to stiffness mismatch and
other sources. This section provides the required notation and modeling
background.

3.3.1 Stiffness Mismatch Disturbance

A stiffness mismatch ∆Ks corresponds to a mismatch between the nom-
inal stiffness value Ksn and the real value Ks. This mismatch, given by
(1.1), originates a stiffness mismatch disturbance, which can be modeled by
pk(∆Ks) referred to the system input. An equivalent representation of the
system plant G(s) is shown in Fig. 3.5, where G(s) is modeled by a nominal
plant (with Ksn) plus the disturbance pk(∆Ks).
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Figure 3.5: G(s) representation with stiffness mismatch disturbance. G(s)
can be modeled by a plant with nominal stiffness Ksn plus a disturbance pk(∆Ks)
due to the stiffness mismatch, referred to the system input. pk(∆Ks) is due to the
stiffness mismatch ∆Ks = Ks−Ksn. uk is the command input and yk is the output
force.

3.3.2 Additional Disturbances

Other disturbances besides stiffness mismatch can exist (e.g., frictions, higher
order unmodeled terms, etc). Those additional disturbances can be repre-
sented by pk(o), an equivalent disturbance referred to the system input, as
shown in Fig. 3.6. So, the overall disturbance pk referred to the system
input, which includes pk(∆Ks) and pk(o), can be represented by

pk = pk(∆Ks) + pk(o). (3.37)

Real Plant

Nominal Plant
pk(∆Ks)

uk yk
+

G(s)

+

+

+

pk(o)

e−sTd

s(s+KD)

ũk
Kn

Figure 3.6: Real plant with stiffness mismatch and other disturbances.
The unknown disturbance pk(o) referred to the system input, lumps all disturbance
sources other than stiffness mismatch. G(s) can be modeled by a nominal plant
with Ksn plus a disturbance due to stiffness mismatch pk(∆Ks).
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4.1 Introduction

This chapter presents and discusses two system stiffness estimation approa-
ches, based on explicit models of the system. The Active State Based Al-
gorithm (ASBA) is based on the least-squared-error (LSE) comparison be-
tween the theoretical prediction of the AOB extra state, based on models

33
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of the manipulator and contact for different scenarios of stiffness mismatch,
with its actual value. The Candidate Observer Based Algorithm (COBA)
introduces two additional force observers, designed using different parame-
terizations of the contact model. The prediction error of these observers will
be further processed to obtain the stiffness estimation. ASBA is presented
in Section 4.2, while COBA is discussed in Section 4.3.

4.2 ASBA: Active State Based Algorithm

4.2.1 Overview

ASBA is a non-recursive algorithm that estimates the system stiffness by
contrasting the actual AOB active state with theoretically expected results.
ASBA is based on the premise that the active state embeds information
about unmodeled disturbances. Assuming that the stiffness mismatch is
the only source of disturbance (as described in Section 3.3.1), it is possible
to infer the stiffness mismatch from active state analysis. To this purpose,
active state curves are computed for several mismatch scenarios. These
are referred to as candidate curves. An estimation is obtained by noting
that the candidate curve that better matches the actual AOB active state
can be assumed to have been computed with parameters that more closely
correspond to the real stiffness mismatch. ASBA is described in Section
4.2.2. Section 4.2.3 discusses the computation of the candidate active state
curves and Section 4.2.4 presents the parametrization of ASBA. Section
4.2.5 shows an illustrative example and in Section 4.2.6 some considerations
about ASBA are made. The demonstrations of the supporting theorem and
lemma are collected in the Appendix (Section A.2).

4.2.2 Description

ASBA computes several candidate curves p̂Ksn,Ksc

k for the AOB active state,
for several stiffness mismatch scenarios. Each scenario considers the cur-
rent nominal value Ksn and a candidate value Ksc for the system stiffness
Ks. The p̂Ksn,Ksc

k curve closest to the actual active state gives information
about the current stiffness mismatch. A detailed description of ASBA is
presented in Algorithm 1. The parameters of ASBA are the predetermined
candidate stiffnesses S and the time windows w, TLSE , to and tu. These
allow establishing compromises between precision, efficiency, responsiveness
and consistency. Other parameters, required for step 1, are detailed in the
discussion of Algorithm 2. A higher values of TLSE , w and a high number
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of predetermined candidate stiffnesses improve precision at the cost of effi-
ciency. High values of to and tu increase response consistency at the cost of
responsiveness.

ASBA Algorithm

At each instant k, for each Cartesian dimension, do:

1. Compute the candidate p̂k curves (p̂Ksn,Ksc

k ) for a set S of spec-
ified stiffnesses over a specified time window w, considering the
reference force rk and the nominal stiffness value Ksn. If valid
candidate curves cannot be computed (see Algorithm 2 for com-
puting candidate p̂k curves), preserve the previous estimation
and terminate the current iteration.

2. Using a LSE analysis over a specified time window TLSE , iden-
tify the candidate curve p̂Ksn,Ksc

k closest to the actual p̂k. A

proposed estimation of Ks, K̂
−
s,k, is given by the candidate value

Ksc corresponding to the best match p̂Ksn,Ksc

k ,

K̂−s,k = Z :




k∑

k−TLSE

(p̂k − p̂Ksn,Z
k )2 = min

s∈S

k∑

k−TLSE

(p̂k − p̂Ksn,s
k )2


 .

3. If the proposed estimations of Ks have remained constant over a
specified time window (to if the estimated stiffness is decreasing,
tu if the estimated stiffness is increasing), then the proposed
estimation is accepted as good and made definitive, otherwise,
preserve the previous estimation,

K̂s,k =





K̂−s,k if K̂−
s,k > Ksn and K̂−

s,i = K̂−
s,k, i = k − tu, ..., k

K̂−s,k if K̂−
s,k < Ksn and K̂−

s,i = K̂−
s,k, i = k − to, ..., k

K̂s,k−1 otherwise

.

Algorithm 1: ASBA Algorithm. This algorithm is based on the LSE anal-
ysis of theoretical predictions of the AOB extra state for several scenarios of
stiffness mismatch.

Fig. 4.1 represents the ASBA Algorithm embedded in the control loop.
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Figure 4.1: ASBA Algorithm embedded in the control loop. ASBA receives
the reference force rk, the current nominal stiffness value Ksn and the AOB active
state p̂k. It computes an estimation K̂s,k of the system stiffness value. Online
stiffness adaptation can be done by adjusting the DC gain L1, the feedback gains
Lr and the nominal AOB model to conform to the estimated stiffness K̂s.

The reference force and nominal stiffness value are used to compute candi-
date active state curves, which are then compared to the actual active state.
No object position data is required. The estimation K̂s computed by ASBA
can be used for online stiffness adaptation by adjusting the DC gain, the
feedback gains and the nominal AOB model, as described in Section 3.2.3.

4.2.3 Active State Computation

ASBA requires the computation of several candidate p̂k curves (p̂Ksn,Ksc

k ) for
different mismatch scenarios (see Step 1 of Algorithm 1). These can be com-
puted with Algorithm 2. The parameters of Algorithm 2 perform tradeoffs
between efficiency, precision, responsiveness and consistency. Higher values
of w, w2, TI , as well as higher number of 2-permutations of S, improve con-
sistency and precision at the cost of efficiency. Higher values of TL improve
consistency at the cost of responsiveness. Relevant theoretical results for
ASBA can be found in Theoretical Results 1. Lemma 1 establishes the re-
lation between the active state and the stiffness mismatch, while Theorem
1 supports Algorithm 2, by proving that, given Ksn and Ks, p̂

Ksn,Ks

k (p̂k for
short) can be computed using the active state response IKsn,Ks (for a step
input) and the online reference difference ∆rk. This method is used in Step
2 of Algorithm 2 for computing p̂Ksn,Ksc

k , by replacing Ks by Ksc.
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Algorithm for computing candidate p̂k curves

Offline: Compute the step response of the active state for all 2-
permutations (Ksn,Ksc) of a set S of specified stiffnesses. These step
responses (IKsn,Ksc) are truncated to a finite time interval TI .
Online:

1. Verify if a large variation of the reference rk is present at the
wth previous sample. A large variation is defined as a variation
of the absolute value of the reference value that is at least TL
times greater than average value of the reference in the last w2

samples (see Fig. 4.2). If a large variation is not present, return
without computing valid candidate curves. Otherwise, continue
in Step 2.

2. For all IKsn,Ksc computed offline where Ksn is the current nom-
inal stiffness, compute the corresponding candidate curve in
the interval of the previous w samples, using the convolution
p̂Ksn,Ksc

k = (IKsn,Ksc ∗∆r)k.

Algorithm 2: Algorithm for computing candidate p̂k curves for different
stiffness mismatch scenarios.

4.2.4 Parameters

The parameters of ASBA reflect some necessary tradeoffs and practical im-
plementation considerations:

S The set of specified candidate stiffnesses must be chosen in advance.
The estimations provided by ASBA will always correspond to one of
these values. To achieve a desired precision, the candidates should
be uniformly distributed across the expected range of stiffness values.
Higher densities of candidate values increase precision, with the draw-
back of deteriorating runtime performance as additional candidates
must be considered. Memory resource requirements also increase due
to the higher volume of offline data that must be stored.

w When computing p̂Ksn,Ksc

k , for practical reasons (speed and memory
limitations), a limited interval (of duration w) must be considered
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Lemma 1. Assuming null initial conditions, the active state p̂k of the
active observer can be given by

p̂k = KC
k∑

i=1

i−1∑

j=0

Zj,iΓri−1−j ,

where r, K, C and Γ are the reference force, the Kalman gains, the output
and the command matrices, respectively. Z is represented by

Zj,k = (Φn,k−1 + ∆Φk−1 − ΓL)j − (Φn,k−1 − ΓL)j ,

where L is the state feedback matrix, Φn is the nominal state transition
matrix and ∆Φ is the mismatch matrix given by the difference between
the real and the nominal state transition matrices.

Theorem 1. If IKsn,Ks is the active state response for Ksn and Ks when
the system is excited with a step input, then p̂k can be computed, for any
arbitrary reference input, through the convolution:

p̂k = (IKsn,Ks ∗∆r)k,

where ∆rk = rk − rk−1 is the reference input difference.

Theoretical Results 1: Results relevant for analysis of ASBA operation. Proofs
are in the Appendix (Section A.2).

when computing the convolution, resulting in:

p̂Ksn,Ksc

k =

k∑

i=k−w
IKsn,Ksc

k−i ∆ri. (4.1)

The parameter w embodies a tradeoff between accurate computation
of p̂Ksn,Ksc

k and performance.

TLSE The LSE analysis must be restricted to a finite time interval TLSE .
If a smaller interval is considered, then performance is improved. The
algorithm will also be more responsive as tendencies expressed in older
data are quickly disregarded in favor of more recent data. However, fo-
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cusing the LSE analysis on a more restricted interval increases suscep-
tibility to high frequency disturbances, resulting in poorer estimation
consistency.

TI The curve IKsn,Ksc must be computed for a finite time interval TI .
While larger values of TI are potentially related with increased preci-
sion in the computation of pKsn,Ksc

k , in practice for stable configura-
tions IKsn,Ksc → 0. Therefore, when performing the offline generation
of IKsn,Ksc , it is possible to determine a value for TI that binds the er-
ror of IKsn,Ksc below a desired error margin. Higher values of TI have
negative performance impact as additional data must be considered
for computing pKsn,Ksc

k in each iteration.

TL,w2 Estimations are computed in the presence of a large variation of rk
at the wth previous sample (Fig. 4.2). A large variation was defined to
be a variation of the absolute value of the reference that is TL times
the average value of reference in the last w2 samples. The values of w,
w2, TI and TLSE should be articulated so that w2 > w, TI > w and
TLSE 6 w, minimizing the adverse impact of the restrictions on these
parameters.

w2

F
or
ce

[N
];

p̂ k
[m

/s
2
]

w

TLSE

0.1 ∗∆r

0

0.1

0 0.4 0.8 1.2
time [s]

-0.2

-0.3

p̂k

-0.1

Figure 4.2: Illustration of the time intervals associated with ASBA oper-
ation. Underestimated scenario: Ksn = 500 [N/m] and Ks = 700 [N/m]. System
excited with two step inputs: −10 [N] at t = 0.12 [s] and −30 [N] t = 0.52 [s].
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tu, to To improve response consistency, the actual nominal system stiffness
is only updated when the estimated stiffness is stabilized for a param-
eterizable number of samples. This parameter is defined differently
for both overestimated (to) and underestimated (tu) scenarios. This
means that nominal stiffness will be updated to a lower (higher) value
only if estimation has stabilized for to (tu) samples. As illustrated in
Fig. 4.3, the active state p̂k has higher dynamics in underestimated
scenarios. This led us to define different values for to and tu. Specifi-
cally, to will typically be higher than tu, to compensate for the slower
variation of p̂k in overestimated scenarios.

Over

Under

p̂ k
[m

/s
2
]

-0.1

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5

time [s]

-0.2

0

Figure 4.3: Active state behavior with two different scenarios of stiffness
mismatch: underestimated and overestimated. In the underestimated scenario,
Ksn = 200 [N/m] and Ks = 1000 [N/m]. In the overestimated scenario, Ksn =
1000 [N/m] and Ks = 200 [N/m]. A step input is applied at t = 0 [s].

4.2.5 Illustrative Example

In this section an illustrative example of execution of ASBA is presented.
A system plant is considered where the stiffness mismatch is the only un-
modeled disturbance, with Ksn = 500 [N/m] and Ks = 630 [N/m]. The
candidate stiffnesses are defined as S = {300, 400, 500, 600, 700} [N/m]. The
IKsn,Ksc curves are computed offline for every 2-permutation {Ksn,Ksc}
of S. Fig. 4.4 presents IKsn,Ksc curves for Ksn = 500 [N/m] (the curve
for Ksc = 500 [N/m] is zero and is omitted for clarity). When the in-
put force represented in Fig. 4.5(a) is applied to the system, the stiffness
mismatch disturbance induces the activity of the AOB extra state seen in
Fig. 4.5(b). ASBA estimates the system stiffness by contrasting this activity
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Figure 4.4: IKsn,Ksc curves for Ksn = 500 [N/m]. The duration of these curves
is in practice defined by the parameter TI (TI = 1000 in this example).

with expected results for candidate scenarios based on nominal and system
stiffnesses derived from 2-permutations of S. The expected active state for
a candidate scenario {Ksn,Ksc} (p̂Ksn,Ksc

k ) is computed as the convolution
of IKsn,Ksc with ∆rk, for the current nominal stiffness value, yielding the
results represented in Fig. 4.6(a). Estimations are obtained by finding which
p̂Ksn,Ksc

k is the closest match to the actual p̂k. This is achieved by computing
the LSE over a specified time window. Fig. 4.6(b) represents the error be-
tween p̂Ksn,Ksc

k and p̂k. Fig. 4.7 illustrates this process for a time instant just
after the second step of the input force. Fig. 4.7(a) shows the mean squared-
error computed at iteration k = 566 (t = 0.67 [s]), over the previous 12
samples (TLSE = 12). A proposed estimation K̂−s,k is found by determining
that the closest match corresponds to the curve with Ksc = 600 [N/m]. The
proposed estimation is accepted as good if K̂−s,k has remained constant over
the last tu = 6 iterations (if the estimation was decreasing, the complemen-
tary parameter to would be considered instead). In Fig. 4.7(b), it can be
observed that the MSE of 600 [N/m] has remained the lowest during that
interval, so the proposed estimation is accepted as good and K̂s,k = K̂−s,k,

otherwise the earlier estimation would be preserved (K̂s,k = K̂s,k−1).

4.2.6 Discussion

The goal of this work is to present a model-based technique for stiffness
estimation that does not require object position data and is amenable to
theoretical validation, as discussed in the introductory chapter (see Chapter
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Figure 4.5: Forces and AOB active state. (a) Input fk and output yk forces.
(b) Active state p̂k for the mismatch Ksn = 500 [N/m] and Ksc = 630 [N/m].

1). ASBA fits this role, as it is a model-based algorithm capable of success-
fully estimating system stiffness without using object position data. The
computation of the candidate curves is grounded on the theoretical results
presented on Theorem 1. Nevertheless, some shortcomings of this approach
were identified and addressed in subsequent work (see Section 4.3).

1. Runtime Efficiency: Although computation time is bounded, es-
timation time increases proportionally with the number of candidate
stiffnesses and also with the duration of the time intervals (TI , w,
w2 and TLSE). This may cause computation time to be excessive for
runtime operation if high precision and accurate estimations are de-
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Figure 4.6: Candidate active states and their difference w.r.t. the actual
active state. (a) Theoretical prediction of active state for each candidate scenario

p̂Ksn,Ksc

k for Ksn = 500 [N/m]. These curves were computed with the parameters
w2 = w = 835 and TL = 0.1. (b) Difference between the theoretical prediction for

each candidate scenario p̂Ksn,Ksc

k and the actual active state p̂k.

sired. Offline data and temporary candidate curves must be stored, so
memory requirements are also fairly high.

2. Adaptive Behavior: The LSE approach hampers algorithm response
to dynamic environment conditions, making it more difficult to adjust
the estimation accordingly.

3. Implementation Complexity: Practical implementation conside-
rations impose some deviations from the theoretically ideal formulas
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Figure 4.7: Error analysis. (a) Mean squared value of the error p̂k − p̂Ksn−Ksc

k

over an interval of the last TLSE = 12 samples, measured at instant k = 566.
(b) Mean squared-error over an interval of the last TLSE = 12 samples, measured
from instants t = 0.6108 [s] until t = 0.6168 [s] (corresponding, respectively, to the
iterations from k = 561 until k = 566).

(e.g.: finite summations). These impact negatively on the algorithm
behavior, although the effect may be hard to quantify.

4. Additional Disturbances: The operation principle of ASBA as-
sumes that the only source of disturbance is the stiffness mismatch
(or that it is the dominant source of disturbance, allowing other to be
ignored). In practice, operation will be degraded if these assumptions
fail to hold. Some of the more arbitrary aspects of the algorithm (e.g:
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stable estimations required for acceptance of results, disregarding re-
sults for low variations of the reference) attempt to address these issues
and improve consistency, but impair responsiveness and analyzability.

4.3 COBA: Candidate Observer Based Algorithm

4.3.1 Overview

COBA is an online system stiffness estimation algorithm, based on force data
[27]. It uses two Force OBservers (FOBs) tuned with two different nominal
values of system stiffness. The differentiated tuning makes each observer
provide an alternative estimation of the output force. By contrasting these
estimations with the actual measured force, the system stiffness estimation
K̂s,k is obtained. COBA is described in Section 4.3.2 and an illustrative
example follows in Section 4.3.3. The analysis of COBA under ideal and
non-ideal operating conditions is done in Section 4.3.4. The relevant para-
meters for COBA operation are presented in Section 4.3.5. Section 4.3.6
discusses COBA. The demonstrations of the supporting theorems, lemmas
and corollaries are collected in the Appendix (Section A.3).

4.3.2 Description

COBA contrasts the measured force with the estimated forces of two FOBs.
Each FOB is a force observer that uses a model based on a candidate value
for the system stiffness. The FOBs are designed in such a way that the
force errors, computed as the error between the output of each FOB and the
measured force, are proportional to the correspondent candidate stiffness
mismatch. Therefore, the stiffness estimation can be obtained by comput-
ing, from the known FOB force errors, the stiffness value that would corre-
spond to a candidate with null force error (and correspondingly no stiffness
mismatch).

Force Observers

Each FOB is defined by
{
xc,k = Φcxc,k−1 + Γuc,k−1 +Kc(yk − y−c,k)
yc,k = Cxc,k

, (4.2)

where xc,k is the FOB state and is of form

xc,k =
[

1xc,k
2xc,k uc,k−1

]T
. (4.3)
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uc,k is the FOB command input and yc,k is the FOB force estimation. y−c,k
is the a-priori estimation of yc,k,

y−c,k = C(Φcxc,k−1 + Γuc,k−1). (4.4)

Φc is obtained by replacing Ks by a candidate value Ksc in (3.12) and
discretizing with Ts = Td (see (3.24)). Kc is the FOB gain, which is equal
in both FOBs. It is represented by

Kc =
[

1Kc
2Kc 0

]T
. (4.5)

1Kc and 2Kc should satisfy certain conditions to guarantee stability (see
Theoretical Results 4). Ksc is the only design parameter that is specific to
each FOB.

Force Observers Mismatches

For each FOB, ∆Ksc, ∆xc,k and ∆Φc represent the stiffness, state estimation
and state transition matrix mismatches, respectively, i.e.,

∆Ksc = Ks −Ksc, (4.6)

∆xc,k = xk − xc,k, (4.7)

and

∆Φc = Φ− Φc. (4.8)

∆Φc can be written as

∆Φc = ∆KscT, (4.9)

where

T =




0 0 (Ts + e−KDTs − 1)/KD

0 0 1− e−KDTs

0 0 0


 . (4.10)

∆Φc is proportional to ∆Ksc since T is independent of ∆Ksc. This linear
relation is the fundamental result behind the COBA Algorithm.

COBA Algorithm Description

A detailed description of COBA is presented in Algorithm 3. The parameters
of COBA are Ksc1 , Ksc2 , 1Kc,

2Kc and Gmin. The specific values of the
candidate stiffnesses (Ksc1 and Ksc2) are unimportant as long as they are
sufficiently distinct to avoid numerical problems computing (4.12). The
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values of 1Kc and 2Kc determine the dynamic response of the FOBs and
should satisfy certain conditions detailed in Theorem 4. Higher values of
Gmin improve conditioning at the cost of responsiveness. These parameters
are further discussed in Section 4.3.6. Fig. 4.8 presents COBA embedded
in the control loop. The input command and measured force values are
used to compute the FOBs state. No object position data is required. The
estimation K̂s computed by COBA can be used for online Ksn stiffness
adaptation.

−

yk yc1,k

K̂s,k Estimator

yc2,k

yk yk

Ksc2Ksc1
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Figure 4.8: COBA architecture embedded in the control loop. The esti-
mation K̂s,k can be used to adapt the state feedback gains Lr, DC compensation
gain L1 and AOB matrices. Ksc1 and Ksc2 are the stiffnesses of each candidate
observer FOB1 and FOB2.
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COBA Algorithm

1. Set to FOB1 a soft stiffness Ksc1 and to FOB2 a stiff stiffness
Ksc2 (e.g., Ksc1 = 100 [N/m] and Ksc2 = 6000 [N/m].

2. Set the initial state of both FOBs with the same value x̂0:
xc1,0 = xc2,0 = x̂0.

3. For each iteration k do:

(a) From (4.2), compute yc1,k and yc1,k.

(b) Compute the force errors 1∆xc1,k = yk − yc1,k and
1∆xc2,k = yk − yc2,k.

(c) Compute the 2D points (Ksc1 ,
1∆xc1,k) and

(Ksc2 ,
1∆xc2,k).

(d) Compute the line that contains the points of c). It is given
by

1∆xc,k = 1ĜkKsc + ϕ̂k, (4.11)

where the slope 1Ĝk and the offset ϕ̂k are given by

1Ĝk =
1∆xc2,k − 1∆xc1,k
Ksc2 −Ksc1

=
yc1,k − yc2,k
Ksc2 −Ksc1

(4.12)

and
ϕ̂k = 1∆xc2,k − 1ĜkKsc2 . (4.13)

(e) Compute K̂−s,k given by

K̂−s,k = − ϕ̂k
1Ĝk

, (4.14)

which corresponds to the intersection point of line (4.11)
with the stiffness axis.

(f) The estimation is given by

K̂s,k =

{
K̂−s,k if |1Ĝk| ≥ Gmin

K̂s,k−1 otherwise
. (4.15)

Algorithm 3: COBA Algorithm. This algorithm is based on the analysis of
the output of two force observes and the current measured force.
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4.3.3 Illustrative Example

In this section an illustrative example of the execution of COBA is pre-
sented. A system plant is considered where the stiffness mismatch is the
only unmodeled disturbance, with Ksn = 500 [N/m] and Ks = 630 [N/m].
Two candidate observers with candidate stiffnesses of 100 and 6000 [N/m]
are used. In Fig. 4.9(a), the measured force obtained by applying a 2-step in-
put can be observed. The corresponding force estimations from both FOBs
are also presented. The discrepancies between the measured and estimated
forces, seen in Fig. 4.9(b), are due to mismatches between the system stiff-
ness, nominal and candidate stiffnesses. COBA takes advantage of these
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Figure 4.9: Forces and FOB force errors. (a) System input, system output
and FOB estimated forces. (b) Errors between the output force yk and the FOBs
forces (1xc1,k and 1xc2,k). 1∆xc1,k represents the force error between yk and 1xc1,k
and 1∆xc2,k represents the analogous error but with respect to 1xc2,k.
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Ksc1

Ksc[N/m]Ksc2

K̂s,k

1∆xc,k [N]

1∆xc1,k

1∆xc2,k

Figure 4.10: Graphical representation of COBA. The bold line contains
the points (Ksc1 ,

1∆xc1,k) and (Ksc2 ,
1∆xc2,k). The intersection point with the

stiffness axis corresponds to K̂s,k.

differences to estimate the system stiffness, as illustrated in Fig. 4.10. At
each instant, the estimation is obtained by computing the intersection point
between the line connecting the force estimation errors of the candidates
and the stiffness axis. The results of applying this process to the data of
Fig. 4.9(b) can be seen in Fig. 4.11. Fig. 4.11(a) zooms in the results for
iterations k={2,3,4,5}. Fig. 4.11(b) presents the system stiffness estimation
obtained for the entire interval of 1.8 [s] represented in Fig. 4.9(b).

4.3.4 Theoretical Analysis

A disturbed real plant can be modeled by an undisturbed nominal plant
plus an equivalent disturbance pk referred to the system input that lumps
all the disturbances. pk can be decomposed in two contributions:

pk = pk(∆Ks) + pk(o), (4.16)

where pk(∆Ks) is the disturbance due to the stiffness mismatch ∆Ks (i.e.,
due to the mismatch between the real system stiffness Ks and the nominal
stiffness value Ksn used in the control design) and pk(o) includes all the addi-
tional disturbances other than pk(∆Ks) (e.g., due to high-order unmodeled
terms, frictions and measurement noise), both referred to the system input.
Fig. 3.6 represents the real plant corresponding to the linearized plant G(s)
(modeled as a nominal plant with pk(∆Ks)) and additional disturbances
pk(o). The FOB command input uc,k is obtained from the command input
of the real plant, that is,

uc,k = uk. (4.17)



4.3. COBA: CANDIDATE OBSERVER BASED ALGORITHM 51

K̂s = 630

1
∆
x
c,
k
[N

]

0.8

0 1000 2000 3000 4000 5000

-0.005

0

0.005

0

k = 2

k = 3

k = 4

k = 5

6000

600 620 640 660 680580

0.4

Stiffness [N/m]

(a)

S
ti
ff
n
es
s
E
st
im

at
io
n
[N

/m
]

0

400

600

0 0.4 0.8 1.2 1.6
time [s]

K̂s,k

200

(b)

Figure 4.11: COBA stiffness estimations. (a) K̂s,k evolution. (b) Each line
contains the points (Ksc1 = 100 [N/m], 1∆xc1,k) and (Ksc2 = 6000 [N/m], 1∆xc2,k)

at iterations ranging from k = 2 until k = 5. K̂s,k corresponds to the point of
intersection of the force error line with the stiffness axis.
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From Fig. 3.6, it can be seen that

ũk = uk + pk(o). (4.18)

From (4.17) and (4.18),
uc,k = ũk − pk(o). (4.19)

A scenario is designated as having ideal conditions if pk(o) = 0, i.e., if no
additional disturbances exist besides the one due to stiffness mismatch. In
this case, by (4.19), uc,k = ũk. Non-ideal conditions reflect the existence of
additional disturbances, i.e., pk(o) 6= 0. In the sequel,the theoretical analysis
of COBA under ideal and non-ideal conditions is presented.The proofs of
relevant theorems, lemmas and corollaries can be found in the Appendix.

Ideal Conditions

In ideal conditions (pk(o) = 0) the FOB command input uc,k is equal to the
command input of G(s). Fig. 4.12 shows COBA inputs under ideal operating
conditions where

uc,k = ũk = uk. (4.20)

Lemma 2, Corolary 1 and Theorem 2 are the relevant theoretical results for
analysing COBA operation in ideal conditions (see Theoretical Results 2).
According to Lemma 2, the force estimation error of each FOB is given by

1∆xc,k = −∆Ksc
1Gk = −(Ks −Ksc)

1Gk, (4.21)

where 1Gk is independent of ∆Ksc. Corollary 1 demonstrates that the un-
known term 1Gk is equal to the well known 1Ĝk, computed by (4.12). There-
fore solving (4.21) for Ks and replacing data from one FOB (FOB2 in this
case) results in

Ks = −
1∆xc2,k

1Ĝk
+Ksc2 . (4.22)

The right hand sides of (4.22) and (4.14) are equivalent, showing that
K̂s,k = Ks, as specified by Theorem 2.

COBA K̂s,k

G(s)

uc,k

ykuk

Figure 4.12: COBA inputs under ideal operating conditions.
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Lemma 2. Under ideal operating conditions, there exists a value Gk,
independent of ∆Ksc and equal for both FOBs, that verifies:

∆xc,k = −∆Ksc Gk,

where ∆xc,k is the FOB state estimation error and ∆Ksc is the FOB
stiffness mismatch.

Corollary 1. Under ideal operating conditions,

1Ĝk = 1Gk.

Theorem 2. Under ideal operating conditions, COBA estimates the cor-
rect object stiffness,

K̂s,k = Ks.

Theoretical Results 2: Results relevant to analysis of COBA operation: Ideal
conditions. Proofs are in the Appendix (Section A.3.1).

Non-ideal Conditions

In this section, the analysis of COBA is extended to contemplate additional
disturbances besides the one due to the stiffness mismatch, which are lumped
into pk(o). This analysis is based on Lemma 3, Corollary 2 and Theorem 3,
shown in Theoretical Results 3. If pk(o) 6= 0, uc,k is different from the G(s)
command input ũk. This difference, represented by ∆uc,k, can be defined,
according to (4.19), by

∆uc,k ≡ ũk − uc,k = pk(o). (4.23)

If ∆uc,k = 0, then ũk = uc,k and the analysis is similar to that of the ideal
scenario. If ∆uc,k 6= 0, the relation between 1∆xc,k and ∆Ksc, represented
in (4.21), is affected by an offset 1Wk, as demonstrated in Lemma 3,

1∆xc,k = −(Ks −Ksc)
1Gk +1 Wk. (4.24)

Theorem 3 shows that under non-ideal conditions, the additional distur-
bances negatively impact the estimation performance. Corollary 2 demon-
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Lemma 3. Under non-ideal operating conditions, there exists a value Gk

and Wk, independent of ∆Ksc and equal for both FOBs, that verifies:

∆xc,k = −∆KscGk −Wk,

where ∆xc,k is the FOB state estimation error and ∆Ksc is the FOB
stiffness mismatch.

Corollary 2. Under non-ideal operating conditions,

1Ĝk = 1Gk.

Theorem 3. Under non-ideal operating conditions, the estimation com-
puted by COBA is given by

K̂s,k = Ks + ∆K̂s,k,

with

∆K̂s,k = −
1Wk

1Gk
,

if 1Gk 6= 0. ∆K̂s,k is the stiffness estimation error.

Theoretical Results 3: Results relevant for analysis of COBA operation: Non-
ideal conditions. Proofs are in the Appendix (Section A.3.2).

strates that, even when disturbances are present, 1Ĝk = 1Gk, so by replacing
(4.24) and 1Ĝk in (4.13), the stiffness estimation computed by (4.14) will
suffer an error ∆K̂s,k given by

∆K̂s,k = −
1Wk
1Gk

. (4.25)

1Wk cannot be computed since it depends of the unknown uncompensated
disturbance ∆uc,k (A.69). To reduce the magnitude of the error, ∆uc,k
should be as small as possible. This can be achieved by compensating the
FOBs command input with an estimation p̂k(o), as represented in Fig. 4.13.
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pk(o)
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Figure 4.13: COBA inputs under non-ideal operating conditions.

In this case, instead of (4.17), uc,k is computed by

uc,k = p̂k(o) + uk. (4.26)

Consequently,

∆uc,k = pk(o)− p̂k(o). (4.27)

4.3.5 Parameters

The relevant parameters for COBA operation are 1Kc,
2Kc andGmin. Proper

tuning of these parameters can improve the estimation error ∆K̂s,k. Equa-
tion (4.25) depends on the unknown value of 1Wk and is poorly conditioned
for low magnitudes of 1Gk.

1Wk is bounded if the parameters 1Kc and 2Kc

are tuned according to the specific conditions described in Theoretical Re-
sults 4. Therefore, the absolute value of 1Gk can be used as an indicator of
the magnitude of ∆K̂s,k. An online quality assessment based on |1Gk| can
be implemented, allowing continuous evaluation of the estimation quality.
Low magnitudes of 1Gk can potentially correspond to poorly conditioned
estimations, therefore they should be discarded. 1Gk is not dependent of
the yk magnitude (see (4.12)), hence high magnitudes of 1Gk can be found
even for low magnitudes of yk. This means that high quality estimations
can be obtained for low contact forces.

4.3.6 Discussion

COBA is an algorithm that preserves the same desirable properties of ASBA
and avoids its problematic issues described in Section 4.2.6. The operation
principle of COBA is based on theoretically demonstrated properties of the
candidate observers. In accordance to the discussion in the introductory
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Theorem 4. Wk is bounded if ∆uc,k−1 is bounded and the following
conditions hold:

|λ1| < 1 and |λ2| < 1, (4.28)

where
λ1 = α/2−

√
α2/4 + β (4.29)

and
λ2 = α/2 +

√
α2/4 + β, (4.30)

with
α = 1Kc, (4.31)

β = −2 1Kc
2Kc + 1Kc c+ 2 2Kca− c, (4.32)

a = (1− e−KDTs)/KD (4.33)

and
c = e−KDTs . (4.34)

Theoretical Results 4: Results relevant for analysis of COBA operation: FOB
gain tuning. Proof is in the Appendix (Section A.3.2).

chapter (see Chapter 1), it avoids the practical difficulties of relying on con-
tact point and deflection information by not requiring object position data.
One of the desirable properties of an estimation algorithm is runtime effi-
ciency. COBA is very efficient, as the execution time and memory overhead
is limited to the computation of two candidate observers. Memory overhead
is limited to the state of the FOBs, while execution time overhead is limited
to the operations required to update the FOB states and compute the line
intersecting the estimation errors (see Section 4.3.2). Contrary to ASBA,
the implementation of COBA is simple and does not require any simplifi-
cation of the relevant formulas. This has the benefit of ensuring results are
consistent with the theoretical analysis, as no compromise is being made
for practical considerations. By avoiding the need to conduct LSE analy-
sis, COBA is well suited to obtaining estimations in dynamic environments,
as the candidate observers adjust their state estimations to changing envi-
ronmental conditions. The effects of additional disturbances has also been
analyzed, allowing for the design of compensation strategies described in
Section 4.3.4.
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Sensor-Based Estimation
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5.1 Introduction

This chapter explores the stiffness estimation problem using sensor-based
approaches. These are based on techniques known for their ability to identify
complex and nonlinear relations between inputs and outputs of a system,
without recourse to an explicit model of the system under consideration. In
this work one of the most important heuristics commonly used for solving
identification problems - Artificial Neural Networks - was adopted. ANNs
were first discussed in the early forties and have since been the object of
much research and development. They have been successfully applied in
several areas, such as prediction, system identification, classification and
pattern recognition. The main objective of the research presented in this
chapter is to explore the application of ANNs to the stiffness estimation
problem, without recourse to object position data, in robotic interaction
tasks. One advantage of this approach over model-based techniques is that
explicit models are not required.

57
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5.2 Artificial Neural Networks

Biological neural networks are composed of interconnected neurons. Neurons
generate electrochemical stimulus that induce activity in other connected
neural cells. An artificial neural network mimics its biological counterpart.
It is a set of interconnected artificial neurons, whose basic model is founded
upon the functionality of the biological neuron. Synapses, the intercon-
nections between neurons, are emulated by weighted interconnections. A
negative weight reflects an inhibitory connection, while positive values des-
ignate excitatory connections. All weighted inputs to an artificial neuron k

are combined into an aggregate activity level βk. This is typically achieved
by (5.1),

βk =

n∑

j=1

(wk,jaj)− θk =WT
k A, (5.1)

where n is the number of inputs, wk,j is the weight of the connection feeding
the output of neuron j into the input of neuron k, aj is the output of
neuron j, θk is the offset of neuron k, Wk = [wk,1 wk,2 · · · wk,n − 1] and
A = [a1 a2 · · · an θk]. An activation function calculates the amplitude of
the output based on the activity level, typically restricting the output to
a bounded range. Popular choices include the threshold (5.2) and sigmoid
(5.3) functions.

ak(βk) =

{
0 if βk ≥ 0

1 if βk < 0
. (5.2)

ak(βk) =
1

1 + e−βk
. (5.3)

The latter can be interpreted as a continuous version of the former, allowing
continuous outputs to be produced. The pattern of connection between arti-
ficial neurons leads to different topologies. A main distinction can be made
between feedforward (most common) and recurrent topologies. The latter
contain feedback connections, while the former do not. Classical examples of
feedforward and recurrent ANN are the Perceptron and Hopfield networks,
respectively [88, 49]. The behavior of the ANN is dependant on the topology,
activation function and weights. Usually, the topology and activation func-
tions are chosen by the designer according to the problem being considered,
and remain constant during the entire lifecycle of the ANN. Accordingly,
the desired behavior must be obtained, for a specific choice of topology and
activation functions, by adjusting the synaptic weights. In most cases, it
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1 Perceptron

NeuronInputs Weigths Output

θ

w1

xn
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w2 y
∑
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Figure 5.1: Perceptron. The output value y is computed by weighting the
input vector X = [1 x1 x2 ... xn]T with W = [θ w1 w2 ... wn]. The output may
subsequently be further modified by application of an activation function.

is not feasible to precompute the desired weight configuration using a pri-
ori domain knowledge. In this way, a training process is conducted, using
sample data, where the weights are dynamically adapted until the desired
behavior is observed. Training is achieved by applying a learning algorithm
that adapts the weights according to provided data samples. A plethora
of learning algorithms can be found in the literature. The specific details
depend on factors such as the network topology, activation functions, the
type of problem addressed and data availability. For example, the network
in Fig. 5.1, using a threshold activation function, can be trained to cor-
rectly classify an input vector X into one of two linearly separable classes.
If the activation function is smooth and continuous (as is the case if a sig-
moid activation function is used), then backpropagation techniques can be
used. These ”propagate” the output error from the network output back
towards the inputs, updating the weights along the way to minimize the
squared classification error. The weights can be adjusted proportionally to
the amount of error, the local gradient of the error and the input activation.
Specific details may differ, but all variants of this process are essentially a
gradient-based search for the weight vector that minimizes the squared error
of prediction. Convergence is ensured, but only to an local, not global, op-
timum. Backpropagation algorithms are an example of supervised learning
algorithms that use training data composed of input-output pairs, indicating
the desired network output for the given input vector. Typical applications
include curve fitting or classification. Conversely, unsupervised learning al-
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gorithms exist that require only input vector sample data for training (but
no desired output information). These are mainly used for purposes such as
clustering or pattern recognition. Another approach is reinforcement learn-
ing, where a feedback response to the ANN output is taken into account
by the learning rule [103]. Although no strict generic rules for selecting the
size and parameters of an ANN exist, some guidelines can be found. The
dimension of the sample set required to properly train the network increases
with the dimension of the network. Increasing the dimension and number of
hidden layers in feedforward networks may improve fitting to training data,
but actually decrease generalization capabilities, a phenomenon called over-
fitting. Conversely, generalization capabilities may be improved by reducing
the dimension of hidden layers, but underfitting (poor training performance)
may then become an issue. Both designer experience and experimental tri-
als play an important role in finding the best ANN parameterization for a
given problem.

5.3 ANNE: Artificial Neural Network Estimator

5.3.1 Overview

The Artificial Neural Network Estimator (ANNE) is composed by three
modules: a delayed input buffer, a layer of ANNs and a fusion module. No
input signals specific to the control approach are used, promoting portability
to other platforms and control strategies. Each ANN computes a stiffness
estimation and is trained for a specific nominal stiffness used in control
design. The fusion module merges ANNs outputs into a single improved
estimation. Section 5.3.2 discusses the most relevant aspects concerning
ANNE architecture. Section 5.3.3 presents ANN and ANNE training and
testing procedures.

5.3.2 Architecture

Fig. 5.2 represents the ANNE estimator embedded in the control loop and
the ANNE architecture is shown in Fig. 5.3. A buffer feeds the delayed input
signals yk and uk to multiple ANNs. Each ANN is trained with force-based

data from interactions with a fixed nominal stiffness Ksn equal to K
(j)
T ,

outputting an independent estimation of Ks, K̂
(j)
s,k . The fusion module fuses

the information of the ANNs, providing the K̂s,k output.
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Figure 5.2: ANNE embedded in the control loop. ANNE performs the
stiffness estimation which can be used to adapt control laws online.
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Figure 5.3: ANNE architecture. It receives the measured force yk, the com-
mand input uk and current Ksn, outputting the stiffness estimation K̂s,k. A buffer
is constructed to feed multiple ANNs with force-based data, only. A fusion module
computes K̂s,k from ANN outputs.

Input Vector Definition

An analysis was conducted to identify suitable force-based inputs for the
ANNs.
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� Candidate Variables - The following variables were considered po-
tential candidates for inclusion in the input vector:

– fk (reference force)

– yk (measured force)

– uk (command input)

– 0x̂k (AOB first state)

– p̂k (AOB active state)

since they include information that is measurable and relevant for
stiffness estimation.

� Variable Selection - Although candidate variables can all be in-
cluded in the ANN design, too much redundant information can jeop-
ardize the training process. With this in mind, correlation analysis
was conducted to reduce the number of ANNE inputs. High correla-
tion between two variables can be interpreted as a sign of redundancy,
allowing to remove one variable from the input vector. Several robotic
telemanipulation tasks have been performed, for multiple contact sce-
narios and Table 5.1 shows the results.

Table 5.1: Average correlation results of force-based variables.

yk fk uk
0x̂k p̂k

yk 1 0.9837 -0.7695 0.9992 0.7640

fk 0.9837 1 -0.7004 0.9897 0.7662

uk -0.7695 -0.7004 1 -0.7558 -0.9124
0x̂k 0.9992 0.9897 -0.7558 1 0.7637

p̂k 0.7640 0.76624 -0.9124 0.7637 1

It can be seen that yk,
0x̂k and fk exhibit strong correlation, while uk

and p̂k are also highly correlated. Therefore, only one variable among
yk,

0x̂k and fk is required to be present in the input set, as well as one of
uk and p̂k. yk was chosen since it reacts faster to environment changes
providing richer transient information. uk was also chosen since it
is not specific to our control approach, allowing easier adaptation to
other control techniques.

� Time-lag Selection - Having selected the variables to include in the
input vector, the dimension of the buffer that feeds yk and uk into the
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ANNE must be determined. The objective is to reduce input dimen-
sion as much as possible, for training and computational efficiency. A
set of experiments has been conducted to this effect, using training
data from interaction tasks between a WAM robot and objects with
different stiffnesses. Good results were obtained by including the most
recent nine samples of each variable in the input vector. Since the
experimental platform has one sampling time delay (see (3.24)), yk is
dependent on uk−1. Therefore, the desired inputs are yk, yk−1 . . . , yk−8
which combined with uk−1, uk−2 . . . , uk−9 form the ANN input vector:

Υ =
[
yk, yk−1, . . . , yk−8, uk−1, uk−2, . . . , uk−9

]
. (5.4)

ANN Topology

Fig. 5.4 represents the ANN topology of ANNE. A typical feedforward net-
work with a single hidden layer is used. A balance between fitting and
generalization must be sought. Higher numbers of hidden neurons improve
fitting to training data, but may result in overfitting, resulting in poorer
generalization capabilities.

Output

. . . . . .

yk−8. . .yk uk−1

Input

ANN K
(j)
T

vector uk−9

K̂
(j)
s,k

. . .
Input

layer

Output layer

Hidden layer

Figure 5.4: ANN K
(j)
T topology. The ANN K

(j)
T is trained with telemanipu-

lation data where the nominal stiffness used in the control architecture is equal to

K
(j)
T . It has an input vector with force-based data, with dimension 18, and one

hidden layer. The output corresponds to the stiffness estimation K̂
(j)
s,k.
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Fusion Module

If during online operation Ksn 6= KT , where

KT ∈ {K(1)
T , . . . ,K

(i)
T }, (5.5)

the training stiffness mismatch ∆KT = KT − Ksn is non null and
ANN KT response degradation is expected. It has been consistently ob-
served that slightly negative ∆KT and slightly positive ∆KT result in esti-
mation errors with opposite signs. Therefore, if KL and KH are the nearest
training stiffnesses to Ksn, so that KL ≤ Ksn ≤ KH , the correct estimation

lies in the range provided by ANN KL and ANN KH ([K̂
(L)
s,k , K̂

(H)
s,k ]). Its

value is obtained by fusing the results of multiple ANNs with polynomial
regression [30]. If Ks,k is represented by a general m-order polynominal
regressor

Ks,k = a0,k + a1,kKsn + a2,kK
2
sn + a3,kK

3
sn + · · ·+ am,kK

m
sn + εk, (5.6)

where εk is the regression error, then the K̂s,k can be obtained by

K̂s,k = â0,k + â1,kKsn + â2,kK
2
sn + â3,kK

3
sn + · · ·+ âm,kK

m
sn. (5.7)

The ai,k coefficients can be estimated in each iteration by using a regression

set including n points (K
(j)
T , K̂

(j)
s,k), with n > m. Replacing each point of the

regression set into (5.6) and conjoining resulting expressions, the following
system is obtained,

Kk = XAk + Ek, (5.8)

where

Kk =




K̂
(0)
s,k

K̂
(1)
s,k
...

K̂
(n)
s,k



, Ak =




a0,k
a1,k

...
am,k


 , Ek =




ε0,k
ε1,k

...
εn,k


 , (5.9)

and X is given by

X =
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· · · K

(0)
T

m

1 K
(1)
T K

(1)
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2
· · · K

(1)
T

m

...
...

...
...

1 K
(n)
T K

(n)
T

2
· · · K

(n)
T

m



. (5.10)
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Using ordinary least squares estimation, Âk is obtained by

Âk = (XTX)−1XTKk. (5.11)

Some guidelines relate the choice of regressor order, the composition of the

regression set and the distribution of K
(j)
T :

a) Concerning selection of the points (K
(j)
T , K̂

(j)
s,k) to integrate the regression

set, preference should be given to those closer to Ksn, so that relevant
information in the neighborhood of the point of interest is not discarded.

This makes (KL, K̂
(L)
s,k ) and (KH , K̂

(H)
s,k ) major candidates for inclusion.

b) High order polynomials should generally be avoided if the regression set is
composed of equidistant points. In this case, the degree of the polynomial
regressor m should be bounded by m < 2

√
n. Respecting this upper limit

ensures that the approximation is well conditioned [30].

c) If a high order regressor is used, the regression set should be more densely
populated nearer the edges of the regression interval, to reduce oscilla-
tions due to Runge’s phenomenon [7].

5.3.3 Training and Testing

ANN Training

Each ANN KT is trained by performing the following steps:

1. Training Setup: The control system is designed by setting Ksn = KT .
A set of objects with different stiffnesses is then chosen.

2. Data Collection : For each object, the human operator performs se-
veral telemanipulation experiments involving free-space/contact transi-
tions. Each data sample is obtained by:

� Choosing a random time instant k.

� Obtaining the input vector from (5.4) and setting the target esti-
mation, required by the supervised learning process, to Ks,k. This
value is known for virtual objects. For real objects, an external
source is used to provide target stiffnesses.

3. Training : Samples are divided into a training set and a validation
set. The training set provides the samples necessary for the Levenberg-
Marquardt backpropagation algorithm, while the validation set assesses
the training phase. Training runs for a maximum number of epochs
bounded by the validation set.
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ANN and ANNE Testing

Testing is conducted by following these steps:

1. Test Setup: The nominal stiffnessKsn is set for a given telemanipulation
session. Testing of ANN KT includes both scenarios where Ksn = KT

and Ksn 6= KT . ANNE testing entails setting Ksn to an arbitrary value,
different from the KT , while interacting with different objects.

2. Data Collection : For each object, a telemanipulated experiment is
performed. These experiments are used solely for testing purposes (i.e.,
testing data is never used for training). Although similar setups may be
used for collecting both training and testing data, human telemanipula-
tion ensures, in practice, that reproduction of the reference and control
signals across both data sets is unlikely. This allows generalization ca-
pabilities of the ANN to be assessed, since during testing the network is
being stimulated with signals that were not used in training.

3. Result Analysis: Comparison of K̂s,k with the expected outcome.

5.3.4 Discussion

Like the other techniques presented in this thesis, ANNE is an estimation
technique that does not rely on object position data to compute estimation
of the environment stiffness. Unlike those techniques, however, the ANNE
estimator does not rely on a specific model of environment or control system,
but on a implicit model that is tailored using a training process. The input
data required is less specific to the control architecture described in Chap-
ter 3 than COBA or ASBA, increasing potential for application in other
control settings. One important point to observe is that ANNE does require
an initial data set that is seeded with initial stiffness estimations. As an
example of application, those initial estimations can be obtained in a struc-
tured setting, where geometry uncertainty is minimal and a conventional
estimation algorithm produces good results. Then, after training the corre-
sponding ANNE estimator, position dependency is eliminated and the same
control architecture can be used for tasks in less structured environments
(where the original estimator fails to produced adequate estimations), while
maintaining stiffness estimation capabilities with ANNE. Alternatively, as
illustrated in Chapter 7, ANNE can be seeded with the results of other
object position-independent estimator, such as COBA.
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6.1 Introduction

This chapter presents and discusses the results of simulation tests. These
were conducted with the following objectives:
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1. Assessing the impact of parameter mismatch in the force tracking dy-
namics (Section 6.3).

2. Assessing the behavior of the estimation algorithms (sections 6.4, 6.5
and 6.6), in nearly ideal operating conditions:

� Perfect linearization of manipulator dynamics, resulting in double
integrator behavior.

� Contact dynamics are perfectly modeled by a linear spring.

� The manipulator is perfectly rigid.

In all tests, the interaction of a robot with the environment was simulated,
based on the explicit force control architecture described in Chapter 3, using
the Matlab Simulink tool [105]. The simplified graphical representation of
the simulation platform, including the interaction between the robot and
the environment, can be seen in Fig. 6.1 (in Section 6.3.2 damping is also
considered in the contact model). A more detailed description of the sim-
ulation setup is given in Section 6.2. The effect of parameter mismatch in
force tracking dynamics is explored in 6.3. Simulation results for ASBA,
COBA and ANNE can be found in sections 6.4, 6.5, and 6.6, respectively.
A discussion is presented in Section 6.7. All quantities are based on SI units
and only the Z Cartesian dimension is considered.

Contact Model

Robot+Contact Model 

AOB Observer + State Feedback

+ −

yk = Ks(Xt −X0)Ks

X0

Xt

Ẑ

L1

rk

ukrk

[x̂k p̂k]
T

fk

Figure 6.1: Simulation platform. General representation of the simulation
platform, including the linearized robotic manipulator, control loop and contact
model.
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6.2 Simulation Setup

The simulation platform is represented in Fig. 6.2. It includes a perfectly
linearized plant, modelled with a double integrator behavior, with system
time delay Td and a spring with stiffness Ks as the contact model. The
system plant is controlled with discrete state-space techniques in the task
space (state feedback and an AOB observer). A critically damped control
design with time constant τf is implemented for force tracking. To reflect
the force measurement noise, Gaussian noise with approximately zero mean
and variance σ2 was added to the system output yk. The noise variance was
obtained experimentally from the JR3 force sensor. The simulation setup
considers that initially the manipulator is in contact with the environment,
except in Section 6.5.3 where free-space/contact transitions are simulated.
The control design and system parameters common to all tests are presented
in Table 6.1.

COBA ANNEASBA

AOB

noise
white

Ks

KDs

[Lr 1] p̂k[x̂k ]T

K̂s,k K̂s,k K̂s,k

yk uk yk uk KsnKsnfk p̂k

e−sTd
Xt

G(s)

1
s2+ −

+

+

yk

+ −

rkL1
uk

rk

fk

(Ksn)

f ∗

Figure 6.2: Simulation platform used to assess ASBA, COBA and
ANNE. G(s) represents the robotic manipulator (with feedback linearization and
velocity feedback) and the contact model. fk is the input force, yk is the output
force, uk is the command input, Lr is the feedback gain matrix and L1 is the DC
gain compensation term (first element of Lr). p̂k is the extra state and x̂k is the sys-
tem state estimation, both computed by the AOB observer. Ks is the real system
stiffness and K̂s,k is the corresponding estimation.
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Table 6.1: Simulation results - common control design and system parameters.

Control Parameters

Description Parameter Value Value
(ASBA) (COBA, ANNE)

Sampling time Ts 0.002 0.0012
System time delay Td 0.002 0.0012
Damping gain KD 15 10
Force loop time constant τf 0.045 0.045
Force loop damping coefficient ξ 1 1

AOB Parameters

Description Parameter Value Value
(ASBA) (COBA, ANNE)

Measur. noise matrix Rnoise 1 1
System noise matrix Qnoise diag = {10−5, 10−12, diag = {10−6, 10−12,

10−12, 10−5} 10−12, 10−5}

6.3 Effect of Parameter Mismatch in Dynamic Res-
ponse

This section illustrates the effect of mismatches between nominal and real
contact parameters on the dynamic response. Analysis are conducted using
two different contact models. For assessing the effects of stiffness mismatch,
the contact is first modelled by a linear spring with stiffness Ks. Then,
a Kelvin-Voigt contact model (2.2) is adopted, including a damping com-
ponent with coefficient Bs, so that the effect of mismatching viscosity can
also be assessed. In each case, the AOB nominal matrices are designed ac-
cordingly. The control design and AOB parameters are the same of ASBA
(Table 6.1).

6.3.1 Stiffness Mismatch Effect

Fig. 6.3 illustrates the effect of different stiffness mismatch scenarios in force
tracking dynamics. A step input force of −5 [N] is applied at t = 0.1 [s]. It
is assumed that the robot is initially in contact with the environment. Four
different scenarios are analysed. Fig. 6.3(a) presents the input and output
forces for a matching (Ksn = Ks), under (Ksn < Ks) and over (Ksn > Ks)
stiffness scenarios. In the matching stiffness case, the measured force fol-
lows the input force with the designed critically damped response. However,
in both under and overestimated cases, force tracking degradation can be
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Figure 6.3: Stiffness mismatch effects in the dynamic response: an
illustrative example. In all scenarios, Ksn = 1000 [N/m] and Ks ∈
{250, 500, 1000, 2000, 4000} [N/m]. (a) Match, under and overestimated stiff-
ness scenarios. (b) Dynamic response degradation for increasing underestimation.
(c) Dynamic response degradation for increasing overestimation.
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observed. For the underestimated case, the response has faster dynamics
and high ripple effects. For the overestimated case, the response has slower
dynamics and small bouncing effects. Figs. 6.3(b) and 6.3(c) show the degra-
dation evolution for increasing under and overestimated mismatches, respec-
tively. Instability arises for the severe underestimation scenario (Ksn � Ks).
These results illustrate two points:

(i) Increased mismatch results in increased deviation from the expected
behavior, decreasing dynamic consistency of the system response.

(ii) The underestimated scenario is the critical situation for stability.

6.3.2 Combined Damping and Stiffness Mismatch Effect

This section discusses how the dynamic response can be affected by damping
and stiffness mismatches. Three scenarios of stiffness mismatch are contem-
plated and, for each one, several damping mismatch scenarios were applied.
Input and output forces are presented in Fig. 6.4. The reference is a step of
−1 [N] at t = 0.05 [s]. From Figs. 6.4(a), 6.4(b) and 6.4(c), it is notorious
that ∆Bs 6= 0 degrades the system response when compared with the one
with ∆Bs = 0, as expected. From these results, it can be inferred that:

(i) Increased damping mismatch results in increased deviation and degra-
dation, decreasing dynamic performance of the system response.

(ii) Underestimated damping decreases the system response dynamics and
has less bouncing effects.

(iii) Overestimated damping increases the system response dynamics but
causes high ripple effects.

(iv) The underestimated stiffness scenario is the critical situation for sta-
bility and that risk is increased when combined with an overestimated
damping scenario.
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Figure 6.4: Damping and stiffness mismatch effects in the dynamic
response: an illustrative example. Each figure represents a specific stiff-
ness mismatch scenario and shows the input and output forces for different val-
ues of damping mismatches, with Ks = 3000 [N/m], Bs = 100 [Ns/m] and
Bsn ∈ {0, 50, 100, 150, 200} [Ns/m]. (a) Matching stiffness scenario(∆Ks = 0). (b)
Underestimated stiffness scenario (∆Ks > 0). (c) Overestimated stiffness scenario
(∆Ks < 0). ∆Ks = Ks −Ksn and ∆Bs = Bs −Bsn.
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6.3.3 Discussion

These results demonstrate that mismatches between the nominal and real
contact parameters may degrade the designed force tracking dynamics, sig-
nificantly so for mismatches of higher magnitude. Accurate contact parame-
ter estimation and subsequent adaptation of the control laws can mitigate
this effect. In the control architecture described in Chapter 3, no damping
component is included in the contact model, so damping will be typically
underestimated. While this may cause slower dynamics (see Fig. 6.4(a)), it
is not critical with respect to response stability. On the other hand, underes-
timated stiffness may originate unstable behavior (see Fig. 6.3(b)), justifying
the focus on stiffness estimation.

6.4 ASBA

ASBA results are analysed for two different scenarios of stiffness mismatch
and for different ASBA parameters. The results with and without Ksn

adaptation are shown as well. The parameters of ASBA can be found in
Table 6.2. The IKsn,Ks curves were computed for stiffnesses ∈ S, i.e., ranging
from 100 [N/m] up to 6000 [N/m], with fixed increments of 100 [N/m]. All
combinations of Ksn and Ks for these values were considered, giving a total
of 3600 curves. The IKsn,Ks curves were computed for an interval with
duration TI and stored with a sampling time Ts giving 1001 samples.

Table 6.2: ASBA simulation results - design parameters.

AOB Parameters

Description Parameter Value

Nominal stiffness Ksn {200,3000,5000}

ASBA Parameters

Description Parameter Value

Set of candidate stiffnesses S {100, 200, 6000}
Time window for convolution computation w 4
Time window for LSE analysis TLSE 4
Time window for IKsn,Ks computation TI 2
Times factor of average value of rk TL 2
Time window for detect TL rk occurrence w2 2
N.o of stable estimations for under scenarios tu {2, 5}
N.o of stable estimations for over scenarios to {5, 20}
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6.4.1 Overestimated Stiffness Scenario

Fig. 6.5 presents the results for a severely overestimated scenario. The mea-
sured forces for two opposite situations are represented in Fig. 6.5(a): with-
out and with stiffness adaptation. Without stiffness adaptation, the deteri-
oration of dynamic behavior due to stiffness mismatch is evident. Improved
dynamic accuracy is achieved with online stiffness adaptation. After the
input force change at t = 1 [s], ASBA estimates a new value for Ks and
the corresponding control matrices updates are made. The positive effect
of this adaptation can be observed, namely at t = 4 [s], where no bouncing
is present at the measured force, in contrast with the response of the non-
adaptive system. Fig. 6.5(b) shows how ASBA behaves for two different
values of the ASBA parameter to. This parameter is a trade-off between ac-
curacy and estimation speed. Lower values of to increase estimation speed
at the cost of increased noise sensitivity. For to = 5, ASBA returns a
stiffness estimation in just 7 samples although is has a 100 [N/m] error. For
to = 20 the estimation K̂s,k is computed, matching the real value after
40 samples. For each case, the transient behavior of the measured force,
while the estimation and subsequent adaptation is carried out, can be seen
in Fig. 6.5(c).

6.4.2 Underestimated Stiffness Scenarios

Figs. 6.6 and 6.7 present the results for two underestimated scenarios. Both
scenarios differ from each other by the relative stiffness mismatch and by the
stiffness values involved. Fig. 6.6 presents a severely underestimated scenario
where Ksn ≈ 0.15Ks (Ksn = 200 [N/m] and Ks = 1300 [N/m]) and Fig. 6.7
presents an underestimated scenario Ksn = 0.5Ks for a stiffer environment
with Ksn = 3000 [N/m] and Ks = 6000 [N/m]. In Fig. 6.6(a), besides
the input force, the measured forces with and without stiffness estimation
and adaptation are represented. Without stiffness adaptation, undesirable
bouncing on the measured force is present. This bouncing is reduced or
disappears when stiffness adaptation is made. Fig. 6.6(b) shows the behavior
of ASBA for two values of the parameter tu. Higher values of tu degrades
estimation speed at the expense of improved robustness. When tu = 2, the
estimation is achieved under 4 samples with an error of 100 [N/m]. When
tu = 5, the estimation matches the real value in 23 samples. Looking
at Fig. 6.6(c), it can be inferred that the fastest estimation, obtained with
tu = 2, results in a better overall system response.
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Figure 6.5: ASBA - scenario with severely overestimated stiffness, with
Ksn = 5000 [N/m] and Ks = 500 [N/m]. (a) Input and output forces with and
without Ksn adaptation. (b) Ks and Ksn evolution for two different values of
parameter to. (c) Zoom of the contact transient at t = 1 [s] for scenarios with
to = 20 and to = 5.
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Figure 6.6: ASBA - scenario with severely underestimated stiffness, with
Ksn = 200 [N/m] and Ks = 1300 [N/m]. (a) System response with and without
stiffness estimation. (b) Evolution of the stiffness estimation value for different tu.
(c) Zoom of the contact transient at t = 1 [s] for scenarios with tu = 2 and tu = 5.



78 CHAPTER 6. SIMULATION RESULTS

−20

−10

 0

 0  2  6 4

With and without Ksn adaptation

yk without Ksn update
F
or
ce

[N
]

yk with Ksn update (tu = 2)

time [s]

fk

(a)

 3000

 5000

 6000

 1  1.01  1.02

 4000

Ks

S
ti
ff
n
es
s
E
st
im

at
io
n
[N

/m
]

With Ksn adaptation

K̂s,k (tu = 5)

K̂s,k (tu = 2)

time [s]

(b)

 1.2

 0

 1

−10

 1.4
−20

fk

yk (tu = 5)
yk (tu = 2)

With Ksn adaptation

F
or
ce

[N
]

time [s]

(c)
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tu. (c) Zoom of the contact transient at t = 1 [s] for scenarios with tu = 2 and
tu = 5.
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Fig. 6.7 shows information similar to the one presented in Fig. 6.6 for
a scenario with stiffer system stiffness, where Ks = 6000 [N/m] and Ksn =
3000 [N/m]. Although the stiffness mismatch error is 100%, ASBA behaves
properly, achieving an exact estimation under 6 samples when tu = 2 and
9 samples when tu = 5.

6.5 COBA

In this section, COBA simulation results are presented. Different scenarios
of stiffness mismatch are explored. Tests were conducted in both homoge-
nous (Section 6.5.1) and heterogenous (Section 6.5.2) environments, that
is, including constant versus dynamic stiffnesses. Free-space/contact transi-
tions are also considered (Section 6.5.3). Table 6.3 presents the parameters
of COBA used in each simulation.

Table 6.3: COBA simulation results - design parameters.

AOB Parameters

Description Parameter Value

Nominal stiffness Ksn {500, 1000, 6000}

COBA Parameters

Description Parameter Value

Stiffness of FOB1 Ksc1 100
Stiffness of FOB2 Ksc2 6000
FOB gains Kc {0.001, 0, 0}
FOB initial state xc,0 {0, 0, 0}

6.5.1 Contact with Homogenous Environments

The operation principle of COBA is presented under ideal operating con-
ditions, i.e., in scenarios where there is no other disturbance besides the
stiffness mismatch. Diverse stiffness mismatch scenarios are analyzed with
constant Ks and without nominal stiffness update. All the tests share the
same Ksn (1000 [N/m]) and fk (−5 [N] step at t = 1 [s]). It is assumed
that the robot is always in contact with an object with stiffness Ks. Three
different analysis are presented.

� Underestimated Stiffness - Fig. 6.8 represents scenarios with mod-
erate (Ksn < Ks) and a severe (Ksn � Ks) underestimation of stiff-
ness. These are the most critical w.r.t. to instability due to parameter
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Figure 6.8: COBA - two scenarios with underestimation of stiffness.
Ksn = 1000 [N/m]. (a-b) moderate scenario with Ksn = 1/2Ks and (c-d) severe
scenario with Ksn = 1/4Ks. (a)-(c) show the input and measured forces fk and yk,
respectively. (b)-(d) represent the stiffness estimation evolution. In both scenarios,
K̂s,k converges, in just one sampling time, to the expected value, respectively Ks =
2000 [N/m] and Ks = 4000 [N/m]. No control law adaptation is performed.

mismatches. As expected, force tracking degradation occurs, with pro-
nounced bouncing increasing with the mismatch. COBA converges to
the correct value in just one time-iteration, even in the severely un-
derestimated stiffness scenario.

� Matching Stiffness - Fig. 6.9 shows a scenario with matching stiff-
ness (Ksn = Ks). The output force tracks the input force, as can
be seen in Fig. 6.9(a) and COBA estimations converge to Ks just in
one sampling time after a non-null input force is applied, as shown in
Fig. 6.9(b).
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forces. (b) Stiffness estimation evo-
lution. K̂s,k converges, in just one
sampling time, to the expected value
Ks = 4000 [N/m]. No control law
adaptation is performed.

� Overestimated Stiffness - Fig. 6.10 represents two scenarios with
moderate (Ksn > Ks) and severe (Ksn � Ks) overestimations of
stiffness, which are characterized with a lower dynamic response (see
Fig. 6.10(a) and Fig. 6.10(c)). In either case, COBA converges to the
correct value just in one sampling time, as shown in Fig. 6.10(b) and
Fig. 6.10(d).

In all tests, COBA converges to the correct value in just one time-
iteration, even in the severely underestimated stiffness scenario. This con-
forms to the theoretical analysis, since under ideal operation conditions 1Wk

is null (see Theorem 2) and consequently ∆Ks is null. When 1Gk is zero,
the previous estimation is kept.

6.5.2 Contact with Heterogenous Environments

This section analyses COBA results in an heterogenous stiffness scenario,
i.e., where Ks dynamically changes along the experience. Two situations are
analyzed: with and without Ksn adaptation. In the latter case, estimation
is conducted but no adaptation of Ksn is made. Fig. 6.11 shows the results.
An initial step occurs in the force input at t = 0.2 [s], while a second step is
applied at t = 1.8 [s]. It is assumed that the robot is always in contact with
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Figure 6.10: COBA - two overestimated stiffness scenarios. Ksn =
1000 [N/m]. (a-b) moderate scenario withKsn = 2Ks and (c-d) severe scenario with
Ksn = 4Ks. (a)-(c) show the input and measured forces fk and yk, respectively. (b)-
(d) represent the stiffness estimation evolution. In both scenarios, K̂s,k converges,
in just one sampling time, to the expected value, respectively Ks = 500 [N/m] and
Ks = 250 [N/m]. No control law adaptation is performed.

the object with stiffness Ks. Gaussian noise with null mean and variance
1.6×10−3 was added to the measured force. Initially, the robot end-effector
is at rest position, without any input force stimulus. The initial value of
K̂s,k is the Ksn value, i.e., 500 [N/m]. Ks has the value 3000 [N/m] (very
stiff) between both steps and 300 [N/m] (moderated soft) after the second
step. Fig. 6.11(a) shows the input and output forces for both cases (with and
without adaptation) and in Fig. 6.11(b) the stiffness estimation evolution is
shown. Strong improvements can be observed when stiffness adaptation is
used, as the resulting force is closer to the desired critically damped behavior.
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Figure 6.11: COBA - heterogeneous system stiffness. (a) Input and mea-
sured forces with and without stiffness adaptation; (b) Stiffness estimation evolu-
tion. Updating Ksn (blue plot) with the current value K̂s,k returned by COBA,
the system response is improved when compared with the non-update case, approx-
imating to the designed critically damped response.

6.5.3 Free-Space/Contact Transitions

In this section, a simulated experience involving free-space/contact transi-
tions was conducted. The free-space is modeled by Ks = 0 [N/m] and con-
tact by Ks = 6000 [N/m]. White noise with variance 1.6× 10−3 was added
to the output force. Fig. 6.12 shows the control and COBA Algorithm re-
sults. The end-effector position Xt, input and output forces (fk and yk,
respectively) are represented in Fig. 6.12(a). Initially, the robot end-effector
is in free-space. A step input of −10 [N] is applied and the robot starts
moving down until it enters in contact with the constrained surface. While
the robot is moving in free-space, the measured force is approximately zero.
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The contact happens in the neighborhood of t = 0.32 [s]. From the impact,
an undershoot force of about −40 [N] occurs. This behavior is due to the
robot kinetic energy and to abrupt variation of stiffness (Ks changes from
0 [N/m] to 6000 [N/m]). COBA results are represented in Fig. 6.12(b). The
COBA estimation converges to the correct value, without any stationary
error or estimation spikes. The transition between free-space and contact is
handled successfully.

(a)

(b)

 0

 0.2

 0.115  0.135 0.125

 0  0.4

 0

 0.8

−40

−30

−20

−10

 0

 10

 20

 0  0.4  0.8  1.2

 1.2

 2000

 4000

−0.2

 6000

S
ti
ff
n
es
s
E
st
im

at
io
n
[N

/m
]

F
or
ce

[N
];
P
os
it
io
n
[1
0−

3
m
]

Ksn = 6000, Free-Space/Contact with Ks = 6000

fk
yk
Xt

time [s]

K̂s,k

time [s]

Figure 6.12: COBA - Free-space/contact transition. (a) Input and output
forces (with force sensor bias). (b) COBA estimation K̂s,k.



6.6. ANNE 85

6.6 ANNE

To assess the efectiveness and applicability of ANNs to the stiffness esti-
mation problem, data from an ideal and controlled environment, obtained
by simulation of the system plant, was used. Several aspects of the ANNE
Algorithm, such as the input set configuration and network topology, were
decided by running several preliminary trial test runs. Table 6.4 presents the
setup configuration parameters and the ANN and ANNE design parameters
used in the simulation results presented in the current section.

Table 6.4: ANNE simulation results - design parameters.

AOB Design Parameters

Description Parameter Value

Nominal stiffness Ksn {400, 500, 800, 900,
1200, 1300}

Training and Testing Parameters

Description Value

Experiment duration 1 [s]
Samples/experiment 2000 random samples
Training set 75% of all samples
Validation set 25% of all samples
Max. training epochs 1000
Convergence criteria 5 epochs w/o improv.
Nr. of neurons on input layer 18
Nr. of neurons on hidden layer 10
Regressor order 1
Regression set dimension 2

Training Stiffness

Description Parameter Value

Training Stiffnesses KT {400,800,1200}
System Stiffness Ks {100,150,...,1600}

6.6.1 Training

The ANNE estimator considered in this section is composed of three ANNs:
ANN400, ANN800 and ANN1200. These were trained with Ksn = 400, 800
and 1200[N/m], respectively, using a similar procedure:

� The ANN input data (yk and uk) was collected from several simulations
of scenarios with matching and mismatching stiffnesses and diverse
system input forces fk.
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� The input forces adopted in training were obtained from experimen-
tal Phantom telemanipulation experiments. These provide the rich
frequency content fundamental for success of the training process.

6.6.2 Testing

Several tests have been conducted under different conditions with the goal
of analysing the generalization capabilities of ANNE. Testing was conducted
as described in Section 5.3.3. The input data (yk and uk) was collected from
experiences with system input signals fk that were not used in the training
process. Stiffness mismatch scenarios not specifically included in the training
set were used, i.e., different ∆Ks values (∆Ks = Ks −Ksn). Fig. 6.13 illus-
trates the test results. Fig. 6.13(a) represents the input and output forces of
the system plant. Fig. 6.13(b) shows that the stiffness estimation evolution
computed by ANNE converges to approximately 1020 [N/m]. Results show
that ANNE stiffness estimation K̂s,k successfully converges to Ks. Since
the parameters of the simulated environment model are well known, the
estimations provided by ANNE can be compared against expected results.
These are satisfactory and indicative that ANNE is, in fact, successful at
estimating the known environment stiffness, using the provided input data.

6.7 Discussion

Previous results show that ASBA, COBA and ANNE estimate successfully
the system stiffness in simulated experiments involving the interaction be-
tween the manipulator and a known environment. The algorithms are very
distinct from each other, but share the fact that they do not require object
position data. ASBA requires processing a higher volume of data, making it
computationally heavier that COBA and ANNE. COBA is very adequate for
online operation and estimates the contact stiffness in just one time iteration
even for severe stiffness mismatch scenarios. ANNE also reveals potential
for online implementation and good estimation behavior. These simulation
results demonstrate that, according to conceptual and theoretical analysis,
the algorithms effectively estimate the system stiffness. However, certain
strong assumptions are made. In these simulations, perfect linearization is
assumed and consequently the manipulator is represented by a double in-
tegrator. Also, contact is modeled by a perfect Hookean spring and the
manipulator is perfectly rigid. These assumptions describe ideal conditions
that may not hold in experimental settings:
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stiffness estimation evolution.

� Feedback linearization may not perfectly compensate the manipulator
dynamics.

� The linear Hooke model is but an approximation of the real contact
dynamics. Unmodeled viscous and non-linear terms are not accounted
for.

� Although the manipulator is significantly stiffer than the environment,
its stiffness is in fact finite.

Chapter 7 presents experimental results, obtained with a robotic manipula-
tor interacting with virtual and real objects. These illustrate the behavior
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of the algorithms when ideal simulation conditions are not observed.
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7.1 Introduction

This chapter presents and discusses COBA and ANNE experimental re-
sults, including the validation and test of both algorithms. The validation
is performed using WAM robot interactions with virtual objects and the
algorithms results are also analysed when the WAM robot interacts with
real objects. A free-space/contact experiment is also presented. The exper-
iments are focused on contact stiffness estimation, so no adaptation of the

89
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control laws is performed. All quantities are based on SI units and only the
Z Cartesian dimension is considered. The experiments were conducted at
the Institute of Systems and Robotics of the University of Coimbra. This
section is organized as follows. The experimental setup is described in Sec-
tion 7.2. COBA and ANNE results are presented in sections 7.3 and 7.4,
respectively. Results discussion can be found in Section 7.5.

7.2 Experimental Setup

The experimental setup consists of a WAM robot with a JR3 force sensor,
controlled as described in Chapter 3, teleoperated through a Phantom haptic
device. A critically damped control design with time constant τf is imple-
mented for force tracking. The control design and system parameters are
presented in Table 7.1. COBA, ANNE and AOB parameters specific to each
experiment are presented in the respective section. The manipulator can be
teleoperated by the human operator to interact with real objects or, alterna-
tively, virtual objects. The contact properties of the latter can be specified
by the operator, allowing the estimations provided by the algorithms to be
contrasted against known values.

Table 7.1: Experimental results - common control design and system parameters.

Control Parameters

Description Parameter Value

Sampling time Ts 0.0012
System time delay Td 0.0012
Damping gain KD 10
Time constant of the force loop τf 0.045
yhu Damping coeff. of the force loop ξ 1

AOB Common Parameters

Description Parameter Value

Meas. noise matrix Rnoise 1
System noise matrix Qnoise diag{10−4, 10−12, 10−12, 10−4}

Teleoperation Parameters

Description Parameter Value

Input force gain Kv 800
Position gain factor βp 1
Force gain factor βf 0.5
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Figure 7.1: Teleoperation architecture of an existing robotic platform at
ISR-Coimbra. The human arm manipulates the haptic device generating position
data xph. The slave station includes the robot with feedback linearization controlled
by state feedback. The position error between the robot end-effector Xt and the
Phantom xph, scaled by a virtual coupling Kv, generates the reference force fk. βf
scales back fk to the master station and and βp scales the phantom position xph.

Ẑ is the Z coordinate versor for both position and force.

7.2.1 Teleoperation Architecture

The teleoperation architecture is represented in Fig. 7.1. The human opera-
tor interacts with the environment using the haptic device, generating force
signals fk in Z Cartesian dimension. The task space position error between
the haptic device and the WAM robot end-effector is scaled by a virtual
coupling Kv to compute the reference force fk,

fk = Kv(βpxph −Xt). (7.1)

This force is tracked by the control architecture. The haptic feedback is a
scaled version of fk.

� Master Station - The master station includes the Phantom Desktop
haptic device, controlled by the human arm. This haptic device gen-
erates 3-DOF positioning and orientation data, and provides 3-DOF
force-feedback. In the experiments, only 1-DOF positioning (the Z
Cartesian dimension) and 1-DOF force feedback was considered.
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� Slave Station - The slave station consists on a computed torque
controlled WAM robot, equipped with a JR3 force sensor.

The master and slave stations are connected to the same server. The
position-based information Xt and xph, required by this teleoperation ar-
chitecture, is not dependant on the contact object: it can be determined
from the well-known geometric model of the manipulator and joint encoder
information. This means that, although the teleoperation scheme is based on
position data, it is not affected by the same issues that can negatively affect
stiffness estimation algorithms relying on accurate object position data.

7.2.2 Virtual and Real Environments

Two different types of environments are used in the experiments: virtual
and real objects (see Fig. 7.2). A virtual object is modeled by the perfect
spring Kplane with known rest position. In this case, the measured force
is computed as yk = Kplane(Xt −X0), where Xt is the current end-effector
position, X0 is the rest position and Kplane is the virtual object stiffness,
specified by the user. It is assumed that initially the robot end-effector is in
contact with the virtual object. The experiments with virtual objects can be
used for validation purposes, since the contact parameters are well known in
this case. Other experiments involve contact with real objects: a pillow, a
sponge and a book. Fig. 7.2 highlights the slave station workspace, showing
the virtual and real objects used in the experiments. Blocks representing
the COBA and ANNE algorithms are also included, highlighting the input
signals required by each one.

7.3 COBA

Two different types of experiments were conducted. In the first one, the
WAM robot interacts with virtual objects of known stiffness, with the pur-
pose of validating the COBA Algorithm. In the second one, COBA behavior
is analysed when robot interacts with real objects of unknown stiffness. The
AOB and COBA design parameters are shown in Table 7.2.

7.3.1 WAM Robot Interaction with Virtual Objects

The purpose of conducting experiments involving interactions with a virtual
plane is twofold:
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Figure 7.2: Environment used in COBA and ANNE experiments. WAM
robot interacts with virtual objects (modelled as springs with stiffness Kplane) and
with real objects (pillow, sponge and book). yk and uk are inputted to both algo-
rithms, while COBA also receives p̂k, additionally.

1. Characterizing and compensating the dominant disturbance:
As described in Chapter 4, compensating the additional unknown dis-
turbance improves the estimation performance. By contrasting the
results of simulation tests with those of manipulator/virtual object
experiments, using an identical parametrization of the environment,
it is possible to accurately identify the additional disturbance. This
makes it possible to observe estimation behavior when perfect com-
pensation is employed and also identifying the dominant disturbance
pattern so that appropriate compensation strategies can be devised.

2. Validating the operating principle of COBA: Simulation test
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Table 7.2: COBA experimental results - design parameters.

AOB Parameters

Description Parameter Value

Nominal stiffness Ksn {300,800,1500}

COBA Parameters

Description Parameter Value

Stiffness of FOB1 Ksc1 100
Stiffness of FOB2 Ksc2 6000
FOB gains Kc {0.001, 0, 0}
FOB initial state xc,0 {0, 0, 0}

results, presented in Chapter 6, allow the operation principle of the
algorithms to be assessed under ideal assumptions. One of these is
perfect feedback linearization, resulting in ideal double integrator be-
havior. However, no such assumption is involved in interaction ex-
periments involving manipulator/virtual plane contact. This allows
the results of the algorithm to be compared to expected values, while
removing one significant assumption, offering increased validation of
COBA results.

Additional Disturbance Compensation

As discussed in Section 4.3.4, COBA is negatively affected by additional
disturbances lumped in pk(o). However, if compensation of this disturbance
is perfect, the correct stiffness estimation is obtained (see Theorem 2). The
experiment described in this section aims to provide the corresponding em-
pirical confirmation. Taking advantage of the known environment, a (nearly)
ideal compensation of pk(o) can be computed, allowing the algorithm op-
eration principle to be demonstrated. The estimation p̂k, computed by the
AOB, includes the components p̂k(∆Ks) and p̂k(o) (see (3.37)). An estima-
tion of pk(o) can be obtained by

p̂k(o) = p̂k − p̂k(∆Ks). (7.2)

The term p̂k(∆Ks) is dependant on the unknown stiffness mismatch ∆Ks

and cannot be directly computed in practice. In these experiments, however,
the environment is known and so p̂k(∆Ks) can be obtained analitically for
a given input force. In this way, a precise estimation p̂k(o) can be obtained
by (7.2), knowing the AOB active state p̂k and the estimation p̂k(∆Ks).
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With this in mind, the following experiment was conducted, with the pur-
pose of observing estimation behavior with nearly ideal compensation of
the additional disturbance, as discussed in Section 4.3.4 and represented in
Fig. 4.13:

� A sinusoidal input force fk is used to compute analytically p̂k(∆Ks)
for given Ksn and Ks, corresponding to the nominal stiffness of the
controller and the programmed virtual plane stiffness.

� The same reference force is inputted to the robotic controller, and ideal
compensation is computed and applied according to (7.2).

Figs. 7.3 and 7.4 present the results for all four combinations of nominal and
virtual plane stiffnesses of 300 [N/m] and 800 [N/m]. Input and measured
forces present in Figs. 7.3(a), 7.3(d), 7.4(a), and 7.4(d) show good tracking
capabilities of the control architecture. In Figs. 7.3(b), 7.3(e), 7.4(b) and
7.4(e), COBA estimations can be seen to closely match the virtual plane
stiffness, although poorly conditioned results can be observed at specific time
instants. In accordance to the discussion in Section 4.3.5, these correspond
to low values of |1Gk|. In Figs. 7.3(c), 7.3(f), 7.4(c) and 7.4(f), an assessment
technique has been implemented by discarding estimations corresponding to

|1Gk| < 0.002. (7.3)

These results validate the operation principle of COBA, ensuring that, with
adequate compensation of additional disturbances, correct estimations can
be obtained.
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Figure 7.3: COBA - WAM robot interacting with virtual planes in mis-
matching stiffness scenarios with a sinusoidal input force. fk and yk are,
respectively, the input and measured forces. K̂s,k is the stiffness estimation. (a)-(c)
Overestimated stiffness scenario with Ksn = 800 [N/m] and Kplane = 300 [N/m].
(d)-(f) Underestimated stiffness scenario with Ksn = 300 [N/m] and Kplane =
800 [N/m]. The vertical dotted line represents the starting point of each experi-
ment.
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line represents the starting point of each experiment.



98 CHAPTER 7. EXPERIMENTAL RESULTS

Analysis of the Dominant Additional Disturbance

Although the approach described in the previous experiments successfully
compensates the additional disturbances entailing a correct virtual plane
stiffness estimation, it cannot be applied to real objects since the stiffness
mismatch is not known, precluding the analytical computation of p̂k(∆Ks).
An alternative strategy to obtain an estimation of pk(o) is to identify the
dominant additional disturbance. To this end, results have been collected
for several matching stiffness scenarios where ∆Ks = 0 (and therefore
p̂k(∆Ks) = 0), making p̂k = p̂k(o) by (3.37). Fig. 7.5 presents the results for
one such experiment. By inspecting p̂k from the AOB, the disturbance be-
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Figure 7.5: Analysis of dominant disturbance when a WAM robot in-
teracts with a virtual plane with up and down sinusoidal movements.
Ksn = Kplane = 300 [N/m]. (a) Reference and output forces. (b) AOB active state
p̂k. The vertical dotted line represents the starting point of the experiment.
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havior can be observed. Results demonstrate that p̂k can be approximately
described as alternating between two different constant levels, depending on
whether the end-effector is penetrating or leaving the virtual plane. Know-
ing this, an appropriate compensation strategy can be devised for generating
the compensation p̂k(o). In the experiments described in Section 7.3.2, p̂k(o)
is obtained by applying a low-pass filter to p̂k. From (4.27), the dominant
additional disturbance is compensated, approximating ideal operating con-
ditions.

7.3.2 WAM Robot Interaction with Real Objects

This section describes experiments where the manipulator, teleoperated
through an haptic device, interacts with real objects with different stiff-
nesses: a pillow, a sponge and a book. The purpose of these experiments
is to allow the behavior of the algorithm to be observed in practical expe-
rimental conditions. Additionally, a comparative experiment with COBA
and a position-based estimator is also presented. The compensation of the
additional disturbance follows the process described in Section 7.3.1.

Interactions with a Pillow, a Sponge and a Book

Figs. 7.6, 7.7 and 7.8 present force control results for interactions with pil-
low, sponge and book, respectively. Initially, the end-effector is in free-space,
very close to the contact position. After entering contact, the measured force
tracks the input force. A constant nominal stiffness of Ksn = 800 [N/m] is
used in all experiments, entailing different stiffness mismatches and distinct
dynamic behaviors. The stiffness estimation provided by COBA converges
to approximately 30 [N/m], 500 [N/m] and 1400 [N/m] for pillow, sponge
and book, respectively (see Figs. 7.6(b), 7.7(b) and 7.8(b)), indicating an
underestimated scenario for book and overestimated for pillow and sponge.
Force tracking behavior is consistent with these results: underestimated stiff-
ness exhibits slower dynamics (see Fig. 7.6(a)), while overestimated stiffness
corresponds to faster dynamics (see Figs. 7.7(a) and 7.8(a)). The assess-
ment criteria validates estimations for low contact forces (e.g., −0.15 [N] for
pillow, −0.3 [N] for sponge and −0.45 [N] for book). As the magnitude of
contact force increases, the stiffness estimation increases until it saturates
around a constant value, reflecting nonlinearities in the contact interaction.
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Figure 7.6: COBA - WAM robot interacting with a pillow. fk and yk are,
respectively, the input and measured forces. K̂s,k is the stiffness estimation. The
vertical dotted line represents the starting point of each experiment.

7.3.3 Free-Space/Contact Transitions

This section presents a teleoperated experiment involving transitions from
free-space to contact with a sponge (and vice-versa). These transitions can
be challenging for estimation algorithms, as the contact parameters change
abruptly and past system behavior no longer conveys information about the
current contact environment1. The experiment aims to assess the perfor-
mance of COBA in these conditions. The control architecture has a constant
nominal stiffness of Ksn = 1500 [N/m]. The WAM robot begins operation in
free-space and establishes contact with a sponge in two occasions. Fig. 7.9(a)

1Environment is used here in a broad sense, including free-space operation, which can
be modeled as an interaction with an environment with null contact parameters.



7.3. COBA 101

Ksn = 800, Contact with sponge

S
ti
ff
n
es
s
E
st
im

at
io
n
[N

/m
]

F
or
ce

[N
]

time [s]

(a)

time [s]
(b)

K̂s,k with |1Gk| > 0.002

fk

600

86420

0 2 4 6 8

0

-20

-10

0

200

yk

400

Figure 7.7: COBA - WAM robot interacting with a sponge. fk and yk
are respectively input and measured forces. K̂s,k is the stiffness estimation. The
vertical dotted line represents the starting point of each experiment.

presents force control results. In free-space the measured force is approx-
imately zero, being corrupted by measurement noise and by a small bias.
Before entering contact, the teleoperated robot moves up and down along
the Z-axis. Once in contact with the sponge, the measured force tracks the
input force. In this experiment, contact is broken around 20 [s] and re-
established once again around 25 [s]. In Fig. 7.9(b) the stiffness estimation
from COBA is presented. Free-space estimation is successfully obtained.
Additionally, while in contact, COBA results are consistent and robust to
force sensor bias. A consistent stiffness estimation of K̂s,k ≈ 440 [N/m]
is produced during all contact episodes (see Fig. 7.9(b) around 15 [s] and
27 [s]), in line with expected properties of the physical object. This experi-
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Figure 7.8: COBA - WAM robot interacting with a book. fk and yk
are respectively input and measured forces. K̂s,k is the stiffness estimation. The
vertical dotted line represents the starting point of each experiment.

ment demonstrates that COBA can be used to obtain reliable and consistent
stiffness estimations even for environments with complex geometry, since the
estimations rely only on force data (i.e., no explicit geometric information
is needed).
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Figure 7.10: Position-dependent RLS: Free-space and contact with a
sponge. Stiffness estimation based on RLS technique and two different force
thresholds.

7.3.4 Comparison With Position-Based Approach

For comparison purposes, a position-algorithm stiffness estimator, based on
RLS techniques [66] and the contact model (1.2), was implemented and
applied to the data in Fig. 7.9(a). The following provisions were adopted to
enable proper algorithm operation:

� Contact transitions and the rest position X̂0 are identified with re-
course to a force threshold parameter ε.

� Past estimation information is reseted in contact transition to improve
responsiveness.

Fig. 7.10 presents the estimation results for two different force thresholds
ε. When ε = 0 [N], measurement noise triggers too many false positive
contacts, making the estimation very noisy in free-space (see the first 10 [s]
of Fig. 7.10). Higher contact thresholds can tackle these issues, but high
estimation peaks at contact appear due to higher forces required to trigger
contact detection, generating also poor X0 estimates. Non-uniform detec-
tion of contact transitions in free-space with ε = 0 [N] is caused by a small
bias in the force sensor, which is stronger after the first contact (see zooms
of Fig. 7.9(a)). While in contact, substantially different stiffness estimations
are produced for different values of ε (see Fig. 7.10 around 15 [s]). Moreover,
no stiffness estimation consistency exists in successive surface contacts (see
Fig. 7.10 around 15 [s] and 27 [s]), due to different values of X̂0 for each
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contact transition (even for the same ε). Force sensor bias changes after
contact entail inconsistent X̂0 estimates, having consequences in stiffness
estimation. For example, in the experiment with ε = 0 [N], a stiffness esti-
mation close to K̂s,k ≈ 1000 [N/m] is obtained at the first contact (around

15 [s]), while in the second contact an estimation of K̂s,k ≈ 500 [N/m] is pro-
duced (around 27 [s]). These results contrast with those of COBA, presented
in Fig. 7.9(b). By avoiding reliance on positional data, COBA produces con-
sistent estimations in both contact episodes, without estimation peaks near
free-space/contact transition or spurious estimations in free-space due to
sensor noise.

7.4 ANNE

This section describes experiments related to training and evaluation of the
ANNE estimator. Two sets of experiments have been conducted. In the first
set, the robot interacts with virtual objects with known stiffnesses. This
setup is used for training and assessing ANNE in a controlled and known
environment. In the second set, ANNE is trained and evaluated using data
from interactions of the robot with real objects with unknown stiffnesses.
In this case, the object stiffness is not available. To overcome this problem,
the stiffness estimations provided by the COBA Algorithm (Section 4.3)
are used whenever the stiffness value is required for training or assessment
purposes. The experiments described in sections 7.4.1 and 7.4.2 follow the
same general process:

(i) The general configuration parameters of the ANNE estimator are de-
termined: number of composing ANNs, their respective nominal stiff-
ness, and the fusion module order. The individual ANNs are trained
and tested accordingly.

(ii) The individual ANNs are composed into the overall ANNE estimator,
whose performance is then evaluated.

Table 7.3 presents the setup configuration parameters and the ANN design
parameters.

7.4.1 WAM Robot Interaction with Virtual Objects

The experiments considered in this section involve robot interactions with
virtual objects which are modelled by the spring Kplane (see Fig. 7.1). These
experiments include both training and assessment of the ANNE estimator.
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Table 7.3: ANNE experimental results - design parameters.

AOB Parameters

Description Parameter Value

Nominal stiffness Ksn {400, 500, 800, 900,
1200, 1500, 1750, 2000}

Common Training and Testing Parameters

Description Value

Experiment duration variable (6 [s] to 15 [s])
Samples/experiment 4000 random samples
Training set 75% of all samples
Validation set 25% of all samples
Max. training epochs 2000
Convergence criteria 5 epochs w/o improv.
Nr. of neurons on input layer 18
Nr. of neurons on hidden layer 4
Regressor order 1
Regression set dimension 2

Training Parameters for Virtual Objects

Description Parameter Value

Training Stiffnesses KT {400,800,1200}
Virtual Plane Stiffness Kplane {100,150,...,1600}

Training Parameters for Real Objects

Description Parameter Value

Training Stiffnesses KT {1500,2000}
Training Objects - Pillow, sponge, book

ANN Training and Testing

Training data is collected from telemanipulation interactions within a range
of environment stiffnesses (low to medium) typical of robotic-assisted min-
imally invasive surgery tasks (see Table 7.3). Three individual ANNs were
trained: ANN400, ANN800 and ANN1200, so that the space of low to
medium stiffness is uniformly occupied. Teleoperated interaction experi-
ments were conducted for collecting the data necessary for training, and
then all ANNs were trained (see Table 7.3 for specific details and parame-
ters). To test the performance of ANN400, ANN800 and ANN1200, a novel
set of experiments is conducted. These provided new data sets, not used in
the training process, so that the generalization capabilities of the networks
can be assessed. Fig. 7.11 shows the average estimation results provided by
each ANN with Kplane ranging from 300 [N/m] to 1300 [N/m], in experi-
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Figure 7.11: Average values of stiffness estimations computed by three
ANNs: ANN400, ANN800 and ANN1200. The results for eighteen different
robot interaction experiments are shown. The WAM robot interacts with virtual
objects with stiffnesses Kplane ∈ {300, 500, 700, 900, 1100, 1300} [N/m]. Ksn ∈
{400, 800, 1200 } [N/m], according to the ANN being used. The diagonal dotted
line represents ideal stiffness identification.

ments where Ksn = KT . It can be seen that all networks estimate close to
the actual object stiffness. Fig. 7.12 illustrates the instantaneous stiffness
estimation provided by each ANN for three experiments sharing the same
Kplane = 1000 [N/m] and Ksn = KT . In accordance with the results of
Fig. 7.11, it can be observed that all networks provide estimations close to
the correct value. Fig. 7.13 shows the performance of ANN400, ANN800
and ANN1200 for three different experiments with Ksn ∈ {400, 800, 1200}
[N/m] and Kplane = 1000 [N/m]. If training and nominal stiffnesses match
(i.e., Ksn = KT ) , the best estimations are obtained, entailing small errors.
Otherwise, deterioration occurs.

Fusion Module Design

Fusion module design involves the definition of the regression order m and
the size of the regression set n. With this purpose, preliminary results
are analysed for evaluating the performance of ANNE in our system for
different regression orders and different regression sets. Table 7.4 shows
the average estimated polynomial regression coefficients Âk (see (5.11)) for
different virtual object interactions.
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Fig. 7.14 shows ANNE results for Ksn = 500 [N/m] and Kplane ranging
from 300 to 1300 [N/m] for first and second order regressors and different
regression set dimensions. It can be seen that all regressors generate esti-
mations close to the correct value, with the regressor with m = 1 and n = 2
providing the best results. This suggests adoption of this configuration for
the fusion module.
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Table 7.4: ANNE - fusion module parameter Âk.

Virtual Object Regression Regression
Stiffness Kplane Coefficient a1 Coefficient a0

300 -0.18 424
500 -0.2425 609
700 -0.58 978
900 -0.8225 1293
1100 -0.64 1395
1300 -1.01 1730
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Figure 7.14: ANNE results (average values) for three different con-
figurations of the fusion module. Ksn = 500 [N/m] and Kplane ∈
{300, 500, 700, 900, 1100, 1300} [N/m]. Results are shown from a first order regres-
sor (n=1) with regression set dimensions m ∈ {2, 3} and a second order regressor
with n = 2 and m=3.

ANNE Testing

Results shown in Fig. 7.13 suggest that the stiffness estimation can be im-
proved by data fusion techniques. Therefore, the individual ANNs are com-
bined to produce the overall ANNE estimator. Fig. 7.15 shows ANNE results
with Ksn ∈ {500, 900} [N/m] and Kplane ∈ {300, 500, 700, 900, 1100, 1300}
[N/m]. The data fusion improves the quality of the final estimation in the
majority of cases.
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7.4.2 WAM Robot Interaction with Real Objects

The experiments with virtual objects discussed in the previous section are
particularly useful since they are performed in a controlled environment, al-
lowing the results to be validated against expected outcome. In this section,
the analysis is extended to real objects.
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ANN Training and Testing

Since the exact stiffness of real objects is unknown or poorly known, the
COBA stiffness estimation algorithm provides the target stiffness data. In
all experiments, the robot end-effector begins operation in free-space rather
than in contact with the real object, reflecting realistic operating conditions.
A pillow and a book have been used for ANN testing purposes. Figs. 7.16
and 7.17 shows results with Ksn = 1500 [N/m] and Ksn = 2000 [N/m] for
pillow and book interaction, respectively. It can be inferred that good
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Figure 7.16: WAM robot interaction with a pillow: ANN1500 results.
Initially, the robot end-effector is in free-space. fk and yk are respectively the input
and measured forces. K̂s,k is the stiffness estimation. (a) Force tracking response
for pillow interaction. (b) Pillow stiffness estimation obtained with ANN1500.
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Figure 7.17: WAM robot interaction with a book: ANN2000 results.
Initially, the robot end-effector is in free-space. fk and yk are respectively the input
and measured forces. K̂s,k is the stiffness estimation. (a) Force tracking response
for book interaction. (b) Book stiffness estimation obtained with ANN2000.

performance of ANNs is achieved in spite of force control degradation due
to stiffness mismatch. The ANNs estimation follows COBA the target esti-
mations provided by COBA. Free-space/contact transition are also handled
correctly.

ANNE Testing

While each ANN is tuned for a specific value of Ksn, the ANNE estimator
is responsible for providing estimations for arbitrary Ksn. This is tested
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by setting Ksn = 1750 [N/m] for sponge interaction and configuring the
fusion module as described in Section 7.4.1. Results can be observed in
Fig. 7.18. Control results can be observed in Fig. 7.18(a), while the es-
timation is found in Fig. 7.18(b). Even though the ANNE estimation is
obtained by fusing the data from ANN1500 and ANN2000, the results are
extremely close to those provided by COBA, indicating that the architecture
and training methodology are adequate when considering interactions with
real objects. Free-space/contact transitions are successfully handled.
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Figure 7.18: ANNE - WAM robot interaction with a sponge. Ksn =
1750 [N/m]. Initially, the robot end-effector is in free-space. fk and yk are respec-
tively the reference and measured forces. K̂s,k is the stiffness estimation obtained
by the data fusion of ANN1500 and ANN2000.
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7.5 Discussion

The experimental results in this section demonstrate that the proposed tech-
niques (COBA and ANNE) can be successfully used in practical conditions
to estimate the environmental stiffness. ASBA has not been included in
these experiments as it is less suitable to online operation than either one
of the above methods. Interaction experiments involved both virtual and
real objects. The main advantage of the former is that the contact para-
meters can be determined programmatically by the user, allowing results
to be constrated against the expected outcome. The algorithms have been
tested successfully in conditions reflecting practical scenarios involving free-
space/contact transitions. Virtual plane results were also instrumental in
determining the general pattern of additional disturbance in our system,
allowing proper compensation to be generated. The estimation results of
COBA matched expected outcome in virtual plane tests and were con-
sistent with the force tracking results of tasks involving interaction with
real objects. The capability to provide consistent estimations across multi-
ple free-space/contact transitions has also been demonstrated, sidestepping
problems such as uncertainties in detecting the rest contact position or force
sensor bias. The poor results of a position-based estimator when subjected
to the same practical conditions have also been demonstrated. Experimental
testing demonstrated that the ANNE estimator can be successfully trained
to produce the expected results in virtual plane experiments and repro-
ducing the estimation behavior of COBA in interactions with real objects,
including in free-space/contact transitions. Both approaches were found to
be successful in addressing the main concern of this thesis: estimating the
system stiffness without relying on object position data. The relative merits
of each approach can be summarized as follows:

� ANNE is less reliant on input signals that are specific to the control
approach being used. COBA is more tightly associated with the ar-
chitecture described in Chapter 3.

� The training process of ANNE requires a data that is correctly matched
to a target stiffness. If the environment is unknown, then results from
another estimation approach are required to bootstrap the process. In
that sense, the estimation performance of ANNE is contingent on per-
formance of the original source. COBA does not require any training
prior to online operation and its estimation behavior is supported by
theoretical analysis of the properties of the control system.
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� A stiffness range must be decided when training ANNE. Estimation
results can be expected to decline in quality outside of this range. No
explicit, discrete range of operation is assumed in COBA, although
assumptions such as the rigidity of the manipulator may be more re-
alistic at the lower end of the stiffness range.
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Conclusions
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8.1 Introduction

Stiffness estimation is a relevant research problem, with significant practical
impact and challenging issues to address. One important difficulty is re-
lated to uncertainty in the relative position of the manipulator with respect
to the environment. This is a significant problem when the manipulator
must interact with unstructured, unknown and dynamic environments. The
stiffness estimation techniques proposed in this thesis overcome this issue
by not requiring object position data. These algorithms can be used to
online estimate the system stiffness in tasks where it would be challenging
to do so, if such information is required. A critical property of these algo-
rithms is that they are applicable to tasks where stiffness estimation can
be beneficial, but it is not normally employed due to practical difficulties.
Examples of these tasks include teleoperated robotic-assisted minimally in-
vasive surgery, where stiffness estimation provides improved force tracking
and telepresence. Other applications of stiffness estimation include quality
control of manufactured objects, identification of irregularities in biological
tissues and environment mapping for simulation and task planning purposes.
The stiffness estimation algorithms described in this work are embedded in

117
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an explicit force control architecture, using computed torque in the task
space. Stiffness estimations are obtained for each uncoupled Cartesian di-
mension. Force tracking performance has been shown to depend on the
mismatch between the real stiffness parameter and the nominal value used
in control design. Adaptation of the nominal value during online operation
has been found to significantly improve force tracking performance.

8.2 Contributions

Three new stiffness estimation algorithms are the key contributions of this
thesis. They have been developed using two alternative strategies: model-
based and sensor-based approaches. In the former case, the estimation al-
gorithm is based on properties that can be analytically derived and demon-
strated from a model describing the system behavior. The correctness of the
estimation algorithms is ensured, provided the models can be safely assumed
to properly represent the system under consideration. In the latter case, sen-
sorial data has been used to provide adequate estimations, avoiding explicit
modelling. Simulated interactions between the robot and the environment
have been used to assess the behavior of the algorithms in nearly ideal condi-
tions, with perfect linearization of rigid manipulator dynamics and perfect
modeling of the environment by a linear spring. Simulation studies have
also been used to explore the impact of mismatching contact parameters
in the dynamic response, and to confirm the force tracking improvement
obtained by performing online stiffness estimation and adaptation. Experi-
mental results have been obtained at Institute of Systems and Robotics at
the University of Coimbra, with a robotic platform based on a WAM ma-
nipulator including a JR3 force sensor and teleoperated through a Phantom
haptic device. Explicit force control has been achieved by computed torque
control in the task space and active observers. Interactions with both virtual
and real objects have been conducted. In the former case, the environment
parameters are specified by the user and are therefore well-known, allowing
the estimation results to be compared with expected results. In the latter
case, objects of distinct (but unknown) stiffnesses have been used.

1) ASBA

The ASBA algorithm is a model-based algorithm, based on a comparison be-
tween the actual AOB active state with analytically expected behavior, for
different mismatch scenarios. The algorithm pre-computes step responses of
the AOB active state, for different stiffnesses and mismatch scenarios. The
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actual value of the active state is compared, during online operation, to the
predicted response for several hypothetical mismatch scenarios. Stiffness has
been estimated by finding the closest match, in terms of least-squared-error.
Theoretical analysis and simulation results have demonstrated that stiffness
is correctly estimated, for a broad range of stiffness values and mismatches.
Simulation tests have been conducted for stiffnesses ranging from very soft
(100 [N/m]) to very stiff (6000 [N/m]), including severe under and overesti-
mated scenarios. Exact estimation has been obtained in as few as 4 samples
from contact, although a trade-off between noise rejection and responsive-
ness is necessary, depending on the specific parameter choices. In underesti-
mated systems, faster dynamics of the extra state allow the estimation to be
obtained quicker, as it contains rich frequency components. Conversely, the
behavior of the estimator in overestimated cases is comparatively slower, as
a larger window of observation must be adopted. In any case, estimations
close to the correct stiffness have been obtained. Parameterization of ASBA
also allows a trade-off between memory and runtime overhead and estima-
tion quality. Online suitability can be achieved by reducing the quantity
and dimension of candidate curves analysed by the algorithm. On the other
hand, if online overhead is not a concern, a higher memory footprint and
execution time may be allowed for achieving better estimations. ASBA suc-
cessfully achieves the goal of not requiring object position. Subsequent work
was aimed at improving suitability for online operation, adaptive behavior,
reducing implementation complexity and handling unmodeled disturbances.

2) COBA

The COBA algorithm improves online capabilities by reducing memory and
time overhead. Stiffness is estimated by processing the force error of two
force observers tuned with different nominal parameters. COBA has been
subjected to theoretical analysis, simulation, experimental testing and vali-
dation. COBA is very efficient, as the runtime and memory overhead is only
due to two additional observers. The estimation has been obtained by anal-
ysis of the force error of these observers. The implementation of COBA is
straightforward and does not require any simplification of the relevant theo-
retical results. This has the benefit of ensuring consistent theoretical results.
Responsiveness is also improved by not relying on LSE analysis. Low over-
head and high responsiveness contribute significantly to the online suitability
of COBA. Appropriate measures for compensating additional disturbances,
caused by factors other than stiffness mismatch, have also been described
and used. Results have demonstrated that COBA is able to provide accurate



120 CHAPTER 8. CONCLUSIONS

stiffness, even in the presence of degraded force tracking in severe mismatch
scenarios. Simulation tests in MATLAB Simulink allowed operation under
ideal conditions to be assessed and the theoretical results to be confirmed.
Experimental results, using both virtual and real objects, have provided
the required experimental validation under practical conditions. Simulation
tests have explored different scenarios with homogenous and heterogenous
environments, that is, constant versus dynamic stiffness. Free-space/contact
transitions have also been considered. COBA has been shown to converge
to the correct stiffness value in just one time sample after a non-null force
is applied to the environment, in both under and overestimated scenarios.
Similar results have been obtained for both homogenous and heterogenous
environments. The negative impact of online adaptation of the control laws
in stiffness estimation capabilities is only residual. Similar performance has
also been observed in simulations of free-space/contact transitions, without
any stationary error or estimation spikes near the transition. Experimental
results with virtual objects have been collected for the purpose of identi-
fying the profile of the dominant disturbance in our system. This allowed
proper compensation action to be determined. Good estimation behavior
has been observed, with estimations converging to the expected value even
with contact forces of very low magnitude. An acceptance criteria is descri-
bed that allows poorly conditioned results to be disregarded. Interactions
with real objects of unknown stiffness, including free-space/contact transi-
tion, have also been performed. In these, COBA has provided estimations
matching the expected physical properties of the objects and actual force
tracking performance. Free-space/contact transitions have been handled
seamlessly, with consistent estimations being provided in different contact
episodes with the same object, even though the force sensor bias changed
between successive contact episodes. COBA results have been compared
with those of a LSE-based technique that uses contact position data. The
latter technique is negatively affected by contact position uncertainty, man-
ifesting as estimation transients in free-space operation, large estimation
spikes near contact and inconsistent estimations in successive contacts with
the same object. COBA does not exhibit these problems, offering consistent
estimations and good transient behavior in free-space and near the contact
transition. Results of COBA reveal an interesting non-linear behavior of the
stiffness, where the estimation gradually increases with applied force until
it saturates at a final level. From this point onward, the estimation remains
approximately constant even in the presence of increasing contact forces. In
scenarios of contact with soft objects, the final estimation value is approxi-
mately obtained for inputs of magnitude between −2 [N] and −3 [N]. This
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is notable as the SNR is very low in that force range. In stiffer scenarios,
over 80% of the final estimation value is obtained for contact forces bellow
−10 [N], approximately.

3) ANNE

Unlike the other techniques presented in this work, the ANNE estimator
does not rely on a specific model of environment or control system. It
is a sensor-based technique that relies on a neural network model that is
trained, using sensorial data, to produce the desired estimations. A set of
candidate input variables, based on force data, has been pruned by conduct-
ing a correlation analysis. This has allowed a minimal set of inputs with rich
information content to be determined, to the benefit of ANN training and
performance. Several neural networks have been trained, each using data
obtained using a specific nominal stiffness value. In this way, each ANN
specializes in estimating the stiffness in the neighborhood of its training
stiffness. Results from multiple independent neural nets, trained with data
from different stiffness mismatch scenarios, have been fused to generate a
final estimation. ANNE has been trained and tested using both simula-
tion and experimental data. Simulation results have demonstrated good
performance of ANNE. It has been able to successfully generalize training
results to novel input data, that has not been used earlier in the training
process. A minimal stationary error of 2% has been detected, demonstrating
good accuracy. Similarly, experimental results have also demonstrated good
estimation performance of ANNE. Results from interactions with virtual ob-
jects have demonstrated that each individual neural network that composes
ANNE offers good estimation performance by itself. However, their perfor-
mance deteriorates slightly as the difference between the training stiffness
and nominal stiffness increases. Analysis of the results has revealed that fus-
ing the output of each individual neural net with polynomial interpolation
improves the results of the individual nets, particularly when the nominal
stiffness does not closely match one of the training stiffnesses. Experiments
with data from interactions with real objects have confirmed these results.
ANNE has closely replicated COBA estimations, even in interactions with
objects that were not considered previously in the training process.
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Comparative Analysis

Comparative analysis of the functional and performance profiles of the three
algorithms suggests preferable target applications. ASBA offers a parame-
terizable trade-off between online overhead and estimation quality, making
it a flexible technique well suited for a wide range of scenarios. However, lack
of disturbance rejection may compromise estimation performance if system
operation is significantly affected by disturbances other than stiffness mis-
match. COBA has minimal online overhead and includes disturbance com-
pensation, making it a prime candidate for online estimation tasks. Both
COBA and ASBA are based on the availability of a system model and a
specific control architecture. ANNE does not depend on such model, but
only on sensorial data. It is therefore less dependent on the specificities of
the control architecture, easing its adoption in other platforms. It requires
a preliminary training process, including sensory data including stiffness es-
timations, that are used to seed the process. These may be obtained by
simulation, the use of data from experiments in well known environments or
the results of other stiffness estimators. Regardless of the source, ANNE is
then able to generalize to other scenarios.

8.3 Future Directions

Several future research directions can be identified:

Estimation of Higher-Order Terms

In this work, the focus is on developing estimation techniques suitable for
tasks with low dynamics. Stiffness is the dominant parameter in these tasks,
so the effect of higher order terms can be considered negligible. In tasks
with higher dynamics, this is not the case and higher order modeling may be
necessary. Developing estimation techniques, independent of object position,
for high order terms is a possible direction of future research.

Nonlinear Estimation

Non-linear contact models have been proposed in the literature, reported
to be more accurate than linear impedance models, in particular in interac-
tions with softer environments. Object-position independent techniques for
estimating the parameters of such models can be of value, broadening the
range of tasks were estimations based on high-fidelity contact models can
be obtained.
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Addressing Alternative Control Approaches

Some aspects of the model-based estimation techniques presented in this
work, such as the use of the active state of the AOB, are based on specific
details of the described control architecture. Other control approaches can
be considered so that object-position independent techniques may be ob-
tained. Ideally, a common framework should be developed, with minimal or
no dependencies on the control approach, that may be individually tailored
to each specific control system.
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A.1 Introduction

This appendix collects all the theoretical proofs of theorems, corollaries and
lemmas that support ASBA and COBA algorithms. Proofs of Theorem 1
and Lemma 1 of the ASBA Algorithm can be found in Section A.2. Proofs
of theorems 2, 3 and 4, lemmas 2 and 3 as well as corollaries 1 and 2 of the
COBA Algorithm are demonstrated in Section A.3. In all these proofs the
initial conditions are assumed to be known.
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A.2 Theoretical Results for ASBA

Lemma 1. Assuming null initial conditions, the active state p̂k of the
active observer can be given by

p̂k = KC

k∑

i=1

i−1∑

j=0

Zj,iΓri−1−j , (A.1)

where r, K, C and Γ are the reference force, the Kalman gains, the
output and the command matrices, respectively. Z is represented by

Zj,k = (Φn,k−1 + ∆Φk−1 − ΓL)j − (Φn,k−1 − ΓL)j , (A.2)

where L is the state feedback matrix, Φn is the nominal state transition
matrix and ∆Φ is the mismatch matrix given by the difference between
the real and the nominal state transition matrices.

Proof of Lemma 1. From (3.28), p̂k is represented by

p̂k = p̂k−1 +Kk,p̂k(yk − ŷk), (A.3)

where Kk,p̂k is the Kalman gain of the p̂k term and yk and ŷk are the real
and estimated system outputs (forces), respectively. Knowing from (3.16)
and (3.29) that yk = Cxk and ŷk = Cx̂−k , (A.3) becomes

p̂k = p̂k−1 +Kk,p̂kC(xk − x̂−k ), (A.4)

where x̂−k is the a-priori estimation of xk. Replacing xk and x̂−k in (A.4) by
the corresponding expressions (A.5) and (A.6),

xk = (Φr,k−1 − ΓL)k x0 +

k−1∑

j=0

(Φr,k−1 − ΓL)j Γrk−1−j (A.5)

and

x̂−k = (Φn,k−1 − ΓL)k x̂0 +

k−1∑

j=0

(Φn,k−1 − ΓL)j Γrk−1−j , (A.6)

then, considering zero initial conditions (x0 = x̂0 = 0), (A.4) becomes:

p̂k = p̂k−1 +Kk,p̂kC

k−1∑

j=0

[
(Φr,k−1 − ΓL)j − (Φn,k−1 − ΓL)j

]
Γrk−1−j . (A.7)
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A stiffness mismatch occurs when the nominal contact stiffness considered
in the control design (Ksn) is different from the real system stiffness (Ks).
This stiffness mismatch (∆Ks = Ks−Ksn) is reflected on a mismatch matrix
∆Φk which is represented as ∆Φk = Φr,k − Φn,k. So, (A.7) becomes:

p̂k = p̂k−1+Kk,p̂kC

k−1∑

j=0

[
(Φn,k−1 + ∆Φk−1 − ΓL)j − (Φn,k−1 − ΓL)j

]
Γrk−1−j .

(A.8)
Analyzing (A.8), it is clear that p̂k is dependant on the value of ∆Φk−1. If
∆Φk−1 = 0 then p̂k remains constant. Defining Zj,k as:

Zj,k = (Φn,k−1 + ∆Φk−1 − ΓL)j − (Φn,k−1 − ΓL)j , (A.9)

and replacing (A.9) in (A.8):

∆p̂k = p̂k − p̂k−1 = Kk,p̂kC

k−1∑

j=0

Zj,kΓrk−1−j . (A.10)

Since

p̂k = p̂0 +

k∑

j=1

∆p̂j , (A.11)

then, for zero initial conditions, (A.8) is equivalent to:

p̂k =

k∑

i=1

Ki,p̂kC

i−1∑

j=0

Zj,iΓri−1−j . (A.12)

For a constant Kalman gain (K = Ki,p̂k) (A.12) becomes:

p̂k = KC

k∑

i=1

i−1∑

j=0

Zj,iΓri−1−j . (A.13)

Theorem 1. If IKs,n,Ks is the active state response for constant real
and nominal stiffnesses (Ks and Ks,n respectively) when the system is
excited with a step input, then p̂k can be computed, for any arbitrary
reference input, through the convolution:

p̂k = (IKs,n,Ks ∗∆r)k (A.14)

where ∆rk = rk − rk−1 is the reference input difference.
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Proof of Theorem 1. (A.14) will be proved to be equivalent to (A.1). Ap-

plying a unitary step input (rk = 1, for k > 0) in equation (A.12), I
Ks,n,Ks

k

can be computed by:

I
Ks,n,Ks

k =

k∑

i=1

Ki,p̂kC

i−1∑

j=0

Zj,iΓ. (A.15)

Then, starting from (A.14),

p̂k = (IKsn,Ks ∗∆r)k =

k∑

n=0

IKsn,Ks
n ∆rk−n (A.16)

and substituting (A.15) in (A.16),

p̂k = (IKsn,Ks ∗∆r)k =

k∑

n=0






n∑

i=1

Ki,p̂kC

i−1∑

j=0

Zj,iΓ


 (rk−n − rk−n−1)


 .

(A.17)
Under constant Ksn, Ki,p̂k will quickly converge to a stationary value after
the initial transient phase. Therefore, it is reasonable to assume K = Ki,p̂k .
Then, applying (A.17) and (A.1), (A.16) holds if:

k∑

n=0






n∑

i=1

KC

i−1∑

j=0

Zj,iΓ


 (rk−n − rk−n−1)


 = KC

k∑

i=1

i−1∑

j=0

Zj,iΓri−1−j

(A.18)
Referring to the 1st member of (A.18) as Bk:

Bk =

k∑

n=0






n∑

i=1

KC

i−1∑

j=0

Zj,iΓ


 (rk−n − rk−n−1)


 (A.19)

and developing (A.19):

Bk = KC

k∑

n=0

n∑

i=1



i−1∑

j=0

Zj,iΓrk−n −
i−1∑

j=0

Zj,iΓrk−n−1


 (A.20)

Bk = KC

k∑

n=0




n∑

i=1

i−1∑

j=0

Zj,iΓrk−n −
n∑

i=1

i−1∑

j=0

Zj,iΓrk−n−1


 (A.21)
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Defining

Ai =

i−1∑

j=0

Zj,iΓ, (A.22)

the equivalent expression for (A.21) is obtained:

Bk = KC

k∑

n=0

(
n∑

i=1

Airk−n −
n∑

i=1

Airk−n−1

)
. (A.23)

Developing, with the individual terms

Bk = KC(A1rk−1 −A1rk−2︸ ︷︷ ︸
n=1

+

2∑

i=1

Airk−2 −
2∑

i=1

Airk−3

︸ ︷︷ ︸
n=2

+ · · ·+
k∑

i=1

Air0 −
k∑

i=1

Air−1

︸ ︷︷ ︸
n=k

)

(A.24)
and grouping the terms with the same reference, (A.24) is equivalent to

Bk = KC(A1rk−1 +A2rk−2 +A3rk−3 + · · ·+Akr0). (A.25)

Equation (A.25) can be represent as

Bk = KC

k∑

i=1

Airk−i. (A.26)

Replacing (A.22) in (A.26),

Bk = KC

k∑

i=1

i−1∑

j=0

Zj,iΓrk−i. (A.27)

Replacing the first member of (A.18) by (A.27), then (A.18) can be repre-
sented as

KC

k∑

i=1

i−1∑

j=0

Zj,iΓrk−i = KC

k∑

i=1

i−1∑

j=0

Zj,iΓri−1−j . (A.28)

To prove that the equality of (A.28) is true, let us represent both sides of
(A.28) in the form:

∞∑

i=0

airi = a0r0 + a1r1 + · · · , (A.29)
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finding, after straightforward analysis, that the first term of (A.28) can be
developed as

k∑

i=1

i−1∑

j=0

Zj,krk−i =

∞∑

i=0

k−i−1∑

j=0

Zj,kri. (A.30)

Applying similar analysis to the second term of (A.28),

k∑

i=1

i−1∑

j=0

Zj,kri−1−j =

∞∑

i=0

k−i−1∑

j=0

Zj,kri. (A.31)

∴ (A.30) and (A.31) prove (A.28) and therefore Theorem 1 is proved.

A.3 Theoretical Results for COBA

Lemma 2, Corollary 1 and Theorem 2 are related to the analysis of COBA
operation under ideal conditions. Lemma 3, Corollary 2 and Theorem 3
are the corresponding results for non-ideal operation. Theorem 4 presents
conditions for FOB tuning.

A.3.1 Ideal Conditions

Lemma 2. Under ideal operating conditions, there exists a value Gk,
independent of ∆Ksc and equal for both FOBs, that verifies:

∆xc,k = −∆Ksc Gk, (A.32)

where ∆xc,k is the FOB state estimation error and ∆Ksc is the FOB
stiffness mismatch.

Proof of Lemma 2. This theorem will be proved by mathematical induc-
tion.

Basis Step: (A.32) is proven to hold, for k = 1, with G1 independent of
∆Ksc and equal for both FOBs. From (4.2), xc,1 is given by

xc,1 = Φcxc,0 + Γuc,0 +Kc(y1 − y−c,1). (A.33)

Replacing Φc, xc,0, y1 and y−c,1 according to (4.8), (4.7), (3.16) and (4.4),
(A.33) becomes

xc,1 = (Φ−∆Φc)(x0 −∆xc,0) + Γuc,0

+KcC [Φx0 − (Φ−∆Φc)(x0 −∆xc,0)]. (A.34)



A.3. THEORETICAL RESULTS FOR COBA 131

For known initial conditions (∆xc,0 = 0) and knowing, from (3.16), that
x1 = Φx0 + Γu0, (A.34) becomes,

xc,1 = x1 + (KcC − I)∆Φc x0. (A.35)

Applying (4.9) and (4.7), (A.35) is equivalent to,

∆xc,1 = −∆Ksc(KcC − I)Tx0. (A.36)

Making
G1 = (KcC − I)Tx0, (A.37)

(A.36) can be written as

∆xc,1 = −∆KscG1. (A.38)

Since (A.37) is independent of ∆Ksc and equal for both FOBs then the basis
step is proved.

Inductive Step: Assuming the inductive hypothesis for some k > 0, it is
proven that it also holds for k + 1. This is equivalent to prove that

∆xc,k = −∆Ksc Gk =⇒ ∆xc,k+1 = −∆Ksc Gk+1, (A.39)

with Gk+1 independent of ∆Ksc and equal for both COBs. Replacing in
(4.2) the terms yk, y

−
c,k, xc,k, Φc by (3.16), (4.4), (4.7) and (4.8), respectively,

xc,k+1 becomes

xc,k+1 = (Φ−∆Φc)(xk −∆xc,k) + Γuc,k +KcCΦxk

−KcC(Φ−∆Φc)(xk −∆xc,k). (A.40)

On the other hand, since
uc,k = uk, (A.41)

then 3∆xc,k = 0 and (4.7) becomes,

∆xc,k =
[

1∆xc,k
2∆xc,k 0

]T
. (A.42)

Therefore, from (4.9) and (A.42),

∆Φc ∆xc,k = 0. (A.43)

From (3.16) and (A.43), (A.40) becomes

xc,k+1 = xk+1 + (KcC − I)∆Φcxk + (KcC − I)Φ∆xc,k. (A.44)
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Replacing ∆xc,k by the induction hypothesis and applying (4.9), (A.44)
becomes

xc,k+1 = xk+1 + ∆Ksc(KcC − I)(−ΦGk + Txk). (A.45)

Making

Gk+1 = (KcC − I)(−ΦGk + Txk), (A.46)

and applying (4.7), (A.45) can be rewritten as

∆xc,k+1 = −∆KscGk+1. (A.47)

From (3.17), (A.41) and (4.9), (A.46) can be written as

Gk+1 = −(KcC − I)ΦGk + Γuuc,k−1, (A.48)

where Γu is given by

Γu = (KcC − I)Z, (A.49)

being Z the third column of T . Since (A.48) is independent of ∆Ksc and
equal for both FOBs, the inductive step is proved.

Corollary 1. Under ideal operating conditions,

1Ĝk = 1Gk. (A.50)

Proof of Corollary 1. From (4.21), the force estimation error of each
FOB is given by

∆1xc1,k = −1Gk∆Ksc1 (A.51)

and

∆1xc2,k = −1Gk∆Ksc2 . (A.52)

Replacing (A.51) and (A.52) in (4.12) proves (A.50).

Theorem 2. Under ideal operating conditions, COBA estimates the
correct system stiffness if 1Gk 6= 0,

K̂s,k = Ks. (A.53)



A.3. THEORETICAL RESULTS FOR COBA 133

Proof of Theorem 2. Replacing (4.21), (4.6) and applying Corollary 1,
(4.14) becomes

K̂s,k = Ks. (A.54)

A.3.2 Non-ideal Conditions

Lemma 3. Under non-ideal operating conditions (∆uc,k 6= 0), there
exists a value Gk and Wk, independent of ∆Ksc and equal for both
COBs, that verifies:

∆xc,k = −∆KscGk −Wk, (A.55)

where ∆xc,k is the FOB state estimation error and ∆Ksc is the FOB
stiffness mismatch.

Proof of Lemma 3. This theorem will be proved by mathematical induc-
tion.

Basis Step: (A.55) is proven to hold, for k = 1, with G1 and W1 inde-
pendent of ∆Ksc and equal for both COBs. From (4.2) and knowing that
uc,k = ũk −∆uc,k, xc,1 is given by

xc,1 = Φcxc,0 + Γ(ũ0 −∆uc,0) +Kc(y1 − y−c,1). (A.56)

Replacing xc,0, Φc, y1 and y−c,1 according to (4.7), (4.8), (3.16) and (4.4),

xc,1 = (Φ−∆Φc)(x0 −∆xc,0) + Γ(ũ0 −∆uc,0)

+KcC (Φ∆xc,0 + ∆Φcx0 −∆Φc∆xc,0). (A.57)

Assuming known initial conditions, (A.57) becomes

xc,1 = x1 −∆Φcx0 − Γ∆uc,0 +KcC ∆Φcx0. (A.58)

Applying (4.9) and rearranging, (A.58) is equivalent to

xc,1 = x1 + ∆Ksc(KcC − I)Tx0 − Γ∆uc,0. (A.59)

Making
G1 = (KcC − I)Tx0 (A.60)

and
W1 = −Γ∆uc,0, (A.61)
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(A.59) can be presented as

xc,1 = x1 + ∆KscG1 +W1. (A.62)

Applying (4.7), (A.62) becomes

∆xc,1 = −∆KscG1 −W1. (A.63)

Since (A.60) and (A.61) are independent of ∆Ksc and are equal for both
COBs, the basis step is proved.

Inductive Step: Assuming the inductive hypothesis for some k > 0, it
is shown to also hold for k + 1. Considering an input error (4.23), (4.2)
becomes

xc,k+1 = Φcxc,k + Γ(ũk −∆uc,k) +Kc(yk+1 − y−c,k+1). (A.64)

Replacing (3.16), (4.4), (4.7) and (4.8) in (A.64),

xc,k+1 = xk+1 + ∆Ksc(KcC − I)Txk −∆Ksc(KcC − I)T∆xc,k

+(KcC − I)Φ∆xc,k − Γ∆uc,k. (A.65)

Using the the induction hypothesis, (A.65) can be written as

xc,k+1 = xk+1 + ∆Ksc(KcC − I)Txk −∆Ksc(KcC − I)T∆xc,k

+(KcC − I)Φ(−∆KscGk −Wk) + Γ∆uc,k. (A.66)

Applying (4.7), (A.66) can be represented as

∆xc,k+1 = −∆KscGk+1 −Wk+1, (A.67)

with
Gk+1 = (KcC − I)(Txk − ΦGk − T∆xc,k) (A.68)

and
Wk+1 = −(KcC − I)ΦWk + Γ∆uc,k. (A.69)

From (3.17), (4.3), (4.7) and (4.9), (A.68) can be written as

Gk+1 = −(KcC − I)ΦGk + Γuuc,k, (A.70)

where Γu is defined by (A.49). From (A.69) and (A.70), Wk+1 and Gk+1

are independent of ∆Ksc and equal for both COBs, therefore the theorem
is proved.
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Corollary 2. Under non-ideal operating conditions,

1Ĝk = 1Gk. (A.71)

Proof of Corollary 2. From (4.24), the force estimation error of each
FOB is given by

∆1xc1,k = −∆Ksc1
1Gk − 1Wk (A.72)

and

∆1xc2,k = −∆Ksc2
1Gk − 1Wk. (A.73)

Replacing (A.72) and (A.73) in (4.12) proves (A.71).

Theorem 3. Under non-ideal operating conditions, the estimation com-
puted by COBA is given by

K̂s,k = Ks + ∆K̂s,k, (A.74)

with

∆K̂s,k = −
1Wk
1Gk

, (A.75)

if 1Gk 6= 0. ∆K̂s,k is the stiffness estimation error.

Proof of Theorem 3. Replacing (4.24), (4.6) and applying Corollary 2,
(4.14) becomes

K̂s,k = Ks +
1Wk
1Gk

. (A.76)

Defining ∆K̂s,k = Ks − K̂s,k,

∆K̂s,k = −
1Wk
1Gk

. (A.77)
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Theorem 4. Wk is bounded if ∆uc,k−1 is bounded and the following
conditions hold:

|λ1| < 1 and |λ2| < 1, (A.78)

where
λ1 = α/2−

√
(α2/4 + β) (A.79)

and
λ2 = α/2 +

√
(α2/4 + β) (A.80)

with
α = 1Kc, (A.81)

β = −2 1Kc
2Kc + 1Kc c+ 2 2Kca− c, (A.82)

a = (1− e−KDTs)/KD (A.83)

and
c = e−KDTs . (A.84)

Proof of Theorem 4. If ∆uc,k is bounded, analysis of (A.69) reveals that
Wk is also bounded if the eigenvalues of the transition matrix −(KcC −
I)Φ are within the unit circle. According to (4.5), 3Kc is zero. Therefore,
computing the eigenvalues of −(KcC − I)Φ, λ0, λ1 and λ2,

λ0 = 0, (A.85)

λ1 = α/2−
√
α2/4 + β (A.86)

and
λ2 = α/2 +

√
α2/4 + β, (A.87)

with
α = 1Kc, (A.88)

β = −2 1Kc
2Kc + 1Kc c+ 2 2Kca− c, (A.89)

a = (1− e−KDTs)/KD (A.90)

and
c = e−KDTs . (A.91)

If
|λ1| < 1 and |λ2| < 1, (A.92)

then (A.69) is bounded for a bounded input ∆uc,k (in practical situations
∆uc,k is bounded since system disturbances are bounded).
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