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Be the Best of Whatever You Are - (2009)      
 

 

If you can't be a pine on the top of the hill, 
Be a scrub in the valley, but be 

The best little scrub by the side of the rill; 
Be a bush if you can't be a tree. 

 
If you can't be a bush be a bit of the grass, 

And some highway happier make; 
If you can't be a muskie then just be a bass  

But the liveliest bass in the lake! 
 

We can't all be captains, we've got to be crew, 
There's something for all of us here, 

There's big work to do, and there's lesser to do, 
And the task you must do is the near. 

 
If you can't be a highway then just be a trail, 

If you can't be the sun be a star; 
It isn't by size that you win or you fail  

Be the best of whatever you are! 

 

Douglas Malloch 
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Abstract 

Breast adenocarcinoma is one of the major causes of death among women 

worldwide (the second most lethal cancer type in Portugal) and can be caused by oxidative 

stress conditions. The development of chemopreventive agents against this type of 

neoplasia is therefore of the utmost importance, in order to reduce the risk of this type of 

oxidative stress-related diseases. 

Phytochemicals (such as hydroxycinnamic acids and isoflavones) are an abundant 

source of antioxidants present in our daily diet known to significantly decrease the 

harmful effect due to oxidative species, and therefore being promising chemopreventive 

agents towards carcinogenesis. 

The present work aims at assessing two dietary antioxidants – p-coumaric acid (p-

Ca, a monohydroxylated phenolic acid) and daidzein (DA, an isoflavone) – as potential 

chemopreventive agents, using as biological models the human breast cancer cell lines 

MCF-7 (estrogen-dependent) and MDA-MB-231 (estrogen-independent). A 

multidisciplinary approach was followed, coupling biological assays to cutting-edge 

vibrational spectroscopy techniques, to evaluate (for distinct concentrations, at 48 h 

exposure time): (i) cell proliferation/viability, by the SRB and MTT colorimetric tests; (ii) 

antimetastatic ability, using a transwell invasion chamber; (iii) generation of ROS/RNS 

species, through a fluorimetric technique (2ʹ,7ʹ-dichlorofluorescin diacetate probe); (iv) 

metabolic impact at the cellular level via Raman microspectroscopy of fixed cells. 

MicroRaman of cell cultures, in particular, allows an accurate and non-invasive probing of 

biospecimens, constituting an invaluable and innovative method for monitoring the effect 

of an external agent on the intracellular biochemical profile. 

At both 50 and 100 μM, p-Ca was found to induce a significant increase in cell 

viability for MDA-MB-231, although the Raman data did not show a clear differentiation 

between the control and the treated cells. In contrast, at 7.5 and 15 μM p-Ca induced a 

slight viability decrease, the Raman spectra having reflected changes in the cellular 

chemical composition (mostly in lipids and proteins). For the MCF-7 cells, p-Ca did not 

show any significant effect (in the whole concentration range tested) through either 

biological assays or Raman microspectroscopy. The ROS/RNS measurements 

corroborated these conclusions, and evidenced a striking cell-selectivity for both 
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polyphenols studied. 

Regarding daidzein, a 100 μM dosage led to a marked decrease in cell viability (ca. 

50%) for the MDA-MB-231 line, the Raman data evidencing differences in the lipid and 

protein content. For the MCF-7 cells, viability was found to decrease considerably (30% to 

40%) for 50 and 100 μM concentrations, which was corroborated by microRaman. 

In conclusion, the results gathered for 50 and 100 μM p-Ca allow us to hypothesise 

on a pro-oxidant effect of the phenolic acid on this type of cancer cells (mainly for the 

highest concentration tested), the increased intracellular levels of ROS leading to an 

enhanced neoplastic proliferation (which is known to be associated with a need for ROS). 

At low concentrations, the compounds appear to affect mostly lipids which could be a 

promising chemoprotective strategy towards ROS-induced lipid damage associated to 

carcinogenesis. DA, in particular, was shown to be a promising chemoprotective agent 

against hormone-dependent breast adenocarcinoma. In addition, both dietary 

polyphenols can be envisaged as potential agents in adjuvant therapy for non-hormone 

dependent breast cancer. 
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Resumo 

O cancro de mama é atualmente uma das principais causas de morte entre as 

mulheres em todo o mundo (e o segundo tipo de cancro mais mortal em Portugal), 

podendo ser provocado por condições de stresse oxidativo. O desenvolvimento de 

agentes quimiopreventivos contra este tipo de neoplasia é assim da maior relevância, com 

vista a reduzir a incidência desta patologia induzida por stresse oxidativo. 

Os compostos fitoquímicos (como os ácidos hidroxicinâmicos e as isoflavonas) são 

uma importante fonte de antioxidantes presentes na dieta. São responsáveis por uma 

diminuição considerável dos efeitos nocivos de espécies oxidantes no nosso organismo, 

constituindo assim um grupo promissor de potenciais agentes quimiopreventivos face a 

processos carcinogénicos. 

O objectivo deste trabalho é o estudo de dois antioxidantes da dieta – ácido p-

coumárico (p-Ca, um ácido fenólico monohidroxilado) e daidzeína (DA, uma isoflavona) – 

como potenciais agentes quimiopreventivos, utilizando como modelo biológico as linhas 

celulares humanas da cancro de mama MCF-7 (dependente de estrogénio) e MDA-MB-

231 (independente de estrogénio). Foi seguida uma estratégia multidisciplinar, que 

combinou ensaios biológicos com técnicas de ponta de espectroscopia vibracional, para 

avaliar (a distintas concentrações e para um tempo de exposição aos compostos de 48 h): 

(i) a proliferação celular/viabilidade, através dos testes colorimétricos de SRB e MTT; (ii) 

a capacidade antimetastática, usando uma câmara de invasão “transwell”; (iii) a formação 

de espécies ROS/RNS, mediante uma técnica fluorimétrica (com a sonda 2ʹ,7ʹ-

diclorofluoresceína diacetato); (iv) o impacto metabólico ao nível celular via 

microespectroscopia de Raman em células fixas. Em particular, a técnica de microRaman 

aplicada a culturas celulares permite uma monitorização rigorosa e não invasiva de 

amostras biológicas, constituindo uma ferramenta preciosa e inovadora para a avaliação 

do efeito de agentes externos no perfil bioquímico intracelular. 

Para as concentrações de 50 e 100 μM, o p-Ca demonstra ter capacidade de 

aumentar significativamente a viabilidade celular para MDA-MB-231, porém os resultados 

de Raman não mostram nenhuma diferenciação entre o controlo e as células tratadas. Em 

contraste, as concentrações de 7.5 e 15 μM de p-Ca induzem uma pequena diminuição da 

viabilidade, porém os espectro de Raman exibem modificações a nível da composição 
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química (maioritariamenta lípidos e proteínas). Para as MCF-7, o p-Ca não demonstrou 

ter qualquer efeito significativo (em todos os intrevalos de concentrações) quer nos 

ensaios biológicos como para microscopia de Raman.  

As medições de ROS/RNS concordam com estas conclusões, e evidenciam a 

seletividade demostrada pelos polifenóis em estudo. 

Para a daidzeina, a concentração de 100 μM de daidzeina reduz a viabilidade celular 

(aproximadamente 50%) para a linha celular MDA-MB-231, os resultados de Raman 

evidenciam diferenças nos lípidos e no conteúdo proteíco. Para as MCF-7, a viabilidade é 

reduzida (30% e 40%) para 50 e 100 μM, confirmado por microRaman 

Em conclusão, os resultados obtidos para 50 e 100 μM p-Ca permitem hipotetizar 

sobre o efeito pro-oxidante do ácido fenólico neste tipo de células (dando enfase às 

concentrações mais elevadas), o aumento dos níveis intracelulares de ROS levam ao 

aumento da proliferação neoplasica (que se sabe estar associada à necessidade de ROS). 

Em concentrações mais baixas, os compostos demonstram interagir com os 

lípidos, podendo vir a ser uma promissora estratégia quimiopreventiva para 

carcinogéneses induzidas por alterações nos lípidos provocadas por ROS. 
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NA Numerical aperture 

NOSs  Nitric oxide synthases 
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UV-B Ultraviolet B 
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VEGF Vascular Endothelial Growth Factor 

WHO World Health Organization 

���� In plane deformation vibration of skeleton atoms 

���� Out of plane deformation of skeleton atoms 

���� In plane  deformation vibration of a X-H bond 

�� �� Out of plane deformation vibration 

FT-Raman Fourier transform Raman spectroscopy 

YAG yttrium-aluminum-garnet 

vs  versus 

���� Stretching vibration of a X-H bond  
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1.1. Free Radicals, Oxidative Stress and Disease 

11.1.1. Free Radical Species 

In the 1950´s, free radicals (reactive oxygen, nitrogen and sulphur species – ROS, 

RNS and RSS) were identified in biological systems and were proposed to be involved in 

diverse pathological processes [1]. Previously, Denham Harman had proposed that free 

radicals might have an active role in the aging process [2]. Over the years, the interest and 

research efforts on free radicals’ effect on biologic systems, including their role in 

oxidative-related disorders, has grown and is currently an active field of study with a 

recognized impact on human health. 

A free radical is defined as a species capable of independent existence [3] that 

contains one or more unpaired electrons in the outer electron shell [3-8], which is 

responsible for a high reactivity [5]. Two free radicals can join their unpaired electrons to 

form a covalent bond [3] or can bind with electrons of neighbouring species giving rise to 

a chain reaction [6,9] and finally yielding a new free radical. This chain reaction can modify 

the structure and/or function of molecules, interfering with the normal biochemical 

processes within the cell. Therefore, organisms need an antioxidant defensive system [10] 

(Section 3). 

There is a diversity of free radicals, namely oxygen and nitrogen reactive species 

(ROS and RNS, respectively, Table 1) [4,6,8,10]. The former include superoxide anion, 

hydroxyl, peroxyl, lipid peroxyl, alkoxyl radicals and hydrogen peroxide (which is not a free 

radical but is chemically very reactive, being involved in the production of other free 

radicals) [4,6,8,10,11]. RNS encompasses nitrogen dioxide [4,8] and nitric oxide [1,4,8,10], 

peroxynitrite (ONOO-) and nitrite (NO2-) that are produced by a family of enzymes (nitric 

oxide synthases, NOSs [9,11] very important in a variety of intracellular signalling 

processes (e.g. neurotransmission) and in the relaxation of smooth muscle [10]. In 

addition, ROS and RNS comprise non-radical species that can also lead to free radical 

reactions in living organism [8]. 
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Table 1 – Most relevant oxygen (ROS) and nitrogen (RNS) free radicals in living organisms. 

Free radicals 
ROS Ref Biological 

effect  
RNS Ref Biological effect  

superoxide 
anion (O2•−) 

[3,4,6,8,10,
11] 

Lipid, 
proteins and 
DNA 
oxidation 

nitric oxide 
(NO•)  

[1,4,8,10] Neurotransmitter
s and relaxation 
of smooth muscle 
 
 

hydroxyl (•OH) [3,4,6,8,10,
11] 

Damage in 
specific 
targets 
(guanine, 
histidine, 
tryptophan 
and tyrosine) 

nitrogen 
dioxide 
(NO2•) 

[4,8,12]  

peroxyl (ROO•) 
including lipid 
peroxyl (LOO•) 

[3,4,6,8,10,
11] 

lipid 
peroxidation 

nitrite 
(NO3•) 

[9,12]  

alkoxyl (RO•) [3,4,6,8,10,
11] 

    

hydrogen 
peroxide (H2O2) 

[4,6,8,10,11
,13] 

DNA damage     

 

Oxygen and nitrogen reactive species are produced in animals and humans under 

both physiologic and pathologic conditions [8,10], and have an important role in living 

organisms [5], their effect being strongly dependent on concentration. As an example, 

ROS induces cell growth and proliferation at nanomolecular levels [13,14], cause transient 

growth arrest and protective adaptive alterations in gene expression at micromolar levels 

and lead to oxidative stress at milimolar concentrations [13]  having even been found to 

trigger signalling pathways which arrest cell proliferation at high dosages [14,15].  

Although human life depends on oxygen for several crucial pathways, it is also a 

source of free radicals: in aerobic respiration, 80% of O2 consumed [9] is used to generate 

energy in mitochondria [16], and 1-5% is transformed into superoxide and hydroxyl 

radicals [9,15,17]. Biological systems are therefore exposed to free radicals produced via 

endogenous and exogenous pathways [8,9,18,19]. 
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11.1.1.1. Endogenous Sources of Free Radicals 

Endogenous production of ROS is essential for regulating physiological functions in 

healthy cells (e.g. metabolic processes and cellular signalling, [5,6,8-10,16,20,21] (Figure 

1). During inflammation, a cellular signal process, for instance, free radicals such as O2• − 

and H2O2 are generated by the immune system [6,8-10,15,19,22], when neutrophils and 

macrophages increase oxygen consumption). Phagocytes also produce ROS [21], in order 

to destroy invading pathogens and modulate the inflammatory response [19,22].  

Numerous pathways can be activated in response to low levels of ROS, such as the 

epidermal growth factor receptor (EGFR) pathway [11]. Additionally, metabolic processes 

include some the activity of enzymes and metal ions (e.g. Cu2+, Fe3+) which also sources of 

free radicals in cells, as well as mental and body stress [21], conditions such as ischemia 

and an excessive physical activity are also endogenous sources of ROS [15]. 

 
Figure 1 – Endogenous sources of ROS and RNS. 
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11.1.1.2 Exogenous Sources of Free Radicals 

External sources of free radicals include xenobiotics [11,19], pollution (air and water 

pollutants), chemical solvents and external radiation (e.g. UV-B, [8,11,15,18,19,21,23]) 

(Figure 2). Exposure to these deleterious species is responsible for an increased level of 

free radicals, which may lead to oxidative stress related diseases [15]. Tobacco smoke is 

one of the main sources of free radicals, due to oxidative compounds present in smoke 

[11,15,21]. Furthermore, alcohol and drug consumption [8,11,18], wrong dietary habits 

or certain therapeutic schemes may also promote free radical production [15,19]. 

 

Figure 2 – Exogenous sources of ROS and RNS. 

1.1.2. Oxidative Stress-Induced Diseases 

Living organisms have specific mechanisms for keeping low intracellular ROS/RNS 

levels [1], e.g. a strictly regulated equilibrium between radicals´ production and 

elimination processes, leading to a steady-state (homeostasis) [1,9], thus avoiding 

oxidative damage due to non-controlled ROS/RNS formation [9]. Under physiological 
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oxidative lesions per day [9,10,19], that are dependent on a variety of factors, namely 

environment, pollution, metabolism, diet, lifestyle and age [13]. 

The endogenous antioxidant system counteracts the harmful effects of free radicals, 

aiming to maintain a homeostatic state. However, under some conditions the equilibrium 

between free radicals and antioxidant production is lost [6,10] and the cell´s antioxidant 

defences are unable to overcome the oxidative attack and fail to repair their consequent 

damage, leading to a physiologic condition known as oxidative stress [1,6,10,11,24]: a 

serious imbalance between free radical production and antioxidant defences (Figure 3) 

[22]. 

 

Figure 3 – Schematic representation of oxidative stress conditions. 

This can be due to a variety of reasons: a) endogenous and exogenous 

overproduction of ROS [1,6,8,11]; b) insufficient antioxidant defence mechanisms 

[6,11,22], by depletion or/and decrease of antioxidant production [1,8,22]; c) a 

combination of these two factors. A similar condition may occur regarding reactive 

nitrogen species and is referred as nitrosative stress [8]. 

Oxidative (and/or nitrosative) stress accumulation over time contributes to the 

development of several severe diseases [25], such as cardiovascular and 

neurodegenerative disorders and cancer [24]. NO• expression affects tumour 

development, may inhibit or promote, according to cell setting and concentration. Their 

promotion role is related to DNA damage and stimulation of vascular endothelial growth 
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factor (VEGF) which promotes angiogenesis, contributing to tumour growth and cell 

invasion [9]. 

Typically, the majority of ROS have a short half-life and cause damage only locally, 

but some of these species, namely H2O2, have a relatively long half-life and can diffuse 

through quite long distances within the organism causing DNA damage at distant sites 

from its origin [1]. The •OH, in turn, is a lower-energy singlet molecular oxygen and can 

produce a massive damage through particular targets (guanine, histidine, tryptophan, and 

tyrosine) reacting with both DNA and proteins [1,9,12] and being implicated in 

mutagenesis, carcinogenesis and aging processes [12,15]. In contrast, O2•− is completely 

unreactive towards biomolecules [1]. Additionally, RNS appear to contribute to 

cardiovascular disease, since peroxynitrite (generated by reaction of NO with O2•− in 

vascular endothelium), leads to proinflammatory cytokine-mediated myocardial 

dysfunction [26]. 

Hence, the presence of an excessive concentration of free radicals constitutes a 

serious risk for normal cellular function, especially when mediated by changes in 

biomolecules such as nucleic acids, proteins, polysaccharides and lipids, that are 

preferentially affected by oxygenated free radicals [1,6,9-11,24]. Table 2 comprises the 

main cellular targets of oxidative stress and the most significant physiologic 

consequences. 

Oxidative DNA damage is one of the most severe consequences of oxidative stress 

conditions [19], since injured DNA has the potential to induce mutations [6,27]. Therefore, 

DNA damage needs to be properly addressed and repaired by endogenous mechanisms, 

prior to or during replication, with a view to prevent replication errors, genomic 

instability, cell death, or impairment of transcription and signalling pathways, all of which 

have been associated to carcinogenesis [19,28]. 

Free radicals can interfere directly with proteins, or can interact with sugars and 

lipids yielding products that then react with proteins [19]. Oxidative protein damage can 

induce several alterations, from fragmentation and/or aggregation to an enhanced 

susceptibility to proteolysis leading to oxidation and degradation [6,10]. This may impair 

protein function [6,10,16] and enzymatic activity [9]. Reactive oxygen/nitrogen species 

can also induce conformational changes in protein receptors, thus affecting cellular 

signalling mechanisms [19].  
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Table 2 – Main cellular targets of oxidative stress and physiological impact. 

Target Ref Consequence Ref 
DNA [21,29]  Mutation gene sequence; oxidized purines and 

pyrimidines; single- and double-strand breaks;  
[6,19,28,29] 

RNA [19] Modification of bases; ribose and strand break [19] 

Proteins [13,21] loss of sulfhydryl groups; amino acid 
modification; 

 

Fragmentation and aggregation; susceptibility 
to proteolysis; degradation and structural 
alterations; 

 

inhibition of normal cellular functions; cell 
death (apoptosis or necrosis) 

[13] 

Enzymes [21] inhibition of enzymatic activity [13] 

Lipids  Lipid peroxidation; alteration of membrane 
fluidity and permeability  

[15] 

Polyunsaturat
ed fatty acids 

(PUFA) 

[19] unstable membrane structure; altered 
membrane fluidity and permeability; impaired 
signal transduction 

 

 

Lipids are the most susceptible biomolecules to ROS/RNS injury, membranes of cells 

and organelles being very prone to damage (especially those with polyunsaturated fatty 

acids (PUFA), [6,9,10,16] either via direct interaction with free radicals or by formation of 

peroxides and their breakdown products [21]. This results in unstable membrane 

structures and altered membrane fluidity and permeability [6,16], also affecting signal 

transduction [6]. 

Moreover, oxidative stress has been associated with neuronal death [30], through 

mitochondrial damage, when proteasome pathway are inhibited (oxidation and nitrate 

inactivation of proteasome subunits) - ubiquitin-proteasome system is needed to 

development and maintenance of neurons and have a role in axonal degeneration after 

nerve injury [12]-, or via dopamine oxidation. 

Some studies have demonstrated that free radicals activate neoplastic 

transformation by diverse mechanisms [10]: inactivation of expression of oncogenes (e.g. 

Ras, myc, telomerase) and suppressor genes (p53, p21, PTEN) [10,11], or increased 

expression of proto-oncogenes [31]. These transformations can lead to the induction of 

cell damage [10], senescence or escape from apoptosis [11]. ROS is also associated with 
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hypoxia, which is a condition reported in almost every tumours, which is an oxygen 

diffusion limitation in primary tumours or their metastasis [14]. Hypoxia leads to an 

increase of mitochondrial ROS [14] causing oxidative stress which activate 

metalloproteinases (MMP) [31,32]- a family of collagenase that aids vessel growth [31]– 

which are  associated with increasing tumour vessel supply promoting angiogenesis, cell 

invasion as well as metastasis [31,32]. 

In summary, oxidative damage plays a pivotal role in a wide variety of human 

diseases: besides cancer and cardiovascular or neurodegenerative disorders, it can cause 

rheumatoid arthritis, muscular dystrophy, diabetes, among others [1,16,17,24,32,33] 

(Table 3). 

Table 3 – Main oxidative stress-induced human pathologies. 

Diseases Oxidative Damage Related Ref 

Cancer [1,16,17,22,25] 

Diabetes mellitus type 2 [1,16,17,34]  

Cardiovascular diseases [1,16,17,34] 

Neurodegenerative diseases [1,12,16,17,25,34] 

Parkinson's [19] 

Alzheimer's [19,25] 

Cataract formation [1,16,17,34] 

Aging [1,3,16,17] 

Rheumatoid arthritis [1,16,17,34] 

Acute respiratory distress syndrome [1,16,17] 

Asthma [1,16,17] 

Obesity [1,16,17] 

Hepatitis C [19] 
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1.2. Breast Cancer 
Cancer is becoming the major cause of morbidity and mortality worldwide [35], and 

is estimated that in the next decades it will affect every region of the world, closely 

following cardiovascular disorders [36]. Cancer results from a deregulated cell 

proliferation caused by DNA mutations, induced by a carcinogenesis process. This may be 

due to a variety of carcinogenic agents: chemical (drugs and chemical pollutants); 

biological (viruses), or physical (radiation) [35]. 

Among cancers, breast cancer is an important public health problem as it is the 

second most lethal cancer among women worldwide [37,38]: according to the World 

Health Organisation (WHO), it affects 28% of the women in Europe [39]. In Portugal, the 

woman death rate attributed to breast cancer has been growing steadily, 30.3% deaths in 

2010 [40]. Despite being associated with women, breast cancer can also affected men. 

The major risks of developing breast cancer are age [35,36,41] , early menarche, delayed 

menopause, use of contraceptives, hormone therapy, genetic predisposition and obesity 

[35]. Women over 50 years old are the most affected, with a 79% incidence (in United 

Sates of America, 2006-2010) and metastasis remains a significant cause of mortality [42]. 

There are two models proposed for carcinogenesis regarding breast carcinoma: a) DNA 

mutation and b) induced by steroid hormones. 

Epidemiological evidence has demonstrated a clear difference in breast cancer incidence 

between Eastern and Western countries [37,41,42], Asian women being the least affected 

[41,42] which can be related to diet. Additionally, a large number of epidemiologic studies 

support a diet rich in vegetables and fruits as an effective chemopreventive strategy 

towards this type of cancer [37]. 
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11.2.1 Oxidative Stress-Induced Breast Cancer 

Carcinogenesis is a multi-step process, comprising initiation, promotion and 

progression [19] (Figure 4). 

 

Figure 4 – Cancer progression. (Adapted from [43]) 

Initiation takes place when a normal cell undergoes DNA damage (due to ROS/RNS) 

and proceeds via DNA synthesis, resulting in the fixation of the mutation, thus yielding an 

initiated cell [19,44]. The promotion process involves modulation of gene expression 

resulting in an increased cell division and/or decreased apoptotic cell death, leading to a 

continuous cell proliferation that may induce subsequent mutations in these 

preneoplastic cells, resulting in a neoplasm [19]. Progression, the last step of the process, 

involves additional damage to the genome and, unlike the promotion step, is irreversible 

[19]. 

Epidemiologic data have shown that chronic oxidative stress is strongly related with 

carcinogenesis [10,11,19,29,38] , ROS/RNS species being present at higher concentrations 

in cancer cells (relative to non-neoplastic ones) [19,29,35]. Actually, the role of free 

radicals in breast cancer development may not be limited to early mutations, but probably 

affects all phases [31], including angiogenesis and metastasis [10,16,22,28]. Upregulated 

levels of free radicals in breast cancer that may cause DNA damage along with defective 

DNA repair mechanisms when compared to normal breast tissue [10,38]. 

Numerous factors and different pathways are responsible for an increased level of 

reactive oxygen species in breast tumour tissue [35], the most important of which will be 

described in this section. Telomere genes are highly susceptible to mutation in the 



1. Biological Systems 

25 
 

presence of free radicals [27] and it is apparent that suppressor genes such as p53 are 

affected by oxidative stress [10,14,27,35]. This gene activates several pathways involved 

in programmed cell death [35], regulation of the expression of gene code antioxidant 

proteins and prevention of oncogenic transformation [10,14,35]. ROS-related p53 

mutations or p53 loss have been detected in over 50% of human cancers and are 

associated with aggressive tumour growth [14]. p53 is dose-regulated by free radicals 

[10,35]: under physiological conditions free radicals´ concentration is low and p53 

expression is moderated; when the level of free radicals increases p53 is stimulated, 

promoting oxidative stress and the consequent DNA damage and cellular apoptotic death. 

Another effect of a high concentration of ROS/RNS is p53 inactivation by direct DNA 

damage [10]. 

In addition, persistent inflammation proceeds a variety of cancers, including breast 

cancer, and involves an immune response (namely through macrophages and neutrophils) 

[35]. Sublethal oxidative stress promotes cell proliferation in vitro by stimulation of 

superoxide and hydrogen peroxide, which activates MAPKs (mitogen-activated protein 

kinase) pathways [31]. MAPKs play a role in cell growth and cancer under conditions of 

oxidative stress [35].  Since oxidative stress may induce apoptosis, some therapeutic 

schemes that lead to the production of ROS in carcinoma cells are used in the clinic: 

certain drugs (e.g. doxorubicin, mitomycin C, tamoxifen) [31,45], photodynamic therapy 

or radiotherapy. Regarding breast cancer, tamoxifen, a well-known antioestrogen agent, 

is known to induce oxidative stress in vitro [31,45]. 
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1.3. Antioxidant Defences 
Upon exposure to oxidants (or oxidative stress-inducing agents), mammalian cells 

express stress-induced genes, which encode the antioxidant defence mechanism to 

metabolize these reactive species into nonreactive ones [19] , thus reducing (or hindering) 

their harmful effect. Halliwell and Gutteridge defined antioxidant “as any substance that, 

when at low concentration compared to those of an oxidisable substrate, significantly 

delays or prevents oxidation of that substrate” [3,8,46]. Indeed, this is the first line of 

cellular defence against free radicals [9,47]. 

Antioxidant defences depend on both the endogenous [8,15,47] production of 

antioxidant compounds and the dietary intake of antioxidant food products (exogenous, 

mostly phytochemicals) [8,15,47]. These molecules counterbalance the deleterious effect 

of free radicals [8,46,47] by: a) catalysing a complex cascade of reactions that convert 

ROS/RNS into stable entities like water and O2; b) through direct scavenging of the radical 

species [47], thus neutralizing them and maintaining the body´s redox balance [8,35]. An 

antioxidant compound is classified according to their biochemical mechanism of action 

[15,30] ( 

Table 4). 

Table 4 – Main antioxidant defences in mammalian cells. 

Antioxidant enzymes 

Antioxidant 
Species 

Forms 
present in 

body 
Location Source Function Ref 

Superoxide dismutase 
(SOD]  Endogenous 

production 

catalyses the 
dismutation 

of O2•− to 
H2O2 

[6,9,15,30,
46,47] 

 
SOD1 Mitochondria, 

cytoplasm 
Endogenous 
production  [8,15,46] 

SOD2 
(Manganes

e 
superoxide 
dismutase ] 

Mitochondria, 
cytoplasm, 
lysosome 

Endogenous
production  [8,15,46] 

SOD3 Extracellular Endogenous 
production  [8,15] 
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Catalase (CAT] Common in cell Endogenous 
production  [6,8,9,15,3

0,46] 

Glutathione peroxidase 
(GPx] Cytoplasm Endogenous 

production 
Reduction of 

H2O2 
[6,9,15,35,

47] 

 

GPx1 Cytosol Endogenous 
production  [15,48] 

GPx2 Intestinal 
epithelium 

Endogenous 
production  [15,48] 

GPx3 Plasma Endogenous 
production  [15,48] 

Gpx4  Endogenous 
production 

Protection of 
membranes 

[15,48] 

GPx8 
(mammalia

n 
glutathione 
peroxidase] 

Membrane 
protein of the 
endoplasmic 

reticulum 

Endogenous 
production 

 
 [15,48] 

Peroxiredoxin  Endogenous 
production  [15] 

Chain-Breaking Antioxidants 

Antioxidant 
Form(s] 

present in 
body 

Biodistribution Source Function Ref 

Glutathione (GSH]  Endogenous 
production  [6,9,15,35,

47] 

 

Reductase 
form 

(Glutathion
e 

reductase] 
(GR] 

Cytosol, nuclei 
and 

mitochondria 

Endogenous 
production 

sequestrates 
of ROS which 

are 
transformed 
and recycled 

[9] 

[6,8,9] 

 

Oxidized 
form 

(Glutathion
e disulphide 

(GSSG]] 

Endogenous 
production  [6,8,9] 

Peroxidases Cytosol, 
mithocondria 

Endogenous 
production  [15,49] 

Thioredoxin  Endogenous 
production  [15,35,47] 

Uric acid  Endogenous 
production  [6,15,35] 

Lipoic acid  Endogenous 
production  [6,8] 
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reduced 
form 

(dihydrolipo
ic acid] 

 Endogenous 
production  [8] 

Vitamin C (ascorbic acid] 
cytosol, plasma 
and other body 

fluids 

Dietary 
source 

protection of 
endogenous 

DNA damage; 
lipid 

peroxidation; 
reduction of 
pro-oxidant 

effect of 
tocopherol 
radical [48] 

[6,15,35,4
6] 

Vitamin D  Dietary 
source  [47] 

Vitamin E 
family of 

fat-soluble 
compounds 

low-density 
lipoproteins 

(LDL] 

Dietary 
source  [6,35,46] 

Beta-
carotene 

Vitamin A 
precursor  Dietary 

source  [46] 

Vitamin A fat-soluble 
compounds  Dietary 

source  
[35,46] 

  

1.3.1. Antioxidant enzymes 

Antioxidant enzymes include catalase (CAT), peroxidases and superoxide dismutase 

(SOD) which is probably the most important one in the cell [15]. SOD catalyses the 

neutralization of the superoxide radical-induced damage [8,30,46] by converting it to 

hydrogen peroxide (H2O2) [8,15] and O2 [8,30]. This reaction is the body’s primary 

antioxidant defence, preventing further generation of free radicals [30]. Humans have 

three forms of superoxide dismutase: SOD1 is found in mitochondria as well as the 

cytosol, [8,15] and requires both copper and zinc for its function [15]; SOD2 only occurs 

in mitochondria [8,15]; SOD 3 is found in the extracellular media [8,15] and requires 

copper-zinc as cofactor [15]. 

Catalase is an enzyme widely distributed in cells that converts hydrogen peroxide 

into water and oxygen in cells [8,15,30], completely neutralizing the superoxide free 

radical [15,30]. CAT requires iron as a cofactor, which is attach to active site [15]. 
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The glutathione peroxidases (GPx) comprise eight distinct enzymatic forms (GP1x to 

GP8x) [15], which prevent the formation of hydroxyl radicals from H2O2 and protect the 

cell against H2O2-induced oxidative injury [8]. GPx1 to GPx4 and GPx6 (selenium-

containing enzymes) and GPx5, GPx7 and GPx8 (non-selenium) have an important role in 

detoxifying the cell from hydroperoxides. GPx1 can interact with hydrogen peroxide and 

soluble low-molecular-weight hydroperoxides, being involved in the prevention of cancer 

and neurodegenerative diseases. GPx3 is suggested to regulate the bioavailability of nitric 

oxide produced from platelets and vascular cells. GPx4, in turn, reduces hydroperoxides 

in membrane lipids and lipoproteins [50]. 

Peroxiredoxins and thioredoxins are also enzymes involved in the detoxification of 

hydrogen peroxides within eukaryotic cell [15,49]. The former degrades hydroperoxides 

into water and can act as a redox sensor (monitoring disruption of cellular redox 

homeostasis). Thioredoxins have important roles in several vital cellular processes such 

as cell cycle regulation, cell growth, gene expression and apoptosis. 

11.3.2 Chain-Breaking Antioxidants 

Chain-breaking antioxidants are molecules found in the blood and extracellular 

fluids [30], with the ability to neutralize free radicals by breaking the chain reaction 

initiated by them (Figure 5): 

 

Figure 5 – Scheme of antioxidant activity against a free radical-initiated chain reaction. A• represents an 

inert antioxidant (with no capability to initiate a chain reaction). 
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Antioxidants can be either endogenous or exogenous [15] ( 

Table 4), and include both hydrophilic and lipophilic small-molecules [30]. Vitamin C 

is a water-soluble antioxidant capable of scavenging O2•−, OH• and ROO• radicals, as well 

as H2O2, hypochlorous acid and singlet oxygen [46] (Figure 5). Uric acid is a lipophilic chain-

breaking antioxidant that can coordinate oxidative Fe3+ ions, thus preventing the 

deleterious Fenton reaction. 

Glutathione (GSH) is an essential endogenous antioxidant responsible for keeping 

the intracellular redox homeostasis of the cell [9,15]. In the reduced state (GSH, the most 

abundant form in the reducing intracellular medium), glutathione displays a high 

antioxidant ability by scavenging a variety of free radicals and oxidative ions [15]. GSH is 

capable of capturing hydroxyl radicals and singlet oxygen directly and can be used as a 

reductant of GPxs to detoxify hydrogen peroxide and lipid peroxides [8,48]. In the oxidized 

form (glutathione disulphide, GSSG], it is mostly present in the nucleus for maintaining 

the redox state of protein sulfhydryls that are essential for DNA expression and repair [8]. 

Lipoic acid is another relevant endogenous antioxidant, sometimes referred to as 

“universal antioxidant” since it is able to quench free radicals in both hydrophobic and 

hydrophilic domains, and also to chelate pro-oxidant cations [8]. Vitamin E, a dietary 

compound, is a potent, lipid-soluble antioxidant present in low-density lipoproteins 

[15,46]. Moreover, it is very effective at breaking the chain reaction leading to lipid 

peroxidation, through peroxyl radical scavenging. Carotenoids are another relevant group 

of natural antioxidants, able to neutralize peroxy radicals and singlet oxygen [15]. 
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1.4. Dietary Polyphenols 

Polyphenols are an abundant source of micronutrients [51] with recognised 

antioxidant activity [52]. Several studies have established a direct relationship between 

the intake of this type of compounds and prevention of some oxidative stress-induced 

diseases, such as neurodegenerative and cardiovascular disorders and some types of 

cancer [53-55]. These compounds are secondary metabolites of plants (phytochemicals) 

[51,53,55,56], and are therefore widespread in fruits, vegetables, cereals, vegetable oils, 

chocolate and beverages such as tea, coffee and wine [52,55,57,58]. Phytochemicals, 

even though not considered as essential nutrients, are known to display numerous 

biological functions, from cell growth to defence against pathogens or UV radiation in 

plants [51,53,56,59]. Furthermore, they constitute the active substances found in many 

medicinal plants, being responsible for modulating the activity of a wide range of enzymes 

and cell receptors [51]. 

Polyphenols can be classified into different groups, according to their chemical 

characteristics. Over 8000 distinct structures are known [33,55,57], mostly differing in the 

number of aromatic rings and their substituent groups (Figure 3) [33,52,53,55]: phenolic 

acids, flavonoids, stilbenes, coumarins and tannins. 
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Figure 6 – Classification of dietary polyphenols. (Adapted from [51-53,60]) 

The most abundant polyphenols in the human diet are flavonoids [33,53], which 

account for about 2/3 of the total phenolic content, the remaining 1/3 being phenolic 

acids [53,56]. These can be grouped into two major subclasses: benzoic acid derivatives 

and cinnamic acid analogues (hydroxycinnamic acids, Figure 7) [33,51,52,55-57]. 
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Figure 7 – Chemical structure dietary phytochemicals. (Adapted from [57]) 

The average intake of phenol acids in a normal diet was reported to be ca. 200 

mg/day, but this value is strongly determined by dietary habits [56]. Phenolic acids and 

their derivatives have been described to possess both antioxidant and prooxidant abilities 

(depending on their concentration], as well as preventive properties towards 

cardiovascular diseases, neurodegenerative disorders, inflammatory processes and 

cancer [61-63]. 

Flavonoids comprise two C6 aromatic rings (A and B) and may be divided into 6 

groups: flavonols, flavones, flavanols, flavonones, anthocyanidins and isoflavones (Figure 

6) [51,53,55,57]. In the basic flavonoid structure the hydroxyl groups are usually at the 

4’,5’ and 7’ positions, and sugar substituents are common  (yielding flavonoid conjugates 

abundant in green plants [57]. Extensive experimental evidence (mostly from 

epidemiologic studies) suggests that flavonoids display health-promoting properties 

related to their antioxidant capacity (through both chain-breaking and radical scavenging 

processes [24]. 

This type of compounds have been the subject of intense research in the last two 

decades, and numerous studies have suggested that a diet rich in fruits, vegetables and 

cereals can significantly reduce the risk of developing pathologies attributed to 
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deleterious oxidative processes, including cancer [31,53,55,62,64]. Hence, dietary habits 

have been highlighted as an effective chemopreventive strategy against this type of 

pathologies. 

11.4.1 Hydroxycinnamic Acids  

Hydroxycinnamic acids (HCAs) are hydroxyl derivatives of cinnamic acid (Figure 7). 
They are biosynthetised from phenylalanine and tyrosine, and contain an unsaturated 

side chain with either cis or trans conformation [60]. These compounds are commonly 

present in nature as conjugates, linked (through ester bonds) to polyamines, proteins or 

cell-wall structural components (e.g. cellulose or lignin) [53]. 

HCAs are more common that hydroxybenzoic acids and comprise p-coumaric (p-Ca), 

caffeic, ferulic and sinapic acids [51-53,57,60]. Numerous studies have shown that 

cinnamic and hydroxycinnamic acids display relevant biological properties, namely 

antiproliferative effect towards several types of cancers (e.g. colon, cervical, breast and 

lung carcinomas [56,62,65]) and a potential inhibitory effect in cancer metastasis [54]. 

 

1.4.1.1 para-Coumaric acid 

trans-4-Hydroxycinnamic acid (para-coumaric acid, p-Ca) is the major HCA in citrus, 

pinnaple [34], spinach, grapes, apples, berries and tomatoes [66], being also present in 

beverages such as tea, coffee and wine [67-69]. It is one of the three geometric isomers 

of hydroxycoumaric acid (besides the orto- and meta-coumaric derivatives) [69]. In 

nature, p-CA is the most abundant of the three isomers, and is biosynthesised from 

cinnamic acid in the presence of the p-450-dependent enzyme 4-cinnamic acid 

hydroxylase [69]. Its bioavailability in humans is around 1.0 μmol/L [54]. Although the 

mechanism of action is not still fully understood at the molecular level, several studies 

have hypothesised that p-Ca´s  antioxidant properties (and potential chemoprotective 

effect) are due to quenching of carcinogenic ROS and RNS within the cell [68,70]. 

Coumaric acid has been shown to inhibit cell cycle progression and to reduce cell 

viability and colony formation in colon cancer cells [54,66,71], as well as in SW 620, Hep 

G2, A549 and T-47D cells (IC50 equal to 87, 215, 412 and 474 μM, respectively [72]). A 
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study in cadmium chloride-induced renal toxicity in rats showed that p-Ca (100 mg per kg 

per b. wt) displays an effective protective effect [73]. 

  

1.4.2 Isoflavones 

Isoflavones are a subgroup of flavonoids comprising a phenyl group at the C3 

position and a specific orientation between rings B and C (Figure 7) [55,57,59]. They are 

found in leguminous vegetables, mainly soybean and soybean derivates [41,55,65], and 

are often referred to as phytoestrogens since they can mimic estrogen activity 

[37,41,51,65,74],  the relative position of their hydroxyl groups at positions 7 and 4’ being 

analogous to that of the estradiol molecule. These compounds have shown to prevent 

cardiovascular diseases and osteoporosis [65], and decrease cancer progression [41,65]. 

 

1.4.2.1 Daidzein 

Daidzein (DA] is an isoflavone found in nuts, citrines and soybean products (e.g. 

beans, tofu, tempeh, soy milk, textured vegetable protein, flour and miso) [34,37,74]. DA 

displays structural and functional similarities to the endogenous hormone estrogen [74], 

and since some breast cancers are estrogen-dependent, this isoflavone may compete with 

natural estrogen reducing its availability and therefore inhibiting cancer cell growth [57]. 

Similarly to other isoflavones, DA has a high antioxidant activity [74], being able to induce 

neoplastic cell death in a variety of cancer types [37].  Dietary consumption of daidzein 

from soybean products has been verified to reduce prostate and breast cancers [57].  

The health-beneficial properties of phytochemicals have led to an intense search for 

novel and more efficient antioxidants from natural sources, involving the Medicinal 

Chemistry and Nutritional Pharmacology fields. Establishment of new nutritional habits is 

sough, aiming at the prevention of cancer and cardiovascular disorders through a regular 

consumption of these dietary antioxidants [24]. 

  



Paula Sofia Coutinho Medeiros 

36 
 

1.5. Chemoprevention 

In 1976, Michael Sporn reported a new approach against cancer, chemoprevention 

[36,75]. He defined this approach as the use of natural, synthetic or biological agents to 

revert, suppress or prevent the development of a variety of steps within the process of 

carcinogenesis (initiation, promotion and/or progression) [75-78].  

Conventional cancer chemotherapy is associated to significant non-specific 

deleterious side effects [36,75], and in long-time treatments patients can develop drug 

resistance [36,59]. Additionally, cancer treatment is very expensive for the healthcare 

provider and to the community in general, which renders chemoprevention based on 

phytochemicals, usually inexpensive, readily applicable, acceptable and accessible [79], 

an attractive  alternative aimed at avoiding or minimising cancer incidence. Actually, 

recent studies have shown that some cancers (such as breast and colorectal) could be 

prevented in 2/3 of the cases.  

Epidemiologic studies establish that women from Asian countries display a much 

lower incidence of breast cancer than western women, this having been associated to 

dietary habits (e.g. higher consumption of soy products [75,80]. A similar scenario has 

recently been reported for prostate cancer [80]. Additionally, studies performed in 

different cell lines (breast [31] and colorectal cancer [81]), and animal models [77,80,82] 

as well as clinical trials [77,82], suggest a protective role of antioxidant dietary 

polyphenols against different types of neoplasias [77]. In fact, polyphenols have already 

been recognised as effective protective agents against cardiovascular diseases, decreasing 

mortality due to coronary heart distress and reducing the incidence of myocardial infarct 

[26,61]. 

Nowadays it is well-established that diets rich in antioxidant compounds from 

grains, fruits and vegetables are health-beneficial [25,75], and protect against the 

deleterious action of free radicals that may lead to cancer development [75] and other 

oxidative stress-induced disorders (e.g. neurodegenerative diseases). 

In addition, natural products are chemopreventive agents of choice due to their 

minimal toxicity coupled to their favourable protective capacity [31,75,80] and nutritious 

properties [75]. 
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Despite the efforts to establish the numerous advantages of chemopreventive 

strategies, controversy still remains among researchers regarding a widespread use of this 

type of antioxidants, mainly due to their concentration-dependent dual effect 

(antioxidant versus pro-oxidant) and the difficulty to accurately quantify their 

bioavailability in food products [77]. Over the years research in the nutritional, 

pharmacological and medicinal chemistry fields has aimed to find new antioxidants from 

natural sources, with particular emphasis on the prevention of cancer and cardiovascular 

disorders through dietary intervention, in view of the high morbidity of these disorders 

and the limited success of conventional chemotherapy [59]. 

Chemoprevention agents can be classified into three main groups: a) primary 

prevention, in high-risk healthy individuals; b) cancer prevention, in individuals which had 

developed pre-malignant lesions; c) continuous prevention, in cancer patients already 

treated (conventionally) for a primary tumour [83]. 
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1.6. Structure-Activity Related Mechanisms of Action 

The protective effects of compounds present in fruits and vegetables appear to be 

involved in the early rather than the later stage of carcinogenesis [75]. Experimental 

evidence suggests that antioxidants and anti-inflammatory compounds can be used to 

modify the redox environment of cancer cells, and consequently their behaviour and 

growing profile [75]. The anticarcinogenic activity of these dietary compounds is reflected 

in their cytoprotective effect towards healthy cells coupled to their cytotoxic effect 

against pre-neoplastic or neoplastic cells [77]. 

Despite the extensive knowledge on dietary polyphenols regarding their structure 

and antioxidant capacity, the mechanism of action underlying their chemopreventive 

activity has not yet been fully elucidated [84], having been generally assigned to: ROS/RNS 

scavenging [59,85,86], inhibition of oncogene activity and activation of tumour 

suppressor genes, modulation of hormone/growth factor activity, induction of terminal 

differentiation, activation of apoptosis, re-establishment of the immune response, and/or 

inhibition of angiogenesis. 

Dietary chemopreventive agents can be classified according to their different 

mechanisms of action: (i) Blocking agents, that act immediately before or during 

carcinogenesis initiation, thus preventing the interaction between carcinogenic 

compounds (e.g. exogenous or endogenous ROS/RNS) and cellular targets, through 

different mechanisms including carcinogenic detoxification, modification of carcinogen 

uptake and metabolism, scavenging of ROS and other oxidative species, and enhanced 

DNA repair [83-85,87]. (ii) Suppressing agents, which exert their effect during initiation, 

promotion and progression of pre-neoplastic cells, via radical scavenging activity, or 

inhibition of xenobiotic metabolizing enzymes [83-85,87] . Phytochemicals were also 

shown to display anti-invasive and antimitotic properties thus interfering with cell 

migration and adhesion, but the exact molecular mechanism responsible for these 

properties remains unclear [77]. 

According to several reported studies, the beneficial effects of phenolic compounds 

rely on their structure and conformation through defined Structure-Activity Relationships 

(SARs), namely the number and location of the phenolic hydroxyl groups [59,64,80], the 

nature of the spacer chain between the ring and the carboxylic, ester or amide moieties, 
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and the length of the ester group in polyhydroxylated esters [62] (Figure 8). Furthermore, 

the biological activity of these compounds is determined by their rate of incorporation 

into the cells, which is directly related to their hydrophilic vs lipophilic properties [62,64]. 

 

 

Figure 8 – Main structure–activity relationships (shadowed areas) established for isoflavones, in the 

presence (A) or absence (B) of a catechol group (from [59]). 

 

1.6.1. Hydroxycinnamic acids 

The antioxidant properties of hydroxycinnamic acids are intimately related to their 

characteristic chemical structure [54] (Figure 9). 

 
Figure 9 – Chemical structure of phenolic acids, hydroxycinnamic acid and p-coumaric acid. (Adapted from 

[57]) 
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HCAs have been associated with growth-inhibition properties towards some human 

cancer cell lines [54,64], along with a reduced risk of cardiovascular disease and other 

oxidative stress-related disorders. HCAs have a strong radical-scavenging ability (OH-

donation) related to the presence of –CH=CH-COOH groups [88] and are able to capture 

pro-oxidant metals, although other mechanisms are also suggested, namely triggering of 

gene induction/repression modulation of enzymatic activity, inhibition of cell proliferation 

and O2 scavenging [54,89]. 

1.6.2. Isoflavones 

The beneficial health effects of flavonoids (Figure 10) are described as being mainly 

due to their metal chelating ability, as well as to activation of antioxidant enzymes, 

reduction of free radicals and inhibition of oxidases [26], and is determined by the 

dissociation enthalpy of the O–H bonds present in the molecule [59]. 

 
Figure 10 – Flavonoid skeleton, isoflavone general structure and daidzein (Adapted from [57]). 
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These mechanisms are strongly structure-dependent, namely on the presence of 

2 or 3 hydroxy substituent groups in the B-ring, or of a 4-oxo function in the C-ring, 

especially when coupled to a 2,3-double bond in C-ring [59,80]. Also important are the 

additional presence of OH  substituents in ring B at either 3ʹ or 5ʹ positions and at ring A 

in postion 7 [90]. 
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1.7. The aims 

The purpose of this research work is to assess the relationship between the 

biological activity – potentially chemopreventive – of two dietary phytochemicals (p-

coumaric acid and daidzein) and their biochemical impact on human breast cancer cells, 

assessed by microRaman spectroscopy. A multidisciplinary approach was chosen, 

comprising: 

(i) Evaluation of the biological activity of the dietary compounds regarding cell 

viability and proliferation, in human breast cancer cells (estrogen-dependent/MCF-7 and 

independent/MDA-MB-231), using the MTT and SRB colorimetric tests, respectively. 

Simultaneous screening in non-tumour human breast cells (MCF-12A). 

(ii) Measurement of the ROS present in the intracellular medium, in the 

presence and absence of the phytochemicals, through a fluorimetric method. 

(iii) Assessment of the effect of the polyphenols on the cell´s metastatic, in a 

transwell invasion chamber. 

(iv) Probing of the compounds´ metabolic impact on the human breast cancer 

cells via Raman microspectroscopy of fixed cells.
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2.1 Growth-Inhibition and Cytotoxicity Assays 

In order to evaluate cell proliferation (growth-inhibition ability), the sulforhodamine 

B (SRB) colorimetric assay was used, while the reduction of 3-(4,5-dimethylthiazol-2-2yl)-

2,5-diphenyl tetrazolium bromide (MTT) was applied for determination of cellular viability 

(cytotoxic effect). p-coumaric acid and daidzein were tested at different concentrations 

and incubation times, for the human breast cancer cell lines MDA-MB-231 (estrogen-

independent) and MCF-7 (estrogen-dependent), as well as for the non-cancerous human 

breast cells MCF-12A. 

The experimental protocol followed to assess the compound´s cytotoxic and anti-

proliferative activities is schematically represented in Figure 11. 

 
Figure 11 – Main experimental steps for the SRB and MTT assays. 

For both methods, a 1 mL of a cellular suspension containing 5.79x104 cells/mL, with 

a 3.0x104cell/cm2 density were transferred to 24-wells plates (area=1.93 cm2). After 24 

hours for MDA-MB-231 and MCF-7, and 48 hours for MCF-12A, the tested compounds 

were added (from stock solutions) in suitable volumes according to the desired final 

concentration: 5 to 10 μM for p-Ca and 25 to 100 μM for DA. The cell cultures were 

incubated at 37°C. After 24 hours of incubation, the cells were harvested and analysed 

(both in the controls and in the drug-treated cultures) every 24 hours, for a total of two 

days. The cell density and viability were determined by the SRB and MTT tests, 

respectively. 

All assays were performed in triplicate (except for MCF12A which was carried out in 

duplicate), in three independent experiments. The results were compared with the 

control (untreated cells), considered for each independent experiment. 
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22.1.1. MTT Assay 

The MTT test is based on the reduction of the tetrazolium salt by viable cells. 

 
Figure 12 – Representation of MTT reduction to formazan crystals by mitochondrial dehydrogenases. 

MTT is taken up via endocytosis by living cells and is reduced to blue formazan 

crystals (Figure 12) inside the cells by mitochondrial dehydrogenases [91]. This test allows 

to measure the enzymatic activity of viable cells [92], since only the metabolically active 

ones (e.g. viable) are able to reduce MTT. The amount of formazan formed is directly 

proportional to the cell´s viability [91] and can be measured spectrophotometrically (at a 

defined wavelength). 

This method, however, presents some disadvantages: possible reduction of MTT by 

contaminants; the results depend on the cell´s metabolic state (e.g. mitochondrial 

dehydrogenases of apoptotic cells display an unchanged activity), which can lead to a 

underestimation of the effect of a compound. In view of these limitations, a second 

cytotoxicity assay is envisaged in a near future to complement the data already obtained. 

2.1.2. Sulforhodamine B assay  

The Sulforhodamine B (SRB) assay is a well-established colorimetric method for 

drug-toxicity screening in different types of cell lines (cancerous and non-cancerous, [93]). 
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Figure 13 Chemical structure of Sulforhodamina B 

Sulforhodamine B is a bright-pink aminoxanthene dye, comprising two sulfonic 

groups that can bind to basic amino acid residues of cellular proteins, under acidic 

conditions [93-95]. SRB dissociates in basic medium [93]. This colorimetric evaluation 

provides an estimate of the total protein mass, which is directly proportional to the cell 

density [93]. 

22.1.3. Transwell Migration Assay (Boyden Chamber Assay] 

Cells, particularly cancer cells, have the ability to migrate and invade tissues that can 

be quite distant from the original tumour. The transwell migration assay allows to assess 

this migration for several cell types (eg. cancer cells, leukocytes). This method is based on 

two medium-containing cavities separated by a microporous membrane through which 

cell migration is monitored [96,97] (Figure 14). 

 
Figure 14 – Represention of the Transwell migration assay. (Adapted from [96]) 

Cells with the tested compound (and without FBS) were placed in the upper 

compartment of the chamber, and were allowed to migrate vertically through the 

membrane to the lower compartment, which was filled with FBS-supplemented culture 

medium (attachment medium) [96,97]. 
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22.1.4. Evaluation of ROS/RNS by Fuorimetry 

2’,7’-Dichlorodihydrofluorescin diacetate (DCFH-DA) is a non selective cell-

permeable fluorogenic probe, which allows ROS and RNS detection [98]: DCFH-DA diffuses 

into the intracellular medium and is deacetylated by cellular esterases to non-fluorescent 

2’,7’-dichlorodihydrofluorescin (DCFH) which is quickly oxidized by the ROS/RNS present 

within the cell to the highly fluorescent 2’,7’-dichlorodihydrofluorescein (DCF species) 

(Figure 15). The intensity of fluorescence measured is therefore proportional to the ROS 

level in the cytosol [98,99]. 

 

Figure 15 – Scheme of the ROS measurement assay based on the fluorogenic DCFH-DA probe. (From 

[99]) 
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2.2. Raman Spectroscopy  

In 1928, the Indian physicist, C.V. Raman, observed, in a home-made spectrometer, 

the phenomenon of inelastic scattering of light that became known as the Raman effect 

[100,101]. On account of this discovery, he was awarded the Nobel Prize in Physics in 1930 

[100,102]. 

The Raman effect is therefore based on the interaction between an electromagnetic 

radiation and the molecules from the analysed sample [103], through to an inelastic 

process (involving energy transfer) [104,105], the shifts in energy of the scattered 

radiation from the incident frequency being a direct measure of the vibrational modes of 

the molecule [102,106]. This is a very weak effect, the Raman signals having a quite low 

intensity (ca. 5 to 9 orders of magnitude lower than the elastic Rayleigh band). Raman 

used the filtered sunlight as the incident radiation, and he needed several hours of 

irradiation to record a spectrum even for large volumes of sample [107].  

In the 1960´s the Raman technique experienced a significant progress, due to the 

development of Lasers (Light Amplification by the Stimulated Emission of Radiation), by 

C.H. Townes and A.L. Schawlow, in 1958 [108]. In 1960, T.H. Maiman observed for the first 

time the lasing action [102] and verified that these monochromatic laser sources provide 

significant brightness and intensity to partially overcome the low efficiency of the Raman 

scattering process [102]. The Raman effect couples an induced polarization of the 

scattering molecules with the molecular vibrational modes, no ‘‘absorption’’ process 

being involved [102]. In a Raman spectra, that detects scattered light, the intensity of the 

signals depends on the change in molecular polarizability during the corresponding 

vibrational transitions [106]. 

When a molecule is irradiated with photons of frequency �0 and energy h�0 an 

elastic process occurs, the diffused photons having the same energy as the incident ones 

[102] (e.g. no changes occurring in the incident photon frequency) - Rayleigh scattering. 

However, another (much weaker) process also takes place, the diffused photon having a 

different frequency from the incident one (either gain or loss - �0 ± ��	 due to the 

molecular vibrations within the sample [102,104,105] – Raman scattering. Two regions 

are then defined: the Stokes spectra interval, for �0 = �0 - ��
 and the anti-Stokes region 

for��0 = �0 + �� (Figure 16). 
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Figure 16 – Electronic-vibronic energy level diagrama, showing the Stokes and anti-Stokes Raman 

scattering and the Rayleigh elastic band. (Adapted from [106]) 

Hence, Raman spectroscopy measures the fundamental vibrations of a sample, 

which depend on the number of atoms (N) in the molecule (3N-5 for linear molecule and 

3N-6 for a non-linear one), on its geometry/conformation and on the environmental 

conditions. The main vibrational modes are symmetric or asymmetric stretchings, 

deformations and torsions (Figure 17). 
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Figure 17 – Main vibrational modes of symmetric or asymmetric stretching, bending or deformation 

modes. (Adapted from [109]) 

The main components of a Raman spectrometer remain the same as those built by 

Sir Raman, but the performance of modern apparatus has greatly improved thanks to the 

development of high-quality lasers, modern charge-coupled device (CCD) detectors 

[101,102] and state-of-the-art computers with very high storage capacity. Nowadays, it is 

possible to obtain a good quality Raman spectrum from an extremely small amount of 

sample (�g or �l) in just a few seconds [101,107]. 

The interest in this technique has increased over the years, due to its numerous 

advantages and varied fields of application: it is non-invasive, non-destructive, can 

provide detailed spatial information and yield chemical images without the need of dyes 

or probes and with minimal sample preparation. Moreover, it is very suitable for the study 

of biological specimens, since water hardly interferes in the spectra [103,106,110]. Other 

significant advantage is the accurate information about cellular components [103,111], 

since this technique is extremely sensitive to the chemical composition of the sample (the 

Raman spectra represents an biochemical fingerprint of a molecule) [102,103,112,113]. 

Therefore, it allows to distinguish the smallest changes in a sample and can thus be used 

to monitor the composition, physical state and structure/conformation of a compound 

[102,105]. 

For biological samples, in particular, it is possible to achieve sub-cellular resolution 

and identify organelles and biomolecules, as well to obtain information about the 

chemical composition of cells under different conditions (e.g. pH, temperature, ionic 

strength, presence of drugs or xenobiotics) [100,101,105]. 
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Nevertheless, the Raman effect is extremely week and can be masked by the 

sample´s autofluorescence [101,113]. In order to overcome these drawbacks, some 

techniques were developed, namely: (i) resonance Raman, involving the irradiation of the 

sample with a wavelength equal (or near) to the compound´s absorption maximum in the 

Visible region [100], allowing a magnification of the vibrational modes close to the 

chromophore moiety of the molecule; (ii) SERS (Surface-enhanced Raman Spectroscopy), 

by adding a metal colloid (e.g. of Au, Ag, Cu) to the sample, that will adsorb to it leading 

to an enhancement of the Raman bands from the oscillators that are closest to the metal 

surface [114]. 

Additionally, care should be taken regarding the use of high laser intensities (which 

would also increase the Raman bands to a certain degree), since this may cause local 

heating in the sample and possible damage. Also, it is possibly to minimize fluorescence 

by varying the wavelength of the exciting radiation (that should be different from the 

Visible absorption maximum of the sample) [101,115,116]. The choice of the most 

suitable excitation source is therefore very important, mainly when analysing biological 

specimens. At present, there is a wide range of lasers available with varied wavelengths 

(from the near-IR to the UV) namely 514, 532, 632, 647, 785 and 1064 nm [100,101]. Less 

energetic red laser sources such as He-Ne (633 nm) or diode lasers (785 nm) are also very 

helpful and widely applied in the study of biological samples [102,103,106,115]. 

In the last decade Raman spectroscopy has become a powerful and well-established 

analytical technique [100,103,104] , more and more applied for the study of cells and 

tissues [117-124]. Additionally, the technique has been shown to be of invaluable 

effectiveness in drug development [125,126], medical diagnosis (e.g. optical biopsies as 

opposed to conventional tissue removal for histological analysis) [100,127-131] and even 

for use in the operating theatre during surgical resection of tumours with a view to 

accurately distinguish cancerous from healthy tissue. Raman spectroscopy is also applied 

in areas such as microbiology [132-136], nanomedicine [61,112,137], forensic science 

[100,138,139], and archeometry and cultural heritage [140-144]. 
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2.2.1. Raman microspectroscopy 
The birth of Raman microspectroscopy dates from the early 1970´s, when Delhaye 

and Dhamelincourt, in the University of Lille (France), combined optical microscopy with 

Raman light scattering [115,116,145]. The further implementation (fifteen years later) of 

confocal Raman configurations by Puppels and coworkers [146-148] allowed to obtain 

data at a very high spatial resolution (cellular and sub-cellular), with a high signal-to-noise 

ratio and low underlying spectral backgrounds [145]. A Raman microspectrometer is 

configured with an optical microscope, a NIR laser and a CCD detector that promote the 

signal improvement, this combination reducing the acquisition time and the fluorescence 

interference [113] (Figure 18). 

 

 
Figure 18 – Representation of a Raman microspectrometer. (Adapted from [103]) 

Raman microspectroscopy allows to analyse extremely small amounts of sample, 

even for inhomogeneous biospecimens, and yields detailed information on tissues and 

cell structure and composition with excellent quality and resolution [101]. Single cell 

analysis is also possible, yielding relevant data for understanding cellular process as well 

as the impact of exogenous compounds (such as chemoprevetive agents or drugs) on the 

cell´s biochemical profile. Actually, microRaman analysis is a label-free technique that 
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allows the direct observation of macromolecules inside a living cell without disturbing the 

system, and gives spatially resolved biochemical information [102,115,117,149-151]. For 

cells, the so-called spectral signature can be obtained, comprising bands corresponding to 

the different cellular components: nucleic acids, proteins, lipids, carbohydrates and other 

metabolites (Table 5). Furthermore, Raman microspectroscopy can be applied to either 

live or fixed cells, preserving cell integrity and function (provided the laser frequency and 

power are carefully chosen). 

Table 5 – Principal vibrational modes assignments. 

Assignment wavenumber (cm-1) Vibrational modes 
DNA and RNA   
Adenine 729 

1220-1284 
1342 
1420-1480 
1578 

 

Cytosine 782 
1245-1275 

ν(C=C)sym breathing 
 

Guanine 667 
1320 
1342 
1420-1480 
1578 

 

Thymine 667 
746 
1220-1284 

 

Uracil 1135 
1235 
1395 

 

Phosphates 788 
811 
828 
1060-1095 

ν(O-P-O)sym  
ν(O-P-O)RNA 
ν(O-P-O)asym (B-DNA) 
ν(PO2

-) 
Carbon skeleton  914-925 

1420-1480 
ν(C-C) ν(C-O)Ribose-Phosphate 
δ(CH2), δ(CH) 

Proteins   
Phenylalanine 621 

1005 
1033 
1209 
1607 

twist (C-C) 
ν(C=C)sym breathing 
δ(C-H)ip 
ν(C-C6H5) 
ν(C=C) 

Tyrosine 645 
828, 854 
1176 

ν(C-C) 
ν(C=C)sym breathing  
δ(C-H) 
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1617 ν(C=C) 
Tryptophan 875-880 

1553 
H bonds/indol ring 
ν(C=C) 

Amide I  
1650-1660 
1670-1680 

ν(C=O) 
α-helix 
β-sheet 

Amide III  
1250 
1264 
1267 

ν(C=O) + δ(CNH) 
β-sheet  
Random 
α-helix 

 937 
980 
1106-1120 
1158 
1384 
1420-1480 

ν(C-C) α-helix 
ν(C-C) β-sheet 
ν(C-N) 
ν(C-C), ν(C-N) 
δ(CH3) 
δ(CH2/CH) 

Lipids   
 717 

891, 908 
1080 
1060-1095 
1259 
1301 
1384 
1420-1480 
1650-1660 
1736 

ν(CN+(CH3)3) 
δ(CH2) 
ν(PO2

-)sym 
ν(C-C) 
ν(PO2

-)asym 
twist CH2 
δ(CH3) 
δ(CH2), δ(CH) 
ν(C=C) 
ν(C=O) 

Polysaccharides   
 877 

1025,1047,1155 
1060-1095 
1384  
1420-1480 

C-O-H ring 
ν(C-O)glycogen 
ν(C-O), ν(C-C) 
δ(CH3) 
δ(CH2/CH) 

Glycose 937 C-O-H 
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3.1. Reagents, Materials and Equipment 

33.1.1. Materials and Equipment 

The compounds and reagents used along this project are described in Table 6. 

Table 6 – List of compounds and reagents used along the present work. 
Product Laboratory 

Fetal bovin serum (FBS) Invitrogen (Barcelona, Espanha) 

Penicillin-Streptomycin Antibody (10 
units/ml Pen and 10 μg/ml Strep) 
Tris (hydroxymethyl) aminomethane or 
Tris 

Pational Diagnostic (Hessle Hull, United 
Kingdom) 

Acetic acid, glacial 

Sigma-Aldrich 
(Sintra, Portugal) 

3-(4,5-dimethylthiazol-2-y)-2,5-
diphenyltetrazolium (MTT ≥97.5%) 
2ʹ,7ʹ-Dichlorofluorescin diacetate (DCFH-
DA ≥97%) 
Dimethyl sulfoxide (DMSO ≥99.9 %) 

p-coumaric acid (p-CA ≥98,0%) 

Sodium bicarbonate (NaHCO3) 

Sodium phosphate buffer pH 7.4 (PBS) 

Sulforhodamine B (SRB) 

Trypan Blue Solution (0.4%) 

Trypsin 

Multiwell plates (24, 48 and 96 plates) 
and culture flasks T 75 cm2 

Orange Scientific (Braine- l'Alleud, Bélgica) 

Daidzein (97%) Alfa Aesar (Lancashire, United Kingdom) 

 

The equipment used in this project is described in Table 7. 

Table 7 – List of equipment used with mark and model 
Equipment Mark Model 
Analytical balance Mettler  Toledo AB54 
Centrifuge with cooling MPW  MPW-350R 

Culture chamber with 
vertical laminar flow (flow 
rate : 1050m3/h) 

BioWizard  BioWizard - 100 

Incubator Sheldon Mfg. Inc  3517-2 Waterjacket CO2 
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PH meter Sargent-Welch  IP 

Shaker " Vortex " IKA  MS2 Minishaker 

Visible/UV 
spectrophotometer (with 
Gen5 software) 

BioTek  μQuant MQX200 

Water purification 
apparatus Milli -Q 

TKA  GenPure 

 

33.1.2. Solutions 

The compounds under study were solubilized in DMSO (due to low water solubility), 

in the concentration range 5 to 100 μM. The final concentration of DMSO in the culture 

medium did not exceed 0.1% (v/v). A 0.01% DMSO solution was always considered as a 

control. 

All solutions were prepared and filtered before use, and were stored in the dark to 

avoid photodegradation of the phenolic compounds. Trypan blue was used in 0.04% (v/v) 

solution in PBS. MTT (3-(4,5-dimethylthiazol-2-2yl)-2,5-diphenyl tetrazolium bromide) 

was prepared in PBS solution, in a concentration of 0.5mg/ml. 

Initially, high concentrations of para-coumaric acid were tested (100 to 1600 �M) 

but in these conditions p-Ca showed to be cytotoxic, most probably due to the pro-oxidant 

effect known for these phenolic acids at very high dosages, that can interfere with 

relevant secondary metabolic pathways. 
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3.2. Biological System 

33.2.1. Cell culture 

The human cell lines choosen for this work were MCF-7, MDA-MB-231 and MCF-

12A (Figure 19). MCF-7 has estrogen (ER+) and EGF receptors and is uninvasive, whereas 

MDA-MB-231 is a more aggressive, hormone-independent (ER-) breast cancer [152]. MCF-

12A is non-tumour immortalised cell line of breast tissue. 

 

Figure 19 – MCF-7 (breast cancer cell line estrogen dependent), MDA-MB-231 (breast cancer cell line 

hormone-independent] and MCF-12A (non-tumour immortalized cell line of breast tissue) cell 

lines. Images obtained in a microscopy with 100x magnification (MCF-7) and 1000x 

magnification (MDA-MB-231 and MCF-12A). 

The MDA-MB-231 and MCF-7 cells were cultured in monolayer, in Dulbecco’s 

modified Eagle’s high glucose (4500mg/L) medium (DMEM-HG), supplemented with10% 

(v/v] heat-inactivated fetal bovine serum (FBS) and 1% penicillin-streptomycin. MCF-12A 

]was also cultured in monolayer, in a 1:1 mixture of Dulbecco's modified Eagle's medium 

and Ham's F12 medium, supplemented with hydrocortisone, human epidermal growth 

factor (EGF), bovine insulin and 5% heat-inactivated horse serum with 1% penicillin-

streptomycin. All cells line were incubated at 37ºC under 85% relativity humidity and 5% 

CO2. The FBS and horse serum were previously subject to thermal inactivation at 56ºC, for 

30 minutes (to inactivate the complement and reduce the cytotoxicity caused by 

immunoglobulin’s). 
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The cell subcultures were prepared in 75 cm2 flasks, according to their 

characteristics of growth. The cell lines were subcultured twice a week, using a 

dissociation medium containing 0.05% trypsin-EDTA. All experiences were performed in 

cell cultures with less than 50 passages. 

The tested compounds were added during the cells´ exponential grow phase. 
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3.3. Methods 

33.3.1. MTT assay 

The MTT solution (0.5 mg/ml) was prepared in PBS and filtered for sterilization and 

removal of insoluble residues. To determine cellular viability (for the different cell lines 

MDA-MB-231, MCF-7 and MCF-12A), the medium was removed and the cells were 

washed with 500 μl of PBS. MTT solution (250 μL) was then added, the plates were 

incubated at 37ºC for 3 hours (always light protected) and the MTT solution was 

discarded. The newly formed formazan crystals were dissolved in DMSO, yielding a purple 

colour solution, for which the absorbance was read (in each well) at 570 nm (in a multiwell 

plate reader). Cellular viability was determined according to the equation: 

 

% Cellular viability = 
Asample 

x 100 (1) 
Acontrol - Ablank 

where Asample is the absorption of solutions exposed to the compound tested (after 

subtracted of the absorption of the blank (DMSO)); Acontrol represents the absorption of 

the control samples (upon blank subtraction). 

The results are presented as a percentage relative to the control (always taken as 

100%). 

 

3.3.2. SRB assay 

In order to perform this assay, incubation with the phytochemical (either p-CA or 

DA) was ended every 24 hours during two days, the cells were washed with 500 μl of PBS 

and 500 μl of water Mili-Q, after they were fixed with 1%-acetic acid in methanol and 

frozen overnight. Upon thawing and drying, 250 μl SRB in 1%-acetic acid was added to 

each well, followed by incubation at 37ºC for 1h, after which the cells were then carefully 

washed with 1%-acetic acid and dried. 1 ml of 10mM-Tris (ph 10) was then added to 

dissolve the protein-bound SRB, and absorbance was read at 540nm (in a multiwell plate 

spectrophotometer). 

The percentage of proliferation or cellular growth was calculated by: 
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% Cell grow = 
sample − 0 day 

× 100 (2) 
control − 0 day 

 

where: Asample represents the absorption of solutions exposed to the tested compound, 

after subtraction of the absorption for the blank (Tris 10mM); 0 day is the absorption of 

the control at t=0 h (corresponding to the cellular density without the compound), after 

blank subtraction. 

The results are shown as a percentage relative to the control (always taken as 

100%). 

  

3.3.3. Transwell Migration Assay (Boyden Chamber Assay] 

This assay was carried out in plates of 24 wells containing the inserts, each of which 

was carefully coated with 0.1 ml-Matrigel diluted in a 0.01M-Tris (pH 8.0)/0.7%-NaCl 

solution (coating solution) (this procedure was performed on ice). The plate was then 

incubated at 37ºC for 2 hours, after which 0.5 ml of cell suspension and compounds to be 

tested are added (at a 5x104 cells/ml density) into the insert and 0.75 ml of attachment 

medium was add to the chamber. Invasion chambers are then incubated at defined time 

points. Upon these periods inserts are scrub to remove the non-migrating cells, and the 

migrated cells are fixed with 4%-formalin and stained with 0.1%-crystal violet. In order to 

quantify the invading cells, microscopic images were captured in different points and the 

cells were counted (in triplicate). The percentage of migrating cells were calculated 

according to Equation 3: 

% Migration = 
mean number of cells insert with study compound 

× 100         (3) 
mean number of cells insert control 

 

The results are represented as a percentage of the control (taken as 100%). 
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33.3.4 ROS/RNS Measurement 

In order to perform this assay, incubation with the phytochemicals (either p-CA or 

DA) was ended after 48 hours, the cells were washed twice with PBS (2x500 μl), and 150 

μl of DCFH-DA (prepared in FBS-free culture medium) were added, after which the cells 

were incubated for 30 minutes. After removing solution, the cells were washed with PBS, 

trypsinized, resuspended with PBS and centrifuged. Upon discarding the supernatant the 

cells were ressuspended in PBS (250 μl) and fluorescence was measured 533nm (emission) 

with an excitation radiation at 480 nm. The percentage of free radical oxygen and nitrogen 

species presented was calculated according to: 

% ROS/RNS = 
sample  

× 100 (4) 
control  

where Asample is the absorption of the samples exposed to the compound tested, and 

Acontrol represents the absorption of the control samples. 

The results are presented as a percentage relative to the control (always taken as 

100%). 

 

3.3.5. Raman Microspectroscopy 

Preparation of the Cell Samples 

The cells (MDA-MB-231 and MCF-7) were transfected at a 3.0x104cell/cm2 density, 

in 12-well plates, each well containing the optical substrate (MgF2 disks). After 24 hours 

to allow cell attachment to the substrate, p-Ca and DA were added, according with the 

desired final concentrations (5 to 10 μM and 25 to 100 μM). Upon a 48 hour incubation 

(at 37°C in a 5% CO2 atmosphere), the cells were washed twice with 1ml PBS, fixed with a 

4% formalin solution for 20 minutes, and washed again (2x) with 1ml H2O. These samples 

were kept in the fridge (ca. 5 oC, to avoid fungal contamination) with PBS prior to the 

Raman analysis. Apart from the treated-cell samples, a control (without the compounds) 

was prepared. 

Spectra Acquisition 

The Raman experiments were performed at the Department of Physical-Chemistry 

of the University of Malaga (Spain). 
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The spectra were obtained at room temperature, in a Renishaw Reflex inVia Raman 

microspectrometer coupled to a RenCam CCD (Charge Coupled Device) detector. The 785 

nm line from a diode laser was used as the exciting radiation, yielding approximately 55 

mW (solid p-Ca and DA) and 0.11 mW (cells) at the sample position. A spectral window of 

0 to 2000cm-1 was used for the pure phenolic compounds, while for the cells the spectra 

were recorded between 500 and 1800 cm-1. In both cases, a 100x magnification was used 

(Leica lens, NA=0.9, fd=0.27mm), and the data was recorded with an integration time of 

10 s and 5 scans. 

Mapping experiments were also carried out, although these results are not 

presented in this work. 

  

3.3.6. Statistical Analysis 

All experiments were performed in triplicate. The results are expressed as the 

mean±SEM. Statistical treatment was performed using the One-Way ANOVA analysis of 

variance, followed by post hoc test Turkey’s and Dunnett’s multi-comparison tests for the 

SRB and MTT results, respectively. The differences were considered significant for 
*p<0,05, **p<0,01, and ***p<0,001. 

The MicroRaman spectra were analyzed with the programs OriginPro 8 and 

MathLab R 2014b. Interpretation of these results was carried out upon multivariate 

analysis (unsupervised PCA), after baseline correction, spectral mean vector 

normalisation and smoothing (Savitzky–Golay, 11 points, first polynomial), followed by 

detraining (2nd or 4th polynomial [153]). 



 

67 
 

 

 

 

 

 

 

 

 

 

4. Results and Discussion 
  



 

68 
 

 



4. Results and Discussion 

69 
 

4.1. Evaluation of the Metabolic Impact of the Dietary 
Polyphenols in Human Breast Cancer Cell Lines 

Breast cancer is the second most lethal cancer among women, which justifies the 

growing research in this field over the years, particularly regarding new agents, natural or 

synthetic, with chemopreventive and antitumour properties. Cytotoxicity screening of 

these compounds, in particular, gives important information for selecting the most 

promising ones for further studies, while Raman spectroscopy experiments provide 

knowledge on their impact on the cellular components by yielding the chemical profile of 

a suitable cell model in the absence and presence of the investigated agents. 

The present study focuses on the effect of a hydroxycinnamic acid (para-Coumaric 

acid) and an isoflavone (daidzein) on a human breast cancer cell line. Previous studies 

have suggested that these compounds have a significant role in reducing several types of 

cancer, namely SW620, HT 29 (colon cancer cells), Caco-2 (colonic cell line) and also T-47D 

(epithelial ductal breast cancer) [42,65,66,72,154,155]. However, for polyphenols the 

majority of the reported studies refer to plant extracts and thus do not evaluate the effect 

of p-Ca alone [156-158], its impact on cells being unknown to this date. 

44.1.1. Structural Features of p-Coumaric Acid and Daidzein 

Despite the very similar structures of p-coumaric (p-Ca) and caffeic (CA) acids, that 

share a common polyphenolic structure, their Raman spectra reflects the different ring 

substitution pattern – CA being a dihydroxylated compound as compared to the 

monohydroxylated p-Ca (Figure 20). 
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Figure 20 – Raman microspectroscopy and FTIR experimental spectra and optimised structures for caffeic 

(from [159]) and para-coumaric acids.  
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In this type of systems, any structural change can lead to a significant variation in 

activity and cell selectivity (even leading to inefficiency). The number and position of the 

OH groups in the aromatic ring, for instance, are determinant of antioxidant activity, as 

well as the double bond in the ring pendant arm [160]. Compounds with a double bond in 

the carboxylic acid moiety were shown to have an increased chemopreventive effect at 

low concentrations, as compared to their saturated analogues. Furthermore, the 

biological activity of this kind of systems is strongly concentration-dependent: the existing 

studies evidence a preventive effect for low concentrations, while suggesting a reverse 

outcome (pro-oxidant] for higher dosages. 

The health-beneficial properties of isoflavones rely in the distinct substitution 

patterns of their chromone core. Although the chromone moiety seems to have an 

essential role for biological activity, other structural parameters are determinant such as 

the nature, number and position of the different substituent groups in rings A, B and C 

[59] (Figure 21). 

 

Figure 21 – A: Basic chromone structures (the atom numbering and ring labeling is included). B: Daidzein 

compound in study (Adapted from [59]) 

Additionally, these affect water solubility which is an important parameter in the 

use of isoflavones as chemopreventive agents in vivo [90]. Furthermore, the capacity of 

these compounds to conjugate with proteins, enzymes and diverse biological receptors 

within a biological matrix (cell or tissue) is strongly dependent on their three-dimensional 

conformation and electronic distribution. In general, the areas of highest electronegativity 

within an isoflavone are at the 5-hydroxyl and 7-hydroxyl positions of the A-ring, as well 

as at 3´ and 4´ hydroxylation sites on the B- ring (Erro! A origem da referência não foi 

encontrada.) [59]. 
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Figure 22 – Raman experimental spectra and optimised strutures for daidzein and p-coumaric acid (from 

[161]). 
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44.1.2. Evaluation of the Cytotoxic and Cell Growth-Inhibition Activities of 

p-Coumaric Acid and Daidzein 

Cytotoxicity evaluation is a conventional method used in research and development 

of new compounds aimed as chemopreventive and/or antineoplastic agents. 

The cytotoxicity effects of 4-trans-hydroxicinnamic acid (p-Ca) and 4ʹ,7-

dihydroxyisoflavone (daidzein) were evaluated towards human breast cancer cells, both 

estrogen independent (MDA-MB-231) and estrogen dependent (MCF-7), using the MTT 

reduction assay (describe in 3.3.1. section) for viability measurement, and the SRB 

colorimetric test for cell density quantification. Comparison with a human breast non-

neoplastic immortal cell line (MCF12A) was also carried out. 

 

4.1.2.1. p-Coumaric Acid 

p-Ca was tested at low (5 to 15 μM) and high (25 to 100 μM) concentrations, for 

incubation times of 24, 48 and 72 h (Figure 23). The data for 72 h is not presented, as it 

showed not to be relevant since it is identical to the data gathered at 24 hours. For the 

MCF-7 cells, at both 24 and 48 hours, the higher concentrations of p-coumaric acid seem 

to induce a slightly protective effect (potentiating cell growth and viability), although this 

effect was not found to be statistically significant. For the MDA-MB-231 cell line, this 

protective effect was more marked, leading to an increase in cell viability at 48 hours of 

87% at 50 μM and 102% at 100 μM.  
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Figure 23 – Cytotoxic effect of p-coumaric acid against breast cancer cells (MCF-7 and MDA-MB-231), at 

24 and 48 hours incubation times. The results, obtained by the MTT assay (3.3.1. section), are 

presented as a percentage of the DMSO control (cell treated with the DMSO vehicle) 

considered as 100% (horizontal dashed line). The data are the mean ±SEM of values obtained 

for 3 independent experiments initiated and treated in parallel (n= 3). Cells were plated at a 

density of 3.0x104 cell/cm2. The results were statistically analysed in GraphPad Prism 6.00, 

applying the One-way ANOVA algorithm with Dunnett’s test for multi-comparisons: *p < 0.05, 

**p < 0.01, ***p < 0.001 vs control cultures. 

The MTT assay evaluates cell viability by the mitochondria ability to reduce 

formazan (as described in section 3.3.1.), although this method does not directly measure 

mitochondrial damage. Since oxidative stress conditions can affect mitochondria, it is 

possible that at the higher concentrations tested p-Ca may lead to an increase in ROS 

levels, which can affect mitochondria desidrogenases rendering them dysfunctional or 

allowing the cell to escape from apoptosis. Posadino and collegues (2013) [162] suggested 

that p-Ca can have different effects depending on its concentration: an antioxidant effect 

at low concentrations and a cytotoxic one at higher dosages. Based on the knowledge that 

the ROS level is higher in cancer relative to healthy cells [163], the present results suggest 

that p-Ca can have a pro-oxidant effect on breast adenocarcinoma cells, increasing ROS 
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levels and promoting an enhanced cell viability. This is in accordance with reported work 

[84,162], that unveiled a relationship between the presence of an unsaturated pendant 

chain in polyphenolic acids and a cell viability increase, namely for p-Ca at high 

concentrations. 

Regarding the lower concentrations (5 to 15 μM), p-coumaric acid was found to 

exert different effects towards the MCF-7 cells, depending on the incubation period: a 

cytotoxic effect was observed at 24 hours, particularly for 15 μM with a 50% viability 

reduction, while at 48 hours no significant differences were detected relative to the 

control. For the MDA-MB-231 cell line, in turn, p-Ca displayed a protective capacity at 48 

hours only for 5 and 7.5 μM concentrations. 

In both concentration ranges, p-Ca seems to be cell line selective, since the effects 

on MCF-7 are less pronounced (or even inexistent) compared to those on the estrogen-

independent cell line MDA-MB-231. This selectivity regarding the cell model has been 

previously observed for other types of compounds [164,165]. 

The data obtained from the SRB colorimetric (Figure 24) test did not reveal 

statistically significant differences relative to the MTT results, for all concentrations tested 

and the two cell lines under study. However, a decrease in the intracellular protein density 

was measured for MCF-7 at 48 hours incubation with p-Ca, from 7.5 to 15 μM and 75 and 

100 μM (Figure 24). Furthermore, a blocking of protein synthesis appears to occur for the 

lowest concentration range 
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Figure 24 – Cytotoxic effect of p-coumaric acid against breast cancer cells (MCF-7 and MDA-MB-231), at 

24 and 48 hours incubation times. The results, obtained by the SRB assay (3.3.2. section], are 

presented as a percentage of the DMSO control (cell treated with the DMSO vehicle) 

considered as 100% (horizontal dashed line]. The data are the mean ±SEM of values obtained 

for 3 independent experiments initiated and treated in parallel (n= 3). Cells were plated at a 

density of 3.0x104 cell/cm2. The results were statistically analysed in GraphPad Prism 6.00, 

applying the One-way ANOVA algorithm with Turkey’s test for multi-comparisons: *p < 0.05, 

**p < 0.01, ***p < 0.001 vs control cultures. 

Comparing the SRB and MTT data, it can be hypothesised that p-Ca improves cell 

viability without interfering with the cellular protein density in MDA-MB-231 cells, while 

in MCF-7 the protein density stabilises for the low concentration range, suggesting that 

the phenolic acid may interfere with protein synthesis. 

 

44.1.2.2. Daidzein 

Daidzein was found to exert a cytotoxic effect in both breast cancer cell lines (MCF-

7 and MDA-MB-231) for incubation periods well below 24 hours (Figure 25): while for 

MDA-MB-231 the viability is affected only at 75 and 100 μM (ca. 50%), a DA-induced 

viability decrease was detected for the MCF-7 cells at concentrations 50, 75 and 100 μM 

(with a 42% viability reduction for the highest concentration). 
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Figure 25 – Cytotoxic effect of daidzein against breast cancer cells (MCF-7 and MDA-MB-231), at 24 and 

48 hours incubation times. The results, obtained by the MTT assay (3.3.1. section), are 

presented as a percentage of the DMSO control (cell treated with the DMSO vehicle) 

considered as 100% (horizontal dashed line). The data are the mean ±SEM of values obtained 

for 3 independent experiments initiated and treated in parallel (n= 3). Cells were plated at a 

density of 3.0x104 cell/cm2. The results were statistically analysed in GraphPad Prism 6.00, 

applying the One-way ANOVA algorithm with Dunnett’s test for multi-comparisons: *p < 0.05, 

**p < 0.01, ***p < 0.001 vs control cultures. 

These results, reflecting a more significant effect towards the estrogen-dependent 

MCF-7 cell line versus the estrogen-independent MDA-MB-231 were foreseen, since the 

isoflavone daidzein displays a structure similar to estrogen (Figure 26) (thus being 

expected to interact effectively with estrogen receptors therefore inhibiting estrogen 

synthesis and gene expression [59,65,155]. 

 

Figure 26 – Chemical struture of estrogen and daidzein. 

In MDA-MB-231 cells, which lack estrogen receptors, DA may interfere with other 

metabolic pathways, probably oxidative-related ones, and exert an antioxidant effect. 

The SRB results (Figure 27) for DA did not show any significant changes in protein 

density for either of the two tested cell lines. Nevertheless, a very slight decrease 
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measured for 50 and 100 μM dosages may suggest that the isoflavone is somewhat 

interfering with protein synthesis (as previously observed for p-Ca). 

 
Figure 27 – Cytotoxic effect of daidzein against breast cancer cells (MCF-7 and MDA-MB-231), at 24 and 

48 hours incubation times. The results, obtained by the SRB assay (3.3.2. section), are 

presented as a percentage of the DMSO control (cell treated with the DMSO vehicle) 

considered as 100% (horizontal dashed line). The data are the mean ±SEM of values obtained 

for 3 independent experiments initiated and treated in parallel (n= 3). Cells were plated at a 

density of 3.0x104 cell/cm2. The results were statistically analysed in GraphPad Prism 6.00, 

applying the One-way ANOVA algorithm with Turkey’s test for multi-comparisons: *p < 0.05, 

**p < 0.01, ***p < 0.001 vs control cultures. 

Both the MTT and SRB results clearly show that DA affects cell viability and may 

interfere with the cellular protein content. Hence, it is suggested that the biological effect 

exerted by these dietary compounds is cell- and concentration-dependent (in accordance 

with the literature). 

Assays were also carried out for the non-tumour human breast cell line (MCF-12A), 

for chosen concentrations of the phytochemical compounds (according to the previous 

data on the neoplastic cells): 7.5 and 15 μM for p-Ca, and 50 and 100 μM for DA. A 

protective effect was verified (by the MTT assay) for DA-50 μM at 24 h, as well as for p-

Ca-7.5 μM at 48 hours (Figure 28) (higher concentrations was not study for this cell line, 

although, it was considered to do in future). 
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Figure 28 – Cytotoxic effect of p-coumaric acid and daidzein against non-tumour breast cells (MCF-12A), 

at 24 and 48 hours incubation times. The results, obtained by the MTT assay (3.3.1. section), 

are presented as a percentage of the DMSO control (cell treated with the DMSO vehicle) 

considered as 100% (horizontal dashed line). The data are the mean ±SEM of values obtained 

for 2 independent experiments initiated and treated in parallel (n= 2). Cells were plated at a 

density of 3.0x104 cell/cm2. The results were statistically analysed in GraphPad Prism 6.00, 

applying the One-way ANOVA algorithm with Dunnett’s test for multi-comparisons: *p < 0.05, 

**p < 0.01, ***p < 0.001 vs control cultures 

The SRB results obtained for these non-neoplastic cells confirmed the MTT data, no 

statistically significant differences relative to the control having been found (Figure 29). 

No cytotoxic effect against healthy cells was observed for these compounds, in the 

investigated concentration range. For some of the conditions tested, a chemoprotective 

activity can be inferred. This is a relevant result, attending to the daily consumption of 

these compounds through the diet. 

 
Figure 29 – Cytotoxic effect of p-coumaric acid and daidzein against non-tumour breast cells (MCF-12A), 

at 24 and 48 hours incubation times. The results, obtained by the SRB assay (3.3.2. section), 

are presented as a percentage of the DMSO control (cell treated with the DMSO vehicle) 

considered as 100% (horizontal dashed line). The data are the mean ±SEM of values obtained 
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for 2 independent experiments initiated and treated in parallel (n= 2). Cells were plated at a 

density of 3.0x104 cell/cm2. The results were statistically analysed in GraphPad Prism 6.00, 

applying the One-way ANOVA algorithm with Turkey’s test for multi-comparisons: *p < 0.05, 

**p < 0.01, ***p < 0.001 vs control cultures. 
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44.1.3. Assessment of Cell Migration Inhibition 

Transwell migration experiments (Boyden Chamber Assay) were performed, 

allowing to evaluate the cells´ migration and invasiveness abilities (in a biological matrix, 

to tissues other than the one containing the primary tumour) as a function of 

concentration, for a 72 h incubation period with either p-Ca or DA. This assay was only 

considered for the MDA-MB-231 cell line, as MCF-7 does not have an invasive potential. 

The results thus obtained evidence that DA at 100 μM reduces cell migration by 40% at, 

while p-Ca has 20% and 30% efficiencies at 7.5 μM and 15 μM, respectively (Figure 30). 

 
Figure 30 – Inhibition of cell migration by p-coumaric acid and daidzein, in the human invasive breast 

cancer cells MDA-MB-231, at 72 hours, by Transwell Migration Assay (Boyden Chamber 

Assay) (in section 3.3.3.). The results are present in percentage related with control cultures 

(cell treated with the compound vehicle, DMSO), considered 100% (horizontal dashed line). 

Every cultures were plated with 3.0x104 cell/cm2 density. The results for each condition, the 

values present are the mean ± SEM of values obtain for five different culture (triples) initiated 

and treated in parallel (n= 5). The data were statistic treat in GraphPad Prism 6.00, applying 

One-way ANOVA with Dunnett’s test for multi-comparisons: *p < 0.05, **p < 0.01, ***p < 

0.001 vs control cultures. 
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Matrix metalloproteinases (MMPs) are zinc-dependent proteins associated to cell 

migration and metastasis formation, which are activated by an increase in the ROS level 

[31,32]. p-coumaric acid, with well recognised antioxidant properties, is proposed to act 

against cell migration through scavenging of oxidative species, thus inhibiting activation 

of MMPs. In fact, p-Ca was found to have an inhibitory effect in ROS-induced endothelial 

cell migration and angiogenesis [69]. Daidzein, in turn, was found along this work to affect 

cell viability, which can have consequences in cell migration. Moreover, DA is known to 

downregulate MMP-2 [42], which can also lead to a reduced cell migration. 
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44.1.4. ROS/RNS Measurement 

Evaluation of the ROS/RNS levels present in the intracellular medium was 

performed for both the MCF-7 and MDA-MB-231 cells, after 48 hours exposure to the 

tested compounds. 

The preliminary results currently obtained show clear differences among these cells 

lines, for both p-Ca and DA: MCF-7 displays an ROS/RNS increase for p-Ca at 7.5, 15 and 

50 μM and DA at 100 μM, while for MDA-MB-231 the amount of free radicals only 

increases significantly for p-Ca-50 μM (Figure 31). 

 

Figure 31 – ROS/RNS measurement in the MCF-7 and MDA-MB-231 cell lines (3.0x104 cell/cm2), after 

incubation with p-coumaric acid and daidzein, using the fluorigenic probe DCFH-DA (see 

section 3.3.4.). The results are represented as a percentage relative to the control (untreated 

cells) considered as 100% (horizontal dashed line), and are the mean±SEM of the values 

obtained for three independent measurements, carried out in triplicate (n= 3). The data were 

statistically treated in GraphPad Prism 6.00, applying One-way ANOVA with Dunnett’s test 

for multi-comparisons: *p < 0.05, **p < 0.01, ***p < 0.001 vs control cultures. 

Overall, the MCF-7 samples containing p-Ca displayed much higher ROS/RNS levels 

than the estrogen-independent cells MDA-MB-231 incubated with the same phenol. Thus, 

p-coumaric seems to behave as a very cell-selective compound, with a pro-oxidant effect 

in the concentration range 7.5-50 �M for MCF-7, and only for high dosages (ca. 100 �M) 

for MDA-MB-231. 

Daidzein evidences a similar cell-selective effect, ROS/RNS levels clearly increasing 

with isoflavone concentration for the estrogen-dependent line (MCF-7), while for MDA-

MB-231 they are virtually unchanged by exposure to this compound [98] 
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44.1.5. Metabolic Impact of p-Coumaric Acid and Daidzein Evaluated by 

Raman Microspectroscopy 

Raman microspectroscopy experiments were carried out, in order to assess the 

metabolic impact of the dietary polyphenols p-coumaric acid and daidzein in human 

breast cancer cell lines (MDA-MB-231 and MCF-7). Particular conditions were chosen, in 

the light of the previous assays (mainly MTT results), regarding concentration and 

incubation times: 50 and 100 μM, for 48 hours incubations. 

Interpretation of the data was carried out after unsupervised Principal Component 

Analysis (PCA) of the spectra (vector normalised and mean centred). 

Knowing that the Raman spectrum of a cell represents its chemical fingerprint, 

particular attention was paid to the bands from the main cellular components: Protein – 

Amide I at 1660 cm-1 and Amide III at 1250 cm-1; Lipids – CH/CH2 deformation modes 

around 1450 cm-1; DNA and RNA – phosphate stretching at 1172 cm-1, backbone modes 

at 950 to 810 cm-1, and purine and pyrimidine residues at 800 to 650 cm-1; phenylalanine 

at 1000 cm-1. 

4.1.5.1. p-coumaric acid 

For MDA-MB-231, assessment of the spectra of p-Ca-treated cells against the 

control did not yielded a clear differentiation between either concentration or cell type 

(Figure 31), suggesting that this compound does not interfere significantly with particular 

cellular components. Actually, the results obtained by the MTT and SRB assays showed 

that this phenolic acid, at high concentrations (50 and 100 �M), increases cell viability 

without affecting the cell´s protein content. This behaviour can be related with a pro-

oxidant effect in the cancer cells. 
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Figure 32 – Average Raman spectra (A) and PCA score plots (B) for p-Ca-treated MDA-MB-231 cells vs 

control (50 and 100 μM, 48 hours exposure). 

The Raman data and corresponding PCA analysis for the MDA-MB-231 cells 

incubated (for 48 hours) with p-Ca-7.5 and 15 μM are comprised in Figure 33, and reflect 

a quite different behaviour. The PC1 score plot carries enough variance to distinguish the 

sample group from the control, while the PC2 score plot differentiates between p-Ca 

concentrations (Figure 33 (C)). A close PC1 inspection reveals a more significant impact on 

proteins (Amides I and III at 1660 and 1250 cm-1), DNA/RNA (phosphate stretch at 1170 

cm-1) and phenylalanine (1000 cm-1). In turn, PC2 exposes interference on lipids (1450 cm-

1) and DNA/RNA (1170 and 750-700 cm-1) (Figure 33 (C)). 
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Figure 33 – Average Raman and Difference spectra (A), and PCA score (B) and loading (C) plots for p-Ca-

treated MDA-MB-231 cells vs control (7.5 and 15 μM, 48 hours exposure). 

These microRaman results evidence an interference of p-Ca preferentially with 

proteins, lipids and DNA/RNA. Since the MTT results previously discussed for this 

compound (section 4.1.2.1.) unveiled a chemoprotective effect (at low concentrations, 

below 15 μM), it is presently suggested that p-coumaric acid interacts with lipids within 

the cell, stabilising membranes and shielding against cell damage, in agreement with 

published studies on this phenol´s capacity to reduce lipid peroxidation and avoid altered 

membrane fluidity and permeability [166-168]. The compounds nitrosamine inhibitory 

and ROS scavenging abilities [169-171] may also add to this chemoprotective capacity. 

Additionally, the effects on DNA, RNA and phenylalanine are related to changes in 
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cell proliferation [101] and protein synthesis, in accordance with previous works showing 

that p-Ca can delay cell proliferation by downregulating genes associated with the cell 

cycle [66,172]. 

In turn, the cytotoxic effect of p-Ca at 15 μM, determined by the MTT assay as a 

small one, appears to be significant since the PCA analysis of the microRaman data yiels a 

clear differentiation from the lower concentration and the control (Figure 33). Actually, 

for 15 μM p-Ca can have an opposite effect to the one detected for 7.5 μM, destabilising 

lipid structure and therefore changing membrane fluidity and permeability, which was 

found for another HCAs [64]. 

Furthermore, p-Ca´s impact on proteins (particularly Amide I band) can be related 

to its effect on cell migration (section 4.1.3.) which is associated to activation of particular 

proteins. 

 

Figure 34 – Average Raman spectra (A) and PCA score plots (B) for p-Ca-treated MCF-7 cells vs control (7.5 

and 15 μM, 48 hours exposure). 
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Figure 34 comprises the microRaman spectra of MCF-7 cells upon exposure (48 

hours) to p-Ca-7.5 and 15 μM. PCA analysis of the data did not contain sufficient variance 

to discriminate between the different samples. Since the activity of phenolic acids is 

closely related to their hydrophylic vs hydrophobic properties, it is possible that p-Ca 

could not enter the MCF-7 cells in sufficient amounts, thus justifying the negligible effect 

currently observed in the Raman spectra (in agreement with the MTT and SRB results). In 

fact, the cellular uptake of p-Ca can be related to the glycolipids present in cell membrane, 

and since MDA-MB-231 and MCF-7 cell lines have different glycolipid composition (e.g. 

neutral glycolipids and gangliosides [152] this fact may be responsible for the cell 

selectivity reflected in the experimental results (MDA-MB-231 vs MCF-7). 
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4.1.5.2. Daidzein 

 

Figure 35 – Average Raman spectra (A), and PCA score (B) and loading (C) plots for DA-treated MCF-7 

cells vs control (50 and 100 μM, 48 hours exposure). 
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Figure 36 – Average Raman spectra (A), and PCA score (B) and loading (C) plots for DA-treated MDA-MB-

231 cells vs control (100 μM, 48 hours exposure). 

For the estrogen-independent cell line (MDA-MB-231), the spectra from the control 

and DA-treated cells are clearly different, and the PCA analysis allows a differentiation of 

the samples (control and 100 μM) (Figure 36). The loading scores reflect the isoflavone´s 

interference with proteins (Amide I band at 1660 cm-1), DNA/RNA backbone (1170 cm-1) 

and phenylalanine (1000 cm-1), which are cellular components associated with cell 

proliferation [101] and protein synthesis (corroborating the decreased cell viability and 

density obtained by the MTT and SRB assays). In view of previous studies in other cell 

lines, evidencing a DA-induced apoptosis via a mitochondrial pathway [173], a similar 

mechanism is presently suggested for the impact of daidzein on MDA-MB-231 cells. 

In turn, for MCF-7 differentiation of the data is only possible for the highest 

concentration (100 �M) (Figure 35). Since MCF-7 is an estrogen-dependent cell line the 
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main mechanism of action of daidzein and similar compounds can be the regulation of 

estrogen receptors. A reported study on DA-treated MCF-7 cells unveiled an induced 

apoptosis by cell cycle arrest in the G1 and G2/M phases, coupled to an accumulation of 

cells in sub-G0 phase [174]. Additionally, DA may have a role in manganese superoxide 

dismutase (MnSOD) overexpression leading to a decreased cell proliferation and an 

enhanced stress resistance [78], which are associated with ERα (estrogen receptor 

superfamily) that regulate cell growth and differentiation [155]. 

The mechanism of action of daidzein is therefore different in both cell lines tested 

(either estrogen-dependent or independent). Since DA is a powerful antioxidant, it can 

interfere with increased ROS/RNS cell levels leading to mitochondrial dysfunction. Also, 

the visible effect of DA on the phenylalanine band for the MDA-MB-231 cells (PC1 loading 

plot, Figure 36) may be a consequence of affected amino acid synthesis, which leads to 

reduced cell-viability and migration ability (in agreement with migration assays, section 

4.1.3.)
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The dietary phytochemicals currently investigated showed to have a significant 

chemopreventive activity (and even, under certain conditions, an antitumour effect), by 

interacting in different ways with the human breast cell lines tested (both non-neoplastic 

and neoplastic/estrogen-dependent and independent). p-coumaric acid appears to affect 

mostly the lipids, and since these are the most susceptible cellular components to 

undergo oxidation [21] this phenolic acid (at low concentrations, 5-7.5 μM) may be a 

promising chemoprotective agent towards ROS-induced lipid (and membrane) damage. 

Daidzein, in turn, will be a more powerful chemoprotective agent in hormone-dependent 

cells as compared to hormone-independent ones. 

The ROS/RNS quantification assay currently performed corroborate these 

conclusions, and show a marked cell selectivity for the two tested phytochemicals. 

The high sensitivity of the Raman microspectroscopy technique (coupled to a 

dedicated multivariate analysis of the data) allowed to unveil the impact of the 

compounds under study at the cellular level, by monitoring the biochemical profile of the 

cells in their presence (as a function of concentration), the lipid and protein components 

being the most affected. 

Overall, there is a clear discrimination between both concentration ranges (7.5/15 

�M and 50/100 �M) regarding the compounds´ effect on the breast cancer cells Figure 

37.  
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Figure 37 – PCA score plots for p-Ca-treated MDA-MB-231 cells vs control (7.5, 15, 50 and 100 μM, 48 

hours exposure). 

Also, it is evident from the results that for the highest concentration tested (100 

�M) both phytochemicals behave differently as compared to the lower dosages, which 

should reflect a different mechanism of action still to be clarified by further studies. 

Phytochemical compounds are the subject of an increasing research effort towards 

the development of natural-based chemopreventive agents, as well as of alternatives to 

chemically designed antineoplastic agents either as constituents of chemotherapeutic 

drug combinations or as adjuvants. Indeed, the costs associated with the extraction and 

purification of phytochemicals from their natural sources (fruits and vegetables) might 

well be lower than those involving the rational design of new chemical entities aimed as 

chemopreventives and/or drugs [175]. Additionally, the use of p-Ca and DA in adjuvant 

therapy (mostly when coupled to a suitable delivery system) may help to reduce 

deleterious side effects and acquired resistance, leading to an enhanced patient 

compliance and a brighter chemotherapy outcome.  
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The work presently reported should be extended to other dietary polyphenolic 

compounds as well as to different cell lines (namely distinct types of human cancers, 

preferably those with a poor prognosis). Currently, sufficient data has been collected to 

allow further evaluation of the use of phytochemicals as adjuvants, in combination with 

conventional chemotherapeutic drugs (such as Tamoxifen or Docetaxel in the case of 

breast cancer). Additionally, assessing the effect of combinations of p-Ca and DA, at 

different concetrations and incubation times, could yield interesting results, mainly if a 

synergetic effect regarding chemoprevetive potency can be unveiled. 

Establishment of oxidative stress conditions followed by measurement of the 

intracellular ROS levels, in the absence and presence of the phytochemical agents (both 

in sole administration and in combination), would also yield important clues as to their 

preventive efficiency towards oxidative-induced carcinogenesis. 

Another relevant experiment would be the in vitro wound-healing assay, to 

complement the cell migration data already gathered for the isolated p-Ca and DA. 

Coupled to anti-angiogenic evaluation tests, this would allow to attain a complete picture 

of the phenolic agents´ effect on cell invasiveness and metastatic ability. 

Studies in 3D co-cultures are also a natural continuation of the present work, 

allowing to extend the conventional 2D biological model to a more realistic one, closer to 

the in vivo tissue morphology and function. 

Regarding state-of-the-art microvibrational techniques (particularly Raman), 

optimisation of the experimental conditions for the specific models under study is 

essential for a full use of the extraordinary potential of such methods in probing the 

impact of exogenous agents on the cellular environment. Surface-Enhanced Raman 

Spectroscopy (SERS) can also be of use in this type of study, particularly for monitoring 

specific organelles within the cell. Finally, it would be ideal to be able to take profit of the 

brilliance of the synchrotron radiation in microFTIR measurements (complementary to the 

microRaman ones). 
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