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RESUMO 

 Ainda não se conhece a importância das folhas nas áreas fluvio-estuarinas 

enquanto fontes de nutrientes para as cadeias alimentares aquáticas. Neste estudo 

avaliámos a decomposição da folhada de amieiro (Alnus glutinosa) e da de choupo 

(Populus nigra), bem como as comunidades microbianas e a meio- e macrofauna na 

zona fluvio-estuarina de transição do Rio Mondego. As folhas foram expostas por 21 

dias em sacos de malha grossa e fina, estando sujeitas a oscilações de salinidade na água 

durante o período de condicionamento. 

 Não foram encontradas diferenças nas taxas de decomposição entre folhas, 

todavia o choupo demonstra uma tendência para ter valores mais altos de k (dia-1). A 

respiração microbiana foi significativamente mais alta nas folhas condicionadas nos 

sacos de malha grossa (MG), possivelmente devido a uma maior oxigenação do 

substrato. A biomassa fúngica foi vestigial nas folhas de amieiro e de choupo 

condicionadas nos sacos MG. Verificou-se uma baixa riqueza fúngica e as taxas de 

esporulação não diferiram entre espécies de folha; no entanto, os fungos que 

colonizaram o choupo produziram  > 3,09 vezes mais esporos que os do amieiro. 

Observou-se que a abundância bacteriana foi significativamente mais alta nas folhas de 

choupo (p> 0,05), o que sugere a importância deste grupo procariótico na degradação de 

folhas mais recalcitrantes. A abundância de meiofauna tendeu a seguir a abundância 

bacteriana, mas não se verificaram diferenças estatísticas entre espécies de folhas (p> 

0,05); os macroinvertebrados foram quase inexistentes. 

 A contribuição dos fungos e macroinvertebrados na decomposição foliar parece 

ser negligenciável nestas zonas de transição. A decomposição da folhada e o ciclo de 

nutrientes nas margens da área fluvio-estuarina parece ser maioritariamente promovida 

por bactérias e por uma comunidade de meiofauna resistente dominada por nemátodes. 
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Ciclos de imersão e desidratação nestas zonas podem ter um papel chave para 

determinar os protagonistas do processo  de degradação das folhas. Estudos adicionais 

são necessários para entender o destino e importância relativa da folhada nestes sistemas 

altamente variáveis. 

 

Palavras-chave: fluvio-estuarina, folhada, decomposição, bactérias, meiofauna, factores 

abióticos. 
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ABSTRACT 

 The importance of leaves in fluvial-estuarine areas as source of nutrients to the 

aquatic food webs is still not known. In this study we evaluated the decomposition of 

alder (Alnus glutinosa) and poplar (Populus nigra) leaf litter and associated microbial, 

meio- and macrofauna in the fluvial-estuarine transitional area of the Mondego River. 

Leaves were exposed in coarse and fine mesh bags for 21 days, subjected to oscillations 

in water salinity during the conditioning period. 

 No differences were found in decomposition rates between leaves, however 

poplar shows a tendency to have higher values of k (day-1). Microbial respiration was 

significantly higher in leaves conditioned in coarse mesh bags, possibly due to better 

aeration of the substrata. Fungal biomass was vestigial in alder and poplar conditioned 

in CM bags. Fungal richness was low and sporulation rates did not differ between leaf 

species; however, fungal colonizing poplar produced >3.09 times more spores than 

alder. Bacterial abundance was significantly higher in poplar leaves (p< 0.05), 

suggesting the importance of this prokaryotic group in the degradation of the more 

recalcitrant leaves. Meiofauna abundance tended to follow bacterial abundance but no 

statistical differences were observed between leaf species (p> 0.05), and the 

macroinvertebrates were almost inexistent. 

 The contribution of fungi and macroinvertebrates in leaf decomposition seems 

negligible in these transitional salt richer areas. Litter decomposition and nutrient 

cycling in the margins of the fluvial-estuarine area appears to be mainly promoted by 

bacteria and by a resistant meiofaunal community dominated by nematodes. Cycles of 

submersion and dehydration in these areas may play a key role determining the 

protagonists of the breakdown process in these areas. Further work is still needed to 
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understand the fate and relative importance of leaf litter in these highly variable 

systems.   

 

Key-words: fluvio-estuarine, leaf litter, decomposition, bacteria, meiofauna, abiotic factors.  
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1 GENERAL INTRODUCTION 

1.1 The River Continuum Concept (RCC) 

 The River Continuum Concept (RCC) is a central tenet in stream ecology 

proposed by Vannote et al. in 1980. This theory states that the stream is a gradient 

of physical conditions (e.g. width, depth, flow volume) which affects the structure 

and function of communities along its system; this is largely regulated by fluvial 

geomorphic processes and environmental factors (Vannote et al., 1980; Magdych, 

1984; Grubaugh et al., 1997; Tomanova et al., 2007). It was based in studies 

performed in a pristine stream system in North America and, initially consisted of 

five propositions; four of them were later on argued by Statzner & Higler (1985), 

remaining generally accepted the first principle which stated that river systems 

featured a continuum, whose physical conditions gradually change down the 

stream, controlling the composition of the aquatic community; the links between up 

and downstream are also enlightened as Vannote and co-workers also stated that 

downstream communities benefit from the wastes of the upstream processing  – this 

holistic point of view of the river system was verified in studies performed in 

temperate streams and rivers (Montgomery, 1999; Jiang et al., 2011). The RCC is 

until now a popular concept in community researches (Rosenfeld et al., 2007; 

Webster , 2007; Jiang et al., 2011).  

 

 In temperate forested streams, the riparian vegetation provides, not only, 

shade to the water – especially in low order streams – but also an allochthonous 

input mainly composed of leaves and stems that fall into the stream (course 

particulate organic matter – CPOM) (Vannote et al., 1980; Grubaugh et al., 1997; 
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Gessner et al., 1999 & 2010). As the stream order increases, the river widens and 

the importance of the CPOM input decreases; the system becomes less retentive for 

organic matter (Richardson & Danehy, 2007). However, the more wide the streams 

get, the less shading it receives, increasing the autochthonous production. These 

differences in production result in a U-shaped curve of energy input (Grubaugh et 

al., 1997; Webster, 2007).  This is also influenced by the spiraling of nutrients 

which explains how the longitudinal transport in streams works. The term “nutrient 

spiraling” elucidates how the flow of nutrients works from upstream to 

downstream: the energy ingested by one organism is later egested and returns to the 

pool of energy or detritus, to be used again downstream (Webster & Patten, 1979). 

 Therefore, the functional and structural characteristics of the communities 

adjust themselves to this gradient, while being conditioned by the type of organic 

matter in the stream – the bigger the stream, the lower importance of the riparian 

area. Along the path from head to mouth of the river, the fragmentation effects, 

resulting of physical and chemical processes, slowly converts the CPOM (coarse 

particulate organic matter, ᴓ > 1mm) into DOM (dissolved particulate organic 

matter, ᴓ < 0,45µm) and FPOM (fine particulate organic matter, 0,45µm < ᴓ < 

1mm), which is abundant near the estuary. In another words, the stream 

characteristics affect the type and availability of food resources, which has different 

outcomes in the communities along the continuum. 

 The communities of invertebrates on the continuum are distinguished not by 

what they eat, but by the way they capture their food, being divided in functional 

feeding groups:  shredders, collectors, scrapers and predators (Fig.1) (Cummins & 

Klug, 1979; Vannote et al., 1980; Richardson & Danehy, 2007; Tomanova et al., 

2007). 
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 In shallow covered streams, more easily found where the flow of the river 

starts, there is abundance in shredders and collectors, who feed on large particles of 

organic matter (CPOM) by shredding them, and fine particles of organic matter 

(FPOM) by filtering the matter from the water or by gathering the particles, 

respectively (Cummins et al., 1973; Cummins & Klug, 1979) (Fig.2). 

 Studies like the one from Greenwood (2007) relate the abundance of 

shredders with the fungal biomass, since the macroinvertebrates prefer to consume 

fungi conditioned leaf material. The ratios of production/respiration (P/R) are, 

usually, below 1, revealing a heterotrophic system (Vannote et al., 1980; Grubaugh 

et al., 1996 & 1997). 

 Downwards on the stream, where the light is able to shed on the channel, 

there is an occurrence of algae and aquatic macrophytes, which increase the 

primary production, being the base of the trophic chain in medium order streams. 

The importance of shredders diminishes, since there’s less CPOM accessible, and 

the number of grazers increases, since they feed on periphyton by rasping the 

surface where it is attached (Cummins & Klug, 1979). Now, the P/R ratios are 

higher than 1, since there’s a high level of photosynthesis, and the environmental 

heterogeneity is maximum (Vannote et al., 1980; Grubaugh et al., 1997; Beketov & 

Liess, 2008). 

Fig. 1: Illustration of some stream invertebrates. Adapted from Allan & Castillo (2007). 
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 In the lower reaches, collectors dominate, as light penetration and aquatic 

photosynthesis occurs only in the upper part of the water column. Furthermore, the 

substratum here is composed of gravel and silt, not allowing the growth of 

periphyton. At this point, the system becomes heterotrophic, with its main source of 

energy being the FPOM from upstream (Fig.2) (Vannote et al., 1980; Grubaugh et 

al., 1997). The P/R ratios are lower than 1 again. Predators, who prey on other 

animals (Cummins & Klug, 1979), are a little distributed all along the stream 

(Vannote et al., 1980). 

 

1.2 Fluvial-estuarine environments 

Headwater systems are highly dependent on organic matter from 

allochthonous sources (like leaves) as an input of energy. The importance of this 

Fig. 2: Illustration of the River Continuum 

Concept and the flow of organic matter. 
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input of organic matter derived from the terrestrial environment in large rivers, 

particularly in the fluvial-estuarine area, is still unknown but likely more important 

than expected (Fuentes-Cid et al., 2014). Leaves may appear in this zone as an 

input from the riparian area – either by falling directly onto the estuary or by plain 

flooding – or from upstream transport, especially in months when the precipitation 

is more abundant, increasing the flow of water. 

The fluvial-estuarine environment is a transitional area where we find strong 

gradients in variables such as salinity (ranging from that usual of freshwater to 

those typically marine) (Nogales et al., 2010). Little is known of the protagonists of 

the incorporation into secondary production of this leaf material in these dynamic 

areas. Some studies (e.g. Lecerf, 2008), suggest that bacteria might have a 

significant role in linking the organic matter through the food-web while it was 

found that the richness in freshwater invertebrates decreases with the increase of 

salinity (Piscart et al., 2006).   

 

Leaf litter decomposition 

Leaf litter decomposition occurs in three more or less overlapping phases: 

leaching, conditioning and physical and biological fragmentation. The first abiotic 

phase consists in loss of a large amount of soluble leaf compounds (up to 30%), 

which occurs relatively fast (24 hours) (Gessner et al., 1999). Conditioning 

corresponds to the colonization of leaf by microorganisms mainly fungi, bacteria 

but also by a frequently neglected meiofauna (Robertson et al., 2000). Fungal 

colonization enhances the nutritional quality of dead organic matter for the 

invertebrates, turning the leaf into a more palatable and nutritious substratum for its 

consumers. Microorganisms, mainly fungi, are known to improve leaf litter quality 
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due to enzymatic and mechanical activity that modifies the leaf matrix, softening 

the tissue and increasing its nutritive value (Gessner et al., 1999; Chung & 

Suberkropp, 2009; Bärlocher, 2010; Gessner et al., 2010).  Meiofauna (or 

meiobenthos) are small benthic animals that by definition pass through a 500µm 

sieve, but are retained on meshes of 40 – 64µm (Coull, 1999). These invertebrates 

are functionally important in estuaries for many reasons: (i) stimulate bacterial 

growth that consequently facilitates and enhances the mineralization of organic 

material and nutrient regeneration, (ii) contributes as food for many higher trophic 

levels, (iii) are highly sensitive to anthropogenic modifications, helping to better 

understand the influence of pollution (Coull, 1999; Hourston et al., 2011).  

 

Leaf litter decomposition in fluvial-estuarine environments: sparse 

evidences  

It is hypothesized that the input of allochthonous organic matter (CPOM) 

may still be significant in large rivers (high order). Regarding the microbial 

communities in these rivers, the fungi seem to dominate while the leaves are intact, 

whilst the bacteria abundance rises proportionally to the increasing fragmentation 

of the CPOM (Baldy et al., 1995). In other words, fungi are more present while the 

leaf is intact and the bacteria only increases after some breakdown of the leaf. 

Studies show a complementation between fungi and bacteria and not a replacement: 

bacterial biomass rises with the decrease of the fungal biomass; they’re both present 

at the same time. This supports the idea that the greater the breakdown is, so it will 

be the participation of bacteria (Baldy et al., 1995). This phenomenon also seems to 

occur in salt influenced areas like salt marshes (Buchan et al., 2003). 
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Aquatic hyphomycetes, particularly some species, are able to grow (and 

eventually sporulate) and promote leaf decomposition under laboratory conditions, 

at high NaCl concentrations (Simões et al., submitted), which make them, along 

other fungal groups (Fig. 3) and bacteria (Baldy et al., 1995), candidates to 

mediators of leaf degradation in these transitional waters. 

 

Sridhar & Bärlocher (1997) using pure salts at levels that mimic the 

transition from fresh to brackish to salt water, indicate a reduction or total inhibition 

of sporulation of these fungi at 22% and 44%, respectivelly.  

Roache et al. (2006) tested the influence of different concentrations of salt 

on the degradation of leaves of Triglochin procerum. They observed that high 

values of NaCl inhibit the microbial enzymatic activity on leaves, leading to less 

effective leaf decay. 

 

 

Fig. 3: Graph adapted from Byrne & Jones (1975), summarizing 

salinity tolerances of groups of fungi. 
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In fluvial-estuarine transitional waters abiotic factors such as tides, turbidity, 

oxygen concentration and, obviously salinity, are import determinants of the 

aquatic communities and processes performed by the ecosystem. The few studies 

focusing leaf litter decomposition indicate a small influence by the invertebrate 

decomposers (Fuentes-Cid et al., 2014), a crucial importance of bacteria (Crump et 

al., 1998 & 1999) and a possible participation of fungi (Simões et al., submitted) in 

the process. Indeed, several studies (Jones, 2000; Tsui & Hyde, 2004; Van 

Ryckegem & Verbeken, 2005) confirmed the presence of fungi in these 

environments although diversity losses and changes in the species composition of 

fungal communities may be expected along the fresh-salt water gradients 

potentially affecting decomposition (Van Ryckegem & Verbeken, 2005). 

The experiences performed with Phragmites sp. (Tanaka, 1991; Van 

Ryckegem & Verbeken, 2005; Lopes et al., 2011) and other reed and algae litter, 

tend to agree on an inverse relationship between the water salinity and litter 

breakdown.  

 

1.3 Objectives 

In this study we assess the decomposition of Alnus glutinosa and Populus 

nigra leaf litter and its colonization by microorganisms, meiofauna and 

macroinvertebrates in a fluvial-estuarine area of the Mondego River . We expect 

the decomposition to be faster in less recalcitrant leaves as alder. We anticipate 

that, due to salinity effects and to an impoverished leaf-consuming invertebrate 

community, the decomposers, mainly bacteria, and meiofauna will have a 

predominant role in the leaf decomposition process.  
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2 MATERIAL AND METHODS 

2.1 General 

Estuary characteristics and water parameters 

 The Mondego basin has an area of 6670 km2 alongside the western coast of 

Portugal (40º08’N, 8º50’W).  The river’s estuary is 21 km long and is influenced by 

a warm-temperate climate (Alves et al., 2013).  

 Regarding our experimental site, we tried to assess an area of transition, 

where we see the clash of fresh and salt waters, with the influence of both river and 

tides. The range of salinity values previously registered for the chosen area were 

18-30  (Teixeira et al., 2008) from the year of 2002 until 2005. Values registered 

during the study period (October 2013) were 15.90 ± 0.87 (mean ± SD). 

 

 In situ water parameters were evaluated using YSI Professional Plus 

Multiparameter instrument: temperature, salinity, conductivity, pH and oxygen 

(O2). Water samples were retrieved and then transported to the laboratory, for 

posterior chemical analysis in a Skalar San++ system Multiparametric 

Autoanalyser: NH4 (ammonia), Si (silica), NO2 (nitrate), NO3 (nitrite) and PO4 

(phosphate). 

 

Initial litter quality 

Alder (Alnus glutinosa) and poplar (Populus nigra) leaves were collected 

after their senescence in Coimbra’s Parque Verde (N:40º12’5, W:8º25’30) and 

Choupal (N: 40º73’17, W:8º27’20), respectively, air dried in the dark at room 



14 
 

temperature and stored until need. These species were chosen since they are 

common on the edges of Mondego River in the fluvio-estuarine zone. The initial 

and final (after 21 days incubation) phosphorus (P; SRP method) (Eaton et al., 

1995), carbon (C), nitrogen (N; IRMS Thermo Delta V advantage with a Flash EA 

1112 series) and total phenolic concentrations (Bärlocher & Graça, 2005) were 

determined for both leaf species, to allow the characterization of initial leaf quality. 

Initial toughness (n=3) was also evaluated according to Graça et al. (2005). 

 

Litter bags and decomposition 

 For our experiment we used two types of mesh bags (10 x 15 cm) to enclose 

the leaves (after they were rehydrated): fine (FM – 0.5mm mesh diameter) and 

coarse mesh (CM – 1mm mesh diameter) bags. FM bags allow us to access the 

decomposition of the leaves based on the activity of the microbial community 

(bacteria and fungi) and meiofauna, while the CM bags also allow leaf processing 

by invertebrates. Each bag was labeled and contained a total of 2.01g ± 0.003  for 

alder, and 2.50g ± 0.002 (mean ± SD) for poplar. Bags were tied with nylon cords 

to the margins and were forced to immerse by the use of stones that kept them over 

the sediment. A total of 32 bags (16 CM and 16 FM) per species were introduced 

on October 2nd 2013 in the experimental site (Fig.4) and were recovered after 21 

days of exposure. One extra group of each litter treatment (n=3) was taken to the 

stream on day 0, and brought back to the laboratory to estimate initial litter ash-free 

dry mass (AFDM) taking into account mass loss due to handling. Each bag was 

enclosed in zip-lock bags, and brought to the laboratory in a cooler in each 

sampling date. Once in the lab, leaves from each bag were gently rinsed with 

distilled water to remove attached sediments. From each coarse mesh bag, 5 sets of 
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3 leaf discs were cut with a cork borer (12mm diameter). One set of leaf discs was 

frozen in zip-lock bags at -20ºC for posterior assessment of ergosterol (proxy of 

fungal biomass); another set was used to assess sporulation rates. Two groups were 

preserved at -80ºC to preform DAPI (assessing bacterial numbers) or immediately 

used for microbial respiration (O2 consumption) evaluation. The 5th set was 

grounded and used for chemical analysis as indicated above. In the case of fine 

mesh bags, leaves were also used to evaluate mass loss and microbial respiration. 

Leaves were oven-dried for 48h at 105ºC and re-weighted for dry mass (DM) 

determination. Leaves were then combusted at 550ºC for 6h, and reweighed to 

assess ash-free dry mass remaining (AFDM). This procedure avoided overweighing 

due to inorganic sediment accumulation.  

 

2.2 Microbial parameters 

Microbial respiration 

Microbial oxygen consumption was determined after 21 days from a set of 3 

leaf discs obtained from all bags (16 CM bags and 16 FM bags). Set of 3 discs were 

Fig. 4: Mondego estuary, October 2013 (photo: Ana Lírio). 
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immersed in water (25ml, dark flasks) from the study site saturated with oxygen at 

19ºC. 

The flasks were closed and left overnight. Oxygen evaluation was made 

with an oximeter (Oxi 3210, WTW, Weilheim, Germany) and oxygen consumption 

was expressed as mg O2 g-1 AFDM h-1. 

 

Ergosterol 

Ergosterol was used to estimate the fungal biomass associated with the 

leaves (Gessner & Chauvet, 1993; Graça et al., 2005). 

 The discs of each sample date preserved at -80ºC were lyophilized, 

weighted and put in the correspondent extraction flasks with the addition of 

methanol (CH3OH) and sodium hydroxide (NaOH).  

 The extraction flasks were placed inside plastic bottles and heated in a 

microwave (400W; 20secs, 3 times with 3 minutes interval). The bottles are left to 

cool down for 15 minutes. The solution was then neutralized with hydrochloric acid 

(HCl) to facilitate the extraction. 

 Pentane (C5H12) and CH3OH were added to the flasks to enable the 

separation of the ergosterol with the help of the vortex. When the two fractions 

were easily distinguished, the upper one – that consists of C5H12 and ergosterol – 

was removed with a Pasteur pipette and transferred to a centrifuge tube. This 

extraction is done two more times, to waste the least possible. 

We then proceed to the evaporation of the C5H12 through the use of a sand 

bath at 55-60ºC inside the hotte. The centrifuge tubes were washed with pentane 

and transferred to the HPLC vials (done three times so that each vial contains ≈ 1,5 

mL of C5H12 and ergosterol). The pentane was evaporated from the vials again. 
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The sample was dissolved with methanol and shaken. Samples were kept at 

4ºC until being read in the HPLC (High Performance/Pressure Liquid 

Chromatography). Ergosterol was converted to fungal biomass with a conversion 

factor of 5.5 µg ergosterol/mg fungal dry mass (Gessner & Chauvet, 1993). Fungal 

biomass was expressed as mg fungal biomass g-1 AFDM. 

 

Sporulation rates 

 The 2nd set of 3 leaf discs (12 CM bags) was used to induce sporulation of 

aquatic hyphomycetes. Leaf discs were incubated in 100ml Erlenmeyer with 25 ml 

of filtered stream water and placed in an orbital shaker (100 rpm; 48 hours) at 16ºC. 

Each Erlenmeyer’s suspension was transferred to a Falcon tube with 2 ml of 

formalin (37%). The volume was adjusted to 35 ml with distilled water. Counting 

and identification (Gulis et al., 2006) was done after filtering the conidial 

suspensions (Millipore SMWP, 5 µm pore size) and by staining the spores with 

0.05% cotton blue lactic acid (60%) (Graça et al., 2005). The discs used in 

sporulation were dried (105ºC; 48 hours), weighed, ashed at 550ºC for 6 hours and 

reweighed. Sporulation rates were expressed as no. conidia / mg AFDMr /d. 

 

Bacterial abundance 

Bacterial abundance associated with leaf litter was estimated via direct 

counts using an epifluorescence microscope (Nikon Optiphot) after 4-6-diamidino-

2-phenylindole hydrochloride (DAPI, Sigma) staining (Porter & Feig, 1980). Leaf 

discs were sonicated in a sonication bath (Selecta) to promote bacteria detachment. 

After dilution (10 times), the samples were stained with DAPI and collected in 

black 0.2 µm polycarbonated filters (Nucleopore, Whatman). Bacterial slide 
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counting was carried out at x1,000 magnification with a Nikon E600 

epifluorescence microscope. At least 20 random fields were counted for each slide 

(Porter & Feig, 1980). Procaryotic cell abundance was expressed as no. individuals 

^108/ g AFDM. 

 

2.3 Invertebrates 

Meiofauna and macroinvertebrates 

 Leaves from CM bags were gently rinsed with distilled water into a 500 µm 

mesh sieve to retain attached invertebrates. The water was saved for further 

collection of meiofauna using a 38 µm mesh sieve (see below). 

 The invertebrates, were recovered, stored in scintillation vials, and 

preserved with 95% ethanol. Invertebrates were then sorted and identified under a 

binocular microscope (50x; Leica M80, Singapore). Identification was carried to 

the lowest taxonomic level possible following Hayward, et al (1995). After 

identification, the invertebrates were included in the correspondent functional 

feeding group (Hieber & Gessner, 2002). 

 Meiofauna – measured in number of individuals per gram of AFDMr –

from the 12 CM bags that were trapped in the 38 µm mesh sieve were relocated 

into flasks with 37% formaldehyde for preservation and posterior counting and 

identification.  

 

2.4 Statistical analysis 

 The chemical composition of alder and poplar leaves was compared using a 

two-way ANOVA (leaf species and incubation time as categorical variables). A t-
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test was used to evaluate initial toughness of the leaves. The significance level was 

set at p=0.05. 

  We estimated decomposition rates (k) by linear regression of mass (ln 

transformed) over time, assuming a negative exponential model Mt = Mo × e-k, 

where Mt is the remaining mass at time t, Mo is the initial mass and k is the 

decomposition rate. k values were compared by a two-way ANOVA using both 

litter and mesh type as categorical variables, followed by Tuckey’s test (Zar, 1999). 

 Microbial respiration of conditioned leaves was also assessed by a two-way 

ANOVA with leaf species and mesh type as categorical variables.  

Sporulation rates, bacterial and meiofauna abundance were compared by 

one-way ANOVA, with leaf species as categorical variable in all cases. Tuckey’s 

tests were applied whenever relevant. Data were transformed (log (x+1)) when 

necessary to satisfy assumptions of normality and homoscedasticity. 

All statistical analyses were performed with STATISTICA 7.0 software. 
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3 RESULTS 

3.1 Litter quality and decomposition 

 The physic-chemical parameters of the water measured indicated a neutral 

pH and a high conductivity, likely due to salinity (Table I). 

 

Table I: Physic-chemical parameters of the water in our study site. The 

values correspond to the mean ± SD; n=3. 

 
 
 

 
 
 
 
 
 

 

 

 

 

  

 

 

 

 The chemical composition of the leaves was measured in the beginning of 

the experiment and after 21 days of incubation in our experimental site (Table II).   

 

Parameters Study site 

Temperature (ºC) 18.95 ± 0.04 

Salinity 15.90 ± 0.87 

Conductivity (mS/cm) 22.99 ± 1.10 

pH 7.40 ± 0.803 

Velocity (m/s) 0.66 ± 0.07 

Oxygen (mg/L) 5.82 ± 0.05 

Ammonia (ng/L) 62.83 ± 10.31 

Nitrate (ng/L) 189.44 ± 49.41 

Nitrite  (ng/L) 118.87 ± 2,62 

Phosphate (ng/L) 107.68 ± 8.89 

Silica (ng/L) 1936.01 ± 342.68 
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Table II: Chemical composition of alder and poplar leaves before and after 

incubation (21 days; n=3). Results were expressed as percentage of ash-free 

dry mass remaining (AFDMr). The values correspond to the mean ± SD. 

Different letters indicate differences between treatments (2-way ANOVA: 

p<0.05). 

 % C % N % P % Phenols 

Alder 
Before 50.91 a 

± 1.50 
3.75 a 

± 0.06 
54.84 a 

± 1.14 
9.09 a 

± 0.05 

After 38.95 b 

± 0.86 
4.15 b 

± 0.07 
42.47 b 

± 1.85 
6.19 b 

± 0.00 

Poplar 
Before 42.98 a 

± 2.96 
1.88 a 

± 0.04 
64.61 c 

± 1.65 
12.95 c 

±0.02 

After 35.85 c 

± 0.46 
1.18 c 

± 0.12 
33.07 d 

± 5.87 
6.24 d 

± 0.00 
  

 

 Poplar leaves were statistically tougher (62.80 g ± 1.90) and, therefore, 

more recalcitrant than alder leaves (46.85 g ± 1.14) (mean ± SD) (t-test: p=0.01). 

Leaves degradation after 21 days immersion did not allow an accurate measurement 

of this parameter. However, parallel tests indicate that, after 7 days of immersion in 

our study site poplar leaves leachate >1.5 times more than alder leaves (personal 

observation). 

 

Poplar lost more mass when in the fine mesh bags (FM) (38.23% ± 2.17 

over 34.56% ± 2.01, in poplar and alder, respectively; mean ± SD), while alder lost 

more mass (36.85% ± 1.70) than poplar (33.91% ± 1.11) when incubated in coarse 

mesh bags (CM; mean ± SD).  
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No significant differences were found in decomposition rates (k) between 

treatments (2-way ANOVA: F(3,20)=0.04; p=0.85. However, the more recalcitrant 

leaf (poplar) shows a tendency to have higher decomposition rates (Table III). 

 

Table III: Decomposition rates (k day-1) of alder and poplar leaves 

incubated in FM and CM bags for 21 days. Values are means ± SD; n=3. 

Leaf type Mesh k(day-1) 

Alder 
FM 0.06 ± 0.01 

CM 0.07 ± 0.01 

Poplar 
FM 0.10 ± 0.02 

CM 0.09 ± 0.01 

 

 

3.2 Microbial parameters 

 No statistical differences were observed in oxygen consumption between 

alder and poplar (2-way ANOVA: F(3,20)=0.01; p=0.94). Mesh types showed 

statistical differences (2-way ANOVA: F(3,20)=25.16; p= 0.00), being the oxygen 

consumption in coarse mesh bags of both leaves significantly higher than the 

consumption verified for fine mesh bags. The values of consumed oxygen 

registered were 2.78 mg O2/ g AFDMr/ h ± 0.42 for the FM and 4.73 mg O2/ g 

AFDMr/ h  ± 0.36 (mean ± SD) in leaves incubated in CM (Fig. 5). 
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 Vestigial (< 2 mg g-1 AFDMr) values of ergosterol were found in both leaf 

species.  

 

 Sporulation rates (Fig. 6) were low in both species: 5.44 ± 2.01 (alder) vs 

16.84 ± 8.77 (poplar) no.conidia/ mg AFDMr/ d (mean ± SD). No statistical 

differences were found in sporulation rates between the two leaf species (one-way 

ANOVA: F(1,10)=1.61; p= 0.23) after 21 days of exposure.  In both leaves the 

majority of spores produced belonged to Fusarium sp. (> 75% in alder; > 80% in 

poplar); Heliscus lugdunensis and Tetrachaetum elegans were also found in alder 

and poplar, respectively (Fig. 7).  
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Fig. 5: Oxygen consumption (mg O2/ g AFDMr/ h) by microbial communities 

associated with alder and poplar conditioned for 21 days in coarse (CM) and fine 

(FM) mesh bags. Values are means ± SD. Different letters indicate differences 

between treatments (2-way ANOVA, p<0.05; n=3). 
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c b a 

Fig. 7: Illustration of the spores found in alder (a, b) and poplar (a, c) after 21 

days of incubation in our study site: a) Fusarium sp. (adapted from Yli-Mattila et 

al., 2009); b) Heliscus lugdunensis (adapted from Dang et al., 2007 ); c) 

Tetrachaetum elegans (adapted from Dang et al., 2007). 
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Fig. 6: Sporulation rates (no. conidia/ mg AFDMr/ d) found in alder and poplar after 

21 days immersion at our experimental site. Values are means ± SD. Different letters 

indicate differences between treatments (one-way ANOVA, p<0.05; n=3). 
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 Statistical differences were registered in bacterial numbers between leaf 

species (one-way ANOVA: F(1,10)=0.88; p= 0.02) after 21 days of exposure (Fig. 8). 

The values recorded were 1.56 × 108 ± 0.91 for alder and 6.95 × 108 ± 0.57 no. 

individuals/ g AFDMr (mean ± SD) for poplar.  

 

3.3 Invertebrates 

Meiofauna 

 No statistical differences were found between meiofauna associated with 

both leaves (one-way ANOVA: F(1,10)=0.31; p=0.59) (Fig.9). Eight taxonomical 

groups were found associated with both leaves: Nematode, Copepod, Polychaeta, 

Bivalvia and Turbellaria; Cladocera and Gastropoda were only found in alder while 
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Fig. 8: Bacterial abundance (no. individuals^108/ g AFDMr) found in alder and poplar after 

21 days of exposure at our experimental site. The values correspond to the logarithmic 

mean ± SD. Different letters indicate differences between treatments (one-way ANOVA, 

p<0.05; n=3). 
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Ostracoda was only present in poplar (Fig.10). After analyzing the contribution of 

each taxonomical group, nematodes seem to be present in higher proportion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1% 1% 

18% 

1% 

64% 

13% 

2% 

Bivalvia

Cladocera

Copepoda

Gastropoda

Nematoda

Ostracoda

Polychaeta

Turbellaria

0,33% 
6% 

91% 

0,33% 
2% 0,33% 

Bivalvia

Cladocera

Copepoda

Gastropoda

Nematoda

Ostracoda

Polychaeta

Turbellaria

a) b) 

Fig. 10: Pie charts of the percentage of meiofauna abundance found for (a) alder and (b) poplar; n=3. 
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Fig. 9: Abundance of meiofauna (no. individuals/g AFDMr) found in alder and poplar 

after 21 days of exposure at our experimental site. The values correspond to the mean ± 

SD. Different letters indicate differences between treatments (one-way ANOVA, 

p<0.05; n=3). 
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Macroinvertebrates 

 Invertebrates found in CM bags of both leaf species were almost inexistent. 

We found 3 individuals in alder leaves and 12 individuals in poplar leaves (Fig. 11). 
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Fig. 11: Pie charts of the percentage of invertebrate abundance found for (a) alder and (b) poplar; n=3. 
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4 DISCUSSION 

 A large body of literature exists on decomposition of leaves in streams 

(Abelho, 2001) but very few studies were made in the fluvial-estuarine transitional 

area (Lecerf et al., 2008; Fuentes-Cid et al., 2014 & 2015). With this study, we tried 

to contribute to fill this gap.  

 The first stage of decomposition starts upon immersion. The characteristics 

of the leaves change and, in our case, all the parameters followed, more or less, the 

pattern expected. The percentage of organic carbon (C) decreases with 

decomposition, as expected. A lot of the C that goes into the water is dissolved, and 

supports the respiration of suspended microorganisms and some microbes directly 

associated with the leaves (Howarth & Fisher, 1976). With leaching, the soluble 

compounds of the leaf (e.g. phenols, phosphorous and nitrogen) are released into 

the water (Abelho, 2001). Some phenols are highly soluble components of the 

leaves that remain present after death of the leaf; they also are a line of defense 

against herbivores and pathogens (Covelo & Gallardo, 2001; Bärlocher & Graça, 

2005). They rapidly leachate when submerged in water but their presence may 

delay the microbial colonization and degradation of leaf litter (Bärlocher & Graça, 

2005). In our experiment, alder leaves had their N contents significantly increased 

after 21 days, which was not the case in poplar leaves. This might have happened 

due to the higher recalcitrance of poplar, that may favor a bacterial (rather than 

fungal) colonization. Fungi are known to incorporate N from the water column 

increasing leaves N contents, turning the leaves more palatable for invertebrates 

(Sridhar & Bärlocher, 2000). 
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 Previous studies (Graça et al., 1993) state that litter decomposers usually 

prefer to consume leaves with high amounts of nitrogen and lower toughness, 

which in our case corresponds to the alder leaves. However, our results in terms of 

decomposition rates (k) show no significant differences between leaf species even 

though, poplar leaves seem to have a tendency to decompose faster than alder (k 

values are higher in poplar), in both mesh bags. This goes against our first 

hypothesis that stated that the less recalcitrant leaf (alder) would decompose faster. 

This might be explained if phosphorus is a limiting factor in this area. It might be 

considered more important for the decomposers, which leads to higher 

decomposition rates in the leaf with greater phosphorus contents (poplar). Other 

than that, the high amount of bacteria found in these leaves (eventually more 

adapted to these transitional waters than fungi) may attract the meiofaunal 

community stimulating decomposition (Coull, 1999).  

  

 Our results show that the Oxygen consumption was not different between 

leaf types but, it is statistically higher in CM bags for both alder and poplar. This 

probably occurs due to an easier oxygenation in these bags, which promotes higher 

microbial metabolic activity. This activity was translated in a non-significant 

increase of leaf decomposition rates in alder; however, such higher activity of 

decomposers (likely bacteria), eventually translated in higher or more efficient 

enzymatic degradative capacity, seem to contribute to accelerate leaf decomposition 

on poplar. These results in the CM bags impelled us to discover who are the real 

causers of these higher consumptions. 
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 Working on low order streams always revealed that fungi have a major role 

in the decomposition of leaf  material; not only helping to degrade the leaf itself, 

but also acting as an important food source for aquatic invertebrates to feed on, 

thereby increasing the rate of breakdown of the leaves (Gessner et al., 1999; 

Bärlocher, 2005; Canhoto & Graça, 2008). One way to detect the presence of fungi 

is to identify the presence of ergosterol on the leaf, which is the main sterol present 

in the cells or mycelial membranes (Ricardo, 2013). However, our results showed, 

unexpectedly, only vestigial presence of ergosterol in alder and poplar. Even 

though we found some spores in the leaves of the coarse mesh bags, they were low 

in numbers and fungal richness was also low. The only spores found on the leaves 

were from one terrestrial fungus, Fusarium sp. (present in both leaf species) and 

two aquatic hyphomycetes, Heliscus lugdunensis and Tetrachaetum elegans 

(present in alder and poplar, respectively).  

 The genus Fusarium is considered a common ground (soil-borne) fungus, 

usually associated with plant roots and debris (Mandeel, 2006; Llamas et al., 2008). 

Its occurrence in stream submerged leaves (Chamier et al., 1984), tidal marshes, 

stagnant water and fluvial waters tend to support its role as decomposer of leaves 

and branches of surrounding trees in these areas subjected to immersion and 

emersion periods (Wylloughby & Archer, 1973; Bärlocher & Kendrick, 1974; 

Chamier et al., 1984). In fact, in a study performed by Llamas et al. (2008) with 

several species of the Fusarium genus, they found that, although some species see 

its gemination decreased or disabled with increasing levels of salinity, some other 

species are positively affected with high values of NaCl. The authors confirm the 

possibility of some species of Fusarium being able to develop a saprophytic 

lifestyle in salty waters. This species physiological capabilities and long term 
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colonizer (Wylloughby & Archer, 1973) may justify its presence in 21 days 

conditioned leaves. Other than this, the spores of Fusarium sp. might have also 

simply attached itself to the leaves after abscission, when they fell on the ground 

(Bärlocher, 1992), not having any connection to the estuary. Moreover, it’s also 

possible that our bags have been exposed outside of water in some moment, 

allowing the attachment of the spores, or even through an event of rain and soil 

runoff that enables the seepage of terrestrial spores onto the bags. 

 Tests on the effects of salinity on mycelial growth indicate that species of 

aquatic hyphomycetes are able to grow in salt-rich environment (Byrne & Jones, 

1975; Simões et al., submitted); their sensitivity is species specific. 

 Both H.lugdunensis and Tetrachaetum elegans (found in alder and poplar, 

respectively), are commonly found in streams belonging to the catchment area of 

the Mondego river. Their presence in the area may result from spore dispersal in the 

water column or from air dispersal: these species can release spores in the air, 

allowing long range distribution (Webster, 1992; Laitung et al., 2004). This ability 

of discharging spores in the air, allied with the fact that our study site has areas of 

intertidal flats that are exposed at low tides (Marques et al., 2013) (consequently 

exposing the leaf bags) might facilitate the colonization of these species in our 

leaves. These species somatic growth has been shown to tolerate salinity, 

particularly H. lugdunensis which is not affected by the presence of NaCl in the 

growth medium; in the case of T. elegans EC50 for growth is 14g/L NaCl (Simões 

et al., submitted) which is in the range of the values found in our study site. 

Although sporulation of both species proved to be more sensitive to salinity than 

their growth, mycelium sporulation might have been allowed due to the oscillation 

in salt levels in this transitional area.  
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 We found no differences in sporulation rates between leaf species, but there 

seems to exist a tendency to have higher rates in poplar leaves. This might occur 

due to poplar greater toughness, which facilitates fungal mycelium growth, 

consequently leading to higher sporulation. After 21 days conditioning, alder is 

possibly over-conditioned, which may limit mycelial growth and spore production.  

 Bacteria seem to play a big role in decomposition of organic matter in 

estuarine areas (Heip et al., 1995; Crump et al., 1998 & 1999). In this study, the 

abundance of this prokaryotic group was higher in the more recalcitrant leaf. This 

may be related with the fact that, after 21 days, poplar offers a more stable and still 

usable substratum (e.g. leaf veins, some recalcitrant tough mesophyll) for the 

bacterial communities; it is generally recognized that bacteria play a key role in the 

decomposition of more recalcitrant material being of high importance in later stages 

of leaf degradation (Wright & Covich, 2005).  

 

 In the evaluation of meiofauna, we found individuals belonging to the 

taxonomic groups of Nematode, Copepod, Polychaeta, Bivalvia, Turbellaria, 

Cladocera, Gastropoda and Ostracoda. Even though all of them exist in fresh and 

salty water, Nematodes are usually the most abundant in aquatic ecosystems (Coull, 

1999; Hourston et al., 2011; Alves et al., 2013); the same pattern was observed in 

the meiofauna found in both leaf species. Although our results showed no statistical 

differences in meiofauna abundance between leaves, there is also a higher tendency 

for them to appear in poplar leaves. This could happen not only due to the higher 

abundance of bacteria in these leaves, but also due to the greater support and 

stability that poplar may offer due to its toughness in comparison with alder leaves. 

The seemingly tendency for nematodes to appear in higher proportion in our study 



38 
 

site might be explained by that fact that most nematodes feed primarily on bacteria 

which are abundant in our study zone; furthermore, the second group with higher 

percentage – copepods – feed mainly on microphytobenthos whose occurrence 

might be limited by the turbulence and depth of the estuarine zone in our study 

area, which possibly results in fewer individuals of this taxonomical group (Coull, 

1999; Hourston et al., 2011). These explanations should, nevertheless, be faced 

with prudence and need further investigation. 

 

 The macroinvertebrates found (C. maenas, E. marinus, M. palmata, P.ulvae 

and S. rugicauda) in our samples were extremely low in numbers, which suggests 

that leaves may constitute an unimportant food source for this group, being leaf 

decomposition a dominant microbial-mediated process in this area. However, our 

bags were incubated in the margins of the river and were subjected to cycles of 

immersion and dehydration; such oscillations may have limited the invertebrates’ 

access to the leaves. On the other hand, the bags may also constitute a stable 

substratum providing shelter and camouflage from predators. Other than that, the 

presence of these invertebrates in the leaf bags may be accidental. Nevertheless, the 

feeding behavior of some species may suggest that leaves by themselves may 

constitute an important food source for these invertebrates. For instance, Peringia 

ulvae is a periphyton grazer that feeds selectively on diatoms and fungal hyphae 

(Sousa, 2013) and laboratorial tests indicate that the isopod Sphaeroma rugicauda 

may feed on leaves and/or its biofilm (Marsden, 1979; Willis & Heath, 1985). 

Conversely, some of these invertebrates might be slowing the process of 

degradation of the leaves; for example, C. maenas is known to prey on meiofauna 
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(Grosholz et al., 1996) and E. marinus might feed on isopods (Dick et al., 2005) 

like S. rugicauda (Castañeda & Drake, 2008). 

     

 According to the RCC, collectors dominate in these transitional waters. Our 

study tends to support the point of view that shredders and grazers may have a 

limited degradative role of leaves entering the stream and remaining in the margins. 

Although the tolerance of fungi to salt is recognized, in our study, leaf litter biotic 

decomposition seems to be mainly promoted by bacteria and by a still largely 

unknown meiofauna. The use of multiple isotopic tracers may help to clarify this 

issue in these environments (McCallister et al., 2004). We cannot rule out the 

importance of abiotic factors such as salinity, tides and turbulence (Mao et al., 

2004; Fuentes-Cid et al., 2015) as drivers of leaves degradation, even with the mesh 

bags reducing some of the mass losses from abrasion (Young et al., 2008).  

 As it was already stated, few studies have been made that characterize and 

try to understand leaf litter decomposition in transitional waters. Our work only 

scraped the surface of what is yet to discover about the real importance 

(quantitative and qualitative) of leaves in the fluvial-estuarine area and the 

recycling of nutrients. For following works, we suggest a study during the course of 

the seasons of the year to account for different temperatures, and overall climate 

and also throughout a gradient of salinity so as to characterize the microbial 

communities. Laboratory tests portraying the fluvial-estuarine conditions, with 

invertebrates collected in the area to assess their feeding response to leaves seem 

also necessary. 

 There are still many possible studies to be made in order to access and help 

comprehend the recycling of nutrients in these highly productive and agitated 
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systems and how they influence the aquatic trophic chains in these areas, allowing a 

good management of the ecosystem. 
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