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Abstract 

The anthracycline Doxorubicin (DOX) is one of the most widely used anti-neoplastic 

agents. However, treatment with this drug is associated with a cumulative and dose-

dependent cardiotoxicity. Mitochondrial Sirtuin 3 (Sirt3) is the major mitochondrial 

deacetylase, modulating several pathways, such as apoptosis and metabolism. Thus, 

our hypothesis is that mitochondrial Sirt3 activity decreases DOX-induced 

cardiotoxicity. H9c2 cardiomyoblasts were transfected with siRNA and a plasmid 

construct to produce Sirt3 knock-down and Sirt3 overexpressing cells, respectively. 

DOX (0.5µM and 1µM) toxicity was evaluated by the Sulforhodamine B assay and by 

flow cytometry using the Life/Death assay. Mitochondrial depolarization and 

superoxide production was determined by fluorescence microscopy and content in 

specific proteins by western blot. Sirt3 overexpression or knock-down was confirmed 

by Western Blot and qRT-PCR. In all experimental groups, DOX induced cell death. 

Increase in Sirt3 content by transfection-mediated overexpression appeared to decrease 

DOX toxicity, most by maintaining the integrity of mitochondrial network and 

reducing oxidative stress. On the other hand, p53 seems to be a direct target of Sirt3 

and the protection against cell death conferred by Sirt3 could be related to this protein. 

 

Keywords: Sirtuin 3, Doxorubicin, Cardiotoxicity, Cell Death, Protection
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Resumo 

A antraciclina Doxorrubicina (DOX) é um dos mais usados agentes antineoplásicos. No 

entanto, o tratamento com este composto está associado com cardiotoxicidade, que é 

dependente da dose e da sua acumulação. A mitocondrial Sirtuína 3 (Sirt3) é a maior 

deacetilase mitocondrial, modulando diversas vias, tal como a apoptose e o 

metabolismo celular. Assim a nossa hipótese é que a actividade da Sirt3 diminui a 

cardiotoxicidade induzida pela DOX. Os cardiomioblastos H9c2 foram transfectados 

com siRNA e plasmídeos para produzir células com Sirt3 silenciada e sobreexpressa, 

respectivamente. A toxicidade da DOX (0.5 e 1 µM) foi avaliada pelo ensaio da 

Sulforodamina B e por citometria de fluxo. A despolarização mitocondrial e a 

produção do anião superóxido foi determinada por microscopia de fluorescência e o 

conteúdo de proteínas específicas por western blot. A sobre e sub-expressão da Sirt3 foi 

confirmada por western blot e RT-PCR. A toxicidade da DOX envolveu a indução de 

morte celular em todos os grupos. O aumento do conteúdo de Sirt3 mediado pela 

sobreexpressão parece diminuir a toxicidade da DOX, maioritariamente pela 

manutenção da integridade da rede mitocondrial e redução do stress oxidativo. Por 

outro lado, a p53 parece ser um alvo directo da Sirt3 e a protecção conferida contra a 

morte celular pela Sirt3 pode ser relacionada com esta proteína. 

 

Palavras-chave: Sirtuína 3, Doxorrubicina, Cardiotoxicidade, Morte Celular e Protecção 
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1. Mitochondria 

1.1 Mitochondrial Structure and Organization 

Mitochondria were first described in 1857 by Rudolf Koelliker, with Carl Brenda giving 

them the name “mitochondria” a few years later [1]. Mitochondria are composed by 

two membranes, the outer mitochondrial membrane (OMM) and the inner 

mitochondrial membrane (IMM), which contains invaginations, called cristae. The 

cristae allow for a greater surface area, which is correlated with metabolic activity. The 

arrangement of these membranes forms the intermembrane space, located between 

both membranes, and the matrix that is enclosed by the IMM [2]. Multisubunit 

translocases are located in both mitochondrial membranes and play a role in 

recognition and transport of several proteins. The translocase of the outer membrane 

(TOM) recognizes mitochondrial-target proteins and forms a pore which allow the 

cross of outer membrane. Proteins targeted to the matrix interact with translocases of 

the inner membrane (TIM) [3]. 

Advances in imaging techniques showed mitochondria as a dynamic organelle that 

undergo fission and fusion, allowing its movement through microtubule network and 

size and shape changes [2, 4]. Beyond influencing mitochondrial morphology, 

mitochondrial fission-fusion can contribute to repair defective mitochondria, 

segregation of mitochondria into daughter cells, efficiency of oxidative 

phosphorylation (OXPHOS) and mitochondrial calcium signaling.  This process is 

mediated by several proteins that promote the remodeling of OMM and IMM, such as 

dynamin-related protein (Drp1) and mitochondrial fission 1 protein (Fis1) for fission 

and mitofusin 1 (Mfn 1)/2 (Mfn2) and optic atrophy 1 (OPA1) for fusion [5].  

Mitochondria also has its own genome, exclusively maternally inherited. Mammalian 

mitochondrial DNA (mtDNA) is 16.6 kb circular double-stranded molecule capable of 

transcription, translation and protein synthesis, independently of nuclear DNA 

(nDNA). It encodes 22 rRNAs, 2 rRNAs and 13 subunits from OXPHOS complexes I, 

III, IV and V [4, 6]. 



4 
 

 

1.2 Mitochondrial Bioenergetics 

Mitochondria are the cell’s powerhouse, once they produce the majority of cellular 

adenosine triphosphate (ATP) and carry out several other crucial metabolic processes, 

such as tricarboxylic acid cycle, β-oxidation of fatty acids, urea cycle and pyruvate 

oxidation [7]. During glycolysis, glucose is converted to pyruvate in cytosol, reducing 

cytosolic nicotinamide adenine dinucleotide (NAD+) to NADH, being then transported 

to mitochondria. In the mitochondrial matrix, pyruvate undergoes an oxidative 

decarboxylation to acetyl coenzyme A (acetyl CoA) by pyruvate dehydrogenase 

complex. Fatty acids are also oxidized in mitochondria via β-oxidation to generate 

acetyl CoA, NADH + H+ and succinate. Acetyl CoA enters in the Krebs cycle or 

Tricarboxylic Acid (TCA) cycle, producing for each round 2 molecules of CO2, 3 

molecules of NADH, 1 molecule of succinate and 1 molecule of guanosine triphosphate 

(GTP) [2]. 

The next stage is OXPHOS, in which respiratory substrates, such as NADH and 

succinate generated through the TCA cycle, are oxidized and coupled to the 

production of ATP. In this process, substrate oxidation is performed to respiratory 

enzyme complexes that are capable of accepting and donating electrons and are located 

in the IMM. Initially, 2 electrons are transferred from NADH to NADH dehydrogenase 

(complex I) or from succinate to succinate dehydrogenase (complex II) with FADH2 as 

a co-factor, reducing ubiquinone to ubiquinol. After, electrons are transported to 

cytochrome c reductase (complex III) and then cytochrome c transfers electrons to 

cytochrome c oxidase (complex IV), reducing molecular oxygen, the final acceptor, to 

form H2O. The energy released by the transfer of electrons is coupled to the 

translocation of protons from the matrix to intermembrane space, by complex I, III and 

IV [7]. The resulting proton gradient, called proton-motive force, composed by an 

electric and a pH-dependent component, is used to drive the synthesis of ATP via ATP 

synthase (complex V). During this process, ATP is produced, with part being used by 

mitochondria and the majority being transported to the cytosol in exchange for 

cytosolic adenosine diphosphate (ADP) by the enzyme adenine nucleotide translocase 

(ANT) [8]. 
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1.3 Mitochondria: More than Cell’s Powerhouse 

The contribution of mitochondria to cellular physiology is not limited to ATP 

production. Mitochondria are also crucial for the regulation of intracellular calcium 

homeostasis and for the production of reactive oxygen species (ROS) and reactive 

nitrogen species, which are involved in cell signaling but can also be harmful at certain 

concentrations to the cell [9, 10].  

Cytosolic calcium alterations provide signals to control several cellular events, such as 

muscle contraction, neurotransmitter release and cell death [11]. On the other hand, 

mitochondrial calcium is essential for mitochondrial function and ATP synthesis. 

Mitochondrial calcium accumulation is performed by a specific non-ATP dependent 

uniporter. Calcium efflux results from an exchanged with Na+ or H+, depending on the 

tissue. The accumulation of calcium in the matrix depends on the proton gradient, 

generated by respiratory chain. This accumulation stimulates mitochondrial NADH 

generation and ATP synthase, increasing ATP production [8, 12].  

The mitochondrial electron transport chain (ETC) is a main source of ROS production, 

namely from complex I and III [13]. Complex II can influence the ROS production by 

complexes I and III, but more recently it was proposed that complex II controls ROS 

production by itself [14]. The generation of ROS during normal physiology seems to be 

a natural consequence of metabolism and is necessary for cellular pathways, for 

example for vascular endothelial growth factor (VEGF) signaling [15]. During 

OXPHOS, a small percentage of oxygen is converted in superoxide radical anion, 

which is converted into hydrogen peroxide, a relatively inert molecule, by superoxide 

dismutase (SOD). Three forms of SOD are present in humans [16]. Although all SODs 

catalyze the same reaction, they not share a primary structure. The cytosolic SOD I 

contains a Cu-Zn prosthetic group and SOD III is tretameric and is extracellular [17]. 

Mitochondria are also equipped with enzymatic defenses, such as manganese-SOD 

(SOD II) and glutathione, although stress conditions can deregulate this process and 

increase ROS production. Increased oxidative stress results in mitochondrial proteins 

damage, lipid peroxidation and mtDNA alterations, which promotes loss of 

mitochondrial integrity [8]. 
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Beyond mitochondrial calcium overload and oxidative stress, another deleterious 

condition for mitochondria is the mitochondrial permeability transition (MPT). This 

phenomenon is characterize by an increased permeability of the IMM, which allows 

the free passage of smaller molecules, resulting in a bigger osmotic pressure that leads 

to mitochondrial swelling. If the MPT opening is persistent, mitochondrial membrane 

depolarization and OXPHOS uncoupling can occur, leading to cell death [18].  

 

1.4 Mitochondria and Cell Death 

Multiple forms of cell death can be triggered during mitochondrial stress, such as 

apoptosis, necrosis and mitophagy. The removal of damaged mitochondria can lead to 

cell survival in an adaptive process or to cell death. This process, called mitophagy, 

seems to be stimulated by MPT and OMM permeabilization [9]. Both necrosis and 

apoptosis can be initiated by internal as well as by external stimuli and might involve 

activation of similar signaling pathways such death receptors or OMM 

permeabilization. However, the mode of cell death is determined by the intensity of the 

insult and the availability of ATP [9, 16]. Necrosis can occur due the activation of the 

MPT pore, which compromises ATP production, once the IMM becomes freely 

permeable to protons, leading to OXPHOS uncoupling. A trait of necrosis is a drastic 

drop of ATP and inflammation. Apoptosis involves the activation of specific proteases 

called caspases, which are divided in initiator caspases (2, 8, 9 and 10) and effector 

caspases (3, 6 and 7). Mitochondria are crucial in the intrinsic pathway, which is 

characterized by intracellular apoptotic stimuli. With the rupture of the OMM, several 

apoptotic initiators, such as cytochrome c (Cyt c), apoptosis-inducing factor (AIF) and 

SMAC/DIABLO, are released from the intermembrane space. Pro-apoptotic proteins, 

including Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist killer 

(Bak), can also form channels, allowing the release of those initiators. During normal 

situations the anti-apoptotic members of B-cell lymphoma 2 (Bcl-2) family avoid the 

release of pro-apoptotic members. However under stress an imbalance and inactivation 

of anti-apoptotic proteins occur. When cytochrome c is released, promoting cyt c – 

Apaf-1 – Pro-caspase 9 complex (called apoptosome) assembly, which in turn activates 
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caspases 9 and the caspases cascade is triggered. Activated caspase 3, 6 and 7 cleave a 

number of targets, such as lamins and PARP, leading to apoptosis [12, 19, 20]. 

 

1.5 Mitochondrial Drug-Induced Toxicity 

Some clinically used drugs cause side effects, usually observed in patients with 

mitochondrial diseases [21]. It has become clear that several chemical agents can 

disturb mitochondrial function. Nowadays, 30% of new drugs fail to reach the market 

as a result of toxicity issues, namely associated to mitochondria [22]. Drug-induced 

mitochondrial dysfunction can be caused by the parent drug itself or to reactive 

metabolites produced by cytochrome P450. The critical role of mitochondria in cellular 

bioenergetics and its complexity makes mitochondria a crucial player in the 

development of drug-induced toxicity [23]. Mitochondrial injury can include 

alterations of metabolic pathways and damage on mitochondrial components, such as 

OXPHOS uncoupling ETC, inhibition of OXPHOS complexes, oxidative stress, opening 

of MPT pore, depletion of mtDNA, inhibition of TCA cycle and β-oxidation and 

inhibition of membrane transporters [21-23]. Mitochondrial dysfunction has been 

associated with the toxicity of several anti-cancer drugs, including Doxorubicin that 

will be discussed in the following section. 

 

2. Doxorubicin  

2.1 Anthracyclines 

Anthracycline drugs were first identified in the 1950’s from the soil bacterium 

Streptomyces peucetius [24]. This antibiotic family is composed by four main 

anthracyclines: Doxorubicin (Fig. 1), Daunorubicin, Epirubicin and Idarubicin [25]. 

These molecules are highly effective anti-neoplastic agents and are used to treat 

numerous adult and pediatric cancers. Recognized as a potent antitumor agent, DOX 

has been used (alone or in combination with other agents) in treatments against a wide 

range of solid tumors and hematologic malignancies, such as breast cancer, leukemia 

and lymphoma [24, 26]. 
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Figure 1 - Chemical Structure of Doxorubicin. Figure drawn through ChemBioDraw software. 

 

2.2 Antineoplastic Mechanisms  

Despite the extensive use of DOX, the antineoplastic mechanism still raises 

controversy, due to the combination of several mechanisms. Initially, the mechanism 

for anti-cancer effects was attributed to intercalation of the planar DOX ring into DNA 

helix, which unwind nuclei acids and cause stereochemical disorder, blocking 

transcription and replication and preventing the rapidly growing of cancer cells.  DOX 

covalently binds to proteins involved in DNA replication and transcription, leading to 

an inhibition of DNA, RNA and protein synthesis, inducing cell death [26, 27]. 

Topoisomerase II is in fact recognized as a main cellular target. DOX also acts by 

stabilizing a reaction in which DNA strands are cut and covalently linked to the 

enzyme, blocking consequent DNA resealing.  This mechanism blocks further DNA 

replication and transcription [26]. Similarly to other anti-neoplastics, DOX 

administration causes adverse reactions through multiple mechanisms and targets [25].  

 

2.3 Treatment-Related Toxicity  

Albeit controversial, it is now accepted that DOX-induced toxicity is independent from 

its anticancer activity [12]. The successful treatment with DOX is hampered by side-

effects, such as hematopoietic suppression, nausea, vomiting, extravasation and 
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alopecia. However, the most feared complication is cardiotoxicity. Although several 

organs are affected, the heart seems to be the most affected one, with several possible 

explanation available, including: 1) a specific accumulation or differences in drug 

efflux; 2) a decreased on antioxidant levels in cardiac tissue or 3) a higher 

mitochondrial content and energetic demand of heart [12]. Because DOX is a very 

potent anti-neoplastic agent, the study of the mechanisms responsible for DOX-

induced cardiotoxicity is needed, in order to potentially increase the effective dosage 

given to patients [27, 28].   

 

2.3.1 Cardiotoxicity 

The dose-dependent cardiotoxicity induced by DOX compromises the clinical 

application in its fullest effective dosage. The heart has a high energy demand and any 

interference in energy production machinery will affect the physiology and heart 

contraction. Indeed, DOX-induced cardiotoxicity has a strong mitochondrial 

component [12, 29]. As a result of DOX treatments, patients can develop acute, early- 

or late-onset cardiotoxicity. The acute toxicity (pericarditis and arrhythmias) appears 

immediately after treatment and usually reverts after ending the treatment; this 

probably resulting from an inflammatory response [27]. Early-onset cardiotoxicity 

arises about one year after chemotherapy with DOX and is characterized by the 

appearance of chronic dilated cardiomyopathy. Delayed DOX cardiotoxicity can 

develop after 10 or 15 years with a normal cardiac function and is characterized by left 

ventricular dysfunction and congestive heart failure [27, 30]. This is particularly 

important for adult survivors of pediatric malignancies. In a juvenile mouse model, it 

was demonstrated that when hearts were exposed to DOX, the development of an 

abnormal vasculature is observed, with hearts being more susceptible to myocardial 

infarction. Also, a decreased number of progenitor cardiac cells were observed after 

DOX treatment, suggesting that these undifferentiated cells are more susceptible to 

DOX, thus limiting the resistance of the heart to stress [31]. With a similar work, 

Angelis et al. reported different susceptibilities of adult and neonatal rat 

cardiomyocytes to DOX treatment, with the apoptotic pathway being more active in 
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immature cells, demonstrating again that cardiac cells respond differently to DOX 

depending on their differentiation state [32]; this was further confirmed by our group 

[27]. Besides age, gender is another risk factor in the side-effects of DOX. It was 

reported that females suffer a more severe cardiotoxicity with more depressed 

contractility. Simultaneous administration of other cardiotoxicity drugs and 

comorbidity, such as hypertension, diabetes mellitus, liver disease and previous 

cardiac disease, also contribute to an increased risk of cardiotoxicity [33]. The risk level 

can be identified as type I or Type II based on the effect on cardiomyocytes. The type I 

is characterized by cell death, necrosis or apoptosis and is not reversible, representing 

the late-onset cardiotoxicity. Type II involves reversible cardiomyocyte dysfunction 

[24]. The difference in time-of-onset suggests that different mechanisms are involved 

[28]. Different studies suggest a range of mechanisms that lead to chronic toxicity 

include: disruption of cellular and mitochondrial homeostasis, impaired expression of 

cardiac proteins, induction of mitochondrial DNA lesions, extracellular matrix 

remodeling, apoptosis induction and others [24-26]. However, DOX-induced oxidative 

stress on cardiac cells has been implicated as a major mechanism responsible for 

cardiotoxicity [34].   

 

2.3.1.1 Mitochondria as the Origin of Cardiotoxicity: Oxidative 

Stress 

The generation of reactive oxygen species is one of the most described mechanisms 

proposed for DOX cardiotoxicity. The ability to induce ROS was predicted from DOX 

chemical structure, which contains a quinone moiety [35, 36]. In mitochondria, DOX 

interacts with the electron transport chain (NADH dehydrogenase - complex I) as well 

as with other cellular dehydrogenases, such as cytochrome P450, being reduced to an 

unstable semiquinone, that can react with oxygen and generate ROS [12, 24]. Oxidative 

stress primarily affects mitochondria, once it is proposed that DOX presents a strong 

affinity to cardiolipin, one of the most abundant phospholipid in the IMM. Since 

cardiolipin is required for the activity of ETC enzymes, DOX-induced damage to 

cardiolipin results in the inhibition of oxidative phosphorylation [37].  mtDNA is 

damaged by ROS or directly by DOX leading to ECT failure and increase in ROS 
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release. Therefore, DOX-induced oxidative stress results in damage of mitochondrial 

structures, through protein and lipid peroxidation, oxidation of mtDNA and  induction 

of the MPT pore [34].   Due to the impairment of ETC,  Carvalho et al. reported a 

stimulation of glycolysis caused by DOX on cardiac cells, using a rat model of chronic 

DOX-induced cardiomyopathy [38]. Metabolic remodeling caused by DOX may occur 

when metabolic gene expression is transcriptionally suppressed or stimulated due to 

DOX treatment [28, 38]. The formation of DOX-iron complexes also favors hydroxyl 

radical generation through the Fenton reaction, acting through recycling ferric anion. 

However, in most cells, including cardiac, it is thought that not enough free iron exists 

to complex with DOX to an extent necessary to cause cardiomyopathy. Therefore, DOX 

may alter iron homeostasis, via aconitase [28]. The effects of DOX on iron metabolism 

can also be mediated by proteins that sequester and bind intracellular iron [12, 24, 28, 

37]. In addition, DOX administration increase endothelial NO synthase (eNOS) and 

inducible NO synthase, resulting in unbalanced production of NO and consequent 

harmful effects. DOX can also be metabolized by NOS as well, leading to superoxide 

anion production [12]. In a sub-chronic DOX toxicity model, Pereira et al. 

demonstrated that cardiac mitochondria are more affected than their liver or kidney 

counterparts, with more alterations in terms of mitochondrial oxygen consumption 

and mitochondrial transmembrane potential [39]. In this work it is clear that in order to 

prevent cardiotoxicity, ROS production should be limited, without suppressing the 

anti-neoplastic activity.  

Overexpression of mitochondrial SOD II decreases apoptosis and improves left 

ventricular function scavenging free radical in mitochondria [24]. Indeed, 

overexpression of SOD II in NO null mice prevents DOX side effects [40]. Besides 

inhibiting OXPHOS, ROS can induce the oxidation of some residues or functional 

groups, such as thiol groups which form disulfide bonds upon oxidation. This leads to 

conformational changes and consequently inhibition of function. Several mitochondrial 

proteins, including the adenine nucleotide translocase (ANT) undergo oxidation, 

which appear to be critical for the regulation of the calcium-dependent MPT pore [12, 

41]. 
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2.3.1.2 Mitochondria as the Origin of Cardiotoxicity: Intracellular 

Calcium Dysregulation  

An interplay between calcium and ROS generation has already been demonstrated 

[28]. Some studies highlighted loss of mitochondrial calcium loading capacity through 

increased MPT pore induction as one aspect of DOX toxicity [28, 37]. Besides 

mitochondria, DOX can alter calcium homeostasis in muscle cells by disruption of 

normal sarcoplasmic reticulum (SR) function, inhibiting the Ca2+ ATPase pump and 

impairing calcium clearance systems. DOX can trigger the release of Ca2+ from the SR 

by increasing the probability of opening of ryanodine channels [28]. Saeki et al. 

proposed that DOX binds to several sites on the ryanodine channel and that this 

binding occurs regardless the channel being open or closed [42]. Under distress, the ER 

can trigger the activation of caspase 12, followed by apoptotic induction. Because a 

major component of intracellular calcium in cardiomyocytes is contained within the 

SR, oxidative stress leads to calcium leakage, calpain activation and caspase 12 

cleavage [28, 43]. In this context, it is not surprising that DOX cardiomyopathy is 

associated with myofibrillar deterioration, which is also likely to be a consequence of 

calpain activation and titin degradation, one of the largest proteins and component of 

cardiac sarcomeres [28]. Lim et al. observed that calpain inhibition maintains 

sarcomeres and cardiac function after DOX treatment [44]. Mitochondria in 

cardiomyocytes are located near calcium-release sites on the SR and can capture a large 

quantity of calcium [45]. DOX increases the susceptibility of mitochondria to calcium, 

decreasing the ability to retain it, contributing to disturb cytosolic calcium levels. As 

described above, excessive mitochondrial calcium accumulation triggers MPT pore, 

increasing the permeability of the IMM and disrupting energy-generating processes 

[12, 30, 37]. 
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2.3.1.3 Mitochondria as the Origin of Cardiotoxicity:  Bioenergetics 

Alterations 

There are evidences that correlate DOX cardiotoxicity with disturbances of heart 

mitochondrial function and bioenergetics. Oxidation of mtDNA results in a defective 

respiratory chain that will enhance electron leak to molecular oxygen, increasing ROS 

production, which can directly inhibit the complexes of OXPHOS [12]. On the other 

hand, DOX forms complexes with cardiolipin, disturbing complex activity. Then DOX 

interacts directly with complex I undergoing a quinone moiety reduction, inducing 

ROS formation [46]. Some authors described that alterations of mitochondrial 

bioenergetics were detected right after the oxidative imbalance was established [47, 48]. 

Using different models, it has been observed that DOX administration compromises 

respiratory function of cardiac mitochondria, with a decrease in state 3 respiration rate 

and stimulation of respiratory state 4 [39, 49, 50]. Interestingly, state 3 alterations in 

DOX-treated rats were reversed by dithiothreitol, which suggest specific alterations in 

protein thiol groups by DOX [51]. Consequently, the respiratory control ratio (RCR) 

was significantly lower, suggesting once more that DOX interferes with the 

fundamental regulation of OXPHOS. Some authors observed no impairment on ATP 

synthesis efficiency, as seen as a normal ADP/O ratio [50]. However recent studies 

showed that ATP synthase was significantly reduced in both H9c2 cells and 

mitochondrial homogenates, with an inhibition of FoF1 proton pump [46, 52]. The 

inhibition of others OXPHOS complexes, namely NADH dehydrogenase [46, 48, 50], 

succinate dehydrogenase [46, 48] and cytochrome c oxidase were also described [53, 

54]. The inactivation of other mitochondrial enzymes also affected the mitochondrial 

bioenergetics state. A decrease on functional ANT, β-oxidation related enzymes and 

Reiske iron-sulfur protein, a ubiquitously expressed ETC component, resulted in a 

reduction of bioenergetics capacity [12]. Other enzymes that catalyzed reactions in 

TCA cycle are also affected, including enzymes present in α-ketoglutarate 

dehydrogenase and pyruvate dehydrogenase complexes [12, 46]. In fact, a significant 

increase in extracellular acidification and lactate production, a sob-product of 
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glycolysis, and the decrease in OXPHOS suggests a shift to glycolysis after DOX 

treatment [37, 46]. 

 

2.3.1.4 Mitochondria as the Origin of Cardiotoxicity: Apoptotic 

Signaling 

It is accepted that many mechanisms such as MPT pore, ROS generation or 

mitochondrial dysfunction are involved in cardiotoxicity induced by DOX. 

Cardiomyocytes can undergo apoptosis, necrosis, autophagy or senescence. 

Autophagy might be triggered by energy depletion, ROS, mitochondrial 

depolarization, oxidized proteins and MPT induction, all traits present after DOX 

treatment. It is not known if autophagy is directly induced by DOX or is a consequence 

of mitochondrial dysfunction [12]. Cardiomyocyte apoptosis has been proposed as a 

mechanism by which DOX causes deterioration of cardiac function.  Apoptosis is an 

energy-dependent programmed cell death, crucial for normal development and cell 

homeostasis. The cellular morphological changes include cell shrinkage, DNA 

fragmentation, chromatin condensation and membrane blebbing [30, 37].  DOX causes 

apoptosis through multiple mechanisms that apparently have mitochondria as 

initiators [28]. Interestingly, the expression of anti-apoptotic proteins (B-cell 

lymphoma-extra-large (Bcl-XL) and Bcl-2) is initially up-regulated after DOX 

treatment, suffering a secondary decrease [24]. ROS generation, which disrupts 

cardiolipin and leads to the MPT pore, can lead to the release from mitochondria of 

several apoptotic initiators, such as cytochrome c or the AIF. Pro-apoptotic factors such 

as Bax and Bak can be directed to mitochondria after treatment [12, 24]. The 

transcriptional factor GATA-4, important in myocardium development and function, 

regulates the apoptotic pathway by activating the anti-apoptotic gene Bcl-XL. In early 

stage of DOX treatment, GATA-4 depletion is observed, which subsequently enforces 

cardiomyocyte apoptosis [30, 55].  DOX also inhibits Akt phosphorylation increasing 

active GSK3β, a negative regulator of GATA-4 in the nucleus [56]. Dephosphorylation 

of Akt and Bcl-2-associated death promoter (Bad) can activate caspase 3, inducing 

DNA damage [37]. Kawamura et al. observed a depletion of cardiac p300 mRNA, a 
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transcriptional co-activator needed for the maintenance of the differentiated phenotype 

in hearts from DOX-treated mice. It was also reported that the overexpression of p300 

prevented apoptosis and cardiac dysfunction induced by DOX [57]. Although normally 

cardiomyocytes are resistant to Fas-induced apoptosis, in the presence of DOX 

cardiomyocyte apoptosis can occur via Fas pathway [58]. Moreover, ROS activates the 

transcription factor NF-exercising a pro-apoptotic effect via direct activation of 

apoptotic genes, such as FasL, Fas, c-Myc and p53 [59]. ROS also down-regulates the 

expression of FLIP, a caspase 8 inhibitory protein, which in part sensitizes Fas-

mediated apoptosis [30]. According to Verdam, oxidative stress also activates heat-

shock factor 1 (HSF-1), which acts to produce more heat-shock protein 25 (Hsp25) that 

stabilizes p53, increasing the production of pro-apoptotic proteins [60]. The heat-shock 

family of proteins has a different role in these processes. For example, Hsp27 prevents 

DOX-induced apoptosis and myocardial dysfunction and Hsp10 and Hsp60 increase 

pot-translational modifications of Bcl-2 proteins [61]. Some Heat shock proteins can 

also be secreted into the extracellular space and bloodstream, acting as ligands for toll-

like receptors (TLRs). TLR-2 functions as a “death receptor” that activates the apoptotic 

apparatus, such as FADD and caspase-8, without a conventional cytoplasmic death 

domain.  This TLR signaling through NF-pathway is involved in cytokine 

production, apoptosis and cardiac dysfunction after DOX treatment in vivo [28]. DOX 

can likewise directly influence caspases activity, activating caspase-3 [28] and caspase-9 

[26]. Numerous studies have shown that DOX-induced cardiomyocyte apoptosis is 

also associated with increased expression and activation of p53 tumor suppressor 

protein, leading to transcriptional activation of pro-apoptotic protein [34].  

 

2.3.2 DOX and p53 

The transcription factor p53 is a short-lived protein with a half-life of 20-40 min being 

present at a low level under normal conditions. In the presence of DNA damage, p53 is 

activated and as a nuclear transcription factor, regulates several genes involved in cell 

cycle arrest, DNA repair and apoptosis [34, 37, 62]. p53-mediated signals in 

cardiomyocytes apoptosis are triggered by hypoxia, ischemia, heart failure or 
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mechanical stretch, being also activated by DOX [63]. Accumulation of DOX in the 

nucleus of cardiac cells and subsequent DNA damage was observed in DOX-induced 

cardiac myocyte death. In fact, DOX treatment seems to cause an increase in the active 

form of the DNA damage-activated p53 protein [34]. When exposed to DNA damage 

stress, p53 is phosphorylated in both the amino- and carboxyl- terminal domains, 

including at Ser15, leading to the stabilization and accumulation of p53 in the 

cytoplasm. Subsequently, it is trans-activated into the nucleus to induce the expression 

of some genes [62]. In addition, the acetylation of p53 at lysines 320 and 383 requires 

the previous phosphorylation of p53 at serine 15 and at additional amino-terminal 

sites, which further stimulates these acetylation events [64]. In the nucleus, p53 induces 

apoptosis through transcription-induced regulation of the expression of Bcl-2 family 

members, oxidative stress induction, mitochondrial cytochrome c release and caspase-3 

activation [65]. DOX interference with DNA replication and transcription leads to p53 

activation and translocation to mitochondrial membranes. In fact, increased levels of 

p53 in mitochondria and nuclei were measured in response to DOX, and its 

localization in mitochondria leads to mtDNA damage [34, 66].  DOX-activated p53 can 

also act as a transcription factor increasing the expression of pro-apoptotic cells, such 

as Bax, which is translocated to mitochondrial membranes and interferes with 

mitochondrial function, including by inducing mitochondrial membrane potential 

depolarization [34].  The increase of p53 expression is also associated with the 

downregulation of Bcl-2 [62], with Liu et al. associating an increase of PUMA in p53-

mediated apoptosis in vitro and in vivo. p53 can bind to Bcl-XL protein, causing a 

conformational alteration and mitochondrial translocation of p53 and Bcl-2 that leads 

to the release of cyt c and cell apoptosis [34, 62]. DOX activation of mitochondrial p53 

can also lead to HIF-1 inhibition and promote the decrease of cardiac mass [37]. 

ROS/RNS are critical inducers of p53 accumulation in the heart [67]. Shizukuda et al. 

(2005) observed that p53 KO mice are resistant to acute cardiotoxicity and myocardial 

glutathione and SOD I levels are preserved after DOX injection. Although this did not 

happen in WT mice, it suggests that p53 is important for DOX-induced cardiotoxicity 

and oxidative stress generation [63]. According to Liu et al. (2008), cytotoxic effects in 

H9c2 cells were also associated with the increased activation and nuclear translocation 
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of extracellular signals regulated kinases 1/2 (ERK1/2) and p53. ERK 1/2 is an important 

early mediator for DOX-induced cell apoptosis, operating upstream to p53 and 

phosphorylating p53 (Ser15) [62]. Acute DOX-induced cardiotoxicity can also result 

from p53-dependent deregulation of the mammalian target of rapamycin (mTOR), a 

serine/threonine protein kinase that controls protein translation and cell growth. Zhu et 

al. (2009) suggested that acute DOX-induced cardiac systolic dysfunction and loss of 

cardiomyocytes occurs via p53-dependent inhibition of mTOR. However 

cardiomyocyte apoptosis occurs via a p53 dependent pathway, but independent of 

mTOR signaling [68]. Using a chemical inhibitor of p53, pifithrin-α, Sardão et al. (2009) 

and Liu et al. (2004) observed a blockage of apoptosis via the inhibition of p53 

downstream activity,  affecting Bax and MDM2 expression, which are increased with 

DOX treatment [34, 69]. Cell death cause by DOX treatment was not completely 

inhibited, suggesting that p53-independent mechanisms are operating [70]. In p53-null 

osteosarcoma Saos-2 cells, DOX treatment induced apoptosis, leading to mitochondrial 

membrane depolarization, cytochrome c release, caspase-3 activation, up regulation of 

Bax and down regulation of Bcl-2. Oxidative stress was also increased and may be a 

signal for DOX-induced cell death even in the absence of p53, since the reduction of 

ROS lead to the suppression of the effects induced by DOX [65].  

 

2.4 Prevention of Doxorubicin-Induced Cardiotoxicity 

Oxidative stress has been proposed as the major mechanism of DOX-induced 

cardiotoxicity. Thus, free radical scavengers and other compounds with antioxidant 

properties have been used to mitigate DOX cardiotoxicity [71], these compounds 

include Vitamin E and N-acetyl cysteine [72]. Dithiol compounds, such as lipoic acid, 

prevent lipid and protein oxidation and prevent mitochondrial calcium dysregulation 

caused by DOX treatment [73]. Flavonoids are also potential protectors due to radical-

scavenging and iron-chelating properties [74, 75]. Other hypothesis is the use of a 

calcium channel antagonist. Although several compounds were tested to decrease 

DOX-induced cardiotoxicity, the efficacy of those compounds is still far from complete. 

Thus, the use of DOX remains limited and more efforts are needed to find more 
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protective compounds. In this context, and since DOX-cardiotoxicity induces 

alterations in a large number of pathways, the modulation of protective mechanisms 

such as sirtuins can be a good approach to reduce this toxicity, due to their capacity of 

cellular metabolism regulation, oxidative stress and other pathways, as explained in 

the next section. 

 

3. Sirtuins 

3.1 Classification of Sirtuins 

Sirtuins, or Silent information regulator proteins (Sir) were originally characterized in 

1984 in yeast as regulators of life span. These proteins are present in a wide range of 

organisms, from bacteria to humans, forming a conserved family. In mammalians 

seven sirtuins homologues (Sirt1-7) have been identified, affecting several biological 

processes including longevity, aging, metabolism and the response to stress [76-78]. All 

seven sirtuins contain a conserved 275 amino acid catalytic core domain together with 

N-terminal and/or C-terminal domains. Based on the phylogenetic analysis of the core 

domain, the seven human sirtuin genes are included in four classes together with other 

Sir2-related proteins widely distributed in eukaryotes and prokaryotes: Sirt 1-3 are 

class I, Sirt 4 and Sirt 5 are class II and III, respectively, and Sirt 6 -7 belong to class IV. 

Additionally, a novel class “U” has been created to include sirtuins with unique 

features, such as gram-positive bacteria and Termoga maritime sirtuins [79]. 

 

3.2 Sirtuin Enzymatic Activity 

The major enzymatic activity of all sirtuins, except Sirt 4, is protein deacetylation, in 

which the acetyl group of lysine is transferred from the target protein to the ADP-

ribose component of NAD+. Therefore, this reaction is dependent of NAD+,  consuming  

mole equivalent of NAD+ per acetyl group removed and suggesting that sirtuins can be 

sensors of the cellular redox state and energy status [80]. The end result will be the 

deacetylation of proteins, 2’-O-acetyl-ADP ribose and nicotinamide. Sirt 4 and 

additionally Sirt 6 present ADP-ribosyl transferase activity, which are also dependent 

of NAD+ [81]. Moreover, Sirt5 was recently shown to demalonylate and desuccinylate 
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proteins, specially the urea cycle enzyme carbamoyl phosphate synthetase 1 enzyme 

[82]. Sirtuins are regulated at different levels and their activity is altered facing their 

subcellular localization, transcriptional regulation, post-translational modifications and 

the substrate availability. In fact, the availability of NAD+ is possibly the most 

important mechanism that regulates sirtuins activity. Variations in NAD+  levels occur 

as the result of its synthesis and consumption [82]. For example, during metabolic 

stress (caloric restriction) NAD+ increases leading to sirtuin activation [83]. Moreover, 

nutrients and other molecules affect directly or indirectly sirtuin activity. 

Nicotinamide, the reaction product, noncompetitively inhibits sirtuins, acting as an 

endogenous regulator [81]. Some chemical compounds also can act as sirtuins 

activators or inhibitors. Polyphenols are compounds produced by plants, with a well-

known antioxidant activity, and are also sirtuins activators. Among the polyphenols, 

one important example is resveratrol [84]. Likewise oroxylin A, a Chinese medicinal 

plant, increases Sirt3 levels [85]. Beyond nicotinamide, an endogenous regulator, some 

sirtuins inhibitors have been discovered. The most known are sirtinol and splitomicins, 

however both lack potent inhibitory activation of human sirtuins [84]. 

 

3.3 Mitochondrial Sirtuins 

As mentioned above, each mammalian sirtuins has a distinct subcellular localization. 

Sirt 1, 6 and 7 are nuclear proteins and Sirt 2 is predominantly cytosolic, but it can be 

found in the nucleus. Sirtuin 3, 4 and 5 are present in mitochondria, more specifically 

in matrix [76]. In mitochondria, around 130 proteins involved in different metabolic 

pathways hold lysine residues that can be acetylated. Thus, the three mitochondrial 

sirtuins can deacetylate several proteins, regulating metabolic pathways [86]. Once 

Sirt3 is the most abundant of mitochondrial sirtuins, we will focus in this sirtuin. 

 

3.3.1 Sirtuin 3  

Sirtuin 3 is ubiquitously expressed in different tissues and organs [76]. Sirt3 is encoded 

by nuclear DNA and contains a mitochondrial targeting sequence [87]. Sirt3 has 2 
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different isoforms. The full-length Sirt3 (44 kDa) is present in the nucleus, where is 

capable of deacetylating histones such as H3 and H4. In order for Sirt3 (28 kDa) 

achieve its maximal activity, the full length Sirt3 undergoes a proteolytic process, after 

reaching mitochondria. In this process, 142 amino acids of the N-terminal segment are 

removed by the mitochondrial processing peptidase [88].  Although under normal 

situations Sirt3 is present in both nucleus and mitochondria, while under stress 

conditions the nuclear pool moves to mitochondria [89]. By using a mitochondrial KO 

model Lombard et al. (2007) showed that Sirt3 is the major mitochondrial deacetylase 

[90]. Indeed, Sirt3 modulates several mitochondrial pathways via deacetylation of 

lysine-residue, having a role in mitochondrial bioenergetics, apoptosis and cell 

signaling [78]. Sirt3 is directly or indirectly involved in metabolic pathways including 

lipid metabolism, caloric restriction conditions/insulin uptake, urea cycle, glycolysis, 

gluconeogenesis and TCA cycle. However, the extent of the involvement in most of the 

pathways is not yet well understood [81].   

 

3.3.1.1 Regulation of Mitochondrial Metabolism by Sirt3 

Sirt3 has been suggested to promote the efficient utilization of fatty acids in skeletal 

muscle, since it deacetylates and activates long-chain acyl-CoA dehydrogenase 

(LCAD), a key enzyme involved in the β-oxidation [91]. In response to exercise and 

lack of nutrients, Palacios et al. showed that Sirt3 may increase fatty acid utilization, 

because the AMP-activated protein kinase (AMPK) and Peroxisome proliferator-

activated receptor-gamma coactivator 1 alpha (PGC-1α) mRNA levels are reduced in 

Sirt3-/- skeletal muscle [92]. 

Under ketogenic conditions, such as caloric restriction, Sirt3 regulates the production 

of ketone bodies. Two important enzymes in this process, acetyl-CoA Synthase 2 

(AceCS2) and hydroxyl-3-methylglutaryl-CoA Synthase (HMGCS2), are deacetylated 

and activated by Sirt3, increasing the rate of ketogenesis [93]. Sirt3 also regulates the 

urea cycle, that the second enzyme involved in the mitochondrial steps of the urea 

cycle, ornithine transcarbamoylase (OTC) is deacetylated [82]. By using fasted mice 

lacking Sirt3, alterations in β-oxidation and in the urea cycle were shown, 

demonstrating a direct role of Sirt3 in the regulation of the two important metabolic 
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pathways during caloric restriction [94]. During fasting-dependent hepatic glucose 

production form amino acids, Sirt3 deacetylates and activates glutamate 

dehydrogenase (GDH), an enzyme responsible for the conversion of glutamate into the 

tricarboxylic acid cycle intermediate α-ketoglutarate [95]. Sirt3 also activates isocitrate 

dehydrogenase 2 (IDH2), increasing NADH production [82]. In addition, Sirt3 

deacetylates and decreases the activity of cyclophilin D (Cyp D), promoting the 

dissociation of hexokinase II from the OMM, reducing glycolysis [96]. Sirt3 can also 

deacetylate oxidative phosphorylation complexes, more specifically complex I, II and 

III subunits [78, 97].  Studies demonstrated that mitochondria from Sirt3-/- animals 

display a selective inhibition of complex I activity and decreased basal ATP content 

[98]. By performing a proteomic study, Law et al. (2009) showed that Sirt3 binds to 

ATP synthase as well [99]. In mitochondria, Sirt3 can also regulate protein translation 

by deacetylating the mitochondrial ribosomal protein L10 [82]. All the above 

mentioned data suggest that Sirt3 has an important impact in metabolic control and 

support mitochondrial oxidation and ATP production under basal conditions. Indeed 

Sirt3-/- mice exhibit reduction in basal ATP in several tissues [100]. 

 

3.3.1.2 Regulation of other pathways by Sirt3 

Along with histones, also many transcription factors, such as p53 and NFwere 

identified as targets for deacetylation, determining the ability of cells to adapt to 

different conditions [82]. Sirt3 has a role in signaling, acting in signaling molecules 

such as ROS or NO [78]. Sirt3 modulates ROS, up-regulating SOD II expression and 

indirectly increases the activity of others ROS-detoxifying enzymes [101]. When Sirt3 

deacetylates IDH2 and GDH both enzymes increase the production of NADPH, which 

is required for glutathione reductase to convert oxidized to reduced glutathione. It is a 

cofactor for mitochondrial glutathione peroxidase in its ROS scavenging activity [95]. 

Shinmura et al. (2011), supported this idea by demonstrating that an activator of Sirt3 

(resveratrol) decreased ROS production and improved cell survival after 

hypoxia/reoxygenation [102]. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is 
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also a Sirt3 target, and its activity leads to the removal of aldehydes, which are 

accumulated in hearts due to excessive ROS [103].   

Sirt3 can likewise regulate cell death and survival, being the pro-apoptotic or anti-

apoptotic activity dependent of cell type [104]. In Hela cells, Sirt3 deacetylates Ku70, a 

protein present in the ku protein complex, involved in DNA damage repair. Ku70 

deacetylation promotes Ku70/Bax interaction and blocks the translocation of Bax to 

mitochondria, increasing cell resistance to Bax-mediated cell damage [101].  Under 

stress conditions, increased expression of Sirt3 protects cardiomyocytes, due in part by 

hindering the translocation of Bax to mitochondria [105]. CyP D, a MPT pore regulator, 

interacts with Sirt3 and is inactivated, elevating the threshold for pore opening, de-

sensitizing it to cellular stress [96]. AMPK is regulated by the cellular energy changes, 

regulating ATP production and serving as a key regulator of cell survival. In 

cardiomyocytes, Sirt3 can activate serine-threonine liver kinase B1 (LKB1), which 

subsequently promote AMPK phosphorylation that can inactivate GSK3β and 

upregulate GLUT4 protein, protecting cardiomyocytes from hypertrophy [106].  On the 

other hand, Sirt3 plays a pro-apoptotic role in both Bcl-2/p53 and JNK-regulated 

apoptosis. Kim et al. (2010) work supports the pro-apoptotic role, showing that cells 

lacking Sirt3 have decreased stress-induced apoptosis [107]. This dual role is still 

unclear and needs more investigation to understand the mechanisms and different 

pathways involved.  

 

Objectives  

The main objective of the study was to understand the role of Sirt3 on H9c2 

cardiomyoblasts treated with DOX, more precisely whether Sirt3 protects H9c2 cells 

against DOX-induced cardiotoxicity.  

In order to test this hypothesis, the first aim was the production of Sirt3 Knock-down 

and overexpressing H9c2 cardiomyoblasts. The second aim was to compare the DOX 

toxicity on naïve and Sirt3 KD/overexpressing cardiomyoblasts, thus concluding on the 

role of that mitochondrial sirtuins on anthracycline toxicity. 
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1. Reagents 

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), Penicillin-

Streptomycin, 0.05% Trypsin-EDTA, 1x Opti-MEM Reduced Serum Medium were 

received from Invitrogen (Carlsbad, CA, USA). Doxorubicin, Sulforhodamine B (SRB), 

protease inhibitor cocktail (PMSF), bovine serum albumin (BSA), ammonium 

persulfate (APS), Bradford reagent, calcium chloride (CaCl2), 

ethylenediaminetetraacetic acid (EDTA), β-mercaptoethanol, sodium dodecyl sulfate 

(SDS) and trypan-blue were obtained from Sigma-Aldrich (St. Louis, MO, USA). Other 

chemical reagents were also purchased from Sigma-Aldrich, including those necessary 

to prepare 1x Phosphate Buffered Saline (PBS) (0.137 –m NaCl, 2.7 mM KCl, 1.4 mM 

KH2PO4, 0.01 M Na2HPO4). Cell Lysis Buffer were obtained from Cell Signaling 

(Danvers, MA, USA). Acrylamide, Laemmli buffer, Polyvinylidene Difluoride 

membrane (PVDF) membranes and N,N,N’,N’-Tetramethyllenediamine (TEMED) 

were from BioRad (Hercules, CA, USA). The ECF detection system was obtained from 

Healthcare Life Sciences (Buckinghamshire, UK). Acetic acid and ethanol were 

obtained from Merck (Whitehouse Station, NJ, USA) 

All reagents and chemical compounds used were the greatest degree pf purity 

commercially available. In the preparation of every solution, ultrapure distilled water 

filtered by the Milli Q from Millipore system was always used. 

 

2. Cell model 

H9c2 cell line was isolated initially by Kimes and Brandt. This cell line is a subclone of 

the original and is derived from embryonic BD1X rat heart tissue. According to Kimes 

and Brandt, H9c2 propagates as a mononucleated myoblats and exhibits 

electrophysiological and biochemical properties of both skeletal and cardiac muscle 

[108, 109].  The mono-nucleated myoblasts can differentiate and acquire skeletal 

muscle phenotype, under reduced serum concentration. On the other hand, treatment 

with retinoic acid prevents the differentiation into skeletal muscle and favors the 

establishment of cardiac phenotype (Fig. 2) [110]. The H9c2 cardiomyoblasts cell line is 
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considered an excellent model for cardiac cells. H9c2 cell line (ATCC® Number: CRL-

1446TM) was purchased to American Type Cell Culture (ATCC®, Manassas, VA).  

 

Figure 2 – Differentiation of H9c2 cell line: The condition with 10% FBS shows typical 

morphology of undifferentiated cells characterized by mononucleated and small spindle shaped 

myoblasts. During differentiation, the reduction of serum to 1% leads to multinucleated long 

skeletal muscle myotubes, while addition of 10 nM of retinoic acid leads to the generation of 

multinucleated cardiomyocytes. Images courtesy from Dr. Vilma Sardão [110]. 

 

3. Cell Culture 

The cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% FBS, 1.5g/L sodium bicarbonate and 1% of penicillin-streptomycin in 60 or 

100 mm cell culture dishes at 37ºC in a humidified atmosphere of 5% CO2. The cells 

were fed every 2 - 3 days and sub-cultured once they reached approximately 80% 

confluence in order to prevent cell differentiation. For this routine process, cells were 

first rinsed with PBS 1x and then incubated with 1 volume of Trypsin-EDTA for 3 min 

at 37ºC. Trypsin activity was inhibited by the addition of 1 volume of growth medium 

and then centrifuged 3 min. Cells were resuspended and seeded again. Cells were used 

between passages 7 and 20. 

 

4. Transformation of Competent Cells and Plasmid Purification 

One Shot® TOP10 Chemically Competent E.coli (InvitrogenTM) was used to transform 

cells, for high-efficiency cloning and plasmid propagation, according to the 

manufacturer’s protocol. The plasmids were provided by Dr. Michael Sack (National 

Heart, Lung and Blood Institute, National Institutes of Health). Following 

transformation procedure, cells were harvested by centrifugation at 6000g for 15 min at 
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4ºC and the pellet was saved. After, plasmid purification was performed using 

Hispeed Plasmid Midi Kit (Quiagen, Valencia, CA) by following the manufacturer’s 

protocol. The DNA concentration was determined with a Nanodrop 

spectrophotometer (Thermo Scientific, Lanham, MD). The purity of the sample was 

examined through the 260/280 and 260/230 ratio, being a sample considered 

contaminated when the ratios were different than 2. 

 

5. Sirt3 Gene Overexpression in H9c2 cells 

To evaluate the role of Sirt3 in H9c2 cardiomyoblats, the wild-type (hSirt3-Flag), the 

constructs without catalytic activity (hSirt3-H248Y-HA) and the empty vector 

(PcDNA), all obtained with the above procedure, were overexpressed in these cells. In 

order to form the complexes of DNA, a 1:3 ratio of 9µg of DNA and 27µl of X-

tremeGENE HP DNA Transfection Reagent (Roche, Mannheim, Germany) was used in 

Opti-MEM I Reduced Serum Medium, for 15 minutes. Afterwards, the transfection was 

performed and cells were incubated in growth medium for 24h, to obtained a 

transiently protein transfection. Besides the three groups described above, one control 

condition was performed using only transfection reagent. 

  

6. Sirt3 Gene Underexpression in H9c2 cells 

Sirt3 silencing was performed using a small interfering RNA (siRNA).  Cells were 

transfected with 3 µg of Sirt3 siRNA oligonucleotide (Target sequence: 

GCUCAUGGGUCCUUUGUAU, GGAUGGACAGGACGGAUAA, 

CAGCAAGGUUCUUACUACA and CAGCUUGUCUGAAUCGGUA) or scrambled 

siRNA (Thermo Fisher Scientific), which functions as empty vector. Transfection was 

performed using Xtreme gene siRNA transfection reagent (Roche, Mannheim, 

Germany), according to the manufacturer’s instructions. Before transfection, the 

medium of the plates was changed from DMEM to Opti-MEM (3 ml) and for each dish, 

18 µl of Xtreme were added to 100 µl of Opti-MEM, in a centrifuge tube. After, 12 µl of 

siRNA were diluted in 100 µl of Opti-MEM, on another centrifuge tube, to obtain the 
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desired concentration of 3 µg. Next, the content of both tubes was combined and 

incubated for 15 min at room temperature allowing complexes to form. Once the 

incubation was complete, 200 µl of complexes was added to dishes containing cells and 

after 5 hours of incubation in Opti-MEM, 9 ml DMEM was added. Similarly to 

overexpression experiments, a control condition was prepared with transfection 

reagent. 

 

7. Experimental Design  

The experimental design is shown in Fig. 3. For qRT-PCR and WB, H9c2 cells were 

plated at a density of 50,000 for control and 85,000 cells/ml for the other conditions in 

60 mm culture dishes and cultures for one day. Then, cells were transfected and 24h 

afterwards were treated with DOX. Two concentrations were used, 0.5 and 1µM, which 

was directly added to culture media and 24 hours post-treatment, cells were collected 

and stored at -80ºC (Fig. 3A).   

For the others assays, such as SRB, flow cytometry and fluorescence microscopy, cells 

were seeded in order to reach a density of 60 -70% in next day, to be transfected. 

Twenty-four hours after transfection, cell seeding was performed at a density of 10,000 

cells/ml in 48 a multi-well for SRB; 20,000 cells/ml in 6 multi-well with 18x18mm 

coverslip for microscopy and 40,000 cells/ml in 6 multi-well for flow cytometry. The 

following day, DOX was added as described before and 24h afterwards cells were used 

to the assays (Fig. 3B).  

Previous studies in our lab showed no differences in SRB between the two designa 

used. Viable cell counting was performed by using Trypan Blue. 
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Figure 3– Experimental design: A) For Western Blot and RT-PCR experiments. B) For the other 

set of experiments, such as SRB, flow cytometer and fluorescence microscopy. 

 

8. Sulforhodamine B Colorimetric Assay 

Cell mass was measured using SRB dye, which measures the total biomass by staining 

cellular proteins. After treatment, the incubation media were removed, and cells were 

washed twice with PBS and fixed in ice cold methanol containing 1% acetic acid 

overnight at -20ºC. Multi-well plate containing fixed cells was then dried at 37ºC and 

250 µl of 0.5% SRB in 1% acetic acid was added to each well and incubated for 1 hour at 

37ºC. Subsequently, SRB was removed and wells were washed with 1% acetic acid to 

removed unbound staining. After drying the plates again, dye bound to cells proteins 

was extracted with 10 mM Tris base solution (pH 10) and its absorbance was read at 

540 nm in a VICTOR X3 Microplate Reader (Perkin Elmer, Waltham, MA, USA). 

 

9. Western-Blot Analysis 

9.1 Total Protein Harvesting  

On collection day, cells grown in 60 mm culture dishes were washed once with 1x PBS, 

detached with 1 volume of trypsin-EDTA followed by its inactivation with 1 volume of 

growth medium, previously removed from the dish and stored. Cells were transferred 

to a 15 ml conical tubes and centrifuged, supernatant was discarded and pellet rinsed 
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in 1x PBS. Cells were centrifuged under the same conditions, the supernatant was 

discarded again and the pellet was stored at -80ºC. Before protein quantification, 100 µl 

of cell lysis buffer with PMSF, a protease inhibitor, was added to each pellet and 

samples were then sonicated.   

 

9.2 Protein Quantification 

Protein was quantified using the Bradford assay. The samples were diluted 1:400 in 

ultrapure water and 1000 µl of Bradford reagent was added to the samples. Then, 200 

µl of the each mix were plated in 96 multi-well plate and after 15 min of incubation at 

37ºC, absorbance was read in  VICTOR X3 Microplate Reader at 595 nm. The standard 

curve ranging from 1.25 to 20 µg/ml was made using a known concentration of 

solution of Bovine Serum Albumin (BSA).  

 

9.3 Western Blot 

After denaturation at 95ºC for 5 min in a 2x Laemmli sample loading buffer (Bio-Rad), 

an equivalent amount of protein (40µg) was separated by 10% polyacrylamide gel 

electrophoresis system. Protein separation was carried out at a constant voltage of 150 

V and at room temperature. In every gel, a molecular weight standard (Precision Plus 

Protein Standards – Dual Color, Bio-Rad) was included to allow molecular weight 

estimation. Once protein separation was complete, proteins were transferred to a PVDF 

(Millipore), during 90 min at a constant voltage (100 V). In order to mitigate the heat 

produced during the transference, ice was incorporated in the outside. After 

membrane blocking with 5% milk (Bio-Rad) in Tris-Buffered Saline Tween (TBS-T; 50 

mM Tris-HCl, pH 8; 154 mM NaCl NaCl and 0.1% Tween 20) for 2 hours at room 

temperature under continuous stirring, membranes were washed 3 times for 5 min 

each with TBS-T. An incubation with a primary antibody directed against the 

respective protein was the performed (listed in Table 1) overnight at 4ºC, under 

continuous stirring. All primary antibodies were prepared in 2% milk in TBS-T 

supplemented with sodium azide. Once incubation was complete, membranes were 

washed 3 times for 5 min with TBS-T and were further incubated with alkaline 
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phosphatase conjugated secondary antibodies for 1 hour at room temperature under 

continuous agitation. All secondary antibodies were prepared in TBS-T (1:2,500). 

Finally, membranes were washed again and incubated with Enhanced Chemi-

Fluorescence system (ECF) (GE Healthcare), maximum for 5 min at room temperature. 

Fluorescence was read using the UVP Biospectrum 500 Imaging System (UVP LLC, 

Cambridge, UK) through UV epi-ilumination (365 nm). Densities of each band were 

calculated with VisionWorksLs Analysis Software. Before blocking, the membranes 

were stained with Ponceau S reagent to confirm equal protein loading in each 

membrane [111]. 

 

Name Dilution Host 

Species 

MW (kDa) Catalog 

Number 

Manufacturer 

Acetyl-p53 1:500 Rabbit 53 06-758 Millipore 

Caspase 3 1:1000 Rabbit 17/35 9662 Cell Signaling 

Caspase 8 1:1000 Rabbit 10/57 4790 Cell Signaling 

Caspase 9 1:750 Rabbit 25/35-37/45 Ab25758 Abcam 

OXPHOS 1:1000 Mouse 20/30/47/39/

53 

MS 604 MitoSciences 

p53 1:1000 Mouse 53 2524 Cell Signaling 

Sirt3 1:1000 Rabbit 28 2627 Cell Signaling 

SOD II 1:750 Rabbit 25 ab13533 Abcam 

Table 1: List of primary antibodies used in Western Blot protein analysis. Relatively to caspase 

3, the lower molecular weight corresponds to the large fragment resulting from cleavage and 

the other value to full length caspase 3; for caspase 8, the antibody detects the total caspase 8 

(57kDa) and the p10 subunit of the activated protein. Caspase 9 antibody identifies 45 kDa pro-

caspase 9, 35-37 kDa cleaved large fragment and the 25 kDa fully cleaved caspase 9. The 

OXPHOS Antibody Cocktail contains 5 different antibodies: complex I subunit NDUFB8 (20 

kDa), complex II SDHB (30kDa), complex III subunit UQCRC2 (47 kDa), complex IV MTCO1 

(39 kDA) and complex V subunit ATP5A (53 kDa). 

 

10. Evaluation of Cell Death by Flow Cytometer 

To evaluate cell death, transfected cells were harvested by trypsin and resuspended in 

buffer medium (120mM NaCl, 3.5mM KCl, 0.4mM KH2PO4, 20mM HEPES, 5mM 
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NaHCO3, 1.2mM NaSO4, 10mM sodium pyruvate at pH 7.4) supplemented with 

1.2mM MgCl2, 1.3mM CaCl2. Next, a set of cells were incubated with 100 nM Sytox 

Green and the other with 800 nM Calcein-AM. These probes give us information about 

dead and live cells, respectively. Two samples of non-labeled cells, with and without 

DOX, were also analyzed in order to calibrate the system, taking cell self-fluorescence 

and DOX fluorescence into account. Samples were kept on ice until use and 8,000 cells 

were analyzed on a FACSCalibur Flow Cytometer (BD Biosciences, San Jose, 

California, USA). Data was analyzed using CellQuest Pro Software Package. 

 

11. Fluorescence Microscopy 

To perform this experiment, cells were plated on coverslips in 6 multi-well plate as 

described above. On the day of the assay, cells were rinsed with PBS and incubated in 

buffer medium (already described in 10.) with different probes, for 30 minutes. After 

incubation, coverslips were removed from the wells and placed inverted on slides. All 

images were obtained with Nikon Eclipse Ti-S (Nikon Instruments Inc., NY, USA). 

Mitochondrial transmembrane potential alterations were analyzed by co-labeling cells 

with TMRM (100nM), which is accumulated by polarized mitochondria,  and with 

Hoechst 33342 (1µg/ml) that counterstain the nucleus. Oxidative stress was also 

evaluated by fluorescent microscopy, using MitoSox Red (5µM) in the presence of the 

mitochondrial probe MitoTracker Green (200 nm). The probe MitoSox Red is 

specifically accumulated in mitochondrial matrix and allows the identification of 

superoxide anion generated in mitochondria, while MitoTracker Green stains 

mitochondria, independently of membrane potential. Rotenone (250 µM), complex I 

inhibitor, was used as a positive control of superoxide anion generation. 

 

12. Quantitative RT-PCR Analysis  

12.1 Total RNA Harvesting 

In the day of the harvesting, cells grown in 60 mm dishes were collected as described 

before and rinsed twice with 1x PBS. After pellets were saved at -80ºC until the day of 

RNA extraction. Total RNA was isolated using the Total RNA Mini Kit (Bio-Rad), 
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according to the manufacturer’s protocol. On the last step, RNA was eluted twice from 

the columns with 40 µl RNA elution solution to a new centrifuge tube, Then RNA was 

quantified using a NanoDrop spectrophotometer (Thermo Fisher Scientific) to measure 

the absorbance at 260 nm. The RNA quality and purity was tested by spectral scan 

observation and considered when a single prominent 260 peak and a 260/280 ratio with 

a minimum value of 2 was found.  

 

12.2 Evaluation of RNA integrity  

RNA integrity and purity was analyzed using the Experion RNA Analysis Kits (Bio-

Rad). For the procedure, 12 random samples were evaluated according to 

manufacturer’s protocol by Experion Automated Electrophoresis System (Bio-Rad, CA, 

USA). RNA quality indicator (RQI) a number automatically generated by the program, 

on a scale of 1-10, was analyzed and if RQI was from 7 to 10, the RNA sample was used 

in the next step. 

 

12.3 Reverse Transcription PCR 

The first step involves the reverse transcription of total mRNA into cDNA using the 

iScript cDNA Synthesis Kit (Bio-Rad). The kit contained a reverse transcriptase enzyme 

and a mix with oligo(dT) and random hexamer primers, which optimizes the 

sensitivity and extension of the reverse transcription reaction. The iScript mix was 

diluted in nuclease-free water and 1 µg of Total RNA to a final volume of 20µl. The 

solution was loaded in PCR strips tubes and the reactions were performed in a Bio-Rad 

S1000 Thermal Cycler. The reaction protocol was: 5 min at 25ºC, 30 min at 42ºC and 5 

min at 85ºC.   

 

12.4 Real Time PCR 

mRNA transcript levels were quantified in real-time PCR using SsoFast EvaGreen 

Supermix (Bio-Rad).  One µl of cDNA samples and 100 µM of genetic-specific forward 

and reverse primers in 20 µl total reaction volume was used. Amplification and 
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quantification of generated products were performed in a CFX96 Real-time PCR 

detection system (Bio-Rad) under the following cycling conditions: a single step of 

95ºC for 30 sec, 40 cycles of 95ºC for 5 sec followed by another 5 sec at 60ºC with single-

point fluorescence acquisition at the end. Finally, a melting curve was performed to 

confirm that only the expected products were generated.  Samples were run in 

duplicates and with a standard curve. Moreover, a non-template control (NTC) and a 

negative control without cDNA template (NRT) were also included to exclude 

contamination. None of the runs showed expression on these conditions. All reactions 

were normalized using 18S as a reference gene. 

After obtaining nucleotide accession numbers from the database, all primers were 

designed using the Primer-Basic Local Alignment Search Tool (Primer-Blast). Primers 

are listed in table 2.  

Name  Sequence Amplicon 

(bp) 

T 

(ºC) 

Sirt1 F –  CCAGTAGCACTAATTCCAAGTTCT 

R – CTCGCCACCTAACCTATGAC 

150 62 

Sirt3 F – CCAATGTCGCTCACTACTT 

R – GATACCAGATGCTCTCTCAAG 
101 63 

Sirt4 F – CTGCTAAAGACCCCTAAG 

R – GCCCTCATCTCTGTAAATAG 

136 63 

Sirt5 F – GCTCGTCCAAGTTCCAATATG 

R – CCACTCTCCGCACTAACA 

98 63 

GADD45 F – CTGGTGACGAACCCACATTC 

R – CCACTGATCCATGTAGCGACTT 

93 60 

TBP F – CCTATCACTCCTGCCACACC 

R – CAGCAAACCGCTTGGGATTA 

154 62 

18S F – ACTCAACACGGGAAACCTC 

R – ACCAGACAAATCGCTCCAC 

122 63 

Table 2: List of primers used in RT-PCR analysis. Amplicon (bp): Amplicon in base pairs; T 

(ºC): Annealing temperature in Celsius.  
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13. Statistical Analysis 

Statistical analysis was performed with GraphPad Prism 6 and data are presented as 

Means ± SEM. To evaluate the effect of two variables, namely transfection effect and 

treatment, a two-way ANOVA followed by the Tukey Multiple Comparison Test was 

applied. To compare the effect of DOX in control cells, a one-way ANOVA followed by 

the Tukey post-test was used. A p value of <0.05 was considered significant (p < 0.05, 

pp < 0.01, ppp < 0.001). 
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1. Sirt3 gene and protein expression in H9c2 cells 

Sirt3 protein content in H9c2 cells was analyzed by Western blotting. Using a 

commercial antibody, a reduced endogenous Sirt3 protein content was detected, both 

the short (28 kDa) as long (44kDa) forms (Fig. 4A and 5A). Sirt3 gene expression was 

also quantified using real-time PCR and similarly to in WB a very low endogenous 

quantity was identified in H9c2 wild-type cells. In underexpression control conditions 

Sirt3 short-form increased with both DOX concentrations (Fig. 5B) and in the 

overexpression model, a significant increase was measured between 0.5 and 1 µM of 

DOX, with Sirt3 long-form not showing a significant alteration (Fig. 4B and 4D). The 

Sirt3 overexpression was obtained through the use of Sirt3 wild-type plasmid (hSirt3) 

and deacetylase catalytically inactive construct (hSirt3 mutant). An empty vector was 

used as a control (PcDNA). hSirt3 and hSirt3 mutant overexpression lead to a large 

increase of both forms of Sirt3 expression, for all three groups, indicating an efficient 

transfection. Without DOX, hSirt3 mutant showed a significant increase of Sirt3 protein 

content comparing with hSirt3 (Fig. 4C e 4E). During Sirt3 underexpression (sSirt3), an 

increase of Sirt3 protein with empty vector (EV) transfection and 1µM of DOX was 

evident. Only in 1 µM  DOX condition a significant reduction of Sirt3 protein content 

was detected (Fig. 5C).  

Curiously, Sirt3 mRNA levels decreased in control cells and overexpressed Sirt3 

control cells with 1 µM of DOX. Without DOX, hSirt3 mutant and hSirt3 

overexpressing cells showed an increase in Sirt3 mRNA, although only in hSirt3 

overexpression the increase was significant. hSirt3 overexpression cells also showed an 

increase of Sirt3 mRNA levels when treated with 1 µM DOX (Fig. 6A and 6B). RT-PCR 

was also performed to analyze the underexpression model. This experiment was 

realized without DOX and only one time. In sSirt3 underexpression cells, Sirt3 mRNA 

levels decreased about 50% (Fig. 6C).  
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Figure 4 – Endogenous Sirt3 protein and Sirt3 overexpression in H9c2: The western blot to 

analyze Sirt3 protein content was performed after transfection and treatment with DOX. A) 

Representative western blot of Sirt3: Sirt3 short-form (28 kDa) and Sirt3 long-form (44 kDa). B 

and D) Control cardiomyoblasts cells with transfection reagent. Results are normalized to the 

control without DOX. C and E) Overexpression experiment using empty vector cells as control 

(PcDNA), Sirt3 deacetylase mutant cells (Mut) and Sirt3 overexpression cells (hSirt3). Results 

are normalized to the control, no DOX, transfected cells. Data represents Mean ± SEM of 3 – 4 

independent experiments. Statistical analysis was performed by using one-way ANOVA for B 

and D or two-way ANOVA for C and E. # Analysis made inside the same transfection 

condition. * vs control of the same concentration of DOX. One symbol= p< 0.05, two symbols= 

p< 0.01 and three symbols= p<0.001. 
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Figure 5– Sirt3 endogenous and underexpression protein content in H9c2 cells: A) 

Representative western blot of Sirt3 short-form (28 kDa). B) Control cardiomyoblasts with 

transfection reagent and DOX. Results are normalized to the control without DOX. C) 

Underexpression experiment using empty vector cells as control (EV) and Sirt3 silenced cells 

(sSirt3). Results are normalized to the control, no DOX, transfected cells. Data represents Mean 

± SEM of 3 – 4 independent experiments. Statistical analysis was performed by using one-way 

ANOVA (B) and two-way ANOVA (C). # Analysis made inside the same transfection condition. 

* vs control of the same concentration of DOX. One symbol= p< 0.05, two symbols= p< 0.01 and 

three symbols= p<0.001. 

Figure 6- Sirt3 mRNA levels in H9c2 Cardiomyoblasts: Sirt3 mRNA levels were quantified by 

RT-PCR in control cells with and without DOX (A) and in control PcDNA, hSirt3 mutant and 

A 
B 

C 
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A B 

C D 

hSirt3 overexpressing cells in control and DOX-treated conditions (B). Results are normalized to 

the control, no DOX, transfected cells.  Data represents Mean ± SEM of 2-3 independent 

experiments. Statistical analysis was performed by using one-way ANOVA (A) and two-way 

ANOVA (B). # Analysis made inside the same transfection condition. * vs control of the same 

concentration of DOX. One symbol= p< 0.05, two symbols= p< 0.01 and three symbols= p<0.001. 

C) RT-PCR performed in control, control EV transfected and sSirt3 cells without DOX. Data 

represents 1 independent experiment. 

 

2. Sirt3 does not protect against DOX-induced decreased H9c2 cell 

mass 

H9c2 cell mass was determined by the SRB assay, after Sirt3 manipulation and 24h of 

incubation with 0.5 and 1 µM of DOX. This method does not differentiate between 

DOX-induced inhibition of cell proliferation and induction of cell death.  Both DOX 

concentrations induced a significant decrease of H9c2 cardiomyoblast mass (Fig. 7A 

and 7B). The results also showed that neither overexpression nor underexpression of 

Sirt3 altered the decrease in cell mass caused by DOX treatment (Fig. 7C and 7D).  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7– Sirt3 does not protect against DOX-induced decreased cell mass: The experiment 

was performed 24 hours after DOX treatment in all conditions. A and B) Overexpression and 

underexpression control cells with transfection reagent, respectively. Results are normalized to 
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the control without DOX. C) Overexpression experiment using empty vector cells as control 

(PcDNA), Sirt3 deacetylase mutant cells (Mut) and Sirt3 overexpression cells (hSirt3). D) 

Underexpression assay with empty vector as control cells (EV) and Sirt3 silencing (sSirt3). 

Results are normalized to the control, no DOX, transfected cells. Data represents Mean ± SEM of 

3 – 5 independent experiments. Statistical analysis was performed by using one-way ANOVA 

for A and B, and two-way ANOVA for C and D. One symbol= p< 0.05, two symbols= p< 0.01 

and three symbols= p<0.001. # Analysis made inside the same transfection condition. 

 

3. Sirt3 presents a small effect on DOX-induced H9c2 cell death 

Using Sytox green and Calcein-AM, dead and live cells were measured respectively, by 

flow cytometry. A significant reduction in live cells after DOX treatment was observe 

in naïve H9c2 cardiomyoblasts, corroborated by the increase of dead cells. The results 

for dead cells after 1 µM DOX treatment also exhibited a significant difference in 

comparison to cells treated with 0.5 µM of DOX, which could be due to the fact that 

Sytox green internalize not only dead cells but those, which although are positive for 

calcein, present damaged membranes (Fig. 8A and 8B). In order to understand the 

effect of Sirt3 in DOX-induced cell death, Sirt3 overexpression was performed followed 

by DOX treatment. By following Sytox green fluorescence, control PcDNA transfected 

cells showed a decreased in dead cells with DOX. This can be explained by the great 

variation in cell death and vector toxicity, since our control group represents PcDNA 

transfected cells, which showed more cell death than control cells without the empty 

vector. During Sirt3 overexpression, and not during Sirt3 mutant overexpression, a 

significant decrease of dead cells was observed in the condition without DOX. 

However, this did not happen with DOX treatment.  Although not statistically 

significant, the results regarding live cells exhibited an increasing trend following Sirt3 

overexpression (Fig. 8C and 8D).   
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Figure 8– Sirt3 overexpression against DOX-induced cell death: The experiment was 

performed using flow cytometer in cells labeled with Calcein-AM to measure live cells and 

Sytox green to quantify dead cells. After Sirt3 overexpression assay and DOX treatment, flow 

cytometer was realized. A and B) Live and dead cells were measured in overexpression control 

cells, containing only transfection reagent. Results are normalized to the control without DOX. 

C and D) Overexpression experiment using empty vector cells as control (PcDNA), Sirt3 

deacetylase mutant cells (Mut) and Sirt3 overexpression cells (hSirt3). Results are normalized to 

the control, no DOX, transfected cells. Data represents Mean ± SEM of 3 independent 

experiments. Statistical analysis was performed by using one-way ANOVA for A and B, and 

two-way ANOVA for C and D. One symbol= p< 0.05, two symbols= p< 0.01 and three symbols= 

p<0.001. # Analysis made inside the same transfection condition. * vs control of the same DOX 

concentration. 

 

We also measured protein content for the initiator caspase 8 and 9, and effector caspase 

3 by using western blotting. Caspase 8, a key component of the extrinsic pathway did 

not show any difference in any of the experimental groups tested (Fig. 9).  
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Figure 9– Caspase 8 protein content did not change with DOX treatment nor Sirt3 

over/underexpressiom: Caspase 8 protein content was analyzed using a commercial antibody 

by western blotting, after transfection followed by DOX treatment. Representative western blot 

of Caspase 8 (≈ 57 KDa) protein expression and graphical representation of overexpression 

experiment (A, C and D) and underexpression (B, E and F). Data represents Mean ± SEM of 3 or 

4 independent experiments. Statistical analysis was performed by using one-way ANOVA for C 

and E, and two-way ANOVA for D and F. p < 0.05 is considered statistically significant. 
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Caspase 9, a component of the intrinsic pathway, was also analyzed by western 

blotting. With the commercial antibody was detected 3 different bands of caspase 9: 

pro-caspase 9 (≈ 45 kDa), cleaved large fragment (≈ 35/37 kDa) and the fully cleaved 

caspase 9 (≈ 25 kDa) (Fig. 10A). The overexpression experiment was performed using 

H9c2 cardiomyoblasts, which underwent transfection and were next treated with DOX. 

H9c2 control cells showed a significant increase in caspase 9 related bands after 1 µM 

DOX treatment. Relatively to cleaved caspase 9, the increase was also visible for 0.5 µM 

DOX (Fig. 10B, 10D and 10F)). Control PcDNA transfected cells exhibited an increase of 

all caspase 9 fragments with DOX, however this alteration was not statistically 

significant.  The exception occurred for caspase 9 and 0.5 µM DOX. Besides the 

increased large fragment for mutant and cleaved fragment for hSirt3, both in 1 µM 

DOX, hSirt3 and mutant hSirt3 overexpression cells showed no changes in caspase 9 

protein content (Fig. 10C, 10E and 10G).   

 Caspase 9 was also assessed after Sirt3 underexpression, using the same antibody 

described above. Although control cells showed an increase of caspase 9 with both 

DOX concentrations, this increase was not statistically significant (Fig. 11B, 11D and 

11F). On the other hand, pro-caspase 9 was decreased in sSirt3 cells with 0.5 and 1 µM 

DOX compared to sSirt3 cells without DOX (Fig. 11C).   In the condition without DOX, 

sSirt3 cells contained more cleaved caspase 9 when compared to control PcDNA 

transfected cells (Fig. 11G). However, this did not happen with DOX treatment.  
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Figure 10– Effect of DOX and Sirt3 overexpression in Caspase 9 protein content: The 

experiment was performed after transfection and DOX treatment. A) Representative western 

blot of caspase 9: pro-caspase 9 (PC9) (≈ 45 kDa), large cleaved caspase 9 fragment (LF9) (≈ 35/37 

kDa) and fully cleaved caspase 9 (CF) (≈ 25 kDa). B, D and F) Control cardiomyoblasts with 

transfection reagent. Results are normalized to the control without DOX. C, E and G) 
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Overexpression experiment using empty vector cells as control (PcDNA), Sirt3 deacetylase 

mutant cells (Mut) and Sirt3 overexpression cells (hSirt3). Results are normalized to the control, 

no DOX, transfected cells. Data represents Mean ± SEM of 3 – 4 independent experiments. 

Statistical analysis was performed by using one-way ANOVA for B, D and F, and two-way 

ANOVA for C, E and G. One symbol= p< 0.05, two symbols= p< 0.01 and three symbols= 

p<0.001. # Analysis made inside the same transfection condition. 

Figure 11– Effect of DOX and Sirt3 underexpression in Caspase 9: The experiment was 

performed after transfection and DOX treatment. A) Representative western blot of caspase 9: 
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pro-caspase 9 (PC9) (≈ 45 kDa), large cleaved caspase 9 fragment (LF9) (≈ 35/37 kDa) and fully 

cleaved caspase 9 (CF 9) (≈ 25 kDa). B, D and F) Control cardiomyoblasts with transfection 

reagent. Results are normalized to the control untreated cells. C, E and G) Underexpression 

experiment using empty vector cells as control (EV) and Sirt3 silenced cells (sSirt3). Results are 

normalized to the control, no DOX, transfected cells. Data represents Mean ± SEM of 3 – 4 

independent experiments. Statistical analysis was performed by using one-way ANOVA for B, 

D and F, and two-way ANOVA for C, E and G. One symbol= p< 0.05 and two symbols= p< 0.01. 

# Analysis made inside the same transfection condition. * vs control of the same concentration 

of DOX. 

 

The effector caspase 3 is activated by caspases involved in the extrinsic and intrinsic 

apoptotic pathway, interacting with the caspases mentioned above. Using a 

commercial antibody pro-caspase 3 (≈ 35 kDa) and cleaved caspase 3 (≈ 17 kDa) were 

also analyzed by western blotting. In overexpression assays, pro-caspase and cleaved 

caspase 3 increased in a concentration-dependent manner in control cells. However, 

the increase in cleaved caspase 3 was larger. H9c2 control cells showed a 4-fold and 7-

fold increased cleaved caspase with 0.5 and 1 µM of DOX, respectively (Fig.12B and 

12D). Pro-caspase 3 appeared not to change after Sirt3 overexpression (Fig. 12C). Once 

again, cleaved caspase 3 showed a large increase in all conditions of overexpression 

assay with DOX treatment. Curiously, hSirt3 cells showed a significant increase of 

cleaved caspase 3 when compared to control PcDNA transfected cells and hSirt3 

mutant cells (Fig. 12E). During underexpression, H9c2 control cells also showed an 

increase of both caspases with DOX treatment, being again the increase of cleaved 

caspase 3 higher. For control EV cells and sSirt3 cells, pro-caspase 3 did not change, but 

cleaved caspase 3 was also augmented with DOX (Fig. 13).      
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Figure 12– Effect of DOX and Sirt3 overexpression on Caspase 3 protein content: The 

experiment was performed after transfection and DOX treatment. A) Representative western 

blot of caspase 3: pro-caspase 3 (PC 3) (≈ 35 kDa) and cleaved caspase 3 (CF 3) (≈ 17 kDa). B and 

D) Control cells with transfection reagent. Results are normalized to the control without DOX. C 

and ) Overexpression experiment using empty vector cells as control (PcDNA), Sirt3 

deacetylase mutant cells (Mut) and Sirt3 overexpression cells (hSirt3). Results are normalized to 

the control, no DOX, transfected cells. Data represents Mean ± SEM of 3 – 4 independent 

experiments. Statistical analysis was performed by using one-way ANOVA for B and D, and 

two-way ANOVA for C and E. One symbol= p< 0.05, two symbols= p< 0.01 and three symbols= 

p<0.001. # Analysis made inside the same transfection condition. * vs control of the same 

concentration of DOX. 
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Figure 13– Effect of DOX and Sirt3 underexpression in Caspase 3 protein content: The 

experiment was performed after transfection and DOX treatment. A) Representative western 

blot of caspase 3: pro-caspase 3 (PC3) (≈ 35 kDa) and cleaved caspase 3 (CF 3) (≈ 17 kDa). B and 

D) Control H9c2 cells with transfection reagent. Results are normalized to the control without 

DOX. C and E) Underexpression assay using empty vector cells as control (EV) and Sirt3 

silenced cells (sSirt3). Results are normalized to the control, no DOX, transfected cells. Data 

represents Mean ± SEM of 3 – 4 independent experiments. Statistical analysis was performed by 

using one-way ANOVA for B and D, and two-way ANOVA for C and E. One symbol= p< 0.05 

and two symbols= p< 0.01 and. # Analysis made inside the same transfection condition. 

 

3.1 Sirt3 decreases p53 over activation by DOX treatment 

 In order to analyze p53 and acetyl-p53 protein content, western blotting was again 

performed.  H9c2 control cells showed a significant increase of p53 with both DOX 
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concentrations, which is concentration-dependent (Fig. 14C and 14E). Control PcDNA 

cardiomyoblasts also showed a significant increase of p53 in 0.5 and 1 µM treated cells. 

In 0.5 µM conditions, a significant decrease of p53 protein content was observed when 

comparing control PcDNA and hSirt3 overexpressing cells. hSirt3 mutant cells also 

presented a decrease in p53 content, however it was not statistically significant. After 1 

µM DOX treatment, hSirt3 cells also showed a decreasing trend which was not 

significant (Fig. 14D). On the other hand, during Sirt3 underexpression assay, control 

EV transfected cells demonstrated again an increase of p53 with DOX treatment. 

Nevertheless, sSirt3 cells showed an increasing trend of p53 relatively to EV control 

cells (Fig. 14F). 

 

4. Sirt3 overexpression decreases mitochondrial superoxide anion, 

but does not modulate SOD II protein content 

To examine the effect of Sirt3 on superoxide anion production after DOX treatment, 

H9c2 cells transfected and DOX treated were dual-labeled with MitoSox Red and 

MitoTracker green. Because MitoSox selectively target mitochondria and is only 

oxidized by superoxide anion, it does not yield information about other ROS or RNS 

generating systems. MitoTracker Green is used to localize mitochondria, regardless of 

the mitochondrial membrane potential. The images obtained by fluorescence 

microscopy showed an increase of superoxide anion in control cells after DOX 

treatment (Fig. 15A, 15B and 15C). Mitosox Red fluorescence was also more intense in 

control PcDNA transfected cell when compared to control cells (Fig. 15D, 15E and 15F). 

The overexpression of Sirt3 appears to decrease the amount of superoxide anion in 

mitochondria in DOX conditions, being this decrease more visible with 0.5 DOX 

treatment (Fig. 15J, 15L and 15M).  

SOD II protein content was also analyzed during Sirt3 overexpression and 

underexpression assay by western blotting. DOX treatment increased SOD II in control 

H9c2 cardiomyoblasts (Fig. 16C and 16E). In both assays, control transfected cells also 

showed an increase in the amount of SOD II, although just on EV cells treated with 1 



 
 
 
 
 

53 
 

µM of DOX was significant. However, Sirt3 transfection did not result in any alteration 

(Fig. 16D and 16F).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14– Sirt3 overexpression decreases p53 after DOX treatment: p53 protein content was 

analyzed using a commercial antibody by western blotting, after transfection and DOX 

treatment. Representative western blot of p53 (≈ 53 KDa) protein expression in overexpression 

(A) and underexpression (B). C and E) Graphical representation of overexpression and 

underexpression control cells with DOX, respectively. Results are normalized to the control 

without DOX. D) Overexpression experiment using empty vector cells as control (PcDNA), Sirt3 

deacetylase mutant cells (Mut) and Sirt3 overexpression cells (hSirt3). F) Underexpression assay 
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using empty vector cells as control (EV) and Sirt3 silenced cells (sSirt3). Results are normalized 

to the control, no DOX, transfected cells. Data represents Mean ± SEM of 3 or 4 independent 

experiments. Statistical analysis was performed by using one-way ANOVA for C and E, and 

two-way ANOVA for D and F. One symbol= p< 0.05, two symbols= p< 0.01 and three symbols= 

p<0.001. # Analysis made inside the same transfection condition. * vs control of in the same 

concentration of DOX. 

 

Figure 15– Sirt3 overexpression decreases mitochondrial superoxide anion in H9c2 

Cardiomyoblasts: Mitochondrial superoxide anion was evaluated using MitoSOX red probe 

and mitochondria was counterstained with MitoTracker green, which stains the mitochondrial 

network. Images were acquired by fluorescence microscopy using a 40x objective. A) Control 

cells without DOX. B and C) Control cells treated with 0.5 and 1 µM of DOX. D, E and F) 

Control PcDNA transfected cells with 0, 0.5 and 1 µM of DOX. G, H and I) Sirt3 mutant 

overexpression cells under the same DOX conditions. J, L and M) Sirt3 overexpression cells 
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without treatment and with 0.5 and 1 µM of DOX, respectively. Data represents 2 independent 

experiments.  

 

Figure 16– Sirt3 does not change SOD II protein content in H9c2 Cardiomyoblasts: SOD II 

protein content was analyzed using a commercial antibody, after transfection and DOX 

treatment. Representative western blot of SOD II (≈ 25 KDa) protein expression in 

overexpression (A) and underexpression (B). C and E) Graphical representation of 

overexpression and underexpression control cells with DOX, respectively Results are 

normalized to the control without DOX. D) Overexpression experiment using empty vector 

cells as control (PcDNA), Sirt3 deacetylase mutant cells (Mut) and Sirt3 overexpression cells 

(hSirt3). F) Underexpression assay using empty vector cells as control (EV) and Sirt3 silenced 

cells (sSirt3). Results are normalized to the control, no DOX, transfected cells. Data represents 
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Mean ± SEM of 3 or 4 independent experiments. Statistical analysis was performed by using 

one-way ANOVA for C and E, and two-way ANOVA for D and F. One symbol= p< 0.05 and 

two symbols= p< 0.01. # Analysis made inside the same transfection condition. 

 

5. hSirt3 overexpression protects against DOX-induced 

mitochondrial fragmentation in H9c2 Cardiomyoblasts 

By using fluorescence microscopy, alterations in mitochondrial morphology were 

evaluated using TMRM, which accumulates inside polarized mitochondria. H9c2 

control cells without DOX had filamentous polarized mitochondria (Fig. 17A). 

Treatment with 0.5 and 1 µM DOX caused breakage of mitochondrial filaments (Fig. 

17B and 17C). In control PcDNA transfected cells the same mitochondrial 

fragmentation was also visible. However, without DOX, these cells also showed similar 

effect, probably due to vector toxicity (Fig. 17D, 17E and 17F).  When Sirt3 was 

overexpressed, cells acquired again the filamentous polarized mitochondria 

phenotype, in the presence or absence of DOX (Fig. 17J, 17L and 17M) This was not 

evident in Sirt3 mutant overexpression conditions (Fig. 17G, 17H and 17I). 
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Figure 17– Sirt3 overexpression protects against DOX-induced mitochondrial fragmentation 

in H9c2 Cardiomyoblasts: Epifluorescence microscopy images showing double labeling with 

Hoechst 33343 (blue) and TMRM (red). Images were acquired by using a 40x objective. A) 

Control cells without DOX. B and C) Control cells treated with 0.5 and 1 µM of DOX. D, E and 

F) Control PcDNA transfected cells with 0, 0.5 and 1 µM of DOX. G, H and I) Sirt3 mutant 

overexpression cells with the same DOX conditions. J, L and M) Sirt3 overexpression cells 

without treatment and with 0.5 and 1 µM of DOX, respectively. Data represents 2 independent 

experiments. 
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6. Protein content of mitochondrial complexes undergoes 

alterations following DOX treatment and Sirt3 transfection 

The protein content of OXPHOS complex was assessed by western blotting, by using a 

cocktail of commercial antibodies. This cocktail contains 5 monoclonal antibodies 

against one subunit of each mitochondrial complex: NDUFB8 subunit of complex I (20 

kDa), SDHB of complex II (30 kDa), UQCRC2 subunit of complex III (47 kDa), MTCO1 

of complex IV (39 kDa) and ATP5A of ATP synthase (53 kDa). During overexpression 

assay, control H9c2 cells that only contained transfection reagent showed alterations of 

complexes protein content after DOX treatment. The protein amount of all subunits 

increased significantly with DOX treatment, except complex IV subunit which 

although also increased, the difference was not significantly. The greatest increase 

occurred on complex I and II, with 1 µM DOX. Complex I showed a 3.5-fold increase in 

protein content while complex II showed a 2.5-fold increase (Fig. 18B, 18D, 18F, 18H 

and 19J). In hSirt3 overexpression cells with 0.5 µM DOX, complex I subunit was 

significantly increased comparing to the same condition without DOX, but also 

showed an increasing trend when compared to control PcDNA transfected cells (Fig. 

18C). A similar trend was visible on SDHB and ATP5A subunit (Fig. 18E and 18K). 

Complex III subunit was increased in Sirt3 overexpression cells after treatment with 0.5 

µM of DOX (Fig. 18G). Regarding complex IV subunit, Sirt3 overexpression with 0.5 

µM DOX resulted in increase of the subunit. However, with 1 µM DOX, hSirt3 and 

hSirt3 mutant overexpression produced a decrease in MTOC1 protein content (Fig 18I).  

On the other hand, in underexpression experiments, control cells just showed an 

increase of complex I and II after DOX treatment (Fig. 19B and 19D). Sirt3 silencing did 

not promote significant alterations in protein content of complex I and V.  

Nevertheless, complex I appeared to be decreased in 1 µM DOX condition after 

silencing of Sirt3 (Fig. 19C and 19I). Interestingly complex II increased after Sirt3 

silencing in cells without DOX, but in the presence of DOX no alterations were visible 

(Fig. 19E). Regarding complex III subunit, silencing induced a reduction around 50% of 

UQCRC2 subunit, with 0.5 µM DOX (Fig. 19G).  
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Figure 18– Sirt3 overexpression and OXPHOS complexes in H9c2 Cardiomyoblasts: A) 

OXPHOS complexes protein content was analyze by WB: NDUFB8- CI (20 kDa), SDHB- CII (30 

kDa), UQCRC2- CIII (47 kDa), MTCO1- CIV (39 kDa) and ATP5A- CV(53 kDa). B, D F, H and J) 

Control cells with transfection reagent. Results are normalized to the control without DOX. C, E, 
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G, I and K) Overexpression experiment using empty vector cells as control (PcDNA), Sirt3 

mutant cells (Mut) and Sirt3 overexpression cells (hSirt3). Results are normalized to the control, 

no DOX, transfected cells.  Data represents Mean ± SEM of 3 or 4 independent experiments. 

Statistical analysis was performed by using one-way ANOVA or two-way ANOVA. One 

symbol= p< 0.05, two symbols= p< 0.01 and three symbols= p<0.001. # Analysis made inside the 

same transfection condition. * vs control of the same concentration of DOX. 

 

Figure 19– Sirt3 underexpression and OXPHOS complexes in H9c2 Cardiomyoblasts: A) 

Representative blot of OXPHOS complexes: NDUFB8- CI (20 kDa), SDHB- CII (30 kDa), 

UQCRC2- CIII (47 kDa), MTCO1- CIV (39 kDa) and ATP5A- CV(53 kDa). B, D F and H) Control 

H9c2 cells with transfection reagent. Results are normalized to the control without DOX. C, E, G 

and I) Underexpression assay using empty vector cells as control (EV) and Sirt3 silenced cells 

(sSirt3). Results are normalized to the control, no DOX, transfected cells. Data represents Mean 
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± SEM of 3 or 4 independent experiments. Statistical analysis was performed by using one-way 

ANOVA or two-way ANOVA. One symbol= p< 0.05, two symbols= p< 0.01 and three symbols= 

p<0.001. # Analysis made inside the same transfection condition. * vs control of the same 

concentration of DOX.  

 

7. Sirtuins mRNA levels after Sirt3 transfection and DOX 

treatment in H9c2 cells 

Using RT-PCR, mRNA levels of Sirt1 and two other mitochondrial sirtuins, Sirt4 and 

Sirt5, were assessed. However, due to the small amount of Sirt4 in H9c2 cells this 

transcript was not analyzed. In control cells, Sirt1 appeared to increase with 0.5 µM 

DOX but to decrease with 1 µM (Fig. 20A). Control PcDNA transfected cells also 

showed the same pattern (Fig. 20B). By in turn, Sirt5 decreased significantly with both 

DOX concentrations in control cells and control transfected cells (Fig. 20C). On the 

other hand, Sirt3 overexpression did not result in alterations of Sirt1 and Sirt5 

transcripts (Fig. 20B and 20D). 

Figure 20- Sirt1 and Sirt5 mRNA levels after Sirt3 overexpression and DOX treatment in 

H9c2 Cardiomyoblasts: Sirt1 and Sirt5 mRNA levels were quantified by RT-PCR in control cells 

with and without DOX (A and C) and in control PcDNA, hSirt3 mutant and hSirt3 

overexpressing cells with 3 DOX concentrations (B and D). Results are normalized to the 

control, no DOX, transfected cells. Data represents Mean ± SEM of 2-3 independent 
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experiments. Statistical analysis was performed by using one-way ANOVA and two-way 

ANOVA. One symbol= p< 0.05, two symbols= p< 0.01 and three symbols= p<0.001. # Analysis 

made inside the same transfection condition.  
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Discussion  

 

Doxorubicin is one of most potent anticancer agent and has been used against wide 

range of tumors. However the dose-dependent cardiotoxicity induced by DOX 

compromises the clinical application [29]. DOX-induced cardiotoxicity has a strong 

mitochondrial component and a range of different mechanism are behind it, such as 

cell death and disruption of mitochondrial homeostasis. Nevertheless, oxidative stress 

has been implicated as a major mechanism on cardiac cells [12, 25].  Sirtuin 3, the major 

mitochondrial deacetylase, is described as protecting mitochondria against oxidative 

stress, contributing to cell survival [89, 90]. 

The objective of the present study was understand the role of Sirt3 on cardiomyoblasts 

treated with DOX, based on our hypothesis that Sirt3 protects H9c2 cells against DOX-

induced cardiotoxicity. To perform the study, we used concentrations present in 

plasma of patients treated with DOX (0.5 and 1 µM) [26]. 

H9c2 cells showed a low endogenous protein expression and mRNA levels of Sirt3, 

unless overexpressed with a human Sirt3-flag or a catalytically inactive HY mutant 

form of hSirt3, in which a single amino acid residue has been modified (histidine-to-

tyrosine at amino acid residue 248). In fact, some authors have already described a low 

endogenous amount of Sirt3 in cardiomyocytes or H9c2 cell line [112, 113]. Curiously, 

control cells with transfection reagent in underexpression experiments showed an 

increase of Sirt3 short-form with DOX. It was previously observed in soleus muscle 

that an acute DOX treatment did not affect the expression of Sirt1 and Sirt3 nor lysine 

acetylation status [114]. However, when Sundaresan et al. (2008) exposed 

cardiomyocytes to stress stimuli, the treatment elevated the levels of Sirt3 long-form, 

but Sirt3 short-form did not change [89]. On the other hand, DOX treatment in H9c2 

cells induced an increase of Sirt2 protein content [115]. Probably due to low amount of 

endogenous Sirt3 in H9c2 cells, the decrease of Sirt3 protein content by silencing was 

not detected in cells without treatment and with 0.5 µM of DOX, although in 1 µM 

DOX increased the amount of Sirt3 in H9c2 cells.  
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Although the mechanism of DOX-induced cell death is not totally understood, it is 

clear that DOX promote cell death in cardiomyocytes [30, 37, 115]. Our results also 

showed a decrease of cell mass and live cells for both DOX concentrations (0.5 and 1 

µM), and an increase in dead cells. DOX treatment in control cells also increased 

caspase 3 and 9 protein content, but caspase 8 did not show any alteration. These 

results are supported by previous studies [114, 116]. Agreeing with Sardão et al. (2009) 

[34], p53 protein content increased with DOX, in a concentration-dependent manner. 

Regarding live/dead assay, it is curious the decrease of dead cells in transfected cells 

with DOX.  Probably it is due to vector toxicity that can influence the result, but further 

experiments are needed to explain this. On the other hand, hsirt3 cells showed a trend 

increasing of live cells comparing to control PcDNA transfected cells. Although Sirt3 

did not change caspase protein content, caspase activity can be altered, although this 

was not measured in the present work. p53 decreased after overexpression and 

increased after Sirt3 underexpression, when compared to control transfected cells. 

From the results one can conclude that p53 activation is an important pathway in DOX-

induced cell death. However, as mentioned before (in section 2.3.2) cell death-induced 

by DOX can be dependent or independent of p53 [34, 62]. Besides mediating cell fate 

through nuclear and transcription components, p53 can also induce alteration of 

mitochondrial membrane potential, leading to cyt c release and consequently apoptosis 

[117, 118]. H9c2 cardiomyoblasts treated with DOX showed a translocation of Bax and 

p53 to mitochondria [34], where Sirt3 interacts and deacetilates p53, abrogating its 

activity [118]. p53 inhibition leads to a decrease of pro-apoptotic protein Bax [34], 

which can be also decrease by Sirt3 through ku70 protein interaction, under stress 

conditions [89]. Thus, under stress conditions, increased expression of Sirt3 probably 

protects cardiomyocytes by interacting with p53 and preventing the translocation of 

Bax to mitochondria and blocking cyt c release. 

Several reports consider that DOX-induced cell death is associated with increased 

oxidative stress. Our work also showed an increase of superoxide anion production 

with both DOX concentrations. One of the causes attributed to the increased ROS in 

cardiomyocytes after DOX treatment is the decrease in SOD II [115, 119, 120]. However, 

we found an increase of SOD II protein content in control H9c2 cells with DOX, which 
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was also detected by Tokudome et al using cardiac myocytes [121]. Sirt3 appeared to 

decrease the amount of superoxide anion, especially with 0.5 µM DOX. Since Sirt3 

deacetylates and activates SOD II [101], its protective effect against ROS can be due to 

SOD II activation and not so much by increasing its amounts. Calenic et al. (2013) 

suggested that in response to oxidative stress, similar to Sirt6, Sirt3 induces protective 

mechanism against genotoxicity [117].Agreeing with this, another recent study found a 

new Sirt3 target, the human 8-oxoguanine-DNA glycosylase 1 (OGC1). Its 

deacetylation by Sirt3 prevented the degradation and controlled the activity of OGC1, 

playing a critical role in repairing mtDNA damage and preventing apoptosis under 

oxidative stress [122]. 

Using TMRM, a fluorescence probe dependent of mitochondrial potential, 

mitochondrial morphology was assessed. In our work, mitochondrial depolarization 

and mitochondrial network fragmentation induced by low DOX concentrations was 

identified. This effect was more evident in control PcDNA transfected cells, probably 

due to subjacent vector toxicity. Consistent with our work, other works also showed a 

decrease in mitochondrial potential after DOX treatment [115, 120]. Sardão et al 

demonstrated the decrease of membrane potential in H9c2 cells with low DOX 

concentrations. In fact, by using higher DOX concentrations, such as 20 and 50 µM, the 

mitochondrial network still accumulated TMRM [26]. When Sirt3 was overexpressed, 

this protein was able to prevent the mitochondrial fragmentation induced by DOX, 

however the same did not happen with Sirt3 mutant overexpression. The protective 

effect conferred by Sirt3 was perhaps due to its deacetylase activity. Recently, it was 

demonstrated that Sirt3 binds and activate, via deacetylation, the fusion protein OPA1. 

During stress conditions, including DOX treatment in cardiomyocytes, Sirt3 preserved 

the normal tubular shape of mitochondria. In HeLA cells overexpressing WT and 

mutant Sirt3, just Sirt3 WT preserved mitochondrial morphology, being consistent with 

our work [113]. 

During our experiments, the protein content of different subunits of OXPHOS 

complexes was assessed by western blot. After DOX treatment, in underexpression and 

overexpression control cells, an increase of NADH dehydrogenase and succinate 
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dehydrogenase subunits content was observed. Regarding the other complexes, control 

overexpression cells showed an increase that did not happen in underexpression 

control cells. Since the transfection reagent was different depending on the experiment, 

it can be the cause of the difference in OXPHOS protein content.  The literature usually 

shows measurements of OXPHOS complex activity. We instead measured protein 

content, with differences possibly existing between both. Concerning protein content 

alterations, another study with heart mouse homogenates and H9c2 cells did not show 

any variation, however the DOX concentration used here was lower [46]. Contrarily, 

another study demonstrated an increase of complex II protein content in heart lysates 

[123]. Moreover, Complex I and II activity is often reported decreased after DOX 

treatment [46, 124].  Thus, the increase of protein content of those complexes can be 

due to a compensatory mechanism in order to revert the loss of activity observed after 

DOX treatment. During overexpression, Sirt3 appeared to increase the amount of all 

complexes with 0.5 µM DOX but not with 1 µM DOX. On the other hand, complex III 

was decreased by Sirt3 underexpression and after 0.5 µM of DOX.  These results can 

indicate that different concentrations of DOX can affect the role of Sirt3 within the cell. 

The influence of Sirt3 under stress conditions in mitochondrial OXPHOS components 

in terms of protein content is not well established, since the studies published so far 

related Sirt3 activity with preservation of complex activity. 

Similarly to previously published data, Sirt3 overexpression and underexpression did 

not influence transcripts levels for other sirtuins, including Sirt1 and Sirt5 [125]. 

Taken together, the results of our study demonstrated that Sirt3 may confer protection 

against DOX-induced cardiotoxicity. However, there are still questions regarding the 

mechanisms involved and about the relationship between DOX concentration and 

protection afforded by Sirt3.  
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Conclusion 

In conclusion, Sirt3 overexpression seems to result in increased protection against 

DOX-induced cardiotoxicity, possibly by decreasing p53 activation. The role of Sirt3 in 

inhibiting DOX toxicity, although still with a largely unknown mechanism, is worth 

developing, mainly the potential role of Sirt3-activating molecules.  
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Future Experiments 

 

To further pursue this work and produce a manuscript for submission to a peer-

reviewed scientific journal, the following experiments will be performed: 

- SOD II activity, to understand if the protective effect of Sirt3 against ROS is due 

to the increase of SOD II activity.  

- OXPHOS complexes activity, in order to find alterations under DOX treatment 

and the effect of Sirt3 under stress conditions. 

- Measure ATP levels, to complement the previous task, this experiment will be 

performed to understand the efficiency of OXPHOS and the possible switch to 

glycolysis due to DOX treatment and reversal with Sirt3 overexpression. 

- Evaluate the protein TOM20 content by Western blot, to determine a rough 

estimate on the amount of mitochondria.  

- Analysis of mtDNA. The objective is to know if Sirt3 induces mitochondrial 

biogenesis. 

- Assess Fusion/ fission proteins by western blot, to find which are influenced to 

Sirt3 and are involved in the protection against mitochondrial network 

fragmentation. 

- Caspase activity assay, to understand if Sirt3 can change caspase activity even 

not interfering with caspase protein content. 

- Measure Bcl-2 family protein content by western blot, to understand which 

proteins are modulated by Sirt3 overexpression.  
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