Additive aggregation with variable inter dependent parameters:
the VIP Analysis software

Luis C. Dias, Jo3o N. Climaco

University of Coimbra - School of Economics and INESC Coimbra

Abstract: We consider the aggregation of multicriteria performances by means of an additive vaue function under
imprecise information. The problem addressed here is the way an andys's may be conducted when the decison mekers are
not able to (or do not wish to) fix precise values for the importance parameters. These parameters can be seen as
interdependent varigbles that may take severa vaues subject to condraints. First, we briefly classfy some exigting
approaches to dedl with this problem. We will argue that they complement each other, each one having its merits and
shortcomings. Then, we present anew decision support software - VIP Anaysis - which incorporates gpproaches belonging
to different classes. It proposes amethodology of analysis based on the progressive reduction of the number of aternatives,
introducing aconcept of tolerance thet | ets the decision makers use some of the approachesin amore flexible manner.
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INTRODUCTION

Additive value functions are a well-known approach to rank decision alternatives according to
multiple criteria’. We consider the use of an additive value function to help Decision Makers (DMs)
find the most preferred dternative. Building such a function requires fixing the values of the criteria
importance parameters (often called scaling constants or weights). This is one of the most difficult
parts of the decision aid process, since these parameters will reflect the DMs' values and trade-offs.

Indeed, not only DMs may find it hard to provide precise figures about their preferences, but
also these preferences may change as the decision aid process evolves. Moreover, the procedures
that can be used to dlicit the values of the importance parameters may require more time and patience
than the DMs can spare. DMs may sometimes be unable to separate their intuitive notion of the
importance of each criterion from the meaning of the importance parameters, which depends on how
the model was structured. Findly, in group decision situations the opinions and preferences of the
DMs diverge frequently.

Despite these difficulties, it is usua to expend some resources, such as DMs time and
goodwill, and perhaps even the friendship among themselves, to reach a consensus on the “right” or

“best fit” value for each parameter. This leads to a “reference” or “central” result, i.e. a provisional

" Corresponding author: Luis C. Dias, Faculdade de Economia, Universidade de Coimbra, Av. Dias da Silva, 3004-512
Coimbra, Portugd. E-mail: L Dias@inesce.pt



best choice. Frequently, DMs fed there is some arbitrariness in the choice of those “right” values and
perform an a posteriori sendtivity anadysis. This sengtivity anayss usudly means to find the
parameter variation region where the conclusion of the study remains vaid®® or to identify the
“nearest” aternative conclusions”.

This kind of analysis has some drawbacks. Firgt, it requires the initid effort of determining an
exact value for each parameter. Secondly, the DMs will be led to direct their attention to the
“reference” result prematurely. Finaly, senstivity analysis is often conducted varying one parameter
a a time, ignoring the interaction effects that could appear when more than one parameter are
changed at the same time.

A different approach is to use variable interdependent parameters subject to constraints. The

information leading to the constraints is often called “imprecise’, “incomplete’®, “partid”’ or

“ poor” 8

. We will use the expression “imprecise information”, meaning that it does not impose a
precise combination of values for the parameters. The purpose of the analysisis now the study of all

the conclusions that can be drawn from that information. Hence, it becomes a “robustness analysis’

as defined by Roy®*°. We refer to conclusions instead of results, since the value function provides a
ranking that is likely to change (even if partially) when the parameters take different values.

Therefore, an analysis focusing on a whole ranking would likely be of little use. Instead, we see the
result of the aggregation function as a set of three types of conclusions™:

- an absolute conclusion refers to one aternative g and a condition that it satisfies independently of

al other alternatives (e.g. the value of g is never lower than 0.7);

- an unary (relative) conclusion refers to one dternative & and a condition that depends on other

aternatives (e.g. g isthe best aternative);

- abinary (relative) conclusion refers to a relation between two aternatives (e.g. the value of &

exceeds the value of &).

This paper has three objectives. The first oneisto classify some of the existing approaches that
deal with variable parameters (including existing software). This is the subject of the second section,
where we argue that every approach has its shortcomings. The third section addresses our second
objective, which is to present a possible way of using a sequence of approaches from different
classes. In doing this we introduce a concept of tolerance that lets DMs use some approaches in a
more flexible manner. Our last objective is to present the VIP Analysis software, meant to deal with
Variable | nterdependent Parameters. This decision support software offers several approaches that
alow an andysis of the decision problem at severa levels of detail and from multiple perspectives.

The fourth section offers a guided tour of the VIP Analysis and the fifth concludes the paper.



ADDITIVE AGGREGATION WITH IMPRECISE INFORMATION

Notation and basic concepts
In this work we use the following notation:

A Setof aternatives, let there be m dternatives a, ..., am.

C  Setof criteria; let therebe n criteria

Kj Importance parameter (scaling constant) of the | element of C.
g; Performance of i" element of A according to the " element of C.

T Set of acceptable combinations of values for the parameters (each combination is
represented as avector t £ T) at agiven stage of the decision aid process. Let the

n
elements of this set comply with the congtraintsk; >0and 3 kj =1.
j=1

n
Congder the well-known additive value function: V(g ,t)= ¥ k| (t) u;(g; ), where t is an
j=1

element of the set T. Here only the importance parameters k; (j=1,...,n) depend on t, dthough we
could consider a more genera framework where the shape of the single-objective value functions
u;(.) and the performances of the aternatives would also be variable interdependent parameters. In
fact, the extension would be easy if we could vary the performances independently of the scaling
constants (which is not too restrictive). We assume that the constraints defining T are linear. They
may include bounds (|; £ k; £ L;), order constraints (e.g. ki = k), constraints on trade-offs (e.g. ky /
k, = 1.2), congraints implicitly defined through holistic comparisons (e.g. V(a;) £ V(ay)), €tc.

In what follows let ax and a, be any two dternativesin A and let Opt(a,) denote the subset of T
where the value of ay is higher than (or equa to) the vaue of the other aternativesin A. Let us first
recall some concepts of dominance and optimality™"*2:

* Absolute dominance: ax Aa ay = V(a, t) =V(ay, t'), ¥t,teTand I, =T : V(a, t) > V(ay, t').
* Usua (or Bernoulli) dominance: ax & a, <= V(ax, t) = V(ay, t), ¥teTand Ft=T: V(ay, t) > V(ay, t).
* Optimality et t € T: axisoptimd att <= V(ay t) =V(ay, t), ¥a, e A{ag < t e Opt(ay).

* Potentid optimality (p.0.): axisp.0. = FteT: ¥ aye A{ay, V(ax t) = V(ay, t) <= Opt(ay) = £

Dominance refers here to the parameters rather than the multiple criteria and it should be
interpreted as a preference relation. Podinovski®® suggests the expression “outperforms” instead of
“dominates’ to prevent confusion. A potentially optimal aternative must be non-dominated (in the
usua or Bernoulli’s sense).

Next we present briefly some existing approaches, which we divide n four classes. Given a
decision problem, one may (and should) use approaches from various classes, since they complement
each other. We do not present a thorough chronological review (which may be found, for instance, in

references 5, 6 and 12). Most of these approaches consider imprecise information concerning only the



importance parameters (as we do) whereas few are more general and consider that the

performances of the single-objective value functions are aso variable.

Approaches based on optimality

In the context of choosing the most preferred aternative, the solution would be obvious if there
was an optimd aternative for al t £ T. However, since such an alternative does not usudly exigt,
much of the research in this area has focused on the potentialy optimal aternatives.

Rios Insua and French’ suggested to dlicit an initial set of values for the parametersty = T firs,
leading to a provisona best dternative ap. Afterwards, a sensitivity analysis is performed to find the
aternatives that are the closer competitors to ay. These are the adjacent potentially optimal
aternatives to ay, i.e. those aternatives a, = A such that Opt(ay) ™ Opt(ag) = @ They presented a
computer tool that encourages the DMs to interactively explore the set of potentialy optimal
dternatives, by comparing the provisional choice with the potentially optimal aternatives adjacent to it.
The remarks that we have made concerning the choice of an initia combination t, remain valid, but
lose some strength here due to the interactivity of the approach.

Wolters and Mareschal™ proposed to rank the alternatives after choosing a combination t, and
a vector distance function. The position of each dternative ay in the ranking is determined by the
minimum distance from t; to a vector t, such that a, would be optima. This approach does not
exclude any dternative from consideration, but it requires the choice of an initial combination to.

A family of approaches aso based on optimality consists in studying the subsets of T that
correspond to different conclusions. Starr™® seems to have been the first to suggest this type of
gpproach, in the context of risk decisions with imprecise information on probabilities, followed by other
researchers®™®.

Starr’s “domain criterion” consists in considering the size of the subset of T associated with the
optimality of each alternative. Schneller and Sphicas® presented an approximation to this criterion.
They take as a starting point a combination to and the optimal aternative that corresponds to it. Then,
they indicate how to calculate the radius of an (hyper-)sphere centered in t where the aternative
remains optimal. Robinson and Soland"’ suggested to measure the stability of a potentialy optimal
dternative based on an (hyper-)rectangle of optimality.

Eisdlt and Laporte®™® have suggested the partition of T into several regions, each corresponding
to a different potentialy optimal aternative, and the computation of their relaive volumes. The same
idea is present in the work of Antunes and Climaco® who presented an interactive decision support
tool running on Macintosh computers. Its strength lies in its graphica interface, which displays the

optimality region of each dternative for problems with two or three criteria. Furthermore, that tool



alows the visudisation of the regions of T associated with rankings and pairwise comparisons of
alternatives.

These approaches, based either on distances or volumes, are usualy limited in that they only
consider potentialy optima dternatives. Indeed, it is easy to conceive sStuations with interesting
candidates for a best choice that are not potentialy optimal. However, Robinson and Soland"’
propose a flexible notion of optimality, Eisdt and Laporte' suggest other approaches (see
‘Pessmigtic and aggregation rules below) and the information that the approach of Antunes and
Climacd? provides to the DMs is not limited to potentially optimal alternatives.

Approaches based on pairwise comparisons

The class of approaches based on pairwise comparisons builds and exploits a binary relation on
the set of alternatives. We start by referring some approaches where these relations are based on the
subsets of T that are in favour of each aternative when two alternatives are compared. Weber™
defined an “intensity of preference” of ax = A over ay = A as the probability of V(ay, t) = V(ay, t),
when taking arandom t e T. Bana e Costa'® presented an approach for the case with three criteria,
where he computes an index for each ordered pair of alternatives (ay, a,) as the volume of T where
V(ay, t) = V(ay, t). This approach was extended by Bana e Costa and Vincke®, where the volume
index is compared with other indices. The domains associated with pairwise comparisons for the case
with three criteria are graphically displayed by the software from Antunes and Climacc?.

A different subclass of approaches exploits the dominance relation (or a weaker binary
relation) in the context of a choice or ranking problem. Kirkwood and Sarin®® suggested a ranking of
the alternatives based on counting the number of aternatives that dominate it. Park and Kim® present
adifferent algorithm to rank the aternatives, where dominance is replaced by the “weak dominance”
relation proposed by Kmietowicz and Pearmar?™.

There are two recent user-friendly decision support tools running on MS-Windows that belong
to the class of approaches based on pairwise comparisons, namely on the notion of dominance. The
software PROBE (Preference ROBustness Evauation), which has been developed under the
supervision of Bana e Costa®’, supports hierarchica criteria and displays a table showing which
aternatives are dominated (using symbols and colour). It aso computes the range of variation for the
value of each alternative (hence it could also be mentioned in the next section), as well as the range
of variaion of the difference of vaue between two given aternatives. Its main shortcoming is that it
accepts as constraints only a ranking of the importance parameter values. The software DAM
(Decision Analysis Module)™ is similar to PROBE in identifying dominated aternatives. It also shows
the potentidly optima aternatives (using colour). Its main limitation is to consder only interva

parameter values, rather than generic congtraints.



The approaches based on pairwise comparisons are able to bypass the “fatal attraction” to
optimality. However, the binary relations that these approaches consider are not easy to exploit in a
meaningful manner. This is an area where the vast literature on outranking methods® presents many

ideas that could be applied in this context.

Approaches based on variation ranges

A natural approach when using variable parameters is to determine the variation range of some
results compatible with T, as when we addressed the ELECTRE TRI sorting method®. For each
dternative ax £ A, one may determine the maximum and minimum value that V(ay, t) may reach,
subjectto t = T. Thisadlows not only to identify robust conclusions (e.g. the vaue of ay is never lower
than 0.7), but also to know which alternatives are more affected by the fact that parameters are
variable. In the context of choosing the most preferred aternative, this type of approach may aso
enable the dimination of absolutely dominated aternatives.

Butler et a.?* suggested the use of Monte-Carlo simulation to find the variation range of the
value of each alternative. Their approach also provides other information such as the average value,
the standard deviation and several percentiles.

A different approach isto determine the range of variation of the position of an dternative in a
ranking. Kampke® discussed the determination of this range in the context of the UTA method,
which builds a set T from an holigtic ranking performed by the DMs on a subset of aternatives.

Whatever approach is chosen, it will be helpful to consider the use of approaches from other
classes since it is likely that many interesting aternatives will exhibit overlapping variation ranges. We
believe that the approaches in this class are best suited to an initial screening of a large number of

aternatives (in order to reduce that number) before moving on to other techniques.

Pessimistic and aggregation rules

Some approaches aggregate the values that an alternative achievesfor each t = T into asingle
figure. Eiselt and Laporte™ suggested that this figure could be either the minimum or the average
value of each alternative in the domain T. These suggestions are also present in the work of Butler et
a.?*, which estimates these figures using Monte-Carlo simulation.

The ingpiration for the first approach comes probably from a context where a choice must be
made between alternatives whose value varies from scenario to scenario. In that context there are
two well-known pessmigtic rules. max-min (to choose the dternative that maximises the worst
possible outcome) and min-max regret (to choose the aternative that minimises the amount of loss,

considering al the scenarios, relatively to each scenario’s highest-valued aternative). Kouvelis and



Y u”® argued the case for the use of these rules in discrete optimisation problems. They sustain that
these rules are particularly adequate to non-repetitive decisions and decisions that are evaluated ex-
post by comparing their outcomes with the best possible ones. The same rules may be applied when
thereis an infinite set of scenarios, which we can consider to be the set T.

These approaches are intuitively appealing and provide a ranking of the aternatives. However,
they should not be used in isolation, given the information on the worth of each aternative across dl

thedomain T that they disregard.

PROPOSED METHODOLOGY

Use of multiple approaches

From the review presented in the second section we can conclude that each approach bears
some shortcomings. Indeed, it would be difficult to argue for the superiority of some class of
approaches over some other class. Therefore, we believe that severa types of approaches should be
available during the decision aid process. This would enable the choice of the approaches that better
suit the personalities of the DMs, the decision context and the different steps of a decision process.

The range of approaches that may be used at a given circumstance may, however, be
constrained by the number of aternatives and the execution time required to produce the results.
These two factors are interrelated, since if there are thousands of aternatives, then the computations
are likely to take more time. For some approaches, situations with alarge number of aternatives may
aso imply yidding avery large quantity of numbers as output, which may be cumbersome to analyse.
We will choose not define how many dternatives are too much for each approach, since this will
depend on the tolerance of the DMs to the two factors that we mentioned.

Our purpose is to offer atool for DMs facing a choice problem, who wish to proceed in their
decision process without having to provide precise vaues for the scaling constants. In this context, we
suggest that a decision process should proceed step by step. As the DMs advance onto a new step,
the number of aternatives is progressively reduced and the range of approaches that can be used is
progressively enlarged. In the meantime, the DMs may be able use the insight that they acquire in the
process to provide more information on the scaling constants (i.e. to “narrow” the set T of acceptable

combinations of values).

Dealing with a large number of alternatives

In situations with alarge number of aternatives (perhaps thousands), it would be wise to avoid
pairwise comparisons, since the number of pairs grows with the square of the number of aternatives.
Therefore, an initid analysis should focus on the vaue range of each aternative compatible with T.

The ranges may be computed in an exact manner (mathematical programming) or in an approximate



manner (Monte-Carlo simulation). The latter strategy adso yields estimate values for the mean,
standard deviation and other statistics.

This type of anadlysis alows to identify robust conclusions, such as “dternative g is never worth
less than 0.6” or “dternative a is never worth more than 0.7”. If there are absolutely dominated
dternatives, then they can be detected and deleted at this stage. Other criteria for reducing the
number of alternatives could be to exclude aternatives that may reach a value considered too low by
the DMss (as when choosing according to the max-min criterion), or to exclude dternatives that have
lower average and higher variance of their value than some other aternative (a criterion often
followed in the evaluation of financia investments).

An important information provided by this kind of analysis concerns the width of the interval of
vaue for each dternative, which indicates how much it is affected by the variability of the
parameters. There will possibly exist some aternatives that are quite stable, whereas others may
exhibit awide variation range. The DMs' desire of proceeding with a smaller number of aternatives
may sometimes be in conflict with their fear of excluding an interesting candidate. For this reason, the
software that we will present in the section ‘a guided tour of VIP Analysis’ alows the provisiona

exclusion of aternatives, so that they may be re-examined at a later stage.

3.3. Dealing with a small number of alternatives

When there is a relatively small number of alternatives the DMs may still use the type of
analysis suggested to deal with alarger number. However, the smaller number of alternatives alows
the use of approaches based on pairwise comparisons.

We propose in these cases the construction and analysis of an mxm pairwise comparison matrix
that we will represent as M=(m;). The elements of this Pairwise Confrontation Table (PCT) will
indicate how each alternative compares with each other (in terms of difference of value) under
extreme (best and worst) values for the scaling constants. Let us then define:

m; = max {V(a;, t) - V(g, t)): t e T}, fori,j =1,..m i®, and

mi=0, fori=1,..m
Hence, m; is the highest (best case) difference of value of a; over a;, whereas m; is the lowest
(worst case) difference.

The computation of al the elements of M requires solving m(m-1) linear programs. However,
note that the condraints of these linear programs are aways the same: only the objective function
changes. The software that we will present below takes advantage of this fact by starting the
optimisation at the optima solution of a prior problem adready solved, rather than starting from
scratch. This was enough to see our program produce instantaneous results for problems with up to

20 dternatives. Other potentidly time-saving strategies, which we have not tried, would be to



eliminate aternatives as soon as they were found to be dominated and/or to use parale processing
(since the problems could be solved in paraléd).

Having calculated M, it is possible to draw robust conclusions such as:
= “dternative a; never losesto alternative a; by adifference greater than m;” (binary conclusion);

» “dternative a never loses to another alternative by a difference greater than max{m;: j=1,....m;
j=}” (unary conclusion), which is the same as “the maximum loss of opportunity (regret)
associated with a; ismax{m;: j=1,...,m; j=i}" (see Appendix).

Itisalso easy to spot dominated aternatives: a; is dominated by a; if m; £ 0 and m); = 0. In the
context of a choice problem, the dominated alternatives may be discarded. If the DMs deem that the
number of aternatives should be further reduced, then we suggest a more flexible notion of
dominance by taking into account a tolerance £. Let us define quas—dominance as follows:

a; quas—dominates a; <= m; < 0 or (M; < £ and m); > £).

Then, the DMs may accept discarding quasi—dominated aternatives when £ is smal, especialy if m;

isggnificantly higher than £.

An optima dternative, when it exists, is dso easly spotted after computing the pairwise
confrontation table: a; is optima if and only if max{m);: j=1,...,m; j=i} is negative or null. However,
the existence of an optimal dternative will seldom occur before the set T is tight enough. A more
useful concept is that of quasi—optimality, which may be defined as follows:

a isquasi—optima <> max{m;: j=1,....m; j&} < £,

After fixing £ to an acceptable vaue, it is straightforward to see if there are any quasi—optimal

aternatives (there may exist several). These are the alternatives that never lose to another by a

difference greater than the tolerance that was chosen. An aternative approach is to let £ vary, in

order to observe which is the lowest value £ for which an quas—optima dternative exists. If we
observe the maximum value in each column of M, then this aternative corresponds to the column with

a lower maximum. It can be shown that this alternative would be the one chosen by the min-max

regret rule (see Appendix).

We bdlieve that the analysis of the Pairwise Confrontation Table M, together with the concepts
of quasi—dominance and quasi—optimdity, will dlow DMs to find robust conclusions concerning their
search for the best aternative. A more detailed analysis could then be conducted by andysing the
volume of T associated with the optimality or quasi—optimality of each dternative (our tool alows this
only for the particular case with two or three dimensions), by discussing the constraints defining T that
are binding a some of the optimal solutions and by redefining T as new information is provided. We

believe that by combining the insight gained by interacting with al of these tools, DMs will be able to



form a set of convictions that will guide them in providing more information and in choosing the

dternative they prefer.

The particular case with two or three dimensions

In problems with three criteria (n=3) it is possible to represent graphicaly a 2D projection of

the smplex corresponding tok; =0 andﬁ kj =1. Antunes and Cl imaca® have proposed to display

j=1

the regions associated with the optimality of each aternative in that triangle. Their approach aso
alows to visualise the area of the triangle where one aternative is better than some other. This type
of approach has the advantage of providing visual feedback to the DMs, since they see those regions,
rather than knowing only their relative volume. Another potentiaity of this visua feedback isits power
as an educationa tool. Of course, this type of anayss is adso possible when n=2, where the
projection corresponds to a line segment.

We propose the graphical representation of the region T, together with the domains of T
associated with the optimality or quas—optimality of each aternative. It is interesting and pedagogical
to observe how the quasi—optimdity domain of an alternative enlarges as £ increases. Moreover, we
are not excluding the dternatives that are not potentialy optimal, since every aternative may be
quasi-optima somewherein T for a sufficiently large £. As a matter of fact, for agiven £, the relaion
between the volumes of the optimality domains for some pair of aternatives may sometimes be
inverted when considering their quasi-optimality domains.

The flexibility that is brought by the concept of quasi—optimality has a cost, which is the
impracticability of displaying the (overlapping) domains of al the aternatives a the same time. Hence,
we consider that this approach is most useful when comparing a very small number of aternativesin
a parwise fashion. Each time, we would observe the domains of only two aternatives, possibly
visudising dso alinedividing T in two regions, one where the first alternative is better than the second
and the other where the reverse occurs.

Although there are many decision situations with only three criteria (it is enough to consider the
vast literature on bi-criteria problems), this approach is not necessarily excluded in Stuations with
more criteria. Firdt, notice that this approach may be used in stuations where it is difficult to set the
scaling constants for three criteria, but not for the remaining ones, which may be fixed. Second, note
that each equality congtraint (e.g. fixing a trade-off rate between two criteria or stating that some two
dternatives are worth the same) decreases the dimension of T by one. Indeed, we may use this kind
of approach whenever the number of scaling constants that are not fixed minus the number of

n
equaity constraints (including 3 k; =1) does not exceed two.
j=1
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A GUIDED TOUR OF VIP ANALYSIS

We have built a decison support tool, named VIP Analysis, that implements the methodol ogy
proposed above to ded with Variable Interdependent Parameters. This software runs on Windows
95/98 computers and uses colour extensively. The analyst (or the DMs themselves) will find severa
approaches in that single package, rather than having to use different programs for different
approaches. By implementing severa approaches and by giving equal status to al of them, this tool
fosters an anadlysis of the decision Situation at multiple levels of detail and from multiple perspectives.
Its purpose is to allow the DMs to gain insight on the Situation and to et them progress in the decision

process without demanding from them precise values for the parameters.
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We will start a guided tour of VIP Analysis by consdering a situation analysed by Keeney and
Nair in the 70s. We follow this study as reported by Roy and Bouyssou®, athough we will consider
additive instead of multiplicative aggregation. This decision stuation concerned the choice of a
location for a nuclear plant, faced by the Washington Public Power Supply System. Consider the table
of performances displayed in Figure 1. There are nine potentia sites (a; to ag) and six criteria: impact
on human hesdlth (critl); loss of salmon (crit2); impact on other species (crit3); impact on economy

(critd); aesthetics (crit5); cost (crit6).
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The analysts started by asking some questions to the DMs and inferred from their answers the
following order for the scaling constants: ke > ki1 > k, > ks > ks > k3. Having VIP Analysis available,
let us see how far could anyone go by consdering just this piece of information, athough not

enforcing strict inequalities. As afirst approach, let us compute the range of value for each aternative
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(Figure 2). The results show that a, and ag are the best according to the max-min rule (Figure 3). The
software offers the posshbility of filtering the set of aternatives, based on their minimum value,
maximum regret or on the possibility of being dominated. In this case, suppose the DMs would
pretend to focus on the aternatives with value adways higher than 0.8. The dternatives excluded are
marked as inactive but not deleted, so that they may be reactivated |ater.

Data | Bounds  Constraints | Eummaryl Range Confrontation |Ma:-: Hggretl
Critt] Crit2] Crita] Crita] Coit] Crite] <= | RHE al I |
1 1 1 1 1 1 = | al 0018 0004 000e1 0.06
1 1 <=0 a2 [Dos4 o0z 008 o002
11 = 0 22 [poss 0021 EEC0Es 0103
4 1 = 0 ad o024 ooz4 (o000, N o052
11 = 0 a7 (0o o005t 00d 00z (N
1 -1 <= |0 Max Fed0 085 0021 0032 008 0103
Camnrrit | Hnllgackl ‘ Tolerance * oo . ﬂ

| [k=[ 0000071 ) [Tight 2345] 7

Fig. 5. Pairwise confrontation table.
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0104 o059 (04 Summary | FRange

0999533 08135 0736 093 Tl | | e e
0989533 0.8135 07145 099
0989533 0.802 07143 088
099782 063 05325 | ogs | ame IEritB
0993585 0.469 063535 078

0998013 0,469 056375 098 Importance Cosfficient————
099873 07345 05725 1 .
=" Fixed b
09913 0795 05275 1 edto fo.4
09926 09125 0.EE315 1 £~ Wariable within constraints
o OK

Commit | Folback| T I+
| | %

Fig. 6. Fixing the easier trade-offs.

After marking as, ag, ag and ag as inactive, let us compute the Pairwise Confrontation Table,
which also gives us the maximum regret for each aternative (Figures 4 and 5). The negative cells are
marked with a different colour indicating that the alternative corresponding to the respective row is
dominated by the one corresponding to the respective column. In this Situation, only a, and az are non-
dominated (Figure 5). When the user selects a cell, the program displays the value of the scaling

constants that optimise it, as well as the inequalities that are binding at that optimum (these are the
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congraints that might lead to a different optimum if they were changed). By considering only the
congtraints kg > k1 > ko > kg > ks > Kg, it is possible to extract some interesting conclusions about a,
and ag: they are non-dominated and they are the best two in terms of minimum vaue and maximum
regret. These alternatives happened to be the two with highest value in the original study.

:::f_'.ﬂ ¥. 1. P. Analysis - C:\My Documentsiwp_rb. 3D vip.vip

Eil=  Edit | Besultz Eilter Help

T i I =1 s I = ; I =
L1 (= Heigth|16 | *idth |52 I Fant size |2 3 ‘
Data | B © Bevee Summary IHgngel Qonfmntatmn' (L Hggretl thlmalltyl
Crit1 ICritz v Confrontation Table E Elternative [{MinValue [Max Value [Max Regret{Dominated
1 1 v Optimality al 0.858 0.883 0.043 TES [Abs]
1 D= U4 a2 0.901 0.923 0.0085
11 EEl- - &} 083 DS 005
1 o= n1o4ll [z 0824 0891 008 VES [Bbs]
Commit | Ralback] ‘
| Calculate the results chosen below [ v

Fig. 7. Summary of the results.

Let us now assume that the DMs were confident enough to answer specific questions about
trade-offs between the criteria. In the origina study, the cost criterion was considered a standard for
the comparisons and its scaling constant was fixed to kg=0.4. Then, the DMs traded-off cost for
aesthetics and cost for impact on the economy, leading to fix ks=0.059 and k;=0.104. But now
suppose that the DMs would find it much harder to trade-off cost against the remaining criteria
(human hedlth, loss of salmon and impact on other species), which is quite plausible. Let us see what
would happen if the andysis proceeded without further information, considering only the first four
dternatives (Figure 6). Figure 7 displays the modified set of constraints and a summary of the results.
Alternative a; is now absolutely dominated, since its best possible value is lower than the worst-case
value of a,.

To decide between a, and a3 let us use an approach that has now become available, given the
fact that there are only three criteria that are not fixed: a graphica analysis of their optimality
domains. Figure 8 displays the domains of two selected dternatives, plus a line separating the domains
where each of the two is better than the other. We can see that the domain associated with the
optimdity of a, is much wider than the one associated with as. Given this fact, together with the
superiority of a, in terms of minimum value and maximum regret, we would pick a, as a quite robust

best choice. In the origina study a, was ranked second behind as, but by a very smal difference.
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Fig. 8. Optimdity domains.

In order to show the importance of allowing atolerance £, we will now consider the fictitious Situation
depicted in Figures 9 and 10. There are now four criteria and the only information available concerns
the trade-off between the last two of them (k4/k3=1.2). This constraint decreases the dimension of T,
hence alowing its graphical representation. A summary of the results is presented in Figure 11. It can
be seen that a4 is the alternative least affected by the fact that parameters are variable, whereas a; is
the most affected alternative (notice the value ranges). Alternative a4 is the best in terms of minimum

value and maximum regret.

Data | Bounds I Caonztraints

Criteria;

|mportance:

03

04 057 0.82
03 068 0.79
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Fig. 9. Datafor afictitious example.
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Fig. 10. Congtraint defining a fixed trade-off.
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Fig. 11. Summary of the results for the fictitious example.

ﬁummaryl Range Confrontation | T Hggretl thimalityl

al az | ad | ad
al n4 04 011
a2 045 _ 0.1 0173

a3 0484 0034 0206
L]

ad 0277 0.29 n.29

Max Flegret{d 454 0.4 N4 0206

kI i

Tolerance T """ d i o g
| Tolerance: 0.07 v

Fig. 12. A stuation of quasi-dominance.

The Pairwise Confrontation Table is presented in Figure 12. Let us suppose that the DMs
would accept a tolerance of £=0.07, which is aout 10% of the maximum vaue that may be
achieved. Under such atolerance, az may be considered quasi-dominated by a,. Indeed, for dl t = T,
either a, is “significantly better” than az ( V(az)-V(ag) =) or a; is “dmost equa” to az ( |V(ay)-
V(ag)| = £).

Accepting a tolerance aso leads to an interesting analysis of the domains where each
dternative is optima / quad-optima (Figure 13). Notice how the relation between the relative
volumes is inverted when comparing a; with a4 (or when comparing a, with ag). After performing
these analyses, it is quite possible that the DMs would be convinced about the merits of a4, without
needing to provide more information. In fact, a, is the best dternative in terms of minimum value,
maximum regret and quasi-optimality domain (when £=0.07).

When the user clicks on any point in the triangle, the program displays the solution
corresponding to it, as well as the value of the two aternatives that are being compared and the value

of the optima aternative at that point. The users may also observe how the domains of ques-
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optimality change as the tolerance decreases or increases. For all these reasons, we believe that these

interactive graphical displays are a powerful tool of anaysis and learning.

ﬁummaryl Hgnge' Qanmntation' Max Regret  Optimality |

Alternati\l Strict Vol Eroad Vd
al LAE e S
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EX] 138%  316%
ad 3E5E 794E

Talerance

k= 0.0771 0106 0.371 0.445 ) Vial)=0.326: ¥[ad]=0.535; Best: V(ad=0.654

Fig. 13. Optimality and quasi-optimality domains.

SUMMARY AND CONCLUSIONS

We have presented the main reasons to work with variable interdependent parameters. First,
DMs are not forced to find a consensus on the precise values for each parameter. This may save
their time, their eagerness to participate and even the friendship between them. Secondly, the
conclusions that are drawn (absolute or relative, unary or binary) are robust. Finally, the DMs will
know which alternatives are more affected by the variability of the parameters.

After classifying some approaches to deal with imprecise information in additive aggregation,
we argued that each one has its merits and shortcomings, and therefore they should be used together.
We presented a methodology where multiple approaches are used, providing different perspectives
into the decision situation. As the number of candidates for best dternative is progressively reduced,
the analysis becomes more detailed as new tools are introduced.

Finally, we presented a new decision support software - VIP Analysis - which fosters the
adoption of this methodology by offering a user-friendly interface. VIP Analysis accepts variable
values for the scaling constants as well as fixed vaues. Variable interdependent importance

parameters may be constrained by bounds, linear inequalities and linear equalities. The software
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computes the range of value for each dternative, the Pairwise Confrontation Table, the maximum
regrets and the graphica display of optimality domains (if the dimension of T alows it). We have
shown that both the Pairwise Confrontation Table and the optimality domains are powerful tools to
anayse a problem, in particular when the DMs consider a tolerance and the concepts of quasi-
dominance and quasi-optimality.

This type of analysis may provide sufficient arguments for the DMs to agree on a best
aternative, or at least on a short list of interesting aternatives, before having to reach exact values for
each parameter. Moreover, it may provide them with insght that will help them in the process of

agreeing on these values. In the end, no-one will feel the need for a sengitivity analysis.
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APPENDI X: On obtaining the maximum regret from the pairwise confrontation table M

Consder any dternative a = A. Given some t = T, the regret associated with a; is the
difference of value between this dternative and the value of the optima dternative for t. The
maximum regret of & is therefore: Rimx(@) = max { max{V(a;, t): j=1,...m} - V(a, t): t € T}
(i=1,...,m).

Let us now turn our attention to the pairwise confrontation table M, particularly its i column.

Let Cra(@) = max {m; : j=1,...,n1 j=i}.

Proposition: Rmx(@i) = Crex(@).
Proof:

a)
Consider the maximum regret of a;. There must exist a combination of vauesty £ T such that

Riex(@i) = max { max{V(a;, t): j=1,...m} - V(a;, t): t € T} = max{V(a;, t: j=1,...m} - V(a;, ty).
Then, there must exist an dternative a, = A such that Rrax(ai) = V(ax ty) - V(a, ty).
Now, the element of M where ay is confronted against a; is m; = max {M(axt) - V(a,b)): t e T},
which must be greater than or equal to V(ay, ty) - V(a, ty).
Since Crex(@i) = max {m; : j=1,...,m j&} =my, we conclude that

Crax(@i) =My = Rx(&i)-

b)
Consider the i"™ column of M. There must exist an alternative a, = A such that

Crax(@) = max {m; : j=1,...,m j=} = m;.
Then, there must exist acombination of valuest, = T such that
m; = max {V(ayt) - V(ai,t)): t € T} = V(ay, ty) - V(a;, ty).
Hence, Crax(a@) = V(ay, ty) - V(a;, ty) £ max{V(a;, t,) - V(a;, t)): j=1,...m} £
< max {max {V(a, t) - V(a;, t): j=1,..m}:t e T}.
Since max {max {V(a;, t) - V(a;, t): j=1,...m}:te T} =
=max { max{V(g;, t): j=1,...m} - V(a;, t): t € T},
we now conclude that

Crrex(@i) = Rax(@).

Finaly, joining the conclusions from &) and b) yidds Crux(ai) = Ryax(&i)-
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