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Integrated Management of Residential Energy Resources: 

Models, Algorithms and Application 

by 

Ana Soares 

ABSTRACT 

The gradual development of electricity networks into smart(er) grids is expected to provide the 

technological infrastructure allowing the deployment of new tariff structures and creating the 

enabling environment for the integrated management of energy resources. The suitable stimuli, for 

example induced by dynamic tariffs, i.e. energy prices varying in short periods of time, and an 

adequate technological infrastructure for metering, controlling and data communication are 

expected to become major tools to foster a more active role of demand-side resources and 

facilitating the penetration of distributed generation based on renewable sources. In this setting, 

active residential load management can play an important role to help end-users optimizing the 

usage of energy resources to minimize the overall energy cost without compromising comfort. This 

load management asks for the development of optimization models of combinatorial nature and 

able to account for multiple objectives, given the diversity of comfort requirements, technical 

constraints, appliances to be scheduled, etc., in a near real-time framework, to decide which 

automated demand response action should be implemented. The decisions are influenced by 

energy costs, end-users’ preferences and requirements, potential dissatisfaction when the 

operation cycle of loads is changed, technical constraints, weather forecasts, the existence of local 

generation and storage systems. 

Evolutionary algorithms have been used to solve a variety of complex optimization problems, 

coping with large and irregular search spaces, and also multiple objectives of different nature. Due 

to these features and the ability to provide good solutions in a reasonable computational time, an 

evolutionary algorithm approach has been developed to solve a multi-objective optimization model 

for managing residential energy resources. The energy resources to be considered include local 

generation, storage systems (stationary and plug-in electric vehicle) and manageable demand. 

Demand resources can be categorized under shiftable loads, reparameterizable loads and 

interruptible loads. 

The evolutionary algorithm developed makes the most of the physical characteristics of the 

problem to obtain results that can be implemented in practice with a mild computational effort. 

For the different types of loads, customized solution encoding and operators are used since the 

detailed knowledge of the physical characteristics of the problem is essential to obtain better 

results. The bi-objective model considers as objective functions the minimization of the energy cost 

and the minimization of end-user’s dissatisfaction associated with management strategies. The 

consideration of a bi-objective model enables to study the trade-offs between the competing 



 

 

objective functions and then select a compromise solution more in accordance with the end-user 

profile. 

The use of the tailored evolutionary algorithm proposed in this research, though not directly 

aiming at an overall reduction of energy consumption, allows minimizing the electricity bill and 

end-user’s dissatisfaction through an optimized use of energy resources. According to the results 

obtained, the contracted power level can also be lowered. Savings in the electricity bill are usually 

between 5-16%, although higher ones can be attained since savings are strongly dependent on the 

tariff structure, end-user’s preferences and willingness to accept a higher level of control. Results 

show the higher the flexibility of the end-user regarding the usage of the different energy services, 

the higher the savings.  

This evolutionary algorithm approach endows the Energy Management System with a reliable 

method to automatically make decisions concerning the optimal integrated use of multiple 

residential energy resources according to the end-user profile and has a high flexibility concerning 

the integration of a high diversity of manageable resources. 

 

Keywords: 

Residential Integrated Energy Resources Management; Demand Response; Evolutionary 

Algorithms; Smart Grids. 

 



 

   

RESUMO 

A evolução gradual das redes de energia no sentido de redes mais inteligentes expectavelmente 

fornecerá a infraestrutura tecnológica necessária permitindo a implementação de novas estruturas 

tarifárias, criando um ambiente favorável para a gestão integrada de recursos energéticos. Os 

estímulos adequados induzidos, por exemplo, por tarifas dinâmicas, em que o preço de energia é 

variável ao longo de intervalos de tempo curtos, assim como a infraestrutura tecnológica para 

monitorização, controlo e comunicação de dados tornar-se-ão ferramentas importantes para 

fomentar um papel mais ativo dos recursos do lado da procura e promover a penetração da 

geração distribuída baseada em fontes renováveis. Neste contexto, a gestão ativa das cargas no 

setor residencial pode desempenhar um papel importante para permitir aos utilizadores a 

otimização da utilização de recursos energéticos, com o intuito de minimizar o custo total de 

energia, sem comprometer o nível de conforto. Esta gestão de cargas requer o desenvolvimento de 

modelos de otimização de natureza combinatória e tendo em conta múltiplos objetivos, dada a 

diversidade de requisitos em termos de conforto, restrições técnicas, quantidade de cargas a 

escalonar, entre outros, num ambiente em tempo quase real, para decidir que ações de gestão da 

procura devem ser implementadas. As decisões são influenciadas pelos custos de energia, pelas 

preferências e requisitos do utilizador, pela potencial insatisfação quando o ciclo de funcionamento 

das cargas é alterado, pelas restrições técnicas, pelas previsões meteorológicas e pela existência de 

sistemas de geração local e de armazenamento. 

Os algoritmos evolucionários têm sido usados para resolver problemas de otimização complexos, 

devido à sua capacidade para trabalhar com espaços de procura grandes e irregulares, e com 

vários objetivos de natureza diversa. Devido a estas características e ainda à capacidade para 

encontrar boas soluções num tempo computacional razoável, foi desenvolvida uma abordagem 

baseada num algoritmo evolucionário para resolver um modelo de otimização multi-objetivo para 

a gestão de recursos energéticos no setor residencial. Os recursos energéticos a considerar 

incluem geração distribuída local, sistemas de armazenamento (estacionários ou veículos elétricos) 

e a procura controlável. A procura controlável pode ser dividida em cargas ajustáveis no tempo (ou 

que permitem reagendamento), cargas reparametrizáveis e cargas cujo funcionamento pode ser 

interrompido. 

O algoritmo evolucionário desenvolvido tira partido do conhecimento das características físicas do 

problema de modo a obter resultados que podem ser implementados na prática, com um esforço 

computacional moderado. Assim, para os diferentes tipos de cargas, é feita uma adaptação da 

codificação da solução e dos operadores, pois um conhecimento detalhado das caraterísticas 

físicas do problema permite obter melhores resultados. O modelo bi-objetivo considera como 

funções objetivo a minimização do custo de energia e a minimização da insatisfação associada à 

implementação das ações de gestão da procura. A consideração de um modelo bi-objetivo permite 

a análise dos trade-offs entre as duas funções objetivo e a seleção de uma solução de compromisso 

de acordo com o perfil do utilizador. 



 

 

O uso do algoritmo evolucionário proposto neste trabalho, embora não tenha como intenção 

essencial a redução global do consumo de energia, permite minimizar a fatura de eletricidade, 

assim como a insatisfação do utilizador, através de uma gestão otimizada dos recursos energéticos. 

De acordo com os resultados obtidos, o escalão da potência contratada também pode ser 

reduzido. As poupanças na fatura de eletricidade variam geralmente entre 5 e 16%, apesar de 

poderem ser atingidas poupanças mais elevadas uma vez que estas são fortemente dependentes 

da estrutura tarifária, das preferências do utilizador e da sua predisposição para aceitar um nível de 

controlo mais elevado. Os resultados mostram que quanto maior a flexibilidade do utilizador 

relativamente à utilização dos diferentes serviços de energia, maior é a poupança. 

Esta abordagem, baseada num algoritmo evolucionário, permite dotar o sistema de gestão de 

energia de um método confiável para gerir automaticamente e de modo integrado os vários 

recursos energéticos existentes no setor residencial de acordo com o perfil do utilizador. Esta 

abordagem apresenta ainda uma flexibilidade elevada em termos de integração de uma elevada 

diversidade de recursos controláveis. 

Palavras-chave: 

Gestão Integrada de Recursos Energéticos no Sector Residencial; Gestão da Procura; Algoritmos 

Evolucionários; Redes Inteligentes. 
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OBJECTIVES 

The aim of the research leading to this PhD thesis was to design a methodology for optimizing the 

usage of multiple energy resources in a single household while simultaneously considering variable 

energy prices, end-users’ needs and the variability associated with both the electricity demand and 

local generation. The residential energy resources comprise manageable loads, energy storage 

systems, including plug-in electric vehicles, micro-generation systems and energy drawn from the 

grid. The approach includes an adequate framework to take into consideration end-users’ 

preferences, the models to reproduce the power profile of the energy resources and the 

optimization algorithms to be implemented in a residential Energy Management System (EMS). 

The models are aimed to reproduce the regular behavior of loads, i.e, without interference of an 

automated management system and, when aiming at an optimized use of energy resources, should 

also be able to reproduce their behavior when subjected to management actions. An evolutionary 

approach able to cope with the multiple objectives, combinatorial nature and nonlinear features of 

the model, is responsible for computing solutions aiming at the optimal integrated management of 

the available energy resources. This optimization is aimed at deriving the Pareto optimal set 

associated with minimizing the electricity bill and the potential end-users’ dissatisfaction due to the 

implementation of Automated Demand Response (ADR) actions. 

In order to accomplish the objectives of this PhD research, the following steps have been followed: 

1. Categorization of loads to be the target of ADR actions through the identification of the 

characteristics that allow demand to be treated as a manageable and responsive resource; 

2. Design of the main features of the different possible ADR actions; 

3. Development of the simulation environment to reproduce residential electricity demand, 

micro-generation and energy storage systems, and assess the impact of ADR actions on 

different energy resources; 

4. Development of optimization models; 

5. Integration of optimization models in the simulation environment to be tackled by 

evolutionary algorithms coping with multiple objectives and the combinatorial nature of the 

search space, taking into account end-users’ requirements and preferences; 

6. Evaluation of the impacts of the optimal integrated management of energy resources on the 

residential load diagram, the end-users’ electricity bill and potential dissatisfaction caused by 

changes in habitual load operation schedules. 
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1. INTRODUCTION 

1.1. CONTEXT AND MOTIVATION 

The adequate operation of the electrical power grid requires a balance between demand and 

supply. According to a “supply follows load strategy”, which assumes that electricity demand is 

almost inelastic, utilities1 need to accurately estimate demand and schedule their energy supply 

portfolio for a given planning period and cannot rely on end-users’ response to meet direct 

requests for increasing or decreasing demand (Albadi and El-Saadany, 2008; Chrysopoulos et al., 

2014; Ipakchi and Albuyeh, 2009; Katz et al., 2011). In recent years, with the need to reduce 

simultaneously external energy dependence and Greenhouse Gases (GHG) emissions and the 

increasing investment in renewable sources, existing power supply systems have been facing new 

changes and challenges, in particular the need to fully integrate generation from renewable energy 

sources (Directorate-General for Research Sustainable Energy Systems, 2006). At the same time 

the power grid has been also facing several modifications, namely the integration of smart 

embedded systems combining instrumentation, analytics and control to increase grid’s efficiency. 

Driven by security of supply, sustainability and competitiveness concerns, this grid will become self-

diagnosing, self-healing, more distributed and bidirectional (Brown et al., 2010; European 

Commission, 2006; Moshari et al., 2010). European countries are currently moving towards the 

development of a smart(er) grid, which will make possible the setting of an efficient market where 

end-users’ flexibility concerning electricity usage may play an important role (D’hulst et al., 2015; 

Jacobsen et al., 2015). 

Nowadays this demand flexibility, when existent, takes place usually in industry and requires 

bilateral agreements. Usually in this scenario large electricity users are paid to reduce their 

consumption in critical periods to avoid grid congestion (Jacobsen et al., 2015) while residential 

end-users have a flat, dual or triple time-of-use tariff and independently manage their energy 

usage without direct external interference. In the context of smart grids, a paradigm change is 

expected to occur mainly due to the presence of bidirectional communication and the more 

intense use of computing, control and information and communication technologies (ICT) which 

will contribute to increase the system’s overall efficiency, reliability, flexibility and sustainability 

(Kahrobaee et al., 2013). Bidirectional communication enables the adoption of dynamic tariff 

schemes and consequently encourages end-users to have a more active role concerning electricity 

usage. In the smart grid scenario, instead of the traditional strategy, a “load follows supply” 

strategy can be implemented (Katz et al., 2011). This strategy aims to stimulate end-users to make 

a more informed and wise usage of energy resources, through the use of adequate technical and 

economic approaches (Molderink et al., 2010a). It is widely acknowledged that demand-side 

                                                           
1
 An utility is seen in this context as a company engaged in activities necessary for delivery of electric energy to 

consumers. 
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resources active participation is one of the ways to enhance the economic efficiency of electricity 

markets, reduce peak demand and improve the reliability of electric power systems (Hirst and 

Kirby, 2001), besides the direct advantages to the end-user concerning the reduction of the 

electricity bill. In this scenario all the electricity chain participants, from generation to 

consumption, may participate actively in the functioning of the power system. 

Incentive-based schemes are an option which can be used in this context to enroll consumers 

voluntarily in programs in which the grid operator or energy retailers may control some of the end-

use loads according to a pre-established contract. On the other hand, time-based rates schemes 

can induce changes in the way end-users use their resources and may include scheduled time-of-

use pricing, peak-pricing and time varying/dynamic tariffs (Tsui and Chan, 2012).  

Dynamic tariff schemes, known a certain time in advance, which more accurately reflect the real 

costs of energy, can be used instead of flat tariffs to induce behavior change and influence 

electricity usage (Deng et al., 2013; Vanthournout et al., 2015). Nonetheless, the effort required to 

end-users to be aware of energy price variation and make decisions concerning the way electricity 

is used can be too high. Decisions such as: 

 the best scheduling for appliances to be turned on/off (laundry machines, tumble dryers, 

dishwashers, etc.); 

 the temperature change in thermostats set points and/or the curtailments to be applied over 

thermostatically controlled loads, such as air conditioners and electric water heaters or even 

refrigerators and freezers; 

 what to do with the energy produced locally (store/use/sell to the grid); 

 how to manage electricity storage devices, including a Plug-in Electric Vehicle (PHEV) which 

may be used in both Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) modes; 

should be done continuously and in a near real-time environment thus requiring the help of 

decision support tools such as EMS (Lopes et al., 2012; Paterakis et al., 2015). These systems can 

thus be responsible for making decisions concerning which ADR actions should be implemented 

and how, while respecting technical and comfort constraints. 

Recent works concerning EMS have focused on the management of appliances under real-time 

electricity pricing mainly aiming at reducing end-users’ electricity bill (Allerding et al., 2012; Braun 

et al., 2016; Mauser et al., 2014). The most common ADR action is shifting energy consumption 

from periods of higher prices to periods of lower prices. Bidirectional exchange of information 

between the utility or even an aggregator entity2 and end-users encompasses energy prices and 

power requested to the grid in each period of time. 

                                                           
2
 Aggregators in this context are seen as energy players whose main role is gathering flexibility in electricity usage from 

consumers and intermediate transactions with other energy players (Agnetis et al., 2011; Carreiro et al., 2015; Giordano 
and Fulli, 2012; Gkatzikis et al., 2013) 
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Demand Response endows the end-user with the possibility to participate in the operation of 

power systems by enabling to increase, reduce or shift electricity usage during a given period of 

time in response to external signals, for example energy prices (Federal Energy Regulatory 

Commission, 2011). Furthermore, Demand Response (DR) programs can help improving the 

stability of the distribution grid and a more efficient integration of renewables and thus 

contributing to a future lower carbon economy. End-users engaging in these programs are 

expected to have a certain degree of flexibility regarding the usage of a group of appliances and be 

willing to trade-off convenience in daily energy services usage (e.g., accepting small and brief 

changes in indoor temperature range of a room or hot water). 

In the smart grids context, DR has re-emerged as a tool that helps energy suppliers minimizing peak 

load demand while allowing end-users to reshape their energy consumption by making informed 

decisions regarding consumption and storage (Gomes et al., 2011). DR can be seen in this 

framework as an alternative to build (or reinforce) power plants and network infrastructures since 

it contributes to increase the utilization of existing generation capacity and network assets by 

inducing end-users to modify their demand patterns according to real-time and estimated 

information concerning generation availability (namely renewables) and energy prices (Salinas et 

al., 2013). DR programs are also useful to Distribution System Operators (DSOs) since they can take 

into account grid constraints and induce electricity consumption changes. Accordingly these 

programs can provide means for flattening peak demand or changes in the load curve if needed 

and hence postponing investments in grid infrastructure (Jacobsen et al., 2015). 

The buildings sector is currently one of the largest energy consumers representing 32% of the 

global energy use (IEA, 2012). In Europe, this percentage achieved 41% in 2010 (European 

Commission, 2012), enhancing the importance of this sector to reach GHG emissions goals and the 

desired improvement in energy efficiency by 2020 (European Comission and Eurostat, 2015). 

Concerning electricity, the residential and tertiary sectors together represented more than 50% of 

the electricity consumption in EU-27 in 2010 (Bertoldi et al., 2012) and the residential sector by 

itself accounted for 30% of total final electricity consumption in EU-27. This sector has been 

showing an increasing consumption trend therefore justifying the need to promote and implement 

energy efficiency policies and actions to change energy behaviors (Bertoldi et al., 2012; INE, 2011; 

Lopes et al., 2012a). 

Although it may be argued that appliances are becoming more efficient, the ownership rate of 

some of them has also been rising as well as their use (Bertoldi et al., 2012). Considering the 

residential sector as a target to achieve a smarter use of electricity due to the existence of a certain 

degree of flexibility regarding the usage of appliances, adequate algorithms should be designed to 

be at the core of EMS to help end-users responding to energy price variations. 

Concerning the final aim of the EMS, different energy systems stakeholders may have distinct aims. 

From the residential end-user’s point of view the final aim is optimally managing energy resources 

to decrease the electricity bill without degrading the quality of the energy services provided. For 

prosumers (simultaneously producers and consumers), the objectives also include maximizing the 
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use of local renewable energy resources and maximizing the profits with selling of electricity. As for 

the utility, the main goals lay on the maximization of profits and the maximization of savings in 

both capital and operational expenditures. For the grid operator, a major motivation is the 

maximization of the reliability of supply and the minimization of congestions and losses in the 

electrical grid, postponing the investments in increasing grid infrastructure. The adoption of an 

EMS requires the clear identification of the actors and the objectives to be pursuit to adequately 

design and configure the embedded optimization algorithms. Table 1 shows some entities who 

may be interested in such a system and some of their main goals. In this PhD research the end-

user’s perspective was chosen and therefore the objectives are twofold: minimization of the 

electricity bill and minimization of the potential dissatisfaction sensed by the end-user. Despite of 

adopting the end-user perspective for the development of this work, other perspectives (such as 

the ones of retailers and DSOs) can be considered together with the end-user perspective if 

adequate mechanisms are used to create convergence of interests, such as suitable tariff schemes. 

EMS already used in the services sector and even in the residential sector can have their 

functionalities upgraded by including the option of automatically adapt demand to supply on 

behalf of the end-users (Miorandi and De Pellegrini, 2012). 

Table 1: Example of different actors and goals 

Actors Goals 

End-user consumer Minimize the electricity bill 

Minimize the degradation of the quality of energy services provided 

Prosumer Maximize the use of local renewable energy resources 

Maximize the profits with selling of electricity 

Minimize the electricity bill 

Minimize the degradation of the quality of energy services provided 

Utility Maximize profits 

Maximize savings in both capital and operational expenditures 

Grid Operator Maximize the reliability of supply 

Minimize congestions and losses in the electrical grid 

Retailer Maximize profits 

In the smart grids context, the introduction of new services by utilities is also expectable such as 

bundled up services and new contract options, which may already include technologies and 

strategies for engaging end-users in DR programs, remote management of home temperature, 

battery leasing for PHEVs, among others (Giordano and Fulli, 2012; Logenthiran et al., 2012). DSOs 

and energy traders actors can take advantage from trading end-users flexibility and capacity 

regarding the usage of energy services on energy markets, although the revenues, investment 

payoff and savings achieved are strongly dependent on the amount of manageable loads engaged 

in load management programs (Carreiro et al., 2015; Soares et al., 2014b). In the case of residential 

users, the level of involvement is expected to be high for most manageable loads, since what will 

most influence the end-user behavior is the trade-off between the quality of the energy service 
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provided, e.g. meet comfort requirements and preferences, and the potential savings in the 

electricity bill resulting from using the energy service under different conditions (Stamminger and 

Anstett, 2013). 

From the point of view of network companies, the implementation of ADR strategies with impact 

on the peak load demand decreases the network congestion and losses. There is then a reduction 

of the need to build new under-used power plants and consequently no need to expand neither 

the transmission lines nor the distribution networks, thus decreasing the overall costs, reducing the 

carbon emission levels and consequently improving the grid sustainability. 

The dissemination of PHEVs is also expected to gain an additional impetus and the charging of a 

multitude of PHEVs may pose some new burdens on the grid, mostly due to the creation of new 

power peaks (Eppstein et al., 2011; Guille and Gross, 2009; Salinas et al., 2013; Shao et al., 2011; 

Weiller, 2011; Zhang et al., 2012). End-users’ flexibility for charging these PHEVs in different time 

slots or to interrupt their charging cycle, as long as the desired state of charge (SoC) of the PHEV 

battery is achieved by a given time, makes possible to manage these loads individually or using 

some type of aggregating entity (Bessa et al., 2012). From the grid’s perspective, lowering those 

power peaks, which most likely occur a few hours per day only, will contribute to extend the usage 

of the available grid capacity and postpone the investments needed to expand it. 

1.2. CONTRIBUTIONS AND RESEARCH QUESTIONS 

The problem addressed in this work consists in designing and implementing an evolutionary 

approach, aiming at the integrated management of residential energy resources, to be embedded 

in a residential EMS. This EMS will explore the flexibility that residential end-users have concerning 

electricity usage. 

The targeted energy resources include local generation, shiftable loads, thermostatically controlled 

loads, storage systems (either stationary or a PHEV) and energy drawn from the grid. For the 

different groups of loads, customized solution encoding and operators are used since the detailed 

knowledge of the physical characteristics of the problem allows tailoring the algorithm to obtain 

effective results that can be implemented in practice. The multi-objective model considers as 

objective functions the minimization of the energy cost and the minimization of end-user’s 

dissatisfaction associated with management strategies, in order to make solutions acceptable to 

the typical end-user who does not want to jeopardize comfort. Results have shown that significant 

savings can be achieved although they are strongly dependent on the end-user’s willingness to 

accept automated control. 

The main research questions to be answered by this research are therefore: 

 in a smart grid context how can the use of different residential energy resources be 

optimized? 

 how should the algorithmic approach be customized to optimally manage the distinct energy 

resources? 
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The main highlights from this PhD research are: 

 the inclusion of two conflicting objectives: minimization of the electricity bill and 

minimization of the potential dissatisfaction sensed by the end-user; 

 development of an EA approach able to deal with the bi-objective and combinatorial nature 

of this optimization problem; 

 the customization of the solution encoding and operators used to obtain effective results; 

 diversity of the energy resources considered in the model; 

 variety of ADR actions considered; 

 ability to quickly re-compute new solutions if the context changes during the optimization 

process. 

1.3. ORGANIZATION 

The presentation of the PhD thesis is based on three journal papers and book chapters, which 

describe the several stages of this research3. The thesis is structured in seven chapters. Chapter 1 

presents a brief introduction to the research problem and the research objectives. Chapter 2 

focuses on the identification of responsive resources in the residential sector and its features. 

Chapter 3 provides a detailed overview of evolutionary approaches that may be used to deal with 

combinatorial multi-objective models to optimize the management of residential energy resources 

in the smart grids context. Aiming at presenting the most recent works in this area, this review 

addresses papers published in the 21st century only. This chapter also includes a small section 

presenting other optimization techniques that have also provided good results. The problem to be 

solved is formulated and modelled in Chapter 4. The methodology, based on an evolutionary 

algorithm, used to solve this model is presented in Chapter 5. Simulation results and the possible 

choice of the final solution according to distinct residential end-user profiles are depicted and 

analyzed in Chapter 6. Conclusions are drawn and future research directions are outlined in 

Chapter 7. 

 

                                                           
3
 Copyright has been granted to reuse all of the published papers. 
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2. RESOURCES IN THE RESIDENTIAL SECTOR4 

2.1. RESIDENTIAL RESOURCES OVERVIEW 

Residential loads are devices that consume energy and have frequently been seen as passive, 

displaying inelastic demand (Lui et al., 2010). However, the way appliances are perceived is 

changing since they can be managed up to a certain degree, aiming at changing their electricity 

consumption during specific periods of time. The change of normal operation of manageable loads 

can contribute to maximize the integration of renewables (Lui et al., 2010; Timpe, 2009) and the 

accommodation of new end-use loads, such as PHEVs, becomes easier. The flexibility in using the 

different services makes manageable demand able to be adequately managed according to 

different objectives and interests. 

The design of algorithms to optimize the use of residential resources requires their 

characterization. For example, it is necessary to know: 

 which energy resources are able to be controlled and in what extent; 

 what kind of control actions can be applied over each resource; 

 which technical constraints and comfort preferences are associated with the services 

provided by each resource. 

The knowledge of the disaggregated electricity consumption in the residential sector as well as the 

typical patterns of usage of the appliances and user’s day activities, plus the previous itemized 

information allow identifying responsive loads to be the target of ADR actions within certain 

conditions (Lopes et al., 2016b; Rosin et al., 2010). Technical constraints and end-user’s 

preferences that frame the way loads can be controlled also play an important role and should be 

included in the optimization process. 

Although the way electricity is used in the residential sector may differ among different countries 

(e.g., in some countries air conditioner systems are widely used while in other countries their 

ownership rate is very low) as well as the end-user’s willingness and flexibility concerning the 

implementation of ADR actions, loads have common features and are used to achieve similar goals. 

People’s daily activities include gainful work and study, residential work, meals, personal care, 

travel, free time and sleep. Even if some of the previous activities are performed outside people’s 

home, others are done at home and require the activation of energy services, namely food 

preparation, dish washing, cleaning, laundry, watching television, among others (Lopes et al., 

2015). Therefore the first step is to clearly identify the energy services and responsive demand. 

                                                           
4
 This chapter is partially based on Soares, A., Gomes, Á., Antunes, C.H., 2014b. Categorization of residential electricity 

consumption as a basis for the assessment of the impacts of demand response actions. Renew. Sustain. Energy Rev. 30, 
490–503 . 
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To achieve that goal, a detailed analysis of how electricity is used in the Portuguese residential 

setting is conducted based on a study from the Directorate General for Energy and Geology in 

Portugal (DGEG) / IP-3E (DGGE /IP-3E, 2004) with: 

 the disaggregation of residential load profile by end-uses (Figure 1); 

 the contribution of end-use loads to the total electricity consumption and electricity bill 

(Figure 2). 

Other studies concerning end-users habits, daily’s activities (Lopes et al., 2016a) and users’ 

willingness to change behavior concerning the utilization of energy services (Gyamfi and 

Krumdieck, 2011; Lopes et al., 2012a; Stamminger, 2008; Timpe, 2009) also provide useful 

information (Figure 3) that can be crossed with the previous study (DGGE /IP-3E, 2004). 

This analysis enables extracting the regular periods of usage of end-use loads and making some 

assumptions concerning residential end-users’ habits and the potential of operating some of the 

appliances in different schedules or under different settings. 

From the end-user’s point of view and in order to accept the implementation of ADR actions, the 

control should be done by taking advantage of usage flexibility of manageable end-use loads, 

without reducing comfort or depreciating the quality of the energy services provided. 

 

Figure 1: Demand profile of the residential sector in Portugal (DGGE /IP-3E, 2004) 
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Figure 2: Disaggregated electricity consumption in the residential sector in Portugal (DGGE /IP-3E, 2004) 

 

Figure 3: Average day activities from portuguese residential users (INE, 1999; Lopes et al., 2016b) 

2.2. LOAD CATEGORIZATION 

In a broad sense, each household has non-manageable loads, manageable loads with different 

degrees of control and, in some cases, small renewable generation systems and some form of 

storage systems, including PHEVs. The non-manageable loads typically comprise loads associated 

with entertainment, cooking, cleaning or lighting activities such as audio visual, office, cooking and 

cleaning appliances, among others. Manageable loads are usually associated with an energy service 

that may be not coincident with electricity consumption or may be provided in different periods of 

time, including: 

 dishwashers, laundry machines; tumble dryers; 

 thermostatically controlled loads: 

o fridges and freezers; 

o electric water heaters (EWH); 
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o air conditioner (AC) systems. 

 storage systems (either stationary or PHEVs). 

2.2.1. SHIFTABLE LOADS 

There are loads such as laundry machines (LM), dishwashers (DW) and tumble dryers (TD), for 

which the energy services may be provided in different periods of the day when there are 

economic advantages for the end-user without decreasing their quality of service as long as end-

users needs and requirements are fulfilled (Albadi and El-Saadany, 2008; Meyers et al., 2010). 

These loads can be classified as shiftable loads. 

Figure 4 shows energy use during a typical operation cycle for a residential laundry machine at two 

different washing programs and the average pattern of use in Portugal. This type of load is mainly 

put into service in the morning and after lunch period. The information of load usage together with 

the characteristics of these loads plus end-user’s willingness to accept control makes them suitable 

for postponement or anticipation actions. In terms of energy consumption, most electricity is 

consumed in the water heating phase, being advisable to use low temperature programs. 

Interruptions should not occur during this stage due to possible heat losses and the need to re-

heat water. 

 

Figure 4:Typical working cycle of laundry machine and average daily pattern of use (DGGE /IP-3E, 2004) 

Figure 5 provides information about energy and time of use for residential tumble dryers. As for 

the laundry machines, tumble dryers also offer a significant opportunity to reduce the traditional 

electricity peak presented in Figure 1 and shift that consumption to other period of the day. 

However, it is important to highlight that usually these loads are operated after the working cycle 

of the laundry machine is over, which strongly influences their flexibility concerning the time 

shifting window. Although the ownership rate of these appliances is not very high in Portugal 

(around 19%), the possibility of controlling them without causing discomfort to the end-user is 

easily achieved either by shifting the consumption or even interrupting it to take advantage of the 

residual heat. From an end-user perspective and since the tumble dryer cycle time and energy 

consumption are linked, the interruption of the cycle will not affect drying performance, but will 

lengthen the duration of the total working cycle by increasing the time that the heater is shut off 

(Lui et al., 2010). 
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Figure 5: Typical working cycle of a tumble dryer and average daily pattern of use (DGGE /IP-3E, 2004) 

Dishwashers are usually used after meals, being ideal to be managed since their electricity 

consumption can be deferred without bringing discomfort to the end-user as long as the dishes are 

washed and dried at a stipulated time (Figure 6). Normally the peak of use of this type of loads 

occurs after dinner, being coincident with current peak electricity demand in the residential sector 

in Portugal (Figure 1). If these loads are used when the price of electricity is lower or there is 

energy being produced locally, then economic advantages of using these appliances at the 

adequate schedule are expected. Also, along with the possibility to defer the operation cycle, there 

can also be a power and energy reduction by eliminating the heated drying portion of the cycle 

pointed out in Figure 6 (Lui et al., 2010) in extreme situations. 

 

Figure 6: Typical working cycle of a dishwasher and average daily pattern of use (DGGE /IP-3E, 2004) 

2.2.2. THERMOSTATICALLY CONTROLLED LOADS 

Some dissociation may exist between the energy services and electricity consumption since the 

final objective of the usage of those appliances can be conserving food, heating water or keeping 

room temperature within a given range. These loads can be generally categorized under the label 

thermostatically controlled loads, since the level of some of these energy services, i.e. temperature 

set points, can be slightly changed during short periods of time leading to changes in energy 

consumption without noticeable changes in the quality of the energy service provided. 

Additionally, the normal working cycle of these loads may also be interrupted during short periods 

of time without decreasing the quality of the energy service provided as long as temperature 

restrictions are taken into account. It is possible to group under this category cold appliances, 

EWHs and ACs systems. 
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Cold appliances are present in almost every household, sometimes even more than one per house, 

and accounted for more than 30% of the annual residential electricity consumption in Portugal 

(Figure 2) according to (DGGE /IP-3E, 2004). This load has a working cycle controlled by a 

thermostat (Figure 7) and can have the thermostat settings changed or even be the target of short 

interruptions without causing the deterioration of the energy service as they can act as energy 

storage devices (Xu et al., 2011). In practical terms, a difference of 1oC is not, in general, 

problematic for conserving food while for electricity consumption it represents a non-negligible 

difference (Kupzog and Roesener, 2007). Therefore, ADR actions targeting small changes of the 

thermostat settings and short time interruptions with consequent small changes of temperature 

parameters are possible (Molderink et al., 2010a; Perfumo et al., 2012). 

Although one may argue that the power drawn from the power system by cold appliances is 

relatively low, the fact that they are working all day long in almost every house, meaning the 

overall energy consumed may be high, along with their storage characteristics, makes them an 

attractive load to be controlled. This control, either re-set of thermostat parameters or short time 

interruptions, should not originate temperature variations that may negatively impact on service 

provided, being important to establish the adequate ADR actions and temperature boundaries. 

 

 

Figure 7: Typical working cycle of a refrigerator (DGGE /IP-3E, 2004; Lui et al., 2010) 

According to (DGGE /IP-3E, 2004) EWHs represented more than 5% of the annual residential 

electricity demand in Portugal (DGGE /IP-3E, 2004). This electricity consumption is strongly 
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dependent on the routines and habits but also on the number of people using them and hence the 

amount of hot water needed. In this type of thermostatically controlled load there is some 

dissociation between the period during which electricity is used to heat water and the effective use 

of hot water (Vanthournout et al., 2012). Therefore, it is possible to reduce energy costs by taking 

advantage of variable electricity prices through the implementation of ADR actions such as the 

anticipation/postponement of the working cycle and short interruptions (Ericson, 2009; Goh and 

Apt, 2004). It is also possible to redefine thermostat settings by lowering the desired temperature 

when the electricity price is high and increase it when the price is low or when electricity is 

available from local generation or storage system. These ADR actions should be implemented 

without noticeable degradation of the quality of the energy service. 

Figure 8 displays the typical day average electricity consumption of EWHs whose data was 

gathered in energy audits for weekdays, Saturdays and Sundays (Jorge, 2010). Typically, the peaks 

are found in the early morning and evening for weekdays and, with peaks not so high, a bit later in 

the morning and in the evening for the weekend. So as long as hot water is assured when needed, 

the impact in comfort of the ADR actions implemented is minimized. 

 

Figure 8: Daily average consumption of EWHs of representative consumers (Jorge, 2010) 

Electric room heating and cooling systems are responsible for more than 15% of the annual 

electricity consumption in the residential sector in Portugal (Figure 2) although only AC systems are 

well suited for the implementation of ADR actions. However, the ownership rate of AC systems in 

Portugal is still not too significant even though showing an increasing trend (Shahbaz et al., 2011). 

The main objective of an AC system is to provide thermal comfort to the user (Chu and Jong, 2008) 

and the main difficulty associated with this type of load is the correct regulation of the 

temperature when aiming to reduce energy consumption (Figure 9). Due to the energy storage 

capacity existing in rooms being heated/cooled, ADR actions are possible over this load. (Chu and 

Jong, 2008) showed that DR can be used in this context to re-shape the system peak load profile, 

when the reliability of the system is jeopardized, and the load diagram. Most energy used in an AC 

system (in the cooling function) in the refrigeration cycle is for compressing the refrigerant and 

transfer indoor heat outdoors, and it can increase or decrease depending on weather conditions 

and indoor heat load. ADR actions over these type of systems, either the re-set of thermostat 
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parameters or short time interruptions must assure thermal comfort to the end-user (Chu and 

Jong, 2008) without neglecting the associated payback effect (Chen et al., 1995; Ericson, 2009; 

Gomes et al., 2013; Newsham and Bowker, 2010). The payback effect is an increase in peak 

demand during the restoration of loads after a period of forced supply interruption when 

compared with the regular demand when no ADR actions are implemented (Gomes et al., 2009). 

 

 

Figure 9: Temperature variation and typical working cycle of an AC system 

(Molina et al., 2003; Panasonic, 2012) 

2.3. FINAL REMARKS 

Demand Response actions must be tailored to each manageable load and input signals, respecting 

technical constraints, and adapted to fulfill end-users’ preferences and achieve their objectives 

(e.g. minimize electricity bill and minimize end-user’s potential dissatisfaction). 

The analysis of residential energy resources, typical patterns of usage and technical constraints 

allows the identification of four main load categories according to the degree/type of control 

(Soares et al., 2012a): 
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1. non-manageable loads: loads that when controlled may cause discomfort to the user or 

perturbation to ongoing activities (lighting, office and entertainment equipment, cooking 

appliances); 

2. thermostatically controlled loads which can be also called reparameterizable loads: loads 

that are thermostatically controlled and allow a re-set of thermostat settings changing 

energy consumption (cold appliances, AC systems and EWHs); 

3. interruptible loads: loads which can be interrupted during a short period of time without 

decreasing in a perceived way the quality of the energy services provided (cold appliances, 

AC systems and EWHs); 

4. shiftable loads: loads whose functioning can be postponed or anticipated according to end-

users’ preferences (laundry machines, tumble dryers, dishwashers and EWHs). 

According to this categorization, and the typical annual consumption of those loads in Portugal, it is 

possible to trace the relation between the potential degree of load control and annual electricity 

consumption (Figure 10): 

 the x-axis refers to the annual electricity consumption (GWh); 

 the y-axis refers to the potential degree of control (1 – non-manageable loads, 2 – 

reparameterizable loads, 3 – interruptible loads, 4 – shiftable loads); 

 the circle or/and the ellipse represent all the possible types of control, being the most typical 

control represented by the circle; 

 each circle has a radius proportional to the average electricity consumption per year. 

It is important to point out that although the same type of control may be applied to several loads, 

the characteristics of the ADR actions (duration of the interruption, new temperature settings, time 

deferral, etc.) are different and may differ along the day (D’hulst et al., 2015). This means that each 

control strategy must be tailored to each end-use and therefore take into consideration the energy 

service to be provided and the end-users’ flexibility and requirements. 

According to this analysis, the loads that present higher annual consumption are fridges, air heating 

systems and freezers. Fridges and freezers are on during all day and thus present a high annual 

electricity consumption (Soares et al., 2012b). Room heating, despite the seasonality of its use, also 

has high electricity consumption and one of the reasons may be the poor insulation in buildings 

and the high ownership rate of these systems. Nonetheless, it is not easy to actuate over these 

systems, contrariwise to AC systems, which can be seen as a strong candidate to the 

implementation of ADR actions. 

As far as control is concerned, EWHs may be the target of different actions: they can have the 

temperature re-set, the working cycle interrupted and even have some flexibility concerning the 

working cycle operation, as long as water is hot at a certain hour. Also fridges and freezers may 

have the temperature re-set or be interrupted during a short time period. These different ADR 

actions to be implemented are represented in Figure 10 using ellipses that cover different possible 
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types of control. PHEVs are not represented since their annual electricity consumption is still not 

significant but it could be categorized under interruptible and shiftable load categories. 

Ovens, lighting, office and entertainment equipment cannot be managed, since their control 

strongly interferes with end-users’ comfort and activities thus strongly depreciating the quality of 

the energy services provided. 

 

Figure 10: Load categorization according to its degree of control and annual electricity consumption 

(Soares et al., 2012b) 

For the adequate control and coordination of responsive residential demand, the integrated 

monitoring of electricity consumption at the household level must be assured. The continuous 

monitoring of demand and load control cannot, however, be entirely left to the end-users due to 

their complexity either concerning the variety of decisions to be made or the requirements in 

terms of time availability to implement ADR actions. ADR actions are responsible for: 

 modifying the power profile of thermostatically controlled loads by changing the reference 

temperature; 

 postponing/anticipating the working cycles of shiftable loads; 

 deciding when to charge/discharge storage systems; 

 interrupting the operation of interruptible loads; 

in response to input signals such as energy prices, direct incentives (due to emergency requests) 

and residential end-users’ requests and requirements (Federal Energy Regulatory Commission, 

2011). 

Leaving all the decisions to the end-user would lead to response fatigue and loss of willingness to 

continue participating in DR programs (Vanthournout et al., 2015). Thus the importance of EMS 
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which are needed to decide, on behalf of the end-users, the control actions to implement, how and 

when (Lopes et al., 2012). Accordingly, EMS should be able to manage residential energy resources 

without negatively impacting the quality of the energy services provided (e.g., room temperature 

below/above a pre-specified comfort threshold, completion of the washing machine operation 

cycle before a given instant) (Soares et al., 2014a, 2013b). Operational aspects linked to the 

functioning of each energy resource must therefore be adequately considered and included in the 

optimization process. Thus the previous characterization of manageable energy resources and 

assessment of the potential effect of ADR actions in the residential load diagram is of utmost 

importance (Soares et al., 2014b). 

The deployment of EMS endowed with adequate optimization algorithms will give DR schemes a 

more important role in the electricity market. Demand responsive programs allow the 

management of load operation in order to benefit from dynamic tariffs and renewables availability 

(Gyamfi and Krumdieck, 2011; Strbac, 2008; Tsui and Chan, 2012). They also can contribute to 

increase reliability, mitigate the impact of generation shortfalls and decrease transmission 

congestion as well as drop of financial risks such as wholesale price spikes (Heffner and Grayson, 

2001).  

Several studies already focus on the control of different loads, mainly thermostatically controlled 

loads like AC systems and EWHs and shiftable loads, with a special emphasis on the PHEV (Amato 

et al., 2007; Du and Lu, 2011; Ericson, 2009; Goh and Apt, 2004; Heleno et al., 2015; Ilic et al., 

2002; Lee et al., 2014; Mohsenian-Rad and Leon-Garcia, 2010; Molina et al., 2011; Pedrasa et al., 

2010; Schweppe et al., 1989). In this thesis the manageable loads are shiftable loads (Soares et al., 

2014b), a PHEV, a stationary storage system and thermostatically controlled loads, namely a fridge, 

an EWH and an AC system. 

The management of such loads, particularly thermostatically controlled loads, may present 

conflicting objectives: on one hand, the end-user wants to reduce the electricity bill while, on the 

other hand, he/she does not want to have the quality of the energy services depreciated and may 

therefore impose restrictions on the control actions. Thus, when implementing ADR actions, the 

end-user should be allowed to previously define restrictions regarding the quality of the energy 

service provided by loads and associate a penalty to its violation as a result of a certain control 

action. The end-user should be able to define: 

 a temperature range for the acceptable variation around the reference temperature of 

thermostatically controlled loads and interruptible loads; 

 the most suitable time slots for the operation of shiftable loads; 

 the desired SoC of the PHEV battery. 

The proposed algorithmic approach differs from previous works in the methodology used, range of 

loads being managed, the different type of ADR actions that may be implemented to achieve an 

integrated optimization of all energy resources, the type of models used to reproduce their regular 

behavior and the impact of ADR actions, the ability to keep the maximum power requested to the 
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grid below the contracted power, and to react to external emergency requests or modification of 

end-user’s preferences and non-manageable demand. 

The final aim is finding solutions which minimize the cost of the energy consumed and the potential 

end-user’s dissatisfaction associated with the management strategies. This dissatisfaction is 

computed by considering an objective function consisting in penalties associated with: 

 the end-users’ preferences not entirely satisfied concerning the allowable time slots for the 

operation of each load (Soares et al., 2014a); 

 changing the temperature set-point of thermostatically controlled loads; 

 the closeness of the actual peak power with respect to the contracted power (as a surrogate 

for the risk of supply). 
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3. APPROACHES TO MANAGE RESIDENTIAL ENERGY RESOURCES5 

Evolutionary algorithms (EAs) have been widely used to solve a variety of complex optimization 

problems, namely with combinatorial or/and nonlinear features in engineering areas. After a 

comparison with other techniques, some of which are briefly presented in section 3.6, EAs were 

identified as an adequate approach to deal with the integrated optimization of residential energy 

resources. This is a multi-objective optimization problem, with combinatorial characteristics with a 

very large search space. EAs showed to be able to provide very good solutions in a reasonable 

computational time and also have the ability to quick re-compute new solutions whenever the 

conditions suddenly change, namely end-user’s manageable resources availability, comfort 

preferences or preferred periods of time for allocating shiftable loads. In case these changes occur, 

there is no need to re-introduce information concerning the current power demand, temperatures 

etc., since the approach computes new solutions using as inputs the information contained in the 

optimization process just before the event happened. Therefore, this chapter is mainly focused on 

EAs, although other relevant optimization techniques are also briefly described in section 3.6. 

3.1. BRIEF DESCRIPTION OF EAS 

A general overview of EAs, with a special focus on multi-objective optimization, and several 

examples of the most representative algorithms and their applications can be found in (Coello 

Coello, 2006). EAs have revealed as useful approaches, namely to address combinatorial problems 

with multiple conflicting objectives. In the energy sector EAs can be used to solve problems such as 

network planning, unit commitment and dispatch (Mashhadi et al., 2003), scheduling appliances 

working cycles (Omara and Arafa, 2010; Soares et al., 2013b), grid reconfiguration (Chittur 

Ramaswamy et al., 2012), minimization of power losses (Possemato et al., 2013; Ramaswamy and 

Deconinck, 2011), among many others (Antunes and Henriques, 2016). 

EAs are based on Darwin’s evolution theory of survival of the fittest and commonly used in search 

and optimization processes. In this methodology a group of potential solutions (population) to the 

problem evolve during several generations through the use of specific operators inspired on 

genetic mechanisms offering the strongest individuals a higher chance of survival. This evolution 

will hopefully lead to the “fittest” individual in single objective optimization or the identification of 

a Pareto frontier in multi-objective optimization. Solution encoding is an important step when 

designing EAs and the detailed knowledge of the physical characteristics of the optimization 

problem to be solved can bring some insights. Nevertheless, there are no general rules to be 

followed to produce an effective representation scheme. In Figure 11 the chromosome 

                                                           
5
 This chapter is based on Soares, A., Gomes, Á., Antunes, C.H., 2015. Integrated management of energy resources in the 

residential sector using evolutionary computation – a review. Soft Computing Applications for Renewable Energy and 
Energy Efficiency edited by M. Cascales, J. Lozano, A. Arredondo et al. Copyright 2012, IGI Global, www.igi-global.com. 
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representing each solution uses binary encoding to represent whether a given manageable load is 

on (“1”) or off (“0”) in each instant of time. The operators typically used are: 

 Selection: used to select individuals, either for generating offspring or being included in the 

next generation; 

 Crossover: used to combine characteristics of different individuals; 

 Mutation: used to insert changes and consequently diversity in the population. 

 

Figure 11: Example of a solution encoding and impact of the operators in the offspring (one-point crossover 

and mutation of one gene in each offspring) 

The initial population usually consists of random candidate solutions or solutions created using 

problem domain expertise. The fitness function, used to evaluate solutions, is generally based on 

the objective function(s) but may incorporate additional merit evaluation issues, such as a penalty 

term accounting for model constraints violation. Solutions are chosen to seed the next generation 

using a selection procedure, such as tournament or roulette wheel, usually based on their fitness. 

The crossover operator is then used over the selected parents to generate offspring by combining 

the parents’ genetic material (i.e. solution components). The mutation operator is aimed at 

introducing further changes in some solutions, thus promoting diversification in the search space. 

The successive application of these probabilistic operators leads to (hopefully better) solutions in 

subsequent generation populations. The use of crossover, mutation and selection operators allows 

combining, modifying and choosing possible solutions iteratively until a good approximation of the 

optimal solution/Pareto frontier to the single/multi objective optimization model is found. The 

transmission and improvement of some characteristics of the solutions from one generation to the 
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next one can be perceived as a form of memory allowing the population to evolve to regions in the 

search space where better solutions reside (Dréo et al., 2006). The stop condition is typically 

attaining the maximum number of generations, a satisfactory value for the fitness function, or the 

time elapsed. During the evolution process an elitist strategy can be used to keep a given number 

of the best solutions preserved and avoid their loss with the aim of facilitating the convergence of 

the process, although the risk of premature convergence may exist if an excessive elitist pressure is 

imposed. 

Concerning the smart grids context, evolutionary approaches have been used to optimize the 

management of residential energy resources at the household’s individual level according to 

different aims. Considering the existence of EMS such as the one proposed in (Livengood and 

Larson, 2009; Lopes et al., 2016b, 2012b), decisions can be implemented in an automated way as 

long as previous information about end-users’ requirements and preferences is known. External 

signals reflecting the grid’s state, such as emergency signals, may also be received by the EMS and 

interpreted to derive optimal decisions in almost real-time. 

Concerning the management of the energy resources and implementation of DR actions, two levels 

of aggregation may be defined: 

 an upper level where loads under control are not disaggregated since this depends on which 

households respond to the signals and requests coming from the utility; 

 a lower level where the algorithms are aimed at controlling specific manageable loads within 

the household. 

Most approaches embedded in EMSs have the same common goal - the minimization of the 

electricity bill - and use energy prices as input (Allerding et al., 2012; Antunes et al., 2013; Conte et 

al., 2010; Morganti et al., 2009; Penya, 2003; Salinas et al., 2013; Soares et al., 2013b; Zhao et al., 

2013b). Nevertheless in (Logenthiran et al., 2012) instead of using directly the energy prices, the 

input consists in a load curve to be attained, which is inversely proportional to the electricity 

market prices. The constraints considered depend on who makes the request to implement DR 

actions: in the case of utilities, specific grid constraints are included in the model (Yao et al., 2005), 

whereas in the case of residential end-users the constraints are mainly focused on their 

preferences regarding availability for letting a system controlling specific loads, within certain time 

bounds, and the variation of the energy price. The algorithmic approaches mainly comprise hybrid 

and parallel genetic algorithms (GAs), tailored and heuristic-based EAs and non-dominated sorting 

GAs. GAs are the most common option and they are used in (Penya, 2003; Soares et al., 2014a, 

2013b; Yao et al., 2005; Zhao et al., 2013b). (Conte et al., 2010; Morganti et al., 2009) combine GAs 

with multi-agent theory to schedule the operation of multiple loads aiming at minimizing a 

performance index composed by the number of overloads (overload happens when the requested 

power in a given instant of time overcomes a certain limit) and the relative delay (represents the 

amount of time between the actual completion of the energy service and the time it would have 

finished if the operation cycle have started as soon as the on instruction is given). (Allerding et al., 

2012; Logenthiran et al., 2012; Salinas et al., 2013) use EAs to solve the optimization model. 
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Although some studies clearly state the controlled loads and thus a disaggregated level is 

considered (Antunes et al., 2013; Conte et al., 2010; Morganti et al., 2009; Penya, 2003; Soares et 

al., 2013b; Yao et al., 2005; Zhao et al., 2013b), other studies request a certain amount of energy to 

be shedded but do not identify the loads to be managed (Carreiro et al., 2015; Logenthiran et al., 

2012; Salinas et al., 2013). Typically, thermostatically controlled loads such as ACs are one of the 

targets of DR actions. 

The next sections present a more detailed analysis of the several approaches used in this context of 

smart grids for the optimization of load management along with their main features. 

3.2. PARALLEL GENETIC ALGORITHM 

(Penya, 2003) presents a parallel GA, commonly called island model PGA or coarse grained PGA, to 

schedule the energy consumption of several loads according to three objectives:  

 minimization of power peaks; 

 minimization of energy acquisition cost; 

 maximization of comfort associated with the preferred load operation time and the actually 

planned execution time. 

The algorithm developed can be at the core of an EMS installed mainly in buildings to control 

lighting, AC and heating systems. However, the loads to be controlled are discussable, since the 

management of lighting cannot be done in the same way as the control of an AC system as it 

depends on the level of natural light coming in from outdoors together with the activity of the 

household’s occupants (Richardson et al., 2009). In fact, although lighting is responsible for a 

reasonable part of electricity consumption in the residential sector - about 10% of the residential 

electricity consumption in EU-27 (Bertoldi et al., 2012) -, feasible DR actions on lighting are quite 

reduced and clearly do not include deferral in time. Supply interruptions can only be implemented 

when combined with occupancy sensors, thus not requiring the use of an EMS for an integrated 

management of this energy service. Dimming options are unsuitable for some types of lamps and 

are not mentioned as a DR action (Penya, 2003). 

The main features of an island model PGA are the division of the population into demes (set of 

partners which any individual in a population may mate - semi-independent sub-populations), 

which evolve separately, and the potential migration that allows demes receiving the best solutions 

from other islands and consequently incorporating better features along the evolution process. 

Migratory movements can occur between demes as long as they belong to adjacent islands. 

However, even in this situation migration should not be too high otherwise the demes may 

overlap. When the load scheduling process begins, individuals are grouped into islands so that each 

group can explore a part of the search space. Communication concerning the expected 

consumption of the devices along the planning period is an important piece of this strategy. The 

parameters, which are tuned by experimentation, include how often a device must share its 

expected consumption, the frequency of migrations between islands and the maximum number of 
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generations. When the maximum number of generations is attained, the candidate solutions are 

compared and the best one is chosen, although the authors are not very clear how this final choice 

is made. 

3.3. ITERATIVE DEEPENING GENETIC ALGORITHM 

Motivated by the high percentage of energy demand in Taiwan due to AC systems during summer, 

(Yao et al., 2005) present a methodology to help Taiwan’s power company to implement DR 

actions over these specific loads. The implementation of these actions is done at an aggregate 

level. 

The proposed approach uses a modified GA, called iterative deepening genetic algorithm (IDGA), to 

optimize the scheduling of DR actions over groups of AC systems. In the solution encoding each 

gene represents a group of loads. The objective is minimizing the utility company’s revenue loss 

due to the implementation of DR actions, also minimizing the number of loads to be shedded. To 

assure the participation of customers in this type of programs and avoid complaints, the 

accumulated shedding time of each load group should be levelled off. For each group the minimum 

time to keep loads running before any shedding action is implemented is considered as a 

constraint. This constraint assures that mechanical weariness due to frequently turning on and off 

these loads is reduced and the system performance is not affected. The proposed IDGA finds a sub-

optimal solution with the best set of status (on/off) combinations for the AC group of loads under 

control. The payback effect associated with these loads is considered in the model, thus avoiding 

the creation of new (and possible worse) power peaks when supply is restored to loads. 

The IDGA uses a two-level strategy where a master GA evaluates the status combinations by 

iteratively calling a slave GA at each of the subsequent time steps and evaluating possible forward 

status combinations. This modified GA differs from the typical GA since the search process begins 

in the current sampling interval down to a pre-defined number of time steps instead of searching 

from the beginning until the end of the control interval. In order words, the proposed algorithm, 

aiming at minimizing the required load to be shed, looks ahead for the load difference at each of 

the subsequent time steps beginning at the current time step.  

Another difference between the IDGA and the typical GA is the gene selection scheme used to 

keep the total amount of shedding time for each AC group close to the average. In this strategy the 

accumulated time under control and off control for each one of the groups is stored and used to 

compare with the accumulated time under and off control of a group of ACs. According to the 

result of this comparison, the probability of that group being selected for shedding or for 

exemption in the next time step may increase or decrease. Thus, the chance of a gene being 

selected depends on the deviation of its corresponding accumulated shedding time from the 

average value. In the typical GA each gene has the same probability of being selected. Although not 

guaranteeing to reach the optimal solution, in general a less time-consuming but satisfactory sub-

optimal solution is found with this IDGA strategy. 
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3.4. GENETIC ALGORITHMS AND MULTI-AGENT SYSTEMS 

(Conte et al., 2010; Morganti et al., 2009) combine two approaches to manage electricity demand 

at a lower level. Multi-agent systems theory (Niazi and Hussain, 2011) is used to reproduce the 

behavior of appliances while GAs are used to tune important parameters associated with the 

operation of the loads under control. Two different agent categories are considered: 

 the domotic agents, which receive information such as the power level at a given instant and 

adapt their behavior accordingly; 

 the domotic objects, which are not capable of interpreting information and whose operation 

cannot be neither interrupted nor shifted to another time slot. 

Since the domotic agents need electricity to complete their operation cycles, there is a competition 

with the domotic objects for this resource. The power available may, however, not be sufficient to 

satisfy all the agents at the time of request due to the power limit of 3 kW. This threshold may be 

exceeded for a few minutes without the occurrence of a blackout. 

The domotic agents to be allocated according to previous established priorities are the dishwasher 

and the laundry machine and compete with the boiler and non-manageable devices for electricity. 

The boiler has the highest priority in the use of electricity and is followed by the use of non-

manageable devices. The overall power requested to the grid by these two agents does not exceed 

the 3 kW threshold, but if these domotic agents are running and an overload occur then one of 

them must be turned off. 

Concerning the allocation of the dishwasher and laundry machine, two parameters are used to 

account for the end-user satisfaction: the overload and the suspension times for the two machines. 

While the overload time represents the time the appliance must wait before interrupting its 

operation, the suspension time represents the time the appliance waits before restarting its 

operation after having interrupted its working cycle. These two parameters were tuned using single 

and multiple objective GAs (SOGA and MOGA, respectively). The step for the increase or decrease 

of the parameters is 10 seconds for the overload time and 100 seconds for the suspension time. 

The representation of the solutions is the same for SOGA and MOGA with each solution being 

encoded by an array of four integers (overload and suspension time for the dishwasher and laundry 

machine). The objective function to be minimized in SOGA is the overall performance index, which 

has two weighted components: the number of overloads and the relative delay. The relative delay 

for each of the manageable appliances, which should be as close to 0 as possible to assure end-

user’s satisfaction, depends on the priority assigned to the task. For simulation purposes the value 

chosen for the weights is equal to 1, thus assigning the same “importance” to both tasks. One of 

the main disadvantages of SOGA is precisely the use of weights, especially in the aggregate 

objective function with the consequent need to refine them and their sensitivity to changes. 

Considering MOGA, the non-dominated sorting genetic algorithm NSGA-II (Deb et al., 2002) is used 

to find a set of solutions aiming at minimizing the relative delay and the number of overloads. In 
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both approaches a tournament selection is used and the probability for the mutation and crossover 

operator are the same. 

Both approaches present satisfactory results although SOGA tends to converge faster but with the 

disadvantage of only presenting a single optimal solution, instead of a variety of potential solutions. 

None of these approaches include thermostatically controlled loads or the solution encoding is 

flexible enough to include other control alternatives than anticipating, postponing or interrupting 

working cycles. 

3.5. EVOLUTIONARY AND GENETIC ALGORITHMS 

(Allerding et al., 2012) propose an evolutionary algorithm with local search to minimize the 

residential electricity bill of a residential end-user who is willing to accept the intervention of an 

EMS to schedule his/her dishwasher, laundry machine, tumble dryer and electric vehicle. The 

problem is formulated as a nonlinear integer programming problem where the objective function 

consists in minimizing the total costs associated with energy acquisition and the extra costs 

resulting from the violation of a pre-defined load limitation curve. The constraints ensure that the 

managed loads cannot have their operation interrupted (hard constraint) and the load limitation 

curve is not exceeded (soft constraint with an associated penalty). The end-user is able to assign 

degrees of freedom to the several loads to be managed. These degrees of freedom consist in the 

span between the earliest starting time and the point in time when the task has to be finished 

(release time and deadline, respectively). The algorithm calculates the optimal starting point for 

the different appliances, which is constrained by the release time and the deadline. 

The solution encoding is done using a Boolean matrix sized j × T (j = number of tasks to be 

scheduled and T = intervals of the planning period). The proposed EA uses a rank-based selection 

procedure where individuals are ranked according to their fitness. The probability of an individual 

to be chosen to generate a new offspring depends on that rank, as well as the selection of the 

individuals to be part of the next generation. The crossover operator decides for each appliance 

whether the offspring adopts the starting point inherited from parent 1 or 2. The mutation 

operator randomly changes the starting point of some of those loads as long as it is still 

constrained by the release time and deadline, guaranteeing that all new individuals satisfy the time 

constraints for the completion of the task. The local search is done by calculating the fitness of 

each solution after shifting the starting time of a single appliance by plus or minus one time unit. 

Solutions presenting cost improvements (i.e., lower overall costs) are stored and the solution with 

the single change of the starting time presenting the higher improvement is selected. 

The authors also state that extensions are possible, namely the inclusion of thermostatically 

controlled loads into the model although more variables and constraints are required. Also, 

depending on the type of DR actions the solution encoding might have to be changed. Accordingly, 

to include those features, (Mauser et al., 2015) designed a modular building EMS able to handle 

energy flows and optimize the operation of several devices, while respecting any existent 

interdependency. The main difference of (Mauser et al., 2015) work when compared to (Allerding 
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et al., 2012) is the simultaneous optimization of multiple energy carriers, more specifically 

electricity and hot water and the consequent inclusion of more loads. 

Targeted loads include a photovoltaic system, a gas-fired condensing boiler, a hot water storage 

tank, a hob, an oven, a dishwasher, a laundry machine, a tumble dryer and a battery storage 

system. Machines may use hot water from the tank or heat up the water using electricity and thus 

the importance of interdependencies. The hob and the oven have to decide between electricity 

and natural gas. External inputs include energy prices, weather forecasts and end-user’s goals. 

Solution encoding is done through a bit string whose length depends on the diversity of devices. In 

this way, the string may not be homogeneous since some parts of the string represent control 

sequences while others represent parameter settings or even time periods for which a given 

appliance may be deferred or interrupted. The main features of the EA comprise binary 

tournaments for selection, single-point crossover with two offspring, and bit-flip mutation using an 

elitist strategy with a rank based survivor selection. 

In (Logenthiran et al., 2012) a heuristic-based EA using a generalized day-ahead DR management 

strategy is proposed to solve an optimization problem where the aim is minimizing the distance 

between a desired load demand curve and the forecasted load demand curve. The proposed 

approach is able to schedule the connection time of multiple manageable devices in the 

residential, commercial and industrial sectors, bringing the load consumption curve as close to the 

objective load consumption curve as possible. This approach differs from related work since it uses 

the objective load curve as an input. Nonetheless, considering that the final goal is to reduce the 

end-users’ electricity bill and the desired load curve chosen is “inversely proportional” to electricity 

market prices, energy prices still play an important role although not so direct. Solution encoding is 

done using a bit string and the length of the chromosome is equal to the number of time steps × 

the number of bits required to represent the loads shifted in each time step. The inputs to the 

simulation include the control period, consumption patterns of the manageable devices and the 

power consumption at each time step. The population is randomly initialized and evolution is 

carried out using single point crossover and binary mutation operators, and tournament to select 

the parents to produce the offspring. The use of a large rate for the crossover operator assures fast 

convergence while the low mutation rate avoids premature convergence. An elitist strategy is used 

to keep good solutions in the population. The rates of the operators were tuned by 

experimentation. When a specified number of generations is attained or no significant changes 

occur in the fitness value for a certain amount of generations the algorithm stops. 

Linking the stages of this strategy to its implementation in a real environment aimed at attaining a 

desired load consumption curve, the proposed DR strategy analyzes the required load actions and 

automatically schedules the operation of the manageable loads while respecting the previously 

stipulated acceptable time delay and the number of time steps that appliances can be shifted. One 

of the drawbacks that can be pointed out to this approach is the lack of DR actions anticipating the 

working cycles (the DR action only considers delaying the working cycle). The control actions are 

supposed to be executed in real-time based on the power demand. Hence, when the end-user tries 

to turn on a manageable load, the request is sent to a controller implementing the EA to make 
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decisions concerning the DR action. Since this strategy is intended to schedule the operation of 

loads a day-ahead, the final decision can then be a new operation time or the immediate operation 

of the load. While in the residential sector the power requested to the grid is relatively low when 

compared to the industrial sector and the duration of the working cycles of the manageable loads 

is also limited, simulation results show significant savings for the three types of users varying 

between 5 and 10%. The commercial sector, which is characterized in this study by having slightly 

higher energy consumption than the one verified in the residential sector, has a reduction of 

around 5.8% in the electricity bill. 

None of the approaches presented so far prevent the occurrence of an aggregate peak load 

demand. (Zhao et al., 2013b) introduced a feature in the input signals to avoid the occurrence of 

that situation. The aim of the proposed methodology, based on a GA, is to schedule residential 

electricity usage while simultaneously reducing the electricity bill and the power peak-to-average 

ratio (PAR). This approach uses a pricing structure different from the works previously presented 

since it incorporates a real-time tariff scheme combined with the inclining block rate (IBR) model to 

decrease the PAR. This model is also used by (Mohsenian-Rad and Leon-Garcia, 2010; Reiss and 

White, 2005; Zhao et al., 2013a). The main advantage of using this price structure is the possibility 

to avoid situations in which the use of a real-time pricing structure may cause a significant shift in 

demand to periods of the day presenting a lower electricity price, leading therefore to a higher 

peak demand and even to instability in the system. Combining the real-time pricing structure and 

the IBR model, the energy price during a time slot increases if the electricity consumption 

overcomes a pre-defined threshold. Therefore, potential solutions allocating several appliances in 

the same time slot, and possibly causing an undesirable power peak, will have an increase in the 

energy price impacting their fitness and forcing the algorithm to find solutions that do not cause an 

increase of the PAR and consequently maximize the stability of the entire system. 

The approach used to solve the optimization problem is based on a GA and schedules residential 

electricity demand using as input information the energy price combined with the IBR pricing 

scheme. Similarly to other approaches focused on the disaggregated level, the loads to be 

scheduled belong to the category of manageable appliances and allow the deferral or anticipation 

in time of their working cycle. The end-user is responsible for setting the parameters concerning 

the time slot during which the load may be scheduled, the duration of the working cycle and the 

energy requested. Authors state that the time resolution used (12 minutes) is short enough for the 

operation of the considered loads and more convenient to solve the optimization problem. 

However, some drawbacks are associated with the use of the chosen time step: the length of the 

working cycle of thermostatically controlled loads, like an AC, and shiftable loads, such as laundry 

machine, tumble dryer and dishwasher, has to be set to integer multiples of the time step. The 

problem to be solved is a single-optimization problem that aggregates in a single objective function 

to be minimized the costs associated with energy acquisition and the difference between the 

release time (i.e., first instant when the appliance can start its operation) and the actual start of 

operation. Weights are associated with each objective, which means that similarly to what happens 

in (Morganti et al., 2009) those weights should be duly defined. 
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(Salinas et al., 2013) designed two EAs to obtain the Pareto front solutions and approximate ε-

Pareto front solutions to solve the load scheduling problem. These algorithms are to be used by an 

external entity responsible for managing energy consumption of a group of end-users, and thus an 

aggregate level is considered. The objectives are the minimization of electricity bill and the 

maximization of a utility function, which differs according to the external entity. Hence, while in the 

case of a company aiming to manage its energy consumption, the objective is minimizing the 

energy acquisition cost and maximizing the gross income, for a community manager what matters 

is the maximization of comfort of the people living in that community. Usually these utility 

functions are non-decreasing regarding the energy consumed (Samadi et al., 2011). All energy 

requests are submitted to this external entity responsible for optimally scheduling the demand 

according to the two conflicting objectives. The constraints for this optimization problem include 

the users’ tolerance for the daily energy consumption (i.e., the deviation from the amount of 

energy he/she intends to consume, which is linked to the loads to be operated), assure that the 

user’s energy request to complete a specific energy service is satisfied between the requested 

starting time and deadline, and the total energy consumption does not exceed the maximum 

generation capacity of the system. Input signals include a three-piece price function where the 

energy price increases significantly when the total energy consumption exceeds a certain 

threshold. The total amount of energy allowed to be used by the external entity is also limited and 

if the threshold is exceeded an arbitrarily high energy price is assigned. Solution encoding is done 

using a vector that represents the complete energy consumption schedule for each user during 

one day with time slots with equal length. NSGA-II (Deb et al., 2002) is used in this approach to 

obtain a set of Pareto-optimal solutions and the trade-offs between energy acquisition costs and 

the utility function value. It is important to highlight that the initial population does not have to 

meet the constraint associated with the maximum value for the total energy consumption but the 

evolution of the population guarantees that all constraints are met. 

Although the results using NSGA-II are satisfactory, the required computation time is high and a 

dense Pareto front where adjacent solutions provide similar trade-offs is provided. Since neither 

the external entity nor the end-user benefit from finding different solutions with approximate 

trade-offs, an ε- load scheduling EA (ε-LSEA) that provides a less densely populated Pareto-front is 

proposed. The major difference between this latter approach and the previous one is based on the 

choice of the parents and the offspring. The ε-LSEA chooses one parent from an archived 

population with variable size and another one from the fixed sized population, and only one 

offspring is generated per iteration. 

For this specific optimization problem, the authors state that ε-LSEA presents a higher efficiency 

when compared to LSEA using NSGA-II, especially when the number of users becomes larger. 

(Salinas et al., 2013) do not provide any information concerning the type of users, the managed 

loads, amount of energy available for being managed or even the characteristics of DR actions. 

It is important to note that in any case the allocation of manageable loads should not follow static 

rules and must be capable of evolving and adapting according to the dynamics of the planning 

environment (consumption, generation and storage availability at a given instant) while maximizing 
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the possibility for every residential load to satisfy its demand in the preferred time slot, maximizing 

end-user’s satisfaction regarding the quality of energy services, minimizing electricity bill and 

maximizing the use of local generation/storage. 

Most approaches presented so far focus on the control of manageable demand, or at least request 

the implementation of DR actions, but do not include a dynamic relation with distributed local 

generation and storage capabilities, with the exception of electric vehicles. These optimization 

problems are typically subject to several technical and user-defined constraints and therefore 

present a significant complexity (Molderink et al., 2012). For instance, thermostatically controlled 

loads may be switched off or have temperature settings re-parameterized depending on the end-

user’s preferences. Also, the use of laundry machines in different time slots is dependent on user’s 

acceptance. Nevertheless, in the literature other approaches besides EAs are proposed to optimize 

electricity consumption and exploit the benefits of distributed generation and storage systems. 

Considering that in the smart grid context a deployment of local generation systems based on 

renewables is expected and these sources are generally intermittent, attention should be paid to 

their incorporation in this type of studies, especially if used together with storage systems. 

Electricity generated locally, for example during the night by a micro wind turbine, can be stored 

and used later or sold to the grid (Molderink et al., 2010b). The amount of energy withdrawn from 

a battery or charging a battery is also influenced by the user’s needs and may vary along the day. 

The optimization process should then encompass the integrated optimization of all energy 

resources to obtain usable solutions. 

A summary of the main features of each model described is presented in Table 2. For sake of 

comparison, the table also presents the contributions of this PhD research which will be further 

detailed in Chapters 4 and 5. 
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Table 2: Summary of model structure 
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Perspective 

grid         x             

consumer x x x x x x x   x x x x 

utility         x     x       

Optimization 
problem 

single-objective x x x x   x x x  x    

multi-objective   x x   x          x x 

Algorithmic 
approach  

GAs           x      x x x 

GAs + Multi-agent systems   x x                 

EAs x       x   x   x     x 

Parallel GA       x               

IDGA               x       

Evaluation 
aspects 

minimize electricity bill x x x x x x x   x x x x 

minimize no. of overloads    x x                x 

minimize delay associated with load 
operation 

  x  x      x           

minimize power peaks       x   x          x 

maximization of a utility function         x             

maximize comfort/minimize 
dissatisfaction 

      x            x  x 

minimize company's revenue loss               x       

minimize no. of shedded loads               x       

minimize difference between objective 
load and forecasted load curves 

            x         

Inputs 

energy price x x x x x x     x x x x 

end-user's preferences x         x      x x x 

objective load curve             x         

Constraints 

equipment x             x     x x 

grid         x   x x    x  x 

residential end-users x       x x x    x x x 

contracted power x x x            x x x 

Loads 
controlled 

disaggregated x x x x   x   x  x x x 

aggregated         x   x 
 

x      
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3.6. OTHER OPTIMIZATION TECHNIQUES 

The advantages of residential energy management in the context of smart grids have been 

addressed in recent studies and several researchers have developed different methodologies to 

solve that problem. Accordingly, other approaches besides EAs have been used, such as: 

 linear programming (Conejo et al., 2010; Kishore and Yener, 2011; Mohsenian-Rad and Leon-

Garcia, 2010; Molderink et al., 2010a); 

 mixed linear programming (Paterakis et al., 2015); 

 convex programming (Tsui and Chan, 2012); 

 game theory (Mohsenian-Rad et al., 2010a); 

 dynamic programming (Livengood and Larson, 2009); 

 tabu search (Abras et al., 2008); 

 bi-level optimization (Safdarian et al., 2014); 

 dual decomposition plus stochastic gradient (Deng et al., 2013); 

 other population-based meta-heuristics such as particle swarm optimization (PSO) 

(Kahrobaee et al., 2013; Kishore and Yener, 2011; Pedrasa et al., 2009, 2010). 

Without aiming to do an extensive analysis of these approaches, some of them are briefly 

presented. 

(Molderink et al., 2010a) propose a three-step control methodology to manage generation, storage 

and consumption. The main goal is to optimize the use of residential resources, by supplying heat 

and electricity demand and shaving power peaks without compromising the end-users’ comfort. 

The problem of finding the optimal combination of sources to minimize costs and matching heat 

and electricity demand is dealt with by means of an integer linear programming model. This model 

can be used at a neighborhood level with distributed micro-generation based on renewables 

contributing to the materialization of a virtual power plant. The control strategy consists in 

determining the local profile, offline global planning and real-time local control. The approach 

enables the control of residential electricity and heat demand, generation and storage of heat and 

electricity (Molderink et al., 2010b, 2009). In the first step a neural network approach is used for 

predicting energy demand and generation mainly focusing on heat demand while the second step 

uses heuristics for the planning based on local and global objectives. While local objectives may 

include minimizing the electricity bill by shifting electricity demand to more beneficial periods and 

minimizing PAR through peak shaving, global objectives can comprise the maximization of revenue 

from managing a large group of micro-generators with a total capacity comparable to a 

conventional power plant. The last step consists in deciding which appliances are switched on/off. 

(Mohsenian-Rad and Leon-Garcia, 2010) aim to achieve a desired trade-off between two 

objectives: the minimization of the electricity bill and the minimization of the spanning time for the 
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operation of the loads under control. Although the problem is stated as multi-objective model, the 

objectives are aggregated into a single objective function by assigning a cost to the spanning time. 

Similar to (Zhao et al., 2013b) a real-time tariff combined with the IBR model is used to avoid the 

concentration of a high demand in low-priced periods. Additionally, a really short random starting 

delay is used to avoid different appliances from starting simultaneously. The optimization approach 

is based on linear programming and uses price forecasts. 

Another approach proposed by the same authors uses game-theory to design a novel pricing 

model to be incorporated into an EMS responsible for finding the optimal energy consumption 

schedule for the end-user (Mohsenian-Rad et al., 2010a). The aim is minimizing the electricity bill 

as well as the PAR. Game theory is also used by the same authors to formulate an energy 

consumption scheduling game where the players are the residential end-users and the strategies 

are the daily schedule of the managed loads (Mohsenian-Rad et al., 2010b). 

Mixed linear programming is used in (Paterakis et al., 2015) in a day-ahead context to determine 

the optimal schedule of manageable loads under an hourly varying tariff structure while assuring 

that the contracted power limit is not overcome. This approach also encompasses a photovoltaic-

based system (PV), a PHEV and an energy storage system. Concerning the managed loads, thermal 

models were used to mimic the behaviour of thermostatically controlled loads, previous known 

duty cycles for shiftable loads and a group of equations describing the behaviour of the PHEV and 

storage system. According to the authors, the average solution time is quite low and therefore the 

model may be effectivelly deployed in an EMS. 

In order to coordinate DR provided by residential customers (Safdarian et al., 2014) use bi-level 

optimization. In this approach, models used for load management are seen as independent agents 

endowed with bidirectional communication and responsible for receiving information from the grid 

concerning energy prices and total load profile and sending to the grid the daily schedule of their 

loads. The objective is minimizing the electricity bill while flattening the overall load profile. In this 

approach, there is a continuous data exchange and load profile updates untill no further 

improvement is achieved, attaining therefore a Nash equilibium point in the final solution. 

According to the concept of bi-level optimization, the problem to be solved is divided into a upper 

and lower subproblems, from the utility and end-user’s perspective, respectively. Hence the upper 

subproblem aims to flatten total load profile, whereas the the lower subproblem goal is minimizing 

end-users’ electricity bill. 

(Tsui and Chan, 2012) propose a convex programing optimization framework to automatically 

manage residential appliances in the context of smart grids using an EMS. The focus is the optimal 

allocation in time of the manageable appliances in a single home under a real-time pricing 

structure known in advance, subject to the appliances operating constraints. The objective function 

to be minimized comprises the total cost of using the appliances and the users’ dissatisfaction. The 

technical constraints and users’ dissatisfaction depend on the appliance. The dissatisfaction can be 

measured using a utility function or a monetary cost derived from the end-user information 

associated with the operation of each appliance.  
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In this approach the appliances are classified under four categories: 

1. Schedule-based appliances with interruptible load (SA- IL): appliances that should have the 

working cycle allocated within a user-defined time interval and may have their operation 

interrupted (e.g., pool pump); 

2. Schedule-based appliances with uninterruptible load (SA- UL): appliances that should have the 

working cycle allocated within a user-defined time interval but cannot have their operation 

interrupted (e.g., laundry machine); 

3. Battery-assisted appliances (BA): appliances with an internal battery or stationary storage 

systems; 

4. Model-based appliances (MA): appliances whose working cycle may be described by 

physically-based models (e.g., thermostatically controlled loads). 

For the first group of loads, the approach only needs to schedule when the load is “on” or “off” 

within a user’s preferred time period, since the amount of energy consumed is fixed and 

interruptions are allowed. Concerning schedule-based appliances with uninterruptible load, 

additional constraints must be considered to avoid the interruption of the working cycle ensuring 

that the appliance operates consecutively once it starts. The amount of energy to be supplied to or 

withdrawn from a BA is bounded as well as the total energy stored in the battery, so values outside 

these boundaries are not allowed. In the case of MA the amount of electrical energy consumed 

may be managed according to the desired temperature to be achieved. 

The way end-users’ dissatisfaction is measured also depends on the appliance category. Thus, this 

monetary value may be added to the cost of the objective function if the working cycle of a SA-

IL/SA-UL is not allocated, the energy used by the BA is reduced too much, or the variation of the 

indoor temperature with respect to a pre-defined comfort temperature is perceived by the user. 

The final aim is to prevent the EMS from sacrificing the users’ comfort by: 

 not allocating some appliances; 

 withdrawing too much energy from a battery; 

 setting temperatures outside the desired range in order to minimize the electricity bill. 

Simulations carried out by the authors schedule the operation of four types of appliances in one-

day time horizon (time step 1 hour) using as input the energy price. The possible utilization of 

distributed renewable energy sources was considered by including a photovoltaic panel, which can 

deliver a maximum energy in a certain time interval. Simulation results have shown that the 

proposed convex programming optimization framework efficiently solves the problem. 

Nevertheless, actions such as selling back electricity to the grid or even decisions concerning 

whether to sell, store or use electricity in a given instant considering the status of the system were 

not considered.  

In a complementary way and already including storage, (Kahrobaee et al., 2013) focus on the 

determination of the optimal size of a wind generation-battery system with the aim to minimize 
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the overall household electricity bill. The approach uses a hybrid stochastic method based on 

Monte Carlo simulation to capture the long-term stochastic electricity consumption of loads, 

electricity tariffs and the expected wind generation, and PSO to solve the optimization model. 

Initial capacities for the battery and generation systems are selected and a population of particles 

is generated to evolve them. The decision variables are battery and wind generation capacities and 

the set of constraints include power balance (energy demand must be equal to the energy bought 

from the grid minus the energy sold plus the energy withdrawn from the battery), operational 

limits of the battery and the maximum capacities for the wind generator and the battery. The 

output of the wind generation may be either used to match demand or to charge the electricity 

storage system. If the amount of local generation exceeds the demand, then the remainder can be 

directly sold to the grid based on a contract between the two parties. The results for the case-study 

showed that the optimal values for the capacity of the wind generator and battery would decrease 

peak demand by 25% compared to a conventional home with the same average load without any 

wind generation-battery system installed. 

(Du and Lu, 2011) present an appliance commitment scheme, similar to unit commitment, to 

schedule residential loads over a given period of time based on price and consumption forecasts. 

Although there are similarities with the unit commitment problem, the main differences lay on the: 

 stochastic usage of loads impacting on their electricity consumption; 

 existence of few power output levels for each load (i.e., each load has just a few specific 

demand profile and its operation should be done accordingly); 

 formulation of the constraints associated with the loads to be scheduled, namely 

thermostatically controlled loads whose set of linear or nonlinear constraints must reflect 

end-users comfort settings. 

The illustration of the proposed approach uses an EWH and forecasts concerning the use of hot 

water. Authors state that the inclusion of other types of loads, distributed generators and energy 

storage systems is also possible. The objective function is to minimize the electricity bill over 24 

hours meeting the expected hot water demand. The end-user’s satisfaction concerning the use of 

hot water is tackled transforming the admissible temperatures in different periods of the planning 

period into a set of linear constraints. The appliance commitment is formulated as a nonlinear 

optimization problem and solved using a multiple-looping algorithm similar to the one proposed by 

(Lu et al., 2004) improved with the introduction of linear sequential optimization. This 

enhancement makes the approach robust to uncertainties associated with the forecasted prices 

and flexible to deal with comfort constraints. A two-step adjustment process is used to solve the 

deterministic problem based on forecasted spot prices and hot water usage and then make 

adjustments in real-time according to updated information. 
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(Abras et al., 2008) use a multi-agent system to minimize the electricity cost consisting of several 

types of agents decomposed into two main mechanisms responsible for: 

 keeping end-users’ satisfaction above a certain threshold and the power consumption below 

a given value; 

 compute global consumption and production plans. 

A tabu search algorithm is used to compute the global consumption and production plan. However, 

and differently from the previous approaches, this optimization is done by solving sub-problems 

involving different agents. The advantage of this strategy is the reduction of the complexity 

associated with the number of devices being managed and the number of periods of each sub-

problem. The division into sub-problems is done respecting end-user’s satisfaction concerning the 

use of the energy services. The global plan is obtained by merging the solutions to the sub-

problems (i.e., the individual allocation of each load) as long as the contracted power is not 

exceeded. The search for the solution to each sub-problem begins with the initial solution found by 

the energy distribution step (i.e., the division of the available energy per load assuring end-users’ 

maximum satisfaction). In the following iterations, the agent responsible for managing the loads 

decreases the end-users’ satisfaction progressively and sends that information to the agents that 

will seek new schedules respecting the given satisfaction level. When the agent responsible for 

managing loads receives the proposed schedules, only the solutions violating constraints as less as 

possible are chosen. The search process stops when the schedules generated do not exceed the 

contracted power and the global satisfaction level has reached a steady value. 

(Pedrasa et al., 2009) use binary PSO to satisfy a schedule of required hourly curtailments aiming to 

minimize the electricity bill and the number of interruptions. The targeted users can be either 

residential or industrial as long as previous agreements concerning the interruption of their energy 

supply under certain conditions were established. The multi-objective problem was tackled by 

aggregating the two objectives into a single objective function using a penalty associated with the 

number of interruptions. The PSO approach was preferred over GAs by the authors due to the 

contribution of all particles history to the search process without discarding poor solutions. The 

optimal solution found presents a schedule with the total hourly curtailments although no detailed 

information about the specific managed loads is computed. In a more recent study, the same 

authors use a co-evolutionary PSO to schedule the operation of residential distributed energy 

resources aiming to maximize the end-user net benefit (Pedrasa et al., 2011). 

(Azar et al., 2015) use an optimization algorithm based on the knapsack problem for managing 

residential appliances. In some intervals of the planning period, the algorithm selects a subset of 

loads to start or continue operation and shifts the other ones to the next time slot. The aim is to 

maximize end-users satisfaction while flatening the demand curve. 
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4. PROBLEM DESCRIPTION 6 

The optimization of the operation of residential energy resources in the context of smart grids 

requires the adequate design of algorithms to identify and select ADR actions, on behalf of end-

users, for managing residential energy resources in face of dynamic tariffs to be embedded in EMS. 

The aim is optimizing the integrated usage of the resources: a selected group of loads, with a 

special focus on shiftable loads, thermostatically controlled loads and stationary storage systems, 

local generation and energy drawn from the grid. The ADR actions comprise: 

 allocating the working cycles of the manageable loads according to the most favorable time 

slots previously specified by the user; 

 regulating temperature settings of cold appliances, EWHs and AC systems, within a given 

range, which may change along the scheduling period; 

 deciding when to store, sell or buy electricity and how to use the stationary storage systems 

accordingly. 

From the residential end-user’s perspective the goals of this management are twofold: 

 the minimization of the electricity bill; 

 the minimization of potential dissatisfaction due to the implementation of ADR actions. 

Not depreciating comfort, at least in a perceived way, is a basic requirement to enable the 

participation of end-users in DR programs (Vanthournout et al., 2015). Therefore the algorithmic 

approach responsible for the identification of the ADR actions must take this aspect duly into 

account. Accordingly, the aim is finding non-dominated solutions balancing the two objectives. The 

electricity bill results from the energy acquisition cost, subtracting the revenue from both injecting 

energy into the grid or the rewards from responding to grid signals whenever required. The 

dissatisfaction sensed by the end-user is computed by considering an objective function consisting 

of penalties associated with: 

                                                           
6
 This chapter is partially based on: 

Soares, A., Gomes, A., Antunes, C.H., (in press). A Customized Evolutionary Algorithm for the Optimization of 
Residential Energy Resources, in: Advances in Energy System Optimization. Springer.; 

Soares, A., Oliveira, C., Gomes, A., Antunes, C.H., 2015b. Analysis of solutions provided by a residential energy 
management system, in: Proceedings of Energy for Sustainability 2015 - Sustainable Cities: Designing for People 
and the Planet. Coimbra, Portugal. 

Soares, A., Antunes, C.H., Oliveira, C., Gomes, Á., 2014a. A multi-objective genetic approach to domestic load 
scheduling in an energy management system. Energy 77, 144–152. 
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 the end-users’ preferences concerning the time slots specified for the operation of each load; 

 changing the temperature set-point of thermostatically controlled loads when compared to 

the regular set-point; 

 the closeness of the actual peak power with respect to the contracted power (as a surrogate 

for the risk of supply). 

The aim is reshaping the electricity consumption pattern during the planning period, by changing 

the normal operation of load working cycles and simultaneously making the most of the integration 

of local generation, to optimize the two objectives. If the end-user also owns a local generation 

system based on renewables, namely PV systems, and storage systems, the EMS should also 

include in the optimization process energy exchanges with these systems (Figure 12). 

The implementation of ADR actions should not, however, jeopardize the quality of energy services 

provided; thus the importance of the categorization presented in Chapter 2 which was based on 

loads’ typical usage and technical features. Accordingly, models able to reproduce the power 

profile of all manageable loads and the impact of ADR actions over controlled loads and storage 

systems are also essential and therefore they have been embedded in the approach for solving this 

bi-objective optimization problem. 

 

Figure 12: Energy exchanges to be optimized by the EMS 

Given the diversity of resources that may exist (shiftable loads, thermostatically controlled loads, 

storage systems, local generation and power from the grid), different scenarios can be explored. 

Table 3 shows some of those scenarios. 
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Table 3: Example of scenarios of resources and ADR actions 

Resources Actions 

Responsive 

Demand 

 Thermostatically 

controlled loads 

 Shiftable loads 

 allocating the working cycles of the manageable loads 

according to the most favorable time slots previously 

specified by the user; 

 regulating temperature settings of cold appliances, 

EWHs and AC systems, within a given range, which may 

change along the scheduling period; 
Grid 

Responsive 

Demand 

 Thermostatically 

controlled loads 

 Shiftable loads 

 PHEV 

 allocating the working cycles of the manageable loads 

according to the most favorable time slots previously 

specified by the user; 

 regulating temperature settings of cold appliances, 

EWHs and AC systems, within a given range, which may 

change along the scheduling period; 

 how to use the PHEV: deciding when to store, sell or buy 

electricity. 

Grid 

Responsive 

Demand 

 Thermostatically 

controlled loads 

 Shiftable loads 

 PHEV 

 allocating the working cycles of the manageable loads 

according to the most favorable time slots previously 

specified by the user; 

 regulating temperature settings of cold appliances, 

EWHs and AC systems, within a given range, which may 

change along the scheduling period; 

 how to use the PHEV: deciding when to store, sell or buy 

electricity; 

 how to use the energy locally produced: store, sell or 

self-consumption. 

Grid 

Local Generation 

Responsive 

Demand 

 Thermostatically 

controlled loads 

 Shiftable loads 

 PHEV 

 allocating the working cycles of the manageable loads 

according to the most favorable time slots previously 

specified by the user; 

 regulating temperature settings of cold appliances, 

EWHs and AC systems, within a given range, which may 

change along the scheduling period; 

 how to use the PHEV and the stationary storage system: 

deciding when to store, sell or buy electricity; 

 how to use the energy locally produced: store, sell or 

self-consumption. 

Grid 

Local Generation 

Storage 
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4.1. MODELS FOR SIMULATION OF MANAGEABLE LOADS 

Data collected during audits is used for modeling shiftable loads since the power profile considered 

is the same even if the working cycles are allocated in different time slots of the planning period. 

Although different power profiles can be used to characterize the operation of shiftable loads, after 

a profile is selected it remains the same whatever the operating period. Adequate physically-based 

models (PBM) (Gomes et al., 2013, 2009; Jorge et al., 2000) and a dynamic model are used to 

reproduce the behavior of thermostatically controlled loads and storage systems, respectively, in 

order to extract the power profile resulting from the implementation of the ADR actions and the 

temperature or SoC variation (Gomes et al., 1999; Soares et al., 2012b). 

PBMs have the ability to reproduce the physical behavior of storage-type loads by tracking the 

temperature of the fluid being cooled/heated and consequent identification of the load profile 

(Gomes et al., 2013). Additionally they capture changes induced by the ADR actions. These models 

are based on expressions to compute temperature and power (Eq. 1 to Eq. 12). The required input 

information is presented in Table 4. The storage system dynamic model used in this work is based 

on the one developed by (Tremblay and Dessaint, 2009). 

Table 4: Information to be inserted for thermostatically controlled loads (Soares et al., 2013a) 

Thermostatically 
controlled load 

Specific information Common information 

Fridges / Freezers  Internal temperature at the beginning of 
the simulation 

 COP (coefficient of performance) 

 Capacity 

 Power 

 Reference 
temperatures 
(minimum and 
maximum) 

 External temperature 

 Characteristics of the 
insulation 

EWHs  Water temperature at the beginning of the 
simulation 

 Temperature of the water coming from the 
supply system 

 Capacity 

 Hot water consumed 

AC (conventional 
and inverter) 

 Room temperature at the beginning of the 
simulation 

 COP / EER (energy efficiency rating) 

 Volume of the room and number of air 
changes per hour 

 Characteristics of the room (insulation 
material, windows, doors, solar radiation, 
orientation, air renewal rate, etc.) 

 Number of people in the room 

 Internal heat load due to lighting and 
equipment 
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4.1.1. THERMOSTATICALLY CONTROLLED LOADS 

4.1.1.1. AC SYSTEMS 

Concerning AC systems, the PBMs assess the total heat load of a space imposed to these systems: 

𝑄𝑇(𝑡) = 𝑄𝐿(𝑡) + 𝑄𝑆(𝑡)  [𝑊] Eq. 1 

where 𝑄𝐿(𝑡) [W] represents the latent load and 𝑄𝑆(𝑡) [W] is the sensible load, at 

time t. 

The main contributors for the thermal load of the space considered are (Gomes et al., 2013, 2009): 

 the heat transmission through the envelope (walls); 

 heat transfer through the windows (insolation); 

 internal heat sources; 

 renewal of the indoor air. 

The heat transfer through the envelope depends on the physical characteristics of the walls and 

the difference between indoor and outdoor temperatures. The insolation load is the thermal load 

“due to the solar energy going through windows or stored and released by an opaque element of 

the envelope” and therefore linked to the element of the envelope and its orientation (Gomes et 

al., 2013). Therefore, the heat gain through the opaque elements of the envelope has a delay 

which is considered in the assessment of its contribution to the heat load by using a reduction 

factor. Concerning windows and since their thermal capacity is quite low, almost all insolation load 

goes through those elements although the final amount is dependent on the glazing and type of 

shading used (which impacts on the shading coefficient). These contributions are strongly 

dependent on the time of the year and solar hour. The internal heat load resulting from people’s 

presence in the room, lighting and equipment is also considered and variable along the planning 

period. 

When using a conventional AC for cooling down the room, temperature in the room can be 

computed through: 

𝑇𝑟𝑜𝑜𝑚(𝑡 + ∆𝑡) = 𝑇𝑟𝑜𝑜𝑚(𝑡) −
(𝑦. 𝑃𝐴𝐶(𝑡) − 𝑄𝑇(𝑡)). ∆𝑡

𝑚. 𝑐𝑝
 Eq. 2 

where Troom(t) [oC] is the indoor temperature of the room being cooled at time t. 

𝑦 = {

 1, 𝑖𝑓 [𝑇𝑟𝑜𝑜𝑚(𝑡) ≥ TrefL  ∧  𝑇𝑟𝑜𝑜𝑚(𝑡) < 𝑇𝑟𝑜𝑜𝑚(𝑡 − 1)]

 ⋁ [𝑇𝑟𝑜𝑜𝑚(𝑡) ≥ TrefH ] 

0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                       

 

where TrefL is the minimum reference temperature of the thermostat, 

Eq. 3 
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and TrefH is the maximum reference temperature of the thermostat. 

𝑃𝐴𝐶(𝑡) = 𝑃𝐴𝐶 ∗ 𝐶𝑂𝑃(𝑡) 

where 𝑃𝐴𝐶  is the power of the AC, and 

𝐶𝑂𝑃(𝑡) is the coefficient of performance of the AC, which varies 

with the temperature. 

m is the air mass [kg]. 

cp is the specific heat of air [
𝐽
𝑘𝑔𝑜𝐶⁄ ]. 

∆𝑡 is the elemental time interval [s]. 

𝑄𝑇(𝑡) is the total heat load [W] at time t. 

Eq. 4 

While the working cycle of the conventional AC is determined by the thermostat, which switches 

“on” or “off” the AC (Eq. 3) making it run at full power or not run at all, the inverter AC withdraws 

from the grid the amount of power needed to compensate for the heat gains/losses of the room 

(Gomes et al., 2013). Therefore, room temperature is kept more stable with an inverter AC than 

when using a conventional AC system (Figure 9). 

When using an inverter AC, although Eq. 1 and Eq. 2 remain the same, Eq. 3 will now depend on 

the room and reference temperatures to define the way the AC is operated. In the heating mode 

(Figure 13), when the AC is switched on it is operated in what is called "instability mode" and if 

Troom-Tref≤A (for example -1oC) the AC runs at full power until the Troom-Tref>A when it switches to 

"stability mode". When the difference Troom-Tref>B (for example 2oC) the AC is turned off and when 

C≤Troom-Tref≤B runs at variable speed thus withdrawing a variable power from the grid. In the 

cooling mode (Figure 14) it starts in "instability mode" and, when Troom-Tref≥A (for example 1oC) the 

AC runs at full power until switching to "stability mode". In this mode, when the difference Troom-

Tref<C (for example -1.5oC) the AC is turned off and when C≤Troom-Tref≤B runs at variable speed 

thus withdrawing a variable power from the grid. The PBM of the inverter AC is based on the model 

presented in (Gomes et al., 2013). 

  

Figure 13: Inverter AC – heating mode 

(Gomes et al., 2013) 

Figure 14: Inverter AC – cooling mode 

(Gomes et al., 2013) 
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4.1.1.2. EWHS 

For EWHs, the PBM model computes the losses per unit of time and the available energy during 

the time interval to heat the water: 

𝑃𝑙𝑜𝑠𝑠𝑒𝑠(𝑡) = 𝐴 × 𝑈 × ∆𝑇
′ [𝑊] 

where A is the surrounding area of the EWH [m2]. 

U is the element heat transfer coefficient [𝑊
(𝑚2 . 𝐶𝑜 )⁄ ]. 

∆𝑇′ is the difference between the temperature of water inside the EWH 

and the outdoor temperature [oC]. 

Eq. 5 

𝑄(𝑡) = [𝑃𝑅(𝑡) − 𝑃𝑙𝑜𝑠𝑠𝑒𝑠(𝑡)] × ∆𝑡 [𝐽] 

where 𝑃𝑅(𝑡) [W] is the power of the heating element in the EWH at time t. 

Eq. 6 

The hot water temperature can be computed through: 

𝑇𝑤𝑎𝑡𝑒𝑟(𝑡 + ∆𝑡) = 𝑇𝑤𝑎𝑡𝑒𝑟(𝑡) +
𝑣.𝑃𝑅(𝑡)−𝑃𝑙𝑜𝑠𝑠𝑒𝑠(𝑡)

𝑀×𝑐𝑝
. ∆𝑡 [oC] Eq. 7 

where 𝑇𝑤𝑎𝑡𝑒𝑟(𝑡) =
𝑀−𝑚(𝑡)

𝑀
× 𝑇ℎ𝑜𝑡(𝑡) +

𝑚(𝑡)

𝑀
× 𝑇𝑔𝑟𝑖𝑑(𝑡) [

oC] 

M is the total mass of water to be heated [kg]. 

cp is the specific heat of the water [
𝐽
𝑘𝑔𝑜𝐶⁄ ]. 

𝑚(𝑡) is the amount of hot water consumed in each instant of time t 

[kg]. 

𝑇ℎ𝑜𝑡(𝑡) is the desired temperature of the hot water [oC] at time t. 

𝑇𝑔𝑟𝑖𝑑(𝑡) is the temperature of the water coming from the grid [oC] at 

time t. 

Eq. 8 

 

𝑣 = {

1, 𝑖𝑓 [𝑇𝑤𝑎𝑡𝑒𝑟(𝑡) ≤ TrefL ]                                                                         

            ⋁[𝑇𝑤𝑎𝑡𝑒𝑟(𝑡) ≤ TrefH  ∧  𝑇𝑤𝑎𝑡𝑒𝑟(𝑡) > 𝑇𝑤𝑎𝑡𝑒𝑟(𝑡 − 1)]  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                               

 

where TrefL is the minimum reference temperature of the hot water, and 

 

Eq. 9 
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TrefH is the maximum reference temperature of the hot water. 

The consumption of hot water and the temperature of the water coming from the grid strongly 

impacts on the working cycle of the EWH and on the resulting temperature (Figure 15). 

 
Figure 15: Close-up of the impact of hot water consumption. 

4.1.1.3. COLD APPLIANCES 

Concerning cold appliances, a simplified PBM can be deduced from more detailed studies 

(Hovgaard et al., 2012; Laguerre and Flick, 2010) and the temperature is computed by the 

expression (Eq. 10) as long as the several variables have been previously identified, namely 

concerning the intrinsic characteristics of the cold appliance to be modelled: 

𝑇𝑐𝑜𝑙𝑑𝑎𝑝(𝑡 + ∆𝑡) = 𝑇𝑐𝑜𝑙𝑑𝑎𝑝(𝑡) −
𝑤. 𝑃𝑡𝑐𝑜𝑙𝑑𝑎𝑝(𝑡) − 𝐴𝑈 [𝑇𝑟𝑜𝑜𝑚

(𝑡) − 𝑇𝑐𝑜𝑙𝑑𝑎𝑝(𝑡)]

𝑀. 𝑐𝑝
 . ∆𝑡 Eq. 10 

where A is the surrounding area of the cold appliance [m2]. 

U is the heat transfer coefficient [𝑊
(𝑚2. 𝐶𝑜 )⁄ ]. 

M is the mass of air inside the cold appliance [kg]. 

cp is the specific heat of the air [
𝐽
𝑘𝑔𝑜𝐶⁄ ]. 

𝑇𝑟𝑜𝑜𝑚(𝑡) is the room temperature where the cold appliance is placed 

at time t [oC]. 

 

𝑃𝑡𝑐𝑜𝑙𝑑𝑎𝑝(𝑡) = 𝑃𝑎𝑝𝑝 × 𝐶𝑂𝑃 is the compressor power [W]. 

𝐶𝑂𝑃 is the coefficient of performance of the cold appliance 

Eq. 11 
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𝑤 =

{
 
 

 
 1, 𝑖𝑓 [𝑇𝑐𝑜𝑙𝑑𝑎𝑝(𝑡) ≥ TrefL  ∧  𝑇𝑐𝑜𝑙𝑑𝑎𝑝(𝑡) < 𝑇𝑐𝑜𝑙𝑑𝑎𝑝(𝑡 − 1)]

 ⋁[𝑇𝑐𝑜𝑙𝑑𝑎𝑝(𝑡) ≥ TrefH ] 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                   

 

where TrefL is the minimum reference temperature of the cold appliance, and 

 TrefH is the maximum reference temperature of the cold appliance. 

 

 

 

Eq. 12 

4.2. MODELS FOR STORAGE SYSTEMS AND LOCAL GENERATION 

The model used for simulation of the stationary storage system and PHEV in both G2V and V2G 

modes is based on (Tremblay and Dessaint, 2009) and thus the SimPowerSystems battery model in 

MatLab is used. The equivalent circuit of the storage system is represented in Figure 16. The 

expressions for the discharge and charge models depend on the battery type (lead-acid, lithium-

ion, nickel-cadmium, etc). 

In our approach the lead-acid battery was used as the stationary storage system while the lithium-

ion was selected for the PHEV. One of the main differences of these two types of batteries is the 

typical charge characteristic curve (Figure 17). The degradation of the battery, although not directly 

considered in this model, can be taken into account in the evolutionary approach through the use 

of a specific term in the objective function concerning end-user’s dissatisfaction associated with 

the number of charge and discharge cycles. 

Concerning local generation, a PV system is considered and the production is forecasted through a 

model previously implemented in Netlogo (Wilensky, 1999) and based on the model presented by 

(DenHerder, 2006; Renato and Pompéia, 2009). The output of this model is further used as an 

input to the algorithm presented in Chapter 5. 

 

 

Figure 16: Equivalent circuit of the storage system 

(Tremblay and Dessaint, 2009) 

Figure 17: Typical charge characteristics 

(MathWorks Support, 2008) 
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4.3. SHIFTABLE LOADS FEATURES, END-USERS’ PREFERENCES AND CONSTRAINTS 

Concerning shiftable loads, although it is not possible to change their power consumption profile in 

order to lower electricity bill, savings in the electricity bill may be achieved if the tariff structure is 

not a flat rate. Thus, under a dynamic tariff, the cost of operation of those loads is not constant 

though the energy requested to the grid might be the same. Assuming there is some flexibility 

concerning the use of these loads (D’hulst et al., 2015), residential EMS can be used in this context 

to optimize the scheduling of shiftable loads while respecting end-user's preferences. 

These preferences may include time slots for load operation and hence a (dis)utility function is 

used to establish the penalties associated with not meeting the preferred time slots specified by 

the end-user for the operation of each load. For penalties associated with time slots it is important 

to note that the degree of dissatisfaction may vary for the same load along the day. For that 

reason, there are continuous dissatisfaction levels along the day which can be assigned to the 

multiple shiftable loads, including the PHEV when used in the G2V mode only. 

Preferences associated with different time slots for the functioning of shiftable loads are based on 

end-users’ availability to carry out associated tasks, such as hanging out clothes to dry or load the 

tumble dryer. In this context, a zero penalty corresponds to the timeframe in the planning period 

where the end-user clearly prefers the allocation of a given load, while a maximum penalty 

corresponds to the timeframe where the end-user does not want the load to operate under any 

circumstance. Decreasing, increasing and in-between penalties are also possible and have different 

meanings (Figure 18). 

However, the end-user generally does not have complete information about the overall 

consumption at a given instant or about the potential consequences of turning on more 

appliances. By assigning time slot preferences to the shiftable loads, in an extreme situation it may 

occur that the preferred time slots are coincident and the operation of those loads in that 

timeframe in addition to the non-manageable loads originates a power peak which drastically 

decreases the difference between the contracted power and the power currently being requested 

to the grid or even makes this difference negative. This event might lead to the interruption of 

energy supply and therefore the importance of also considering in the model power constraints to 

account for that risk. Unexpected variations of the non-manageable base load and contracted 

power constraint are therefore included in the model to deal with the risk of interruption of energy 

supply. 

The use of the contracted power as a hard constraint, which cannot be violated under any 

circumstances, is an important feature to keep this approach as close to reality as possible. For the 

same reason, a time step of one minute is used: this time resolution ensures that power peaks too 

close to the contracted power or even exceeding it are taken into account and not smoothed in the 

aggregated load diagram (Soares et al., 2013b). In a real setting, sensoring equipment can be used 

to monitor power in each instant of time and help computing the closeness to the contracted 

power level. The planning period of one day and a half was chosen since it includes a normal 24 
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hour day plus 12 hours allowing the inclusion of more time slots for the operation of shiftable loads 

and a more accurate management of the storage systems and thermostatically controlled loads. 

 

Figure 18: Example of end-user time slot preferences (Soares et al., 2013b) 

Concerning thermostatically controlled loads, demand can be shaped through the modification of 

temperature set points and thus the importance of the PBMs previously mentioned in section 

4.1.1. The freedom given to the EMS for modifying the set points must be limited to a certain 

temperature range, otherwise the most effective way to minimize the electricity bill would be 

choosing a temperature not requiring the load to work (e.g., for cold appliances the set point 

temperature meeting the room temperature). Changes in thermostat temperature can be for 

example ±0.5 oC or ±1oC and have a penalty associated. This penalty increases when the absolute 

difference between the reference and the new temperature increases. 
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Accordingly, preferences associated with these loads are given by an allowable temperature 

modification range and a penalty is embedded in the dissatisfaction objective function to avoid the 

choice of extreme ADR actions requiring less energy but negatively impacting end-users’ 

satisfaction. An example of the evolution of thermostatically controlled loads penalties for two 

extreme solutions, which minimize individually each one of the objective functions, can be found in 

Figure 19. Is it possible to see from this example that penalties over thermostatically controlled 

loads are not constant during the planning period and differ between solutions. 

 

Figure 19: Example of penalties associated with thermostatically controlled loads for the solutions that 

individually optimize each objective function (Antunes et al., 2015) 

In addition to these constraints and in order to avoid the interruption of energy supply, it is 

important that the EA also comprises the ability to quickly re-compute solutions as a response to 

changes in the operation environment. For example, if there is a sudden increase of non-

manageable load that would lead to the interruption of energy supply, then ADR actions such as 

short time interruptions in shiftable and thermostatically controlled loads can be used to avoid the 

energy supply interruption and thus minimizing end-user’s dissatisfaction. Also the hypothesis of 

the end-user wanting to change the initial manageable loads and/or preferences should also be 

considered. Therefore the ability to pick up near real-time information and make subsequent 

optimization based on that information is a major advantage of this approach. 
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5. METHODOLOGY7 

The approach used in this research was developed to deal with simpler scenarios, in which only 

shiftable loads are managed, or with more elaborated scenarios where multiple energy resources 

of different nature exist (Table 3). When dealing just with shiftable loads, a GA can be used to 

schedule the use of shiftable loads according to previously identified technical and user-defined 

constraints such as the one presented in (Soares et al., 2013b). The selection of ADR actions 

(postponement or anticipation) considers penalties, in the form of costs associated with time slot 

preferences for the operation of loads. Such penalties vary according to the type of load and along 

the 36 hours of the planning period. Input signals comprise energy prices, known a day and a half in 

advance, and a two level contracted power. In (Soares et al., 2013b) the aim is minimizing a single 

objective function comprising the aggregate cost of the energy consumed by the loads scheduled, 

the monetized penalty associated with the risk of interruption of energy supply and monetized 

penalties for load operation outside specific time slots. The decision variables are the starting 

minute of the working cycle for each load in the planning period. The (soft and hard) constraints 

include the contracted power levels and end-users’ preferences for the allocation of the loads in 

the time slots. 

The discomfort caused by the interruption in the energy supply, requiring the end-user to turn off 

some loads to go back under the contracted power limitation, is considered and penalized. The risk 

of interruption of energy supply is considered in the model by penalizing solutions that give origin 

to high demand peak power and a small amount of available energy in the considered time slots. 

Accordingly, a zero penalty is assigned to the maximum value of power available (i.e. farther from 

the contracted power – Ct) and a maximum penalty (value 1) to the minimum value of power 

available (Figure 20). 

 

Figure 20: Example of extreme values for available and requested power to be used in the computation of 

the penalty associated with the risk of interruption of energy supply 

                                                           
7
 This chapter is partially based on Soares, A., Gomes, A., Antunes, C.H., (in press). A Customized Evolutionary Algorithm 

for the Optimization of Residential Energy Resources, in: Advances in Energy System Optimization. Springer. 
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Since the objective function previously mentioned gathers energy costs and monetized penalties 

and already anticipating the need to include other kind of penalties hardly monetized, a multi-

objective genetic approach is presented in (Soares et al., 2014a). In this approach there are two 

objective functions to be minimized: the electricity bill and the end-user's dissatisfaction 

concerning the preferred time slots for load operation also including the risk of interruption of the 

energy supply. Similarly to what was done in (Soares et al., 2013b), penalties are assigned to the 

operation of the loads outside their preferred time slots using a (dis)utility function. Also, penalties 

associated with the power requested by the operation of each load being too close to the 

contracted power are considered. The contracted power is modelled as a hard constraint and thus 

cannot be violated. The decision variables are the starting minute of each load working cycle. 

Auxiliary binary variables state whether the working cycle of each load is on or off at a given minute 

of the planning period. 

When considering other energy resources besides shiftable loads, a more elaborate formulation 

should be used to consider all the constraints and features (Table 5). The bi-objective model is 

solved by an EA tailored to the physical characteristics of this problem. The use of a customized EA 

is justified by its ability to deal with: 

 this multi-objective problem of combinatorial nature in which a population of solutions 

converges to the non-dominated (Pareto optimal) frontier where compromise solutions 

between the competing objective functions are located; 

 diversity regarding energy resources which have different features and require distinct ADR 

actions. 

This approach differs from previous works in the range of loads being managed, the type of models 

used to reproduce their regular behavior, the different type of ADR actions that may be 

implemented, the assessment of the impact of ADR actions (mainly through the use of PBMs), the 

incorporation of end-users’ preferences for each type of load and the ability to keep the peak 

power requested to the grid as low as possible below the contracted power. Moreover this 

approach has the capability to quickly react to external emergency requests or modifications of 

end-user’s preferences and non-manageable demand by re-computing new solutions without the 

need to restart the process and with a mild computation effort. 

Considering the objectives of the optimization model, there are advantages for displaying the 

behavior of each managed load in the solution encoding. These advantages are mainly linked to the 

positive impact on the computation time needed to find the Pareto front. Thus, for shiftable loads, 

considering the previous knowledge of their working cycle, what really matters is the starting 

minute within the planning period. For thermostatically controlled loads, their operation depends 

on the indoor temperature and the desired temperature and hence this load is represented by the 

maximum allowable temperature in each instant of time. The electric vehicle and the stationary 

storage system power profile in each instant of time are encoded by -2,-1,0 or 1, representing each 

one of these codes a different state (self-consumption and selling electricity to the grid; selling 

electricity to the grid; battery not in use; or electricity storage, respectively).  
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Table 5: Bi-objective problem formulation 

  

Objective functions Observations 

1. Minimization of the energy bill  The energy bill is determined by the 

acquisition cost from the grid, subtracting 

the revenue from injecting energy into the 

grid and responding to grid signals. 

2. Minimization of end-users’ 

dissatisfaction  

Shifting loads to non-

preferred time slots 

(Dis)utility functions establish the penalties 

associated with not meeting end-users’ 

preferences. 

Demand response actions requiring the 

change of temperature settings of 

thermostatically controlled loads, which are 

different from the normal functioning of 

these appliances, are penalized using an 

exponential function. 

Proximity to contracted 

power threshold 

Changing temperature set 

points 

Not ensuring a minimum SoC 

of the PHEV battery by the 

end of the planning period 

Constraints 

1. End-users’ time slot 

preferences for allocating 

shiftable loads 

Laundry machine, tumble 

dryer, dishwasher 

Electric vehicle if only used in 

G2V mode 

Modelled as hard constraints: time slots 

with a shorter duration than the working 

cycle of the load to be allocated are 

excluded. 

2. End-users’ temperature 

range for thermostatically 

controlled loads 

EWH, AC, fridge Modelled as constraints: solutions outside 

the allowable temperature range are 

penalized to make them uninteresting. 

3. End-users’ preferences for 

the use of storage systems 

Stationary storage system 

and the PHEV in both G2V 

and V2G modes 

The SoC of the stationary storage system is 

checked by the physically-based model in 

each instant of time and kept not lower 

than 0.2. 

The SoC of the PHEV battery at the end of 

the planning period must be in accordance 

with the minimum SoC requested by the 

end-user. 

4. Usage of local generation PV systems to generate 

electricity 

The power generated in each instant of 

time can be used for self-consumption, 

stored in the storage system or injected in 

the grid. 

5. Contracted power 

threshold 

A contracted power level is 

assumed to exist and there 

are economic advantages 

from keeping it as low as 

possible. 

The contracted power is considered as a 

constraint: a very high penalty is considered 

when exceeding the contracted power to 

make those solutions uninteresting. 
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The solution encoding translates into the genes of the chromosome representing each solution the 

ADR actions that are physically feasible (Figure 21). As a result the length of the chromosome is 

strongly dependent on the planning period and the number of managed loads. 

 

Figure 21: Solution encoding 

Technical restrictions 

Technical restrictions are 

associated with every 

managed load and allowable 

demand response actions. 

Laundry machine, tumble 

dryer, dishwasher 

Although these loads may be technically 

interrupted, this possibility is only 

considered if the contracted power exceeds 

the power threshold.  

Thermostatically controlled 

loads: fridge, EWH, AC 

Small changes of the thermostat settings 

are considered without compromising the 

quality of service. The temperature range 

variation depends on the end-user’s 

preferences. 

Storage systems 

The SoC of the stationary storage system is 

kept not lower than 0.2 in each instant of 

time. 

The charging of the PHEV may be modelled 

by considering more than one power level 

as long as the total amount of energy 

requested is provided to the PHEV. 

The EMS can freely stop and start the 

charging of the PHEV, but must always 

make sure that the car has the minimum 

SoC requested by the end-user before the 

specified departure time or at the end of 

the planning period. 
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Other important feature of this approach is the generation of the initial population according to 

the type of loads being managed, which strongly influences the computation time needed to 

obtain good results. Thus, while for shiftable loads the corresponding genes are randomly 

generated as long as the starting minute is included in the allowed time slots for the operation of 

those loads, for thermostatically controlled loads the genes are randomly generated within the 

thermostat temperature deadband variation when ADR actions are not implemented (and 

therefore no temperature penalty is associated) except for two individuals (solutions). These two 

individuals represent extreme solutions, each of them with very good values for one objective 

function at the expense of very bad values for the other objective function and are generated in 

order to enhance the diversity of the population during the evolutionary process. For the individual 

with a zero penalty associated with changing temperature settings, the desired temperature is 

always maintained within the admissible range. For the individual with maximum penalty 

associated with changing temperature settings, these settings are established as the maximum 

allowable value for cold appliances and AC systems, and to the minimum allowable value for the 

EWH. 

Concerning the PHEV used in the G2V mode only, the corresponding genes in individuals of the 

initial population are set to fully charge the battery without any interruptions during that charging 

period. 

For the stationary storage system or the PHEV in both G2V and G2V modes, the decision for each 

gene is generated according to the energy price: 

 if the buying energy price is above the average for the scheduling period, then the decision 

may be self-consumption or sell the electricity to the grid; 

 if the buying energy price is below the average for the scheduling period, then the decision 

may be buying electricity from the grid to charge the battery or do nothing. 

The crossover and mutation operators are also customized according to the type of load being 

managed (Figure 22) and the particularities of each one are detailed in Table 6. 

The flowchart of the optimization approach, based on NSGA-II, is displayed in Figure 23. At the 

beginning of the simulation and considering the planning period of 2160 minutes (one day and a 

half – 36h), the input information relevant to the integrated load management is read. This 

information includes: 

 contracted power threshold; 

 energy prices; 

 weather forecast; 

 expected base load demand; 

 forecast of energy locally produced. 
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Figure 22: Example of the use of the crossover and mutation operators 

Table 6: Customized operators to be applied over the managed loads 

Load managed Mutation operator Crossover operator 

Shiftable load Changes the starting minute of the working 

cycle according to a previously defined 

deviation bound, while respecting the time 

slot allowed for this cycle operation. 

Swaps the starting minute of the 

same load between two different 

individuals. 

Thermostatically 

controlled load 

Changes the maximum temperature within a 

given deviation bound. This deviation is 

different for cold appliances, EWHs and AC 

systems. Changing the maximum 

temperature will also impact the minimum 

temperature since the difference between 

the maximum and minimum temperatures 

(deadband variation) is supposed to remain 

constant. 

The maximum temperature value 

is exchanged between two 

individuals preserving its location 

in the solution encoding. One or 

more genes may be changed. 

Electric vehicle Sets interruptions in the charging cycle 

according to a defined number of maximum 

interruptions, while respecting the time slot 

allowed for the charging operation. 

Interchanges the power 

withdrawn from the grid between 

two individuals in a variable 

number of genes. 

Stationary storage 

system 

Changes the decision made for the battery 

(self-consumption and selling electricity to 

the grid; selling electricity to the grid; battery 

not in use; or electricity storage). 

Interchanges decisions in a 

variable number of genes 

between two individuals. 
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Figure 23: Algorithmic approach flowchart 
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Information concerning the diversity of loads to be managed and end-users preferences are also 

considered at this step including: 

 time slots for the allocation of shiftable loads; 

 temperature preferences for thermostatically controlled loads; 

 desired SoC for the PHEV battery if used in both G2V and V2G modes. 

The features of the EA such as population size (N), number of generations (G) and probability of the 

crossover and mutation operators are specified to run the optimization process. The process 

begins with the generation of the initial parent population according to the features of the 

managed loads and the consequent: 

 use of PBMs to obtain the power profile and temperatures for thermostatically controlled 

loads; 

 time allocation of shiftable loads according to the solution encoding for this part of the 

chromosome; 

 use of a generic dynamic model to get the power profile and SoC for storage systems. 

Through the compilation of the previous information and the identification of power profile and 

temperatures it is possible to assess the fitness function. This assessment is carried out for each 

individual of the population and allows assigning a rank to it based on Pareto dominance. The next 

step consists of generating the offspring through a binary tournament to choose the two parents 

and then using of the crossover and mutation operators. 

Parents and offspring population are then combined to create a pool of solutions (Ri,, i represents 

the generation number) with twice the size of the initial population (2N). The allocation of shiftable 

loads in the planning period, the use of both the PBMs for the thermostatically controlled loads 

and a generic dynamic model for the storage system allow the evaluation of the two objective 

functions. Then, a non-dominated sorting approach is used to identify the non-dominated front 

and the population size is reduced again to N individuals to obtain the mating pool for the next 

generation. The crowding operator is used in this step to assign a crowding distance to each 

solution within the same front (Deb et al., 2002; Salinas et al., 2013), which measures how close an 

individual is to other individuals. If there are two individuals presenting the same rank during the 

non-dominated sorting approach, then the one with larger crowding distance is selected. 

This procedure is repeated until the intended number of generations is performed. When this stop 

condition is attained, the Pareto front is identified and the final solution can be chosen at this final 

step according to the end-user’s profile. The solutions individually optimizing the electricity bill or 

the end-user’s dissatisfaction would correspond to a more cost-oriented or a more quality of 

service-oriented end-user, respectively. Other profiles can be identified, such as an end-user who 

prefers: 
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 the operation of shiftable loads as soon as possible; 

 the PHEV fully charged as soon as possible; 

 minimal changes in the room temperature. 

5.1. PROBLEM FORMULATION 

The problem of integrated management of residential energy resources can be formulated by 

means of the following model (Eq. 13-Eq. 29) which has been coded in MatLab. As it is presented 

here this model cannot be directly used in a mathematical programming solver such as CPLEX since 

it is not a mixed integer linear programming (MILP) model because of the way decision variables 

are represented as a function of the operation cycle of shiftable loads (Eq. 15 and Eq. 23). The 

transformation of this model into a MILP model is presented in (Alves et al., 2016). However, 

transforming the model into a standard MILP requires a very high number of auxiliary binary 

variables (number of minutes of the planning period X number of minutes of the load operation 

cycle X number of loads) and additional constraints (almost five times the total number of auxiliary 

variables detailed below). Note that this is only necessary if a solver, such as CPLEX, is to be used. 

The model representation below is adequate to be tackled by the EA and results in a simpler 

formulation. 

5.1.1. NOTATION 

T = number of minutes of the planning period (t =1,…,T) (T=2160) 

n = number of shiftable loads to be managed (j=1,..,n) 

m = number of thermostatically controlled loads to be managed (b=1,..,m) 

τbt = temperature of thermostatically controlled load b at minute t of the planning period 

determined by the PBM according to the reference temperature and the end user’s preferences. 

Ct = contracted power at minute t of the planning period (kW) 

ut = non-manageable base load at minute t of the planning period (kW) 

Z = amount of energy required by the electric vehicle to fulfill end-user’s needs (kWh) 

dj = duration of the operation cycle of load j (minutes) 

€t = kWh price at minute t of the planning period (€/kWh) 

fj(r) = power requested by shiftable load j at minute r of its working cycle (r =1,…,dj) (kW) (Figure 

24) 

gjt = penalty associated with the risk of interruption of energy supply to load j at minute t of the 

planning period 



P a g e  | 58  Methodology 

 

hjt = penalty associated with the time slots assigned to shiftable load j at minute t of the planning 

period 

rbt = penalty associated with the variation of temperature in thermostatically controlled load b at 

minute t defined by the PBM rbt={0, Rbt}; Rbt calculated in Eq. 29 

TrefLb = minimum reference temperature of load b 

TrefHb = maximum reference temperature of load b 

wb = allowable deadband variation for load b 

LPt = local generation at minute t of the planning period 

Q = maximum capacity of battery (kWh) 

Q0 = energy stored in the battery at the beginning of the planning period (kWh) 

TI = starting minute at which the PHEV is available for charging 

TF = end minute at which the PHEV is available for charging 

Decision variables: 

xj = starting minute of the working cycle of shiftable load j 

st = total power injected into the grid at minute t of the planning period (kW) 

sLPt = power from local production injected into the grid at minute t of the planning period (kW) 

sBt = power from battery injected into the grid at minute t of the planning period (kW) 

at = total power used for self-consumption at minute t of the planning period (kW) 

aLPt = power from local generation used for self-consumption at minute t of the planning period 

(kW) 

aBt = power from battery used for self-consumption at minute t of the planning period (kW) 

vt = power requested to the grid by the stationary storage system at minute t of the planning 

period (kW) 

vLPt = power from local production used for feeding the stationary storage system at minute t of the 

planning period (kW) 

yjt = binary variable representing whether the working cycle of shiftable load j is “on” (yjt = 1) or 

“off” (yjt = 0) at minute t of the planning period 

pjt = power requested to the grid by shiftable load j at minute t of the planning period (kW), 

including the PHEV 
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pbt = power requested by thermostatically controlled load b at minute t of the planning period (kW) 

pbt={0, Pb}; Pb is the rated power of load b. 

5.1.2. MODEL 

min∑(∑
€t pjt

60

n

j=1

+∑
€t pbt
60

𝑚

𝑏=1

+
€t𝑣𝑡
60

−
0.8€t𝑠𝑡
60

+
€t𝑢𝑡
60

)

T

t=1

 Eq. 13 

min∑(∑(gjt + hjt)yjt

n

j=1

+∑𝑟𝑏𝑡

𝑚

𝑏=1

)

T

t=1

 Eq. 14 

s. t. 

yjt = {
1  , if xj ≤ t ≤ xj + dj
0  ,          otherwise            

 

𝑗 = 1,… , 𝑛 

𝑡 = 1,… , 𝑇 

Eq. 15 

∑pjt

n

j=1

+ ut +∑𝑝𝑏𝑡

𝑚

𝑏=1

+ vt − at ≤ Ct ∀ 𝑡 Eq. 16 

𝑎𝑡 = 𝑎𝐿𝑃𝑡 + 𝑎𝐵𝑡 ∀ 𝑡 Eq. 17 

𝑠𝑡 = 𝑠𝐿𝑃𝑡 + 𝑠𝐵𝑡 ∀ 𝑡 Eq. 18 

𝑎𝐿𝑃𝑡 + 𝑠𝐿𝑃𝑡 + 𝑣𝐿𝑃𝑡 = 𝐿𝑃𝑡 ∀ 𝑡 Eq. 19 

𝑄0 +
1

60
∑(𝑣𝑘 + 𝑣𝐿𝐵𝑘 − (𝑎𝐵𝑘 + 𝑠𝐵𝑘))

𝑡

𝑘= 1

≤ 𝑄 ∀ 𝑡 Eq. 20 

1

60
∑ pjt

𝑇𝐹

𝑡=𝑇𝑖

= 𝑍 
∀ 𝑡 

𝑗 = 𝐸𝑉 

Eq. 21 

pjt = fj(t − xj + 1)yjt 

𝑗 = 1,… , 𝑛 

𝑡 = 1,… , 𝑇 

Eq. 22 

1 ≤ xj ≤ T − dj + 1 𝑗 = 1,… , 𝑛 Eq. 23 

The penalty coefficients gjt, hjt and rbt are expressed in the same scale, in order to be aggregated in 

the dissatisfaction objective function. 
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The state of charge (SoC) of the stationary storage system is checked by the model in each instant 

of time and kept not lower than 0.2. 

Concerning thermostatically controlled loads, in each iteration the algorithm guarantees that the 

deadband of every thermostatically controlled load lies in the interval defined by the 

corresponding lower and upper reference temperature. These lower and upper temperature 

reference values may change during the execution of the algorithm according to the end-user’s 

preferences, although there is a penalty associated with this temperature variation. 

𝑇𝑟𝑒𝑓H𝑏 −𝑤𝑏 = 𝑇𝑟𝑒𝑓𝐿𝑏 ∀ 𝑏 Eq. 24 

For b=fridge and b=AC:    

{
𝑝𝑏𝑡 = 𝑃𝑏 , 𝜏𝑏𝑡 < 𝜏𝑏(𝑡−1) 

𝑝𝑏𝑡 = 0, 𝜏𝑏𝑡 ≥ 𝜏𝑏(𝑡−1) 
  ∀ 𝑡 Eq. 25 

{
𝑟𝑏𝑡 = 0      , 𝑇𝑟𝑒𝑓𝐿𝑏 ≤ 𝜏𝑏𝑡 ≤ 𝑇𝑟𝑒𝑓H𝑏                       
𝑟𝑏𝑡 = 𝑅𝑏𝑡   , 𝜏𝑏𝑡 < 𝑇𝑟𝑒𝑓𝐿𝑏 ∨ 𝜏𝑏𝑡 > 𝑇𝑟𝑒𝑓H𝑏              

 ∀ 𝑡 Eq. 26 

For b=EWH:   

{
𝑝𝑏𝑡 = 𝑃𝑏   ,  𝜏𝑏𝑡 > 𝜏𝑏(𝑡−1)                 

𝑝𝑏𝑡 = 0     , 𝜏𝑏𝑡 ≤ 𝜏𝑏(𝑡−1)           
  ∀ 𝑡 Eq. 27 

{
𝑟𝑏𝑡 = 𝑅𝑏𝑡  , 𝜏𝑏𝑡 < 𝑇𝑟𝑒𝑓𝐿𝑏 ∨ 𝜏𝑏𝑡 > 𝑇𝑟𝑒𝑓H𝑏          
𝑟𝑏𝑡 = 0      ,     𝑇𝑟𝑒𝑓𝐿𝑏 ≤ 𝜏𝑏𝑡 ≤ 𝑇𝑟𝑒𝑓H𝑏                        

  ∀ 𝑡 Eq. 28 

For the three thermostatically controlled loads (b=fridge, AC, EWH), the penalty associated with 

the variation of temperature is given by: 

{
𝑅𝑏𝑡 = 𝑒

|(𝜏𝑏𝑡−TrefHb)|
𝑤𝑏 − 1 , 𝜏𝑏𝑡 > TrefHb

𝑅𝑏𝑡 = 𝑒
|(𝜏𝑏𝑡−TrefLb)|

𝑤𝑏 − 1, 𝜏𝑏𝑡 < TrefLb 

 
∀ 𝑡 Eq. 29 
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Figure 24: Example of power requested by shiftable load j initiating its working cycle, with a duration dj, at 

minute xj of the planning period 

Consumption data for every manageable load and weather forecasts are embedded in the input 

data to the PBM and used in the optimization process to shape the household’s load profile. 

Information such as electricity prices, emergency signals and requests for load 

reduction/augmentation coming from the utility can also be transmitted to the EMS and ADR 

decisions will be performed accordingly. 

In order to offer the ability to make decisions without the need to continuously interact with the 

end-user, the EMS must correctly interpret end-user’s preferences concerning time slots for the 

use of shiftable loads, admissible variations in temperature settings for thermostatically controlled 

loads, minimum SoC required by a given time in the planning period. Thus the importance of using 

PBMs to reproduce the power profile of thermostatically controlled loads and stationary storage 

systems with the aim of providing information to guide the EMS determining the ADR actions to be 

implemented. PBMs allow assessing the impact of an ADR action in terms of power requested to 

the grid and comfort (temperature) (Gomes et al., 2013). Each type of thermostatically controlled 

load (cold appliance, AC system or EWH) uses a specific PBM as presented in section 4.1.1. As the 

same type of ADR action may have different impacts over different loads, it is thus important to 

consider this aspect in the optimization process whenever evaluating the objective functions or 

assessing the satisfaction of constraints. 

Solutions are evaluated concerning two axes: the electricity bill and the dissatisfaction perceived by 

the end-user concerning the energy services provided. The electricity bill includes the cost of 

energy consumed by the loads, the ones being managed and the non-manageable load, and the 

revenue from injecting energy into the grid. 

Although end-user’s dissatisfaction is difficult to measure, several key criteria were included in this 

assessment. The detailed knowledge of the physical characteristics of the problem and the possible 

impacts of ADR actions allowed the identification of the following key aspects that directly 

influence end-user’s dissatisfaction, which is modelled by means of penalty coefficients: 
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 allocation of shiftable loads, including the PHEV, outside the time slots specified by the end-

user; 

 room temperature resulting from AC operation being outside the admissible temperature 

range; 

 unavailability of hot water at the desired temperature when the end-user needs it; 

 not attaining the minimum SoC of the PHEV battery. 

 not keeping a safety margin to prevent the interruption of energy supply due to overcoming 

the contracted power. 

For the cold appliance or the AC system, the temperature penalty is computed according to the 

difference between the maximum/minimum reference temperature and the temperature set due 

to the implementation of the ADR action. If the temperature setting resulting from the 

implementation of the ADR action is kept within the reference range [TrefLb;  TrefHb], the penalty 

is equal to zero. When the temperature setting resulting from the implementation of the ADR 

action is outside that range, the exponential term Eq. 26 is used. If the temperature resulting from 

the implementation of the ADR actions is lower than the minimum reference temperature, then 

there is also an extra amount of energy consumed leading to an increase in the electricity cost. 

For the EWH, when the difference between the temperature setting resulting from the 

implementation of the ADR action and the minimum reference temperature is negative, or the 

difference between the temperature setting resulting from the implementation of the ADR action 

and the maximum reference temperature is positive, then the exponential term Eq. 29 is used. 

The temperature penalties were balanced to prevent a thermostatically controlled load with a 

wider range of temperature variation (such as the EWH) from having a higher impact on the overall 

dissatisfaction objective function. 
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6. SIMULATION RESULTS 

The algorithmic approach developed (Chapter 5) requires the following inputs: 

 the energy resources to be managed; 

 end-users’ preferences concerning time slots for the allocation of shiftable loads; 

 allowable temperature range for thermostatically controlled loads; 

 minimum SoC in the PHEV battery when used in both the G2V and V2G modes; 

 energy price for buying and selling energy from/to the grid, which may be different; 

 weather conditions (temperature and insolation forecasts); 

 the existence of any type of local generation system and the associated forecasted 

production. 

Energy supply from the grid is assumed to be always available and emergency signals may be 

triggered. The emergency signals considered in this approach can be used by utilities to induce 

consumption changes, for example if the reliability of the system is jeopardized for some reason or 

due to lack or surplus of energy. 

The degree of difficulty concerning the optimization process depends on the amount of resources 

being managed. The computational effort is lower when only shiftable loads are considered as 

manageable resources; further complex cases may include thermostatically controlled loads, 

storage systems, either the PHEV or stationary systems, and the existence of local generation from 

different sources. 

Considering a real setting implementation, some inputs come from the grid, others from the use of 

adequate sensoring equipment and the remaining information should be specified by the end-user. 

A prototype is under development incorporating this algorithmic approach. Communication 

between the multiple residential manageable loads, microgeneration and storage systems and the 

gateway, responsible for coordinating the information exchange between the Monitoring and 

Control Plug (MCP) devices and the EMS where the optimization algorithms are running, can be 

done using RF or a ZigBee stack as presented in (Soares et al., 2015b) (Figure 25). 
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6.1. CASE STUDY 1 

In order to show the capability of this algorithmic approach to deal simultaneously with multiple 

manageable resources and the corresponding end-user’s preferences, the first case study includes: 

 three shiftable loads (dishwasher – DW, laundry machine – LM and tumble dryer – TD); 

 three thermostatically controlled loads (fridge, conventional AC system, EWH); 

 one PHEV which may be used in both G2V and V2G modes; 

 a local generation system. 

 

Figure 25: Prototype under development: a) Monitoring and Control Plug. b) Information Gateway 

The working cycles of the shiftable loads are known in advance, since they mainly depend on the 

program chosen, and are plotted in Figure 26. The PHEV needs around 9.6 kWh to be fully charged, 

assuming that the initial SoC is 20% (Figure 27). (Soares et al., 2015a) presented a PHEV charger 
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topology and AC/DC converter controller architecture for V2G and G2V operation which may be 

used in a real setting to control the PHEV. 

Temperature and PV local generation forecasts for a hot day are represented in Figure 28. The 

prices for buying and selling energy from/to the grid are different, with the kWh selling price 

always below the buying price (Figure 29). This assumption is in accordance with actual Portuguese 

legislation concerning distributed generation, self-consumption and the injection of energy in the 

power grid (Decreto-Lei n.o 153/2014 de 20 de outubro, 2014). The energy buying price is based on 

a three level time-of-use tariff in which the lowest price corresponds to the night period and the 

peak price is achieved during late morning and early night (Figure 29). The lowest energy price is 

0.11 €/kWh, peak price is 0.19 €/kWh and the intermediate price is 0.16 €/kWh. For illustrative 

purposes, the energy selling price is 80% of the energy buying price. 

 
Figure 26: Working cycles of the three shiftable loads (DW, LM and TD) 
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Figure 27: Working cycle of the PHEV when used only in the G2V mode and charged from 20% until 100% 

(total amount of energy needed 9.6 kWh) 

 

Figure 28: Temperature and local generation (photovoltaics) forecast 

 

Figure 29: Tariff structure considered (buying price) 
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Time slots preferences for shiftable loads such as dishwashers, laundry machines and tumble 

dryers are dealt with in the same way as depicted in section 4.3 and (Soares et al., 2014a, 2013b), 

considering time slots with different penalties for the scheduling of their working cycles (Figure 30). 

The preferable time slot for operation of the DW is during the night period, between 12 am until 7 

am, and later in the next day during dawn. There are other admissible time slots which have, 

however, a dissatisfaction penalty: a constant dissatisfaction penalty around 12 pm till 4:30 pm, a 

decreasing penalty beginning around 10 am till 12 pm and an increasing penalty from 4:30 pm till 3 

am. For the LM, the preferable time slots, i.e., without any dissatisfaction penalty associated are 

linked to the end-users’ availability to hang clothes or place them in the TD. Therefore two time 

slots are considered: the first one during early morning of the first day of the planning period and 

the other one from lunch time till around 4 pm. Increasing and decreasing penalties are also 

associated with other time slots, namely before 6 am, between 8:30 am and 12 pm, and after 4 pm 

until midnight. The TD is supposed to work only after the LM and thus the preferable time slots 

starts after 4 am. This does not mean that the end-user is loading the TD during late night. In fact, 

clothes may be placed in the TD as soon as the LM has completed its working cycle, but the 

preferable time slot for its operation occurs later at night/early dawn. 

For the sake of comparison, a reference scenario with a plausible instantiation of these inputs 

should be established to assess savings and impacts of solutions corresponding to ADR actions. 

Thus, in the reference case: 

 shiftable loads are allocated according to the time slots allowed for load operation and the 

kWh buying price; 

 no ADR actions are implemented over thermostatically controlled loads; 

 the PHEV is used in both V2G and G2V modes, but the SoC must have already achieved 100% 

before the end of the planning period; 

 the PHEV is charged mainly during the periods of time when the energy price is lower and the 

energy stored is consumed when the energy price is higher; the energy selling price is 80% of 

the kWh buying price; the degradation induced by charging/discharging cycles is not taken 

into account. 

Concerning thermostatically controlled loads, the evolution of the working cycle and the 

temperature without the implementation of ADR actions together with the admissible variation 

range are represented in Figure 31 and Figure 32. The admissible temperature variation range is 

associated with the interval of comfort for each thermostatically controlled load and changes with 

the end-user’s needs and preferences. Thus, for each household, the temperature limits of these 

loads may be chosen and inserted as input information. 

For the electric water heater, temperature must be kept ideally in the range [50; 55] oC so no 

dissatisfaction penalty is incurred. Nevertheless, in order to achieve savings in the electricity bill, 

the end-user allows the [45; 60] oC variation range with a dissatisfaction penalty (Eq. 28 and Eq. 

29). The AC system should work between [19;21] oC with no penalty and may have a more flexible 
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allowable temperature range variation [17;23] oC with the corresponding dissatisfaction penalty 

(Eq. 26 and Eq. 29). Considering the fridge, and although temperature is not constant inside the 

fridge, the normal temperature variation range is [4; 6] oC while the allowable variation is [2;8] oC 

with the corresponding dissatisfaction penalties (Eq. 26 and Eq. 29). 

 

Figure 30: Time slot preferences for shiftable loads (DW, LM and TD) 
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Figure 31: Power and temperature evolution of thermostatically controlled loads without the 

implementation of ADR actions (reference case) for the planning period 

 

Figure 32: Normal behavior of thermostatically loads and admissible variation range (no ADR actions) 

The resulting load diagram for the reference case considering a planning period of one day and a 

half is depicted in Figure 33 and the corresponding electricity bill is 3.47 €. The SoC variation is 

represented in Figure 34 and it is possible to see that the PHEV is charged when the energy price is 
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at its minimum value and some of the stored energy is used for self-consumption or injected in the 

grid when the energy price is higher. A profit of 0.12 € is achieved from the injection of energy into 

the grid. 

Although the end-user does not own any type of EMS in this reference case, the operation of 

shiftable loads is avoided when the energy price is higher, similarly to what the end-user would do 

if he knew in advance the energy prices. Also the SoC of the PHEV battery is controlled by the end-

user in such a way that after 10 pm the battery cannot be used in the V2G mode so it can be fully 

charged in the morning of the second day and preferably before the end of the planning period. 

Temperature variation of thermostatically controlled loads is shown in Figure 32, since no ADR 

actions are used and thus the normal working cycle of these loads remains unchanged. 

The optimization approach is launched using the same inputs as the reference case but allowing 

the EMS to do an integrated management of the multiple energy resources. The minimum energy 

acquisition cost, and the minimum dissatisfaction caused to the end-user are used to compare the 

results when different parameters are used. The best combination of parameters were tuned 

through extensive experimentation and is shown in Table 7, while results obtained for each run are 

summarized in Table 8. Note that the true Pareto optimal front for this bi-objective optimization 

problem is not known. 

The different values, resulting from the tuning process, for the operators are due to the features of 

each load. The mutation operator has a: 

 higher value in thermostatically controlled loads since changing one temperature degree in 

some genes of the chromosome generally leads to better results; 

 very low value in the PHEV since randomly changing some genes can impose a high frequency 

of charging and discharging decisions. 

Results have shown that the crossover operator did not produce so good results when the integrity 

of each segment of the chromosome component associated with some type of loads, namely 

thermostatically controlled loads, was not respected. This is explained since any interchange of 

information between individuals concerning these loads would strongly impact on the power 

required by each load and the temperature because the temperature of the fluid being 

heated/cooled depends on the recent operation of the load. Also the rate for the mutation 

operator has different values according to the load categorization. Thus the mutation operator 

used in thermostatically controlled loads has a higher value, while for the PHEV (when used in G2V 

and V2G modes) this value is quite low. The reason is that occasionally changing one or several 

genes in the components of the chromosome associated with thermostatically controlled loads 

may slightly change the temperature and consequently the power required from the grid for these 

loads, while the decision of charging/discharging or doing nothing for the stationary storage system 

may have an unwanted impact in energy flows (for instance, quick changes imposing a high 

frequency of charging and discharging decisions). 
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Concerning the results obtained for 30 runs with 50 individuals and 1000 generations, the worst 

solution that individually optimizes end-user’s dissatisfaction is due to not reaching the 100% SoC 

by the end of the planning period. In fact, in this specific run, none of the solutions reached 100% 

SoC, although all the solutions reached the minimum desired SoC (at least 50%) and 22% of the 

solutions achieved a SoC above 72%. Additionally, the quality of the energy services provided are 

not jeopardized since the minimum SoC is always attained. In the 30 runs, 73% of the solutions that 

individually optimize end-user’s dissatisfaction achieve 100% of the SoC by the end of the planning 

and 90% achieve 80% of the SoC. 

 

Figure 33: Reference case 

 

Figure 34: SoC variation of the PHEV battery during the planning period 
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Table 7: Probabilities of operators over different loads 

 Mutation  Crossover 

Shiftable loads 0.2 0.5 

Thermostatically controlled loads 0.6 0 

PHEV (G2V and V2G modes) 0.02 0.5 

Table 8: Results obtained considering 30 EA runs (50 individuals and 1000 generations) 

 Energy cost (€) Dissatisfaction 

Best 2.156 0.048 

Worst 2.268 3.182 

Median 2.185 0.060 

Average 2.194 0.717 

Std Deviation 0.025 1.063 

Figure 35 displays the non-dominated solution set in the bi-objective space: costs associated with 

energy purchase, including the profit from selling energy to the grid, and end-user's dissatisfaction. 

These illustrative results correspond to a randomly chosen run. The Pareto front is uniformly 

spread-out except for a specific zone where solutions A and B are represented. The difference 

verified is mainly due to the physical characteristics of the multi-objective problem and the impacts 

of the ADR actions over the electricity bill and end-user’s dissatisfaction, especially due to the 

impact of the ADR actions over the EWH which causes a high dissatisfaction (Figure 36). 

The solutions that individually optimize the electricity bill (solution I) and the end-user's 

dissatisfaction (solution J) are represented in Figure 37 and Figure 38. An intermediate solution K is 

displayed in Figure 39. The main differences between these three solutions are the ADR actions 

implemented over thermostatically controlled loads (Figure 40) and the energy flows between the 

PHEV, as well as the other energy resources and the grid which directly impact on the SoC and 

consequently on end-user’s dissatisfaction (Figure 41). Solutions are consistent in terms of 

allocating as far as possible shiftable loads in periods of time where the energy price is lower and 

the penalty associated with the time slots is zero, as well as charging the battery during the period 

of time where energy price is lower to use the energy stored for self-consumption when the energy 

price is higher. 

All the solutions of the Pareto front present savings when compared to the reference case. 

Nevertheless, some of them present higher savings since the SoC of the PHEV does not attain 

100%. Thus, in order to have a direct fair comparison, solutions presenting 100% SoC by the end of 

the planning period allow savings between 5-11%. The EMS with this EA approach embedded 

allows a better integrated management of all resources and consequently a better use of the PHEV 

in V2G mode. 
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Figure 35: Pareto front for case study 1 

 

Figure 36: Main differences between solutions A and B 
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Figure 37: Solution that individually optimizes the electricity bill – solution I 

 

Figure 38: Solution that individually optimizes end-user's dissatisfaction – solution J 

 

Figure 39: Intermediate solution K 
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Figure 40: Impact of ADR actions over thermostatically controlled loads – solutions I, J and K 

 

Figure 41: Impact of ADR actions over the SoC of the PHEV battery – solutions I, J and K 

Solutions in the Pareto front have different features. The choice of the final solution depends on 

the end-user profile. An end-user who privileges savings in the electricity bill can choose solution I 

(Figure 35). However, if the end-user wants to simultaneously minimize electricity bill but having 

100% final SoC level in the PHEV battery, then solution L is a good candidate to be chosen (Figure 

35 and Figure 42). On the other hand, if the end-user wishes to favor solutions with lower impact 

on dissatisfaction, then solution J is the choice. 

This approach allows establishing trade-offs between the electricity bill and the quality of service 

evaluation dimensions. For instance, solution A is 0.02 € cheaper than solution B but has a much 
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higher dissatisfaction penalty associated with mainly due to the hot water temperature which is 

kept at a lower value. 

 

Figure 42: Solution L: lower electricity bill when final SoC = 100% 
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6.2. CASE STUDY 2 

In case study 1, the level of contracted power is the same as in the reference case (4.6 kVA). The 

desired level of contracted power can be entered as a constraint and force the EA to find solutions 

requiring a lower level of contracted power (since this implies a lower fixed term power tariff). 

Case study 2 uses a 3.45 kVA contracted power level as a constraint, which means that all solutions 

require one power level below the reference case presented in Chapter 6.1. An illustrative example 

of the solution that individually optimizes end-user’s dissatisfaction (solution J) considering 3.45 

kVA for the contracted power level is represented in Figure 43. The load diagram for the solution 

that individually optimizes the electricity bill (solution I) is represented in Figure 44. Differences 

concerning temperature variation of thermostatically controlled loads and SoC of the PHEV battery 

are summarized in Figure 45. Solution I (that individually optimizes the electricity bill) keeps most 

of the time AC and fridge temperatures closer to the maximum reference temperature and hot 

water temperature in the EWH closer to the minimum reference temperature, in comparison with 

solution J (that individually optimizes end-user’s dissatisfaction) which keeps temperature within 

the normal range as far as possible. Concerning the SoC of the PHEV battery, solution I attains 

around 51% by the end of the planning period while solution J fully charges the battery. 

The Pareto front for this run is presented in Figure 46 and the main differences between solutions 

A and B are shown in Figure 47 and Figure 48. The main differences between these solutions are 

the ADR actions over thermostatically controlled loads, the energy flows between stored energy in 

the PHEV battery, the grid and the other residential resources, and the final SoC of the PHEV 

battery. Solution A presents a lower electricity bill at the expense of a higher dissatisfaction. The 

allocation of the dishwasher, laundry machine and tumble dryer is also done in a different time slot 

between solutions A and B, which also impacts on end-user’s dissatisfaction. For instance, in 

solution A the allocation of the dishwasher has a penalty associated with the allocation in a time 

slot which is not the most preferred; while in solution B no penalty is assigned. 

 

Figure 43: Solution J that individually optimizes end-user’s dissatisfaction considering as constraint 3.45 kVA 

for the contracted power level 
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Figure 44: Solution I that individually optimizes the electricity bill considering as constraint 3.45 kVA for the 

contracted power level 

 

Figure 45: Main differences in thermostatically controlled loads and the PHEV between solutions I and J 
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Figure 46: Pareto front for case study 2 considering 3.45 kVA as the contracted power 

 

Figure 47: Main differences in thermostatically controlled loads and the SoC of the PHEV battery between 

solutions A and B 
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Figure 48: Main differences in the load diagram between solutions A and B 

Considering the scenario presented in case study 1 in terms of resources, preferences and input 

data, and modifying the contracted power level constraint to one level below, as it is presented in 

this case study 2, it is possible to find solutions with a decrease in the fixed term paid per day 

corresponding to the contracted power. 

6.3. CASE STUDY 3 

This third case study differs from the previous ones with respect to: 

 lower temperature forecast input (Figure 49) and consequently the need to use the inverter 

in heating mode; 

 the use of the PHEV in the G2V mode only; 

 the inclusion of a stationary storage system. 

The room temperature variation when no ADR actions are implemented over the inverter is 

displayed in Figure 50. It can be seen that the AC system is able to keep temperature constant and 

quite close to 21oC as desired by the end-user between 1 pm and 11 pm and close to 19oC from 0 

am to 1 pm as well as on the morning of the second day of the planning period. 

The time slot preferences for shiftable loads are the ones already displayed in Figure 30. Since the 

PHEV cannot be used in the V2G mode, this load is also considered as a shiftable one and its time 

slot preferences are presented in Figure 51. 
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Since in the reference case no ADR actions are implemented over the fridge and EWH, the working 

cycles and temperature variation are the ones previously presented in Figure 31. 

 

Figure 49: Outside temperature forecast used as input 

 

Figure 50: Room temperature 

 

Figure 51: Time slot preferences for the PHEV when used in the G2V mode only 
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The load diagram for the reference case is displayed in Figure 52. In this scenario, shiftable loads 

are allocated according to the end-user’s availability to perform some associated tasks if needed 

(such as loading the LM and TD) and the PHEV is charged after the end-user arrives home, 

considering the deadline set for achieving full charge. The stationary storage system is charged 

when the energy price is at its minimum, and used for self-consumption or injection into the grid 

when the energy price is higher. In this situation, the end-user is not concerned with the final SoC 

of the storage system. The only restriction is keeping the SoC above 20% to avoid detrimental 

effects in the battery. 

 

Figure 52: Reference case 

The parameters used in the EA are displayed in Table 9. The only difference in comparison with 

parameters in case study 1 is the use of customized operators over the part of the chromosome 

representing the PHEV, which is used in the G2V mode only. In this situation, the mutation 

operator has a very high value since there are only two decisions (charging or not charging) and the 

modification of the decision in a given instant of time for a defined interval generally leads to 

better solutions. The results obtained in 30 runs are summarized in Table 10. It is possible to 

conclude that a lower power level can be contracted when compared to the reference case. 

Table 9: Probabilities of operators over different loads 

 Mutation  Crossover 

Shiftable loads 0.2 0.5 

Thermostatically controlled loads 0.6 0 

PHEV (G2V mode) 0.9 0.3 

Stationary storage system 0.02 0.5 
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Table 10: Results obtained considering 30 EA runs (50 individuals and 1000 generations) 

 Energy cost (€) Dissatisfaction 

Best 2.748 0.032 

Worst 3.002 0.075 

Median 2.800 0.052 

Average 2.827 0.053 

Std Deviation 0.072 0.010 

The Pareto front is displayed in Figure 53 and corresponds to a randomly chosen run. The main 

differences between the extreme solutions are the PHEV and dishwasher allocation, the profit from 

injecting energy in the grid and the impact of ADR actions over thermostatically controlled loads 

(Figure 54). In solution I (solution that individually optimizes the electricity bill) the PHEV is charged 

when energy price is at its minimum and more energy is injected in the grid, making a different use 

of the stationary storage system in comparison with solution J (that individually optimizes end-

user’s dissatisfaction). Nevertheless, while the PHEV allocation has a different cost in solutions I 

and J, the dishwasher allocation does not impact neither on the difference in the electricity bill nor 

on the end-user’s dissatisfaction. ADR actions over thermostatically controlled loads also 

contribute to a higher electricity bill and end-user’s dissatisfaction. 

Concerning solutions A and B, the main issue justifying the difference in the electricity bill is the 

profit obtained from injecting energy into the grid (Figure 55 and Figure 56). 

When comparing the whole range of Pareto optimal solutions with the reference case, savings 

between 10-29% may be achieved and the contracted power can be decreased in one level. Since 

the contracted power is payed per day by adding a fixed term to the monthly electricity bill, higher 

savings can then be achieved. 
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Figure 53: Pareto front for case study 3 

 

Figure 54: Load diagram of solutions I (solution that individually optimizes the electricity bill) and J (solution 

that individually optimizes end-user’s dissatisfaction) 
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Figure 55: Load diagram of solutions A and B 

 

Figure 56: Impact of ADR actions over thermostatically controlled loads – solutions A and B 
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6.4. CASE STUDY 4 

Variability8 is an important issue that should also be taken into account when developing the EA 

approach for the integrated management of energy resources. The ability to deal with unexpected 

events is a key aspect to guarantee the acceptance of the EMS. The algorithmic approach is able to 

re-optimize the management of energy resources if changes occur in any of the following inputs: 

 tariff structure; 

 insertion or removal of energy resources; 

 changes in comfort or time slots preferences; 

 changes of non-manageable load; 

 requests from the utility asking for a decrease or increase of power and corresponding 

economic incentive if a response is provided. 

Considering that there is a modification in any of the previous inputs, a new solution is sought to 

the remaining of the planning period. Thus, when information concerning changes is received, the 

approach is able to check: 

 which loads already ran and have the operation cycle completed; 

 current temperatures of thermostatically controlled loads; 

 actual SoC of the PHEV battery when used in G2V and V2G modes; 

and swiftly compute a new Pareto front for the remaining of the planning period. The resulting 

optimization is a combination of the initial optimization until the arrival of information concerning 

changes and the re-optimization in face of input changes. 

This re-optimization is crucial in several scenarios. An example is a situation in which the end-user 

suddenly unplugs the PHEV and returns later with a lower SoC then expected if no changes had 

occurred. Modifications in time slot preferences for one or more shiftable loads can also occur as 

well as unexpected variations of tariffs. 

For illustrative purpose, an initial scenario similar to the one described in case study 1 is 

considered, but with a few modifications: 

                                                           
8
 Variability is understood in this context as the modification of one or more inputs: tariff structure, end-user’s needs and 

preferences and needs, non-manageable loads, requests from the utility, among others. 
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 the end-user unplugs the PHEV at 7:30 am and only returns at 1 pm with 20% of SoC; 

 time slots preferences for the tumble dryer are modified and the end-user prefers the 

operation of this load after 10 am and until 12 pm of the second day; 

 the end-user changes the AC admissible temperature range variation to [19; 23]oC (higher 

maximum temperature compared with case study 1); 

 the end-user changes the fridge admissible temperature range variation to [2; 9]oC (higher 

maximum temperature compared with case study 1); 

 the end-user changes the EWH admissible temperature range variation to [50; 60]oC (higher 

minimum temperature compared with case study 1); 

 there is an unexpected rise of energy price in a given period. 

When changes occur, the algorithmic approach re-runs and re-computes a new solution. During 

the first stage of the EA run (i.e., before the end-user unplugs the PHEV, modifies time slots and 

temperature preferences and variations in the tariff structure are communicated): 

 the energy resources are the ones already presented in case study 1 (Figure 26, Figure 27); 

 comfort and time slot preferences remain equal to case study 1 (Figure 30 and Figure 32); 

 the tariff structure is kept the same (Figure 29); 

 there are no modification in weather and local generation forecasts (Figure 28). 

The load diagram corresponding to the solution that individually optimizes electricity bill would 

have been the one presented in Figure 57. 

According to the moments when changes occur, two different periods can be identified at: 

1. 7:30 am the end-user unplugs the PHEV, changes time slots and temperature preferences 

for some loads and the tariff is modified; 

2. 1 pm the end-user plugs the PHEV back. 

As a consequence of unplugging the PHEV, modifying time slots preferences for the tumble dryer 

and temperature preferences for thermostatically controlled loads and rise of the energy tariff, a 

first re-optimization is done. Then, when the end-user plugs the PHEV back again at 1 pm, another 

re-optimization is promptly carried out and a new Pareto front is presented for the remaining of 

the planning period. The selected solution still individually optimizes the electricity bill (Figure 58), 

according to the end-user profile and the initial solution chosen before changes have occurred. 

Since there is an increase of the energy tariff during some periods of time of the first day, the 

resulting electricity bill is higher. 

The main differences between the initial solution (Figure 57) and the final solution (Figure 58) are: 
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 charging the PHEV only after 10 pm (when the energy price is lower) and use energy stored in 

the PHEV for self-consumption or injection into the grid close to the end of the planning 

period, assuring a minimum SoC of 50% as requested by the end-user since that between 

7:30 am and 1 pm the PHEV is not avaliable; 

 the allocation of the laudry machine around 9 pm when the energy price is not so high and 

time slot penalties are still acceptable (although the energy price is lower later, those time 

slots have a higher penalty); 

 reducing the frequency that the AC system and the fridge are turned on during the period 

when energy prices are higher; 

 increasing the energy used by the EWH to keep water temperature within the admissible 

range; 

 delaying the operation of the tumble dryer. 

 

Figure 57: Load diagram for the solution which individually optimizes electricity bill before a modification of 

some inputs requiring a re-optimization 

 

Figure 58: Resulting load diagram for the solution which individually optimizes end-user’s dissatisfaction after 

a modification of some inputs requiring a re-optimization 
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6.5. FINAL REMARKS 

The aim of this chapter was: 

1. presenting different scenarios in which the EA approach developed can be used and 

analyzing the results; 

2. showing its flexibility concerning the: 

a) diversity of manageable energy resources; 

b) ability to deal with different types of preferences (time slots for allocating shiftable 

loads, range of temperature for thermostatically controlled loads and desired SoC for 

the PHEV battery when used in G2V and V2G modes); 

c) changes in the input data. 

The application of this approach is not, however, limited to the case studies herein reported. All 

input information can be modified, including manageable resources, tariff structure, end-users’ 

preferences, local generation and weather forecasts. It can be used with a dual-tariff scenario and 

just shiftable loads and it can be used under a dynamic tariff structure with multiple energy level 

prices, different levels of contracted power and all the manageable resources analyzed in Chapter 

4. According to extensive experiments performed, realistic savings in the electricity bill can range 

from 5% to 16% even when using a dual tariff and not owning a PHEV. The savings attained depend 

on the tariff structure, end-users’ preferences and the choice of the final solution, which is strongly 

dependent on the end-user profile (Soares et al., 2015c). Local generation from sources other than 

PV, such as wind, can also be easily added. 

The ability to react to changes is of particular interest in situations in which power demand 

suddenly approaches the contracted power (due to unpredictable use of non-manageable loads) 

and is necessary to reduce demand in order to prevent the main circuit breaker of shutting down 

the power supply. 

The computation time required for running this EA using Matlab on an Intel Core i7, 3.4-GHz CPU 

with 32 GB of RAM varies from 5-10 minutes on average, which shows the ability to achieve results 

usable in practice for the 2160 minutes scheduling time. This range of computation time is due to 

the diversity of manageable resources. 
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7. CONCLUSIONS 

The expected evolution of the power grid together with the integration of smart embedded 

systems combining instrumentation, analytics and control will contribute to deliver electricity in a 

more reliable and efficient way. Features such as the ability of self-diagnosing, self-healing, 

increased accommodation of renewables and bidirectional communications will have a relevant 

role towards this achievement. The deployment of two-way communications between the grid and 

end-users is also expected to foster the implementation of new tariff structures. In this smart grid 

context, instead of using a flat rate or a dual tariff rate, changes in the wholesale electricity price 

can be reflected on the energy price and transmitted to the end-user. This price information 

enables to influence demand up to a certain degree, aiming at reshaping demand profile and 

reducing unwanted power peaks. 

ADR actions can be used in this context to manage demand according to energy price information 

in order to obtain electricity bill savings. The integrated management of energy resources, 

including distributed generation, storage systems and manageable demand will make possible the 

adoption of a load follows supply strategy in which end-users benefit from monitoring and 

controlling electricity consumption. To achieve this goal, adequate technologies with the aim to 

help end-users managing demand should be used. An effective technology are EMSs endowed with 

optimization algorithms to respond to dynamic tariffs and other input data and manage the use of 

energy resources while minimizing end-users’ dissatisfaction caused by the implementation of ADR 

actions. 

With these EMSs, electricity end-users become responsive customers and economically motivated 

users, who consume and produce energy, and simultaneously make an active management of 

existent energy resources. This management has also advantages from different perspectives. In 

addition to economic incentives and reduced electricity bill for the individual end-user who is able 

to decrease costs by performing an integrated management of electricity consumption, storage 

systems and micro-generation, society also benefits since the need to invest in new power plants 

and network infrastructure is postponed. Moreover, the reshaping of demand with the increased 

accommodation of renewables can also contribute to decrease environmental impacts. Different 

power system sector players, including retailers, can also have advantages namely through the 

increase of profits and the creation of new business opportunities, including new technologies and 

services, besides contributing to alleviate power system stresses. 

This integrated management, through the use of EMS, requires the design of suitable optimization 

algorithms to address combinatorial problems with conflicting objectives. An approach based on 

EAs has been used to solve a variety of complex optimization problems and provide good solutions 

in a reasonable computational time. The approach developed is able: 
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 to deal with distinct scenarios regarding: 

o energy resources being managed; 

o end-users’ preferences; 

o stimuli for changing consumption patterns. 

 sudden changes in the input data; 

making it suitable to be used for (near) real-time management of residential energy resources. 

This PhD research aimed at developing an approach for managing residential energy resources and 

making energy use decisions on behalf of users in a smart grid context in which dynamic tariffs are 

used. Before developing the algorithmic approach, manageable residential energy resources have 

been characterized. The characterization of residential demand enabled the identification of four 

types of loads: 

 non-manageable loads: loads that when controlled may cause too much discomfort to the 

user or perturbation to ongoing activities; 

 thermostatically controlled loads: loads that allow a re-set of temperature settings within a 

certain range without causing discomfort to the user but changing energy consumption; 

 shiftable loads: loads whose operation can be postponed or anticipated according to end-

users’ preferences; 

 interruptible loads: loads which can be interrupted during a short period of time not 

impacting on the quality of the energy services provided. 

Accordingly, three control options can be implemented, individually or in combination depending 

on the load: 

 re-set of temperature settings; 

 postponement or anticipation of working cycles; 

 interruption of electricity supply. 

Thermostatically controlled loads, such as cold appliances, ACs and EWHs may be subject to one or 

more of these control options depending on the users’ preferences (including flexibility and level of 

comfort desired). Laundry machines, tumble dryers, and dishwashers are often among the loads 

whose operation can be anticipated or delayed, as long as the task is accomplished by a certain 

deadline. Thermostatically controlled loads and storage systems, including PHEVs, can also be the 

target of short interruptions. ADR actions modify the power profile of thermostatically controlled 

loads or postpone/anticipate the working cycles of shiftable loads in response to input signals such 

as energy prices, incentives and residential end-users’ requirements. 

For the end-user, what really matters is the minimization of the electricity bill as long as energy 

services provided are not jeopardized. So although control might be accepted up to a certain 

degree for shiftable loads, it can be argued that the willingness to accept the control of 
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thermostatically controlled loads based on the temperature settings is not straightforward from 

the end-user’s point of view. This acceptance relies thus on showing that the quality of the energy 

services provided by end-loads is not jeopardized and that significant savings can be attained 

through the management of demand and storage systems and integration of local generation. 

The ADR actions to be carried out by the EA approach should then smoothly manage energy 

resources in such a way that end-user’s preferences, in terms of time slots for allocation of 

shiftable loads, temperature settings and charging of the PHEV, are respected and the control 

discretely done. Additionally, since there is some uncertainty linked to the use of energy resources 

and even end-user’s needs, which may vary during the same day, the approach must be able to 

cope with modifications of parameters and input information. This includes changes in end-user’s 

manageable and non-manageable resources, comfort preferences or preferred periods of time for 

allocating shiftable loads, new energy prices or even requests for decreasing/increasing energy 

consumption for a given period of time. In case of these events the approach computes new 

solutions using at this stage as inputs the information provided just before the event happened. 

The deployment of EMS with the proposed EA approach embedded in a real environment requires 

some adaptions. PBMs can be replaced by adequate sensoring equipment and a rule-based system 

can be used to limit ADR actions. Monitoring technologies can also be used to provide information 

about: 

 current power demand by shiftable and non-manageable loads; 

 local generation; 

 SoC of the storage systems (PHEV and stationary batteries). 

The use of the customized EA proposed in this research, though not aiming at an overall reduction 

of energy consumption, allows minimizing the electricity bill and end-user’s dissatisfaction through 

an optimized use of energy resources. The customization includes an adequate solution encoding 

and operators acting according to the physical characteristics of the resources being managed. The 

consideration of a bi-objective model enables to study the trade-offs between the competing 

objective functions and then select a compromise solution more in accordance with the end-user 

profile (e.g., more cost oriented or more quality of service oriented). Savings in the electricity bill 

are usually between 5-16%, although higher ones can be attained. Another advantage is the 

possibility to define a lower level of contracted power with the corresponding economic benefits. 

This EA approach endows the EMS with a reliable method to automatically make decisions 

concerning the optimal integrated use of multiple residential energy resources according to the 

end-user profile. Although the economic savings for each residential end-user may seem limited, 

the aggregation of several houses can drive to substantial benefits at national level in the whole 

electrical energy chain, contributing to postpone the need to reinforce the network infrastructures 

and improving the grid efficiency. 
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7.1. FUTURE RESEARCH DIRECTIONS 

The aim of this PhD thesis was to design an approach based on evolutionary algorithms to optimize 

the use of residential energy resources. The objective functions included the minimization of the 

electricity bill and potential dissatisfaction sensed by the end-user. Although this work has already 

included innovative aspects, namely concerning the diversity of ADR actions, the incorporation of 

power constraints and the way end-users’ preferences are dealt with, future developments should 

encompass new features such as: 

 learning algorithms able to capture preferences, habits, renewable generation and 

consumption; 

 inclusion of interdependencies between appliances without the end-user’s intervention in 

order to define time slot preferences; 

 minimization of the time span associated with the allocation of shiftable loads outside the 

most preferred time slots; 

 being capable of detecting and signaling malfunctions or failures; 

 capability to propose other time slots for shiftable loads and reasonable temperature set 

points aiming at reducing the electricity bill and dissatisfaction; 

 the inclusion of other energy carriers (such as gas) in the optimization process for hybrid 

appliances; 

 tariff structures in which energy prices increase according to the rise of demand in a given 

instant of time, indulging solutions with lower power peaks. 

Alongside, the design of adequate tariff structures to induce smart behaviors concerning the use of 

electrical energy is also an interesting topic to be explored and further integrated. In this context, 

retailers can use this algorithmic approach to assess the potential impact of energy prices in the 

residential demand profile and efficiently compute the price levels aiming to design dynamic tariff 

schemes which lead to responsive demand. 

Concerning the parameterization of the evolutionary algorithm, this may be done in the future in 

an automated way through the use of adaptive techniques including customized genetic operators. 

Additionally, other strategies to attain the same goals and a comparative assessment of the distinct 

algorithmic approaches should also be carried out. 

A pilot study can also be used to evaluate the integration of the hardware and firmware based on 

the EA approach developed. An user-friendly interface facilitating the interaction with the end-user 

concerning the introduction of preferences can be developed to assist the pilot study. 
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