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Abstract 

Changes in marine productivity have been correlated with fluctuations in large scale 

atmospheric conditions driven by global indices such as the North Atlantic Oscillation 

(NAO). During the winter of 2009/2010 the second lowest NAO index was recorded 

leading to detrimental conditions that affected productivity levels in the Northeast 

Atlantic. The Cory’s Shearwater Calonectris borealis is a plastic pelagic top predator 

which due to its status as sentinel of the marine environment can indicate qualitative 

changes at various levels of the food web. During the chick-rearing seasons of 2011, 2012 

and 2014 we examined the at-sea foraging behavior of Cory’s Shearwaters breeding in 

two islands of the Northeast Atlantic with contrasting productivity patters: Berlengas, 

located on the rich upwelling are of the Portuguese shelf, and Cima Islet located in a poor 

oceanic environment in the Madeira Archipelago. During a year of low productivity 

Kernel estimations demonstrated that whereas Cima Islet’s birds expanded their home 

ranges and core foraging areas to further grounds, Berlengas’ birds maintained their 

distribution near the breeding colony. Under these conditions, birds from both islands 

increased significantly their foraging effort. MaxEnt modelling showed that once 

oceanographic conditions ameliorated from 2012-2014, all birds decreased significantly 

their foraging effort, and oceanic breeders concentrated their activity closer to their 

breeding grounds every year. Our study confirms that the Cory’s Shearwater possess very 

high flexibility in its foraging tactics, and that neither oceanic nor neritic populations 

disperse randomly from their breeding colonies to the open ocean even under conditions 

of environmental stochasticity. Instead, populations breeding in contrasting environments 

vary in their responses according to their strategies and to the changing levels of marine 

productivity in their surroundings of their colonies. Under a future scenario of climate 

change, the ecological impacts of climatic conditions in marine ecosystems should be 

assessed considering also the vulnerability of seabird predators to extreme climatic 

events. 
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Resumo 

Alterações na produtividade marinha tem sido correlacionadas com flutuações nas 

condições atmosféricas de grande escala impulsionada por índices globais, como o Índice 

do Atlântico Norte (NAO). Durante o inverno de 2009/2010 o índice NAO foi o segundo 

mais baixo registrado na historia levando a condições ambientais que reduziram 

significativamente os níveis de produtividade marinha no Nordeste do Atlântico. A 

cagarra Calonectris borealis é um ave marinha pelágica que, devido a seu estatuto como 

sentinela do meio marinho pode indicar alterações qualitativas em vários níveis da cadeia 

trófica. Durante as épocas de reprodução de 2011, 2012 e 2014, examinamos o 

comportamento alimentar no mar de cagarras em reprodução em duas ilhas do Atlântico 

Nordeste com padrões contrastantes de produtividade: Berlengas, localizado na área de 

afloramento costeiro da plataforma continental Portuguesa, e o Ilhéu de Cima localizada 

num ambiente oceânico mais pobre no arquipélago da Madeira. Durante um ano de baixa 

produtividade as aves do Ilhéu de Cima expandiram as suas áreas vitais e as áreas 

alimentação, enquanto as aves das Berlengas mantiveram sua distribuição perto da 

colónia. Em tais condições, as aves de ambas as ilhas aumentaram significativamente o 

seu esforço de forrageio. Os modelos MaxEnt mostrar que, à medida que as condições 

oceanográficas melhoraram no periodo de 2012-2014, todas as aves diminuiu 

significativamente o seu esforço de forrageio e os indivíduos oceânicos concentraram a 

sua actividade mais perto do seu locail de reprodução em cada ano. Este estudo confirma 

que a cagarra possui uma elevada flexibilidade em termos de táticas de forrageamento, e 

que, quer  as  populações de áreas oceânicas, quer as populações de áreas neríticas,  não 

dispersam aleatoriamente desde as suas colonias de reprodução para o oceano aberto, 

mesmo em condições ambientais adversas. Em vez disso, as populações reprodutoras em 

ambientes contrastantes variam em suas respostas de acordo com as suas estratégias e 

com a alteração dos níveis de produtividade marinha em redor das suas colonias. Em um 

cenário futuro de alterações climáticas, os impactos ecológicos das condições climáticas 

nos ecossistemas marinhos devem ser avaliados considerando também a vulnerabilidade 

dos predadores marinhos a eventos climáticos extremos. 
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1.1.Productivity cues in the oceanic environment 

Over the past two decades the appearance of the modern global observing system and 

global eddy-permitting circulation models have caused a revolution in physical 

oceanography (Siedler et al. 2013). Physical processes occurring at various spatial and 

temporal scales enable a number of biological processes, and scientists have identified 

several of them as indicators of high biological productivity in the vast oceanic 

environment. In the large scale, ocean circulation drives the activity of marine ecosystems 

worldwide. Westerly and trade winds produced by both the rotation of the Earth and the 

difference in solar heating at different latitudes lead to the formation of major currents 

and subtropical gyres in each of the four major ocean basins (i.e. North Pacific, South 

Pacific, North Atlantic and South Atlantic) (Mann & Lazier 2006).  

While a gyre’s interior is considered as an area of low biological productivity, the 

peripheries are affected by phenomena at smaller scales that alter the vertical structure of 

the ocean. For instance, in a typical tropical structure (TTS) of open waters there is a clear 

separation between a warmer, upper mixed layer (euphotic zone) and a cooler, heavier 

layer below (zone of highest nutrients concentration) through a thermocline or 

pycnocline. Changes in this typical composition often trigger productivity, such as the 

case of seasonality at higher latitudes. During winter in temperate and polar waters the 

mixed layer moves progressively deeper, and turbulence penetrates into the zone with the 

highest nutrients to push them up towards the euphotic zone. However, starting in April 

the sun warming of spring results in a shallower mixed layer, and phytoplankton cells that 

are held for longer periods in the euphotic zone causing the notorious spring bloom of the 

North Atlantic (Mann & Lazier 2006). Temporal factors are necessary at every spatial 

scale to understand and adequately appraise the nature of bio-physical interactions 

(Embling et al. 2012). 

Likewise, upwelling is a phenomenon that affects the vertical structure. It originates with 

the equatorward winds present in the major ocean basins and moving parallel along their 

eastern coast. These wind stresses and the action of the Coriolis forces provoke deep 

waters to upwell and replace surface waters that are moved offshore. Upwelling events 

vary temporally influenced by the wind seasons and spatially affected by the ocean’s 

topography. Once again, it is this variability the key to the high productivity. The periods 

of wind stress provide the upwelling of nutrients necessary for the subsequent outburst of 
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phytoplankton that is retained in calmer periods in the euphotic zone (Mann & Lazier 

2006). The most active upwelling occurs in the 10° band of the Benguela, California, 

Iberia/Canary and Humboldt currents forming major Eastern Boundary Upwelling 

Ecosystems (EBUE) that spread to much further latitudes in each basin (Chavez & Messié 

2009). EBUE are extremely prolific, hosting large fisheries of small pelagic species that 

represent 20% of the global fish production in less than 3% of the oceans total surface 

(Fréon et al. 2009). Besides the upwelling zones typical of coastal regions and continental 

shelves, in the open ocean mesoscale upwelling also occurs and it is usually indicated by 

pulses of high surface chlorophyll a concentration in satellite imagery (Mann & Lazier 

2006). 

Another significant factor in marine ecosystem dynamics that largely affects coastal 

regions and continental shelves is freshwater input. Specifically, in the North Atlantic 

basin the compound of river and estuarine discharges forms a counterclockwise flow of 

low salinity that moves bordering coastal regions, promoting upwelling and thus 

enhancing productivity. Out on the continental shelves the arrival of freshwater input 

assists in the formation of plume fronts known for their abundance of plankton and 

aggregations of fish. Every year, the summer brings stronger sun radiation that produces 

stratification but because of the presence of tidal currents some areas remain turbulent 

mixed. Therefore, additional fronts are also formed at the boundaries of these stratified 

and mixed layers (Mann & Lazier 2006). 

At a smaller scale, tides that are born from the gravitational pull of the moon and the sun 

are extremely important altering the vertical zonation of waters remote from shore. If 

sufficiently strong and in areas shallow enough, they are able to mix the water column all 

year round, providing a continuous supply of nutrients to the euphotic zone. For instance, 

a high percentage of herring spawning grounds worldwide have been recorded in tidally 

mixed offshore regions. Moreover, the strong circular flow usually formed around 

offshore banks works as a retention barrier for fish larvae. After a longer period of time, 

fish species may be able to recognize these productive waters as a future spawning ground 

(Mann & Lazier 2006). Therefore, tidal currents strongly influence ecosystems dynamics, 

dictating prey distribution and ecology (Embling et al. 2012).   

Seamounts are also associated with pelagic biodiversity. The seafloor is far from being a 

uniform environment. In fact, ocean crust features volcanic islands, seamounts, ridges 
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and platforms ranging from only tens of meters high to large volcanic formations (Steele 

et al. 2011). Presumably there are over 14,000 seamounts worldwide (McClain 2007). 

Their interaction with marine currents enhances internal wave generation, eddy 

formation, and local upwelling (Keating et al. 1987) increasing the vertical flux of 

nutrients (Morato et al. 2008). In the Azores archipelago species like the Skipjack 

Katsuwonus pelamis, Bigeye Tuna Thunnus obesus, Common Dolphin Delphinus delphis 

and Cory’s Shearwater Calonectris borealis have been found in high aggregations around 

seamounts within the 400 m isobaths (Morato et al. 2008). Meanwhile, a long term 

monitoring study in the Western and Central Pacific (1980-2007) allocated the higher 

species richness to an area of 30-40 km around seamounts summits which may account 

as important feeding stations (Morato et al. 2010). 

 

1.2.Seabirds: bioindicators of high biological productivity? 

Upper trophic level predators encompass a number of pinnipeds, seabirds, cetaceans and 

large predatory fish which due to their position in the food chain (i.e. beyond secondary 

consumers) are considered indicators of the status and performance of the marine 

ecosystems. This approach becomes handy to assess marine ecosystems with the limited 

resources available for research. Furthermore, the charismatic nature of top predator 

species is important to raise awareness and financial support. Marine predators also seek 

resources at similar spatial and temporal scales as those from human activities (e.g. 

fisheries), thus data collected from them acquires utmost importance, and it can be easily 

linked with ecosystem management. Nevertheless, special considerations are necessary 

to confirm the validity of top predators as bioindicators. First, changes on the population 

or behavior of a species do not automatically reflect changes due to ecosystem 

management. Second, it appears that appropriate communities of study would be mostly 

present in temperate and subpolar regions, and even at this scale would be mainly relevant 

for coastal and shelf areas. Ultimately, top-predator responses are not 100 % predictive 

and an integrated multispecies approach is suggested to deal with these issues (Boyd et 

al. 2006). 

Regarding seabirds, their terrestrial breeding system facilitates tracking changes in 

population sizes (Boyd et al. 2006). Seabirds are also long-lived with many species 

presenting a high level of philopatry (Prince et al. 1994; Mougin et al. 2001; Gómez-Díaz 
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et al. 2009; Ramos et al. 2013) which enable permanent monitoring. However, abundance 

levels of a species alone are not the most reliable indicator because of their late sexual 

maturity and the variable age when they start attending the colony and breeding (Cook et 

al. 2014). Instead, parameters used as indicators should reflect the complexity of an 

ecosystem while managing a simple concept with a direct and cost effective methodology 

(Dale & Beyeler 2001). As many seabird species are known to be central place foragers 

during breeding (Onley & Persons 1979; Weimerskirch 2007), the additional energy 

constrains involved in the processes of incubation and chick rearing challenge individuals 

to find productive patches inside their foraging ranges (Paiva et al. 2010b). Hence, at sea 

foraging behavior during reproduction represents a more reliable proxy of productivity in 

the marine environment because it is closely linked with resource availability inside a 

species territory.  

Examples of the use of seabird predators as indicators of productive hotspots in marine 

ecosystems are found worldwide. For instance, several studies confirm that the Cory’s 

Shearwater Calonectris borealis breeding in remote pelagic environments of the 

Northeast Atlantic rely on commuting predictable movements to target areas of high 

productivity in the ocean, and that individuals from different colonies and populations 

overlap in their foraging areas along certain hotspots which are distinctive for their 

complex physical processes (Paiva et al. 2010a, 2010b; Ramos et al. 2013; Robert et al. 

2014). Similarly, three Procellariiforms as representatives of the pelagic community have 

been used to identify foraging hotspots over the continental shelf and slope in the 

Mediterranean Iberian Coast (Arcos et al. 2012). Meanwhile in the Southern Indian 

Ocean, ten species of seabirds (i.e. albatrosses, petrels and penguins) with diverse habitat 

requirements have been tracked to assess highly productive areas at an ocean basin scale 

(Delord et al. 2014). 

Another aspect that supports the concept of seabirds as bioindicators is their association 

with other marine predators. As central place foragers and flock feeders these predators 

tend to aggregate seasonally around predictable areas (Lascelles et al. 2012). 

Furthermore, they have been frequently found accompanying other marine subsurface 

predators during their feeding events, including various species of dolphins and tunas 

(Hebshi et al. 2008; Santos et al. 2009). An extraordinary example is the multi-species 

aggregations that occur in central Azores involving several species of dolphins, tunas and 

seabirds (mostly the Cory’s Shearwater) with peak activity at dawn and dusk. Common 
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dolphins (Delphinus delphis) together with spotted dolphins (Stenella frontalis) have been 

observed to encircle fish schools into a compact ball that makes several thousands of fish 

prey  available to other predators close to the surface (Clua & Grosvalet 2001).  

 

1.3.A new era for Seabird Research: GPS tracking and implications for the 

establishment of Marine Protected Areas (MPAs) 

Seabirds are considered the most threatened group of birds worldwide, but traditionally 

the conservation efforts were focused on threats faced at their breeding grounds (Ramirez 

et al. 2008). Albeit these actions are beneficial, the quality, location and extent of their 

feeding grounds have the highest importance for the breeding success and survival of 

marine top predators (Davis et al. 2005). Consequently, at present seabird scientists 

around the world are focusing their endeavors on the at-sea foraging behavior using 

methods such as at-sea surveys, GPS tracking and species-habitat modelling. By targeting 

areas of high biological productivity and important ecological processes in pelagic 

environments, seabirds are useful tools to identify candidate MPAs (Paiva et al. 2010e; 

Lascelles et al. 2012; Le Corre et al. 2012), which makes them ideal surrogate species. 

Protection in oceanic environments has lagged behind that of terrestrial ecosystems 

mainly because of the great challenges involved in marine research. Until the 1990s most 

of the data was collected at breeding colonies or from vessels. However, the burgeoning 

of electronic technology caused a revolution in seabird studies, unveiling valuable 

information about the at-sea foraging behavior and exposure to anthropogenic risks 

(Burger & Shaffer 2008), essential aspects in conservation management. Since then, there 

has been an array of tracking devices introduced for different purposes of study. Platform 

terminal transmitters (PPTs) are an example of modern accurate devices (1-3 km) with 

solar power enhanced lifespan that do not require recovery for data processing. These 

characteristics make them ideal for studies of initial dispersion and habitat use of fledging 

pelagic seabirds. On the other hand, global location sensing (GLS) estimate latitude and 

longitude based on ambient light levels. Their coarse spatial resolution can be improved 

with the addition of temperature sensors to record long range movements (Burger & 

Shaffer 2008). GPS devices are the most precise of all, recording locations up to every 

second with an accuracy in the range of a few meters. GPS loggers can be as light as 8 g 

which allows studies of ground speed, micro-movements and area-restricted searching 
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behavior (ARS) of even relatively small species like kittiwakes (Burger & Shaffer 2008; 

Kotzerka et al. 2010). This line of research is providing remarkable insights about the 

behavior of seabirds throughout their entire life cycle, hence at different temporal and 

spatial scales. 

Birdlife International has been continuously identifying Important Birds Areas (IBAs) in 

terrestrial regions since 1980 as precursors of national and international protected areas. 

Conversely, a system of marine IBAs has been developing more recently supported in 

data gathered from tracking devices (Ramirez et al. 2008). Biotelemetry has proved 

essential to monitor movement ecology and design conservation units at a large scale 

(Grémillet et al. 2014). Portugal and its archipelagos are an important center for seabird 

activity, and Azores and Madeira have been identified as areas with priority of 

conservation. In fact, 20 out of 332 species of seabirds recorded worldwide breed in 

Portugal and many others frequent its territorial waters. At least ten of these species hold 

some category of threat status. Hence, SPEA – the Birdlife partner in Portugal – has 

played a major role in introducing a standard methodology to design marine IBAs 

proposals (Ramirez et al. 2008). As studies on the at sea behavior and foraging of seabird 

species continue increasing, delimitation of IBAs and marine protected areas (MPAs) will 

become more realistic specially when considering highly profitable areas at the meta-

population scale (Ramos et al. 2013) and a multi-species approach (Lascelles et al. 2012). 

The identification of IBAs and MPAs has been accompanied by additional campaigns 

(i.e. bycatch mitigation, eradication of invasive species, collaboration with regional 

fisheries management) all enclosed inside the Global Seabird Programme (Birdlife 

International 2010). 

 

1.4.Behavioral Plasticity in Seabirds and Influence of climate stochasticity 

The ability of seabirds to detect hotspots in the open ocean is providing enormous benefits 

to conservation, thus it is important to comprehend the mechanisms that they rely on to 

find upwelling areas, fronts or seamounts. Predictable oceanographic parameters are 

continuously associated with the foraging ecology of seabird predators. This is the case 

for the Cory’s Shearwater, a very widely distributed representative of the Northeast 

Atlantic, which has been extensively monitored over the last decade in a variety of 

breeding phases and marine environments. During incubation and chick-rearing, the 
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feeding areas of this species are characterized by high chlorophyll a concentration, low 

sea surface temperature and low depth (Paiva et al. 2010b), with bathymetry maintaining 

a high importance across different populations, habitats and spatial scales (Paiva et al. 

2010a). The Black-browed Albatross Thalassarche melanophris breeding in the Falkland 

Islands also has a tendency to feed in shallow areas and steep seafloor (Catry et al. 2013). 

Likewise, in the endangered Monteiro’s Storm Petrel of Azores Oceanodroma monteiroi 

the average breeding success was found strongly correlated to oceanic conditions (i.e. 

Chl-a) (Robert et al. 2014). Other environmental parameters that have been associated 

with the foraging grounds of seabird predators include: distance to land, oceanographic 

fronts, salinity, wind speed, among others (Louzao et al. 2009; Tremblay et al. 2009). 

The diversity of physical features in the Northeast Atlantic creates a highly heterogeneous 

environment with two distinctive gradients: productivity increases north from the warmer 

subtropical waters of Selvagens to the colder waters of Azores and beyond, and oceanic 

environments are expected to be less profitable than the Portuguese and African coasts 

and shelves (Paiva et al. 2010c). Therefore, species like the Cory’s Shearwater with 

numerous colonies and populations constrained by divergent environmental conditions, 

need a high level of plasticity that would be reflected in the at-sea foraging behavior. 

Because of the additional constrains of the chick-rearing period, populations breeding in 

low productive oceanic areas (i.e. Madeira and Azores archipelagos) are expected to 

adopt a bimodal strategy consisting of: short trips for food provisioning to their chicks, 

and long trips to recover depleted energy reserves (Granadeiro et al. 1998). Conversely, 

a population breeding in Berlenga next to the Portuguese coast and over the productive 

continental shelf reports a unimodal strategy of short trips. Furthermore, oceanic 

populations record higher foraging effort, longer home ranges and foraging areas, 

adaptations that allow them to cope with the low productivity of the surroundings but at 

a considerable cost: i.e. lower chick growth and breeding success than in Berlenga (Paiva 

et al. 2010b, 2010c). 

The dual foraging strategy, first discovered in Blue Petrels Halobaena caerulea 

(Chaurand & Weimerskirch 1994) and later documented it in several Procellariiform 

species (i.e. albatrosses, shearwaters and petrels) (Baduini & Hyrenbach 2003) is seen as 

an alternative to cope with the issue of distant, unpredictable food resources (Warham 

1990). As central place foragers which often breed in remote islands, seabirds are 

constrained to return to the colony from their feeding grounds (Navarro & González-Solís 
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2009). Breeding success is highly dependent on foraging effort (Weimerskirch et al. 2000, 

2005a), thus flight efficiency is one of the most important adaptations and provides 

seabirds a certain degree of plasticity to adopt different foraging tactics. Specifically in 

procellariiforms, species often use wind-shear soaring (i.e. choose flight directions to 

exploit ambient wind by climbing and descending across the thin wind shear layers) to 

gain up to 80-90% of the energy required for sustained soaring from the same 

environment (Paiva et al. 2010d; Richardson 2011). The ability of seabird predators to 

use the wind fields makes long foraging trips highly profitable, enabling them to recover 

the energy depleted during chick provisioning (Weimerskirch et al. 2003). 

Even though seabirds may be resilient to the natural fluctuations of the environment, 

human induced climate change is affecting marine ecosystems worldwide. The 

association between global warming and an increase in the frequency and intensity of 

extreme heat (Meehl et al. 2000) and extreme weather events (Alley et al. 2003) has been 

established long ago. Due to future warming strong changes are projected in EBUE 

regarding intensity, timing and spatial structure (Wang et al. 2015). Moreover, the 

consequences would be greater at higher latitudes (Crawford et al. 2015). The additional 

constrains imposed by climate change will cause all taxonomic groups to face a higher 

risk of extinction (Urban 2015). Naturally, the effects start at lower trophic levels, and 

deeply impact marine top predators in a bottom-up manner (Grémillet & Boulinier 2009). 

In the eastern Bering Sea the dearth of resilience in the zooplankton community to 

variations in ice cover is having detrimental consequences in the production at higher 

trophic levels (Eisner et al. 2014). Likewise, in Southern Benguela climate induced 

changes have altered the distribution of fish prey provoking opposing reactions among 

seabird predators. While Cape Gannets Morus capensis and Swift Terns Thalasseus 

bergii have increased their proportion in the seabird community, African Penguins 

Spheniscus demersus and Cape Cormorants Phalacrocorax capensis have decreased it by 

about 50 % and 40 % respectively probably due to their behavioral inertia (Crawford et 

al. 2015).  

Changes in atmospheric circulation have been correlated with changes in oceanic 

circulation, and therefore seriously affect biological processes at all levels of the food 

web across the oceans. In the case of the North Atlantic, these fluctuations are recorded 

via the North Atlantic Circulation index (NAO). Monitoring of the NAO over the 20th 

century indicates opposite atmospheric and biological effects for each side of the Atlantic. 
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For instance, positive NAO values are associated with warm winters in the Northeast 

Atlantic which results in the northward movement and expansion of southern fish species 

and improved recruitment. At the same time, cold winters are expected in the Labrador 

and West Greenland and detrimental environmental conditions for fish stocks  (Mann & 

Lazier 2006). Furthermore, the NAO has been identified as an indicator of extreme 

upwelling events (Benazzouz et al. 2014) making it an adequate surrogate of climatic 

conditions and marine productivity in the region (Paiva et al. 2013a, 2013b; Haug et al. 

2015), and a useful indicator of more frequent extreme events in a future scenario of 

climate change. Due to the fact that the NAO is most pronounced during winter and 

oscillations leave long-lasting effects on sea surface conditions (Paiva et al. 2013a), the 

extended winter NAO index from Hurrell (1995) is normally considered. 

 

1.5.Justification and aim of the study 

During the extreme climatic conditions of the winter 2009-2010, the upwelling events 

along the Portuguese coast would have been seriously affected as indicated by the second 

lowest NAO value (-4.64) since 1648 (Paiva et al. 2013a). The low NAO values translate 

in very low sea surface temperatures and unusually intense upwelling phenomena which 

usually mean that strong winds cause plankton and fish larvae to move away from the 

protection of the continental shelf, increasing their mortality and altering the upper levels 

of the food web in the subsequent months (Santos et al. 2007). The low productivity of 

2010 was also evidenced in the record low figure of pelagic fish landings in Peniche 

(Paiva et al. 2013a). However, since 2011 the NAO suggests a recovery in productivity 

levels, reaching a positive figure again in 2012 (Haug et al. 2015), but also with high 

oscillations from year to year until the present. The aim of this study is to compare the 

changes in the foraging behavior of a widespread, resilient seabird predator of the North 

Atlantic, the Cory’s Shearwater breeding in two islands with contrasting productivity in 

their surroundings (i.e. Berlengas in a neritic area, and Cima Islet in an oceanic 

environment near Porto Santo, in the Madeira Archipelago), and during years of recovery 

from a drastic climatic event (i.e. 2011, 2012 and 2014). The study took place during 

chick-rearing, considered energetically the most demanding breeding phase for adults, 

and during which they are most sensitive to variability in food resources (Grémillet et al. 

2014). Human induced climate change is likely to increase the frequency of extreme 
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climatic events (Huber & Gulledge 2011), hence it is important to study the diversity in 

plastic responses of seabird predators to environmental stochasticity. Because of their 

status as qualitative sentinels of the marine environment, changes in their feeding 

behavior are expected to reflect changes in ecological processes at a large scale (Gremillet 

& Charmantier 2010). 

Some signs on how this species adapts to fluctuations in productivity levels are given by 

Paiva et al. (2013b). Females were studied in Berlengas from 2007 to 2011 during their 

pre-laying exodus, and each year birds ventured further in their pursuit for productive 

grounds as the environmental conditions deteriorated. Amazingly, their search took them 

in 2011 in one of the longest pre-laying foraging excursions to the Altair seamount along 

the Newfounland coast in Canada, almost 4,000 km away. Males do not need a pre-laying 

exodus because they are not constrained by the energy demands of egg-laying, still 

inexperienced males were especially explorative during the same season, deviating 

considerably from their usual home ranges and foraging areas (Haug et al. 2015). These 

two studies were performed during the pre-laying season and may not reflect the 

responses of Berlengas birds during chick-rearing because pre-laying birds are not 

constrained by the duties of brood-guarding (Catry et al. 2009). On the other hand, the 

feeding ecology of an oceanic population during years of contrasting environmental 

conditions has not been assessed thus far. Due to the propensity of oceanic birds to 

concentrate their foraging activity in larger areas, and to invest more effort during the 

breeding season than neritic populations (Paiva et al. 2010b; Alonso et al. 2012) we 

expect Cima Islet birds to show less buffer against poor environmental conditions. 

Moreover, birds in neritic areas will always be more buffered against strong 

environmental changes, because the marine productivity in those areas should be less 

affected than in more pelagic areas (where birds may be often more limited by the disperse 

and unpredictable foraging resources). Therefore, we made the following predictions: 1) 

Cima Islet birds’ home ranges and foraging areas will be more affected in years of low 

productivity compared to birds from Berlengas; 2) the rate of increase in foraging effort 

will be higher in Cima Islet than in Berlengas during these years; and 3) once productivity 

around the colonies improves, Cima Islet birds will react faster adopting their usual home 

ranges, foraging areas, and foraging effort parameters. 
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2.1.Study Area 

Broadly speaking our study takes place in the Northeast Atlantic, a region with particular 

features that influence its spatial productivity patterns. The subtropical gyre of the North 

Atlantic is born on the warm waters of the western boundary Gulf Stream current, which 

moves north east bordering the North American coast until it finds the cold rich waters of 

the Labrador Current (Fig. 1). This collision results in the formation to the east of the 

North Atlantic current which moves polewards, and the Azores and Canary currents that 

flow circling Azores and bordering the Portuguese and African coasts respectively (Mann 

& Lazier 2006). Conditions inside the gyre are in general constantly stratified leading to 

low productivity in general (Mann & Lazier 2006).  

 

Fig. 1. Main oceanic currents on the North Atlantic region. AC (Artic convergence), ST (subtropical convergence). The 

Azores, Portugal and Canary currents are represented (from Paiva 2009) 

 

Conversely, the continental part is under the influence of the highly productive Canary 

Current upwelling ecosystem (CanC), an enormous marine region that covers an area 

roughly between the south of Senegal (8°N) and the Iberian Peninsula (43°N), subject to 

seasonal variations (Arístegui et al. 2009, Benazzouz et al. 2014). Upwelling varies 

latitudinally as a result of coastal orientation, with the Iberian Peninsula and Morocco 
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presenting a seasonal and weak pattern that reaches a maximum in summer. Seasonality 

decreases and upwelling increases further south until becoming semi-continuous at about 

10° and 20°N. However, this pattern is interrupted around the Gulf of Cadiz due to the 

unfavorable topography for coastal upwelling and the exchange of water mass with the 

Mediterranean Sea (Arístegui et al. 2009a; Chavez & Messié 2009). A clear separation in 

terms of circulation, physical environment and shelf dynamics divide the CanC into five 

sub-regions (Fig. 2b): the Galician (SR1 at 42-44°N), Portuguese (SR2 at 37-42°N), Gulf 

of Cadiz SR3 at 33-37°N), Moroccan (SR4 at 21-33°N), and Mauritanian-Senegalese 

west coasts (SR5 at 12-21°N). (Arístegui et al. 2009a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More specifically, the entire coast of Portugal (SR2) is located in the northern end of 

CanC where divergent conditions in the upwelling cycle create a spatial diversity in the 

shelf systems north and south of Lisbon. The wider north shelf receives higher input of 

rivers and rainfall causing an early stratification which favors a premature phytoplankton 

bloom. As the phytoplankton travels offshore there is enough time to develop large 

populations of zooplankton that can support the typical abundance of pelagic fish in this 

Fig. 2. Map of the five sub-regions form in the CanC: 

SR1 (Galician), SR2 (Portuguese), SR3 (Gulf of Cadiz) 

SR4 (Moroccan), SR5 (Mauritanian). PT (Portugal), 

ES (Spain), Ma (Morocco), MR (Mauritania), SN 

(Senegal). Sea surface temperature is illustrated in 

the background (25 July 2007 from OSTIA). Adapted 

from Arístegui et al. (2009) 
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region. On the other hand, the southern shelf is narrower and collects a smaller amount 

of freshwater insufficient for a marked stratification. Phytoplankton bloom then relies on 

the later surface warming which does not provide enough time for large amounts of 

zooplankton to grow. Instead the benthic species are benefited, not only by the 

unconsumed phytoplankton that sinks to the bottom but also by an organic load arriving 

from the north (Mann & Lazier 2006). 

The first study colony is located in the Berlenga Island – BER (39°24’49”N, 9°30’29”W), 

approximately 8 km away from Peniche in the Portuguese coast. BER covers an area of 

78.8 ha, and together with the smaller islets of Farilhões and Estelas form the Berlengas 

archipelago (Faria 2014). Berlenga features the only breeding populations of pelagic 

seabirds in continental Portugal: the Cory’s Shearwater (Calonectris borealis), and the 

Madeira Storm-Petrel (Oceanodroma castro), the latter only in Farilhões. Other breeders 

include: the European Shag (Phalacrorax aristotelis), Lesser Black-backed Gull Larus 

fuscus, or the critically endangered Common Murre Uria aalgae. The Yellow-legged Gull 

(Larus michahellis) is the most abundant species in the archipelago, and because of its 

great increase in numbers it has been subject to population control since 1994. 

Furthermore, the highly productive marine surroundings are important during winter or 

in the spring and autumn migrations for species such as the Northern Gannet (Morus 

bassanus), with flocks of thousands of individuals frequently observed in these months 

(Ramirez 2008).  

The Madeira archipelago is formed by two main islands: Madeira and Porto Santo. 

Additionally, five small islets surround Porto Santo (i.e. Fora, Cenouras, Ferro, Baixo and 

Cima). All islets are uninhabited and thus preserve their characteristic Macaronesian flora 

and fauna. The second study colony is located in Cima Islet – CIM (33°03’19’’N, 

16°16’54’’O), a rocky formation that reaches 111 m high. Native flora and fauna are still 

preserved in this area with important seabird breeding species including the Cory’s 

Shearwater (Calonectris borealis), Madeira Storm-Petrel, and Bulwer’s Petrel (Bulweria 

bulwerii) (Oliveira & Menezes 2004). While Madeira is positioned in an oceanic 

environment away from the productive continental shelf and the influence of the CanC, 

sporadic upwelling events still occur. They may be associated to eddies formed from 

temporal events (Mann & Lazier 2006), or to an island mass effect as a result of the 

interaction of the tidal currents, dominant trade winds and the interior mountain range. 

Upwelling is particularly dynamic between Madeira and Desertas Islands (Caldeira et al. 
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2002). Seamounts in the surrounding oceanic environment such as Ashton, Josephine 

(Paiva et al. 2010b), Seine and Ampere (Martin & Christiansen 2009) may also promote 

high biological productivity. Despite the presence of all these factors, low marine 

productivity is typical of oceanic islands with a short shelf as CIM (Paiva et al. 2010c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Seafloor depth (m) in the Northeast Atlantic featuring names and locations of important seamounts of the 

region. The yellow stars represent the breeding colonies in this study (Berlenga in the north and Cima Islet in the 

south). Smaller seamounts close to Cima Islet are circled in red.  

 

2.2.Study Species 

Procellariiforms are an exceptionally pelagic group of seabirds. Four subfamilies and 

roughly 80 species form a diverse assemblage of seabirds, the most representative and yet 

the least known in marine ecosystems (Ramirez et al. 2008, Onley & Scofield 2007). The 

Cory’s Shearwater Calonectris borealis is a medium sized representative with an 

extremely wide distribution, breeding in remote islands and islets of all archipelagos of 

the Northeast Atlantic except Cape Verde (Onley & Scofield 2007). Taxonomically it was 

previously known as Calonectris diomedea borealis in a complex of two subspecies that 

also included Calonectris diomedea diomedea breeding in the Mediterranean. Since 2014 

both races achieved species status following Del Hoyo et al. 2014 

(http://www.birdlife.org/). Calonectris borealis migrates through long trans-equatorial 

routes from its breeding grounds to reach wintering areas mainly in the coasts of South 

http://www.birdlife.org/
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America and South Africa, but also in other regions of the north, central and south 

Atlantic, and the Indian Ocean (González-Solís et al. 2007; Onley & Scofield 2007; Dias 

et al. 2011).  

From the total population (c. 251,100 - 251,300 pairs),  85% breeds in Azores and 

Madeira, approximately 15% in the Canary Islands (http://www.birdlife.org/) and a few 

individuals in Berlengas (c. 980 - 1070 pairs) (Lecoq et al. 2011). The Cory’s Shearwater 

has a high reproductive investment reflected in its 8 month long breeding cycle that 

usually starts in early March when adults arrive to their colonies. Nest are placed in 

natural burrows, cavities and rocky crevices (Navarro et al. 2007). Females are famous 

for a pre-laying exodus that lasts in average at least 19 days, starts in early May (Jouanin 

et al. 2001), and is vital to meet the energy demands required to form a large egg. After 

their return to the colony in late May, females lay a single egg which will be incubated in 

shifts by the breeding pair during almost two months (Paiva et al. 2010b). Eggs hatch in 

mid-late July and once again chick rearing responsibilities are shared by both parents 

alternating duties and provisioning the chicks on a daily basis. As the long three months 

of chick rearing progress both the frequency of food provisioning and the degree of 

digestion by the parents decrease (Ramos et al. 2003). By late September the chick stops 

growing and a reduction in overall body size is compensated with wing growth. This 

process lasts until late October / early November when chicks finally fledge to start 

exploring the ocean at night (Warham 1990).  

 

2.3.GPS Loggers: deployment and specifications 

GPS loggers were deployed in adult breeders during mid-August 2011, 2012 and 2014 

for BER birds; and during September 2011, 2012 and 2014 for CIM birds; corresponding 

to early and mid chick-rearing period of the study species respectively. Devices consisted 

of a GPS receiver and logger, antenna, CR2 battery and user interface circuits (see Steiner 

et al. 2000 for specifications on the original device). Loggers were programmed to record 

one location (±4 m) every 5 minutes. The original plastic case was replaced for a long 

thermo-retractable rubber sleeve to decrease weight and warrant impermeability. Loggers 

were carefully attached to the bird’s back feathers with a small piece of Tesa® tape in a 

process that took less than ten minutes. Birds were then immediately returned to their 

nests to minimize handling stress. Logger’s weight was recorded below 3% of the bird’s 

http://www.birdlife.org/
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body weight, which has been reported to have no deleterious effects on seabirds, including 

the study species in BER (Paiva et al. 2010c). 

 

2.4.Trip filtering 

Each individual Cory’s Shearwater carried a GPS device for a period of several days after 

which the device was retrieved and data downloaded for multiple foraging trips. Distance-

to-colony was determined for each GPS position which allowed us to calculate the 

number of foraging trips for each bird. We considered that a new trip starts when the 

distance-to-colony is 0 or close to this value and there is a significant period of time with 

absence of data (e.g. at least 20 or 30 minutes). Trip duration was also calculated with the 

time records for each GPS position. Foraging positions were selected after applying 

several filters, namely: distance-to-colony > 2 km to avoid the influence of activities of 

birds maneuvering nearby or resting at sea waiting for darkness, speed > 2 km/h to 

exclude positions of birds resting or drifting at sea; and speed < 15 km/h due to the fact 

that seabirds usually commute in a direct flight to reach an area of interest, when their 

speed decreases to forage actively (Louzao et al. 2009). These speed thresholds were 

confirmed by our own data when inspecting frequency distribution plots of all recorded 

speeds. The resultant foraging-filtered datasets (one per colony) were used for kernel 

estimations and species distribution modelling. 

 

2.5.Kernel estimations 

Kernel utilization distribution analyses were performed to identify the most relevant 

foraging areas for the study species at each colony, using the foraging-filtered subsets to 

calculate Home Ranges (HR) and core foraging areas (FA). The utilization distribution 

(UD) describes the distribution of geographical positions of an individual or group over 

a period of time (Van Winkle 1975), providing a probabilistic measure of the animal’s 

relative use of space (Katajisto & Moilanen 2006). Hence, Kernel UD methods (Worton 

1989), enable us to transform these location points in polygons that depict higher or lower 

probability of occurrence (Faria 2014). Kernels were created with the R package 

adehabitatHR (Calenge 2006), assuming UD95 and UD50 to represent HR and FA 



Milton Avalos (2015) Patterns of change in the foraging strategies of Cory’s Shearwater after a drastic climatic event 

 

19 
 

respectively based on previous studies of Cory’s shearwater in the same study area (Paiva 

et al. 2010b). 

The ad-hoc method was used to compare kernel estimations between different trips and 

years for each colony. This option of the kernelUD function provides an optimal 

smoothing factor (h) that will be applied to all foraging trips and allows comparisons. For 

this study the values of h were determined at 0.1 for BER and 0.3 for CIM. Then, kernel 

overlaps were performed for each year separately first with trip id as a parameter to 

compare the consistency of all trips, and second using bird id to estimate the overlap 

between individuals. Finally, kernel overlaps were calculated for pairs of years and 

considering all possible combinations (i.e. 2011-2012, 2011-2014 and 2012-2014) in 

order to assess temporal changes in FA. The function used was kerneloverlap of the R 

package adehabitatHR. 

 

2.6.Environmental Data 

Environmental predictors were selected from a series of variables that have previously 

shown important correlations with distribution and abundance of seabirds (Louzao et al. 

2009; Tremblay et al. 2009). Included in this study are: sea surface temperature (SST) 

and chlorophyll-a (CHLA) as dynamic variables, and bathymetry (BAT) as static 

variable. Bathymetry was downloaded from the ETOPO 1 database at ~2 km spatial 

resolution (0.0167°) as ASC files from the BloomWatch website:  

http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowserWW180.jsp. Night-time SST 

was selected because of the lower amplitude of variation in water temperature than during 

daytime (Paiva et al. 2010b). We also considered anomalies and gradients of SST (ASST 

and GSST) and CHLA (ACHLA and GCHLA) to account for small scale variability, 

gradient of BAT (GBAT) which relates to the presence of topographic features (Louzao 

et al. 2009), and CHLA peak (CHLA_PK) for productivity persistence (Haug et al. 2015) 

(see Table 1 for details). CHLA_PEAK was computed from binominal layers of CHLA 

in the study period (March-August) during the 13 last years (2002–2014). Cells with a 

CHL concentration >1 mg m-3 were assigned a value of 1 and lower values assigned 

zeros (Louzao et al. 2012; Suryan et al. 2012; Afán et al. 2014). Environmental variables 

(i.e. CHLA and SST) were downloaded as monthly composites, from Aqua MODIS 

standard mapped image (SMI-HDF format) at ~4 km spatial resolution from 

http://coastwatch.pfeg.noaa.gov/coastwatch/CWBrowserWW180.jsp
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http://oceancolor.gsfc.nasa.gov/cgi/l3. All HDF files were subsequently transformed to 

rasters with the Marine Geospatial Ecology Tools (MGET) toolbox package of ArcGis 

10.0. Dynamic variables were aggregated in periods of three month composites 

corresponding to the two seasons prior to the fieldwork each year: spring (SPR: March, 

April and May) and summer (SUM: June, July and August). Additionally, distance-to-

colony (DCOL) and distance-to-land (DLAN) were calculated with the Spatial Analyst 

toolbox of ArcGis 10.0. As the Cory’s Shearwater becomes a central place forager during 

chick-rearing, returning frequently to the colony is an important constraint (Orians & 

Pearsons 1979). 

 

2.7.Species Distribution Modelling (SDM) 

The environmental variables previously described were used to perform a habitat niche 

model or Species Distribution Model (SDM) with MaxEnt 3.3.3k software. Multiple 

methods are available to assess the relationship between species data and environmental 

parameters at sites, but an important difference lies in the type of data they use. Formal 

biological surveys usually provide presence/absence data or abundance of species. In 

these cases, regression methods (i.e. GLMs, GAMs, BRT) have been the most widely 

used for SDM (Elith et al. 2011). However, in this study (as it happens often in natural 

sciences) the database represents presence-only records. MaxEnt is able to model species 

distribution based on presence-only data and maintain a predictive performance at the 

same level of the highest rated methods (Elith et al. 2006). 

At the beginning of the process, tracking data was rescaled into a spatial grid with cell 

size of 4x4 km (0.0417°) to match the spatial resolution of the environmental data. Then, 

each grid was coded and assigned a value of 1 if actively foraging or 0 if traveling. 

Preliminary models were run for BER and CIM for each year, including all environmental 

variables and 5 replicates. A threshold of 1% was established to evaluate percentage of 

contribution and permutation importance, thus variables under this value were excluded 

from the final models. The process was repeated in order to discard variables with only 

minimal contribution to the models performance. At the end, the final MaxEnt models 

were run only with the selected variables for each colony and each year with the following 

settings: logistic output format, duplicates removed, 30% random test percentage, 50 

replicates of random (bootstrap) subsamples. Results are summarized as the mean of the 

http://oceancolor.gsfc.nasa.gov/cgi/l3
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50 models. The outputs also include a jackknife test result chart, a predicted presence 

probability map, response curves, percentage of contribution, and a graphic of the receiver 

operating characteristic (ROC) curve which appraises the predictive performance of the 

model with the Area Under the receiver operating characteristic Curve (AUC). The AUC 

value ranges from 0 to 1, with 0.5 indicating model performance equal to that of a random 

prediction. Other values can be interpreted as follows: AUC>0.90 excellent; if 

0.80<AUC<0.90 good; if 0.70<AUC<0.80 reasonable; if 0.60<AUC<0.70 poor; and if 

0.50<AUC<0.60 unsuccessful (Araujo et al. 2005). 

 

2.8.Data analysis 

R software was used in all statistical analyses, including several R packages and functions 

(e.g. MASS, maptools, adehabitatHR) and custom-built functions. Quantile-quantile plots 

and Cleveland dotplots were designed for all variables to check for normality and 

homoscedastiCIMty respectively (Zuur et al. 2009), and when necessary logarithmic 

transformations were adopted. Inter-annual differences on foraging trips parameters (e.g. 

maximum distance-to-colony, total distance, UD95, UD50 and others) were tested with 

generalized linear mixed models GLMMs. Trip identity was nested within the individual 

as a random term to avoid potential pseudo-replication problems, since all individual birds 

performed multiple trips. R packages used in the GLMMs were lme4 (Bates et al. 2014) 

and lmerTest (Kuznetsova et al. 2014). Results are expressed in means ± SD and are 

considered significant at p < 0.05. 
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Table 1. Summary of environmental variables used in the species distribution modelling analysis 

of Cory’s Shearwater tracked in Berlenga and Cima Islet colonies. Dynamic variables were 

calculated for 2011, 2012 and 2014 

Environmental Variables / 

code 

Derived 

Metric 

Manipulation / Oceanographic process Source 

Dynamic    

Sea surface temperature / 

SST_SPR, SST_SUM (°C) 

mean Temporal mean from monthly climatologies 

for spring and summer of each year of study / 

water mass distribution 

Aqua-

MODIS 

Sea surface temperature 

anomaly / ASST_SPR, 

ASST_SUM (°C) 

mean Temporal deviation of sea surface temperature 

compared to a 20 year average of sea surface 

temperature for spring and summer of each 

year of study / oceanic fronts 

Aqua-

MODIS 

Sea surface temperature 

gradient / GSST_SPR, 

GSST_SUM (%) 

gradient Temporal gradient from monthly climatologies 

for spring and summer of each year of study / 

oceanic fronts 

Aqua-

MODIS 

Sea surface temperature 

range / SST_RANGE (°C) 

range Temporal range from monthly climatologies 

(2002-2014) 

Aqua-

MODIS 

Chlorophyll-a concentration 

/ CHLA_SPR, 

CHLA_SUM (mg m-3) 

mean Temporal mean from monthly climatologies 

for spring and summer of each year of study / 

ocean productivity 

Aqua-

MODIS 

Chlorophyll-a anomaly / 

ACHLA_SPR, 

ACHLA_SUM (mg m-3) 

mean Temporal deviation of Chlorophyll-a 

concentration compared to a 20 year average 

of Chlorophyll-a concentration for spring and 

summer of each year of study / oceanic fronts 

Aqua-

MODIS 

Chlorophyll-a gradient / 

GCHLA_SPR, 

GCHLA_SUM (%) 

gradient Temporal gradient from monthly climatologies 

for spring and summer of each year of study / 

oceanic fronts 

Aqua-

MODIS 

Chlorophyll-a range / 

CHLA_RANGE (mg m-3) 

range Temporal range from monthly climatologies 

(2002-2014) 

Aqua-

MODIS 

Chlorophyll-a peak / 

CHLA_PK (mg m-3) 

maximum Maximum concentration / productivity 

persistence 

Aqua-

MODIS 

Static    

Bathymetry / BAT (m) mean Spatial mean / neritic vs pelagic environments ETOPO 1 

Bathymetry gradient / 

GBAT (%) 

gradient Spatial gradient / slope (shelf-break, 

seamounts) 

ETOPO 1 

Distance-to-colony / DCOL 

(km) 

minimum Minimum distance to the breeding colony / 

central place foraging effects 

ArcGis 

Distance-to-land / DLAN 

(km) 

minimum Distance to the nearest coastline / neritic vs 

pelagic domains 

ArcGis 
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3.1.Inter-annual environmental stochasticity in the North Atlantic 

The extended winter NAO index (December-March) indicated high oscillations in 

atmospheric conditions in the North Atlantic throughout the entire study period (Table 2). 

Years 2011 and 2013 recorded negative indices (-1.6 and -2.0 respectively), but were 

followed by positives values the subsequent year. Even though the NAO in 2014 was 

slightly lower than in 2012, there was a higher amplitude of variation in the transition 

from 2013 to 2014 than from 2011 to 2012 (Table 2), suggesting a higher recovery in 

productivity. The summer NAO index (June-August) corresponding to the season of field 

work showed an identical pattern, with negative years significantly different than positive 

years (Table 3). The lowest winter and summer NAO indices of the study period were 

registered the same year (2013) (Table 2). 

Spring (March-May) and summer (June-August) composites of SST and CHLA 

confirmed strong oceanographic changes in our study area (Northeast Atlantic) during 

2011-2014 (Fig.4, 5, 6, and 7). A warming pattern was detected in the spring sea surface 

temperature (SST_SPR) over the Portuguese and African coasts in 2011. Specifically, 

SST_SPR south of Lisbon and a small narrow band over the North African shelf were 

under the influence of a warmer isotherm (17-19 °C) in contrast to what was observed 

during years of high productivity (i.e. 2012 and 2014). The central-east part of the 

Canaries seemed also affected by the warming phenomena of 2011. Conversely, cooler 

SST_SPR was observed south of Azores (Fig. 4). Concerning the summer sea surface 

temperature (SST_SUM) in 2011, composites suggested cooler values east of Madeira 

and Canaries, and again warmer temperatures in the small band adjacent to North Africa 

(Fig. 5). Regarding Chlorophyll-a (CHLA) composites, they indicated higher 

concentrations during spring than summer (Fig. 6 and 7). Surprisingly, CHLA in spring 

2011 seemed to have the highest phytoplankton blooms at least in the oceanic regions of 

the north (Fig. 6). 

Inter-annual changes in oceanographic parameters within the surroundings of BER and 

CIM were corroborated statistically. The year with the highest SST_SUM was 2011 for 

Berlenga (BER) and Cima Islet (CIM). Around both islands, SST_SUM was significantly 

higher in 2011 and 2013 than in the other two years (Table 3).  On the contrary, BER and 

CIM registered lower mean values of CHLA in 2011 and 2013 but without significant 
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differences between years. Comparing islands, BER recorded significantly lower SST and 

significantly higher CHLA than CIM (Tables 2 and 3).  

 

 

 

 

 

 

 



Milton Avalos (2015) Patterns of change in the foraging strategies of Cory’s Shearwater after a drastic climatic event 

 

26 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 4. Three month average composites corresponding to spring Sea Surface 

Temperature (March-May) in the surroundings of Berlenga (BER; green dot) and 

Cima Islet (CIM; green star) during the study period. From 

http://oceancolor.gsfc.nasa.gov/cgi/l3 

SPRING 2011 SPRING 2012 

SPRING 2014 

http://oceancolor.gsfc.nasa.gov/cgi/l3
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Fig. 5. Three month average composites corresponding to summer Sea Surface 

Temperature (June-August) in the surroundings of Berlenga (BER; green dot) and 

Cima Islet (CIM; green star) during the study period. From 

http://oceancolor.gsfc.nasa.gov/cgi/l3 

SUMMER 2011 

SUMMER 2014 

SUMMER 2012 

http://oceancolor.gsfc.nasa.gov/cgi/l3
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Fig. 6. Three month average composites corresponding to spring Chlorophyll-a 

concentration (March-May) in the surroundings of Berlenga (BER; yellow dot) and 

Cima Islet (CIM; yellow star) during the study period. From 

http://oceancolor.gsfc.nasa.gov/cgi/l3 

CHLA (mg m-3) 

SPRING 2011 

SPRING 2014 

SPRING 2012 

http://oceancolor.gsfc.nasa.gov/cgi/l3
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Fig. 7. Three month average composites corresponding to summer Chlorophyll-a 

concentration (June-August) in the surroundings of Berlenga (BER; yellow dot) and 

Cima Islet (CIM; yellow star) during the study period. From 

http://oceancolor.gsfc.nasa.gov/cgi/l3 

CHLA (mg m-3) 

SUMMER 2011 

SUMMER 2014 

SUMMER 2012 

http://oceancolor.gsfc.nasa.gov/cgi/l3
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Table 2. Mean (±SD) regional and local environmental predictors in the colony surroundings of Cory’s shearwaters from Cima Islet (CIM) and Berlenga (BER) 
between 2011 and 2014; foraging habitat and trip characteristics and spatial ecology and fitness parameters of both populations. FA – core Foraging Area; 
50% Kernel Utilization Distribution (50 UD). Environmental predictors are for summer (June-August) of each year, unless otherwise stated. 

 2011 2012 2013 2014 

Variables CIM BER CIM BER CIM BER CIM BER 

Regional environmental predictors         

Extended winter NAO index (December - March) -1.6  3.2  -2.0  3.1  

NAO index (Jun - Aug) -1.1 ± 0.4  1.75 ± 0.3  -1.6 ± 0.8  1.4 ± 0.5  

Local environmental predictors (within 60 km)         

Chlorophyll a concentration (CHL; mg m-3) 0.3 ± 0.7 1.7 ± 0.3 1.0 ± 0.2 2.1 ± 0.1 0.5 ± 0.2 1.3 ± 0.5 1.5 ± 0.2 2.3 ± 0.3 

Sea Surface Temperature (SST; ºC) 24.5 ± 1.3 20.0 ± 1.5 20.2 ± 1.2 17.2 ± 1.8 23.2 ± 1.2 19.2 ± 1.4 20.3 ± 1.3 16.9 ± 1.5 

Habitat of foraging areas (within FR)         

Chlorophyll a concentration (CHLA; mg m-3) 0.5 ± 0.2 1.0 ± 0.3 1.4 ± 0.4 1.9 ± 0.2 — — 1.7 ± 0.3 2.0 ± 0.5 

Sea Surface Temperature (SST; ºC) 22.0 ± 0.9 19.0 ± 0.6 19.2 ± 1.1 17.0 ± 1.2 — — 18.8 ± 0.6 19.8 ± 0.9 

SST anomaly (ASST) 3.6 ± 0.5 1.7 ± 0.2 -1.6 ± 0.3 -2.2 ± 0.4   2.1 ± 0.5 1.6 ± 0.6 

FA kernel UD area (km2) 3.4 ± 1.3 2.1 ± 1.0 2.5 ± 1.2 1.8 ± 0.8   2.6 ± 1.1 1.6 ± 0.5 

Foraging trip characteristics         

N tracks [N birds] 42 [11] 38 [11] 76 [9] 24 [6] — — 44 [8] 31 [6] 

Trip duration (days) 4.5 ± 1.7 2.3 ± 0.6 1.9 ± 0.2 1.1 ± 0.7 — — 2.1 ± 0.6 1.2 ± 0.4 

Maximum distance from colony (km) 975.4 ± 63.1 625.1 ± 54.0 487.0 ± 47.4 195.4 ± 44.4 — — 402.2 ± 83.2 129.7 ± 24.0 

Time spent flying trip-1 day-1(h) 8.2 ± 1.5 6.8 ± 1.8 6.5 ± 1.3 5.0 ± 0.6 — — 6.8 ± 1.9 5.1 ± 0.8 

% of time spent in foraging areas 
 

48.9 ± 9.6 38.1 ± 5.8 33.1 ± 5.7 20.1 ± 2.5 — — 32.3 ± 8.4 19.4 ± 3.6 

Fitness parameter         

Adult’s body condition index (BCI) -1.1 ± 0.5 -0.9 ± 0.3 0.6 ± 0.2 0.8 ± 0.3 — — 0.5 ± 0.2 1.0 ± 0.4 
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Table 3. Generalized Linear Mixed Effect Models (GLMMs) testing the effect of the interaction between year (2011, 2012 and 2014) and Island (CIMma Islet, 
CI vs Berlenga, BER) on regional and local environmental predictors in the colony surroundings (60km around the breeding colony), foraging habitat and trip 
characteristics and spatial ecology and fitness parameters shown in Table 1. The individual was used as a random effect to avoid pseudo-replication issues. 
Significant results in bold. Effect was evaluated with Post-hoc multiple comparisons with Bonferroni correction. 

 Year Island Year*Island 
Variables GLMM P Effect GLMM P Effect GLMM P Effect 

Regional environmental predictors          
Extended winter NAO index (December - March) — — — — — — — — — 
NAO index (Jun - Aug) F3,8 = 33.46 0.001 2011,2013 < 2012,2014 — — — — — — 
Local environmental predictors (within 60 km)          

Chlorophyll a concentration (CHLA; mg m-3) F7,118 = 1.19 0.15 — F7,118 = 3.19 0.02 CIM < BER — — — 
Sea Surface Temperature (SST; ºC) F7,118 = 4.09 0.01 2011,2013 >2012,2014 F7,118 = 3.75 0.02 CIM > BER — — — 

Habitat of foraging areas (within FA)          
Chlorophyll a concentration (CHLA; mg m-3) F5,249  = 4.33 0.01 2011 < 2012,2014 F5,249  = 2.35 0.04 CIM < BER F5,249 = 2.55 0.05 CIM 2011 < all 

others Sea Surface Temperature (SST; ºC) F5,249  = 2.98 0.04 2011 > 2012,2014 F5,249  = 3.98 0.01 CIM > BER F5,249  = 2.31 0.04 CIM 2011 > all 
others SST anomaly (ASST) F5,249  = 24.1 0.001 2011 > 2012,2014 F5,249  = 0.98 0.12 — F5,249  = 0.88 0.15 — 

FA kernel UD area (km2) F5,249  = 1.10 0.13 — F5,249  = 4.02 0.01 CIM > BER F5,249  = 0.77 0.17 — 
Foraging trip characteristics          

N tracks [N birds] — — — — — — — — — 
Trip duration (days) F5,249  = 3.87 0.02 2011 > 2012,2014 F5,249  = 1.01 0.11 — F5,249  = 0.37 0.21 — 
Maximum distance from colony (km) F5,249  = 4.28 0.01 2011 > 2012,2014 F5,249  = 15.34 0.001 CIM > BER F5,249  = 2.67 0.04 CIM 2011 > all 

others Time spent flying trip-1 day-1(h) F5,249  = 1.04 0.12 — F5,249  = 0.67 0.16 — F5,249  = 0.58 0.26 — 
% of time spent in foraging areas 

 
F5,249  = 2.77 0.03 2011 > 2012,2014 F5,249  = 0.98 0.13 — F5,249  = 0.55 0.27 — 

Fitness parameter          
Adult’s body condition index (BCI) F5,249  = 4.37 0.01 2011 < 2012,2014 F5,249  = 0.57 0.17 — F5,249  = 0.51 0.18 — 
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3.2.Differences in the foraging strategies among populations in response to 

variations in the environment 

Overall Cory’s Shearwaters had the most exploratory patterns during their foraging trips 

of 2011, especially CIM birds which targeted fairly distant foraging grounds (FA; 50UD), 

covering additional territories in various regions the Northeast Atlantic (Fig. 8B). During 

2012 and 2014, FA were mostly concentrated in the colony surroundings around Madeira, 

and over the coast and shelf of north Morocco (Fig. 8D, 8F). These two areas were also 

frequently targeted in 2011, making them the most exploited regions of the study period 

for CIM. As far as home ranges (HR; 95UD) are concerned, they were extremely sparse 

in 2011 when the birds explored most of the Northeast Atlantic. After the improvement 

of oceanographic conditions in 2012, CIM birds clearly reduced their HR and FA; and in 

2014, they were completely restricted among the colony surroundings, the Seine 

seamount and the north Moroccan coast. On the other hand, BER birds’ FA were 

consistently located over the continental shelf in the colony surroundings during the three 

study years (Fig. 8A, 8C, 8E). HR of some individuals were identified in more distant 

areas during 2011 and 2014 but they did not account for the presence of core foraging 

areas. 

Results from kernel overlaps calculations confirmed less consistency in the foraging 

behavior of Cory’s Shearwaters during 2011. Even though the graphical outputs 

suggested otherwise, BER birds also demonstrated very irregular patterns in 2011 

recording their lowest mean overlaps among individuals in HR and FA (54% and 29% 

respectively). Overlaps were highest in 2012 in this island (Table 4). At CIM, birds 

showed a gradual increase in kernel overlaps among individuals from 30% in HR, and 

18% in FA in 2011 to 62% in both HR and FA overlap in 2014 (Table 4). However, when 

comparing mean overlaps among years it was possible to deduce that as a whole 

population, both islands concentrated their foraging efforts in similar regions every year. 

Mean overlaps between years (i.e. 2011-2012, 2011-2014, and 2012-2014) was always 

estimated at 70% or higher in BER, and above 60% in CIM (Table 4).  
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F E 

2014 2014 

2012 

2011 

Fig. 8. Calonectris borealis kernel utilization distribution plots during the three years of study for Berlenga – BER (blue) and 

Cima Islet - CIM (red). Stars indicate the breeding colonies. Outer lines represent Home Ranges (UD95) except in (B) where 

(UD99) was used in the contour; and filled polygons represent core Foraging Areas (UD50). All maps are plotted over 

bathymetry (m). Note that (B), (D) and (F) which represent kernel UD in CIM are drawn at a different scale due to the higher 

foraging trip characteristics of birds from this colony 
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Table 4. Results from kernel overlaps (in %) for the birds of Berlenga (BER) and Cima Islet 

(CIM). Kernels are compared for all trips, individuals birds, and finally among years of study to 

assess the consistency in foraging behavior. BER trips 2014 did not produce any results because 

no five relocations were found. HR 95UD – Home Range 95% kernel Utilization Distribution. 

FA 50UD – Foraging Area 50% kernel Utilization Distribution 

 BER 2011 CIM 2011 AMONG YEARS 

 trips birds Trips birds BER 2011-2012 CIM 2011-2012 

HR 95UD 43 54 44 30 77 64 

FA 50UD 15 29 32 18 83 61 

 BER 2012 CIM 2012 BER 2011-2014 CIM 2011-2014 

HR 95UD 58 69 53 48 70 71 

FA 50UD 28 56 33 37 82 64 

 BER 2014 CIM 2014 BER 2012-2014 CIM 2012-2014 

HR 95UD 58 63 65 62 74 72 

FA 50UD 33 36 48 62 76 66 

Mean HR 53 62 54 47 73 69 

Mean FA 25 40 38 39 80 64 

 

The foraging trip characteristics confirmed the very high foraging effort displayed by 

Cory’s Shearwaters in 2011. Trip duration was significantly higher by more than 1 day in 

BER, and by more than 2 days in CIM when compared with productive years. Birds also 

travelled to significantly further distances (over 400 km in both islands), and spent more 

time in foraging areas (15-18% extra) during that year. As a result, FA in 2011 were 

slightly larger but the differences were not significant. Another parameter that was 

affected and recorded particularly low values in 2011 was Body Condition Index (BCI) 

of individual breeders (Tables 2 and 3). Comparing islands, only maximum distance from 

the colony was significantly higher in CIM birds than in BER birds (Table 3). 

Relating environmental parameters in the proximity of BER and CIM with those found 

in core foraging areas, BER birds did not necessarily target areas with lower SST and/or 

higher CHLA. In fact, SST was on average 2.9°C higher in 2014, and CHLA records were 

lower every year inside FA compared to the island surroundings. On the other hand, CIM 

birds indicated each year a strong preference to exploit FAs with considerably lower SST 

and higher CHLA (Table 2). 
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3.3.Habitat use in response to inter-annual environmental variability 

All MaxEnt models featured very high AUC values, indicating excellent predictive 

performances. The lowest AUC scores were obtained for the models of 2011 (BER; 0.974 

and CIM; 0.922). The models of 2012 and 2014 performed even higher with a very small 

or non-existent standard deviation (Appendix 1 and 2). In the case of BER, DCOL was a 

predictor that maintained its high importance throughout all the study years, while DLAN 

was a major contributor only in 2011. Sea surface temperature was the most important 

environmental variable in 2012, with 56.7% contribution of SST_RANGE and 17% 

permutation of SST_SPR. Another sea surface temperature variable (i.e. SST_SUM) had 

relevant contributions in the models of 2011 (10.5%) and 2014 (14.9%) (Appendix 1, Fig. 

9). 
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Fig. 9. Calonectris borealis illustration of environmental predictors’ percentage of contribution to the occurrence of the 

species in Berlenga. DCOL (distance-to-colony), DLAN (distance-to-land), SST_RANGE (sea surface temperature range), 

SST_SUM (sea surface temperature summer), BAT (bathymetry), SST_SPR (sea surface temperature spring), CHLA_PK 

(chlorophyll-a peak), GBAT (bathymetry gradient), CHLA_SUM (chlorophyll-a summer), ASST_SPR (sea surface temperature 

spring anomaly), GCHLA_SUM (chlorophyll-a summer gradient), ASST_SUM (sea surface temperature summer anomaly), 

ACHLA_SUM (chlorophyll-a summer anomaly) 
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Results for CIM models indicated that the static variables DLAN and DCOL were 

consistently the most important predictors in this island. However, in 2011 percentage 

contribution was more evenly distributed among five parameters that recorded 10% or 

higher in the SDM (i.e. DCOL, DLAN, GCHLA_SUM, SST_RANGE, SST_SPR,). 

SST_RANGE was an important factor also in 2014, while SST_SPR was relevant during 

all three years. In 2014 DCOL and BAT together accounted for nearly 90% of the 

permutation importance in the model.  
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Fig. 10. Calonectris borealis illustration of environmental predictors’ percentage of contribution to the occurrence of the 

species in Cima Islet. DLAN (distance-to-land), DCOL (distance-to-colony), SST_RANGE (sea surface temperature range), 

SST_SPR (sea surface temperature spring), GCHLA_SUM (chlorophyll-a summer gradient), SST_SUM (sea surface 

temperature summer), ASST_SPR (sea surface temperature spring anomaly), BAT (bathymetry), CHLA_SUM (chlorophyll-a 

summer), GBAT (bathymetry gradient), CHLA_RANGE (chlorophyll-a range), CHLA_SPR (chlorophyll-a spring), CHLA_PK 

(chlorophyll-a peak), ASST_SUM (sea surface temperature summer anomaly), ACHLA_SUM (chlorophyll-a summer anomaly) 
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This study reveals the flexibility in the foraging behavior of Cory’s Shearwaters, which 

were able to respond to the changing levels of productivity in the proximity of their 

breeding grounds throughout the study period. As reported in other studies (e.g. Paiva et 

al. 2013a, 2013b; Haug et al. 2015), our results also detected a link between a negative 

extended winter NAO index (Hurrell 1995) and the subsequent decrease in productivity 

(proxied by chlorophyll a concentration and SST) in the Northeast Atlantic for the 

upcoming breeding season that may have influenced the at-sea foraging behavior of 

Cory’s Shearwater breeding in the continental shelf of Portugal. Our work extends the 

link between changes in oceanographic characteristics and foraging behavior for seabird 

top predators further south to the pelagic waters of the Madeira archipelago region. 

Additionally, studying birds breeding in islands with contrasting productivity patterns in 

their surroundings enables us to detect similarities and differences in each population 

strategies. Overall, and according to our first prediction, it appears that the oceanic island 

of Cima Islet (CIM) was more affected by the low productivity that affected the region in 

2011 than the neritic island of Berlenga (BER). Contrastingly to BER birds that 

consistently foraged over the Portuguese continental shelf each year, CIM birds reacted 

to the detrimental conditions by dispersing their home ranges (HR) and foraging areas 

(FA) into more distant regions of the North Atlantic when compared to productive years. 

On the other hand, and accordingly to our second prediction, BER and CIM birds 

increased similarly their foraging effort parameters. Nevertheless, because of the more 

distant FA targeted by CIM birds during 2011 as a result of their foraging tactics, the 

distances travelled were significantly greater during that year. Finally, and contrary to our 

third prediction, our study indicates an immediate improvement in the foraging behavior 

of BER birds, and suggest a more progressive change in CIM birds from 2011 to 2014 as 

oceanographic conditions ameliorated from the strong negative NAO index of 2011. Due 

to the influence of another strong negative NAO index recorded in 2013, and a lack of 

data on the foraging behavior for that year we cannot assess precisely the evolution of the 

responses. 
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4.1.The foraging plasticity of oceanic and neritic populations of a seabird top 

predator 

Cory’s Shearwaters in BER maintained most of their HR and all of their FA over the 

continental shelf and close to the breeding colony during the entire study period, whereas 

birds from CIM clearly expanded their HR and FA during 2011 to several regions that 

were not targeted during productive years. The foraging ecology of a marine predator 

highly depend on the abundance and distribution of prey (Bell 1991), and their dispersion 

is associated to large scale ocean productivity (Hyrenbach et al. 2002). Thus, the 

differences in responses may be given by the contrasting productivity in the proximity of 

each island. For instance, in tropical areas where prey is more unpredictably distributed 

and the productivity of the marine environment is low (Mann & Lazier 2006) seabirds 

generally adopt flexible foraging strategies (Weimerskirch et al. 2005b), while in 

temperate and polar waters species show higher fidelity to their foraging grounds 

(Weimerskirch 2007). The decrease in productivity along CIM birds usual grounds in an 

already poor environment, probably caused birds to spread their home ranges and 

foraging areas to other regions.  

Retaining their fidelity to a certain degree, CIM birds may have targeted familiar regions 

during other periods of the breeding season. No previous work has tracked the at-the 

foraging behavior of Cory’s Shearwaters in CIM, but tracking studies on the population 

of the same species breeding on the Desertas island (in the same Madeira Archipelago) 

identified several FAs in the region between the Anti-Altair seamount and the Galician 

bank (Paiva et al. 2010b). Therefore, CIM birds are likely to be familiar with these 

productive oceanic regions. Furthermore, prey disturbance is reported to cause seabird 

predators to travel to more distant areas to obtain food due to the effect of intra-specific 

competition (Lewis et al. 2001). In this sense, BER hosts a small population of only a few 

hundred individuals compared with thousands breeding in Madeira 

(http://www.birdlife.org/).  

BER birds in our study followed the same pattern reported in most tracking studies over 

the last decade during the chick-rearing season (Paiva et al. 2010b, 2010c; Alonso et al. 

2012). However, Paiva et al. (2013a) provided the only report of the chick-rearing season 

for BER in response to environmental stochasticity in 2010. During that year, birds 

drastically shifted their distribution to target distant seamounts regions off the continental 

http://www.birdlife.org/
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Portugal neritic system (i.e. Josephine, Ashton, Galician, Azores-Biscay, and even Anti-

Altair). As a result, the extent of their HR and FA increased radically. In contrast, our 

results showed that BER birds remained in the continental shelf even under the 

detrimental conditions of 2011. The comparison of the two NAO values (2010; -4.64 and 

2011; -1.6) suggests a large difference in oceanographic conditions (Osborn 2011). 

Therefore, there may be a threshold in the surroundings of BER when the structure and 

functioning of marine ecosystems is severely affected (Walther et al. 2002) to force birds 

to leave their habitually productive grounds in search of higher prey availability.  

Conversely, CIM birds persistently targeted three zones every year:  the colony 

surroundings, the seamounts nearest to Madeira, and the north Moroccan coast. 

Nevertheless, in 2011 birds were especially explorative when their HRs covered most of 

the northeast Atlantic, and their FAs reached further grounds (i.e. the continental shelves 

at the southern end of Western Sahara and near Berlengas, the Anti-Altair seamount, and 

even beyond the Mid-Atlantic ridge). All these areas correspond to very productive neritic 

environments (Arístegui et al. 2009b) or seamounts that have been associated with high 

diversity of pelagic species (Morato et al. 2010) and significant levels of endemism 

(Cartes et al. 2013). While most of the northeast Atlantic underwent a trend of decreased 

productivity during 2010-2011 (Paiva et al. 2013a, 2013b; Haug et al. 2015), the opposite 

pattern was recorded in the northwest Atlantic (Paiva et al. 2013b) in the Altair region, 

which is in the vicinity of the most distant FA recorded for CIM in 2011. Thus, some 

individuals may have actually found a more productive region  (~2,000 km away) but the 

central-place foraging constrain during the chick-rearing season conditioned birds to 

mostly remain closer to their breeding colony. 

In spite of the irregular patterns depicted in 2011, the analysis of kernel overlaps strongly 

suggests that both oceanic (CIM) as much as neritic (BER) populations showed high 

fidelity to its foraging grounds during chick-rearing. HR recorded a mean overlap among 

years of 73% and 69%, while FA overlap was 80% and 64% respectively for BER and 

CIM. The differences especially concerning FA overlap should relate again to the 

productivity levels in the surroundings of each island. The fact that CIM birds registered 

a high overlap in the comparison of 2011 (when HR and FA are visible more sparse) with 

the other two years implies that the highest proportion of their foraging activity was 

concentrated in the regions that were commonly targeted each year. This inference is 
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further strengthened considering that the extension of FA did not vary significantly 

among years. 

Individuals from both BER and CIM drastically increased their foraging effort parameters 

in 2011 in response to the oceanographic changes, but each island did so adapting to their 

differing foraging tactics. On one hand, BER birds are reported to use a strategy of almost 

exclusively short trips during chick-rearing, increasing their foraging effort to cope with 

the demands of the growing chick (Paiva et al. 2010b), a pattern that was confirmed 

throughout our study period. Since the length of foraging trips is highly dependent on 

food availability (Uttley et al. 1994), the additional foraging effort of 2011 may be 

explained by a more stochastic and explorative behavior in an environment with reduced 

productivity. Furthermore, Sardines Sardina pilchardus and Garfish Belone belone are 

generally the most consumed prey of Cory’s Shearwaters in BER (Paiva et al. 2010e), but 

the overly intense winter upwelling over the Portuguese coast that is inferred from a 

negative NAO index may have driven sardines and other small pelagic fish larvae 

offshore inducing a high mortality (Santos et al. 2007). Therefore, BER birds may have 

been originally attempting to target prey that was not present on the usual productive 

spots because of a spatial mismatch (Grémillet et al. 2008). This probably caused birds to 

practically doubled mean trip duration, percentage of time spent in FAs, and tripled 

maximum distances from the colony (i.e. to ~ 625 km) compared to 2012 and 2014.  

On the other hand, shearwaters in CIM depicted a typical pattern of dual foraging strategy, 

i.e. alternating short and long foraging excursions, and similar to that of other oceanic 

populations of the species  (Granadeiro et al. 1998; Magalhães et al. 2008; Paiva et al. 

2010c). Analyzing the kernel graphical outputs we can infer that CIM birds concentrated 

their foraging efforts in three main locations: in short trips around Madeira, and in long 

trips to the nearby seamounts and the north Moroccan coast, a pattern similar to the 

species in Selvagens and the Canary Archipelagos which rely on the resources off the 

upwelling system of the African shelf (Navarro et al. 2009; Alonso et al. 2012; Ramos et 

al. 2013). Nonetheless, CIM birds additionally exploited the nearby seamounts due to the 

greater distance of Madeira to the African coast. Hence, birds probably spent higher 

foraging effort during short trips because of the lower productivity of 2011 to successfully 

feed their chicks and venture in much longer trips is search of productive grounds to 

recover their extra-depleted energy reserves (Chaurand & Weimerskirch 1994). This may 

explain CIM birds’ increase in foraging effort, with maximum distance from the colony 
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indicated as the highest significant parameter on both islands and during all study years. 

CIM birds reached in average distances ~1,000 km away from their colony (more than 

twice compared to 2012 and 2014), suggesting that they were more affected than BER 

birds in low productivity years. Such outcome is not surprising as most studies have 

reported proxies of foraging effort always comparatively higher in oceanic than in neritic 

populations (Paiva et al. 2010b; Alonso et al. 2012).  

The high foraging effort invested during the chick-rearing season corroborates the 

tendency of Cory’s Shearwaters to deviate from their previously known foraging patterns 

under stochastic conditions. Earlier that year, a good proportion of females had completed 

a pre-laying excursion to the Northwest Atlantic with over 8,100 km of total distance 

covered (Paiva et al. 2013b), adding up to an extremely demanding breeding year which 

was similarly exhausting in 2010 (Paiva et al. 2013a). Even though we do not possess 

records for other breeding periods from CIM birds during 2010-2011, considering that 

their parameters where comparatively more affected than BER birds during our study, it 

is likely that they depicted similar energy expenditure than BER birds during those two 

breeding seasons. Cory’s Shearwater has been recognized as an exceptionally plastic 

species in its foraging behavior throughout different times of the year: i.e. breeding (Paiva 

et al. 2010c), migratory  (Dias et al. 2011)  and wintering seasons (Dias et al. 2012). 

However, the consequences of such plasticity should also be severe. Food availability 

plays an important role in breeding success and adult survival (Davis et al. 2005), and 

body condition index is the main factor regulating chick-provisioning in seabirds such as 

petrels and albatrosses (Tveraa et al. 1998; Weimerskirch et al. 2000). Our study recorded 

significantly lower body condition index in CIM and BER birds for 2011, a similar 

outcome provoked birds in the pre-laying and chick-rearing periods to affect hatching, 

fledging, and ultimately reproductive success in BER birds (Paiva et al. 2013a, 2013b). 

 Subsequently, the NAO indices and various environmental parameters indicate an 

exceptional recovery in primary productivity over the northeast Atlantic in 2012 and 

2014. In order to assess the reactions of BER and CIM birds to the ameliorating conditions 

of the surrounding environment, the temporal evolution of kernel overlaps among 

individuals in each island provides important insights. Seabird predators are expected to 

have higher fidelity with increasing latitude, as well as with increasing productivity. 

Therefore, it should be anticipated for both islands to have higher distribution overlaps as 

productivity improves. At the same time, BER birds should record higher percentages of 
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overlap than CIM birds each year. Our results suggest that BER birds seemed to react 

immediately to the positive NAO index of 2012, while CIM birds depict a progressive 

increase until 2014. Both islands appeared to record similarly high values of distribution 

overlaps, which given the sparse and dynamic nature of marine hotspots, and the link 

between experience and seabirds’ foraging efficiency (Péron & Grémillet 2013; 

Gutowsky et al. 2014) reveal the outstanding capacity of Cory’s Shearwaters to find prey 

in oceanic and neritic environments. 

However, a few aspects should be considered before accepting such inference. Firstly, 

BER birds showed a high decrease in FA overlap in 2014, a year of hypothetically very 

high productivity. This segregation may be partly explained by the explorative behavior 

described for inexperienced breeders in BER (Haug et al. 2015), but inexperienced 

seabirds can be as efficient as experience birds when productivity is elevated 

(Weimerskirch et al. 2005a; Haug et al. 2015). Furthermore, this factor should affect CIM 

and BER birds equally. It is more likely that breeding in a productive environment with 

low intraspecific competition offers BER birds a higher number of large and profitable 

areas to explore. Secondly, environmental conditions were not continuously ameliorating 

from 2011 to 2014, as, 2013 had an even lower NAO index than 2011. But unfortunately 

there is no tracking data to investigate the foraging patterns of birds during that year. 

Finally, the very high NAO indices of 2012 and 2014 imply that they were years with 

abnormally high productivity over the northeast Atlantic, therefore HR and FA especially 

for CIM may not represent that of years with standard productivity. Ultimately, it is 

necessary to track oceanic and neritic populations continuously during longer temporal 

scales to clarify their patterns of change during years of environmental stochasticity and 

ameliorating conditions. 

 

4.2.Effects of a changing marine environment in the feeding behavior of Cory’s 

Shearwater 

Our study has adopted the NAO as a surrogate of marine productivity. Recently, more 

details about the relationship among large scale atmospheric phenomena (driven by the 

NAO) and its effects on different levels of the food web have been disclosed (Osborn 

2011; Paiva et al. 2013a). Negative values in the NAO (2011 and 2013) coincided with 

significant increases in SST and reductions in CHLA in the proximities of BER and CIM, 
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but the reverse effects occurred when a positive NAO was recorded (2012 and 2014). 

Thus, we expect productivity to be higher around Berlengas in years of a positive NAO 

index, as indicated by previous studies (e.g. Ceia et al. 2014; Haug et al. 2015). Changes 

in different levels of the food web (e.g. plankton, benthos, and fish stocks) have been 

correlated in the past two decades with changes in atmospheric circulation at an ocean 

basin scale indicated by the NAO, or the El Nino Southern Oscillation Index (ENSO) in 

the Pacific Ocean (Mann & Lazier 2006). The NAO is an indicator of climatic conditions 

in the North Atlantic Region, while the ENSO influences climate variability worldwide. 

Similarly to the NAO, ENSO driven changes are reportedly affecting the reproductive 

success of seabird predators in tropical (Surman & Nicholson 2009; Ancona et al. 2011) 

and temperate regions of the world (Smithers et al. 2003). Therefore, global indices are a 

useful approach to assess changes in marine ecosystems. The main advantage is that they 

offer ecologists the opportunity to make predictions on the biological effects of climatic 

conditions (Stenseth et al. 2003; Peron et al. 2012).  

The results demonstrate graphically and statistically the strong fluctuations in 

oceanographic conditions that affected the northeast Atlantic during the study period. 

Such oscillations most likely induced the changes in foraging tactics showed by BER and 

CIM birds in 2011. Specifically, the warmer trend identified in SST around both islands, 

and the Portuguese and African shelves relates to the influence of the NAO in the 

upwelling regime of the Canary Current (Mann & Lazier 2006; Osborn 2011). These 

regions were recognized as the most important foraging grounds in this study. Olfactory 

navigation is recognized as the mechanism that enables procellariiforms to discern 

environmental cues at various spatial scales (Nevitt 2008), thus Cory’s Shearwaters were 

able to perceive these changes.  

The increase in SST and decrease in primary productivity also triggered pre-laying 

females in BER to shift their foraging distributions in 2011 (Paiva et al. 2013b). Initially, 

the statistical results suggested that only CIM birds seemed to favor FA with lower SST 

and higher CHLA, which may be explained by the differences in SST and CHLA between 

study islands. During the study period, SST was on average 3-4°C lower, and CHLA was 

0.8-2.4 mg m-3 higher around BER than around CIM. However, the influence of SST was 

subsequently evidenced in the SDM that displayed relevant contributions of 

environmental variables such as SST_SUM, SST_SPR and SST_RANGE throughout the 

entire study period in CIM, but also in BER. SST has been identified as the only 
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environmental predictor correlated with higher species diversity of several major marine 

taxa (from zooplankton to marine mammals) at an ocean basin scale  (Tittensor et al. 

2010). Concerning seabirds, SST and GCHLA were the most important parameters 

explaining the foraging distribution during chick-rearing of White-chinned Petrels 

Procellaria aequinoctialis in the Southern Indian Ocean (Péron et al. 2010). Consistent 

with our findings, the alteration of SST has reported severe consequences in the 

reproductive success of pelagic seabirds in other regions of the world (Smithers et al. 

2003).  

Certainly, the static variables DCOL and DLAN were the most important factors in 

predicting the foraging occurrence of Cory’s Shearwaters in BER and CIM in the SDM, 

revealing the influence of the central place foraging constrain during the chick-rearing 

season, and the preference to feed in shallow waters. During 2011, the warming pattern 

around CIM forced shearwaters to shift their distribution, thus five parameters (i.e. 

SST_RANGE, SST_SPR, SST_SUM and GCHLA) displayed similar percentages. We 

can infer that birds were not dispersing randomly but actually intended to target 

seamounts, upwelling zones and shelf breaks of which all these predictors are proxies. 

Furthermore, analyzing the response curves we can easily observe the tendency of CIM 

birds to forage closer to the breeding colony as oceanographic conditions improved from 

2011 to 2014 (Fig. 11). 
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Fig. 11. Calonectris borealis response curves from MaxEnt 

models for the static variable distance-to-colony (DCOL) 

in kilometers corresponding to the chick-rearing seasons 

of 2011, 2012 and 2014. Cima Islet (CIM), Porto Santo 

Madeira 

DCOL 2011 

DCOL 2014 

DCOL 2012 
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Appendix. 

Appendix 1. MaxEnt model results for Calonectris borealis from Berlenga in 2011, 2012 and 

2014. Estimates of model fit and relative contributions of the environmental variables, normalized 

to percentages. Values are means of 50 replicate runs. Most relevant parameters (≥ 10%) are 

shown in bold. DCOL (distance-to-colony), DLAN (distance-to-land), SST_RANGE (sea surface 

temperature range), SST_SUM (sea surface temperature summer), BAT (bathymetry), SST_SPR 

(sea surface temperature spring), CHLA_PK (chlorophyll-a peak), GBAT (bathymetry gradient), 

CHLA_SUM (chlorophyll-a summer), ASST_SPR (sea surface temperature spring anomaly), 

GCHLA_SUM (chlorophyll-a summer gradient), ASST_SUM (sea surface temperature summer 

anomaly), ACHLA_SUM (chlorophyll-a summer anomaly). 

BERLENGAS 

 2011  2012  2014  

AUC test 0.974  0.981  0.97  

Variable Contribution Permutation Contribution Permutation Contribution Permutation 

DCOL 36.6 42.9 25.3 30.4 65.4 70.3 

DLAN 36.5 34.3 6.5 8.3 3.8 6.2 

SST_RANGE 2.7 1.1 56.7 27.8 2.6 1.4 

SST_SUM 10.5 8.6 - - 14.9 11.6 

BAT 7 2.1 3.7 2.1 3.7 1.8 

SST_SPR 3.3 5.3 4.6 17 4.4 1.8 

CHLA_PK 1.6 1.6 2.1 8 - - 

GBAT 1 1.5 - - 1.2 0.9 

CHLA_SUM 0.4 1 0.2 2.2 - - 

ASST_SPR 0.3 1.7 - - - - 

GCHLA_SUM - - 0.4 2.1 1.2 0.8 

ASST_SUM - - 0.4 2.2 - - 

ACHLA_SUM - - - - 1.8 1.3 
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Appendix 2. MaxEnt model results for Calonectris borealis from Cima Islet in 2011, 2012 and 

2014. Estimates of model fit and relative contributions of the environmental variables, normalized 

to percentages. Values are means of 50 replicate runs. Most relevant parameters (≥ 10%) are 

shown in bold. DLAN (distance-to-land), DCOL (distance-to-colony), SST_RANGE (sea surface 

temperature range), SST_SPR (sea surface temperature spring), GCHLA_SUM (chlorophyll-a 

summer gradient), SST_SUM (sea surface temperature summer), ASST_SPR (sea surface 

temperature spring anomaly), BAT (bathymetry), CHLA_SUM (chlorophyll-a summer), GBAT 

(bathymetry gradient), CHLA_RANGE (chlorophyll-a range), CHLA_SPR (chlorophyll-a 

spring), CHLA_PK (chlorophyll-a peak), ASST_SUM (sea surface temperature summer 

anomaly), ACHLA_SUM (chlorophyll-a summer anomaly). 

 

CIMA ISLET 

 2011  2012  2014  

AUC test 0.922  0.981  0.985  

Variable Contribution Permutation Contribution Permutation Contribution Permutation 

DLAN 14.5 5.1 47.3 47.3 11.6 2 

DCOL 10.8 22 11.8 18.7 46.2 71.4 

SST_RANGE 15.9 12.7 7 7.6 15.7 2.8 

SST_SPR 13.8 15.6 11.4 7.4 9.7 0.8 

GCHLA_SUM 10.6 2.6 2.1 0.4 - - 

SST_SUM 9.3 17.6 4.9 4.8 2.2 0.6 

ASST_SPR 6.9 3.7 5 1 - - 

BAT 5.7 6.5 1.8 2.9 5.3 18.1 

CHLA_SUM 3.4 3.9 - - - - 

GBAT 2.5 0.9 - - 2.2 0.2 

CHLA_RANGE 2.3 3.1 0.9 2.8 1.7 0.6 

CHLA_SPR 2 1.8 1.6 1.7 - - 

CHLA_PK 1.5 2.9 1.2 0.9 1.9 2.2 

ASST_SUM 0.9 1.5 2.5 4.2 1.4 0.7 

ACHLA_SUM - - 2.4 0.3 1.9 0.6 

 

 

 


