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Abstract 

A stimulating area in cognitive neuroscience focuses on the investigation of 

neural mechanisms underlying the emergence of visual perceptual 

representations. Human perception of objects and scenes is exceptionally 

efficient, but it may be put to test when one is presented with figures which lead 

to inherently ambiguous or contradictory representations, yet possible. 

Multistable percepts are striking phenomena in which the visual system is 

presented with more than one possible interpretation of physically constant 

sensory information. The visual system thus has to choose among a set of 

potentially ambiguous alternatives and actually enters a loop of continually 

alternating percepts, whereby a viable visual interpretation dominates for a few 

seconds and is then replaced by a rival interpretation. The neural correlates of 

multistability remain poorly understood. It is not consensual whether 

disambiguation of ambiguous stimuli is achieved within the visual cortex or 

perceptual alternations are initiated outside the primarily sensory areas, within a 

network of perceptual decision involving higher level brain regions. 

A particular outstanding question is how the visual system integrates global 

patterns of motion from its components and the role of distinct visual areas in 

such integration process. While this question has been commonly addressed with 

plaid stimuli, we used a bistable ambiguous moving stimuli that can be perceived 

as a coherently pattern comprehending both visual hemi-fields moving 

downward or as two separate objects moving inward, one in each visual hemi-

field, in order to investigate the pivotal role of human MT+ in perceptual decision 

mechanisms. By using functional magnetic resonance imaging (fMRI) and in 

particular deconvolution analysis of fMRI data we could test the modulation of 

MT+ activity with alternative bistable percepts and also the influence of MT+ and 

other brain regions in the emergence of perceptual switch events. Single-subject 

analysis revealed higher signal changes in MT+ in response to component 
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percepts than to pattern percepts. This result is in agreement with the popular 

two stage model of motion processing, as a larger population of both component 

and pattern neurons in MT+ are responding during the perception of two 

separate objects while a smaller population of pattern neurons is responding to 

the integrated global image. Despite the fact bottom-up sensory adaptation in 

MT+ is supported as an early mechanism for perceptual decision, additional top-

down mechanisms were not excluded, as specific analysis of perceptual switch-

related transient signal changes revealed higher level areas that are implicated in 

the perceptual decision process, such as frontal areas and parietal cortex. Right 

superior parietal lobule (SPL) was even shown to have significant effective 

connectivity with MT+, as revealed by Granger causality analysis. In fact, the role 

of bottom-up versus top-down mechanisms in perceptual decision remains highly 

debated. 

Previous neuroimaging studies have also suggested an involvement of a right 

fronto-parietal network regulating the balance between stable percepts and the 

triggering of alternative interpretations. Modulation by attention and additional 

top-down effects may play an important instructive role.  We investigated neural 

activity patterns in response to perceptual changes of ambiguous Necker cube 

under different amounts of working memory load using a dual-task design. We 

hypothesized that the same regions that process working memory load are 

involved in perceptual switching and confirmed the prediction that perceptual 

reversals lead to fMRI responses that linearly depended on load. Accordingly, 

posterior SPL (pSPL), anterior prefrontal cortex (aPFC) and dorsolateral prefrontal 

cortex (DLPFC) exhibited differential fMRI signal changes in response to 

perceptual reversals under working memory load. Our results further support the 

suggestion that the pSPL may be directly involved in the emergence of perceptual 

reversals, given that it specifically reflects both perceptual versus real changes and 

load levels. The aPFC and DLPFC, showing a significant interaction between 

reversal levels and load, might subserve a modulatory role in such perceptual 
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reversals, in a mirror symmetric way:  in the former activation is suppressed by 

the highest loads, and in the latter deactivation is reduced by highest loads, 

suggesting a more direct role of the aPFC in the triggering of perceptual switches. 

In sum, the work presented in this thesis, confirmed a close relation between 

activity changes in MT+ and perceptual switches involving differential 

segregation or integration of motion signals. Further investigation is needed to 

clarify if the dynamic reconfiguration of cell assemblies within MT+ leading to 

bistable percepts is mediated by local competition only or also by external 

sources of influence triggering perceptual transitions, such as attention. With a 

different ambiguous bistable paradigm we could confirm the participation of 

frontal and parietal brain regions in perceptual transitions, suggesting they are 

involved in top-down modulatory control of visual perceptual decisions. 
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Resumo 

Uma área fascinante em neurociência cognitiva é a investigação dos mecanismos 

neuronais que estão na base de representações distintas na percepção visual. Em 

humanos a percepção de objectos e cenas é excepcionalmente eficiente, mas 

pode ser posta à prova quando são apresentadas figuras que são inerentemente 

ambíguas ou contraditórias, mas fisicamente reais. A percepção multi-estável é 

um fenómeno surpreendente em que o sistema visual se depara com mais que 

uma interpretação possível de informação sensorial constante. O sistema visual 

tem por isso que decidir entre um conjunto de possíveis alternativas 

potencialmente ambíguas e entra num ciclo de mudanças perceptuais em que 

uma interpretação visual viável domina por alguns segundos e é depois 

substituída por uma interpretação rival. Os correlatos neuronais de fenómenos 

de multi-estabilidade continuam pouco esclarecidos. Não é consensual se a 

decisão sobre estímulos ambíguos é efectuada dentro do córtex visual ou se as 

alternâncias perceptuais são iniciadas fora das áreas sensoriais primárias, numa 

rede de decisão perceptual que envolve regiões de alto nível no cérebro. 

Uma questão particularmente proeminente é como o sistema visual integra 

padrões globais de movimento a partir dos seus componentes locais e qual o 

papel de diferentes áreas do cérebro nesse processo de integração. Enquanto 

esta questão tem sido investigada com padrões de xadrez em movimento 

formados por barras de diferentes orientações sobrepostas, para estudar o papel 

fundamental do complexo MT+ (do inglês middle temporal), a região de 

processamento de movimento, em mecanismos de decisão perceptual, aqui 

utilizámos um estímulo ambíguo bi-estável que pode ser percebido como um 

padrão de linhas que ocupam ambos os hemi-campos visuais movendo-se de 

forma coerente verticalmente para baixo ou como dois objectos separados, um 

em cada hemi-campo visual movendo-se horizontalmente para o centro. 

Utilizando ressonância magnética funcional (fMRI, do inglês functional magnetic 
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resonance imaging) e em particular a técnica de análise de desconvolução de 

dados de fMRI pudemos investigar a modulação de actividade neuronal em MT+ 

durante alternativas perceptuais bi-estáveis e também a influência de MT+ e 

outras regiões do cérebro na ocorrência de eventos de transição perceptual. A 

análise ao nível do indivíduo permitiu-nos observar maiores variações de sinal de 

fMRI em MT+ em resposta à percepção das duas componentes do estímulo em 

movimento do que em resposta à percepção do padrão global. Este resultado 

está de acordo com o modelo popular de processamento de movimento em dois 

níveis, já que uma maior população de neurónios tanto do tipo component como 

pattern em MT+ está activa durante a percepção dos dois objectos separados em 

hemi-campos visuais diferentes, enquanto uma menor população de neurónios 

pattern está activa durante a percepção de uma imagem global integrada em 

ambos os hemi-campos. Apesar de estes resultados suportarem um mecanismo 

de adaptação bottom-up, não excluímos que mecanismos top-down adicionais 

possam ter um papel na decisão perceptual na visão. A análise específica de 

variações de sinal transientes relacionadas com a transição perceptual revelou 

áreas de mais alto nível que estão implicadas no processo de decisão perceptual, 

como áreas frontais e no córtex parietal. Com análise de causalidade de Granger, 

encontrámos mesmo medidas de conectividade efectiva entre o lóbulo parietal 

superior e a região MT+. De facto, o papel de mecanismos bottom-up versus top-

down na decisão perceptual permanece em debate. 

Estudos anteriores de neuroimagem sugeriram também o envolvimento de um 

circuito frontoparietal no hemisfério cerebral direito que regula o balanço entre 

percepções estáveis e o desencadeamento de interpretações alternativas. Neste 

processo, a modulação pela atenção e efeitos top-down adicionais podem ter um 

papel elucidativo importante. Investigámos padrões de actividade neuronal em 

resposta a alternâncias perceptuais do cubo de Necker em diferentes condições 

de recrutamento de memória de trabalho com uma tarefa dual. Colocámos a 
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hipótese de que as mesmas regiões que disponibilizam recursos para a memória 

de trabalho estão envolvidas nas transições perceptuais, e confirmámos a 

previsão de que as alternâncias da interpretação visual levam a uma variação do 

sinal de fMRI dependente dos níveis de memória de trabalho recrutados. De 

acordo, o lóbulo parietal superior posterior, o córtex anterior pré-frontal e o 

córtex dorso lateral pré-frontal mostraram variações de sinal fMRI em resposta às 

mudanças perceptuais diferentes consoante o contexto dos diferentes níveis de 

memória de trabalho. Os nossos resultados suportam adicionalmente a sugestão 

de autores anteriores de que o lóbulo parietal superior posterior está 

directamente envolvido na ocorrência de transições perceptuais, dado que esta 

área reflecte diferenças de activação neuronal tanto na comparação de transições 

perceptuais com mudanças reais do estímulo visual como no recrutamento de 

diferentes níveis de recursos de memória de trabalho. O córtex pré-frontal 

anterior e o córtex dorso lateral pré-frontal, que mostraram uma interacção 

significativa entre a quantidade de transições perceptuais e o nível de memória 

de trabalho recrutado, podem facilitar um processo de modulação das transições 

perceptuais de maneira simétrica: no primeiro a activação neuronal é suprimida 

pelos níveis mais elevados de memória de trabalho recrutados, e no último 

observámos uma deactivação neuronal menor quanto menor é a quantidade de 

memória de trabalho recrutada, sugerindo um papel mais directo do córtex pré-

frontal anterior no surgimento de transições perceptuais. 

Sumariamente, o trabalho apresentado nesta tese confirma uma relação entre a 

actividade neuronal na região MT+ e as transições perceptuais que envolvem 

integração ou segregação de informação de movimento de objectos complexos. 

No entanto, é necessária mais investigação para esclarecer se a reconfiguração 

dinâmica de sub-populações neuronais em MT+ que levam a diferentes 

interpretações estáveis é mediada por mecanismos de competição local apenas 

ou também por fontes externas ao córtex visual que influenciam o 
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desencadeamento de transições perceptuais, como a atenção. Com um estímulo 

ambíguo bi-estável diferente pudemos também confirmar a participação de 

regiões frontais e parietais do cérebro no processo de transição perceptual, 

sugerindo que estão envolvidas no controlo top-down da decisão perceptual na 

visão. 

 

(escrito sem recurso ao novo acordo ortográfico) 
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The relatively advanced state of the neuroscientific research of the visual system 

is relevant per se and contributes to its use as a model system for understanding 

general principles about how the brain processes information. In the following, 

basic anatomical and functional properties of the visual nervous system will be 

described. First, the early stages of visual processing in the eye and the pathways 

from the retina to the visual cortex are presented. This is followed by a brief 

description of central visual processing pathways. This introduction will then focus 

on the so-called perceptual binding problem in cognitive neuroscience and 

proposed solutions for the problem. An optimal paradigm of visual motion 

perception based on ambiguous bistable stimuli will be introduced and discussed 

in order to investigate how the visual system integrates information in various 

specialized areas so as to construct a vivid representation of the visual world. 

Finally this introductory chapter describes a brief overview of the processing of 

motion from basic sensory to perceptual levels and their neuronal correlates in 

the human brain. At the end of this chapter the thesis aims and outline are 

presented. 

 

Visual system 

Our world is largely visual and that’s why the visual system is one of the most 

studied systems in neuroscience, because of its crucial role in human interaction 

with the world. It is through the eyes that humans obtain much of their 

information about the surrounding environment 1. The remarkable organization 

of the human visual system, from the eye to distributed and specialized 

processing areas in the brain, allow the construction of vivid representations of 

the visual world. 

The eye actually projects an upside down, reversed and focused picture of the 

external world onto the retina, which is then delivered to the brain. The light 
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enters the eye through the cornea (nonadjustable) and is focused by the lens 

(adjustable through accommodation mechanisms) into the neural portion of the 

retina, at the back of the eye, after passing through layers of ganglion cells, 

bipolar cells and photoreceptors 2. Then when the light arrives at the back of the 

retina, the photon-absorbing photopigments contained in the sensory 

photoreceptors, rods and cones, trigger the transduction of the information 

contained in light into electrical signals by the intrinsic circuitry of photoreceptors, 

bipolar cells, horizontal cells and amacrine cells 3. The retina of each eye is divided 

into a temporal (lateral) hemiretina and a nasal (medial) hemiretina. The temporal 

visual field is projected to the nasal hemiretina and the nasal visual field is 

projected to the temporal hemiretina 3.  

Axons of ganglion cells, the output cells of the retina, leave the eye in a bundle 

called optic nerve and meet at the optic chiasm, where fibres from the nasal 

hemiretina decussate and join the fibres from the temporal hemiretina of the 

opposite eye, which remain uncrossed, forming the optic tract. The temporal 

hemiretina of one eye and the nasal hemiretina of the other eye view the same 

visual field so that each optic tract conveys information from the opposite 

hemifield of both eyes; that is, the optic tract on one side carries information 

related to the contralateral visual fields. The optic tracts enter the lateral 

geniculate nucleus (LGN) of the thalamus, which serves as a major bi-hemispheric 

relay station between the retina and visual cortex, as LGN receives retinal input 

and projects two bands of axons called optic radiations to the primary visual 

cortex (V1) in the brain 2,4. The anatomy of the human visual system is shown in 

Figure 1-1. 
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Neural processing and visual pathways 

During the past few decades our understanding of the neural bases of visual 

perception and visually guided actions has advanced greatly. Neuronal 

processing of features of the visual input in the retina is highly parallel. It results 

from several functionally distinct ganglion cell types specialized for different 

Figure 1-1. Anatomy of the visual system. Light arrives at the eye and is focused 

by the lens on to the retina, where photoreceptors transduce the light into 

electrical signals that are processed by local retinal neurons. Axons of retinal 

ganglion cells, the output cells of the retina, leave the retina in a bundle called 

the optic nerve. At the optic chiasm, some axons cross over, so that axons 

representing the right half of visual space travel to the left lateral geniculate 

nucleus (LGN) and axons representing the left half of visual space travel to the 

right LGN. In the LGN, the axons segregate into layers according to eye of origin 

and other properties. LGN relay cell axons form a band called the optic radiations 

and project to the primary visual cortex, where LGN axons representing each eye 

ramify in an alternating fashion 2. Reproduced from Miquel Perello Nieto 

(https://commons.wikimedia.org/wiki/File:Human_visual_pathway.svg#). 
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visual features, such as achromatic contrast and colors. The primary visual cortex 

(V1), or Brodmann area 17 5, is the first cortical area to process visual information 

coming from the retina via LGN. The way whereby visual information is 

redistributed in V1 to other extrastriate areas has been extensively investigated 

in anatomical and physiological studies in primates. An important principle of 

cortical organization states that visual areas are organized into hierarchical, 

parallel processing streams 1, by which separate extrastriate cortical areas 

integrate different features of the visual world to achieve visual perception 1,6–8.  

An extensively supported model of these processing streams was proposed by 

Ungerleider and Mishkin 9. The model proposes the existence of two different 

visual pathways: the ‘where’ or dorsal visual pathway which processes spatial 

information, object location and motion cues; and the ‘what’ or ventral visual 

pathway, devoted to identification of object’s features such as shape and color. 

The two pathways have been originally described for nonhuman primates and 

with brain imaging techniques, the two major processing pathways have also 

been convincingly demonstrated in the normal human brain 1. The dorsal and 

ventral visual pathways are illustrated in Figure 1-2. According to this model, in 

both dorsal/ventral visual streams there are cortical projections from the primary 

(low-level) visual cortex to extrastriate (higher-level) cortical areas, in which there 

is a transformation of lower level information into more abstract representations 

through successive processing states. At the earliest stage of visual perception V1 

neurons are tuned to several features such as orientation, spatial and temporal 

frequency 8, direction of motion 10 or binocular depth 11 and color selectivity 12. 

Within the dorsal visual pathway, direction-sensitive V1 cells signal direction of 

motion of local image features within their small receptive fields, which is 

subsequently sent to secondary visual cortices V3 and V5. In turn, direction-

selective cells in V5, composed of two distinct regions, middle temporal - MT - 
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and medial superior temporal - MST, respond specially to global motion of an 

object or pattern as a whole 2,13–15.  

 

Figure 1-2. Dorsal and Ventral parallel visual pathways. Visual processing in the 

brain is handled, in part, by two processing streams extending from primary visual 

cortex: the dorsal (occipito-parietal) visual pathway (‘Where’) which projects from 

V1 to the parietal cortex and underlies processing of spatial information; and the 

ventral (occipito-temporal) visual pathway (‘What’) which spreads from V1 to the 

temporal lobe and is involved in object identification as well as shape and face 

processing. Both pathways are assumed to consist of feedforward and also 

feedback connections and extend into prefrontal cortex. MT, human homologue 

of monkey middle temporal area; MST, human homologue of monkey medial 

superior-temporal area; LOC, lateral occipital cortex; FFA, fusiform face area; PPA, 

parahippocampal place area; IPS, intra-parietal sulcus; SPL, superior parietal 

lobule; DLPFC, dorso-lateral prefrontal cortex; VLPFC, ventro-lateral prefrontal 

cortex. Adapted from 1. 
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Concerning the inputs to the ventral visual pathway, V1 acts as a spatiotemporal 

first-order filter whereas V2 responds to illusory and second-order contours 16. 

Cells in V4 encode curved shapes and color, being important in global form 

perception 17. Additionally, inferior temporal regions respond selectively to global 

object features such as shape (e.g. faces) 18. In other words, V1 might be assumed 

as the gateway to higher visual areas and many of these areas respond to even 

more specific stimuli than does V1. 

 

Visual motion perception 

One area of visual neuroscience that has witnessed greater progress is visual 

motion perception, possibly due to its crucial role in several important daily tasks 

such as detecting that something is moving to draw one’s attention to it, 

segmentation of foreground from background, computation of 3-D shape of an 

object or computing the distance between several objects in a visual scene. In 

particular, there has been extensive research on the role of the visual system in 

extraction of object motion. This topic remains central within the field visual 

neuroscience. 

This section comprises three sub-sections. We begin with a short review of the 

low-level motion mechanisms in the primate visual system, providing a brief 

explanation of low-level one-dimensional motion detection. Afterwards, we 

present two higher-level neural mechanisms that mediate perception of two-

dimensional motion of more complex objects (which mimic the real environment). 

We also present a small review of the role of extrastriate visual areas in higher-

level motion processing. Finally we review evidence for striate and extra-striate 

areas in the human brain that are implicated in the perception of visual motion, 

mainly drawn from experimental work from brain imaging studies. 
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Low-level motion processing in primary visual cortex of primates 

The visual system infers motion from the changing pattern of light in the retinal 

image. The basis for motion processing in the primate visual system are the 

direction-selective (DS) cells with oriented receptive-fields in primary visual cortex 

8. At an early stage of visual processing, in primary visual cortex V1, motion signals 

are extracted by DS cells in V1 that essentially compute the Fourier energy of the 

spatiotemporal luminance patterns within their local receptive fields As motion 

can be seen as continuous or sampled displays of a stimulus in different spatial 

locations through time, the problem of detecting motion, then, is the problem of 

detecting spatiotemporal orientation. Perception of motion, thus, can be 

mathematically modelled as spatiotemporal filters that extract spatiotemporal 

orientation as a simple extension of the mechanisms for extraction of pure spatial 

orientation in the visual system 19,20. This spatiotemporal energy model has 

become a standard theoretical framework for low-level motion analysis in early 

visual cortex 21. A clear limitation in the responses of DS cells is the local nature 

of low-level motion extraction. The receptive fields of DS cells are spatially 

restricted windows within which motion is “measured”. When an extended 

contour, such as a bar, moves through that window, the receptive field of a DS 

cell may be too small to “see” the ends of the bar and the cell cannot 

unambiguously respond to the bar’s direction of motion, independent of its 

orientation. This can be seen as a smaller scale instantiation of the aperture 

problem, in which a grating moves behind a small aperture (Figure 1-3). Any 

motion parallel to the bar (alone or the bars of a grating) is invisible, as the 

luminance-defined energy features of the stimulus within the receptive field of 

the DS cell (or within the aperture) will not change. For example, a vertical bar 

moving smoothly up and to the right will traverse a series of small DS receptive 

fields over time. The bar will be signalled by DS cells with that specific preferred 

orientation – vertical. As a DS cell does not change its preferred contour 
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orientation, those cells can only signal the motion component perpendicular to 

the bar’s orientation, which, in the case of a vertical bar moving up and to the 

right, means the rightward motion; the bar’s upward component of motion 

produces no measurable change in luminance-defined features of the bar within 

the receptive fields of those cells, with a preferred vertical orientation 22. In fact, 

there is a family of possible motions in two dimensions of a single bar that have 

an invisible parallel motion component and an orthogonal motion component 

(Figure 1-4A). All those possible motions lie along a line that is parallel to the bar 

and can lead to the same perception of motion of the stimulus. Therefore, DS 

cells in primary visual cortex can only respond to stimuli moving along an axis 

perpendicular to the cells’ preferred orientation, which is then the cell’s preferred 

direction of motion 19,20,23. These cells are characterized by strong response to a 

stimulus in the preferred direction and little or no response to other directions. 

 

Figure 1-3. Ambiguity of motion of one-dimensional patterns. The three sections 

of the figure each show a surface containing an oblique grating in motion behind 

a circular aperture. In the left panel, the surface moves up and to the left; in the 

middle it moves up; in the right, it moves to the left. Note that in all three cases 

the appearance of the moving grating, as seen through the window, is identical: 

the bars appear to move up and to the left, perpendicular to their own orientation, 

as if produced by the arrangement shown on the left, because the motion 

component parallel to the grating’s bars produces no changes in luminance as 

detected by direction-selective cells in primary visual cortex. Adapted from 25. 



G e n e r a l  I n t r o d u c t i o n  | 33 

One must distinguish at this point between one-dimensional (1-D) and two-

dimensional (2-D) patterns or objects. A 1-D pattern is one like a bar or grating, 

of which the endings are outside a DS cell receptive field or beyond the edge of 

a viewing aperture (Figure 1-3), that is uniform along one axis and only contains 

features of a single orientation. Note that when a 1-D pattern moves parallel to 

its orientation, its appearance does not change. A 2-D moving object changes its 

appearance with motion along any single axis, because it has features of more 

than one orientation 21,24. These include random dot fields, plaids (superimposed 

gratings with different orientations) and natural scenes, obviously. 

2-D objects can be seen as composed of 1-D components. But then how can 

motion signalling of 1-D components in primary visual cortex DS cells, which is 

ambiguous (remember the family of possible motions that give rise to the same 

perception), be used for computation of 2-D motion? Notably, while a single 

moving contour cannot offer a unique solution of its motion, two moving 

contours (which belong to the same object) can, as long as they are not parallel 

25. The local motion information of 1-D contours computed in DS cells of primary 

visual cortex is processed further and somehow combined to achieve extraction 

of true global direction of motion of a 2-D object by higher-level mechanisms of 

motion processing.  

 

Higher-level mechanisms of visual motion 

A great deal of research has focused on how the visual system processes the 

motion of 2-D objects. Just like the shape of a 2-D object is perceived by breaking 

it up into 1-D constituents, contours in that case, motion of complex objects can 

also be thought as arising from a combination of motion responses to local 1-D 

components of the object. 
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A popular experimental approach which has frequently been used to investigate 

this question involves the use of plaid stimuli, made by superimposing two 

gratings independently moving with different orientations (Figure 1-4B), which 

are designed to mimic the motion of real objects in the visual environment. These 

plaids can be perceived as the two independent gratings sliding one over the 

other or as single objects rigidly moving coherently in a single direction 24,26. The 

disambiguation of this perceptual motion problem has been explained mainly by 

two models of 2-D motion processing. 

The first model assumes that the global motion direction and velocity is detected 

to be the direction and speed of “blobs” that appear in a plaid pattern, at the 

spatial intersections of the two component gratings. Processes based on a 

direction tacking not selective for orientation might detect these blob-like 

features and signal their motion. The motion of the plaid as a whole is obviously 

identical to the motion of the blobs. This low-level monocular mechanism is called 

the Blob Tracking (BT) model 20,24,27. 

The second and most accepted method for combining 1-D component motion in 

order to explain 2-D motion is the Intersection of Constraints (IOC) model 24,27. 

Whereas each of the component 1-D gratings can only be seen to move 

orthogonally to its orientation, a constraint line of parallel to its orientation 

defines the direction and speed of all possible motions consistent with that 

component. The point at which two constraint lines (one for each component) 

intersect predicts the direction and speed of the 2-D object composed of the two 

1-D components, and this is referred to as the IOC direction. In the first-stage of 

processing the independent component motion signals are extracted. The 1-D 

motion signals are then combined at a higher-order second stage of processing 

to extract the IOC solution for 2-D global motion (Figure 1-4B). 

The two models have flaws in certain circumstances and there is controversy 

concerning the mechanism by which the visual system computes the direction of 
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2-D motion. Some authors implicate both an IOC mechanism and a blob-tracking 

mechanism in the perception of plaids 26–29. 

 

 

The role of extrastriate cortex in motion processing 

Electrophysiological studies in monkeys and cats revealed that neurons both in 

and outside the primary visual cortex are selective for the direction and speed of 

motion of visual stimuli 8,25. Movshon and colleagues showed that while striate 

neurons in cats and monkeys are selective for 1-D motion only, there are neurons 

in monkey’s extrastriate cortex responding to both 1-D and 2-D motion 25,30. This 

A B 

Figure 1-4. One-dimensional and two-dimensional visual motion perception. The 

velocity-space representation of some moving patterns. In each panel, a vector 

represents motion in a direction given by the vector's angle at a speed given by 

the vector’s length. (A) A single grating moves behind an aperture. The dashed 

line indicates the locus of directions and speeds compatible with the perceived 

motion of the grating, perpendicular to the grating orientation. (B) A plaid 

composed of two orthogonal gratings moving at the same speed. The dashed 

lines give the possible motions of each grating alone. Their intersection is the only 

shared motion. Thus it represents the only possible motion for a single object 

containing both components and corresponds to what is perceived. Adapted 

from 24. 
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region is located in the posterior bank of the temporal sulcus and is known as 

middle temporal area or simply MT 31. Cells in primary visual cortex project either 

directly or via V2 and V3 to MT (sometimes also termed V5). Moreover, there are 

also direct subcortical inputs to this area 22. The fact that there are only about 

25% of motion selective neurons in V1 and even less in V2 8,32, the major inputs 

to MT, supports the notion that MT is highly specialized for motion processing 

per se. A typical V1 neuron responds to a particular orientation (edge or bar) 

moving in a particular direction. Most MT neurons are direction-selective, each 

responds best to a preferred direction within its receptive field, pretty much 

independent of stimulus orientation or configuration 15,25,33–36. This sustains the 

belief that MT underlies the second-stage mechanism of motion processing 

referred above, i.e. the stage that disambiguates direction of 2-D motion. Closely 

related to MT is a neighbouring area, the medial superior temporal area (MST), 

which receives input from MT. Neurons in area MST have even larger receptive 

fields organized in ways that provide them with selectivity for complex optic flow 

such as expansion or contraction 37. 

Physiology has identified motion-selective cells in several brain regions, but has 

largely focused on the best understood areas, MT and MST, and stimuli, which 

processing mechanisms can be computationally implemented with luminance-

based motion energy models 33. The question is then if there are different types 

of neurons sensitive to 1-D motion, 2-D motion or both in MT. Furthermore, there 

has been investigation on which type of neurons are involved in the described 

first and second stages of motion processing. 

 

Pattern and component neurons in MT 

MT contains neurons responding to the direction of motion of single oriented 

contours (1-D) whether they are presented in isolation or as part of a more 
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complex object (2-D), which are known as component neurons. MT contains also 

neurons showing pattern selectivity, meaning that these neurons respond to the 

direction of 1-D contours isolated, like component neurons, but they also respond 

specifically to motion of more complex 2-D objects as a whole, which are known 

as pattern neurons. The receptive field of pattern neurons in MT, which is 

substantially larger than that of DS cells in V1, combines local (1-D) motion 

outputs from primary visual cortex to compute higher order (2-D) motion 38–40. 

MT neurons are topographically organized in a columnar system 41 and a 

substantial fraction of these neurons are able to extract the global direction of 

motion of an object independently of the orientation of its components 34,42,43. 

About 40% of MT neurons are component neurons, while about 25% are pattern 

neurons. There is electrophysiological evidence that neuronal computation of the 

IOC phase of the second-stage model described earlier is performed by pattern 

neurons in MT, while the properties of component neurons in V1 and MT seem 

to correspond to the first stage  25,42. 

 

Visual motion in human brain 

Psychophysical investigation has allowed to describe many aspects of human 

performance in motion perception. Neurophysiology permitted to characterize at 

the cellular and small neural network level the neural correlates of motion 

processing in non-human primates. Advances in neuroimaging, in particular fMRI, 

have brought the potential to investigate the relation neural activity and 

behaviour in humans, enhancing our understanding of motion processing 

mechanisms. 

In the human brain, V1 can be relatively easily identified using well established 

retinotopic mapping procedures that clearly delineate the boundaries of the 

primary visual cortex 44. Retinotopic mapping has identified a motion sensitive 
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extrastriate area in the dorsal visual processing stream. This dorsal extrastriate 

area, called V3a (“V3 accessory”, homologous with monkey visual area V3) 33, was 

shown to respond strongly to coherent motion in the full contralateral visual 

hemifield 45–47. Evidence for DS neurons exhibiting direction-selectivity was found 

to be present also in MT in humans 48. It is well accepted that the human analogue 

to monkey MT is located within a relatively large expanse of tissue anterior to 

early, retinotopically organized visual areas, at the junction of the posterior bank 

of the dorsal limb of the inferior temporal sulcus with the lateral occipital gyrus 

or sulcus 14,22,33,49–51. 

In most human neuroimaging studies motion responsive regions are commonly 

isolated based solely on a motion localizer. This makes it difficult to separate MT 

proper form its surrounding satellite areas, such as MST, with a strong response 

for ipsilateral motion stimuli, which is located in the anterior bank of the dorsal 

limb of the inferior temporal sulcus 13. Thus, the entire motion responsive area in 

humans is usually referred to as “MT+”, “MT complex” or simply “MT” for short 

22,33,35. Nevertheless, fMRI allowed to distinguish the same sub regions within MT+ 

as in the macaque. Dukelow and colleagues observed a more posterior region, 

MT proper, which receptive fields extend only a few degrees into the ipsilateral 

visual field, response and a more anterior region, MST, which have receptive fields 

that extend well into the ipsilateral visual field, responds to both contra- and 

ipsilateral motion stimuli 52. 
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Activity in MT+ is found to be significantly related to perception of motion of 

various kinds, including genuine motion, flickering 53, apparent motion 54, motion 

aftereffects 55,56, implied motion 57–59 and bistable motion. Tootell and colleagues 

have shown that MT+ responds strongly to moving gratings 51, which is evidence 

confirming that motion processing in MT+ is driven strongly by luminance-based 

energy models. Just like in monkey MT, there is evidence for the existence of DS 

cells in human MT+ that respond to the global motion of a 2-D object within their 

receptive fields – pattern motion cells - as well as to a given 1-D component of  

motion – component motion cells 13,60. Huk and Heeger observed that MT+ 

contains a substantial portion of pattern motion neurons, whereas V1 shows 

evidence for component motion cells only 13. This is in accordance with the 

second-stage model of motion processing described earlier in the macaque 

dorsal 

anterior 

 

 

Figure 1-5. Location of human motion-responsive brain area MT+. Position of MT 

and MST, viewed on a 3-D cortical reconstruction of the brain (left hemisphere). 

MT (green) falls on the posterior bank of the occipital continuation of the inferior 

temporal sulcus (ITS), whereas MST (cyan) falls on the anterior bank. The superior 

temporal sulcus (STS) is indicated for reference. Other visual areas are shown for 

reference: V1, red; V2, magenta; V3, blue; V3a, yellow. Reproduced from 14. 
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monkey brain. The human brain solves ambiguity in visual motion in V1 DS cells 

with the addition of a further processing step in MT+, in which pattern motion 

cells extract the global direction of motion independent of the local components 

22. Notably, activation in MT+ coincident with perceptual switches during bistable 

motion of plaid (superimposed gratings with different orientations and motion 

direction) provides evidence that this region is able to respond reliably to both 

physical changes in the motion characteristics of the stimulus and also to 

perceptual changes of a physically constant stimulus 24,28,29,61–64. 

 

The binding problem in cognitive neuroscience 

Visual perception involves the neural integration of visual features processed in 

parallel 65. Neurons in different visual areas are selective for different stimulus 

features, as we have seen earlier 66–68. The classical theories of sensory processing 

in the visual system assumed specialized higher visual areas to exist to solve 

difficult computational problems posed by the visual world and often 

underemphasize feedback connections that reach areas as low as V1 or the LGN 

69,70. If we would accept a strictly hierarchical visual system with feed-forward 

processing, visual perception would require a master area on top to which all of 

the specialized high-level areas would “report”. In this top level area there would 

be a population of neurons responding only to a specific combination of stimulus 

features. This is highly unlikely, not only because of the huge amount of specific 

conjunctions of neurons that would be needed to represent specifically every 

object in the visual world as also because novel objects would not be represented. 

In fact, there is no anatomical evidence of such top level area 1. 

The unconvincing “master area” conjecture stimulated theories of integrative 

processing, in which the distributed parallel processing of different visual features 

is integrated to form coherent percepts of the visual world. More recent 
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approaches emphasize the constructive nature of perception by assuming that 

top-down (goal-directed mechanisms such as attention) and bottom-up 

(stimulus-driven mechanisms) processes cooperate in everyday life to guide brain 

processing toward behaviourally relevant or particularly salient stimuli 71,72. 

Physiological and functional MRI studies have indeed confirmed the key role of 

bottom-up and top-down neural processes in vision, which connect multiple 

specialized brain areas to integrate information 73,74. The precise functional role 

of these connections is however not completely understood and remains unclear 

how distributed processing of different visual features is integrated to form 

coherent percepts of the visual world. The problem with this object representation 

within and across many brain areas arises when visual scenes contain multiple 

objects. Neuronal responses signal that a set of visual features is present but not 

which feature belongs to which object. Thus, neurons responding to one of the 

objects are indistinguishable from neurons responding to another object (see an 

example in Figure 1-6). This is known as the binding problem 66. It refers to the 

process used by the brain to combine (or "bind") the results of many sensory 

operations into a single percept. By solving the binding problem the brain 

somehow segregates elements in complex global patterns, a process that allows 

us to distinguish them as discrete objects. 
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Figure 1-6. Classical illustration of the binding problem. At the input of a 

hypothetical neural network consisting of six neurons, different visual images are 

presented that can either be yellow or blue triangles or rectangles in an upper or 

lower position. If for example either a yellow triangle in the top position or a blue 

square in the bottom position is presented, always the three corresponding 

“feature neurons” are activated. However, a problem occurs in the case that not 

only one but two objects are presented to the network simultaneously. In this 

case, all six feature neurons are activated concurrently and without further 

measures, it cannot be concluded which feature belongs to what object. 

Reproduced from 119. 
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There are three main approaches to the solution of the binding problem, all 

considering basic low-level feature detectors. One of the proposed solutions is 

constructed in the basis of convergent hierarchical coding units, which are 

assumed to be neurons (or neuronal populations) selective for conjunctions of 

low level features, such as “yellow triangle on top”. This strategy would be highly 

redundant and limited by combinatorial explosion of possible conjunction of 

features 75. Another solution considers that attention binds the information of 

basic features and delimitates each object for further processing 76. However, the 

successful segmentation of the image into the constituent objects is actually a 

prerequisite for the appropriate positioning of the attentional focus. Thus, 

somehow the binding problem would have to be solved beforehand, in order to 

identify neurons to inhibit or enhance their responses further. A more flexible 

solution, especially when multiple visual objects have to be represented 

simultaneously across potentially overlapping neuronal populations in early visual 

areas, uses a temporal binding mechanism: neurons excited by features of the 

same object fire synchronously, while neurons excited by features of different 

objects do not. A crucial advantage of this coding strategy is that it allows multiple 

assemblies to become active at the same time without becoming confounded. 

 

Controversy of the temporal coding in visual perception  

The temporal binding hypothesis was first supported by reports of synchrony 

between distant neuronal assemblies correlating with holistic perception in 

monkeys 77. Nonetheless, despite compelling evidence in nonhuman studies 

suggesting that dynamic neural assemblies can arise from the synchronized firing 

of neurons, the question of whether integration of visual features, i.e. visual 

binding, relies on this synchronous activity triggered early on controversy and 

heated debate 78. Conflicting results under similar experimental conditions and 
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paradigms contribute to this impasse. For instance, there are reports of 

synchronous activity that correlates with single object perception and anti-

correlates with surface segregation 62,79 but also reports of absent temporal 

binding 80,81. In humans long-range synchronization in the gamma frequency 

band has been claimed to underlie coherent and unified percepts as well 82–84. 

However, in most paradigms visual input changes, and attention/eye movements 

and cognitive arousal remain a problem. Thus, in effect the binding-by-synchrony 

theory is still controversial 81,85,86.  

 

Top-down and bottom-up mechanisms in visual perception 

There is still a debate in the scientific literature about the contribution of low- and 

high-level visual areas in the origin of visual perception 87. Despite being still 

controversial, the temporal binding hypothesis is fully compatible with the 

integrative mechanisms described earlier for visual perception. Visual scenes 

containing multiple objects are processed by means of competitive interactions 

that occur automatically. These interactions can be modulated by bottom-up 

processes based on stimulus driven properties and also top-down processes 

determined by the individual’s goals 72. Both top-down and bottom-up 

mechanisms may play an important role in visual processing. There is evidence 

that bottom-up mechanisms induce temporal relationships among visual cortical 

areas but also that these are influenced by top-down modulation from higher 

order areas 66,88. Furthermore, the idea of top-down can, depending on the 

context, be used with different meanings (see Figure 1-7). The most used variant 

is anatomical, meaning that in visual processing there are both feedforward 

connections (bottom-up mechanism) and feedback connections (top-down 

mechanism) between visual areas at different levels of processing (Figure 1-7A). 

Alternatively, there is the so-called dynamicist idea of top-down (Figure 1-7B), in 
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which the activity of local populations of neurons can influence another neuronal 

assembly at the same level of processing 71. Thus, the enhancement of 

synchronization between visual areas may be based on a combination of both 

bottom-up and top-down influence from higher order areas, between areas at 

the same processing level or even within one area 71,89. Because these two 

processes cooperate in everyday life to bias processing toward behaviourally 

relevant stimuli, it has proven difficult to study interactions between top-down 

and bottom-up mechanisms. 

 

A B 

Figure 1-7. Variants of top-down mechanisms. The idea of top-down and bottom-

up mechanisms may be ambiguous. (A) The most used variant is anatomical, 

meaning that in visual processing there are both feedforward connections 

(bottom-up mechanism) and feedback connections (top-down mechanism) 

between visual areas at different levels of processing. (B) Alternatively, there is the 

so-called dynamicist idea of top-down, in which the activity of already 

synchronized local populations of neurons can influence another neuronal 

assembly at the same level of processing after some point in time. The functional 

meaning is that new or different stimulus features (processed by blue neurons) 

may be incorporated into a broader context or perception, leading to a 

reinterpretation of the stimulus. This might occur between areas at the same level 

of processing or within one brain area. Adapted from 71. 
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Choice of paradigm – multistability in visual perception 

Vision is designed to guide behaviour and a behaving organism cannot afford to 

be halted by indecision. An exciting area in cognitive neuroscience concerns the 

investigation of neural mechanisms underlying the emergence of visual 

perceptual representations. Multistable interpretations of the visual world are 

striking phenomena which may occur when the retinal image is compatible with 

multiple perceptual solutions. This occurs even when the physical pattern of 

retinal stimulation remains constant. Perceptual decision-making is thus defined 

by the choice of an interpretation among a set of two (or more) valid alternatives 

based on peripheral sensory evidence and may crucially affect subsequent action 

selection 90.  A particular challenge is posed to perceptual decision-making in a 

context when multiple interpretations are available in the scene leading to 

rivalrous/conflicting percepts 61–64. This context is instantiated under multistable 

conditions, whereby the pattern of sensory stimulation in the retina remains 

constant and still its perceptual appearance can change dramatically over time 

and switch back and forth. A simple example is bistability, such as binocular 

rivalry, in which two different images are presented to each eye, which compete 

for perception. In this paradigm observers are often requested to press a given 

button any time the interpretation changes, as a result of perceptual decision 

mechanisms 91. 

Multistable stimuli are thus well suited to investigate perceptual integration of 

visual information and understand the role of top-down or bottom-up 

mechanisms in feature integration. Visual bistability is indeed an important 

phenomenon because it can be used as a tool with the aim to understand the 

neural mechanisms underlying perceptual decision making 92. 

There are theories of bottom-up mechanisms as the most important for the 

perception of ambiguous figures 93 while others suggest that perceptual decisions 

might be induced by feedback from higher to lower levels of processing 94. The 



G e n e r a l  I n t r o d u c t i o n  | 47 

role of bottom-up versus top-down mechanisms in perceptual decision remains 

highly debated, as a growing number of studies indicate that both perceptual 

processes play definable roles in the perception of ambiguity 69,87,95–99. On the one 

hand, bottom-up sensory adaptation represent a strong mechanism in perceptual 

decision models 46,63. On the other hand, modulation by attention and additional 

top-down effects may also play an important instructive role.   

 

Neural correlates of perceptual decision 

We do not exactly know where and how visual information is processed in the 

brain to arrive at a difficult perceptual decision. There is evidence from 

neuroimaging and behavioural studies that binocular rivalry is addressed by 

competitive interactions at different brain regions 91,100,101. Although it is accepted 

that rivalry depends on low-level interactions, there is debate about high-level 

modulatory mechanisms in dominance of a stimulus 100. Furthermore, its 

generalizability to multistable perceptual phenomena remains debatable 101. 

Experiments on primates and humans have demonstrated that perceptual 

decision-making relies on gathering and interpreting information in lower order 

sensory regions 90,102–104. However, relatively recent studies have shown that the 

representation of visual information in lower order sensory regions is not 

sufficient to achieve perception 105,106, and further processing of visual 

information in higher order cortical areas is crucial to discriminate visual objects 

90,107. The role of frontal regions in perceptual decision-making is an ongoing 

discussion 90,108,109. There is evidence that neuronal activity in dorsolateral 

prefrontal cortex is modulated as a function of the amount of perceptual 

evidence, and shows greater task-positive fMRI signal and connectivity 

modulation during perceptual decision 108,110. 



48 | C h a p t e r  1  

Indeed sensory systems representing external information and cognitive systems 

addressing task difficulty and interpretation of conflict may co-exist during 

perceptual decision making. Thus, the need to separate distinct cognitive 

components and elucidate their roles in perceptual interpretation has been 

emphasized 111,112. A recent study demonstrated that when observers passively 

experienced rivalry without explicitly reporting perceptual switches, differential 

neural activity in frontal areas was absent, while occipital and parietal regions 

showed consistent activation patterns, suggesting that frontal areas are not 

involved in perceptual alternations, at least in which concerns binocular rivalry 113. 

These results are consistent with a recent study demonstrating that retinotopic 

representations in early visual areas play a role in the dynamics of perceptual 

alternations 114. 

 

Perception of ambiguous figures 

The visual system integrates one percept at a time. If an ambiguous stimulus is 

viewed for an extended period of time, one perceives it as switching back and 

forth between the possible interpretations. Sometimes the perceptual system fails 

to produce a stable unambiguous percept, especially if the visual information is 

equally compatible with different perceptual interpretations as in the case of 

ambiguous figures. A prominent example is the Necker cube (Figure 1-8) whose 

perceived front-back orientation reverses spontaneously. Perceptual reversals 

occur without any physical change of the stimulus and hence provide a distinct 

possibility to study how perceptual interpretations are constructed irrespectively 

of low level stimulus properties 99. 
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The origin of perceptual reversals is still highly under debate regarding whether 

low or high level visual mechanisms play a major role in determining perceptual 

decisions 87. There are studies suggesting that bottom-up mechanisms such as 

adaptation are the most important for the perception of ambiguous figures: the 

neural channels determining one of the available percepts satiate and thus 

perceptual interpretation changes to the alternative one 93. The cognitive theories 

suggest that perceptual decisions might be induced by feedback from higher to 

lower levels of processing, for example, by activation of a high-level “exploratory” 

mechanism that directs selective attention in a way that causes a recurrent 

“renewal” of the image in low-level perceptual systems 94. 

 

Figure 1-8. The Necker cube. The Necker Cube: The left “transparent” line drawing 

version can be perceived in one of two distinct possible interpretations shown on 

the right. Without any other cue, the visual system flips back and forth between 

these two interpretations. If you stare at the Necker cube long enough, you will 

alternate between these two versions 120. 
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Bistable component and pattern motion perception 

Other striking examples of multistability are moving plaid patterns. These are 

formed by superimposed moving gratings which can be perceived either as two 

independently transparent surfaces moving in different directions - component 

motion - or as a single surface moving in an intermediate direction - pattern 

motion - that results from the perceptual fusion of the former. Component 

motion or pattern motion representations are the two alternative perceptual 

solutions. 

How the visual system integrates global patterns of motion from its components 

and the role of distinct visual areas within the visual processing stream in such 

integration process remains an outstanding question. These stimuli have been 

used to investigate with functional MRI whether the motion sensitive area MT+ is 

involved in perceptual segmentation and integration of motion signals related to 

such perceptual surfaces. It is known that cortical area MT+ contains cells 

responding to 1-D components of a moving pattern (component neurons), as 

well as cells responding to the global 2-D motion of a pattern (pattern neurons) 

115. Furthermore, there is evidence that motion sensitive area MT+ itself is 

involved in mediating the switches between the two percepts 61,64. It remains 

however unclear how full integration of multiple globally moving surfaces is 

achieved within the whole visual hierarchy, namely within higher level regions 

MST and dorsal stream regions within intraparietal sulcus. 

 

Evidence for top-down influence in perception of motion in MT+ 

While neurophysiology has focused on bottom-up processing of motion, once 

more neuroimaging is of great help in the investigation of higher-order motion 

phenomena with human observers who can report their perceptual experiences 

unambiguously. 
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There is evidence that MT+ receives input from other sources besides earlier 

visual areas. Implied motion 57, voluntary attentional shift to moving dots 116 or 

imagination of moving dots 73 all produce increased activity in MT+. Considered 

together, these findings imply that MT+ activity is modulated not only by the 

physical characteristics of visual stimuli but also by feedback connections from 

higher order brain areas. 
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Aims and general outline of the thesis 

The neuronal mechanism underlying perceptual decision processes and the 

putative role of high order frontal regions in perception have been widely studied 

but many aspects remain either unknown or controversial. In this thesis we aimed 

to understand the role of top-down mechanisms in feature integration and 

determine the brain regions underlying perceptual transitions. We also 

investigated how brain regions at the same processing level might interact in the 

context of perceptual decision making. 

In Chapter 2 we provide an overview of the methodological approaches used in 

this thesis, namely the origin, analysis and interpretation of the fMRI signal. 

In Chapter 3 we present a particular application of deconvolution analysis of fMRI 

data. This experiment design and statistical analysis in fMRI studies allow to 

empirically extract important features of neuronal response to visual stimuli from 

hemodynamic variable responses in human brain, as measured with fMRI. 

In Chapter 4 we aimed to extend the simplistic view of single site dominating 

triggering of perceptual decision, by combining a novel paradigm requiring large 

scale interhemispheric integration of information to assess the role of multiple 

visual regions involved in motion surface reconstruction and their top-down or 

bottom-up modulation. We chose a visual paradigm that forcibly requires 

interhemispheric integration of information for emergence of perceptual binding. 

We used an ambiguous visual stimulus that can be perceived as one coherent 

moving object or two objects moving independently and separated by the vertical 

meridian. We took advantage of a previously described bistable stimulus that 

critically engages both visual hemifields and, consequently, requires integration 

across both visual hemispheres to form a coherent percept 117,118, as represented 

in Figure 1-9, which closely resemble the pattern and transparent motion of 

drifting plaids differing in that the gratings are presented in a non-overlapping 

configuration. 
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The investigation of the neural correlates of perceptual transitions provides new 

insights into complex cortical networks of motion-sensitive areas driven by 

bottom-up and top-down neural processes. Furthermore, necessary 

interhemispheric integration of visual input will determine perceptual transitions 

(between perceiving one coherent object and two separate objects). This will 

hopefully contribute to understand how the visual system reconstructs such 

representations from its components. In other words we aimed to provide high 

Figure 1-9. Ambiguous moving roof-shaped lines. The stimulus was first described 

by Wallach 117,118. (A) The angled constantly moving lines form a bistable stimulus 

that critically engages both visual hemifields with minimal contamination of the 

opposite hemifield. The percepts elicited by this ambiguous bistable stimulus 

closely resemble the pattern and transparent motion of drifting plaids (formed by 

superimposed gratings), differing in that the gratings are presented in a non-

overlapping configuration. (B) The “roof-shaped” stimulus can thus be perceived 

as a single unified pattern/object moving downward or as two surfaces/objects 

describing a horizontal movement inwards, accompanied by the striking 

perceptions of being segregated across hemispheres. 
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temporal and spatial resolution mapping of perceptual motion integration 

mechanisms, to unravel bottom-up and top-down decision mechanisms. 

Importantly, the use of an ambiguous stimulus allows us to separate the neuronal 

activity due to stimulus input from activity related to stimulus perception.  

In the discussion of Chapter 4 we also briefly present the results and main 

conclusions of an EEG study of the role of neuronal synchronization in perceptual 

integration of motion across hemispheres. 

Another ambiguous figure, the Necker cube, was used to investigate brain 

mechanisms that induce perceptual bistability, by exploring how neural activity in 

response to perceptual decisions is affected by concurrent recruitment of 

attentional resources. 

In Chapter 5 we present a study of the effect of working memory load (WML) in 

perceptual decision. If working memory resources are actively involved in the 

construction of the available percepts of the ambiguous stimulus, a concurrent 

WML will decrease the reversal rates and modulate the efficiency of the neural 

processes involved in reversals, since it depletes the available attentional 

resources. 

In Chapter 6 we provide a general discussion regarding low level and high level 

influences in integration of sensory information and their effect in visual 

perception. We further present strategies for future deeper investigation of open 

issues in the current body of knowledge on this area. 
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Magnetic resonance imaging (MRI), which lead to the Nobel Prize in Physiology 

or Medicine winner in 2003, awarded to Paul C Lauterbur and Peter Mansfield 1, 

has become the most important imaging modality in human neuroscience. Its 

non-invasive nature and versatility make MRI a powerful method for obtaining 

detailed anatomical and functional information about living tissue without the 

use of damaging radiation such as X-rays. MRI uses signals originating from the 

body’s own molecules after a radiofrequency perturbation, while PET and SPECT 

require introduction of a radioactive label into the body with a drawback of 

exposure to low levels of ionizing radiation. 

This chapter provides an overview of the MRI methods employed throughout this 

thesis to assess brain structure and function, from physical to physiological 

principles and data analysis. 

 

Basic physical principles of MRI 

The majority of MRI techniques rely on water, which constitutes about two-thirds 

of human body tissue, to develop information on brain structure and function. 

MRI signals arise from the interaction of the strong magnetic field that exists 

inside the MRI scanner with unpaired protons of hydrogen nuclei in the water 

content of the brain 2. In fact, all nuclei with an odd number of protons are 

magnetically excitable. The reason that MRI mainly depends on hydrogen is 

because hydrogen protons are abundant in human tissue and possess particularly 

favourable magnetic properties. MRI is based on sophisticated technology that 

excites and receives the signal re-emitted by hydrogen protons in the tissue. 

More specifically, protons in the nuclei of hydrogen atoms in water possess a spin, 

they rotate about its axis at a constant velocity. Protons possess a positive 

electrical charge, which also spins around with the proton. A moving electrical 

charge is in fact an electrical current. Consequently, spinning protons create their 
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own small magnetic fields. In a normal environment all protons spin randomly 

about many rotational axes and, thus, cancel each other out (Figure 2-1A). This is 

the reason why our body has no net magnetization. However, when a strong 

magnetic field is introduced (actually our body is introduced in the strong 

magnetic field existent within the MR scanner) the protons align with that static 

homogeneous magnetic field (B0), either parallel or antiparallel to it (Figure 2-1B). 

These orientations that a spinning proton can take against the external magnetic 

field are not of equal energy. Spin states which are oriented parallel to B0 are 

lower in energy than in the absence of the external magnetic field. In contrast, 

spin states whose orientations are antiparallel to B0 are higher in energy than in 

the absence of the external magnetic field 3. The protons will be distributed 

throughout the two spin states available. In equilibrium, a slightly larger 

proportion of spinning protons align parallel to B0, at the lower energy level 

(Figure 2-1C). 
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This difference depends on the strength of the applied magnetic field. The excess 

of spinning protons aligned with the external magnetic field results in a net 

microscopic magnetization, aligned parallel to the magnetic field B0. In other 

words, the tissue gets magnetized. Moreover, the aligned spinning protons no 

longer rotate about their axes only, they start wobbling around the lines of the 

external magnetic field, much as a spinning top wobbles around the axis of the 

Earth when the force of gravity competes with its spin. This wobbling is called 

precession: while spinning, protons now rotate very fast about the axis of B0. 

Precession of protons (Figure 2-2) occurs at the precession frequency ω0, or 

Larmor frequency: 

 

𝜔0 =  𝛾 𝐵0                                    (Equation 1) 

 

Figure 2-1. Spinning protons are little magnets because of the spin property. (A) 

Without an external magnetic field, the directions of the spins are randomly 

distributed. (B) When placed within a large magnetic field, the spins align either 

with the field (parallel) or against the field (antiparallel). (C) A slight excess of spins 

align with the external magnetic field resulting in a very small net magnetic field 

parallel to the external magnetic field that is difficult to detect. Adapted from 3. 
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The precession frequency is dependent on the gyromagnetic ratio (γ), a constant 

unique of each nucleus, and the external magnetic field B0. For hydrogen protons, 

γ= 42.56 MHz per Tesla. Therefore, at the magnetic field strength of a 3-Tesla 

scanner, the precession frequency of hydrogen protons is 128 MHz. 

 

 

Origin of MR signal 

For sake of clarity, if we consider a coordinate system XYZ like the one used in 

school, we can represent the magnetic field lines as the z-axis. The x-y plane is 

perpendicular to the external magnetic field B0 and is also referred to as the 

transverse plane. We can also represent one spin, at a particular moment in time, 

as a vector (Figure 2-3A). But there are millions and millions of protons in the 

brain (and other tissues). And because there are so many protons, there is one 

proton precessing parallel to the magnetic field for each proton precessing 

antiparallel to the magnetic field, pointing in the exact opposite direction, thus 

cancelling each other. However, as said before, there are slightly more protons 

Figure 2-2. Nuclear spin precession. The spins rotate around the direction of the 

external magnetic field. This motion is called precession. The precession 

frequency, or Larmor frequency (𝜔0) is dependent on the gyromagnetic ratio (𝛾) 

and the external magnetic field (B
0
). Adapted from 3,4. 
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precessing parallel to the magnetic field than those precessing antiparallel to it, 

and these protons are not cancelled by others (Figure 2-3B). At least such 

cancellation is not complete. As there are many protons precessing this fast, spin 

vectors parallel to z-axis are pointing in different directions of the x-y plane at 

different specific points in time. Consequently, they still cancel each other out in 

the in the horizontal plane because protons precess randomly (not in phase). In 

contrast, the vertical component of the vectors parallel to the z-axis add up along 

the external magnetic field. Thus, the magnetization of the tissue is represented 

by M0 in the z-axis, which corresponds to the excess of protons in the lower 

energy state, aligned parallel to the magnetic field (Figure 2-3C). As this is a 

longitudinal sum up vector, it is called longitudinal magnetization. However, this 

vector (which represents a magnetic force) is not measurable because it is in the 

same direction, parallel to the external magnetic field. 
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So how can we measure tissue magnetization? We send a radio wave. 

We actually send a short burst, not an electromagnetic wave with long duration. 

This electromagnetic pulse is in the range of radio frequency waves, so that it is 

called a radio frequency or RF pulse. When protons are irradiated with an RF pulse 

with their precession frequency they are able to exchange energy with it. Some 

get “excited” and absorb energy from the RF pulse. This important principle is 

called resonance and gives the method magnetic resonance imaging its name. 

The RF pulse disrupts the protons natural alignment (Figure 2-4A) and forces 

them into a non-natural realignment with the static magnetic field of the MR 

Figure 2-3. Longitudinal magnetization. (A) We can represent the magnetic field 

and the spins in a XYZ coordinate system, in which the z-axis corresponds to B
0
, 

the x-y plane is perpendicular to B
0
 and each precessing spin is represented by a 

vector. (B) The spins (each represented by one vector) align either parallel or 

antiparallel to the external magnetic field. Most of them cancel each other out, 

but there are more of them aligned parallel to B
0
. Thus, we are left with some 

spins (two in this case) pointing in the direction of B
0
. (C) This spins still cancel 

each other out in the in the x-y plane. In contrast, the vertical component of the 

vectors parallel to the z-axis add up along the external magnetic field. Thus, the 

magnetization of the tissue is represented by M
0
 in the z-axis, which corresponds 

to the excess of protons in the lower energy state, aligned parallel to the magnetic 

field. This is called longitudinal magnetization. Adapted from 5,77.  



S t u d y i n g  b r a i n  s t r u c t u r e  a n d  f u n c t i o n  | 71 

scanner. By absorbing energy in the resonance frequency, some protons are 

induced to a transition from the parallel orientation, a lower energy state, to the 

antiparallel orientation, a higher energy state. This has an effect in tissue 

magnetization. There are now more cancelling protons (pairs of protons pointing 

in opposite directions). Consequently, the longitudinal magnetization of the 

tissue decreases (Figure 2-4B). 

Furthermore, the RF pulse has another important effect in tissue magnetization. 

As we can see in Figure 2-4B, before the application of the RF pulse the protons 

randomly point in all directions in the x-y plane, cancelling their magnetic forces 

in the transverse plane. Due to the RF pulse, the excited protons precess in phase. 

They now point in the same direction perpendicular to the external magnetic field, 

and their vectors add up also in this direction. As a result, the RF pulse creates a 

magnetic vector pointing to the side to which the precessing protons are pointing 

at any moment, in the transverse plane. This is called transversal magnetization 

(Figure 2-4C). In other words, the tissue magnetization vector M0 moves down 

towards the x-y plane and thus can be divided into a vertical or longitudinal 

component MZ, along the axis of B0 (the z-axis) and a horizontal or transverse 

component MXY, along the x-y plane. With the RF pulse, in practice, the 

longitudinal component of M0 decreases (Figure 2-4B) and a transverse 

component MXY is established (Figure 2-4C). The strength and duration of the RF 

pulse can be adjusted to modulate the extension and the angle α of the rotation 

of the vector M0 towards the transverse plane (Figure 2-4D). The transversal 

magnetization vector MXY then precesses around the direction of B0 with angular 

velocity 𝜔0 given by Equation 1, the Larmor equation (Figure 2-4E). The magnetic 

field created by precession thus changes in time, which according to Faraday's 

law generates radio frequency waves. Ultimately it is this signal that is measured 

(received) in the receiver coil (antenna) in MRI. 
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Figure 2-4. Excitation and transversal magnetization. (A) By placing the body in 

an external magnetic field we can establish a new magnetic vector, longitudinal 

magnetization (M
0
), along the external field. Sending a radio frequency pulse has 

two effects on the protons. (B) After the RF pulse is sent in, we assume that some 

protons (in this case 2 out of 6) switch to a higher level of energy (antiparallel 

orientation). These protons cancel the same number of protons aligned parallel. 

As a consequence, the longitudinal magnetization M
0
 decreases. (C) The RF pulse 

also causes the protons to precess in step, in phase. This phenomenon establishes 

a new magnetization in the x-y plane, a new transversal magnetization. (D) The 

strength and duration of the RF pulse can be adjusted to modulate the extension 

and the angle α of the rotation of the vector M
0
 towards the transverse plane. (E) 

Depending on the RF pulse, longitudinal magnetization may even totally 

disappear. (F) The transversal magnetization vector M
XY

 then moves around the 

direction of B
0
 with the precessing protons, generating radio frequency waves 

that can be measured. Adapted from 3,5.  
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And what happens when the RF pulse is turned off? Simply, protons relax. 

When the RF pulse is turned off, the excited protons relax back to their lower 

energy state and the MR signal decays due to interactions between proton 

magnetic fields, which is known as relaxation 4. MR signal decay occurs because 

of two simultaneous types of relaxation effects: the longitudinal relaxation and 

the transversal relaxation (Figure 2-5), characterized by time constants T1 and T2, 

respectively 5. 

On the one hand transversal relaxation is caused by spin dephasing. Therefore, in 

a T2 weighted image the falling out of synchrony or the dephasing of rotating 

protons is emphasized. Dephasing occurs relatively quickly (transversal relaxation 

progresses faster than longitudinal relaxation) and results largely from the loss of 

energy to spinning protons nearby (it is also influenced by such factors as the 

quality of the magnets used). Spin-spin interactions lead to different local 

magnetic field strengths and, thus, different precession frequencies leading to 

phase shifts. The amplitude of the signal at any moment in time is determined by 

the sum of the spin vectors. When the spins are all in phase (Figure 2-5A), the 

maximum signal is obtained. When the spins are completely out of phase (Figure 

2-5B), the signal is completely lost. Over time, MXY decays to zero with a time 

constant T2 with values in the range of 30-50 msec. Due to magnetic field 

inhomogeneities in the static magnetic field and in physiological tissue, the spins 

get out of phase actually faster than T2 and therefore the measured MR signal in 

the receiver coil, the free induction decay (FID), decays with the shorter time 

constant T2*: 

 

𝑀𝑋𝑌 = 𝑀0𝑒
−

𝑡

𝑇2∗                                   (Equation 2) 
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Figure 2-5. Representation of T1 and T2 relaxation processes in MRI. (A) When the 

protons are aligned with B0, a horizontal radio frequency pulse is applied to tip them 

so that they precess in the horizontal x-y plane in phase. (B) The horizontal pulse is 

then turned off and the rotating protons begin to move out of phase with one another 

- dephasing (easily observed in the representation of spins in the x-y plane, bottom 

right plots). This is the transverse relaxation, causing loss of the transverse component 

of magnetization (MXY) and a weakened dephasing signal in the horizontal field at an 

exponential rate with time-constant T2. Dephasing occurs relatively quickly. After 

withdrawal of the horizontal pulse the protons also realign with the vertical magnetic 

field, with restoration of longitudinal magnetization. This “righting” of the protons 

occurs more slowly than the dephasing and is measured indirectly. This is the 

longitudinal relaxation, which causes recovery of the longitudinal magnetization (MZ) 

towards M0 at an exponential rate with time-constant T1. Adapted from 3,4. 
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On the other hand, the longitudinal relaxation component emphasized in T1 

weighted images is the “righting” of tipped protons as they go back into the low 

energy state and realign parallel with the original magnetic field B0 (Figure 2-5, 

first and last plots). The rate of this relaxation is influenced by non-excited 

molecules in the surrounding tissue, called the lattice, to which part of the energy 

re-emitted as RF waves is transmitted. The spin–lattice interactions thus 

determine the speed of T1 recovery, which is unique to every tissue. The increase 

(recovery) of the longitudinal component Mz to M0 follows an exponential 

function with time constant T1 with values in the range of 300–2000 msec: 

 

𝑀𝑍 = 𝑀0(1 − 𝑒
−

𝑡

𝑇1)                                   (Equation 3) 

 

Tissue-specific T1 and T2 values enable MRI to differentiate between different 

types of tissue when using properly designed MRI pulse sequences. Variations 

that occur in the molecular environment in different brain structures and 

compartments provide contrast and the ability to see the spatial orientation of 

various brain structures.  Other types of radiological imaging depend on one local 

property of the tissue. For example, in computed tomography (CT) the image is a 

map of the X-ray absorption coefficient and in nuclear medicine studies the image 

is a map of the radioactive tracer concentration or a related measure. But with 

MRI, contrast between one tissue and another in an image can be varied simply 

by varying the way the image is derived based on a given measure as the MR 

signal depends on a number of tissue properties. Moreover, the fact that local 

field inhomogeneities lead to different precession frequencies, increasing the 

speed of dephasing, is an important observation for functional MRI because local 

field inhomogeneities also depend on the local physiological state, especially the 

state of local blood oxygenation, which itself depends on the state of local 

neuronal activity. Measurements of changing local magnetic field 
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inhomogeneities (T2* parameter), thus, provide indirect measurements of local 

neuronal activity 3. In T2*-weighted sequences, contrast is maximized because 

spins have enough time to dephase and relax when acquisition starts thus 

increasing the signal-to-noise ratio (SNR) 6. These concepts of contrast 

optimization are of major importance for functional imaging studies providing 

the possibility to image the metabolic consequences of neuronal activity patterns 

in the brain. 

 

Spatial localization of MR signal 

We know how the MR signal is generated, but how does the machine determine 

where the signal is coming from (spatial localization)? 

The spatial information comes from magnetic resonance imaging ability to 

localize the signal in the three-dimensional volume of the brain. This is 

accomplished by using magnetic gradient coils, in which the strength of the 

magnetic field changes gradually along an axis. There are three gradient coils in 

the scanner (called x, y and z), each oriented along a different plane of the body, 

all of them far less powerful than the main magnet (Figure 2-6). 

The magnetic field strength is manipulated to be different in several position 

within the scanner, which in turn makes the amount of energy released by relaxing 

protons in the brain to be dependent on their original position in a predictable 

manner. The spatial distribution of water protons can be mathematically 

recovered from the resulting signal. When rapidly turned on and off, the gradient 

magnets allow the scanner to image the body in “slices”. Using medical 

terminology, the transverse (or axial, or x-y) planes slice the brain from top to 

bottom; the coronal (x-z) plane slice the brain lengthwise from front to back; and 

the sagittal (y-z) planes slice you lengthwise from side to side (Figure 2-7).  
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Figure 2-6. MRI scanner gradient magnet coils. Reproduced from 

http://eu.mouser.com. 

Figure 2-7. Section arrangements on different planes (coronal, sagittal and axial) 

of the brain. Adapted 78. 



78 | C h a p t e r  2  

One magnetic gradient is used to excite a single slice of the subject's brain. Then, 

when one slice of the brain is selected, the other two gradients subdivide that 

slice into rows and columns of pixels. Thus, the x, y and z gradients can be used 

in combination to generate image slices, one pixel at a time, based on location 

and signal strength information that it receives from the corresponding voxel 

(voxel = volume element, analogous to pixel = picture element) in the subject’s 

brain (Figure 2-8). Each voxel represents a group of hydrogen protons with a 

unique sum of frequencies and phases. The intensity, or brightness, of each pixel 

is proportional to the strength of the RF energy received from the corresponding 

voxel after RF excitation and relaxation. 
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Figure 2-8. Three-dimensional encoding of the MR signal. The signals emitted 

from a three-dimensional volume are encoded by first exciting a single slice of 

tissue, then applying two different gradients to divide it into rows and columns 

of pixels. A patient is placed in a magnetic field whose strength is graded along 

an axis (for simplicity the magnets are shown here as planes). A) This gradient 

effectively divides the tissue into slices. A slice is selected for imaging by using a 

specific radio frequency pulse. B) The slice is then subdivided into rows by grading 

the strength of the magnetic field along a second axis. Protons in each row will 

be precessing at different phase. When the second magnetic gradient is turned 

off each row maintains this unique phase C) The slice is further divided into 

columns by grading the vertical magnetic fields so that protons in each column 

precess at a different frequency. D) With this encoding, each pixel in a slice will 

have a unique signal. The use of the Fourier transform allows to identify the signal 

coming from each pixel. Reproduced from 4. 
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Structural MRI 

Anatomical MRI images have contrast, the areas with high signal are bright on 

the image and the areas with low signal are dark on the image. As described 

above, the contrast can be achieved with the adjustment of RF pulse sequences 

and imaging parameters. But what makes it achievable is that different local 

tissues in the brain have different physical properties, i.e. T1 recovery, T2 decay 

and proton density. Thus, structural imaging relies on these differences to 

measure MR signals that can be translated into detailed maps of brain anatomy.  

The proton density (PD) is the number of excitable spins per unit volume. Proton 

density determines the maximum signal that can be obtained from a given tissue. 

The image contrast in PD images is not dependent on T1 or T2 relaxation. The 

signal is completely dependent on the amount of protons in the tissue. Less 

protons means low signal and appear as dark areas on the image whereas more 

protons produce a lot of signal and will be bright on the image. The T1 time of a 

tissue is the time it takes for the excited spins to recover and be available for the 

next excitation. The T2 time determines how quickly an MR signal fades after 

excitation. Protons have different relaxation rates and corresponding T1 and T2 

time constants depending on whether they are embedded in fat, cerebrospinal 

fluid, white matter or grey matter 4. The relaxation rates of cerebrospinal fluid 

(CSF) are slower than those of grey matter (GM), and those of GM are slower than 

the relaxation rates of white matter (WM) for both T1 and T2 time constants (Figure 

2-9). In T1-weighted images, tissues with a faster longitudinal relaxation rate 

appear bright and those with a slower relaxation rate appear dark. As an example, 

for any given point in time, in T1-weighted images WM is brighter (stronger MR 

signal) than GM. Grey matter signal is on the other hand is stronger than that of 

CSF. Therefore GM is brighter than CSF. These differences in signal intensity are 

exactly opposite for a T2-weighted image (Figure 2-10). 
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For quantitative structural brain analysis normally only T1-weighted and T2-

weighted images are used. T1-weighted imaging offers the greatest segmentation 

clarity between GM, WM and CSF, and is therefore most frequently used for 

quantitative MRI studies of brain morphology. On the other hand, T2-weighted 

imaging may be preferably used for quantification of intracranial volume, given 

that these images have increased signal intensity of CSF that allows easier 

quantification of CSF and brain parenchyma together. 

 

Figure 2-9. T
1
 and T

2
 constants in brain tissues. Relaxation curves for white matter 

(WM), grey matter (GM) and cerebrospinal fluid (CSF). The horizontal axis on the 

top graph represents repetition time (TR, a sequence parameter) in seconds, while 

in the bottom graph it represents echo time (TE, a sequence parameter) in 

milliseconds. For a given relaxation time (grey bar), the WM signal is stronger than 

GM and GM signal is stronger than that of CSF in T
1
-weighted images. In T

2
-

weighted images, for any given transversal relaxation time (grey bar) the CSF 

signal is stronger than GM and GM signal is stronger than that of WM Adapted 

from 2. 
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Functional MRI 

Physiological principles 

Functional MRI (fMRI) shows the brain in action. It is a non-invasive, modern 

imaging technique that allows to measure brain activity and to elucidate 

processes involved in specific functions of the human brain 7,8. Neuronal activity 

consumes energy. The energy requirements of the brain are amazingly high, 

although the brain represents only about 2% of the body mass. Its glucose and 

oxygen demands account for approximately 20% of those of the whole organism. 

These substances are supplied to the brain by the vascular system. A similar 

disparity is observed for cerebral blood flow, which represents over 10% of total 

cardiac output 9. In order to overcome the energy requirements of the neurons, 

Figure 2-10. Magnetic resonance images of the same anatomical section showing 

a range of tissue contrasts. In the first image, cerebrospinal fluid is black, whereas 

in the last image it is bright. Contrast is manipulated during image acquisition by 

adjusting several parameters, such as the TR and the TE (times given in 

milliseconds), which control the sensitivity of the signal to the local tissue 

relaxation times T1 and T2 and the local proton density. In the proton density 

weighted image GM is brighter than CSF, despite CSF has the highest proton 

density. The reason is that the T1 of CSF is too long, and for TR = 3 seconds the 

CSF signal is still substantially T1-weighted. Adapted from 2. 
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the oxygen levels in activated brain areas have to be re-established. As the brain 

possesses anatomically distinct processing regions, with different functions, 

blood “rushes” to each region according as it is most active. As a consequence, 

cerebral blood volume and blood flow surrounding active areas increase with 

neuronal activity, thus increasing the delivery of oxygen and glucose – a 

mechanism known as neurovascular coupling 3,9,10 (Figure 2-11). And blood is a 

unique, endogenous, source of physiological contrast in MRI due to its 

oxygenation-sensitive paramagnetic characteristics 7. Thus, the idea behind fMRI 

is that changes in regional neuronal activity involved in brain functioning, such as 

memorizing a phrase or remembering a name, are coupled to changes in regional 

cerebral blood flow, oxygenation and energy metabolism in surrounding areas to 

supply the required glucose and oxygen 6,8–10. The change in cerebral blood flow 

with a change in neural activity during task activation is the primary signal used 

for mapping brain activity with fMRI 7. 

 

Neurovascular coupling 

The vascular response to the increased energy demand is called the 

hemodynamic response – increased local cerebral blood flow (CBF) as well as 

increased cerebral blood volume (CBV). Because CBF and metabolism are 

coupled, the cerebral metabolic rate of oxygen extraction (CMRO2) is also coupled 

with CBF. At rest, the imbalance between CBF and CMRO2 is remarkably uniform 

across the brain. The arterial part of the vascular system transports oxygenated 

blood to the capillary bed where the chemically stored energy (oxygen) is 

transferred to the neurons 3. The venous system transports the less oxygenated 

blood away from the capillary bed. When the brain is stimulated, both CBF and 

CMRO2 increase. However, PET studies have shown that neuronal activity causes 

a smaller increase in CMRO2 than the increase in CBF 11,12. That is, with neuronal 
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activation CBF increases much more than CMRO2, causing less O2 to be removed 

from each unit volume of blood - the total delivery of oxygen exceeds 

consumption demands. Thus, the hemodynamic response not only compensates 

quickly for the slightly increased oxygen extraction rate but it is so strong that the 

mismatch between CBF and CMRO2 changes results in a substantial local increase 

in the capillary and venous oxygenation level 6. 

 

 

Oxygen is transported in the blood via the haemoglobin molecule. If 

haemoglobin carries oxygen, it is called oxyhaemoglobin (HbO2), while it is called 

deoxyhemoglobin (Hb) when it is devoid of oxygen. While the arterial network 

contains almost only oxygenated blood, the capillary bed and the venous part of 

the vascular system contain a mixture of oxygenated and deoxygenated blood. 

Given that oxygenated and deoxygenated blood have different magnetic 

Figure 2-11. Neurovascular coupling refers to the relationship between local 

neuronal activity and subsequent changes in cerebral blood flow. The magnitude 

and spatial location of blood flow changes are tightly linked to changes in neural 

activity through a complex sequence of coordinated events involving neurons, 

glia, and vascular cells. Astrocytes seem to play an especially important role. 

Essentially the astrocyte detects the firing of neurons around it which causes it to 

signal the blood vessels around it to dilate. Reproduced from 

http://jonlieffmd.com. 
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properties, they have different effects in the magnetic resonance signal. On the 

one hand, deoxyhemoglobin contains paramagnetic (strong susceptibility to 

magnetic field) iron and leads to magnetic field distortions and MR signal loss. 

On the other hand, oxyhaemoglobin contains diamagnetic (weak susceptibility to 

magnetic fields) oxygen-bound iron 7 and therefore does not distort the 

surrounding magnetic field. 

 

The BOLD effect 

The different magnetic properties of oxy- and deoxyhemoglobin are in the basis 

of the venous blood-oxygenation level dependent (BOLD) contrast, the most 

common method of fMRI 13,14. The BOLD signal is predominantly believed to be 

a relative imbalance between increases in local cerebral blood flow and 

concurrent (albeit smaller) increases in oxygen metabolism with neuronal activity, 

which causes a transient drop in the deoxyhemoglobin to oxyhaemoglobin ratio 

(Figure 2-12). 
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Figure 2-12. Illustration of the physiological changes leading to fMRI data. (A) If a 

cortical region is in baseline mode, neural activity – including synaptic signal 

integration and spike generation – is low (upper part). Cerebral blood flow (CBF) 

is at a basal level. A constant oxygen extraction rate fuelling neural activity leads 

to a fixed deoxyhemoglobin (Hb) to oxyhaemoglobin (HbO2) ratio in the capillary 

bed and venules. Since Hb is paramagnetic, it distorts the magnetic field. The Hb-

related magnetic field inhomogeneities lead to rapid dephasing of excited spins 

resulting in a low MRI signal level (lower part). (B) If the cortical region is activated, 

synaptic signal integration and spiking activity increases, leading to an increased 

oxygen extraction rate (upper part). CBF strongly increases delivering oxygen 

beyond local need, which essentially flushes Hb away from the capillary bed 

(middle part). Since HbO2 does not substantially distort the homogeneity of the 

local magnetic field, excited spins dephase slower than in the baseline state (lower 

part) resulting in an enhanced MRI signal (BOLD effect). Adapted from 3. 
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More specifically, during the hemodynamic response (oversupply of oxygenated 

blood), the oxy- to deoxyhemoglobin ratio increases locally, resulting in a more 

homogeneous local magnetic field. As follows from the basic physical principles 

of MRI, excited spins dephase slower in a more homogeneous magnetic field 

leading to a stronger measured MRI signal in the activated state of the brain when 

compared to a resting state 3,6 (Figure 2-12). The BOLD effect, thus, measures 

increased neuronal activity indirectly because the time it takes for dynamic 

changes to occur in blood flow is much longer than that for neurons to fire off 

their electrochemical messages. 

The BOLD imaging technique is used widely because of its high sensitivity and 

easy implementation. Because the BOLD signal is dependent on various 

anatomical, physiological, and imaging parameters 15 its interpretation with 

respect to physiological parameters and neuronal origin is fairly complicated and 

still not fully understood 16–19. However, BOLD constitutes the most common 

functional imaging method applied in human neuroscience. Thus, inference of 

alterations of neuronal activities by mapping local changes in cerebral blood flow 

(BOLD signal) requires the understanding of the relationship between neuronal 

activity and the hemodynamic response, the so called neurovascular coupling 

(Figure 2-13A). 

 

The BOLD hemodynamic response 

The evoked fMRI signal, is delayed with respect to the fast occurring neuronal 

activity. The time course of the slow and delayed coupling between neuronal and 

vascular activity follows a typical hemodynamic response (Figure 2-13B). 
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A local increase of neuronal activity immediately leads to an increased oxygen 

extraction rate in the capillary bed and, thus, in an increase in the relative 

Figure 2-13. (A) From neuronal activity to BOLD MRI signal. The BOLD signal 

reflects the ratio of diamagnetic oxyhemoglobin to paramagnetic 

deoxyhemoglobin. Neuronal activity alters this ratio by influencing several factors 

including cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral 

blood oxygen consumption (CMRO2). (B) Idealized time course of the BOLD 

hemodynamic response to a long stimulus. After a long stimulation event (there 

is an initial dip, not reliably measured in human fMRI studies though) the signal 

often rises initially to a higher value (overshoot) than the subsequently reached 

plateau. When the stimulus is turned off, the signal often falls below the baseline 

signal level (undershoot), which is then approached slowly. Adapted from 3,79 
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concentration of deoxyhemoglobin 3. This fast response to increased neuronal 

activity is described as the initial dip 20,21. After a short time the increased local 

neuronal activity also leads to a strong increase in local blood flow, 

overcompensating for the amount of oxygen being extracted 2,22. We thus 

observe a positive BOLD response that starts to rise after 2–3 sec (oversupply 

phase). The maximal amplitude of the hemodynamic response typically occur 

about 5-6 sec following the stimuli presentation onset and returns to baseline 10 

sec later. If the neuronal activity is extended in time, the peak may be similarly 

extended into a plateau, typically with slightly lower amplitude than the peak 

(overshoot). After cessation of the stimulus and before the BOLD signal returns 

to the pre-stimulus baseline level occurs an undershoot, most probably due to an 

accumulation of deoxyhemoglobin in the vessels. At this time, the cerebral blood 

flow and the oxygen extraction rate have already returned to baseline. However 

the elastic properties of the dilated venules will require many seconds until 

baseline size is reached. Thus the cerebral blood volume takes more time to return 

to baseline. In this time more deoxyhemoglobin will accumulate reducing BOLD 

signal below pre-stimulus baseline level. If the stimulus is short in duration (less 

than one second), the complete return of the hemodynamic response profile to 

baseline happens about 20 s after stimulation. These changes in fMRI BOLD signal 

are delayed with respect to the fast occurring neuronal activity. Despite this 

sluggish response, the latency of response onsets appear to reflect quite precisely 

neuronal onset times 23. It is important to note that in practice this profile of the 

BOLD hemodynamic response may have different shapes depending on the 

design of the fMRI experiment, the stimulus conditions and/or the subjects’ 

variability 24 including the presence of co-morbidities such as diabetes 25. 
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Neuronal activity as a function of the BOLD hemodynamic 

response 

Functional magnetic resonance imaging is widely use to investigate human brain 

function non-invasively. As described before, the BOLD fMRI signal is a 

consequence the hemodynamic response of the vascular system to neuronal 

activity. In fact, the fMRI signal can only measure hemodynamic changes in the 

cerebral vasculature, such as blood flow, blood volume or intravascular magnetic 

susceptibility. It is thus an indirect measurement of brain function as the exact 

relationship between this kind of signal and the neural activity is still under study 

17,18,22,26,27. For the sake of simplicity, the neurovascular coupling is ubiquitously 

approximated by a linear transform model in BOLD fMRI experiments. The linear 

characterization of this transformation of neuronal activity to BOLD signal implies, 

e.g. that a doubling in the amplitude of neuronal activity results in a doubling of 

the amplitude of the BOLD signal, and so on 6. Only in this way, it is possible to 

make an inverse inference from BOLD signal measured into neuronal activity. 

The response to a very short stimulus (less than one second) is called the impulse 

response function or, in the context of fMRI, the BOLD hemodynamic response 

function (HRF). The HRF is very consistent within a subject and can be measured 

empirically by investigating the BOLD signal in response to brief periods of 

neuronal activity in known cortical areas (e.g. neuronal activity in primary motor 

cortex in response to button press). However, it varies significantly across subjects 

24,28. 

The function that is most commonly used by neuroscience community is a sum 

of two gamma functions, with parameters defining the onset and dispersion of 

the response peak 29 (Figure 2-14). This approach makes it possible to model both 

the peak of the response and the undershoot. The expected initial dip (Figure 

2-13) has not been reliably detected in standard human fMRI measurements thus 

is not included in the standard convolution kernels. Given the shape of the HRF 
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one can then predict the expected time course of BOLD signal in response to any 

arbitrary long neuronal activity pattern. 

 

 

There are several methods of analyzing BOLD fMRI data to infer neuronal activity 

related to stimulation protocols from an a priori defined HRF. The more 

commonly used by neuroscientists is a univariate technique in which a statistical 

model is applied to each voxel independently within a BOLD fMRI dataset. The 

creation of the model is of particular importance for the analysis and subsequent 

interpretation of the results. First, the stimulation conditions (manipulated in the 

experimental protocol) are transformed into predicted neuronal input time 

courses, i.e. according to the timing of each experimental stimulation trial one can 

assume that the neurons in cortical areas responsible for processing that stimulus 

Figure 2-14. A two-gamma function enables modelling of typical 

hemodynamic impulse responses. One gamma function models the peak (τ 

= 6) and dispersion (σ = 5) of the positive BOLD response while the second 

gamma function models the peak and dispersion (τ = 16 and σ = 15, 

respectively) of the undershoot response. Parameter A scales the amplitudes 

of the individual gamma functions (A = 6 for the positive response and A = 

-1 for the undershoot). 
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will be active as long as the stimulus is being presented – the neuronal response 

to a single trial is represented as a box-car function. For example, a simple blocked 

experimental design might be predicted to produce a uniformly greater amount 

of bulk neuronal activity during an experimental condition as compared to a 

control condition. The expected BOLD fMRI response is then obtained by 

convolving the input time course (the stimulation box-car time course) with the 

BOLD HRF 30,31. As was mentioned previously, knowledge of the HRF is sufficient 

to predict the BOLD fMRI signal that will result from any arbitrary pattern of neural 

activity through the mathematical process of convolution 6. 

In practice, actually these models do not fit a particular stimulation trial rather the 

combination of all the trials of each condition experimental condition within the 

time of the experiment, which is called a predictor. This way one gains greater 

consistency to slightly different patterns of response across trials of the same 

stimulation condition. The resulting statistical model, composed of predictors for 

all conditions of interest in the experimental protocol, is then used to evaluate 

the fMRI data from each voxel within the brain. The resulting weights upon the 

predictors (termed beta values) can be evaluated alone or in combinations using 

t and F statistics. These weights represent an indirect measurement of neuronal 

activity. 

Note that the linear model is reasonably valid only for stimuli with sufficient 

temporal separation, otherwise there can be non-linear interactions 29,32. 

Furthermore, the convolution approach requires the valid specification of the time 

course of assumed neuronal response profiles. However, in high level cortical 

areas, e.g. frontal areas involved in working memory, the neuronal response 

profile might differ substantially with respect to stimulus timing. In case it is 

difficult to specify proper “neuronal” input response profiles, a more general 

approach should be used, e.g. deconvolution analysis (described later, see 25). 

Nonetheless, assuming that neuronal responses are correctly specified, it appears 
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reasonable to use the same HRF for all brain regions to predict expected BOLD 

signal time courses since neurovascular coupling should be similar in different 

brain areas. 

 

Structure of fMRI data 

A major goal of fMRI measurements is the localization of the neural correlates of 

sensory, motor and cognitive processes. Another major goal of fMRI 

measurements is the characterization of the response profile in various regions-

of-interest (ROIs) by retrieving plots of averaged signal time courses for different 

experimental conditions.  

In order to better understand different fMRI preprocessing and analysis steps, we 

must understand key concepts of fMRI data. 

 

Designs of fMRI experiments 

During fMRI data acquisition, subjects are enrolled in a task (e.g. sensory, motor, 

or cognitive) to study a specific brain function. Paradigm choices relate to the 

problem of isolating the task or process for which a meaningful brain map is 

intended.  Importantly fMRI data does not provide an absolute signal of brain 

activity rather proton density and T2 tissue contrast varying across brain regions. 

BOLD related signal fluctuations, thus, have neither a defined origin nor a unit 3. 

Signal strengths thus cannot be interpreted absolutely but have to be assessed 

relative to the signal strength in other conditions. This generally involves a 

comparison between the activity patterns elicited by at least two different 

experimental conditions: a condition of interest, and a control condition. The 

comparison between conditions of interest or between a condition of interest and 

the control condition is called a contrast and constitutes the basis of most fMRI 
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studies. As BOLD fMRI experiments by necessity include multiple task conditions, 

several ways of ordering the presentation of these conditions exist. Two main 

formats can be used in the design of fMRI experiments: block design and event-

related design 33. 

In the block design several trials are clustered in blocks (one block lasts on 

average 16 to 60 seconds), each of which contains only trials of the same 

condition. Blocked designs are suited for investigation of whether activity of a 

given voxel (or region) changes in response to the experimental manipulation. 

Blocked designs thus exhibit superior detection power and are less sensitive to 

differences in the shape and timing of the hemodynamic models because the 

statistical analysis of such block designs compares the mean activity obtained in 

the different experimental blocks 34. On the other hand, blocked designs have the 

obvious difficulty that the subject can anticipate trial types. 

In turn, in event-related designs the individual trials of different conditions are 

presented in a random sequence instead of being sequentially presented in a 

block 35,36. Event-related designs offer an important advantage, the possibility to 

present stimuli in a randomized order, which avoids adaptation or anticipation 

and may be critical in cognitive tasks. In this type of design, each event is 

separated from the subsequent event by a period named intertrial interval (ITI). If 

the ITI is long enough to allow the complete rise and fall of the hemodynamic 

response to return to baseline, then the BOLD responses to each of the events do 

not overlap. This is called a slow event-related design. In contrast, designs with 

short temporal intervals between trials are called rapid event-related designs. 

While the measured response of rapid event-related designs will contain a 

combination of overlapping responses from closely spaced trials, condition 

specific event-related time courses can be isolated using deconvolution analysis 

37,38. Event-related designs are generally better suited for estimation of the time 

course of the hemodynamic response in response to the experimental 
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stimulation, as it presents short condition events, and thus does not require an a 

priori model of the HRF. Such information is especially used when making 

inferences about the relative timing of neuronal activity, about processes 

occurring in different parts of the trial and about functional connectivity 39, 

although classic event related designs are not well suited for functional 

connectivity analyses in fMRI. In general, block and event-related designs can be 

statistically analyzed using the same mathematical principles. 

 

 

Preprocessing of functional data 

In a perfect world, BOLD fMRI images would be acquired instantaneously from a 

stationary brain of uniform shape. Unfortunately, this is not the case, and a 

Figure 2-15. Schematic representation of block and event-related designs. In a 

block design (upper row), trials (events) belonging to the same condition are 

grouped together and are separated by a baseline block. In slow event-related 

designs, trials of different conditions appear in randomized order and are spaced 

sufficiently far apart to avoid largely overlapping BOLD responses. In rapid event-

related designs, stimuli are closely spaced leading to substantial overlap of 

evoked fMRI responses. If ITIs are randomized, the evoked responses can be 

decomposed into condition-specific response profiles by deconvolution analysis. 

Reproduced from 3. 
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number of processing steps must be performed prior to the statistical analysis of 

fMRI data. During an fMRI experiment usually each subject undergoes a single 

experimental session. Each session includes collection of anatomical images and 

one or more functional runs, which consist of time series of three-dimensional (3-

D) functional volumes of data. One run is thus a four-dimensional (4-D) volume 

spanning space and time information. The sequential 3-D volumes are acquired 

in different points in time and the MR sequence parameter time of repetition (TR 

– time interval between successive excitation pulses) is the time it takes to acquire 

an entire brain volume. The volume in turn is made up of multiple slices, as 

described earlier. Slices are acquired at different points in time within the TR and 

contain thousands of voxels that together form an image of the brain. During 

data acquisition subjects may move their heads. Thus, an important 

preprocessing step is to perform head motion correction, by adjusting translation 

and rotation parameters to realign the image of the brain obtained at each point 

in time back to the first image acquired at the start of the scanning session. In 

order to reduce other artifact and noise-related components in fMRI signal, due 

to magnetic field inhomogeneities or subject’s movement, a series of 

preprocessing steps is typically performed in time courses of individual voxels 

prior to statistical data analysis. The most essential steps of these preprocessing 

operations include: slice scan timing correction, linear and non-linear detrending 

and spatial and temporal filtering of the data. 

 

Statistical analysis of fMRI data 

Statistical data analysis aims at identifying those brain regions exhibiting 

increased or decreased responses in specific experimental conditions as 

compared to other (e.g. rest) conditions. The obtained statistical values, one for 
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each voxel, form a three-dimensional statistical map representing and indirect 

measure of neuronal activation during each stimulation condition. 

 

The General Linear Model 

In standard fMRI analyses the assessment of brain responses is performed 

independently for the time course of each voxel. This is the case of the core tool 

for fMRI data analysis - the General Linear Model (GLM). A schematic 

representation of a GLM is presented in Figure 2-16. The GLM aims to explain or 

predict the variation of a dependent variable in terms of a linear combination 

(weighted sum) of several reference functions, the predictors. The dependent 

variable corresponds to the observed fMRI time course of a voxel and the 

reference functions correspond to time courses of expected (idealized) fMRI 

responses for different conditions of the experimental paradigm, determined by 

convolution of the HRF with box-car functions. By applying the least squares 

method each predictor time course gets an associated weight (beta value), 

quantifying its potential contribution in explaining the voxel time course 40–42. The 

GLM procedure estimates the beta values by minimizing the sum of squared error 

values. While the exact interpretation of beta values depends on the details of the 

design matrix, a large positive (negative) beta weight typically indicates that the 

voxel exhibits strong activation (deactivation) during the modelled experimental 

condition relative to baseline 3. 
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Comparisons between conditions can be formulated as contrasts, which are linear 

combinations of beta values corresponding to null hypotheses. To test, for 

example, whether activation in a single condition deviates significantly from 

baseline, the null hypothesis would be H0: b1 = 0. To test whether activation in 

condition 1 is significantly different from activation in condition 2, the null 

hypothesis would state that the beta values of the two conditions would not 

differ, i.e. H0: b1 = b2 or H0: (+1) b1 + (-1) b2 = 0. The values used to multiply the 

respective beta values are often written as a contrast vector. The result is a three-

dimensional statistical map in which every voxel in the brain contains a 

corresponding statistical value for the contrast of the weights of conditions of 

Figure 2-16. Graphical display of a GLM. Time is running from top to bottom. Left 

side shows observed voxel time course (data). In this example the model (design 

matrix) consists of three predictors, the constant and two main predictors (middle 

part). Filled green and red rectangles depict stimulation time while the white 

curves depict expected BOLD responses. Beta values have to be estimated (top) 

to scale the expected responses (predictors) in such a way that their weighted 

sum predicts the data values as good as possible (by the least squares method). 

Unexplained fluctuations (residuals, error) are shown on the right side. 

Reproduced from 3. 
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interest. The final step of analysis involves assigning a level of statistical 

significance to those values, after correcting for the multiple comparisons 

problem because of testing the statistical hypotheses massively in many voxels in 

the brain. This allows visualizing anatomical information in large parts of the brain 

while statistical information is shown only in those regions exhibiting significant 

signal modulations 3. 

Both blocked and event-related designs can be analyzed with standard GLM after 

convolution of box-car neuronal inputs with the HRF. On the other hand, the 

shape of the HRF (subject to variability in different brain areas within and across 

subjects) can be estimated in a condition-related fashion by modelling each trial 

with a set of impulse functions. This approach is called a deconvolution analysis 

and allows estimating any response shape after a short stimulus. Even in rapid 

event-related designs, despite overlapping responses, fitting such a 

deconvolution GLM recovers the underlying condition-specific response profiles 

3,43,44. A concrete implementation of this procedure is presented in Chapter 3 and 

Chapter 4. 

 

Deconvolution analysis 

Both blocked and event-related designs can be analyzed with standard GLM after 

convolution of box-car neuronal inputs with the hemodynamic response function 

(HRF). In experiments with relatively long blocks of stimulation the amplitude 

(beta value) of response to each condition can be well estimated. However, in 

event-related experiments, because of the intrinsic hemodynamic properties of 

neurovascular response (which is the origin of the fMRI BOLD signal) the results 

can be distorted. It is mathematically feasible to estimate condition amplitudes 

with standard convolution GLM in rapid event-related designs, but the procedure 

might lead to non-optimal fit of the model due to overlapping responses to 



100 | C h a p t e r  2  

different conditions, in case conditions are presented within shorter times than 

the span time of the complete HRF (which is not necessarily critical, provided 

linearity holds). Furthermore, distorted results might also be obtained if the 

assumed standard BOLD response shape - HRF - is not verified to be true. Because 

a single estimate of the hemodynamic response is used to analyze the data from 

different subjects, this approach assumes that any variability that exists between 

subjects in hemodynamic response is minor. If this assumption is not true, then 

the general approach of using a standard HRF to analyze BOLD fMRI data from 

different subjects will result in suboptimal power and perhaps invalid inference 24. 

There is the possibility to estimate the true hemodynamic response function for 

each stimulation condition from the data. Deconvolution analysis is a general 

approach to estimate condition-related response profiles using a flexible and 

interpretable set of functions 3. It can be easily implemented as a GLM by defining 

an appropriate design matrix modelling each time point after stimulus onset by 

its own predictor (delta or “stick” functions). In order to capture the BOLD 

response for short events, 20 seconds are typically modelled after stimulus onset. 

Despite overlapping responses, fitting such a GLM “recovers” the underlying 

condition-specific response profiles in a time series of beta values, as shown in 

Figure 2-17. 
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The deconvolution model is very flexible allowing any response shape to be 

captured. This implies, however, that nonsense event-related time courses will 

also be detected spuriously. It thus is more appropriate to apply the 

deconvolution approach to a set of regions-of-interest (ROIs) identified 

previously on statistical maps obtained with a standard GLM or in a separate 

localizer experiment. In Chapter 3 we provide an important practical 

implementation of this approach to fMRI analysis. We employed ROI-based 

deconvolution analysis of fMRI data in healthy subjects and diabetic patients, a 

Figure 2-17. Deconvolution analysis of a rapid event-related design. Time runs 

from top to bottom, design matrix depicted in graphical view. Beta values are 

plotted horizontally at positions corresponding to the respective predictor. Each 

condition is modeled with 10 “stick” predictors making it possible to estimate the 

time course of condition-related responses as if stimuli were presented in a slow 

event-related design. Beta values may be compared within and across conditions. 
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population prone to cerebrovascular disease, in order to probe neurovascular 

coupling as empirically extracted from fMRI data 25. Experimental procedures and 

implementation details are potentially useful for subsequent studies. 

 

Data-driven analysis methods 

MRI data, either functional or structural, is intrinsically very rich. It might happen 

that unnoticed interesting spatio-temporal relationships exist in the data, when 

analyzed only with standard hypothesis-driven methods. Data-driven methods on 

the other hand are exploratory in nature, allowing to extract interesting 

information automatically from the data without the need to explicitly specify 

statistical models in advance. One popular data-driven method, independent 

component analysis – ICA, has been successfully applied to perceptual decision 

tasks in cognitive neuroscience 45 and clinical investigation in schizophrenia 46. 

Another approach with great potential is the application of multivariate pattern 

analyses to MRI data, both structural and functional, which offers the possibility 

of localizing spatially distributed effects. These might be too weak to be 

discovered by single voxel analysis, but its joint effect might be significant 47–49. 

 

Multivariate pattern analysis – Support Vector Machines 

In contrast to the standard statistical analysis analyzing data voxel-wise, data-

driven multivariate methods enable the identification of distributed discriminative 

patterns of activation (in the case of functional MRI) or brain tissue (in the case of 

structural MRI) in the absence of a priori hypotheses. One very useful approach 

that has been subject of growing interest in the last years is the use of machine 

learning classifiers. A growing number of studies has shown that machine learning 

classifiers can be successfully used to extract exciting new information from 
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neuroimaging data 48. A classifier is built based on a set of rules to determine the 

class, either a binary or multiclass problem, of different unknown (instances of) 

categories based on their discriminative characteristics, which are called features 

42,48. Furthermore, much of these methods are able to provide a measure of the 

importance (or weight) of each feature for the decision function and consequently 

for the classification task. If the decision function is linear, this means we are 

working with a linear classifier. One very popular instance of linear classifiers is a 

Support Vector Machine – SVM 50–52. 

The idea of the SVM algorithm is to define a decision boundary that separates 

the objects from different classes based on their descriptive features, as generally 

as possible. In other words, the algorithm determines the maximal separation 

margin, which is the distance between the decision boundary and the closest 

objects (actually data points) of each class.  These are called the support vectors 

and that’s why the classifier is called Support Vector Machine 53. The 

generalization goal is to allow for the best possible prediction of new unseen 

instances of the same kind of data. A graphical representation of a binary SVM is 

shown in Figure 2-18. 

Let us consider a classification task of a dataset of objects, in which an object can 

be seen as an array of features that describes it. Each object belongs to a certain 

class. Part of the dataset is given to the SVM, along with the labels’ (classes to 

which every object belongs to) assignment. This is called the training set, in which 

the SVM will learn the decision boundary between (two or more) classes. Then, 

after the learning phase the remaining objects are given to the SVM without the 

labels’ assignment. This is called the test set and the objective of the trained SVM 

is now to predict the label of each new object and classify it, by applying the 

decision function 54,55. 
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Real life problems are usually highly non-linear and therefore the definition of a 

decision boundary in the original input space is not an easy task. To overcome 

this issue, decision hyperplanes are determined in a high-dimensional feature 

space and a unique global optimal separation solution can be found either for 

linear or non-linear boundaries without much computational costs, using the so 

called “kernel trick”, as represented in Figure 2-19  48. 

 

 

 

 

 

Figure 2-18. Schematic representation of a binary SVM classifier. In this 

example two groups of subjects (two classes, patients and controls) can be 

separated based in two distinct features of each group (feature 1 and feature 

2). The support vectors mark the largest margin with the optimal separation 

between groups. The largest margin ensures the maximal generalization 

capacity of the classifier regarding new data (unknown subject). If more 

features are available a higher dimensional space is used. 
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Currently in brain imaging, SVM is the most frequently implemented classifier 48. 

The SVMs have been early on used in computational learning theory 50 and are 

now used with many applications in biomedical statistical pattern classification in 

cognitive neuroscience 56–59 or in the context of clinical diagnosis/treatment 

predictions 55,60–63. The size of the available data is typically limited. To optimize 

the data exploration, to increase the size of the test set and to avoid overfitting 

(loss of generalization ability of the model), cross-validation is used, in particular 

the leave-one-out cross validation scheme 48. The idea is to divide the original 

dataset containing N data points of each class into N subsets containing one 

single data point of each class and then train the classifier in N-1 subsets and test 

it in the remaining unseen set. This is repeated N times and the classification 

results are averaged to obtain performance measures as accuracy, sensitivity and 

Figure 2-19. The kernel trick. A great advantage of the SVM is that it allows to find 

a linear boundary even when the classification problem is too complex to be 

solved in the original input space. By using the so called “kernel trick” the SVM 

algorithm maps the input feature space into a higher-dimensional space, in which 

the decision boundary is linear – it is called hyperplane in case of more than 3 

dimensions. Then, it returns to the original input space and draws the solution of 

the classification problem that was learned. 
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specificity. To evaluate the statistical significance of the classification procedure a 

common used method is permutation testing 64–66. 

Permutation testing consists in determining the probability of obtaining the 

observed classification results if the null hypothesis, that there is no information 

about the label in the data, was true. The null distribution is achieved by repeating 

many times the same classification scheme with a random shuffling of the labels 

each time. Over many repetitions, this yields a sample of classification results 

under the null hypothesis that there is no class information in the data 67,68. A 

fundamental question that arises is the normality of the null distribution. 

Although the permutation distribution should behave in accord with the central 

limit theorem (CLT), this might not be true in all circumstances. A parallel 

collaboration work on this topic evaluated the accordance level of permutation 

distributions of classification accuracies to normality expected under the CLT. A 

simulation study has been carried out using fMRI data that were collected while 

human subjects responded to visual stimulation paradigms 69.  

In a recent paper we describe a contribution for the understanding and practical 

implementation of a data-driven (non-hypothesis constrained) approach to MRI 

data. We used SVMs to directly distinguish the structural MR images of healthy 

controls from brain scans of patients with Neurofibromatosis Type 1 49. 

Furthermore we compared the method with a standard model-driven approach – 

Voxel Based Morphometry. This SVM approach is a proof of concept, useful for 

subsequent studies with fMRI data. 

 

Connectivity analysis 

The multivariate approach to data analysis, by its nature, allows these methods to 

detect functionally connected networks of brain areas. There is an increasing 

interest and development of mathematical tools for the analysis of brain 
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connectivity in recent years. We assist to a shift in emphasis from voxel-wise 

functional segregation (activation) of brain regions to distributed functional 

integration of brain areas 70. Many approaches have been used to model the 

interaction between spatially remote brain regions more explicitly. From simple 

correlation of signal time courses from two regions (e.g. linear correlation 

coefficient) describing statistical dependencies between data – functional 

connectivity – to mechanistic models of directed interactions that generated 

those dependencies – effective connectivity 71.   

Functional connectivity can be calculated condition-wise, i.e. separately for 

different experimental conditions, in a way that it allows to investigate the 

modulation of activity correlation of two brain regions in different cognitive 

contexts 3,72.  

The directed effective connections are often symbolized by arrows connecting 

boxes each representing a different brain area. Thus effective connectivity 

describes the causal influences that a brain area exerts over another 71. An 

interesting data-driven approach to effective connectivity modelling is provided 

by methods based on the concept of Granger causality 73. The great advantage 

of this method is that it is flexible enough to automatically estimate measures of 

effective connectivity in the whole-brain for reference voxel or region of interest 

without the specification of explicit connectivity models 74–76. 
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This chapter provides an important practical contribution of this thesis in the 

methodological aspects of fMRI analysis. We implemented a deconvolution 

approach to fMRI data in healthy subjects and diabetic patients, a population 

prone to cerebrovascular disease, in order to probe neurovascular coupling and 

neuronal response as empirically extracted from fMRI data. This work was 

important, because it set the ground to test the robustness of deconvolution 

approaches in fMRI studies of motion perception. These approaches were also 

used in chapter 4. 

 

Abstract 

Type 2 diabetes mellitus (T2DM) patients develop vascular complications and 

have increased risk for neurophysiological impairment. Vascular pathophysiology 

may alter the blood flow regulation in cerebral microvasculature, affecting 

neurovascular coupling. Reduced fMRI signal can result from decreased neuronal 

activation or disrupted neurovascular coupling. The uncertainty about 

pathophysiological mechanisms (neurodegenerative, vascular or both) 

underlying brain function impairments remains. 

In this cross-sectional study we investigated if the hemodynamic response 

function (HRF) in lesion-free brains of patients is altered by measuring BOLD 

response to visual motion stimuli. We used a standard block design to examine 

the BOLD response and an event-related deconvolution approach. Importantly, 

the latter allowed for the first time to directly extract the true shape of HRF 

without any assumption and probe neurovascular coupling, using performance-

matched stimuli. We discovered a change in HRF in early stages of diabetes. 

T2DM patients show significantly different fMRI response profiles. Our visual 

paradigm therefore demonstrated impaired neurovascular coupling in intact 
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brain tissue. This implies that functional studies in T2DM require the definition of 

HRF, only achievable with deconvolution in event-related experiments. 

Further investigation of the mechanisms underlying impaired neurovascular 

coupling is needed to understand and potentially prevent the progression of 

brain function decrements in diabetes.  
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Introduction 

Type 2 diabetes mellitus (T2DM) seems to be associated with increased risk for 

brain function loss and long-term cognitive impairment, which are well 

documented in verbal and visual memory domains, information processing speed 

and executive functioning 1–3. It is crucial to understand the neurobiological 

correlates of early brain dysfunction in T2DM to develop and follow-up preventive 

interventions 1,3. 

The majority of the studies investigated structural differences in the brain of 

T2DM patients and revealed a consistent finding of atrophy 1,3, particularly in 

cortical and subcortical grey matter 4–6 but the association between sensory, 

cognitive deficits and brain structure is still poorly understood, in particular at 

early stages of the disease, when there are no evident structural lesions 1,4,6. 

Concerning functional studies, results are not as consistent 3. There are reports of 

changed cerebral blood flow in T2DM patients 3, although a study with a larger 

sample found no significant differences when accounting for brain volume 7. 

Recent studies examined the relation of cognition, brain volume or white matter 

alterations with both cerebral blood flow and cerebrovascular reactivity and 

found no significant relationships 8,9. Notably, a number of functional MRI (fMRI) 

studies relied on BOLD (Blood Oxygenation Level-Dependent) signal 10 to 

indirectly measure neuronal activity and investigate neurophysiological 

impairment. Studies addressing resting-state fMRI found reduced functional 

connectivity between several regions of the “default mode network” in T2DM 

patients, which has been related to impaired episodic memory processing in older 

participants 11. In previous studies the relation between brain activity and 

performance impairment was either not tested 12 or reductions in connectivity 

between default mode regions were not performance related 13. A recent study 

reported distributed activity changes in T2DM patients, including the temporal 

gyrus, in which activity was negatively correlated with executive functioning, 
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suggesting a joint effect of structural and functional alterations 14. A later study 

however reported abnormal resting-state brain activity in the absence of 

structural differences in T2DM patients, which was associated with cognitive 

impairment 15. The uncertainty about pathophysiological mechanisms underlying 

behavioural impairments and brain dysfunction remains. It could be 

neurodegenerative, vascular or a combination of both. It should be noted that 

the measure of neuronal activity relies on neurovascular coupling, which can be 

altered in the presence of cerebrovascular disease. Attenuated BOLD responses 

may be caused by impaired vascular reactivity and not by impaired neuronal 

activity. 

The vascular response triggered by neuronal activation – the so-called 

hemodynamic response function or HRF – elicits variations in the BOLD signal as 

measured in fMRI 16. An important pathophysiological mechanism in T2DM might 

be the early alteration of the blood flow auto regulation (the intrinsic ability of 

the brain vascular bed to functionally maintain its needed supply) in cerebral 

microvasculature, reflecting impaired neurovascular coupling and altered HRF. In 

patients with stroke it has been shown that the HRF can be altered, which may 

result in misinterpretation or underestimation of fMRI signal 17,18. The only way to 

disentangle vascular from neural impairment driven changes in the BOLD 

response is to also use stimuli that are performance matched, thereby using 

similar neural and cognitive resources. 

To elucidate the disruption of neurovascular coupling the use of event-related 

designs is crucial, as it allows to extract by deconvolution the real hemodynamic 

response to a single stimulus event, without any assumption [see e.g. 19 for a 

detailed explanation]. We therefore queried whether T2DM patients present an 

HRF that is different from the canonical one. Unlike previous studies, which 

emphasized the experimental block design, here we used for the first time an 

event-related approach, which is the only one that can directly tackle this 
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question. If the hemodynamic regulation is affected in the brain of T2DM patients 

as directly measured at the event level it could be the basis for findings of no 

activation or underactivation at the more macroscopic block level. This could 

provide support for the interpretation of neurovascular coupling changes 

expressed in the fMRI signal changes and their relation to behavioural 

measurements. We examined the HRF in the human brain by using both a block 

and an event-related experimental design to investigate the BOLD response to a 

visual speed discrimination task in the whole brain and specifically in three 

regions-of-interest (ROIs). One of the regions, MT+/V5, was selected 

independently of the task as it is one of the visual brain regions that can be most 

reliably localized due to its well established motion selectivity 20–22. Furthermore 

we investigated two other regions that were significantly activated during this 

type of task: the insula, known for its role in perceptual decision mechanisms, and 

the inferior frontal gyrus, which plays a role in executive functioning. We 

discovered a significant difference in the HRF of T2DM patients, reflecting 

impaired neurovascular coupling and altered fMRI response amplitudes in all 

investigated brain areas. An important implication of these results is the 

requirement of event-related deconvolution approaches in fMRI studies in T2DM 

(and other vascular diseases). Standard block designs cannot extract the true HRF 

and may mask the findings and interpretation of true differences in brain 

responses. 

 

Materials and methods 

Participants 

We recruited 121 participants (70 controls and 51 T2DM). An expert 

neuroradiologist had access to both standard clinical 2-D-FLAIR and 3-D-SPACE 
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T2-weighted images to perform the neuroradiological assessment of all 

participants and examine for the presence of white matter hyper intensities. We 

excluded participants with vascular or structural lesions or any changes that could 

confound our results. After applying exclusion criteria we could select 51 type 2 

diabetes participants (30M, 21F) and 29 age-matched controls (14M, 15F). Table 

3-1 details the participants’ demographic and clinical data. In this cross-sectional 

study participants had normal or corrected to normal vision (as further confirmed 

by fundus photography and optical coherence tomography) and no history of 

neurological or psychiatric disease.  

T2DM patients were diagnosed in the Endocrinology Department of the 

University of Coimbra Hospital using standard WHO criteria 23,24, including the 

recent recommendation of a cut-off point of 6.5% for HbA1c (in addition to the 

criteria based on fasting plasma or tolerance test glucose levels), and were 

recruited among the T2DM clinical population of this Department. Inclusion 

criteria for patient group: 1-Age between 40 and 75 years-old; 2-Diabetes mellitus 

type 2 for at least one year prior to the commencement of this study; 3-Informed 

written consent. Matched controls were recruited from the general population of 

the Hospital or University staff as follows. Inclusion criteria for control group: 1-

Age between 40 and 75 years-old; 2 & 3-Diabetes mellitus type 2 diagnosis 

excluded based on levels of glycated haemoglobin (HbA1c) and fasting glucose; 

4-Informed written consent. The diagnosis and the severity of diabetic 

retinopathy was carried by expert hospital professionals, based on a technical 

report following the guidelines of the Early Treatment Diabetic Retinopathy Study 

(ETDRS). For each participant, ocular dominance was determined using the hole-

in-the-card test (Dolman method). Hand dominance was ascertained using the 

Edinburgh inventory. All participants indicated informed written consent. The 

Helsinki Declaration of 1975 (and as revised in 1983) guidelines were followed 
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throughout the study. The Ethics Committee of the Faculty of Medicine of the 

University of Coimbra approved all experimental procedures. 

 

Table 3-1. Characteristics of study participants 

  Controls T2DM 
a
P-value 

n 29 51  

Age (years) 56.67 (6.43) 59.73 (7.90) 0.069 

Gender (M/F) 14/15 30/21 0.558 

Discrimination threshold (deg/sec) 1.39 (1.34) 2.44 (1.88) 0.004 

Duration of the disease (years)  12.37 (8.76)  

HbA1c (NGSP, %) 5.51 (0.39) 9.24 (2.28) < 0.001 

HbA1c (IFCC, mmol/mol) 36.82 (4.38) 77.49 (24.96) < 0.001 

Visual acuity 0.95 (0.15) 0.84 (0.25) 0.018 

Diabetic 

retinopathy (%) 

No DR 93 37  

Questionable DR 7 14  

Mild NPDR  32  

Moderate NPDR  11  

Moderately 

severe NPDR 
  6   

Severe NPDR       

Body Mass Index (BMI, Kg/m
2
) 25.34 (3.23) 29.83 (4.97) < 0.001 

Blood pressure controlled by 

medication (e.g. beta-blockers) (%) 
25 78 < 0.001 

Blood pressure – systolic (mmHg) 125.31 (17.39) 135.20 (19.80) 0.106 

Blood pressure – diastolic (mmHg) 73.23 (9.32) 75.68 (12.65) 0.517 
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Blood total cholesterol (mg/dL) 209.27 (34.05) 167.82 (51.72) < 0.001 

Blood cholesterol HDL (mg/dL) 58.50 (13.01) 41.35 (11.46) < 0.001 

Blood cholesterol LDL (mg/dL) 142.00 (27.35) 110.25 (31.96) < 0.001 

Atherogenic index 3.70 (0.81) 4.22 (1.28) 0.112 

Triglycerides (mg/dL) 119.58 (75.57) 157.68 (76.77) 0.005 

Apolipoprotein A 1 (mg/dL) 167.30 (23.18) 136.59 (28.17) < 0.001 

Apolipoprotein B 100 (mg/dL) 99.19 (17.68) 87.92 (24.28) 0.003 

Smoking habits 

Yes (%) 8 4 

0.725 No (%) 76 76 

Quit (%) 16 20 

Alcoholic habits 

Yes (%) 39 22 

0.259 No (%) 61 76 

Quit (%) 0 2 

Exercise habits 

Yes (%) 54 34 

0.095 

No (%) 46 66 

Anti-diabetic 

medication 

Oral (%)   9.1   

Insulin (%)   36.4   

Oral + insulin (%)   54.5   

Data are means (± SD). 
a
 P-value by t-test or Wilcoxon rank sum test for 

continuous variables and χ
2
 test for categorical variables. Diabetic retinopathy 

(DR) severity grades were attributed based on the ETDRS (Early Treatment 

Diabetic Retinopathy) scale. At all categories DR is non-proliferative (NPDR). 

Abbreviations: BMI, body mass index; F, female; HDL, high-density lipoprotein; 

IFCC, International Federation of Clinical Chemistry; LDL, low-density lipoprotein; 

M, male; NGSP, National Glycohaemoglobin Standardization Program; NPDR, 

non-proliferative diabetic retinopathy. 
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Stimulus presentation and apparatus 

We wrote our experiments in MATLAB, using the Psychophysics Toolbox 

extensions 25,26. Stimuli were projected by means of an LCD projector (Avotec Real 

Eye Silent Vision 6011, resolution 1024 x 768, 60Hz refresh rate) onto a screen 

pad positioned in the bore at a distance of 163 cm from the projector (image size 

in the screen pad was 22.62º x 17.06º visual degrees; mirror distance from screen 

was 50 cm). Stimuli were viewed monocularly with the dominant eye while the 

other eye was covered with an opaque eye patch.  

 

Psychophysics 

The psychophysical task (performed inside the scanner to select stimulus levels) 

consisted on a two-alternative forced choice test aimed to determine a speed 

discrimination threshold by comparing the speed of two white dots, a reference 

dot and a target dot with mean luminance 22.9 cd/m2, moving on a grey 

background with mean luminance 9.39 cd/m2. The dots composing each trial 

were randomly presented one in each visual hemifield simultaneously for 400 

msec at an eccentricity of 7.5º along the horizontal meridian, with each dot 

moving back and forth along a path of 2º visual degrees with a pseudo-random 

linear trajectory (between 0 and 180 degrees).  Dot size was 0.22º x 0.22º and 

fixation cross size was 0.33º x 0.33º. The subject reported which dot moved faster 

by means of a button press with a Cedrus Lumina LP-400, LU400 PAIR MR-

compatible response box. The speed of the target dot of the successive trials was 

determined using a descending logarithmic staircase which determined the 

number of trials and allowed the estimation of the discrimination threshold. The 

staircase had 6 reversals (2 practice/4 experimental). It allowed to compute 

speeds from 24 degrees/second (initial target speed) to 5 degrees/second 
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(reference speed) using a step value that ranged from 1 dB to 0.05 dB. The speed 

discrimination threshold was then estimated using the mean of the last 4 

reversals. 

 

Stimuli and functional MRI tasks 

Each participant performed three experimental runs: two presenting the stimuli 

in blocks and one in an event-related design. All participants were presented with 

the same randomized sequences. Both block and event-related designs are 

represented in Figure 3-1. The stimuli characteristics were the same as in the 

psychophysical task, except the duration. In the block design runs the reference 

dot always moved at 5 degrees/second and the target dot moved with one of 

four different values: the reference speed (reference condition), the reference 

speed incremented of the individual threshold of discrimination (threshold 

condition), the reference speed incremented of 3 times the previous threshold 

(sub-maximum condition) and an arbitrarily defined high speed value of 20 

degrees/second (maximum condition). The reference condition was presented 2 

times (both visual hemifields with the dot moving with the reference speed). Each 

of the three remaining conditions was repeated four times with the faster dot 

appearing two times in each visual hemifield. This yields 29 blocks of alternated 

visual stimulation (14 blocks of 12.5 seconds each) and baseline fixation (15 blocks 

of 12.5 seconds each). In the event design stimulation paradigm the alternation 

between stimulation and baseline fixation is maintained but only the threshold 

and the sub-maximum conditions were presented. Because of efficiency reasons 

(as event-related designs have much lower statistical power than block designs 

we need much more trials per event) each of the two conditions (representing 

representative and intermediate difficulty levels) was presented 20 times (10 

times per hemifield). Each visual stimulation period lasted 400 msec and the 
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baseline fixation period lasted 4600, 7100 or 9600 msec, which occurred 

randomly. Variable inter stimulus intervals must be used in the experimental 

design in order to uniquely estimate the large amount of beta values from 

overlapping responses. Participants were instructed to maintain fixation on a 

white cross during the whole experiment and report the faster dot during the 

baseline fixation periods succeeding the stimulation blocks/events. The 

computation of the speed values was individually tuned to ensure that we would 

analyze fMRI signal changes in identical performance conditions across 

participants. 

 

Figure 3-1. Visual speed discrimination task. Graphical representation of the 

experimental protocols of block and event-related experiments of visual motion 

discrimination (see Methods section for a detailed explanation). 



126 | C h a p t e r  3  

Image acquisition 

The MR scans (2012-2014) were acquired at the Portuguese Brain Imaging 

Network facilities, on a 3T research scanner (Magnetom TIM Trio, Siemens, 

phased array 12-channel birdcage head coil). 

We acquired a 3-D anatomical MPRAGE (magnetization-prepared rapid gradient 

echo) scan using a standard T1w gradient echo pulse sequence (TR = 2530 msec; 

TE = 3.42 msec; TI = 1100 msec; flip angle 7°; 176 slices with voxel size 1 x 1 x 1 

mm; FOV 256 mm). A functional imaging series consisted of 2 runs of 145 

gradient-echo (GE) echo planar imaging (EPI) brain scans (TR 2500 msec; TE = 30 

msec; flip angle 90°; 36 interleaved slices with voxel size 3 x 3 x 3 mm; FOV 256 

mm) in a block design stimulation paradigm with measurement of BOLD signal 

and 1 run of 116 gradient-echo (GE) echo planar imaging (EPI) scans (TR 2500 

msec; TE = 30 msec; flip angle 90°; 36 interleaved slices with voxel size 3 x 3 x 3 

mm; FOV 256 mm in an event-related design stimulation paradigm with 

measurement of BOLD signal.  

 

MT+/V5 functional localizer 

To analyse the BOLD signal in the motion responsive ROI we used a functional 

MT+/V5 localizer based on dot motion 22,27. We presented an independent group 

of participants (data not shown) a moving-dot task, which has been used in 

imaging and neurophysiological studies based on both single and multiple dots 

22,28. The random effects (RFX) general linear model (GLM) analysis of BOLD 

responses in Talairach space confirmed that MT+/V5 was successfully activated 

in the expected coordinate locations (peak voxel Talairach coordinates X = -45, Y 

= -66, Z = 2 in the left and X = 42, Y = -66, Z = -2 in the right) and this ROI was 
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selected by choosing the whole cluster that survived an FDR (false discovery rate) 

corrected P-value  = 0.001 with cluster extent threshold correction. 

fMRI data processing and statistical analysis 

Image processing and analysis were carried out using BrainVoyager QX 2.6 (Brain 

Innovation, Maastricht, The Netherlands). We applied slice scan time correction, 

linear trend removal, temporal high-pass filtering (2 cycles per run), slight spatial 

smoothing (FWHM 4 mm) and interscan head motion correction. Functional scans 

were coregistered with each individual anatomical scan in Talairach space. 

In order to ensure that we were investigating differences in BOLD signal related 

to the HRF and not the task difficulty levels we included in our GLM confound 

predictors accounting for the incorrect trials. In other words, we only investigated 

BOLD signal variation explained by correct responses to the task, ensuring the 

differences at the vascular and not cognitive level. 

Statistical analysis was performed using an RFX GLM which allows modelling 

explicitly both within-subjects and between-subjects variance components in 

order to generalize findings to the population level 29. The data for each subject 

is concatenated resulting in mean effect estimates per condition (first level). Then 

the estimated first-level mean effects enter the second level as the new 

dependent variable (instead of the raw data) and are analyzed across subjects 

(group analysis). Since the analysis at the second level explicitly models the 

variability of the estimated effects across subjects, the obtained results can be 

generalized to the population [see e.g. 30 for a detailed explanation]. 

Predictors for the four stimulation conditions were used to estimate condition 

effects (beta values) separately for each subject. The subsequent resulting group 

statistical maps were corrected for multiple comparisons using the FDR correction 

at P-value < 0.001 with cluster extent threshold. We defined two additional 

regions of interest based on the thresholded RFX-GLM statistical maps: one at the 
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insula because of its known role in decision making processes and one in the 

inferior frontal gyrus (IFG) because of its role in executive functioning. We 

extracted the mean BOLD activity within the three ROIs and compared between 

groups. We further examined the average BOLD fMRI response time-courses for 

each stimulation condition in the three ROIs.  

For the event-related design, we applied both the standard RFX-GLM analysis and 

deconvolution analysis within the previously defined ROIs in order to separate 

the contributions of different events. A deconvolution analysis consists of an 

alternative to the standard GLM analysis as the entire shape of the HRF is not 

fixed in advance. It allows to estimate the HRF for each event type. In this 

approach of linear deconvolution each condition is coded in a user-specified 

number of "stick" predictors each modelling separately the BOLD response at one 

data point with respect to the onset of that condition. This allows a more flexible 

fitting of the model and allows the user to compare conditions on the single data 

point basis [see e.g. 31 for a detailed explanation]. Furthermore, this is done at the 

individual level in a way that each participant has its own HRF estimated by 

deconvolution. 

 

Results 

Behavioural performance 

We observed a statistically significant difference in the mean (standard deviation) 

psychophysical threshold of speed discrimination between T2DM patients and 

controls: thrCNT = 1.39 (1.34) deg/sec and thrT2DM = 2.44 (1.88) deg/sec (Mann-

Whitney test P-value = 0.0043, see Table 3-1).  

In this study it was critical to study BOLD responses and neurovascular coupling 

under performance matched conditions (in threshold units), in addition to 
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physically matched stimuli. For this reason and given that stimuli were chosen 

(tailored) for subsequent fMRI scanning taking also into account levels above and 

below individually determined thresholds, overall response accuracy while 

scanning did not show a significant difference between control and diabetic 

participants. Controls and patients could therefore be performance matched in 

both blocked and event-related experiments, reaching leveraged average and 

matched accuracy values for easier discrimination trials (data not shown). 

Furthermore, to ensure we would be analyzing hemodynamic effects rather than 

differences in cognitive processes we included only trials with correct task 

response in the fMRI analysis procedures. 

 

fMRI findings 

In the blocked experiment we can observe similar statistical maps for controls and 

T2DM patients, although the map of T2DM patients show an interesting bilateral 

activation in all three previously described ROIs while the control group shows a 

right lateralization in activation of higher level areas. 

In Figure 3-2 we can observe the overlap between the RFX GLM statistical maps 

with the independent MT+/V5 localizer used for investigation of the HRF in the 

visual motion responsive area. The independent localizer (data not shown) is 

consistent with prior reports of its localization 21,27. We defined two additional 

ROIs based on the thresholded RFX GLM statistical maps for further analysis of 

the HRF: one at the insula (Figure 3-3) because of its known role in decision 

making processes and one in the inferior frontal gyrus (Figure 3-4) because of its 

role in executive function. 

For the standard GLM analysis of the event-related experiment, analyzed using a 

canonical HRF, we found a striking effect of the visual speed discrimination task. 

In the control group we observe a similar pattern of response across the brain as 
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in the block experiment. Notably, in T2DM patients we observed very little or no 

significant activations at the same statistical threshold, for the event-related 

design experiment. We rather observe large deactivation regions, although one 

can see that most of the regions present a statistic value on the lower extreme of 

the thresholded scale. 

 

 

Figure 3-2. BOLD fMRI response in MT+/V5 during the block design experiment 

for controls (CNT) and diabetic patients (T2DM). Both maps are corrected for false 

discovery rate (FDR) at P-value < 0.001. One can see significant activations within 

the middle temporal area (MT+/V5), being well overlapped with the independent 

localizer shown in green. The peak voxel has Talairach coordinates [X = -45; Y = -

66; Z = 2] in the left and [X = 42; Y = -66; Z = -2] in the right. We used this ROI to 

extract the fMRI BOLD signal for further analysis of the response profile in both 

groups. 
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Figure 3-3. BOLD fMRI response in the insula during the block design experiment 

for controls (CNT) and diabetic patients (T2DM). Both maps are corrected for false 

discovery rate (FDR) at P-value < 0.001. One can see significant activations within 

part of the insula, corresponding to Brodmann area 13. The peak voxel has 

Talairach coordinates [X = 36; Y = 17; Z = 7] and t = 7.873521. We used this ROI 

to extract the fMRI BOLD signal for further analysis of the response profile in both 

groups. 
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Figure 3-4. BOLD fMRI response in inferior frontal gyrus during the block design 

experiment for controls (CNT) and diabetic patients (T2DM). Both maps are 

corrected for false discovery rate (FDR) at P-value < 0.001. One can see significant 

activations within part of the inferior frontal gyrus (IFG), corresponding to 

Brodmann area 9. The peak voxel has Talairach coordinates [X = 42; Y = 2; Z = 31] 

and t = 9.717579. We used this ROI to extract the fMRI BOLD signal for further 

analysis of the response profile in both groups. 
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Figure 3-5. BOLD fMRI response in MT+/V5 during the event-related experiment 

for controls (CNT) and diabetic patients (T2DM), using a canonical hemodynamic 

response function (HRF). Both maps are corrected for false discovery rate (FDR) 

at P-value < 0.05. One can see significant activations within the middle temporal 

area (MT+/V5) of control participants, being well overlapped with the 

independent localizer shown in green. Note the absence of significant activation 

in the statistical map of T2DM patients, which shows mainly deactivations relative 

to baseline. The peak voxel of MT+/V5 has Talairach coordinates [X = -45; Y = -

66; Z = 2] in the left and [X = 42; Y = -66; Z = -2] in the right. We used this ROI to 

extract the true HRF from fMRI BOLD signal in both groups. 
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Figure 3-6. BOLD fMRI response in the insula during the event-related experiment 

for controls (CNT) and diabetic patients (T2DM), using a canonical hemodynamic 

response function (HRF). Both maps are corrected for false discovery rate (FDR) 

at P-value < 0.05. One can see significant activations within part of the insula, 

corresponding to Brodmann area 13, in control participants. Note the absence or 

reduced significant activation in the statistical map of T2DM patients, which 

shows mainly deactivations relative to baseline. The peak voxel of the insula has 

Talairach coordinates [X = 36; Y = 17; Z = 7] and t = 7.873521. We used this ROI 

to extract the true HRF from fMRI BOLD signal in both groups. 
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Figure 3-7. BOLD fMRI response in inferior frontal gyrus during the event-related 

experiment for controls (CNT) and diabetic patients (T2DM), using a canonical 

hemodynamic response function (HRF). Both maps are corrected for false 

discovery rate (FDR) at P-value < 0.05. One can see significant activations within 

part of the inferior frontal gyrus (IFG), corresponding to Brodmann area 9, in 

control participants. Note the absence or reduced significant activation in the 

statistical map of T2DM patients, which shows mainly deactivations relative to 

baseline. The peak voxel of IFG has Talairach coordinates [X = 42; Y = 2; Z = 31] 

and t = 9.717579. We used this ROI to extract the true HRF from fMRI BOLD signal 

in both groups. 
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ROI based activation differences 

We used the independently defined MT+/V5 and the functionally defined insula 

and IFG ROIs to further investigate the BOLD response during the visual speed 

discrimination separately in controls and diabetic participants.  

In Figure 3-8 we show the average group beta values for all ROIs, extracted from 

the standard RFX GLM analysis of the BOLD response during the block and event-

related designed experiments. We found significantly lower beta values in T2DM 

patients compared to controls in the block experiment (Pinsula = 0.011; PIFG < 0.001; 

PMT+ < 0.001) as well as in the event-related experiment (Pinsula = 0.024; PIFG = 

0.043; PMT+ = 0.002). These values represent the average BOLD signal change in 

these areas during all periods of stimulation, which are suggested to be 

systematically lower in the T2DM group. 

 

Figure 3-8. Mean BOLD activity within the three selected regions-of-interest 

(ROIs) during (A) block design runs and (B) event-related experiment. Significant 

differences between groups are indicated by *P-value < 0.05. Values are 

presented as mean ± SEM and were extracted using a standard RFX-GLM 

procedure with a fixed canonical HRF. 
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General BOLD response profiles – block design 

The average time courses of the BOLD fMRI response to each condition within 

the three ROIs during the blocked experiment are shown in Figure 3-9. We found 

globally higher amplitude in controls compared with T2DM patients except for 

the trials presenting a discrimination task between the reference speed and the 

maximum speed, which is the easiest condition. The difference in the response 

amplitude can be distinguished as a function of the timing and difficulty of the 

stimulation block. Interestingly, these differences are more pronounced in the 

beginning of the blocks during the sub-maximum and maximum conditions (easy 

conditions, panels C and D in Figure 3-9) while it appears later in the period during 

the reference and threshold conditions (difficult conditions, panels A and B in 

Figure 3-9). This suggests that participants hold higher responses during more 

difficult discrimination blocks while in easier ones they decide faster and return 

to baseline sooner. T2DM patients tend to present this decision mechanism 

somehow diminished. 
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Figure 3-9. Averaged time course of the BOLD fMRI response within the three ROIs for 

the (A) reference, (B) threshold, (C) sub-maximum, and (D) maximum speed differences 

during the block design experiment. Values are presented as mean % signal change ±  

SEM and were extracted using a standard RFX-GLM procedure with a fixed canonical 

HRF. 
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True estimation of hemodynamic response function 

In the event-related experiment, we employed for the first time in T2DM a 

deconvolution based GLM analysis, which is used explicitly to remove the effect 

of the impulse response from the measurements in order to attempt more 

accurately to depict the time course of the neuronal activity from the measured 

BOLD response. In Figure 3-10 we show the global average of the estimated HRF 

for each group from both threshold and sub-maximum events and over the three 

regions of interest (panel A), and also the ROI-specific HRF for each event type 

(panels B to D). In the specific case of the deconvolution GLM the beta weights of 

the GLM allow to reconstruct the entire BOLD response to each condition from 

the data. The height of the peak response was significantly lower in T2DM (P = 

0.02) as well as the “pre-peak dip”. In T2DM patients the characteristic undershoot 

of the HRF does not seem to occur before returning to baseline (see significant 

data points in the global HRF - Figure 3-10A). In addition, we performed a 

sensitivity and specificity analysis of the HRF of T2DM patients versus healthy 

controls. We computed the ROC (receiver operating characteristic) curve for the 

peak amplitude of the HRF. The area under the curve (AUC) was found to be 

significantly different from the null hypothesis of no discrimination between 

groups (AUC = 0.65; SEM = 0.06; P-value = 0.03). 
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Figure 3-10. True estimated hemodynamic response function (HRF) in the brain. 

The global average true estimated HRF is presented in (A) for each group from 

both threshold and sub-maximum events and over the three regions of interest. 

The * represents a significant difference between groups at P-value < 0.05 (with 

Bonferroni correction for multiple comparisons). ROI-specific estimated true HRF 

of the BOLD fMRI response within (B) Insula, (C) Inferior Frontal Gyrus and (D) 

MT+/V5 during the event-related experiment are also shown. Values were 

extracted by deconvolution of the BOLD signal and are presented as mean ± SEM. 
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Discussion 

This study aimed at assessing the stimulus driven BOLD hemodynamic response 

in neurologically intact patients with type 2 diabetes mellitus, without any 

neuroradiological signature of brain damage. We investigated fMRI signal 

changes in response to a visual speed discrimination task, using both block and, 

most importantly, event-related designs, which allowed for the extraction (by 

deconvolution) of the real hemodynamic response function. 

Our results revealed differences in the amplitude of BOLD signal changes as in 

the time course of the HRF of diabetic patients (Figure 3-8 to Figure 3-10). The 

event-related design and the possibility to implement response deconvolution 

allowed to determine that T2DM participants had dissimilar physiological 

response curves (lower global amplitude, peak height, “dip” and undershoot). This 

shows that the HRF is changed and thereby that neurovascular coupling is 

disturbed even in apparently normal intact brains. These differences cannot be 

attributed to the documented processing impairment since task performance was 

tailored across groups and, importantly, fMRI signal analysis accounted for the 

correct trial responses only. Intermediate stimulus levels were adjusted to near 

and above individual threshold levels to ensure performance matching. Note that 

it is impossible to completely match the task at the stimuli parameters and 

performance levels at the same time (although all participants had performance 

or physically matched stimuli, and only correct responses were used). In this type 

of studies the literature recommendation is to normalize the stimuli to individual 

threshold units 32,33. Notably we also tested the association between global 

activation measures and diabetic retinopathy grades in this subgroup of patients 

and we did not find a significant correlation. We assume that abnormalities in the 

HRF in this subgroup could not have driven the main findings of this study. The 

differences in the hemodynamic response are an effect of T2DM rather than 
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retinopathy (which was expected given that the inclusion criteria were anyway 

mild). 

In sum, microvascular pathophysiology is the likely explanation for our results, in 

line with previously suggested pervasive injuries to the vascular bed 16,34. The 

BOLD fMRI signal change is due to variations of deoxyhemoglobin concentration 

in the cerebral vasculature and can be affected by local changes in blood flow, 

blood volume and oxygen consumption. As a consequence, the temporal and 

spatial characteristics of the BOLD time course can be influenced by differences 

in the vascular bed 35. It is also plausible that increased levels of baseline blood 

flow might reduce the BOLD signal amplitude. This should be measured in future 

studies using arterial spin labelling or contrast agents MRI techniques. 

The use of both blocked and in particular event-related paradigms was unique in 

our study. The latter allowed to investigate and directly estimate the transient 

hemodynamic response to a short stimulus and to extract it without making 

assumptions as to its shape 36,37. This is particularly useful in the case of an event-

related design because standard averaging, as in the case of standard GLM 

analysis of block designs, is not effective in directly estimating the event-related 

HRF responses. This enables the study of this hemodynamic response function as 

a measure of auto regulatory processes. Neuronal activation imposes an increase 

in oxygen demand in functionally relevant brain areas, which is managed by 

regulatory increases in blood supply to optimize oxygen supply 38. In the presence 

of cerebrovascular disease, the oxygen reserve may not be sufficient to respond 

to the stimulus, resulting in a loss of auto regulation 39,40. In this situation, the 

standard HRF is changed and induces subsequent alterations in the BOLD signal 

time course.  

We speculate that the differences in the temporal dynamics and magnitude of 

BOLD responses may reflect the degree of collateralization required in patients 

compared with controls 16,41. Future studies are needed to find the local 
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determinants of changed HRF shape and whether they are predictive of clinical 

progression. 

The identified BOLD signal changes in diabetic patients may therefore partially be 

explained by changes in the cerebral vasculature that modifies its capacity to 

adapt to local demands. In fact, assessment of fMRI activation in a damaged brain 

might depend on the constraints due to decreased oxygen delivery during 

activation. Consequently, these results yield an increased concern about the limits 

of functional MR imaging in evaluating patients with T2DM, at least using a 

canonical HRF. Using a standard canonical HRF to model the BOLD response may 

result in misestimating the response parameters. Previous event-related studies 

have identified significant variability in the shape of the hemodynamic response 

across healthy young adult 42 and elderly subjects. Some studies have reported 

that hemodynamic impairment can affect fMRI signal detection 34. The present 

study confirms these findings and reports for the first time the dynamic variations 

of BOLD signal in individuals with type 2 diabetes in several brain regions, and at 

the event level. We suggest that in fMRI studies with diabetic patients, each 

participant’s HRF should be measured using a long trial event-related study, 

conducted during each experimental fMRI session. Information about the 

hemodynamic parameters can then be used to optimize data analysis. The use of 

standard fixed GLM analysis of block designs might camouflage true differences 

in BOLD signal and consequently bias the interpretation about brain function in 

T2DM and other vascular diseases. 

Future longitudinal studies are needed to assess the predictive value of BOLD 

fMRI in the assessment of auto regulatory capacity in diabetic patients. BOLD 

fMRI has the advantage of being a non-invasive method and may compare 

favourably with other approaches. Our results suggest that a simple visual 

activation paradigm is sensitive in detecting alterations in the hemodynamic 

response of individuals with type 2 diabetes. 
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Functional MR imaging remains a useful tool in the indirect assessment of 

neuronal function, but its results should be approached with caution when 

evaluating patients with altered hemodynamic function as in the case of type 2 

diabetes. Event-related designs, as used in this study, will become very important 

to help extract the true shape of the hemodynamic response function, which is a 

promising new measure. Participants with type 2 diabetes show a different fMRI 

response profile: lower peak amplitude, lower dip and no undershoot before 

returning to baseline. Future studies will allow a more complete understanding of 

hemodynamic model parameters and the underlying physiology of the BOLD 

signal to improve the utility of functional brain mapping in the context of 

diabetes. 
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Introduction 

Visual perception of motion is crucial for human survival. The information 

provided by moving objects and self-motion allows for an effective adaptation to 

the environment, especially in the interaction with other moving agents. However, 

the visual input of the surrounding environment is not always solvable in a unique 

way by computation from sensory input. The human visual brain thus needs to 

solve disambiguation problems, and bistable motion provide a tool to study these 

mechanisms. This is well instantiated by the question whether motion signals 

coming from co-existing contours arise from single or multiple objects. 

Separating a two-dimensional image into its one-dimensional components (1-D 

simple oriented patterns) is not completely straightforward. A 1-D pattern is one 

like an extended grating, edge or bar: it is uniform along one single axis and 

motion is perceived in general orthogonally to this axis, behind the edge of a 

viewing aperture or behind the borders of the receptive field of a neuron 1. 

Several primate physiology studies and human functional neuroimaging have 

identified numerous visual motion-sensitive areas, which are involved in the 

processing of motion information 2–9. The extrastriate area MT+, composed of 

MT/V5 proper plus a number of neighbouring regions such as the medial superior 

temporal area MST, is very well known to be involved in the perception of global 

motion 9–11. It remains however not completely understood how full integration 

of multiple globally moving surfaces - 2-D motion - is achieved within the whole 

visual hierarchy, namely within higher level regions MST and dorsal stream 

regions within the intraparietal sulcus. 

A popular laboratory technique which has frequently been used to investigate 

this question has involves the use of plaid stimuli, made by superimposing two 

gratings of different orientations 12–18. Despite being physically constant, this type 

of stimulus produces perceptual bistability, in which observer’s spontaneously 

switch perception between two independent moving objects (component 
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motion) or one single object moving coherently (pattern motion). There is already 

evidence that during exposure to ambiguous bistable moving stimuli MT+ 

underlies the integration or segregation of motion components in the visual field 

and that the spontaneous switches between different perceptual interpretations 

are directly reflected in brain activity in this region 15. There is also evidence from 

electrophysiological and fMRI data that cortical activity that integrates visual 

information across hemifields takes place at extrastriate areas involved in late 

visual processing and that MT+ and V1 may contribute to bilateral visual 

integration during early visual processing 19. Furthermore, callosal connections 

between MT+ of both hemispheres were shown to be correlated with bistable 

perception in the context of binocular rivalry and interhemispheric spread of 

traveling waves of stimulus dominance 20. It is important to investigate how one 

can generalize to the context of interhemispheric integration of ambiguous 

stimuli that relate to in bistable perception of objects that are either perceptually 

separated in both visual hemifields or perceived as a single unitary object. These 

regions are optimal candidates for the investigation of how non-overlapping 

moving surfaces comprising a bistable stimulus, restricted to individual visual 

hemifields, are parsed into different objects or interhemispherically integrated 

into a single moving pattern. 

We take advantage of a paradigm leading to perceptual emergence of distinct 

stimulus interpretations using physically constant bistable stimuli, controlling for 

stability of visual input. In this way we could investigate the neural correlates of 

competition between bistable alternative neural representations which lead to the 

generation of antagonistic perceptual interpretations. Our proposed paradigm 

requires motion integration across interhemispheric regions that allows testing 

models that were proposed to account for the perceived coherent motion of a 

moving plaids 12. The most accepted model assumes that the true direction of 

motion of a plaid pattern is given by the intersection of constraints, a 2-D velocity 
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space where direction and velocity of the plaid's components intersect. The 

intersection of constraints mechanism is thought to require two successive stages 

of processing. The first evaluates the directions of movements of the 1-D local 

contours and the second computes the true direction of motion of the 2-D 

composite object by integrating over the output of the local analysers 21–23. It is 

known that the second-stage of motion processing occurs at the primate region 

MT (corresponding to the cortical complex MT+ in humans), which contains both 

component and pattern neurons responding to 1-D components of a moving 

pattern and to the global 2-D motion of an object, respectively. In this fMRI study 

we will test for the neural correlates of such stages, and whether they can be 

identified at single or multiregional levels. 

Research on bistable perception has been strongly influenced by the debate 

about whether decision involves bottom-up or top-down mechanisms 24. The 

top-down view-point assumes active cognitive processes as being pivotal for 

stimulus reversals, while in bottom-up theories automatic and local mechanisms 

sensitive to adaptation during early visual processing cause the reversals 25. 

Bottom-up theories are mainly supported by evidence for adaptation of low-level 

localised processes 24. Top-down theories, on the other hand, highlight influences 

of higher order brain areas and cognitive processes 26. As there is ample evidence 

for both bottom-up and top-down effects in bistable perception, it has become 

clear that both types of effects have to be implemented in theoretical models of 

bistable perception. 

The human visual MT+ complex seems to be pivotal for perceptual decision and 

the role of distinct visual regions in interhemispheric bistability and their top-

down modulation needs to be elucidated. 

Limitation in the temporal resolution of fMRI signals has led most researchers to 

focus on where information is processed in the brain - functional segregation, 

although functional/effective connectivity approaches have also been used. To 
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improve our understanding of how the brain processes information we 

investigated interactions between activated brain areas during perceptual 

decision- functional integration 27. We employed a model-free approach to 

investigate both functional connectivity, which is the simple correlation between 

measured time courses, and effective connectivity, which measures the directed 

influence one brain region exerts over another 28–30. The directed influences 

between brain regions was investigated using the concept of Granger causality 

27,31. Causality is framed in terms of predictability. Specifically, given two discrete 

time courses x and y, we say that y Granger causes x if we can predict the current 

value of x using the past values of both x and y better than we can when using 

the past values of x itself alone. This method and several variants have been 

applied to neurophysiological data to gain insight in the direction of influences 

between neural systems 32. We thus ask what are the brain regions subserving 

motion integration and surface reconstruction? We also asked what the role of 

parietal and frontal regions is, in particular in which concerns top-down effects. 

 

Materials and methods 

Participants 

We recruited 30 healthy participants (18 male; mean age ± standard deviation = 

28.37 ± 5.48 years) to take part in the study. All participants had normal or 

corrected-to-normal vision and no history of neurological or psychiatric disease. 

Participants were naive as to the specific experimental question, except two co-

authors of this study. All participants were right-handed, as confirmed by 

Edinburgh Handedness Inventory 33. All participants performed both the 

ambiguous (main task) and unambiguous (control) perceptual task. 
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All participants indicated informed written consent in accordance to the 

declaration of Helsinki. The experiments were conducted in compliance with the 

safety guidelines for MR research on humans. The ethical committee of the 

Faculty of Medicine of the University of Coimbra formally approved the study, 

including MRI procedures.  

 

Stimulus presentation and apparatus 

We wrote our experiments in MATLAB (The Mathworks, Inc.), using the 

Psychophysics Toolbox extensions 34,35. The stimuli were shown inside the MR 

scanner by means of an LCD screen (Avotec Real Eye Silent Vision 6011 - 

resolution 1024 x 768, refresh rate 60 Hz) located ~156 cm away from the 

participant (image size in the screen was 22.62º x 17.06º visual angle degrees). 

Participants viewed the screen through a mirror mounted above their eyes. 

Participants responded to visual stimuli using a fibre-optical MRI-compatible 

response box (Cedrus Lumina LP-400, LU400 PAIR - Cedrus Corporation, San 

Pedro, CA 90734, USA). To determine whether participants were able to maintain 

central fixation during the experimental task, eye tracking data (sample frequency 

1000 Hz) were recorded inside the scanner using eye tracker software Eyelink 

1000 (SR Research, Ottawa, Ontario, Canada). The eye tracker was individually 

calibrated with a 9-point calibration routine in the beginning of each experiment. 

 

Ambiguous and unambiguous stimuli description 

To achieve clear-cut long-range visual integration we used a bistable (i.e. 

ambiguous) stimulus first described by Wallach 36,37 that elicits perception of one 

coherent object or two separate objects, separated by the vertical meridian. This 

visual paradigm forcibly requires interhemispheric integration when perceptual 
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coherence occurs. We also constructed a control unambiguous stimulus by 

adding a background texture. 

The ambiguous stimulus, a descending roof-shaped pattern, consisted of angled 

black lines on a white background, mirrored at the vertical meridian of the visual 

field and moving continuously downward. A schematic representation of the 

stimulus is presented in Figure 4-1. After prolonged viewing under continuous 

motion the physically unchanged pattern produces two possible interpretations 

which alternate spontaneously: a single pattern moving downward - coherent 

motion (Figure 4-1A) - or two independent surfaces moving horizontally inward 

- incoherent motion (Figure 4-1B). The latter perceptual state was commonly 

associated with reports of an illusory structural change of the pattern, the two 

halves of the pattern seem to be divided by a phase offset defining a very thin 

line in the middle (virtual). Observers were asked to fixate the centre of the 

stimulus aperture, so the path of the vertices and the field halves produced during 

inward motion fall onto the vertical meridian of the retina. Stimulus’ properties 

were as follows: contrast 100%; duty cycle 6%; spatial frequency 0.6 cycle/º; 

orientation 45º relative to x-axis (left-side image); motion speed 5 º/sec; stimulus 

size 10º x 11º (vertical x horizontal) visual angle in degrees; viewing distance 70 

cm, reproducing the stimulus first described by Hans Wallach (1935). A central 

blue cross (visual angle 0.1º) was present as a fixation target at the visual midline 

to avoid gaze drift. 

To create a fully unambiguous control stimulus, we used the same exactly bistable 

patterns on top of which we added grey dots (600 dots; contrast 10%; visual angle 

0.2º) randomly distributed throughout the image on top of the lines (Figure 4-1C). 

By adding dot textures to the lines one can force perception to be fully 

unambiguous (100% inward moving dots on each half of the image imply 

incoherent perception - incoherent percept, 100% downward moving dots in the 

whole image imply downward perception – coherent percept). The dots moved 
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at the same speed as the grating pattern either coherently downward or 

incoherently inward. The two possible interpretations of the stimulus were thus 

unambiguous. 

 

 

Experimental design and procedure 

Before entering the MR scanner, participants were presented the ambiguous 

stimulus and instructed to look for a while, to ensure they were able to 

spontaneously switch perception. If a participant was initially unable to perceive 

the ambiguity of the image, the experimenter prompted him/her until the 

participant was able to perceive the figure in both interpretations. Then each 

Figure 4-1. Roof-shaped moving stimulus. Bistability resulting from continuous 

viewing of the ambiguous moving stimulus was characterized by alternating 

periods of interpreting the figure in its coherent conformation (A), i.e. both sides 

of the image meet at the centre with no lag and are perceived as a single object 

moving downward, and its incoherent configuration (B), characterized by 

horizontal motion of both halves of the image as two independent objects 

moving towards the centre, an illusory border separating both sides and lines and 

appearing, illusorily, to be out of phase. Arrows indicate the perceived direction 

of motion, coherent (A) or incoherent (B). The control stimulus was an 

unambiguous stimulus (C) in which we added a background texture of grey dots. 

By adding the texture we strongly induced perception of motion of the two sides 

of the image in the same direction as the moving dots, either coherent or 

incoherent. 
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participant performed a short practice block of 2 minutes outside the scanner in 

order to get used to the task, in which he/she was asked to report perceptual 

switches by a button press. In the scanner each participant was presented 

ambiguous and unambiguous conditions in separate runs. 

The main perceptual task consisted of presentations of blocks of the ambiguous 

moving stimulus for 1 minute, during which participants were asked to report the 

perceived direction of motion by pressing and holding one of two buttons 

corresponding to either a coherent motion percept or an incoherent motion 

percept. One experimental run with the ambiguous stimulus consisted of 6 

minutes in which the following periods were sequentially presented: the static 

image for 10 seconds, followed by 5 blocks of 60 seconds with the ambiguous 

moving stimulus interleaved with 4 blocks of 15 seconds with the static image of 

the stimulus. During the whole experimental run participants were asked to 

maintain fixation at the central cross. Participants were instructed to report the 

perceived direction of motion during motion periods only and could abstain from 

reporting either of the two directions in case of doubt (which happened in less 

than 2% of the total duration of the experiment). A schematic representation of 

the experimental runs with the ambiguous stimulus is presented in Figure 4-2. 

Each participant performed at least 2 of these experimental runs with the 

ambiguous stimulus (some performed 3 or 4 runs) and were given time to rest 

between runs. 

For the unambiguous perceptual task, at least 1 run was performed (some 

participants performed 2 unambiguous runs), lasting 6 minutes as well. The 

duration of each unambiguous motion block was randomly set to 4 to 6 seconds, 

and participants reported the perceived direction of motion as in the ambiguous 

task. Each motion period contained only one of the unambiguous percepts, either 

coherent or incoherent motion, and was followed by a period of 8 to 10 seconds 

with the static image of the stimulus. A schematic representation of the 
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experimental runs with the unambiguous stimulus is presented in Figure 4-3. 

During the whole experimental run participants were asked to maintain fixation 

at the central cross. Participants were instructed to report the perceived direction 

of motion during motion periods only. The reason why motion unambiguous 

periods were kept short was due to the fact that prolonged observation of the 

unambiguous stimulus could still result in spontaneous perceptual switches 

(which was reported by a few participants during pilot experimentation). Data of 

each participant were acquired in one single scanning session, both ambiguous 

and unambiguous experimental runs. 
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Figure 4-2. Ambiguous bistable motion task. Bistability resulting from continuous 

viewing of the ambiguous moving stimulus was characterized by alternating 

periods of interpreting the figure in its coherent conformation and its incoherent 

configuration. Arrows indicate the perceived direction of motion, coherent or 

inward. Participants were instructed to maintain fixation the whole time. Each of 

the five long ambiguous bistable motion periods (60 seconds each) was preceded 

and followed by static images of the stimulus. During motion periods participants 

were instructed to report each and every switch on their own perception of the 

stimulus. 
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Behavioural analysis and perceptual dynamics 

A bistable stimulus is characterised by the fact that there are at two different 

interpretations or percepts of this stimulus. None of these is absolutely stable, but 

rather will perception change spontaneously between the different percepts. 

These perceptual changes are subjective experiences and the timing of their 

occurrence cannot be exactly predicted. Usually there are considerable inter-

Figure 4-3. Unambiguous roof-shaped moving stimulus. In the unambiguous 

control stimulus we added a background texture of grey dots to the same roof-

shaped pattern. By adding the texture we strongly induced perception of motion 

of the two sides of the image in the same direction as the moving dots, either 

coherent or incoherent. Arrows indicate the direction of motion. Participants were 

instructed to maintain fixation the whole time. Each motion period (4 to 6 seconds 

each) was preceded and followed by static images of the stimulus (8 to 10 

seconds each). During motion periods participants were instructed to report the 

perceived direction of motion. 
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individual differences in the temporal dynamics of the perceptual changes, thus 

we conducted individual behavioural analysis of bistable perception data. We 

computed mean duration times for each percept and corresponding percentage 

of total bistable viewing time. Results are presented in Figure 4-4 and Figure 4-5. 

Bistable perception is characterised by the stochastic nature of perceptual 

switches. That means that the timing of a perceptual switch cannot be exactly 

predicted. One can only estimate the probability of a perceptual switch to occur 

after a particular time - the probability density function (PDF) of percept duration. 

For each percept the probability density function gives an estimate of how likely 

the occurrence of a particular duration time will be. For each participant the 

durations of each percept were separately binned to an adequate time-window 

(20 bins covering the maximum percept duration). In order to describe the 

statistical distribution of percept duration and study the temporal dynamics of 

perceptual reversals both the gamma and the lognormal distributions were fitted 

to the data using the maximum likelihood method to estimate the parameters, as 

these are two popular candidates for fitting perceptual duration data of 

ambiguous stimuli 38–40. Both distributions were fitted over the same interval of 

the time axis, namely from zero to the longest percept duration that occurred. 

Results of gamma and lognormal fitting are plotted in Figure 4-6.  The maximum 

likelihood estimates of α and β (gamma distribution) or σ and µ (lognormal 

distribution) parameters were calculated for each participant and the goodness 

of fit assessed using the Kolmogorov-Smirnov test (P-value > 0.05). The results 

were plotted as boxplots and are shown in Figure 4-6. 

 

Functional image acquisition 

Data were collected with a Siemens Magnetom TIM Trio 3T research scanner with 

a phased array 12-channel birdcage head coil (Siemens, Munich, Germany). The 
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MR scanning session began by acquiring a 3-D anatomical T1-weighted MPRAGE 

(magnetization-prepared rapid gradient echo) pulse sequence (TR = 2530 msec; 

TE = 3.42 msec; TI = 1100 msec; flip angle 7°; 176 single shot interleaved slices 

(no gap) with voxel size 1 x 1 x 1 mm; FOV 256 mm). Functional images (2 

ambiguous and 1 unambiguous runs, at least) were acquired axially using a T2*-

weighted gradient echo (GE) echoplanar imaging (EPI) sequence covering the 

whole brain. Each functional series consisted of 180 volumes (TR = 2000 msec, TE 

= 40 msec, flip angle = 90°, 35 interleaved slices (no gap) with voxel size 3 × 3 × 

3 mm; FOV 256 mm) of BOLD signal measurements. During the whole scanning 

session the head of the participant was stabilized by means of foam pillows placed 

on both sides of the head. 

 

fMRI data preprocessing 

In the beginning of each acquisition sequence, the first 2 volumes of functional 

data were automatically discarded in the scanner to allow the magnetization to 

reach a steady state. The data were analyzed using BrainVoyager QX 2.8 (Brain 

Innovation, Maastricht, The Netherlands). Functional volumes were realigned, 

corrected for interleaved slice-scanning time and linear trends were removed 

from the signal. The time-series of each voxel was divided by its mean intensity 

to convert the data units from image intensity to fractional signal change, and to 

compensate for distance from the surface coil. Inter-scan head motion correction 

was performed by adjusting all the functional runs with the first functional run 

presented right after the anatomical scan. Although the motion that occurred 

during scanning is corrected in the data preprocessing, it is possible that residual 

signal changes due to motion might be present. Especially fast movements may 

induce fast fluctuations in the data. Therefore, we included the motion parameters 

estimates in the statistical analysis. We improved the motion predictors by 
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removing linear trends and de-meaning, ensuring that the predictors could be 

fitted more closely to the data (from which linear trends were also removed). To 

standardize the scaling of the predictors we applied a z-transformation, which 

scales the data according to its own variation. The motion estimates contain both 

low and high frequency components. However we used a high pass filter to 

include this high frequency noise only in the analysis. We employed a high pass 

filter to model only the fast movements, rather than slow motion that may 

correlate more closely with the actual BOLD signal. We also applied temporal 

high-pass filtering (2 cycles per run) to functional images in order to compensate 

for a slow fMRI signal drift. We then coregistered functional scans with the 

participants’ corresponding anatomical (T1-weighted) scan and applied slight 

spatial smoothing (FWHM 3 mm) for individual data analysis. For group analysis 

we spatially normalized both anatomical and functional data into Talairach 

stereotactic space and moderately spatially smoothed fMRI data with a 6 mm full-

width at half-maximum gaussian kernel (FWHM 6mm). The cortical sheets of the 

individual subjects and a template brain were reconstructed as polygon meshes 

based on the high-resolution T1-weighted structural three-dimensional 

recordings. The white–grey matter boundary was segmented, reconstructed, 

smoothed, morphed, and inflated as described elsewhere 41,42. A morphed surface 

always possesses a link to the folded reference mesh so that functional data can 

be correctly projected onto partially inflated representations. 

 

Statistical data analysis 

The subjectively defined perceptual phases between two successive switches were 

used for multiple linear regression analysis of the BOLD signal time course. Using 

the standard hemodynamic response function (HRF) modelled with a two-gamma 

function 43, hemodynamic predictors were computed from the subjects’ 
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indications of perceptual phases, coherent and incoherent, and a general linear 

model (GLM) was computed for every voxel in group analysis and single-subject 

analysis of thirty participants. In the first approach we defined the coherent and 

incoherent motion periods during the ambiguous bistable motion experiment 

from the participants’ button presses to indicate their own perception. We 

subtracted each individual’s reaction time, computed from the unambiguous 

experiment, to every time of button press to reliably identify the beginning of 

each perceptual state. We excluded the first volume after motion periods end to 

avoid motion aftereffects. In the second approach we built specific separate 

predictors to comprise only transient switch-related activity (switch predictors) or 

activity during stable perceptual states (phase predictors). Switch predictors had 

a duration of one volume (2 seconds), also corrected for reaction time. Phase 

predictors included the remaining perceptual phases between switches. We 

excluded the first perceptual phase of each motion block to exclude unspecific 

stimulus onset effects. Predictors for the periods of each percept were determined 

from the stimulation protocol for the unambiguous experiment. Contrast analysis 

of the predictors comprising the two perceptual phases was used to find regions 

in which average activity was higher during phases of coherent motion perception 

than during phases of incoherent motion perception at the individual level. 

Group analysis was performed with RFX-GLM (random effects), which allows 

modelling explicitly both within-subjects and between-subjects variance 

components in order to generalize findings to the population level 44. In the first 

level, a whole-brain RFX-GLM is computed individually to estimate condition 

effects (beta values) separately for each subject (first level). Then the estimated 

first-level mean effects enter the second level as the new dependent variable 

(instead of the raw data) and are analyzed across subjects (group analysis). Since 

the analysis at the second level explicitly models the variability of the estimated 
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effects across subjects, the obtained results can be generalized to the population 

[see e.g. 45 for a detailed explanation]. 

Statistical maps were corrected for multiple comparisons using the False 

Discovery Rate (FDR) method for correction of multiple comparisons at P-value < 

0.05 at single-subject level and P-value < 0.001 at group level. In order to present 

the statistical results of the group analyses we used a standard Talairach brain 

(both for volume slices and 3-D cortical representations of brain hemispheres). 

We extracted regions of interest (ROIs) from the functional statistical map to 

further examine the BOLD time courses in these regions and study connectivity 

in the functional networks comprising these regions. Functional response profiles 

were extracted after the subtraction of the average BOLD signal during the 

fixation condition. Event-related average time courses were computed for each 

subject. Segments representing the same perceptual state were averaged over 

successive runs. 

We also applied a GLM deconvolution analysis within ROIs in order to separate 

the contributions of different events – perceptual switches. A deconvolution 

analysis consists of an alternative to the standard GLM analysis as the entire shape 

of the HRF is not fixed in advance. It allows to estimate the HRF for each event 

type. In this approach of linear deconvolution each condition is coded in a user-

specified number of "stick" predictors each modelling separately the BOLD 

response at one data point with respect to the onset of that condition. This allows 

a more flexible fitting of the model and allows the user to compare conditions on 

the single data point basis [see e.g. 46 for a detailed explanation]. Furthermore, 

this is done at the individual level in a way that each participant has its own HRF 

estimated by deconvolution. 
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Individual MT+ localization 

We investigated the responses to bistable perceptual states within MT+ and 

higher order areas. The left and right MT+ was functionally located in every 

participant with an individual GLM analysis of the unambiguous motion 

experiment. The MT+ was defined as the voxels in the middle temporal region 

responding significantly to the balanced contrast of motion Coherent + 

Incoherent > Static. The individual statistical maps were thresholded at P-value 

corrected for FDR at 0.05 level. 

 

Granger causality mapping 

The directed influence between MT+ and other regions of the brain was 

investigated using Granger Causality Mapping (GCM) in BrainVoyagerQX, which 

is a technique that allows to compute measures of effective connectivity in fMRI 

data using the theory of Granger causality 27,31. In short, GCM is computed for a 

given ROI, which is considered the reference region. The GCM is a statistical map 

containing both sources of influence to the reference region and targets of 

influence from the reference region to any other voxel in the brain. It is argued 

that the most unbiased view on directed interactions is given by the difference 

between interactions of the reference region as source and interactions of the 

reference region as target, which is called the difference GCM (dGCM) map. We 

used each MT+ in the left and right hemisphere of the brain, individually localized 

in each participant, to compute outgoing and incoming influence to MT+. 

Conceptually, regions that present a positive value in the dGCM map are regions 

whose activation is consistently predicted by the past activation (i.e. previous 

time-points) of MT+. Sources of influence have a negative value in the dGCM map 

and are regions whose activations help to consistently predict the future (i.e. next 

time-points) of MT+. Individual GCMs were computed as detailed in 27. We then 
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computed RFX-GCM maps at the group level by performing one sample t-tests 

of connectivity measures > 0 and thresholded the maps at P-value<0.05 with 

Bonferroni correction for multiple comparisons. 

To be able to compute GCM maps we could not use the split protocols according 

to reported perceptual switches, as individual conditions (coherent/pattern 

motion and incoherent/component motion) had variable and often too short 

durations. We computed GCMs using the whole ambiguous bistable motion 

periods as a single condition, in order to get an estimate of connectivity between 

brain regions during the perceptual decision task. 

 

Results 

Behavioural analysis 

The dynamics of bistability was studied based on the duration of the reported 

percepts. The perceptual changes are subjective experiences and the timing of 

their occurrence cannot be exactly predicted. Usually there are considerable inter-

individual differences in the temporal dynamics of the perceptual changes. Thus, 

we individually calculated the average duration of each percept, as well as the 

percentage of total time reporting coherent or incoherent perception, according 

to the reported reversals. The results are plotted in Figure 4-4. 
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During bistable ambiguous stimulation participants perceived on average the 

coherent condition for 6.71 ± 0.38 sec (mean ± standard error of the mean) while 

the mean duration of the incoherent condition was 2.6003 ± 0.21 sec (Figure 

Figure 4-4. Inter-individual variability of average percept durations during 

ambiguous bistable stimulation. (A) Each dot represents the average duration of 

each percept. Whiskers represent ± SEM. (B) Average percentage of total time 

viewing each percept. (C) Number of reversals reported by each participant. 
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4-5A). Moreover, the mean duration of the coherent percept was significantly 

longer than that of incoherent (P-value < 0.0001, Wilcoxon signed rank test). In 

the present study, bistability is not equiprobable, as in the Necker cube. We 

observed that rivalry was asymmetrical and biased towards coherent motion. 

Similar to what is perceived with plaids the present stimulus was always first seen 

moving coherent, describing a descending global motion 47. We estimated an 

average 74±2% probability of perceiving coherent motion - in other words, 

incoherent motion was seen an average of 9±2% of the total viewing time (see 

Figure 4-5B). The inter-individual variability of number of reversals reported is 

presented in Figure 4-5C. 

 

 

Figure 4-5. Group average percept durations and number of reversals during 

ambiguous bistable stimulation. Each box with whiskers presents the average 

duration of each percept (A) or the average perceptual dominance measured as 

percentage of total time viewing each percept (B) in 30 participants, displaying 

median, 25% and 75% quartile, and extreme values. The mean duration of the 

coherent percept was significantly longer than that of incoherent (P-value < 

0.0001, Wilcoxon signed rank test). Durations were calculated as the difference 

between consecutive reported reversals. (C) Inter-individual variability of number 

of reversals. 
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Although other alternative percepts were compatible with the ambiguous 

stimulus (e.g. oblique orthogonal motion of both halves towards the centre) these 

were found in pilot studies to be rare events and were seldom reported by 

participants. At any rate, for the purposes of the present study, the alternative 

configurations could be safely categorized as incoherent motion since a 

separation of both halves of the image was a common feature to all. 

Similarly to other bistable stimuli, the durations of each percept followed a 

gamma or lognormal distribution (Figure 4-6A), which are typical of perceptual 

rivalry and denote the presence of competing neural representations 39,48. We 

individually assessed the gamma and lognormal fit to the histogram of each 

percept durations with Kolmogorov-Smirnov test and considered a good fit for a 

P-value > 0.05, showing no significant deviation. The results are plotted as 

boxplots and are shown in Figure 4-6B. The lognormal distribution somehow 

produces a better fit to durations of the coherent percept, judged by taking into 

account the median P-value (0.46 for lognormal fit and 0.45 for gamma fit) and 

the 25%-to-75% boxes (Figure 4-6B on top). The P-value of lognormal fit was 

higher (representing a better fit) than the P-value of gamma fit to coherent 

duration in 16 participants against better gamma fit in 14 participants. On the 

other hand durations of incoherent percept are better described by a gamma 

distribution (median P-value of 0.56 for gamma fit and 0.28 for lognormal fit). We 

observed a better gamma fit to incoherent duration in 17 participants against 

better lognormal fit in 11 participants. Overall, for both coherent and incoherent 

percepts, only 2 out of 30 participants failed to achieve a significant gamma or 

lognormal fit (P-value < 0.05) for both coherent and incoherent duration. The 

rejection of both gamma and lognormal fits (as well as P-values not significantly 

larger than 0.05) might be due to low number of data points, i.e. durations, in 

individual data sets (mean number of reversals per participant were about 58). 
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Figure 4-6. Distribution of percept durations during ambiguous bistable 

stimulation. (A) The group average coherent or incoherent percept durations (30 

participants) are well described by a gamma (grey line) or lognormal distribution 

(black line). The dots are histograms of each percept normalized duration, 

obtained by first normalizing percept durations per observer by dividing by the 

mean, and then pooling data over observers. The durations are therefore 

dimensionless, in this case. (B) Individually, the distribution of durations are 

adequately fit into a gamma or lognormal distribution for 28 out of 30 

participants. The quality of the fit was assessed by Kolmogorov-Smirnov test and 

rejected for P-value < 0.05. The distributions of individual P-values of the fits are 

shown as box plots for coherent (top) and incoherent (bottom) percepts. 

Distribution of individual fit parameters of gamma (C) and lognormal (D) 

distributions are shown as boxplots for coherent and incoherent percepts, 

displaying median, 25% and 75% quartile, and extreme values. 
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On the other hand, the unambiguous stimulus clearly produced unequivocal 

either coherent or incoherent percepts which were readily reported as such by 

participants and concurred with the direction of motion followed by the dotted 

texture, i.e. coherent configuration when dots moved downward and incoherent 

configuration when dots moved inward. Moreover, the perceptual properties of 

perceiving a coherent or incoherent percept (e.g. lines in or out of phase, disparity 

in depth perception) were reported by subjects to be similar to the ones elicited 

by the ambiguous stimulus. 

 

Single-subject analysis in MT+ 

Pattern and component global percepts (first GLM approach) 

The probability map of location of MT+ across participants is shown in Figure 

4-7A. Figure 4-7B and Figure 4-7C show the activity elicited in MT+ by coherent 

pattern and incoherent component motion during ambiguous stimulation across 

participants. One can clearly see a gradient of activity levels depending on 

whether participants integrate information from both hemispheres and perceive 

one coherent surface (pattern motion) or do instead perceive two incoherent 

surfaces (component motion). The GLM beta values that explain signal changes 

are in accordance with the anticipation of higher signal changes in response to 

component than pattern motion, both in ambiguous and unambiguous 

experiments. Average group data (Figure 4-8 and Table 4-1) confirmed that 

pattern motion provoked, on average, significantly lower activity than component 

motion, which demonstrates the effect does not come from a single participant, 

as further demonstrated by random effects analysis. Notably, activity elicited by 

the unambiguous motion stimulus was higher than activity in response to the 

ambiguous bistable stimulus in MT+.  
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Figure 4-7. (A) Probability map of individual MT+ regions individually defined in 

all thirty participants. The map is superimposed on a template reconstruction of 

the cortex in Talairach space. (B, C) Group analysis of the ambiguous experiment 

individually defined left (B) and right (C) complex MT+ across participants (each 

dot depicts data for one participant). Activity within MT+ during ambiguous 

stimulation is modulated by the perception of one coherently moving surface 

(coherent), two incoherently moving surfaces (incoherent) or no moving surface 

(static). Average activity is higher when two moving surfaces are perceived. 

Whisker represent ± SEM. 
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Table 4-1. Two-way repeated measures ANOVA of BOLD response to 

ambiguous bistable and unambiguous percepts within left and right MT+ 

  L MT+ R MT+ 

Main effect of Type of experiment 

Ambiguous vs Unambiguous 

df (error) 1 (29) 1 (29) 

F 42.789 37.436 

P-value < 0.001 < 0.001 

ηp² 0.596 0.563 

Main effect of motion Percept 

Incoherent vs Coherent motion 

df (error) 1 (29) 1 (29) 

F 72.690 58.377 

P-value < 0.001 < 0.001 

ηp² 0.715 0.668 

Figure 4-8. Average group activity in MT+ during the ambiguous bistable motion 

experiment and in the control experiment with unambiguous motion. Note that 

for each MT+, there was not a significant interaction of type of experiment 

(ambiguous or unambiguous) with the percept (coherent or incoherent) but the 

response to component motion (incoherent) was significantly higher than the 

response to pattern motion (coherent), in both ambiguous and unambiguous 

experiments, in which participants do not have to explicitly decide on the 

perceived condition (see Table 1 with two-way repeated measures ANOVA and 

post hoc tests, P-value < 0.001 in all comparisons corrected with Bonferroni).  
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Interaction Type x Percept 

df (error) 1 (29) 1 (29) 

F 0.279 0.129 

P-value 0.602 0.722 

ηp² 0.010 0.004 

ηp² = partial eta squared, a measure of the estimated effect size; df = degrees 

of freedom. Pairwise comparisons were corrected with Bonferroni correction for 

multiple comparisons. When sphericity was not verified we used a Greenhouse-

Geisser correction. 

 

When we look at the event-related time courses of response to pattern/coherent 

and component/incoherent responses in the control unambiguous experiment, 

in which every motion period is preceded by a static stimulus and the baseline is 

common to both percepts, we clearly observe a higher response to 

component/incoherent motion, as corroborated by the statistical test to the 

group GLM beta values presented. In the ambiguous stimulation, due to random 

and variable percept durations, only the phase of condition-specific time-courses 

can be reliably considered. The apparent difference in peak latency between 

percepts in ambiguous experiment seems to be misleading as it is not present in 

the common static baseline situation of unambiguous experiment. The individual 

event-related analysis of both ambiguous and unambiguous motion is presented 

in Appendix. 

 

Perceptual switches and perceptual phases (second GLM approach) 

To investigate activation associated with perceptual transitions we built a GLM 

that included the static stimulus, spontaneous perceptual changes (to coherent 

and to incoherent motion) and stable perceptual phases (of coherent and 

incoherent motion) as regressors. The results of the standard GLM analysis of 
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transient signal changes in response to perceptual switches within individually 

defined MT+ complex in both hemispheres is presented in Figure 4-9. 

 

 

This analysis revealed that the difference in response to coherent or incoherent 

perceptual phases is similar to the response to global pattern or component 

percepts in MT+ when considering the whole period between transitions, as 

computed in the first approach (Figure 4-8). The specific response to perceptual 

switches is not significantly different from the response to corresponding 

perceptual phases within MT+. A repeated measures ANOVA with a Greenhouse-

Geisser correction, presented in Table 4-2, determined that mean BOLD response 

to perceptual switches and phases differed statistically significantly between 

pattern and component motion percepts in both left and right MT+ complex. 

However, no statistically significant difference was observed between the 

responses to perceptual switches or perceptual phases of the same percept 

(coherent/pattern or incoherent/component motion). 

Figure 4-9. Average group activity in MT+ during the ambiguous bistable motion 

experiment in response to perceptual switches and perceptual phases. There was 

not a significant difference in response to perceptual switches compared to the 

response to the perceptual phase of the same percept (see Table 2).  
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Table 4-2. One-way repeated measures ANOVA of BOLD activity within left and 

right MT+ in response to perceptual switches and perceptual phases during 

bistable motion  

  L MT+ R MT+ 

Main effect of perceptual 

Switches and Phases 

df (error) 1.966 (87) 2.230 (87) 

F 12.571 8.245 

P-value < 0.001 < 0.001 

ηp² 0.302 0.221 

Switch to Coherent vs 

Coherent Phase 

P-values 

1.000 0.692 

Switch to Coherent vs 

Switch to Incoherent 
0.008 0.292 

Switch to Coherent vs 

Incoherent Phase 
0.009 0.002 

Coherent Phase vs 

Switch to Incoherent 
< 0.001 0.016 

Coherent Phase vs 

Incoherent Phase 
< 0.001 0.002 

Switch to Incoherent vs 

Incoherent Phase 
1.000 1.000 

ηp² = partial eta squared, a measure of the estimated effect size; df = degrees 

of freedom. Pairwise comparisons were corrected with Bonferroni correction for 

multiple comparisons. When sphericity was not verified we used a Greenhouse-

Geisser correction. 

 

As the standard event-related analysis suffers from limitations related to the fact 

that it does not take into account the variable perceptual durations, we employed 

a deconvolution analysis to investigate the time course of responses. The average 

time course of response to perceptual switches as determined by deconvolution 

is presented in Figure 4-10. As to exclude the significant influence of a particular 

participant, we looked at individual deconvolution analysis results, presented in 
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the Appendix. Interestingly, we could observe a higher response to perceptual 

switches to component/incoherent motion than to pattern/coherent motion, 

suggesting that MT+ might be involved more in the transitions (incoherent) that 

do not require higher level integration. This effect do not seem to come from a 

single participant, as many present a similar response profile, both in left and right 

MT+, although also several participants seem to show no differential response to 

both types of perceptual switches. The response to the perceptual switch to 

pattern/coherent motion however seems to be thoroughly low across 

participants, further suggesting the involvement of other regions in this type of 

switch. At the group level, we observed that signal change in response to the 

switch to component/incoherent motion was statistically significantly higher than 

the response to the switch to pattern/coherent motion both in left (P-value = 

0.0014, paired t-test) and right MT+ (P-value = 0.0486, paired t-test) but there 

were no significant differences between perceptual switches and perceptual 

phases of the same percept (see Figure 4-9 and Table 4-2). 

 

 

Figure 4-10. Average time course of response to perceptual switches in MT+ 

during the ambiguous bistable motion experiment as empirically extracted by 

deconvolution analysis. 
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Group analysis 

Bistable perception of motion (first GLM approach) 

The whole brain RFX-GLM group analysis of contrast differences between 

ambiguous bistable percepts of motion, either coherent or incoherent, and the 

static stimulus revealed regions with significant changes in motion selective 

regions, as well as parietal and frontal decision areas. Figure 4-11 shows the 

clusters with highest contrast superimposed on a template inflated reconstruction 

of the cortical sheet in Talairach space, at significant P-value < 0.001 corrected 

for FDR and cluster size corrected. The coordinates of each cluster’s peak voxel in 

Talairach space are presented in Table 4-3. The ROI-GLM analysis within these 

clusters revealed that most regions show higher signal change during the percept 

of component/incoherent motion than pattern/coherent motion, as shown in 

Figure 4-12. On the other hand, the analysis of signal change within the same 

regions during the unambiguous experiment shows that most regions exhibit a 

similar amplitude of signal change in response to coherent or incoherent motion, 

as shown in Figure 4-13. This suggests a different role for high level regions 

during ambiguous vs non ambiguous percepts. In the latter, perceptual decision 

is almost automatic. Notably, visual regions MT+ and V3/V3A in both 

hemispheres, as well as superior parietal lobule, show a clear difference in 

response amplitude between coherent and incoherent percepts in both 

ambiguous and unambiguous experiments. Although this difference in measures 

of global signal change in the GLM analysis, the event-related responses show 

similar profiles between percepts. Note that GLM computation on the other hand 

assumes the same baseline and corrects for different duration for all conditions 

in the design matrix, avoiding this limitation of average event-related responses. 
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Table 4-3. Summary of whole-brain RFX-GLM analysis showing significant 

clusters with contrast Coherent + Incoherent motion percepts > Static 

stimulus 

Region 

Peak coordinates 

(Talairach) 
t(29) 

Number 

of 

voxels X Y Z 

Supplementary Motor Area (SMA) -6 5 43 6.81 1896 

Dorsal Anterior Cingulate Gyrus 

(BA32) 
-3 2 50 9.51 2304 

Figure 4-11. Signal changes during ambiguous bistable motion. Group analysis 

shown in a template inflated brain in Talairach space. RFX-GLM contrast analysis 

revealed significant clusters (P-value corrected for FDR at 0.001 level) in motion 

selective regions and decision areas. DLPFC, dorsolateral prefrontal cortex; MT+, 

middle temporal complex; a/pSPL, anterior/posterior superior parietal lobule; 

V3A, extrastriate V3 accessory. 
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L Premotor cortex (BA6) -54 5 34 5.93 4351 

R Premotor cortex (BA6) 42 -1 40 6.43 7235 

L Insula/Frontal operculum -30 20 -2 6.85 6050 

R Insula/Frontal operculum 45 8 1 6.16 6291 

L anterior Superior Parietal Lobule -33 -37 49 6.69 10626 

R anterior Superior Parietal Lobule 49 -37 49 7.26 9314 

L posterior Superior Parietal Lobule -24 -73 25 4.38 220 

R posterior Superior Parietal Lobule 27 -76 31 4.98 835 

L MT+ -51 -70 3 5.19 2931 

R MT+ 48 -61 -2 6.51 5545 

L V3/V3A -27 -85 13 6.00 2110 

R V3/V3A 30 -82 13 5.45 3340 

L Putamen -27 -1 4 5.71 986 

R Putamen 21 2 -5 5.92 947 

R Dorsolateral Prefrontal Cortex 42 45 16 4.11 752 

Posterior Cingulate Gyrus (BA30) 3 -43 34 -9.44 8100 

L Parahippocampal Gyrus -18 -46 -2 -7.48 2555 

R Parahippocampal Gyrus 21 -40 -5 -5.61 3155 

Cuneus 0 -67 22 -8.25 24638 

Precuneus -3 -64 22 -8.06 16590 

BA, Brodmann area; R, right; L, left. The number of voxels is based on the 

resolution of the anatomical dataset 1 x 1 x 1 mm3. 

P-value corrected for FDR at 0.001 level and cluster size corrected. 
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Figure 4-12. Average group activity during ambiguous bistable motion 

presentation in clusters that showed significant signal change in whole-brain RFX-

GLM analysis of the contrast coherent + incoherent > static. Whiskers represent 

± SEM. Note that we observed higher signal change in response to incoherent 

than coherent motion percept in all identified regions, including motion selective 

regions, as well as parietal and frontal decision areas. 
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Figure 4-13. Average group activity during unambiguous bistable motion 

presentation in clusters that showed significant signal change in whole-brain RFX-

GLM analysis of the ambiguous experiment with the contrast coherent + 

incoherent > static. Whiskers represent ± SEM. Note that most regions exhibit 

similar responses to both motion percepts, except visual areas. 
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Whole brain response to perceptual switches (second GLM approach) 

The statistical map of the whole brain RFX-GLM analysis of switch-related 

transient activity is presented in Figure 4-14 showing cortical areas and Figure 

4-15 showing cerebellum and sub-cortical regions. In Table 4-4 we show Talairach 

coordinates, t-value and number of voxels of each cluster showing a significant 

contrast of perceptual switch-related activity compared to perceptual phase-

related activity. 

 

 

Figure 4-14. Group analysis of switch-related transient signal changes shown in a 

template inflated cortical sheet in Talairach space. RFX-GLM contrast analysis of 

switch-related activity revealed significant clusters (P-value corrected for FDR at 

0.01 level) in motor, premotor and decision areas but not in motion selective 

regions. SMA, supplementary motor area. 
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Table 4-4. Summary of RFX-GLM results revealing clusters with significant (P-

value corrected for FDR at 0.01 level) perceptual switch-related transient 

responses 

Region 

Peak coordinates 

(Talairach) 
t(29) 

Number 

of voxels 

X Y Z 

L Superior Parietal Lobule (SPL) -45 -28 52 10.06 10510 

R Cerebellum 27 -46 -23 9.56 3652 

Supplementary Motor Area (SMA) -6 -3 52 8.46 2250 

L Cerebellum (Culmen) -30 -46 -26 7.23 746 

L Middle Insula (BA13) -42 -7 16 7.23 726 

L Posterior Insula -48 -22 16 7.15 1986 

L Thalamus -15 -19 10 6.41 263 

R Superior Parietal Lobule (SPL) 51 -25 28 6.04 544 

L Premotor Cortex (BA 6) -57 2 13 5.84 1313 

Figure 4-15. Group analysis of switch-related transient signal changes shown in a 

template brain in Talairach space. RFX-GLM contrast analysis of switch-related 

activity revealed significant clusters (P-value corrected for FDR at 0.01 level) in the 

cerebellum and left thalamus. 
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Dorsal Anterior Cingulate (BA32) -6 11 37 5.82 498 

R Supramarginal Gyrus 54 -34 22 5.79 831 

R Inferior Frontal Gyrus (IFG) 54 2 19 5.17 332 

R Inferior Parietal Lobule (IPL) 48 -34 46 4.78 392 

Cingulate Gyrus (BA 31) -6 -37 34 -7.23 658 

L Prefrontal Cortex (BA9/10) -3 47 31 -6.02 813 

L Precuneus/Angular Gyrus (BA39) -39 -67 37 -5.84 1290 

R Posterior Insula -9 65 19 -5.74 342 

R, right; L, left. The number of voxels is based on the resolution of the 

anatomical dataset 1 x 1 x 1 mm3. 

 

 

We found significant signal changes in cortical motor or premotor areas, which 

can be attributed to the button presses to report perceptual switches. We also 

found significant responses in cortical decision and executive areas, such as the 

insula, prefrontal cortex, dorsal anterior cingulate and inferior frontal gyrus. 

Notably, the cluster with the highest significant signal change was found in the 

left superior parietal lobule, a somatosensory region known for its involvement in 

perceptual transitions. Interestingly, we found highly significant signal changes 

bilaterally in the cerebellum and in left thalamus, in response to perceptual 

switches as compared to perceptual phases of coherent or incoherent percepts. 

In Figure 4-16 to Figure 4-20 we present the group results of RFX-GLM as plots 

of beta values for each condition, which are measures of global % signal change. 

Additionally, for each significant cluster identified we also show the time courses 

of response to both perceptual switches and perceptual phases, as extracted from 

deconvolution analysis. 
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Figure 4-16. RFX-GLM beta values and time courses of responses to perceptual 

switches and perceptual phases extracted with deconvolution analysis within 

significant clusters represented in a template Talairach brain. Note that angular 

gyrus show deactivation in response to perceptual switches, while SPL shows 

increased activation in response to switches when compared with responses 

during perceptual phases, particularly in the incoherent condition. 
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Figure 4-17. RFX-GLM beta values and time courses of responses to perceptual 

switches and perceptual phases extracted with deconvolution analysis within 

significant clusters represented in a template Talairach brain. Note that the insula 

shows increased responses to perceptual switches but also seems to have a role 

during perceptual phases. Left premotor area however shows increased 

responses to perceptual switches only. 
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Figure 4-18. RFX-GLM beta values and time courses of responses to perceptual 

switches and perceptual phases extracted with deconvolution analysis within 

significant clusters represented in a template Talairach brain. 
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Figure 4-19. RFX-GLM beta values and time courses of responses to perceptual 

switches and perceptual phases extracted with deconvolution analysis within 

significant clusters represented in a template Talairach brain. Note that 

supramarginal gyrus, inferior parietal lobule and superior parietal lobule in the 

right hemisphere show an increased response particularly to perceptual switches 

to incoherent/component motion as compared to switches to coherent/pattern 

motion. 
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Figure 4-20. RFX-GLM beta values and time courses of responses to perceptual 

switches and perceptual phases extracted with deconvolution analysis within 

significant clusters represented in a template Talairach brain. The cerebellum 

shows a bilateral highly significant increased response to perceptual switches as 

compared to perceptual phases of both percepts. The left thalamus seems to 

respond mainly to perceptual switches to incoherent/component motion as 

compared to any other condition. 
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Granger causality analysis 

We computed whole-brain group RFX-GCM maps showing voxels that are 

influenced by (positive values in the maps, in blue) or influence (negative values, 

in green) the activity in left or right MT+, individually defined at the single-subject 

level. The results are presented in Figure 4-21. 

 

 

Figure 4-21. RFX Granger causality mapping with the left MT+ (left images) and 

right MT+ (right images) individually defined in each participant as reference 

regions. Note that there were no voxels with a significant negative difference 

between influence from reference region and influence to reference region, which 

would appear in green. The highlighted regions are those which showed a 

significant influence from the reference regions, left and right MT+, to every other 

voxel at the group level (t-test GCM>0). The statistical map is corrected for 

multiple comparisons at P-value<0.05 with Bonferroni method. 
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Granger causality mapping revealed significant directed influences during 

ambiguous bistable motion from the individually defined left MT+ to left 

prefrontal cortex (BA10), left middle temporal gyrus (BA21), early visual cortex in 

the left hemisphere and surrounding areas in MT+ complex including the kinetic 

occipital (KO) region. There was also significant connectivity from left MT+ to the 

contralateral hemisphere, namely the right V3/V3A region, right MT+ complex, a 

more posterior than MT+ region in the right corresponding to KO 49,50 area and 

right superior parietal lobule (BA7). 

Interestingly, the analysis of connectivity with right MT+ as reference region 

showed significant influence also to right BA7 in the region of the precuneus, with 

a role in integration of visual and motor information, and right V3/V3A. 

Additionally we observed significant connectivity with ipsilateral voxels in middle 

temporal gyrus (BA21), MT+ complex, KO area and early visual cortex as with the 

left MT+. These results suggest an important role of right SPL and right V3/V3A 

in this particular decision task of ambiguous bistable perception of motion with 

an interhemispheric stimulus. Notably, MT+ in both hemispheres showed 

significant effective connectivity with each other during bistable motion 

presentation. 

 

Discussion 

Previous studies of interhemispheric perceptual integration and binding in 

animals have shown that long range synchrony between brain regions correlates 

with holistic perception in vision 51. This hypothesis cannot be tested using fMRI. 

Moreover, the binding by synchrony question has been difficult to resolve either 

in animal models, limited by absent or indirect perceptual reports 52, or humans 

as explicit and unequivocal testing for long range synchronization had not been 

possible due to both recording and paradigm constraints. In this chapter we did 
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not focus on temporal coding mechanisms, which are not accessible with fMRI, 

but rather on the neural networks involved in perceptual decision making 

requiring interhemispheric integration. 

 In humans visual perception has been often tested with moving ambiguous 

stimuli, such as plaids 12–18. Despite being physically constant, this type of stimulus 

produce a perceptual bistable situation, in which observer’s spontaneously switch 

perception between two independent moving objects (component motion) or 

one single object moving coherently (pattern motion). There is already evidence 

that during exposure to ambiguous bistable moving stimuli MT+ underlies 

integration or segregation of motion components in the visual field and that the 

spontaneous switches between different perceptions are mediated by the area 

itself 15. There is also evidence from electrophysiological and functional fMRI data 

that cortical activity that integrates visual information across hemifields takes 

place at extrastriate areas during late visual processing and that MT+ and V1 may 

contribute to bilateral visual integration during early visual processing 19. 

However, there is still debate about the mechanisms that explain visual motion 

processing in MT+ and its interactions with lower-level and higher-level regions. 

One of the models proposed to explain complex motion computation assumes 

that the global motion direction and velocity of objects is the direction and speed 

of “blobs” caused by spatial intersection of object components, as appear in a 

plaid pattern. According to this spatiotemporal energy model, the motion of the 

plaid as a whole is identical to the motion of the blobs. This low-level monocular 

mechanism is called the blob tracking model 12,53,54. The second and most 

accepted method for combining 1-D component motion in order to explain 2-D 

motion is the Intersection of Constraints (IOC) model 12,54. In our study, we 

employed a paradigm of ambiguous multistability where visual motion 

disambiguation required obligatory interhemispheric integration under 

conditions of constant and physically identical sensory stimulation with a stimulus 
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that does not have intersections. Therefore, we could explicitly exclude the blob 

tracking model as an explanation for computation of 2-D motion of ambiguous 

bistable stimuli. 

A multistable stimulus is characterized by the fact that there are at least two 

different interpretations or percepts of the stimulus. The ambiguous bistable 

stimulus we used was based on the work of Hans Wallach 36,37 and resembles a 

classic barber pole illusion mirrored at the visual midline so as to cast two distinct 

images at each visual hemifield. Our study is innovative in the sense it uses an 

approach with this intersection-free 2-D bistable moving stimulus for the first 

time to investigate with fMRI the neural correlates of ambiguous motion 

perception in humans, at least to our knowledge. The ambiguity arises as the 

image can be perceived as either a single integrated moving pattern – 

coherent/pattern percept - or as two images segregated across hemifields with 

opposite motion directions – incoherent/component percept. None of these is 

absolutely stable, but rather will perception change spontaneously between the 

two percepts. These perceptual changes are subjective experiences and the 

timing of their occurrence cannot be exactly predicted. The statistical analysis of 

the dynamics of perception revealed that, despite a perceptual bias towards a 

dominant coherent global motion percept 55 the stimulus behaves as a typical 

bistable image 38,40, with perceptual durations following a gamma distribution 

39,56–59. The durations of bistable percepts fit the gamma distribution in case of 

both equiprobable (e.g. Necker cube) and non-equiprobable, as in this study, 

perceptual interpretations 58. The gamma fit to durations in our study suggests 

perceptual rivalling opponent motion systems as an explanation for motion 

reversal. After adaptation of motion detectors coding for coherent motion, the 

activity of motion-sensitive neurons coding for incoherent motion may become 

dominant and drive perception. We also fitted a lognormal distribution to 

durations of each percept and observed that the lognormal fit was slightly better 
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than gamma fit to coherent percept durations in some participants. This is in 

accordance with previous studies showing an improved fit quality of the 

lognormal compared to the gamma duration distribution in binocular rivalry and 

bistable motion 39,40. The lognormal distribution shape might have implications 

for mechanisms underlying global coherent motion perception. If we consider 

perception of coherent global motion to be a large scale integration process 

composed of n independent sub-processes, and the probability of success in the 

complex task is the product of the probabilities of all n sub-processes succeeding, 

then task successes will have a lognormal distribution when n is sufficiently large 

to apply the central limit theorem 39. We consider it beyond the scope of this 

study to present an exhaustive comparison of fit qualities of the numerous 

distributions that have over the years been proposed in this context. In any case, 

the perceptual changes reported under ambiguous conditions are the result of 

endogenous processes, leading to an alternation of dominance between 

competing neural assemblies, and were explored to study the neural correlates 

of perceptual interpretation. 

Our psychophysical and imaging data support the existence of two stages in the 

processing of motion information in the human visual system. In practice, each 

half-image, which is a 1-D component of the global 2-D pattern, can be seen also 

as a 1-D pattern itself. The first stage appears to rely on both component and 

pattern neurons responding to the motion of two 1-D patterns, which are the two 

halves of the image. The output of this first stage processing leads to the 

perception of the two patterns moving incoherently inward. The second stage 

seems to be concerned with establishing the motion of the global 2-D pattern, 

which is the whole image moving coherently downward, by integration of 

information relayed from the first stage. While during the incoherent perceptual 

state both component and pattern neurons are responding to the motion of two 
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1-D objects, during the coherent percept the pattern neurons in MT are 

responding to a single 2-D object. 

In fact, our analysis of fMRI data is in accordance with this hypothesis, as 

ambiguous bistable motion stimulation elicited higher signal changes in response 

to incoherent percept than in response to coherent/pattern percept. This was 

observed at the single-subject level within MT+ (see Figure 4-7). This result 

implies MT+ itself in the disambiguation process of motion perception as activity 

in MT+ correlated with perceptual states, being higher when the perceptual 

interpretation was compatible with multiple surfaces 15,60. These data provide 

evidence on the putative site of perceptual grouping operations underlying the 

switches between fusion and segregation of moving stimuli. A possible 

explanation for the perceptual transitions between states in MT+ is a competitive 

reconfiguration of cell assemblies in this area, one coding pattern motion and the 

other coding component motion. The adaptation of pattern neurons produces 

modulations of fMRI responses in MT+ consistent with the idea that the activity 

of pattern neurons is reduced when perceptual coherence is lower 60. Activity in 

the MT+ complex changes depending on whether subjects integrate all motion 

signals into the percept of a single surface, or whether they segregate signals and 

perceive two separate objects. This difference in activity within MT+ was 

significant as computed from the GLM beta values as measures of % signal 

change. By analyzing the control unambiguous experiment data with the same 

stimulus (an unambiguous version) we could clearly observe the higher response 

to incoherent/component percept also in the event-related average plots (see 

Figure 4-24 and Figure 4-25 in Appendix), which are matched for duration. 

In order to specifically analyze transient signal changes related to perceptual 

switches, we employed a second GLM approach in which we marked the 

subjectively defined perceptual switches in the protocol of analysis, after 

subtracting each participant’s reaction time obtained from the unambiguous 
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experiment. We computed a standard GLM with hemodynamic predictors for 

perceptual switches to coherent motion and to incoherent motion, and for 

perceptual phases of coherent motion and incoherent motion. We excluded the 

first perceptual phase of each bistable motion period to eliminate unspecific 

stimulus onset effects. We also applied deconvolution analysis to the event-

related motion perception task to investigate the neuronal correlates of changes 

in perception of motion - perceptual switches - within MT+ that were not stimulus 

driven. We observed with standard GLM analysis that switch-related activity 

within MT+ was significantly different from baseline but not significantly different 

from activity related to the following perceptual state (see Figure 4-9). 

Deconvolution extraction of responses to perceptual switches suggest a mirror-

like activation within MT+ in response to perceptual switches, as the response to 

perceptual transition to incoherent/component motion rises when the response 

to perceptual transition to coherent/pattern motion seems to be delayed (see 

Figure 4-10 for group average curves). A possible mechanism explaining these 

phase differences in response profiles is that switch mechanisms are asymmetric 

possibly due to differential adaptation. Different cell assemblies of component 

and pattern neurons might compete with each other (e.g. through reciprocal 

inhibition) and adaptation of the cell assembly that is more active and supporting 

the current perception can lead to shifts of dominance between assemblies, 

causing perceptual switches. This explanation has been previously supported in 

an fMRI study of perceptual switches and states with apparent motion 61 and plaid 

stimuli 15. Our results further support this explanation. Nonetheless, the whole-

brain RFX-GLM analysis revealed several high-level brain regions that correlated 

significantly with perceptual switches, suggesting that despite the pivotal role of 

MT+ in perception of motion there might be other brain regions triggering 

perceptual switches and causing a redistribution of activity within MT+ by means 
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of feedback connections. What are these regions and what are the neuronal 

correlates of perceptual switches in perception of bistable motion?  

It is known that bistable perception has both bottom-up and top-down influences 

24, as for example attentional effects 48,62–65. Diverting attention has been shown 

to slow down perception of perceptual and binocular rivalry, which indicates a 

high-level, top-down influence of attention 66. By running the first GLM approach 

(two perceptual states) in the whole brain we observed activation evoked by 

ambiguous bistable motion in prefrontal cortex, visual cortex, parietal cortex, 

premotor areas, cingulate gyrus, insula, opercular cortex and putamen (see Figure 

4-11 and Table 4-3), as reported in previous studies of bistable perception and 

perceptual decision making 62,65,67–70. Notably, we found a large and highly 

significant cluster in superior parietal lobule, which was recently proven to be part 

of a reciprocal interaction network involving MT+ 71. Megumi and colleagues have 

shown that perceptual switches may be triggered by changes in connectivity 

between visual areas and parietal cortical regions 72.  

With the second GLM analysis of switch-related transient signal changes we were 

able to investigate differences in activity elicited by perceptual switches 

compared to activity elicited by perceptual stable phases. With contrast analysis 

of [switches > phases] activity we observed significant signal changes in 

prefrontal cortex, insula, inferior frontal gyrus, angular gyrus, supramarginal gyrus 

and cingulate gyrus (see Figure 4-14 and Table 4-4). We also observed significant 

activations in left premotor and motor areas, which can be attributed to the 

preparation and execution of right-hand motor responses. We replicated the 

previously described functional association between activity in parietal regions 

and perceptual switches 71,73,74, as we also observed significant activity in superior 

and inferior parietal lobule. Superior parietal lobule is known for its role in spatial 

processing, visuo-motor transformation and for receiving widespread 

connections from visual and premotor areas. Our results seem to agree with a 
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recent study which revealed that switch-related fronto-parietal BOLD activity is 

reduced, but not eliminated, when dissociating switches from motor responses, 

and hypothesized that perceptual switches may arise in the visual system but 

noticing the change may rely on brain regions involved in behavioural choices 75. 

Interestingly, we found significant activations bilaterally in the cerebellum and left 

thalamus, in response to perceptual switches. A recent study found increased 

activity in the cerebellum and thalamus to be time locked to perceptual switching 

in perceptual multistability with auditory stimuli 76. Additionally, recent 

investigation of perceptual predictions found an important role of cerebellum in 

the recalibration of sensory prediction capturing the sensory consequences of 

one’s motor behaviour 77. Our results suggest that motor-based prediction, 

produced by neural networks outside the visual system, might as well play 

essential roles in occurrence of dynamic reconfiguration of cell assemblies 

allowing both for segregation and integration of disparate motion signals in 

visual areas, even across visual hemi-fields. 

We found directed influences from left and right MT+ to the contralateral MT+ 

during ambiguous bistable motion, suggesting that these focal motion-

responsive regions communicate effectively in order to disambiguate component 

motion is separate visual hemi-fields from coherent pattern motion across hemi-

fields with this bistable stimulus. In other words we found evidence at the fMRI 

level for interhemispheric directed communication between homologous MT+ 

regions in this paradigm requiring perceptual decision towards interhemispheric 

integration vs segregation. Furthermore, we found directed influences from MT+ 

to kinetic occipital regions, which has been distinguished by its responsiveness to 

contours defined by differences in velocity 22,49 and lower level visual areas 

V3/V3A, predominantly in the right hemisphere, which agrees with reports that 

activation in V3A underlies motion coherence 78,79. Activity in V3 has been shown 

to successfully decode between coherent and incoherent contexts, possibly with 
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help of higher extrastriate cortex feedback 80. Notably, we found significant 

directed connectivity of both left and right MT+ with right superior parietal 

lobule. Our results are in accordance with recent report of functional causal 

interactions between right parietal subregions and lower visual areas such as MT+ 

72. Surprisingly, we could not reliably identify significant directed influences from 

other brain regions to MT+ during ambiguous bistable motion with Granger 

causality mapping. Previous fMRI studies have emphasized the role of top-down 

processes in perceptual transitions in binocular rivalry 48,73,81 and for leading 

attentional resources to brain areas involved in specific tasks, including MT+ 65,82. 

Our results seem to suggest that the transition between coherent/pattern and 

incoherent/component motion percepts of this specific interhemispheric stimulus 

might mainly require bottom-up activation of MT+ and feedforward connections 

to other brain regions. However, this does not exclude additional top-down 

connections with e.g. prefrontal cortex or insula, which shown significant 

activation found in the RFX-GLM analysis, with specific component vs pattern 

perception differences in particular for the ambiguous conditions, where decision 

is less automatic. fMRI difference GCMs have lower sensitivity for reciprocal 

interactions. Also the temporal sampling rate of 2 seconds is far from ideal for 

connectivity analysis as it is low for neuronal processing. Thus, interactions at this 

time scale are likely to reflect modulatory processes related to attention and 

cognitive control but faster processes leading to perceptual switches might go 

undetected 11,27,83. Ongoing advances in the development of ultra-fast multi-echo 

fMRI sequences might help substantially increase the temporal resolution of fMRI 

data. We foresee that with faster sequences and higher MRI field strength it will 

be possibly to further investigate neuronal correlates of perceptual switches at a 

finer spatial and temporal scale. 
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Limitations 

The approaches described above are all accompanied by a significant temporal 

inaccuracy. This is due to the finite reaction time between perceived reversal for 

the observer and the consecutive button press. It cannot be assumed that the 

reaction time will be the same for every button press, as it will have a certain 

variation, even for the same observer. But as there are no direct physiological 

predictors of perceptual reversals yet, in particular for ambiguous figures, 

duration measurements still have to rely on self-report. We tried to overcome this 

issue by computing the individual mean reaction time in unambiguous 

experiments and accounted for it in the preparation of protocols for analysis of 

switch-related activity. 

Another limitation is the subjectivity of the reports. Some work has been done 

towards the recognition of perceptual reversals with the use of physiological 

measures. For several types of bistable stimuli, Einhäuser and colleagues found 

that pupil dilation preceded perceptual reversals 84. Similarly, for discontinuous 

presentation of the Necker cube, brain activity in the right inferior parietal cortex 

has been identified as a precursor of perceptual reversals 85. In both instances, 

these changes can only be detected in averages over many trials. Hence, they are 

not suited as markers for a single perceptual reversal. It will remain a challenge 

to have more objective predictors of perceptual decision. 

 

Future studies 

In future studies we should train a group of observers and also manipulate 

stimulus parameters in order to optimize the duration of incoherent perceptual 

phases, which were clearly non-dominant and short in the majority of participants. 

With longer percept durations we will be able to better investigate if neuronal 

correlates and effective connectivity between brain regions differ between 

coherent and incoherent percepts, namely within across hemispheres. 
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One outstanding question is whether one can relate the switches between the 

two perceptual representations to the known columnar organization of the 

mammalian cortex 86. The perception of two surfaces is probably associated with 

the formation of two cell assemblies, each of which represents one of the two 

moving surfaces, whereas the perception of a single coherent pattern likely 

requires the formation of only one cell assembly representing a single surface 

moving. Possibly one can relate each assembly with a columnar representation 

being active 15 which is amenable to experimental testing, now that ultra-high 

field scanners are becoming available. Their use is already allowing the mapping 

of columns in human MT 87 thereby opening the possibility to study perceptual 

decision at the columnar level. 
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Appendix 

Single-subject analysis in MT+ 

The individual MT+ clusters were subjected to an event-related average time 

course analysis, in which BOLD signal during each trial of each perceptual phase 

was averaged. The average response time course is shown for each participant’s 

left and right MT+ in Figure 4-22 and Figure 4-23, respectively. The event-related 

average time course comprises the two volumes before transition from one 

percept to the other and the eight volumes after the transition (corresponding to 

an interval of -4 to 16 seconds). As the percept transitions are subject-specific 

and are likely to occur within 16 seconds, the subsequent trials of the other 

percept tend to blur the time course of individual responses. We present coloured 

bars representing the persistence of each percept along time courses in each 

participant, in which each coloured rectangle represents a functional volume. The 

colour indicates the proportion of averaged trials on which the percept endured. 

Dark colour (intensity 100%) indicates that the respective percept (coherent, blue; 

incoherent, yellow) was present at that functional volume on every one of the 

averaged trials. White colour (intensity 0%) indicates that the percept had 

switched again on all averaged time courses. Note the relatively higher 

persistence of the coherent percept in all participants, explaining the appearance 

of a second peak. Note that amplitude values are not corrected (as they are in the 

GLM) for the probability and duration of the percept, and therefore only the phase 

of the signals can be interpreted. Note that in Figures 4-24 and 4-25, showing 

event-related average time-courses during the unambiguous experiment, 

durations are matched and the larger activity for incoherent motion perception 

becomes obvious. 
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Figure 4-22. Individual event-related analysis of activity within left MT+ (group 

probability map on top left) during ambiguous bistable motion in 30 participants. 

Event-related average time courses during coherent and incoherent percepts are 

shown in blue and orange, respectively. The vertical grey bars indicate percept 

onset. Whiskers correspond to ± SEM. The coloured rectangles represent 

functional volumes (2 sec). Dark colour (intensity, 100%) indicates that the percept 

was present at that functional volume on every one of the averaged time courses. 

White colour (intensity, 0%) indicates that the percept had switched again on all 

averaged time courses. 
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Figure 4-23. Individual event-related analysis of activity within right MT+ (group 

probability map on top left) during ambiguous bistable motion in 30 participants. 

Event-related average time courses during coherent and incoherent percepts are 

shown in blue and orange, respectively. The vertical grey bars indicate percept 

onset. Whiskers correspond to ± SEM. The coloured rectangles represent 

functional volumes (2 sec). Dark colour (intensity, 100%) indicates that the percept 

was present at that functional volume on every one of the averaged time courses. 

White colour (intensity, 0%) indicates that the percept had switched again on all 

averaged time courses. 
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Figure 4-24. Individual event-related analysis of activity within left MT+ (group 

probability map on top left) during unambiguous motion in 30 participants. 

Event-related average time courses during pattern and component motion are 

shown in blue and orange, respectively. The vertical grey bar indicates motion 

onset. Whiskers correspond to ± SEM. 
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Figure 4-25. Individual event-related analysis of activity within right MT+ (group 

probability map on top left) during unambiguous motion in 30 participants. 

Event-related average time courses during pattern and component motion are 

shown in blue and orange, respectively. The vertical grey bar indicates motion 

onset. Whiskers correspond to ± SEM. 
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Figure 4-26. Individual deconvolution GLM analysis of switch-related activity 

within left MT+ during ambiguous bistable motion in thirty participants. The 

probability map of MT+ location is shown in a reconstruction of the left 

hemisphere in Talairach space. Signal time courses after perceptual switches from 

incoherent to coherent percept are shown in blue and after switches from 

coherent to incoherent in orange. Whiskers correspond to ± SEM. Note the trend 

to left MT+ respond slightly more to switches from coherent (pattern motion) to 

incoherent (component motion) percepts. 
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Figure 4-27. Individual deconvolution GLM analysis of switch-related activity 

within right MT+ during ambiguous bistable motion in thirty participants. The 

probability map of MT+ location is shown in a reconstruction of the left 

hemisphere in Talairach space. Signal time courses after perceptual switches from 

incoherent to coherent percept are shown in blue and after switches from 

coherent to incoherent in orange. Whiskers correspond to ± SEM. Note the trend 

to right MT+ respond slightly more to switches from coherent (pattern motion) 

to incoherent (component motion) percepts. 
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Abstract 

A visual stimulus is defined as ambiguous when observers perceive it as having 

at least two distinct and spontaneously alternating interpretations. Neuroimaging 

studies suggest an involvement of a right fronto-parietal network regulating the 

balance between stable percepts and the triggering of alternative interpretations. 

As spontaneous perceptual reversals may occur even in the absence of attention 

to these stimuli, we investigated neural activity patterns in response to perceptual 

changes of ambiguous Necker cube under different amounts of working memory 

load using a dual-task design. We hypothesized that the same regions that 

process working memory load are involved in perceptual switching and 

confirmed the prediction that perceptual reversals led to fMRI responses that 

linearly depended on load. Accordingly, posterior Superior Parietal Lobule, 

anterior Prefrontal and Dorsolateral Prefrontal cortices exhibited differential 

BOLD signal changes in response to perceptual reversals under working memory 

load. Our results also suggest that the posterior Superior Parietal Lobule may be 

directly involved in the emergence of perceptual reversals, given that it 

specifically reflects both perceptual versus real changes and load levels. The 

anterior Prefrontal and Dorsolateral Prefrontal cortices, showing a significant 

interaction between reversal levels and load, might subserve a modulatory role in 

such reversals, in a mirror symmetric way:  in the former activation is suppressed 

by the highest loads, and in the latter deactivation is reduced by highest loads, 

suggesting a more direct role of the aPFC in reversal generation. 

 

Introduction 

The human visual system seems unfit to tolerate ambiguity. Vision is designed to 

guide behavior and a behaving organism cannot afford to be halted by indecision. 
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However, some stimuli may be prone to perceptual changes that occur during 

visual processing. On such occasions, rather than choosing a single interpretation, 

perception interchanges between two (or more) valid alternatives. Ambiguous 

figures are a good example of such stimuli: they are physically constant, yet our 

brain perceives them as changing. The origin of perceptual reversals is still highly 

under debate regarding whether low or high level visual mechanisms play a major 

role in determining perceptual decisions (for a review see 1). Some studies suggest 

that bottom-up mechanisms are the most important for the perception of 

ambiguous figures 2: the neural channels determining one of the available 

percepts, satiate and thus perceptual interpretation changes to the alternative 

one. The cognitive theories suggest that perceptual decisions might be induced 

by feedback from higher to lower levels of processing, for example, by activation 

of a high-level “exploratory” mechanism that directs selective attention in a way 

that causes a recurrent “renewal” of the type of representation in low-level 

perceptual systems 3. A growing number of studies 1,4–9 indicate that both 

perceptual processes play definable roles in the perception of ambiguity. 

Selective attention orients the focus of conscious awareness toward relevant 

stimuli. Working memory (WM) maintains an active and brief representation of 

just obtained information to be used for subsequent processing or recall, while 

selective attention filters that information thus controlling what is encoded and 

maintained in WM. Studies using functional magnetic resonance imaging (fMRI) 

reveal an overlap between attention and WM networks over visual, parietal and 

frontal areas 10–12, supporting the view that these cognitive functions share neural 

resources and are both governed by the fronto-parietal attention network 13,14. 

The brain regions activated during perceptual changes seem as well to overlap 

with the fronto-parietal attention network 15–19. Our study was motivated to help 

unravel the nature of such overlap. Prefrontal and dorsolateral prefrontal cortices 

(as parts of the fronto-parietal attention network) may control the updating of 
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ambiguous stimulus representations in the extrastriate visual areas as suggested 

by transient signal increases in prefrontal cortex during perceptual reversals 

16,17,20. Sterzer and Rees 21 reported activations in visual cortex alongside with 

activity in prefrontal and parietal regions for percept-specific signals in response 

to binocular rivalry stimuli and discussed comparable BOLD signal changes over 

visual and fronto-parietal regions in response to voluntary engagement of facial 

WM 22–24. The authors suggested that perceptual durations might be influenced 

by higher-order mechanisms that share a common anatomical substrate with 

WM. The Superior Parietal Lobule (SPL) might also be differentially involved in 

perception of reversals: stimulating the right anterior or right posterior SPL, 

respectively increases or decreases the number of perceived reversals 25. Right 

SPL seems to be also activated when participants perform WM manipulation of 

stimulus content 26. However, the exact role of fronto-parietal regions in shaping 

perceptual decisions remains to be clarified. Sterzer and colleagues 27 hypothesize 

that fronto-parietal activations may participate in inferential processes that are 

helping to achieve perceptual stability and suggest that perceptual ambiguity 

might result from continuous reciprocations between low-level and high-level 

brain regions. 

The aim of the present study was to investigate WM dependent brain mechanisms 

that induce perceptual bistability. We set to investigate how neural activity in 

response to perceptual decisions is modulated by concurrent recruitment of 

attentional resources in fronto-parietal regions that are hypothesized to subserve 

a dual role in such processes. More explicitly, the spatial locus of the possible 

effects related to concurrent processing was examined with fMRI. We chose a WM 

load (hereafter WML) task as a secondary task since it depletes the available 

attentional resources 28,29. When WML, or a similar secondary task employing 

attentional resources (e.g., motion-detection, mental arithmetic), is used 

concurrently with the reversal task, the participants consequently perceive less 
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reversals of a given ambiguous image 5,30–35. In our study, participants were 

required to detect perceptual reversals of an ambiguous Necker cube while 

performing a concurrent task with four levels of WML. In order to manipulate the 

amount of available WM resources, the WML stimuli (letter strings) consisted of 

either no letters (sham-load), five, six or seven consonants. The concurrent task 

involved memorization of the letter strings, which were followed by an ambiguous 

Necker cube presentation. Finally, to control for possible differences in perception 

of the perceptual versus real change of the Necker cube under WML, we used an 

extra condition in which two unambiguous images, each representing one of the 

two different percepts of the Necker cube, were presented subsequently while 

the participants had to report the real changes while completing the WML task 

with six consonants. We theorized that if WM resources are actively involved in 

the construction of the available percepts of the ambiguous stimulus, a 

concurrent WML will decrease the reversal rates and modulate the efficiency of 

the neural processes involved in reversals. Due to enhanced usage of attentional 

resources, we hypothesized that BOLD signal changes in response to perceptual 

decisions under sham-load would be stronger than the signal variation obtained 

under WML conditions over anterior prefrontal cortex (aPFC), dorsolateral 

prefrontal cortex (DLPFC) and SPL. 

 

Materials and methods 

Participants 

We recruited 14 healthy participants (8 male; mean age ± standard deviation = 

26.3 ± 3.1 years) to take part in the study. They had normal vision and were naive 

as to the specific experimental question. All participants were right-handed, as 

confirmed by Edinburgh Handedness Inventory 36. A written informed consent (in 
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accordance to the declaration of Helsinki) was obtained from all participants and 

the institutional ethics committee formally approved the study. The experiments 

were conducted in compliance with the safety guidelines for MR research on 

humans. 

 

Stimulus presentation and apparatus 

We wrote our experiments in MATLAB, using the Psychophysics Toolbox 

extensions 37,38. The stimuli were shown inside the MR scanner by means of an 

LCD screen (refresh rate 60 Hz) located ~156 cm away from the participant. The 

participants viewed the images through a mirror mounted above the participant’s 

eyes. All stimuli were presented at high contrast levels in black on a white 

background. The participants were responding by pressing buttons on a Cedrus 

Lumina LP-400, LU400 PAIR MR-compatible response box (Cedrus Corporation, 

San Pedro, CA 90734, USA). To determine whether participants were able to 

maintain central fixation during the experimental task, eye tracking data (sample 

frequency 1000 Hz) were recorded inside the scanner using eye tracker software 

Eyelink 1000 (SR Research, Ottawa, Ontario, Canada). The eye tracker was 

individually calibrated with a 9-point calibration routine in the beginning of 

experiment.  

 

Working memory stimuli 

In order to manipulate working memory, a memory set, consisting of the memory 

prime and the memory probe, was used as depicted in Figure 5-1A. In the sham-

load condition the prime consisted of five asterisks (*****; size 0.41° × 0.41°). In 

the ambiguous-5-letter-load (a-5LL), ambiguous-6-letter-load (a-6LL) and 

ambiguous-7-letter-load (a-7LL) conditions the prime consisted of 5, 6 and 7 
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consonants (size: 0.61° × 0.5°), respectively, except H, K, Q and W (the selection 

of consonants was based on Portuguese alphabet). An unambiguous-6-letter-

load (u-6LL) condition was used as a control to check for possible differences 

induced by perceptual versus real changes of the stimuli both in perception and 

BOLD signal. The memory probe was presented in the end of each trial and 

consisted of two arrows (arrow size 0.5° × 0.5°) to the left (<<) or the right (>>) 

in the sham-load condition, or one letter in all other conditions. Multiple 

randomized sequences of consonants were created for the memory stimuli and 

the occurrence (as well as the position) of each consonant in each trial was 

equiprobable. 

 

Ambiguous and unambiguous Necker cube stimuli 

The Necker cube, of size 4.15° × 4.11°, was used as the main experimental 

stimulus. In the u-6LL condition two unambiguous cubes (representing ‘down’ 

and ‘up’ orientations of the ambiguous Necker cube) were used and they were 

interchanged randomly with an aim to mimic perceptual reversals (see Figure 

5-1B). The position of the fixation point on the unambiguous cubes was kept to 

match the centre of the ambiguous Necker cube. The durations of both 

unambiguous stimuli were based on the mean values of perceptual durations 

(under a-6LL) from 29 participants: values from 14 participants were obtained 

from data of 5 and data from 15 participants were collected during pilot 

experimentation outside the scanner. For each ambiguous and unambiguous 

cube a mirror image version with respect of the left-right orientation was created 

and shown on half of the trials. 
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Experimental design 

In the beginning of the experiment, a static version of a Necker cube was shown 

for each participant. If a participant was initially unable to perceive the ambiguity 

of the figure, the experimenter prompted him/her until the participant was able 

to perceive the figure in both interpretations. Then each participant performed a 

short practice block of 15 trials outside the scanner in order to get used to the 

task. Each trial of all conditions began with the presentation of the memory prime 

(containing either asterisks or letters) for 3 sec followed by the fixation dot for 1 

sec. Participants were asked to memorize the letter stimuli in conditions involving 

letter primes or just to look at the asterisks in the sham-load condition. In all 

conditions, except sham-load, the participants were instructed to use mental 

repetition to complete the WML task. After the fixation dot, an ambiguous Necker 

cube was presented for 10 sec. The participants were asked to report the 

perceived reversals by a button press. The cube was followed by the blank screen 

for 0.5 sec. At the end of each trial the memory probe was presented for 3.5 sec 

and the participant had to discriminate left-oriented versus right-oriented arrows 

in the sham-load condition, or had to indicate whether the letter presented in the 

probe matched (positive probe) or did not match (negative probe) any of the 

letters presented in the prime by pressing the left or the right designated buttons, 

respectively. The sequence of each experimental trial in u-6LL condition was the 

same as in other conditions, except during the 10 sec interval two unambiguous 

cubes, each representing an orientation of the ambiguous Necker cube, were 

presented interchangeably and the participants were instructed to press a 

designated button for each orientation change. Trials were later ranked as few (2 

real changes) or many (3 real changes) for behavioral and brain imaging analyses 

(to mimic the data parcellation in ambiguous trials). The probe (Figure 5-1C) was 

followed by a 2 sec masking grid (made from scrambled Necker cube image) used 

in order to diminish the afterimages. After each trial a 6 sec inter-trial rest period 
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was given. The participants were instructed to keep their eyes focused on the 

fixation dot (or letter strings when presented) throughout the whole experiment. 

Response hand assignments of the buttons and the order of experimental 

conditions were counterbalanced across participants. It was emphasized that they 

should press the ‘reversal’ button only when they actually saw a perceptual 

reversal, and they were instructed to pay attention to unambiguous stimuli in 

order to correctly report the real changes. The experiment included 100 trials (20 

trials of each condition) divided in 20 runs (5 trials per run). One block lasted ~2.2 

min. In the beginning of each run, the participants fixated on a fixation cross for 

4 sec. We presented unambiguous and ambiguous conditions in separate runs. 

 

MRI data acquisition 

Data were collected with a Siemens Magnetom TIM Trio 3T research scanner with 

a phased array 12-channel birdcage head coil (Siemens, Munich, Germany). The 

experiment consisted of one MR scanning session during which one structural 

volume and 20 functional runs (67 volumes per run) were acquired. The scanning 

session began by acquiring a 3-D anatomical T1-weighted MPRAGE 

(magnetization-prepared rapid gradient echo) sequence (TR = 2530 msec, TI = 

1100 msec, TE = 3.42 msec, flip angle = 7°, 176 interleaved slices (no-gap) with 

voxel size = 1 × 1 × 1 mm, FOV 256 mm). Functional images were acquired axially 

using T2*-weighted gradient echo EPI sequences covering the whole brain. Each 

functional run consisted of 67 volumes (TR = 2000 msec, TE = 40 msec, flip angle 

= 90°, 35 interleaved slices (no-gap) with voxel size 3 × 3 × 3 mm; FOV 256 mm). 

The head of the participant was stabilized by means of foam pillows placed on 

both sides of the head.  
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Figure 5-1. Graphical representation of the stimuli and experimental protocol. (A) 

An illustration of the experimental trials in all conditions: schematic 

representation of the memory primes in the sham-load, ambiguous-five-letter-

load (a-5LL), ambiguous-six-letter-load (a-6LL), unambiguous-six-letter-load (u-

6LL), and ambiguous-seven-letter-load (a-7LL) conditions. (B) In each condition 

with perceptual changes, the memory prime is followed by a standard Necker 

cube. In the control condition (u-6LL) the prime is followed by a sequence of 

unambiguous cubes. (C) Schematic representation of the memory probes in all 

conditions.  
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Data preprocessing and analysis  

In the beginning of each run, the first 2 volumes of functional data were 

automatically discarded in the scanner to allow the magnetization to reach a 

steady state. The data were analyzed using BrainVoyagerQX 2.8. (Brain Innovation, 

Maastricht, The Netherlands). Functional volumes were realigned and corrected 

for interleaved slice-timing, coregistered with the participants’ corresponding 

anatomical (T1-weighted) volume, spatially normalized into Talairach stereotaxic 

space, and spatially smoothed with an 8 mm full-width at half-maximum gaussian 

kernel. Head motion correction was performed by adjusting all the functional runs 

with the first functional run presented right after the anatomical acquisition. High 

pass filtering (3 cycles/scan) was performed in order to compensate for a slow 

fMRI signal drift. The time-series of each voxel was divided by its mean intensity 

to convert the data units from image intensity to fractional signal change, and to 

compensate for distance from the surface coil.  

Statistical analysis was performed using a random-effects general linear model 

(RFX-GLM). The data for each subject was concatenated resulting in mean effect 

estimates per condition (first level effect). Then the first level effects were entered 

to the second level as the new dependent variable (instead of the raw data) and 

were analyzed across subjects (second level analysis).  

Multi-subject RFX-GLM fitted the data with regressors that represented all 

experimental conditions. Each period of a trial was included as a regressor (prime, 

cube and probe presentation) in the model. Different conditions (sham-load, a-

5LL, a-6LL and a-7LL) were modelled with separate regressors. The regressors 

were defined to be "on" exactly between onset and offset of each presentation of 

the Necker cube. The onsets of the ambiguous/unambiguous cubes (rounded 

with respect to a multiple of the repetition time) also served as time markers to 

extract the mean signal time course starting two scans (4 sec) before stimulus 

onset and ending 15 scans (30 sec) after stimuli presentation.   
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In order to be sure that the participants paid attention to the WML task, we 

included only trials followed by the correct responses to memory probes in the 

GLM (and other analyses as well), based on the reports of the participants. 

Predictors for real changes were modeled for u-6LL condition based on the actual 

changes of the stimuli, taking into account the correct reports to real changes of 

stimuli and to memory probes provided by the participants. To reduce 

unexplained variance in the data incorrect trials were added as confound 

predictors. Baseline signal was considered from twenty baseline fixation periods. 

The hemodynamic BOLD responses were modeled as boxcar functions convolved 

with a two-gamma canonical hemodynamic response function as implemented 

in BrainVoyagerQX.  

To investigate the reversal specific effects under WML, an analysis taking into 

account both the WML task and the number of perceived changes was 

conducted. After exclusion of erroneous working memory load trials, on average 

(SD) 20 (0) trials in the sham-load condition, 17.2 (2.22) in the a-5LL, 16.6 (2.79) in 

the a-6LL and 17.6 (2.13) in the a-7LL conditions remained for all analyses. 

Reversals perceived in each trial of each condition were ranked as either few (0-2 

reversals within a trial) or many (3 or more reversals within a trial). Thus, two 

regressors for each condition were modeled separately for sham-load, a-5LL, a-

6LL, a-7LL, and u-6LL conditions (i.e., sham-load few reversals, sham-load many 

reversals, a-5LL few reversals, a-5LL many reversals etc.). On average 9.9 (SD: 5.6) 

and 7.9 (SD: 4.9) trials in sham-load, 9.7 (SD: 5.9) and 7.9 (SD: 4.9) in a-5LL, 8.4 

(SD: 4.9) and 7.9 (SD: 4.8) in a-6LL, 10.6 (SD: 5.9) and 6.9 (SD: 5.4) in a-7LL, 9.1 (SD: 

1.1) and 8.9 (SD: 1.7) in u-6LL were ranked as having few or many reversals, 

respectively. Four participants were excluded from these analyses because they 

perceived either only few or only many reversals in one (or more) of the 

experimental conditions. The effects were assessed using two-way ANOVAs with 

two within-subjects factors, in a 2 (Reversals: few and many) × 4 (Load: sham-
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load, a-5LL, a-6LL and a-7LL) design. In case of significant Reversals × Load 

interaction, additional one-way ANOVAs, with Load as a within-subjects factor, 

were conducted within BVQX and post-hoc t-tests were conducted with SPSS 19.0 

software. As the number of perceived reversals was different for every load 

condition, we decided to analyze only those ROIs that revealed significant 

Reversals × Load interactions and report only the Load effects obtained from 

subsequent one-way ANOVAs (few or many reversals, respectively). The ROIs 

were created by manually selecting significant voxels (within template ROIs 

consisting of Brodmann areas) in the statistical map resulting from the multi-

subject ANOVA whole-brain interactions (FDR corrected P-value < 0.05). 

Individual parameter estimates were averaged across all voxels within each ROI, 

and submitted to second-level analyses. For ROI analyses of unambiguous 

changes, the ANOVAs had 2 (Reversals: few and many) × 2 (Type: u-6LL and a-

6LL) as within-subject factors. 

 

Behavioral analyses  

For all conditions the probe response accuracies (D(14) ≥ 0.20, P-value > 0.05, K-

S test) and probe response times (D(14) ≥ 0.13, p > 0.05, K-S test) were normally 

distributed. For each load condition, we divided the number of reversals by the 

amount of trials. This transformed reversal rate was calculated for each participant 

individually and used in the analyses. K-S test revealed that reversal rate did not 

meet the condition of normality. The distribution of reversal rate values was 

leptokurtic and positively skewed, thus square root transformations were applied 

to these data 39.  

One-way ANOVAs with a within-subject factor of Load (sham-load, a-5LL, a-6LL 

and a-7LL) were performed on the mean values of the WML task (accuracy, probe 

response time). Two-way ANOVAs with within-subject factors of Reversals (few 



T h e  b i s t a b l e  N e c k e r  c u b e  | 233 

and many) and Load (sham-load, a-5LL, a-6LL and a-7LL) were performed on 

normalized reversal rate values.   

In all ANOVAs, post-hoc t-tests (Fisher’s Least Significant Difference, hereafter 

Fisher’s LSD) were used for pairwise comparisons of conditions in the case of a 

main effect of Load (or Type). The significant linear trends in the data revealed by 

the within-subjects contrasts were also reported. In the statistical analyses, we 

reported the original degrees of freedom, but corrected the P-value according to 

Huynh-Feldt correction whenever the degrees of freedom were greater than 1. 

The degrees of freedom are reported together with effect sizes (partial eta 

squared: ηp²). 

 

Results 

Working memory task performance 

The memory probe response accuracy decreased with higher working memory 

load task (F(3,39) = 10.20, P-value < 0.0001, ηp² = 0.44) (Figure 5-2A). The 

accuracy in the sham-load condition was higher than those acquired in response 

to all other conditions (all P-values < 0.01, Fisher’s LSD corrected).  

Probe response times increased with working memory load (F(3,39) = 56.42, P-

value < 0.0001, ηp² = 0.81) (Figure 5-2B). The increase was linear with 

augmentation in working memory load (F(1,13) = 149.47, P-value < 0.0001, ηp² = 

0.92). The probe response times in the sham-load condition were shorter than 

those obtained in all other conditions (all P-values < 0.0001, Fisher's LSD 

corrected) and the probe response times to a-5LL were shorter than those in 

response to a-7LL (P-value < 0.05, Fisher's LSD corrected). 
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Figure 5-2. Behavioral performance of perceptual reversals and the WML task. (A) 

The accuracy in responses to the memory probes under sham-load, ambiguous-

five-letter-load (a-5LL), ambiguous-six-letter-load (a-6LL), ambiguous-seven-

letter-load (a-7LL), and unambiguous-six-letter-load (u-6LL) conditions (N = 14). 

(B) The response times to the memory probes under sham-load, a-5LL, a-6LL, a-

7LL and u-6LL conditions (N = 14). (C) The normalized reversal rate per trial under 

sham-load, a-5LL, a-6LL and a-7LL conditions (N = 14). Error bars represent ± 

SEM. 
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Reversal task performance  

A-WML (presentation of ambiguous Necker cube) 

The 2 (Reversals: few and many) × 4 (Load: sham-load, a-5LL, a-6LL and a-7LL) 

repeated measures ANOVA revealed significant effect for Load (F(3,39) = 3.23, p-

value < 0.04, ηp² = 0.20) and a significant Reversals × Load (F(3,39) = 3.22, p-

value < 0.04, ηp² = 0.20) interaction (Figure 5-2C). The decrease was linear with 

augmentation in working memory load (F(1,13) = 6.21, p-value < 0.03, ηp² = 0.32). 

Subsequent one-way ANOVAs showed that the participants perceive less 

reversals under a-7LL than under sham and a-6LL (all p-values < 0.05, Fisher’s LSD 

corrected), only when they perceive many reversals (F(3,39) = 3.97, p-value < 0.02, 

ηp² = 0.23) in the trial. The decrease was linear with augmentation in working 

memory load (F(1,13) = 6.25, p-value < 0.03, ηp² = 0.33). 

 

U-6LL (control presentation of real cube changes) 

On average, the participants correctly identified 93% of real changes (SD = 0.07) 

and took around 600 msec (SD = 0.07) to report them. Memory probe response 

accuracy (Figure 5-2A), response times (Figure 5-2B) to the memory probe in 

response to u-6LL were compared with the same responses obtained under a-6LL 

with one-way ANOVAs with Type (u-6LL and a-6LL) as a within-subject factor. The 

effects of Type were not statistically significant (all F-values ≤ 2.85). Repeated-

measures ANOVA with Reversals (few and many) and Type (u-6LL and a-6LL) as 

within-subject factors was conducted on the number of reported real and 

perceptual changes. The effect of Reversals and Reversals × Type interaction were 

not statistically significant (all F-values ≤ 3.65).  
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The distribution of fixations 

The analyses of fixations were performed with eight participants; data from six 

participants were not collected due to eye-tracker malfunction. Fixations were 

calculated based on the recorded gaze behavior. A fixation duration threshold of 

150 msec was used. Fixations that had the same position and were separated by 

a blink were concatenated. To calculate dwell time, consecutive fixations were 

concatenated. A rectangular area of interest (1.46° × 1.44°) was defined on the 

center of the cube. The participants successfully maintained their gaze in the area 

of interest for ~ 91% (SD = 0.17) of the ambiguous cube presentation time and 

90% (SD = 0.16) of the fixations fell in this region of interest. The participants 

successfully maintained their gaze ~ 94% (SD = 0.12) of the unambiguous cubes 

presentation time and 93% (SD = 0.13) of the fixations fell in the interest area. 

The average count of fixations falling over the selected interest area (D(8) ≥ 0.23, 

P-value > 0.05, K-S test) and the dwell times over the interest area (D(8) ≥ 0.13, 

P-value > 0.05, K-S test) were normally distributed. Two separate one-way 

ANOVAs with within-subject factors of Load (sham-load, a-5LL, a-6LL and a-7LL) 

and Type (u-6LL and a-6LL) were performed on the average count of fixations and 

the dwell times, but the effects were not significant (all F-values ≤ 2.73). 

 

Figure 5-3. Eyes fixation during experimental task. (A) The distributions of the 

fixations from sham-load, a-5LL, a-6LL and a-7LL conditions (N = 8).  (B) The 

distributions of the fixations from u-6LL condition (N = 8).  
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ANOVAs of fMRI BOLD signal  

The 2 (Reversals: few and many) × 4 (Load: sham-load, a-5LL, a-6LL and a-7LL) 

repeated measures ANOVA revealed significant effects for Load over pSPL and 

visual associative cortex (F(3, 27) ≥ 3.19, P-value < 0.05, ηp² ≥ 0.26): the BOLD 

signals in response to sham-load were significantly more positive than those in 

response to a-6LL and a-7LL over both ROIs and the signal in response to a-5LL 

(relatively lower load) was more positive than that obtained in response to a-6LL 

over visual associative cortex. Significant Reversals × Load interactions (F(3, 27) ≥ 

3.25, P-value < 0.05, ηp² ≥ 0.27) were found over the regions listed in Table 5-1. 

The statistical maps showing significant ANOVA interactions over left DLPFC, right 

pSPL and right aPFC are shown in Figure 5-4, Figure 5-5 and Figure 5-6, 

respectively. For these particular ROIs we also show interaction plots and fMRI 

response time-courses during trials where participants perceived few perceptual 

reversals (left DLPFC) or many perceptual reversals (right pSPL and right aPFC). 

The interaction plots for the other significant ROIs in Table 5-1 are shown in 

Figure 5-7. 
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Table 5-1. Interaction effect of Perceptual Reversals x Working Memory Load 

Brain region 

Talairach 

coordinates F-score 
Nr of 

voxels 

X Y Z 

Premotor Cortex (BA6) 27 -7 58 8.37 933 

left Dorsolateral Prefrontal Cortex  -18 44 40 7.57 384 

Associative Visual Cortex 36 -73 16 6.43 556 

right anterior Prefrontal Cortex 36 47 22 6.32 410 

right posterior Superior Parietal Lobule 15 -76 37 5.68 258 

right Angular Gyrus 61 -61 22 5.47 113 

right Isthmus of Cingulate Cortex 30 -60 10 5.11 203 

dorsal Posterior Cingulate Cortex -24 -82 22 4.80 121 

Regions with significant clusters showing coordinates of peak voxel in Talairach 

space and statistical F-values obtained from repeated-measures ANOVAs at P-

value < 0.05 (FDR corrected). 
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Figure 5-4. BOLD response in left dorsolateral prefrontal cortex (DLPFC) during 

presentation of the ambiguous Necker cube. (A) An interaction effect between 

cube reversals and WML was observed with repeated measures 2 (Reversals: few 

and many) × 4 (Load: sham-load, a-5LL, a-6LL and a-7LL) ANOVA of signal 

changes. These interactions show that this brain region competes for attentional 

resources. (B) Time-course of BOLD response when participants viewed few cube 

reversals during ambiguous Necker cube presentation under sham, a-5LL, a-6LL 

and a-7LL working memory load (WML) conditions. (C) Functional map 

(thresholded at P-value < 0.05, FDR corrected) generated from ANOVA on fMRI 

response to perceptual reversals under WML showing significant Reversals × Load 

interaction in left DLPFC. 
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Figure 5-5. BOLD response in right posterior superior parietal lobule (pSPL) during 

presentation of the ambiguous Necker cube. (A) An interaction effect between 

cube reversals and WML was observed with repeated measures 2 (Reversals: few 

and many) × 4 (Load: sham-load, a-5LL, a-6LL and a-7LL) ANOVA of signal 

changes. These interactions show that this brain region competes for attentional 

resources. (B) Time-course of BOLD response when participants viewed many 

cube reversals during ambiguous Necker cube presentation under sham, a-5LL, 

a-6LL and a-7LL working memory load (WML) conditions. (C) Functional map 

(thresholded at P-value < 0.05, FDR corrected) generated from ANOVA on fMRI 

response to perceptual reversals under WML showing significant Reversals × Load 

interaction in right pSPL. 
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Figure 5-6. BOLD response in right anterior prefrontal cortex (aPFC) during 

presentation of the ambiguous Necker cube. (A) An interaction effect between 

cube reversals and WML was observed with repeated measures 2 (Reversals: few 

and many) × 4 (Load: sham-load, a-5LL, a-6LL and a-7LL) ANOVA of signal 

changes. These interactions show that this brain region competes for attentional 

resources. (B) Time-course of BOLD response when participants viewed many 

cube reversals during ambiguous Necker cube presentation under sham, a-5LL, 

a-6LL and a-7LL working memory load (WML) conditions. (C) Functional map 

(thresholded at P-value < 0.05, FDR corrected) generated from ANOVA on fMRI 

response to perceptual reversals under WML showing significant Reversals × Load 

interaction in right aPFC. 
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Figure 5-7. Schematic representations of significant Reversal × WML interactions 

during presentation of the ambiguous Necker cube. Interaction effects were 

obtained from repeated measures 2 (Reversals: few and many) × 4 (Load: sham-

load, a-5LL, a-6LL and a-7LL) ANOVAs of signal changes over associative visual 

cortex, right angular gyrus, right isthmus of cingulate cortex, dorsal posterior 

cingulate cortex and premotor cortex. The interactions show that these structures 

compete for attentional resources. Error bars represent ± SEM.  
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Subsequent one-way ANOVAs, conducted on each ROI and for each Load level 

separately, revealed that the BOLD response over right aPFC was significantly 

more positive in response to many perceptual changes under sham load (F(1, 9) 

= 6.67, P-value < 0.04, ηp² = 0.43). The BOLD responses over premotor cortex, 

left DLPFC and visual association cortex were significantly more positive/less 

negative in response to many perceptual changes under the low load level a-5LL 

(F(1, 9) ≥ 5.41, P-values < 0.05, ηp² ≥ 0.38). The BOLD responses over right angular 

gyrus and right isthmus of cingulate cortex were significantly more positive/less 

negative in response to many perceptual changes under a-6LL (F(1, 9) ≥ 5.85, P-

value < 0.04, ηp² ≥ 0.39). The BOLD responses over premotor cortex, right pSPL, 

right aPFC, visual association cortex and dPCC were significantly less 

positive/more negative in response to many perceptual changes under a-7LL (F(1, 

9) ≥ 6.94, P-value < 0.03, ηp² ≥ 0.44). 

 

U-6LL versus A-6LL 

The 2 (Reversals: few and many) × 2 (Type: u-6LL and a-6LL) repeated measures 

ANOVA revealed significant effects for Type over multiple ROIs. The BOLD 

responses over premotor cortex, pSPL, secondary visual cortex and insular cortex 

(F(1, 9) ≥ 12.33, P-value < 0.01, ηp² ≥ 0.58) were significantly more positive in 

response to perceptual changes. The BOLD responses over primary visual cortex, 

isthmus of cingulate gyrus, dPCC, left angular gyrus, left aPFC, and right DLPFC 

(F(1, 9) ≥ 7.97, P-value < 0.05, ηp² ≥ 0.47) were, on the contrary, significantly more 

negative in response to perceptual changes.  

Significant Reversals × Type interactions (F(1, 9) ≥ 11.02, P-value ≤ 0.01, ηp² ≥ 

0.55) were obtained over several regions, but subsequent one-way ANOVAs 

revealed significant effect for Type (F(1, 9) = 7.05, P-value < 0.05, ηp² = 0.44) only 

for stronger deactivations of right temporopolar area (Talairach coordinates 
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X=60, Y=8, Z=-14), in response to few perceptual changes than those in response 

to few real changes. 

 

Discussion 

We studied the effects of working memory load (WML) on perceived reversals of 

ambiguous Necker cube using fMRI. The results revealed that the WML 

manipulation was effective: the accuracy in response to memory probes 

decreased and the probe response times linearly increased in response to 

increasing levels of WML. Furthermore, the WML task modulated, but did not 

abolish, the dynamics of perceptual reversals. The participants perceived less 

reversals of the ambiguous Necker cube when they had to perform the concurrent 

WML task. Moreover, loading WM affects perceptual decisions specifically when 

the participants perceive more reversals per trial, that is, when their attentional 

resources are even more depleted. Furthermore, we replicated the previously 

described functional association between activity in visual, parietal and frontal 

regions 18–20,40 and perceptual reversals (see Table 1), thus providing additional 

evidence that the fronto-parietal network is activated during perceptual changes. 

Importantly, we found evidence for a pivotal role of right posterior Superior 

Parietal Lobule (pSPL) in relation to perceptual decisions, as this region specifically 

reflected both differences in response to perceptual changes under different load 

levels, and was as well stronger in response to perceptual versus real changes. The 

finding that enhanced BOLD responses in SPL are observed in response to 

perceptual decisions, has been previously suggested by fMRI 15–17,19, studies. 

Furthermore, TMS 25,41–43 studies imply a causal SPL role in generating perceptual 

decisions. Beyond suggesting a general involvement of parietal regions during 

perceptual switches, our data indicate that the activity in these regions can also 

be specifically associated with a particular perceptual state. Kanai and colleagues 
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25 postulated that aSPL generates prediction (i.e., current interpretation) and the 

pSPL generates “prediction error” (i.e., the mismatch between top-down 

prediction and bottom-up input) 44–46. We found an interaction between the 

numbers of perceived reversals under WML: when participants perceived many 

reversals within a trial while performing a hard WML task, the activation of right 

pSPL decreases. If pSPL is involved in generating “prediction error”, which 

increases the probability of the perceptual reversals 40, interfering with pSPL 

activity with the WML task should lead to weaker signal activations. Our results 

confirm this, as right pSPL exhibited stronger activations in response to reversals 

under sham-load than in response to reversals perceived under higher levels of 

load (Figure 5-5). Thus, we speculate that WML interferes not with generating 

predictions per se, but rather with “prediction errors” specifically when the 

“predictions errors” (i.e., perceptual decisions) are enhanced.  

Prefrontal cortex exhibits significant activations in response to reversals of 

bistable stimuli 17,18,20,47. We found activations of the right aPFC when the 

participants perceive many reversals under sham-load (Figure 5-6). Left DLPFC 

was deactivated in response to few perceptual changes under the lowest a-5LL 

load, suggesting a relatively lower relevance of the region in reversal processes. 

Thus, the left DLPFC and right aPFC were effectively ‘mirror images’ of each other, 

suggesting distinct roles of these regions in the perceptual decision mechanism. 

Differential activations of aPFC and DLPFC are found in response to various 

working memory tasks 48,49, thus, it remains unclear whether the pattern of these 

results was induced by WML task, or if the WML task revealed opposite roles of 

right aPFC and left DLPFC in response to perceptual decisions. The question, 

whether fronto-parietal activations associated with perceptual decisions directly 

contribute to perceptual awareness, is still under debate: fronto-parietal 

activations might reflect other top-down information processes such as selective 

attention 27, be caused by the ambiguity of visual information 15, or reflect 
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processes occurring in response to introspection and report of perceptual states 

50. Furthermore, a TMS study 51 as well did not find evidence of a causal role of 

DLPFC in bistable perception. However, the deactivations of left DLPFC in 

response to few perceived reversals (i.e., longer percept durations) under WML 

might imply the possible involvement of left DLPFC in maintaining percept 

stability. Stronger activations of right aPFC under condition without WML are 

comparable to the results obtained with right SPL, thus they suggest repetition 

of the “prediction error” in the higher-level areas.  

In this study, we replicated the behavioral finding that WML and perceptual 

reversals partially share attentional resources 5. However, if only perceptual 

changes are observed under WML, there is no way to dissect these effects from 

the fMRI effects that would result from reporting a real change of the stimulus 

under WML. In order to examine this possibility, we have used an unambiguous 

control condition (u-6LL). The limitation of the current study was that we were 

only able to test one level of WML as our control without risking a major increase 

of the time our participants had to spend in the scanner. The analyses of 

behavioral data obtained in response to perceived reversals with reported real 

changes did not reveal any significant differences between conditions. However, 

stronger signal modulations over several brain areas were obtained in response 

to perceptual reversals in comparison to real changes. Our data are comparable 

to those obtained in studies examining the perception of bistable stimuli and 

unambiguous replay 16,17,19,20,50. Additional support for the role of pSPL as the 

generator of the “prediction error” was provided by stronger pSPL activations in 

response to perceptual (a-6LL) when compared to real changes (u-6LL). Predictive 

coding suggests that in case of the unambiguous condition the “predictions” 

created by higher-order regions are confirmed by sensory input, thus reciprocal 

interactions between higher and lower regions may be discontinued. However, 

we agree that a more thorough investigation would be required to test whether 
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the behavioral performance and fMRI results differ depending on increasing WM 

loads in unambiguous conditions.  

We conclude that pSPL is directly involved in the perceptual decision mechanism 

and potentially in the reevaluation of a given visual scene (to match the 

predictions of the brain) thus causing perceptual changes (i.e., prediction errors). 

Finally, we suggest that aPFC and left DLPFC are involved in top-down modulatory 

control of the perceptual decisions. 
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General discussion 

In this thesis we explored the timely topic of how visual perception is achieved by 

distributed processing and active analysis of sensory information of the world. As 

introduced in Chapter 1, visual perception involves the neural integration of visual 

features processed in parallel in different visual areas 1–4. Theories of integrative 

processing explain that distributed parallel processing of different visual features 

is integrated to form coherent percepts of the visual world. Recent approaches 

emphasize the constructive nature of perception by assuming that top-down 

(goal-directed mechanisms such as attention) and bottom-up (stimulus-driven 

mechanisms) processes cooperate in everyday life to guide brain processing 

toward behaviourally relevant or particularly salient stimuli 5,6. An important 

question is how visual scenes containing multiple objects are processed in order 

to achieve successful object segregation. A particular challenge is posed to visual 

perception in a context when multiple interpretations of a physically constant 

stimulus are available, leading to rivalrous/conflicting percepts 7–10. This context 

is instantiated under multistable conditions, whereby the pattern of sensory 

stimulation in the retina remains constant and still its perceptual appearance can 

change dramatically over time leading to perceptual switches that are not 

stimulus-driven. Multistable stimuli are thus well suited to investigate the origin 

of perceptual reversals regarding whether low or high level visual mechanisms 

play a major role 11. 

In this work we used magnetic resonance imaging (MRI), an important imaging 

non-invasive modality in human neuroscience. We provided in Chapter 2 an 

overview of the MRI methods employed throughout this thesis to assess brain 

structure and function, from physical to physiological principles and data analysis. 

In this work we used this technique to investigate the influence of bottom-up and 

top-down mechanisms in the perception of bistable stimuli. We took advantage 

of a particular type of fMRI data analysis, deconvolution analysis, which allows 
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estimating any response shape after a short stimulus or event, as a perceptual 

switch. Despite possibly overlapping responses, employing such a deconvolution 

procedure recovers the true hemodynamic response function for each stimulation 

condition from the data 12–14. In Chapter 3 we provided an important practical 

contribution of this thesis in the methodological aspects of fMRI analysis. We 

explored the use of deconvolution approaches to fMRI data in healthy 

participants and diabetic patients, a population prone to cerebrovascular disease, 

in order to probe neurovascular coupling with a visual motion paradigm and 

empirically extract important features of neuronal response to visual stimuli from 

hemodynamic variable responses in human brain. The data-driven deconvolution 

analysis allowed us to estimate transient perceptual switch-related activity in 

response to a bistable moving stimulus, which we presented in Chapter 4. 

We focused on visual perception of motion which poses particular demands 

because it is not always uniquely solvable by computation from sensory input. In 

order to segregate multiple objects in a visual scene, the human visual brain 

needs to solve disambiguation problems, including whether motion signals 

coming from co-existing contours arise from single or multiple objects. The 

extrastriate area MT+ is very well known to be involved in the perception of global 

motion 15–17. It remains however not completely understood how full integration 

of multiple globally moving surfaces is achieved within the whole visual hierarchy. 

These regions are optimal candidates for the investigation of how non-

overlapping moving surfaces of a bistable stimulus, restricted to individual visual 

hemifields, are parsed into different objects or interhemispherically integrated 

into a single moving pattern. 

The analysis of perceptual states, which are inherently subjective and 

unpredictable, revealed that the coherent global motion percept was dominant, 

as in other studies of multistability 18–20. The duration of the two alternative 

percepts followed a gamma or lognormal distribution, suggesting the existence 
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of perceptual rivalling opponent motion systems 20–25. Our psychophysical and 

imaging data support the existence of two stages in the processing of motion 

information in the human visual system. Each half-image in one side of the visual 

field can be envisaged as a 1-D component of the global 2-D pattern extending 

in both visual hemi-fields. We found that incoherent/component perception 

elicited higher signal changes than coherent/pattern motion percept in MT+. This 

can be explained as the result of a larger population of responsive neurons, 

including both component and pattern neurons responding to the motion of two 

incoherently moving 1-D patterns, which is assumed to be the first stage 

processing. The second stage seems to be concerned with establishing the 

motion of the global 2-D pattern, during which a smaller population of pattern 

neurons in MT+ are responding to a single 2-D object. This would result in smaller 

fMRI signal change, as we observed at the single-subject level within MT+. 

Previous studies had presented an explanation for the perceptual transitions 

between perceptual states in MT+, based in a competitive reconfiguration of cell 

assemblies in this area, one coding pattern motion and the other coding 

component motion 8,26. However, both used plaid stimuli and were not able to 

definitely prove the two-stage model and rule out the blob tracking model 27. We 

took advantage of a paradigm of perceptual emergence of coherence using a 

physically constant bistable stimuli that requires motion integration across 

interhemispheric regions. Our study is innovative in the sense it uses a new 

intersection-free 2-D bistable moving stimulus for the first time to investigate 

with fMRI the neural correlates of ambiguous motion perception in humans, at 

least to our knowledge. We observed that activity in the MT+ complex changes 

depending on whether subjects integrate all motion signals into the percept of a 

single surface, or whether they segregate signals and perceive two separate 

objects. The control experimental data using an unambiguous version of the same 

stimulus confirmed higher response to incoherent/component percept. 
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Is this redistribution of activity in assemblies representing component and pattern 

motion within MT+ triggered by local mechanisms in MT+ itself, or are there 

other regions causing switches in neuronal activity competition and perception? 

In order to specifically analyze transient signal changes related to perceptual 

switches, we employed a second GLM approach in which we marked the 

subjectively defined perceptual switches in the protocol of analysis. We also 

extracted response features of perceptual switches that were not stimulus driven 

by deconvolution of fMRI data within MT+. Deconvolution extraction of 

responses to perceptual switches confirmed stronger component responses 

within MT+ in response to perceptual switches, and lagged pattern responses, 

suggesting that more time is need for second stage integration. Adaptation 

effects might also play a role, as previously supported in an fMRI study of 

perceptual switches and states with apparent motion 28 and plaid stimuli 8.  

The whole-brain RFX-GLM analysis revealed several high-level brain regions that 

correlated significantly with perceptual switches. We observed activation evoked 

by ambiguous bistable motion in prefrontal cortex, visual cortex, parietal cortex, 

premotor areas, superior parietal lobule (SPL), cingulate gyrus, insula, opercular 

cortex and putamen, as reported in previous studies of bistable perception and 

perceptual decision making 29–34. With the specific contrast whole-brain analysis 

of [switches > phases] activity we observed significant signal changes elicited by 

perceptual switches rather than perceptual stable phases in prefrontal cortex, 

insula, inferior frontal gyrus, angular gyrus, supramarginal gyrus and cingulate 

gyrus. We replicated the previously described functional association between 

activity in parietal regions and perceptual switches 35–37, and we observed in 

particular significant activity in inferior and superior parietal lobule, which was 

recently proven to be part of a reciprocal interaction network involving MT+ 37,38. 

Our results seem to agree with a recent study which hypothesized that perceptual 

switches may arise in the visual system but awareness of the change may rely on 
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brain regions dedicated to behavioural responses such as parietal areas 39. 

Interestingly, we found significant activations bilaterally in the cerebellum and left 

thalamus in response to perceptual switches, which were previously involved in 

perceptual multistability with auditory stimuli 40,41. Our results suggest that neural 

networks outside the visual system might as well participate in dynamic 

reconfiguration of cell assemblies allowing both for segregation and integration 

of disparate motion signals in visual areas, even across visual hemi-fields. 

To improve our understanding of how the brain processes information in the 

context of interhemispherically bound bistable perception we investigated the 

interactions of activated brain areas - functional integration 42. By using Granger 

causality 42,43 we found directed influences from left and right MT+ to the 

contralateral MT+ during ambiguous bistable motion, suggesting that these focal 

motion-responsive regions communicate effectively in antagonistic decision 

processes that require disambiguation concerning either component motion in 

separate visual hemi-fields or coherent pattern motion across hemi-fields with 

this bistable stimulus. Furthermore, we found directed influences from MT+ to 

other visual areas such as right V3/V3A, which agrees with reports that activation 

in V3A underlies motion coherence 44,45. Notably, we found significant directed 

connectivity of both left and right MT+ with right SPL. Our results are in 

accordance with recent reports of functional causal interactions between right 

parietal subregions and lower visual areas such as MT+ 38. Surprisingly, we could 

not reliably identify significant directed influences from other brain regions to 

MT+ during ambiguous bistable motion with Granger causality mapping. Our 

results seem to suggest that the transition between coherent/pattern and 

incoherent/component motion percepts of this specific interhemispheric stimulus 

might mainly require bottom-up activation of MT+ and feedforward connections 

to other brain regions. However, this does not exclude additional top-down 

connections with e.g. prefrontal cortex or insula, which shown significant 
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activation found in the RFX-GLM analysis, as this negative finding could be due 

to low sensitivity of difference GCM mapping for reciprocal interactions and low 

temporal sampling rate (2 seconds is far from ideal for connectivity analysis of 

neuronal processing).  

Then, what is the role of regions in the parietal and frontal lobule, in particular in 

which concerns top-down effects? Research on bistable perception has been 

strongly influenced by the debate about whether it reflects a bottom-up, such as 

low-level local adaptation, or a top-down phenomenon 11,46,47.  

Indeed, previous fMRI studies have emphasized the role of top-down processes 

in perceptual transitions in binocular rivalry 35,48,49 and for leading attentional 

resources to brain areas involved in specific tasks 30,33,49–51, including MT+ 30,52.  

The mechanism by which sensory information is filtered and maintained in 

working memory (WM) to be used for subsequent processing is known as 

selective attention, which orients the focus of conscious awareness toward 

relevant stimuli. Studies fMRI revealed an overlap between attention and WM 

networks over visual, parietal and frontal areas 53–55, supporting the view that 

these cognitive functions share neural resources and are both governed by the 

fronto-parietal attention network 56,57. The brain regions activated during 

perceptual changes seem as well to overlap with the fronto-parietal attention 

network as suggested by our results of perception of ambiguous motion and 

supported by previous studies 33,35,36,50,58. Our study presented in Chapter 5 was 

motivated to help unravel the nature of such overlap. 

We studied using fMRI the effects of working memory load (WML) on perceived 

reversals of another ambiguous bistable condition, the Necker cube. We tested 

whether perceptual reversals of the Necker cube orientation induce signal 

changes of fronto-parietal attention network by comparing reversals under four 

levels of WML. The results revealed that the WML manipulation was effective: the 

accuracy in response to memory probes decreased and the probe response times 
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linearly increased in response to increasing levels of WML. Furthermore, the WML 

task modulated, but did not abolish, the dynamics of perceptual reversals. The 

participants perceived less reversals of the ambiguous Necker cube when they 

had to perform the concurrent WML task. Furthermore, we found that activations 

of right SPL are reduced in response to perceptual reversals under harder levels 

of WML. We replicated the previously described functional association between 

activity in visual, parietal and frontal regions 30,38,50,58 and perceptual reversals, 

thus providing additional evidence that the fronto-parietal network is activated 

during perceptual changes. Importantly, we found evidence for a pivotal role of 

right posterior superior parietal lobule (pSPL) in relation to perceptual decisions, 

as this region specifically reflected both differences in response to perceptual 

changes under different load levels, and was as well stronger in response to 

perceptual versus control real changes. Our results favour the hypothesis that 

pSPL generates “prediction errors” 37, leading to perceptual reversals, as we 

observed that right pSPL exhibited stronger activations in response to more 

reversals under sham-load than in response to few reversals perceived under 

higher levels of load, which increases the probability of the perceptual reversals. 

Prefrontal cortex exhibits as well significant activations in response to reversals of 

bistable stimuli 30,36,58,59. We found activations of the right anterior prefrontal 

cortex (aPFC) when the participants perceive many reversals in the condition of 

no WML. Left dorsolateral prefrontal cortex (DLPFC) was deactivated in response 

to few perceptual changes under the lowest load condition, suggesting a 

relatively lower relevance in reversal processes. Thus, the left DLPFC and right 

aPFC were effectively ‘mirror images’ of each other, suggesting distinct roles of 

these regions in the perceptual decision mechanism. Differential activations of 

aPFC and DLPFC are found in response to various working memory tasks 60,61, 

thus, it remains unclear whether the pattern of these results was induced by WML 

task, or if the WML task revealed opposite roles of right aPFC and left DLPFC in 
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response to perceptual decisions. Nonetheless we replicated the behavioural 

finding that WML and perceptual reversals partially share attentional resources 62. 

In order to investigate separate effects of perceptual transitions and WML, we 

have performed an unambiguous control experiment with unambiguous physical 

transitions of the Necker cube. We observed stronger signal modulations over 

several brain areas in response to perceptual reversals in comparison to real 

changes. Our data are comparable to those obtained in studies examining the 

perception of bistable stimuli and unambiguous replay 30,35,36,50,63. Additional 

support for the role of pSPL as the generator of the “prediction error” was 

provided by stronger pSPL activations in response to perceptual when compared 

to real changes. Predictive coding suggests that in case of the unambiguous 

condition the “predictions” created by higher-order regions are confirmed by 

sensory input, thus reciprocal interactions between higher and lower regions may 

be discontinued. However, we agree that a future research should further test in 

which regions behavioural performance and fMRI responses would be also be 

modulated with varying WM loads in unambiguous conditions.  
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Conclusions 

The work presented in this thesis, confirmed a close relation between activity 

changes in MT+ and perceptual switches involving differential segregation or 

integration of motion signals separate across visual hemi-fields, leading to 

perception of incoherent/component or coherent/pattern motion, respectively. 

The dynamic reconfiguration of cell assemblies within MT+ leading to bistable 

percepts might be mediated by local competition but also additional sources of 

influence triggering perceptual transitions, such as attention. We could confirm 

the involvement of frontal and parietal brain regions in perceptual transitions, 

suggesting they are pivotal in top-down modulatory control of visual perceptual 

decisions. In particular we could observe a significant modulation of perceptual 

reversals of an ambiguous figure with different levels of experimental interference 

of the fronto-parietal attention network. 

We proved that fMRI can address spatial and temporal correlates of decision 

making processes, namely with deconvolution analysis of fMRI data. Granger 

causality analyses showed strong cross directional influences between left and 

right MT+ regions as well as with the superior parietal lobe during ambiguous 

decision-making. We believe advances in the development of faster fMRI 

sequences might help substantially increase the temporal resolution of fMRI data, 

which will help to further investigate neuronal correlates of perceptual transitions 

at a finer spatial and temporal scale with connectivity analysis. 

These findings improve our understanding of the neural mechanisms underlying 

visual motion integration mechanisms and provide additional knowledge into the 

functional organization and involvement of high-order executive areas in visual 

perceptual decision-making. 
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