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under supervision of

Professor Doutor Luis Alberto da Silva Cruz (advisor)

Professor Doutor Pedro António Amado de Assunção (co-advisor)

Coimbra

April 2016





To my family, Afonso, Ana Miguel, Vasco and my wonderful wife Raquel.





i

Acknowledgments

This Thesis was a long and sometimes hard journey. It would not have been possible

without the financial, technical, moral support, experiences and guidance of many people

and institutions. I am indebted to the many people who have made this Thesis possible

and, although I would like to express my gratitude to all of them here, it is unfortunately

not possible in such limited space. However, some of these people played such an essential

part in the conclusion of this Thesis that at least merit to have their names remarked.

First of all, I would like to thank to my scientific supervisors, Professor Doutor Pedro

António Amado Assunção and Professor Doutor Luis Alberto da Silva Cruz, by their

permanent support, pragmatism and also by their fruitful discussions allowing me to

pursue the research work with success.

My gratitude to Instituto de Telecomunicações, in special to Leiria branch, for provid-

ing me the physical, material and financial conditions necessary to develop the research

activities.

My acknowledgment also to Fundação para a Ciência e a Tecnologia (FCT),

that has supported this work with grants SFRH/BD/37510/2007 and R&D Unit

UID/EEA/50008/2013, Project 3DVQM co-funded by FEDER-PT2020, FCT/MEC, Por-

tugal.

I would also like to thank all my colleagues of Instituto de Telecomunicações for creating

such a friendly and cooperative working environment. In particular, Lúıs Lucas, Sylvan
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Abstract

Nowadays, there is a great diversity and quantity of image and video content used in mul-

timedia services and applications, which require e�cient and flexible management tools

for di↵erent purposes, such as adaptation, indexing, searching and browsing. However,

the existing representation formats are mostly agnostic in regard to the visual content

conveyed by the digital signals. As a consequence, the access and processing of the visual

information based on user-driven parameters is rather limited and the most e�cient solu-

tions for adaptation and matching heterogeneous constraints in communication systems

cannot be easily achieved. In this context, the research work carried out in this Thesis is

a contribution to advance the current state-of-the-art in regard to methods and models

capable of providing di↵erent types of additional flexibility in the representation of visual

information. In order to understand the current state of these methods, a thorough study

of the most relevant aspects of them were presented.

This Thesis begins with a study of the basic concepts used in representation of the visual

information either in raw or coded format. A review of visual saliency computation

methods for 2D/3D video is presented, where the most relevant methods available in the

literature are explained and discussed. A comprehensive study of temporal segmentation

and video summarisation methods for 2D/3D is also described. Then an overview of video

retargeting methods is presented, addressing di↵erent methods and including non-content-

aware and content-aware retargeting methods. In addition, an overview of coding schemes

that are able to cope with flexible representation of visual content is also described. After

a brief review of video coding concepts, the study is mainly focused on scalable and ROI

video coding.

The research work developed in the scope of this Thesis addresses several computing

methods, able to provide additional flexibility in the representation and coding of visual

information. Two methods for computing visual saliency maps for 3D video were firstly

proposed. These are based on fusion of four intermediate saliency maps (spatio-temporal,

depth and face saliency) followed by a centre-bias weighting function, which models the

human tendency to gaze at objects located in the centre of the visual scene. These

methods were evaluated and validated with diverse publicly available datasets containing

video sequences and the respective ground-truth fixation density maps. The experimental

results show that the proposed methods achieve better performance than other state-of-

the-art methods available in the literature.
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Then, using the saliency maps, representing the visual relevance of di↵erent image regions,

a spatio-temporal retargeting method based on such salient regions was developed and

evaluated. The proposed method is able to resize the original video for any specific

display size and when compared against other state-of-the-art methods, the results show

that competitive results can be achieved.

Finally, a flexible representation of visual information in the temporal domain was also

investigated in the field of video summarisation. A computational framework to ob-

tain compact versions of video sequences (i.e., video summary), according to meaningful

criteria was presented, based on a two-step approach: temporal segmentation and the

key-frame extraction. The proposed solution is capable of dealing with various video

types and formats, using di↵erent several criteria to segment the original video sequence

and to select the key-frames. Using di↵erent performance metrics and publicly available

data for comparison, the results demonstrate that the proposed framework outperforms

similar state-of-the-art methods.

Overall, the methods investigated in this Thesis and the performance results obtained

from extensive simulations, demonstrate that valid contributions to advance the current

state-of-the-art were achieved and also good insight for future research.

Keywords

Video content; Visual representation; Visual saliency computational methods; Video sum-

marisation; Video retargeting; ROI coding; Video summary coding.
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Resumo

Atualmente existe uma grande diversidade e quantidade de conteúdos multimédia utiliza-

dos em diferentes aplicações que exigem ferramentas de gestão eficientes e flex́ıveis para

diferentes fins, tais como adaptação, indexação e pesquisa. No entanto, os formatos de

representação atuais são tipicamente agnósticos em relação ao conteúdo visual contido

nos sinais digitais. Consequentemente, o acesso e o processamento da informação visual

com base em algum tipo de relevância para os utilizadores ficam bastante limitados, e

as soluções mais eficientes para adaptação de conteúdos devido a restrições dos sistemas

de comunicação heterogéneos podem não ser facilmente alcançadas. Neste contexto, o

trabalho de investigação realizado nesta Tese é uma contribuição para aumentar a flexi-

bilidade de representação da informação visual existente nos sinais de v́ıdeo e expandir o

atual estado-da-arte relativamente aos métodos associados.

Esta dissertação é iniciada por um estudo dos conceitos básicos utilizados na representação

da informação visual codificada e por codificar. Uma revisão dos métodos usados para

calcular saliências visuais em v́ıdeo 2D/3D é apresentada, onde uma explicação mais

exaustiva foi realizada para os métodos mais relevantes. Apresenta-se também um es-

tudo abrangente dos principais métodos de segmentação temporal e sumarização de v́ıdeo

2D/3D. No seguimento, uma visão geral dos métodos de redimensionamento de v́ıdeo foi

apresentado. Adicionalmente, são descritos de forma global os conceitos básicos de codi-

ficação de v́ıdeo, incluindo um estudo mais aprofundado da codificação de v́ıdeo escalável

e das Regiões de Interesse.

O trabalho de pesquisa desenvolvido no âmbito desta Tese apresenta vários métodos

capazes de proporcionar uma flexibilidade adicional ao atuais métodos existentes de rep-

resentação e codificação da informação visual. Dois métodos para calcular mapas saliência

visual em v́ıdeo 3D foram propostos. Estes métodos, baseiam-se na fusão de quatro mapas

saliência intermédios (espaço-temporal, de profundidade e da saliência face), seguido por

uma função de ponderação centre-bias, que modela a tendência humana para observar

objetos localizados no centro da cena. Estes métodos foram validados e avaliados com

mapas de densidade de fixação publicamente dispońıveis. Os resultados experimentais

demostram que os métodos propostos obtêm melhor desempenho do que outros descritos

na literatura.

Adicionalmente, e utilizando os mapas saliência visual, que representam a relevância

visual das diferentes regiões da imagem, foi desenvolvido e avaliado um método de red-
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imensionamento espaço-temporal baseado nessas regiões salientes. O método proposto

tem capacidade de redimensionar o v́ıdeo original para o qualquer tamanho de ecrã e

quando comparado com outros métodos existentes na literatura, resultados competitivos

foram alcançados.

Finalmente, a representação flex́ıvel da informação visual no domı́nio temporal foi in-

vestigada no âmbito sumarização de v́ıdeo. Neste caso, foi estudado e proposto uma

abordagem nova para obter versões reduzidas de uma sequência de v́ıdeo, de acordo com

critérios previamente definidos. Esta abordagem é constitúıda por duas partes: a seg-

mentação temporal e a extração das tramas-chave. A solução proposta suporta vários

formatos de v́ıdeo e pode utilizar diferentes critérios para segmentar o v́ıdeo original e

extrair as tramas-chave. Diferentes métricas e v́ıdeos foram utilizadas para avaliar o

desempenho da solução proposta.

Os resultados demonstram que a solução apresentada supera outros métodos descritos na

literatura para o mesmo fim. No geral, os métodos investigados nesta Tese e os resul-

tados de desempenho obtidos a partir de simulações demonstram a validade do trabalho

realizado e são motivadoras para futuras investigações.

Palavras-Chave

Conteudo de Vı́deo; Representação Visual; Métodos para calcular a Saliência Visual;

Sumarização de Vı́deo; Redimensionamento de Vı́deo; Codificação de Regiões de Interesse;

Codificação de Sumários de Vı́deo.
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Chapter 1

Introduction

Nowadays, the technological field of multimedia communications provides support for

many applications and services, which are continuously evolving in terms of new features

o↵ered to users as well as requirements imposed by the underlying infrastructure, such as

equipment, user devices and networks. Current usage environments are also quite diverse,

thus seamless access to multimedia content requires di↵erent types of adaptation functions

along the communication chains to ensure that user parameters, device characteristics and

networking resources match together to achieve acceptable Quality of Experience (QoE).

Beyond content adaptation to match devices and networks a further level of content

flexibility has been emerging in the last few years in order to allow user access and

processing at di↵erent levels of information contained in digital multimedia signals. For

such purpose, and taking into account that visual information is the most demanding type

of content used in multimedia applications and services, due to the huge amount of data

involved, flexible representation formats and processing methods specifically targeted to

deal with video signals have been under research. In this context, flexible representation

of visual information allows either access or processing of only part of the information

contained in video signals, selected according to some relevant user-driven criteria.

Particularly relevant examples where flexible representation of visual information is re-

quired, include identification and representation of image/video regions attracting di↵er-

ent levels of user attention, concise representation of long video sequences using a compact

set of representative frames and consistent sequences of sub-images containing the most

relevant content from very high resolution image/video. To benefit from such diverse type

of information, that is intrinsically embedded in video signals, but not explicitly accessi-

ble, it is necessary to devise e�cient computational methods capable of identifying and

selecting the relevant data and then representing the corresponding information either in

raw or coded formats. The research work carried out in this Thesis lies in this context and

specifically contributes for advances in visual attention models, video summarisation and

retargeting, all of them providing additional levels of content representation flexibility.
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1.1 Motivation

The recent advances in video technology associated with the increased availability of band-

width and the incredible popularity of the social networks with billions of users around

the world, make digital images/video the most important component of multimedia in-

formation. Furthermore, compressed video is also rapidly evolving due the increasing

challenging requirements of applications and services, which span over several area such

as entertainment, surveillance, medical application, education, etc.

In the last years, new functionalities have been implemented in video applications due

to users demand, who are always seeking for new viewing experiences, more interactive

and immersive, such as provided by 3D multimedia. Thus, 3D multimedia systems have

received increasing attention from the industry and research community due to its higher

capability of providing immersive experiences to users. Such immersive experiences are

mostly a result of depth sensation provided by the 3D systems, as this is the extra per-

ceptual dimension that makes the di↵erence to classic 2D video. Although inclusion of

the depth information in video content is not a recent innovation, the interest in this type

of content has been increasing during the last years and the increased availability of 3D

video content is also contributing to advances in related technology regarding acquisition,

coding and transmission. The recent developments in Ultra High Definition Television

(UHDTV) (4K,8K) are also contributing for new requirements in adaptation engines and

e�cient computational methods to deal with the huge amount of data associated with

these formats.

To extract, process and e�ciently represent di↵erent types of content information in video

signals, several methods can be used according to the relevant specific objective. For in-

stance, to find a short and concise representation of a long video sequence, a summary

can be computed, comprising few key-frames of the most important content. Basically, a

video summary is a short version of a full-length video that preserves the essential visual

and semantic information of the original unabridged content. In contrast to summarisa-

tion of 2D video, which has been thoroughly investigated in the recent past, 3D video

summarisation is still relatively unexplored. Video summarisation methods must prefer-

ably be based on the high level semantic contents like people, objects, events and action,

but in general identification and extraction at such a content level is only possible in con-

strained environments. The most common and generic summarisation methods use low

level features to select the key-frames from the video. To extend the existing methods,
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by including user-driven criteria in video summarisation, visual saliency may be used to

increase the perceptual relevance.

In spite of the growing capabilities of storage, transmission systems and processing power,

video coding requirements also increase to cope with the huge amount of data produced by

new video applications. Until now, several video coding schemes have been proposed which

can operate at fixed set points of spatio-temporal resolution and quality. However, scalable

video coding is the only one that allows partial decoding of compressed streams with

di↵erent resolution, either spatial or temporal and/or quality. This functionality can be

implemented by dropping part of the video bitstream in order to adapt its characteristics

to di↵erent needs or preferences of the users as well as terminal capabilities (display

resolution, processing power or battery power) or network conditions. Due to flexibility

and e�ciency of scalable coding in comparison to simulcast, scalable video coding has

been attracting wide attention in research community in the recent past with 2D video

and more recently with 3D video.

In this context, e�cient combinations of spatio-temporal representation methods and scal-

able video coding techniques are necessary to provide increased content access flexibility.

A possible approach for such problem is to generate spatial Region-of-Interest (ROI)s and

temporal summaries of 2D and 3D video based on visual saliency maps. By embedding

these new features in scalable codecs, the current systems can be extended to new scalable

dimensions.

1.2 Main objectives and contributions

The main objective of this Thesis is to investigate methods capable of computing new

flexible representations of visual information and, at same time, devising e�cient coding

schemes capable of coping with such information in some useful manner. The methods

investigated in this work take into account the relevant visual information in video signals

by considering user-driven content features, that can expand usage environments and

better match with user preferences. This research work is mainly focused on visual saliency

computation methods, video retargeting and video summarisation methods.

The most relevant contributions of this Thesis, related to these objectives, can be sum-

marised as follows:
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Visual saliency computation methods - Research and development of two methods

for computing a spatio-temporal and depth saliency maps for 3D video. These methods

are based on fusion of intermediate saliency maps which are obtained from visual features

extracted from di↵erent domains (spatio-temporal, depth and face saliency). The com-

bination of these intermediate saliency maps with a centre-bias function achieved good

results. The proposed methods are not restricted to 3D video and are also applicable to

3D image, 2D image/video. Part of this work was published in J1, E1, C1, and C2

Video retargeting - Research, design and development of a method which uses saliency

information to resize or crop the original video to smaller resolutions. The retargeting

method locates a sub-region of the original video with the pre-defined resolution, which

contains the most salient content, i.e., visually relevant regions of the original content.

The proposed solution includes a filter to ensure a high level of temporal consistency

which stabilizes the position of the cropped or resized area. This work and part of the

experiments were published in E1.

2D/3D video summarisation - Research and implementation of a framework for auto-

matic selection of the most important frames of a sequence, ensuring that the most relevant

visual information of the original video is preserved. This framework is composed of two

major processing stages. In the first stage, the video is divided into temporal segments

comprising frames with similar content. In the second stage, a set of key-frames is cho-

sen for each temporal segment according to some relevance criteria. Since the proposed

framework is compatible with the use of various video types and formats, perceptually

meaningful criteria can be used to segment original video and to select the key-frames,

e.g., visual saliency. A new key-frame extraction method for 2D/3D video based on ag-

gregated saliency maps is introduced as well as two other summarisation solutions. This

work and part of the experiments were published and presented in J1, C3, C4, C5, C8

and C9.

Flexible video coding - Research, design and implementation of flexible video coding

methods based on spatial and temporal scalability for encoding ROI and video summaries.

In the case of video summary coding, the proposed approach is to encode the video

summary as the base layer of a scalable bitstream. Using this type of coded representation

only base layer needs to decode to access the video summary of a whole video sequence,

without the need of fully decoding it. The method proposed for ROI coding enables the



1.3. Outline 5

use of di↵erentiated quality and protection against transmission errors for the ROI and

non-ROI regions. The results of these explorations were published in C6, C7 and C10.

The contributions presented in this Thesis have been published in several conferences

proceedings and journals. The complete list of publications is available at end of this

Thesis before the references.

1.3 Outline

This Thesis is organized in seven chapters and one appendix. Most chapters start with

a short introduction, which is followed by the detailed description of their main content.

The ensuing sections include performance evaluation and discussion of results. A brief

conclusion finalizes each chapter. Every chapter and appendix is shortly summarised

below.

Chapter 2 is intended to provide a general overview of digital representation of im-

ages/video and presents a review on methods and formats that enable flexible content

representation. Those with particular relevance for this Thesis are visual saliency com-

putation, summarisation and retargeting methods, as well as scalable video coding. This

chapter is concluded with a discussion about the state-of-the-art methods, from which

several research points were identified.

In Chapter 3, two visual saliency computation methods for 3D video are proposed and

evaluated using publicly available fixation density reference datasets. This methods are

based on fusion of features maps which contain information from spatio-temporal, depth

dimensions and face detection.

A spatio-temporal method for retargeting, based on visual saliency information for UHD

video is proposed in Chapter 4. The solution includes temporal filtering to remove the

jitter and improve temporal consistency. Moreover, a comparison study with other state-

of-the-art methods is presented.

In Chapter 5, three summarisation methods are presented which can be used to construct

a compact version of an entire video sequence, while at same time preserving the most

relevant visual information. The e↵ectiveness of the proposed methods is then evaluated

by comparing them with di↵erent summarisation methods available in the literature.

In Chapter 6, two methods for coding ROIs and video summaries with H.264/MPEG-4
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SVC encoder are presented and their performance is evaluated. The ROIs and video sum-

maries are obtained by pre-processing using the methods described in previous chapters.

Finally, Chapter 7 concludes the Thesis and provides some possible future research direc-

tions associated with this work.

Appendix A includes all papers published in journals and conferences as a result of the

work done within the scope of this Thesis.



Chapter 2

Flexible representation of visual

information - review

This chapter presents a review of video formats and methods for computing relevant visual

information based on user-driven criteria, with the objective of extending representation of

visual information beyond simply pixels and frames. The aim of creating di↵erent types

of flexible representation formats is also to enable extraction or visualisation of useful

information beyond straightforward content-agnostic and application-independent repre-

sentation formats. The chapter starts with a brief description of digital representation of

images/video and then presents a review on visual saliency computation, summarisation

and retargeting methods and scalable video coding, as these are considered as provid-

ing flexible representation of the visual information contained in video signals. Finally,

the chapter presents a discussion about the state-of-the-art methods, from which several

research questions are identified.

2.1 Video formats

This section provides a brief description of the structure and characteristics of digital

video, addressing colour spaces, sampling formats and video formats, which comprise

the data signals used to compute di↵erent types of visual information with meaningful

relevance for users.

A video signal is a representation of a visual scene either from real-word or synthesized,

projected onto a 2D plane. A visual scene is composed of number of dynamic objects, each

one with their intrinsic characteristics as shape, motion texture, illumination and depth.

The video signal representing the visual information, which is obtained by sampling the

color in the spatial and temporal dimensions. Both the spatial and temporal resolution

determine the accuracy of the visual representation and have impact on the perceived

quality and on amount of data.



8 Chapter 2. Flexible representation of visual information - review

2.1.1 Colour spaces

Colour space models are used in visual content acquisition and representation to de-

scribe the components of the visible light using a reduced numerical range. The RGB

(red/green/blue) and YCrCb (luminance/red chrominance/blue chrominance) are the two

widely used colour spaces of interest in this context. In RGB, each pixel is represented

by three samples, each one corresponding to the level of red, green and blue, respec-

tively. Any other colour can be obtained by the combination of these three components.

However, the RGB colour space is not the most e�cient model for colour representation,

because the Human Visual System (HVS) is less sensitive to colour than luminance which

allows lower resolution in colour and less data.

Using the YCbCr colour space it is possible to represent colour images more e�ciently

than RGB, by separating the luminance from the colour information and using di↵erent

resolutions for each component. The colour information is represented by two chrominance

components (Cb,Cr) and which the luminance is the other component. This is used as in

current video and image compression standards such as the HEVC, H.264/MPEG-4 AVC

and JPEG. In the YCbCr colour space, Y is the luminance component i.e., a monochrome

version of the colour image and it can be computed as a weighted average of R, G and B,

as given by Equation (2.1).

Y = krR + kgG+ kbB (2.1)

where kr, kg and kb are weighting factors and kr + kg + kb = 1. Equa-

tions (2.2) and (2.3) are used to convert RGB into the YCbCr and vice versa.

Y = 0.299R+ 0.587G+ 0.114B

Cb = 0.564(B � Y ) (2.2)

Cr = 0.713(R� Y )

R = Y + 1.402Cr

G = Y � 0.344Cb� 0.714Cr (2.3)

B = Y + 1.772Cb

As mentioned above, an advantage of YCbCr over RGB is to reduce the amount of data

required to represent the chrominance components without having a noticeable e↵ect on

visual quality. For a normal observer, there is no evident di↵erence between an RGB

image and an YCbCr image with lower chrominance resolution.

Three chroma sub-sampling patterns are normally used for YCbCr, 4:4:4, 4:2:2 and 4:2:0.
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In the case of 4:4:4, the three components YCrCb have the same resolution. In the 4:2:2

chroma sub-sampling patter, the Cb and Cr have the same vertical resolution but half

the horizontal resolution, i.e., for every 4 luminance samples in the horizontal direction

there are 2 Cb and 2 Cr samples. The last sub-sampling format 4:2:0, reduces Cb and Cr

to half of the horizontal and vertical resolution of Y. This chroma sub-sampling format is

the common format used for broadcast, internet streaming and content delivery.

2.1.2 2D/3D video formats

Table 2.1 shows the sampling parameters (spatial and temporal) for the most common

video formats, which are 2D formats normally used for storage and transmission as com-

pressed streams. The choice of the most adequate format is obviously dependent on the

target application or service. Tailoring these pure signal-based representations, either in

raw or compressed formats, to di↵erent usage environments and requirements, is one of

the objectives of video summarisation and retargeting methods described in Sections 2.4

and 2.3. Flexible video coding through scalability is another option to consider when

di↵erent content versions need to be extracted from a single representation (Section 2.5).

Table 2.1: Common digital video formats.

Format
Resolution
(H.⇥V.)

Temporal sampling
[fps]

Raw bit rate
(30fps,8/10 bits)

[Mbps]

UHDTV [12]
Lum:7680⇥ 4320
Chrom:3840⇥ 2160

24,25,30,50,60,120 14930 (10bits)

HDTV [13]
Lum:1920⇥ 1080
Chrom:960⇥ 540

24,25,30,50,60 933.1 (10bits)

SDTV [14]
Lum:720⇥ 576
Chrom:360⇥ 288

25, 30 149.3 (8bits)

CIF [14]
Lum:352⇥ 288
Chrom:176⇥ 144

10-30 36.5 (8bits)

QCIF [14]
Lum:176⇥ 144
Chrom:88⇥ 72

5-30 9.1 (8bits)

3D video

3D video refers to a representation format which di↵ers from 2D video by the implicit or

explicit inclusion of depth information about the visual scene. This depth information

can be conveyed either implicitly via two or more views of the scene (e.g., left and right
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views) or explicitly through depth maps that accompany single or multiple 2D video

views. Given the use of 3D video in this Thesis, the most common 3D formats available

in the literature are shortly described in the following.

Stereoscopic video - it is composed of two slightly shifted views of the same scene,

where one corresponds to what would be observed by the left eye and the other by the

right eye of a human observer. Figure 2.1 illustrates a stereo image pair and the di↵erence

image, where the horizontal disparities can be observed 2.1c.

(a) (b) (c)

Figure 2.1: Stereoscopic pair (a,b) and corresponding di↵erence (c) of the Ballet sequence.

Multiview Video (MVV) - it is composed of more than two views slightly shifted in the

vertical and/or horizontal position. Typically, MVV acquisition is done using an array of

synchronized cameras with some spatial arrangement, which capture the visual scene from

di↵erent viewpoints. This video format can be used with freeview display systems where

a view specified by the viewer is interpolated from the multiple views and presented in

a 2D display [15, 16]. Alternatively the MVV format can be used with autostereoscopic

displays with or without head tracking, which render a denser set of views that are

displayed through lenticular and parallax barriers. With this type of display, viewers are

able to see the portrayed scene from di↵erent viewpoints. Figure 2.2 shows an example

MVV format.

Video-plus-Depth (V+D) - it is composed of a video signal (texture) and respective

depth map, where each value represents the distance of the object to the camera for the

corresponding pixel position. Typically, the depth information is quantized with 8 bits,

with the closest point represented with value 255 and the most distant point with 0. Ad-

ditional views representing the same scene captured from slightly shifted perspectives can
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Figure 2.2: Example of MVV format for Ballet sequence.

be generated from the original video-plus-depth information by 3D warping transforma-

tions [17]. This format has inherent backward compatibility with 2D video systems and

higher compression e�ciency when compared to stereoscopic video. Figure 2.3 presents

an example of the texture and associated depth-maps for the Ballet sequence.

(a) (b)

Figure 2.3: Representation of the texture (a) and associated depth-map (b) of the Ballet
sequence.

Multiview Video-plus-Depth (MVD) - it is composed of multiple views and corre-

sponding depth maps from which other virtual view can be computed [17]. For example,

if a multiview display requires nine video views (V1-V9) simultaneously, delivering nine

views directly to the display, would be very costly in terms of bandwidth. Using MVD,

it is possible to transmit only three original views (V1, V5 and V9) for instance, along

with corresponding depth maps (D1, D5 and D9), and then synthesize the remaining

views (V3, V4, V6, V7 and V8) at the decoder side using Depth-Image-Based Rendering

(DIBR) techniques [18, 19]. The savings in bandwidth are obvious, at the expense of in-

creased computational capacity for rendering the full set of views in the display. Several

emerging applications such as free viewpoint video can use MVD format. An example of
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MVD format is presented in Figure 2.4, where the first row is the representation of the

texture and second row is the associated depth-map for 3 views.

Figure 2.4: Example of MVD format for Ballet sequence.

3D computer graphics - this is a geometry-based representation, where the scene is

described by a set of connected 3D points (or vertices), with associated texture/colour

mapped onto them. The data content of this format can be organized into geometry, ap-

pearance and scene information [20]. The geometry of a 3D model includes the position of

3D points (vertices) and polygons (faces) that are constructed by joining these vertices. In

the most cases the polygons are plane surfaces defined by three vertices. The appearance

is an optional attribute which associates some properties (colour, texture coordinates) to

the geometry data. Finally, the scene information includes the layout of a 3D scene with

reference to the camera (or view), the light source and description of other 3D models if

they are present in the scene. 3D computer graphics can provide better immersive and

interactive experience than conventional 2D video, since the user has more freedom to

interact with the content and get the feeling of “being there”. Figure 2.5 shows two 3D

models (with di↵erent views) from the same person without (2.5a) and with colour (2.5b).

Holoscopic video - it is composed of a very large of the number of views captured

simultaneously. This multiple view acquisition process can be interpreted as a partial

sampling of the plenoptic function [21]. This format, also known as light field, represents

not only spatial or temporal information but also angular information of the imaged scene,
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(a) (b)

Figure 2.5: 3D model example without (a) and with colour (b).

i.e., captures a segment of the whole observable scene. In practice a 3D holoscopic image

is captured by a normal image sensor placed behind an array of uniformly spaced semi-

spherical micro-lenses. Each micro-lens works as an individual low resolution camera that

captures the scene from an angle (viewpoint) slightly di↵erent from that of its neighbours.

This format allows di↵erent focal planes of the visual scene (see Figure 2.6).

(a) (b) (c)

Figure 2.6: Di↵erent focal planes extracted form a 3D holoscopic image.
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2.2 Visual saliency

Visual saliency is defined as the regions which attract more human visual attention in

images and video and may be identified by eye-tracking devices or computational models

capable of reproducing the human visual attention. The output of computational mod-

els consists of a visual saliency map which represents the level of attention that users

tend to draw towards the di↵erent areas/objects in the scene. This section presents a

review of visual saliency computation methods for computing digital representations (i.e.,

saliency maps) of the human visual attention when watching 2D/3D video. Some relevant

multimedia applications are also discussed.

Since the human visual perception is a result of diverse brain processing functions, which

do not assign the same importance to the whole visible area where the scene is happening,

it is important to devise computational methods capable of di↵erentiating which data is

more relevant in digital images and video. Such methods are able to choose or prioritise

the visual representation data according to the selective attention process of human ob-

servers. Several studies demonstrated that only a few aspects of the visual information

are processed at higher level by the visual system. Hence, visual attention can be seen

as the process for reducing the amount of visual information that can be processed by

the human brain. As Itti [22], other researchers demonstrated some relations between

the mechanisms used by humans to control where they deploy spatial or focal attention

and a view scene and the scene content. Therefore, visual attention controls the informa-

tion that is selected and ensures that such information is relevant to further behavioral

decisions.

Visual attention mechanisms

A visual saliency characterizes some regions or objects of a scene which appear to viewers

to stand out from the neighbouring areas, grabbing their attention. According to this

visual saliency definition, several questions immediately emerge: “How some regions stand

out more than others?” and “How is this process related with the human visual system?”

The answer to these questions, was first addressed by Treisman and Gelade [23] in “Feature

Integration Theory”, where they alleged which visual features (such as colour, orientation,

size, and spatial frequency) are important and how they are combined to direct human

attention over pop-out.
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Two explanatory mechanisms of visual attention have been proposed in the literature

bottom-up and top-down [24], [25] respectively. The first mechanism relates to invol-

untary, fast, automatic, and unconscious aspects of vision. It is mostly driven by the

properties of the visual objects themselves. An example of bottom-up attention, is look-

ing at an image with only one horizontal bar among several vertical bars. The attention

is immediately focused to the horizontal bar, as shown in Figure 2.7.

The second mechanism, also known as the task dependent attention, relates to voluntary

and conscious aspects of vision, i.e., it is under the control of the person who is attending.

These type of mechanisms are used to search for a particular target or to potential targets.

For example, a given instruction such as look for the horizontal bar in Figure 2.7.

Figure 2.7: A prototypical example of bottom-up attention.

These two mechanisms interact with each other and influence the human visual behaviour

[26]. Models of visual attention are designed to produce or predict the saliency maps,

which represent the location and level of visual interest of each ROI or frame in the video.

The saliency maps are represented as a grayscale image, where the white regions represent

higher salient regions and black regions are the less salient ones. Figure 2.8 shows the

original image and the respective saliency map for the dog image.

This Thesis deals with the bottom-up visual attention models since they only depend

on video/image content, have lower computation complexity and thus are faster than

top-down models.

Eye movement and visual attention

The eye movements convey important information about the cognitive processes of read-

ing, visual search and scene perception. For that, they often are used to detect shifts
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(a) (b)

Figure 2.8: Original image of a dog playing with ball (a) and its saliency map (b) (the
white regions indicate the more salient parts of image).

of attention. For example, in visual search and scene perception, when the stimulus is

more cluttered, fixations become longer and saccades (a quick, simultaneous movement

of both eyes between two phases of fixation in the same direction) become shorter [27].

From numerous type of eye movements, the saccadic eye movements are the most studied.

Yarbus et al. [28] was the first to verify a relationship between saccadic eye movements

and visual attention. More recent studies considered that visual attention anticipates an

eye movement at the same scene location, i.e., the attention mechanisms inspect several

targets and focus in the most important, to which the eyes are then shifted. This leads

to the relevant question of “How the human visual attention mechanism selects the scene

regions to be attended?” The answer was obtained by Yarbus’s study based on several

subject questions, but this type of methodology influence the eye movements (top-down

mechanism). However, as mentioned above, bottom-up mechanisms are independent of

the observer’s knowledge, motivations and viewing tasks, thus more adequate to compute

salient regions from the scene data itself.

The advance of visual attention computational models is dependent on the existence of

tools for validation and benchmarking, such as ground truth databases. Many works rely

on the Fixation Density Maps (FDM) computed from the eye-tracking experiments. The

transformation of eye-tracking raw data into FDM follows several steps: After gathering

the raw data from the eye-tracking experiments, saccades are identified and fixation lo-

cations are determined. The FDM is obtained by convolving the fixation locations with

a Gaussian whose the size is determined by a combination of the mean eye tracking error

and the size of the human fovea. Publicly available FDM databases can be found at [1, 3].

These were also used to validate and evaluate the methods investigated in this Thesis.
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2.2.1 Visual saliency computation methods

In this section, the foundations of visual saliency computation methods for 2D and 3D

video are presented, taking into account the background that is necessary for this work.

Most visual computational methods for 2D and 3D video proposed in the literature are

based on combination of di↵erent features extracted from the spatial, temporal and depth-

related information.

Saliency detection using spatial information

Detecting visual saliency from spatial information (still image) has been studied based

on several di↵erent approaches. The following three well-known bottom-up approaches of

visual attention models were selected as the most relevant to be described. The cognitive

model by Itti et al. [22], spectral analysis model by Hou and Zang [29] and information

theoretic by Bruce and Tsotsos [30].

Itti’s model [22] - this model is often used as the basis for other models and it is

also employed as a benchmark for comparison. Among others, one the reasons for this

success are the quality of documentation and the availability of source code. The model is

based on the human vision characteristics that enable recognition of regions/objects with

singular features in regard to their neighbours. First, an input image I is subsampled

into a Gaussian pyramid and each level � is decomposed into channels for contrast-based

image features such as colour, intensity, and orientation, i.e., red (R), green (G), blue

(B), yellow (Y), intensity (I), and local orientations (O✓). From these channels, centre

surround “feature maps” Fl for di↵erent features l are constructed, as di↵erences between

“centre” fine scales c and “surround” coarser scales s, and normalized. The feature maps

are summed over the centre-surround combinations using across-scale addition and the

sums are normalized again.

Fl = N
 

4X

c=2

c+4X

s=c+3

Fl,c,s

!
, 8l"LI [ LC [ L0 (2.4)

where LI = {I}, LC = {RG,BY }, LO = {0�, 45�, 90�, 135�}. For the general features

colour and orientation, the contributions of the dimension features are linearly summed

and normalized once more to yield “conspicuity” maps. Thus,
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CI = FI , CC = N
 
X

l"LC

Fl

!
, CO = N

 
X

l"LO

Fl

!
(2.5)

Finally, all conspicuity maps Ck are linear combined once more to generate the saliency

map S,

S =
1

3

X

k"{I,C,O}

Ck (2.6)

Despite its simple architecture and low computational cost, the authors claim that this

model performs well with complex natural scenes, and quickly detects salient tra�c signs

of varied shapes, colours and textures.

Hou’s model[29] - this visual saliency model operates in the frequency domain based on

the idea that similarity implies redundancy. The authors exploit statistical singularities

in the spectrum as these may be responsible for anomalous regions in the image, where

proto-objects come out. According to coherence theory of Rensink [31], proto-objects

are candidate objects (units of visual information) which have been detected but not yet

identified as an object. For an input image I(x), amplitude A(f) and phase spectrum

P(f) are obtained from the Fourier Transform F of I(x). Then, the log spectrum L(f)
is processed from the down-sampled image. Then, the spectral residual R(f) is obtained

as R(f) = L(f) � A(f). The A(f) can be approximated by convolving an n ⇥ n local

average filter hn(f) with L(f). Using the inverse Fourier Transform F�1, the saliency

map in the spatial domain are obtained. Finally, the saliency map S(x) is smoothed with

Gaussian filter g(x) (� = 8) for better visual e↵ect. The entire process to obtain the S(x)
can be summarised as follows:

A(f) = < (F[I(x)]) ,

P(f) = = (F[I(x)]) ,

L(f) = log(A(f)), (2.7)

R(f) = L(f)� hn(f) ⇤ L(f),

S(x) = g(x) ⇤ F�1[exp(R(f) + P(f))]2.

The authors used a threshold segmentation to find proto-objects in the saliency map S(x).
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Bruce’s model [30] - Bruce et al. proposed the Attention based on Information Max-

imisation model (AIM) which utilizes Shannon’s self-information measure for computing

saliency maps. In this model a saliency map of an image region is the information that

such region conveys relatively to its neighbour regions. Information of a visual feature

(VF) is defined as I(V F ) = � log p(V F ) where, p(.) is the probability density function.

I(V F ) is inversely proportional to the likelihood of observing VF (i.e., p(V F )). To cal-

culate I(V F ), the p(V F ) must be firstly estimated. In the computation of the p(V F ) a

histogram over small image regions is used. In RGB images, considering a local patch

(image region) of size M ⇥ N , V F has the high dimensionality of 3 ⇥ M ⇥ N . Since a

single image has insu�cient data to produce a reasonable estimate of probability distribu-

tion p(V F ), a representation based on Independent Components Analysis (ICA) is used.

Finally, at each image location, the probability of observing the RGB values in a local

image patch is the product of the corresponding ICA basis likelihoods for that patch.

Saliency detection using temporal information

The main aim of the visual saliency computation methods based on temporal informa-

tion is to separate motion regions from the background, given that viewers tend to direct

their gaze towards higher motion regions [32]. Several motion-based methods are exten-

sions from spatial domain. For example, Temporal Spectral Residual (TSR) [33] is an

extension of the Hou’s model [29]. The TSR approach is based on the underlying idea

that background motion is usually smaller and more regular than foreground motion, the

foreground will form a distinct trajectory from the background. Thus, TSR approach

estimates salient regions by removing superfluous information. TSR algorithm used the

Hou’s model on video slices along X-T and Y-T planes to distinguish foreground motion

regions from backgrounds. Then, a threshold selection scheme is used to reject noise.

Finally and to refine the results, a voting scheme is applied to obtain final saliency map.

Qureshi [34] proposed the Temporal Image Signature (TIS) which can be seen as an

extension of the Image Signature (IS) method [35] to the temporal domain. TIS combines

IS and TSR methods [33] for computing the visual saliency map. The Discrete Cosine

Transform (DCT) is used to estimate the salient regions. Qureshi’s methods can be

divided into three main steps, frame division, saliency detection, transformation and

accumulation. In the frame division, a video is sliced into X-T and Y-T planes, this

strategy was also used by [33] in the TSR method. Saliency detection uses the DCT

information to identify the saliency movement. Finally, the saliency map is obtained by

accumulating the transformation back from the X-T and Y-T to XY domain.
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Saliency detection using depth information

In the literature, the main contributions to saliency detection are focused on 2D im-

age/video processing. To extend saliency computation methods to 3D images and video

it is necessary to include depth-related information in the model. Most of the existing

methods to compute saliency maps in 3D images combine visual features extracted from

spatial information (luminance, colour, orientation or intensity) with some depth-related

information. Maki et al. [36] proposed a visual attention model which includes image

flow, the motion direction and stereo disparity for region identification. The authors used

the depth information to prioritize image regions, assigning higher priority to those ob-

jects that are closer to the viewer. However, in the context of video content analysis, the

near targets/objects are not necessarily the most important or salient. Only qualitative

assessment, based on author’s description, was used to validate the method.

Ouerhani and Hugli proposed a visual attention model using depth and 2D visual features

to produce the saliency map [37]. First, the feature maps are built with multiple features

extracted from the texture and depth information, such as intensity, colour components,

intensity gradient components, raw depth and other depth related features. Each feature

map is transformed into a conspicuity map based on a multi-resolution centre-surround

mechanism and then a linear combination of conspicuity maps, produces the saliency

map for each 3D image. Although several 2D and depth features were considered in the

description of the method, the experimental validation is insu�cient because it only uses

depth and colour. Other limiting aspect of the work is that no comparison to eye-tracking

data is done to validate the results.

Zhang et al. [38] proposed a bottom-up visual attention model for stereoscopic content

where the depth map is combined with motion and a static saliency map computed

using Itti’s model [22]. The authors considered that pixels closer to the viewers and

in front of scene are more salient. The final saliency map is obtained from these three

attributes with arbitrary weights. However, the authors did not validate their method

and there was no comparison between the saliency maps and other methods or fixation

density maps. Another type of research was carried out by Patapova et al. [39] using

probabilistic models of various 2D (colour, orientation and intensity) and 3D cues (surface

height, relative surface orientation, occluded edges). These are then fused with a linear

combination scheme to obtain the final saliency map. This method was developed for

robotic applications.



2.2. Visual saliency 21

In a recent work, Wang et al. [2] proposed a visual attention model for stereoscopic images,

which combine the 2D and depth saliency maps. The main di↵erence between this model

and others mentioned before, is the use of a processing step for extracting features into

a depth saliency map, which is followed by a merging operation that combines the depth

saliency map with the 2D saliency map. The final visual saliency map for 3D images is

equal to sum of both saliency maps. Wang et al. used the Itti’s model [22], the AIM model

from Bruce [30] and Hou’s model [29] to predict 2D saliency maps and proposed a new

depth saliency map generation based on a probability-learning from eye-tracking data. In

this work, the author used the depth contrast as a feature to produce the depth saliency

map, by applying a Di↵erence of Gaussians (DOG) filter to the depth map to extract the

depth contrast. The author also created a database, for the model validation, which is

publicly available, containing stereoscopic images, disparity maps and eye-tracking data.

More recently, Jiang et al. [40] proposed a visual attention model for stereoscopic image

quality assessment tasks, based on a 2D saliency model, centre-bias, depth cue (foreground

cue and background). The final stereoscopic saliency map is obtained by adding individual

perceptual features. In their work, the authors use a saliency map as a modulation

function to derive an image quality assessment metric. Iatsun et al., [41] presented a

saliency model for 3D video based on the fusion three saliency features of the di↵erent

dimension, spatial, temporal and depth. Contrary to most 3D saliency models proposed in

the literature, the authors proposed a comprehensive qualitative evaluation in this work,

using eye-tracking experiments to validate the proposed model.

2.2.2 Performance metrics

Performance metrics to evaluate the “goodness”, or quality, of visual saliency maps created

by computational models are still an open research issue for 3D video. However, in

the case of 2D content there are several methods widely used to evaluate the quality

of saliency maps computed from di↵erent models. Among the most relevant, on can

find the use of Pearson Linear Correlation Coe�cient (PLCC) [42, 43], Kullback-Leibler

Divergence (KLD) [42], Area Under the receiver operating characteristic (ROC) Curve

(AUC) [30, 43, 44] and Normalized Scanpath Saliency (NSS) [45]. While the first three

are directly applicable to saliency maps and fixation density maps, NSS compares the

fixation map with a saliency map.

In the following, the four objective metrics with more consensus from the literature are
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explained with more details. However, some research works use visual comparison of the

theirs saliency maps with saliency maps produced by others methods and fixation density

maps obtained from eye-tracking experiments [30].

Pearson linear correlation coe�cient

In this context, PLCC provides a similarity measure of two saliency maps using a single

scalar value. The PLCC ranges between �1 and +1 and values close to 0 indicate poor

correlation between the two maps. Values close to 1 or �1 indicate a high correlation

and the sign gives an indication of the phase of the variables variations, i.e., whether they

vary in the same or in opposing directions. The PLCC is implemented as measure of the

linear correlation between the computed saliency map S and the corresponding fixation

density map F , as follows,

PLCC(S, F ) =
cov(S, F )

�S�F
(2.8)

where cov(S, F ) is the covariance and �S and �F are the standard deviation of the S and

F respectively.

Kullback-Leibler divergence

The Kullback-Leibler divergence is used to compute the degree of dissimilarity between

two Probability Density Functions (PDF). In this context, the computed saliency map

and the corresponding fixation density map (H and P ) respectively, are necessary for

comparison. The H and P are transformed into two probability density functions hx

and px, which are estimated using kernel density estimation (e.g., ksdensity function in

Matlab). The Kullback-Leibler divergence, noted KLD, between H and P is given by the

relative entropy of H with respect to P :

KLD(H,P ) =
X

x

hx ln

✓
hx

px

◆
(2.9)

The KLD is defined only if hx and px both sum to 1 and if hx > 0 for any x, such that

px > 0. The KLD is not distance, once it is not symmetric and does not satisfy the

triangle inequality, i.e., KLD(H,P ) 6= KLD(P,H). The KLD is nonlinear and varies in

the range of [0...1]. When the two probability density functions hx and px are strictly

equal, the KLD value is 0.
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Normalized scanpath saliency

NSS was proposed by Peters et all. in [45] to measure the correspondence between eye

fixation location and the computed visual saliency maps, taking into account the vari-

ability of eye movements. In this method, each saliency map S is first normalized to have

zero mean and unit standard deviation, according to:

NS =
S � µS

�S
(2.10)

where NS is the normalized saliency map, µS and �S are the mean and the standard de-

viation of the computed saliency maps S respectively. Then for each point corresponding

to the fixation locations, the normalized salience value is extracted and the mean of all

these extracted values is calculated. This mean is the normalized scanpath salience value,

i.e., NSS.

The NSS values can be: (a) NSS = 0, there is no correspondence between human fixa-

tion (eye positions) and computed salient regions; (b) NSS < 0, this indicates an anti-

correspondence between human fixation locations and computed salient points, i.e., the

eye positions are on non-salient regions; (c) NSS > 0, when the eye positions are pro-

jected on the salient regions.

Area under the curve

Using this metric, the computed saliency map S has to be “thresholded” into a binary

mask Sbin as,

Sbin(i, j) =

(
1 for S(i, j) � ⌧

0 for S(i, j) < ⌧
(2.11)

where Sbin(i, j) is the binary mask of computed saliency map S for each pixel (i, j). Using

this representation, the pixels with larger saliency values than a threshold ⌧ are classified

as fixated, while the rest of the pixels in that image are classified as non-fixated.
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(a) (b) (c) (d)

Figure 2.9: Computed saliency map of the News report sequence(a) ⌧ = 10(b) ⌧ = 100
(c) ⌧ = 200 (d).

2.2.3 Applications

There are many applications of visual attention models which have been developed for

quite diverse fields, such as robotics [46], advertising [47], medicine (finding tumors in

mammograms [48], retinal prosthesis [49]) and computer vision. There are relevant areas

of application in image and video segmentation [50], image and video quality assessment

[51], image and video coding [52, 53], salient object detection [22, 29], object recognition

[54], ROI detection [55–57], scene classification [58], video summarisation [59–64], video

shot detection [65] and image and video retargeting [66]. In this section, more details to

applications are given somehow related to the work of this Thesis.
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2.3 Video retargeting

This section presents an overview of the video retargeting methods, as these are also used

to produce flexible representation of video content to match lower resolution requirements.

Thus, in general such methods aim to resize an original video sequence to desired reso-

lution or aspect ratio. Di↵erent methods are described including non-content-aware and

content-aware retargeting methods. The performance metrics used to evaluate retargeting

methods and some retargeting’s applications are also addressed.

Video display devices have various resolutions and aspect ratios (e.g., 16:9, 4:3 and 3:2).

Thus, watching video with the improper aspect ratio decreases the quality of experience,

producing visual discomfort or important information is lost. When the size or the aspect

ratio of the target display is di↵erent from the original one, the visual content must be

adapted to the target display. A simple way to make this adaptation is adding a black bar

or linear scaling (see Figure 2.10), however these approaches would bring some unpleasant

viewing quality and some times do not preserve important visual content. For example,

displaying a football match on a mobile device is a good example for the need of a smart

adaptation method, while the full high resolution may render the players and the ball too

small, it would be better to display less content where the ball remains large enough to

be easily seen. In this case a video retargeting method for adapting the visual scenes of a

football match to a lower resolution display, must use structural and semantic information

of the input video to obtain a better representation of the original content i.e., important

objects of each frame should be kept, along with temporal smoothness and coherence as

well as low visual distortion. In the next sections, di↵erent video retargeting methods are

described with some emphasis on theirs capability of producing relevant representations

of the original visual content, at a lower resolution.

2.3.1 Non-content-aware video retargeting

A simple approach to implement video retargeting is to modify the size and the location

of a user-defined cropping window user-defined manually and frame-by-frame. However,

this approach is time consuming and not adapted to live events which require short

delay between acquisition and display. Cropping and linear scaling are two automatic

solutions to performance change the aspect ratio of a given video signal, but despite of

their simplicity and easy implementation they are content agnostic and do not consider
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Figure 2.10: Examples of image retargeting for devices with di↵erent display resolutions.

any type of user-driven approach.

Linear scaling methods can be based on reduction (downsampling) or increase (upsam-

pling) of number of pixel that are used to represent video content. Figure 2.11b shows the

result of linear scaling applied to the Jockey sequence, using the MPEG-4 down-sampling

filter to retarget the video content from higher to lower resolution. Non-content-aware

cropping selects a window of some predefined size n⇤ ⇥m⇤ from the original video frame

of size n⇥m, where n⇤  n and m⇤  m. The content inside the window is kept whilst

outside content is discarded. In centred cropping method the selection window is selected

from the centre of video frame, assuming that the ROI is located in the centre of scene.

However, whenever this principle is not valid the output fails, as it can be seen in Figure

2.11c.

2.3.2 Content-aware video retargeting

Content-aware video retargeting methods aim to produce a representation of the visual

content taking into account image regions with di↵erent relevance in order to choose

those that are more relevant for the users, according to some predefined criteria. Several
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(a) Original (3840⇥ 2160)

(b) Linear scaling (1280⇥ 720) (c) Centred cropping (1280⇥ 720)

Figure 2.11: Non-content-aware cropping and scaling methods.

studies of video retargeting use image-based retargeting methods with di↵erent types of

adaptation to maintain the temporal coherence [67–70]. Most of these methods are com-

posed by two steps, the first is ROI detection and then cropping and scaling to the target

resolution. The various video retargeting methods can be grouped into: cropping, seam

carving, warping and hybrid methods (combination of the di↵erent retargeting methods).

Cropping

The cropping methods are based on the principle that regions of interest must be preserved

while the content in the borders of the frame can be dropped. Visual saliency maps, optical

flow, or relevant objects, e.g., faces or moving objects, may be used to determine regions

of interest. Fan et al. [71], used together a visual attention model based on motion, face,

saliency and text to detect the regions of interest and a virtual camera control system
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to crop the original video. Wang et al. [72] also presented a system for retargeting

video to tiny devices based on visual attention of the frame and used cropping to remove

the less important content. Kopf et al. [73] used the foreground objects like general

objects, faces and superimposed text as regions of interest. More recently, the video

cropping method presented in [74] use temporal constraints to smooth the trajectory of

the cropped windows.

Seam carving

Seam carving was firstly proposed in [75] for image retargeting, by reducing the image

size through removal of minimum energy seams on vertical or horizontal connected path.

In this first implementation of seam carving, the image size is changed according to its

content, but saliency regions are not considered, which causes artefacts in large objects.

This implementation uses a gradient-based energy, which highlights only distinctive edges.

However, several works were proposed to solve this limitation of the early implementations

by enhancing energy functions. Rubinstein et al. [68] extended image seam carving

to video retargeting by imposing temporal constraints. Kolf [69] and Grundmann [70]

adapted existing image seam carving methods to keep temporal coherence in video. Yan et

al., [76] present a motion aware seam carving solution to preserve the temporal smoothness

of seams. More recently, Wang et al., [77] proposed a shape matching solution to protect

the shapes of the salient curves from deformation. Although seam carving methods may

produce visually pleasant results in some particular cases, their generic application in

non-constrained scenarios seem to far from producing acceptable results in all types of

visual content.

Warping

Warping based video retargeting methods extend image warping methods to video se-

quences. In the warping-based methods, an image is first segmented into regions (e.g.,

grids), which are then non-uniformly deformed through an optimisation process, in which

spatial constraints are imposed to minimize the deformation distortion on important pix-

els/regions. Wolf et al., [67] used non-uniform global mesh warping scheme for video

retargeting. Recently, Li et al., [78] presented a video retargeting method in which the

consistency of the content is kept, for that the method divides a video into spatio-temporal

grids, called grid flows. Theses grids are used to select the key-frames and then resized

these frames via quadratic programming.
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Hybrid methods

In addition to the methods previously presented, some researchers investigated some com-

binations of di↵erent methods. For instance, Liu et al., [79] used video content to deter-

mine the best combination of cropping and scaling methods to match the video frame

resolution to the target display. Warping-based methods were combined with cropping

by the Wang et al., [80, 81], also for video retargeting. More recently, Kiess et al., [82]

combine seam carving and cropping methods for real-time adaptation of video.

2.3.3 Performance metrics

Performance metrics to evaluate video retargeting methods should measure how the most

important content is preserved and also whether the original video content is maintained.

Furthermore, these metrics must quantify how retargeted video is free from visual arte-

facts. Until recently, there is not a clear definition or well-known metrics to objectively

evaluate the quality of retargeted video. In an attempt to respond to these limitations sev-

eral metrics were proposed and they can be classified into three types: result description,

subjective and objective. Usually, more than one metric is used to evaluate retargeting

methods [76–78, 80, 81].

Result description - it is the most common quality metric used to evaluate retargeting

methods. This is often based on a descriptive approach, employed to clarify and describe

the benefits of some method in comparison with others. This evaluation metric is used in

[68, 70, 74, 76–81] here a visual comparison of the retargeted video is realised. Wang et

al. [77] used the visual comparison of images obtained with frame di↵erence to evaluate

temporal consistency of their video retargeting method. The frame di↵erence of the

original frames (temporally coherent) are compared with the frames di↵erence obtained

by retargeting methods under analysis.

Subjective methods - it is widely adopted for video retargeting methods [69, 71, 72, 76,

78, 80]. Fan and Jun Wang [71, 72] used subjective assessment questions to evaluate their

retargeted method. Kolf [69] applied two approaches to evaluate his retargeting method.

In the first, the viewers evaluated his proposed method by watching the original video

first and the other retargeted versions. Then, a questionnaire with open/close questions

is filled out, (“How well are details preserved?”, “What kind of disturbing e↵ects did
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you recognize?”, “Which visual errors did you recognize?” and “What is your overall

impression of the adapted video?”). The second task is to sort the retargeted video by

the visual quality. More recently, several authors proposed di↵erent approaches based on

double and single stimulus evaluation methods, specified by ITU-R BT.500-11 [83], for

assessment of the proposed methods. The retargeting solutions published in [76–78, 80]

used a subjective evaluation method in which the original video and the pairs of retargeted

video are shown at the same time to viewers and then each subject, is asked to choose

one of the two retargeted versions according to his/her preference.

Objective methods - objective assessment through computational methods was used

by several authors [69, 78, 80, 81] to compare their proposed methods with others. For

instance based on the eye tracking data, Chamaret et al. [84] proposed an objective

metric to assess the quality of a video retargeting methods. Although fast and e�cient

computation is easy to achieve the quality metrics and models for objective evaluation of

retargeting methods are kept under investigation to better match the quality of experience.

2.3.4 Applications

There are several application scenarios where video retargeting may be useful. Nowadays,

High Definition TV (HDTV) is widely used, so video retargeting may be required to im-

prove content mapping from 4:3 aspect ratio to 16:9 wide screens. Mobile communications

and pervasive wireless internet access also need content adaptation requirements due to

the display size of mobile devices, which is typically smaller than a TV or computer moni-

tor. Thus, retargeting methods are required to adapt the visual content to the display size

of such mobile devices. In urban pubic facilities (e.g., entertainment zones, LED stadium

walls, and digital bulletin board), video retargeting is also needed for content adaptation

to di↵erent displays.

Video summarisation

Computational methods for video summarisation through key-frame extraction based on

attention models were first proposed by Ma et al. in [59] for 2D video, using visual, aural

and linguist attention features combined by a non-linear fusion scheme. The key-frames

selection process is based on the location of the peaks of an attention curve computed along

the video sequence. Peng and Xiao-Lin [85] also proposed a key-frame extraction method
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based on a visual attention model designed to compute dynamic and static salient features

from 2D video. A drawback of these works is that no systematic methodology was used to

evaluate the results, either subjectively or objectively. A di↵erent approach was followed

by Lai and Yi [62], using a saliency-based visual attention model to extract the key-

frames from a 2D video sequence. Dynamic and static conspicuity maps were built based

on motion, colour and texture features and then these conspicuity maps were combined

to generate an attention curve from which key-frames are identified. Another method

based on similar principles was presented in [63], where both static and dynamic visual

attention values are non-linearly fused into an attention curve for key-frame extraction.

More recently, the same author proposed a visual attention scheme that merges low level

features and motion intensity for extracting key-frames from 2D video [64]. However the

visual attention model used by the authors is not validated with ground-truth data, i.e.,

no comparison with eye-tracking data or similar is done.

Image and video retargeting

Image and video retargeting methods have been gaining interest from the research com-

munity due to the massification of mobile devices with the capacity to play video and

games using a great variety of screen sizes. Several methods can be used to adapt high

resolution video to small screen devices, such as linear scaling (i.e., down-sampling), image

cropping, seam carving and warping. Depending on the target application and device,

each approach has its own advantages and limitations. For instance, after downsampling,

important details in the original scene may be no longer recognized. Retargeting methods

based on content-aware were proposed for example cropping, seam carving, warping and

hybrid methods (combination of the di↵erent retargeting methods). More details of these

retargeting methods can be found in the Section 4.1.

Perceptual video coding

Combining the non-uniform visual attention of human observers with the limited region

around the centre of eye fixations that can be seen at high resolution, while the rest of

the image is blurred, opens the possibility of non-uniform coding based on perceptual

features to increase coding e�ciency. For instance, Itti [52], proposed a compression

method based on attention, where regions of interest are chosen based on a non-linear

integration of low-level visual cues. A dynamic foveation filter then blurs every frame,
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increasingly with distance from salient locations and finally the resulting sequence is

coded using H.264. More recently, Guo and Zhang [53] proposed spatio-temporal saliency

computation method called Phase Spectrum of Quaternion Fourier Transform (PQFT).

The authors showed that, the proposed method can improve coding e�ciency in image

and video compression.

2.4 Video summarisation

Video summarisation is a content description technique which provides high level of flexi-

bility in the representation of the video content in the sense that only the most important

segments of a video sequence can be selected from a very high degree of conciseness (e.g.,

single key-frame) to short subsequences with variable length. The basic concepts of video

summarisation and its intrinsic processes of shot-boundary detection, key-frame extrac-

tion and key-frames presentations methods are reviewed in this section. Performance

metrics and some multimedia applications are also pointed out.

Video summarisation automatically creates a short version of an original sequence, i.e.,

a video segments or subset of salient frames, chosen as essential to represent the original

video content according to some predefined criteria. This selection can be based on

the analysis of video content’s features like colour, motion, and audio [86], or specific

information previously created like MPEG-7 description [87]. Thus, the user can get

an idea of the relevant content in the video sequence without having to see the whole

sequence. However, video summarisation introduces distortions at the playback stage

and this distortion is related to the conciseness of the summary whereby a more succinct

summary implies higher distortion. Video summary generation methods can also be

implemented on either uncompressed or compressed video [88].

The literature defines two types of video summaries, namely those based on key-frames

and those comprised of video skims [86]. A video summary based on key-frames is made up

of a set of relevant frames selected from the video shots obtained from the original video.

This type of summary is static, since the key-frames, being temporally distant and non-

uniformly distributed, do not enable the rendering/reproduction of the original temporal

evolution of the video. Here, the video content is displayed in a quick and compact way,

without timing or synchronisation requirements for browsing and navigation purposes.

Video skims are usually built by extracting the most relevant temporal segments (with

or without audio) from the source sequence. After the extraction, all temporal segments
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are concatenated into a video with much shorter length than the source sequence. The

computation of the key-frames and video skims summaries are distinct, but these two

video-content representations can be transformed from one to the other. The video skims

can be generated from key-frame summary by adding frames or segments that include

the key-frame and a key-frame summary can be created from a video skim by uniform

sampling or by selecting one frame of each video skim segment [89].

In the available literature one can find several recent methods for summarisation of 3D

video. However, a comparative study between di↵erent methods was not done so far. In

the scope of this Thesis a review of video summarisation methods based on key-frames was

carried out to better understand the related issues and also highlight the most important

characteristics of each one. The key-frame extractions methods, key-frame presentation,

evaluation and application used in 2D video are also utilized and extended with some

adaptation in 3D video. This overview of the current state-of-the-art is mainly focused on

the methods and features that are used to generate and evaluate key-frame summaries and

not so much on the limitations or performance of specific methods. Since experimental

set-ups, features used for summarisation, and 3D video formats are considerably di↵erent

from method to method, a detailed comparative analysis of the results, advantages and

shortcomings of all methods is not possible with the available data.

Most of the key-frame summarisation methods presented in the literature are based on

a three-step approach: first, the entire video sequence is divided into video shots based

on scene transitions using a Shot Boundary Detection (SBD) method that matches the

application requirements. Then, a key-frame extraction method is applied to each video

shot to extract the most representative frames, based on specific properties of the video

content and a similarity measure. Finally, the extracted key-frames are presented to the

viewers or stored in a container following some predefined presentation structure.

A conceptual framework for key-frame summarisation is shown in Figure 2.12. SBD, key-

frame extraction and key-frame presentation are the three main stages of the framework.

The input video is segmented into video shots, mostly based on spatio-temporal criteria,

but other criteria can be used such as based on motion [8, 90] or the combination of the

temporal and depth features [91]. More details can be found in the next section. After

segmentation, one or more key-frames are extracted from each video shot according to

user-defined parameters or based on specific requirements. The most relevant key-frame

extraction methods are presented in Section 2.4.2. Once the key-frames are extracted, they

need to be presented in an organized manner for easy viewing during video browsing or
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navigation. In this framework, three key-frame presentation methods are described, static

storyboard, dynamic slideshow and single image based on stroboscopic e↵ect, but other

methods can be found in the literature (see Section 2.4.3). The key-frame presentation

methods are independent of the key-frame extraction operation and thus the same key-

frame summary can be presented to viewers in di↵erent ways.

Shot boundary
detection

Key-frame 
presentation

Video

Static 
storyboard

Dynamic
slideshow

Single image
(stroboscopic effect)

Key-frame
extraction

Video shots

Figure 2.12: A conceptual framework for key-frame summarisation.

2.4.1 Shot boundary detection

In the recent past, development of SBD methods for 2D video received a lot of the atten-

tion from the research community. However, very few works have investigated the SBD

problem in the context of 3D video, especially taking into account depth information. Rel-

evant surveys of video SBD methods with specific application in 2D video can be found

in the literature [92–94]. In this section, it is introduced the main concepts behind these
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methods for 2D video. Then, the most promising and better performing SBD methods

used for 3D key-frame extraction are explained in detail.

A video segment can be decomposed into a hierarchical structure of scenes, video shots

and frames, with the linear video first divided into video scenes, which may comprise one

or more video shots (set of correlated frames). A video shot is defined as a set of frames

which is continuous and temporally and spatially cohesive [95]. Thus, the video shot is the

fundamental unit in the content structure of a video sequence. Since its size is variable,

the identification of start and end of the video shots is done using specific SBD methods.

Figure 2.13 presents a generic framework of SBD methods, comprising tree main steps.

Firstly, visual features are computed for each video frame. In this step, the pixel inten-

sities, colour histograms, image edges, camera operations, or coded information such as

DCT coe�cients, DC terms, motion vectors, MB coding modes and bit rate can be used

[92]. In the second step the visual features of consecutive frames are compared and some

decision method is used to identify shot boundaries. The decision methods used to find

shot boundaries can be based on static thresholds (as in Figure 2.13), adaptive thresh-

olds (thresholds depend on the statistics of the visual features used), B-splines fittings

[96], Support Vector Machines (SVM) [97] and K-means clustering [91]. The detection

accuracy of SBD methods is improved by combining several visual features [98].

Video shot boundaries can be classified into two types: Abrupt Shot Boundary (ASB)

and Gradual Shot Boundary (GSB). In ASB the scene transition occurs over very few

frames, usually a single frame defines the boundary. In the case of GSB, the transition

takes place gradually over a short span of frames. The most common gradual transitions

are fade-ins, fade-outs, dissolves and wipes [92–94]. A common problem in SBD is the

correct discrimination between camera operations and object motion that originate the

gradual transitions, since the temporal variation of the frame content can be of the same

order of magnitude and take place over the same number of frames. This similarity of

visual e↵ects caused by camera operations and object motion can induce false detections

of gradual shot boundaries. This problem is aggravated for video sequences with intense

motion.

SBD methods for 3D video

Doulamis et al. in [99] proposed a key-frame extraction method for stereo video which

includes a SBD method. Here, the entire video sequence is divided into video shots using
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Figure 2.13: A generic diagram of SBD framework.

an algorithm based on the analysis of DC coe�cients of compressed videos, following the

solution proposed in [100]. More recently, Papachristou et al. in [101] presented a frame-

work for stereoscopic video shot classification, that uses a well-known method designed

for 2D video to segment the original stereoscopic video into shots [102]. However, this

method was applied only to the colour channels of the videos to be summarised. Ferreira

et al. [91] proposed an algorithm to detect 3D Shot Boundaries (3DSB) based on a joint

depth-temporal criterion. The absolute frame di↵erence and sum of absolute luminance

histogram di↵erence are used as the relevant measures in the temporal dimension, while

in the depth dimension, the variance of depth in each frame is used. A K-means clustering

algorithm that does not require training and does not use thresholds is applied to choose
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the 3DSB transition frames. Ferreira’s method is independent of the video content and

can be applied to 2D or 3D video shot boundary identification. In the case of the 2D

video, absolute frame di↵erences and sum of absolute luminance histogram di↵erence are

used.

Some methods target segmentation of 3D mesh sequences using properties of 3D objects

as the shape and motion/action (e.g., human body motion, raise hands) to detect the

shot boundaries. Yamasaki et al. [90] proposed a temporal segmentation method for 3D

video recordings of dances, which is based on motion speed, i.e., when a dancer/person

changes motion type or direction, the motion becomes small during some short period and

in some cases it is even paused for some instants, according to the type of dance. To seek

the points where motion speed becomes small, the authors used an iterative close point

algorithm proposed in [103] which is employed in the 3D space (spherical coordinates).

In contrast to conventional approaches based on thresholds, the authors devised a video

segmentation scheme appropriate for di↵erent types of dance. Since the decision rule is

not based on absolute values and thresholds, rather on relative values of extrema, it is

more robust to data variation (like type of dance) and no empirically derived decision

thresholds are used.

Another method which uses the motion speed of the 3D objects was presented by Xu et

al. [5]. To reduce computation time of motion information, the authors used the point

distance (DP) instead of vertices position in Cartesian coordinates. DP is defined as

Euclidean distance between one fixed point and all 3D objects’ vertices coordinates of

each frame. Figure 2.14 shows the point distance for two frames of Batter’s sequence.

Before determination of scene transitions, the histogram of point distance of each frame

is calculated.

Figure 2.14: Point distance of the frame #38 and #39 of the Batter sequence. Grey
values means the point distance from (0,0,0) [5].

To detect abrupt and gradual transitions of 3D video the Euclidean distance between the
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histograms of point distance and three thresholds are used, where the threshold values

were derived empirically.

Ionescu et al. [104], used a histogram-based algorithm specially tuned for animated films

to detect ASB. From GSB only fades and dissolves are detected, since they are the most

common gradual transition. The GSB detection is done using a pixel-level statistical

approach proposed by [105]. The authors proposed the Short Colour Change (SCC)

detection algorithm to reduce the false positives of cut detection. The SCC is the e↵ect

that accompanies short term frame colour changes, caused by explosion, lightning and

flash-like visual e↵ects. More recently, Slama et al. [106] proposed a method based on the

motion speed to split a 3D video sequence into segments, characterised by homogeneous

human body movements (e.g., walk, run, and sprint). However, the only indicators that

the author considers as significant video shot transition are changes in type of movement.

Moreover, video shots with small di↵erences from previous shots and small number of

frames are avoided. The motion segmentation used in this work is based on finding

the local minimum of motion speed to detect the breakpoint where the human body

movements change and use these changes to segment the entire video into shots.

Performance metrics

Three well-known performance indicators are used in the evaluation of the SBD methods

for 2D video: Recall rate (R), Precision rate (P) [107] and accuracy measure F1 [108]. The

computation of these values is based on the comparison of manual segmentation (ground-

truth) and computed segmentation. If a ground-truth is available then these metrics can

be applied to 3D video SBD methods.

Recall rate is defined as the ratio between the number of shot boundaries detected by an

algorithm D (i.e., correctly detected) and the total number of boundaries in the ground-

truth dataset (sum of D and the number missed boundaries DM) as given by Equation

(2.12). Precision rate, computed according to Equation (2.13), is defined as the ratio

between the number of shot boundaries detected by an algorithm and the sum of this

value with the number of false positives DF . F1 is a measure that combines P and R, see

Equation (2.14).

R =
D

D +DM
(2.12)

P =
D

D +DF
(2.13)
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F1 =
2RP

R + P
(2.14)

For good performance, the Recall and Precision rates should have values close to 1. The

best performance is reached when F1 is equal to 1, whilst the worst occurs at 0. The

Recall rate, Precision rate and measure F1 were used to evaluate the performance of

temporal segmentation methods for 3D video in [5, 91, 106], while Yamasaki et al. [90]

only used Recall and Precision rates in the evaluation process. Although, these 3D SBD

methods used the same evaluation metrics, the comparison of the results and performance

obtained from such SBD methods is not possible because di↵erent datasets were used.

Discussion

Since the major di↵erence between 2D and 3D video is the implicit or explicit availability

of depth information, the visual features used in the SBD methods for 3D video must take

depth into account, i.e., the temporal segmentation must also consider depth information

in order to use depth discontinuities in shot detection. Until now, most research works

on SBD for 3D video, have not used the depth information in the detection process. For

example, Doulamis et al. in [99] proposed a key-frame extraction method for stereo video

which includes a SBD method, but the algorithm does not take into account the depth

information of the stereo video and it is only applied to one view of the stereo sequence,

for instance the left view. Another drawback of Doulamis’ work is the lack of performance

evaluation of the proposed temporal segmentation method. Another method to segment

stereo video was proposed in [101], but the proposed procedure does not take depth into

account either.

In [5, 90, 106, 109], the authors proposed SDB methods for 3D video, which are only

applicable to 3D mesh models and require modifications to be used with most common

pixel-based 3D video formats, like stereo or video-plus-depth. Finally, Ferreira et al.

[91] proposed a method which uses the depth and temporal information for automatic

detection of 3D video shots from the 3D video sequence based on the K-means clustering

algorithm to locate the boundaries. This algorithm has the advantage of not using any

explicit thresholds or training procedure.

A common problem with the 2D video SBD methods described in the literature is the

lack of common comparison grounds, as few works use the same dataset to test the

news methods and evaluate their performance. This is a serious problem as it limits the
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significance of comparisons that can be made between di↵erent SBD methods. For the

3D case, the lack of comparative analyses is even more severe, due to the reduced number

of SBD methods developed so far for this type of visual information. The few works

that have been proposed for SBD in 3D video usually use the Recall and Precision rate

to evaluate performance, but the lack of benchmark 3D video sequences with ground-

truth shot segmentations severely limit the number and types of performance evaluations

that can be made. As mentioned above, the evaluation metrics are based on comparison

between manual and computed segmentation. Therefore, besides being very important to

have common test datasets, the development of universal and objective measures, which

are specific for SBD and generic enough to be applied in di↵erent context domains and

3D video formats is highly recommended and desired.

2.4.2 Key-frame extraction methods

This section addresses the main concepts behind existing key-frame extraction methods

and describe some relevant methods for 3D video. The key-frame extraction methods

under review are grouped into seven categories: Non-optimized, Clustering, Minimum

Correlation, Minimum Reconstruction Error (MRE), Curve Simplification, Matrix Fac-

torisation and other methods.

Non-optimized methods

The simplest method for key-frame summarisation is Uniform Sampling (UnS). This

method selects key-frames at regular time-intervals (see Figure 2.15 a)), e.g., selecting one

video frame every minute to be a key-frame. This results in a set of key-frames evenly

distributed throughout the video sequence. However, the selected key-frames might not

contain meaningful or pertinent visual content or there may be two or more similar key-

frames. For instance, the selected key-frame might show a bad image (e.g., unfocused) or

no key-frame exists for some video shots, thus a meaningful representation of the video

content is not guaranteed.

Another simple and computationally e�cient frame selection method is Position Sampling

(PoS). In PoS, once the boundaries of a video shot are detected, the method selects frames

according to their position in the video shot, and e.g., the first, or the last or the middle

frame of the video shot (see Figure 2.15 b)) can be chosen as key-frames. Thus, the size
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Equal intervals Detected video shots

Figure 2.15: a) UnS-method: uniform sampling at equal intervals. b) PoS-method: se-
lecting the first frame of each video shot.

of key-frame summary corresponds to the number of video shots of the entire video. In

some summarisation applications one key-frame per video shot is not enough, and the PoS

method can be adapted by allowing selection of multiple frames at fixed positions within

the video shot. For 3D video, UnS and PoS are used mostly as references for comparisons

with other methods, as in [110–112]. Ionescu et al. [104] selected as key-frames those

in the middle of the video shot to reduce temporal redundancy and computation cost.

Yanwei et al. [113] used the middle frame of each video skim segment to represent this

summary in a storyboard.

Clustering

Clustering can be used to partition a large set of data into groups, minimizing intra-

group variability and maximizing inter-group separation. After partitioning, all the data

selected in the same cluster have similar features. The partitioning can be based on the

similarities or distances between the data points where each datum represents a vector

of features of a frame. These points are grouped into clusters based on feature similarity

and one or more points from each cluster are selected to represent the cluster, usually the

points closest to the cluster centre. The representative points of the clusters can be used

as key-frames for the entire video sequence. In some studies reported in the literature, a

colour histogram was used as the clustering feature, due to its good clustering robustness.

Other features can also be used. For example, Ferreira et al. in [91] used temporal and

depth features with a clustering algorithm to segment 3D video sequences into 3D video

shots.

K-means is one of the possible algorithms commonly used to solve the clustering problem.

This clustering algorithm can be applied to extract key-frames from short video sequences

or shots, but its application to longer video sequences must be done with care taking into
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account the large processing time and memory requirements. To reduce the number of

frames used by the clustering algorithm some authors pre-sample the original video, as

proposed in [114]. The quality of the summaries may not be a↵ected by this operation

but the sampling rate must be chosen carefully. Although K-means is a popular and

well-known clustering algorithm it has some limitations such as the need to pre-establish

the number of clusters and the fact that the sequential order of the key-frames may not be

preserved. Huang et al. [110] used the K-means clustering algorithm for extracting a set

of 3D key-frames to be compared with the output of their key-frame extraction method.

Curve simplification

In the curve simplification method each frame of the video sequence can be treated as a

point in multidimensional feature space. The points are then connected in sequential order

through an interpolating trajectory curve. The method then searches for a set of points

which best represent the curve shape. Binary curve splitting algorithm [115] and discrete

contour evolution [116, 117] are two curve simplification algorithms used in the key-

frame extraction methods. Curve simplification-based algorithms preserve the sequential

information of the video sequence during key-frame extraction, however the search for the

best representation curve has high computational complexity. The curve simplification

method proposed in [118] was also used by Huang et al. [110] in the evaluation process

of the 3D key-frame extraction method they proposed.

Minimum correlation

This algorithm extracts a set key-frames such that the inter-key-frame correlation is min-

imal, i.e., it extracts the key-frames that are most dissimilar to each other’s. The optimal

key-frame extraction based on minimum correlation can be defined as:

K = argmin
li

Corr(fl0 , fl1 , ..., fln�1) (2.15)

where Corr(.) is a correlation measure, li is the extracted key-frame and K is a set of

key-frames with m frames i.e., K = {fl0 , fl1 , ..., flm�1}. Di↵erent algorithms can be used

to find the optimal solution, such as logarithmic and stochastic search or the genetic

algorithm [89]. A method for key-frame extraction from stereoscopic video, based on

minimum correlation was first presented by Doulamis et al. in [99], using a combination

of colour and depth information to summarise stereo video sequences. After segmentation
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of the entire video sequence, a shot feature vector is constructed based on size, location,

colour and depth for each shot. To limit the number of shot candidates, a shot selection

method based on similarly between shots is applied. Finally, the stereo key-frames are

extracted from each of the most representative shots. The extraction is based on the cross

correlation criterion and uses a genetic algorithm [119].

Minimum reconstruction error

In MRE based methods, the extraction of key-frames is based on minimisation of the dif-

ference between the original video sequence/shot and the sequence reconstructed from the

key-frames. A frame interpolation function I(t,K) is used to compute the frame at time

t, of the reconstructed sequence, from a set of candidate key-frames K. The frame-copy

method can be used to reconstruct the video sequence/shot (i.e., performing zero-order

interpolation), but more sophisticated methods like motion-compensated interpolation

might be used as proposed in [120]. The reconstruction error E(F, K) is defined as,

E(F, K) =
1

n

n�1X

i=0

d(fi, I(i,K)) (2.16)

where d(.) is the di↵erence between two frames, F is video sequence/shot with n frames,

F = {f0, f1, ..., fn�1}, where fi is the i-th frame.

The key-frame ratio R(K) defines the ratio between the number of frames in the set

K, m and the total number of frames in video sequence/shot F, n, i.e., R(K) = m/n.

Given a key-frame ratio constraint Rm, the optimum set of key-frames K⇤ is the one that

minimises the reconstruction error, i.e.,

K⇤ = argmin
K2F

E(F, K) s.t. R(K)  Rm (2.17)

Thus, the MRE is defined by:

MRE = E(F, K⇤) (2.18)

For example, given a shot F with n = 10 frames and a key-frame ratio R(K) = 0.2, this

algorithm extracts at most 2 frames as key-frames, i.e., m = 2.

Xu et al. in [121] presented a key-frame extraction method to summarise sequences of 3D

mesh models, wherein the number and location of key-frames are found through a R-D
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optimisation process. As in all shot-based methods, shot detection is performed before

key-frame extraction. In this case the SBD is based on the motion activity of a human

body in dancing and sports videos. The motion activity is measured by the Euclidean dis-

tance between feature vectors of neighbouring 3D frames. The feature vectors are derived

from three histograms (one for each spherical coordinate r, ✓ and �) of all vertices of the

3D frames. Before the computation of spherical histograms, the Cartesian coordinates of

vertices are transformed to the spherical coordinates. One of the three histograms is com-

puted by splitting the range of the data in equal size bins. Then, the number of points from

the data set that fall into each bin is counted. After shot detection, the key-frames are

extracted in each shot. The key-frame extraction method is based on a R-D trade-o↵ ex-

pressed by a Lagrangian cost function, cost(Shotk) = Distortion(Shotk) + �Rate(Shotk)

where Rate is the number of key-frames in a shot and Distortion is the Euclidean distance

between feature vectors.

Huang et al. [122] also presented a key-frame extraction method for 3D video based on

R-D optimisation, where Rate and Distortion definitions are similar to those used in [121].

However this method is not based on shot identification, since it produces 3D key-frame

summaries without requiring prior video shot detection. The key-frame summary sought

should minimise a Conciseness cost function, which is a weighted sum of the Rate and

Distortion functions defined in the work. A graph-based method for extracting the key-

frames is used, such that the key-frames selection is based on the shortest path in the

graph that is constructed from a self-similarity map. The spherical histogram of the 3D

frames is used to compute the self-similarity map.

Matrix factorisation

Another class of methods use matrix factorisation techniques to extract frames from a

video sequence. Matrix Factorisation (MF) techniques are based on approximating a

high dimension matrix A (original data) by a product of two or more lower dimension

matrices. The A matrix can be composed of di↵erent features of the video or image,

e.g., Gong and Liu [123] used the colour histograms to represent video frames while,

Cooper et al. [124] computed the MF of the similarity matrix into essential structural

components (lower dimension matrices). In addition to dimension reduction, the MF

techniques allow reducing significantly the processing time and memory used during the

operation. The MF techniques found in these key-frame extraction methods include

Singular Value Decomposition (SVD) and Non-negative matrix factorisation.
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Gong and Liu [123] proposed a key-frame extraction method based on SVD. To reduce the

number of frames to be computed before the SVD, only a subset is taken from the input

video at a pre-defined sample rate. Then, colour histograms (RGB) are used to create a

frame-feature matrix A of the pre-selected frames. Next, the SVD is performed on matrix

A to obtain an orthonormal matrix V in which each column vector represents one frame

in the defined feature space. Then a set of key-frames are identified by clustering the

projected coe�cients. According to user’s request, the output can be a set of key-frames

(one of each cluster) or a video skim with a user specified time duration. To construct

the set of key-frames, the frames that are closest to the centres of the clusters are selected

as key-frames. Non-negative similarity matrix factorisation based on low-order discrete

cosine transforms [124] and sliding-window SVD [125] are other approaches for key-frame

extraction based on matrix factorisation.

In [110], Huang et al. proposed a method to be used with 3D video to represent an an-

imation sequence with a set of key-frames. Given an animation sequence with n frames

and m vertices of a surface in each frame, an n ⇥m matrix A is built with the vertices

coordinates. This matrix A is then approximately factorized into a weight n⇥ k matrix

W and a key-frame k ⇥ m matrix H, where k is the predefined number of key-frames.

As k is selected to be smaller than n and m, this decomposition results in compact ver-

sion of the original data A ⇡ WH. An iterative least square minimisation procedure

is used to compute the weights and extract the key-frames. This procedure is driven by

user-defined parameters such as a number of key-frames and an error threshold. Lee et

al. [126] introduced a deformation-driven genetic algorithm to search good representative

animation key-frames. Once the key-frames are extracted, similar to [110], the animation

is reconstructed by a linear combination of the extracted key-frames for better approx-

imation. To evaluate the performance of the proposed method, the authors compare it

with Huang’s method proposed in [110].

Other methods

Other methods that cannot be classified into the preceding categories, follow di↵erent

approaches. Assa et al. [127] proposed a method to create an action synopsis image

composed of key poses (human body motion) based on the analysis through motion curve.

The method integrates several key-frames into a single still image or a small number of

images to illustrate the action. Currently, it is applied in 3D animation sequences and 2D

video.
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Lee et al. [8] proposed a method to select key-frames from 3D animation video using

the depth information of the animation. The extracted key-frames are used to compose

a single image summary. The entire video sequence is divided into temporal segments

based on the motion of the slowest moving objects, and then a summarisation method is

applied to the segments. The depth information and the respective gradient (computed

with depth values of each frame) is used to compute the importance of each frame. A

single image summary composed of several foreground visual objects is built based on the

importance of each frame. The authors proposed a threshold-based approach to control

the visual complexity (number of foreground objects) of the single image summary (one

for each video sequence), as it is shown in Figure 2.18. By using this approach, the

number of video frames to be analysed is reduced, but in some cases the method can miss

important information contained in the temporal segments.

Jin et al. [111] proposed a key-frame extraction method for animation sequences (skeletal

and mesh animations). The method uses animation saliency computed from the original

data to aid the selection of the key-frames that can be used to reconstruct the origi-

nal animation with smaller error. Usually, an animation sequence is characterized by

a large amount of information. For computational e�ciency, the animation sequence is

projected to a lower-dimensional space where all frames of the sequence are represented

as points of curves defined in the new lower-dimensional space. Then, the curves in the

lower-dimensional space are sampled and these sampled points are used to compute the

Gaussian curvature values. Next, the points with the largest curvature value are selected

as candidate key-frames. Finally, a key-frame refinement method is employed to min-

imise an error function which incorporates visual saliency information. The aim of a

visual saliency is to identify the regions of an image which attract higher human visual

attention. Lee Huang et al. [128] expanded this idea to 3D video and computed mesh

saliency for use in a mesh simplification algorithm that preserves much information of

the original input. More recently, visual saliency has also been used in 3D key-frame

extraction, in the method proposed by Ferreira et al. in [112].

Yanwei et al. [113] proposed a multiview summarisation method for non-synchronised

views, including four of them covering 360 degrees, which results in small inter-view

correlation, thus more di�cult to compute similarity measures. In this method each view

is segmented into video shots and general solution combines features of di↵erent shots

and uses a graph model for the correlations between shots. Due to the correlation among

multi-view shots, the graph has complicated connectivity, which makes summarisation
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very challenging. For that purpose, Random Walks are used to do shot clustering and

then the final summary is generated by a multi-objective optimisation process based on

di↵erent user requirements, such as the number of shots, summary length and information

coverage. The output of Yanwei’s method is a multiview storyboard, condensing spatial

and temporal information.

Discussion

The problem of key-frame extraction for 3D video has been presented first by Doulamis et

al. in [99] who proposed a method combining colour and depth information to summarise

stereo video sequences. Papachristou et al. in [101] developed a video shot classification

framework for stereoscopic video, in which the key-frame extraction method used is based

on mutual information. Even though the framework was proposed for stereoscopic video,

the key-frame extraction method only uses one view of the stereoscopic video. Until now,

only some specific 3D video formats were considered by the existing key-frame extraction

methods. Stereoscopic video was used in [99, 112], V+D is used by Ferreira et al. in [112]

and 3D computer graphics format in [8, 110, 121, 122, 126, 127]. Thus, further research

is necessary to devise e�cient key-frame extraction methods fore more recent 3D video

formats, such as MVV, MVD and holoscopic video.

Most 3D key-frame extraction methods cited above were developed for specific content

and only four of them include comparisons with similar methods [110, 111, 122, 126]. In

[110], curve simplification, UnS and clustering methods were utilized as reference for per-

formance evaluation and comparison of the proposed matrix factorisation methods. The

authors showed that the method based on matrix factorisation extracts more representa-

tive key-frames in comparison with the other three competing methods [111, 122, 126].

However, the algorithm is very slow with quadratic running time complexity. In [126],

the proposed method based on genetic algorithm is compared with Huang’s method [110]

in terms of the Peak Signal-to-Noise Ratio (PSNR) and computational complexity. The

former is very e�cient in terms of computation time when compared to the latter but

qualitywise (average PSNR) it is slightly worse. However, Huang’s method [110] is slightly

better when comparing maximum and minimum PSNR.

Peng Huang et al. in [122] confront their key-frame extraction method with the method

used in [121] and the results show improved performance for all 3D video sequences used

in tests. Jin et al. in [111] also compare the proposed method with the UnS and Principal
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Component Analysis methods [129]. The results show that the proposed method achieves

much better reconstruction of skeletal and mesh animation than the other methods under

analysis.

As mentioned before, most of the key-frame extraction methods for 3D video, rely on a

previous SBD step. However, the methods just described, from [110, 111, 122, 126], do

not perform any pre-analysis of the video signal to identify shots and their boundaries.

Therefore, the quality of key-frame summaries obtained by using such approach can be

negatively a↵ected when accurate shot segmentation is not available. Another important

issue is the definition of the number of key-frames that is needed to represent the original

sequence. This number depends on user requirements and on the content of the video

to be summarised and its choice frequently involves a trade-o↵ between the quality and

e�ciency of the key-frame summary.

2.4.3 Presentation of video summaries

Once the key-frames are extracted to form a video summary, they need to be presented

to users in some organized manner to facilitate video browsing and navigation operations.

The video summary presentation methods aim to show the key-frames in some meaningful

way, allowing the user to grasp the content of a video without watching it from begin-

ning to end [89]. The most common methods for key-frame presentation are the static

storyboard, dynamic slideshow and single image.

Static storyboard presents a set of miniaturised key-frames spatially tiled in chronological

order, allowing a quick browsing and viewing of the original video sequence. This presen-

tation method was used with 3D video in [99, 110, 111, 121, 122, 126]. The second method

is the dynamic slideshow, that presents the key-frames one by one on the screen, which

allows browsing over the whole video sequence. Another presentation method is the sin-

gle image, which morphs parts of di↵erent key-frames in chronological order to produce a

single image. Normally, in this presentation type the background and foreground objects

(time shifted) are aggregated in single image, as exemplified in Figure 2.16. In this figure,

the foreground is the children who plays in the bars of a playground. Here it is presented,

three positions of the children in the bars, which correspond to three key-frames of video

sequence.

Qing et al. [130] proposed a generic method for extracting key-frames in which the Jensen-

Shannon divergence is used to measure the di↵erence between video frames to segment
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Figure 5. One frame from a video synopsis with the dynamic
stroboscopic effect as illustrated in Fig. 4.b. The video is in
http://www.vision.huji.ac.il/synopsis.

are left with deciding which segments to include in the syn-
opsis video. Obviously, with this scheme some objects may
not appear in the synopsis video.

We first define an occlusion cost between all pairs of seg-
ments. Let b

i

and b

j

be two segments with appearance times
t

i

and t

j

, and let the support of each segment be represented
by its characteristic function � (as in Eq.5).

The cost between these two segments is defined to be the
sum of color differences between the two segments, after
being shifted to time t = 1.
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j
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For the synopsis video we select a partial set of segments
B which minimizes the cost in Eq. 6 where now E

l

is con-
stant K, and the occlusion cost is given by

E

o

(B) =
X

i,j2B

v(b
i

, b

j

) (9)

To avoid showing the same spatio-temporal pixel twice
(which is admissible but wasteful) we set v(b

i

, b

j

) = 1 for
segments b

i

and b

j

that intersect in the original movie. In
addition, if the stroboscopic effect is undesirable, it can be
avoided by setting v(b

i

, b

j

) = 1 for all b
i

and b

j

that were
sampled from the same object.

Simulated Annealing [8] is used to minimize the energy
function. Each state describes the subset of segments that
are included in the synopsis, and neighboring states are
taken to be sets in which a segment is removed, added or
replaced with another segment.

(a) (b)

(c)
Figure 6. An example when a short synopsis can describe a longer
sequence with no loss of activity and without the stroboscopic ef-
fect. Three objects can be time shifted to play simultaneously. (a)
The schematic space-time diagram of the original video (top) and
the video synopsis (bottom). (b) Three frames from original video.
(c) One frame from the synopsis video.

After segment selection, a synopsis movie of length K is
constructed by pasting together all the shifted segments. An
example of a synopsis using this approach is given in Fig. 5

3.2. Lossless Video Synopsis

For some applications, such as video surveillance, we
may prefer a longer synopsis video, but in which all activ-
ities are guaranteed to appear. In this case, the objective
is not to select a set of object segments as was done in the
previous section, but rather to find a compact temporal re-
arrangement of the object segments.

Again, we use Simulated Annealing to minimize the en-
ergy. In this case, a state corresponds to a set of time shifts
for all segments, and two states are defined as neighbors if
their time shifts differ for only a single segment. There are
two issues that should be notes in this case:

• Object segments that appear in the first or last frames
should remain so in the synopsis video. (otherwise
they may suddenly appear or disappear). We take care
that each state will satisfy this constraint by fixing the

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
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Figure 2.16: Video synopsis proposed [6].

the video into shots and to choose key-frames in each shot. The authors also proposed

a 3D visualisation tool, to display key-frames and other useful information related to

the key-frame selection process. More recently, Nguyen et al. [131] proposed the Video

Summagator, which provides a 3D visualisation of a video cube of static and dynamic

video summaries. Assa et al. [127] proposed a method to create an action synopsis image

from a 3D animation sequence or 2D video. Lee et al. [8] also proposed a method to

summarise a 3D animation into a single image based on depth information.

In [7] a 3D interface (3D-Ring and 3D-Globe) was proposed as an alternative to the 2D

grid presentation for interactive item-search in visual content databases, (see Figure 2.17).

Even though this system was designed to be used with a large database, it can also be

applied to visualize key-frames summaries of 2D and 3D video.

Discussion

Most of the 3D key-frame extraction methods proposed in the literature until now are

focused on the extraction rather than in the presentation of key-frame sets to the view-

ers. So far only Assa et al. and Lee et al. proposed in [127] and [8] two presentation

solutions distinct from the static storyboard used in association with most of 3D key-

frame extraction methods [99, 110, 111, 121, 122, 126]. In this scenario, with only two

presentation solutions, it is foreseeable that the development of new 3D video and image

display devices will lead to the creation of new methods to display 3D video summaries

or key-frame collages providing the user with more immersive and more meaningful ways

to observe these types of time-condensed video representations.
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(a)

(b)

(c)

Figure 2.17: (a) 3D-Ring interface, (b) 3D-Globe interface and (c) 2D grid presentation
(figure based on [7]).

Single image summarization of 3D animation H-J. Lee, H. J. Shin and J-J. Choi

we use it to compute the importance of each frame. A com-
posite depth image is an image storing the closest depth
throughout the given animation at each pixel. Let the depth
image of the i th frame of an animation sequence be Di .
The depth value at pixel x in the composite depth image,
D.x/, is defined by

D.x/DminfD1.x/; : : : ;Dn.x/g (1)

Here, the depth value decreases when the object at the
corresponding pixel becomes closer to the camera. The
corresponding magnitude of gradient is defined by

G.x/D krD.x/k (2)

In the composite depth image, one can observe that
more boundary of object is visible when it is located at

its extreme positions as shown in Figure 1. Therefore, the
frame that leaves the boundary of an object in the com-
posite depth image contains an extreme pose of the object.
Although the composite depth image is very similar to a
sweep volume of a moving object when the object moves
very slowly with respect to the temporal sampling rate
(animation frame rate), it is more similar to a multiple-
exposure image when the object moves fast; a fast-moving
object does not hide its footprints from consecutive frames
or be hidden by them. Therefore, its boundary can be
shown apparently in the gradient of the depth image. By
analyzing the magnitude of gradient, we can detect the
frames where objects moves fast together with the ones
with extreme poses.

As stated previously, both high-speed frames and
extreme frames leave more footprints of the object

Figure 6. (a,c) Two animation sequences for the same character motion from different camera positions with the same ˛ value and
(b,d) their respective corresponding summary images.

420 Comp. Anim. Virtual Worlds 2012; 23:417–424 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Figure 2.18: Single image key-frame presentation method [8].

2.4.4 Performance metrics

One of the most important topics in the development and validation video summarisation

algorithms is the performance evaluation. In this section is presented the key-frame

summary evaluation methods and some related aspects. These methods are classified in

three groups: result description, subjective and objective methods, as it was proposed in

[89].
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Result description

The result description is the most common form of performance evaluation, since it does

not require a reference, either for objective or subjective comparison with other methods.

Usually, it is used to explain and describe the advantages of some method in comparison

with others based on presentation or/and description of the key-frames extracted (visual

comparison), as in [8, 110, 111, 121, 122, 126]. This type of evaluation can also be used

to discuss the influence of specific parameters or features of the method and also the

influence of the content in the key-frame set, as in [99, 121]. In some works, this type

of evaluation method is complemented with objective and/or subjective methods as in

[8, 121]. However the Result Description method has some limitations, such as the reduced

number of methods which can be compared at same time i.e., it is inadequate to compare

key-frame summaries of a large number of video sequences or methods. Another drawback

is the subjectivity inherent to this type of evaluation, since the underling comparisons

results are usually user-dependent and so prone to inter and intra observer fluctuations.

Subjective methods

Subjective methods rely on the independent opinion of a panel of users judging the qual-

ity of the generated key-frame video summaries according to a known methodology and

criteria. In this type evaluation, a panel of viewers are asked to observe both the sum-

maries and the original sequence and then respond to questions related to some evaluation

criteria, (e.g., “Was the key-frame summary useful?”, “Was the key-frame summary co-

herent?”) or if each key-frame is “good”, “fair”, or “poor” according to the original video

sequence.

The experiments can include a set of absolute evaluations and/or a set of relative eval-

uations, in which two key-frame summaries are presented and compared. Usually, the

summary visualisation and rating steps are repeated for each video in the evaluation set

by each viewer. During the evaluation of the key-frame summaries it is also required taking

into account the external factors which can influence the ratings of the summaries, such

as the attention and fatigue specially when there are long evaluation sessions with many

video summaries. In addition to these factors, the experiments should follow standard

recommended protocols prepared specifically for subjective assessment of video quality

[132].
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Subjective evaluation methods were used in [59, 63, 64, 85, 113]. In [59], subjective

assessment was used to grade the single key-frame representations as “good”, “bad” or

“neutral” for each video shot and also to provide appreciations about the number of key-

frames with possible grades being “good”, “too many”, “too few” in the case of multiple

key-frames per shot. In [64, 85], the quality of the key-frame summary is evaluated

by asking users to give a mark between 0 to 100 for three criteria, “informativeness”,

“enjoyability” and “rank” after watching the original sequences and the respective key-

frames summaries. Ejaz et al. [63] used subjective evaluations to compare the proposed

method with four prominent key-frame extraction methods: Open Video project (OV)

[115], Delaunay Triangulation (DT) [133], STIll and MOving Video Storyboard (STIMO)

[134] and Video SUMMarisation (VSUMM) [114]. In this case, the evaluation is based on

Mean Opinion Scores (MOS) and viewers are asked to rate the quality of the key-frame

summary using a scale from 0 to 5 after watching the original sequences and the respective

summaries generated by all methods.

In [113] subjective assessments were also used to evaluate multi-view video summaries.

The aim is to grade the “enjoyability”, “informativeness” and “usefulness” of the video

summary. Here, three questions were asked to viewers to evaluate the method: Q1:

“How about the enjoyability of the video summary?” Q2: “Do you think the information

encoded in the summary is reliable compared to the original multi-view videos” and Q3:

“Will you prefer the summary to original multi-view videos if stored in your computer?”.

In reply to the questions Q1 and Q2 the viewers assigned a score between 0 to 5 and for Q3

the viewers only need to respond with “yes” or “no”. From all 3D key-frame extraction

methods reviewed, only those presented in [8, 113, 127] used subjective evaluations.

Objective methods

Although subjective evaluation provides a better representation of the human perception

than objective methods, it is not suitable for practical implementations due to the time

and number of users required to obtain valid scores. Objective evaluation methods are

reproducible and can be specified analytically. Since they are automatable can be used to

rate the proposed method on large number of videos of variable genres and formats. These

methods can be applied to all types of video formats without requiring the involvement

of human observers and can be performed rapidly and automatically by using objective

quality metrics.
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The methods reviewed in this section use objective quality evaluation and employ several

quality measures originally developed for 2D video, but can be also applied to 3D video,

after being modified to take into account the specific features of 3D visual information.

The Shot Reconstruction Degree (SRD) distortion measure [135] and the Fidelity measure

(Fm) defined in [136] follow two di↵erent approaches. Fidelity measure employs a global

strategy, while SRD uses a local evaluation of the key-frames. To judge the conciseness

of a key-frame summary a measure of the Compression Ratio (CR) is used [137]. If

a ground-truth summary is available the Comparison of User Summaries (CUS) [114],

Recall rate, Precision rate and accuracy measure (F1) measures can be used. These

measures compare the computed summaries with those manually built by users. More

details on these measures are presented in the next sub-sections.

Shot reconstruction degree

SRD measures the capability of a set of key-frames to represent the original video se-

quence/shot. Assuming a video shot F = {f0, f1, ..., fn�1} of n frames and K =

{fl0 , fl1 , ..., flm�1} a set of m key-frames selected from F, the reconstructed scene shot

F 0 = {f 0
0, f

0
1, ..., f

0
n�1} is obtained from the K set by using some type of frame interpola-

tion. The SRD measure is defined as:

SRD(F, F 0) =
1

n

n�1X

k=0

Sim(fk, f
0

k) (2.19)

where n is the size of the original video sequence/shot F and Sim(.) is the similarity

between two video frames. In Liu et al. [135], the similarity measure chosen was PSNR,

but other similarity metrics that include 3D features can also be used in the evaluation

of 3D key-frame summaries. A K key-frame summary is a good representation of the

original F when the magnitude of its SRD is high.

Fidelity

The Fidelity, Fm is computed as the maximum of the minimal distances between the set

of key-frames K and each frame of the original F, i.e., a Semi-Hausdor↵ distance dsh. Let

F be a video sequence/shot containing n frames, and the set K = {fl0 , fl1 , ..., flm�1} of

m frames, selected from F. The distance between the set K and a generic frame fk s.t.
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0  k  n� 1 belonging to F can be calculated as follows.

dmin(fk, K) = min
j
{d(fk, flj)}; j = 0, 1, ...,m� 1 (2.20)

Then the semi-Hausdor↵ distance dsh between K and F is defined as:

dsh(F, K) = max
k

{dmin(fk, K)}; k = 0, 1, ..., n� 1 (2.21)

The Fidelity measure is defined as:

Fm(F, K) = MaxDiff � dsh(F, K) (2.22)

where MaxDiff is the largest possible value that the frame di↵erence measure can as-

sume. The function d(fa, fb) measures the di↵erence between two video frames a and b.

The majority of the existing dissimilarity measures can be used for d(, ), such as the L1-

norm (City block distance), L2-norm (Euclidean distance) and Ln-norm [136]. As it was

mentioned before, the Fm measure can be used for 3D video with the necessary changes in

the d(, ) distance. Whenever Fm is high, this means that the selected key-frames provide

an accurate representation of the whole F.

Compression ratio

A video summary should not contain too many key-frames since the aim of the sum-

marisation process is to allow viewers to quickly grasp the content of a video sequence.

For this reason it is important to quantify the conciseness of the key-frame summary.

The conciseness is the length of the key-frame video summary in relation to the original

video segment length and can be measured as a compression ratio, defined as the relative

amount of “savings” provided by the summary representation:

CR(F) = 1� m

n
(2.23)

where m and n are the number of frames in the key-frame set K and the original video

sequence F respectively. Generally, high compression ratio is desirable for a compact

video summary [137].
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Comparison of User Summaries

CUS is a quantitative measure based on the comparison of summaries built manually

by users and computed summaries. It was proposed by Avila et al. in [114]. The user

summaries are taken as reference, i.e., the ground-truth, and the comparison between

the summaries is based on specific metrics. The colour histogram is used for comparing

key-frames from di↵erent video summaries, while the distance between them is measured

using the Manhattan distance. Two key-frames are similar if the Manhattan distance of

their colour histograms is below than a predetermined threshold �. In [114], this threshold

value was set to 0.5. Two evaluation metrics, accuracy rate CUSA and error rate CUSE,

are used to measure the quality of the computed summaries. They are defined as follows:

CUSA =
nmatch

nUS
CUSE =

nno�match

nUS
(2.24)

where nmatch and nno�match are, respectively, the number of matching and non-matching

key-frames between the computed and the user generated summary and nUS is the total

number of key-frames in the summary. CUSA varies between 0 and 1, where CUSA = 0

is the worst value indicating that none of the key-frames from the computed summary

matches those of the user summary. A value of CUSA = 1 is the best case and indicates

that all key-frames from both summaries perfectly match each other. A null value for

CUSE indicates a perfect match between both summaries.

Computational complexity

Another relevant performance metric taken into account in the evaluation of key-frame

extraction methods is the computational complexity, which is usually equated with the

time spent to construct a key-frame summary. This metric was used in [63, 64, 114, 137,

138] for 2D video summaries. In 3D key-frame extraction methods, the computational

complexity metric is only used by Lee et al. in [126], where the computational complexity

of Lee’s and Huang’s et al. [110] methods are compared.

Other methods

Other methods and measures were used for objective evaluation of 3D key-frames sum-

maries. In [121, 122] a rate-distortion curve is used, modelling a monotonic relationship
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between rate and distortion, with increases of the former leading to decreases of the latter.

In the work described in [110], the Root Mean Square Error (RMSE) distance between the

original and reconstructed animation was used as the objective quality measure (with an

inverse relationship in this case). This measurement is the same as in [139] and [140]. Lee

et al. [126] used PSNR to measure the reconstruction distortion. Jin et al. in [111] mea-

sure reconstruction error of the animation from the extracted key-frames, using average

of Degrees of Freedom (DOF) of reconstruction error magnitude.

Discussion

Conciseness, coverage, context and coherence are desirable attributes in any key-frame

summary as a flexible representation of video sequences. Some of these attributes are

mostly subjective, such as the context and coherence. Conciseness is related to the length

of the key-summary, while the coverage evaluation is based on comparison between com-

puted key-frames summary and ground-truth summary, expressed by the Recall rate,

Precision rate, CUSA and CUSE.

Most evaluation metrics reviewed above were developed for 2D video. However, some of

them, such as Fm and SRD, have also been extended to evaluate 3D video summaries

after some adaptation. This is the case of the 3D key-frame extraction method presented

by Ferreira et al. in [112], where the Fm and SRD metrics were used. To measure the

Recall rate, Precision rate, CUSA, CUSE, computational complexity and compression

ratio in 3D video summarisation, no adaptation is needed.

The key-frame extraction methods are often application-dependent (e.g., summarisation

of sports videos, news, home movies, entertainment videos and more recently for 3D

animation) and the evaluation metrics must be adapted to the intended use. A good

summary quality evaluation framework must be based on a hybrid evaluation scheme

which includes the strengths of subjective and objective methods and also the advantages

of result description evaluations.

2.4.5 Applications

In this section some applications of 3D summarisation and some aspects related to these

applications were presented. These applications are grouped in five categories: video

browsing, video retrieval, content description, animation synthesis and others.
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Video browsing

The video browsing and associated problem has been investigated by the research com-

munity for decades, [141]. However, the growing use of 3D video and the specific charac-

teristics of this type of visual information make 3D video browsing a more interesting and

challenging problem. The access to databases or other collection of videos could be eased

by the use the key-frame extraction methods to abstract/resume long video sequences in

the repository of interest. With this kind of abridged video representation, a viewer can

quickly find the desired video in a large database. For example, once an interesting topic

has been identified through display of the key-frames, a simple operation as a click on the

respective key-frame can initiate video playback of the original content at that particular

instant. Many video browsing methods have been proposed for 2D video [141]. However,

to the best of the authors’ knowledge, in the case of 3D video there are no works reported

in the literature.

Video retrieval

In contrast to video browsing, where viewers often just browse interactively through video

summaries in order to explore their content, in video retrieval the viewers search for

certain visual objects (e.g., objects, people and scenes) in a video database. In this

type of retrieval processes, viewers are typically expected to know exactly what they

are looking for. Therefore, it is crucial to implement appropriate search mechanisms

for di↵erent types of queries provided by distinct viewers and with particular interests.

Matching the viewers’ interests (queries) with the database content can be made with

recourse to textual, image based descriptions or combinations of both. Some 2D video

search and retrieval applications have combined video browsing and retrieval in the same

framework [141]. In the case of 3D video this problem is still open for research, as no

similar solutions exist in the available literature. Finally, it is worth to point out that

work done on 3D object recognition techniques which can also be used in retrieval, as

published in [142–144].

Content description

Vertos et al. [145] presented a way of using the Audio-Visual Description Profile (AVDP)

profile of the MPEG-7 standard for 3D video content description. The description of key-
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frames is contemplated in the AVDP profile through the MediaSourceDecompositionDS

(i.e., MediaSourceDecompositionDS is used in the AVDP context to decompose an au-

diovisual segment into the constituent audio and video channels). Thus, this content

description scheme, allows to use 3D key-frames for fast browsing and condensed repre-

sentation of query results of 3D video search tasks. Other application of key-frames to

content description was proposed by Sano et al. [146]. Here, the authors proposed and

discussed how the AVDP profile of the MPEG-7 can be applied to multi-view 3D video

content [129].

Animation synthesis

Blanz et al. [147] proposed a morphable 3D face model by transforming the shape and

texture of example into a new 3D model representation. According to this modelling

approach, new or similar faces and expressions can be created by forming linear combi-

nations of the 3D face models. A similar concept to the one proposed in [147] can be

applied to generate 3D models [148] or to synthesize new motion from captured motion

data [149]. Animation synthesis based on key-frames [150] using the same concept has

been presented in [147–149], to interpolate frames between two key-frames. However, the

quality of the interpolated frames is dependent on the inter-key-frame distance and on

the interpolation method used.

Other applications

Assa et al. [127] proposed the use of action synopsis images as icons (personal computer

desktop and folders) and thumbnails of the 3D animation. Assa et al. also proposed an

automatic or semi-automatic generation method to create comic strips and storyboards

for 3D animation. Lee et al. [8] presented a method to create a single image summary of

a 2D or 3D animation, which can be used in the same application as Assa’s work. Halit

et al. [129] proposed a tool for thumbnail generation from motion animation sequences.

Several authors, as [151–154] have used key-frame extraction methods in the 2D-to-3D

video conversion.
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2.5 Flexible video coding

In general flexible video coding allows di↵erent coded representations of visual content,

comprising objects/regions and frames. This is usually known as scalable coding and

ROI-based coding. This section presents an overview of coding schemes that allow flexible

representation of coding content. Firstly, basic concepts of the video coding are discussed,

then scalable and ROI video coding are reviewed. The performance metrics used to

evaluate the coding e�ciency and some applications of scalable and ROI video coding are

also presented.

2.5.1 Basic concepts

Video compression is based on eliminating redundant and irrelevant (which is not per-

ceived by eye/brain) information of the source. Compression can be lossless (reduction of

redundant information without loss of any information) or lossy (with lost information).

Lossy compression is normally used in image and video coding by most video compression

standards based on intra and inter-frame coding. Spatial redundancy is due to correlation

between pixels in the same image/frame. If correlation exists in the spatial domain (i.e.,

neighbouring pixels have similar values), redundancy can be reduced through intra-frame

prediction. In the case of temporal domain, the temporal redundancy is due to similarities

between adjacent or near frames.

The main coding tools used in hybrid video coding are inter and intra-frame prediction,

transform, quantisation and entropy coding. The prediction unit is usually followed by the

transform and quantisation of prediction residues, which is then succeeded by the entropy

coding. The entropy coding is used to exploit the statistical data redundancy. In hybrid

video codec each input frame is divided in blocks, in which the block size is dependent

on the prediction mode used. In inter-frame prediction, each block is predicted with

information used in others encoded frames, typically use motion compensation. Contrary

to inter-frame prediction, in intra-frame prediction no information of other frames is used

i.e., each block is predicted from the information used in neighbouring blocks. Intra-

frame coding ensures that systematic errors do not continuously propagate, throughout

the sequence since an entire frame is periodically encoded on its own.

Motion Estimation (ME) is used in inter-frame prediction to exploit the fact that in most

video sequences the di↵erence between two adjacent frames results from camera or object
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motion. By using ME, the encoder is able to encode only the di↵erence between two

frames, discarding the redundant information between them. The motion estimation unit

finds Motion Vectors (MV) for each block, i.e., motion estimation of a block involves

finding n⇥n region in a reference frame that closely matches the current block. The MV

and previously reconstructed frame are fed to the motion compensation unit to create the

inter-frame prediction.

The prediction obtained from intra and inter-frame unit is subtracted from the current

block to produce a prediction residue or prediction error. Then the residue is transformed

from the spatial domain to the frequency domain in order to de-correlate the signal and

concentrate the energy in a few coe�cients. Then, each sub-bock is quantised and the

small values associated to spectral components that are not perceptually relevant are

eliminated. Finally, the coe�cients, motion vector and associated header information for

each block are entropy encoded to produce the compressed bit stream.

2.5.2 Scalable video coding

The concept of scalability in video coding can be viewed as the possibility of extracting

part of a coded video stream in order to adapt the bit stream to heterogeneous networks,

di↵erent needs or preferences of the users as well as terminal capabilities. This multi-layer

representation can be made in di↵erent domains, such as the temporal, spatial, quality

and in the combination of these three scalability domains. Therefore scalable video is also

regarded as a flexible representation of visual content by encoding it in di↵erent layers

with respect to various parameters. Figure 2.19 shows a representation of temporal,

spatial and quality scalability. Next, a brief description of these scalability types will be

provided.

Spatial scalability - produces a scalable stream with multiple spatial resolutions and

also enables extracting and decoding di↵erent spatial resolutions from the scalable video

stream. The coding information from the lower resolution is used for prediction of the

higher resolution to increase the coding e�ciency of the higher resolution. Figure 2.19

shows a scalable representation coded with tree spatial resolutions (QCIF, CIF and 4CIF),

two qualities and two temporal resolutions.

Temporal scalability - produces a scalable stream with multiple temporal resolutions,

i.e., the frames of the video sequence are divided into layers, in which the base layer
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Figure 2.19: Scalability types.

is independently coded to provide the lower temporal rate and the others layers are

coded with temporal prediction with respect to base layer. For instance, in Figure 2.19

the scalable includes two temporal rates (15Hz and 30Hz). Therefore di↵erent temporal

resolutions can be extracted from the scalable video stream.

Quality scalability - produces a scalable bit stream with a single spatial and temporal

resolutions but with di↵erent qualities. The coding information of the lower quality layers

is used for prediction of the higher quality layers. In the Figure 2.19 it is shown a scalable

bit stream with low and high quality. This type of scalability also enable to extract the

video content of di↵erent qualities from a scalable bit stream.

Combined scalability - produces a scalable bit stream with di↵erent spatio-temporal

resolutions and bit rates as the result of the combination of spatial, temporal and quality

scalability.

Scalable video coding is a flexible representation particularly tailored for heterogenous

communications environments where users, networks and devices are quite di↵erent and

they all are granted access the same content.

Scalable video coding - SVC

Previous video coding standards such as H.262|MPEG-2 Video, H.263 and MPEG-4 Vi-

sual also contain the scalable profiles but they have rarely been used because spatial and

quality scalability features came along with a significant loss in coding e�ciency as well as
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a large increase in encoder complexity as compared to the corresponding single-layer pro-

files. Scalable extension of the H.264/MPEG-4 AVC video coding standard has produced

substantial improvements in terms of coding e�ciency and scalability compared to scal-

able profiles of the previous video coding standards without significantly increasing the

decoding complexity. H.264/MPEG-4 SVC standard [11] provides the same compression

functionality of the H.264/MPEG-4 AVC standard, but new coding tools for the genera-

tion of scalable bit stream were implemented. H.264/MPEG-4-SVC is based on a layered

scheme, in which the bit stream is coded into base layer, H.264/MPEG-4 AVC compliant,

and one or more enhancement layers, as it is shown in the block diagram of an SVC

encoder of the Figure 2.20. Each video signal with specific resolution (grey area in the

Figure 2.20) is coded in scalable bit stream and they are characterized by a layer identifier

(layer 0 or base layer, layer 1, ..., layer n). To exploit the dependencies between layers

and to improve the coding e�ciency of enhancement layers, the H.264/MPEG-4-SVC

provides the inter-layer motion prediction, inter-layer residual prediction and inter-layer

intra prediction. These inter-layer predictions modes are represented with dash arrows in

Figure 2.20 [11].
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from a scalable bit stream. The NAL
units that are required for decoding of a
specific spatio-temporal resolution and
bit rate are identified by syntax elements
inside the NAL unit header or by a pre-
ceding so-called prefix NAL unit.

Although the standard actually spec-
ifies the decoding process, we focus on
typical encoder techniques to explain
the VCL design, since it is easier to
understand. A simplified block diagram
of an SVC encoder is illustrated in
Figure 1. Each representation of the
video source with a particular spatial
resolution and fidelity that is included
in an SVC bit stream is referred to as a
layer (shaded area in Figure 1) and is
characterized by a layer identifier. In
each access unit, the layers are encoded
in increasing order of their layer identi-
fiers. For the coding of a layer, already

transmitted data of another layer with a
smaller layer identifier can be employed
as described in the following para-
graphs. The layer to predict from can
be selected on an access unit basis and
is referred to as the reference layer. The
layer with a layer identifier equal to
zero, which may only be present in
some access units, is coded in confor-
mance with one of the nonscalable
H.264/AVC profiles and is referred to as
the base layer. The layers that employ
data of other layers for coding are
referred to as enhancement layers. An
enhancement layer is called a spatial
enhancement layer when the spatial
resolution changes relative to its refer-
ence layer, and it is called a fidelity
enhancement layer when the spatial
resolution is identical to that of its ref-
erence layer.

The number of layers present in an
SVC bit stream is dependent on the needs
of an application. SVC supports up to 128
layers in a bit stream. With the currently
specified profiles, the maximum number
of enhancement layers in a bit stream is
limited to 47, and at most two of those can
represent spatial enhancement layers.

The input pictures of each spatial or
fidelity layer are split into macroblocks
and slices. A macroblock represents a
square area of 16×16 luma samples and,
in the case of 4:2:0 chroma sampling for-
mat, 8×8 samples of the two chroma
components. The macroblocks are
organized in slices that can be parsed
independently. For the purpose of intra
prediction, motion-compensated predic-
tion, and transform coding, a mac-
roblock can be split into smaller
partitions or blocks.

[FIG1] Simplified SVC encoder structure.
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Figure 2.20: Simplified SVC encoder architecture [9].

The SVC bit stream is organised in such way that enables a user to easily extract only
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a subpart of the data contained in the scalable bit stream while still being able to de-

code the original input video at a reduced spatial resolution, frame rate or quality. The

H.264/MPEG-4 SVC supports temporal, spatial and quality scalability and each can be

available with di↵erent granularity.

Temporal scalability - allows to code video with multiple frame rates in a single bit

stream with specific syntax (scalable bit stream) and also enable to decode subparts of

this scalable bit stream. For example, if the original video signal contained 30 frames

per second is coded as scalable bit stream, the temporal scalability would enable a user

to decode a subpart of scalable bit stream, generating a sequence with 15 or 7.5 frames

per second. In H.264/MPEG-4-SVC, the temporal scalability is provided by the concept

of hierarchical B-pictures, as it is shown in Figure 2.21. In this example, the prediction

structure provides four temporal scalability levels (T0, T1, T2 and T3). The coding order

and display order of the frames is also presented in Figure 2.21.

Fig. 4. Temporal scalable architecture of Scalable extension of H.264/AVC.

the granularity for SNR scalability and allows the adaptation of bitstream adaptation at
network adaptation layer (NAL) unit basis. CGS and MGS are presented in details in
Section 3.3.1 and Section 3.3.2 respectively.

3.3.1 Coarse-grain SNR scalability
Coarse-grain SNR scalable coding is achieved using the concepts for spatial scalability. The
same inter-layer prediction mechanisms are employed. The only difference is that base and
enhancement layers have the same resolution. The CGS only allows a few selected bitrates
to be supported in a scalable bitstream. In general, the number of supported rate points is
identical to the number of layers. Switching between different CGS layers can only be done
at defined points in the bitstream. Furthermore, the CGS concept becomes less efficient when
the relative rate difference between successive CGS layers gets smaller.

3.3.2 Medium-grain SNR scalability
In order to increase the granularity for SNR scalability, scalable extension of H.264/AVC
provides a variation of CGS approach, which uses the quality identifier Q for quality
refinements. This method is referred to as MGS and allows the adaptation of bitstream
adaptation at a NAL unit basis. With the concept of MGS, any enhancement layer NAL unit
can be discarded from a quality scalable bitstream and thus packet based SNR scalable coding
is obtained. However, it requires a good controlling of the associated drift. MGS in scalable
extension of H.264/AVC has evolved from SNR scalable extensions of MPEG2/4. So it is
pertinent to start our discussion from there and extend it to MGS of H.264/AVV.
The prediction structure of FGS in MPEG4 Visual was chosen in a way that drift is completely
omitted. Motion compensation prediction in MPEG4 FGS is usually performed using the base
layer reconstruction for reference as illustrated in Fig. 5.a. Hence loss of any enhancement
packet does not result in any drift on the motion compensated prediction loops between
encoder and decoder. The drawback of this approach, however, is the significant decrease
of enhancement layer coding efficiency in comparison to single layer coding, because the
temporal redundancies in enhancement layer cannot be properly removed.
For SNR scalability coding in MPEG2, the other extreme case was specified. The highest
enhancement layer reconstruction is used in motion compensated prediction as shown in

Figure 2.21: Temporal scalable architecture of SVC [10].

The hierarchical B-pictures structure uses bidirectional predictive pictures (B-pictures)

as references to other B-pictures within one Group of Pictures (GOP). In general, bidi-

rectional prediction can get more accurate prediction than unidirectional prediction due

to which B-pictures are coded more e�ciently than P-pictures. After coding, all frames

are reordered to allow that frames of the lower layers to be extracted first. The prediction

structure of the GOP must be chosen such that a frame is only predicted from a lower or

the current enhancement layer, thus ensuring no dependencies from higher layers. To de-

code higher layer it is necessary decoding all layers below it, due to prediction dependency

between these layers.

The scalable bit stream is organized in Network Abstraction Layer (NAL) units, which
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are composed by payload and header with several syntax elements. Each NAL unit

belongs to a particular spatial, temporal and quality layer. The information stored in

header (the syntax element) of each NAL unit identifies each layer (spatial, temporal and

quality). The syntax element of the temporal scalability is the temporal identifier T ,

where the temporal base layer is identified by the T = 0 and T of the remaining temporal

layers is modified by adding one unit to the previous T value, for instance in the first

enhancement temporal layer T = 1. To conclude, the hierarchical B-pictures structure

provides temporal scalability but also shows good coding e�ciency in comparison to

simulcasting [11].

Spatial scalability - to support the spatial scalability coding, SVC uses the multi-layer

coding approach as the previous video coding standards with scalable profiles. Each spa-

tial layer has dependency identifier D, which it is increased by 1 from spatial base layer

(D = 0) to the following layer. The resolution of base layer (H.264/MPEG-4 AVC com-

pliance) corresponds to the low resolution video sequence. Normally, the resolution of

each enhancement layer contains a higher resolution than the previous layer. In order to

improve the coding e�ciency of SVC in comparison to simulcasting, inter-layer prediction

was incorporated in this scalability mode, as illustrated in Figure 2.22. The inter-layer

prediction uses the lower layer information (MBs types, motion parameters, residual sig-

nal) in the enhancement layers coding. This scheme improves rate-distortion performance

of the enhancement layers.

Figure 2.22: Multi-layer structure with inter-layer prediction [11].

Quality scalability (or Signal-to-Noise Ratio (SNR) scalability) - the H.264/MPEG-4

SVC supports two quality scalable modes, namely Coarse Grain Scalability (CGS)

and Medium Grain Scalability (MGS). The CGS is similar to the spatial scalability

in H.264/MPEG-4 SVC. This scalable mode employs the same inter-layer predictions
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as the spatial scalability, such as prediction of MBs modes, motion parameters and

prediction of the residual signal [11], however, the spatial resolution is kept constant,

i.e., the base and enhancement quality layers have the same size. To increase the quality

between adjacent CGS layers, the residual signal in the enhancement layer is re-quantized

with a Quantisation Parameter (QP) smaller than the QP of the previous CGS layer.

H.264/MPEG-4 SVC allows at most eight CGS layers which represented to eight quality

extraction points, i.e., one base quality layer and up to seven enhancement layers [155].

MGS mode is more flexible than CGS, i.e., MGS mode allows a finer granularity level

of quality scalability by dividing a given enhancement layer into various MGS layers

[11]. In H.264/MPEG-4 SVC each MGS layer is distinguished by a quality layer index Q

where Q = 0 correspond to the MGS base layer. In each spatial layer D more than one

MGS quality layers Q can exist up to the maximum of 16 MGS layers. The MGS split

the particular enhancement layer of a given video frame into up to 16 MGS layers. In

detail, the MGS spits the transform coe�cients of generic frames into multiple groups

and each group is assigned to a particular MGS layer.

Combined scalability - the combination of spatial, temporal, and SNR scalability in-

creased the flexibility of the scalable bit stream, however the coding e�ciency of this

approach is slightly worse than that of the layered approach, but it provides more decod-

able points in the spatial, temporal and quality levels [11, 156].

In summary, the scalable coding is more flexible, o↵ers more functionalities and scalable

profiles than single-layer coding. In addition, the coding e�ciency of the SVC is clearly

better than the single-layer coding (simulcasting), since the single-layer coding supports

all spatio-temporal resolutions and the bit rates in separated bit streams [11].

Scalable video coding - SHVC

The Joint Collaborative Team on Video Coding (JCT-VC) of experts from the ITU-T

Visual Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group

(MPEG) are currently developing a new video coding standard with the name High E�-

ciency Video Coding (HEVC) [157]. This new video coding provides a bit rate reduction

in range of 40%-50% for the same quality compared to H.264/MPEG-4 AVC, in single-

layer coding [158]. In order to address the potential needs of future video applications
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and the network limitations, the JCT-VC issued a Call for Proposals (CfP) on Scalable

Video Coding Extensions for High E�ciency Video Coding.

In [159], Choi et al. proposed the first solution for spatial scalability to the HEVC. Here,

an inter-layer prediction mechanism for single-loop and multi-loop decoding is presented.

In the multi-loop decoding, only inter-layer texture is employed while in the single-loop

decoding the texture prediction and inter-layer motion prediction with inter-layer residual

prediction are used. The enhancement inter-layer motion and residual prediction is deter-

mined by the up-sampling operation of motion vectors and residual information from base

layer respectively. This proposal provides a bit rate reduction of up 10% compared with

HEVC simulcast for the single-loop and multi-loop decoding for the all-intra (JCT-VC

test configuration). For the Random Access test the bit reduction is up to 7.4% and 2.6%

for the multi-loop and single-loop decoding respectively, compared with HEVC simulcast.

Shi et al. proposed in [160] spatially scalable video coding for HEVC. This proposal

supports single-loop and multi-loop solutions as the Choi et al. proposal [159]. Here,

two inter layer prediction mechanisms are used to reduce redundancy between layers, the

basic Q-mode and the extra L-mode. The basic Q-mode includes intra, motion vectors

with code modes and residuals. An extra path learning prediction mode is proposed

to improve the accuracy of the inter layer prediction, here the authors defined this new

mode as extra L-mode. Experimental results demonstrate the e↵ectiveness of the proposed

scheme compared with HEVC simulcast. Since the temporal scalability is already HEVC

supported by the flexible reference picture, the challenges of the scalable HEVC extension

are the spatial and quality scalability [161]. Several proposals for the HEVC scalable

extension were previously presented, some of them used inter layer prediction based on

the SVC standard.

Hinz et al. [161] present a review of scalable HEVC extension with spatial and quality

scalability. In this paper a review of the scalable coding tools (i.e., inter layer prediction,

entropy coding transform coe�cients) used in the HECV and simulation tests for multi-

loop decoding are made. The HEVC scalable coding tools are compared with scalable

coding tools of scalable extension of the H.264/MPEG-4 AVC. The results show the

increase in coding e�ciency from HEVC relatively to the SVC coding tools.
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2.5.3 ROI based video coding

ROI may be computed through visual attention models, as described before. ROI coding

aims at providing better quality and/or better protection against the errors in the ROI as

opposed to the rest of the visual scene. This di↵erentiated coding can be used in various

types of video applications where some kind of perceptual coding may be useful or to

increase the coding e�ciency in constrained video delivery systems. Some coding systems

allow assigning higher priority and quality to ROI over the rest of the frame (non-ROI).

The quality and priority di↵erence between the ROI and non-ROI will depend on the

video application. For example in video communications the use of the available bit rate

should be maximized to provide the best quality to viewers. In this case lower quality

non-ROI is acceptable by the human visual system since the viewers pay less attention to

the non-ROI than to the ROI. Therefore, more bits can be allocated to the ROI without

reducing the overall quality of the video. In this case, the ROI quality can be increased.

In the literature, there are di↵erent approaches to achieve this goal: (i) use more bits in

ROI (use a fine QP); (ii) reduce the bits in the non-ROI (use a great QP) and (iii) code the

non-ROI regions in skip-mode. In addition to these approaches, several works proposed to

adjust the QP of the ROI and non-ROI according to certain principles, such as the visual

sensitivity of the human visual system or the ROI quality target. Chen at al. proposed a

method that minimizes the non-ROI information based on application of low-pass filters

to the non-ROI region. In this case it is not necessary to do any modification to the coder,

since the technique is applied before the coding [162]. The same approach was used by

Karlsson et al., here, a spatio-temporal filter to re-allocate bits from the non-ROI to the

ROI, after the ROI detection step was proposed [163].

ROI coding with H.264/MPEG-4 AVC

In H.264/MPEG-4 AVC the MBs are grouped into an entity called a slice. Each slice

is identified with slice group ID. The slice group ID determines the coding order of the

MBs, for instance, in the case of two slice groups, all the MBs of slice group 0 are coded

before the coding the MBs of slice group 1. In the case of H.264/MPEG-4 AVC the

maximum number of slice group for each frame is 8, i.e., each frame can only be split

into 8 slices group. Conventionally, video coding standards support encoding MBs only

in raster order. However, with the introduction of Flexible Macroblocks Ordering (FMO)

in H.264/MPEG-4 AVC standard, the order of assigning the MBs into slices has been
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liberalized. Here, the slides are coded into separate NAL units [164] making them totally

autonomous from others. The H.264/MPEG-4 AVC standard defines seven di↵erent types

of FMO modes: Interleaved, Dispersed, Fore-ground with left-over, Box-out, Raster-scan,

Wipe, and Explicit. The FMO type 2 has usually been used in ROI coding, but it is only

suitable for ROIs with rectangular shapes and cannot represent irregular regions in an

e�cient manner. In this case, the type 6 is the most general one, here the ROI shape is

user-defined. The H.264/MPEG-4 AVC standard did not have a tool for ROI detection.

Thus, the ROI position must be first detected with a pre-processing algorithm.

Leuven et al. [165] present an implementation of multiple ROI models in H.264/MPEG-4

AVC standard to enhance the quality of video surveillance. The ROIs are user-defined,

i.e., no detection algorithm is used. The results show that a convenient selection of the

ROI, in combination with a suitable choice of quantisation parameter and the FMO type

can reduce bandwidth usage while maintaining the same video quality. More recently,

Peng et al. [166] present a ROI privacy protection scheme for H.264/MPEG-4 AVC video

in Closed Circuit TeleVision (CCTV) based on FMO. To encrypt the ROI the FMO

technology of the H.264/MPEG-4 AVC is used. First, the human face regions in the

video are detected and extracted. Then, ROIs are mapped into slice groups. After that,

these regions are encrypted using selective video encryption based on chaos.

ROI coding with H.264/MPEG-4 SVC

In addition to spatial, temporal and quality scalability the H.264/MPEG-4 SVC supports

ROI scalability. This type of scalability is appropriate to many scalable video coding

applications for instance, a mobile phone user may be required extracting only particular

ROI in video, at same time other user with large portable device screen can extract other

ROI to receive better video stream resolution. Thus, to fulfil these requirements, it would

be necessary to transmit or store a scalable bit stream with di↵erent ROIs.

Grois et al. [167] present a scalable ROI video coding algorithm which enables the adap-

tation to the position, size and resolution of the ROI. This algorithm has two methods for

ROI coding, the first is based on inter-layer prediction and the second the uses FMO. In

the first proposed method, the authors cropped the ROI from the original sequence and

used it as a base layer and increased the ROI resolution in the enhancement layer. After

this, inter-layer prediction is applied in the cropping areas. Compared to conventional

single layer coding, the method incurs in low bit rate overhead. However, this approach
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does not allow the existence of non-ROI in the base layer and the size of ROI, in this layer,

is constant along the sequence. In the second proposed method the ROI is encoded with

FMO type 2 (only to enhancement layers) and each ROI is represented by a rectangular

shape with the ROI and non-ROI regions coded in separate slices. However, this method

only used rectangular ROI, and in most cases the ROI has not a rectangular shape. In

addition, the algorithm does not implement the ROI detection method, here, the ROI is

pre-defined by the user. Further, Lee et al. in [168] propose a scalable ROI algorithm

(H.264/MPEG-4 SVC) which used the FMO with Box-Out method in the coding process.

Two methods for ROI detection were proposed, the passive (pre-defined by the user) and

active setting of ROI (based on motion vectors). The active selection method produced

better subjective quality than the passive selection method. The algorithm supports Fine

Grain Scalability (FGS) in ROI with low computing complexity in order to achieve better

objective and subjective video quality.

ROI coding for 3D video

The ROI coding is not restricted to the 2D video, the 3D video coding can also benefit

from the use of ROI [163]. As mentioned before, ROI coding was originally developed

for low bit rate video application since this coding mode is based on di↵erentiated coding

scheme that provide more bits and quality to the ROI and less quality and bits to the

non-ROI. Due to the 3D video applications requirements and the ROI coding features,

until now, few works have been published on ROI coding for 3D video.

Karlsson et al. [163] proposed a method to increase the perceived quality in a 3D video

sequence at low bit rates. An ROI coding method was applied to 2D plus depth video

sequence to guarantee a good quality in regions of the video that are more interesting to

viewers. Here, the author defined the faces and the scene objects nearer the viewer as ROI.

However, the nearer objects or the faces are not necessarily the most important regions

of frame to viewers. Two ROI detection methods were proposed. In the first method

the statistical properties of the depth information are examined. In the second method,

the position of the ROIs in each frame is defined as the combination of the skin-colour

detection (to detect the faces) map and depth detection map. A spatio-temporal filter

was used to re-allocate bits from the non-ROI to the ROI. After this step, the filtered

sequences were coded using the H.264/MPEG-4 AVC codec (Joint Model (JM) 10.1 high

profile). Interesting results have been achieved by employing region-based techniques

(detection and coding). However, a subjective assessment should be made to evaluate the



70 Chapter 2. Flexible representation of visual information - review

impact of this ROI coding approach in the overall quality of the video.

More recently, Pinto et al. [169] proposed the use of ROI as an extension of the concept

of asymmetric coding for regions of di↵erent perceptual relevance in stereoscopic video.

The results (objective and subjective assessment) show that it is possible to further ex-

ploit traditional asymmetric coding while maintaining the same perceptual quality in the

stereoscopic video.

2.5.4 Performance metrics

In order to develop adequate flexible video coding, reliable quality assessment metrics

are required for comparison purposes. After all, it is necessary to evaluate distortion

introduced by coding, since all video coding standards, currently available, introduce

distortion in coded video. For this, as explained back in Section 2.4.4, the performance

metric can be classified in two types: subjective and objective, but only objective quality

assessment will be considered here.

The most used and known objective metric to measure the distortion is the PSNR [170].

PSNR defined in Equation (2.25) is calculated on a logarithmic scale and depends on the

Mean Squared Error (MSE) Equation (2.26) of between an original and an impaired image

or video frame, relative to (2n � 1)2 (the square of the highest-possible signal value in the

image, where n is the number of bits per image sample). In the Equation (2.26), m and

n are the image size and O and R are the original and reconstructed image respectively.

PSNRdB = 10 log10
(2n � 1)2

MSE
(2.25)

MSE =
1

m⇥ n

m�1X

i=0

n�1X

j=0

[O(i, j)�R(i, j)]2 (2.26)

PSNR can be calculated easily and quickly and is therefore a very popular quality measure,

widely used to compare the “quality” of compressed and decompressed video images. MSE

is by itself a distortion metric that quantifies the di↵erence between two images or video

frames. More recently, other objective metric to evaluate the distortion was proposed,

it is based on the PSNR and was proposed Gisle Bjøntegaard proposed in [171] a model

that measures the compression e�ciency di↵erence between two algorithms.
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2.6 Discussion

In general the methods for flexible representation of visual information, still su↵er from

some limitations in the sense that they are not able to satisfy all challenges posed by 2D

and 3D video applications. In order to overcome these limitations and issues that are still

open for research the following topics are identified:

Visual saliency computation methods - although some significant work has been

done in 2D video saliency, only few visual attention models have been proposed for 3D

content and most of them are exclusively applied to image data [2, 37, 39, 40]. To the

authors’ knowledge, only two works can be used for 3D video [38, 41]. However, Zhang

et al. [38] do not present a consistent objective validation of the results, which does

not allow comparison with other methods. Iatsun et al. [41] proposed a comprehensive

qualitative evaluation in this work, however Iatsun’s method can be improved by adding

face features. In order to address these issues a method is proposed, this was developed

for 3D video but also applied for 2D video and 3D image which is explained in Chapter

3.

SBD and key-frame extraction methods - the selection of the features used by shot

boundary and key-frame extraction methods is still an open research problem, because

these features depend on the application, video content and representation format. For

instance, in fast-motion scenes edge information is not the best choice to detect shot

boundaries due to motion-induced blur. Thus, it may be better to automatically find

the useful features based on some assumptions about the video-content. The majority

of key-frame extraction methods published in the literature use low-level features and

content sampling approaches to identify the relevant frames that should be included in

the key-frame summary. Recently, the inclusion of perceptual metrics in the SBD and

key-frame methods are gaining some space and in the context of 2D video, some key-frame

extraction methods based on visual attention models have emerged as, [59, 62–64, 85].

However, for 3D video only one solution is available [111]. Hence, key-frame extraction in

3D video still poses relevant research problems to be investigated and e�ciently solved.

Another open challenge is the combination of the visual features with additional infor-

mation (audio features, text captions and content description) for use in the detection

of shot boundaries and selection of the optimal frames in 3D video. Also, lacking are
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summarisation methods (key-frame based or video skims), for some 3D video formats

such as MVD and holoscopic video. Also open to research is the application of scalable

summarisation to 3D formats [11]. In the context scalable summarisation several works

were published which presented solutions for 2D video such as [172, 173].

Evaluation of summarisation methods - in the past evaluation frameworks for 2D

key-frame summarisation methods were proposed in [174, 175]. More recently, Avila et al.

[114] also proposed another evaluation setup, wherein the original video and the key-frame

summaries of several methods are available for downloading, together with the results of

several key-frame extraction methods for 2D video. Unfortunately for the case of 3D

video, there is not as yet any similar framework, where key-frame summaries and the

respective original sequences are available for research use. The number and diversity of

evaluation metrics (objective, result description and subjective) used to compare state-of-

the-art key-frame extraction methods make their comparative assessment a di�cult task.

Therefore, the development of metrics which can be used in the evaluation of key-frames

summaries in di↵erent domains and 3D video formats is a very important area of video-

summarisation related research. Furthermore the focus of the evaluation process must be

application-dependent. For instance, in browsing applications, the time spent by the user

to search or browse for a particular video is the most important factor, but on the other

hand, in detection events, the evaluation metric must focus on the successful detection of

these events. One other problem that arises in the evaluation process is the replication of

results of previous works, as some works are not described with enough details to allow

independent implementation or the input data is unavailable or else it is not easy to

use due to data format incompatibilities or lack of information about their representation

format. Thus, the best way to test and compare key-frame extraction methods for 2D and

3D is to build publicly accessible repositories containing test kits, made up of executable

or web-executable versions of the methods and the test sequences.

Key-frame presentation - another challenging topic in the research of 3D key-frame

summarisation is the design of an e�cient and intuitive visualisation interface that al-

lows easy navigation and visualisation of the key-frame summaries. These applications

should be independent of the terminal capabilities (display dimension, processing and

battery power), i.e., should be usable on small screen devices such as smartphones as

well as UHD displays. In addition, the visualisation interface should be independent

from the key-frame summarisation method, to allow the visualisation of di↵erent formats
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of 3D key-frames video summaries, such as stereoscopic video or video-plus-depth and

also 2D video in the same framework. The interface should be capable of dealing with

the most common key-frame visualisation methods such as, static storyboard, dynamic

slideshow and hierarchically arranged viewing. In particular, the most recent 3D interface

for searching and viewing images or video in large databases, 3D-Ring and 3D-Globe, are

interesting solutions which must be taken into account in the definition of new key-frame

visualisation methods [7].

Video summary coding - in the past, the problem of scalable coding of video sum-

maries was addressed in [176–178]. In [176] the authors propose a hierarchical frame

selection scheme which considers semantic relevance in video sequences at di↵erent levels

computed from compressed wavelet-based scalable video. In [177] a method to generate

video summaries from scalable video streams based on motion information is presented,

while in [178] the authors propose to partition a video summary into summarisation units

related by the prediction structure and independently decodable. The existence of few

studies and articles published about this subject in the literature, is one reason the de-

velopment a method to code video summary. Thus, in the Chapter 6 it is proposed a

method to encode an arbitrary video summary using dynamic GOP structures in scalable

streams. The scalable stream obtained was fully compatible with the scalable extension

of the H.264/AVC standard. However, all approaches were proposed for 2D video and

used older generation video coding methods. The application of video summary coding to

the 3D video format and the use of the most recent video coding, such as HEVC, should

also be explored to find e�cient coding tools for such purpose.

2.7 Conclusions

This chapter presents a review of several state-of-the-art methods for flexible represen-

tation and coding of visual information and some of the potential application of these

methods and also the performance metrics used. Visual saliency, summarisation, retar-

geting and flexible video coding using scalability and ROI coding were studied in this

context, as capable of providing some extra degree of flexibility beyond simple represen-

tation of pixel values. The relevance of visual saliency in summarisation, video retargeting

and ROI coding was particularly emphasised. The critical review presented in this chap-

ter also lead to identify some open research problems where innovative solutions may be

further investigated.





Chapter 3

Visual saliency computation by

feature aggregation

This chapter presents two methods for visual attention modelling which were developed

with the goal to increase the flexibility of 3D visual information representation. Although

originally developed for 3D content with some adaptations these methods can also be

applied to 2D video, as shown in Chapter 4 and Chapter 5. The proposed methods

are based on fusion of features maps which contain information from spatial, temporal

(motion), depth dimensions and face detection. Several test videos annotated with eye-

tracking data were used to validate the methods. The results demonstrate substantial

performance gains in comparison to other state-of-the-art models.

These methods and part of the experiments presented in this chapter were published in

J1, E1, C1, and C2.

3.1 Visual saliency computation methods

Recently, several methods to compute visual saliency were proposed for 2D video and

3D images, but for 3D video no definite solution exists. Therefore this is still an open

research problem that requires approaches di↵erent from those used with 2D video or

3D images. The main novel aspects of the proposed methods are: (i) the flexibility of

the method since it can be applied to di↵erent 3D content, such as stereoscopic images,

video or video-plus-depth and 2D video; (ii) the comparisons with other methods based

on publicly available fixation density reference datasets; (iii) better performance than

other state-of-the-art models. The proposed methods are composed of four models used

to compute features maps from information in di↵erent domains. In the first approach,

the method combines the spatial, temporal and depth information in order to determine

the visual saliency. The second approach improves the first method by adding the face
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saliency map obtained by processing face features. The following sub-sections describe in

details the proposed methods.

3.1.1 Visual saliency computation using spatio-temporal depth

information

Figure 3.1 shows the functional diagram of the visual saliency computation method which

uses spatio-temporal depth information. Either stereoscopic video or video-plus-depth

can be used as 3D input formats with the former requiring a previous step of depth

computation from the stereoscopic views. The method relies on computing three di↵erent

maps, which representing relevant perceptual features from spatial (texture), motion and

depth information. The spatial and motion feature maps, SS and SM respectively, are

computed from a single view, while the depth feature map SD is extracted from depth

maps. Then, normalisation and fusion of these feature maps generates the intermediate

map S
0
G, which is subjected to a centre-bias weighting to generate the final 3D visual

saliency map SG.

Spatial saliency computation

Computation of the spatial feature map SS is done based on a single view because this

type of perceptual feature is mostly independent of the viewpoint for small baselines.

Since spatial saliency computation has been thoroughly investigated by several authors

in the past, the procedure used here has been inspired by several methods described in

previous works [22, 29, 30]. These are chosen due to their performance and widespread

use in recent research about visual attention models, thus being also useful as references

for comparison.

Itti’s model, proposed in [22], implements a hierarchical decomposition based on low-level

features including intensity, colour and orientation. Thus, an input image is subsampled

into a Gaussian pyramid and each pyramid level is decomposed into intensity, colour

and orientation. Then each of the resulting maps are normalized and combined to form

the final saliency map after ranking the focus of attention regions using a winner-takes-

all approach. Instead of processing an image spatial domain, Hou’s model [29] uses

frequency domain. Thus, Hou and Zang proposed a spectral residual saliency model

based on the idea that similarities imply redundancies. They propose that statistical
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Figure 3.1: Functional diagram of the visual saliency computation method.

singularities in the spectrum may be responsible for anomalous regions in the image,

where proto objects become conspicuous. Bruce’s AIM model, proposed in [30] is based

on information maximisation and uses Shannon’s self-information measures to compute

visual attention maps. This model is based on the premise that the visual saliency map

is related to the amount of information provided, in regard to its local neighbourhood.

Information of a visual feature X is define as I(X) = � log p(X), which is inversely

proportional to the probability of observing X (i.e., p(X)). Thus, and according to

Bruce’s AIM model, salient regions are the image areas where there are higher indecision

and more self-information.

The proposed method allows the user to select which of these three visual attention models

are used to compute the spatial feature maps SS(i, j) with (i, j) being the pixel positions

in a frame.
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Motion saliency computation

The motion feature map is computed based on the underlying idea that viewers tend

to hold their gaze towards higher motion regions [32]. In this work, the motion feature

map is computed from the motion intensity observed between two consecutive frames and

computed using block matching over a search region. More precise motion estimation

methods could be used to take into account the selective sensitivity of the HVS to motion

and its complex and background motion accommodation capabilities [179], but these

alternatives would result in higher computational complexities.

The motion intensity I(i, j) for each pixel (i, j) in a frame is computed as the magnitude

of motion vectors:

I(i, j) =
q
dx2

i,j + dy2i,j (3.1)

where dxi,j and dyi,j denote the two components of the motion vector along x-axis and

y-axis, respectively. After computing the motion intensity for all pixels of each frame, the

motion feature map is obtained by applying a 5 ⇥ 5 spatial median filter to remove the

estimation noise (i.e., outliers)

SM(i, j) = Median(I(i, j), 5) (3.2)

Depth saliency computation

The depth feature map is computed based on the local depth contrast, following the

reasoning that depth contrast is a dominant feature in depth perception [180]. The

depth feature maps are computed as a sequence of two processing steps: Depth contrast

computation and Probability distribution modelling.

Depth Contrast Computation: The depth contrast is obtained by filtering the depth map

with a DOG filter which simulates the operation of the centre-surround mechanism of the

HVS. The depth contrast C(i, j) at pixel position (i, j) is computed as,

C(i, j) = DOG(i, j) ⇤D(i, j) (3.3)
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where D(i, j) is the depth map and DOG(i, j) is defined by

DOG(i, j) =
1
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The standard deviations �1 and �2 are filter parameters, which were set to 32 and 51

respectively, following the use of DOG for static 3D images described in [2].

Probability Distribution Modelling (PDM): This distribution quantifies the probability

that a pixel at position (i, j) with depth contrast C(i, j) is gazed at. These probabilities

are computed for all pixel locations of the depth contrast C(i, j), by using the empirical

data obtained from eye-tracking experiments carried out by Wang et al. and presented in

[2], where, using the fixation information and the depth-contrast value for each pixel, a

function is empirically derived from Bayesian principles, that quantifies the probability of

the pixel being gazed at, when depth-contrast is x, i.e., P (pixel is gazed | depth contrast

= x). Then, the depth feature map SD(i, j) is given by a piecewise linear function that

interpolates such empirical distribution for all C(i, j) within the perceptually relevant

range.

Normalisation and fusion

Before aggregation, the saliency feature maps computed in the previous steps are normal-

ized to the range [0, 1] by division by the saliency peak value, which results in ŜS, ŜM

and ŜD obtained as follows.

Ŝ↵(i, j) =
S↵(i, j)

max
8i,j

(S↵(i, j))
↵ 2 {S,M,D} (3.5)

An aggregated visual saliency map S3D is then computed as a weighted sum of the three

normalized saliency feature maps, as given by Equation (3.6)

S
0

G = wsŜS + wmŜM + wdŜD (3.6)

where ws + wm + wd = 1. These weights may be assigned the same default value, giving

the same perceptual importance to all feature maps. However, following previous studies

where motion was found as a predominant feature [181], a better choice may be to assign

higher weight to the motion saliency map. Other fusion methods can be used, based on

dynamic weights, saliency strength and energy [41], [182].
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Centre-bias weighting

Centre-bias weighting is used to model the human tendency to gaze at objects located in

the centre of the visual scene. To model this behaviour the aggregated saliency map S
0
G is

further weighted with an image-centred two-dimensional Gaussian function W (i, j) that

biases the visual saliency towards the image centre. Therefore, the final visual saliency

map SG(i, j) is defined for all pixels (i, j) of each frame by,

SG(i, j) = S
0

G(i, j)W (i, j) (3.7)

where W (i, j) is given as,

W (i, j) = exp

✓
�
����
L(i, j)

�

����
r◆

(3.8)

and

L(i, j) =
q

(i�M/2)2 + (j �N/2)2 (3.9)

where L(i, j) is the Euclidean distance between pixel at spatial location (i, j) and the

image centre andM and N are the video spatial dimensions. The r value used in Equation

(3.8) is constant and � is given by:

� = c
q

(M/2)2 + (N/2)2 (3.10)

In this work, the values of r = 1.3 and c = 1.7 were used, following [183]. The saliency

values of S
0
G(i, j) vary in the range [0, 1], where 1 and 0 indicate respectively the highest

and the lowest possible saliency values.

3.1.2 Improved visual saliency computation method based on

face saliency

The improved version of visual saliency detection method using spatio-temporal depth

information is based on the computation and aggregation of four individual saliency fea-

ture maps, unlike the first approach, which only three individual saliency feature maps

are used to compute final saliency map. The overall processing involved in the compu-

tation of the visual saliency estimate is illustrated in Figure 3.2. As the first approach,
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this approach accepts 3D video in both stereoscopic and video-plus-depth format. The

four saliency feature maps at the core of the proposed method are computed from the

spatial (texture), temporal (motion), depth and face presence information and are then

combined into a single saliency map. The spatial and motion saliencies, as well as the

face saliency, SS, SM and FD respectively, are computed from the video texture, while the

depth saliency map SD is derived from the depth information. The pixel-wise values of

these features are normalised and then aggregated resulting in a saliency value S
0
G, which

is further processed with a centre-bias weighting filter to compute the final saliency map

SG. This procedure is followed for each frame of the 3D video sequence thus producing a

sequence of visual saliency maps.

Motion Saliency

3D Video Saliency Map

Normalization and Aggregation

Center-bias weighting

SM

S’G

SG

Spatial Saliency

SS

Depth Saliency

3D Video

DepthVideo

Face Saliency

FD SD

Figure 3.2: Functional diagram of the improved visual saliency computation method.

Spatial, motion and depth saliency computation

The computation of the intermediate saliency maps SS, SM and SD are equal to the

previous saliency computation approach, presented in the Section 3.1.1.

Face saliency computation

A face detection algorithm is employed during the face saliency map FD computation.

This face detection algorithm produces a bitmap containing binary masks that indicate if
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a given pixel is part of a face-region. Such mask is the face saliency map. Although other

simpler methods, as face detection based on skin color could have been used, the Viola-

Jones object detector algorithm [184] was chosen to detect and locate the human faces

in each video frame. This object detector algorithm is based on the detection of specific

features that contain information about the object to be detected such as faces, cars

and others. This information can be encoded by Haar-like features which are sensitive

to orientation of contracts among image regions. For example, a human face can be

represented as set features exhibiting the relationship of the contrast of di↵erent regions

like eyes, nose, mouth etc. In order to explore the potentiality of Viola-Jones algorithm

and to increase the number of face detected in each frame, a cascade object detector

method is used. This method is based on cascade detection of the upper-body and face.

Thus, a human face is considered detected if it is identified in the upper-body region.

After face detection, the binary masks in the face saliency map (see Figure 3.3d) are used

to identify regions of higher importance in the computation of the aggregated saliency

map. Figure 3.3 shows an example of a face saliency map pertaining to a frame of the

sequence News report.

(a) Original video (b) Upper-body detections

(c) Face detections (d) Face saliency map

Figure 3.3: Example face saliency map of the News report sequence.



3.2. Results and analysis 83

Normalisation and aggregation

As in the previous approach presented in Section 3.1.1, before aggregation of the various

saliency maps obtained in the previous steps, when necessary these are normalized to the

range [0, 1] yielding ŜS, ŜM and ŜD as follows.

Ŝ↵ =
S↵(i, j)

max
8i,j

(S↵(i, j))
↵"{S,M,D} (3.11)

The aggregated visual saliency map S
0
G is then computed as a weighted sum of the three

saliency maps and mask FD, as given by equations (3.12).

S
0

G =
X

↵"{S,M,D}

w↵Ŝ↵ + wfFD, with
X

↵"{S,M,D}

w↵ + wf = 1 (3.12)

Centre-bias weighting

Similarly to the computation of the intermediate saliency maps SS, SM and SD, the

application of the Centre-bias weighting in the process is similar to the previous saliency

computation approach, presented in the Section 3.1.1.

3.2 Results and analysis

To evaluate the performance of the proposed methods several experiments were realised,

where the algorithms described so far were used to compute the visual saliency of several

3D test videos. In the next sections, the methodology used to evaluate the proposed

methods is described and results are also analysed and discussed.

3.2.1 Experimental setup and methodology

The experiments are divided into two parts. In the first part, the first approach of

proposed method is evaluated by comparing the computed saliency maps against six other

competing methods for the computation of 3D visual saliency maps. The performance

of all methods was quantified using as ground-truth for the fixation density provided by

the maps from [1]. The influence of centre-bias weighting is also studied and a visual
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comparison between the saliency and FDM is as well made. In second set of experiments,

the second method was evaluated by comparing the computed saliency map for 3D video

with a ground-truth set of fixation density maps created from eye-tracking experiments,

publicly available [1] [3]. The influence of face saliency map is investigated and a visual

comparison between the saliency and FDM is also made.

The performance evaluation was measured by the PLCC and KLD values of the computed

saliency and FDM values series. Five di↵erent 3D video sequences were chosen to evaluate

the two proposed methods: Boxers, Hall, Phone call, Laboratory and News report. Table

3.1 lists the tests video sequences and their characteristics. Figure 3.4 shows the first

frame of the original video and Fang’s [3] and Hanhart’s [1] FDM data respectively, for

the Boxers, Hall, Phone call, Laboratory and News report sequences.

Table 3.1: Details of the test sequences.

Name #Frames Resolution
#Frames

containing faces

Boxers 250 1920x1080@25fps 20

Hall 250 1920x1080@25fps 0

Phone call 250 1920x1080@25fps 140

Laboratory 250 1920x1080@25fps 70

News report 250 1920x1080@25fps 250

In first set of experiments, the proposed method was used visual saliency maps are based

on fusion of the three saliency feature maps followed by centre-bias weighting. The weights

ws, wm and wd of Equation (3.6), were assigned constant values, following the underlying

idea that motion features are more relevant than others [181]. It was found empirically

that the results are not critically dependent on small variations of these weights and after

experimentation the values ws = wd = 0.25, wm = 0.5 were chosen to be used in the

remaining experiments. The motion field required to compute the saliency map SM was

estimated using block-match methods with a block size equal to [16⇥ 16].

In second set of experiments, the weights used in Equation (3.12), wS, wM , wf and wD

were the same for all frames. Experimentation showed that small variations in these

weights do not alter drastically the results and that values wS = wM = wD = wf = 1/4
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(a) Boxer - Orig. Video (b) Fang’s FDM [3] (c) Hanhart’s FDM [1]

(d) Hall - Orig. Video (e) Fang’s FDM [3] (f) Hanhart’s FDM [1]

(g) Phone call - Orig. Video (h) Fang’s FDM [3] (i) Hanhart’s FDM [1]

(j) Laboratory - Orig. Video (k) Fang’s FDM [3] (l) Hanhart’s FDM [1]

(m) New report - Orig. Video (n) Fang’s FDM [3] (o) Hanhart’s FDM [1]

Figure 3.4: First frame of the original video, Fang’s [3] and Hanhart’s [1] FDM data
respectively.
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were a good choice. When face detection is not used the weight wf is 0 and the remaining

weights are equal to wS = wM = wD = 1/3.

3.2.2 Visual saliency computation using spatio-temporal depth

information

Tables 3.2 and 3.3 present the results of the PLCC and KLD evaluation obtained for five

3D video sequences using nine di↵erent methods to compute 3D visual saliency maps,

including the proposed one. The three state-of-the-art methods from Itti [22], Hou [29]

and Bruce [30] are used as references for comparison. These are 2D image-based methods,

which were also used by Wang [2] to compute spatial saliency maps for 3D images. The

results of our proposed method (Prop.) are also presented in Tables 3.2 and 3.3 separated

into three di↵erent cases, according to the method used to compute the spatial saliency

maps SS, Itti, Hou or Bruce’s, as described Section 2.2.1. The image-based methods were

applied to all frames of the test video sequences.

The results in Tables 3.2 and 3.3 evidence a consistent relationship between the PLCC

and KLD values for these sequences, since low values of PLCC normally correspond to

high values of KLD and vice-versa. One can notice that the performance of the various

methods increase with the number of features included in the models. For instance, visual

saliency maps obtained using Wang’s method [2] are better correlated with the FDM than

simple 2D texture modes. This is mostly due to the inclusion of depth related features

in the computation of the 3D images saliency maps. It is noteworthy that the proposed

method produces better results than Wang’s. Probably this increase in performance is

due to the higher number of features used in the method proposed here. The inclusion of

the motion feature map and centre-bias weighting function result in a better model of the

human visual perception process and leads to a higher similarity between the computed

saliency maps and ground truth FDM of 3D video test sequences.

The average values of PLCC and KLD shown in Tables 3.2 and 3.3 show that for the

three cases under study the proposed method achieves better results than the compet-

ing methods. Overall, the maximum average PLCC (0.488) and the minimum average

KLD (0.579) are achieved for the proposed method using Hou’s spatial feature maps, i.e.,

Prop.(Hou). This method has similar PLCC and KLD values for Boxers, Hall and Phone

call test sequences. In comparison to Prop.(Bruce) the Prop.(Hou) method has better

values of PLCC and KLD. For sequence Laboratory the PLCC achieved by Prop.(Bruce)
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Table 3.2: PLCC evaluation-proposed and competing methods - Hanhart’s FDM data [1].

Method Itti Hou Bruce Wang Wang Wang Prop. Prop. Prop.
[22] [29] [30] (Itti)[2] (Hou)[2] (Bruce)[2] (Itti) (Hou) (Bruce)

Boxers 0.185 0.247 0.282 0.266 0.307 0.315 0.602 0.654 0.582
Hall 0.123 0.357 0.237 0.197 0.361 0.239 0.333 0.451 0.381
Phone call 0.297 0.526 0.386 0.307 0.527 0.431 0.547 0.584 0.516
Laboratory 0.09 0.081 0.324 0.166 0.118 0.326 0.264 0.262 0.385
News report 0.413 0.449 0.424 0.414 0.457 0.401 0.404 0.492 0.403
Average 0.222 0.332 0.330 0.270 0.354 0.342 0.430 0.488 0.453

Table 3.3: KLD evaluation-proposed and competing methods - Hanhart’s FDM data [1].

Method Itti Hou Bruce Wang Wang Wang Prop. Prop. Prop.
[22] [29] [30] (Itti)[2] (Hou)[2] (Bruce)[2] (Itti) (Hou) (Bruce)

Boxers 1.449 0.566 2.547 1.177 0.607 2.031 0.828 0.713 1.327
Hall 1.732 0.639 3.427 1.435 0.638 2.626 1.257 0.596 1.687
Phone call 1.207 0.704 2.039 1.133 1.097 1.419 0.502 0.409 0.798
Laboratory 1.205 0.766 2.934 1.445 0.700 2.107 1.188 0.802 1.497
News report 0.876 0.391 2.925 1.051 0.399 2.518 1.040 0.375 1.975
Average 1.294 0.613 2.774 1.248 0.688 2.140 0.963 0.579 1.457

is the best (i.e., 0.385), while for KLD, the method Wang(Hou) yields the best result (i.e.,

0.700)

These results show that the proposed method tends to show better PLCC and KLD

figures, most likely due to the use of more visual feature maps and of the centre-bias

weighting in the computation of the 3D video visual saliency map. This means, that

the visual saliency maps computed by the proposed method tend to better match the

FDM obtained from human viewers. Since the PLCC and KLD values obtained from all

methods are still far from their theoretical maxima there is still significant margin for

improvement.

Visual comparison between saliency maps and FDM

Figure 3.5 shows the visual results of the proposed method and Phone call sequence.

For each figure, single frames of the original video, depth map, Hanhart’s FDM [1] and

di↵erent saliency maps are presented where the magnitude of the visual saliency is coded

with white indicating high saliency and black representing very low saliency. It can be

observed that in Figure 3.5 the Prop.(Hou) method provides results that are significantly

closer to the FDM data, i.e., the ground-truth (Figure 3.5c).
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(a) Original - Video (b) Original - Depth (c) Hanhart’s FDM [1]

(d) Itti[22] (e) Hou[29] (f) Bruce[30]

(g) Wang(Itti)[2] (h) Wang(Hou) (i) Wang(Bruce)

(j) Prop.(Itti) (k) Prop.(Hou) (l) Prop.(Bruce)

Figure 3.5: Visual saliency - Prop. and competing methods for the frame 120 of the
Boxers sequence.

The influence of centre-bias weighting

To better understand the role of centre-bias weighting in the results obtained by the

proposed method, further tests were run specifically for this purpose. In these tests only

the spatial saliency maps were used, which is equivalent to defining the weight values

wi of the Equation (3.6) as ws = 1 and wm = wd = 0. Table 3.4, shows the results

obtained from the proposed method using the centre-bias weighting function with the
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three methods from Itti [22], Hou [29] and Bruce [30]. The reference for comparison are

the same methods without the centre-bias weighting function, the results of this methods

are presented in the Table 3.3 and 3.2 for the PLCC and KLD evaluation respectively.

Table 3.4: Centre-bias weighting performance with Hanhart’s FDM data [1].

Method Prop.(Itti) Prop.(Hou) Prop.(Bruce)
Metric PLCC KLD PLCC KLD PLCC KLD

Boxers 0.192 1.418 0.274 0.565 0.308 2.015
Hall 0.226 1.672 0.407 0.553 0.364 2.418
Phone call 0.308 0.805 0.540 0.11 0.331 1.429
Laboratory 0.097 1.625 0.093 0.373 0.354 2.105
News report 0.411 0.871 0.453 0.379 0.432 2.802
Average 0.247 1.278 0.353 0.396 0.358 2.154

These results reveal that inclusion of the centre-bias weighting function in the proposed

method increases its performance, as shown by the better PLCC and KLD values observed

when centre-bias weighting is used. From the results in Table 3.4 one can find that the

average gain of PLCC lies between 6% to 11% while that of KLD lies between 1% to

35%. The best performances are obtained from Prop.(Hou) method with Phone call

sequence. Overall, the PLCC and KLD gains show that it is beneficial to include centre-

bias weighting function in the proposed method.

3.2.3 Improved visual saliency computation method based on

face saliency

Tables 3.5 and 3.6 show the results obtained for six di↵erent saliency computational

methods, with two FDM databases, Hanhart’s [1] and Fang’s [3] respectively. The results

of Wang’s method presented in the first six columns of the Tables 3.5 and 3.6 are used

as reference for comparison with the proposed method without face detection (Tables 3.7

and 3.8) and with face detection (second six columns of Tables 3.5 and 3.6). In these

two tables, the first, second, seventh and eighth column list the results obtained from

frame-level spatial saliency maps SS using Itti’s method [22], the third, fourth, ninth and

tenth column using Hou’s method [29] and the fifth, sixth, eleventh and twelfth using

Bruce’s [30].

The average values of PLCC and KLD presented in the Tables 3.5 and 3.6 show that

proposed method with face saliency, for the three spatial saliency maps, achieves better

results than the Wang’s method for the two FDM databases. However, the average values
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Table 3.5: Performance of the proposed method with face saliency vs Wang’s method
[2]-Hanhart’s FDM data [1].

Method Wang(Itti) Wang(Hou) Wang(Bruce) Prop.(Itti) Prop.(Hou) Prop.(Bruce)
Metric PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD

Boxers 0.197 0.875 0.255 0.856 0.285 2.163 0.531 0.863 0.605 0.797 0.572 1.515
Hall 0.129 1.909 0.357 0.886 0.238 2.791 0.261 1.378 0.418 0.629 0.375 1.983
Phone call 0.210 1.460 0.549 1.056 0.24 1.495 0.252 0.565 0.342 0.583 0.264 0.945
Laboratory 0.010 1.484 0.080 1.540 0.326 2.264 0.035 1.288 0.090 0.985 0.302 1.606
News report 0.414 1.251 0.309 1.399 0.424 2.518 0.431 1.466 0.498 0.972 0.479 1.854
Average 0.192 1.396 0.310 1.147 0.303 2.246 0.302 1.112 0.391 0.793 0.398 1.581

Table 3.6: Performance of the proposed method with face saliency vs Wang’s method
[2]-Fang’s FDM data [3].

Method Wang(Itti) Wang(Hou) Wang(Bruce) Prop.(Itti) Prop.(Hou) Prop.(Bruce)
Metric PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD

Boxers 0.004 0.560 0.032 0.364 0.047 3.092 0.041 0.558 0.020 0.488 0.125 2.196
Hall 0.013 1.096 0.115 0.455 0.100 3.644 0.024 0.462 0.103 0.429 0.069 2.736
Phone call 0.034 1.470 0.163 0.926 0.131 2.621 0.155 0.513 0.209 0.524 0.161 1.883
Laboratory 0.018 1.432 0.021 0.772 0.104 3.480 0.066 0.609 0.053 0.467 0.168 2.630
News report 0.001 4.369 0.001 4.552 0.005 1.244 0.010 3.570 0.015 3.090 0.003 0.628
Average 0.014 1.785 0.066 1.414 0.077 2.816 0.059 1.142 0.080 1.000 0.105 2.015

of proposed method with face saliency obtained on Hanhart’s FDM database [1] are better

than the PLCC and KLD values obtain by the Fang’s FDM database [3].

The improved performance achieved by the proposed method with face saliency is ev-

idenced by the higher PLCC and lower KLD values for the two FDM databases as it

is shown in Tables 3.5 and 3.6, when compared with the proposed method without face

saliency map, listed in Tables 3.5 and 3.7 for Hanhart’s FDM database and Tables 3.6 and

3.8 for Fang’s FDM database. Thus, from the results in Tables 3.5 and 3.7 one can find

that the average gain of PLCC lies between 11% to 16% while that of KLD lies between

1% to 4% for Hanhart’s FDM database. For Fang’s FDM database, the average gain of

PLCC ranges from 5% to 20% while that of KLD ranges from 1% to 3%.

For sequences with a high number of human faces (e.g., News report, the proposed method

with face saliency achieves better results than the other two approaches. For sequences

with low number of faces (e.g., Hall, Boxers) the results are quite similar in both cases,

regardless the use of face detection, as expected. Face definitely attracts human visual

attention and the results in Tables 3.5 and 3.7 (Hanhart’s FDM database) and Tables 3.6

and 3.8 (Fang’s FDM database) provide evidence of that fact.
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Table 3.7: Proposed method without face saliency map-Hanhart’s FDM data [1].

Method Prop.(Itti) Prop.(Hou) Prop.(Bruce)
Metric PLCC KLD PLCC KLD PLCC KLD

Boxers 0.533 0.865 0.604 0.789 0.501 1.535
Hall 0.261 1.378 0.418 0.629 0.375 1.983
Phone call 0.272 0.577 0.325 0.621 0.259 0.955
Laboratory 0.035 1.286 0.091 0.985 0.302 1.612
News report 0.202 1.489 0.316 1.041 0.347 2.150
Average 0.261 1.119 0.351 0.813 0.357 1.647

Table 3.8: Proposed method without face saliency map-Fang’s FDM data [3].

Method Prop.(Itti) Prop.(Hou) Prop.(Bruce)
Metric PLCC KLD PLCC KLD PLCC KLD

Boxers 0.039 0.561 0.019 0.497 0.123 2.232
Hall 0.024 0.462 0.103 0.429 0.069 2.736
Phone call 0.107 0.536 0.171 0.496 0.140 2.024
Laboratory 0.064 0.610 0.052 0.470 0.167 2.644
News report 0.004 3.621 0.002 3.151 0.003 0.718
Average 0.048 1.158 0.069 1.009 0.100 2.071

Visual comparison between saliency maps and FDM

Figure 3.6 shows the visual results of our proposed method without and with face saliency

map, for the Boxers sequence. It can be observed that in Figure 3.6 the Prop.(Hou)

method provides results that are significantly closer to the FDM obtained from the eye-

tracking experiments, i.e., the ground-truth (Figures 3.6c and 3.6b).

3.3 Conclusions

This chapter presents two methods to compute visual saliency maps for 3D video based

on fusion of saliency feature maps followed by a centre-bias weighting function. These

computational methods presented and analysed in the previous sections uses the two 3D

video FDM publicly available [1, 3] to validate theirs results. The experimental results

show that the proposed methods outperform methods introduced by other authors. Due

to them modular features that allow inclusion or not of specific saliency feature maps,

our methods can be applied to di↵erent types of 3D content format, such as stereoscopic

images and video, as well as video-plus-depth. In this work, these two methods will

be used, with some adaptation, in video summarisation and UHD retargeting methods

described in Chapters 4 and 5. In addition to these applications the methods are also

suitable for perceptual 3D video coding, quality evaluation and robust coding using regions

of interest, among others.
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(a) Original - Video (b) Fang’s FDM data [3] (c) Hanhart’s FDM data [1]

(d) Wang(Itti)[2] (e) Wang(Hou) (f) Wang(Bruce)

(g)
Prop. without face saliency
(Itti)

(h)
Prop. without face saliency
(Hou)

(i)
Prop. without face saliency
(Bruce)

(j)
Prop. with face saliency
(Itti)

(k)
Prop. with face saliency
(Hou)

(l)
Prop. with face saliency
(Bruce)

Figure 3.6: Visual saliency - proposed method with and without face saliency maps vs
competing methods for the frame 120.
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Video retargeting

This chapter presents a study on spatio-temporal video retargeting methods using visual

saliency to find a cropping window with the most important visual information contained

in high resolution images. For instance, resizing UHD video down to smaller resolutions,

such as those supported by mobile devices, can benefit from this type of retargeting. The

proposed methods are capable of dealing with di↵erent input video resolutions in order

to produce adaptive representations of the visual content, according to its importance as

predicted by saliency models. Furthermore, the proposed retargeting methods limit the

jitter between consecutive frames by applying time-domain filtering to guarantee that the

most important content is preserved while the cropped spatial window location and size

are stable.

Visual comparison between the results obtained from the proposed retargeting methods

and other non-content-aware methods, including seam carving, is presented for relative

performance evaluation. Additionally, the dynamics of the temporal evolution of retar-

geted frames in regard to their relative position in the higher definition frames, is also

utilized to evaluate the performance of the jitter attenuation filter. The influence of tem-

poral consistency on coding e�ciency is further studied in this chapter and the results of

these evaluations show that the proposed methods achieve good performance and have

potential application in seamless access to UHD content by any type of device with re-

duced screen resolution. These methods and part of the experiments presented in this

chapter were published in E1.

4.1 Spatio-temporal adaptation method based on vi-

sual saliency information

The video retargeting method presented in this section consists of a spatio-temporal adap-

tation and is broken down into four main steps, as shown in the Figure 4.1: (i) saliency
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map computation based on attention modeling; (ii) identification of the cropping window

which encloses the most salient part of the frame; (iii) improvement of temporal consis-

tency between consecutive frames through temporal filtering of the spatial location of the

cropping window; (iv) cropping of the original sequence based on the location and size

of the cropping window to obtain the retargeted video. The proposed method resizes a

video from resolution W ⇥H to W 0 ⇥H 0, where W and H are the width and height of

the original video, and W 0 and H 0 are the width and height of the retargeted video.

Retargeted Video

 Saliency Map
Computation

 Determination of
the cropping window 

Temporal
Filtering 

Cropping

Original Video

Figure 4.1: Functional diagram of the video retargeting method.

4.1.1 Visual saliency map computation

The starting point of the proposed retargeting procedure is the computation of a saliency

map based on the method presented in Section 3.1.2, which aggregates three saliency

feature maps, computed from the spatial (texture), temporal (motion) and face presence

information. Figure 4.2 shows the functional diagram of the saliency computation method

video, where the computation of the saliency features maps SS, SM , FD as well as the

normalization and aggregation and center-bias weighting function are explained in Section

3.1.2. Hou’s model [29] was used to process saliency feature maps SS. The motion field

required to compute the saliency map SM was estimated using block-matching methods

with a block size equal to [16⇥ 16]. The face saliency map FD is based on the Viola-Jones

algorithm [184], which is used to detect and locate the human faces in each video frame.

These saliency feature maps are combined into a single saliency map (one per frame)

with the same resolution as the original video sequence. For example, Figure 4.3b shows

the saliency map obtained for the Jockey sequence, where the white regions are the most

relevant and the white square represents the region of the jockey face.
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Motion Saliency

Video Saliency Map

Normalization and Aggregation

Center-bias weighting

SM

S’G

SG

Spatial Saliency

SS

Original Video 

Face Saliency

FD

Figure 4.2: Functional diagram of visual saliency computation method.

4.1.2 Determination of the cropping window

The cropping window of frame n is defined as cn(x, y, Cw,Ch), where x and y are the

spatial coordinates of the upper-left corner of the cropping window in the original frame,

and Cw and Ch are the width and height of the cropping window. The goal of this step

is to identify the cropping window cn in the saliency map SGn with highest energy. The

(saliency) energy of the cropping window E(cn) of the frame n is defined as:

E[cn(x, y, Cw,Ch)] =
x+Cw�1X

i=x

y+Ch�1X

j=y

SGn(i, j)
2 (4.1)

0  x  W � (Cw � 1), 0  y  H � (Ch� 1)

where SGn(i, j) is the saliency map value for position (i, j) of frame n and W and H are

the width and height of the original video sequence. The search for the cropping window

of the saliency map SG with highest energy is based on an exhaustive search process. For

each frame, a unique cropping window with fixed size (see red box in the Figure 4.3) is

found which will define which region of original sequence will be retained as a retargeted

frame.
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(a) Original UHD image - 3840⇥ 2160 (b) Aggregated saliency map - 3840⇥ 2160

Figure 4.3: Red box is the cropping window (1280⇥ 720) of the Jockey sequence.

4.1.3 Temporal filtering

In video retargeting methods the preservation of the visual important window of the

original video is necessary but not su�cient to obtain a good quality retargeted video.

Another important requirement is that the content of cropping window does not change a

lot between frames, i.e., that the cropping window displacements over the original video

frame space should be as smooth as possible without sudden changes. One possible way

to limit the magnitude of the changes in the spatial location of the cropping window

across successive frames is by application of a temporal filtering step to the location of

the cropping window, hopefully improving the stability of the retargeted video. To achieve

this goal a median filter is used to filter the consecutive values of the cropping window

coordinates. The option for a median filter is justified by the following facts: firstly, the

median of a set of n values is always one value from the set, something that does not

always occur with an average filter and secondly, the median filter is less sensitive to

errors or to the extreme values than the average filter [185].

Consider an original video sequence with n frames and a set of cropping window param-

eters C, denoted by C = {c0, c1, ..., cn�1}, where the subscripts represent the temporal

order of frames and the elements are vectors defining the position and size of the cropping

windows. Let Cx and Cy be two vectors made of the x and y coordinates of the upper-left

corner of the n cropping windows. The final spatial locations of the cropping windows

are obtained by applying a median filter of size 15 to the Cx and Cy, as per Equation 4.2

where Ĉx and Ĉy are filtered version of Cx and Cy. Note that, in this case, the median

filter is not applied to the Cw and Ch cropping window parameters as the sizes of these

windows are constant and have the same value for all frames of the video sequence.
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Ĉx = Median((Cx), 15) (4.2)

Ĉy = Median((Cy), 15)

Figure 4.4 shows the temporal evolution of the coordinates of the upper-left corner of the

cropping window (horizontal and vertical position). The blue and red lines represent the

x and y spatial positions before and after the median filtering of size 15. As shown in

Figure 4.4, after jitter removal, the displacements of the cropping window follow a much

smoother trajectory when compared to that of the unfiltered case.
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Figure 4.4: Temporal evolution of the upper-left corner of the cropping window - Jockey
video sequence.

4.1.4 Cropping

The last step of the method proposed is the cropping of the original video according to the

cropping windows location and size parameters where the location information has been

filtered as described in the previous section. Figure 4.8f shows one example of cropped

frame for Jockey video sequence.
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4.2 Hybrid video retargeting method based on visual

saliency information

In the method proposed in the previous section the retargeting approach was based on

the use of a maximum saliency energy criterion to define the position of the cropping

window on the original frame. However this approach has some problems as in some

cases important objects with high saliency values are not included in the final retargeted

frame. For example, in Figure 4.9f the boat is not totally included in the retargeted frame,

the same thing happening in Figure 4.8f where the head of the jockey is partially cut. In

order to solve this problem, an hybrid retargeting method is proposed which involves a

cropping step with a variable sized window followed by a resolution changing operation

to fit the cropped window to the desired resolution. Figure 4.5 shows the main steps of

this improved video retargeting method, in which some operations, like the visual saliency

map computation, are the same as those used in the retargeting method of the previous

section. The other operations are explained in the next sub-sections.

Retargeted Video

 Saliency Map
Computation

Determination of
the cropping window 

Spatio-temporal
filtering

Cropping

Original Video

Resizing

Figure 4.5: Functional diagram of the multi-operator video retargeting method.
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4.2.1 Determination of the cropping window

After the computation of visual saliency map as described in Section 4.1.1, the identifi-

cation of the cropping window in the saliency map is performed. The cropping window

should guarantee the inclusion the entire important objects i.e., with higher saliency val-

ues, inside its perimeter. Towards this end, in the current approach the cropping window

size and location are adjusted so that a pre-defined percentage of total energy of the

saliency map is included in the crop window. Recalling that the total energy En of the

saliency map of frame n is computed by Equation 4.3,

En =
W�1X

i=0

H�1X

j=0

SGn(i, j)
2 (4.3)

where SGn(i, j) is the saliency map value of the frame n in position (i, j) and W and H are

the width and height of the original video sequence, now one wants to determine the values

of x, y, Cw and Ch such that E[cn(x, y, Cw,Ch)] in Equation 4.1 represents a predefined

percentage of the total saliency energy En. The method to determine the cropping window

is composed of two main steps. The first step consists in the determination of a saliency

map Current SGn which contains only saliency values corresponding a percentage of the

total energy of the original SGn , for that a threshold-based method was used. In the

second step, the cropping window parameters i.e., x, y, Cw and Ch, are determined based

on spatial position of the saliency values in the Current SGn , more details about this

method can be found in Algorithm 1.

Figure 4.7 shows a cropping window that includes 70% of the total saliency map energy

for a frame of the Bosphorus video sequence. In this method, the cropping window size

is directly related to the percentage of total energy and so high values of this percentage

produce cropping windows with larger size. Conversely, if the percentage is low, then the

cropping window size is lower too, and in the limit the cropping window size is equal to

the desired retargeted frame size. If the size of the cropping window is larger than the

target size, a downsizing step based on a spatial scale change has to be employed to fit

the cropped window to the desired value.
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Algorithm 1 Determination of the cropping window

Set Percentage En;
Compute En;
Perc En = En ⇥ Percentage En;
Saliency threshold = 0;
Current En = Energy(SGn);
Current SGn(i, j) = SGn(i, j);
Previou SGn(i, j) = Current SGn(i, j);
while Perc En  Current En do
Saliency threshold++;
if Previou SGn(i, j)  Saliency threshold then
Current SGn(i, j) = 0

end if
Previou SGn(i, j) = Current SGn(i, j)
Current En = Energy(Current SGn);

end while
Find coordinates of upper-left corner of the cropping window (x, y) in Current SGn ;
Find the size of the cropping window (Cw,Ch) in Current SGn ;
Output: cn(x, y, Cw,Ch);

4.2.2 Spatio-temporal filtering

In order to limit the temporal jitter of the crop window between consecutive frames, a

spatio-temporal filtering is used to stabilize both the location and the size of the cropping

window. The filter is applied to the crop window parameter set C which is formed

by n cropping window parameters cn(x, y, Cw,Ch), one for each frame. The filtering

procedure followed in the present case is di↵erent from the one defined in the previous

section, because here both the vectors of position coordinates Cx and Cy as well as the

crop windows sizes CCw and CCh are median filtered, as specified in Equation 4.4

Ĉx = Median((Cx), 15)

Ĉy = Median((Cy), 15)

ĈCw = Median((CCw), 15) (4.4)

ĈCh = Median((CCh), 15)

where Ĉx, Ĉy, ĈCw and ĈCh are filtered versions of Cx, Cy, CCw and CCh and 15 is the

median filter size.
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(a) Original UHD image - 3840⇥ 2160 (b) Aggregated saliency map - 3840⇥ 2160

Figure 4.6: Red box is the cropping window with 70% of the total energy - Bosphorus
video sequence.

4.2.3 Cropping

The hybrid retargeting method applies a cropping operation to the original video sequence

based on the information of Ĉ, obtained in the Section 4.2.2. This operation keeps the

visual information within cropping window size (Ĉw ⇥ Ĉh) which represents the most

salient information of the original video sequence and discards the information outside

the cropping window. The result of this cropping operation for a frame of the Bosphorus

video sequence is shown in Figure 4.7a.

4.2.4 Resizing

Finally, and after the cropping operation, the frame is resizing to the desired resolution

(W 0 ⇥H 0 defined by the user) using as interpolation/downsampling filters those defined

and used in the MPEG-4 reference software [186]. Figure 4.7b shows the result of the

retargeting process applied to a frame from the Bosphorus video sequence, wherein Figures

4.7a and 4.7b show the frame after cropping and downsizing operations, respectively.
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(a) (b)

Figure 4.7: Result of the application, (a) cropping operation to 2517⇥1154, (b) downsizing
operation to 1280⇥ 720 - Bosphorus sequence.

4.3 Results and analysis

The performance of the proposed retargeting methods were evaluated through comparison

with the results of three competing methods: direct downsizing method (using the MPEG-

4 downsampling filter), centred cropping and seam carving method. A visual comparison

was performed as a user-driven approach while the impact of enforcing temporal con-

sistency in the coding e�ciency of retargeted video was also evaluated. Rate-Distortion

(R-D) e�ciency was used for the latter. The Jockey, Bosphorus and HoneyBee UHD test

sequences were used in the evaluation. The same HD 720p resolution (1280 ⇥ 720) was

used for all cases of retargeting from the UHD 4K resolution (3840⇥ 2160). The original

characteristics of each sequence are summarised in Table 4.1.

For the computation of visual saliency maps, the weights ws, wm and wf of Equation

(3.12) of Section 3.1.2 were the same for all frames. Experimentation showed that small

variations in these weights do not alter drastically the results and that values wS = wM =

wf = 1/3 were a good choice. When face detection is not used the weight wf is 0 and the

remaining weights are equal to wS = wM = 1/2. The HEVC reference software HM-16.6

was used to encode the retargeted video sequences. The encoder configuration was set

to Random Access. The R-D operational points used to obtain the R-D function were

obtained from the set of QP= {22, 27, 29, 32} for 100 frames.
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Table 4.1: Details of the test sequences used in the experiments.

Name #Frames Resolution

Jockey 600 3840x2160

Bosphorus 600 3840x2160

HoneyBee 600 3840x2160

4.3.1 Visual comparison

In order to make a fair visual comparison between the methods in analysis, all test cases

used the same ratio for the original and retargeted sequences sizes. Figures 4.8, 4.9 and

4.10 show the visual results of five di↵erent retargeting methods: downsizing, centered

cropping, seam carving, hybrid and the method presented in Figure 4.1, for the video

sequences Jockey, Bosphorus and HoneyBee.

Downsizing preserves the context of the scene but some important objects may not be

recognizable due to severe loss of detail. For example in the Jockey scene, the horse

number and the jockey face are not discernible and in HoneyBee sequence the honey

bee is almost invisible. In centered cropping it is assumed that the region of interest

is always located in the center of the image, but this assumption is not true in many

cases, particularly in UHD because the number of regions of interest tend to be spread

over larger resolution images. For instance, in Figure 4.8c, one may clearly observe that

center cropping is not an acceptable solution. The seam carving method resizes image by

preserving the important content and cutting out less important regions while ensuring

that the smoothness of the image is retained, i.e., no abrupt cuts are introduced into the

image. Nonetheless, when used for retargeting this method has some limitations as shown

in Figures 4.8d and 4.9d, where severe geometric distortions are visible in the retargeted

frames presented. For example, in Figure 4.9d boat canopy support and flagpole are

not straight. Regarding the first method described in this chapter, retargeting with a

fixed-size cropping window, the retargeted images contain the essential information of the

scene, as shown in Figures 4.8f, 4.9f and 4.10f. Since downsizing is not used, it is possible

to keep some high-resolution details, such as the bird on the fence and the face of the rider

in the Jockey scene or the honey bee in the HoneyBee sequence. However, this method

has some limitations, since it cuts and ignores important regions and objects especially
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when the retargeted frame size is sharply reduced. Thus, to preserve the relevant content

of a frame, the hybrid method should be used, with advantages demonstrated in Figure

4.9e that shows a retargeted frame without problematic cuts including the important area

of the boat together with some contextual regions which are not preserved when using

the first retargeting method proposed in this chapter.
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(a) Original - 3840⇥ 2160

(b) Downsize (c) Centered Cropping

(d) Seam carving [68] (e) Hybrid proposed (f) Proposed

Figure 4.8: Visual comparison of retargeted methods of the Jockey sequence.



106 Chapter 4. Video retargeting

(a) Original - 3840⇥ 2160

(b) Downsize (c) Centered Cropping

(d) Seam carving [68] (e) Hybrid proposed (f) Proposed

Figure 4.9: Visual comparison of retargeted methods of the Bosphorus sequence.



4.3. Results and analysis 107

(a) Original - 3840⇥ 2160

(b) Downsize (c) Centered Cropping

(d) Seam carving [68] (e) Hybrid proposed (f) Proposed

Figure 4.10: Visual comparison of retargeted methods of the HoneyBee sequence.
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4.3.2 Temporal consistency-visual comparison

In this section, a visual comparison between the results of the first proposed method with

and without temporal filtering is presented. In Figures 4.11 and 4.12, the first row shows

four consecutive frames of the original sequences and corresponding retargeted frames of

the proposed method without and with median filter are shown in second row and third

row of the Jockey and Bosphorus video sequence, respectively.

In the second row of Figure 4.11 is shown an unwanted horizontal displacement between

consecutive frames, particularly between the frames of Figure 4.11f and Figure 4.11g. For

the case of the Bosphorus sequence a vertical displacement is visible between the frames

presented in the Figures 4.12e and 4.12f, and also between the frames shown in Figures

4.12f and 4.12g. In third row of Figures 4.11 and 4.12 there are no significant sudden

changes in the positions (horizontal and vertical) of the content from frame to frame, i.e.,

the temporal filtering limits the jitter between adjacent frames. Overall the proposed

solution generates temporally smooth retargeted sequences without requiring application

of complex motion analysis and compensation methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.11: (a)-(d)Four consecutive frames of Jockey sequence. Retargeted (e)-(h) with-
out median filter and (i)-(l) with median filter.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.12: (a)-(d)Four consecutive frames of Bosphorus sequence. Retargeted (e)-(h)
without median filter and (i)-(l) with median filter.

4.3.3 The influence of temporal consistency on video encoding

e�ciency

To evaluate the impact of enforcing temporal consistency in the retargeted video com-

pression e�ciency, a set of simulations was carried out specifically for this purpose. In

these tests, the R-D e�ciency of the retargeted video with and without temporal consis-

tency is compared for three test sequences, Bosphorus, Jockey and HoneyBee. Figures

4.13, 4.14 and 4.15 show that better compression e�ciency is always obtained for retar-

geting with temporal consistency. The di↵erence between the two methods lies in the

range of 0.25 ⇠ 1.0dB for the three test sequences. This gain results from the larger

temporal inter-frame correlation attributable to the temporal consistency improvements.

This higher inter-frame correlation leads to a better motion compensated prediction and

benefits coding e�ciency. When jitter removal is not used and just the maximum-energy

cropping window is used to produce the retargeted video, there are sharp discontinuities

between the spatial locations of adjacent frames. This leads to non-matching regions in

the borders and thus more failures in motion estimation, as well as more complex mo-

tion fields which result in lower coding e�ciency. Therefore, a smooth trajectory of the
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cropping window over the time dimension benefits the R-D e�ciency. In the case of the

HoneyBee sequence (see Figure 4.15), the di↵erence between the two methods is less sig-

nificant, since the jitter of retargeted video without temporal filter is lower and almost

insignificant. From the experiments carried out with various test sequences the maximum

observed PSNR gain is approximately of the same magnitude for di↵erent types of con-

tent, which seems to indicate that more important than the content itself is the jitter

removal filter used to enforce the temporal consistency.
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Figure 4.13: R-D of the Bosphorus sequence.
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Figure 4.14: R-D of the Jockey sequence.
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Figure 4.15: R-D of the HoneyBee sequence.
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4.4 Conclusions

In this chapter video two retargeting methods based on visual saliency maps obtained from

visual attention models were presented. A visual comparison of the outputs generated by

such method shows their ability to preserve the relevant content of the UHD resolution

video. Furthermore, the compression of the retargeted UHD video using HEVC standard

is significantly improved when temporal consistency is enforced through filtering for jitter

removal, which shows a double benefit, both for the visual quality and for the coding

e�ciency. Although, the proposed methods are based on visual saliency models it would

be important to know how good the methods are in keeping the most interesting regions in

the retargeted content. This analysis requires collecting human visual fixation information

for di↵erent types of content and resolution, a research work which due to its logistic

complexity and cost has not been done yet. Another point that deserves further attention,

most likely in the near future, is the objective assessment of the proposed retargeting

methods in comparison to other similarly aimed competing solutions.



Chapter 5

3D/2D video summarisation

As explained in Chapter 2, most of the video summarisation methods presented in the

literature rely on two operations, detection of video shot boundaries and choice of repre-

sentative frames (key-frames) for each shot. Therefore an entire video sequence is firstly

divided into video shots based on scene transitions using one of several SBD methods

available in the state-of-the-art and then a key-frame extraction method is applied to

each video shot to extract the most representative frames based on specific features of

the video. In theory it is possible to dispense with the video shot segmentation step and

choose a set of representative frames for the entire video, but in practice this procedure

is not practical as it would require storing and analysing a enormous amount of video

frames with high memory and computational requirements.

This chapter presents a video shot boundary detection method and four key-frame ex-

traction methods that can be combined to form a framework for the derivation of e�cient

temporally condensed representations of 2D and 3D video. The framework can be used

to create compact versions of the input video sequences, according to meaningful criteria,

to ensure that the most relevant visual information of the original sequence is preserved.

The shot boundary detection method proposed is based on a clustering technique with

only two clusters to ensure computational simplicity and is shown to provide good per-

formance. The first key-frame extraction method described selects a set of frames that

is optimal from the point of view of the quality of the video shot reconstructed based

on them. This method is not tied to any distortion metric and can be specialized by

choosing specific distortion measures. The next method proposed address the complexity

issues that ail the previous method by proposing a fast solution. Then the following two

methods introduce 3D video specific information and perceptual quality modelling into

the summarisation framework by making use of perceptually relevant distortion measures

and features derived from the depth of 3D contents in the video summarisation procedures.

The results demonstrate that the proposed methods outperform or achieve similar perfor-

mance as other summarisation methods. Some of the methods experiments and results

presented in this chapter were published in J1, C3, C4, C5, C8 and C9.
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5.1 Video shot boundary detection

In this section an algorithm for automatic detection of video shots with di↵erent percep-

tual features is presented. The main novel aspects of the proposed algorithm compared

to other state-of-the-art algorithms are: (i) the flexibility of the algorithm since that can

be applied to di↵erent 3D content formats, such as stereoscopic video or video-plus-depth

and also to 2D video; (ii) no explicit thresholds are required in the decision processes;

(iii) no training is needed.

The proposed shot boundary detection algorithm was initially developed for 3D video,

however as a result of its flexible structure which can include di↵erent features in the

decision process, it can also be applied 2D video shot boundary determination.

In the case of 3D video, the algorithm is able to identify sets of consecutive frames which

exhibit depth coherency by using features that capture depth-temporal characteristics.

A combination of measures of texture variation along the temporal dimension and depth

variance is used in a K-means clustering algorithm to find the 3D video frames which are

likely to be true 3DSB. The transitions between 3D video shots can classified as smooth

or sharp according to the speed of change of the visual information over the transitions.

They are smooth when gradual transitions occur in both the temporal and depth dimen-

sions, whilst sharp transitions take place when the abrupt temporal transitions and depth

discontinuity occur simultaneously. Joint texture variation along the temporal dimension

and depth variance (intra-frame) is used by the K-means clustering algorithm to locate

3DSB. The absolute value of frame di↵erence and sum of absolute values of luminance

histogram di↵erence are used as dissimilarity metrics in the temporal dimension, while in

the depth dimension, the variance of depth of each 3D video frame is used as a measure

of depth similarity. The K-means clustering algorithm is used to determine 3DSB frames

without resorting to thresholds, nor training sequences to find optimal parameters for

decision.

Proposed 3D video shot boundary detection method

The proposed algorithm relies on depth and temporal information. The temporal infor-

mation is computed from texture frames, while depth information can be extracted from

either depth maps or disparity maps. An adequate combination of these two features in

3D video provides the necessary information for scene shot boundary detection.
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The sequence of operations of the proposed algorithm is shown in Figure 5.1. Firstly,

the uncompressed 3D video sequence, texture and depth information (disparity or depth

maps) are processed to compute the feature vectors with relevant information. In this

operation, the temporal variation in image texture and the variance of depth data are

computed as the relevant features to be used for 3DSB detection. Since temporal variation

is represented by two values (see the algorithm description below), the actual feature

vector associated with each 3D frame is composed of three elements, i.e., image di↵erence,

histogram di↵erence and depth variance. Secondly, the feature vectors obtained for frame

transitions are normalized. Thirdly, a set of 3DSB candidate frames are identified. Next,

the K-means clustering algorithm is used to group candidate frames into two clusters, each

one containing either 3DSB or non-3DSB frames. The relevant shot boundary transition

frames are defined as those located in the resultant 3DSB frames cluster. The clustering

process iteratively recomputes the two centroids and re-clusters the candidate frames until

convergence is attained and the average Euclidean distance between the feature vectors

of candidate frames and the corresponding cluster centroid is minimised. As pointed

out previously this algorithm does not incorporate thresholds in the decision process.

Furthermore the number of clustering iterations until convergence is small and so its

computational complexity is low.

The proposed 3DSB detection algorithm is described in detail as follows:

Computation of feature vectors - for each frame i, the mean of absolute di↵erence

dsad(i) and sum of absolute luminance histogram di↵erence dhist(i) of adjacent frames are

computed according to equations (5.1) and (5.2), respectively. The combination of these

metrics provides improved detection accuracy of temporal transitions. In this context,

dsad(i) is a measure of temporal activity, defined as:

dsad(i) =
1

|S|
X

r"S

|fi�1(r)� fi(r)| (5.1)

where fi(r) indicates the pixel value of luminance at spatial position r in the ith frame,

S represents the set of pixel positions in the frame, and |S| is the total number of pixels

in a frame.

The sum of absolute di↵erence of the luminance histograms of two consecutive frames

provides a low complexity and robust mechanism for measuring temporal activity since

this is mostly insensitive to translational, rotational and zooming of camera motions [95].
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3D Sequence

Computation of feature vectors

Texture Depth

Normalisation

Selection of 3DSB frames

Clustering 

Identification of 3DSB candidates

Figure 5.1: 3DSB algorithm architecture.

For each frame i, dhist(i) is calculated by obtaining the histograms of pixel values of the

current and previous frames and then computing the sum of the absolute di↵erences of

matching bins of the histograms of the two frames. Thus, dhist(i) is defined as:

dhist(i) =
1

Nb

NbX

c=1

|Hi�1(c)�Hi(c)| (5.2)

where Nb represents the total number of histogram bins, and Hi(c) represents the number

of pixels in frame i contained in the cth bin.

For each frame i, the absolute di↵erence of depth variance d�depth
(i) between frames fi�1

and fi is processed according to Equation (5.3).

d�depth
(i) = |�2(fi�1)� �2(fi)| (5.3)

where �2(fi) is the variance of depth in frame fi. Using the three scalar features

computed as described, a vector of features V (i) = [dsad(i), dhist(i), d�depth
(i)] is defined



5.1. Video shot boundary detection 117

for each frame i.

Normalisation - previous to further processing the individual components of the feature

vectors of 3DSB candidate frames, V ⇤(i) = [d⇤sad(i), d
⇤
hist(i), d

⇤
�depth

(i)], are normalised to

the range [0...1]. The feature vector of normalised values for frame i, ˆV (i), is then given

by

ˆV (i) =

"
d⇤sad(i)

Mdsad
,
d⇤hist(i)

Mdhist
,
d⇤�depth

(i)

Md�depth

#
(5.4)

where Mdsad, Mdhist and Md�depth
are the largest possible values of d⇤sad, d

⇤
hist and d⇤�depth

,

respectively. Thus, the range of the feature vectors is a cube with two opposite vertices at

[0, 0, 0] and [1, 1, 1]. Figure 5.2 shows the feature vectors of all 3DSB candidates frames

for the Knight’s Quest 3D sequence obtained with a temporal window of 5 frames, where

x-axis is d̂sad, y-axis is d̂hist and z-axis is d̂�depth
of the feature vector normalized V̂ .
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Figure 5.2: Feature vectors of all 3DSB candidates frames.

Identification of 3DSB candidates - to reduce the number of initial candidate frames,

a pre-selection process is carried out over non-overlapping temporal windows W with

maximum size corresponding to 1 sec. of video, i.e., 1 < Wsize < #Frames/sec. For

each window, a maximum of one frame can be selected as 3DSB candidate. Frame i is
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selected as 3DSB candidate, if all three elements of the corresponding feature vector V (i)

are greater than their counterparts within the same window.
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Figure 5.3: Initial centroids of the two clusters.

Clustering the candidates - at this stage the K-means algorithm is applied to all

3DSB candidates feature vectors to cluster them into two clusters, i.e., K = 2. Figure

5.2 shows the feature vectors of all 3DSB candidates frames of the Knight’s Quest 3D

sequence represented in the feature space. The two centroids are initialized to be the

largest and smallest possible magnitude vectors [1, 1, 1] and [0, 0, 0] as shown in Figure

5.3. The Euclidean distance was chosen as the distance metric to use in the clustering

operations. At each iteration, the candidate feature vectors are clustered to the nearest

centroid and afterwards the two centroids are recalculated to be the mean vectors of the

respective clusters. The process is repeated until the centroids do not su↵er any changes.

The final clustering distribution puts each feature vector into one of the two clusters and

is then used to classify the candidate frames into frames belonging to a shot boundary

and other frames.

Selection of 3DSB frames - to decide which frames are part of 3DSB it is assumed

that the cluster with the largest magnitude centroid is the 3DSB frames cluster. This

cluster contains the frames where the relevant 3D transitions occur, according to the three
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features represented in the feature vector. Figure 5.4 shows the result of the clustering

and selection process of candidates as 3DSB frames of the Knight’s Quest 3D sequence

where the two clusters and respective centroids are clearly identified.
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Figure 5.4: Selection of the 3DSB frames.

Experimental setup and datasets

The performance of the proposed algorithm was evaluated empirically through tests based

on four stereoscopic sequences with di↵erent duration, resolution, number and type of

scene transitions. The characteristics of each sequence are listed in Table 5.1. Sequence

Knight’s Quest 3D is a 3D animation with several sharp and smooth transitions, Old-

timers shows an outdoor video scene with just a few sharp transitions and sequence

Summer in Heidelberg shows an elevated view of Heidelberg with several shots connected

by smooth transitions. 3DTestSeq sequence was created by concatenating four sequences:

Ballet, BookArrival, Kendo and Ballons. This concatenated sequence provides a reference

for testing abrupt scene changes. The depth information of the concatenated sequence

was obtained by concatenating the original sequences depth maps. All smooth transi-

tions are of type dissolve, fade-in/fade-out, with duration ranging from 20 to 100 frames,

approximately.

The disparity maps used in these experiments were computed by the fast bilateral method

proposed in [187], with the algorithm parameters set to W = 39, w = 3, �s = 14, �c = 23
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and TAD-threshold 53. To enable the assessment of the performance of the shot bound-

ary detection algorithm, reference locations for the boundaries of the test 3D videos were

marked manually by one observer and confirmed by three other observers. A scene transi-

tion was declared to be real when all observers agree on its occurrence. The performance

of the proposed 3DSB detection algorithm was measured by the Recall Rate (R), Pre-

cision Rate (P) [107] and accuracy measure (F1) [108]. More details of theses measures

have been reported in Section 2.4.1.

Table 5.1: Details of the test sequences used in the experiments.

#Transitions

Name Length Resolution #Frames Sharp Smooth

Summer in
Heidelberg

6:00 1280x720 9000 18 4

Knight’s
Quest 3D

1:39 1024x576 2615 21 4

Oldtimers 0:53 1440x1080 1450 4 0

3DTestSeq 0:32 1024x768 800 3 0

Results and analysis

Table 5.2 presents the results obtained by using the proposed algorithm to detect 3DSB in

the sequences described above. These results clearly show that high Recall and Precision

rates are achieved. It is also clear that sharp transitions are fully detected, as observed

for Oldtimers and 3DTestSeq sequences, where F1, Recall and Precision rates reach the

maximum possible value. For those sequences with smooth transitions, such as Summer

in Heidelberg and Knight’s Quest 3D, the proposed algorithm is not capable of detecting

all smooth transitions but the overall detection accuracy is still high. Note that, since

smooth transitions are not uniform, i.e., there are di↵erent lengths and types, e.g., fades,

dissolve, wipe, zoom, rotation, etc, such wide heterogeneity results in increased transition

detection di�culty, especially when the elemental types of transitions are combined.

From the experiments, it was found that longer smooth transitions are the most di�cult

to detect, as expected. It was also found that the accuracy of the algorithm is practically

independent of the temporal window size, particularly for small sizes. In the Knight’s

Quest 3D sequence, some dependency was found due to the existence of several sharp
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transitions very close to each other. In this case, some transitions are not detected when

two or more complete shots are included in one single window. This is an indication that

accurate detection of all shot transitions requires small window sizes, e.g., 10�15 frames.

In regard to depth information, it was found that its quality has significant influence

on the algorithm detection accuracy. For example, if a particular frame has an abrupt

transition with depth discontinuity, but the algorithm used to compute the disparity map

does not provide accurate information for this specific frame, then the 3DSB detection is

likely to miss such transition. Figures 5.5 and 5.6 show smooth and sharps transitions of

the Summer in Heidelberg and Oldtimers sequences.

(a) F1203-Shot4 (b) F1209 (c) F1214 (d) F1219 (e) F1224 (f) F1229-Shot5

(g) F3018-Shot8 (h) F3019-Shot8 (i) F3020-Shot8 (j) F3021-Shot9 (k) F3022-Shot9 (l) F3023-Shot9

Figure 5.5: Summer in Heidelberg sequence: 12 frames corresponding to dissolve smooth
transition (a)-(f) and sharp transition (g)-(l).

F593-Shot2 F594-Shot2 F595-Shot2 F596-Shot3 F597-Shot3 F598-Shot3

F1283-Shot4 F1284-Shot4 F1285-Shot4 F1286-Shot5 F1287-Shot5 F1288-Shot5

Figure 5.6: Oldtimers sequence: 12 frames (3 from each shot) corresponding to 2 sharp
transitions.
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Table 5.2: Results of the 3DSB detection.

Sequence Window size Recall Precision F1

Summer in Heidelberg

3 0.95 1 0.97
5 0.95 1 0.97
10 0.95 1 0.97
15 0.95 1 0.97
20 0.95 1 0.97

Knight’s Quest 3D

3 0.95 0.95 0.95
5 0.95 0.95 0.95
10 0.95 0.95 0.95
15 0.90 0.95 0.92
20 0.90 0.95 0.92

Oldtimers

3 1 1 1
5 1 1 1
10 1 1 1
15 1 1 1
20 1 1 1

3DTestSeq

3 1 1 1
5 1 1 1
10 1 1 1
15 1 1 1
20 1 1 1

Average - 0.97 0.99 0.98

5.2 Key-frame extraction methods

In this section, four key-frame extraction methods based on minimum reconstruction

error are presented. The first one, is an adaptation of Zhu Li algorithm’s [4] and the

other three are our proposed ones. A fast solution based on a pre-processing step which

reduce computational complexity of the Zhu Li algorithm’s and two key-frame extraction

methods based on aggregated saliency maps and features derived from the depth for 3D

content are proposed and evaluated.

The performance of the proposed methods is evaluated by using di↵erent metrics, de-

scribed in Chapter 2 and comparing them with similar state-of-the-art methods. The

results of this evaluation metrics show that proposed methods have a good performance.
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5.2.1 Optimal key-frame extraction method based on minimum

reconstruction error

The key-frame extraction process involves selecting the set of m key-frames which best

represent a temporal shot of n frames. The number of key-frames m to be selected

can be given as a user-defined parameter or computed according to some predefined

criteria. The method used for identification of the representative key-frames is based

on the minimisation of the dissimilarity between frames of the original shot and the

corresponding ones reconstructed from the set of key-frames. A key-frame set is defined as

optimal if a shot reconstructed from these key-frames has the minimum possible distortion

(or dissimilarity) when compared to the original shot [4]. In this method, zero-order

temporal interpolation is used to reconstruct a shot from a set of key-frames. The key-

frames are identified by the temporal indices that indicate their position in the original

shot.

The problem of optimal key-frame extraction

For convenience, some preliminary concepts and the notation are defined and presented

Table 5.3 which are used in the next sections.

Table 5.3: Key-frame summary notation.

Symbol Description

F Original temporal shot
n Number of frames of the F

K Key-frame summary
m Number of frames of the K

F

0 Reconstructed temporal shot

The problem of optimal key-frame extraction can be defined as follows. Let a shot

of n frames be denoted by F = {f0, f1, ..., fn�1}, where the subscripts represent the

temporal order of frames. The corresponding set of m key-frames is denoted by

K = {fl0 , fl1 , ..., flm�1}, in which lk is the frame index (referred to the source set F) of the

kth element inK. Thus, K is defined by indices l0, l1, ..., lm�1, such that l0, < l1, ..., < lm�1.

Note that l0, l1, .., lm�1 correspond to frame indices in shot F and since in general the

key-frames are not equidistant, the lk values do not necessarily follow an arithmetic pro-

gression.
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For example, given a shot F = {f0, f1, f2, f3, f4} a possible set of key-frames could be

K = {f0, f3}, with l0 = 0 and l1 = 3. Then, set F 0 = {f 0
0, f

0
1, ..., f

0
4} is reconstructed from

the set of key-frames K, by using zero-order interpolation to fill in missing frames with

the most recent one taken from K, i.e., the same frame is repeated along the time interval

where key-frames do not exist, that is,

f 0
k = fi=max(l) s.t. l"{l0, l1, ..., lm�1}, i  k (5.5)

Thus, for the previous example the reconstructed set F 0 is given by F 0 = {f0, f0, f0, f3, f3}.

The distortion (i.e., dissimilarity) D(K) associated to the key-frames set K is computed

between the corresponding reconstructed shot F 0 and the original one F , as follows.

D(K) =
1

n

n�1X

k=0

d(fk, f
0
k) (5.6)

where d(fk, f 0
k) is the frame distortion. Note that if fk is selected into K, then d(fk, f 0

k) =

0. The key-frame ratio R(K) is defined as the ratio between the number of frames m in

set K and the total number of frames n in shot F , thus,

R(K) =
m

n
(5.7)

Using the previous definitions, the key-frames extraction method is formulated as a distor-

tion minimisation problem, where the objective is to find a set of key-frames in each shot

that provides the best representation of original temporal shot, under a given maximum

key-frame ratio Rm. Therefore, given the constraint Rm, the optimum set of key-frames

K⇤ is the one that minimises the distortion of its corresponding reconstructed shot, i.e.,

K⇤ = argmin
K

D(K) s.t. R(K)  Rm (5.8)

For example, given a shot F of n = 100 frames and a key-frame ratio R(K) = 0.2, the

proposed algorithm classifies at most 20 frames as key-frames, i.e., m = 20.

Dynamic programming solution

Assuming that the first frame of any shot is always included in K there are
�
n�1
m�1

�
=

(n�1)!
(m�1)!(n�m)! di↵erent ways to select the key-frames to assemble a rate Rm = m

n summary.
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When n is large, for typical values of m smaller than n, the number of possible solutions

is also very large and an exhaustive search for the best solution is not practical. Dynamic

programming provides and alternative way to finding a solution to this dissimilarity min-

imisation problem by breaking it down into simpler subproblems in a recursive manner

[188].

A stage Dk
t is defined as the minimum total distortion incurred by a key-frame set with

t frames, ending at frame fk(lt�1 = k). Therefore,

Dk
t = min

l1,l2,...,lt�2

n�1X

j=0

d(fj, fi=max(l)) s.t. l"{l1, l2, ..., lt�2}, i  j (5.9)

Note, that l0 = 0 and lt�1 = k are removed from the optimisation process and 0 < l1 <

l2 < ... < lt�2 < k, and i  j. After some manipulation, the above formulation for

stage Dk
t can be broken into two parts (see Equation (5.10)), where the first part is the

previous distortion stage Dlt�2
t�1 already computed, (i.e., it represents the minimum total

dissimilarity produced by the set with t � 1 key-frames, ending at frame index lt�2) and

the second part, elt�2,k represents the distortion reduction, when frame k is selected into

the set of t � 1 key-frames ending at frame lt�2. This leads to the following Equation

(5.10),

Dk
t = min

lt�2

{Dlt�2
t�1 � elt�2,k} (5.10)

where the distortion reduction is defined as,

elt�2,k =
n�1X

j=k

[d(fj, flt�2)� d(fj, fk)] (5.11)

Since the first frame of shot F is always selected into set K, the initial distortion stage

D0
1 is given as

D0
1 =

1

n

n�1X

j=1

d(f0, fj) (5.12)

Given the above equations, it is possible to compute the distortion stage Dk
t for any set

of t key-frames ending at frame k by the recursion defined in Equation (5.10) using the

initial distortion stage Equation (5.12).

The optimal set of K⇤ key-frames is given by computing the frame indices l0, l1, ..., lm�1
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found according to:

lm�1 = argmin
c
{Dc

m} c"{m� 1,m, . . . , n� 1}

lt = argmin
lt

{Dlt
t+1 � elt,lt+1} t"{1, 2, . . . ,m� 2} (5.13)

l0 = 0

where l0 and lm�1 represent the first and last frame index selected into set K⇤ =

{fl0 , fl1 , ..., flm�1}, respectively.

The evaluation of the key-frame extraction method based on minimum reconstruction er-

ror is performed in the next sections with specific dissimilarity (distortion) metric d(fk, f 0
k).

5.2.2 Fast key-frame extraction method based on MSE and

PCA

This section describes a fast key-frame extraction method based on a pre-processing step

that reduces the computational complexity of the solution presented in Section 5.2.1.

Both methods use dynamic programming to find the key-frame sets that are optimal

in a temporal rate-distortion sense. The methods described use two distortion metrics,

one based on a simple MSE measure and the other making use of Principal Components

Analysis (PCA). The performance of the key-frame extraction methods are compared in

terms of the computational complexity and selected key-frame quality as measured by

the reconstructed video distortion. The key-frame extraction methods are then compared

from the perspective of trade-o↵ between the distortion and the computation complexity.

To ease the understanding of the methods, the definitions and formulations used in their

description are presented next.

Definitions and formulations

Frame distortion - the distortion is measured by the distance between two frames fj

and fk and is denoted by d(fj, fk). Di↵erent metrics can be used to calculate this frame

distortion d(.). In this study MSE and a metric based on a PCA decomposition are used.
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The MSE metric is given by:

d(fj, fk)MSE
=

1

h⇥ w

h�1X

y=0

w�1X

x=0

(fj(x, y)� fk(x, y))
2 (5.14)

where h ⇥ w is the frame size. The PCA metric is the Euclidean distance between two

frames in PCA space. The PCA metric is defined as:

d(fj, fk)PCA
=
q
kT (S(fj))� T (S(fk))k2 (5.15)

where S(.) denotes a spatial downsampling process applied to the original frames to

reduce their resolution (using the MPEG-4 downsampling filter [186]) and T is the PCA

transform [4].

Frame-by-frame distortion - this distortion is denoted by d(fk, fk�1) and it is a metric

that reflects the temporal activity of the video sequence. It is a specific case of the frame

distortion defined before, computed between the current frame fk and the immediately

preceding frame fk�1. The basis distance function d(.) can also be MSE or PCA as defined

above.

Proposed method

The fast key-frame extraction method proposed here is based on a simple principle which is

confirmed by observation of optimal summaries, the temporal density of key-frames tends

to be higher in segments (temporal shots) with higher temporal activity. Therefore an

estimate of the temporal activity obtained using the frame-by-frame distortion introduced

in the previous paragraphs, can be used to decide how many key-frames should be used

to represent a video sub-segment or conversely how long should a sub-segment be to be

properly represented by a given number of key-frames. Figure 5.7 shows a plot of the

frame-by-frame distortion metric computed on the Foreman sequence where are clearly

visible high activity segments like that from frame 270 to frame 330 and low activity

segments like that from frame 350 to 400. A possible way to use this activity information

to accelerate the summarisation is to first split the original video/temporal shot into

sub-segments with same temporal activity and then independently summarise each of

these sub-segments. Since the dynamic programming algorithm used to extract the key-

frames has better performance, in terms of processing time, for small search windows,
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this split-and-summarise two step procedure reduces the computational complexity when

compared to a full segment summarisation. The algorithm of the method proposed works
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Figure 5.7: Frame-by-frame distortion of the Foreman sequence.

as follows; first an average sub-segment activity/distortion AD(S) is computed, according

to Equation (5.16), which requires that the number of desired sub-segments nseg has been

defined beforehand, i.e., the number of sub-segments is a user-defined parameter.

AD(S) =
1

nseg

n�1X

k=1

d(fk, fk�1) (5.16)

Then a scanning of the original video/temporal shot to be partitioned is started, where

frames are sequentially assigned to each sub-segment starting with the first, until each

sub-segment has an accumulated distortion equal to AD(S) and all frames have been

processed, as detailed in Algorithm 2.

Once the number of frames in each sub-segment is known and since we want that all

sub-segments are summarised with the same temporal rate R(K), the number of key-

frames in a given sub-segment, m, is computed multiplying the total number of frames in

that sub-segment n by R(K), i.e., m = R(K) ⇥ n. For instance if we desire a constant

R(K) = 0.40 for all sub-segments and one sub-segment has n = 27 frames, it will be

represented using m = 11 key-frames.



5.2. Key-frame extraction methods 129

Algorithm 2 Video segment splitting algorithm

Input Definition: number of sub segments
Compute: AD(S)
FrameIdx = FirstFrameIdx
for SubSegmentIdx = 1 till number of sub segments do
Set to Zero: current sub segment distortion
Set to Zero: CountTotalFramesInSubSegment i
while current sub segment distortion  AD(S) do
Add FrameIdx to CurrentSubSegmentList
Increment: FrameIdx
Increment: FramesInSubSegment i
Update: current sub segment distortion

end while
Increment: SubSegmentIdx

end for

The next step uses the key-frame extraction method presented in the Section 5.2.1 to

summarise each sub-segment extracting the desired number of key-frames as computed

according to R(K) and the length of the sub-segment. In the experiments performed,

both the MSE and PCA defined in Equations (5.14) and (5.15) were used as distortion

measures d(fk, f 0
k) during the summarisation.

Results and analysis

A set of experiments was conducted to evaluate the performance of the method proposed

in this section. The performance was measured in terms of computational complexity

and distortion of the reconstructed video distortion. Those tow sets of values (complexity

and distortion) were compared to the corresponding data obtained when the algorithm

of 5.2.1 was used to summarise the entire video shot without splitting into sub-segments.

Additionally, a computational complexity comparison between PCA and MSE distortion

metrics, used in key-frame extraction method, was done and the results presented. In

the context of this Thesis, the computational complexity is equated with the time spent

to construct a key-frame summary and is measured in seconds [s]. The experiments

were performed on a desktop computer with a 2.4GHz processor and 1.0GB of RAM

memory. In all simulations the temporal rate used was R(K) = 0.4 (good trade-o↵

between distortion and conciseness of the key-frame summary). The video sequences

Foreman and Mother&Daughter were used, both with QCIF resolution at 30 frames per

second. The characteristics of each sequence are listed in Table 5.4.
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Table 5.4: Details of the test sequences.

Name #Frames Resolution

Foreman 100 176x144

Mother&Daughter 100 176x144

Performance of the fast key-frame extraction method - the results of the fast key-

frame extraction method and Zhu Li’s algorithm using the MSE and PCA metrics are

shown in Tables 5.5 and 5.6 for Foreman and Mother&Daughter sequences, respectively.

Each table shows values for the computational complexity and distortion (which is cal-

culated with the Equation (5.6)), for di↵erent nseg (1- Zhu Li’s method, 3, 4 and 5).

As can be observed from the data in the Tables 5.5 and 5.6 increasing the number of

sub-segments results in a decrease of computation complexity with a slight increase in

distortion. The reduction of computational complexity is independent of the video se-

quence and distortion metric chosen. These results were expected as the division of the

video sequence/temporal shot into sub-segments decreases the size of the search windows

used by the method and the key-frame summary is easier to build. The distortion val-

ues (MSE and PCA) vary over di↵erent range of values for the two test sequences. The

reason of this fact is explained by type and magnitude of the motion present in the test

sequences. While the Mother&Daughter sequence is characterized by slow motion, the

Foreman is a medium-speed motion sequence. The best result for Foreman (Table 5.5)

is obtained when the original sequence is divided in three segments (nseg = 3) here, the

computational complexity is 13% and 15% of the complexity of summarising the entire

sequence (Zhu Li’s algorithm) for the two metrics (MSE and PCA) and the distortion is

approximately the same for both metrics. In the case of the Mother&Daughter sequence

(Table 5.6), the results are quite similar to those of the Foreman sequence.

In conclusion, the proposed method which pre-partitions the temporal shot to be sum-

marised into sub-segments reflecting the temporal activity distribution does indeed reduce

the computational complexity of the key-frame extraction method presented in Section

5.2.1, with gains of nearly 85% at about the same distortion, as demonstrated using two

test sequences.
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Table 5.5: Performance of the proposed method vs Zhu Li’s [4] method for Foreman
sequence.

Methods Metric MSE PCA

n

seg

Computational
complexity[s]

Distortion
MSE

Computational
complexity[s]

Distortion
PCA

Zhu Li [4] 1 478.00 81.72 273.60 1.43

Proposed
3 62.12 82.68 41.70 1.44
4 18.06 86.35 20.30 1.46
5 11.23 86.97 15.20 1.49

Table 5.6: Performance of the proposed method vs Zhu Li’s [4] method for
Mother&Daughter sequence.

Methods Metric MSE PCA

n

seg

Computational
complexity[s]

Distortion
MSE

Computational
complexity[s]

Distortion
PCA

Zhu Li [4] 1 496.32 6.18 276.77 0.20

Proposed
3 62.73 7.14 42.20 0.21
4 18.17 10.81 20.50 0.24
5 11.30 11.43 15.62 0.27

Distortion metrics comparison - the computational complexities incurred summaris-

ing video sequences Foreman and Mother&Daughter are listed in Tables 5.7 and 5.8. It is

noticeable that computation complexity increases when the relation n �m increases for

both the MSE and PCA distortion metrics, for both test sequences. Overall, the PCA

metric results in lower-complexity than MSE, but for small values of n (e.g., n = 20) the

MSE metric is faster. The PCA metric is faster than MSE, because the resolution of the

sequence on which the PCA measure is computed is first reduced through downsampling,

after which the PCA transform is applied. For a sequence with QCIF resolution the PCA

transform is applied to a downsampled video with resolution 8x6 and while the MSE is

computed on the 176x144 resolution original video. When these metrics are computed

with images of the same resolution, the processing time of the PCA is higher than the

MSE metric.

To verify if the use of one or the other metric influenced the identity of the frames

selected for the summary, the index of the key-frames obtained using the two distortion

metrics (MSE and PCA) as well as and the number of key-frames common to the two

summaries are listed in Tables 5.9 and 5.10 for sequences Foreman and Mother&Daughter,

respectively. On average the two summaries have about 49% key-frames in common for

the Foreman sequence and 51% for the Mother&Daughter sequence.
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In the next section, a key-frame extraction method for 3D video is proposed.

Table 5.7: Computational complexity of the Foreman sequence.

n m R(K) MSE[s] PCA[s]

20 8 0.4 0.75 3.78
40 16 0.4 12.16 6.48
60 24 0.4 61.73 42.01
80 32 0.4 194.61 117.36
100 40 0.4 478.00 273.60

Table 5.8: Computational complexity of the Mother&Daughter sequence.

n m R(K) MSE[s] PCA[s]

20 8 0.4 0.83 3.76
40 16 0.4 12.56 6.53
60 24 0.4 63.66 42.30
80 32 0.4 212.50 118.41
100 40 0.4 496.32 276.77

Table 5.9: Key-frames of the Foreman sequence.

n m R(K) Key-frames index Key-frames index # common
MSE distortion metric PCA distortion metric Key-frames index

20 8 0.4 0,2,4,6,8,10,12,17 0,3,5,6,10,12,14,18 3

40 16 0.4
0,2,4,6,8,10,12,16, 0,3,5,6,10,12,14,18,

18,20,22,25,29,32,35,37 20,21,24,25,29,30,32,34 9

60 24 0.4
0,1,2,4,6,8,10,12,15, 0,3,6,10,12,14,18,20,24,

17,19,21,24,28,30,32,35,37, 25,29,30,32,34,35,38,42,44, 11
40,43,47,50,52,55 46,47,49,51,54,57

80 32 0.4

0,2,4,6,8,10,12,15,17, 0,3,6,10,12,18,20,24,25,
19,21,24,28,30,32,35,37,40, 29,30,32,34,35,38,42,44,46,
43,47,50,52,55,63,65,67,69, 47,49,51,54,57,60,62,63,65, 16

71,72,74,76,78 68,73,74,76,79

100 40 0.4

0,2,4,6,8,10,12,15,17, 0,3,6,10,12,14,18,20,24,
19,21,24,28,30,32,35,37,40, 25,29,30,32,34,35,38,42,44,
43,47,50,52,55,63,65,67,69, 46,47,49,51,54,57,60,62,63, 21
71,72 73,74,76,78,80,84,87, 65,68,73,74,76,77,78,80,86,

89,92,94,97 88,93,97,98



5.2. Key-frame extraction methods 133

Table 5.10: Key-frames of the Mother&Daughter sequence.

n m R(K) Key-frames index Key-frames index # common
MSE distortion metric PCA distortion metric Key-frames index

20 8 0.4 0,1,3,5,7,9,14,17 0,1,3,4,7,8,9,12 5

40 16 0.4
0,1,6,9,12,20,24,26, 0,3,4,6,21,22,23,24,

27,28,29,30,31,33,35,37 26,28,29,30,32,34,36,38 7

60 24 0.4
0,12,20,24,26,27,28,29,30, 0,3,4,6,22,23,24,26,28,
32,34,37,40,43,45,47,48,49, 30,32,34,39,41,43,45,46,47, 14

51,53,55,57,58,59 48,50,52,57,58,59

80 32 0.4

0,12,20,25,27,29,31,33,36, 0,3,4,6,22,23,26,28,30,
39,43,45,47,49,51,53,55,57, 32,34,39,41,43,45,46,47,48,
58,59,60,61,62,63,64,65,67, 50,52,57,58,59,60,61,62,63, 14

69,71,74,76,78 65,68,74,77,79

100 40 0.4

0,12,20,25,27,29,31,33,37, 0,3,4,6,22,23,26,28,30,
41,44,46,48,50,52,54,57,58, 34,41,43,45,46,47,48,50,52,
59,60,61,62,63,64,65,67,69, 57,58,59,60,61,62,63,65,68, 18
72,75,77,79,81,84,86,88,90, 74,80,82,83,84,85,87,89,90,

92,94,96,98 93,96,97,98

5.2.3 3D key-frame extraction based on perceptually relevant

depth regions

To the best of the authors’ knowledge, there is no generic solution for the problem of

3D video summarisation, be it stereoscopic or video-plus-depth 3D video. Most of the

existing summarisation methods for 3D video were developed for use with 3D mesh models

and so are unsuitable for others 3D formats. A further problem is the lack of common

performance evaluation frameworks which makes comparing the few existing 3D video

summarisation methods a di�cult or even impossible task.

This section describes a method to select the most representative 3D key-frames from 3D

video sequences to build a 3D video summary. The method is based on the algorithm

of Section 5.2.1 combined with a 3D specific dissimilarity measure that considers the

relevancy of the texture and depth information of the frames under consideration for

inclusion in the summary.

The method proposed first divides the original 3D video sequence into temporal segments,

i.e., 3D video shots, using an algorithm based on clustering of depth-temporal features

and derived from the one described in Section 5.1. Next, for each video shot a set frames

is automatic selected, where the number of frames chosen per shot is based on some

predefined criteria, such as the scene motion or is given as a user-defined parameter.

Overall, the main novel aspects of the proposed method are:(i) the flexibility of the method
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since it can be applied to di↵erent 3D video formats, such as stereoscopic video and video-

plus-depth; (ii) the distortion measure used in the key-frame selection takes into account

the perceptual relevancy of the depth information; (iii) better performance than UnS and

2D summarisation method based on clustering (Clu).

Proposed method

The functional diagram of the key-frame extraction method for 3D video (stereo or video-

plus-depth) is shown in Figure 5.8. First, the 3D video is fragmented into video shots based

on depth-temporal feature with a specific SBD algorithm. This algorithm combines three

visual features (color histogram, pixels di↵erence and depth relevance regions area) and

uses K-means clustering to detect video transitions. After that, an key-frame extraction

method is used to select the most the 3D frames in each video shot to build the desired

3D key-frame summary. In the Figure 5.8, m is the number of key-frames and it also

defines key-frame summary size.

3D Video
(Stereo and V+D)

Shot Boundary
Detection

m3D Key-frame 
Extraction

3D Summarym

Figure 5.8: Functional diagram of the 3D key-frame extraction method based on percep-
tually relevant depth regions.

Now, it is explained how the perceptual relevancy of the depth is quantified, for use in

the key-frame extraction procedure.

Depth relevance regions identification method - Depth Sense Metric (DSM) is

a measure of the depth similarity of two 3D frames fk and fn. DSM is based on the

principle that depth information of image regions around scene objects is perceptually

more important than that of other regions. Therefore the depth information of these

regions has to have a higher weight when measuring the quality or relevance of 3D video

frames, as shown in [189], and [190, 191].

Since depth information can be present in explicit or implicit form in 3D video, as is

the case in video-plus-depth and stereo video, respectively, the computation of the depth

relevancy depends on the 3D video format chosen.
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In the next subsections two methods for computing this depth relevancy measure, one for

each 3D video format, will be explained in detail.

Stereo Video Relevancy Region Computation - for this 3D video format, the method

to identify the depth relevance regions based on [189] proceeds as follows:

1. Compute the absolute di↵erence ADfk(x, y) between the two views of the stereo

frame fk under consideration, according to Equation (5.17).

ADfk(x, y) = |flk(x, y)� frk(x, y)| (5.17)

0xM�1;0yN�1

where flk(x, y), frk(x, y) are the left and right views of stereo frame fk, respectively

and MxN is frame size.

2. Remove noise from ADfk(x, y) using a median filter (3 ⇥ 3). The low magnitude

elements are suppressed based on the principle that their relevancy for depth per-

ception is also low.

3. Repeat previous two steps for stereo frame fn.

4. Based on the results from the previous steps, determine binary masks M(fk) and

M(fn) for the two stereo frames under comparison n and k, by setting to 255 all

points of the filtered AD(.) located in pixel positions where the di↵erence is non-zero

and setting to zero otherwise.

5. Compute the intersection mask IM(fk, fn) as the intersection of the nonzero points

in masks M(fk) and M(fn) as given below,

IM(fk, fn) = M(fk) \M(fn) fk 6= fn (5.18)

This step is common to the video-plus-depth format. The intersection mask

IM(fk, fn) defines the points where the DSM is computed.

The results of the above method are shown in Figure 5.9 for the Pantonime sequence.

Figure 5.9c shows ADfk(x, y) of the left (Figure 5.9a) and right (Figure 5.9b) views of

the first frame f0. Figures 5.9d and 5.9e shows the depth relevance regions (i.e., binary

masks) of frames f0 and f1, respectively. The intersection mask IM(f0, f1) is presented

in Figure 5.9f.



136 Chapter 5. 3D/2D video summarisation

(a) Left view f0 (b) Right view f0

(c) Absolute disparity f0 (d) Mask M(f0)

(e) Mask M(f1) (f) IM(f0, f1)

Figure 5.9: Steps for the calculation depth relevance region of the Pantonime sequence.

Video-plus-depth - for this 3D video format, the depth relevance regions are found

through the following 4-step procedure:

1. Extract the edge of the depth map, by the application of the Canny edge algorithm

[192].

2. Each edge pixel is then “dilated”, using as structuring element a disk shape with

radius equal to 10 pixels.

3. Based on the two previous steps, determine binary masks M(fk) and M(fn) for the

two frames under comparison fn and fk, by setting to 255 all pixel positions where

the filtered edge map is non-zero and setting to zero otherwise.

4. Compute the intersection mask IM(fk, fn), according to Equation (5.18).
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(a) Original f0 (b) Depth map f0

(c) Out of Canny algorithm f0 (d) Mask M(f0)

(e) Mask M(f1) (f) IM(f0, f1)

Figure 5.10: Calculation the depth relevance region of the Ballet sequence.

The Figure 5.10 shows the result of the application of depth relevance regions identification

method for the Ballet sequence. The Figure 5.10a and 5.10b show the texture and depth

maps of the first frame f0 of the sequence, respectively. The Figure 5.10c presents Canny’s

algorithm output of depth map, presented in Figure 5.10b. Figures 5.10d and 5.10e

show the binary masks of frames f0 and f1, respectively. Finally, the intersection mask

IM(f0, f1) is presented in Figure 5.10f.

Once the regions of higher depth relevancy are identified, the DSM measure is computed

based on the pixels of the two frames fk and fn and located inside the intersection mask

IM(fk, fn). The DSM is computed according to
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DSM(fk, fn) =1� 1

2


MSE(fk(x, y), fn(x, y))

A

�
(5.19)

x, y " IM(fk, fn)

where A is normalisation factor given by the maximum MSE obtained in the 3D video

temporal segment, i.e., video shot.

Shot boundary detection algorithm - the shot segmentation method employed here

is derived from the algorithm proposed in the Section 5.1 with some modifications. The

SBD algorithm is based on the measures of texture and depth variation along the temporal

dimension. In the 3D video sequence i.e., stereo video and video-plus-depth, the mean of

absolute di↵erence dsad(i) and the mean of absolute di↵erences of luminance histogram

dhist(i) are used as the relevant metrics in the spatial dimension, while in the depth

dimension, the absolute di↵erence between the number of pixels dnp(i) in the binary

masks M(fi) is used. For each frame i, the mean of absolute di↵erence dsad(i) is defined

as:

dsad(i) =
1

|S|
X

r"S

|fi�1(r)� fi(r)| (5.20)

where fi(r) indicates the pixel value at spatial position r in the ith frame, S represents

the set of pixel positions in the overall frame and |S| is the total number of pixels in a

frame. The mean of absolute luminance histogram di↵erence dhist(i) for each frame i is

defined as follow,

dhist(i) =
1

Nb

NbX

c=1

|Hi�1(c)�Hi(c)| (5.21)

where Nb represents the total number of histogram bins, and Hi(c) represents the number

of pixels in frame i contained in the cth bin. For each frame i, the absolute di↵erence of

the number mask pixels dnp(i) is specified as,

dnp(i) = |#pixels(M(fi�1))�#pixels(M(fi))| (5.22)

where M(fi) is the binary mask of the frame i and #pixels(.) is the number of nonzero

pixels in the mask. These tree metrics are combined in a feature vector V (fi). Finally,

the feature vector V (fi) of each 3D frame i is used in a K-means clustering algorithm to

determine 3D shot boundary frames, similarly to what is done in the SBD algorithm of

Section 5.1.
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Texture-depth measure - combines texture and depth information based on the un-

derlying idea that texture and depth similarity perception can be merged together into

a single 3D quality index, as proposed by [193] where a metric ⌧ is defined for two 3D

frames fk and fn as

⌧(fk, fn) = T ↵
k,nZ

�
k,n (5.23)

where Tk,n refers to an objective texture similarity metric between frames fk and fn, Zk,n

is a measure which combines their relevant depth regions with the average depth level in

the common region, ↵ and � are positive constants.

In this work Tk,n is measured by the Structural Similarity Index Measure (SSIM) of [194]

and Zk,n by the DSM measure defined before.

However since the texture-depth measure defined in Equation (5.23) is a similarity measure

and we need a dissimilarity indicator we define a texture-depth dissimilarity measure ⌧̂

based on ⌧ as follows:

⌧̂(fk, fn) = 1� ⌧(fk, fn) (5.24)

This quantity, ⌧̂(fk, fn) is a dissimilarity measure that can be used to evaluate 3D video

quality in a full-reference mode if one of the input frames (say fk) is a reference and the

other (fn) is the frame which quality one wants to compute. The measure output assumes

values in the interval from zero to one, where zero represents the the highest quality and

one the lowest.

Key-frame extraction method - this method selects a set ofm key-frames from a video

shot (temporal segment) with n frames. The selection of these 3D key-frames is based

on minimisation of the global dissimilarity between the reconstructed and the original

video shot in terms of the texture quality and depth perception. For that purpose, the

key-frame extraction method based on minimum reconstruction error presented in the

Section 5.2.1 is used. Where, the frame dissimilarity (distortion) d(fk, f 0
k) measure using

⌧̂ defined in Equation (5.24).

Experimental setup and datasets

For the experiments six sequences were used. This set of test data has a variety of di↵erent

types of content, resolution, duration, number of frames, 3D video format and the number

of video shots. Table 5.11 presents the relevant information about this test data.
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Table 5.11: Characterisation of the test sequences used in the experiments.

ID Sequence Name
Length

Resolution #Frames Format #Video Shots
(mm:ss)

s01 BMX 0:09 1920⇥ 1080@25fps 240 Stereo 4
s02 3DTestSeqA(Sofa,Feet,Hallway,Notebook,Bike,Car) 1:00 1920⇥ 1080@25fps 1500 Stereo 6
s03 3DTestSeqB(Akko,Exit,Ballroom,Vassar,Rena) 0:52 640⇥ 480@25fps 1300 Stereo 5
s04 3DTestSeqC(Box,Hall,Phone call,Lab,News,Poker) 1:00 1920⇥ 1080@25fps 1500 V+D 6
s05 3DTestSeqD(Ballet,Book,Kendo,Ballons) 0:32 1024⇥ 768@25fps 800 V+D 4
s06 3DTestSeqE(Dog,Champagne tower,Pantonime) 0:52 1280⇥ 960@25fps 1300 Stereo 3

Total 4:43 - 6640 - 28

The test sequences 3DTesSeqi, i 2 {A,B,C,D,E} were composed by concatenating the

sequences indicated between parenthesis to generate scene cuts at the joining points. The

ground-truth data of the 3D video transitions were obtained manually, as it is described

in the Section 5.1.

The positive constants ↵ and � in Equation 5.23, used to weigh di↵erently the two com-

ponents of the texture-depth measure were set to 1, but other optimised values could be

used for better matching with user perception of similarity.

Results and analysis

In this section the performance of the proposed method was evaluated. For a quantitative

evaluation, key-frame ratio R(K), SRD and Fidelity measures are used. The texture-

depth measure defined in Equation (5.24) is used to compute the distances between the

frames d(.) of the Fm measure and distortion function d(.) of SRD measure.

Key-frame ratio - in this experiment 18 summaries from the six sequences are used,

with di↵erent number of key-frames {m = 2, 3, 4}. The Table 5.12 shows the key-frame

ratio R(K) of the all test sequences for the three m. The 3DTestSeqE sequence has the

lower R(K) values for each m, which is a desirable value for any summarisation method.

Table 5.12: Key-frame ratio.

#Key-frames
ID Sequence Name 2 3 4

s01 BMX 3.33E-02 5.00E-02 6.67E-02
s02 3DTestSeqA 8.00E-03 1.20E-02 1.60E-02
s03 3DTestSeqD 7.69E-03 1.15E-02 1.54E-02
s04 3DTestSeqC 8.00E-03 1.20E-02 1.60E-02
s05 3DTestSeqD 1.00E-02 1.50E-02 2.00E-02
s06 3DTestSeqE 4.62E-03 6.92E-03 9.23E-03
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SRD performance - the performance of the proposed method was evaluated by compar-

ing the 3D key-frames summaries (proposed) against summaries generated by UnS and

Clu methods, which are used as reference. The same number of key-frames is used in

these three methods, i.e., proposed (Pro), UnS and Clu. In the case of UnS, the selection

of key-frames is based on a constant temporal distance between frames. In the case of

the Clu method, key-frame selection is based on the method proposed by [114] for 2D

video. In the Clu method, the color histogram algorithm is applied only to Hue compo-

nent of the HSV color space. Next, the K-means clustering algorithm is applied to cluster

similar frame based on hue-colour histogram. Subsequently the frame which is closest to

the cluster centroid measured by Euclidean distance was selected as a key-frame for each

cluster. The number of clusters and key-frames are fixed a priori.

The SRD of these 18 summaries were computed and the results are shown in Table 5.15,

where (max), (min) and (sd), are the maximum, minimum, and standard deviation of

SRD for all test sequences. The results of Table 5.15 show that when it is increased

the m the SRD values decrease for all methods. This is an expected behaviour since

when m increases, the original and reconstructed shots become more similar as interpo-

lation of missing frames benefits from the higher-rate sampling that occurs during the

summarisation procedure.

To compare the performance of the proposed method with the UnS and Clu methods, it

is also useful to express the results as a relative improvement measures �SRD and �Fm

for the SRD and Fm measure. Tables 5.13 and 5.14 show the relative improvement of the

proposed method in comparison with the UnS and Clu methods. Two relative measures

are used: �SRD and �Fm. These are expressed as percentages and computed as follows,

�SRD =
SRD✓ � SRDP

SRD✓
⇥ 100 (5.25)

�Fm =
FmP � Fm✓

Fm✓
⇥ 100 ✓ 2 {UnS, Clu}

where SRDP and FmP are the values of SRD and Fm for the proposed method, respec-

tively. The SRD and Fm values used in this comparison are the average values shown in

the Tables 5.15 and 5.16, respectively.

From the results shown in Table 5.13, one can observe that the proposed method is always

better than the UnS and Clu methods. When the proposed method is compared with

UnS, the �SRD range lies in the interval [6.96%, 33.52%] and the best result is obtained

for summaries with 3 key-frames. When the comparison is done between proposed and
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Clu methods, the �SRD ranges from 11.07% to 32.51% and the best result is obtained for

summaries with 4 key-frames.

Table 5.13: 3D summarisation - �SRD comparison: proposed vs UnS and Clu methods.

#key-frames 2 3 4
Metric [%] �

SRD

�
SRD

�
SRD

Average

Proposed vs UnS 6.96-29.31 9.66-33.52 8.30-31.91 19.95
Proposed vs Clu 11.37-28.97 12.29-30.87 11.07-32.51 21.18

Fidelity evaluation - in the second experiment, the performance evaluation of the pro-

posed method in comparison with UnS and Clu by quantifying the Fidelity measure is also

executed. The same conditions of the first experiment were used in this trial. Table 5.16

shows the absolute values of the Fidelity measure obtained in the experiment. Contrary

to SRD measure, when it is increased m, Fidelity values of the all methods in analysis

increase.

Table 5.14: 3D summarisation - �Fm comparison: proposed vs UnS and Clu methods.

#Key-frames 2 3 4
Metric [%] �

Fm

�
Fm

�
Fm

Average

Proposed vs UnS 7.86-9.51 9.31-13.19 5.64-20.70 11.03
Proposed vs Clu 8.14-30.20 5.61-9.24 0.57-9.11 10.48

From the results shown in Table 5.14, one can observe that the proposed method is

always better than UnS and Clu methods. When the proposed method is compared with

UnS, the �Fm range lies in the interval [7.86%, 19.02%] and the best result is obtained for

summaries with 4 key-frames. The average results are quite similar to UnS when compared

proposed with the Clu method. The overall results show that the frames selected by the

proposed method e↵ectively allow better reconstruction of the original shot than UnS and

Clu methods.

Finally from the results, one can conclude that the key-frames extracted with the proposed

method constitute an accurate representation of original 3D video shots since the SRD

and Fm values of proposed method are consistently better than UnS and Clu. The

results also show that the texture-depth measure can be used in objective evaluation of

the performance of 3D video summarisation.
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Table 5.15: SRD measure results.

#Key-frames: 2 #Key-frames: 3 #Key-frames: 4
Method Pro UnS Clu Pro UnS Clu Pro UnS Clu

Metric
SRD SRD SRD SRD SRD SRD SRD SRD SRD

max min sd max min sd max min sd max min sd max min sd max min sd max min sd max min sd max min sd

s01 0.67 0.43 0.12 0.76 0.60 0.08 0.76 0.45 0.15 0.63 0.38 0.12 0.69 0.46 0.10 0.71 0.49 0.10 0.59 0.35 0.12 0.66 0.47 0.09 0.66 0.49 0.09
s05 0.27 0.13 0.05 0.34 0.16 0.07 0.37 0.25 0.05 0.25 0.13 0.05 0.36 0.23 0.05 0.42 0.23 0.07 0.23 0.13 0.04 0.29 0.21 0.03 0.38 0.17 0.08
s06 0.45 0.26 0.09 0.48 0.36 0.06 0.57 0.33 0.11 0.43 0.24 0.09 0.50 0.43 0.04 0.53 0.32 0.10 0.42 0.23 0.09 0.48 0.34 0.07 0.52 0.38 0.06
s07 0.65 0.19 0.17 0.67 0.35 0.14 0.67 0.39 0.11 0.61 0.18 0.16 0.63 0.34 0.13 0.60 0.44 0.06 0.57 0.17 0.15 0.59 0.32 0.12 0.57 0.39 0.07
s08 0.61 0.32 0.13 0.62 0.44 0.09 0.63 0.44 0.09 0.58 0.32 0.11 0.61 0.43 0.08 0.64 0.33 0.13 0.56 0.30 0.11 0.59 0.40 0.08 0.59 0.35 0.11
s09 0.72 0.28 0.23 0.76 0.38 0.20 0.81 0.41 0.20 0.71 0.28 0.22 0.75 0.41 0.18 0.76 0.38 0.20 0.69 0.28 0.22 0.72 0.42 0.17 0.73 0.40 0.19
Average 0.56 0.27 0.13 0.60 0.38 0.11 0.63 0.38 0.12 0.53 0.25 0.12 0.59 0.38 0.10 0.61 0.37 0.11 0.51 0.25 0.12 0.56 0.36 0.09 0.57 0.36 0.10

Table 5.16: Fidelity measure results.

#Key-frames: 2 #Key-frames: 3 #Key-frames: 4
Method Pro UnS Clu Pro UnS Clu Pro UnS Clu

Metric
Fm Fm Fm Fm Fm Fm Fm Fm Fm

max min sd max min sd max min sd max min sd max min sd max min sd max min sd max min sd max min sd

s01 0.33 0.11 0.11 0.33 0.13 0.10 0.27 0.10 0.07 0.33 0.14 0.08 0.33 0.15 0.08 0.30 0.14 0.07 0.39 0.19 0.09 0.39 0.16 0.11 0.29 0.17 0.05
s05 0.56 0.29 0.10 0.56 0.34 0.07 0.60 0.34 0.11 0.70 0.31 0.13 0.61 0.42 0.09 0.63 0.30 0.12 0.72 0.30 0.16 0.69 0.34 0.14 0.69 0.38 0.13
s06 0.55 0.33 0.10 0.44 0.30 0.07 0.44 0.25 0.09 0.56 0.33 0.11 0.41 0.29 0.05 0.52 0.33 0.08 0.57 0.33 0.11 0.55 0.30 0.12 0.52 0.33 0.09
s07 0.58 0.14 0.15 0.57 0.15 0.16 0.41 0.14 0.11 0.57 0.20 0.13 0.57 0.07 0.17 0.43 0.16 0.10 0.58 0.29 0.14 0.57 0.15 0.14 0.57 0.26 0.13
s08 0.56 0.21 0.15 0.45 0.15 0.14 0.39 0.20 0.09 0.56 0.22 0.14 0.45 0.21 0.10 0.56 0.20 0.16 0.56 0.26 0.12 0.48 0.19 0.13 0.48 0.26 0.09
s09 0.66 0.17 0.28 0.62 0.10 0.29 0.38 0.13 0.14 0.66 0.19 0.25 0.62 0.11 0.28 0.66 0.16 0.29 0.68 0.22 0.25 0.63 0.18 0.26 0.66 0.18 0.25
Average 0.54 0.21 0.15 0.49 0.19 0.14 0.42 0.19 0.10 0.56 0.23 0.14 0.50 0.21 0.13 0.52 0.22 0.14 0.58 0.26 0.15 0.55 0.22 0.15 0.53 0.26 0.12
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5.2.4 3D and 2D key-frame extraction driven by aggregated

saliency maps

This section proposes a generic framework for automatic key-frame extraction, either from

2D or 3D video sequences, using aggregated visual saliency maps to compute a perceptu-

ally meaningful distortion metric, which includes visual attention estimates in the process

of key-frame selection. For each video segment (shot), a corresponding set of key-frames

is chosen via dynamic programming by minimising the dissimilarity between the original

video shot and the shot reconstructed from the set of key-frames. The aggregated saliency

map integrates di↵erent maps of visually relevant features, allowing to discriminate be-

tween similar frames, in pixel-wise sense, but considering and distinguishing regions of

di↵erent visual relevance for the human observer. In the case of 3D video, the aggregated

saliency map is validated by comparison with ground-truth data from a publicly available

database of fixation density maps.

In general, the main novel aspects of the proposed methods are: (i) the key-frame selection

process is driven by an aggregated saliency map, computed from various feature maps,

which in turn correspond to di↵erent visual attention models; (ii) a method for computing

aggregated saliency maps in 3D video is proposed and validated using fixation density

maps, obtained from ground-truth eye-tracking data; (iii) 3D video content is processed

within the same framework as 2D video, by including a depth feature map into the

aggregated saliency; (iv) objective evaluation metrics are used to test the performance

of the proposed method; (v) better performance than UnS and Attention Curve (AtC)

methods.

Proposed framework

The generic framework for key-frame extraction from classic 2D video (only one view:

V1), stereo video (two views: V1 and V2) or video-plus-depth (one view: V1 and Depth)

is shown in Figure 5.11. The original 2D or 3D video sequence is split into temporal shots,

based on either temporal-only or depth-temporal feature clustering, respectively. The 3D

video shot boundary detection algorithm previously proposed in Section 5.1 is used in

this work with small changes. This algorithm combines di↵erent visual features and uses

K-means clustering. Nevertheless, as other key-frame extraction methods proposed in

this chapter, the proposed framework is not dependent on any particular shot boundary

detection algorithm.
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Recent works have concluded that aggregation of saliency maps is beneficial for improving

the performance of eye-fixation prediction methods, though just increasing the number

of maps does not necessarily lead to better results [195]. Following these leads, saliency

map is computed by aggregating the information from two or three saliency feature maps,

depending on whether 2D or 3D video is being processed, respectively. These saliency

feature maps are computed from spatial, temporal and depth information and then com-

bined into a single saliency map. This map is then further processed through a centre-bias

weighting function to model the human tendency to look at the centre of an image [196].

Note however, that the centre-bias hypothesis does not hold systematically, as recently

discussed in [197]. The method used to computed saliency feature maps is based on

method proposed in Section 3.1.1. As explained in the next section the resulting saliency

map is then used in the process of selecting the key-frames.

Saliency-driven distortion - in the key-frame extraction process, a distinctive element

of this work is the new distortion metric defined to drive the maximisation of similar-

ity (by distortion minimisation) between the extracted key-frames and the corresponding

video shot. In the proposed framework, such distortion metric comprises not only infor-

mation about frame di↵erence, but also the visual relevance of di↵erent image regions

as estimated by the aggregated saliency map. A saliency-driven distortion metric is thus

defined on a frame-basis, which integrates two types of information from each single pixel:

(i) the luminance di↵erence between frames under comparison; and (ii) the di↵erence of

visual importance between co-located pixels in each frame, as given by the corresponding

aggregated saliency maps.

The relevant characteristic of this distortion metric is its ability to distinguish between

frames that are pixel-wise similar but with di↵erent regions of visual interest. This allows

extending the concept of frame dissimilarity (or distortion) beyond the absolute di↵erence

of their pixels, by considering that similar frames with di↵erent visual saliency maps are

in fact perceived as di↵erent by human observers. For instance, in 3D video two frames

might have very similar luminance and colour signals (i.e., similar texture), but quite

di↵erent depth, with resulting di↵erences in the degree and foci of attention. Therefore,

from a user point of view these two images are di↵erent despite the similarity of their

texture. A similar analysis can be done for 2D video taking into account accumulated

motion, for instance.

The proposed saliency-driven distortion function is defined as the sum of two terms, where
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the saliency di↵erence between two frames is used as a pixel-wise weighting factor for the

frame similarity measure and at the same time the frame dissimilarity is added as an

independent term on its own. This function is given by Equation (5.26), for any two

frames fk, f
0
k, with spatial resolution h⇥ w,

d(fk, f
0
k) =

1

hw

h�1X

j=0

w�1X

i=0

h
dpk(i, j) +

⇣
1� dpk(i, j)

⌘
dsk(i, j)

i
(5.26)

with
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k(i, j)|
255

(5.27)

and

dsk(i, j) =
���Sfk

G (i, j)� S
f 0
k

G (i, j)
��� (5.28)

where Sfk
G (i, j) is the saliency value for each pixel located at (i, j) in frame fk.

Using the above definition given by Equation 5.26, the higher the pixel-wise dissimilarity

between frames, the lower is the importance of the visual saliency. For instance, in the

extreme case where the pixel di↵erence is maximum (i.e., dpk(i, j) = 1), the dissimilarity

is also maximum, regardless of the saliency weight dsk(i, j). This means that, if the

visual contents of two frames are completely di↵erent from each other, the corresponding

saliency di↵erence is not a meaningful dissimilarity measure and the frame di↵erence on

its own is enough to measure the perceptual dissimilarity.

On the other hand, the di↵erence in visual saliency becomes more relevant as the similarity

between frames increases. For instance, in the extreme case of any two pixels with equal

values (i.e., dpk(i, j) = 0), the dissimilarity becomes dependent on the saliency factor

dsk(i, j). This means that, if two frames are equal and their saliency maps are also equal,

then d(fk, f 0
k) = 0, i.e., minimum dissimilarity. However, if two frames are equal and their

saliencies are di↵erent, then this means that they are perceived as di↵erent frames with

the level of dissimilarity given by the saliency value dsk(i, j) in Equation 5.26.

This distortion metric is used as input to an optimisation algorithm based on dynamic

programming, which finds the indices of the best key-frames to be selected from the

original shot. The algorithm, described in Section 5.2.1, chooses the key-frames such

that the overall distortion between the original shot and the shot reconstructed from the

key-frames is as small as possible.
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Figure 5.11: Framework for 2D/3D key-frame extraction.

Computation of saliency feature maps - as mentioned above, the aggregated saliency

map results from fusion of three di↵erent feature maps, which are estimates of visual

relevancy measured in the spatial (texture), motion and depth domains. The spatial and

motion feature maps, SS and SM respectively, are computed from a single view, while the

depth feature map SD is derived from the depth maps. Both stereoscopic video and video-

plus-depth can be used to obtain the depth related saliency information, with the former

requiring prior depth computation from the stereoscopic views. Then, normalisation and

fusion of these feature maps generates the intermediate map S
0
G which is further weighted

with a centre-bias weighting function to generate the final aggregated visual saliency map

SG. More details about the method to compute the saliency feature maps, see Section

3.1.1 of the Thesis, since method used here is the one described in that section.

Key-frame extraction method - involves selecting the set of m key-frames which best

represent a temporal shot of n frames. The number of key-frames m to be selected

can be given as a user-defined parameter or computed according to some predefined

criteria. The method used for identification of the representative key-frames is based on

the minimisation of the saliency-driven dissimilarity between frames of the original shot



148 Chapter 5. 3D/2D video summarisation

and the corresponding ones reconstructed from the set of key-frames. For that purpose,

the key-frame extraction method based on minimum reconstruction error presented in the

Section 5.2.1 is used. Where, the frame dissimilarity (distortion) d(fk, f 0
k) that quantifies

the di↵erence between frame fk of F and its corresponding frame f 0
k from F 0 measure

using d(fk, f 0
k) defined in Equation (5.26). The dynamic programming algorithm is used

to solve the key-frame ratio-dissimilarity optimisation problem. For more details of this

method, see the Section 5.2.1 of the this document.

Experimental setup and datasets

For the experiments with 2D video, six sequences of the Open Video Project (the first

six of Table 5.17) [198] and four sequences from [62] were used. These video databases

were chosen because they provide user-defined summaries to be used as ground-truth for

performance evaluation. A similar evaluation methodology was used in [114]. Addition-

ally, this set of test data has a variety of di↵erent types of content, such as documentary,

education, historical, lecture and ephemeral. For the experiments with 3D video, seven

test sequences were used namely, Boxers, Hall, Phone call, Laboratory, News report from

the NAMA3DS1 database [199], Poker sequence from the European FP7 Project MUS-

CADE [200] and Poznan hall 2 from the Poznan multiview video database [201]. Table

5.17 summarizes the relevant information about these sequences.

Table 5.17: Details of the test sequences.

ID 2D Sequence Name #Frames Resolution

s1 The Great Web of Water-seg.01 3279 352⇥ 240@30fps
s2 A New Horizon-seg.02 1797 352⇥ 240@30fps
s3 Oceanfloor Legacy-seg.01 1740 352⇥ 240@30fps
s4 Drift Ice as a Geologic Agent-seg.10 1407 352⇥ 240@30fps
s5 Hurricane Force - A Coastal Perspective-seg.03 2310 352⇥ 240@30fps
s6 The Future of Energy Gases-seg.09 1884 352⇥ 240@30fps
s7 Canada Day 765 352⇥ 240@30fps
s8 Dragon Boat 702 352⇥ 240@30fps
s9 Walk with the Dragon 461 352⇥ 240@30fps
s10 Nitobmov 792 352⇥ 240@30fps

3D Sequence Name

s11 Boxers 250 1920⇥ 1080@25fps
s12 Hall 250 1920⇥ 1080@25fps
s13 Phone call 250 1920⇥ 1080@25fps
s14 Laboratory 250 1920⇥ 1080@25fps
s15 New report 250 1920⇥ 1080@25fps
s16 Poker 250 1920⇥ 1080@25fps
s17 Poznan hall2 200 1920⇥ 1088@25fps
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For the computation of visual saliency maps, the weights ws, wm and wd of Equation (3.6)

of Section 3.1.1 were assigned constant values, following the underlying idea that motion

features are more relevant than others [202]. It was found empirically that the results are

not critically dependent on small variations of these weights and after experimentation

the values ws = wm = 0.5 for 2D video and ws = wd = 0.25, wm = 0.5 for 3D video were

chosen to be used in the remaining experiments. Note that these weights are regarded as

system parameters and di↵erent criteria can be used to choose their values, either fixed

or adaptive. To compute the motion saliency map SM (using block-matching), square

blocks with size equal to 16 pixels were used. The spatial saliency map SS was computed

using Hou’s model [29].

Results and analysis

This section describes the experiments carried out to evaluate the performance of the

proposed methods, including saliency map aggregation and saliency-driven 2D/3D key-

frame extraction.

Aggregated saliency maps for 3D video - the performance of the method proposed

for computing the aggregated saliency map for 3D video was evaluated by comparing the

computed saliency maps against the ground-truth fixation density maps obtained from

the eye-tracking data from a dataset recently made available [1]. In this dataset the

fixation density maps are obtained by post-processing the gaze points recorded from the

left and right eyes, which are combined into a map of single gaze points using the stereo

disparity. Then, similarly to the method proposed in [203], a gaussian filter is applied,

followed by normalisation between 0 and 255. All 3D video sequences presented in Table

5.11 were used to validate the aggregated saliency maps. The spatial saliency computation

methods from Itti [22], Hou [29] and Bruce [30] are also used as references for comparison.

Note that, although these are 2D image-based methods, they provide known references

for performance comparison in studies like [2] where they were compared with methods

to compute saliency maps of 3D images.

Table 5.18 shows the PLCC and KLD values obtained with the use of nine di↵erent

methods used to compute saliency maps for 3D video including the proposed aggregation

method. The results of both Wang’s method to compute stereoscopic 3D video visual

saliency [2] and our proposed method are presented in Table 5.18 separated into three
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di↵erent cases, each one corresponding to frame-level spatial saliency maps SS obtained

using Itti [22], Hou [29] and Bruce’s [30] methods.

The results in Table 5.18 show that the method proposed achieves a maximum average

PLCC of 0.436 and minimum average KLD of 0.598 when using Hou’s method, i.e.,

Proposed(Hou). This method has similar PLCC and KLD values for Boxers, Hall, Phone

call and News report test sequences. For sequences Laboratory, Poker and Poznan hall2

the PLCC achieved by Proposed(Bruce) is the best while for KLD, the methodWang(Hou)

gives the best results. Overall, the average values of PLCC and KLD shown in Table 5.18

show that for the three cases under study the proposed method achieves better results

than the competing methods.

From these results conclude that the 3D video saliency maps obtained with the proposed

method show marginally better PLCC and KLD performance than the others. In all

likelihood this improvement is due to the aggregation of the three saliency feature maps,

demonstrating that it is important to fuse di↵erent visual cues when modeling and com-

puting saliency, as the visual saliency map computed by the proposed method is closer

to the ground-truth fixation density maps obtained from the gazing preferences of human

viewers.



Table 5.18: Aggregated saliency maps for 3D video: performance comparison.

Method Itti[22] Hou[29] Bruce[30] Wang(Itti) [2] Wang(Hou) [2] Wang(Bruce) [2] Proposed(Itti) Proposed(Hou) Proposed(Bruce)
Metric PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD PLCC KLD

Boxers 0.185 1.449 0.247 0.566 0.282 2.547 0.266 1.177 0.307 0.607 0.315 2.031 0.602 0.828 0.654 0.713 0.582 1.327
Hall 0.123 1.732 0.357 0.639 0.237 3.427 0.197 1.435 0.361 0.638 0.239 2.626 0.333 1.257 0.451 0.596 0.381 1.687
Phone call 0.297 1.207 0.526 0.704 0.386 2.039 0.307 1.133 0.527 1.097 0.431 1.419 0.547 0.502 0.584 0.409 0.516 0.798
Laboratory 0.090 1.205 0.081 0.766 0.324 2.934 0.166 1.445 0.118 0.700 0.326 2.107 0.264 1.188 0.262 0.802 0.385 1.497
News report 0.413 0.876 0.449 0.391 0.424 2.925 0.414 1.051 0.457 0.399 0.401 2.518 0.404 1.040 0.492 0.375 0.403 1.975
Poker 0.153 0.644 0.351 0.535 0.396 1.900 0.167 0.532 0.325 0.303 0.375 1.474 0.167 1.052 0.331 0.876 0.387 1.451
Poznan hall2 0.082 0.327 0.204 0.388 0.307 2.486 0.090 0.321 0.214 0.498 0.316 2.075 0.182 1.152 0.276 0.415 0.351 1.806
Average 0.192 1.063 0.316 0.570 0.337 2.608 0.230 1.013 0.330 0.606 0.343 2.036 0.357 1.003 0.436 0.598 0.429 1.506

Table 5.19: 2D key-frame extraction: proposed vs non-saliency based methods.

Method OV[115] DT[133] STIMO [134] VSUMM [114] Proposed
Metric CUS

A

CUS

E

CUS

A

CUS

E

CUS

A

CUS

E

CUS

A

CUS

E

CUS

A

CUS

E

The Great web water-seg.01 0.55 0.73 0.20 0.37 0.83 1.02 0.75 0.96 0.72 0.84
A New Horizon-seg.02 0.33 0.09 0.15 0.18 0.38 0.12 0.61 0.14 0.84 0.07
Oceanfloor Legacy-seg.01 0.23 0.36 0.36 0.53 0.61 1.17 0.75 0.43 0.81 0.60
Drift Ice as a Geologic Agent-seg.10 0.96 0.09 0.96 0.09 0.84 0.21 0.75 0.30 0.75 0.09
Hurricane Force-seg.03 0.59 0.25 0.64 0.20 0.36 0.61 0.70 0.14 0.81 0.45
The Future of Energy Gases-seg.09 0.03 3.47 0.55 0.70 0.67 0.83 0.42 0.58 0.53 0.72
Average 0.45 0.83 0.48 0.35 0.62 0.66 0.66 0.43 0.74 0.46
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Table 5.20: 2D key-frame extraction: proposed vs saliency based methods.

Method Lai and Yi[62] Peng and Xiao-Lin[85] Proposed
Metric CUS

A

CUS

E

CUS

A

CUS

E

CUS

A

CUS

E

The Great web water-seg.01 0.71 0.85 0.71 0.69 0.72 0.84
Hurricane Force-seg.03 0.78 0.75 0.58 0.53 0.81 0.45
Canada Day - - 0.75 0.25 1.00 0.00
Dragon Boat - - 0.75 0.25 0.63 0.13
Walk with the Dragon - - 0.75 0.25 0.75 0.00
Nitobmov - - 0.75 0.25 0.75 0.00
Average 0.75 0.80 0.75 0.43 0.78 0.24

2D/3D key-frame extraction - this section presents the experimental results and per-

formance evaluation of the key-frame selection process based on the proposed framework.

To make the presentation and analysis clearer, the 2D and 3D cases are presented and

analysed in separate subsections. Three quality measures have been used to evaluate the

quality of key-frame summaries: CUS, SRD and Fm. CUS is a quantitative measure of

similarity of two summaries proposed in [114] and expressed by two values, the accuracy

rate CUSA and the error rate CUSE. More details about CUS measure see Section 2.4.4.

SRD measures the degree to which a set of key-frames is a good representation of the

original shot by computing an average distance or distortion between the original shot

and a shot reconstructed from the key-frames. Here, the distance or distortion function

d(.) of SRD measure is the saliency-driven distortion defined in Eq.(5.26). Finally, Fm

is based on the Semi-Hausdor↵ distance between the key-frame set and the original shot.

This is computed as the maximum of the minimal distances between the set of key-frames

and each frame of the original shot [136]. The saliency-driven distortion defined in the

Eq.(5.26) is also used to compute the distances between the frames d(.) of the Fm measure.

All details of theses quality measures have been reported in Section 2.4.4.

2D video - in this section the key-frame summaries computed by the proposed framework

are compared with six other methods: OV [115], DT [133], STIMO [134], VSUMM [114],

Lai and Yi [62] and Peng and Xiao-Lin [85]. The last two methods also use visual saliency.

User-defined summaries provided in [114] were used as references for comparison. This

ground-truth data was manually extracted by five di↵erent users after watching a down-

sampled sequence of frames taken from the original video. For a fair comparison between

the di↵erent key-frame extraction methods and these reference user summaries, each 2D

video sequence was also down-sampled following the same procedure as in [114].
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Six sequences were chosen to compare our proposed method with some prominent non-

visual attention methods. Table 5.19 presents the accuracy rate CUSA and error rate

CUSE obtained for the six test sequences, using four methods (none using saliency) to

extract the key-frames, plus the proposed one. Note that the better key-frames summaries

are those that present low CUSE and high CUSA. The average values indicate that the

proposed framework achieves the highest CUSA (0.74) whilst DT [133] achieves the lowest

CUSE (0.35). In the DT method, the lower CUSE value is justified by the smaller number

of selected key-frames, in comparison with the user summaries. Consequently, the DT

key-frames present a low CUSE at the cost of a low CUSA.

As shown in Table 5.19, the CUSA achieved by the proposed framework is higher than

the CUSA achieved by VSUMM [114]. For CUSE some of the values obtained by method

VSUMM are better than those of the method proposed but the average values are very

similar. This is due to the fact that the proposed method selects more key-frames than

other methods as at least one key-frame per shot is always selected. Consequently, more

summary key-frames do not have a match in the reference summary leading to larger

nno�match values and to higher CUSE values. However, considering both CUSA and

CUSE the proposed framework provides better results than the competing methods. In

addition, the proposed framework also ensures the chronological order of the key-frames,

which is not guaranteed by the methods based on clustering [114, 133, 134].

Table 5.20 presents the results obtained for the six 2D test sequences using two di↵erent

visual attention methods as references to compare the extracted key-frame summaries

with the proposed one. The key-frame summaries produced by the Peng and Xiao-Lin

[85] and Lai and Yi [62] were provided in [63, 64, 85]. On average, the table shows that the

proposed framework yields better CUSA (0.78) and CUSE (0.24) than the other methods.

From the results presented in the Tables 5.19 and 5.20 one concludes that the quality and

accuracy of the key-frame summaries produced by the proposed framework are compare

favorably to those produced by the reference methods.

Finally, in Table 5.21 the key-frames extracted by all methods as well as the ground-truth

key-frames selected by #User5 [114] for the documentary Hurricane Force - A Coastal

Perspective, segment 03 are shown. The ground-truth summary, used as reference for

comparison with the other summaries, comprises 8 key-frames. As shown in Table 5.21,

some important frames are missing in summaries OV (i.e., frames 3,7 and 8) and DT

(i.e., frames 4,5 and 8). STIMO also misses important frames, including the one showing

the first person (i.e., frames 1,2,3,4,5 and 8). In the case of VSUMM, even though it
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generates a fairly good summary, i.e., average CUSA = 0.66 and CUSE = 0.43 (see Table

5.19), only 6 frames were selected and some important ones are also missing (i.e., 1,4 and

5). The results of the Peng and Xiao-Lin [85] and the proposed framework are visually

comparable but the method of Lai and Yi [62] selects more three frames than the ground-

truth. Overall, one can observe that, in comparison to the other methods, the key-frames

extracted by the proposed framework are closer to the ground-truth selected by users.

Table 5.21: Key-frames extracted from sequence video Hurricane Force - A Coastal Per-
spective, segment 03.

Method
Generated Key-frames

1 2 3 4 5 6 7 8

Ground Truth #User5

OV[115]

DT[133]

STIMO[134]

VSUMM[114]

Peng and Xiao-Lin [85]

Lai and Yi [62]

Proposed

3D video - for 3D video, the performance of the generic key-frame extraction framework

is evaluated by comparing the output of the proposed framework with that of a UnS

and AtC. The two measures introduced before, SRD and Fm, are used to quantify the

summaries quality. The same number of key-frames m is used in the comparison of the

three methods. In the case of UnS, the key-frames extracted are temporally equidistant,

i.e., are uniformly distributed along the original video shot. For the AtC method, the

saliency maps of each frame are used to generate an attention curve which is then used to

select the key-frames that will make up the summary. The number of key-frames is user-

defined and those frames having the highest attention values in each shot are selected

as key-frames. A similar approach was used in [59, 62–64, 85]. In this experiment 21

summaries from seven sequences are used, with {m = 2, 3, 4} i.e., key-frame ratio 2
250 ,

3
250

and 4
250 .

Table 5.23 shows the results of SRD and Fm metrics for all test sequences. From the

results one can observe that increasing m leads to a decrease in SRD for all methods.
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The Fidelity measured by Fm also increases with m. To compare the performance of the

proposed method with the UnS and AtC methods, it is also useful to express the results

as a relative improvement measures �SRD and �Fm for the SRD and Fm measure. Table

5.22 shows the relative improvement of the proposed method in comparison with the UnS

and AtC methods. Two relative measures are used: �SRD and �Fm. These are expressed

as percentages and computed as follows,

�SRD =
SRD✓ � SRDP

SRD✓
⇥ 100 (5.29)

�Fm =
FmP � Fm✓

Fm✓
⇥ 100 ✓ 2 {UnS, AtC}

where SRDP and FmP are the values of SRD and Fm for the proposed method, respec-

tively. The SRD and Fm values used in this comparison are the average values shown in

the Table 5.23.

From the results shown in Table 5.22, one can observe that the proposed method is always

better than the UnS and AtC methods. When the proposed method is compared with

UnS, the �SRD range lies in the interval [11.34%, 14.13%] and the best result is obtained

for summaries with 4 key-frames. In the case of �Fm, the proposed method is also better

than UnS and the best result is 1.76% for summaries with 2 key-frames. The results are

even better when compared with the AtC method, since the key-frames extracted are, in

some cases, located near each other. In this case, the �SRD ranges from 14.17% to 26.01%

and the best result is obtained for summaries with 4 key-frames. For �Fm, the best result

is 3.23%, obtained for summaries with 3 key-frames. The overall results show that the

key-frames selected by the proposed method e↵ectively allow better reconstruction of the

original shot than UnS and AtC methods. Therefore, the key-frames selected by the

proposed method constitute a more accurate representation of the original shot, since the

SRD and Fm values are consistently better than UnS and AtC.

Table 5.22: 3D key-frame extraction: proposed vs UnS and AtC methods.

#Key-frames:2 #Key-frames: 3 #Key-frames: 4
Metric [%] �

SRD

�
Fm

�
SRD

�
Fm

�
SRD

�
Fm

Proposed {vs} UnS 11.51 1.76 11.34 0.74 14.13 1.13
Proposed {vs} AtC 14.17 1.75 21.03 3.23 26.01 2.63
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Table 5.23: Performance of the proposed key-frame extraction method for 3D video.

#Key-frames: 2 #Key-frames: 3 #Key-frames: 4
Method Proposed AtC UnS Proposed AtC UnS Proposed AtC UnS
Metric SRD Fm SRD Fm SRD Fm SRD Fm SRD Fm SRD Fm SRD Fm SRD Fm SRD Fm

Boxers 0.085 0.858 0.089 0.825 0.096 0.831 0.080 0.866 0.088 0.826 0.095 0.859 0.078 0.874 0.087 0.843 0.085 0.855
Hall 0.051 0.906 0.078 0.878 0.071 0.902 0.043 0.915 0.074 0.883 0.062 0.912 0.037 0.920 0.073 0.887 0.055 0.919
Phone call 0.074 0.890 0.102 0.890 0.084 0.868 0.070 0.897 0.082 0.890 0.078 0.884 0.067 0.907 0.072 0.901 0.080 0.889
Laboratory 0.107 0.833 0.111 0.808 0.128 0.856 0.090 0.864 0.106 0.808 0.099 0.859 0.079 0.876 0.102 0.857 0.100 0.859
News report 0.054 0.934 0.063 0.932 0.069 0.923 0.050 0.937 0.059 0.933 0.059 0.934 0.049 0.944 0.058 0.934 0.058 0.934
Poker 0.173 0.782 0.208 0.781 0.185 0.751 0.147 0.810 0.207 0.781 0.155 0.797 0.131 0.814 0.206 0.782 0.145 0.813
Poznan hall2 0.177 0.776 0.189 0.762 0.182 0.746 0.151 0.786 0.184 0.762 0.166 0.784 0.137 0.797 0.182 0.769 0.150 0.794
Average 0.103 0.854 0.120 0.839 0.116 0.839 0.090 0.868 0.114 0.841 0.102 0.861 0.083 0.876 0.112 0.853 0.096 0.866
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The comparative results provide empirical evidence that better performance is obtained

from fusion of di↵erent visual cues when modeling and computing saliency. It was shown

that aggregation of texture, motion and depth produces more accurate saliency maps,

i.e., in better agreement with corresponding saliency data obtained from actual human

viewers. Overall this framework extends existing ones beyond the spatial and temporal

dimensions by considering aggregated saliency maps and saliency-driven distortion in the

process of optimal selection of 2D/3D key-frames.

5.3 Conclusions

In this chapter, a framework for represent in compact way 2D and 3D video was in-

troduced. This framework is composed with two main steps. Firstly, video sequence is

segmented in temporal segments which are compound by frames with similar content.

This temporal segmentation is based in several features and it is also adapted to di↵erent

video formats, i.e., 2D and 3D video. Second, a method which selects the most repre-

sentative frames of each temporal segments, based on a specific distortion metric, is too

presented.

In case of 3D video, the temporal segmentation algorithm detects 3D video shot bound-

aries based on joint depth-temporal criterion. The experimental results show that the

proposed algorithm is capable of accurately detecting 3D shot boundaries, exhibiting

good performance measured as recall and precision rate. The results also showed that

3DSB detection algorithm is independent of the 3D video content and format because

its decision process is not based on thresholds neither training data and it can be used

stereoscopic and video-plus-depth video. Some adaptation, as removal depth information

from temporal segmentation criteria, were made in the SBD algorithm, to be used for 2D

video. Due to the flexibility of proposed algorithm two metrics were used to compute the

depth information and the results show good performance for these two metrics.

Selection of the most representative frames of each video shot is based on minimum re-

construction error for that, three methods key-frame extraction methods, based on MSE,

PCA, perceptually relevant depth regions and aggregated saliency maps are presented.

Experimental results and performance comparison, based on multiple metrics, demon-

strate that these methods outperforms other methods proposed in the literature for similar

purposes of extracting key-frames from 2D or 3D video.





Chapter 6

Flexible video coding based on

spatial and temporal scalability

The large diversity and varying characteristics of multimedia content used in contempo-

rary communication services and applications requires e�cient and flexible management.

This flexibility can be achieved by exploiting the fact that not all information contained in

video sequences is equally important and relevant. Representation methods based on this

tenet can not only provide high flexibility in the access to the most relevant content but

also achieve better coding e�ciency. In this chapter, novel flexible video coding methods

are proposed based on spatial and temporal scalability, integrating the methods for video

summarisation and ROI detection described in earlier chapters.

Two flexible ROI (video) coding methods are proposed, the QP51 and Set-to-Zero meth-

ods. Both methods are characterized by the use of a low resolution constant quality base

layer complemented by a higher resolution layer, which represents pixels of ROIs with

higher spatial fidelity. In both methods the higher layer bits are spent mainly in encoding

the ROI, minimizing the number of bits spent in the background non-ROI regions.

Additionally, a temporal flexible video coding scheme for video summaries is proposed

which reduces the problems derived from the lack of flexibility of the traditional video

coding schemes on what concerns the definition of temporal prediction structures. Most

video coding schemes use regular GOP structures which do not accommodate e�ciently

variable temporal rates and flexible prediction structures needed for independent coding

of video summaries. The proposed solution encodes video summaries using dynamic

GOP sizes coupled with a temporal scalability scheme. The video summary is encoded

as temporal base layer and the remainder non-summary frames are encoded using higher

temporal layer(s). The experimental results show the e↵ectiveness of the novel flexible

video coding methods.

Part of the experiments and results presented in this chapter were published in C6, C7

and C10.
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6.1 ROI coding with spatial scalability

This section describes two methods for coding ROIs, based on H.264/MPEG-4 AVC and

spatial scalability. Their rate-distortion performance and complexities are presented and

compared to a reference coder. In both methods the base layer is kept unchanged and

provides a lower resolution video encoded with constant quality, agnostic to the presence

of any ROI. In either case there is no need to encode contour information because the

ROI is implicitly defined in the upper spatial resolution layer in a transparent way by

using di↵erent encoding parameters for the ROIs and their complementary regions. In

Section 2.5 it is shown that spatial scalability can be used to encode e�ciently specific

regions of an image sequence with di↵erentiated spatial resolution and quality according

to the regions importances.

The underlying idea to achieve e�cient coding of the ROI in the higher resolution layer

is to minimise the number of bits spent in the background region of the higher resolution

images. One of the methods proposed in this work is based on the use in the higher

resolution layers of coarse quantisation for the background non-ROI regions and finer

quantisation of the ROIs. Two methods are proposed: QP51 and Set-to-Zero. In QP51,

the Macro-Blocks (MB) of the background region, i.e., outside the ROIs, are coded with

the maximum quantisation value allowed by H.264/MPEG-4 SVC (Qp=51) in order to

maximise the number of null coe�cients. In Set-to-Zero, the transform coe�cients of

the MBs outside the ROI are set to zero regardless their value. Note that in this case

quantisation and coding is in fact not performed for these MBs. In both methods, the

ROIs are defined by a mask, providing a ROI map which is used by the encoder to identify

the ROIs MBs. The identity of the MBs belonging to the ROIs is not encoded into the

video stream and is used only at encode time.

6.1.1 QP51

The functional implementation of this method is depicted in Figure 6.1. During encoding

of each MB of the high resolution layer, the QP value is switched between 51 and the QP

value selected for the current MB, depending on whether the MB is located outside the

ROIs or inside a ROI, respectively. Therefore, the quality of ROI MBs is much higher

than that of the MBs outside the ROI and consequently most of the bits used in the high

resolution layer are assigned to the ROI. Note that in the high resolution layer the only



6.1. ROI coding with spatial scalability 161

useful information that needs to be coded is the ROI itself, because the lower quality and

resolution of the background region provided by the base layer should be enough for the

envisaged application. The encoding of the base layer lower resolution video is oblivious

to the presence and position of ROIs.
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Figure 6.1: Qp51 functional diagram.

6.1.2 Set-to-Zero

The objective of the Set-to-Zero method is the same as the previous one: to spend less

bits encoding the MBs outside the ROIs than those inside the ROIs and so to increase the

quality of ROI representation in the higher resolution layer. In this method, the trans-

form coe�cients of residual blocks are set to zero for those MB outside the ROIs. Since

H.264/MPEG-4 SVC uses the syntax element Coded Block Pattern (CBP) to indicate

which 8⇥ 8 blocks of a MB contains non-zero coe�cients, in the Set-to-Zero method the

encoder sets CBP to zero to signal an all-zero MB. Figure 6.2 shows Set-to-Zero functional

diagram.

6.1.3 Results and analysis

The performances of the two methods described in the previous section were evaluated in

regard to R-D and computational complexity, measured as the processing time per frame,

and compared with straightforward coding without ROI.
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Figure 6.2: Set-to-Zero functional diagram.

Separate experiments were carried out for intra and inter coding modes. The proposed

methods were implemented using the JVT reference software, version 8.9, as a basis frame-

work. The test sequence Mobile was used in the experiments with resolution QCIF@30fps

for base layer and CIF@30fps for enhancement layer. Two ROIs (ROI1, ROI2) with dif-

ferent sizes were used. Figure 6.3 shows ROI1 on the left image, as the set of pixels inside

the red rectangle, and ROI2 on the right image also outlined in red. In this study, the

ROIs were defined manually, but other more sophisticated methods such as the method

of Section 4.1.4 could be used as the ROI coding approaches proposed are not dependent

on the method used to generate the ROI. In the experiments the following settings were

used:

• Intra test - two spatial layers (QCIF and CIF) at 30fps; 100 frames; NumberRefer-

enceFrames 1; FastSearch; Loop Filter on. The coding parameters were as follows:

for the base layer: CABAC; Basic QP 35; FRExt no; for higher layer: CABAC;

InterLayerPred on; FRExt on.

• Inter test - two spatial layers (QCIF and CIF) at 30fps; 100 frames; NumberRefer-

enceFrames 1; FastSearch; Loop Filter on; MaxDelay 1200; GOPsize 16; IntraPeriod

16. The coding parameters were as follows: for the base layer: CABAC; Basic QP

35; FRExt no; for higher layer: CABAC; InterLayerPred on; FRExt on.

The simulations were performed on a PC with a 2.4 GHz processor and 1.0 GB of RAM

memory.

The bitrate shown in Figures 6.4 and 6.5 is the sum of the bitrates of the base layer and

of the higher layer. The bitrate values shown were obtained using di↵erent QPs in the

higher layer while the QP of base layer is constant (QP=35). The ROI PSNR (i.e., the

PSNR computed for the pixels within the ROI of the higher layer) is shown in Figures 6.4
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and 6.5 for intra and inter coding, respectively. For reference, the two proposed methods

results are compared with results from an experiment where the higher layer is entirely

coded using the same QP without distinguishing between ROI and background. These

reference results are labelled as SVC-without ROI.

Figure 6.3: ROI1 (left) and ROI2 (right) of the Mobile sequence outlined in red.

Intra coding

The R-D performance of the intra case is shown in Figure 6.4. The Set-to-Zero method

is compared with QP51 and SVC-without ROI. The coding complexity is shown in Table

6.1 for both ROIs. From Figures 6.4a and 6.4b it is clear that the e�ciency of the Set-to-

Zero method is consistently better for both ROIs in the intra case. In ROI1 this method

produces a PSNR about 2dB higher than the QP51 method. As one can see in the figures,

the overall quality gain of the proposed methods is much higher when compared to SVC-

without ROI. For the lower bitrates in ROI1, the Set-to-Zero method produces a PSNR

about 6.5dB higher than SVC-without ROI and at higher bitrates the gain is about 13dB.

For the ROI2 the gains of Set-to-Zero are smaller than in the case of ROI1. About 0.4dB

- 0.5dB higher than and 2.5dB - 7.5dB higher than SVC-without ROI for low and high

bitrates, respectively. To the same PSNR, both the QP51 method and SVC-without ROI

produce more bits than Set-to-Zero for coding ROI1 and ROI2.

Table 6.1 shows the processing time of the two methods and the reference SVC-

without ROI. From the table, it is easy to conclude that the coding complexity of the

Set-to-Zero method is lower than that of the other two (QP51 and SVC-without ROI ) for

both ROIs. For ROI1, the processing time is reduced by 12% to 30% with Set-to-Zero

compared to SVC-without ROI and by 7% compared to the QP51 method. In the case

of ROI2, the processing time of Set-to-Zero method is reduced 9% to 22% compared to

SVC-without ROI and 5% compared to QP51. The lower complexity of the Set-to-Zero is

due mainly to the quantisation not being computed for the MBs outside the ROI with a

significant reduction in the number of computations.
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Table 6.1: Processing time of the intra coding mode.
Set-to-Zero QP51 SVC-without ROI

QP [ms/frame] [ms/frame] [ms/frame]

ROI1
25 182.53 195.83 262.26
35 174.37 187.35 225.24
45 167.54 179.58 192.12

ROI2
25 204.97 217.07 262.26
35 189.10 198.85 225.24
45 174.37 182.66 192.12

Average 182.15 193.56 226.54
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Figure 6.4: R-D performance for the intra coding case.
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Inter coding

The performance of inter coding is shown in Figure 6.5. In this case, the e�ciency

of Set-to-Zero is closer to that of QP51. For the encoding of ROI1 the gains of both

proposed methods are practically the same for low bitrates, while for higher bitrates the

QP51 method produces gains of about 0.8dB and 1.2dB compared with Set-to-Zero and

SVC-without ROI, respectively. In the case of ROI2, the Set-to-Zero yields better results

relatively to the other methods and it is about 0.4dB better than QP51 and nearly 2.6dB

better than SVC-without ROI.

Table 6.2, shows that the processing time depends on the ROI dimension, the QP and the

coding methods used. In this case, the processing times are larger than those in the intra

case. Also as in the intra case, the Set-to-Zero method is less complex than the other

methods as can be seen from the values presented in Table 6.2 for all experiments.

Table 6.2: Processing time of the inter coding mode.

Set-to-Zero QP51 SVC-without ROI
QP [ms/frame] [ms/frame] [ms/frame]

ROI1
25 168.72 169.05 170.31
35 168.72 169.03 169.41
45 168.72 168.87 169.40

ROI2
25 168.74 169.05 170.31
35 168.73 169.04 169.41
45 168.71 169.03 169.40

Average 168.72 169.01 169.71

The performance of the proposed ROI coding methods shows that spatially scalable ROI

encoding can be performed with very good results by using selective coding for each

region in the higher resolution layer. The results obtained also show that the Set-to-Zero

method is computationally less complex than QP51, which makes it a good candidate for

software-based implementations. By keeping the coded stream fully compatible with the

H.264/MPEG-4 SVC standard, the proposed methods are suitable for a wide range of

applications where only specific regions of a video sequence are needed at higher spatial

resolution e.g., remote surveillance, video conferencing, medical applications and others.
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Figure 6.5: R-D performance for the inter coding case.
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6.2 Video summary coding with temporal scalability

A method to e�ciently encode an arbitrary video summary with temporal scalability and

dynamic GOP structures is proposed in this section. The video summary is coded as the

base layer and the remainder frames are coded in the upper layers of a SVC bitstream.

The video frames of the summary are identified and the respective temporal indices are

input to the proposed scalable encoder which computes dynamically the GOP size based

on a coding e�ciency criterion which takes into account the MSE between the frames of

the summary.

6.2.1 Dynamic GOP size selection

In general, the GOP structure used in scalable video coding is fixed and regular over time

in order to provide a hierarchical coding structure [11]. In this type of GOP structure

the number and type of frames (either P or B) are predefined as encoder configuration

parameters. The I frames determine the GOP boundaries. All type of frames are allowed

in the temporal base layer, i.e., I, B and P frames, while P and B frames are coded

only in the upper layers following a regular structure over the whole sequence. Note,

however, that such regular GOP structure is not mandatory to be compliant with the

SVC extension to the standard. Since a video summary does not have a regular frame

rate, rather than using a fixed GOP structure, it is better to use GOPs of variable size

according to the temporal distribution of the video summary frames.

In order to match the variable temporal distribution of the video summary frames to

a GOP structure, the total number of B and P frames within a GOP must also be

variable. Therefore in a dynamic GOP structure, the number of B frames between I or P

frames and the number of P frames between I frames is variable, depending on the video

summary frames.

The essential motivations for using dynamic GOP structures is to not only achieve tem-

poral scalability but also higher coding e�ciency. Grouping similar frames in the same

GOP will help to improve bit saving as dissimilar frames can not be e�ciently coded

using temporal prediction and so should be coded as I frame at the GOP boundaries. If

the most dissimilar frames within a limited set of summary frames (i.e., the maximum

allowed GOP size) are selected for the GOP boundaries, then good coding e�ciency is
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expected because all the remaining frames are the most similar ones, which will favour

e�cient temporal prediction.

The proposed algorithm searches for the best GOP boundaries in the video summary

frames in order to achieve high coding e�ciency, both in the base layer (i.e., the video

summary) and in the whole sequence (i.e., all layers). To find the GOP boundaries, the

summary frame distortion Dc was used, defined in Equation (6.1), where d(fc, fj) is the

MSE, between the candidate GOP boundary frame fc and all possible video summary

frames fj within a maximum distance of 32 frames. In the expression, c represents the

index of the candidate summary frame and A is the set of ordered summary frame indices,

A = {l0, l1, .., lm�1}, such that l0, < l1, .., < lm�1. Note that l0, l1, .., lm�1 are defined in

the original frame sequence, thus A does not comprise an arithmetic progression.

Dc =
X

c�32jc+32
j"A

d(fc, fj)MSE
; c = l0, l1, .., lm�1 (6.1)

Dc is computed for all summary frames and the best upper boundary frame index for

GOP n, l⇤n is given by,

l⇤n = argmax
c

(Dc) where l
⇤
n�1 < c  l⇤n�1 + 31 (6.2)

l⇤n�1 is the lower boundary frame index of GOP n, which is also the best upper boundary

frame index of GOP n � 1. In the first GOP, the lower boundary frame is l0. In this

work, the maximum allowed GOP size is 32, since this size provides enough variation

headroom for the GOP size and good coding e�ciency [11]. The summary is determined

before coding, though some isolated frames can be inserted in the summary during coding

to respect the maximum GOP size restriction. In the cases where consecutive summary

frames have a temporal distance higher than 32 (e.g., key-frames or video skims sum-

maries), the algorithm forces the GOP size to take the value of 32 e↵ectively promoting

a non-summary frame to a summary frame.

6.2.2 Prediction structure in temporal scalable coding

Figure 6.6 shows the prediction structure which results from the dynamic GOP size alloca-

tion using the method described above. As shown in the figure, the video summary frames

(thicker lines in the figure) are coded in the temporal base layer while the upper layer
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contains the remaining frames of the sequence. Therefore, the full temporal resolution is

obtained when both temporal layers are decoded. Since the reference frames of the video

summary are all coded in the temporal layer 0, the summary layer can be extracted and

independently decoded from the whole coded stream. The R-D performance of coding a

GOP depends not only on the coding order but also on the employed reference frames.

However, in general, as the temporal interval between each frame and its reference gets

shorter, temporally predictive coding becomes more e�cient. Therefore, among the avail-

able frames in the Decoded Picture Bu↵er (DPB), we choose the nearest frames of the

current one to be used as its forward and backward references. In this work, all frames

between the GOP boundary frames are coded as B, though they can also be coded as P

type.

In H.264/MPEG-4 AVC with scalable extension, the proposed scheme changes the default

order of reference pictures in List0 for the P slices or in List0/List1 for B slices. For a

correct decoding, the reference frames of the video summary must be signaled to the

decoder using Reference Picture List Re-ordering [204].

BI I
T0

IB B IB

GOP Size=8

0 1 2 3 4 5 6 87 9 10 1211 13 14 15 16 17 18 19 20 Frame number

Time

0 6 4 7 2 8 5 13 10 11 912 18 16 14 15 19 17 20 13 Encoding order
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GOP Size=4 GOP Size=8
Temporal level T1T1 T1 T0 T1 T1 T0 T0 T0 T1 T1 T0 T1 T1 T0 T1 T1 T1 T1 T0

Figure 6.6: Example of a prediction structure resulting from dynamic GOP allocation.

6.2.3 Results and analysis

The proposed method was implemented in the Joint Scalable Video Model (JSVM) 8.9

reference software, and the test sequences Soccer and Foreman, QCIF@30Hz were used

in the experiments. The main coding parameters used in the simulations were: Num-

berReferenceFrames 2 ; FastSearch; Loop Filter on; CABAC ; FRExt no; MaxDelay 1200.
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The R-D operational points used to draw the R-D graphs were obtained using the set of

QP : {25, 30, 35, 40, 45}. For each sequence, three di↵erent video summaries were gener-

ated, using the algorithm proposed in Section 5.2.2, with temporal rates R(S) of 25%,

12% and 6%. For comparison, a temporally subsampled version of each sequence, acting

as a reference summary, was also coded as the base layer of a temporally scalable bit-

stream at the same R(S), i.e., with the same total number of frames, using the fixed GOP

structure of SVC. This reference summary also represents the whole sequence by a subset

of frames with the same size and provides the same functionality of being independently

decodable.

E�ciency of video summary coding

The coding e�ciency observed when coding the video summaries with the proposed base

layer dynamic GOP structure was compared with that of the standard SVC regular GOP

structure used to encode a uniform distribution summary with the same temporal rate

R(S). This is actually a di↵erent summary because it is comprised of regularly spaced

frames that are not always coincident with the frames of the other summary. However

this is still a fair comparison because the same number of frames are used in both cases

to represent the whole sequence.
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Figure 6.7: R-D performance of the temporal base layer (T0) of the Soccer sequence.
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Figure 6.7 and 6.8 show that better e�ciency is obtained using the proposed method,

compared with that of SVC with fixed GOP size. The di↵erence between the two methods

is small for the two sequences with temporal rate R(S) = 6%, but in the case of temporal

rate R(S) = 12%, the PSNR gain for Foreman is about 2 to 3dB, while for Soccer this

gain ranges from 0 to 1.5dB. In the experiments with a temporal rate of 25%, the gains

are higher than the R(S) = 12%. In these tests, the PSNR gain for Foreman is about 3 to

5dB, while for the Soccer this gain ranges from 0 to 2.5dB. This is because the proposed

method finds the best GOP size within each interval of 32 frames and B frames find good

predictions, whereas in the case of the reference summary with regular GOP structure the

GOP size can not be optimized and the long temporal distance between reference frames

makes B frames not useful in temporal layer 0.
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Figure 6.8: R-D performance of the temporal base layer (T0) of the Foreman sequence.

Full temporal resolution coding e�ciency

The overall coding e�ciency was also evaluated for the full temporal rate, i.e., the whole

sequence (all layers) using the proposed method to encode the base layer (with dynamic

GOP) was compared with a reference using encoded a regular GOP size of 32. Figures 6.9

and 6.10 show the results for summaries of di↵erent temporal rates R(S). The results show

that for R(S) = 6%, the coding e�ciency achieved by the proposed method is virtually

the same as the reference sequences while for other rates the di↵erence is negligible.
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Therefore, using the proposed method to encode summaries in the base layer does not have

any noticeable impact in the overall R-D coding performance. Therefor using temporal

scalability with dynamic GOP size to encode summaries achieves the sought encoding

flexibility without coding performance penalties.
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Figure 6.9: R-D of the full rate of the Soccer sequence.

A method to encode an arbitrary video summary using dynamic GOP structures in scal-

able streams was presented in this section. The scalable bitstream obtained is fully com-

patible with the scalable extension of the H.264/MPEG-4 AVC standard. The results

show that good coding e�ciency is achieved for arbitrary video summaries without com-

promising the quality of the whole sequence. The proposed method demonstrates that

an extra level of flexibility can be achieved by embedding video summaries in scalable

streams, which is of practical interest in content adaptation systems and applications.
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Figure 6.10: R-D of the full rate of the Foreman sequence.

6.3 Conclusions

The video coding methods introduced in this chapter seek to encode the most relevant

information contained in a video sequence using scalability, in order to improve flexibility

of access and user experience without hurting rate-distortion performance. New flexible

video encoding methods based on the H.264/MPEG-4 SVC standard were proposed in

order to generate spatially and temporally scalable bitstreams representing the output of

the previously proposed methods for video retargeting and summarisation or non-specific

ROI identification methods.

Two di↵erent approaches were used for encoding ROIs in a scalable framework where the

most important information, i.e., the ROI was encoded with increased spatial detail in a

higher resolution layer. The base layer is kept unchanged and provides lower resolution

images with constant quality, without identification of the ROIs, serving as a lower quality

base signal which can be complemented by decoding the higher layer information to

reconstruct the pixels in the ROI at higher spatial resolution.

Additionally, a temporal flexible video summary method was proposed, based on dynamic

GOP size selection. Using this scheme video summaries are encoded in the base layer of

a temporally scalable stream whilst the remaining non-summary frames are encoded in

the upper layers. This coding scheme allows visualisation of the video summary without
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decoding the entire stream and when combined with the information from the higher

layers can be used to reconstruct the full-temporal-rate video.

The experimental results have shown the e↵ectiveness of the proposed flexible video coding

methods compared to reference procedures. It is worth noting that the proposed methods

are independent of the way the ROI and video summaries are obtained, which means that

the present proposal can be e↵ectively used in flexible video coding environments.



Chapter 7

Conclusion and future work

The research work developed within the scope of this Thesis contributed to advance

state-of-the-art methods capable of providing additional flexibility in the representation

of visual information either in raw or coded formats. The main contributions of this

Thesis include both 2D and 3D video, in visual saliency computation, video retargeting,

video summarisation methods and also enhanced video coding to e�ciently accommodate

the corresponding information and new data structures, i.e., video summary and ROI.

This chapter concludes the Thesis with a summary of the main achievements, as well as

some directions for future work.

7.1 Conclusions

The introductory chapters established the context and motivation of the Thesis, starting

by the basic concepts used in representation of the visual information either in raw or

coded format. A review of di↵erent state-of-the-art methods used to represent visual

information with increased flexibility beyond the pixel/frame level, provided the necessary

background and established the starting point of this research.

In Chapter 3, two visual saliency computation methods based on fusion of four inter-

mediate saliency features maps (spatio-temporal, depth and face saliency) followed by a

centre-bias weighting function were proposed for 3D video. The selective combination of

the features maps allows the proposed methods to be applied either in 2D or 3D video.

The results demonstrated that the proposed method outperforms other state-of-the-art

methods. The saliency maps obtained from this work were used as input in new video

retargeting and video summarisation methods developed in Chapter 4 and 5 respectively.

In Chapter 4, two spatio-temporal retargeting methods based on salient region were pro-

posed. These methods change the resolution of original video for a specific display size.

Although these proposals were developed and tested for UHD video as input, they can be
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also applied to di↵erent video resolutions. A visual comparison of the outputs generated

by proposed methods show the ability to preserve the relevant content of the UHD scene

in comparison to others well-known methods. Furthermore, a method to improve tempo-

ral consistency through filtering for jitter removal, revealed a double benefit, both for the

visual quality and for the coding e�ciency. It was found that using HEVC to encode the

retargeted UHD video, consistently better PSNR is obtained when temporal consistency

is enforced.

In Chapter 5, a computational framework to obtain video summaries was devised. This

framework is composed by two main modules. In the first module, video sequence is

divided into temporal segments which are composed by frames with similar content. This

video segmentation is based on depth-temporal features and can be used with di↵erent 3D

video formats. In the second module, a key-frame extraction method selects the most rep-

resentative frames of each temporal segments, using a dynamic programming algorithm

based on rate-distortion approach that minimises the dissimilarity (distortion) between

the original sequence and the one reconstructed from the key-frames. The experimental

results and performance comparison, based on multiple metrics such Precision Rate, Re-

call Rate, SRD, Fidelity, CUS and compression ratio, demonstrate that this framework

outperforms other methods presented in the current literature for similar purpose.

In Chapter 6, two methods for encoding ROI and video summary with H.264/MPEG-4

SVC encoder were devised. These methods are independent from the approach used to

generate ROI and video summary and the type of summary, i.e., either key-frames or video

skims. In the case of scalable coding of video summaries, the proposed method encodes

the video summary in the base layer, allowing to extract a short representation of the

video sequence from the coded stream. The scalable bitstream obtained by this method

is fully compatible with the scalable extension of the H.264/MPEG-4 AVC standard. The

results demonstrated that the proposed method can be used to encode video summaries

with increased e�ciency in the temporal base layer and negligible loss of R-D performance

in the whole scalable sequence. Similar scalable principle was used to encode ROI. In this

case, two coding approaches were employed: the QP51 outside ROI and Set-to-Zero. The

results obtained by the two approaches are always better than the reference SVC-without

ROI. In this comparison the R-D and processing time were the performance metrics used

in these experiments.
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7.2 Future work

The research carried out in this Thesis does not provide definite solutions for all issues

addressed in the di↵erent topics. Therefore, further research is envisioned to improve

current performance and provide better solutions for several aspects in related fields.

• Visual saliency computation - Our method combines di↵erent saliency features

and fused them to get a final saliency map. A linear combination is used to fuse these

saliency features. So, it would be interesting to test others combinations strategies,

as it was proposed in [205], to know which combination of features gives the most

robust results. Other interesting point is the inclusion of text saliency feature in our

proposed method. This new approach will be designed for deaf applications where

text is the most important focus.

• Video retargeting - The proposed method provides spatio-temporal adaptation

based on visual saliency information to resize UHD video to small screen devices.

The validation of the proposed method was based on visual comparison to other

solutions, however, it is important to know the capability of the method to keep the

visual interesting areas in the retargeted sequence. This study requires a comparison

with eye-tracking data, and this is open for future work. Another issue is the

objective assessment of proposed method in comparison to other approaches, since

there are no well-accepted objective metrics for quality evaluation of retargeted

video.

• Temporal segmentation - The accuracy of the SBD algorithm can be further

improved, particularly new e�cient methods to detect smooth transitions between

shots. The shot boundary detection should be made in the temporal-depth dimen-

sion, where depth and temporal features can be used in this process. A hierarchical

detection scheme could bring benefits in performance by first implementing the algo-

rithm to detect sharp transitions and then analysing the remaining frames to detect

smooth transitions.

• Video summarisation - Further investigation is needed to e�ciently compute

video skim summaries. Another point which is not addressed in video summarisa-

tion framework developed in this Thesis, is the combination of the visual features

with additional information (audio features, text captions and content description).

There is a lack of these type of summarisation methods (key-frame based or video
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skims) for 3D video formats such as, MVD and holoscopic video.

• Flexible video coding - This Thesis does not address a solution for joint encoding

of ROI and video summary. It is reasonable to expect that combined solutions may

perform better than using isolate methods. More combinations can be done to

increase flexibility, such as salable coding of 3D video with ROI, scalable coding of

3D video summaries, scalable coding of 2D/3D video summaries and ROI.

Overall, the above issues are research topics that can be investigated to further extend

the work done in this Thesis. Nevertheless, more fundamental research is required to take

the flexible representation of visual information up to another level, where more human

factors can be deeply embedded in the representation formats. For instance, emotional

and cognitive factors are still far from being fully utilized for the benefit of representation

and coding of visual information.
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