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Resumo 

A capacidade de mover os membros inferiores é crucial para a maioria das 

atividades diárias pelo que há uma necessidade permanente de desenvolver novos 

métodos para melhorar a mobilidade das pessoas. Esta dissertação retrata uma 

ferramenta de reabilitação da mobilidade das pernas. Os produtos para reabilitação 

de pernas mais comuns são pedaleiras e bicicletas estáticas. Na sua maior parte, eles 

são muito rudimentares, porque o treino não pode ser controlado através de 

software. 

O dispositivo de reabilitação a que esta dissertação se refere baseia-se numa 

bicicleta estática assistida por um motor, que é desencadeada gradualmente de 

acordo com a pressão exercida sobre sensores de força nos pedais. Se o paciente tiver 

uma perna com problemas de mobilidade, permite a compensação desta para que se 

possa realizar o movimento de ciclismo esperado.  

Este dispositivo tem um sensor para monitorizar a frequência cardíaca do 

paciente. É utilizado para assegurar a eficiência do tratamento e a segurança do 

paciente. Cada perna pode ser a exercitada independentemente usando diferentes 

parâmetros. Isto é particularmente útil para pacientes com AVC. Também pode 

compensar um membro perdido ou danificado, imitando o desempenho da perna 

saudável. 

O fisioterapeuta pode gerir os parâmetros do treino (velocidade, força em cada 

pedal, frequência cardíaca) numa interface de computador e monitorizar a sessão. 

Foram desenvolvidas duas interfaces para manter os pacientes motivados para 

ficarem perto dos valores de referência. A primeira interface é composta por gráficos 

de barras que representam os valores de força, velocidade e frequência cardíaca a 

cada instante, e as linhas verdes e vermelhas representam os valores de referência e 

máximos, respetivamente. A segunda interface é um jogo virtual, com uma bicicleta 

na tela que representa o desempenho do utilizador como seria na vida real. Quanto 

mais longe dos valores de referência estiver o desempenho do paciente, mais rápido 

ele vai perder pontos. O valor da meta é representado pela bicicleta ereta e a estrada 

sem inclinação. 
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Foram realizados dois conjuntos de testes para testar os controlos da bicicleta e 

discernir padrões. Na primeira fase, para velocidades mais baixas (600 rpm e 1300 

rpm) os ciclos foram mais definidos do que para velocidade mais elevada (2000 rpm). 

Para baixos valores de resistência consegue-se distinguir um padrão que pode ser 

explorado no futuro para melhorar os modos de controlo. Este padrão diminui com o 

aumento de resistência. Na segunda fase, o padrão de ciclismo obtido com a interface 

do paciente e com o jogo virtual, para a mesma velocidade ou mesma resistência, não 

diferem muito, pelo que a utilização de uma interface ou da outra não afeta a eficácia 

da reabilitação. 
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Abstract 
 

The ability to mobilize the lower limbs is crucial for most daily activities so there 

is a permanent need to develop new methods to improve people’s mobility. This 

dissertation portraits a tool for motion rehabilitation. The most common leg 

rehabilitation devices are pedal exercisers and static bicycles. Mostly, they are very 

rudimentar because the health staff cannot control its use through software. 

The rehabilitation device this dissertation concerns is based on a motor assisted 

static bicycle, which is gradually triggered according to the pressure exerted on the 

force sensors on the pedals. It allows compensation for a leg with mobility problems 

so it can perform the expected cycling movement.  

This device has a sensor to monitor the patient’s heart rate. It is used to ensure 

the treatment’s efficiency and the patient’s safety. Each leg can be trained individually 

using different parameters. This is particularly useful for stroke patients. If the patient 

has a leg with mobility problems, it compensates that leg so it can perform the 

expected cycling movement. 

The physiotherapist can manage the training parameters (speed, force on each 

pedal, heart rate) on a computer interface and monitor the training session. There 

were developed two interfaces for the patient to keep them motivated to stay close 

to the reference values. The first interface consists of bar graphs that represent the 

values of force, speed and heart rate at each instant, and the green and red lines 

represent the reference and maximum values, respectively. The second interface is a 

virtual game, with a bicycle on the screen that represents the performance of the user 

as it would be in real life. The farther the patient’s performance is to the reference 

values, the fastest he or she will lose points. The goal value is represented by the 

bicycle upright and the road with no inclination. Through ergonomic questionnaires it 

was determined that the virtual game was the preferred interface.  

Two separate sets of tests were performed to test the bicycle control and discern 

patterns. In the first phase, for lower speeds (600 rpm and 1300 rpm) the cycling cycles 

were more defined than for higher speed (2000 rpm). For low resistance values a 

pattern can be distinguished, and can be explored in the future to improve the control 

modes. This pattern fades with the increase of resistance. In the second phase, the 
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cycling pattern while using the patient interface and virtual game, for the same speed 

and same strength do not differ much, so the use of an interface or the other does not 

affect the outcome of the rehabilitation. 

 

 

  

 

 
 
 
  



[xiii] 
 

List of Acronyms (abbreviations and symbols) 
 
 
APE – Active Pedal Exerciser 
MS – Multiple Sclerosis 
OA – Osteoarthritis 
DAQ – Data Acquisition System 
BMI – Body Mass Index 
HFE – Human Factors and Ergonomics 
SUS – System Usability Scale 
PSSUQ – Post-Study System Usability Questionnaire 
SUMI – Software Usability Measurement Inventory 
 
 
 
 
 
 
 
 
  



[xiv] 
 

 
  



[xv] 
 

 
 

Contents 
 
Chapter 1 ............................................................................................................................................. 1 

Introduction ....................................................................................................................................... 1 

1.1. Context ............................................................................................................................................... 1 

1.2. Gait Disorders ................................................................................................................................. 2 

1.3. Cycling for Rehabilitation .......................................................................................................... 2 

1.4. Publications Resulting from the Dissertation .................................................................... 3 

1.5. Dissertation Structure ................................................................................................................. 3 

Chapter 2 ............................................................................................................................................. 5 

State of the Art .................................................................................................................................. 5 

2.1. Rehabilitation Devices Being Commercialized ....................................................................... 5 

2.2. Products in Development ................................................................................................................. 7 

Chapter 3 .......................................................................................................................................... 11 

The Device ....................................................................................................................................... 11 

3.1. Active Pedal Exerciser .................................................................................................................... 11 

3.2. Interfaces ............................................................................................................................................. 12 

3.2.1 Physiotherapist Interface ...................................................................................................... 12 

3.2.2. Patient Interface ....................................................................................................................... 13 

3.2.3. Virtual Environment ............................................................................................................... 15 

Chapter 4 .......................................................................................................................................... 17 

Ergonomics and Usability Questionnaires .......................................................................... 17 

4.1. Ergonomics ......................................................................................................................................... 17 

4.2. System and Interface Usability Evaluation ............................................................................ 19 

4.2.1. Usability Questionnaires ....................................................................................................... 19 

4.2.2. Standardized Questionnaires .............................................................................................. 21 

4.2.2.1. System Usability Scale ................................................................................... 21 

4.2.2.2. Post-Study Usability Questionnaire ......................................................... 22 

4.2.2.3. Software Usability Measurement Inventory ........................................ 24 

4.3. Selection of the Questionnaire .................................................................................................... 24 

Chapter 5 .......................................................................................................................................... 25 

Methods and Results.................................................................................................................... 25 

5.1. Searching for Useful Patterns ...................................................................................................... 25 

5.2. Evaluating the Interfaces .............................................................................................................. 29 



[xvi] 
 

5.3. Results of the Usability Questionnaire .................................................................................... 31 

Chapter 6 .......................................................................................................................................... 35 

Conclusions ..................................................................................................................................... 35 

6.1. Main Conclusions .............................................................................................................................. 35 

6.2. Future Developments ..................................................................................................................... 35 

References ....................................................................................................................................... 37 

 
 
 
 



[1] 
 

 
 
 
Chapter 1 

Introduction 

 

1.1. Context 

The ability to walk is one that we take for granted. We rely on it for every task 

in our daily lives. Either to go from one division of our home to another, to go shopping 

or either to practice sports. The lost or impairment of the ability to walk does not 

threaten our lives, but it makes them a lot harder.  

The maintenance of normal gait requires three crucial components: locomotion, 

which embodies initiation and maintenance of rhythmic stepping; balance; and 

capacity to adjust to the environment [1]. If one or more of this components is not 

operational, the gait will be disturbed.  

Several diseases and multiple accidents can provoke a diminished or loss of the 

mobility of the limbs, either inferior or superior. Some of this pathologies cause a 

discrepancy between the mobility of each limb, making it necessary to train each leg, 

or arm, individually, for the training to be as effective as possible. 

Medical rehabilitation’s goal is to reduce deficiency and disability, resistance to 

work, aerobic exercise, practice of balance and coordination, active and passive 

mobility and training in activities of every-day life.  

The goal of this dissertation was to develop a rehabilitation device to address 

this need. The device is based on a stationary bike with an electrical motor, which is 

controlled according to the force exerted on the force sensors existent on the pedals. 

This device is now called the Active Pedal Exerciser (APE). In addition, it was developed 

a virtual interface, to guide the patient’s training, in order to make it as productive as 

possible. 
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1.2. Gait Disorders  

Gait can be affected by many factors, ranging from accidents, to diseases and 

age related problems. Some of this causes will be cited bellow. 

In elderly populations, gait disorders are very common, and increase drastically 

with age. Gait disorders can lead to falls, which can be pretty serious to a person well-

being [1].  

Some of the pathologies that cause asymmetries in locomotion are multiple 

sclerosis (MS), stroke, unilateral total hip replacement and osteoarthritis (OA) [2]. 

Individuals with these pathologies pedal with an asymmetrical pattern, rendering 

asymmetrical training more important than normal cycling.  

Robotic devices have been implemented in treatments for both upper and lower 

limbs rehabilitation. They provide a safe, intensive and task-oriented rehabilitation for 

patients with mild to severe motor impairments, and is an affordable therapy [3].  

Some of their major advantages are: precisely controllable assistance or 

resistance, good repeatability and measure the subject’s performance objective and 

quantifiably [3].  

 

 

1.3. Cycling for Rehabilitation 

Cycling improves the coordination, the balance and the physical condition. 

Cycling can be distinguished between active and passive cycling. In active cycling, the 

person steps on the pedals do perform the motion, whereas in passive cycling, the 

person follows the movement of the pedals. Both types are efficient for therapy, due 

to reciprocal movement with alternation between flexion and extension of the joints. 

As a result, the muscles become stronger [4].  

In the beginning of rehabilitation, it is often preferred passive rehabilitation to 

reduce swelling, alleviate pain and restore range of motion. The following stage is 

often an active-assistive movement phase, involving the use of external support to 

assist the muscles in moving the joint in order to reestablish neuromuscular control. 
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The last stages aim at returning an individual to normal activities through resistance 

exercises focused at regaining muscle strength [5]. 

 

 

1.4. Publications Resulting from the Dissertation 

Taking advantage of the 4th IEEE Portuguese Meeting on Bioengineering 

(ENBENG), it was done a poster presentation, on the theoretical principle on which 

the dissertation is based and the initial developments (Feb 2015) [6].  

More recently, an updated version of the developed work was submitted for the 

4th Baltic and North Sea Conference on Physical and Rehabilitation Medicine in Riga. 

A poster presentation was also presented (Sept 2015) [7]. 

 

 

1.5. Dissertation Structure 

The master dissertation document is structured into six chapters. The first 

exposes the objective of the APE and its need. The second presents the state of the 

art of bicycles and devices alike, for lower limb rehabilitation. 

The third chapter is a description of the device and its interfaces. The fourth 

reports the need to analyze the ergonomics of the interfaces. The fifth presents the 

methods and results obtained in the testing phase. And in the sixth are discussed 

conclusions and future work. 

In the appendices are the questionnaires distributed and their results.  
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Chapter 2 

State of the Art 

This chapter describes several approaches to equipment to accelerate recovery after 

an injury or operation. There are several robotic devices for leg rehabilitation but our 

focus will be mostly on static bicycles, and variations of them. The first section is a 

review about products that are already in the market. The second one reviews 

products in development. 

 

 

2.1. Rehabilitation Devices Being Commercialized 

One of the mostly used approaches for lower limb rehabilitation is the use of 

bicycles. More precisely, static bicycles and pedal exercisers.  

The most part of these systems are very rudimentary, as they only allow control 

of the resistance exerted on the pedals, and only some have the ability to give output 

of parameters of the training session, for example session duration, speed, calories 

spent. 

HUR® Devices 
The manufacturer HUR® has several models in the market, for lower limb 

rehabilitation, which are specific to the muscle or region which the training is aimed 

at. Despite this diversity, none of the devices has control modules implemented via 

software. These devices were developed to exercise specific leg muscles.  

The most recent version of the devices has a SmartCard kit, with a touch screen 

display and system training programs, repetitions and resistance. As an extra, they can 

have isometric testing sensor attached, to measure strength and muscular balance. 

Some of their products are:  
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- Adduction/Abduction Rehab Device [8] exercises adductor and abductor 

muscles of legs in a comfortable and easy way (see Figure 1 – A)). 

- Extension/Curl Rehab Device [9] allows for an effective and safe 

training of hamstring and quadriceps muscles (see Figure 1 – B)). 

- Leg Press Rehab Device [10] is an effective machine for exercising all 

leg muscles (see Figure 1 – C)). 

 

Figure 1 - HUR products: A) adduction/abduction rehab device [8]; B) extention/curl rehab device [9]; C) leg press 
rehab device [10]  

 
Pedal exercisers  
The major part of leg rehabilitation devices are pedal exerciser, mostly due to 

the ease to store them between uses.  

They are suitable for upper or lower limb rehabilitation. But there are some, like 

the Dual Bike [11], that allows training of both legs and arms at the same time. Its LED 

screen gives the output of time of exercise, calories burned and distance done. 

The simplest models only have one pair of pedals, as the Easy Cycle [12] for 

example. This equipment can train both legs and arms, by changing the pedals for 

handles. The Easy Cycle has a built-in computer that records time of session, speed, 

repetitions, distance and calories burned and has a command. The timer can be set to 

5 different times; there are 4 speed options; option pedaling forward/backward; also 

has security settings, when an alarm sounds when being used inappropriately. It can 

run a fixed program or customize a workout.  

A more advanced version is the Endorphin 300-e4 Tabletop Hand Cycle with 355 

Table [13]. It also has the pedals and handles, the display screen and ability for forward 

and backward movement. Besides those features, it has eight predefined complete 

programs and displays pulse, time, distance, speed, calories and heart rate. 
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2.2. Products in Development 

There are several patented devices that are more advanced than the ones 

discussed in the previous sub-chapter, but are not yet being commercialized. 

 

(1) Motorized Lower Body Rehabilitation Device 

Disclosed is a motorized device for rehabilitation that trains proper gear, 

increases blood circulation, relieves stress and reconditions muscles and joints of the 

lower limbs (see Figure 2). The device combines an exercise bike with visual stimuli in 

three dimensions on a screen to distract the patient while doing your workout [14]. 

 

 

 

 

 

 

 

 

 

(2) Rehabilitation device 

This is a device for joint rehabilitation after injury or surgery. It reacts to the 

individual performance to optimize the rehabilitation process. The motor adjusts the 

bicycle strength to provide variable resistance during the training. Before the train 

sessions starts, it is necessary to enter preliminary parameter on the computer to do 

a rehabilitation plan, and monitor the patient's performance to adapt to changes [15].  

The motor resistance unit automatically adjusts the rotational speed or the 

simulated resistance. The motor resistance acts as resistance to movement through 

microcontrollers placed on the pedals. The screen used to enter data or select 

programs is tactile (see Figure 3.) 

Figure 2 – Motorized lower body rehabilitation device [12] 
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Figure 3 – Rehabilitation device [15] 

 

(3) VRACK 

This device consists of a cycling rehabilitation mechatronic system with a 

virtual interactive environment called Virtual Reality Augmented Cycling Kit 

(VRACK). This system combines commercially available stationary bicycles and an 

interface with a personal computer for process simulation and data acquisition 

[2]. 

The exercise bike has sensors to integrate physiological and biomechanical 

parameters, providing feedback to the individual in the virtual environment of the 

screen while running your workout (see Figure 4.) The modules are mounted in a 

normal exercise bike.  

 

 

Figure 4 - VRACK [2] 
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The parameters obtained from these systems are communicated to a 

therapist to customize and monitor the training session. 

The handle system uses a hydraulic dynamometer that measures the force 

applied to control the cyclist in the virtual environment. 

 

(4) MedExercise® ST 

This is the first device designed to train bilateral lower limbs. The flexion and 

extension movements used during the training session are similar to those 

performed for walking, so it is an appropriate device to train the march. The 

device plays movement of low-impact walking (see Figure 5.) Plays the benefits of 

walking on a treadmill with the convenience of exercising while sitting. The device 

can be used as sitting or lying down [16]. 

Resistance levels and range of motion of the joints are adjustable for each 

leg, allowing unilateral and bilateral training. It is possible to connect the two 

pedals, causing a leg helps to move the other leg. It measures the cadence and 

workout intensity.  

 
Figure 5 - MedExercise® ST [16] 

 
(5) Brushless DC motors keeping muscles in shape 

The device consists of a recumbent bicycle equipped with an electric motor that 

provides additional power to feed the FES (functional electrical stimulation) [17]. 

The DC motor is required to support the initial stimulation, and keeping the legs 

of the moving subject. Also controls the training changing between walking frontward 

or backwards, or acts as a wave generator, depending on the capabilities of the 



[10] 
 

patient. The motor impels the patient’s legs to move, till they can generate force 

themselves, and then acts as a brake (see Figure 6.) 

 

Figure 6 - Brushless DC motors keeping muscles in shape [17] 

After this research, it could be concluded that there is no device with all of the 

features we applied in the APE. But they can be seen in some of these devices. The 

devices (1) and (3) are rehabilitation bikes with a virtual environment. The device (2) 

does not have a virtual environment, but the training can be programmed and the 

motor adjust to the training. The (4) trains legs bilaterally, and although it emulates 

better the walking pattern, but lacks every other feature.  The (5) is also very alike the 

APE but does not train bilaterally. 
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Chapter 3 

The Device 

 

3.1. Active Pedal Exerciser 
The Active Pedal Exerciser is aimed at the rehabilitation of the lower limbs. It is 

an adaptation of a stationary bike, where the goal of design is a pedal exerciser instead 

of a stationary bike.  

To the stationary bike was added a DC motor, a gear box, a power supply, a Data 

Acquisition System (DAQ), three force sensors in each pedals, an ESCON controller, a 

Zener diode and a sensor to monitor the heart rate (Figure 7.) 

The APE’s motor is gradually triggered, depending on the pressure exerted on 

the force sensors existing on the pedals, allowing to compensate the leg with mobility 

problems, helping it to perform the expected cycling movement. The data acquired is 

transmitted to the software in real time. 

It has the ability to train each leg in a different way, through the prior 

introduction of training parameters, on the physiotherapist interface. It can also 

compensate for a missing or impaired limb by mimicking the performance of the 

healthy leg.  

The training can occur in passive or active mode, depending on the patient’s 

capabilities. The modes are named after what the bicycle does. So in the passive 

mode, the motor works as a brake because the person can mobilize the leg to do the 

intended training. In the active mode, the motor aids the leg to perform the 

movement. The bicycle does not have to be in either one mode or the other, it can be 

in passive mode on the healthy leg and in the active mode for the impaired one.  

A computer interface allows the physiotherapist in charge to set the required 

parameters for each patient. The patient also has an interface to keep track of his or 
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hers progress and stay motivated. The patient’s interfaces are described in sub-

chapter 3.2. 

 

Figure 7 - Active Pedal Exerciser 

 

3.2. Interfaces 

3.2.1 Physiotherapist Interface 

The physiotherapist interface has three blocks (Figure 8.) The first block is for 

the user’s data. All the fields are editable, except for the BMI (Body Mass Index), or 

IMC in Portuguese, that is calculated using the height and weight of the person. It uses 

the standard formulae, in which the BMI is the ratio between the weight in kilograms 

and the square height, in meters.  

The second block is the crucial one. The first step of the physiotherapist is to 

choose the control mode. There are four modes implemented. The therapeutic ones 

are the control by force and the control by speed.  

 After this selection, some options will be enabled (the ones that are needed for 

the control) and other will be disabled (the ones not pertinent to the control mode.) 

This editable text catches errors. It only accepts integer numbers in a pre-set range. 

This range wasn’t yet evaluated by a health physician, so it might not be appropriated 

for therapy. When the control by force is selected, the editable fields are reference 

force for each leg, the percentage of operability for each leg and the maximum heart 
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rate. When is selected the control by speed, the enabled fields are the reference speed 

and the maximum heart rate. 

The section on the right side of the screen is for visualization only. It shows the 

force in each sensor, for each pedal, and the sum of the total force for each pedal in 

front, in Newtons (N). As well as the current and injected speed, in rotations per 

minute (rpm), and the current heart rate, in beats per minute (bpm). In the section 

Graph Visualization, the physiotherapist can select which graphs he wants to see, in 

the area below.  

 

Figure 8 - Physiotherapist Interface 

 

3.2.2. Patient Interface 

For the patient’s interface, two different types were planned and executed. 

Initially it was though that the best way to guide the user would be with bar graphics 

with horizontal lines indicating the range of therapeutic values, and one representing 

the reference or goal value. An initial sketch was made in Balsamiq Mockups® and is 

represented in Figure 9.  
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Figure 9 - Initial mockup of the interface 

It was also planned that each bar would change colors such as: if the actual value 

was greater than the maximum, the bar would turn red; if the actual value was below 

the minimum, it would turn yellow; and if the value was between the maximum and 

the minimum, it would be green. This step of development is shown in Figure 10.  

 

Figure 10 - Patient Interface, version 1 

The concept for the control values was changed and the minimum value 

disappeared, and so did the condition for when the value was lower than the 

minimum. The option for the selection of the leg in treatment was replaced by the 

percentage of operability of each leg, so it disappeared from the patient interface.  
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The final interface is not editable. It only receives information and shows it on 

the screen. The information received comes from the physiotherapist interface.  

It has a similar field of user data to the physiotherapist interface. All the data is 

imported from there. The field for training duration is also imported. The timer is 

initialized by the physiotherapist. 

 

Figure 11 - Patient Interface, version 2 

 The last field is composed by three graphs. The first one is the speed in 

rotations per minute (rpm) on the pedals. The second is the force exerted by the user. 

Each of the pedals has three sensors, so the force shown is the sum of the three. The 

first column is the force from the left leg and the second column is representative of 

the force from the right leg. The third graph is the heart rate in beats per minute 

(bpm). When these values are within the therapeutic range, the bars are green. If the 

patient is above the maximum limit, the bars will go red, as to instruct the patient to 

slow down. The reference lines, in green and red, represent the reference and the 

maximum value, respectively.  

 

3.2.3. Virtual Environment 

In the virtual environment, or virtual game, is composed by a bicycle on a road, 

in a forest. There were used two programs to develop the game. The model of the 

bicycle and the trees was found on the Internet [18]. After this models were obtained, 
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the complete interface was developed in Matlab 3D World Editor® and Cinema 4D®. 

The road was designed from scratch in Cinema 4D®. 

The main goal of this game was to motivate the user to stay close to the 

reference values. The farther the patient was from the reference values the faster he 

will lose points. The score starts in 5000 and diminishes from there. The user can also 

chose the level he wants to play at, from the three available: Easy, Intermediate and 

Hard. The difference between levels is the speed in which the points are lost.  

The user is on the reference value when the bicycle is in the same position as 

the Figure 12. If the user exerts more force in the left pedal, the bicycle tilts left, and 

if the force on the right pedal is bigger, it tilts right. If the speed is lower than the 

reference, the road inclines upward, and if it is greater, it inclines down.  

 

 
Figure 12 - Virtual Environment 

The choice between the two patient’s interfaces is made based on the answers 

from que usability questionnaires. 
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Chapter 4 

Ergonomics and Usability Questionnaires 

The decision to opt for one of the patient’s interfaces is made by measuring the 

ergonomics of each one, and the system as a whole. There was a debate between 

using a standard questionnaire and developing a new one specific to the project. And 

another one to decide between different standardized questionnaires, after deciding 

on the previous question. 

In this chapter, it is made a deeper study on the ergonomics definition and how 

to evaluate a system usability. 

 

 

4.1. Ergonomics 

The philosophy of ergonomics was introduced in 1857 by the Polish scientist 

W.B. Jastrzebowski. The word ergonomics comes from the Greek ergon + nomos, 

which means the study of work [19]. The concept of ergonomics changed over time, 

being introduced as a discipline by Murrell in 1949, and was considered an applied 

junction of science and technology, promoting a human-centered holistic approach to 

work systems design that considers “physical, cognitive, social, organizational, 

environmental and other relevant factors” [19].  

Human factors and ergonomics (HFE) were defined by the International 

Ergonomics Association, in 2003, as 

“the scientific discipline concerned with the understanding of the 

interactions among humans and other elements of a system, and the 

profession that applies theory, principles, data and methods to design in 

order to optimize human wellbeing and overall system performance.” 
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An ergonomist has two roles. One as a scientist, understanding the interaction 

between people and artifacts and considering the capabilities, needs, desires and 

limitations of people in those interactions. The second as a craftspeople, contributing 

to the design of interacting systems, maximizing the capabilities, minimizing the 

limitations and trying to satisfy the needs and desires of the human race [20].  

The mainly investigated domains of ergonomics are physical, cognitive and 

organizational. Physical ergonomics is linked to human anatomical, anthropometric, 

physiological and biomechanical characteristics. The concern of cognitive ergonomics 

is memory, perception, reasoning, information processing and motor response, this 

is, the way in which mental processes affect human and system interaction. 

Organizational ergonomics is related to socio-technical system optimization, including 

processes, structures and policies [19]. The various dimensions of the HFE discipline 

are shown in Figure 13. 

 

Figure 13 - The various dimensions of the Human Factors and Ergonomics [19]. 

 

The HFE discipline focuses on the understanding of interactions between people 

and systems, i.e. everything that surrounds people at work and outside of their 

working environment. HFE aims to optimize human well-being and overall system 
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performance [19], by making human-system interactions easier, safer, more efficient 

and more comfortable, by studying those interactions [21]. 

In sum, ergonomics is about developing products with the best human 

interaction possible, ensuring that the design isn’t forcing people to adapt, but rather 

complement their strengths and abilities and minimize their limitations [21]. 

 

 

4.2. System and Interface Usability Evaluation 

After the development of the two patient’s interfaces, it became necessary to 

evaluate if one was clearly preferred over the other, or if they were liked in a similar 

manner by the users. We also wanted to know if there were other improvements the 

patients could bring to our attention, before initializing the process of finalizing the 

prototype.  

We wanted to evaluate the overall satisfaction, but more specifically the 

helpfulness of using an interface to indicate what the patient was supposed to do, 

with a visual appeal.  

 

4.2.1. Usability Questionnaires 

In order to select a questionnaire, to evaluate the usability of our system 

interfaces, we researched the types of questionnaires and surveys already existing, 

the parameters to watch for, the values acceptable for a system, among others.  

Questionnaires and surveys allow the researcher to acquire a large amount of 

data, of a large group of people, for a relative low cost. The validity of the data 

acquired is dependent of the questions, as they must be written in a way that there is 

only one interpretation [22].  

 

Evaluation Parameters 
The reliability of a questionnaire is the parameter measured to determine if the 

questionnaire yields the same results when filled out by “like-minded people in similar 

circumstances” [23]. It is expressed numerically in a scale from 0.00 (very unreliable) 

to 1.00 (extremely reliable) [23]. Questionnaires with a reliability below 0.50 are 
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suspect, unless they were very short (3-4 items) and there is a strong reason to use 

them. 

Validity is the degree to which the questionnaire is in reality measuring or 

collecting data about what it was designed to. Validity is as issue in opinion surveys 

but it can also be an issue in factual questionnaires if respondents interpret the 

questions in different ways [23]. 

 

Types of questionnaires 
There are two types of questionnaires. The closed-ended leaves no room for 

individual comments and the questions are replied in terms of preset responses that 

can be coded as numbers. And open-ended ask for answers in the respondent own 

words [23]. 

A closed-ended questionnaire is more appropriate for processing large 

quantities of data, or if it is scaled to produce meaningful numeric data [23]. 

An open ended questionnaire is better employed in initial state of research or if 

you are searching for a very specific comment, or even if answers can’t be summed 

up in a numerical way [23]. 

 

Advantages and disadvantages of using usability questionnaires 
Advantages 

A usability questionnaire gives feedback from the users’ point of view. If the 

questionnaire is reliable and the answers aren’t bias, then the feedback will be 

trustworthy and a sample of what the whole population of users will think or feel. The 

use of questionnaires is also a quick and cost effective way to evaluate a system before 

taking it to the market [23]. 

Disadvantages 

Once the questions are designed to fit a number of different situations, the 

answer cannot tell in detail what are the components that are working for the user 

and the ones that aren’t. Although, through the use of well-designed questions, the 

issues can be thoroughly examined. In order to evaluate the overall usability of the 

system, the investigator should also observe the users and talk to them [23]. 
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4.2.2. Standardized Questionnaires 
Standardized questionnaires have the added benefits of: allowing the 

practitioners to report results with more detail than when using only personal 

judgment; generalizing a finding from a sample to a larger population; facility of 

communicating findings when referring to metrics previously standardized; and it 

makes it easier to compare different stages of development of a design [24]. 

The danger in not using a standardized and systematic metrics is that the 

researcher may become de-sensitized to relevant usability issues and fail to document 

them [24].  

There are three major standardized questionnaires: the System Usability Scale 

(SUS), the Post-Study System Usability Questionnaire (PSSUQ) and the Software 

Usability Measurement Inventory (SUMI). 

 

4.2.2.1. System Usability Scale 

The SUS was developed in 1986 by John Brooke. It consists of ten statements, 

and half are positive and the other half are negative, and the respondent has to state 

the level of agreement (see Figure 14). The scale has 5-points of agreement for each 

statement. The result obtained doesn’t assess different features of the system [25].  

The scores can be though as percentages once they are on a scale from 0 to 100, 

where 100 represents a perfect score [25]. The score is calculated as described in Text 

1. The SUS is highly reliable (0.91) and is free [24]. 
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Figure 14 - The SUS Questionnaire [24] 

 

 
Text 1 - Calculating SUS scores [23] 

 

4.2.2.2. Post-Study Usability Questionnaire 

The PSSUQ is a questionnaire with 16-items that measures respondents’ 

perceived satisfaction with the product or system (see Figure 15.) The total score is an 

average of the scales: System Quality (items 1-6 average), Information Quality (items 

7-12 average), and Interface Quality (items 13-16 average). PSSUQ’s reliability is very 

high (0.94) and is free [24]. 
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Figure 15 - The PSSUQ Survey [24] 

The variance analysis of the scores of the PSSUQ has shown that they vary with 

the developer, stage of development, type of product, of study, and of evaluation. 

They are, however, insensitive to gender, although it’s still advised to include it as a 

variable in data analysis because different genders may react differently to a product 

[26]. 

PSSUQ’s reliability is a function of the interrelatedness of scale items, the 

number of scale steps per item, and the number of items in a scale. Therefore, if a 

participant chooses not to answer an item, the reliability will decrease slightly but the 

remaining items should offer a reasonable estimate of the appropriate scale score 

[26].  

PSSUQ can be confidently used to evaluate different types of products and at 

different times during the development process. It is particularly helpful in 



[24] 
 

competitive evaluations or in tracking usability variance as a function of design 

changes during development, either within a version or across versions [26]. 

 

4.2.2.3. Software Usability Measurement Inventory 

The last questionnaire and more complex, is the SUMI, with 50-item questions. 

It is used to measure respondents’ perception of efficiency, affect, helpfulness, control 

and learnability of a system. Has high reliability (0.92), but it costs approximately $700 

a month. The questions have three options, as for example: The system responds too 

slowly to inputs:    Agree    Undecided      Disagree [24]. 

 

4.3. Selection of the Questionnaire 

Selecting a questionnaire to use depends on the project stage, goals and budget.  

The device doesn’t have a budget for a survey like SUMI, and since what we 

wanted to evaluate could be accomplish by one of the other methods, automatically 

eliminated this questionnaire. 

The SUS is appropriate to measure respondents’ perceived usability of the 

system, and items 4 and 10 measure the perceived “learnability” [24]. 

PSSUQ determines users’ satisfaction, but it is necessary to bear in mind that in 

PSSUQ all the items are positive, and that is easier to agree with a statement than 

disagreeing [24]. 

Once the goal with the questionnaire was to determine the device’s ease of use, 

intuitiveness and overall satisfaction, the questionnaire chosen was the SUS. To the 

standard questions, were added three open-ended questions. Two of them were 

mandatory, and asked what the favorite features were and what the aspects that 

should be altered or improved were. The last question asked for other comments.  It 

was delivered to the tested subjects through Google Forms, in Appendices A and B. 
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Chapter 5 

Methods and Results 

During the development of the APE, two separate phases of tests were performed. 

The first one had the goal of searching for patterns in cycling that could be of use for 

the development of better control modes or interfaces. The second one was meant to 

evaluate the two patient’s interfaces, to select one and develop only that one in future 

phases of the project. 

 

 

5.1. Searching for Useful Patterns 

In this first trial, the goal was to test the initial control modes, and also to look 

for patterns in cycling that could be useful for the further improvement of the control 

modes.  

The test subjects had to perform a total of twelve tests of one minute each. 

These one minute tests are described in Table 1. 

Speed 600 rpm 

Resistance 0 

Speed 1300 rpm 

Resistance 0 

Speed 2000 rpm 

Resistance 0 

Speed 600 rpm 

Resistance 0.2 

Speed 1300 rpm 

Resistance 0.2 

Speed 2000 rpm 

Resistance 0.2 

Speed 600 rpm 

Resistance 0.4 

Speed 1300 rpm 

Resistance 0.4 

Speed 2000 rpm 

Resistance 0.4 

Speed 600 rpm 

Resistance 0.7 

Speed 1300 rpm 

Resistance 0.7 

Speed 2000 rpm 

Resistance 0.7 

Table 1 - Set of tests performed 

The resistance was being interpreted as a normalized value, so it is the scale 

from 0 to 1, and does not represent physical quantity. The users were told the speed 

that they should cycle at, and they had to try and maintain it while guiding themselves 
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with a graph. The speed mentioned is the motor’s speed. It is related to the speed on 

the pedals by a factor of 53.  

There were performed tests with six users. There were supposed to have been 

more tests, but it stopped because a sensor in one of the pedals was not working. 

Therefore, it could not be examined the force exerted on the pedals with the resulting 

speed.  

The initial spikes on the speed graphs represent the initiation of the movement, 

till the user reached the goal speed.  

 

 

Figure 16 - Speed control by the different users aiming for 600 rpm with resistance 0.0  

 

 

Figure 17 - Speed control by the different users aiming for 1300 rpm with resistance 0.0 
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The graphs for the speed of 600 rpm and 1300 rpm have the most defined cycles 

compared to 2000 rpm, which can be interpreted as a pattern of cycling. It can be seen 

in Figures 16 and 17, respectively. In Figure 18 it can be seen, the pattern for user 4, 

in more detail.  

 

Figure 18 - Speed control by the user 4 aiming for 1300 rpm with resistance 0.0 

 

 

Figure 19 - Speed control by the different users aiming for 2000 rpm with resistance 0.0 

 

For low speed (600 rpm), the users had difficulty to maintain speed (Figure 16). 

The speeds of 1300 rpm and 2000 rpm felt more natural to the users, so they were 

able to maintain those speeds more constantly (Figures 17 and 19).  
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Figure 20 - Speed control by the different users aiming for 1300 rpm with resistance 0.2 

When the resistance was increased, from 0.0 to 0.7, the previous pattern (see 

Figure 18), became more indistinct (see Figure 23). With the increase of the resistance 

it became more difficult to locate the pattern that before was so visible, even though 

it is still present (see Figures 17, 20, 21 and 22).  

 

 

Figure 21 - Speed control by the different users aiming for 1300 rpm with resistance 0.4 
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Figure 22 - Speed control by the different users aiming for 1300 rpm with resistance 0.7 

 
Figure 23 - Speed control by the user 2 aiming for 1300 rpm with resistance 0.7 

 
 

5.2. Evaluating the Interfaces 

The next phase of tests had the main purpose deciding between the two 

developed interfaces. The second goal was to deepen the study on the results that 

were sought in the first phase of tests. 

At this stage, the files used were the current ones. These tests also had the 

duration of one minute.  These tests performed were: control by force with reference 

force of 50 N and 70 N; control by speed with reference of 28 rpm and 40 rpm (speed 

on the pedals); and free mode. The free mode implemented used the default 

parameters of the interface. But since these values did not allow for normal cycling, 



[30] 
 

they were set for 40 N and 40 rpm, so it would not interfere with the user’s cycling. 

The tests were performed with eight users. 

The initial scale for force was between 100 and 1500 N, but it was deem too 

difficult to achieve while seated on the bike saddle. This way, the minimum was 

lowered to 50 N and it was only tested till the 70 N. However, the maximum force was 

not lowered, so its line never appears on the patient interface, as seen in Figure 11. 

The system was tested with the parameters described so far while using the 

patient interface. To test the virtual interface were used the force of 50 N and the 

speed of 40 rpm. 

 

Figure 24 – Force control for user 3 

There was a little difference between the forces in the pedals that caused the 

left one to indicate less force than the right, for the same exerted force. It affected 

the results because, while some people disregarded the difference, other tried to 

balance it. This discrepancy can be fixed by software. 

In Figure 24, force control, it can be seen that the average between the forces 

on the pedals is the desired force. For the same force, using the patient interface the 

cycling pattern is not very different from the one using the virtual game. For the speed 

control (see Figure 25), the pattern of force had more amplitude using the patient 

interface than using the virtual game. Since the force of 70 N was difficult to achieve, 

the pattern of cycling has more amplitude than for 50 N. 
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Figure 25 – Speed control for user 7 

From the speed of 28 rpm to 40 rpm, the pattern of cycling did not change much 

but it noticeable that the period of the force waves get shorter (Figure 25). The speed 

in both cases is very stable due to the implemented speed mode. In the speed mode, 

it is injected the speed desired so that the therapeutical goal is reached. 

 

Figure 26 - Free mode, with default values of 50 N and 40 rpm, for user 1 

On the free mode, we can see that the speed behavior is the same to the speed 

control. And since it was supposed to be a relaxed training, the cycling was very 

consistent and the force kept around 40/50 N.  

 

 

5.3. Results of the Usability Questionnaire 

Each test subject filled two forms, one SUS questionnaire for each interface. 



[32] 
 

The SUS score was calculated as instructed in Text 1. It is mathematically 

translated in formulae (1).  

(1) SUS=100 − [(∑(x2n-1 − 1)+∑(5—x2n))×2.5] 

where n is the number of the question, from 1 to 10. So 2n-1 represents the odd 

questions and 2n the even questions. 

The entire results of the questionnaires can be found in Appendix C. 

User 1 2 3 4 5 6 7 8 9 10 TOTAL 

4 1 5 1 2 1 4 1 4 1 5 87,5 

2 2 5 2 4 2 3 2 5 1 5 82,5 

6 2 4 1 4 2 4 3 4 2 5 77,5 

7 2 2 3 1 2 3 3 2 3 1 40,0 

3 1 4 2 4 1 4 2 3 2 5 80,0 

5 3 5 3 2 5 1 1 5 3 4 55,0 

1 2 4 2 2 3 4 2 3 4 4 60,0 

8 2 4 2 2 2 3 1 4 3 5 70,0 

Average 1,88 4,13 2,00 2,63 2,25 3,25 1,88 3,75 2,38 4,25 69,1 

% 63% 18% 60% 48% 55% 35% 63% 25% 53% 15% 
Average 

SUS score 
Table 2 - SUS questionnaire answers and results, for the virtual interface 

The questions 4 and 10 are said to estimate the “learnability”. These questions 

are negatively quoted. Since “learnability” is a positive parameter, the percentage was 

converted to calculate it, but not to interpret the answer. For the virtual interface the 

“learnability” is 69% = ((100%-48%) + (100%-15%))/2 and for the game is 79% = 

((100%-33%) + (100%-10%))/2. So, the users felt that it was more or less needed 

technical assistance to use the system, but that it wasn’t necessary to learn a lot to be 

able to use it. The most meaningful difference between the interfaces is that the users 

found that it was required more assistance for the use of the virtual interface, rather 

than the game. 

The users felt that they would rather use the interface (63% to 58%), but that 

the game was easier to use (60% to 68%). The users did not felt the systems were 

complex (18% and 15%). On the other hand, they somewhat found that there was 

inconsistency in the systems (35% and 33%).  

User 1 2 3 4 5 6 7 8 9 10 TOTAL 

4 1 5 1 2 1 4 1 4 1 5 87,5 

2 1 5 3 2 2 4 3 5 1 5 77,5 
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6 2 5 2 3 2 4 3 4 2 5 75,0 

7 3 3 2 4 2 3 2 4 3 4 65,0 

3 1 4 1 4 1 3 2 4 2 4 80,0 

5 4 4 1 4 3 1 2 4 2 5 65,0 

1 2 4 2 4 2 5 1 3 3 4 75,0 

8 3 4 1 4 2 3 2 3 2 4 70,0 

Average 2,13 4,25 1,63 3,38 1,88 3,38 2,00 3,88 2,00 4,50 74,4 

% 58% 15% 68% 33% 63% 33% 60% 23% 60% 10% 
Average 

SUS score 
Table 3 - SUS questionnaire answers and results, for the game 

According to the results, the functions are better integrated in the game (55% 

for the interface, 63% for the game), but still need refinement. The users also found 

that other people would probably learn to use it quickly (63% and 60%). They did not 

feel particularly uncomfortable, while using the systems (25% and 23%) and they felt 

fairly confident while using the APE (53% and 60%). 

The averages for the results obtained were: 69 for the patient interface and 74 

for the virtual game. A system is acceptable with a score higher than 68. This was 

verified in both cases.  

In the questionnaire were also included open-ended questions for the users to 

give their opinion.  

In the writing segment of the questionnaires, the users stated that the best parts 

of the patient interface where the visualization of the movement in real time, the 

variation of each parameter, the ease of use and intuitiveness, and the establishment 

of goals and limits. On the other hand, it was appointed that the graphic transitions 

were too brusque and there should be a better way to strap the feet to the pedals. 

For the virtual game, the best parts were said to be: the visualization of the 

bicycle in the virtual environment; the score acted as a motivation; the quick response 

to changes and the simplicity and intuitiveness. As negative aspects mentioned were 

that there should be tips in the interface to indicate if the position is correct, the 

bicycle could be more prominent on the screen and again, better synchronization. 

It was also mentioned that the bicycle is always tilted right. These facts were 

clarified to the test subjects and were explained in sub-chapter 5.2. 
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Chapter 6 

Conclusions 

 

6.1. Main Conclusions 

In this dissertation, after the research of the state of the art, the 

physiotherapeutic interface was improved and the patient interface and the virtual 

game were developed. Once there was no need for two different interfaces for the 

patient, ergonomic tests were performed in order to decide on one of them. The SUS 

scores were better for the virtual game, so the suggested alterations will only be 

performed in this interface. 

During the test phase of this dissertation, two separate sets of tests were 

performed. In the first phase, there was a problem with a sensor, so the conclusions 

were limited to finding patterns in the speed graph. The subjects had to aim for 600, 

1300 and 2000 rpm (motor’s speed) and resistances of 0.0, 0.2, 0.4 and 0.7. For lower 

speeds (600 rpm and 1300 rpm) the cycling cycles are more defined than for higher 

speed (2000 rpm). A pattern can be distinguished, and can be explored in the future 

to improve the control modes. This pattern fades with the increase of resistance. 

In the second phase, the tests were performed for force of 50 N and 70 N, speed 

of 28 rpm and 40 rpm, and a free mode. The cycling pattern while using the patient 

interface and virtual game do not differ much to affect the effectiveness of the 

rehabilitation.  

 

 

6.2. Future Developments 

The project developed can still be improved in a lot of ways, to make it an even 

more competitive product in the market. Maybe the first thing should be 

implementing the tare routine to the force sensors, so that the data acquired is more 
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reliable. To implement the suggestion the test subjects made, the engine response 

should be smoothed. To guide a training of a very impaired patient, it would be useful 

to have a pattern for normal cycling to use.  
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Results of the Usability Questionnaires 

 

Results for the Patient Interface Usability Questionnaires 

User 1 2 3 4 5 6 7 8 9 10 

4 1 5 1 2 1 4 1 4 1 5 

2 2 5 2 4 2 3 2 5 1 5 

6 2 4 1 4 2 4 3 4 2 5 

7 2 2 3 1 2 3 3 2 3 1 

3 1 4 2 4 1 4 2 3 2 5 

5 3 5 3 2 5 1 1 5 3 4 

1 2 4 2 2 3 4 2 3 4 4 

8 2 4 2 2 2 3 1 4 3 5 

 
 

QUESTION 11 

 

Visualização em tempo real do movimento incluindo os diferentes parâmetros (velocidade, 

força exercida, batimentos cardíacos). 

A possibilidade de poder ver os resultados em tempo real. 

O ritmo cardíaco é interessante de verificar. 

O estabelecimento de metas e de limites para cada indivíduo. 

Bem construída e de fácil utilização.  

Quantificação da minha força 

Simples e serve o propósito para que foi criada. 

A interface é bastante intuitiva. 

 

QUESTION 12 

Controlador. 

Podia haver um valor numérico no topo dos gráficos como o objectivo proposto ao utilizador. 

O objetivo do exercício poderia ser mais claro.  
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Os indicadores poderiam ter indicação com algum historial (o ritmo cardíaco está a subir?) 

Estabilidade dos pedais e as transições de peso em Newton nos pedais são demasiado bruscas. 

Deveriam ser transições mais graduais. 

Nada a mencionar. 

Maior eficiência e rapidez na sincronização da bicicleta com o sistema. 

Realismo do percurso a ser executado pela pessoa da bicicleta poderia melhorar 

Os dados do utilizador poderiam ser guardados. Relativamente ao equipamento poderia haver 

uma maneira mais eficaz de prender os pés aos pedais. 

 

No answers for Question 13 

 

Results for the Virtual Game Usability Questionnaires 

User 1 2 3 4 5 6 7 8 9 10 

4 1 5 1 2 1 4 1 4 1 5 

2 1 5 3 2 2 4 3 5 1 5 

6 2 5 2 3 2 4 3 4 2 5 

7 3 3 2 4 2 3 2 4 3 4 

3 1 4 1 4 1 3 2 4 2 4 

5 4 4 1 4 3 1 2 4 2 5 

1 2 4 2 4 2 5 1 3 3 4 

8 3 4 1 4 2 3 2 3 2 4 

 

Question 11 

Visualização em tempo real da forma com a bicicleta andaria em ambiente real. 

O desenho esta bem conseguido e é claro.  

Simular um ambiente de movimento em estrada é bastante positivo. 

Gostei da adaptação da estrada para subida, descida e plano consoante a velocidade. O sistema 

e rápido a responder a essas alterações. 

Gostei bastante de podermos ver a simulação do movimento e com isso corrigir o mesmo. E pelo 

facto de ser um jogo e ter pontuação aumenta a vontade de fazer o movimento correto. 

Diferença de forças utilizadas entre o pedal direito e o esquerdo 

Pareceu-me ser simples e apenas com o fundamental.  

Tal como na interface anterior, pareceu-me ser uma interface intuitiva em que conseguíamos 

procurar o que se queria com o mínimo de esforço. A informação sobre o que se tinha de fazer 

estava toda disponível. 

 

Question 12 

Calibração dos sensores, pois a bicicleta ia sempre um pouco inclinada. 



[m] 
 

Podia haver "dicas" na interface: setas para indicar se a bicicleta esta a subir ou descer, ou se é 

preciso compensar a força a direita ou a esquerda. 

A bicicleta poderia estar mais destacada. 

Apesar da indicação visual da condição da bicicleta ser "realista", poderia ter um indicador extra 

que tornasse mais claro qual é o problema ou indicasse que está bem, principalmente no jogo 

vertical.  

Demasiada sensibilidade no entortar da bicicleta. 

Talvez as fitas adesivas que seguram os pés, deviam estar bem presas aos pedais para não haver 

o risco de saírem tão facilmente. 

Maior sincronização e eficácia entre a força exercida na bicicleta o jogo 

No teste de força do jogo penso que a bicicleta é um pouco instável 

Não sei o que poderia dizer para melhorar ou alterar. 

 

No answers for Question 13 

 

 


