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Abstract 

Aggregation of particles is fundamental for improving the performance of many solid/liquid processes. Aggregation can be 
induced by different means, one of the most common being based on the addition of polymeric additives, namely polyelectrolytes 
(PEL). In this work we have studied the flocculation of precipitated calcium carbonate (PCC), used as filler in papermaking, 
induced by a range of cationic polyacrylamides with different structures, varying in molar mass and degree of branching. The 
flocculation process was monitored continuously using the LDS technique. Using an experimental design strategy it was possible 
to produce a model which allows us to relate the aggregates structure, described by the scattering exponent (SE), with the PEL 
characteristics and concentration (R2 around 79%). The Partial Least Squares (PLS) regression method was selected to perform 
the regression, given the significant collinearity among the input variables. The results obtained lead us to conclude that the 
polymer intrinsic viscosity (related with the PEL molar mass and charge density, and supplying information about the volume of 
the polymer molecule in the solution) and the degree of branching, are the parameters with a stronger influence on the resulting 
flocs structure. The PLS model developed was successfully validated using an independent data set, which provides confidence 
on its consistency and prediction accuracy. 
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1. Introduction 

Aggregation of particles is fundamental for improving the performance of many solid/liquid processes. 
Aggregation can be induced by different means, one of the most common being based on the addition of polymeric 
additives, namely polyelectrolytes (PEL). Flocculation by polyelectrolytes is of importance to many industrial areas, 
namely in food, pharmaceuticals and also in papermaking. 

In the case of papermaking, flocculation is the most important phenomena of the wet-end stage since it affects 
process efficiency (e.g. retention, drainage and runnability) and the quality of the final product [1]. However, to 
control the flocculation process it is necessary to know and understand how chemical additives act during the whole 
process. 

Various processes occur simultaneously during flocculation: adsorption of polymer molecules at the particles 
surface; re-arrangement (or re-conformation) of adsorbed polymeric chains; collisions between destabilized particles 
to form aggregates (flocs); and break-up of flocs. The importance of each process depends on the flocculant 
characteristics, like structure, molar mass, charge density and concentration; on the characteristics of the suspended 
particles, like size and charge; on the characteristics of the suspending medium, like conductivity and ionic charge; 
and, finally, on the contact time and turbulence intensity. 

The structure of the polyelectrolyte determines its conformation when adsorbed on the particle surface and, 
therefore, the predominant flocculation mechanism [2]. In general, if molar mass is high and charge density is low 
the polymer adsorbs on the particle surface in such a way that it extends beyond the electric double layer and can 
interact with the polymer adsorbed on other particles – in this case the flocculation process is dominated by bridging 
bonds [3,4]. When the charge density is high, the bridging capability is reduced because there is a tendency for the 
polymer chains to adopt a flatter conformation on the particle surface, which results in the formation of patches that 
attract the polymer free surfaces of other particles [4]. On the other hand, the introduction of branches in the polymer 
chain can alter the PEL conformation on the particle surface and influence the aggregation mechanism. 

The concentration of the flocculant can also be an important parameter, since the rate of adsorption depends on 
the amount of polymer per unit area of the particle surface. Moreover, the flocculant concentration also affects the 
re-conformation rate of PEL: polymer re-arrangement is relatively fast at low surface concentration but rather slow 
on crowded surfaces since neighbouring molecules interfere with the re-arrangement [3, 5]. 

In this work we have studied the flocculation of precipitated calcium carbonate (PCC), used as filler in 
papermaking, induced by a range of cationic polyacrylamides with different structures, varying in molar mass and 
degree of branching. The particles have been kept constant (PCC particles with a median diameter of 2.05 μm and 
surface potential - 32mV) and all tests were conducted in distilled water. The flocculation process was monitored 
continuously using the LDS technique (laser diffraction spectroscopy) [6], which provides information about the size 
distribution and structure (fractal dimension and scattering exponent) of the aggregates [3,7], for each sampling 
instant and, thus, about the whole kinetics of the flocculation process.  

All this information must be treated adequately, in order to better understand the effect of the different parameters, 
referred above, on the flocculation process. In a previous study [8], we have evaluated how the PEL characteristics 
and concentration affect flocculation efficiency. Here, since the aggregates structure, namely the flocs compactness, 
is an important characteristic which may condition the aggregates performance, including their resistance, 
dewatering ability, sedimentation, etc, and, as a consequence, the final application of the aggregates produced, we 
have used the experimental information obtained to analyse how the PEL characteristics affect the aggregates 
structure.  

Using an experimental design strategy it was possible to produce a model which allows us to relate the aggregates 
structure, described by the scattering exponent, SE (related to the secondary aggregates structure), with the PEL 
characteristics and concentration (R2 around 79%). The Partial Least Squares (PLS) regression method was selected 
to perform the regression, given the significant collinearity among the input variables. Unlike Ordinary Least 
Squares (OLS), PLS effectively handles situations where the X-variables (or input variables) are highly collinear, as 
happens in the present situation [9,10]. It basically consists in finding a lower dimensional subspace of the whole X-
variables hyperspace, which presents a high covariance with the response and also provides a proper description of 
the original X data. By first projecting the X-variables observations onto such a predictive subspace, and using the 
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result of such operation as the new predictor variables, one can effectively handle the correlation structure present, 
and obtain a stable and robust predictive model. 

2. Experimental 

2.1. Materials 

In this work, we have used nine cationic polyacrylamides (C-PAM) emulsions of different molecular weight with 
a charge density between 40 and 50% (w/w),  copolymers of acrylamide (AM) and acryloyloxyethyltrimethyl 
ammonium chloride, developed and supplied by AQUA+TECH [11,12]. The main characteristics of the 
polyelectrolytes are summarized in Table 1. Flocculant solutions were prepared with distilled water at 0.1% (w/w).  

The flocculation tests were carried out on a commercial scalenohedral PCC suspension, supplied by OMYA. The 
PCC suspension was prepared at 1% (w/w) in distilled water. The median size of the particles was approximately 
2.05 μm (measured by LDS) and the suspension pH, 8.5. The zeta potential of the particles was -32 mV in distilled 
water. 

2.2. Experimental techniques 

The intrinsic viscosity (IV) is a suitable and informative parameter, in particular when the goal is the assessment 
of the impact of PEL of different chain architectures and structure on technological processes where the polymer coil 
dimensions are important. For a known molar mass, the polymer coil size in solution depends upon the chemical 
structure, chain architecture (linear, branched), and the solvent quality. IV is dependent on the coil size of the 
polymer in solution and, thus, can supply information about the conformation adopted by the PEL in solution. 

The IV of the isolated and redissolved copolymers was determined in 0.05 M NaCl aqueous solution at 20± 0.1°C 
by dilution viscometry, using an automatic capillary viscometer, Viscologic TI1 (Semantech, France). The 
extrapolation to zero concentration was performed according to Huggins' method [13]. Table 1 summarizes the 
properties of the polymers tested. 

         Table 1. Summary of the flocculants characteristics. 

Alpine FlocTM Intrinsic viscosity – IV (ml/g) Charge density (w/w %) Number of branches 

E1 2308 45.5 0 

E1+ 1817 48.8 1 

E1++ 1771 46.6 2 

E1++++ 1775 42.8 4 

E2 1550 47.3 0 

E2+ 1164 41.4 1 

E2++++ 977 42.1 4 

E3 989 44.6 0 

E3++++ 594 40.1 4 

 
PCC flocculation was monitored by measuring the aggregates size using light diffraction spectroscopy (LDS) in a 

Malvern Masterziser 2000 (Malvern Instruments). The PCC suspension was added to 700 mL of distilled water in 
the equipment dispersion unit, until a certain, fixed level of obscuration was obtained, corresponding to an average 
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PCC concentration around 0.05% (w/w). The tests were carried out with stirring and in turbulent conditions (1400 
rpm corresponding to an average shear rate of 312 s-1) as described elsewhere [6].  

Flocculants were tested for a range of concentrations, usually close to the optimum dosage, which is defined as 
the PEL dosage leading to larger flocs and fastest kinetics.  

To determine the flocculation kinetics curve, a predetermined amount of flocculant was added at once to the 
suspension and the flocs size distribution was measured every minute during 14 minutes, i.e., until the flocs size 
stabilized.  

Fig. 1 gives two examples of the flocculation kinetic curves obtained for the flocculation of PCC with E1 and E2. 
It is obvious from the analysis of Figure 1 that the shape of the kinetic curve depends on the polyelectrolyte 
characteristics. For the lower molar mass polymer (E2) there is no reconformation of the aggregates, after reaching 
the maximum floc size, the opposite happening for the high molar mass polymer (E1). Moreover, the flocculation 
rate, during the first stage of flocculation, is faster with the higher molar mass polymer (E1). The experimental 
flocculation results corresponding to the range of polymers in Table 1 have been presented in detail elsewhere [7]. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Flocculation kinetic curves obtained with LDS: flocculation of PCC induced by E1 (a) and E2 (b). 

From the scattering matrix produced by the LDS technique it is also possible to extract information about the 
fractal dimension of the aggregates. By plotting, in logarithmic scale, the scattering intensity versus q (q=4πn0/λ0 
sin(θ/2)), where n0 is the refractive index of the dispersing medium, θ the scattering angle and λ0 the incident light 
wavelength, the slope of the decay region is related to the fractal dimension of the aggregates [3,7]. When both 
primary and secondary aggregates are simultaneously present in the flocs, two regions with different slopes can be 
identified in the scattering plot (Fig. 2). Region 1, corresponding to the larger length scales (smaller angles), is 
related to the secondary aggregates and characterized by the scattering exponent (SE). Region 2, corresponding to 
the smaller length scales (larger angles), is related to the primary aggregates and is characterized by the fractal 
coefficient (dF). 

Mass fractal dimension provides a way of expressing the degree to which primary particles fill the volume of the 
aggregate: 

 
FdRRm )(            (1) 

 
where m is the mass of the aggregate of radius R. 

For solid non-porous particles dF=3 and for porous particles 1< dF  <3 [3]. 
For secondary aggregates, where restructuring has occurred, the fractal theory no longer applies, but information 

about the flocs structure can be provided by the scattering exponent (SE) which is, in this case, a mere 
proportionality coefficient between scattering intensity and q. This coefficient stands for the case of polydisperse 
aggregates composed of polydisperse particles/primary aggregates, being still related to the structure of the 
aggregates [3,7]. Therefore, both dF and SE can be used to supply information about the aggregates structure, SE 
being a more adequate parameter to describe the structure of secondary aggregates. 
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     Fig. 2. Scattering pattern of an aggregate. 

Fig. 3 gives two examples of how both SE and dF evolve with time, during the flocculation process, for two of the 
polymers studied (E1 and E2). 

 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Evolution of flocs structure with time (dF and SE) for E1 (a) and E2 (b). 

Analyzing Fig. 3 it is obvious that comparing E1 and E2, for the lower molar mass polymer (E2) the aggregates 
become more compact (larger SE) straightaway after the beginning of the flocculation process. Additionally, at the 
end of flocculation these aggregates reach larger values of SE (more compact flocs). It is also apparent in both cases 
that as flocculation proceeds the aggregates become more compact (SE increases with time). 

From the SE profiles obtained for the different polymers tested, we have extracted, for each case, the SE value 
corresponding to the maximum in the flocculation kinetics curve (larger aggregates diameter). These values are 
summarized in Table 2. These values will be used in the PLS regression method to perform the regression and 
obtain the model to predict flocs structure as a function of PEL characteristics. 
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Table 2. Summary of the experimental SE values for the maximum in the flocculation kinetic curve for the different polymers and concentrations. 

Polymer Concentration 

(mg PEL/g PCC) 

d50 

(µm) 

SE 

 

E1 6 230 1.68 
E1 8 450 1.48 
E1 11 333 1.49 

E1+ 8 266 1.52 
E1+ 10 270 1.54 
E1+ 12 186 1.86 

E1++ 18 435 1.47 
E1++ 20 510 1.34 
E1++ 22 285 1.89 

E1++++ 8 266 1.40 
E1++++ 10 281 1.43 
E1++++ 12 112 1.41 

E2 6 41 2.14 
E2 8 50 2.19 
E2 10 39 2.09 
E2 14 42 2.16 

E2+ 6 96 1.79 
E2+ 10 135 1.53 
E2+ 13 79 1.90 

E2++++ 6 286 1.67 
E2++++ 8 354 1.53 
E2++++ 10 282 1.50 

E3 2 27 2.07 
E3 6 45 1.96 
E3 8 34 2.08 

E3++++ 6 74 1.94 

E3++++ 10 167 1.74 
E3++++ 12 190 1.53 
E3++++ 14 183 1.55 

 

3. Partial least squares 

Partial least squares (PLS) regression is a method for relating two data matrices, the X-variables or predictors (or 
input variables), and the Y-variables or responses, through a linear multivariate model. PLS is able to cope with 
highly collinear predictors, as happens in the present work, being furthermore able to handle noisy and even 
incomplete data in both predictors and responses [9, 10]. 

PLS is a bilinear calibration method that finds those linear combinations of predictors presenting maximal 
covariance with the response. These linear combinations, called latent variables, are found sequentially, each one 
spanning a different part of the predictive space, until a point where prediction ability does not improve significantly, 
or begin getting worse. 

The PLS model can be re-expressed as a regular regression model, with the same form of one derived from OLS, 
but with coefficients estimated through the PLS regression algorithm, BPLS, namely: 

 
          (2) 
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where F is a residual matrix. 
PLS modeling is sensitive to the scale in which variables are expressed. It works better when data are quite 

symmetrically distributed and have a rather constant error variance. Usually, data are centered and scaled to unit 
variance before analysis, especially when variables have different units or scales of variability. Scaling all variables 
to unit variance corresponds to the assumption that all variables are, a priori, equally important in the modelling task 
[14]. In this work, all variables were centred and scaled to unit variance. 

3.1. Cross –validation 

In order to validate the model, two types of approaches can be adopted. The best way is to use an independent 
data set where the model is applied and its prediction ability assessed (external validation). However, this requires 
an independent data set, which quite often cannot be provided, as data collected is scarce. In this study we have used 
external validation to verify the model. 

4. Results 

In the present work, three predictor variables were considered: branching (x1), concentration (x2) and intrinsic 
viscosity (x3). The response variable is the scattering exponent (SE) for the maximum in the flocculation kinetic 
curve, and which is a measure of the aggregates structure. These values are summarized in Table 2 for the different 
polymers and concentration. 

The main objective of this study was to identify the most important variables for the relation (SE versus x1,x2,x3) 
and to find the combination of factors describing better the scattering exponent of the aggregates. The PLS 
methodology was used for that purpose. Every test, for each set of conditions (polymer type and concentration) was 
repeated at least twice. However, in the PLS regression modelling, each test was considered individually, i.e. the 
values in the matrix were not the average values of the repetitions, but the individual values for each sample. 

Fig. 4 (a) represents the evolution of the model's coefficients of determination versus the number of components 
of the PLS model, and Fig. 4 (b) corresponds to the predicted response versus the actual response in leave-one-out 
cross-validation. The vertical line in Fig. 4 (a) indicates that the optimal model has nine components. The response 
plot (Fig. 4 (b)) indicates that the model predicts the observations quite well. Although there are differences between 
the fitted and cross-validated fitted, none are severe enough to indicate an extreme leverage point. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Evolution of the fitted and cross-validated coefficient of determination with the number of latent variables considered in the PLS model (a) 
and fit and cross-validated fitted responses for the PLS response (b). 
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components, selected by cross-validation, has a reasonably high R2 of 79% providing good indicators for its fitting 
ability and predictive accuracy. 

Fig. 5 and Table 3 display the regression coefficients for the scattering exponent (SE) model. Obviously, 
branching and intrinsic viscosity are the most important factors, but the influence of concentration cannot be 
neglected. The plot of Fig. 5 can be used to interpret the magnitude and sign of the coefficients. The variables x1, x3, 
x1*x3, x1*x1 and x3*x3 have the largest coefficient and impact on the aggregates scattering exponent model. 

 
Table 3. Coefficients for SE model with 9 components. 

                      SE              SE standardized 

   Constant           1.4685           0,000 

1- x1             -0.2923          -1.8305 

2- x2             -0.051            -0.8655 

3- x3              0.0012           2.3551 

4- x1*x2        -0.0018         -0.1231 

5- x1*x3        -0.00012       -0.9452 

6- x2*x3         0.00002        0.6612 

7- x1*x1         0.08547        2.2368 

8- x2*x2         0.0015          0.6168 

9- x3*x3         0,0               -0.8705 

           Fig. 5. Standardized PLS coefficients. 

4.1. Validation of the PLS model for SE 

In order to assess the models consistency and prediction accuracy, an independent test set, never used before 
during the estimation stage, was collected and used for testing the model developed. This data set constitutes de "F" 
series of polymers, whose characteristics are summarized in Table 4, comprising a total of 24 new samples. 

 
Table 4. Summary of the flocculants characteristics in the test set. 

Alpine FlocTM Intrinsic viscosity – IV (ml/g) 
Charge density 

(w/w %) 
Number of branches 

F1 1399 35.0 0 
F1+ 1144 29.5 1 
F1++ 687 37.7 2 
F1++++ 816 34.4 4 

 
Introducing the X-variables for the test set in the model developed, it is possible to obtain their point and interval 

estimates, which can be compared with the observed values. Of particular importance in this stage is the analysis of 
the sample-specific prediction intervals (PI), which should contain the observed samples with a given probability, 
defined a priori, through the specification of the confidence level (in the present case, such probability is of 95%). 

Table 5 summarizes the results obtained, where it is possible to verify that all samples lay within the prediction 
intervals. These results confirm the stability and accuracy of the model developed. 
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Table 5. Validation results for the model for SE developed. 
SE_observed SE predicted PI: lower bond PI: upper bond 

2.07 2.00149 1.700544 2.302436 

2.07 2.00149 1.700544 2.302436 

2.12 2.042252 1.745627 2.338876 

2.12 2.042252 1.745627 2.338876 

2.02 2.092357 1.792649 2.392065 

2.02 2.092357 1.792649 2.392065 

1.68 1.739888 1.437155 2.042621 

1.68 1.739888 1.437155 2.042621 

1.52 1.752457 1.451376 2.053538 

1.52 1.752457 1.451376 2.053538 

1.41 1.785084 1.482535 2.087633 

1.41 1.785084 1.482535 2.087633 

1.62 1.557238 1.217394 1.897083 

1.62 1.557238 1.217394 1.897083 

1.55 1.563122 1.209121 1.917123 

1.55 1.563122 1.209121 1.917123 

1.45 1.569964 1.20425 1.935679 

1.45 1.569964 1.20425 1.935679 

1.7 1.635484 1.334013 1.936956 

1.7 1.635484 1.334013 1.936956 

1.46 1.614942 1.315758 1.914126 

1.46 1.614942 1.315758 1.914126 

1.35 1.596736 1.29409 1.899382 

1.35 1.596736 1.29409 1.899382 

Fig. 6 shows the surface plots for the scattering exponent as a function of x1 and x3 (a) and as a function of x1 
and x2 (b). From these plots we can conclude that increasing branching (x1) leads to less compact flocs and as IV 
(x3) increases flocs become also less compact. Moreover, if concentration (x2) increases flocs are in general more 
compact. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Surface curves for SE: as a function of x1 and x3 (a) and as a function of x1 and x2 (b). 
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5. Conclusions 

Flocculation of precipitated calcium carbonate was monitored using light diffraction spectroscopy. Several 
cationic polyacrylamides with different molar mass and degree of branching, all copolymers of acrylamide and 
acryloyloxyethyltrimethyl ammonium chloride, were tested. LDS supplied information about the kinetic curves for 
flocs growth and about how aggregates structure evolved with time. 

A partial least squares (PLS) method was used to identify and correlate the most important variables influencing 
the aggregates structure. The model could explain quite well the variability observed in the experimental data. 

The results obtained lead us to conclude that the polymer intrinsic viscosity (related with the PEL molar mass and 
charge density, and supplying information about the volume of the polymer molecule in the solution) and the degree 
of branching, are the parameters with a stronger influence on the flocs structure. The PLS model developed was also 
successfully validated using an independent data set, which provides confidence on its consistency and prediction 
accuracy. 

For the range of concentrations tested, all close to the optimum concentration leading to the highest flocs size and 
flocculation rate for each polymer, concentration did not play a very important role on the model, though it could not 
be neglected. 

The same conclusion has been obtained previously when flocculation efficiency, defined as the relation between 
the maximum flocs size obtained and the time needed to reach it, was correlated with the same polymer 
characteristics. Thus, it is possible to conclude that the PEL properties most related to the polymer conformation in 
solution (branching and intrinsic viscosity) exert a stronger influence on both the flocculation efficiency and the 
flocs structure. For the same type of particles, the polymer conformation in solution defines the way particles interact 
with each other. The two models available now (for flocculation efficiency and flocs structure) will allow us to better 
select PEL for specific applications, once we pre-define the flocs structure targeted and the required flocculation 
efficiency. 
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