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Abstract 

The growth of urban areas poses both challenges and opportunities. Challenges 

due to the increase in demand for resources and services needed. However, it also 

allows the opportunity for the development of new services and, collectively, urban 

areas can produce data to help better understand urban mobility. 

The taxi can be perceived as a probe for traffic conditions. Additionally, its 

flexibility and ubiquity can be used to retrieve large data sets of information, essential 

for studying urban mobility. In this study we explore a data set of taxi-GPS traces, 

collected in Lisbon, Portugal, to understand to what extent can taxi data represent 

urban mobility. More specifically, in this study we aimed to answer three research 

questions: (A) Is it possible to develop a model to estimate the taxi demand throughout 

the city? (B) Are urban data sources correlated among them? More specifically, is taxi 

activity correlated with mobile phone activity, two of the major urban data sources? (C) 

Can taxi data be used as a probe to infer the concentrations of exhaust gases in urban 

areas? To aid the analysis, additional data sets were collected for the same 

spatiotemporal period, regarding mobile phone activity, information on atmospheric 

pollutants and meteorological conditions. 

In order to develop a model to estimate taxi demand, an exploratory analysis 

was performed. The study was able to visualize the spatiotemporal variation, 

identifying the main pick-up and drop-off locations and busy hours, and observe that 

trip distance and duration follow Gamma and Exponential distributions. The study was 

also able to identify the link between pick-up and drop-off locations, observing strong 

links between public transportation hubs. Additionally, an analysis of taxi driver 

behavior during downtime was performed. The analysis of taxi-GPS from top drivers 

have shown specific strategies used to maximize their profit. Either by waiting for 

passengers in locations related with main public transportation hubs, during specific 

hours of the day, or by avoiding traveling great distances to the next pick-up location. 

The inference analysis explored the possibility of estimating the next pick-up area 

given the current location (last drop-off), day of the week, hour, weather conditions 

and area type (characterized by points of interest). The inference engine is based on a 

naïve Bayesian classifier, achieving 56.3% of accuracy of the training sample. Current 
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location turned out to be the main contributor to the algorithm, contrary to weather 

conditions which is the variable with the least weight in the calculation.  

The investigation of the relationship between taxi and mobile phone activity 

started by performing an exploratory analysis of the mobile phone call intensity. The 

study showed a fairly regular pattern, consistent throughout the day and during the 

entire time series. During data analysis, a significant correlation between the taxi 

volume and mobile phone call intensity was found, with a coefficient of determination 

of 0.8047. The strongest correlation was achieved over active hours of the day (8 AM-

10 PM) and active days of the week (weekdays), in areas with medium and high taxi 

activity. Moreover, mobile phone call intensity had a significant correlation with taxi 

volume of the previous two hours. Furthermore, we found that this inter-predictability 

could be modeled with a linear function and varied across different times of the day.  

To model and estimate the concentration of exhaust gases, taxi activity and 

meteorological conditions (temperature, wind, humidity, and weather conditions) 

were considered. The study revealed the daily and seasonal patterns of exhaust gases, 

how they are correlated with the weather conditions, and how nitrogen dioxide - a 

marker for atmospheric pollution - is strongly correlated with other exhaust gases. 

Using a multilayer perceptron, with 15 hidden layers and a sigmoid activation function, 

we were able to estimate the nitrogen dioxide concentrations, with a coefficient of 

correlation of 0.7869, showing a relationship between the exhaust gas concentration 

and other urban variables, especially on traffic stations. The multicollinearity analysis 

was applied to ensure non-correlated predictor variables and avoid overfitting of the 

model. 

This study contributes to a better comprehension of the complex interactions 

between the diversity of urban data sources. Our findings, to some extent, unveil the 

relationships between different urban data sources, especially the role of taxi service 

as a predictor variable for other urban variables. 
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Resumo 

O crescimento das áreas urbanas apresenta tanto desafios como 

oportunidades. Desafios devido à crescente exigência de recursos e serviços 

necessários. No entanto, também permite oportunidades para o desenvolvimento de 

novos serviços e, colectivamente, as áreas urbanas podem produzir dados para auxiliar 

a melhor compreender a mobilidade urbana. 

Táxi pode ser compreendido como uma sonda ou sensor para as condições de 

tráfico. Adicionalmente, a sua flexibilidade e ubiquidade podem ser usados para 

recolher largas quantidades de dados, essenciais para o estudo da mobilidade urbana. 

Neste estudo exploramos um conjunto de dados composto por trajectórias GPS de 

táxis, recolhidos em Lisboa, Portugal, para compreender até que ponto os dados de 

táxi podem representar a mobilidade urbana. Mais especificamente, neste estudo 

pretendemos responder a três questões de investigação: (A) É possível desenvolver um 

modelo para estimar a solicitação de táxis numa cidade? (B) Estarão as fontes de 

dados correlacionadas entre si? Mais especificamente, estará a actividade dos táxis 

correlacionada com a actividade da rede móvel, duas das principais fontes de dados 

urbanos? (C) Os dados de táxi podem ser usados como sensor para inferir as 

concentrações de gases tóxicos em áreas urbanas? Para auxiliar a análise, bases de 

dados adicionais foram recolhidas para o mesmo espaço físico e período temporal, 

correspondendo à densidade de chamadas da rede móvel, informação sobre poluentes 

atmosféricos e condições meteorológicas. 

Para permitir o desenvolvimento de um modelo de estimação da solicitação de 

táxis, foi realizada uma análise exploratória. O estudo foi capaz de visualizar a variação 

espacial e temporal, identificar as principais localizações para entrada e saída de 

passageiros, bem como as horas de maior afluência e observar que a distância e 

duração das viagens seguiam as distribuições Gamma e exponencial. O estudo também 

foi capaz de identificar a ligação entre as localizações de entrada e saída de 

passageiros, observando fortes ligações entre centros de transportes públicos. 

Adicionalmente, uma análise aos comportamentos dos taxistas durante o período de 

procura de novos passageiros foi realizada. A análise de trajectos GPS dos condutores 

mais eficientes demonstraram estratégias específicas para maximizar o ganho. Tanto 

ao aguardar passageiros in localizações relacionadas com os principais centros de 
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transporte públicos em horas específicas do dia, como ao evitarem viajar longas 

distancias para a próxima localização de embarque de um passageiro. A análise 

inferencial explorou a possibilidade de estimar a próxima área de embarque de 

passageiros, a partir da localização actual (a localização da última saída de 

passageiros), o dia da semana, as condições climatéricas e o tipo de área (definido por 

pontos de interesse). O motor de inferência é baseado num classificador simples 

Bayesian, conseguindo obter 56,3% de acuidade a partir das amostras de treino. A 

Localização actual revelou ser a principal variável que contribui para o algoritmo, 

contrariamente às condições climatéricas, que se mostraram ser a variável com menos 

peso no cálculo. 

A investigação da relação entre actividades de táxi e da rede móvel começou 

por realizar uma análise exploratória da densidade das chamadas na rede móvel. O 

estudo mostrou um padrão razoavelmente regular, consistente ao longo do dia e 

durante toda a série temporal. Durante a análise de dados, foi identificada uma 

correlação significante entre a actividade de táxis e a densidade das chamadas na rede 

móvel, com um coeficiente de determinação de 0,8047. A relação mais forte foi obtida 

durante horas de expediente (8h-22h), em dias de semana, em áreas de média e 

elevada actividade do serviço táxi. Além disso, a densidade de chamadas da rede 

móvel apresenta uma significante correlação com a actividade dos táxis das últimas 

duas horas. Acima disso, verificámos que essa previsibilidade entre ambas as variáveis 

pode ser modelada com uma função linear, e varia ao longo das horas do dia. 

Para modelar e estimar as concentrações de gases tóxicos, foi considerado a 

actividade de táxis e as condições meteorológicas (temperatura, vendo humidade e 

estado do tempo). O estudo revelou os padrões diários e sazonais dos gases tóxicos, 

como estes estão correlacionados com o estado do tempo e como o dióxido de azoto – 

um marcador para a poluição atmosférica – está fortemente relacionado com os 

restantes gases tóxicos. Usando um perceptrão multi-camada, com 15 camadas 

escondidas e uma função de activação sigmóide, fomos capazes de estimar as 

concentrações de dióxido de azoto com um coeficiente de correlação de 0,7869, 

demonstrando a relação entre as concentrações de gases tóxicos com outras variáveis 

urbanas, especialmente em estações de monitorização de tráfico. A análise de 

multicolinearidade foi aplicada para garantir variáveis preditoras não correlacionadas 

entre si e evitar sobre-ajuste do modelo. 
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Este estudo contribui para uma melhor compreensão das interacções 

complexas entre as diversas fontes de dados urbanos. As nossas observações, até 

certo ponto, revelam as relações entre diferentes fontes de dados, especialmente o 

papel do serviço de táxi como variável preditora para outras variáveis urbanas. 
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Chapter 1 
Introduction 

1.1 Motivations and objectives 

According to the United Nations in 2008, for the first time in history, half of the 

world’s population was living in urban areas (United Nations, 2008). In 1950 there 

were only two metropolises with at least 10 million inhabitants. In 1975 only three 

metropolises broke that barrier. Today there are 21 megacities with more than 10 

million inhabitants, and in 2025, the United Nations estimates that there will be 27 

cities (United Nations, 2012). This is clear evidence of the fast growth of urbanization 

in terms of population and size. 

The demand for better services (e.g. public transportation, energy, 

communications) and urban planning (e.g. infrastructures, environments, policies) 

increases with the rapid growth of urban areas. In order to maintain a constant flow of 

people and vehicles, we need to reduce the use of individual means of transport (e.g. 

car) and stimulate the use of public transportation (e.g. bus, metro, train). Traffic is 

one of the major sources of toxic compounds present in combustion gases that 

negatively impact the health of urban inhabitants (EEA, 2011), (Borrego, et al., 2000), 

(Zavala, et al., 2006), (Ndoke & Jimoh, 2005), (Becker, et al., 2000). There is a need to 

address this issue today while low-carbon transport systems are still being developed. 

However, we need to improve the public transportation system in order to meet 

citizens’ needs.  

A more efficient public transportation system can lead to a reduction in traffic 

congestions and consequent reduction of energy consumption and pollution. 

Nevertheless, to optimize the public transportation network it is essential to 

understand what drives the common citizen and what their needs are. We need a 

better understanding of city dynamics. Gathering data from the traditional public 

transportation (e.g. bus, train, metro) can provide us with a relevant database and 

information on general passengers’ movement. However, it does not provide the exact 

origin and destination for each passenger, since these transportation modes rely on 

pre-designated stops and paths. The taxi can be a way to retrieve a large data set of 
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information with higher precision when we focus on the origin and destination of each 

trip. Taxis can pick-up the passengers right where they are standing, and drop them off 

precisely at their desirable destination, without being bound to a pre-determined path. 

The process of data collecting is transparent and non-intrusive to the passenger. 

Additionally, taxis can be used as a probe for traffic conditions (Castro, et al., 2012), 

(Yuan, et al., 2011a), (Gühnemann, et al., 2004), (Liu, et al., 2009a). 

At the same time, we are experiencing new developments in pervasive and 

ubiquitous computing technologies, such as a global system for mobile 

communications (GSM) and a global positioning system (GPS), which provide useful 

tools for sensing social and traffic activities in cities. Nowadays we are able to access a 

wider variety of devices, with a growing number of features and computational 

capabilities.  This technological diversity provides us with the tools to sense urban 

spaces. It allows us to either take a collective snapshot of all urban activity or simply 

follow the pattern of a single vehicle or individual. Analyzing GPS-enabled vehicle 

traces and mobile phone activity thus provides, to some extent, an overview of how 

the city functions.  

Taxis are currently equipped with GPS devices for better monitoring and 

dispatching. Their traces have been used to study various aspects of the traffic 

network as they provide fine-grained data that reflects the state of traffic flow in a city. 

These traces typically carry occupancy information on pick-up and drop-off location. 

The ubiquity of taxis has attracted considerable attention for a while, in order to 

extract information and develop prediction systems, which led to a significant amount 

of research work being performed around the exploration of taxi-GPS traces.  

Facing the challenges of growing cities and by taking the opportunistic sensing 

approach, a main question is posed: to what extent can GPS traces of taxis be used to 

infer the city’s dynamics, namely the inhabitants’ patterns? Furthermore, what is the 

role of taxis in the complex relations amid the diversity of urban data sources? 

Although previous research on this topic led to important findings, there are still 

challenges yet to explore that we aim to analyze in this thesis. Our work deepens the 

spatiotemporal analysis and the study of predictability of taxi trips by using 

complementary data (e.g. Points Of Interest, weather conditions); explores the 

underlining relationship between taxi volume and mobile phone activity, two 

important urban data sources; and further extends the study of the relation among 

urban data sources by examining the relationship between taxi mobility patterns, 
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weather conditions and the level of concentration of exhaust gases, to estimate the 

concentrations of gas in urban areas.  

1.2 Research questions and contributions 

Taxi data has been used by various researchers. Due to its ubiquity and ability 

to reach any corner of urban areas, without being bound to predefined schedules or 

specific paths, taxi-GPS traces have been widely used as a mean to retrieve a snapshot 

of the city and to develop better solutions and services in urban areas. Several works 

use taxi-GPS traces to uncover underlying patterns and can be organized according to 

their goals: 

- estimating optimal driving path (Ziebart, et al., 2008), (Yuan, et al., 2010), 

and (Zheng, et al., 2010); 

- predicting next taxi pick-up location (Chang, et al., 2010), (Ge, et al., 2010), 

(Liu, et al., 2010b), (Yuan, et al., 2011b), and (Moreira-Matias, et al., 2012a); 

- improving dispatching services and detecting anomalies and fraud (Ge, et 

al., 2011), and (Ivan & Popa, 2015); 

- modeling driving strategies to improve taxis’ profit (Ge, et al., 2010), (Liu, et 

al., 2010a), and (Moreira-Matias, et al., 2014a); 

- identifying flaws and possible improvements in urban planning (Zheng, et 

al., 2011b), and (Chen, et al., 2013a); 

- developing models for urban mobility, social functions, and dynamics 

between the different areas in the city (Qi, et al., 2011), and (Castro, et al., 

2013). 

These publications have intensively explored taxi data sets, proposing various 

results and solutions. The need to improve driving paths and to predict the location of 

the next passenger has attracted much of the attention. However, there is room for 

improvement and challenges to be explored. Considering the work published up to 

now by the research community, and the challenges of growing cities, we posed three 

research questions, explored in this thesis: 

- Is it possible to develop a model to foresee taxi demand throughout the city? 
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- Are urban data sources correlated among them? More specifically, is taxi 

density correlated with mobile phone activity, two of the major urban data 

sources? 

- Can taxi data be used as a probe to infer the concentrations of exhaust 

gases in urban areas? 

As a result, of these questions, three main contributions emerged: 

A. Development of a model to estimate taxi demand.   

In order to efficiently manage and dispatch taxis, it is relevant to understand 

and anticipate their demand. As previously discussed, this has been a widely explored 

topic. Nevertheless, our work differentiates from the remaining studies in two key 

aspects: (1) while other authors propose solutions to estimate taxi demand in specific 

locations, we propose an approach that takes into consideration a comprehensive 

urban area, modeling the city by a grid and estimating the likelihood of passengers on 

every cell of the grid; and (2) our inference approach is based on a Naïve Bayesian 

Classifier, considering as input variable a geographic characterization of each cell (in 

the form of Points Of Interest). Additionally, we explore the spatiotemporal 

distribution of taxi volume; analyze how taxis connect different areas of the city; and 

investigate taxi drivers’ behavior between trips. 

B. Investigation of the relationship between taxi and mobile phone activity. 

Up until now, research on urban mobility and intelligent transportation systems 

focused on the study of a single variable or a set of related variables (e.g. taxi related 

variables, such as occupancy, average speed or amount of pick-ups and drop-offs). Our 

work expands that research by investigating the interplay between two different urban 

data sources. While mobile phone call data has been used to study social aspect of the 

city, taxi-GPS traces have been explored to understand the state of traffic flow in urban 

areas. Our approach correlates both urban data sources to understand the interplay 

between them. In order to do that, the data sets are transformed into time series. 

Using a regression analysis on time series along with a shifting temporal window, we 

are able to attain the best correlation with a significant coefficient of determination. 
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C. Exploration of models that use taxi volume information in order to 
estimate environmental variable. 

Environmental awareness has risen with the growth of cities and with it, the 

need for sustainability with an emphasis on air pollution. To keep track of air quality, 

monitoring stations have been built and deployed to measure the concentration of 

toxic gases and particles in the atmosphere. However, these stations are expensive, 

demand maintenance, and are scarce throughout the city. Most urban areas do not 

have any kind of continuous measurements of concentrations of toxic gases. Solutions 

have been proposed to encompass most urban areas with sensors to control air 

quality. However, they demand a dedicated infra-structure, with the costs associated 

with developing and maintaining it. Our work explores the ubiquity of taxis, where 

vehicles are continually moving throughout the city. By combining the information 

from meteorological conditions and taxi activity, we propose a model to estimate the 

concentrations of nitrogen dioxide, from which we are able to infer the concentration 

of other three pollutant gases (nitrogen monoxide, nitrogen oxides and carbon 

monoxide, often termed as exhaust gases, since they are the byproduct of 

combustion). This initial approach eliminates the need for a dedicated infrastructure, 

thus, reducing the cost of developing, deploying and maintaining a physical 

framework, while improving spatial resolution. Moreover, it allows us to further 

explore the relation between urban data sources. 

1.3 Approach 

Once the research questions were defined, several steps were taken to verify 

the validity of our hypothesis. Classic knowledge extraction from databases was 

followed, as suggested and described by (Witten & Frank, 2005), (Linoff & Berry, 2011), 

(Santos & Azevedo, 2005), and (Gama, et al., 2012). 

The data was collected and provided from different sources:  

 Taxi data (described on Chapter 2), provided by Geotaxi1;  

 Mobile phone data (described on Chapter 3), provided by TMN 

(currently rebranded as MEO)2;  

                                                      
1
 GeoTaxi. http://www.geotaxi.com 
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 Data regarding air quality and gases’ concentrations (described on 

Chapter 4), provided by ‘Comissão de Coordenação e Desenvolvimento 

Regional de Lisboa e Vale do Tejo’ (CCDR-LVT)3, and the ‘Agência 

Portuguesa do Ambiente’ (APA)4;  

 Meteorological data (described in Chapter 4), including weather 

conditions, was retrieved from Weather Underground5; 

 Points Of Interest (described in Chapter 2), provided by Sapo6; 

 Shape files, GIS data and Census information, provided by ‘Instituto 

Nacional de Estatística’ (Statistics Portugal)7. 

All data was collected considering the same time window. Meanwhile, data sets 

present distinct formats, and in some cases, different sampling rates. Additionally, we 

detected faulty, erroneous or missing data. Therefore, cleaning, alignment and 

transformation steps were needed. Furthermore, every sample was geo-referenced. In 

order to better handle the size of the metropolitan area, the city under study was 

modeled with an initial grid of 500x500m cells as suggested by (Huang, et al., 2010) 

and (Liu, et al., 2010a). Finally, data was stored in a relational database. 

For each data set, an exploratory study was performed to understand the 

spatiotemporal distribution. This step allowed us to identify hotspots of activity or 

potential patterns to be further investigated during data analysis. 

During the data analysis, different approaches were followed, according to the 

data sets and the goals of each research question. For the first research question, the 

goal was to estimate the most likely location to pick-up the next passenger, 

considering taxis’ historical data and a set of independent variables. A probabilistic 

approach was considered in the form of a Naïve Bayesian Classifier due to its 

simplicity, how fast it is to build and train, and how adequate it is for problems where 

data is linearly separable, though assuming independence between (Zhang, 2004), and 

                                                                                                                                                            
2
 MEO. http://www.meo.pt  

3
 CCDR-LVT. http://www.ccdr-lvt.pt/pt/  

4
 Agência Portuguesa do Ambiente. http://www.qualar.org  

5
 Weather Underground http://www.wunderground.com/   

6
 Sapo Mapas. http://mapas.sapo.pt/ 

7
 Instituto Nacional de Estatística. http://www.ine.pt/  
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(Puntumapon & Pattara-atikom, 2008). Besides current location and time, 

characterization of the city’s functions was also incorporated (Qi, et al., 2011), 

alongside with weather conditions (Yuan, et al., 2011a). 

For the second research question, we aimed to identify a hypothetical 

correlation between two urban data sources (mobile phone activity and taxi volume). 

To explore both time series, a regression analysis was considered. To estimate the 

coefficient of the model, the method of least squares was applied (Pallant, 2005). Since 

data was normally distributed, a coefficient of correlation of Pearson (r) was used to 

analyze the linear association between the time series, and a coefficient of 

determination (r2) was applied to attain the goodness-of-fit, representing the 

percentage of the response variable variation that is explained by a linear model 

(Kennedy, 2008).  To verify the existence of a linear relation between the dependent 

variable and the predicted variable, the F test of ANOVA (Analysis Of Variance) was 

adopted, which is a measure of significance for the regression (Maroco, 2005). 

 Finally, the third research question seems to be more challenging, due to the 

nature of the data sets and the goal: estimate the concentration of exhaust gases, 

based on meteorological conditions and taxi activity. To investigate the relation 

between the variables, a multiple linear regression analysis, using the method of least 

squares to estimate the coefficients, was proposed (Pallant, 2005), (Donnelly, et al., 

2015). As a measure of linear association between the variables, the coefficient of 

Pearson (r) was selected, while the coefficient of determination (r2) was adopted to 

explain the percentage of variation of the dependent variable determined by the 

independent variables (Kennedy, 2008). The significance of the regression was tested 

using the F test of ANOVA, which verifies the existence of a linear relation between the 

dependent variable and the explanatory or predictor variables (Maroco, 2005). The 

Stepwise method was adopted to select the variables to be included in the model. 

Finally, the multicollinearity was verified using the VIF (Variance Inflation Factor) 

(Pallant, 2005).  

However, due to the apparent complexity of the problem, combined with no 

prior information regarding how the variables could correlate, and uncertainty about 

whether linear relations were an adequate fit to the problem, a multilayer perceptron 

with backpropagation was additionally explored for comparison with the linear 

regression approach (Shi & Harrison, 1997), (Gardner & Dorling, 1999), (Kolehmainen, 

et al., 2001), (Perez & Reyes, 2001), (Kukkonen, et al., 2003), (Agirre-Basurko, et al., 
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2006), (Juhos, et al., 2008), and (Ahmed, et al., 2010). The amount of possible variables 

immediately poses a question: which variables could explain the variation of the target 

(or dependent variable), and to what degree? A factorial analysis Principal Component 

Analysis was considered (Pallant, 2005), as an alternative approach before applying the 

linear regression analysis, a method which presents no a priori requirements, using the 

Kaiser’s rule for the eigenvalues (Larsen & Warne, 2010) and the scree plot approach 

to retain the most significant factors.  

The models were compared with ground truth information to verify the 

significance of the results. Ground truth includes information about taxi volume, 

mobile phone activity, concentrations of toxic gases on the atmosphere, weather 

conditions, Points Of Interest, and census information. Additionally, technical reports 

were produced for each step of the process, to log the evolution of the work and 

compile experiments and results. Finally, main findings and achievements were 

submitted for peer-review at international conferences. 

1.4 Organization of the thesis 

The thesis is organized in five chapters, and describes the work around the 

analysis of taxi traces during the doctoral program. During that process, several 

publications were submitted to share the findings with the scientific community and to 

receive feedback and validation. The content of Chapter 2, Chapter 3 and Chapter 4 

correspond to publications in peer-reviewed international conferences and journals. 

The content was not significantly changed, however, complementary information was 

added to better illustrate the analysis or results. These chapters are self-contained, 

allowing the user to read them without prior knowledge of the remaining chapters. In 

order to do so, some information is duplicated among these chapters. In each chapter 

the reader can find a description of the data set, state of the art, exploratory analysis 

an inferential analysis, and a chapter summary and conclusions. The chapters 

represent the sequence of steps taken during the study, and therefore, they are 

interrelated. 

Chapter 1 introduces the motivation of the work. Describes the problem (fast 

growth of urban areas demanding improved transportation services) and opportunities 

(the advent of new technologies such as GPS and GSM devices) that led to the final 

goal (use opportunistic taxi data to infer the city’s dynamics). It discusses the three 

main research questions which the work aims to deal with and the followed approach. 
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Chapter 2 focuses on the analysis of taxi data, uncovering how taxi-GPS traces 

can describe urban areas. It describes the main data set (taxi data, along with the city 

under study) and the state of the art on the analysis of taxi-GPS traces. The exploratory 

analysis encompasses a spatiotemporal analysis; a description how predominant 

locations are connected (termed gravity map); a description of how taxi-GPS traces are 

distributed (considering duration, distance and income); a study of driver strategies to 

find the next passenger and the behavior between services (termed downtime); and an 

analysis of how areas characterized by Points Of Interest (POI) affect the taxi service. 

The inferential analysis explores to what extend it is possible to infer the location for 

the next passenger. This analysis takes in consideration the effect of different set-ups, 

namely the temporal periods and cell size. 

Chapter 3 explores the relation between taxi volume (as a representation of the 

traffic flow) and mobile phone activity (as a representation of the social aspect of the 

city), suggesting that distinct urban data sources can be correlated with each other. It 

describes a new data set (GSM data) and the state of the art on the analysis of mobile 

phone activity. The exploratory analysis describes the spatiotemporal distribution of 

mobile phone call intensity. The inferential analysis correlates taxi volume and mobile 

phone activity to extract the best fit using time series analysis. 

Chapter 4 advances the study of taxi data in order to infer other variables 

relevant in urban areas. This chapter explores how taxi data and weather conditions 

can be used to estimate the concentration of exhaust gases. Similar to the previous 

chapters, it describes the data sets (exhaust gases and weather conditions) and the 

state of art on the study of exhaust gases and their pending relation with traffic 

conditions. The exploratory analysis describes the spatiotemporal distribution of 

different exhaust gases, how they correlate with each other and the effect of weather 

conditions on the dispersion of exhaust gases. The inferential analysis studies different 

algorithms and setups to estimate the concentration of exhaust gases from taxi data 

and weather conditions. 

In Chapter 5 the reader will find the conclusions of this work. A summary of the 

work is presented, underlining the main contributions, alongside with the limitations. 

Finally it discusses future work. 
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1.5 List of publications 

While working on the doctoral program, several publications were published in 

peer-review conferences and in journals, as leading author or co-author. The set of 

publications can the organized around three main topics: taxi traces analysis, bus 

ridership and data fusion for intelligent transportation systems. For each topic, the 

publications are arranged chronologically as conference papers, journals papers and 

technical reports.  

The publications about taxi traces analysis form the core basis for the thesis. 

Chapter 2, Chapter 3 and Chapter 4 follow the content of these publications. The 

publications on bus ridership and data fusion are peripheral to the scope of the thesis. 

All conference and journal publications were subject to peer-review by international 

committees.   

1.5.1 Taxi traces analysis  

Chapter 2 

The following publications correspond to Chapter 2 of the thesis. 

Conference publications 

Publications in international peer-reviewed Special Interest Groups (SIG) 

conferences. 

-  “Taxi-Aware Map: Identifying and predicting vacant taxis in the city”. Santi 

Phithakkitnukoon, Marco Veloso, Carlos Bento, Assaf Biderman and Carlo Ratti. 

International Joint Conference on Ambient Intelligence, AmI 2010, Malaga, 

Spain, 2010. (Phithakkitnukoon, et al., 2010b).  

- “Exploratory Study of Urban Flow using Taxi Traces”. Marco Veloso, Santi 

Phithakkitnukoon and Carlos Bento, Patrick Olivier, Nuno Fonseca. First 

International  Workshop on Pervasive Urban Applications (PURBA) in 

conjunction with the Ninth International Conference on Pervasive Computing, 

San Francisco, California, USA, 2011. (Veloso, et al., 2011a).  

- “Urban Mobility Study using Taxi Traces”. Marco Veloso, Santi 

Phithakkitnukoon and Carlos Bento. International Workshop on Trajectory Data 

Mining and Analysis (TDM) in conjunction with the 13th International 
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Conference on Ubiquitous Computing (UbiComp), ACM Digital Library and 

UbiComp Extended Proceedings, Beijing, China, 2011. (Veloso, et al., 2011c).  

- “Sensing Urban Mobility with Taxi Flow”. Marco Veloso, Santi 

Phithakkitnukoon and Carlos Bento. International Workshop on Location-Based 

Social Networks (LBSN) in conjunction with the 19th International Conference 

on Advances in Geographic Information Systems (ACM SIGSPATIAL), ACM 

Digital Library, Chicago, Illinois, USA, 2011. (Veloso, et al., 2011b).  

Journal publications 

Publications in international peer-reviewed journals. 

- (Submitted on January 2016) “Towards Recommendation System for Taxi 

Drivers”. Marco Veloso, Santi Phithakkitnukoon and Carlos Bento. Journal of 

Urban Technology, Taylor & Francis, 2016.  Published work corresponding to 

Chapter 2 of the thesis. 

 

Chapter 3  

The following publication corresponds to Chapter 3 of the thesis. 

Conference publications 

-  “Exploring the Relationship between Mobile Phone Call Intensity and Taxi 

Volume in Urban Area”. Marco Veloso, Santi Phithakkitnukoon and Carlos 

Bento. 15th IEEE Intelligent Transportation Systems Conference (ITSC), 

Anchorage, Alaska, USA, 2012. (Veloso, et al., 2012). 

 

Chapter 4 

The following publications correspond to Chapter 4 of the thesis. 

Conference publications 

- “Exploring Relationship Between Taxi Volume and Flue Gases’ 

Concentrations”. Marco Veloso, Santi Phithakkitnukoon and Carlos Bento. Third 

International  Workshop on Pervasive Urban Applications (PURBA) in 
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conjunction with ACM International Joint Conference on Pervasive and 

Ubiquitous Computing, Zurich, Switzerland, 2013. (Veloso, et al., 2013). 

- (Submitted on February 2016) “Using Taxi and Meteorological Conditions as a 

Probe to Monitor Exhaust Gas”. Marco Veloso, Santi Phithakkitnukoon and 

Carlos Bento. International Workshop on Intelligent Public Transports (IPT) in 

conjunction with the IEEE Intelligent Transportation Systems Conference (ITSC), 

2016.   

Journal publications 

- (Submitted on February 2016) “Monitoring Urban Exhaust Gas Concentration 

Using Taxi Location and Meteorological Information” Marco Veloso, Santi 

Phithakkitnukoon and Carlos Bento. Journal of Urban Technology, Taylor & 

Francis, 2016. Published work corresponding to Chapter 4 of the thesis. 

 

Technical Reports 

To support the experimental work, several documents were produced, 

describing the procedures followed and results attained, termed technical reports. 

These documents were used in group meetings as a basis for discussion, and are the 

framework for the published papers. 

- “Exploratory study of taxi trajectories and taxi driver behavior”. Marco 

Veloso. Ambient Intelligence Laboratory, Centre for Informatics and Systems of 

the University of Coimbra, May 2011. (Chapter 2) 

- “Study of average taxi speed on urban areas”. Marco Veloso. Ambient 

Intelligence Laboratory, Centre for Informatics and Systems of the University of 

Coimbra, July 2011. (Chapter 2) 

- “Impact of area type characterized by POIs to the taxi service”. Marco Veloso. 

Ambient Intelligence Laboratory, Centre for Informatics and Systems of the 

University of Coimbra, February 2012. (Chapter 2) 

-  “Taxi Driver Assistant Framework”. Marco Veloso. Ambient Intelligence 

Laboratory, Centre for Informatics and Systems of the University of Coimbra, 

October 2012. (Chapter 2) 



Chapter 1  
Introduction 

13 

- “Taxi Driver Assistant – A Proposal for a Recommendation System”. Marco 

Veloso. Ambient Intelligence Laboratory, Centre for Informatics and Systems of 

the University of Coimbra, January 2013. (Chapter 2) 

- “Study of taxi demand and the use of GSM network”. Marco Veloso. Ambient 

Intelligence Laboratory, Centre for Informatics and Systems of the University of 

Coimbra, January 2013. (Chapter 3) 

- “Taxi as a Probe to Monitor Environmental Changes in Urban Areas”. Marco 

Veloso. Ambient Intelligence Laboratory, Centre for Informatics and Systems of 

the University of Coimbra, September 2014. (Chapter 4) 

1.5.2 Bus ridership 

Conference publications 

Publications in international peer-reviewed Special Interest Groups (SIG) 

conferences: 

- “Predicting Bus Ridership”. Sourav Bhattacharya, Santi Phithakkitnukoon, 

Petteri Nurm, Arto Klam, Marco Veloso and Carlos Bento. Third International  

Workshop on Pervasive Urban Applications (PURBA) in conjunction with ACM 

International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, 

Switzerland, 2013. 

- “Mining Temporal Patterns of Transport Behaviour for Predicting Future 

Transport Usage”. Stefan Foell, Gerd Kortuem, Reza Rawassizade, Santi 

Phithakkitnukoon, Marco Veloso and Carlos Bento. Third International  

Workshop on Pervasive Urban Applications (PURBA) in conjunction with ACM 

International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, 

Switzerland, 2013. 

- “Catch Me If You Can: Predicting Mobility Patterns of Public Transport Users”. 

Stefan Foell, Santi Phithakkitnukoon, Gerd Kortuem, Marco Veloso and Carlos 

Bento. 17th IEEE Intelligent Transportation Systems Conference, 2014. 

- “A Tool for Exploratory Visualization of Bus Mobility and Ridership: A case 

study of Lisbon, Portugal”. Chalermpong Somdulyawat, Piyawat Pongjitpak, 

Santi Phithakkitnukoon, Marco Veloso, Carlos Bento. Fourth International  
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Workshop on Pervasive Urban Applications (PURBA) in conjunction with ACM 

International Joint Conference on Pervasive and Ubiquitous Computing, 

UbiComp ’15, Osaka, Japan, 2015. 

Journal publications 

Publications in international peer-reviewed journal: 

-  “Predictability of Public Transport Usage: A Study of Bus Rides in Lisbon, 

Portugal”. Stefan Foell, Gerd Kortuem, Reza Rawassizadeh, Santi 

Phithakkitnukoon, Marco Veloso and Carlos Bento. IEEE Transactions on 

Intelligent Transportation Systems, 2015. 

- (Submitted on February 2016) “Regularity of Public Transport Usage: A case 

study of bus rides in Lisbon, Portugal”. Stefan Foell, Santi Phithakkitnukoon, 

Marco Veloso Gerd Kortuem and Carlos Bento. Journal of Urban Technology, 

Taylor & Francis, 2016. 

1.5.3 Data fusion for intelligent transportation systems 

Conference publications 

- “Data Fusion for Travel Demand Management: State of the Practice & 

Prospects”. Christopher Zegras, Francisco Pereira, Andrew Amey, Marco 

Veloso, Liang Liu, Carlos Bento and Assaf Biderman. 4th International 

Symposium on Travel Demand Management, TDM 2008, Vienna, Austria, 2008. 

- “Multi-Sensor Data Fusion on Intelligent Transport Systems”. Marco Veloso, 

Carlos Bento and Francisco Câmara Pereira. MIT Portugal, Transportation 

Systems, Working Paper Series (Paper# ITS-CM-09-02), 2009. (Veloso, et al., 

2009). 

- “State of the Practice Overview of Transportation Data Fusion: Technical and 

Institutional Considerations”. Andrew Amey, Liang Liu,  Francisco Pereira, 

Christopher Zegras, Marco Veloso, Carlos Bento and Assaf Biderman. MIT 

Portugal, Transportation Systems, Working Paper Series (Paper# ITS-CM-09-01), 

2009. 
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Chapter 2 
How taxi patterns describe the city 

2.1 Introduction 

The evolution of society led to several changes in the organization of current 

demographics.  Because of this fast growth, the urban areas are rapidly supporting the 

majority of the population (United Nations, 2008). Among other demands, there is the 

need to maintain a constant flow of people and vehicles. To optimize the public 

transportation it is essential to understand what drives the common citizen and what 

their needs are.  

The taxi is a flexible way of transportation, since it is not bound to pre-defined 

paths or pick-ups and drop-offs locations. Taxi routes dynamically adapt to the flow 

and a city’s need: it can pick-up the passengers right where they are standing, and 

drop them off precisely at the desirable destination. Therefore, taxis can provide more 

accurate information about the origins and destinations of passengers, in comparison 

to other traditional public transportation modes (e.g. bus, metro, train). Nevertheless, 

with the growth of urban areas, it becomes more difficult to move within the cities, 

and to efficiently search for new passengers. 

New developments in ubiquitous computing technologies, alongside the wide 

variety of devices available, increase in processing and storage capabilities, and the 

integration of extended sensing capabilities, allow for new solutions. One of these 

solutions comprises collection of data from taxi movements enabling a study of their 

patterns. GPS-equipped taxis can be viewed as pervasive sensors, and the large-scale 

GPS traces produced, allow us to reveal facts about the social urban dynamics (Castro, 

et al., 2013). 

We can envision a system that could help the taxi driver, by making 

recommendations of locations of where to find potential passengers, as pursuit by 

Yuan et al. (Yuan, et al., 2012a), Zheng et al. (Zheng, et al., 2010) and Yuan et al. (Yuan, 

et al., 2012a). These recommendations are supported by an inference engine and a 

database of past paths of the current driver and the taxi community.  The inference 

engine should take in account a set of features, namely current location, hour of the 
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day, day of the week, weather conditions, or proximity of points of interest (POI), in 

order to produce the best prediction for taxi drivers to find their next passenger, thus, 

optimizing resources (time and fuel), increasing sustainability (less pollution), and 

increasing service efficiency. 

This chapter is focused on the research on taxi-GPS traces acquired in the city 

of Lisbon, Portugal, which will aid in better understanding urban mobility. The 

contribution of this work goes along the following aspects:  

1. a spatiotemporal analysis of a data set of taxi-GPS traces, which 

identifies how taxis connect distinct regions of urban areas and 

uncovers taxi drivers strategies, 

2. a proposal for a recommendation system, a type of inference engine, 

3. a study of the predictability of taxi volume and its sensibility to various 

features.  

For the first topic, we analyze taxi traces to identify relevant pick-up and drop-

off locations referenced in time and space; study the relationship between those 

locations to produce a gravity map; characterize the search for new passengers (i.e. 

what happens between the latest drop-off and next pick-up) in order to improve taxi 

profit; and explore the value of Points Of Interest to analyze taxi flow. For the second 

contribution we evaluate a simple recommendation system based on a naïve Bayesian 

classifier, and explore the impact on the predictability by changing the configuration of 

variables, namely, temporal window, search space or taxi driver behavior. For the 

latter, we explore the possibility of estimating the likelihood of the next pick-up type of 

place given the previous drop-off hour of the day, day of the week, weather condition, 

and type of place.  

2.2 State of the art 

With the advent of pervasive technologies (e.g. GPS, GSM, Wi-Fi), several works 

have been performed to explore and improve urban mobility. Among them, mining 

taxi trajectories has recently attracted much attention. Taxi-GSP traces have been used 

in a number of studies to develop better solutions and services for urban areas such 

as:  
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 Estimating optimal driving paths (Krumm & Horvitz, 2006), (Yamamoto, 

et al., 2008), (Ziebart, et al., 2008), (Li, et al., 2009a), (Yuan, et al., 2010), 

(Zheng, et al., 2010), (Li, et al., 2011c), (Yuan, et al., 2011a), (Aslam, et 

al., 2012), (Hu, et al., 2012b), (Zhuang, et al., 2012), (Zhang & He, 2012), 

(Qian, et al., 2012), (Maciejewski & Nagel, 2013), (Yuan, et al., 2013); 

 Predicting next taxi pick-up locations (Yang & Wong, 1998), (Yang, et al., 

2000), (Wong, et al., 2001), (Wong, et al., 2008), (Yang, et al., 2002), 

(Yang, et al., 2005), (Chang, et al., 2008), (Lee, et al., 2008), (Chang, et 

al., 2010), (Chen, et al., 2010b), (Ge, et al., 2010), (Liu, et al., 2010b), 

(Phithakkitnukoon, et al., 2010b), (Li, et al., 2011a), (Li, et al., 2011b), 

(Powell, et al., 2011), (Takayama, et al., 2011), (Yuan, et al., 2011b), (Hu, 

et al., 2012a), (Moreira-Matias, et al., 2012a), (Yuan, et al., 2012a), 

(Zheng, et al., 2012b), (Qi, et al., 2013), (Tang, et al., 2013), (Gonzales, et 

al., 2014), (Moreira-Matias, et al., 2014b), (Qiu, et al., 2014), (Zhang, et 

al., 2014a), (Zhan, et al., 2014c), (Zheng, et al., 2014), (Wong, et al., 

2015), (Yao, et al., 2015); 

 Improving dispatching services and detecting anomalies and frauds 

(Liao, 2003), (Hao, 2004), (Lee, et al., 2004), (Li, 2006), (Tao, 2007), 

(Santani, et al., 2008a), (Santani, et al., 2008b), (Alshamsi, et al., 2009), 

(Cheng & Qu, 2009), (Xu & Huang, 2009), (Chen, et al., 2010), (Seow, et 

al., 2010), (Balan, et al., 2011), (Chen, et al., 2011), (Ge, et al., 2011), 

(Silva & Balassiano, 2011), (Lin, et al., 2012), (Orey, et al., 2012), (Sun, et 

al., 2012), (Wang, et al., 2012), (Wu, et al., 2012), (Chen, et al., 2013b), 

(Hou, et al., 2013), (Lee & Wu, 2013), (Ma, et al., 2013), (Santi, et al., 

2013), (Wu & Lee, 2013), (Xiang, 2013), (Farkas & Dan, 2014), (Zhang, et 

al., 2014b), (Ivan & Popa, 2015), (Miao, et al., 2015); 

 Modeling driving strategies to improve taxi’s profit (Wong, et al., 2003), 

(Ge, et al., 2010), (Liu, et al., 2010b), (Yang, et al., 2010b) , (Moreira-

Matias, et al., 2014a), (Yang, et al., 2015); 

 Identifying flaws and possible improvements in urban planning 

(Gühnemann, et al., 2004), (Li, et al., 2007), (Li, et al., 2009b), (Wang, et 

al., 2009a), (Huang, et al., 2010), (Liu, et al., 2010c), (Bastani, et al., 

2011), (Zhang, et al., 2011a), (Zheng, et al., 2011b), (Castro, et al., 2012), 
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(Yue, et al., 2012), (Chen, et al., 2013a), (Grau, et al., 2013), (Martinez, 

et al., 2013), (Sun, et al., 2013), (Thompson & Bae, 2014), (Kartika, 

2015), (Zhou, et al., 2015);  

 Developing models for urban mobility, social functions, and dynamics 

along different city’s areas (Schroedl, et al., 2004), (Matsushima & 

Kobayashi, 2007), (Zhang, et al., 2007), (Song, et al., 2008), (Liu, et al., 

2009a), (Liu, et al., 2009b), (Lou, et al., 2009), (Yang, et al., 2009), (Yue, 

et al., 2009), (Bazzani, et al., 2010), (Chen, et al., 2010a), (Cooper, et al., 

2010), (Girardin & Blat, 2010), (Austin & Zegras, 2011), (Liang, et al., 

2011), (Qi, et al., 2011), (Salanova, et al., 2011), (Yue, et al., 2011), (Liu, 

et al., 2012a), (Liu, et al., 2012b), (Liu, et al., 2012c), (Liu, et al., 2012d), 

(Sagarra & Diaz-Guilera, 2012), (Yao & Cheng, 2012), (Yuan, et al., 

2012b), (Zhang, et al., 2012a), (Castro, et al., 2013), (Pan, et al., 2013), 

(Salanova, 2013), (Zhan, et al., 2013), (Zhu, et al., 2013), (Amat, et al., 

2014), (Farber, 2014), (Lee, et al., 2014), (Liu, et al., 2014), (Salanova, et 

al., 2014), (Thompson & Bae, 2014), (Wang, et al., 2014), (Zhang, 

2014d), (Ding, et al., 2015),  (Jianqin, et al., 2015), (Liang, et al., 2015), 

(Qian & Ukkusuri, 2015), (Shao, et al., 2015), (Tang, et al., 2015), (Wang, 

et al., 2015), (Moreira-Matias, et al., 2016).  

Some of the most representative studies in each set are described in the 

following sections. 

2.2.1 Estimating optimal driving paths 

Significant work on taxi-GPS traces analysis focuses the problem of estimating 

optimal driving paths. The need to reduce time and fuel consumption is critical for 

taxis. Generally, proposed solutions rely on performing map-matching of trajectories 

and finding the shortest paths over large graphs as proposed by Ding et al. (Ding, et al., 

2008) and  Gonzalez et al. (Gonzalez, et al., 2008). The road network is usually 

perceived as a graph, with hotspots for pick-ups as nodes. Therefore, to minimize the 

cost of moving from one node to another, Dijkstra algorithm is often chosen, in order 

to find the best path. 

Yuan et al. (Yuan, et al., 2010) presented the T-Drive system that identifies the 

optimal route for a given destination and departure time. The system uses a graph 
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whose nodes are landmarks, defined as road segments frequently traversed by taxis. 

The authors proposed a Variance-Entropy-Based Clustering to adaptively split a day 

into different time segments, based on the travel time between landmarks. 

Improvements of the work were made by Yuan et al. (Yuan, et al., 2011a). The authors 

presented a cloud-based system to store historic information regarding traffic 

conditions, driver behavior and driving routes, alongside with information collected 

from internet sources, such as weather forecast or maps. Taxis were used as mobile 

and pervasive sensors to probe traffic conditions. The system is able to predict traffic 

conditions through Markov models, providing self-adaptive driving directions, 

considering the historic user behavior. The system is able to gradually learn from user 

behavior and traffic patterns. 

Zheng et al. (Zheng, et al., 2010) described a three-layer architecture using the 

landmark graph to model knowledge of taxi drivers. The goal of the system is to 

provide the fastest route, given current location and departure time, relying on the 

taxi drivers’ intelligence learnt from the historical taxi trajectories and an Interactive-

Voting Based Map Matching Algorithm proposed by Yuan et al. (Yuan, et al., 2009). The 

system is supported by a database with taxi-GPS trajectories, generated by 33.000 

distinct taxis. The authors claimed that the system outperformed concurrent 

approaches, such as speed constraint based and the real time traffic based methods, 

providing faster routes and saving up to 16% time of a trip. This is an implementation 

of the T-Drive system, presented by Yuan et al. (Yuan, et al., 2010). 

Ziebart et al. (Ziebart, et al., 2008) presented a decision-modeling framework 

for probabilistic reasoning from observed context-sensitive actions. The model is able 

to make decisions regarding intersections, route, and destination prediction given 

partially traveled routes. Zhang & He (Zhang & He, 2012), also representing roads as 

segments, proposed the pCruise, a cruising system for taxicab drivers to find the 

optimal route to pick up a passenger. A graph (termed Cruising Graph), based on the 

road segments, is created with the location of nearby taxis in order to assign to each 

one the most probable and nearest passenger. The searching algorithm considers trip 

time and distance, to maximize the reduction of mileage. 

Li et al. (Li, et al., 2009a) introduced the notion of road hierarchy, as an 

alternative do the classical Dijkstra algorithm. Roads are classified according to the 

frequency of use by taxi drivers. To produce a route, the hierarchical route planning 

algorithm will choose segments with high frequency of usage and computes the 
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shortest path in duration. Using a similar algorithm, Yamamoto et al. (Yamamoto, et 

al., 2008) proposed a method to adjust the service dispatching assignments with each 

taxi driver’s own behavior, which dynamically adapts according to the driver’s current 

location and time. Routes are compiled to form a graph were a Dijkstra algorithm is 

applied to identify which customers are on the expected path of the driver. 

Zhuang et al. (Zhuang, et al., 2012) proposed a weighted shortest path 

algorithm for route planning, based on past experiences of taxi drivers. The algorithm 

surveys a database to estimate the most chosen route between two locations, 

according to taxi drivers’ behavior. Parameters such as turning frequency, number of 

signalized intersections, travel time and segment length are also taken into 

consideration to classify the shortest path. Aslam et al. (Aslam, et al., 2012) used taxi 

data to train a traffic congestion model in order to present a congestion-aware route 

planning system. This approach was able to reduce travel time by 15%. 

2.2.2 Predicting next taxi pick-up hotspots locations 

Identifying taxi passengers’ hotspots is another subject attracting the attention 

of researchers. To avoid spending energy and time searching for passengers, as well as 

reducing the waiting time for customers, several authors proposed approaches to 

identify the most probable pick-up locations. Additionally, the identification of 

hotspots can also provide grounds for the development of services oriented to 

Location-Based Social Networks. 

Yang & Wong (Yang & Wong, 1998) are among the first authors to analyze taxi 

drivers’ behavior and develop a model to describe hotspots of vacant taxi. According to 

passengers Origin-Destination matrices, the model aims to provide taxi service 

equilibrium, using a set of non-linear functions to minimize the size of the taxi fleet, 

and distributing vehicles to expected areas of high demand. The authors also observed 

that average taxi utilization decreases with the number of taxis operating, and that the 

waiting time increases with higher taxi utilization. The work was later improved and 

extended by Wong et al. (Wong, et al., 2001), by incorporating traffic congestion into 

the model, and by introducing a new algorithm. This results in a two-level system that 

describes the movement of vacant and occupied taxis, as well as congestion on the 

road network. To meet customer demand and reduce waiting time, a Newtonian 

algorithm (a method for finding successively better approximations) with line search is 

applied. Further improvements were developed by Yang et al. (Yang, et al., 2002), 
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(Yang, et al., 2005). The authors investigated the nature of demand–supply equilibrium 

in taxis. The new framework that they presented combines spatial road network, an 

origin-destination model according to customer demand and represents the 

competitive market by way of each individual taxi. 

Lee et al. (Lee, et al., 2008) proposed a recommendation system for picking-up 

passengers. A clustering process using a k-means algorithm is used to define the 

granularity of the locations to be recommended. The authors observed that each 

location (cluster) has its own temporal patterns. Chang et al. (Chang, et al., 2008) 

(Chang, et al., 2010) proposed a four-step approach for mining historical data in order 

to predict taxi demand distributions based on time, weather, and taxi location.  The 

model filters trajectories using contextual information (e.g. weather) and clusters GPS 

points into areas of high probability for predicting a passenger. Additionally, it defines 

a hotness score for each area according to the number of taxi requests divided by the 

size of the area. The authors show that different clustering methods have different 

performances on distinct data distributions.  

Phithakkitnukoon et al. (Phithakkitnukoon, et al., 2010b) presented a model for 

predicting the number of vacant taxis for a given area of the city based on a naïve 

Bayesian classifier with an error-based learning algorithm (a weight linear function that 

emphasizes the recent errors from which the prediction is then adjusted). Additionally, 

a mechanism for detecting adequacy of historical data is explored, resulting in the 

conclusion that the latest 40 days of the data set are sufficient to maintain prediction 

accuracy. Liu et al. (Liu, et al., 2010b) classified taxi drivers according to their income. 

They observed that top drivers operate in a number of different zones while 

maintaining exceptional balance between taxi demand and traffic conditions. Regular 

drivers on the other hand operate in fixed zones with few variations. Additionally, the 

authors studied the influence of traffic conditions from a road segment to another 

road segment. 

Ge et al. (Ge, et al., 2010) studied a way to extract energy-efficient 

transportation patterns from location traces, using taxi-GPS traces to develop a mobile 

recommendation system. Aiming for profit maximization and energy reduction, the 

authors proposed a Potential Travel Distance function to assess potential candidates 

and recommend routes. Li et al. (Li, et al., 2011a) studied two distinct strategies to find 

passengers: moving around (hunting) or waiting in specific locations. The authors 

observed that a combination of strategies is necessary, according to the time of the 
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day: hunting for passengers in hotspots (especially transportation hubs) is preferable 

during commuting hours, while waiting is a better approach during hours with low taxi 

activity. To provide correct driving strategies to taxi drivers depending on time and 

location, the authors applied the L1-Norm regularization to linear Support Vector 

Machines (Bi, et al., 2003) to identify and select relevant features that determine taxi 

performances, i.e., according to the taxi driver location and time of the day, whether it 

is preferable to wait for a passenger, to go hunting, or to move to a distant location. 

Xiaolong Li et al. (Li, et al., 2011b) aimed to predict pick-up hotspots for taxi 

drivers – areas with high demand. The authors proposed a method for predicting the 

amount of pickups at each hotspot by using a variant of the Auto Regressive Integrated 

Moving Average (ARIMA), a prediction method for time series analysis. By using 

passengers’ mobility patterns and taxi drivers’ picking-up/dropping-off behavior Yuan 

et al. (Yuan, et al., 2011b)  proposed a system for passengers finding vacant taxis as 

well as for taxi drivers to find potential passengers, based on a probabilistic approach. 

Recommendations take into consideration time waiting for the passenger and the 

profit for the taxi driver. Later, the authors developed the T-Finder (Yuan, et al., 

2012a), a recommendation system for both taxi drivers and passengers that takes into 

account the passengers’ mobility patterns and taxi drivers’ pick-up traces, using a 

database with taxi-GPS trajectories from 12.000 distinct vehicles during 110 days.  

Considering the continuous increase of data provided by taxi logs and the rise 

of demand in the use of taxi service, Moreira-Matias et al. (Moreira-Matias, et al., 

2012a) proposed a system to produce online short term predictions of passenger 

demand. To identify the best pick-up locations after a drop-off, the authors considered 

the number of vacant taxis in the area and passenger demand in the same area. The 

authors applied time  series forecasting  techniques  such  as  time  varying  Poisson  

model and  Autoregressive  Integrated  Moving Average. The system is able to 

accurately forecast in a 30 minutes time horizon, 76% of taxi demand. The authors 

further improved the system, using streaming data instead of traditional offline data 

set (Moreira-Matias, et al., 2013). Later, an online learning approach to predict 

profitability in taxi stops is proposed (Moreira-Matias, et al., 2014a), taking into 

consideration the type of services that are being requested by customers. This is 

achieved by computing an approximate revenue probability density function at each 

taxi stop, and by employing time series analysis techniques. 
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Zhang et al. (Zhang, et al., 2014a) analyzed historic taxi-GPS traces from 

experienced taxi drivers in order to characterize the efficient and less efficient taxi 

service approaches, according to passenger-searching strategies, passenger-delivery 

strategies, and service-region preference. A feature matrix is produced to describe the 

service approaches. A correlation between each service strategy and the 

corresponding revenue reveals the efficient and inefficient approaches in each time 

slot and location. The authors observed that hunting in specific locations is usually 

more efficient than waiting in order to find passengers. A few exceptions were 

identified, such as in airports. In suburban areas, the authors advise to return to 

hotspots of taxi demand, while during time slots with traffic congestion, taxi drivers 

should choose light-traffic routes in order to increase revenue. 

2.2.3 Improving dispatching services 

Associated with the identification of the most probable pick-up locations is the 

need to develop dispatching services that could deploy taxis more efficiently. These 

systems should avoid having different taxis compete for the same customers, leaving 

potential customers without transportation or waiting for a long period of time. With 

that goal, Lee et al. (Lee, et al., 2004) analyzed and proposed a new taxi dispatching 

system, which takes in consideration traffic conditions, in order to provide taxis in the 

shortest-time path possible, instead of the traditional nearest-coordinate method (in 

which the taxi assigned for each booking is the one with the shortest straight-line 

distance to the pick-up location). The proposed system is based on Dijkstra’s algorithm, 

to search for the shortest-time paths available for the taxis to reach the demand 

locations, considering real-time traffic conditions. Through a microscopic simulation 

model based on the Singapore Central Business District network, the authors were 

able to reduce passengers’ picking-up time by 50%. Balan et al. (Balan, et al., 2011) 

designed, implemented and deployed a real-time trip information system for taxis. The 

system aims to inform the passenger in real-time of the foreseeable duration, cost and 

path of the ride, based on a k-Nearest Neighbor clustering algorithm.  

Chen et al. (Chen, et al., 2013b) proposed a different dispatching framework. By 

analyzing past logs, the system should rank road segments according to their 

attractiveness (amount of pick-ups and drop-offs). This should generate hubs where 

drivers will most likely be located. In a second phase, the authors developed two inter-

hub routing algorithms: First-Come-First-Service (FCFS) and Destination-Closer 
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(DesCloser). Focusing on the quality and fidelity of customers, Ivan & Popa (Ivan & 

Popa, 2015) developed a dispatching system where the proximity of the taxis is not the 

fundamental parameter in the decision, but instead previous interactions between the 

passenger and the driver, though a feedback system. In order to achieve that, the 

authors introduced the Customer Relationship Management (CRM) component, which 

allows passengers to provide feedback on the service. After each taxi service, a 

passenger rates the taxi driver through a satisfaction survey. This information is used 

to decide which taxi driver will be assigned in future requests by the passenger. 

Hou et al. (Hou, et al., 2013) proposed the Taxi Cruising  Guidance, which aims 

to minimize the amount of vacant taxis by providing cruising route suggestions, instead 

of dispatching taxis on demand. The system models the road network on a graph with 

weights representing the likelihood of finding a new passenger and the state of traffic 

conditions. A Dijkstra’s algorithm is implemented to identify possible routes, based on 

a set of heuristics to avoid competition among multiple taxis. The system is tested 

using real data and a microscopic traffic simulator. 

2.2.4 Detecting anomalies and frauds 

Detecting anomalous routes is also a concern in taxi services. Zhang et al. 

(Zhang, et al., 2011a), Ge et al. (Ge, et al., 2011) and Chen et al. (Chen, et al., 2011) 

studied this issue in order to uncover taxi driving fraud activities. Ge et al. developed a 

taxi driving fraud detection system, which is able to systematically investigate taxi 

driving fraud. The framework analyzes travel route and distance, comparing each 

individual path with standard routes from a database of taxi-GPS traces. A standard 

routemark, produced by statistical analysis of taxis logs, is used to identify possible 

evidence of deviations. In order to confirm evidences of fraud, the Dempster-Shafer 

theory is applied. As a result, the authors observed regular evidences of fraud in taxi 

driving activities. Zhang et al. proposed the iBAT (Isolation Based Anomalous 

Trajectory), a system to detect anomalous taxis’ routes. The system relies on the road 

network being modeled by a grid of cells. Each trajectory is represented by a set of 

symbols (the cells of the grid), with statistical properties. Instead of using the 

traditional approach of distance or density measurements as used by Chen et al., the 

system analyses the amount of cells in common between the target trajectory and the 

historic log. Chen et al. applied a similar approach to detect anomalous routes, 

comparing the driver’s route against historically standard routes. The authors 
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developed the iBOAT system, which is based on the iBAT, able to detect anomalies in 

real-time and pointing out the road segments considered anomalous, by comparing 

Euclidean distances between paths.  

Sharing the same taxi to reduce the amount of vehicles in circulation has been 

explored by Orey et al. (Orey, et al., 2012), Santi et al. (Santi, et al., 2013) and (Chen, et 

al., 2010). Orey et al. proposed a distributed and dynamic taxi-sharing algorithm to 

coordinate customers’ requests. The system relies on distributed computing, based on 

passenger and taxi drivers’ devices, without the need for a central computational 

system. It calculates the costs of a request (e.g. time waiting for the passenger, 

distance from the nearest taxi, destination of the passenger and nearby taxis) and 

decides if a vacant vehicle should be assigned or if a vehicle with a passenger passing 

by, should be detoured. Simulations showed benefits for both drivers and passengers. 

Santi et al. studied a similar problem in a bigger scale (Manhattan), applying classical 

methods from graph theory. The concept of taxi-sharing is also explored by Chen et al. 

The proposed system aims to identify fuel-saving paths according to request from 

passengers and current routes in progress, and reduce the amount of vehicles in 

circulation. The three-layer system models the city network into four matrices with 

size n (number of road intersections) representing transit time, time cost between two 

intersections, fastest path and fuel cost. The algorithm searches for the fastest path 

according to fuel consumption, using the Dijkstra’s algorithm, and not the shortest 

path. A benefit function is introduced to maximize the taxi occupancy and minimize 

the fuel consumption. 

2.2.5 Developing models for urban mobility and dynamics between the different 
areas of the city 

The analysis of taxi-GPS traces is also used to study the city’s design, in order to 

identity potential flaws and provide guidance for improvements in urban planning and 

discover specific dynamics between the different areas of the city. Considering that 

taxi patterns and origin-destination flows could represent the state of the traffic and 

the inhabitants’ needs on commuting and transportation (Castro, et al., 2012), taxi 

data have been explored to improve other public transportation networks (e.g. bus 

and personal rapid transit), discover areas of the city that are disjointed or to identify 

social functions of the urban areas. 
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Zheng et al. (Zheng, et al., 2011b) identified flawed urban planning in region 

pairs with traffic problems and links among these regions, through their analysis of taxi 

traces. The urban areas are divided into segments according to main roads. By using 

taxi routes, the connections between different areas of the city are identified. The 

study of the density of traffic between pairs of segments can indicate flaws in the 

design of the city. To identify irregularities in the road network Huang et al. (Huang, et 

al., 2010) proposed the MEtropolitan TAxis (META) system. The framework explores 

taxi traces and analyzes three parameters (turn probability, road section speed and 

travel pattern) to evaluate the performance of road segments. 

Wang et al. (Wang, et al., 2009a) used passenger pick-up and drop-off points to 

analyze the location and travel patterns to and from hotspots - as an indication of 

social interactions - aiming to improve location-based services. In order to achieve 

that, the authors used the Kernel Density Estimation and Agglomerative Hierarchical 

Clustering methods, applied to Origin-Destination matrixes from taxi-GPS traces. Liu et 

al. (Liu, et al., 2010c) had the same goal, but used a different approach. Instead of the 

traditional density-based clustering algorithm, the authors proposed a mobility-based 

clustering, where vehicles are used as a mobile sensor to perceive the crowdedness of 

nearby areas, and define hotspots according to vehicles speed. By mining historic taxi 

data, the authors are able to quantify the vehicle crowdedness of an area and 

investigate the evolution of hotspots. Along the same line, Zhang et al. (Zhang, et al., 

2012a) aimed to identify social interactions from the analysis of taxi Origin-Destination 

(OD) pairs. The analysis reveals that the frequency of the most visited OD pairs follows 

a Zipf law (Powers, 1998). 

Chen et al. (Chen, et al., 2013a) proposed the analysis of taxi-GPS traces to 

improve bus routes. The authors argued that by exploring the hotspots for pick-ups 

and drop-offs of taxi service at night, it is possible to identify the demand for 

transportation, and thus redesign the bus network. The authors proposed a probability 

based spreading algorithm and a set of heuristics to automatically build and prune a 

network graph for bus service, based on taxi traces. Thompson & Bae (Thompson & 

Bae, 2014) follow the same approach to propose a system that could redesign the 

personal rapid transit in Korea based on the analysis of taxi patterns. 

Castro et al. (Castro, et al., 2012) used taxis as pervasive sensors for traffic 

conditions and proposed a method to construct a model of traffic density based on 

large scale taxi traces. The authors demonstrated that it is possible to predict traffic 
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conditions alongside with the capacity of road segments. Much like Gühnemann et al. 

(Gühnemann, et al., 2004), the authors devised an approach to use traffic conditions in 

order to estimate emissions. Gühnemann et al. besides monitoring real-time traffic 

conditions and fleet management with a fleet of taxis equipped with GPS, proposed a 

framework to map between travel times, traffic flows and velocity profiles in order do 

estimate emissions, an improvement of the Handbook of Emission Factors (INFRAS, 

1999). 

Qi et al. (Qi, et al., 2011) investigated the relationship between regional pick-up 

and drop-off characteristics of taxis and the social function of city regions. They 

developed a simple classification method to recognize regions’ social areas that can be 

divided into scenic spots, entertainment districts, and train/coach stations. The work is 

further improved by Pan et al. (Pan, et al., 2013). The authors introduced an improved 

clustering algorithm (iterative DBSCAN) to identify regions according to the 

characteristics of the data. Finally, Castro et al. work (Castro, et al., 2013), performed 

an extensive survey on the use of taxi-GPS traces to study a city’s dynamics, classifying 

the existing research into three types of dynamics: social, traffic and operational. 

To model the distribution of taxi trajectories, Liang et al. (Liang, et al., 2011) 

applied the Akaike Information Criterion (Akaike, 1974) to a data set of taxi-GPS traces. 

The authors observed that contrary to most models in human mobility, taxi 

displacement and elapsed time tend to follow an exponential distribution rather than a 

power-law, as identified by (Sagarra & Diaz-Guilera, 2012). By studying the GPS-traces 

of 35.000 vehicles in Florence, Italy, Bazzani et al. (Bazzani, et al., 2010) were able to 

identify three statistical laws for path lengths, activity downtime and degree of traffic 

behavior in urban areas, corroborating the finds of Liang et al. of an exponential 

distribution law.  

The ubiquity and flexibility of taxis also suggests that they can be used to help 

city mapping (improving or creating new maps), since they cover most of the arterial 

roads. However, taxi devices provide low quality/coarse-grained GPS traces (with a 

low-sampling-rate of at around once every minute), which affects traditional map-

matching algorithms such as incremental algorithm (local method) and Average-

Fréchet-Distance (global method), which are more suitable for high-sampling-rate 

traces. Several approaches have been proposed by Schroedl et al. (Schroedl, et al., 

2004), Lou et al. (Lou, et al., 2009), and Liu et al. (Liu, et al., 2012a) to overcome these 

constraints and use information from taxi-GPS traces. 
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 Schroedl et al. (Schroedl, et al., 2004) aimed to improve digital maps by mining 

taxi-GPS traces and using a clustering algorithm. The proposed algorithm analyzes 

individual trajectories and divides them into road segments and intersections. From 

each segment, a center line is derived, and the center lines from distinct trajectories 

are clustered to determine the lane position. Intersections are obtained from the 

transitions between road segments, where traces may diverge and follow more or less 

constrained trajectories. The use of a large database enables the system to overcome 

noisy data. 

Lou et al. (Lou, et al., 2009) proposed a map-matching  algorithm  called  ST-

Matching  for  low sampling-rate GPS  trajectories, which considers  the spatial  

geometric  structures  of  the  road  network  and  the  temporal and speed  constraints  

of  the  trajectories.  The algorithm constructs a candidate graph from which the best 

matching path sequence is identified, using Dijkstra's algorithm to compute the 

shortest path. The authors demonstrated that ST-Matching algorithm outperforms 

Average-Fréchet-Distance algorithm when dealing with low-samping-rate traces, with 

a tradeoff of reasonable increase of time complexity. 

Liu et al. (Liu, et al., 2012a) proposed an algorithm to infer road maps from 

large scale coarse-grained vehicular GPS traces. The algorithm consists of three main 

steps: pruning low-quality samples, clustering relevant samples for the same road 

segments and applying shape-aware B-spline fitting technique, which treats the curves 

as smooth piecewise-polynomials. The resulting road network was compared against 

OpenStreetMap8, proving to be more accurate and able to cover 93% of the arterial 

roads present in the online mapping platform. 

2.2.6 Our approach 

The majority of the described works focus on two main topics: identifying 

hotspots for picking-up potential customers and identifying the most efficient routes. 

From these two fields of study, other approaches arise such as analyzing efficient 

dispatching systems, identifying taxi frauds, improving profitability, or studying urban 

planning design.  

                                                      
8
 Open Street Map. http://www.openstreetmap.org/. 
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Our work addresses some of these topics. Although our main topic is the 

identification of hotspots for the next pick-up, we also explore how the city is inter-

connected by taxis and analyze taxi drivers’ strategies. Our approach is distinct and 

contributes in the following aspects:  

(1) performs an exploratory analysis which describes taxis as bridges between 

transportation hubs in the city and identifies taxi drivers’ strategies in order to improve 

their profit during the search for potential customers; 

(2) performs an inferential analysis aiming to estimate probable pick-ups 

locations based on a Naïve Bayes Classifier, considering not only spatiotemporal 

variables, but also weather conditions and points of interest that describe  functions of 

different areas of the city. Our approach, different from other approaches, considers 

the entire urban area - modeled by a grid - as potential pick-up locations (instead of 

just assuming a set of possible points).  

 

2.3 Methodology 

Our approach is based on the classic process of knowledge extraction from 

databases as described by Witten & Frank (Witten & Frank, 2005) and Santos & 

Azevedo (Santos & Azevedo, 2005). It comprises the following steps: 

- Data collection; 

- Data cleaning and transformation; 

- Exploratory analysis; 

- Inference analysis; 

- Validation. 

The main data set was collected and provided by Geotaxi. It comprises a 

database of taxi-GPS traces, described in the following section. Additional data was 

collected, namely weather conditions (retrieved from Weather Underground), Points 

of Interest (provided by Sapo) and shape files, GIS data and Census information 

(provided by ‘Instituto Nacional de Estatística’). 
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A cleaning and transformation procedure is performed, in order to remove 

noisy and missing data, as well as to format the data set into a more suitable scheme. 

This step also allows for a reduction in the size of the data set. To better handle the 

size of the metropolitan area, the city under study is modeled on an initial grid of 

500x500m cells, as suggested by Huang et al. (Huang, et al., 2010) and Liu et al. (Liu, et 

al., 2010a). Finally, data is stored in a relational database were every sample is geo-

referenced. 

An exploratory study is performed to understand the spatiotemporal 

distribution, aiming to identify hotspots of activity or potential patterns to be further 

investigated during inferential analysis. Data exploration is designed to examine the 

spatiotemporal distribution; to identify hotspots of activity and how they are 

connected; to explore the taxi strategies in order to find the next pick-up; and to probe 

how different areas of the city with distinct functions (e.g. residential, commercial, 

recreation, education) affect the taxi service. 

The main goal for the inference analysis performed on taxi-GPS traces is to 

study to what extent it is able to estimate the most likely locations to pick-up new 

passengers, based on the current time, location and historic data. Moreover, Yuan et 

al. (Yuan, et al., 2011a) and Chang et al. (Chang, et al., 2010) hypothesized that 

weather conditions could affect the behavior of inhabitants, and therefore, taxi 

patterns, while Qi et al. (Qi, et al., 2011) and Pan et al. (Pan, et al., 2013) suggested 

that social functions of distinct regions of a city influence taxi flows.  Considering these 

set of variables, a probabilistic approach is pursued in the form of a Naïve Bayesian 

Classifier, due to its simplicity, how quick it is to build and train, and how adequate it is 

for problems where data is linearly separable, as proposed by Zhang (Zhang, 2004) A 

Bayesian approach was also explored by Fusco (Fusco, 2003) to model urban mobility. 

Different setups are tested, exploring the effect of daily and weekly periods on the 

performance of the model, as well as the influence of the size of the grid. 

To validate the model a ground truth is used, consisting of historic data from 

taxis, weather conditions and POI data set. Considering the size of the data set 

(170,000+ samples) and the existence of a temporal attribute, the samples are 

organized into training and testing subsets, following a holdout configuration (the 

oldest 2/3 forming the training set and the latest 1/3 forming the testing set). Entropy, 

from information theory, is used to access the randomness or uncertainty of variables. 

Main findings and achievements were submitted to peer-review international 
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conferences, to validate our work with the scientific community (Phithakkitnukoon, et 

al., 2010b), (Veloso, et al., 2011a), (Veloso, et al., 2011b), (Veloso, et al., 2011c). 

2.4 Data description 

This section analyzes and describes taxi data in Lisbon, Portugal, alongside with 

points of interest and weather conditions. The data was collected from September to 

December 2009. 

2.4.1 Target city  

The area of study corresponds to the municipality of Lisbon, which, as of 2012, 

consisted of 53 parishes, an area of around 110 km2, and a population of 800,000 

habitants, represented in Figure 2-1, where (A) is the Downtown; (B) Airport; (C) 

Oriente Train Station; (D) Santa Apolónia Train Station; (E) Ferry dock; (F) Marquês do 

Pombal (City Center); (G) Univ. Campus; (H) Commercial Area; and (I) Residential areas. 

In 2013, those parishes were fused due to an administrative process forming 24 new 

parishes.  

The city’s downtown is characterized by a higher population density (red) 

including touristic, historic and commercial areas, and the interface for several public 

transportation services. Encircling the city center, there are residential areas 

surrounding business areas with lower population density (yellow).  
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Figure 2-1– Lisbon municipality and population density. 

Major infrastructures (e.g., airport and industrial facilities) are located in the 

city’s outskirts. The public transportation system consists of buses, metro, trains, and 

ferry. All transportation systems (trains, buses and taxis) have station hubs within the 

city center, enabling a multimodal transportation system. Figure 2-2 represents the 

road network with average speed of circulation. Red segments correspond to higher 

average speed (between 100 and 120 km/h) and represent expressways. 

The city is modeled by a 500mx500m-grid cells, splitting the urban space into 

disjoint areas (396 cells), facilitating the visualization process and further processing 

(e.g. eliminating empty areas), as suggested by Huang et al. (Huang, et al., 2010), Liu et 

al. (Liu, et al., 2010a) and Zhang & He (Zhang & He, 2012). Other authors chose to use 

digital maps and map-matching techniques (Krumm & Horvitz, 2006), (Yuan, et al., 

2010), (Schroedl, et al., 2004), or split the city via road hierarchy (Zheng, et al., 2009), 

(Liu, et al., 2012a), (Gonzalez, et al., 2007), which are more complex processes and 
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require further information about individual road segments and the road network. The 

cell size selection of 500m side by side is based on the average maximum walking 

distance travelers are willing to cover to reach a destination, without using any other 

mean of transportation (Dunning & Ford, 2003), (Daniels & Mulley, 2011), (Thompson 

& Bae, 2014), and a measure used by transportation authorities to design public 

transportation hubs (Public Transport Authority, 2003). However, the size of the cells 

will be subject to study later on in this work. 

 

Figure 2-2 – Lisbon’s road map and average speed. 

Considering the Earth’s curvature, the measures for the grid were computed 

using the Haversine distance, which computes the distance (d) between two points in a 

sphere (Brummelen, 2012), defined as: 
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where (∅1, 𝜆1) are the latitude and longitude of the first point, (∅2, 𝜆2) are the 

latitude and longitude of the second point, and R the radius of the sphere (in this case 

the mean radius of the Earth, which is 6,371km). 
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2.4.2 Taxi data 

The taxi data set was provided by GeoTaxi9, a company that focuses on 

software development for fleet management, and that in 2009 held about 20% of the 

taxi market share in Portugal. The data set was composed of around 1,600,000 taxi-

GPS location points and collected by 230 taxis, for a period of four months (from 

September 1st to December 31st). Along with the GPS location (latitude, longitude) 

information, it includes speed, bearing, engine status, and occupancy status of the taxi, 

as described in Table 2-1. A sample on the raw data is presented in Table 2-2. Our 

study focused mostly on the information provided by the taxi location (latitude and 

longitude) and occupancy. The sampling rate varies from trajectory to trajectory and 

can be triggered by three events: time intervals (DOS), change in status of the vehicle 

(COS), or distance covered (POS). On average, the system produced a sampling rate of 

30 seconds per sample.  

The amount of inferred pick-ups and drop-offs accounted for 177,169 distinct 

trips and is termed taxi volume in this study. Besides the features extraction for each 

trip, a data enrichment step is performed, adding features extracted directly from the 

observed trips: distance traveled (from pick-up to drop-off), trip duration, average 

speed, trip income10, downtime distance (distance traveled for the next pick-up), and 

downtime duration (time taken searching for the next pick-up). Additional features are 

added using other data sources: nearest point of interest, and weather condition. 

The data cleaning process is applied to remove trips with a length less than 

200m and greater than 30km (the realistically longest trips from one side of the city to 

the other could be around 22km), and, in terms of a time window, less than a minute 

and longer than three hours. Erroneous data entries, missing data entries, false flags 

were also detected, and respective samples were removed. 

 

 

 

                                                      
9
 GeoTaxi. http://www.geotaxi.com 

10
 The income was calculated from data using the ANTRAL standard formulation 

http://www.antral.pt/simulador.asp. ANTRAL is a national association for transportation. 
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Atribute Type of data Format Description Value 

Tipo Mensagem String xxx 
Message type: DOS = time intervals; COS = 
sensor change;  POS = by distance 

DOS; COS; 
POS 

Sinal GPS Char x 
GPS Signal: A = precision coefficient high; V 
= precision coefficient low 

A; V 

Se Integer xx Sequential value of messages 
 

Latitude float xxx.xxx Latitude  
 

Longitude float  -xxx.xxx Longitude 
 

Velocidade float x.x Velocity 
 

Direccao float xxx.x Heading [0, 359] 

Data Envio 
Caixa 

String (date hour) 
dd-mm-yyyy 
hh:mm 

Timestamp for data acquisition 
 

idcaixa Integer xxxx Device ID (usually one device per vehicle) 
 

Data String (date) dd-mm-yy Date of data processing  
 

Hora String (hour) hh:mm Hour of data processing  
 

Ignicao String xxx Ignition state (ON/OFF) ON; OFF 

Estado Servico String xxxxxxx 
Occupancy (Ocupado = a passenger in the 
vehicle; livre = no passenger) 

Livre; 
Ocupado 

Taximetro String xxx Taximeter status (ON/OFF) ON; OFF 

Alimentacao String xxx Energy status (ON/OFF) ON; OFF 

Sensor 4 String xxx Not used ON; OFF 

Sensor 5 String xxx Not used ON; OFF 

Sensor 6 String xxx Not used ON; OFF 

Sensor 7 String xxx Not used ON; OFF 

Table 2-1 - Attribute description from taxi-GPS traces’s raw log. 

 

"POS";"A";30;38.7116;-9.42355;0;0;"06-12-09 01:34:37";2091;"2009-12-

06";"03:11:21";"ON";"Ocupado";"OFF";"ON";"OFF";"OFF";"OFF";"OFF" 

"POS";"A";88;37.0914;-8.22116;0;0;"06-12-09 01:34:37";2506;"2009-12-

06";"03:11:22";"OFF";"Ocupado";"OFF";"ON";"OFF";"OFF";"OFF";"OFF" 

"POS";"A";86;38.7272;-9.12833;14.91;182.42;"06-12-09 00:27:27";534;"2009-12-

06";"03:11:22";"OFF";"Ocupado";"OFF";"ON";"OFF";"OFF";"OFF";"OFF" 

"POS";"A";49;38.7681;-9.16966;0.1;0;"06-12-09 01:34:38";540;"2009-12-

06";"03:11:23";"OFF";"Ocupado";"OFF";"OFF";"OFF";"OFF";"OFF";"OFF" 

"POS";"A";26;37.0912;-8.24094;0;0;"06-12-09 01:34:39";2540;"2009-12-

06";"03:11:23";"ON";"Ocupado";"ON";"ON";"OFF";"OFF";"OFF";"OFF" 

"POS";"A";47;38.7039;-9.40856;0.1;0;"06-12-09 01:34:39";2140;"2009-12-

06";"03:11:23";"ON";"Ocupado";"OFF";"ON";"OFF";"OFF";"OFF";"OFF" 

"DOS";"A";65;38.783;-9.18566;0.1;118.44;"06-12-09 03:00:22";54;"2009-12-

06";"03:11:23";"OFF";"Ocupado";"OFF";"ON";"OFF";"OFF";"OFF";"OFF" 

"DOS";"A";87;38.7272;-9.12833;14.91;182.42;"06-12-09 00:27:27";534;"2009-12-

06";"03:11:23";"OFF";"Ocupado";"OFF";"ON";"OFF";"OFF";"OFF";"OFF" 

"POS";"A";0;38.7134;-9.29041;72.8;84;"06-12-09 01:34:38";2071;"2009-12-

06";"03:11:23";"ON";"Ocupado";"OFF";"ON";"OFF";"OFF";"OFF";"OFF" 

"POS";"A";31;38.7087;-9.42206;12.6;184.9;"06-12-09 01:38:07";2091;"2009-12-

06";"03:11:23";"ON";"Ocupado";"OFF";"ON";"OFF";"OFF";"OFF";"OFF" 

"POS";"A";29;38.7999;-9.43983;32.9;258.5;"06-12-09 01:35:10";721;"2009-12-

06";"03:11:24";"ON";"Livre";"OFF";"ON";"ON";"OFF";"OFF";"OFF" 

Table 2-2 - Sample of taxi-GPS traces’s raw log (10 records). 

The individual pick-up (red) and drop-off (green) locations of taxi service are 

depicted in Figure 2-3. Taxi service encompasses all the city, and some clusters appear 

to form (e.g. airport, train stations and downtown). 
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Figure 2-3 - Spatial distribution of pick-ups (red) and drop-offs (green). 

 To better visualize the data, samples are distributed to the corresponding cell 

of the grid that models the city. The density of taxi volume is represented by a color 

scale (red corresponds to cells with a higher number of pick-ups and drop-offs). The 

overall taxi volume’s spatial distribution in Lisbon is shown in Figure 2-4 (on 

500mx500m-grid cells). Some major locations are identified, such as downtown (A), 

airport (B), train stations (C, D) and ferry dock (E). Most of the taxi hotspots, for pick-

up and drop-off, match taxi stations (specific stopping areas for taxi service), located 

near other transportation modes. Therefore, different public transportation modalities 

(airport, train, ferry, bus) are well connected through taxi services. Although these 

locations are predominant locations for pick-ups and drop-offs of taxi service 

throughout the day, other locations can become more active during different hours of 

the day, as presented in Figure 2-6.  
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Figure 2-4 - Spatial distribution of taxi volume (number of pick-ups and drop-offs). 

Based on the density of pick-ups and drop-offs, we can classify each cell into 

high taxi activity (top 30% of cells with higher taxi volume), medium taxi activity 

(middle 40% of the cells), and low taxi activity (bottom 30% of the taxi volume cells).  

From the high activity cells set, a subgroup can be highlighted: very high taxi activity, 

corresponding to the top 2% of the cells with highest taxi volume. The result is shown 

in Figure 2-5, where taxi activity is represented in a color scale, from red (very high taxi 

activity) to yellow (low taxi activity). In concordance with the scenario observed in 

Figure 2-4, the six cells with very high activity are located near the airport, train 

stations, ferry dock, downtown and a commercial area. Therefore, five (out of six) cells 

with very high taxi activity are located near transportation hubs.  
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Figure 2-5 – Classification of cells according to taxi activity. 

 

Figure 2-6 - Spatial variation of taxi pick-ups in different time slots (red corresponds to cells with a 

higher number of pick-ups). 



Chapter 2  
How taxi patterns describe the city 

39 

Taxi volume also varies in time. Figure 2-7 presents temporal variation of the 

taxi services. As expected, the taxi service variation follows the business hours. It 

gradually increases from 7 AM, reaches the maximum between 11 AM and 1 PM, and 

slowly drops down in the afternoon. In the same way, there are more taxi services on 

working days than on weekends.  On average, we observed a reduction of taxi volume 

of about 46.7% at night (from 10 PM to 7 AM) and 13.6% on weekends.  

 

 

Figure 2-7 - Taxi volume variation according to hours of day (top) and days of week (bottom). 

This overall pattern is consistent when cells with different taxi activity are 

analyzed individually. Figure 2-8 show the hourly variation of taxi activity on cells with 

very high, high, medium and low taxi activity, as described in Figure 2-5. Values of taxi 

activity are normalized in the interval [0,1] to enable the comparison. In all cells an 

increase of activity is visible from 7 AM on, with activity peaking between 11 AM 

(medium and low activity cells) and 1 PM (high and very high activity cells), followed by 

a decrease of activity in the afternoon. This reduction is more accentuated on very 

high activity cells than on low activity cells. Nevertheless, although individual cells 

follow the overall pattern, each one has its unique and specific minor deviations due to 

several factors (e.g. area type, proximity of other transportation means, road 

accessibility, type of commerce and services in the vicinities, events taking place, 

inhabitants’ choice of transportation). 
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Figure 2-8 - Hourly variation of taxi activity on different cells (very high, high, medium and low taxi 

activity). 

2.4.3 Points of interest  

Sapo Mapas11 provided a collection of 10,954 Points Of Interest (POIs) for 

Lisbon municipality, grouped into eight categories12 (Services, Recreation, Education, 

Shopping, Police, Health facilities, Transportation and Accommodation), with a 

distribution represented in Figure 2-9. Those POIs are used to characterize the area 

type. Education facilities (e.g. kindergarten, high school, university, etc.), Recreation 

(e.g. bar, restaurant, etc.) and Services (e.g. bank, etc.) are the dominant POI 

categories (which account for over 70% of the total number of POIs). 

                                                      
11

 Sapo Mapas. http://mapas.sapo.pt/ . 
12

 The classification was performed by the data provider. 
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Figure 2-9 - POIs categories distribution. 

Figure 2-10 represents the raw map of POIs and the underlying POI density 

distribution (red cells correspond to a higher concentration of POI, while yellow 

represents cells with low density of POI). As expected, the POIs are mainly present in 

areas with a higher population density or commercial facilities. The main cluster is 

located at downtown. 

 

Figure 2-10 - POI’s raw map and density distribution. 
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Figure 2-11 aggregates POIs in order to identify the predominant POI on each 

cell grid, according to the classification presented in Figure 2-9. Recreation by the 

riverside of the Tagus is the most predominant type of POI. The city center is 

characterized by services while education is predominant in the remaining areas.  

 

Figure 2-11 - Predominant POI category on each cell. 

2.4.4 Weather conditions 

Information on weather conditions was retrieved from the Weather 

Underground13; an online weather information service provider. The data set contains 

hourly measurements of weather conditions, arranged into three categories (Clear; 

Cloudy; Rainy), as shown in Figure 2-12. The online service provides a wide range of 

historic data, however only data from September to December 2009 were retrieved to 

match the same temporal window of the taxi data set. Clear weather days in 

                                                      
13

 Weather Underground http://www.wunderground.com/ ; http://www.wunderground.com/history/  
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September progress to an increased amount of cloudy days in October, eventually 

giving way to rainy days in November and December. 

 

Figure 2-12 - Weather conditions for each day, from September 1 to December 31, 2009. 

2.5 Data exploration 

This section explores the spatiotemporal distribution of taxi-GPS traces in order 

to identify patterns and relationships to be further examined during the inference 

analysis. Taxi drivers’ strategies in searching for new passengers are also studied. 

2.5.1 Spatiotemporal analysis  

Taxi demand varies in time and space, according to citizens’ needs. Figure 2-7, 

of the previous section, presents the taxi service variation according to hours of the 

day and days of week. As expected, taxi service variation follows business hours. It 

gradually increases at 7 AM, reaches the maximum between 11 AM and 1 PM, and 

slowly drops in the afternoon. In the same way, there are more taxi services during 

working days than on weekends. In both cases the maximum is reached at the middle 

of the periods (11 AM to 1 PM and in Wednesday). This daily and weekly pattern is 

consistent throughout the four months of data analyzed (from September to 

December), with cyclic components, as shown on the time series of taxi activity in 

Figure 2-13, which represents the amount of taxi trips each hour. Visible punctual 

disruptions to this pattern take place during the last two weeks of December, on 

specific days, coinciding with Christmas Eve, Christmas day and New Year’s Eve, 

characterized by a reduction of taxi service.  
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Figure 2-13 - Time series of taxi trips in Lisbon, from September 1 to December 31, 2009. 

Figure 2-14 presents the taxi service distribution in Lisbon, according to the 

pick-ups (left) and drop-offs (right), where some major locations are identified, such as 

downtown (A), airport (B), train stations (C, D) and ferry dock (E). The predominant 

cells for taxi pick-ups are simultaneously the predominant cells for taxi drop-offs. As 

aforementioned, most of the taxi hotspots, for pick-up and drop-off, coincide with taxi 

stations, located near other transportation modes. 

 
Figure 2-14 - Taxi pick-up (left) and drop-off locations (right). 

Weather conditions could play an important role in deciding on how to travel  

(Yuan, et al., 2011a). As weather conditions worsen the average number of daily taxi 

trips slightly increases, in agreement with Farber’s observations (Farber, 2014).  

Inhabitants prefer taxis and carpooling when weather conditions worsened, therefore 

avoiding walking or using public transportation hubs that could be located away from 
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their starting and ending journey or if no shelter was provided, as observed by Stover 

& McCormack (Stover & McCormack, 2012). However, in our observations, this 

increase in usage is slight. From clear conditions to cloudy conditions the average 

increase of taxi volume is just 1.8%, and from cloudy conditions to rainy conditions, the 

increase is just 0.8%. Therefore, taxi volume does not change considerably given 

different weather conditions. This observation is in agreement with the time series 

depicted in Figure 2-13. Although the data set encompasses a warm summer month 

(September) and a cold winter month (December), the daily pattern is fairly similar 

(with the last two weeks of the data set being the exception, with a visible deviation 

from the traditional daily pattern). Although previous studies observed that taxi 

passengers are mainly frequent riders, city residents, and commuting between home 

and work locations (Schaller Consulting, 2006), our data set does not provide enough 

information to verify whether the customers using taxis during clear weather are the 

same ones using taxis during worse weather conditions.  

 

Figure 2-15 – Distribution of taxi trips given weather conditions. 

2.5.2 Gravity map of taxi activity 

In Figure 2-16 we can visualize how the pick-up and drop-off areas relate 

among them, where the thickness of the line represents the intensity between every 

two possible locations. Liang et al. (Liang, et al., 2011) define these connections as taxi 

displacement (line segments connecting the origin and destination). Strong relations 

can be observed in links B-C, D-E, D-A, A-F, and F-B. All those locations are 

characterized by some public transportation modality (airport, train, ferry, bus). B is 

the access to the airport, C and D are trains stations, E is a ferry dock, A and F are bus 
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stops areas. It is important to stress that, although there is a subway in Lisbon, a direct 

subway line connection doesn’t exist between the aforementioned locations14. 

 
Figure 2-16 - How strongly connected locations are, according to taxi services. 

From this observation, we hypothesize that the taxi service is often used as a 

bridge between public transportation modalities. It is also important to point out that 

the locations A, C and F (some of the most frequent pick-up or drop-off locations) give 

access to services and commercial areas. 

In Figure 2-17 we can observe the relation between pick-ups and drop-off 

locations, considering only the most frequent destination for each location. By filtering 

the remaining destinations, we can visualize the predominant relations between 

locations, and their strength. The links B-C (airport and / station); A-D (downtown / 

train station), D-E (train station / ferry dock) and A-F (downtown / Marquês do Pombal, 

                                                      
14

 At the time of data collection there wasn’t a subway line connecting the airport (B) and the Oriente train station 
(C). However, a new line is now available between these two transportation hubs, beginning 2012.  
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city center), now become visible. Once again, a bridge between transportation 

modalities is observable. These findings are in agreement with Zheng et al. (Zheng, et 

al., 2011b) who also observed a similar scenario of strong connectivity between 

transportation hubs. 

 
Figure 2-17 - Relation between pick-ups and drop-offs considering only the most frequent destination 

for each location. 

2.5.3 Data distribution 

To better understand the patterns from taxi services, we plot the taxi trips 

according to the distance, duration and income in Figure 2-18. 
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Figure 2-18 - Taxi volume distribution according to distance (top), duration (middle) and income 

(bottom). 

After the data cleaning process, we examine the trip distance distribution and 

find that we can fit it with a gamma distribution with α = 2.7 and β = 1.2 as follows: 
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where the parameters α (shape parameter) and β (scale parameter) satisfy α >0 and β 

>0, x >0, and )( represents the gamma function (Devore & Berk, 2012). 

This observation does not agree with the results from different authors, where 

an exponential fit was observed using data collected in the Florence urban area, Italy 

(Bazzani, et al., 2010), or in Beijing, China (Liang, et al., 2011). However, Devore 

(Devore & Berk, 2012) demonstrated that exponential distribution is a special case of 

gamma distribution, when the shape parameter α is lower than 1. If the first interval of 

the histogram is removed (distance < 1000m), trip distance could be fitted with an 

exponential distribution exp(λ) (with λ = 0.26). In the same way, if the first interval of 

the trip duration is removed (duration < 5 minutes), then the trip duration can also be 

fitted with an exponential distribution. Trip income15 follows a normal distribution 

(mean µ = 4.1166 and standard deviation σ = 1.7419) with a positive skew (2.1643). 

This observation is in agreement with the study of Liu et al. (Liu, et al., 2010a) using 

data collected in Shenzhen, South China, which also observed a normal distribution for 

trip income. 

The difference in results compared with other authors can be due to  following 

aspects: a) distinct data set (e.g. Liu et al. (Liu, et al., 2010a) worked with 3,000 distinct 

taxi drivers, whilst our data set contains only 217 distinct taxi drivers), b) to specific 

taxi drivers’ behaviors (e.g. it was observed that a considerable amount of trips were 

from the airport to a nearby bus stop area, (roundtrip), being less than 1000m, a 

behavior that affected the overall distributions), and c) due possible noisy data. 

2.5.4 Driver strategies 

We further analyze taxi driver strategies with respect to income. A taxi driver 

may choose to pick up customers at a particular location (e.g. airport), drive around 

the city to find passengers at random places, or combine the two approaches. We find 

that only 8.37% of the taxis chose to stay at the same location for more than 50% of 

their waiting time. The airport seems to be one of the main pick-up and drop-off 

                                                      
15

 The income was calculated from data using the ANTRAL standard formulation 
http://www.antral.pt/simulador.asp. ANTRAL is a national association for transportation. 
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locations. Table 2-3 shows the statistics of the five best drivers according to the total 

income and number of trips, during the four months of study (September to 

December, 2009). We observe a low percentage of trips from the airport for these top 

drivers. Table 2-4 shows the five best drivers according to the income and number of 

trips from the airport. These results show that taxi drivers can improve their revenue 

by adopting a strategy of driving around the city instead of targeting one particular 

place like the airport, similar to what was observed by Liu et al. (Liu, et al., 2010b) and 

Li et al. (Li, et al., 2011a). Nevertheless, it is important to stress out that the reported 

numbers could not be entirely reliable or represent the real scenario with accuracy. 

Data was collected with devices being used for the first time, not fully tested, 

therefore prone to possible measure errors. 

 

Driver 
ID 

Total 
number of 

trips 

Total income 
(€) 

Number 
of active 

days 

Average 
number 
of trips 
per day 

Number 
of trips 

from 
airport 

% of airport 
trips (from 

total 
number of 

trips) 

Total 
income 

from 
airport (€) 

% of 
airport 
income 

(from total 
income) 

792 15,789 41,691.10 € 148 106 73 0.46 % 181.58 € 0.44 % 

754 8,504 31,778.50 € 180 47 122 1.43 % 486.16 € 1.53 % 

782 9,202 26,399.60 € 99 92 40 0.43 % 157.81 € 0.60 % 

90 6,693 24,103.20 € 173 38 4 0.06 % 20.42 € 0.08 % 

68 5,552 22,660.70 € 160 34 68 1.22 % 340.34 € 1.50 % 

Table 2-3 - Statistics for top five taxi drivers, considering total income and number of trips, during four 

months. 

 

Driver 
ID 

Total 
number of 

trips 

Total income 
(€) 

Number 
of active  

days 

Average 
number 
of trips 
per day 

Number 
of trips 

from 
airport 

% of airport 
trips (from 

total number 
of trips) 

Total 
income 

from 
airport (€) 

% of 
airport 
income 

(from total 
income) 

37 3,003 6,585.83 € 140 21 2,343 78.02 % 5,066.81 € 76.94 % 

134 4,377 18,511.60 € 151 28 813 18.57 % 3,873.69 € 20.93 % 

538 1,947 7,711.46 € 114 17 817 41.96 % 3,094.13 € 40.12 % 

193 2,829 10,835.30 € 159 17 348 12.30 % 1,676.02 € 15.47 % 

2094 158 5,430.55 € 71 2 54 34.18 % 1,424.92 € 26.24 % 

Table 2-4 - Statistics for top five taxi drivers, considering total income and number of trips from the 

airport, during four months. 

We find that the majority of the taxi drivers appear to be using combined 

strategies – mainly driving around the city and in certain time periods staying at a fixed 

location. This phenomenon can be observed in the Figure 2-19, where there is an 

increase of trips from the airport between 6 AM and 8 AM and elsewhere during other 

time slots. On the other hand, in the same period there is a significant decrease of trips 
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from the remaining locations. These observations are in line with Zhang et al. (Zhang, 

et al., 2014a). 

 

Figure 2-19 - Variation of number of trips aggregated by hour. Pick-ups from the airport (solid blue) and 

pick-ups from other locations in the city (dashed green). 

To confirm our hypothesis, we examine mobile phone data collected from GSM 

networks. The GSM data consists of samples from December 2009 providing statistical 

measures of carried load (erlang) within one-hour period. In Figure 2-20 we can 

observe that immediately after the taxi rush hour there is an increase of the GSM 

network usage in the airport, while the mobile phone activities in other locations of 

the city begins to rise two hours later. This is an indication of possible taxi passengers 

at the airport. 

 

Figure 2-20 - GSM network usage aggregated by hour. 
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Another interesting observation in this preliminary study is that the main drop-

off locations from the airport are (as expected) the downtown area and the main train 

station, but also the airport itself (Figure 2-21 right). The main pick-up locations with 

the airport being the final destination are also the Oriente train station (the main train 

station towards the north of the country); downtown; and also (surprisingly) the 

airport itself (Figure 2-21 left). By analyzing these airport trips individually, we observe 

that passengers take taxis to reach a nearby bus station and parking area.  

 

Figure 2-21 - Distribution of pick-up locations with destination to airport (left), and drop-off locations 

from the airport (right). 

As aforementioned, overall revenue of taxi service seems to follow a normal 

distribution (mean µ = 4.1166 and standard deviation σ = 1.7419) with a positive skew 

(2.1643). We also observed that top 30% drivers perform 76% of the taxi trips 

undertaken by the entire taxi fleet. This is a clear indication of the top drivers’ 

efficiency, who seem to be able to correctly choose hotspots to pick-up new 

passengers and decide on the shortest-time route to destination. Similar observations 

were made by Liu et al. (Liu, et al., 2010a), Yuan et al. (Yuan, et al., 2011b), (Yuan, et 

al., 2012a), and Zhuang et al. (Zhuang, et al., 2012), which have extracted knowledge 

from the behavior of top drivers to build recommendation systems. 

2.5.5 Characterization of downtime: time spent searching for next pick-up 

The previous analysis focused on the taxi service, in other words, the relation 

between the pick-up and the corresponding drop-off. It is also interesting to 
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understand what happens in between services (i.e. downtime – time spent looking for 

next pick-up), since it can help improve taxi drivers’ income. 

Figure 2-22 presents the areas with high (red) and low (yellow) average 

distance traveled when taxis search for new pick-ups, and the relationship (link) 

between the previous drop-off locations and the following pick-up locations (line 

thickness represents strength). 

 

Figure 2-22 - Spatial distribution of average distance traveled during downtime and the relationship 

between previous drop-off and next pick-up. 

The outer city areas (characterized by a higher number of residential buildings) 

show higher average distances traveled between services (cells in red), whereas in the 

inner city areas the distances traveled are relatively small (cells in yellow). In other 

words, a taxi driver after a drop-off in the city suburbs, on average has to make a 

longer trip to the next pick-up than a taxi driver dropping-off a passenger in the city 

center. 
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In the same way, strong relationships between adjacent locations are observed 

in the city’s inner areas (the next pick-up takes place in the vicinity of the last drop-off), 

while in the outer city areas a strong link is observed between distant locations (the 

next pick-up takes place in a distant area). It appears to us that after a drop-off in the 

city’s outer areas, a taxi driver typically heads to locations with higher probability of 

picking up new passengers (e.g. airport, city center, train station) even if it means 

traveling a farther distance to the next pick-up location. 

In Figure 2-23 we can see a density grid, where next pick-up location takes 

place in the same location as the previous drop-off. Red means higher number of pick-

ups on the same area of the previous drop-offs, while yellow represents areas with a 

low amount of the pick-ups on the same area of the previous drop-off. Downtown (A), 

Marquês do Pombal or city center (F), airport (B) and train stations (C and D) are the 

locations with higher probability for a taxi driver to pick-up a new passenger in the 

same area, after a drop-off. 

 

Figure 2-23 – Amount of pick-ups taking place in the same location as the previous drop-off. 
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From these preliminary results we can estipulate that taxi drivers may want to 

improve their income by targeting the above-mentioned locations (transportation 

hubs), or, at least, move to those locations after the latest drop-off, since it can 

improve the probability of picking-up a new customer in a reasonable amount of time 

and without the need to travel great distances. 

Figure 2-24 (top) shows the hourly taxi service (percentage of taxi trips, in blue) 

and the percentage of taxis in service throughout the day (green), whereas Figure 2-24 

(bottom) shows the average time spent (blue) and distance travelled during downtime 

(green).  

 

 

Figure 2-24 - Top: Amount of trips (blue) and number of taxis in service (green) throughout the day; 

Bottom: Average downtime (blue) and distance traveled (green). 

Due to the low amount of taxis in service in the early hours in the morning (12 

AM to 7 AM), the average downtime and distance traveled searching for new 

passengers are relatively high. The average downtime remains almost constant from 
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10 AM to 10 PM. There is a sudden drop in downtime at 10 PM but a rise of distance 

traveled. The lower number of taxis in service as well as potential passengers during 

this late hour presumably causes longer time spent searching for pick-ups.  

Both distance traveled and downtime (searching for the next pick-up), appear 

to follow an exponential distributions as argued by Bazzani (Bazzani, et al., 2010) 

(Figure 2-25). 

 

Figure 2-25 - Distribution of distance travelled (blue) and time spent (green) during downtime. 

In Figure 2-26, we can observe the relationship between the distance traveled 

during downtime and the resulting service distance with corresponding average 

income. From this figure, we can conclude that a farther distance traveled during 

downtime does not guarantee a more profitable service. For instance, if taxi driver A 

travels less than 1km to the next pick-up, and taxi driver B travels around 8km to the 

next pick-up, they both end up providing similar taxi services with equal revenues (at 

about 4.50€), although taxi driver B drove a considerably longer distance to pick-up 

his/her customer.  
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Figure 2-26 - Resulting service distance (blue) and income (red) as function of the distance traveled for 

the next pick-up. 

We can argue that in order to improve profit, it is preferable for a taxi driver to 

wait for passengers in locations related with main public transportation hubs (airport, 

train stations, ferry dock or main bus stops), and to avoid traveling great distances to 

the next pick-up location, unless it is to return to the aforementioned locations. If the 

drop-off location coincides with a public transportation hub, it is preferable to wait for 

new passengers at that location. This is the behavior pattern observed by top drivers, 

as described in the previous sections. These findings are in line with Li et al. (Li, et al., 

2011a). Although Zhang et al. (Zhang, et al., 2014a) observed that hunting is usually 

more efficient than waiting in order to find passengers, the authors also advise that 

there are exceptions, particularly in locations associated with main public 

transportation hubs (e.g. airport), where it would be preferable to wait during specific 

time slots. The authors also suggest that in the suburbs, the best strategy would be to 

consider returning to hotspots of taxi demand. Therefore, Zhang et al. corroborate our 

findings concerning this subject. 

2.5.6 Impact of POIs on taxi service 

By embedding spatial profiles, like Points Of Interest (POI), onto the map, we 

can further observe taxi dynamics according to the area characteristics. In section 

2.4.3, Figure 2-11 shows the map with POIs that are grouped into eight different 

categories, and Figure 2-9 shows the distribution of these categories. One can observe 

that Education facilities (e.g. kindergarten, university, etc.), Recreation (bar, 
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restaurant, etc.) and Services (e.g. bank, etc.) are the dominant POI categories (which 

account for over 70%). 

 

Figure 2-27 – POI categories distribution according to taxi service. 

Figure 2-27 shows the POI categories distribution considering the amount of 

taxi pick-ups and taxi drop-offs. To each taxi pick-up/drop-off was assigned the nearest 

POI. Services are clearly the most predominant origin and destination for taxi services, 

with Recreation and Health following right behind. Weather conditions do not seem to 

affect this distribution. However, this distribution changes throughout the day. Taxi 

service is more active for the majority of POI categories during working hours (e.g. 

schools, museums, and shopping centers are mostly opened during working hours). 

Nevertheless, for Recreation areas (a category which includes bars and restaurants) 

the scenario is the opposite, where taxi service is more active between 7 PM and 5 

AM. Figure 2-28 demonstrates this scenario. From 6 AM to noon, taxi pick-ups to 

Service locations increase, while they decrease to Recreation areas. From 7 PM 

onwards, while taxi pick-ups from Service areas decrease, taxi pick-ups from 

Recreation areas increase. The scenario is similar for taxi drop-offs. Moreover, taxi 

services for Recreation and Shopping locations increase on weekends, while taxi 

services decrease for Services, Health and Education locations during the same period. 
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Figure 2-28 – Hourly variation of taxi service for recreation and service locations. 

The POI distribution allows us to further explore the taxi origin-destination 

patterns. Figure 2-29 shows taxi origin-destination distribution according to the 

predominant POI in the area. Services and Recreation are the most frequent drop-off 

areas – independently of the pick-up location. Transportation is the most likely drop-

off area if the pick-up is located in Shopping, Transportation, Health, or Education 

areas. Drop-offs in Education areas are mainly connected to pick-ups from Health 

areas. These observations are an indication that the area type can be a possible 

predictive attribute to consider when looking for taxi demand. 

 

Figure 2-29 – Taxi origin-destination distribution according to the predominant POI in the area. 
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2.6 Data analysis and results: discovering the next pick-up location  

Taxis are a flexible way of transportation, since they are not bound to pre-

defined path or pick-ups and drop-offs locations. Therefore, taxis dynamically adapt to 

the flow and the needs of passengers. This flexibility can lead to a large search space 

and the prediction of taxi movements can be challenging. However, day of the week, 

time of the day, and weather conditions are promising features in predicting taxi 

volume and our exploratory study shows the possibility that some movement patterns 

(e.g. temporal and spatial density of pick-ups and drop-offs, the relation between pick-

ups and drop-offs) can be predicted by these variables, as proposed by Chang et al. 

(Chang, et al., 2010) and Yuan et al. (Yuan, et al., 2011a). 

In this section, we aim to explore to what extent the next taxi pick-up location 

can be predicted, given the current drop-off. This work aims to make possible the 

development of a recommendation system, which can help taxi drivers find the next 

pick-up location. Based on a Naïve Bayesian Classifier, the system should provide the 

likelihood of findings passengers along the urban space. Because the city is modeled by 

a flexible grid system, the user can interact with the system and obtain a personalized 

visualization. We have observed that area type, characterized by the predominant POI, 

can potentially be used along with other aforementioned features explored in previous 

work, following the findings of Qi et al. (Qi, et al., 2011) and Pan et al. (Pan, et al., 

2013), which identified that different areas in the city have distinct functions and can 

affect taxi demand. Here we apply a simple probabilistic approach. The focus of the 

study will be the inference analysis and not the development of a full framework. 

2.6.1 Overview 

A system overview is shown in Figure 2-30 (left). In order to make a 

recommendation, the system extracts data from a database of taxi-GPS traces, and 

pre-processes it to select relevant features that match the current scenario, namely 

location, day of the week, hour, weather conditions or area type (characterized by the 

predominant POI). The selected data is processed by a classifier and the output 

presented to the user (the taxi driver).  

The graphical interface is formed by three layers that provide enriched 

information and allows the user to filter or select specific views (Figure 2-30, right). 

The first layer represents the map of the urban area. The second layer provides the 
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likelihood of each possible pick-up location according to the available data from the 

taxi community. The third layer provides similar information, but using only the 

historical data from the current driver. This configuration should be flexible enough to 

allow the user to select the desirable features that should be taken into account by the 

inference engine and provide controls so that the user can zoom in and zoom out to 

explore the map in detail, focusing on specific areas. 
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Figure 2-30 - Basic system overview (left) and system’s visualization layers (right). 

The data used for the inference engine can contain samples from the taxi 

community or solely past information from the current driver. In the same way, the 

system could provide a personalized recommendation, considering only the current 

location (samples which the previous drop-off matches the current location), or global 

information - taking into account all history available (samples which the previous 

drop-off took place at any location). Additionally, besides the current location, the 

system can also process information from neighbors’ cells to improve the accuracy of 

the system. 

The likelihood coefficient is presented within a grid and a scheme of colors (e.g. 

red, more likely to find a passenger; yellow, less likely). The size of the cells can be 

changed to meet user demand. However, as it is demonstrated in the next section, the 

use of smaller cells will reduce the performance of the inference engine. After each 

drop-off, the new taxi-GPS trace is pre-processed and transformed to be stored in the 

database. 

The system is thought to be used individually and independently by each taxi 

driver. However, a centralized solution could be explored to take into consideration 
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traffic conditions and the possible competition between different taxi drivers for the 

same potential pick-up. Knowing the current destination of each taxi driver would 

allow the system to avoid suggesting pick-ups already assigned.  

2.6.2 Inference Engine 

We apply a naïve Bayesian classifier, which is a simple probabilistic classifier 

based on Bayes’ theorem with independence assumptions. Bayes rule of conditional 

probability (MacKay, 2003) is defined by: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
 ( 3 ) 

 

where P(A|B) is the posterior probability, which is the probability A given the feature 

B, P(B|A) is the likelihood of A with respect to B, P(A) is called prior probability and 

P(B) the evidence factor.  

The objective is to compute the likelihood of each possible pick-up area (Y) 

given:  

- hour of the day (T = {1, 2, …, 24});  

- day of the week (D = {Sunday, …, Saturday});  

- weather condition (W = {Clear, Cloudy, Rainy});  

- area type, defined by the predominant POI (I = {Services, Recreation, 
Education, Shopping, Police, Health, Transportation, Accommodation}); 
and  

- current location (grid cell, C = {1, 2, …, 396}) of the last drop-off.  

The conditional probability can be formulated as follows: 

 

𝑃(𝑌 = 𝑦𝑖|𝑇, 𝐷, 𝑊, 𝐼, 𝐶) =
𝑃(𝑌 = 𝑦𝑖)𝑃(𝑇, 𝐷, 𝑊, 𝐼, 𝐶|𝑌 = 𝑦𝑖)

𝑃(𝑇, 𝐷, 𝑊, 𝐼, 𝐶)
 ( 4 ) 
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The prediction is based on the maximum a posteriori probability (MAP) decision 

rule: 

 

𝑦𝑀𝐴𝑃 = arg max
𝑦𝑖∈𝑌

𝑃(𝑌 = 𝑦𝑖|𝑇, 𝐷, 𝑊, 𝐼, 𝐶) 

= arg max
𝑦𝑖∈𝑌

𝑃(𝑌 = 𝑦𝑖)𝑃(𝑇, 𝐷, 𝑊, 𝐼, 𝐶|𝑌 = 𝑦𝑖) 

= arg max
𝑦𝑖∈𝑌

𝑃(𝑌 = 𝑦𝑖) 

∏ 𝑃(𝑇|𝑌 = 𝑦𝑖)𝑃(𝐷|𝑌 = 𝑦𝑖)

𝑖

𝑃(𝑊|𝑌 = 𝑦𝑖)𝑃(𝐼|𝑌 = 𝑦𝑖)𝑃(𝐶|𝑌 = 𝑦𝑖) 

( 5 ) 

 

2.6.3 Global accuracy and model improvements  

Based on a holdout validation (oldest 2/3 of the samples for training the model 

and the most recent 1/3 of the samples for testing) the classifier is able to predict the 

next pick-up location with an accuracy of about 56.3%. A prediction is considered 

correct if the classifier suggests as the next pick-up location either the corresponding 

cell in the testing set or the bordering neighbor cells. Due to the proximity of neighbor 

cells, any prediction falling in the vicinity should also be considered correct, since it is 

reasonably close to the correct location (less than 500m). Moreover, due to the 

process of grid creation that models the city, and the User Equivalent Range Error 

(UERE) of GPS (El-Rabbany, 2006), samples with pick-ups in the same location could be 

split between two neighbor cells, forming a local cluster spread between cells.  

To improve the model, cells with low taxi activity can be removed from the 

process (as described in Figure 2-5, section 2.4.2). Due to the low activity, taxi patterns 

can be random in those areas, which negatively affect the estimation. This scenario 

can be observed in Figure 2-31, where the percentage of prediction error is 

represented for each area through a color scale (yellow means lower prediction error, 

red means higher prediction error). Areas with low taxi activity have a higher 

prediction error (marked as red) when estimating the next pick-up location, i.e. it is 

more difficult to correctly estimate these cells as the next pick-up location. These cells 

have, on average, less than 10 pick-ups during the entire period under study (four 

months, from September to December), and this low amount of available samples is 

not sufficient to correctly train a model.  
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The model can be further improved by processing the data set using different 

layouts: weekdays or working hours. The highest accuracy (56.3%) is achieved with a 

combination of factors: weekdays (excluding weekends); working hours (excluding 

late-night hours, from 22 PM to 7 AM); and excluding cells with low taxi activity.  

 

Figure 2-31 – Percentage of prediction error for next pick-up. 

2.6.4 Inspecting the model accuracy  

The highest accuracy of the model (56.3%) is achieved considering a set of 

conditions: on weekdays; working hours; in areas with reasonable taxi activity (cells 

with low taxi activity were disregarded). More importantly, the evaluation of the 

model considers that neighbor cells are also a positive prediction. This approach is due 

to insufficient data in some temporal (nighttime) and spatial slots (areas with low taxi 

activity). Nevertheless, we are interested to analyze the behavior of the model under a 

more rigorous evaluation, stripping down the aforementioned conditions.  
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In this second scenario, a prediction is considered correct only if the classifier 

suggests as the next pick-up location the exact cell of the testing set. Bordering 

neighbor cells are not considered in this scenario as a correct prediction. All cells and 

time slots are considered (even with low taxi activity). Therefore, we are increasing the 

search space and including cells with low data.  

Based on a holdout validation (oldest 2/3 of the samples for training the model 

and the most recent 1/3 of the samples for testing), the classifier is able to predict the 

next pick-up location with an accuracy at about 31.1%, an expected lower performance 

since the search space was increased, and includes areas without sufficient data (low 

taxi activity cells). This is, in reality, a reasonable outcome once we consider that the 

search space is composed by 37016 possible locations, where each cell, on average, has 

a probability of only 0.27% to randomly receive the next taxi pick-up. The a priori 

probability for the best cells (those with very high taxi activity) is 2.4%. Therefore, the 

ability of our approach to correctly predict the next location is 13 folds greater than 

randomly selecting one of the cells with very high activity. 

This initial accuracy of 31.1% in the second scenario corresponds to the 

classifier without applying any special conditions. As presented before, the classifier 

can be improved by applying a set of restrictions to data. Filtering out cells with low 

taxi activity will improve the model to 36.5%. The restriction to consider only 

weekdays and working hours additionally slightly boost the accuracy to 38.6%. 

Moreover, considering the neighbor cells as correct predictions improves the model 

accuracy to 56.3%. This setup corresponds to the model observed in the first scenario.  

The next sections will continue to explore the effect of different variables on 

the classifier, namely, the contribution of each variable, daily and weekly patterns, cell 

size, and taxi drivers’ strategies. Specifically, the classifier will be explored without 

special conditions, considering all grid cells (with high and low taxi activity), and all 

daily and weekly periods. This setup corresponds to the second scenario described in 

this section. 

 

                                                      
16

 From the 396 cells that compose the grid which models the city, 26 cells have no taxi activity (because they are 
located in areas where traffic is not allowed, such as the Centro Desportivo Nacional do Jamor or the airport 
runways), or have very low taxi activity (less than 10 trips during all periods under study). 
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2.6.5 Impact of extracted features 

To understand the effect of the features hour of the day, day of the week, 

weather condition and area type, the Information Gain (IG) of each variable is 

computed: 2.14543 for current area, 1.03384 for the predominant POI of current area, 

0.17016 hour of the day, 0.03558 for day of the week and 0.00903 for weather 

conditions. The results show that the current location (the area of the previous drop-

off) is the most important factor in determining the next pick-up location. Hour of the 

day and the predominant POI of the area are also relevant factors. However, weather 

conditions seem to be the least relevant factors in the process, confirming the 

observation in Figure 2-15 (section 2.5.1).  

Information Gain (also Kullback–Leibler divergence of a conditional probability 

distribution), from the Information Theory, measures the differences in entropy 

(reduction of uncertainty) after splitting a data set T on attribute A (MacKay, 2003), 

and it can be defined by: 

 

𝐼𝐺(𝑇, 𝐴) = 𝐻(𝑇) − 𝐻(𝑇|𝐴) ( 6 ) 

 

which can be expanded to: 

 

𝐼𝐺(𝑇, 𝐴) = 𝐻(𝑇) − ∑ 𝑝(𝑡)𝐻(𝑡)

𝑡∈𝑇

 ( 7 ) 

   

where 𝐻(𝑇) is the entropy of the (training) set T, 𝑝(𝑡) the proportion of the number of 

elements in t to the number of elements in set T, and 𝐻(𝑡) the entropy of subset t. The 

entropy (represented by H) measures the randomness or uncertainty associated with a 

random variable, and has been studied and defined by Claude Shannon (Shannon, 

1948) as follows: 

 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑖

 ( 8 ) 
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where 𝐻(𝑋) is an entropy of random variable X, xi ∈ X, and p(xi) = Prob(X= xi). When 

𝐻(𝑋) = 0 the set X is perfectly classified. 

Since the target variable is nominal, we can also compute the Cohen’s Kappa 

statistic, which is a measure of agreement, with value 0.3037. According to Fleiss 

(Fleiss, 1981), values between 0.21 and 0.40 are characterized as a fair agreement for 

the model. The Kappa statistic (k), defined by Jacob Cohen (Cohen, 1960), is expressed 

as: 

 

𝑘 =
Pr(𝑎) − Pr (𝑒)

1 − Pr (𝑒)
 ( 9 ) 

 

where Pr(𝑎) is the observed proportional agreement between X and Y is defined as: 

 

Pr(𝑎) =
1

𝑛
∑ 𝑓𝑖𝑖

𝑛

𝑖=1

 ( 10 ) 

 

where 𝑓𝑖𝑖  represents the frequency of the number of subjects with the ith categorical 

response for variable X and the jth categorical response for variable Y. Pr(𝑒) is the 

expected agreement by chance, defined as: 

 

Pr(𝑒) =
1

𝑛2
∑ 𝑓𝑖+

𝑛

𝑖=1

𝑓+𝑖 ( 11 ) 

 

where 𝑓𝑖+ is the total for the ith row and 𝑓+𝑖 is the total for the ith column of a square 

contingency table that displays the frequency distribution of the variables. 

2.6.6 Effect of daily and weekly periods  

During the exploratory spatiotemporal analysis, we observed temporal 

patterns, where active hours of the day (8 AM - 8 PM) and active days of the week 

(weekdays) present a slightly higher predictability. Figure 2-32 represents this behavior 
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through a predicted list (Phithakkitnukoon & Dantu, 2008) – the list of the most likely 

destinations, where the top of the list contains more likely destinations than the ones 

lower on the list. 

This behavior can be explained by the existence of more activities (mostly 

repeated activities in temporal orders such as commuting to work, lunch time at 

similar place, school activities, and so on) on weekdays and active hours than on 

weekend. A similar observation is performed in the next chapter, where mobile phone 

call intensity has a strong correlation with taxi volume on weekdays and active hours. 

 

  

Figure 2-32 - Overall performance of the predicted list for different daily periods (left) and between 

weekdays and weekends (right). 

2.6.7 Effect of taxi drivers’ strategies 

Taxi drivers have different strategies to identify the best location for the next 

pick-up or a fastest path to drop-off. Liu et al. (Liu, et al., 2010a) and Zheng et al. 

(Zheng, et al., 2010), (Zheng, et al., 2011b) explored this behavior to model taxi drivers’ 

knowledge. Liu et al. (Liu, et al., 2010a) classified drivers as top drivers and ordinary 

drivers according to their income. In our work we also explore the difference between 

top performance drivers, average performance drivers and low performance drivers, 

considering their income and amount of trips. Although top drivers present specific 

strategies, they are also characterized by a high amount of trips achieved.  

In order to improve income, top drivers search for passengers in specific 

locations related with transportations hubs, at specific hours of the day (e.g. searching 

for passengers near the airport between 7 AM and 9 AM, when the majority of 
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international flights from the West arrive at Lisbon Airport), and avoid traveling long 

distances for their next pick-up. Therefore, they move from one location to another 

according to the hour of the day, and stay (or return to that location after a drop-off) 

for a period of time.  

On the other hand, two main patterns are observed amongst low performance 

drivers: either staying (and returning after a drop-off) to the same location for long 

periods of time, or randomly picking-up passengers throughout the city. However, the 

second scenario could be generated by the taxi central dispatching service, redirecting 

taxis to specific locations, according to customers’ requests via phone calls, and not via 

a specific hunting strategy. 

Figure 2-33 shows the overall performance of the predicted list for top, average 

and low performance drivers. The former rapidly increases the accuracy of prediction, 

needing to grow to 37 possible destinations in order to predict the correct destination 

to a high accuracy (70%). Average drivers must grow to 177 and low performance 

drivers to about 250 to attain similar accuracy. Since average and low performance 

drivers do not appear to have specific driving strategies to improve their income, their 

behavior can be characterized by a certain randomness.  

 

Figure 2-33 - Overall performance of the predicted list for different taxi drivers’ types (top, average and 

low performance drivers). 

Similar to Phithakkitnukoon & Dantu (Phithakkitnukoon & Dantu, 2008), we 

adopt the information entropy, defined by equation ( 8 ), to characterize the 

randomness of finding the next pick-up (X). Unsurprisingly, top drivers have a lower 



Chapter 2  
How taxi patterns describe the city 

70 

value of entropy (4.8842) than the average driver (4.9650), meaning they are less 

random and more predictable. Moreover, since the low performance drivers are 

characterized by a low amount of trips, the scarce amount of training data could also 

influence the performance of the classifier, as pointed out before.  

 

Figure 2-34 - Pick-ups and drop-offs distribution for a top driver (left) and a low activity driver (right) 

Figure 2-34 shows the pick-ups (red) and drop-offs (green) for a top 

performance driver (left) and a low performance driver (right), overlapping a heat map 

indicating areas with higher activity for both drivers. Although the top driver has a high 

amount of pick-ups and drop-offs spread throughout the city, several clusters are 

visible (areas marked in red), which can help the prediction process. Generally, top 

drivers are more active than average and low performance drivers, and as pointed out, 

change locations (to specific hotspots) throughout the day, reducing their waiting 

period. This constant movement could have a negative impact on the predictability. 

However, if we associate hour of the day to the spatial movements, we can observe 

patterns (e.g. airport between 7 AM and 9 AM), which in turn benefits the inference 

engine.  

The low activity driver has a single predominant location (airport), along with 

several isolated pick-ups and drop-offs. Usually, average and low performance drivers 

choose to stay at same pre-defined location for long periods of time, waiting for the 

next pick-up, hence the usual single predominant location. The consequence is longer 

waiting times.  

Every sample from a data set contains on its own some degree of knowledge 

and should be preserved. However, these results are a possible indication that, to 
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improve the recommendation system efficiency, samples should be filtered to retain 

data from the most efficient drivers and disregard data that carries the experience 

from low performance drivers. The use of all samples could introduce outliers, which in 

turn would negatively affect the outcome of the inference engines 

2.6.8 Effect of taxi activity areas 

The spatial analysis demonstrated that different locations have different 

intensities of taxi activity. Previous sections have shown that taxi service is often used 

as a bridge between transportation modalities, namely train stations, airports or ferry 

docks, an observation in line with the work of other authors, such as Zheng et al.  

(Zheng, et al., 2011b). Therefore, those locations have a higher taxi activity. As 

presented in Figure 2-5 (section 2.4.2) we divide the cells in three groups according to 

the taxi activity: high (or predominant cells), average, and low taxi activity cells. Figure 

2-35 (left) shows the accuracy rate varying with the length of the predicted list for the 

three cells’ types. 

 

Figure 2-35 - Overall performance of the predicted list for high, normal, and low activity cells (left), and 

the contribution of neighbor cells (right). 

The predictability of taxi activity on high taxi activity cells rapidly reaches a high 

accuracy (70%) with the first 37 possible destinations. Average taxi activity cells quickly 

attain the same value with the first 47 possible destinations, while low taxi activity 

cells need about 250 possible destinations from the prediction list. The corresponding 

entropy values are: 4.3851, 4.7395 and 4.8141. Additionally, as described before, we 
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also observe a better accuracy predicting the next pick-up location when the data from 

the neighbor cells of the current location are also included in the classification. 

Similar to the analysis of the effect of taxi drivers’ strategies, the scarce amount 

of training data could also influence the performance of the classifier for the cells with 

low taxi activity. Therefore, considering the low predictability, higher value of entropy 

and scarce (or insufficient) data of cells with low taxi activity, in order to improve the 

recommendation system efficiency these set of cells should be disregarded. 

2.6.9 Effect of cell size  

One important feature for a recommendation system is the ability to allow the 

user to zoom in and out the interface in order to obtain more detailed information 

about a specific location. Moreover, since a grid to model the city is adopted in this 

study, the size of cells will affect the performance of the inference engine. Figure 2-36 

represents the city modeled with different cell-sizes (1000mx100m, 500mx500m, 

250mx250m, and 100mx100m) and corresponding taxi activity (red represents high 

taxi activity cells, yellow represents low taxi activity cells). Cells with the least amount 

of taxi activity were removed. 

 

Figure 2-36 - Spatial distribution of taxi volume for different cell size: 1000mx1000m (top left), 

500mx500m (top right), 250mx250m (bottom left) and 100mx100m (bottom right).  
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By reducing the size of each cell, there is an increase of the number of possible 

destinations in the search space and a substantial reduction of the amount of instances 

on each cell. As a consequence of the reduction of the cell size, the performance of the 

inference engine diminishes (Figure 2-37). 

 

Figure 2-37 - Overall performance of the predicted list for different cell sizes. 

As expected, by increasing the size of the cell, higher prediction accuracy is 

achieved, and with fewer destinations needed to achieve it, since there is a reduction 

of the search space for the inference algorithm. However, the size of the biggest cells 

(e.g. 2000x2000m) should not be considered practical for a recommendation system 

due to the sheer size where the taxi drivers would have to search for the potential 

customer. Smaller cells (e.g. 100x100m) provide a useful recommendation since they 

narrow the space for taxi drivers to find the next pick-up, but at the cost of very low 

accuracy. All things considered, cells with 500x500m size are the ones which appear to 

best balance between prediction accuracy and the usefulness recommendation for taxi 

drivers. 

2.6.10 Adequacy of historic data 

Since the data set can grow quickly, the increase in number of samples could 

improve the accuracy of the model, however, it can also increase the computing time 

and storage demands. Therefore, an interesting question is how much data is 

adequate to characterize the taxi patterns. While exploring the same data set in order 

to build a predictive model for the number of vacant taxis in a given area, 

Phithakkitnukoon et al. (Phithakkitnukoon, et al., 2010b) analyzed this question. The 
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authors applied the information theory's mutual information (Cover & Thomas, 2006), 

which is a measure of the amount of information that one random variable contains 

about another random variable. The mutual information between two random 

variables 𝐼(𝑋; 𝑍) is the reduction of the uncertainty in X due the knowledge of Z, 

where X is a random variable representing the entire data set and Z is a random 

variable representing some amount of the most recent data in X. The mutual 

information can be defined as follows: 

 

𝐼(𝑋; 𝑍) = 𝐻(𝑋) − 𝐻(𝑋|𝑍) = 𝐻(𝑋) + 𝐻(𝑍) − 𝐻(𝑋, 𝑍) ( 12 ) 

 

where 𝐻(𝑋) is the information entropy of X defined by equation ( 8 ), and 𝐻(𝑋, 𝑍) is 

the joint entropy defined by the following equation: 

 

𝐻(𝑋, 𝑍) = − ∑ 𝑝(𝑥, 𝑧) log2 𝑝(𝑥|𝑧) =

𝑥,𝑧

− ∑ 𝑝(𝑥, 𝑧) log2

𝑝(𝑥, 𝑧)

𝑝(𝑧)
𝑥,𝑧

 ( 13 ) 

 

with 𝑝(𝑥𝑖) =
𝑛𝑖

∑ 𝑛𝑖𝑖
, where ni is the amount of vacant taxis in grid cell i. 

We observe that a small amount of data (Z) is suffice to characterize the entire 

data set (X). The results have shown that 𝐼(𝑋; 𝑍) converges around 40 days of historic 

data, therefore, since 𝐼(𝑋; 𝑋) is equal to 𝐻(𝑋), it implies that 𝐼(𝑋; 𝑍) ≈ 𝐼(𝑋; 𝑋) =

𝐻(𝑋)  when at least the last 40 days of data are considered. 

By computing the accuracy of the model considering data sets with different 

sizes (Figure 2-38) we can observe that after around 40 days of data, the model is able 

to achieve 90% of the highest performance (attained with 70 days of data). 
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Figure 2-38 – Effect of data set size on the performance of the model: accuracy of the model considering 

the last x days of historic data. 

From this result we can conclude that the inference engine does not need the 

entire data set to attain the highest accuracy possible. By reducing the size of historical 

data needed, we are also reducing the computing time and storage space. 

2.7 Chapter summary and conclusions 

This section summarizes the study of taxi traces in order to understand urban 

mobility. Main contributions and results are presented along with a discussion of the 

limitations of the study and future improvements of the work. 

2.7.1 Overview and contributions 

Taxi service is a flexible way of transportation, and dynamically adapts to the 

flow and need of passengers. However, the fast growth of urban areas complicates the 

process of efficiently searching for new customers. Therefore, taxi drivers pursue 

approaches to reduce waiting times and distance traveled to the next pick-up. 

In this chapter we analyze a data set of taxi-GPS traces to (1) perform a 

exploratory spatiotemporal analysis of taxi patterns; (2) propose a recommendation 

system and its inference engine, based on a naïve Bayesian classifier, to assist the taxi 

driver in the task of picking-up new passengers; and (3) study the predictability of taxi 

activity and its sensibility to variations in the urban environment. 
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Using traces collected in Lisbon, Portugal, during a period of four months, we 

are able to capture the spatiotemporal variation and observe that trip distance and 

duration follow Gamma and Exponential distributions. We are also able to visualize the 

spatiotemporal patterns, identifying the main pick-up and drop-off locations and busy 

hours. These results were published in (Veloso, et al., 2011a). 

Using the same traces, we are able to identify the relationship between pick-up 

and drop-off locations. The study shows strong links between public transportation 

hubs, where taxi service appears to be a bridge between different public 

transportation services. We analyze the taxi driver behavior during downtime – time 

spent searching for the next pick-ups - where taxis tend to avoid making long trips to 

suburbs for pick-ups.  These results were published in (Veloso, et al., 2011b). 

The analysis of top drivers’ patterns shows specific strategies used to maximize 

their profit. It is preferable for a taxi driver to wait for passengers in locations related 

with main public transportation hubs (airport, train stations, ferry dock or main bus 

stops), during specific hours of the day, and avoid traveling great distances to the next 

pick-up location, unless it is to return to the aforementioned locations. Low 

performance drivers stay at the same location for long periods of time, show scattered 

pick-up locations, and are the major contributors to the apparent randomness of taxi 

flow. Therefore, the training process should rely on historical data from top drivers to 

retrieve their successful strategies. Moreover, when computing the best pick-up 

locations considering the current location, the historical data from the adjacent or 

neighbor cells should also be taken in consideration, since they all could represent a 

local cluster. 

Our predictability analysis explores the possibility of estimating the next pick-up 

area (highest likelihood), given the current location (last drop-off area), day of the 

week, hour, weather conditions and area type. The inference engine, based on a naïve 

Bayesian classifier, achieves 56.3% of accuracy for specific conditions: weekdays, 

working hours and in areas with reasonable taxi activity (cells with low taxi activity 

were disregarded).  Current location turned out to be the main contributor to the 

algorithm, contrarily to weather conditions which is the variable with less weight in the 

calculation. The impact of other variables is also examined: daily and weekly periods; 

taxi driver strategies; and cell size, alongside the study of the adequacy of historic data. 

These results were published in (Veloso, et al., 2011c) and (Phithakkitnukoon, et al., 

2010a). 
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2.7.2 Limitations and future work 

Nonetheless, the study presents some limitations. The highest accuracy (56.3%) 

is achieved under specific conditions: on weekdays; working hours; and in areas with 

reasonable taxi activity (cells with low taxi activity are disregarded). More importantly, 

the evaluation of the model considers that neighbor cells are also a positive prediction. 

The approach was needed due to insufficient data in some temporal and spatial slots. 

By removing these special conditions, the classifier achieves an accuracy of 31%. This is 

an expected lower performance since the search space is widened, and includes areas 

without sufficient data (low taxi activity cells). However, although this is a considerable 

lesser result compared to the first scenario, it is a reasonable outcome once we 

consider that the search space is composed of 370 possible locations. In this greater 

search space, each cell on average, has a probability of only 0.27% to randomly receive 

the next taxi pick-up, while the a priori probability for the best cells (those with very 

high taxi activity) is 2.4%. Since the lack of data is a major limitation in applying the 

algorithm to all of Lisbon municipality, a more comprehensive data set should be 

collected. 

Additionally, the adoption of a Naïve Bayesian Classifier requires that the 

predictors are independent variables. However, POI may not be independent from day 

of the week and hour of the day. For instance, schools and commercial areas operate 

mostly on weekdays, from 9 AM to 6 PM, while bars and restaurants are attended 

mostly at night, and museums visited during weekends. This possible dependency 

between the variables could affect the performance of the Naïve Bayesian Classifier 

and other algorithms should also be explored. In that line, the study does not take into 

consideration urban events (e.g. sports, music concerts, cultural expositions, or even 

workers strikes from public transportation services), which could strongly affect the 

average patterns of taxi service.  

Although some authors proposed the use of Artificial Neural Networks (KNN), in 

the form of multilayer perceptron with backpropagation, to tackle the possible 

randomness of taxi trajectories (Zhang, et al., 2012a), (Moreira-Matias, et al., 2014b), 

this approach did not improve the accuracy of estimating the likelihood of each 

possible pick-up location area. NBC and KNN showed similar performances (using a 

sigmoid activation function, and trained with different setups of hidden layers, from 

two to 20), however, KNN presented a significantly higher computational time. 
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Future work should deepen the analysis of top drivers, to uncover specific 

strategies and improve the classifier accuracy. Top drivers possess a cumulative 

knowledge from their own experience about traffic, the city topology and even 

passengers behaviors, being able to identify time periods and locations with higher 

likelihood for picking-up new passengers. 

A contribution from our work is to model the entire city with a grid and 

consider every cell of the grid as a potential pick-up location. This approach contrasts 

with most of the authors, which define a set of restricted hotspots, thus reducing the 

search space. Although our approach encompasses the entire area of the city, it also 

produces a broader search space, which impacts negatively the performance of the 

classifier. This is a limitation in the original design of the problem, which results in a 

lower prediction accuracy.  

The process for the grid creation can also be subject to discussion, since it 

doesn’t take into consideration the location of particular areas of the city that affect 

the traffic conditions on time and space (e.g. main expressways and arterial road, 

stadiums, shopping centers, schools) or the original density of the taxi-GPS traces. 

Therefore, some hotspots could have been split between two (or more) grid cells, thus 

disturbing the outcome of the analysis. Castro et al. (Castro, et al., 2013) argue the 

benefits of a more adaptive grid decomposition, using the clusters of GPS traces to 

guide the size and placement of the grid. The authors proposed structures such as 

Binary Space Partitioning Trees or R-Trees in order to achieve that goal. 

Some of the exploratory studies should be deepened in future work (e.g. 

gravity map of taxi activity), to analyze the effect of weather conditions or the hour of 

the day. Since the data set do not contain information about individual passengers, 

though daily patterns arise, we cannot confirm if they are based on the same share of 

passengers that keep daily routines or if they are produced by random passengers with 

random behaviors that collectively produce a defined pattern. Therefore, the nature of 

the passengers can have implications on the taxi service and the ability to make 

predictions. Moreover, this work does not explore the motivations as to why people 

use taxi services. Passengers could use taxis either because they do not have any other 

public transportation available or simply because it is convenient. A survey should be 

taken to clarify this issue since it can also affect taxi patterns (e.g. if passengers use 

taxis in a specific city’s area because there is no other mean of transportation 
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available, if a new bus or metro line is provided, taxi patterns on that area would be 

significantly affected). 

Other limitations concern the recommendation system. A full recommendation 

system was not built, which is outside of the scope of this work. The study focuses 

instead on the inference engine. However, the development of a fully functional 

commercial framework would allow the system to be tested in real conditions and 

assess the true usefulness of the approach. 

The study does not take into consideration if taxi drivers search for passengers 

independently or if they are being redirected by a central dispatching service. Some 

apparently random behaviors can be caused by specific and occasional customers’ 

requests by phone. Additionally, the recommendation system does not take into 

consideration the current behavior of other taxi drivers. If the same information is 

provided to different taxi drivers, the recommendation system can lead to a scenario 

where taxi drivers compete for the same resource. A distributed and concurrent 

system should be explored, where estimations are performed taking in consideration 

the current status of other taxis, thus avoiding competition for the same passenger. 

Due to the lack of data available for the same temporal window from other 

urban areas, the model was not tested in other cities. Although the data provider also 

made available a data set collected in second major city in Portugal (Porto), it did not 

contain enough samples to be analyzed. Therefore, our study is unable to perform any 

statement regarding the geographic replicability. Moreover, the absence of a 

complementary data set from a different year left us unable to also perform any 

statement regarding temporal replicability. Thus, as stated before, newer data set 

should be collected in the future, for the same urban region alongside with data set 

from different locations, to validate the temporal and geographic replicability of the 

model. Preferably, the newer data set should provide a wider temporal window to 

analyze seasonal effects of taxi service. 

Finally, concerns around the quality of data. The data set was collected in 2009, 

representing a considerable temporal gap to the results now being presented. In 

between, the city under study has gone through several changes (e.g. administrative 

fusion of parishes, new urban development and policies, national crises changing 

inhabitants’ habits). One can inquire if the results still hold true today. Additionally, 

although at the time of the data collection the data provider accounted for nearly 20% 

of taxi share in the city, the representativeness of the data can also be disputed.  Once 
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more, future work should encompass the collection of new data set, to assess if the 

procedure still holds true for different temporal periods, and if it could be expanded to 

other cities. 
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Chapter 3 
The relationship between mobile phone 

activity and taxi traces 

 

3.1 Introduction 

The rapid growth of urbanization, the need for better services (e.g. public 

transportation, energy, communications) and urban planning (e.g. infrastructures, 

environments, policies) demands a better understanding of city dynamics. The 

development of pervasive technologies such as the global system for mobile 

communications (GSM) and the global positioning system (GPS) provide useful tools to 

sense social and traffic activities in the city. Analyzing GPS-enabled vehicle traces and 

mobile phone activity thus provides, to some extent, an overview of how the city 

functions. 

Today’s taxis are equipped with GPS devices for better monitoring and 

dispatching. Their traces have been used to study different aspects of the traffic 

network as they can provide data that reflect the state of traffic flow in the city (Liu, et 

al., 2009a) , (Yuan, et al., 2011a), (Castro, et al., 2012). Taxi traces typically carry 

occupancy information from which pick-up and drop-off location information can be 

inferred. Therefore, one can infer active spatiotemporal areas for taxi activity, as had 

been explored in the previous chapter. 

Mobile phone call data, on the other hand, has been used to study the social 

aspect of the city (Candia, et al., 2008), (Becker, et al., 2011a), (Isaacman, et al., 2011), 

(Phithakkitnukoon, et al., 2014). With its high penetration rate, activity inferred from 

mobile phones can reveal the city’s social characteristics.  

By examining these two sources of data that describe the city from different 

perspectives, we aim to explore hidden relationships between them – particularly the 

inter-predictability: can one data source be used to predict the other? Although they 

explain the city in different ways, we believe that they are related in some way and we 

aim to explore the underlining relationship in the following sections. That being said, in 
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this chapter we focus on the analysis of the relationship between mobile phone call 

activity and taxi-GPS traces acquired in the city of Lisbon, Portugal, to understand the 

inter-predictability between the two urban data sources. The contribution of this work 

lies in the following aspects:  

1. a spatiotemporal analysis of a data set of mobile phone activity, 

2. a study of the inter-predictability between mobile phone activity and 

taxi volume.  

For the former, we analyze a historical data set of mobile phone activity to 

identify patterns in time and space; comparing the behavior between areas with high 

and low activity, and measure the patterns’ proximity between taxi volume and mobile 

phone call activity. For the latter, we use linear regression to model the relationship 

between the two time series, explore different scenarios to improve the linear 

association, and identify the optimal temporal window that best fits the two urban 

data sources. 

3.2 State of the art 

With the advent of pervasive technologies (e.g. GPS, GSM, Wi-Fi), several works 

have been presented with the aim to explore and improve urban mobility. Among 

them mining taxi trajectories has recently attracted much attention. As described in 

Chapter 2, taxi-GPS traces have been used in a number of studies to develop better 

solutions and services in urban areas such as estimating optimal driving paths (Ziebart, 

et al., 2008), (Yuan, et al., 2010), and (Zheng, et al., 2010), predicting next taxi pick-up 

locations (Liu, et al., 2010b), (Ge, et al., 2010), and (Yuan, et al., 2011b), modeling 

driving strategies to improve taxis’ profit (Ge, et al., 2010), and (Liu, et al., 2010a), 

identifying flaws and possible improvements in urban planning (Zheng, et al., 2011b), 

and (Chen, et al., 2013a), and developing models for urban mobility, social functions, 

and dynamics between different areas in the city (Qi, et al., 2011), and (Castro, et al., 

2013).  

In addition to understanding the dynamics of vehicular networks, so too the 

mobility of people at the individual level is important. With their ubiquity and high 

penetration rate, mobile phones and cellular phone networks have become probes 

used to sense human behavior and social dynamics. Therefore mobile phone data has 
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been used increasingly in various studies aiming to develop general laws that govern 

human behavior, such as:  

 Analyze pedestrian movements predictability, identifying daily routines, 

commuting patterns and important places in peoples’ lives (Eagle & 

Pentland, 2006), (Sohn, et al., 2006), (Farrahi & Gatica-Perez, 2008), 

(Gonzalez, et al., 2008), (Eagle & Pentland, 2009), (Zhu, et al., 2009), 

(Calabrese, et al., 2010c),  (Phithakkitnukoon, et al., 2010a), (Reddy, et 

al., 2010 ), (Song, et al., 2010a), (Song, et al., 2010b), (Calabrese, et al., 

2011a), (Farrahi & Gatica-Perez, 2011), (Isaacman, et al., 2011), 

(Phithakkitnukoon & Ratti, 2011), (Altshuler, et al., 2012), (Frias-

Martinez, et al., 2012), (Calabrese, et al., 2013), (Etter, et al., 2013), (Liu, 

et al., 2013),  (Witayangkurn, et al., 2013), (Zheng, et al., 2013), (Do & 

Gatica-Perez, 2014), (Järv, et al., 2014), (Kim, et al., 2014), (Lin & Hsu, 

2014), (Geurs, et al., 2015), (Zhao, et al., 2015b); 

 Study the social interactions in urban areas, monitoring travels to 

identify relationships between urban areas, and create profiles for the 

city organization and the population density (Ratti, et al., 2005), 

(Calabrese, et al., 2007), (Hossain, et al., 2007), (Reades, et al., 2007), 

(Candia, et al., 2008), (Girardin, et al., 2008), (Miluzzo, et al., 2008), 

(Nickerson, et al., 2008), (Pulselli, et al., 2008), (Puntumapon & Pattara-

atikom, 2008), (Eagle, et al., 2009a), (Eagle, et al., 2009b), (Krings, et al., 

2009a), (Krings, et al., 2009b), (Li & Chen, 2009), (Hu, et al., 2009a), 

(Nobis & Lenz, 2009), (Ratti, et al., 2009), (Reades, et al., 2009), (Baron 

& Segerstad, 2010), (Blondel, et al., 2010), (Calabrese, et al., 2010b), 

(Eagle, et al., 2010), (Liu, 2010), (Quercia, et al., 2010), (Aharony, et al., 

2011), (Becker, et al., 2011a), (Calabrese, et al., 2011b), (Onnela, et al., 

2011), (Phithakkitnukoon, et al., 2011a), (Phithakkitnukoon, et al., 

2011b), (Phithakkitnukoon & Dantu, 2011), (Stenneth, et al., 2011), 

(Traag, et al., 2011), (Demissie, et al., 2012b), (Xiao, et al., 2012), 

(Domenico, et al., 2013),  (Pereira, et al., 2013), (Aguilera, et al., 2014), 

(Hoteit, et al., 2014), (Phithakkitnukoon, et al., 2014), (Can & Demirbas, 

2015), (Steenbruggen, et al., 2015), (Trasart, et al., 2015), (Zhao, et al., 

2015a);  
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 Create Origin-Destination matrixes for urban patterns (subset from the 

previous topic) (White & Wells, 2002), (Wideberg, et al., 2006), 

(Caceres, et al., 2007), (Bekhor, et al., 2011), (Iqbal, et al., 2014);  

 Traffic monitoring and estimation, congestion detection and route 

planning (Sankar & Civil, 1997), (Bolla & Davoli, 2000), (Ygnace, et al., 

2000), (Remy, 2001), (Ygnace, 2001), (Yim & Cayford, 2001), (Cayford & 

Johnson, 2003), (Sauret, 2003), (Thiessenhusen, et al., 2003), (Rutten, et 

al., 2004), (Saraydar, et al., 2004), (White, et al., 2004), (Hellinga, et al., 

2005), (Hsiao & Chang, 2005), (Schneider & Mrakotsky, 2005), (Alger, et 

al., 2006), (Cayford & Yim, 2006), (Cheng, et al., 2006), (Geoff, 2006), 

(Gundlegard & Karlsson, 2006), (Hsiao & Chang, 2006), (Jin, et al., 2006), 

(Thajchayapong, et al., 2006), (Bar-Gera, 2007), (Birle, 2007), (Hellinga & 

Izadpanah, 2007), (Fontaine, et al., 2007), (Hopfner, et al., 2007), 

(Maerivoet & Logghe, 2007), (Qiu, et al., 2007), (Wunnava, et al., 2007), 

(Hellinga, et al., 2008), (Hongsakham, et al., 2008), (Leduc, 2008), (Liu, 

et al., 2008), (Qiu & Ran, 2008), (Gundlegard & Karlsson, 2009), (Valerio, 

et al., 2009a), (Valerio, et al., 2009b), (Valerio, 2009), , (Wang, et al., 

2009b), (Chandrasekaran, et al., 2010), (Bazzi & Masini, 2011), (Lv, et al., 

2011), (Aguilera, et al., 2012), (Demissie, et al., 2012a), (Hillson & Santis, 

2012), (Tettamanti, et al., 2012), (Virtanen, 2012), (Wang, et al., 2012), 

(Cheng, et al., 2013), (Steenbruggen, et al., 2013a), (Steenbruggen, et 

al., 2013b), (Mathew & Xavier, 2014), (Tettamanti & Varga, 2014);  

 Assess the quality of road network and develop monitoring systems 

(subset from the previous topic) (Caceres, et al., 2008),  (Vaccari, et al., 

2009), (Herrera, et al., 2010), (Becker, et al., 2011b), (Frutos & Castro, 

2014);  

 Study and predict calls’ profiles (Phithakkitnukoon & Dantu, 2007), 

(Husna, et al., 2008), (Phithakkitnukoon & Dantu, 2008), (Melo, et al., 

2010), (Phithakkitnukoon & Dantu, 2010a), (Phithakkitnukoon & Dantu, 

2010b), (Yuan, et al., 2012), (Jiang, et al., 2013); 

 Explore the impact of  weather conditions on mobile social interactions 

(Phithakkitnukoon, et al., 2012), (Horanont, et al., 2013);  
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 Perform indoor and outdoor location (Wang, et al., 2009b), (Otsason, et 

al., 2005), (Otsasson, 2005), (Bento, et al., 2005), (Veloso, 2007), (Bento, 

et al., 2007);  

 Determine the adequacy of the mobile phone network and infrastructure 

(Onnela, et al., 2007), (Hidalgo & Rodriguez-Sickert, 2008), (Chiang, et 

al., 2011), (Paul, et al., 2011), (Zhou, et al., 2012). 

The analysis of mobile phone data explores essentially two sets of information: 

anonymized call detail records or handover patterns (also known as handoff patterns). 

This information is used mainly to study three sets of problems: user daily patterns and 

routines; urban social interactions or links between different areas of a city; and the 

use of mobile phones as probes for traffic monitoring. Some of the representative 

studies in each topic are described in the following sections. 

3.2.1 Analysis of pedestrian movements, daily routines and commuting patterns 

Farrahi et al. (Farrahi & Gatica-Perez, 2008) aimed to study the daily routines by 

mining mobile phone data. The authors presented a framework built from two 

Hierarchical Bayesian topic models to discover human location-driven routines: Latent 

Dirichlet Allocation and Author Topic Model. The former automatically discovers 

characteristic routines for all individuals in the study (e.g. going to work, returning 

home) while the latter finds routines characteristic of a selected groups of users, 

ranking users by their probability of conforming to certain daily routines. Farrahi et al. 

(Farrahi & Gatica-Perez, 2011) further investigated human routines which characterize 

both individual and group behavior in terms of location patterns, introducing the 

individual’s entropy as a relevant parameter. The new study explored daily and weekly 

routines, and analyzed individual’s behavior over time to determine regions with high 

variations in order to identify specific events.  

Eagle & Pentland (Eagle & Pentland, 2006) started by analyzing the activity of 

100 mobile phones to measure information access and use indifferent contexts, 

recognize social patterns in daily user activity, to infer relationships, and identify 

socially significant locations, in the Reality Mining project. Later, Eagle et al. (Eagle, et 

al., 2009b)  demonstrated the possibility to infer friendship among mobile phone user 

with 95% of accuracy, even when pairs or friends users (termed dyadic friendship) 

show distinctive temporal and spatial patterns in their physical proximity and calling 
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patterns. The model was based on a nonparametric multiple regression quadratic 

assignment procedure, a standard technique to analyze social network data. Finally, 

Eagle & Pentland (Eagle & Pentland, 2009) aimed to predict daily routines of mobile 

phone users. The authors were able to identify the structure inherent in daily behavior 

by representing daily routines in term of principal components, from which the 

authors extracted the primary eigenvectors (termed eigenbehaviors). This procedure 

allows the authors, at halfway through the day, to predict the remaining routine of the 

user with 79% accuracy. Moreover, the study used the dimensionality reduction 

technique to infer community affiliations within the subjects’ social network by 

clustering individuals into sets termed behavior spaces. Elements of the same space 

share behavioral similarities, enabling a classification with 96% accuracy among 

community affiliations. The authors were also able to estimate relational ties such as 

friendship by measuring the distance between individuals in the behavioral space.  

Phithakkitnukoon et al. (Phithakkitnukoon, et al., 2010a) developed the activity-

aware map that describes the most probable activities associated with specific areas of 

a city, combining mobile phone-location traces and POI information. Results showed a 

strong correlation in daily activity patterns between groups of people who share 

common work area types, which will decrease as the distance between them 

increases. The analysis of around 130 million anonymous location estimations, from 

mobile phone data, allowed Phithakkitnukoon et al. (Phithakkitnukoon & Ratti, 2011) 

to identify non-symmetrical travel patterns, which accounts for 33% of all flows. High 

asymmetrical flows were observed in trips between low and high congested areas e.g. 

urban and suburban areas, as well as trips made to and from low populated areas. 

Finally, authors discussed the applications for Origin-Destination matrixes. 

Altshuler et al. (Altshuler, et al., 2012) investigated the possibility of learning 

patterns from mobile phone data over time. The authors analyzed and proposed 

several models (C4.5, Decision Trees, Naive-Bayes, Rotation-Forest, Random-Forest, 

and AdaBoostM1) to predict daily routines and social relations based on mobile phone 

traces and activities, testing different input parameters. The models were able to 

detect life-partners, ethnicity, and whether or not a person is a student. Calabrese et 

al. (Calabrese, et al., 2010c) proposed a model to predict the location of mobile phone 

users based on their past behavior. The probabilistic model analyzes the user’s 

individual patterns as well as the collective’s habits, geographical features and points 

of interests. Experimental results, using a massive data set collected in Boston, showed 

good levels of accuracy. 
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Song et al. (Song, et al., 2010a) studied the randomness in human behavior and 

to what degree individual human actions are predictable by analyzing mobility patterns 

of mobile phone users. Results showed that a combination of an empirically 

determined user entropy and Fano’s inequality indicated that there is a potential 93% 

average predictability in user mobility. This was a consequence of most individuals 

being localized in a finite neighborhood, but of few travelling widely. Similar 

observations were made by Gonzalez et al. (Gonzalez, et al., 2008), which explored an 

anonymized mobile phone data set of 100,000 users, collected during six months. The 

authors concluded that human trajectories show a high degree of temporal and spatial 

regularity, each individual being characterized by a time-independent characteristic 

travel distance and a significant probability to return to a few highly frequented 

locations, such as home or work. Moreover, the individual travel patterns follow a 

single spatial probability distribution, indicating that despite the diversity of their 

travel history, humans follow simple reproducible patterns.  

Using cellular network data, Isaacman et al. (Isaacman, et al., 2011) proposed 

and evaluated three algorithms derived from logistic regression-based analysis, and 

described clustering techniques to identify important locations. The authors were able 

to detect home and work locations accurately, which was then used to perform an 

analysis of commuting distance and estimate commuting carbon footprints.  Jiang et 

al. (Jiang, et al., 2013) explored a data set of 100,000 active cell phones in China, 

collected during four months, to identify that inter-call duration follows a power-law 

distribution with an exponential cutoff at the population level. However, the authors 

also found differences when focusing on individual users: the inter-call duration of less 

active users (around 73%) follow a Weibull distribution. On the other hand, Zhu et al. 

(Zhu, et al., 2009) explored the trajectories and behavior of mobile phone users. The 

authors observed that the staying time in each location followed a Zipf distribution 

(Powers, 1998). This observation led to a proposal for a runtime algorithm to mine the 

behavior patterns with less storage resources. Additionally, the concept of transient 

entropy was introduced, to identify the moving speed of users, and based on which, 

they define and mine four types of behavior patterns: frequent locations, frequent 

trajectories, meaningful locations, and travel modes. 
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3.2.2 Study of social interactions and relationships between urban areas  

Ratti et al. (Ratti, et al., 2009) introduced the concept of collecting aggregated 

data in cities to identify hotspots of urban interactions and deploy Location Based 

Services. Following this line, the authors provided a geographical mapping of cell 

phone usage at different times of the day, from the metropolitan area of Milan, Italy, 

integrated in the project ‘Mobile Landscapes’. A similar approach was previously used 

by Ratti et al. (Ratti, et al., 2005) to develop and show in real-time the mapping of 

cellphone traffic intensity, traffic migration (handovers) and traces of registered users 

as they move through the city of Graz, Austria. In the same direction, Reades et al. 

(Reades, et al., 2009) attempted to correlate the usage of cellular communications 

with the geography of human activity derived from data of commercial premises. The 

authors introduced the concept of eigendecomposition to identify and extract 

recurring patterns of mobile phone usage. The primary eigenvector was considered to 

indicate a common underlying pattern to mobile phone usage and was used to 

produce eigenplaces. By observing a spatial variation in time, the authors were also 

able to relate some patterns with specific activities. 

To demonstrate the applicability of a real-time urban monitoring system, 

Calabrese et al. (Calabrese, et al., 2007) used the Localizing and Handling Network 

Event Systems (LocHNESs) platform, developed by Telecom Italia, to visualize and 

study the urban dynamics. The study was based on the anonymous monitoring of 

mobile cellular networks in the city of Rome, Italy. By combining information regarding 

public transportation (buses and taxis), the authors produced visualizations of the 

pedestrians movements and traffic conditions. Later, Calabrese et al. (Calabrese, et al., 

2010b) presented an analysis of crowd mobility during special social events (e.g., sport 

game, concert) by analyzing mobile phone-location traces. Using data collected from 

about one million mobile phones, the authors were able to correlate social events that 

people attend with their home locations. For classification, a Multilayer Perceptron 

with one hidden layer was applied, and a K-Means algorithm was used for data 

clustering. To understand the relation between people’s calls and their physical 

location, Calabrese et al. (Calabrese, et al., 2011b) explored a database of anonymized 

telecommunications of over one million customers, collected during 12 months in 

Portugal. The authors found that around 90% of users who called each other have also 

shared the same space (cell tower), and around 70% of users who call each other 

frequently (at least once per month on average) have shared the same space at the 

same time. Moreover, co-locations appear highly indicative of coordination calls 
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occurring just before physical meetings. These observations allowed the authors to 

predict 61% of the number of co-locations from the number of calls, and users’ homes 

distance (the number of co-locations decreases with the increase of distance between 

homes). 

Phithakkitnukoon & Dantu (Phithakkitnukoon & Dantu, 2007) tackled the 

challenge of predicting future receiving calls, and proposed a call predictor. The 

behavior learning model is able to compute the probability of receiving calls during the 

next 24 hours, based on the caller’s past history. The receiving call probability is based 

on the caller’s behavior (caller’s call arrival time and inter-arrival time) and reciprocity 

(number of outgoing calls per incoming call and inter-call time). The framework uses a 

nonparametric density estimation (the Parzen window estimator) with a Gaussian of 

zero mean as kernel, to estimate the probability model, assuming normal distributions 

for the call parameters. Based on data collected during 3 months from 20 phone users, 

results showed that the model performed reasonably well with false positive rate of 

2.4416%, false negative rate of 2.9191%, and error rate of 5.3606%. Further 

improvements were made by Phithakkitnukoon & Dantu (Phithakkitnukoon & Dantu, 

2008), which describes a Call Predicted List. Similarly with the former work, the model 

is based on the user’s call history to build a probabilistic model of calling behavior 

based on the caller’s calling patterns and reciprocity, adding a Naïve Bayesian 

Classifier. The authors were also able to infer the social closeness from the number of 

calls received. 

Girardin et al. (Girardin, et al., 2008) explored a new methodology to identify 

tourists’ behaviors in urban areas. The authors studied active and passive footprints of 

the city's visitors in the city of Rome, Italy. For passive footprints, the authors 

considered the interaction with the mobile phone network, while active footprints 

were composed of georeferenced photos, made publicly available on photo-sharing 

web sites, and aggregated records of wireless network events, generated by mobile 

phone users making calls and sending text messages. This work made visible the 

potentialities of this approach (a new data source that could be used to generate 

tourists’ profiles) and difficulties (extracting information from EXIF metadata and the 

error associated with the manual geotagging) of the process. The automation of 

collecting daily activity data and publication on social frameworks was studied in the 

Dartmouth’s CenceMe project (Miluzzo, et al., 2008). The authors proposed and tested 

an intelligent mobile sensor network capable of sensing nearby friends and their 

current activity. 
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Aharony et al. (Aharony, et al., 2011) studied the population behavior through a 

15-month long data set which included information gathered from individual mobile 

phones. The authors investigated the relationship between human networks and 

personal decision making, where there is a statistically significant effect of social 

components on real-world in-situ physical activity levels. The study showed that 

individuals’ social interaction diversity correlates with their current income level. 

Additionally, the study demonstrated a relationship between the number of mobile 

applications that two people share in common to the time they physically spend face-

to-face. Candia et al. (Candia, et al., 2008) investigated the individual and collective 

behaviors. The authors were interested in the occurrence of anomalous events at large 

scales and patterns of calling activity at the individual level. The author showed that 

spatiotemporal anomalies could be described using standard percolation theory tools 

and that the inter-event time of consecutive calls is heavy-tailed. The analysis of 

individual records also showed the fraction of active traveling population and their 

average distance traveled. 

Traag et al. (Traag, et al., 2011) described an approach to correlate human 

mobility patterns with social events using trajectories of mobile phone users. By 

detecting mobility behaviors that are different from daily routines, the probabilistic 

framework was able to determine which users participated in the event. A simple 

Bayesian location inference framework is proposed and validated with a smoothened 

Voronoi tessellation. 

 Bekhor et al. (Bekhor, et al., 2011) used passive location data from cellular 

phone systems in order to study long-distance travel patterns.  As a result, the authors 

were able to construct the origin–destination tables directly from the cellular phone 

positions. Puntumapon & Pattara-atikom (Puntumapon & Pattara-atikom, 2008) 

applied a Naive Bayes model to a data set generated by cellular phones to classify two  

mobility modes (train and pedestrian). The model searches for key properties of each 

type of mobility, such as the repetition of pedestrian cell ID and the consistency of a 

train travel pattern. By using the number of the unique cell ID and the average cell 

dwell time of the unique cell ID, the authors were able to correctly predict the type of 

mobility with 93.1% of accuracy. 
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3.2.3 Traffic monitoring and estimation, congestion detection and route planning 

Transportation authorities rely primarily on traditional road traffic data 

collection methods to monitor traffic conditions. However, these methods demand 

specific infrastructures, e.g. loop detectors, automatic video feed-based counts. 

Considering the increasing size of road networks and the costs of deploying and 

maintaining a dedicated monitoring infrastructure, a considerable amount of road 

segments is not covered by monitoring system. Therefore, transportation authorities 

have to rely on incomplete or erroneous data to support their decisions on urban 

planning.  New approaches have been pursued to complete that information, or even 

replace the traditional infrastructure for traffic monitoring. The high penetration of 

mobile phone technologies makes them suitable candidates to be used as 

opportunistic probes for traffic conditions and has been explored with that goal. 

Changes in handover are usually used to identify traffic movement, while changes in 

calls patterns suggest the occurrence of incidents. 

Valerio et al. (Valerio, et al., 2009a), (Valerio, 2009) discussed and proposed an 

architecture to identify traffic incidents (congestion or accidents) by monitoring 

deviations to the global pattern of cellular networks. Subsequently, the system was 

developed by Valerio et al. (Valerio, et al., 2009b), which explored the mobile phone 

network infrastructure to implement a road traffic estimation system, where certain 

traffic conditions or anomalies could be signaled by the mobile phone network 

patterns. The system is based on the idea that anomalous traffic events (e.g. accidents 

or congestion) produce abrupt changes in the mobile phone network patterns. The 

authors explored the traditional patterns of mobile phone activity and validated the 

anomalies with traffic data produced by road sensors and inductive loops. Although 

the system should be able to differentiate specific patterns of non-road mobile phone 

users, the authors tested the proposed framework on highways to have a more 

controlled environment. Additionally, the authors discussed the potential for 

predicting events, and exploring the deviation of daily patterns and routines. 

Cayford & Johnson (Cayford & Johnson, 2003) explored the feasibility of a 

traffic monitoring system based on cell phone locations. They concluded that in order 

to use cell phone as probes a set of features must be verified: the accuracy of 

locations, the frequency with which the position is updated, and the total number of 

locations available. Hsiao & Chang (Hsiao & Chang, 2005) proposed a segment based 

approach, instead of the conventional distance based approach, to estimate traffic 



Chapter 3  
The relationship between mobile phone activity and taxi traces 

92 

information from mobile phone signal data. The authors argued that the difference in 

the positions of the mobile phones, used to measure traffic information, has imprecise 

location accuracy, which leads to an unstable measurement and therefore causes 

variation or flutter in the positioning. This issue can be overcome by using areas or 

segments. Through simulation, the authors showed that the mean absolute 

percentage error of segment based method is only 1/3 of that from the distance based 

method. The study also showed that even a limited mobile phone penetration rate is 

enough to measure traffic information, however sample size and location accuracy are 

two critical factors for mobile phone location based traffic information systems. 

The use of handover information has been widely adopted to identify patterns 

in traffic. Demisse et al. (Demissie, et al., 2012b) explored and identified a correlation 

between handover counts, from mobile phone cell sites near roads, and traffic levels 

(measured by traffic counts from the same roads). The authors proposed to build a 

multinomial logistic regression model and to train an artificial neural network to relate 

traffic volume and mobile phone handovers. The models confirmed the initial strong 

correlation (with a high accuracy of 72% and 81% respectively), which suggests a 

strong relation between mobile phone handover and traffic volumes. Also using 

handover information from mobile phone cell sites, Tettamanti & Varga (Tettamanti & 

Varga, 2014) proposed a methodology to produce origin-destination (O-D) matrixes 

and macroscopic traffic flow estimation. O-D matrixes were built using measurements 

and by filtering, signaling events occurring within the corresponding location area of 

the mobile phone network. On the other hand, traffic estimation is based on the 

aforementioned O-D matrixes and travel time data, obtained from handover 

sequences.  

Cellular handover patterns from cellular phone networks were also studied by 

Becker et al. (Becker, et al., 2011b) to identify preferable routes taken by the 

inhabitants of urban areas. The authors showed that handover patterns are relatively 

stable across different routes, speeds, directions, phone models, and weather 

conditions. Additionally, they introduced a metric for measuring route variability, 

based on Earth Mover’s Distance, which was used to study the variability across 

repeated drives of the same route and between routes. Two algorithms were 

proposed to match handover patterns to routes: a nearest-neighbor classification and 

a probabilistic approach that uses the signal strength to compute the likelihood that a 

given handover pattern occurs on a particular route. Likewise, Chiang et al. (Chiang, et 

al., 2011) relied on multiple handover patterns to collect traffic information. However, 



Chapter 3  
The relationship between mobile phone activity and taxi traces 

93 

instead of building the system over GSM technology, the authors explored the 

Universal Mobile Telecommunications System (UMTS). A proposal for a passive 

framework is presented, where instant traffic information estimation is composed of 

three phases: pattern matching, session speed calculation, and road speed calculation. 

Firstly, the signals are organized into clusters of the same definition with patterns 

using two proposed algorithms: Cell Clustering Algorithm and Cluster Oscillation 

Filtering (Chiang, et al., 2011). Traveling speed for each call session will be calculated 

by arrival time and distance between consecutive handovers (when during the travel, 

the caller moves from cell site A to B, and then from cell site B to C). Finally the 

framework merges the travel speed of all the session data into an average travel 

speed. The estimation errors were less than 20km/h in 82% of the measurements, and 

estimated speed values shared the same evolutionary trend with actual speed. 

Wideberg et al. (Wideberg, et al., 2006) explored the notion that a GSM 

network has a constant estimation of the position of each terminal, referring to the 

location area of the base station that provides services, to acquire information for the 

origin-destination of traffic. Based on this principle, the authors simulated the path of 

several vehicles producing origin-destination matrixes. To prune the information 

regarding mobile phone users which are not traffic-related, the authors introduced an 

adjustment factor (or Mobile Phones per Vehicle Equivalent). The simulation was 

validated with information from traffic count sensors. Gundlegard et al. (Gundlegard & 

Karlsson, 2006), (Gundlegard & Karlsson, 2009) measured the accuracy for travel time 

estimation in both GSM (2G/2.5G) and UMTS (3G) systems. The study concluded that 

UMTS radio measurement data (higher data rate and shorter delay) and handover 

point data together can be used to predict travel time even more correctly than GSM, 

since the network reacts much faster to changes in the radio environment (better 

synchronization between base stations and mobile terminals). Therefore, the higher 

location accuracy in the UMTS network can be used to improve travel time accuracy, 

which is useful when detecting incidents. 

In order to investigate the feasibility of using cellular phone data to estimate 

traffic volume, Qiu et al. (Qiu, et al., 2007) applied a linear regression approach. The 

authors were able to estimate travel speed and travel time. Furthermore, it was 

suggested to also integrate a macroscopic traffic flow theory such as Kalman Filtering 

and Particle Filtering. Bar-Gera (Bar-Gera, 2007) studied the use of information from a 

cellular phone to measure traffic speeds and travel times. The system focuses on 

handover events at which control of a phone is handed over from one cell to another. 
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The system matches this sequence of footprints generated by a moving vehicle to a 

route segment along the road network that appears to be the most likely. The 

algorithm also takes into account the possibility that not all observations are actually 

related to vehicles, but traveling together with the regular traffic along the designated 

road section. Similar results to previous works were achieved: correspondence 

between measurements from the cellular phone network and data collected from loop 

detectors. 

3.2.4 Our approach 

The aforementioned studies focus essentially on the analysis of anonymized call 

detail records to identify an individual’s daily routines, or the examination of handover 

patterns to monitor traffic volume, which has been extensively explored. As a 

contribution, this work investigates the relationship between mobile phone call 

intensity and taxi volume, two data sources that describe the city in different ways. 

The study aims to identify in which extent the patterns of one data source can be used 

to estimate the other. Thus, our approach differs from those aforementioned by:  

(1) performing an exploratory analysis to identify daily and weekly patterns of 

mobile phone activity; studying the potential for correlation between taxi volume and 

mobile phone activity; and identifying which variables are better predictors of mobile 

phone activity; 

(2) performing an inferential analysis aiming to comprehend to what extent taxi 

volume can be used to estimate the mobile phone activity through linear regression; 

studying different scenarios and setups to improve the linear association; and  apply a 

sliding window to identify the best fit.  

To our knowledge, this is the first study exploring mobile phone call intensity 

and taxi volume altogether, and we hope that this study will pave the way for more in-

depth investigations in this direction. 
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3.3 Methodology 

Analogously to the previous chapter, our approach is based on the classic 

process of knowledge extraction from databases as described by Witten & Frank 

(Witten & Frank, 2005) and Santos & Azevedo (Santos & Azevedo, 2005). It comprises 

the following steps: 

- Data collection; 

- Data cleaning and transformation; 

- Exploratory analysis; 

- Inference analysis. 

Taxi information was collected and provided by Geotaxi, corresponding to a 

database of taxi-GPS traces, while mobile phone information was collected and 

provided by TMN (currently rebranded to MEO). Both data sets were collected during 

the same time window (December 2009). 

A cleaning and transformation process is applied in order to remove faulty, 

erroneous or missing samples, as well as to format the data set to a more suitable 

scheme. Additionally, data sets are aligned with the same sampling rate and expressed 

as time series. Finally, data is stored on a relational database where every sample is 

geo-referenced. 

An exploratory study is performed to understand the distribution of the mobile 

phone activity in time and space (the analysis of the taxi data set was performed in the 

previous chapter). The aim of this step is to identify patterns and a possible correlation 

between taxi and mobile phone activity, to be further investigated during the 

inference analysis. Data exploration examines the spatiotemporal patterns, compares 

the behavior between areas with high and low mobile phone activity, and measures 

the patterns’ proximity between taxi volume and mobile phone call intensity using 

Euclidean distance. 

The main goal for the data analysis process is to study the interplay between 

mobile phone call intensity and taxi volume. More specifically, to which extent can one 

data source be used to predict the other. In order to achieve that goal, we extract the 

linear regression between both time series, using the method of the least squares 
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(Pallant, 2005), exploring different scenarios to improve the correlation (e.g. weekdays 

versus weekends, working hours versus night hours). To identify the best temporal fit 

we use a sliding window. The coefficient of determination (r2) is used to attain the 

goodness of the linear function fitness (Kennedy, 2008).  The significance of the 

regression was tested using the F test of ANOVA, which verifies the existence of a 

linear relation between the dependent variable and the predicting variables (Maroco, 

2005). 

Main findings and achievements were submitted to a peer-review international 

conference to validate our procedures and results (Veloso, et al., 2012). 

3.4 Data description  

This section describes the data on mobile phone call intensity and taxi volume 

in Lisbon, Portugal. The data was collected in December 2009 (a period of 31 days) for 

both data sets. 

3.4.1 Mobile phone data 

The mobile phone call intensity data set was provided by TMN17 (currently 

rebranded as MEO), which is one of the main telecommunications operators in 

Portugal, with a market share of about 40%. The data set contains information from 

the traffic channel (TCH), which carries voice and data signals (time slot assignments), 

as illustrated in Table 3-1 and Table 3-2. The data was aggregated by hour, for each 

cell, with cleaning and transformation procedures performed by the data provider. 

Busy hour traffic (in erlangs) is considered for each cell, which is defined as call 

intensity. Busy hour traffic is a standard measure of carried load, widely used by 

mobile phone operators, which represents the average number of concurrent calls 

during an hour-period. An erlang is one person-hour of phone use, therefore, ‘1 

erlang’ could represent one person talking for an hour, two people talking for a half 

hour each, 30 people speaking for two minutes each, and so on (Reades, et al., 2007). 

Although the data set contains samples from December 2009 to March 2010, only a 

subset along December 2009 is used to align with the temporal window of taxi data 

set. 

                                                      
17

 MEO. http://www.meo.pt 
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Atribute Type of data Format Description 

cellid Integer xxxxxxxxxx Cell ID (LAC + GSM ID) 

cellname String 
 

Cell name 

day String (date) mm-dd-yyyy Date for data acquisition 

hora String (hour) hh:mm:ss Hour for data acquisition 

attempts Integer xxx  Number of call attempts + handover 

normatts Integer xxx Number of call attempts  

blocks Integer x Blocked calls (due traffic congestion) 

congtime float x.xx Congestion time 

seizures Integer xxx Number of connections + handover 

normseizs Integer xxx Number of connections  

traffic float x.xx Busy hour traffic (erlang value) 

maxbusy Integer xx Max number of occupied channels 

rflosses Integer xx Number of dropped calls due to RF problems 

dropped Integer x Number of dropped calls 

availch float x.xx Number of available channels 

definedch Integer xx  Number of defined channels (frequencies) 

Table 3-1 - Attribute description from mobile phone’s raw log. 

 

1110501643,FIL_2-01643,04/01/10,07:00:00,58,34,0,0.00,57,34,0.94,5,0,0,17.00,17 

1110501643,FIL_2-01643,04/01/10,08:00:00,164,101,0,0.00,155,101,2.49,9,0,0,17.00,17 

1110501643,FIL_2-01643,04/01/10,09:00:00,315,151,0,0.00,289,151,4.79,11,1,0,17.00,17 

1110501643,FIL_2-01643,04/01/10,10:00:00,361,203,0,0.68,346,203,5.80,23,0,0,17.13,20 

1110501643,FIL_2-01643,04/01/10,11:00:00,408,195,0,0.00,390,193,5.22,11,0,0,17.00,17 

1110501643,FIL_2-01643,04/01/10,12:00:00,471,278,0,0.00,455,276,7.68,17,0,0,17.05,19 

1110501643,FIL_2-01643,04/01/10,13:00:00,441,243,0,0.00,428,243,6.88,16,0,0,17.10,18 

1110501643,FIL_2-01643,04/01/10,14:00:00,494,246,0,0.00,466,246,7.24,15,0,0,17.00,17 

1110501643,FIL_2-01643,04/01/10,15:00:00,365,180,0,0.00,354,179,6.42,14,1,0,17.00,17 

1110501643,FIL_2-01643,04/01/10,16:00:00,402,183,0,0.00,379,183,5.31,13,0,0,17.00,17 

1110501643,FIL_2-01643,04/01/10,17:00:00,320,164,0,0.00,303,164,4.85,15,0,0,17.00,17 

1110501643,FIL_2-01643,04/01/10,18:00:00,337,175,0,0.00,324,174,5.36,12,2,0,17.00,17 

1110501643,FIL_2-01643,04/01/10,19:00:00,256,133,0,0.00,247,132,3.05,8,0,0,17.00,17 

Table 3-2 - Sample of mobile phone’s raw log (10 records). 

Figure 3-1 shows a spatial distribution of mobile phone call intensity in Lisbon, 

where each dot represents the location of a cell site and its size corresponds to the 

average amount of calls per hour. Areas with higher call intensity usually present 

higher taxi volume, as shown in Figure 3-2, where the spatial distribution of cell sites 

and corresponding mobile phone call intensity (represented by the radius of the circle) 

superimposes the taxi activity grid (where red cells represent an higher taxi activity). 
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Figure 3-1 - Spatial distribution of cell sites and corresponding mobile phone call intensity in Lisbon 

(average amount of calls per hour on each site). 

 

Figure 3-2 - Spatial distribution of mobile phone cell sites in Lisbon (average amount of calls per hour on 

each site) and taxi activity (number of pick-ups and drop-offs). 
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Mobile phone activity varies during the day. Figure 3-3 shows the hourly 

variation, with an increase of activity after 8 AM, high activity from 12 PM to 8 PM and 

a steady decrease until 4 AM when it reaches its minimum activity. A small decrease of 

activity is observable at 2 PM, followed by another increase, peaking at 8 PM. This 

pattern strongly relates with typical business hours. Figure 3-4 presents the daily 

variation, showing an higher activity on weekdays than on weekends.  

 

Figure 3-3 - Hourly variation of mobile phone call intensity in Lisbon (average of call attempts, successful 

calls and busy hour traffic).  

 

Figure 3-4 - Daily variation of mobile phone call intensity in Lisbon (average of call attempts, successful 

calls and busy hour traffic). 

Three indicators are shown: the average amount of call attempts, the average 

amount of successfully started voice calls (which must be equal or lesser than the 

amount of call attempts), and the busy traffic hour (in erlangs). All indicators behave 
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similarly, showing the same hourly and daily patterns. As stated before, for this study 

we analyze the busy hour traffic for each cell site. Nonetheless, at the end the same 

analysis was performed using all three indicators, with quite similar outcomes.  

3.4.2 Taxi data 

The taxi data set was provided by GeoTaxi. This corresponds to the data set 

described in the previous chapter, from which only a subset from December 2009 is 

used in this chapter. This subset comprises around 500,000 taxi-GPS location points, 

collected from 230 taxis. Along with the GPS location (latitude, longitude) information, 

it reports speed, bearing, engine status, and occupancy status. The amount of pick-ups 

and drop-offs were inferred, which accounted for 26,924 distinct trips and was termed 

taxi volume in this study. 

The overall taxi volume’s spatial distribution in Lisbon is shown in Figure 3-5 (on 

500mx500m-grid cells, identical to Figure 2-4 however composed solely with data from 

December 2009), where the number of pick-ups on each cell during the period under 

study is represented by a color scale (red corresponds to cells with a higher number of 

pick-ups). City downtown (A), airport (B), train stations (C, D) and ferry dock (E). 

Different public transportation modalities (airport, train, ferry, bus) are well connected 

through taxi services.  
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Figure 3-5 – Spatial distribution of taxi volume concentration in Lisbon. 

Figure 3-6 compares the daily distribution of taxi service in December 2009 

against a similar daily distribution of taxi service along the entire data set (from 

September to December 2009). The hourly pattern is similar in both periods. Taxi 

service is active throughout the day, but shows a peak of activity during business 

hours. It gradually increases from 7 AM, reaches its maximum between 11 AM and 1 

PM, and slowly drops down in the afternoon. Values of taxi volume are normalized in 

the interval [0,1] to enable comparison. 
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Figure 3-6 - Hourly variation of taxi volume in December 2009 (blue) and from September to December 

2009 (green), corresponding to the entire data set in Lisbon. 

The number of active taxi vehicles also varies during the day (Figure 3-7). It 

increases and decreases with the variation in taxi demand. This variation in the 

number of taxi vehicles precedes the variation in taxi demand. 

 

Figure 3-7 - Hourly variation of taxi volume (blue) and active taxi vehicles (green) in Lisbon. 
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3.5 Data exploration 

This section characterizes the temporal and spatial patterns of mobile phone 

activity throughout the time series. Additionally, the correlation between mobile 

phone activity and taxi volume is studied, in order to identify relationships to be 

further examined during the inference analysis. 

3.5.1 Mobile phone data 

The mobile phone activity is fairly cyclic. By observing the time series (Figure 

3-8), which represents the mobile phone call intensity on each hour, from December 

1st, 2009 to March 31st, 2010, we notice cyclic components:  daily and weekly patterns. 

A reduction in mobile phone activity on weekends is clearly visible, more pronounced 

on Sundays. Two small deviations are visible on the fourth and fifth week of December 

(marked in red) which corresponds to December 24th and December 31th, traditional 

periods of high intensity for mobile activity. Call intensity goes in an opposite direction 

on other national holidays (marked in grey): December 1st, 8th and 25th, January 1st, 

and February 16th (“Carnaval” or Shrove Tuesday). Although these events took place 

on weekdays (Tuesdays and Fridays) the pattern resembles a weekend, with low 

mobile phone activity. From winter colder months (December) to spring warmer 

months (March) the daily and weekly patterns are constant.  

 

Figure 3-8 - Time series of average call intensity in Lisbon, for each hour, from December 2009 to March 

2010. 
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The same conclusion can be obtained by observing the daily variation of the 

mobile phone call intensity in the month of December against the fairly similar 

variation of the mobile phone call intensity from December to March (Figure 3-9). 

 

Figure 3-9 - Hourly variation of mobile phone call intensity in December 2009 (blue) and from December 

2009 to March 2010 (green), corresponding to the entire data set in Lisbon. 

Grouping cell sites into three categories (high activity, medium activity and low 

activity), based on the call intensity, suggests that the daily usage of the mobile phone 

service has a similar pattern across urban areas (Figure 3-10). Values of call intensity 

are normalized in the interval [0,1] to permit comparison.  

 

Figure 3-10 - Hourly variation of mobile phone call intensity on different cell sites (high, medium and low 

activity). 
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Some specific and individual cell sites can present some deviations from the 

average pattern. For instance, the cell site at the airport shows a third peak of activity 

around 9 AM, while at cell sites at Oriente (train station and commercial zone) the 

second daily peak of activity (around 9 PM) is significantly higher than the first peak of 

mobile phone activity (around 1 PM). 

A similar scenario is observed when the call intensity is grouped and analyzed 

according to taxi activities (high, medium and low taxi activity cells) on the grid used to 

model the city (Figure 3-11). The same daily pattern arises in all groups of cells, with 

minor variances. The classification of cells on high, medium and low taxi activity 

follows the same procedure adopted for Figure 2-5 (section 2.4.2). 

 

Figure 3-11 - Hourly variation of mobile phone call intensity on different taxi activity cells (high, medium 

and low taxy activity) 

Furthermore, we use the classification for the predominant POI on each grid-

cell (as described previously, in Figure 2-11, section 2.4.3) to analyze the call intensity 

in different areas of the city, as plotted in Figure 3-12. Call intensity maintains a fairly 

similar daily pattern regardless of the city area (cells where shopping is the most 

predominant POI deviate from the standard pattern by delaying the morning rising of 

the mobile phone activity). 
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Figure 3-12 - Hourly variation of mobile phone call intensity in areas with different predominant POIs. 

3.5.2 Correlation between mobile phone call intensity and taxi volume 

By examining the daily temporal distributions of taxi volume and mobile phone 

call intensity as shown in Figure 3-13, we notice their similar patterns: both gradually 

increase in the morning around 7 AM, stay highly active, and then drop down slowly in 

the evening around 7 PM. In addition, we observe that mobile phone call intensity 

appears to follow taxi volume with an approximate gap of about 1-2 hours. Although 

Figure 3-13 represents the taxi volume and mobile phone call intensity for all Lisbon 

municipality, individual cells behave similarly, with minor deviations from the global 

pattern. The exception takes place on cells with low taxi activity where deviations from 

the global pattern can be accentuated. 

 

Figure 3-13 - Temporal distribution of mobile phone call intensity (blue) and taxi volume (green) across 

different hours of the day in Lisbon. 
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To further explore this relationship, we extract data as an hourly aggregated 

time series for all of Lisbon municipality. We define two variables: G = {g1, g2, …, gn}  

represents the hourly time series of mobile phone call intensity, and T = {t1, t2, …, tn} 

represents the hourly time series of taxi volume, both with length n (744 samples in 

total, corresponding to 24 daily samples during 31 days, in December). Since both 

variables have different units, the time series are normalized to the interval [0, 1], 

using the following equation: 

 

𝑧 =
𝑥 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
 ( 14 ) 

   

where min represents the minimum value of the time series and max the maximum 

value of the time series. 

We overlay these time series on the same plot as shown in Figure 3-14 and 

observe similar temporal patterns. As observed before, both exhibit daily and weekly 

cycles. Mobile phone call intensity reaches almost zero (minimal activity) between 

midnight and 6 AM while high values appear around noon. Taxi volume time series 

appear to follow this pattern with low values emerging during off-peak hours (a short 

time after midnight up to early morning). A reduction of activity from both services is 

also observable on weekends (marked in grey) and on national holidays (December 

1st, 8th, and 25th, marked in red). 

 

Figure 3-14 - Normalized time series of mobile phone call intensity (blue) and taxi volume (green) over 

31 days of  observation. The grey line on x-axis represents the weekend periods while the red line 

corresponds to national holidays (December 1st, 8th, and 25th). 
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Since both variables are normally distributed, we compute the coefficient of 

correlation of Pearson (r), which measures the strength of a linear relationship 

between normally distributes variables (Devore & Berk, 2012), defined as: 

 

 𝑟𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 ( 15 ) 

   

where 𝑥̅ =  
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  is the arithmetic mean of variable X and 𝑦̅ =  

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  is the 

arithmetic mean of variable Y, with X = (x1,..,xn) and Y = (y1,..,yn), two variables of size n. 

By applying this coefficient we find out that mobile phone call intensity and taxi 

volume are highly correlated with a coefficient of correlation of r = 0.7559 (falls within 

the interval 0.7 to 0.89). Although this result considers data from all Lisbon 

municipality, it still holds true when individual grid cells are analyzed using the same 

procedure (summarized in Table 3-3).  

 

 

 
Coefficient of correlation 

of Pearson (r) 

High taxi activity cells 0.7566 

Medium taxi activity cells 0.7322 

Low taxi activity cells 0.6293 

Table 3-3 – Comparison of coefficients of correlation between mobile phone call intensity and taxi 

volume in different city areas. 

On average, in grid cells with high or very high taxi activity (as defined in Figure 

2-5) mobile phone call intensity correlates with taxi volume with r = 0.7566, in medium 

taxi activity cells the correlation is r = 0.7322 and in low taxi activity cells the 

correlation is r = 0.6293. However, for some cells with low taxi activity the process 

cannot be applied or presents a low correlation due to insufficient data. In these areas, 

taxi service is absent for some hours (especially at night) or there is a very low amount 

of taxi activity (less than 5 trips per hour). 
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3.6 Data analysis and results: monitoring the mobile phone activity 
through taxi traces  

3.6.1 Quantifying the similarity between time series 

To quantify the similarity between both mobile phone call intensity and taxi 

volume time series, for all Lisbon municipality, we compute the Euclidean distance (ED) 

as a measure of distance, as follows: 

 

𝐸𝐷𝑖 = √(𝑔𝑖 − 𝑡𝑖)2 = |𝑔𝑖 − 𝑡𝑖| ( 16 ) 

 

where gi  represents the mobile phone call intensity at hour i and ti denotes taxi 

volume at hour i. Hence G = {g1, g2, …, gn} and T = {t1, t2, …, tn} represent respectively 

the normalized time series of mobile phone call intensity and taxi volume of length n.  

Euclidean distance of these two time series turns out to be 5.6481 and its 

hourly distances are shown in Figure 3-15, where grey lines on x-axis represent the 

weekend periods. The smaller the Euclidean distance the higher similarity there is 

between the two time series.  

 

Figure 3-15 - Hourly Euclidean distance of the normalized time series of mobile phone call intensity and 

taxi volume. The grey line on x-axis represents the weekend periods. 
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Furthermore, we observe daily and weekly cycles. Through our examination of 

the data, we found that the highest similarity between these time series is from 8 AM 

to 10 PM (active hours) with the Euclidean distance of 4.4858. The hourly distance is 

shown in Figure 3-16. 

 

Figure 3-16 - Hourly Euclidean distance of the normalized time series of mobile phone call intensity and 

taxi volume from 8 AM to 11 PM for which the overall distance was found to be the lowest at 0.1917.  

The grey line on x-axis represents weekend periods.  

 

Figure 3-17 - Hourly Euclidean distance of the normalized time series of mobile phone call intensity and 

taxi volume during weekdays. 

From a weekly cycle perspective, weekdays, which are associated with more 

activities (mostly repeated activities in temporal orders such as commuting to work, 

having lunch at the same time and at the same location, making a phone call before 

arriving at home, and so on) than weekends, unsurprisingly yield more correlated 
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behaviors between mobile phone calls and the amount of taxis. The Euclidean 

distances are 4.7049 and 5.9581 respectively for weekdays and weekends. Figure 3-17 

shows hourly Euclidean distance for weekdays. 

3.6.2 Predictability between time series 

We have so far observed that there is a correlation between the two time 

series, i.e., their values vary in a similar way, especially during active hours of the day 

(8 AM-10 PM) and active days of the week (weekdays). We want to investigate the 

predictability between them in more detail. More specifically, can one data source be 

used to predict the other and to what extent?  

To do this, we apply a linear regression and employ the coefficient of 

determination (r2 or r-squared, that is widely used for regression analysis) to measure 

the interdependency between these two urban data sources for different time shifts. 

The time shifting is used here to examine the predictability that one had on the other. 

For example, one-hour lag of X yields a high r2 value with Y implies that X is likely a 

one-hour predictor of Y, i.e., the variation in values of X suggest a similar variation in 

values of Y of the next hour.  

The coefficient of determination can be calculated as (Devore & Berk, 2012): 

 

𝑟2 =
∑ (𝑦𝑖 − 𝑦̅)2 − ∑ (𝑦𝑖 − 𝑦̂𝑖) 2𝑖𝑖

∑ (𝑦𝑖 − 𝑦̅)2
𝑖

 ( 17 ) 

 

where 𝑦̅ is the mean and 𝑦̂ denotes the predicted value of y (i.e., 𝑦̂𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝜀𝑖). 

By fixing mobile phone time series and shifting taxi time series between -5 

hours to +5 hours (e.g., -5 hours of time shift means considering mobile phone data at 

time t against taxi data at time t-5 hours), we discover that at time shift of -2 hours the 

two data sources have the highest correlation. As shown in Figure 3-18, for a time shift 

of -2 hours the Euclidean distance and coefficient of determination values are 

respectively 3.7431 and 0.7571. This suggests that generally the taxi volume is a 2-hour 

predictor of mobile phone intensity. In other words, the variation in the amount of 

taxis is an indicative variable for the mobile phone call intensity for the next two hours. 
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Figure 3-18 - Fitting results for the sliding window between GSM and taxi data. 

The hourly Euclidean distance of this 2-hour difference comparison is shown in 

Figure 3-19. The plot of the normalized taxi volume against the normalized mobile 

phone call intensity is shown in Figure 3-20 along with the fitted linear function 

defined as:  

 

𝑦 = 𝑝1𝑥 + 𝑝2 = 0.5693𝑥 + 0.1437 ( 18 ) 

 

with a coefficient of determination (r2) of 0.7571. The analysis of variance shows a F-

statistic (ratio of the mean squared errors) of 13.85 and p-value of 0.0007 (highly 

significant), lower than the significance level (α) of 0.05. 
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Figure 3-19 - Hourly Euclidean distance of the normalized time series of mobile phone call intensity and 

taxi volume of the time shift of -2 hours (i.e. comparing mobile phone data at time t with taxi data at 

time t-2). 

 

Figure 3-20 - Fitted linear function of the normalized taxi volume (at time t-2) against the normalized 

mobile phone call intensity (at time t). 

As aforementioned, December 1st and 8th (2009) were national holidays, with a 

mobile phone activity distinct from the usual weekdays (instead resembling a 

weekend). During the analysis, we observed that these days contribute negatively for 

the model accuracy. The best coefficient of determination of 0.7571 previously 

presented is achieved by not taking into consideration the data from these two days. If 

we were to include data from these days in the model, the coefficient of determination 

would decrease to 0.7057. Interestingly, December 25th, also a national holiday on a 

weekday, did not significantly affect the model’s accuracy. By removing data from 

December 25th the model improves slightly from r2 = 0.7571 to r2 = 0.7597. 
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3.6.3 Data selection to improve the model 

During the exploratory analysis we observed that the mobile phone call 

intensity pattern was fairly consistent on all cell sites and all areas of Lisbon 

municipality. However, the pattern of taxi volume was less consistent on cells with low 

taxi activity. Although several factors can cause the low activity of taxi services (e.g. 

areas well served by public transportation, low income of the inhabitants in specific 

areas preventing the use of a more expensive mean of transport, areas outside the 

scope of the taxi company which provided the data), the low amount of data could 

influence the proximity of both time series. Therefore the same previous data analysis 

is performed, however discarding the data from the low taxi activity areas (considering 

only data from very high, high and medium taxi activity cells). By doing so, the 

relationship between mobile phone call intensity and taxi volume (at time shift of -2 

hours, on weekdays and during business hours) is defined by the linear function: 

 

𝑦 = 𝑝1𝑥 + 𝑝2 = 0.599𝑥 − 0.1918 ( 19 ) 

   

with a coefficient of determination (r2) equal to 0.8047 and a Euclidean distance of 

3.1915, which is an improvement from the previous analysis, as well as a confirmation 

of the negative effect of the low taxi activity areas on the overall analysis. The analysis 

of variance shows a F-statistic (ratio of the mean squared errors) of 35.55 and p-value 

of 0.0009 (highly significant), lower than the significance level (α) of 0.05. 

The hourly Euclidean distance between the two time series (comparing mobile 

phone data at time t with taxi data at time t-2) is plotted in Figure 3-21, while the 

normalized taxi volume against the normalized mobile phone call intensity is shown in 

Figure 3-22 along with the fitted linear function. 
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Figure 3-21 - Hourly Euclidean distance of the normalized time series of mobile phone call intensity and 

taxi volume of the time shift of -2 hours (i.e. comparing mobile phone data at time t with taxi data at 

time t-2) , excluding data from low taxi activity areas. 

 

Figure 3-22 - Fitted linear function of the normalized taxi volume (at time t-2) against the normalized 

mobile phone call intensity (at time t), excluding data from low taxi activity areas. 

Having observed significant correlations at active hours of the day and active 

days of the week, as well as a 2-hour time difference lead us to a further investigation 

on how this inter-predictability varies across different periods of the day. 

3.6.4 Pursuing the best temporal fitting  

Similarly to the previous approach, by keeping the normalized mobile phone 

time series fixed while shifting taxi time series between -5 and +5 hours, we compute 

the coefficient of determination values across varying time shifts for each different 
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hour of the day. The result is shown in Figure 3-23 where this inter-predictability is 

observed to change over time. It turns out that there are strong inter-predictabilities 

(correlations) during active hours of the day, which are in line with our previous 

observations. Interestingly, we found that during the active hours, mobile phone call 

intensity is a predictor for taxi volume in the AM hours and the relationship is reversed 

as the taxi volume becomes a predictor for mobile phone call intensity in the PM hours. 

Hence at noon hours there is a strong correlation at 0 time shift. In other words, 

variations in both urban data sources are well synchronized around midday. 

 

Figure 3-23 - Pseudocolor plot of coefficient of determination values across varying time shifts of 

different hours of the day.  

3.6.5 Exploring the best indicator for mobile phone call intensity 

During the exploratory analysis (Figure 3-3 replicated in this section as Figure 

3-24) three indicators were presented: the average amount of call attempts, the 

average amount of successfully started voice calls, and the busy traffic hour. It was 

stated that for this study we analyze the busy traffic hour for each cell site, a widely 

used indicator of mobile phone activity, which we termed as call intensity. Thus, the 

previous results are achieved by using the busy traffic hour indicator. Seeing that all 

indicators behave similarly, showing the same daily and weekly patterns, we would like 

to explore which would be the best indicator for mobile phone activity in the 

relationship with taxi volume. Therefore, all previous procedures are repeated using 

the remaining two indicators for comparison.  
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Figure 3-24 - Hourly variation of mobile phone call intensity in Lisbon (average of call attempts, 

successful calls and busy hour traffic).  

Table 3-4 presents the coefficient of correlation between the three indicators. 

Each indicator was extracted as an averaged time series, aggregated by hour, of all cell 

sites from the mobile phone database. It is clear that all indicators are strongly 

correlated with each other, with a minimum value of linear association of 0.9850. As 

expected, the correlation between the average number of successfully started voice 

calls and the average number of call attempts is almost 1 (0.999998788), since the 

latter includes all attempts to start voice calls, both successful (the former) and 

unsuccessful.  

 

 

Average number of 
successfully started 

voice calls 

Average number of call 
attempts 

Average busy hour 
traffic (erlang) 

Average number of 
successfully started voice calls 

1 0.999998788 0.985021158 

Average number of call 
attempts  

1 0.985007737 

Average busy hour traffic 
(erlang)   

1 

Table 3-4 – Coefficients of correlation between averaged time series, aggregated by hour, from three 

indicators for mobile phone activity. 

Table 3-5 presents similar information as Table 3-4, however, instead of 

computing average values, the time series of the three indicators were extracted using 

the summation of values aggregated by hour. Similarly, a strong correlation is 

observed between all three indicators, with a minimum coefficient of correlation of 

0.99465. 
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Total number of 
successfully started 

voice calls 

Total number of call 
attempts 

Total busy hour traffic 
(erlang) 

Total number of successfully 
started voice calls 

1 0.999998064 0.994653286 

Total number of call   
attempts  

1 0.994646208 

Total busy hour traffic  
(erlang)   

1 

Table 3-5 – Coefficients of correlation between time series using the summation of values aggregated by 

hour, from three indicators for mobile phone activity  

Table 3-6 presents the coefficient of correlation between mobile phone activity 

and taxi volume, as explored in data analysis of previous sections, using different 

scenarios: initial state; during weekdays; during working hours; and the best 

correlation attained in both cases (during active hours on weekdays, with a 2-hour gap 

between taxi volume and mobile phone activity, without outliers). For the first row, 

the mobile phone activity is represented by the busy hour traffic time series, whilst for 

the second row the mobile phone activity is represented by the number of successfully 

started voice calls time series. The values were extracted aggregated by hour and 

represent the sum of all cell sites. No significant discrepancy is visible: the final (and 

best) correlation attained with both indicators differs only in 0.002667206 (0.897026 

against 0.894359) and the maximum difference between both indicators is 

0.010618897, observed during the weekday’s analysis. 

 

 
Total busy hour traffic  

(erlang) 
Total number of successfully 

started voice calls 

Initial state 0.755874 0.750757 

Weekdays 0.844133 0.833514 

Working hours 0.761809 0.761593 

Final (best) 0.897026 0.894359 

Table 3-6 – Comparison of coefficients of correlation between taxi volume and mobile phone activity, in 

different scenarios. Mobile phone activity represented by total busy hour traffic and total number of 

successfully started voice calls. 

The study presented in Table 3-7 computes de coefficient of correlation 

between taxi volume and mobile phone activity (represented by busy hour traffic).  In 

the first row, the values for mobile phone activity were extracted aggregated by hour, 

and represent the sum of all cell sites, while for the second row the values for mobile 

phone activity were extracted aggregated by hour, and represent the average of all cell 
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sites. The study analyses the linear association using different scenarios: all grid cells of 

Lisbon municipality; cells with high and very high taxi activity; cells with medium taxi 

activity; and cells with low taxi activity, in the initial state of the process (including 

weekends, night hours and outliers). Once again, no significant discrepancy is visible: 

the maximum difference is 0.001031515 between coefficients of correlation computed 

with data from low taxy activity cells. 

 

 
Total busy hour traffic (erlang) 

 
Sum of all cell sites Average of all cell sites 

All cells 0.755874 0.755898 

High and very high taxi activity cells 0.756638 0.756799 

Medium taxi activity cells 0.732224 0.732127 

Low taxi activity cells 0.620519 0.619558 

Table 3-7 – Comparison of coefficients of correlation between time series with summation of values and 

averaged values. 

This analysis showed that all three indicators are useful to represent mobile 

phone activity. No significant discrepancies were found in using any of the indicators to 

study the relation between the mobile phone activity and taxi volume in different 

scenarios. Moreover, there is no strong deviation in working with data as a summation 

of values or data as an average of values. 

3.7 Chapter summary and conclusions 

This section summarizes the work developed to understand the relationship 

between taxi volume and mobile phone activity. Main contributions and results are 

presented along with a discussion of the limitations of the study and future 

improvements of the work. 

3.7.1 Overview and contributions 

In this chapter, we explored the relationship between the taxi volume and 

mobile phone call intensity in Lisbon, Portugal. Particularly we were interested in the 

inter-predictability between these two urban data sources. Based on one-month of 

data (December), we found a strong correlation between the two time series during 
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active hours of the day (8 AM-10 PM) and active days of the week (weekdays) in areas 

with medium and high taxi activity. 

Moreover, we discovered that mobile phone call intensity has a significant 

correlation with taxi volume of the previous two hours, which means that the amount 

of taxis can be used to predict the intensity of mobile phone calls for the next two 

hours. Furthermore, we found that this inter-predictability could be modeled with a 

linear function. Intensity of mobile phone calls was a predictor of taxi volume in 

morning hours while the amount of taxi flow became a predictor of mobile phone calls 

in the afternoon and evening. These results have been published  (Veloso, et al., 2012). 

The exploratory analysis also showed a fairly regular pattern of the time series, 

especially for mobile phone call intensity. The use of mobile phone service appears to 

be consistent throughout the day and during the entire time series. Comparison 

between different urban areas showed only minor pattern deviations in mobile phone 

call intensity. 

Finally, three indicators were identified to perfectly represent mobile phone 

activity. Busy hour traffic (in erlangs) and number of calls successfully started are 

among the main indicators used in research to represent mobile phone activity. Our 

study showed no significant discrepancy in the results produced using both indicators, 

in the analysis of the relation between taxi volume and mobile phone activity. 

3.7.2 Limitations and future work 

Nonetheless, there were a number of significant limitations to our study. The 

first of these is the limited amount of data used. Only one month of data was available 

to us at the time of this study, which limited our observations and results. Another 

potential limitation is the linear relation that was assumed between our two data 

sources in this study. Further investigation thus needs to be done to find the most 

suitable function for their relationship.  

Despite the interesting results and the potential for improvement, the model 

only holds for specific conditions: working hours, weekdays, and cells with medium 

and high taxi activity. The study shows a considerable degradation of the model on 

weekends and at night. Additionally, the patterns on national holidays also weaken the 

model. 
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More evident is the low correlation between both time series on cells with low 

taxi activity, where the approach is not suitable. As expressed before, the mobile 

phone call intensity maintains a fairly regular pattern in all conditions. However, taxi 

activity shows a noticeable change in pattern, backed up by the significant decrease in 

correlation between both time series. Since the current taxi data set covers about 20% 

of the taxi service in Lisbon, a new and complete data set, with a longer temporal 

window, would be desirable and should be included in future work. It would support 

our claims of a significant correlation between mobile phone call intensity and taxi 

activity, as well as allow a better exploration of the patterns on the present low taxi 

activity cells.  

A final limitation is related to the extent to which our findings are applicable 

beyond the city of Lisbon. The model was not tested on other urban areas, due to the 

lack of data available for the same temporal window for other regions. Although we 

believe that the findings are likely to be applicable to cities with broadly similar social, 

cultural, and economic profiles, the hypothesis was not tested. Thus, the geographic 

replicability can be disputed. Furthermore, although both time series show daily and 

weekly cyclic patterns, only one month of data is aligned in the same temporal 

window. A data set with a wider temporal window is needed to analyze the seasonal 

patterns throughout different months and weather conditions (e.g. summer patterns 

against winter patterns). A newer data set should be collected for the same urban 

region alongside with data set from different locations to validate the temporal and 

geographic replicability of the model. 

As a closing remark, we believe that our findings to some extent, unveil the 

relationship between two different urban data sources; one describes sociality of the 

city while the other characterizes state of traffic flow. The findings are useful for 

developing efficient intelligent transportation systems as they provide the link 

between social and transportation networks.  We hope that our findings suggest new 

ways to use multi-source data fusion to investigate the interplay between different 

urban entities. In the next chapter, the relation between urban data sources will be 

further explored, studying the relation between taxi volume, weather conditions and 

exhaust gases’ concentrations. 
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Chapter 4 
Monitoring exhaust gases concentrations 

using taxi traces and meteorological 
conditions 

4.1 Introduction 

Urban areas are experiencing a fast growth in size and population, which 

demands more resources, namely improved mobility. As a non-desirable side effect of 

this growth, air pollution in cities is increasing due to anthropogenic emissions (Velasco 

& Roth, 2010). Traffic is one of the major sources of toxic compounds which are part of 

combustion gases that negatively impact the health of city inhabitants (Zavala, et al., 

2006), (Karlsson, 2004), (Becker, et al., 2000). Understanding gas emission patterns 

and the ability to estimate their concentrations in urban areas are, thus essential in 

order to mitigate the problem. 

The existing infrastructures are currently not adequately prepared for this 

emerging issue. Even in major cities, only a small number of monitoring stations is 

deployed for exhaust gas concentration, leaving vast areas of urban populations 

without scrutiny. With this growing urbanization, it has become more difficult and 

costly to measure and monitor exhaust gas concentration levels for the entire 

metropolitan area. Current urban projects are focused on complying with the demand 

for new transportation, dwelling, and energy, but there is still a lack of investment in 

monitoring systems. Therefore, there is an emerging need for solutions that allow 

monitoring the environment on a large scale, with improved spatial resolution, and at 

lower cost. 

At the same time, the awareness of environmental and health issues is rising, 

prompted by recent governmental acts, scientific research, and concerns from 

individual citizens. Concerns about global warming, the increase in heatwaves, and the 

increase of toxic substances in the atmosphere is triggering alarms in society, which 

should be addressed. 
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Nowadays, following the developments in pervasive and ubiquitous computing 

technologies, taxis in various cities are equipped with GPS to improve their services 

with a better dispatching system. Using this inherent ubiquity, their traces have been 

used to study different aspects of the traffic network, as they provide data that reflects 

the state of traffic flow and can be used as a probe for traffic conditions (Castro, et al., 

2012), (Gühnemann, et al., 2004).  

By taking an opportunistic sensing approach, we use taxi-GPS traces collected in 

Lisbon, Portugal, to explore the ubiquitous data streams produced by taxi mobility 

patterns and meteorological information, to model the level of concentration of 

exhaust gases, focusing on nitrogen dioxide concentrations, and to improve spatial 

resolution of gas monitoring. This work makes the following contributions: 

1. Analysis of the temporal and spatial characteristics of exhaust gas 

concentration, along with the effect of meteorological conditions (i.e., 

weather conditions, humidity, temperature and wind speed). 

2. Exploration of techniques to estimate the concentration level of 

nitrogen dioxide without prior or historic information on exhaust gases’ 

concentrations, taking into account other urban variables, namely taxi 

data and meteorological conditions. 

For the former, we analyze a historical data set of exhaust gas concentration to 

identify patterns in time and space - comparing behaviors between traffic and 

background monitoring stations. The effect of different meteorological conditions on 

the concentrations of exhaust gases is also explored. For the latter, we study multi-

linear regression and an artificial neural network to model the concentrations of 

nitrogen dioxide, using taxi activity (pick-ups, drop-offs and average speed), weather 

conditions, humidity, wind speed and temperature as predictors. 

4.2 State of the art 

Mining taxi trajectories has recently attracted much attention. As described in 

Chapter 2, Taxi-GPS traces have been used in a number of studies to develop better 

solutions and services in urban areas such as estimating optimal driving paths (Yuan, et 

al., 2010), (Zheng, et al., 2010), and (Ziebart, et al., 2008), predicting next taxi pick-up 

locations (Yuan, et al., 2011b), (Phithakkitnukoon, et al., 2010b), (Liu, et al., 2010b), 
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and (Ge, et al., 2010), modeling driving strategies to improve taxis’ profits (Ge, et al., 

2010), and (Liu, et al., 2010a), identifying flaws and possible improvements in urban 

planning (Zheng, et al., 2011b), and developing models for urban mobility, social 

functions, and dynamics between different areas in the city (Qi, et al., 2011).  

In addition to the dynamic in vehicular network, there is an extensive and 

broader list of studies focusing on the study of atmospheric pollutants’ fluxes and the 

development of dispersion models: 

 Develop approaches to capture and monitor exhaust gases’ 

concentrations (Bukowiecki, et al., 2002), (Gühnemann, et al., 2004),  

(Pirjola, et al., 2004), (Velasco, et al., 2005), (Westerdahl, et al., 2005), 

(Zavala, et al., 2006), (Nemitz, et al., 2007), (Mak & Hung, 2008), 

(Schmidt, et al., 2008), (Zavala, et al., 2008), (Hu, et al., 2009b), 

(Parshall, et al., 2009), (Huang, et al., 2010), (Fuller, et al., 2012), (Hu, et 

al., 2012c), (Liu, et al., 2012), (Mao, et al., 2012), (Padró-Martínez, et al., 

2012), (Carslaw & Rhys-Tyler, 2013), (Kousoulidou, et al., 2013), 

(Pattinson, et al., 2014), (Riley, et al., 2014), (Kumar, et al., 2015), 

(Moltchanov, et al., 2015); 

 Study models to forecast exhaust gases’ concentrations (Shi & Harrison, 

1997), (Gardner & Dorling, 1998), (Gardner & Dorling, 1999), (Cobourn, 

et al., 2000), (Liley, et al., 2000), (Perez, et al., 2000), (Cogliani, 2001), 

(Grambsch, 2001), (Kolehmainen, et al., 2001), (Perez & Reyes, 2001), 

(Perez & Trier, 2001), (Dorling, et al., 2003), (Kukkonen, et al., 2003), 

(Schlink, et al., 2003), (Hooyberghs, et al., 2005), (Agirre-Basurko, et al., 

2006), (Grivas & Chaloulakou, 2006), (Holmes & Morawska, 2006), 

(Kassomenos, et al., 2006), (Zou, et al., 2006), (Chattopadhyay & 

Bandyopadhyay, 2007), (Dutot, et al., 2007), (Venkatram, et al., 2007), 

(Faus-Kessler, et al., 2008), (Juhos, et al., 2008), (Saini, et al., 2008), 

(Agirre, et al., 2009), (Mukerjee, et al., 2009), (Su, et al., 2009), 

(Venkatram, et al., 2009), (Beelen, et al., 2010), (Johnson, et al., 2010),  

(Sfetsos & Vlachogiannis, 2010), (Allen, et al., 2011), (Csikos & Varga, 

2011), (Madsen, et al., 2011), (Zwack, et al., 2011), (Merbitz, et al., 

2012), (Misra, et al., 2013), (Russo & Soares, 2013), (Donnelly, et al., 

2015); 
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 Study the sources of atmospheric pollutants (Cline, 1991), (Saville, 1993), 

(Small & Kazimi, 1995), (Becker, et al., 1999), (Becker, et al., 2000), 

(Borrego, et al., 2000), (Gilbert, et al., 2003), (Karlsson, 2004),  (Pleijel, 

et al., 2004), (Kirchner, et al., 2005), (Ndoke & Jimoh, 2005), (Velasco, et 

al., 2005), (Yli-Tuomi, et al., 2005), (Borrego, et al., 2006), (Zavala, et al., 

2006), (Gilbert, et al., 2007), (Zhou & Levy, 2007), (Beckerman, et al., 

2008), (Matese, et al., 2009), (Oliveira, et al., 2010), (Smit, et al., 2010), 

(Velasco & Roth, 2010), (Donnelly, et al., 2011), (Ning, et al., 2012), 

(Pirjola, et al., 2012), (Dons, et al., 2013), (Franco, et al., 2013), (Ke, et 

al., 2013); 

 Analyze the profile and fluxes of exhaust gases and their effects 

(Derwent, et al., 1995), (Uno, et al., 1996), (Hargreaves, et al., 2000), 

(Clapp & Jenkin, 2001), (Huang, et al., 2001), (Kodama, et al., 2002), 

(Tashiro & Taniyama, 2002), (Soegaard & Møller-Jensen, 2003), 

(Moriwaki & Kanda, 2004), (Krzyzanowski & Schneider, 2005), (Velasco, 

et al., 2005), (Pirjola, et al., 2006), (Vogt, et al., 2006), (Coutts, et al., 

2007), (George, et al., 2007), (Matthes, et al., 2007), (Ojolo, et al., 2007), 

(Churkina, 2008), (Fruin, et al., 2008),  (Pandey, et al., 2008), (Vesala, et 

al., 2008), (Carvalho, 2009),  (Hu, et al., 2009c), (Westerdahl, et al., 

2009), (Fontes, 2010), (Kordowski & Kuttler, 2010), (Hiller, et al., 2011), 

(Lin, et al., 2011), (Shon, et al., 2011), (Vann, 2011), (Crawford & 

Christen, 2012), (Gordon, et al., 2012), (Grimmond, et al., 2012),  

(Mavroidis & Ilia, 2012), (Melkonyan & Kuttler, 2012), (Baldauf, et al., 

2013), (Barros, et al., 2013), (Kumar & Imam, 2013), (Venkatram, et al., 

2013a), (Venkatram, et al., 2013b), (Wang, et al., 2013), (Patton, et al., 

2014); 

 Simulation and spatial interpolation of atmospheric pollutants (Borrego, 

et al., 2000), (Borrego, et al., 2001), (Borrego, et al., 2003), (Monteiro, et 

al., 2005), (Berkowicz, et al., 2006), (Monteiro, et al., 2007), (Stein, et al., 

2007), (Pernigotti, et al., 2012), (Kota, et al., 2013). 

Studies around atmospheric pollutants are extensive and well reported. Various 

fields of research have been created, from which we emphasize the following: 

measurement techniques and analysis of atmospheric pollutants; study of models to 
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estimate exhaust gases’ concentrations; and analysis of sources of atmospheric 

pollutants. Representative research works are summarized in the following sections. 

4.2.1 Measurement techniques and analysis of atmospheric pollutants 

Atmospheric pollutants are well characterized. The two daily peaks, where 

pollutants’ concentrations increase in the atmosphere (morning and afternoon), have 

been observed and described by different studies, and linked to traffic commuting, 

alongside the patterns of atmospheric pollutants throughout the seasons. Long-term 

time series analysis have shown a reduction of NO (nitrogen monoxide) and NO2 

(nitrogen dioxide), but at different rates, associated, in some cases, with the increase 

of O3 (ozone) due the rise of the average temperature. This long-term decrease is also 

linked to traffic sources, especially to the introduction of catalytic filters in the late 

1990s, since traffic is considered to be one of the main sources of atmospheric 

pollutants. Wind is often observed as a major factor in atmospheric pollutants 

dispersion, while building disposition and the placement of green areas can also affect 

the patterns of pollutants. 

Pirjola et al. (Pirjola, et al., 2006) studied traffic particles and pollutants (NO, 

NO2 and CO), collecting data in the vicinity of a major highway in Finland, during 

summer and winter. The analysis of pollutant concentrations took into consideration 

air temperature and wind. Moreover, the authors analyzed the impact of wind with 

measurements from three sectors: wind perpendicular to the road; the opposite 

direction; and wind blowing parallel to the road. These observations indicated that 

wind is a major factor dispersing atmospheric pollutants. Seasonal analysis showed 

two to three times higher concentrations in winter than in the summer. Moreover, 

particles in the summer were smaller than 50nm while atmospheric pollutants’ 

concentrations decreased around 35%, when sensors were located 65m from the 

roadside. To complement the work, a similar experiment was developed by Pirjola et 

al. (Pirjola, et al., 2012) in a dense urban area. The authors collected data from a road 

with intense traffic, in the city center of Helsinki, Finland. Concentrations of particles 

and pollutants (NO, NO2 and CO) were collected, alongside meteorological data, 

although it was reported that weather conditions were stable. The authors studied the 

effect of surrounding buildings and wind fluxes in the dispersion of pollutants. The 

topography of the street led to a configuration where the upwind concentrations were 

higher on the sidewalk than on the road, affecting mostly pedestrians rather than 
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drivers. It was reported that if buildings were built parallel to the street, the canyon 

effect would help better disperse atmospheric pollutants, dropping concentrations at 

ground-level. However, the geometry of nearby streets appears also to affect the local 

atmospheric pollutants’ dispersion. The authors concluded that the surrounding built 

environment significantly affects the pollutant concentrations in urban areas, and 

should be taken into account for future urban designs. 

Merbitz et al. (Merbitz, et al., 2012) studied the spatial variability of particulate 

matter (PM) in urban areas to produce a statistical model for spatial mapping of urban 

PM10 (particulate matter with dimension smaller than 10 µm) and PM2.5 (particulate 

matter with a dimension smaller than 2.5 µm) concentrations. The authors performed 

mobile measurements in five distinct periods - from summer 2009 to spring 2011 - 

from 59 monitoring sites in Aachen, Germany. The authors observed a large spatial 

variability on a scale of tens of meters, mainly depending on traffic density and 

building structure, especially in inner city environments. Suburban concentrations 

exhibit the smallest spatial variability. Additionally, a regression model was used to 

estimate concentrations for the remaining urban areas. As input variables, the authors 

used an exponential particulate matter concentration from traffic emissions, building 

density, and green areas. The model showed a coefficient of determination of 0.79, 

with a tendency for underestimation (due to non-traffic sources), with better 

performance estimating PM10 than PM2.5, especially in inner city areas. The authors 

argued that, the latter observation is due to the fact that coarse particles are more 

directly linked to local sources such as traffic, while PM2.5 are more dependent on 

regional influences. Similar to Pirjola et al. (Pirjola, et al., 2012), the authors concluded 

that buildings in close vicinity have an impact on the dispersion of atmospheric 

pollutants, having a positive correlation with PM concentrations. Inversely, green areas 

present a negative correlation with PM concentrations, as an indication of the filtering 

effect of vegetation, removing particles by dry deposition. 

Mavroidis & Ilia (Mavroidis & Ilia, 2012) analyzed the long-term trends of NO2 

and the ratio between NO2 and NOx (nitrogen oxides). Using data collected in Athens, 

Greece, from 1987 to 2008, the authors observed a decrease in NO2 concentrations, 

but, at a slower rate than NOx. The decrease of NO2 concentrations is attributed to the 

increased use of three-way catalytic converters in gasoline fuelled vehicles in Greece, 

combined with the substitution of older vehicles, especially from the late 1990s. The 

authors attribute the slow decrease rate of NO2 to the increase of secondary formation 
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of NO2 through photochemical oxidant reactions in the atmosphere. They have also 

explored the primary NO2 concentrations, concluding that primary NO2 concentration 

share has not altered significantly between 1998 and 2006. This is mainly attributed to 

the fact that in Athens, diesel passenger cars are not allowed and particle after-

treatment technologies are not yet used in Greece. Melkonyan & Kuttler (Melkonyan 

& Kuttler, 2012) also analyzed long-term time series of NO, NO2 and O3. In this study, 

data was collected in Rhine-Westphalia, Germany, through six sensors (one industrial, 

two traffic, one urban and two rural) from 1981 to 2007. Similar to Mavroidis & Ilia, 

the authors observed a moderate decrease of NO2 (10%), but much inferior to the 

decrease of NO (65%) in the same period. The same explanation was argued: catalytic 

filters in vehicles support emissions of NO2 as a primary pollutant, especially from 1998 

onwards. The increase of O3 (20%, an indicator of summer smog) is related with 

changes in NO/NO2 ratio, as observed by Mavroidis & Ilia, and due to the increase of 

average temperature. Daily and weekly patterns of NO, NO2 and O3 were analyzed, 

showing the traditional two daily peaks, with a steady reduction of maximum 

concentrations values from 1990 to 2007. This reduction is more visible in traffic 

stations than in background stations, confirming the idea that traffic is one of the main 

sources of atmospheric pollution.  

To develop new approaches to capture and monitor exhaust gases’ 

concentrations, Zavala et al. (Zavala, et al., 2006) used a mobile laboratory to measure 

on-road vehicle emission ratios in Mexico City. The authors observed that exhaust 

gases’ emissions were strongly related to driving behaviors. Similarly, Velasco et al. 

(Velasco, et al., 2005) used an eddy covariance flux system to obtain direct 

measurements of CO2 emissions in Mexico City. The analysis showed a clear diurnal 

pattern with the highest emissions during the morning and the lowest emissions 

during nighttime. The measured CO2 fluxes were closely correlated to traffic patterns. 

Liu et al. (Liu, et al., 2012) applied a similar methodology to the city of Beijing, China, 

collecting data during a four-year period, with similar results. Daily and weekly cycles 

were observed, with a strong dependency with road traffic. 

Allen et al. (Allen, et al., 2011) evaluated the geographical replicability of Land 

Use Regression models. The authors collected data from two similar cities in Canada, 

for 14 days, using identical geographic data sources and methods for site selection, 

data collection, and model development. The authors observed that the transferred 

models did not perform well as locally calibrated models. Moreover, better results 
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were achieved when transferring NO2 models (coefficient of determination 0.37-0.52) 

than with NO (coefficient of determination 0.24-0.41). Locally, the model was able to 

better explain the variations of NO2 (0.81-0.84) than NO (0.55-0.56).  

Donnelly et al. (Donnelly, et al., 2011) studied the effect of wind direction and 

wind speed in background concentrations of nitrogen dioxide (NO2), using a non-

parametric kernel regression method to quantify the effects. The authors verified that 

background NO2 concentrations are significantly influenced by local winds and by 

sources located far apart. Venkatram et al. (Venkatram, et al., 2013a) also analyzed the 

wind impact in near-road pollutant concentrations. The authors observed an increase 

of pollutant concentrations with wind perpendicular to the road, at a distance of 100 

m from the roadside. Therefore, the authors noted that pollutants are sensitive to 

wind speed and direction. Maximum concentrations occurred for short-life pollutants.  

4.2.2 Models for estimating exhaust gases’ concentrations 

In order to forecast models of exhaust gases’ concentrations, an extensive list 

of studies has been undertaken. Most of the research relied on Artificial Neural 

Networks (ANN), fed with historical data of gases’ concentrations. Authors concluded 

that, generally ANN models perform better than statistical linear models. Additionally, 

nitrogen oxides (e.g. NO2 and NO) predictions present a higher approximation with the 

measured data than particle predictions (e.g. PM2.5 and PM10) (Kukkonen, et al., 2003), 

(Juhos, et al., 2008).  

Although first approaches relied on regression analysis - as studied by Shi & 

Harrison (Shi & Harrison, 1997) and Derwent et al. (Derwent, et al., 1995), Gardner et 

al. (Gardner & Dorling, 1999) and Shi et al. (Shi & Harrison, 1997) - were among the 

early authors to explore the use of ANN to build models for atmospheric studies. 

Gardner et al. (Gardner & Dorling, 1998) made an extensive study of the applicability 

of ANN (multilayer perceptron) to atmospheric studies. Later, the same authors 

explored the technique to train a model and estimate hourly concentrations of NOx 

and CO2 in Central London. The study showed the higher efficiency of ANN approaches 

against regression analysis (higher coefficient of correlation), stressing the ability of 

ANN models to solve complex patterns of source emissions (Gardner & Dorling, 1999). 

This result corroborated the work of Shi et al. (Shi & Harrison, 1997), which performed 

a similar experiment with data also collected in London. 



Chapter 4  
Monitoring exhaust gases concentrations using taxi traces and meteorological 
conditions 

131 

Kolehmainen et al. (Kolehmainen, et al., 2001), using data from 1994-1998, 

collected in Stockholm, Finland, explored periodic regression and neural algorithms 

(self-organizing maps). The author concluded that the best results to predict NO2 

concentrations were attained by applying multi-layer perceptron to the original data. 

Kukkonen et al. (Kukkonen, et al., 2003) further explored the previous approach. The 

authors compared neural network models, a linear statistical model and a 

deterministic modelling system to predict NO2 and PM10, with data collected in two 

stations in Helsinki, Finland, from 1996 to 1999. Using three statistical criteria (index of 

agreement, squared coefficient of correlation and fractional bias), the authors 

concluded that results obtained with non-linear neural networks achieved a better 

approximation with the measured data. Both authors suggested that the inclusion of 

meteorological variables could improve the performance of the model, since it could 

describe the instability of the atmosphere.  

Later, Niska et al. (Niskaa, et al., 2004) improved the work of Kolehmainen et al. 

(Kolehmainen, et al., 2001) by studying the use of genetic algorithms for selecting the 

inputs of a multi-layer perceptron. This approach was earlier used by Grivas & 

Chaloulakou (Grivas & Chaloulakou, 2006), which applied an ANN to provide 

predictions of PM10, with a genetic algorithm for selecting the input variables. The 

work was based upon a data set collected between 2001 and 2002, in four 

measurement locations in the Greater Athens Area. In line with other works, the 

authors concluded that neural network models were superior in comparison to 

multiple linear regression models. 

Agirre-Basurko et al. (Agirre-Basurko, et al., 2006) presented a model to 

estimate concentrations of ozone and nitrogen dioxide eight hours ahead, using 

historical data of the gases along with meteorological variables. The authors compared 

two multilayer perceptron and multiple linear regression models, observing a higher 

performance for the multilayer perceptron-based models over the multiple linear 

regression models. Based on these findings, the authors proposed the airEsan software 

to forecast ozone concentrations and assess the air quality (Agirre, et al., 2009). 

Further validation and tuning of the parameters was performed by (Agirre, et al., 

2010).  

Perez et al. (Perez, et al., 2000) (Perez & Reyes, 2001) compared three different 

methods: multilayer neural networks, linear regression, and persistence to model air 
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particles from May to September (months with higher concentration) in 1994 and 

1995, in Santiago, Chile, to conclude that neural networks provided the best results. 

Higher significance and smaller errors were attained in prediction up to six hours in 

advance. However, the authors pointed out the need for noise reduction prior to 

modelling. Later, the authors performed a similar experiment, in the same location, 

aiming to model NO concentrations with identical results for all monitoring stations 

(Perez & Trier, 2001). 

Juhos et al. (Juhos, et al., 2008) compared multilayer perceptron models with 

support vector machine models to predict NO and NO2 concentrations, four days in 

advance. The data set was composed by historical data of NO and NO2 with 

meteorological variables (namely temperature, humidity and wind speed). Similar to 

previous studies, the authors observed a higher performance of ANN models. 

Kassomenos et al. (Kassomenos, et al., 2006) compared the COPERT methodology 

against ANN to predict five major pollutants (CO, Benzene, NOx, PM10 and Volatile 

Organic Compounds or VOCs) in Athens, Greece, with data collected from seven major 

roads. Although no major difference in the results produced by the two techniques 

was found, the authors verified that the determinant parameters for CO emissions 

variation in a road, are traffic volume and traffic speed; for benzene and VOCs, the 

presence of motorcycles and passenger vehicles not equipped with catalytic converters 

in combination with traffic speed; and for PM10 and NOx the percentage of diesel 

vehicles in the fleet. 

Cogliani (Cogliani, 2001) studied the correlation between meteorological 

variables and air pollution. The author used an atmospheric pollution index provided 

by the Italian Ministries of Health and Environment and explored the relation with 

meteorological indicators using multiple linear correlation methods. The author 

discovered that, using an historic index of atmospheric pollution, the concentration of 

pollutants for the previous day, the day’s lowest temperature, and the forecast of the 

next day's highest temperature and wind speed, it was possible to forecast the day's 

air pollution. Highest correlations were achieved during a three month period (January 

to March). 

The city under analysis was already the focus of several studies to estimate or 

simulate air quality and the dispersion of pollutants (Russo & Soares, 2013), (Borrego, 

et al., 2000), (Borrego, et al., 2003), and (Monteiro, et al., 2005). 
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Russo & Soares (Russo & Soares, 2013) aimed to forecast pollutant 

concentrations with high accuracy in time and space, using meteorological variables 

and pollution data. The authors propose a two-step methodology: firstly the use of a 

neural network to generate short-term temporal forecasts, and secondly, spatial 

stochastic simulations were performed for all area of the city of Lisbon.  

Two dispersion models were studied by Borrego et al.  (Borrego, et al., 2003) to 

assess the air pollution (carbon monoxide) in downtown Lisbon. The authors used 

TREM (Transport Emission model for Line Sources) to estimate traffic emissions and 

VADIS (Local Scale Dispersion Model, a computational fluid dynamic model for 

pollutants dispersion) to simulate the emissions flow and dispersion around obstacles, 

under variable wind conditions. Montero et al. (Monteiro, et al., 2005) (Monteiro, et 

al., 2007) examined the performance of the CHIMERE photochemical model, to 

simulate ozone and nitrogen dioxide in Portugal. The authors showed a decrease in 

errors and increase in correlation when the sum of photo oxidants were considered, 

instead of individual pollutants, pointing out the lack of monitoring stations as one of 

the possible causes for the model errors. 

4.2.3 Analysis of sources of exhaust gases 

Although atmospheric pollutants can have natural sources (due to microbial 

metabolism in the soil, chlorophyll decomposition, electrical discharges in the 

atmosphere from lightning, forest fires or volcanic eruptions) they also have 

anthropogenic sources (fuel burning at high temperatures, from domestic heating or 

internal combustion vehicles). Traffic is one of the main sources of pollutant in urban 

areas, responsible for 32%-98% of emissions of CO, volatile organic compounds 

(primarily hydrocarbons) and NOx (Small & Kazimi, 1995), (Ndoke & Jimoh, 2005), and 

an important fraction of greenhouse gases emissions in USA (especially CO2) (Cline, 

1991). Nearly 50% of global CO, hydrocarbon, and NOx emissions from fossil fuel 

combustion come from gasoline and diesel engines (Ndoke & Jimoh, 2005). 

Additionally, on highly congested streets, traffic can be responsible for as much as 

90%–95% of the ambient CO levels, 80–90% of the NOx and hydrocarbons, and a large 

portion of particulate matter (Saville, 1993). Therefore, traffic emissions are the focus 

of several studies, performing measurements on the roadsides of major traffic 

highways. 
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Becker et al. (Becker, et al., 1999) compared real world emissions of NO2 and 

CO2 from traffic and laboratory measurements, concluding that emissions from both 

scenarios are quite similar. To implement the experiments, the authors collected data 

from a road tunnel in Germany (Wuppertal tunnel) as real world emissions, and 

performed measurements using a chassis dynamometer emission in the laboratory, 

testing 26 different cars and trucks. Later, using data collected from the tunnel, the 

authors were able to extrapolate the results and calculate the global N20 emissions in 

the city. They achieved those results by assuming that the vehicle mix travelling 

through the tunnel was representative of the global vehicle population, and multiplied 

the measured emission factor by the global vehicle fuel consumption (Becker, et al., 

2000). 

Venkatram et al (Venkatram, et al., 2007) used a dispersion model to analyze 

and estimate the impact of traffic emissions, measured at distances of tens of meters 

from an eight-lane highway. Air quality measurements consisted of optical 

measurements of NO at distances of 7 and 17 m. Additionally, sonic anemometers 

were used to measure wind speed and turbulent velocities at 5 m and 20 m from the 

highway. The authors observed that NO concentrations near the road were governed 

by the emission rate, as represented by the traffic flow rate (monitored using traffic 

surveillance cameras). The effect of wind was also analyzed, concluding that the 

concentrations were relatively insensitive to the mean wind speed, except at distances 

from the roads that are comparable to the width of the road. Moreover, as long as the 

wind direction was within 45º from the normal to the road, the wind direction had 

little effect on near road concentrations. Venkatram et al. (Venkatram, et al., 2009) 

improved the analysis, exploring the AERMOD dispersion model to interpret 

concentrations of volatile organic compounds. Later, the authors further explored the 

effect of wind in the dispersion of atmospheric pollutants (Venkatram, et al., 2013b). 

The authors observed that light wind does not fully follow traditional models for 

vertical plume spread. Under light wind, stable, or transition periods, the boundary 

layer has a significant impact on near-road concentrations associated with roadway 

emissions. 

Beckerman et al. (Beckerman, et al., 2008) observed that levels of NO2 decay 

with increasing distance from the expressway, declining to background levels by 300 

m. Additionally, the authors also observed moderate to high correlations between NO2 

measurements and NOx and O3. The authors stated that the variability of many traffic-
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related pollutants around an expressway could be characterized by measurements of 

NO2. Moreover, experimental results showed that the distance decay gradients display 

differential characteristics between the upwind and the downwind sides of the 

expressway. On the upwind side, levels drop off to near background levels within 200 

m and in the case of particles probably less than 100 m. On the downwind side, levels 

do not reach background until 300–500 m. These results are consistent with the 

observations of Zhow & Levy (Zhou & Levy, 2007), which analyzed the spatial extent of 

atmospheric pollutant concentrations, and the influence of local meteorology in the 

dispersion of pollutants. The authors observed that pollutants with higher background 

concentrations had the largest spatial extent, and pollutants formed in near-source 

chemical reactions (NO2) had a larger spatial extent than pollutants depleted in near-

source chemical reactions. 

Pleijel et al. (Pleijel, et al., 2004), Gilbert et al. (Gilbert, et al., 2003), and Zou et 

al. (Zou, et al., 2006) aimed to define a mathematical formulation to describe the 

relation between atmospheric pollutants and the distance from highways, assumed to 

be the pollution sources. The former defined a model stating that NO2 concentrations 

decreased significantly with the increasing logarithmic distance from the highway. 

Experimental results support the hypothesis with high correlation between observed 

and estimated values up to 10 m from the highway. The authors also noted that the 

regression slope is likely to be sensitive to wind speed, atmospheric stability, landscape 

roughness, and the background ozone concentrations in the area. The work proved the 

initial observations of (Gilbert, et al., 2003), which registered a strong negative 

correlation between NO levels and distance from the highway, stating that distance 

from the roadway may be a valid surrogate variable for at least some traffic-related air 

pollutants. However, Zou et al. (Zou, et al., 2006) observed a shifted power-law model 

to simulate concentrations of NO2 with distance from a highway. Nevertheless, the 

authors also studied the wind profile, identifying some significant similarities between 

wind profile and air pollutants concentration near highways. 

Ndoke & Jimoh (Ndoke & Jimoh, 2005) linked the growth of a city (Minna, 

Nigeria) with the increase of motor vehicles (400%) and the increase in traffic 

emissions. The authors observed that the concentration of CO decreases with an 

increase in distance from highways. By observing the social and health aspects of 

workers and inhabitants in the vicinity of highways, the authors linked the high values 

of CO2 measured in the neighborhood of roads with the increase in respiratory 
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diseases. However, level of pollutants (CO, CO2, NO, NO2 and SO2) were below the 

maximum level stipulated by the Environmental Protection Agency. Measurements 

were made in a dry season to avoid the effect of rain on dispersion of atmospheric 

pollution. 

Westerdahl et al. (Westerdahl, et al., 2009) characterized the on-road vehicle 

emissions in Beijing, China. In order to do that, the authors measured atmospheric 

pollutants (CO, particles and black carbon) in three distinct environments: on-road, 

roadside and open ambient. With the measurements, the authors were able to derive 

emission factor for on-road heavy-duty vehicles. A strong traffic impact is observed in 

the concentration of the pollutants in the three locations. The authors also noted the 

clear impact of diesel truck traffic activity in black carbon concentrations. However, 

the authors were unable to identify clear daily trends concerning the impact of 

meteorological factors (except at nighttime). 

Matese et al. (Matese, et al., 2009) installed an eddy covariance station in the 

center of the city of Firenze, Italy, to measure carbon fluxes. The authors were able to 

correlate the CO2 emissions with traffic and domestic sources, using estimations from 

detailed inventory of the city traffic and natural gas. Additionally, the effect of air 

turbulence on the dispersion of atmospheric pollutants was also observed. Finally, 

using data collected along 3.5 months, the authors were able to describe seasonal 

changes. 

Measurements of exhaust gases’ concentrations on the atmosphere are usually 

made using fluxes measured by eddy covariance (EC) technique. Mobile and wireless 

solutions have been explored to improve the spatial resolution of atmospheric 

pollutants monitoring, mainly based on vehicles equipped with sensors. To develop 

new approaches to capture exhaust gases’ concentrations, Mao et al. (Mao, et al., 

2012) presented CitySee, a real-time CO2-monitoring system using wireless sensor 

networks for an urban area, in Wuxi, China, proposing a low-cost sensor deployment 

strategy. Moltchanov et al. (Moltchanov, et al., 2015) took advantage of advances in 

communication and sensory technologies to deploy a network of six wireless multi-

sensor miniature nodes in three urban sites, about 150 m apart. The wireless 

distributed sensor networks was composed of metal oxide chemo-resistive sensors for 

O3, NO2, and volatile organic compounds, an optical (IR based) sensor for suspended 

particulate matter, an electret microphone (electrostatic capacitor-based microphone 
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used as noise sensor), and a dual semiconductor for temperature and relative 

humidity. The measurements took place in the city of Haifa, Israel, in three distinct 

locations (low activity street, busy street and a main street), during 71 days in the 

summer of 2013. Measurements showed high correlations among the sensors. The 

authors demonstrated the network capability to capture spatiotemporal concentration 

variations with fine resolution. However, they also highlighted the need for a frequent 

in-situ calibration to maintain the consistency of some sensors, therefore a procedure 

for a field calibration is proposed.  

Hu et al. (Hu, et al., 2009b) proposed a vehicular sensing system to collect CO2 

concentration in urban areas, based on GSM short messages and GPS information from 

vehicles. Vehicles were used as carriers of sensing devices to monitor CO2 

concentrations while driving through the city. The concept was tested using the ZigBee 

platform. Kumar et al. (Kumar, et al., 2015) reviewed the state of the art for low cost 

sensing of atmospheric pollution. The authors argued that new developments in 

sensor technology are able to provide low-cost and sensible devices, with the ability to 

communicate and store information. However, they also warn of the challenge in 

managing widespread sensor networks. As wider networks provide higher spatial 

resolution that implies there will be more data to be processed and stored, more 

communication bandwidth, and maintenance issues. An equilibrium between 

simulation models and the number of sensors should be pondered, in order to reduce 

the costs of maintaining a growing infra-structure and still be able to accurately 

estimate atmospheric pollutants. However, the focus should rely on the quality of 

sensors, since the data collected directly affects the accuracy of the models. 

4.2.4 Simulation of exhaust gases dispersion in the atmosphere 

Various studies are based on the simulation of scenarios, which includes 

models for atmospheric pollutants. To model particle dispersion in the atmosphere, 

several models are available, as described by Holes & Morawska (Holmes & Morawska, 

2006): box models  (AURORA, CPB and PBM), Gaussian models (CALINE4, HIWAY2, 

CAR-FMI, OSPM, CALPUFF, AEROPOL, AERMOD, UK-ADMS and SCREEN3), 

Lagrangian/Eulerian Models (GRAL, TAPM, ARIA Regional), CFD models (ARIA Local, 

MISKAM, MICRO-CALGRID) and models which include aerosol dynamics (GATOR, 

MONO32, UHMA, CIT, AERO, RPM, AEROFOR2, URM-1ATM, MADRID, CALGRID and 

UNI-AERO).  
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Additional modelling alternatives can also be observed, such as AUSPLUME 

(Hurley, 2006); CAMx (Comprehensive Air  Quality  Model  with  Extensions) (Holmes & 

Morawska, 2006); ISCST3 (Industrial Source Complex - Short Term) (Hurley, 2006); 

ROM (Regional Oxidant Model) (Russo & Soares, 2013); SAPRC99 (Kota, et al., 2013), 

(Stein, et al., 2007); TAMNROM-3D (Kota, et al., 2013); TAPM (The Air Pollution Model) 

(Carvalho, 2009); TREM (Transport Emission model for Line Sources) (Borrego, et al., 

2003); or VADIS (Local Scale Dispersion Model) (Borrego, et al., 2003). 

More common and recommended models are: 

 ADMS (Atmospheric Dispersion Modelling System) (Venkatram, et al., 

2007), (Venkatram, et al., 2009), (Hurley, 2006); 

 AERMOD (AERmic MODel) (Holmes & Morawska, 2006), (Johnson, et al., 

2010), (Kota, et al., 2013), (Misra, et al., 2013), (Stein, et al., 2007), 

(Venkatram, et al., 2007), (Venkatram, et al., 2009), (Venkatram, et al., 

2013a); 

 CALINE4 (Kota, et al., 2013), (Beelen, et al., 2010), (Colls & Tiwary, 

2009), (Krzyzanowski & Schneider, 2005), (Misra, et al., 2013),  

(Venkatram, et al., 2007), (Venkatram, et al., 2009); 

 CHIMERE (Chemistry-Transport Model Simulation), a multi-scale 

deterministic model for air quality forecasting and simulation (Dutot, et 

al., 2007), (Monteiro, et al., 2005) (Monteiro, et al., 2007), (Pernigotti, et 

al., 2012), (Russo & Soares, 2013); 

 CMAQ (Community Multiscale Air Quality Model) (Beelen, et al., 2010), 

(Johnson, et al., 2010), (Kota, et al., 2013), (Russo & Soares, 2013), 

(Stein, et al., 2007); 

 QUIC (Quick Urban & Industrial Complex) (Misra, et al., 2013); 

 UAM (Urban Airshed Model) (Agirre-Basurko, et al., 2006), (Borrego, et 

al., 2003), (Russo & Soares, 2013); 

 URBIS (URBis Information System) (Beelen, et al., 2010), (Krzyzanowski 

& Schneider, 2005). 
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Finally, Land Use Regression (LUR) modeling is a statistical technique used to 

determine exposure to air pollutants in epidemiological studies (Dons, et al., 2013), 

widely used to model the dispersion of atmospheric pollutants as explored by Allen et 

al. (Allen, et al., 2011), Beelen et al. (Beelen, et al., 2010), Johnson et al. (Johnson, et 

al., 2010), Madsen et al. (Madsen, et al., 2011), Mukerjee et al. (Mukerjee, et al., 

2009), Su et al. (Su, et al., 2009), and Wang et al. (Wang, et al., 2013).  

Nevertheless, it is not the intent of this work to study or compare different 

atmospheric models for atmospheric pollutant dispersion, as performed by Holes & 

Morawska (Holmes & Morawska, 2006), Stein et al. (Stein, et al., 2007), (Beelen, et al., 

2010), Misra et al (Misra, et al., 2013), or Russo & Soares (Russo & Soares, 2013), but 

to analyze the temporal and spatial characteristics of exhaust gas concentration, and 

explore techniques to estimate the concentration level of nitrogen dioxide without 

prior or historical information on exhaust gases’ concentrations, taking into account 

other urban variables. 

4.2.5 Our approach 

Most of the described works focus on two main topics: forecasts based on 

historical data and inventories of atmospheric pollutants, or a process of data 

collection and analysis. Our approach differs from those aforementioned in the sense 

that (1) we aim to estimate exhaust gases’ concentrations without using prior or 

historical information about atmospheric pollutants, and instead rely on opportunistic 

data provided from distinct sources (meteorological conditions and taxi activity); and 

(2) we do not propose a new procedure to collect data, and instead rely on the present 

sources and infra-structures already deployed in the city.  

4.3 Methodology 

Following the methodology of previous chapters, our approach is based on the 

classic process of knowledge extraction from databases as described by Witten & 

Frank (Witten & Frank, 2005) and Santos & Azevedo (Santos & Azevedo, 2005). It 

comprises the following steps: 

- Data collection; 
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- Data cleaning and transformation; 

- Exploratory analysis; 

- Inference analysis; 

- Validation. 

Data about the concentrations of exhaust gases was compiled and provided by 

‘Comissão de Coordenação e Desenvolvimento Regional de Lisboa e Vale do Tejo’ 

(CCDR-LVT) and ‘Agência Portuguesa do Ambiente’ (APA). Information about 

meteorological conditions was retrieved from the Weather Underground. Both data 

sets were retrieved during the same time window to match taxi data (from September 

to December, 2009). 

Although data providers prepared data beforehand, a cleaning and 

transformation process is applied in order to remove faulty, erroneous or missing 

samples, as well as to format the data set into a more suitable scheme. Finally, data is 

stored in a relational database system with support for geographical objects. 

The exploratory analysis studies the exhaust gases time series to identify 

temporal trends, which will be examined during the inferential analysis. The variables 

are characterized and daily and seasonal patterns are extracted. The exhaust gases 

profiles are studied under the influence of different meteorological conditions 

(weather conditions, temperature, and wind). The correlation between the main 

atmospheric pollutants is investigated in order to attain which exhaust gases should be 

analyzed during the next step.  

Data analysis investigates different models to estimate exhaust gases’ 

concentrations. More specifically, we explore techniques to estimate the 

concentration of nitrogen dioxide (NO2) based on meteorological conditions (humidity, 

temperature, wind, and weather conditions) and taxi activity (pick-ups, drop-offs and 

average speed).  

We use regression as a statistical technique to model relations between 

variables. Multiple linear regression attempts to model the relationship between two 

or more explanatory variables and a response variable by fitting a linear equation to 

observed data. Moreover, this technique allows identifying which proportion of the 
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variance of the dependent variable is explained by the explanatory variables (also 

designated predictor or independent variables), and the contribution of each 

explanatory variable (Pallant, 2005).  

To estimate the coefficients, the method of ordinary least squares (OLS) is 

proposed, consisting in minimizing the sum of squares of residuals (Pallant, 2005). The 

model coefficients are tested using the coefficient of correlation of Pearson (r) and the 

coefficient of determination (r2). The coefficient of correlation of Pearson is a measure 

of linear association between variables, while the coefficient of determination (the 

square of the coefficient of correlation) explains the percentage of variation of the 

dependent variable determined by the independent variables, i.e. the goodness of the 

fitting of the model to data (Kennedy, 2008).   

The regression significance is tested using the F test of ANOVA, which analyses 

the existence of a linear relation between the dependent variable and some of the 

explanatory variables (Maroco, 2005). By rejecting the null hypothesis, we are 

assuming that, at least one of the explanatory variables contributes to the model. 

Therefore, the null hypothesis with significance level (p-value) lower than 0.05 should 

be rejected (Clemente, 2013).  

To select the most efficient regression model, the Stepwise method is applied. 

In this method, the model starts with no variables, and gradually those that are 

statistically significant are added, until all the variables of the model are significant and 

no further improvement is possible (Demuth, et al., 2008). Additionally, 

multicollinearity is verified using the VIF (Variance Inflation Factor) method. The 

absence of multicollinearity is achieved if all VIF values are below a critical level (10, 

ideally near 1), assuring that the explanatory variables are not correlated (Pallant, 

2005). 

An alternative model is explored due to the apparent complexity of the 

problem, and the uncertainty about whether linear relations were an adequate fit to 

the problem. Suggested by different authors to model air pollution (Perez & Reyes, 

2001), (Kukkonen, et al., 2003), (Agirre-Basurko, et al., 2006), (Juhos, et al., 2008), 

(Ahmed, et al., 2010), a multilayer perceptron with backpropagation was additionally 

studied for comparison with the linear regression approach, in this way exploring 

different parameter configurations. 
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As previously described, during the linear regression analysis, the Stepwise 

method with the multicollinearity analysis is used to select the most significant 

predictor variables. Nevertheless, to deal with the amount of possible predictor 

variables and identify which ones could better explain the variation of the dependent 

variable (exhaust gas), an alternative approach is explored. A factorial analysis -  

Principal Component Analysis - is considered (Pallant, 2005), a method which presents 

no a priori requirements, using the Kaiser’s rule for the eigenvalues (Larsen & Warne, 

2010) and the scree plot approach to retain the most significant factors. Additionally, 

the three-sigma rule of thumb (or 68–95–99.7 rule), a conventional heuristic that 

states almost all values lie within three standard deviations of the mean (Kazmier, 

2003), is also applied to help improve the model.   

The experiments are conducted using one representative exhaust gas (NO2) in 

one predominant monitoring station (‘Av. Liberdade’). Finally the approach is applied 

to the remaining monitoring stations for comparison. Main findings and achievements 

were submitted to a peer-review international conference (Veloso, et al., 2013), 

(Veloso, et al., 2015). 

4.4 Data description 

This section describes the data set used for the exploratory study and data 

analysis. The data set comprises information concerning exhaust gases’ 

concentrations, meteorological conditions (temperature, humidity, wind speed and 

weather conditions), and taxi activity (described in Chapter 2). The data was collected 

from September to December 2009. 

4.4.1 Exhaust gases 

4.4.1.1 Data set content 

The exhaust gases’ data set was provided by both the ‘Comissão de 

Coordenação e Desenvolvimento Regional de Lisboa e Vale do Tejo’ (CCDR-LVT)18, and 

the ‘Agência Portuguesa do Ambiente’19, which are governmental institutions 

                                                      
18

 CCDR-LVT. http://www.ccdr-lvt.pt/pt/ . 
19

 Agência Portuguesa do Ambiente. http://www.qualar.org . 
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responsible for monitoring atmospheric pollutants. The data set was composed of 

hourly readings of different gases’ concentrations in seven monitoring stations (shown 

in Table 4-1). Every station monitors nitrogen monoxide or nitric oxide (NO), nitrogen 

dioxide (NO2), nitrogen oxides (NOx, composed by NO and NO2), and carbon monoxide 

(CO) concentrations, measured in µg/m3 (micro gram per cubic meters), which are flue 

combustion gases (from natural or anthropogenic sources, such as traffic, industry or 

house heating), also termed exhaust gases. Additionally, some stations also monitor 

the amount of particles (with dimensions smaller than 10 µm) in the atmosphere or 

particulate matter (PM), Sulphur Dioxide (SO2), Benzene (C6H6) and Ozone (O3) 

concentrations, as described in Table 4-1. The data were obtained with a one-hour 

sampling rate. 

 

 
Type 

PM < 
10 µm 

NO NO2 CO NOx SO2 C6H6 O3 

Monitoring 
Station / Units   

µg/m3 µg/m3 µg/m3 µg/m3 µg/m3 µg/m3 µg/m3 

(A) Olivais B         

(B) Chelas B         

(C) Beato B         

(D) 
Entrecampos 

T         

(E) Avenida da 
Liberdade 

T         

(F) Santa Cruz 
de Benfica 

T         

(G) Restelo B         

T = Traffic; B = Background 

Table 4-1 - Monitored gases and particles for each station. 

Although the current work focuses on a common window of observation 

including taxi data, from September to December 2009, the exhaust gases’ database 

contains data from 2008 to 2013, which is explored in this section. 

The goal of the monitoring stations is to collect information about atmospheric 

noxious or toxic gases that pose a direct danger to human health when above a certain 

threshold. Carbon dioxide (CO2) is not measured by these stations since it is a natural 

component of the atmosphere and does not pose a direct or immediate danger for 

human health (although it can generate danger indirectly, for instance increasing the 

greenhouse effect) (APA, 2012). 
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4.4.1.2 Characterization of exhaust gases 

NO, NO2, CO, O3 and SO2 are molecular, chemical compounds. They are 

colorless and odorless gases at low concentrations, with the exception of NO2, a brown 

gas. NO2 and SO2 produce a distinctive scent at high concentrations. 

Nitrogen Oxides (NOx): Nitrogen Monoxide (NO) and Nitrogen Dioxide (NO2) 

NO, NO2, NOx and SO2 are primary pollutants; those emitted directly from the 

source to the atmosphere (e.g. exhaust gases, from internal combustion motors in 

vehicles). NO and NO2 have both natural sources (due to microbial metabolism in the 

soil, electrical discharges from lightning in the atmosphere) and anthropogenic sources 

(fuel burning at high temperatures, from domestic heating, or internal combustion 

vehicles, the latter being the main source of pollutants in urban areas). Although NO is 

the result of natural bacterial action and an important cellular signalling molecule in 

humans (and in mammals in general), their concentration in urban environments is 

between 10 and 100 times greater than in non-urban areas (Ahrens & Henson, 2014). 

Moreover, NO emitted to the atmosphere can produce a photochemical oxidation 

forming NO2 in the troposphere (ground-level), during daylight (Clapp & Jenkin, 2001). 

Short episodes of high concentrations of NO2, lasting from a few hours to several days, 

can occur due to different mechanisms. In summer, photochemistry can rapidly 

increase the concentrations of NO2, therefore decreasing the concentrations of NO. In 

winter, the inversion of temperatures traps emissions. In this scenario, NO 

concentrations are also high. Nitrogen oxides are highly reactive gases that play a key 

role in producing ozone and other ingredients in photochemical smog. Additionally, in 

moist air, NO2 reacts with water vapour to form corrosive nitric acid (HNO3) (Colls & 

Tiwary, 2009). 

Ozone (O3) 

O3 is a secondary pollutant, the result of a slow photochemical reaction 

between NOx, CO and Volatile Organic Compounds (VOC, emitted during incomplete 

combustions and fuel volatilization), in the presence of solar radiation and high 

temperatures (higher concentrations in the summer) (Ahrens & Henson, 2014). It is 

also an essential gas in the stratosphere, since it is able to reduce ultra-violet radiation. 

However, when located in the troposphere (ground-level), it is considered a noxious 

pollutant, the main constituent of photochemical smog. In areas directly influenced by 

traffic emissions, solar radiation induces NO2 photolysis to form O3 during daylight. 
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However, overnight, O3 is destroyed, while NO2 builds up until the next day, when it 

can generate new O3 (Lameiras & Povoas, 2005).  

Carbon Monoxide (CO) 

CO is naturally produced by volcanic eruptions, forest fires and chlorophyll 

decomposition. Anthropogenic sources are related to incomplete combustions and 

other organic materials. The concentration decreases with the increase of distance to 

the source, as it is spatially variable and short-lived (can quickly be removed from the 

atmosphere by microorganisms in the soil), having a role in the formation of ground-

level ozone. Nevertheless, it is a very dangerous gas, even in small concentrations 

(Lameiras & Povoas, 2005) (Ahrens & Henson, 2014). 

Sulphur Dioxide (SO2) 

SO2 can also appear naturally in the atmosphere as a result of volcanic 

eruptions. The main anthropogenic sources are fossil fuel burning in the energy 

industry, although diesel vehicles can also produce this gas. The resulting SO2 from fuel 

burning can be transformed into Trioxide Sulfur (SO3), which in contact with 

atmospheric humidity, produces Sulfuric Acid (H2SO4) (Lameiras & Povoas, 2005).  

Particles 

Atmospheric particles can be naturally produced by volcanic eruptions, forest 

fires, and the effect of wind on the soil. Anthropogenic sources are diverse and include 

traffic, burning of fossil fuels, and industrial processes. In urban areas, most of the 

particles are derived from primary pollutants, such as NO2 and SO2. While particles 

with higher dimensions settle, low dimension particles are long lived in the 

atmosphere and can be transported along large distances (APA, 2012), (Lameiras & 

Povoas, 2005).  

Impact on human health 

The atmospheric pollutants have a considerable impact on human health. 

While CO affects essentially the cardiovascular system (inhibits the O2 exchange 

between blood vessels and vital tissues), NO2, O3, and SO2 affect the respiratory 

system. Particles should also be taken into consideration, not only due to their size and 

the immediate effect on the human respiratory tract, but also due to the ability to 

absorb hydrocarbons and heavy metals, transport them to the lungs and from there  to 

the blood vessels (if size < 2.5 µm) (APA, 2012), (Lameiras & Povoas, 2005).  
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4.4.1.3 Characterization of monitoring stations 

The monitoring stations were classified by CCDR-LVT into two groups: traffic 

stations (D, E and F in Figure 4-1) and background stations (A, B, C and G in Figure 4-1). 

The traffic stations are located near traffic roads while the background stations are 

located away from main roads. The former are used to monitor exhaust gas emission 

from traffic vehicles around 100m radius, whereas the latter are used to monitor 

domestic or industrial sources of exhaust gases, and can sense emission within a 

3000m radius (Fontes, 2010). On average, traffic stations perceive higher 

concentrations of exhaust gases (57.4 µg/m3 for NO2, during the four months of 

observations) than background stations (33.7 µg/m3 for NO2). These observations are 

in line with Pleijel et al. (Pleijel, et al., 2004), Gilbert et al. (Gilbert, et al., 2003), Zou et 

al. (Zou, et al., 2006) and Ndoke & Jimoh (Ndoke & Jimoh, 2005), which observed that 

concentrations of exhaust gases decreased with the increasing distance from roads.  

 

Figure 4-1 - Location of monitoring stations. 
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Avenida da  Liberdade (E) 

(traffic station) 
Restelo (G) 

(background station) 

  

Santa Cruz de Benfica (F) 
(traffic station) 

Beato (C) 
(brackground station) 

Figure 4-2 – Images of different types of monitoring stations. 

“Av. Liberdade” (E), “Entrecampos” (D) and “St. Cruz Benfica” (F) are important 

monitoring stations for the study, since they are located near main roads, to sense 

exhaust gas emissions from traffic. Usually, these stations detect high levels of short-

lived pollutants.  “Av. Liberdade” is a major road in Lisbon, with 10 lanes for traffic and 

wide pedestrian areas on each side of the avenue. “Entrecampos” is a crossroad (major 

roundabout) between “Campo Grande - Av. da República” and “Av. das Forças 

Armadas -  Av.  Estados  Unidos  da  América”, all main roads with intense traffic (APA, 

2012). “St. Cruz Benfica” is located 500 m away from the intersection of two main 

highways in the city (A36 and A37), and 2 km apart from two other major highways (A5 
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and IC16). The remaining monitoring stations (background) are located in residential 

areas, with low intensity of traffic and away from major sources of atmospheric 

pollution. Figure 4-2 represents some of the monitoring stations (images provided by 

CCDR-LVT). 

4.4.2 Meteorological conditions 

Information on weather conditions was retrieved from the Weather 

Underground20 - an online weather information service provider. Much like the 

exhaust gas data set, only samples from September to December 2009 were analyzed.  

The data set contains 20 types of weather conditions, which were grouped into 

three sets (Clear; Cloudy; Rainy), as shown in Figure 4-3. As summer season gives way 

to autumn and then winter, the weather conditions tend to worsen. The number of 

days with clear weather decreases and at the same time the number of rainy days 

increases.  

 

Figure 4-3 - Weather conditions for each day from September 1st to December 31st, 2009. 

In addition to weather conditions, temperature, humidity, and wind speed 

were also acquired hourly. The corresponding time series can be observed in Figure 

4-4. Moving from September to December we can identify a decrease in temperature 

and an increase in humidity. Daily profile of wind speed appears to be comparable 

between hotter and colder months, with a stronger increase at the end of the time 

series (last two weeks of December). 

                                                      
20

 Weather Underground. http://www.wunderground.com/history/  

http://www.wunderground.com/history/
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Figure 4-4 - Time series of temperature (top), humidity (middle) and wind speed (bottom) in Lisbon, 

from September 1 to December 31, 2009. 

Figure 4-5 shows the average daily profile of temperature, humidity and wind 

speed (data collected from September to December). Both temperature and wind 

speed start increasing around 8 AM onwards, peaking at 5 PM. Humidity presents the 

opposite behavior. It decreases from 7 AM, reaching the lowest value at 4 PM. 
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Figure 4-5 - Variation of temperature, wind speed and humidity during a 24h-period in Lisbon (data 

collected from September 1, 2009, to December 31, 2009). 

4.5 Data exploration 

This section characterizes the temporal and spatial patterns of exhaust gases 

and meteorological conditions throughout the four months of observations (from 

September to December 2009). Additionally, the correlation between exhaust gases is 

studied in order to identify a suitable marker for exhaust-pipe emissions. 

4.5.1 Temporal analysis 

4.5.1.1 Time series of exhaust gases 

The concentration of atmospheric pollutants can vary according to seasons. 

Lower temperatures slow the rate of dispersion of gases, therefore, higher 

concentrations of atmospheric pollutants are usually perceived in winter, although the 

formation and dispersion of exhaust gases is the result of a complex interaction 

between several variables and not exclusive of a single factor. Moreover, wintertime is 

more prone to episodes of inversion layer, which traps atmospheric pollutants in the 

lower levels of the atmosphere (Clapp & Jenkin, 2001). Additionally, road traffic 

increases (Hu, et al., 2009c) and the larger number of pollution sources (e.g. domestic 

heating) (Colls & Tiwary, 2009) also contributes to the increase in atmospheric 

pollutants on winter. This scenario can be observed in Figure 4-6, which plots the time 
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series for average concentrations of NO, NO2, NOx and CO during 2009. The data is 

aggregated per hour, as an average measure of all monitoring stations. 

 

Figure 4-6 - Time series of gases common to all monitoring stations during a 12 months period (from 

January to December 2009) for Lisbon Municipality (all monitoring stations considered). 

Annual mean concentration of NO2 is 39.88 µg/m3, while NO is 22.09 µg/m3 and 

NOx is 73.74 µg/m3. The concentration decreases from winter to summer - it is higher 

in NO (from 33.12 µg/m3 to 12.58 µg/m3) than in NO2 (from 46.42 µg/m3 to 30.87 

µg/m3). Although in summer higher temperatures facilitate the dispersion of 

atmospheric pollutants, higher temperatures in daylight can also enable a 

photochemical oxidation of NO forming NO2 (Clapp & Jenkin, 2001). Table 4-3 

summarizes the results: 

 

 
Winter Summer Annual 

NO 33.12 12.58 22.09 

NO2 46.42 30.87 39.88 

NOx 97.20 50.15 73.74 

CO 386.80 230.81 304.64 

Table 4-2 – Average concentrations of exhaust gases in winter and summer months. Measurements in 

µg/m
3
. 
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4.5.1.2 Daily variation  

Figure 4-7 shows the average variation of exhaust gas over the course of one 

day (on top, the data was collected during one year, from January to December 2009; 

on bottom the data was collected during four months, from September to December 

2009, considering the contribution of all monitoring stations). Two daily peaks of gas 

concentration, which are related to traffic congestion, were also observed by Colls & 

Tiwary (Colls & Tiwary, 2009), Melkonyan & Kuttler (Melkonyan & Kuttler, 2012) and 

described in (APA, 2012). The morning peak quickly increases from 5 AM, reaches the 

maximum around 9 AM and quickly drops, corresponding to the inbound traffic to the 

city. In the afternoon, gas concentration gradually rises around 3 PM, reaches the 

maximum around 8 PM and then slowly drops, corresponding to the outbound traffic 

from the city. When atmospheric stability is high, we can observe a gradual decline 

during the remainder of the day, after the rush-hour (Colls & Tiwary, 2009). on 

average, the second daily peak reaches higher concentrations (15.85% for NO2) than 

the first daily peak and takes longer to disperse, as observed by Uno et al. (Uno, et al., 

1996). Remaining atmospheric pollutants resultant from the morning commuting add 

to the afternoon emissions, causing a higher concentration of atmospheric pollutants. 

Additionally, the drop of temperature at the beginning of the night slows the 

dispersion of gases. This scenario can be reversed on warmer months, with higher 

temperatures at the beginning of the night helping to disperse atmospheric pollutants, 

as observed by Huang et al. (Huang, et al., 2001). 

As stated before, the rate of gas dispersion is also affected by temperature. 

Heated gas expands its’ volume as higher temperatures increase molecules’ speed and 

hence disperses more quickly. The opposite occurs when faced with cold, as gas 

responds by contracting and by slowly dispersing (Beychok, 2005). However, at night, 

although there is a significant decrease in temperature, the production of atmospheric 

pollutants drops considerably. The number of moving vehicles reduces to a minimum, 

traffic being one of the major sources of exhaust gases. On average, we observed a 

reduction of exhaust gas concentrations of about 19.1% at night (from 10 PM to 7 AM) 

and 23.1% on weekends. 
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Figure 4-7 - Average variation of exhaust gases over the course of a day for Lisbon Municipality.  

Top: January to December 2009 (12 months period).  

Bottom:  September to December 2009 (4 months period). 

A similar scenario can be observed on individual monitoring stations. Figure 4-8 

shows the average variation of exhaust gas over the course of one day by considering 

only the “Av. Liberdade” monitoring station. At the top, the data was collected during 

one year, from January to December 2009, whilst at the bottom the data was collected 

during four months, from September to December 2009. Similar to the previous figure, 

two daily peaks are present. Overall gas concentrations are higher on this monitoring 

station since it is located in the vicinity of a main road, thus sensing the direct impact 

of traffic exhaust gases. Additionally, the nearby road network can also influence the 

concentrations of atmospheric pollutants (Hu, et al., 2012c). Roads with a higher 
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amount of crosswalks, stop signs, and/or traffic signals require frequent accelerations 

from vehicles. The same goes for roads with short segments and roads with compact 

traffic (Hu, et al., 2012c). Moreover, in this station, the second daily peak shows a 

29.67% increase on NO2 concentrations compared to the first daily peak, which was 

higher than the previous observations.  

 

 

Figure 4-8 - Average variation of exhaust gases over the course of a day for “Av. Liberdade” station.  

Top: January to December 2009 (12 months period).  

Bottom: September to December 2009 (4 months period). 

Generally, traffic stations perceive higher concentrations of atmospheric 

pollutants than background stations, as can be observed in Table 4-3. Moreover, the 

difference between the first and the second peak in daily concentrations of 

atmospheric pollutants is also higher in traffic stations (on average, an increase of 
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5.22% in the second daily peak) than in background stations (on average, an increase 

of 1.34% in the second daily peak). As mentioned, this is due to the nature of these 

sensors, which are located near main roads, and subject to the direct impact of nearby 

traffic.  

 

 
4 months (Sep – Dec, 2009) 

 
 

1 year (Jan – Dec, 2009) 

 
Traffic Background All stations 

 
 

Traffic Background All stations 

NO 48.85 13.87 28.83 
 

NO 39.21 9.36 22.09 

NO2 57.43 33.65 43.82 
 

NO2 53.99 29.39 39.88 

NOx 132.34 54.92 88.02 
 

NOx 114.11 43.74 73.74 

CO 477.65 262.88 355.41 
 

CO 408.67 227.08 304.64 

Table 4-3 – Average concentrations of exhaust gases for traffic and background stations, using data 

collected from September to December 2009 (left) and data collected from January to December 2009 

(right). Measurements in µg/m
3
. 

4.5.1.3 Seasonal variation 

Likewise, warmer months (June, July and August) have, on average, lower 

exhaust gas concentration (25.7 µg/m3 for NO2) than colder months (44.8 µg/m3 for 

NO2, in October, November and December), which can be observed in Figure 4-9 (data 

as an average measure of all monitoring stations).  

 

Figure 4-9 - Average variation of exhaust gases across every month in 2009. 

In cooler months, the afternoon peak attains higher values of gas 

concentrations than the morning peak (67.8 µg/m3 against 55.9 µg/m3 for NO2), while 

in warmer months, the morning peak reaches higher values than the afternoon peak 
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(37.8 µg/m3 against 29.8 µg/m3 for NO2). These observations can be explained by the 

higher temperatures at the beginning of the night in warmer months and the 

occurrence of the inversion layer effect in colder months. Moreover, there is a 

narrower gap between the maximum and minimum average concentrations of exhaust 

gases in warmer months (23.3 µg/m3 for NO2) when compared with cooler months 

(40.2 µg/m3 for NO2).  

Similar profiles can be observed throughout different months (Figure 4-10, with 

data as an average measure of all monitoring stations). As described before, in 

September (warmer month) the morning peak is more pronounced than in December 

(cooler month); however the afternoon peak in December is stronger than that of 

September, which is similar to the observations of Huang et al. (Huang, et al., 2001) 

and Uno et al. (Uno, et al., 1996).  

 

Figure 4-10 - Comparison of average variation of nitrogen dioxide, during a 24h period in different 

months (from September to December). 

Similar patterns were observed when exploring data from different years 

(between 2008 and 2011) as presented in Figure 4-11 (data as an average measure of 

all monitoring stations, collected during four months, from September to December, 

each year). Two daily peaks of NO2 concentrations are observable, with the second 

peak, on average, reaching higher values than the first peak. 
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Figure 4-11 – Comparison of average variation of nitrogen dioxide, during a 24h period from September 

to December, over a period of four years. 

 

4.5.1.4 Weekly analysis 

Weekly variation of exhaust gases concentrations is shown in Figure 4-12 (data 

as an average measure of all monitoring stations). On weekends, the average 

concentration of exhaust gases is lower than that on weekdays due to the overall 

reduction in traffic.  

 

Figure 4-12 – Exhaust gases distribution during the seven days of the week (data collected during 12 

months, from January to December 2009) for Lisbon Municipality (all monitoring stations considered). 
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The reduction of traffic on weekends is visible on the concentration of 

atmospheric pollutants (Figure 4-13, data as an average measure of all monitoring 

stations, collected during four months, from September to December). Some 

consequences can be observed: the average concentration of NO2 is much lower on 

weekends (36.08 µg/m3) than on weekdays (46.85 µg/m3); the two daily peaks are less 

emphasized on weekends; and the difference between the maximum and minimum 

concentration of NO2 is higher on weekdays (maximum value is 144.7% higher than 

minimum value) than on weekends (maximum value is 86.5% higher than the 

minimum value). Table 4-4 summarizes the results: 

 

Figure 4-13 - Comparison of average variation of nitrogen dioxide, during a 24h period, on weekdays and 

weekends. 

 

 
4 months (Sep – Dec, 2009) 

 
 

1 year (Jan – Dec, 2009) 

 
Weekdays Weekends 

 
 

Weekdays Weekends 

NO 32.05 20.58 
 

NO 24.95 14.92 

NO2 46.85 36.08 
 

NO2 42.83 32.50 

NOx 96.00 67.64 
 

NOx 81.08 55.38 

CO 366.77 326.21 
 

CO 314.11 281.22 

Table 4-4 – Average concentrations of exhaust gases on weekdays and weekends.  

Measurements in µg/m
3
. 

Moreover, on Sundays the variation is quite different (Figure 4-14). The average 

NO2 concentration is lower than on Saturdays (and weekdays) due to the overall 

reduction in traffic. The first daily peak is less accentuated and occurs in the early 

morning, possibly as people return home from Saturday night activities (Colls & Tiwary, 

2009). 
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Figure 4-14 - Comparison of average variation of nitrogen dioxide, during a 24h period, on weekends 

(Sundays and Saturdays). 

4.5.2 Characterization of meteorological events 

Besides topography (the shape of the landscape), meteorological conditions are 

the fundamental factor for the dispersion of atmospheric pollutants, therefore, wind, 

temperature, humidity, air pressure, and weather conditions affect the concentrations 

of atmospheric pollutants (Kolehmainen, et al., 2001), (Kukkonen, et al., 2003), (Agirre-

Basurko, et al., 2006), (Juhos, et al., 2008).  There are two main components: vertical 

component, generated by the turbulence of the vertical temperature gradient (thermal 

gradient) between different low layers of the atmosphere; and horizontal component, 

where the wind is the main agent in transporting and gas mixing (APA, 2012). 

4.5.2.1 Temperature 

Temperature affects the rate of diffusion of a gas. High temperatures (or heat) 

causes gases to expand (increase in molecules' speed or kinetic energy), making it less 

dense, so molecules move faster and there will be more spontaneous spreading of the 

material, which in turn causes gases to diffuse more quickly. Low temperatures cause 

gases to contract, making them denser, thus diffusing more slowly (Miller, 2009). In 

the atmosphere, air temperature usually decreases with the increase in altitude 

(roughly 1ºC per 100m). This variation is termed lapse rate, and it is due to the fact 

that ascending dry air is subject to lower pressure, which increases the volume and 

decreases the temperature (APA, 2012). Also to be considered is the event of 
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temperature inversion, or inversion layer. This takes place when the surface air is 

cooler than the air above. The cooler air near the surface is heavier and will not ascend 

due to the warmer air above. Pollutants released near the surface will get trapped and 

build up in the cooler layer of air, near the surface. This event occurs mostly on 

mountain valleys in clear nights, with light wind, especially in winter (Colls & Tiwary, 

2009) (Clapp & Jenkin, 2001). 

4.5.2.2 Wind 

Wind can be represented by a vector with both magnitude and direction. The 

vertical component of the wind (Z axle) is responsible for the turbulence, while the 

remaining components (X and Y axles) define the transport and dilution of pollutants 

(APA, 2012). Wind speed increases with height, directly affecting the pollutants’ 

dispersion from chimney flues at high altitude (e.g. factory chimneys), especially in the 

initial mixing of expelling gases with the atmosphere. With a stable atmosphere, gas 

plumes can be transported long distances, depositing gas concentrations in soil level at 

locations far away from pollutant sources (Miller, 2009). Therefore, wind speed 

determines how quickly the pollutants mix with the surrounding air and how fast they 

move away from their source. Strong winds tend to lower the concentration of 

pollutants by spreading them apart as they move downstream. Moreover, the stronger 

the wind, the more turbulent the air and the more diluted the pollutants are (Ahrens & 

Henson, 2014), (Venkatram, et al., 2013a). 

As with wind, so too can breezes disperse pollutants. They are the result of 

differences in temperatures. Costal sea-shore areas are subject to morning marine 

breezes. This movement of air is directed from the ocean towards inland, beginning at 

noon and stopping at nightfall. It can be stronger on warmer days and weaker on 

cloudy days (APA, 2012). On clear, still nights, a thermal low-pressure area may form 

over urban areas due to the accumulated heat of the city infrastructure, which is much 

warmer than the cooler rural areas. This can generate country breezes, which move 

from the countryside to the city. If industrial areas on the outskirts of the city are 

located in the path of the breezes, pollutants may be carried to the city center, thereby 

increasing their concentrations (Ahrens & Henson, 2014). 

4.5.2.3 Air pressure 

High pressure centers in the atmosphere (also known as anticyclone areas) are 

defined by air descending (in spirals) from the higher layers. The air expands at the 
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surface, which warms and stays stable, suppressing ascending movements (necessary 

for cloud formation and precipitation). Because high pressure centers are 

characterized by a considerable stability, there is a low vertical mixture, and therefore 

a weak dispersion of pollutants. On the other hand, low pressure centers are 

ascending movements, associated with instability conditions and high turbulence, 

which promote pollutant dispersion (APA, 2012), (Ahrens & Henson, 2014). 

4.5.2.4 Weather conditions 

Rain is able to wash out water-soluble pollutants and particulate matter in the 

atmosphere, reducing the concentrations. On the other hand, clear weather (especially 

under sunlight) can prompt chemical reactions in air pollutants and produce smog. 

Without wind to disperse pollutants, areas under the influence of clear weather and 

direct sunlight are subject to high concentrations of pollutants (Ahrens & Henson, 

2014). Cloudy or overcast conditions tend to increase pollutants’ concentrations, if the 

wind is calm. Ozone is the exception, since the best conditions for the formation of the 

chemical compound encompass sunlight and higher temperatures (Grambsch, 2001). 

It is important to note that although each individual meteorological variable has 

some impact on the formation and dispersion of gases, atmospheric pollutants are the 

result of a complex combination of all variables. None of the variables work in 

isolation, therefore none of the variables is able to individually explain the dispersion 

patterns of atmospheric pollutants. Thus, during inferential analysis all the variables 

should be considered.  

4.5.3 Effect of meteorological conditions on exhaust gases concentrations 

4.5.3.1 Weather conditions 

During the four months of study (from September to December 2009), as the 

weather conditions aggravate (i.e. change from clear to cloudy and from cloudy to 

rainy); the temperature drops (from 18.8 ºC to 15.5 ºC on average); the wind speed 

increases (from 11.5 km/h to 19.1 km/h on average); and the humidity also increases 

(from 65.4% to 89.6% on average). These observations are summarized in Table 4-5: 
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Weather condition 
Temperature 

(ºC) 
Humidity 

(%) 
Wind Speed 

(km/h) 

Clear 18.74 65.58 11.54 

Cloudy 17.55 77.80 12.77 

Rainy 15.46 89.66 19.02 

Table 4-5 - Average temperature, humidity and wind speed with different weather conditions,  

in Lisbon Municipality. 

Figure 4-15 (top) represents the daily NO2 variation for different weather 

conditions. During clear weather, we observe a higher concentration of NO2, compared 

to cloudy or rainy conditions. One could expect to observe the lowest NO2 

concentrations under clear and stable weather conditions. However, the patterns for 

exhaust gases dispersion are the result of a complex interaction among several 

variables (e.g. temperature, wind speed, humidity, weather conditions). The analysis 

on Table 4-5 indicates that in clear weather, a higher temperature can also be 

observed. Although higher temperature is an important factor in gas dispersion, NO2 

can be formed in these conditions through a photochemical oxidation of NO in the 

troposphere during daylight (Clapp & Jenkin, 2001). Additionally, the average low wind 

speed may not be sufficient to disperse the atmospheric pollutants, resulting in high 

concentrations of pollutants under direct sunlight (Ahrens & Henson, 2014). A lower 

concentration of NO2 was observed during rainy days, when the second concentration 

peak of the day is less noticeable.  

When specific monitoring stations are analyzed, a similar outcome is observed. 

Figure 4-15 (bottom) represents the average concentrations of NO2 in “Av. Liberdade” 

station. Higher concentration values are perceived, since this is a traffic station. 
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Figure 4-15 - Effect of weather conditions on daily NO2 concentrations.  

Top: considering data from all monitoring stations.  

Bottom: considering data from “Av. Liberdade” station. 

Table 4-6 summarizes the effect of different weather conditions in 

concentrations of exhaust gases. The same trend is visible: higher concentrations in 

clear weather, lower concentrations under rainy days. Once again, “Av. Liberdade” 

(bottom), a traffic station, presents higher concentration values for all four exhaust 

gases. 
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Weather condition Clear Cloudy Rainy 

Nitrogen oxides (µg/m3) 103.53 76.97 49.47 

Nitrogen monoxide (µg/m3) 33.96 24.73 13.69 

Nitrogen dioxide (µg/m3) 51.45 39.04 28.48 

Carbon monoxide (µg/m3) 393.62 326.76 263.48 

    Weather condition Clear Cloudy Rainy 

Nitrogen oxides (µg/m3) 212.08 159.48 87.21 

Nitrogen monoxide (µg/m3) 80.65 58.66 27.47 

Nitrogen dioxide (µg/m3) 88.43 69.54 45.10 

Carbon monoxide (µg/m3) 559.87 432.40 312.82 

Table 4-6 - Average concentration of exhaust gases in different weather conditions. 

 Top: considering data from all monitoring stations.  

Bottom: considering data from “Av. Liberdade” station. 

Also important to note is that the previous analysis is based on data collected 

between September and December and not during a full year. Relevant and extreme 

weather periods are missing from the data set, such as July and August, the peak of 

summer with highest temperatures and best weather conditions, and January and 

February, the peak of winter with the lowest temperatures and rougher weather 

conditions. Therefore, the temporal sample (from September to December) could not 

be representative for the complex patterns taking places along a full year. 

4.5.3.2 Wind speed 

Wind speed is a major factor which affects atmospheric pollutants. Figure 4-16 

(top) plots the variation of exhaust gases’ concentrations according to the wind speed 

variation, considering the average measures from all monitoring stations in Lisbon 

municipality, from September to December. A clear trend is observable: with the 

increase of wind speed, there is a steady decrease of all exhaust gases’ concentrations. 

A similar scenario is observable in individual monitoring stations, from which “Av. 

Liberdade” station is an example Figure 4-16 (bottom). 
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Figure 4-16 - Variation of exhaust gases’ concentrations according to wind speed in Lisbon municipality 

(top) and “Av. Liberdade” station (bottom). 

This decrease of exhaust gases’ concentration with the increase of wind speed, 

is consistent along all months analyzed. Figure 4-17 plots the effect of wind speed on 

exhaust gases’ concentrations in September (top) and December (bottom). In both 

months there is a clear decrease of concentrations with the increase of wind speed. 

However, in September the rate is constant, while in December there is an initial 

substantial drop of concentrations. Note that in September the average wind speed is 

lower, with higher average temperature and stable weather conditions, compared to 

December. 
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Figure 4-17 - Variation of exhaust gas concentrations according to wind speed in Lisbon municipality, in 

September (top) and December (bottom) 

4.5.3.3 Humidity and Temperature 

The effect of temperature and humidity in the variation of exhaust gases’ 

concentrations was also analyzed. However, exhaust gases’ concentrations do not 

appear to have a clear behavior against temperature or humidity, since other variables 

are simultaneously affecting the atmospheric pollutants. 

As pointed out before, a single variable is unable to explain the variation of a 

gas when monitoring atmospheric pollution, due to the complex interactions involved 

with other variables. This may justify the absence of a clear and regular pattern of 

exhaust gases’ concentrations when the humidity or temperature varies.  
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4.5.4 Correlation between exhaust gases 

As discussed before, NO2, NO and CO have natural sources, but also 

anthropogenic sources, usually from fuel burning at high temperatures (from domestic 

heating or internal combustion vehicles, traffic being one of the main sources of 

pollutant in urban areas (Zavala, et al., 2006), (Karlsson, 2004)). Moreover, NOx is 

composed by NO2 and NO, and NO emitted to the atmosphere can form NO2. 

Therefore, in urban areas, these atmospheric pollutants appear to have similar 

anthropogenic sources.  

To understand to what extent they could be related, the Pearson’s coefficient 

of correlation is computed between them. Table 4-7 presents the correlation among 

NO, NO2, NOx and CO, considering data collected from all monitoring stations. The 

coefficient of correlation of Pearson (r) between two variables (X,Y) is defined as 

(Devore & Berk, 2012): 

 

 𝑟𝑥,𝑦 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 ( 20 ) 

   

where 𝑥̅ =  
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  is the arithmetic mean of variable X and 𝑦̅ =  

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  is the 

arithmetic mean of variable Y, with X = (x1,..,xn) and Y = (y1,..,yn), two variables of size n. 

Overall, exhaust gases are strongly correlated. CO and NOx present the highest 

correlation with other exhausted gases, while NO2 is more divergent, especially the 

correlation with NO.  These observations are in line with Lin et al. (Lin, et al., 2011). 

The authors observed that NOx, CO, and SO2 are strongly correlated among each other, 

hypothesizing that these exhaust gases are emitted by some common sources. 

 

Exhaust Gases NO2 NO NOx CO 

NO2 1 0.7563 0.8722 0.8314 

NO  1 0.9797 0.9360 

NOx   1 0.9548 

CO    1 

Table 4-7 - Coefficient of correlation of Pearson between exhaust gases in Lisbon municipality. 
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Table 4-8 shows a similar experiment but only using data from “Av. Liberdade” 

station. This is a traffic station, located in the vicinity of intensive traffic. In this station, 

the correlation of CO with the remaining exhaust gases decreases in strength from the 

previous scenario, while NO2, NO and NOx strengthen the correlations. Overall, the 

exhaust gases are strongly correlated in this traffic station, as observed using data 

from all monitoring stations. Moreover, the strong correlation between NO2 and other 

exhaust gases is an indication that NO2 can be used to estimate the concentrations of 

other exhaust gases. This is a relevant observation since NO2 is usually used as a 

marker for traffic emissions (Krzyzanowski & Schneider, 2005). 

 

Exhaust Gases NO2 NO NOx CO 

NO2 1 0.8492 0.9187 0.8245 

NO  1 0.9887 0.8605 

NOx   1 0.8774 

CO    1 

Table 4-8 - Coefficient of correlation of Pearson between exhaust gases in “Av. Liberdade” station. 

Figure 4-18 represents the correlation among exhaust gases, using a scatter 

plot and fitted linear function. 
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NO2 vs NO NO2 vs NOx 

  
NO vs NOx NO vs CO 

  
NOx vs CO NO2 vs CO 

Figure 4-18 - Scatter plot and fitted linear function between different exhaust gases (in µg/m
3
). 
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4.5.5 Nitrogen dioxide profile 

According to Krzyzanowski et al. (Krzyzanowski & Schneider, 2005), NO2 is a 

marker for combustion processes and an indicator of fresh exhaust-pipe emissions 

near roads. As expressed before, NO emitted to the atmosphere can produce a rapid 

photochemical oxidation forming NO2 in the troposphere during daylight (Clapp & 

Jenkin, 2001). Because NO can potentially be converted to NO2 in this process, it is 

typical to express NO2 when making emission estimates (Colls & Tiwary, 2009). In our 

analysis, only nitrogen dioxide (NO2) is considered, since it is often considered a 

marker for transport-related air pollution (Becker, et al., 2000). 

From NO2, one can estimate the concentrations of the other remaining exhaust 

gases. In our study, we found a strong correlations between the NO2 concentration 

and other exhaust gases’ concentration; NO (r = 0.8492), NOx (r = 0.9187), and CO (r = 

0.8245); as discussed in the previous section.  

NO2 behaves similarly in every station, as shown in Figure 4-19. The same two 

daily peaks are observed, although with different intensities. On average, traffic 

stations sense higher concentration of exhaust gases (57.4 µg/m3 for NO2, during four 

months of data) than background stations (33.7 µg/m3 for NO2, during four months of 

data), which is in line with Pleijel et al. (Pleijel, et al., 2004), Gilbert et al. (Gilbert, et al., 

2003), Zou et al. (Zou, et al., 2006) and Ndoke & Jimoh (Ndoke & Jimoh, 2005). The 

authors observed that concentrations of exhaust gas decrease when moving away 

from the roads. Colls & Tiwary (Colls & Tiwary, 2009) stated that NO2 concentrations 

on traffic stations can be extremely high in comparison to background levels. This 

scenario can be observed in Table 4-9, where on average, NO2 concentrations at the 

traffic stations are 42% higher than in background stations. 
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Figure 4-19 – Average variation of NO2 over the course of one day from different stations (top) and 

normalized data (bottom), during four months of data. 

By observing the normalized plot (Figure 4-19, bottom) one can verify that NO2 

reaches the minimum value in traffic stations around 4 AM, while in some background 

stations the minimum NO2 value is achieved between 3 PM and 4 PM (e.g. “Olivais”, 

“Beato” and “Restelo”). As discussed before, traffic stations are deployed to sense 

exhaust gases directly from traffic, and during business hours there is a continuous 

emission of atmospheric pollutants from that source. Although traffic starts to reduce 

the activity in the evening, only between 1 AM and 5 AM does it reach minimum 

activity. On the other hand, background stations are deployed to perceive exhaust 

gases from different sources (e.g. domestic heating or industrial burning), other than 

traffic. In that sense, some of those sources could be active even during the night. 
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Station Type Avg Max Min Std Dev 

Avenida Liberdade Traffic 77.27 390.15 5.26 49.64 

Beato Background 32.88 156.83 1.91 25.39 

Chelas Background 36.45 149.18 1.91 26.21 

Entrecampos Traffic 53.27 266.32 1.43 36.91 

Olivais Background 40.15 180.73 1.43 29.27 

Restelo Background 27.81 180.06 2.86 22.43 

Santa Cruz de Benfica Traffic 45.28 205.59 1.91 29.37 

Table 4-9 - Nitrogen dioxide average, maximum and minimum concentrations (µg/m
3
) in each 

monitoring station (data collected during a four months period, from September to December 2009). 

The seasonal variation of NO2 concentrations follow the patterns observed with 

other exhaust gases: lower concentrations in summer and higher concentrations in 

winter (Figure 4-20). This behavior is similar at all monitoring stations. Once again, 

traffic stations show higher concentration values than background stations, with larger 

amplitude between maximum and minimum values achieved on traffic stations. 

 

Figure 4-20 - Variation of nitrogen dioxide concentration on each monitoring during a year (2009). 

Figure 4-21 represents the location of each monitoring station and the 

corresponding average concentration of NO2 (during four months of data, from 

September to December 2009).  
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Figure 4-21 - Average concentration of nitrogen dioxide (µg/m
3
) in each monitoring station. 

“Av. Liberdade” is one of the most important stations, since it is located in the 

middle of the city, adjacent to a major road. By observing the data from this station, 

we were able to strongly correlate the concentration of NO2 with the other stations. 

The coefficient of correlation value ranges from r = 0.923 (“Entrecampos”, a traffic 

station) and r = 0.758 (“Beato”, a background station). Therefore, the following 

inference analysis will explore techniques to model NO2 concentrations (as a 

representative exhaust gas) with data collected at ‘Av. Liberdade’ monitoring station 

(as a predominant monitoring station), from September to December 2009. At the end 

of the analysis, the same procedure will be applied to the remaining monitoring 

stations. 
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4.6 Data analysis and results: using taxis as probe for exhaust gases 

The previous section has shown that distinct exhaust gases could be related 

among themselves and are affected by other variables. However, this interplay may 

not be straightforward due to their complex interdependencies.  

Since NO2 can be used as a marker for exhaust-pipe emissions and it is strongly 

correlated with other exhaust gases (NO, NOx and CO), our goal was to estimate the 

NO2 concentration in each hour given:  

- hour of the day (TH= {1, 2, …, 24});  

- day of the week (D = {Sunday, …, Saturday});  

- weather conditions (W = {Clear, Cloudy, Rainy});  

- temperature (T = [0,34]);  

- humidity (H = [0,100]);  

- wind speed (WS=[0,50]);  

- wind direction (WD = [0,360]);  

- number of taxi pick-ups (TP = [0,25]);  

- number of taxi drop-offs (TD = [0,25]);  

- number of distinct taxi vehicles during pick-ups (TPV = [0,20]) ;  

- number of distinct taxi vehicles during drop-off (TDV=[0,20]);  

- average taxi speed (TS = [1,120]); and  

- number of taxi-GPS samples (TG = [1,605]).  

These are our 13 independent explanatory variables. The NO2 (or any other 

exhaust gas) does not have a strong correlation with any of the other aforementioned 

variables individually. Among the highest correlations found, NO2 correlates best with  

wind speed (r = 0.3601) and humidity (r = 0.3368).  

The procedure was, firstly, applied to data from “Av. Liberdade” station, from 

which the results that are presented in the next subsections were obtained. (This is 

one of the most important monitoring stations, since it is located right in the center of 

the city, near an important road). At the end of the experiment, the same procedure 
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was applied to the data from the remaining monitoring stations, from which a similar 

outcome was observed and it is summarized in the last section of this chapter. 

4.6.1 Searching for a linear relationship  

Aiming for a simple model, we start by exploring a linear relationship between 

the dependent variable Y (represented by NO2) and the explanatory variable X 

(represented by the vector {TH, D, W, T, H, WS, WD, TP, TD, TPV, TDV, TS, TG}), as 

suggested by Donelly et al. (Donnelly, et al., 2015). As shown before, simple linear 

regression is not suitable for the current setup, since, individually, the independent 

variables are unable to explain the variation or behavior of NO2. Therefore, we will 

explore the multiple linear regression, which attempts to model the relationship 

between two or more explanatory variables and a response variable by fitting a linear 

equation to observed data. This technique allows the identification of the percentage 

of the dependent variable explained by the explanatory variables and the contribution 

of each explanatory variable. The estimation of the coefficients is based on the method 

of ordinary least squares, consisting of minimizing the sum of squares of residuals 

(Pallant, 2005). 

Given a data set {yi, xi1,…,xip}, i=1,…,n, a linear regression model assumes that 

the relationship between the dependent variable yi and the vector of independent 

variables xi is linear taking the form (Freedman, 2009): 

 

𝑦𝑖 = 𝛽1𝑥𝑖1 + ⋯ +  𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 ( 21 ) 

   

with i = 1,…,n (the number of instances) and εi an error random variable that adds 

noise to the linear relationship between the dependent variable and the independent 

variables. This approach assumes linear combination of the regression coefficients and 

the predictor variables, and constant variance in the errors (homoscedasticity) 

(Freedman, 2009). 

Based on a holdout method (the oldest 2/3 forming the training set and the 

latest 1/3 forming the testing set), the model takes the form: 
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    𝑁𝑂2 = 2.090 × 𝑇𝐻 + 0.771 × 𝐷 − 5.887 × 𝑊 − 2.813 × 𝑇
− 0.8269 × 𝐻 − 2.741 × 𝑊𝑆 + 0.05437 × 𝑊𝐷
+ 2.137 × 𝑇𝑃 + 2.08 × 𝑇𝐷 − 1.434 × 𝑇𝑃𝑉       
− 1.264 × 𝑇𝐷𝑉 + 0.0801 × 𝑇𝑆 − 0.865 × 𝑇𝐺   
+ 204.5 

( 22 ) 

 

Using this model, we are able to estimate the value of NO2 with the coefficient 

of correlation (r) of 0.6120. By removing error samples with empty values or 

anomalous data (e.g. negative values of exhaust gas, humidity, or wind speed), we 

observe a slight increase of the coefficient of correlation to 0.6215.  

Furthermore, we can also observe that the majority of the variables (NO2, 

temperature, wind speed and taxi-related parameters) followed a Gaussian 

distribution, usually with a positive skew (Figure 4-22). Therefore, we apply the three-

sigma rule of thumb (or 68–95–99.7 rule), a conventional heuristic that states almost 

all values lie within three standard deviations of the mean (Kazmier, 2003). By doing 

so, we slightly improve the coefficient of correlation to 0.6289, with a corresponding 

coefficient of determination (r2) of 0.3955.  

Moreover, hour of the day, temperature, humidity, wind speed, and number of 

pick-ups are the dominant variables, with a higher contribution to the process. By 

removing one of them, the coefficient of correlation drops considerably - 14% on 

average, while wind speed was responsible for a drop of 23%. 
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Nitrogen dioxide, average = 78.03; standard 

deviation = 46.85; skew = 1.094 

Taxi's average speed, average = 15.83; standard 

deviation = 4.28; skew = 14.228 

  

Temperature, average = 18.15; standard deviation 

= 5.16; skew = 0.041 

Wind speed. average = 14.35; standard deviation 

= 8.23; skew = 0.534 

Figure 4-22 – Histogram representation of the distribution of samples into groups of ranges, for nitrogen 

dioxide, taxis’ average speed, temperature, and wind speed. 

4.6.2 Selecting predictor variables  

4.6.2.1 Overfitting evaluation 

Overfitting takes place in complex models, due to excess of data, when the 

regression model adapts to random errors or noise instead of the underlying unbiased 

estimates of properties and relationship within the population, thus not reflecting the 

overall population (Meyer & Krueger, 2004). Excess of predictors can lead to 

overfitting, which prevents our model to fit new samples. Although our data set safely 

fulfills the rule of thumb of 10-15 observations for each term (Meyer & Krueger, 2004), 

some techniques can be used to prevent overfitting. The analysis of multicollinearity 
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and predicted r2 are adequate to verify if the model is suitable. Additionally, the 

adjusted r2 should also be considered (Meyer & Krueger, 2004). 

Adjusted r2 compares the explanatory power of regression models which 

contain different numbers of predictors. It is a modified version of the regular r2, 

adjusted for the number of predictors in the model. The adjusted r2 is always lower 

than regular r2 and can present negative values. It increases only if the new term 

improves the model more than would be expected by chance, thus contributing to the 

model. It decreases when a predictor improves the model by less than expected by 

chance, thus not contributing significantly to the model (Meyer & Krueger, 2004), 

(Hogg & Ledolter, 1987).  

Predicted r2 indicates how well a regression model predicts responses for new 

observations, and can prevent an overfitting model. It is usually calculated by 

systematically removing each observation from the data set, estimating the regression 

equation, and determining how well the model predicts the removed observation. This 

can be viewed as a cross-validation. Predicted r2 is always lower than r2 and can 

present negative values. A predicted r2 value much lower than the regular predicted r2 

is an indication of model overfitting and an excess of predictors (Meyer & Krueger, 

2004), (Hogg & Ledolter, 1987). 

Multicollinearity in multiple linear regression is a condition that takes place 

when one or more predictor variables in the model are correlated with other predictor 

variables. As a result, this situation can increase the variance of the regression 

coefficients, and is an indication of redundant variables (Meyer & Krueger, 2004). To 

measure multicollinearity, we can examine the variance inflation factors (VIF). It 

measures how much the variance of an estimated regression coefficient increases if 

the predictor variables are correlated. Absence of multicollinearity is achieved if all 

VIFs are equal to one. VIFs between 5 and 10 are a clear indication of correlation 

among predictor variables. VIFs above 10 are evidence of multicollinearity among 

predictor variables, thus affecting the estimation of the regression coefficients (Meyer 

& Krueger, 2004). 
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4.6.2.2 Inspecting predictor variables 

Table 4-10 shows the coefficient statistics for the regression model. The 

variance inflation factor row shows the correlation for each coefficient. Most of the 

coefficients present a VIF value around the unit, which is desirable. However, four 

coefficients present VIF values well above 10, meaning a strong correlation among 

them: Number of distinct Taxi Vehicles during Pick-ups (TPV); Number of Taxi Pick-ups 

(TP); Number of distinct Taxi Vehicles during Drop-off (TDV); and Number of Taxi Drop-

offs (TD). The p-value above 0.05 also indicates a low significance of the coefficients. 

Therefore, predictor variables Number of distinct Taxi Vehicles during Pick-ups (TPV) 

and Number of distinct Taxi Vehicles during Drop-off (TDV) do not contribute to the 

model and should be removed. 

 

Term Coefficient 
Standard Error 

of the 
Coefficient 

T-Value P-Value 
Variance 
Inflation 
Factor 

Constant 204.50 7.51 27.23 0.000   

Hour (TH) 2.0900 0.11 19 0.000 1.13 

Day of the Week (D) 0.7710 0.356 2.16 0.031 1.02 

Weather Conditions (W) -5.8870 0.967 -6.09 0.000 1.33 

Temperature (T) -2.8130 0.181 -15.58 0.000 1.72 

Humidity (H) -0.8269 0.0551 -15.02 0.000 1.94 

Wind Speed (WS) -2.7410 0.1 -27.38 0.000 1.35 

Wind Direction (WD) 0.0543 0.00623 8.73 0.000 1.27 

Number of distinct Taxi Vehicles 
during Pick-ups (TPV) 

-1.4340 0.774 -1.85 0.064 17.45 

Number of Taxi Pick-ups (TP) 2.1370 0.916 2.33 0.020 17.33 

Number of distinct Taxi Vehicles 
during Drop-off (TDV) 

-1.2640 0.872 -1.45 0.147 21.80 

Number of Taxi Drop-offs (TD) 2.0800 1 2.08 0.038 21.41 

Number of Taxi-GPS Samples (TG) 0.0810 0.0225 3.57 0.000 1.11 

Average Taxi Speed (TS) -0.8650 0.172 -5.02 0.000 1.08 

Table 4-10 – Coefficient statistics for multiple linear regression. 

4.6.2.3 Excluding non-significant variables 

In order to assure that only the significant predictor variables are kept in the 

regression model, the Stepwise regression method is applied, with a forward selection. 

In this method the model starts with no variables. Each variable is tested to verify if it 

improves the model, based on partial F-tests (i.e., the T-tests). The process stops when 

those variables statistically significant are added to the model and no further 

improvement is possible (Simon & Kwanisai, 2003). The alpha significance level to add 
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(Alpha-to-Enter, αE) and to remove (Alpha-to-Remove, αR) variables to the model was 

set to 0.15 (Simon & Kwanisai, 2003). 

 

Term Coefficient 
Standard Error 

of the 
Coefficient 

T-Value P-Value 
Variance 
Inflation 
Factor 

Constant 206.23 7.50 27.48 0.000   

Hour (TH) 2.126 0.109 19.46 0.000 1.11 

Day of the Week (D) 0.853 0.356 2.39 0.017 1.02 

Weather Conditions (W) -5.832 0.969 -6.02 0.000 1.33 

Temperature (T) -2.792 0.180 -15.50 0.000 1.71 

Humidity (H) -0.8341 0.0550 -15.16 0.000 1.93 

Wind Speed (WS) -2.735 0.100 -27.32 0.000 1.34 

Wind Direction (WD) 0.05381 0.00623 8.63 0.000 1.27 

Number of Taxi Pick-ups (TP) 0.690 0.205 3.36 0.001 1.20 

Number of Taxi-GPS Samples (TG) 0.0849 0.0223 3.80 0.000 1.10 

Average Taxi Speed (TS) -0.887 0.172 -5.14 0.000 1.08 

Table 4-11 – Coefficient statistics for multiple linear regression after Stepwise method was applied. 

After the use of the Stepwise method (Table 4-11), all the coefficients show VIF 

values around the unit, an indication of no correlation among the predictor variables, 

as expected. Additionally, the p-value is always lower than 0.05 (the highest achieved 

being 0.017), which confirms the significance of the result. With this new line-up of 

predictor variables, a new model is produced, defined by 

 

    𝑁𝑂2 = 2.126 × 𝑇𝐻 + 0.85 × 𝐷 − 5.832 × 𝑊 − 2.792 × 𝑇
− 0.8341 × 𝐻 − 2.735 × 𝑊𝑆 + 0.05381 × 𝑊𝐷
+ 0.690 × 𝑇𝑃 + 0.0849 × 𝑇𝑆 − 0.887 × 𝑇𝐺 + 206.23 

( 23 ) 

  

The coefficient of correlation (r) is 0.6254, with the correspondent coefficient 

of determination (r2) of 0.3912. The adjusted r2 is 0.3889, while the predicted r2 is 

0.3790. Since the adjusted r2 and predicted r2 don’t diverge significantly from the 

regular r2 (a maximum of 0.0122), it is reasonable to assume the absence of overfitting 

in the model. 
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4.6.2.4 Exploring improvements for variables’ selection 

In the previous section, we observed that the dominant variables were hour of 

the day (TH), temperature (T), humidity (H), wind speed (WS), and number of pick-ups 

(TP). By using only these five predictor variables, we are able to model NO2 

concentrations with a coefficient of correlation of 0.5937 and corresponding 

coefficient of determination of 0.3525, with an adjusted r2 of 0.3513 and a predicted r2 

of 0.3494. The model is defined by: 

 

    𝑁𝑂2 = 2.242 × 𝑇𝐻 − 2.650 × 𝑇 − 0.9325 × 𝐻 − 2.5155 × 𝑊𝑆
+ 0.933 × 𝑇𝑃 + 197.35 

( 24 ) 

   

 Table 4-12 shows the coefficients statistics using the five dominant predictor 

variables. As expected, VIF values for all coefficients approach the unit and p-values 

are zero, thus assuring the absence of correlation between predictor variables, and 

ensuring the significance of the coefficient of determination. 

 

Term Coefficient 
Standard Error 

of the 
Coefficient 

T-Value P-Value 
Variance 
Inflation 
Factor 

Constant 197,35 6.670 29.57 0.000   

Hour (TH) 2.242 0.111 20.15 0.000 1.09 

Temperature (T) -2.65 0.183 -14.51 0.000 1.66 

Humidity (H) -0.9325 0.0512  -18.20 0.000 1.66 

Wind Speed (WS) -25.155 0.0907 -27.73 0.000 1.04 

Number of Taxi Pick-ups (TP) 0.933 0.198 4.71 0.000 1.06 

Table 4-12 – Coefficient statistics for multiple linear regression using five dominant predictor variables. 

Although the value of coefficient of correlation using the dominant five 

variables is slightly lower than the value obtained from the previous approach (using 

10 uncorrelated variables), it shows that with fewer variables it is possible to achieve 

almost similar accuracy.  

Table 4-13 summarizes the results from the experiments up until now. It 

presents the comparison of performances for multiple linear regression using different 

sets of predictor variables. Highest coefficient of correlation was achieved using all 

predictor variables (13), however this produced overfitting, since several predictor 

variables were correlated. By removing the correlated variables, the coefficient of 



Chapter 4  
Monitoring exhaust gases concentrations using taxi traces and meteorological 
conditions 

182 

correlation drops, but assures the absence of overfitting of the model. Finally, by using 

just the five predominant variables, the performance of the model is reasonably close 

to the previous two scenarios. Nevertheless, the goodness of the fitting (coefficient of 

determination) from the predicted model is poor in all cases. The next sections will 

explore possible improvements. 

 

Number of predictor 
variables 

Coefficient of       
Correlation (r) 

Coefficient of 
Determination (r

2
) 

13 predictor variables 0.6289 0.3955 

10 predictor variables 0.6254 0.3912 

5 predictor variables 0.5937 0.3525 

Table 4-13 – Comparison of performances using different setups for predictor variables. 

4.6.3 Searching for model improvements 

Moving further along in improving our understanding of the correlation 

between the variables, we applied the principal component analysis (PCA) to all 13 

initial predictor variables. This technique allows us to identify patterns in data, 

emphasizing the similarities and differences between sets of observations, through 

orthogonal transformation, expressed in terms of principal components with the 

highest possible variance. These orthogonal components are the eigenvectors of the 

covariance matrix. An additional advantage is the possibility to reduce dimensionality 

and complexity without losing too much data, thus reducing the size of the data set 

(Jolliffe, 2002). 

As a first step, a correlation matrix for our non-normalized data is constructed 

to standardize the data (since the correlation matrix is the standardized covariance 

matrix). After computing the eigenvalues and eigenvectors, we keep those 

components with an eigenvalue greater than one (Figure 4-23), following the Kaiser’s 

rule (Larsen & Warne, 2010) – thus assuring components with higher variance 

(assuming each original variable has variance 1), noting that eigenvalues are a measure 

of variance. 
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Figure 4-23 - Scree plot of eigenvalues and cumulative variance explained for each principal component. 

The first four principal components (with eigenvalues greater than 1) account 

for 69% of the variance, i.e. can explain 69% of the variance of the data. The first two 

components alone (with eigenvalues 3.939 and 2.391) account for nearly 50% of the 

variance. Also, noticeably, the dominant variables of the first eigenvector (with 

absolute value of the loadings greater than 0.3) are taxi-related (taxi pick-up, taxi drop-

off, and number of distinct vehicles), while the dominant variables of the second 

eigenvector are temperature, humidity, and wind speed. 

Using the two principal components, we estimate the value of the NO2, using a 

linear relation with a coefficient of correlation of 0.5144. Although the resulting 

correlation values are not significant (and are noticeably inferior to the previous 

approach), the explored procedure holds some interest: a) demonstrates that there is 

an interplay between the exhaust gas and other urban variables; b) the data can be 

reduced without compromising too much information. Nevertheless, this procedure 

does not improve on the original model. Therefore, new techniques should be 

explored. 

4.6.4 Finding a better approach 

The previous section discusses the relation between exhaust gases and other 

urban variables. However, the resulting model from multiple linear regression does not 

show a significant correlation between them. Therefore, we pursue another approach 

to this problem. Several authors suggested that a multilayer perceptron with 

backpropagation is a fit and robust technique to model variables related with exhaust 
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gases or meteorological events (Rosenblatt, 1958), (Shi & Harrison, 1997), (Gardner & 

Dorling, 1999), (Kolehmainen, et al., 2001), (Perez & Reyes, 2001), (Kukkonen, et al., 

2003), (Agirre-Basurko, et al., 2006), (Juhos, et al., 2008), (Ahmed, et al., 2010). 

Artificial Neural Networks (ANN) can provide a robust approach to approximate 

discrete-valued target functions, which has been inspired by the complex web of 

interconnected natural neurons (MacKay, 2003).  

A multilayer perceptron system is based on a unit (perceptron) that calculates a 

linear combination of an input of real-values and outputs a Boolean value (1,-1) if the 

result is greater or lower than a certain threshold. The backpropagation algorithm 

learns the weights of a multilayer network using the gradient descent to minimize the 

squared error between the network outputs and the target values (Mitchell, 1997). 

Ahead we present the variable selection for this process. 

4.6.4.1 Variables selection 

Previous sections have shown that some of the predictor variables were 

correlated among them: Number of distinct Taxi Vehicles during Pick-ups (TPV); 

Number of Taxi Pick-ups (TP); Number of distinct Taxi Vehicles during Drop-off (TDV); 

and Number of Taxi Drop-offs (TD). This subset is composed by taxi-related variables. 

May et al. (May, et al., 2011) and Fernando et al. (Fernando, et al., 2005) recommend 

avoiding using correlated input variables in artificial neural networks, as the 

performance of the final model is heavily dependent on the input variables used to 

develop the model. In multidimensional systems, correlated variables create 

redundancy and affect the efficiency of the model to obtain good generalization with 

finite data (Fernando, et al., 2005). Therefore, only Number of Taxi Pick-ups (TP) is 

kept, removing the remaining correlated variables from the original set. Number of 

Taxi Pick-ups (TP) was selected since previous experiments have shown it is a better 

predictor than the other taxi-related variables.  

This step produces a set of 10 non-correlated variables (from an original set of 

13) to be used as predictors for NO2 concentrations: hour of the day (TH); day of the 

week (D); weather conditions (W); temperature (T); humidity (H); wind speed (WS); 

wind direction (WD); number of taxi pick-ups (TP); average taxi speed (TS); and 

number of taxi-GPS samples (TG). 
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4.6.4.2 Artificial neural network configuration 

In our experiment, we set up a multilayer perceptron with backpropagation and 

15 hidden layers; a sigmoid activation function; training time of 500 epochs; and a 

learning rate to update weights of 0.3. The inputs correspond to the 10 non-correlated 

predictor variables and the output is an estimation of NO2 concentrations. Each 

sigmoid node has 10 inputs, corresponding to the predictor variables. 

Considering the size of the data set (four months of data) and the existence of a 

timestamp, the samples are organized into training and testing subsets, following a 

holdout configuration (the oldest 2/3 forming the training set and the latest 1/3 

forming the testing set). 

We are able to estimate the value of NO2 with a coefficient of correlation of 

0.7869 and the corresponding coefficient of determination of 0.6192. Compared with 

the previous approaches (multiple linear regression), which produced a model with a 

coefficient of correlation of 0.6254 and the correspondent coefficient of determination 

of 0.3912, this is a significant improvement. Figure 4-24 shows the fitted linear 

function (defined by Y = 0.7063X + 50.304) of real value of NO2 against the estimated 

value of NO2. 

 

Figure 4-24 - The fitted linear function of real value of NO2 against the estimated value of NO2. 
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4.6.4.3 Quality assessment  

The model produces a Root Mean Squared Error (RMSE) of 33.7418, while the 

Normalized RMSE (NRMSE) was 0.1172, and a Mean Absolute Error (MAE) of 27.2792. 

The low divergence between RSME and MAE are an evidence of small variances in the 

individual errors. 

Root Mean Squared Error (RMSE) or Root Mean Squared Deviation (RMSD) 

measures the difference between the real value and the estimate value (quadratic 

scoring), and it is defined by: 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦̂𝑡 − 𝑦𝑡)2𝑛

𝑡=1

𝑛
 ( 25 ) 

   

where 𝑦̂𝑡 represents the predicted value and 𝑦𝑡 represents the observed value, in this 

case the measured value of NO2. Since errors are squared before they are averaged, 

the RMSE gives a relatively high weight to large errors (Devore & Berk, 2012). The 

Normalized Root Mean Squared Error (NRMSE) is defined by: 

 

𝑁𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 ( 26 ) 

   

Mean Absolute Error (MAE) measures the average magnitude of the errors 

(linear scoring), to analyse how close predictions are to the eventual outcomes, and it 

is defined by: 

 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦̂𝑡 − 𝑦𝑡|

𝑛

𝑖=1

 ( 27 ) 

   

where, as in the RMSE, 𝑦̂𝑡 represents the predicted value and 𝑦𝑡 represents the 

observed value. The RMSE is expected to be larger or equal to the MAE, and the 
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greater difference between them, the greater the variance in the individual errors in 

the sample. Both MAE and RMSE can range from zero to infinity, where lower values 

are preferable since they represent smaller errors between forecast and measured 

values (Devore & Berk, 2012). 

4.6.4.4 Performance under different environments   

Impact of hidden layers 

Several experiments were performed in order to derive the values for these 

parameter configurations. To identify the optimum number of hidden layers, the 

highest coefficient of determination was obtained with 33 hidden layers. However, 

with just 15 hidden layers we are able to achieve 99.17% of the highest coefficient of 

determination, hence the computational cost is reduced (Figure 4-25). 

 

Figure 4-25 - Effect of increasing the number of hidden layers on the efficiency of a multilayer 

perceptron. 

Contribution of predictor variables 

Additionally, different setups for input variables using artificial neural networks 

are explored, in the same line with the previous study using multiple linear regression. 

The results are summarized in Table 4-14. The difference in the coefficient of 

determination between the executions with 10 or 13 input variables is almost 

negligible, however, it is preferable to adopt the set-up with 10 variables, since it 

assures non-correlation among the predictors. Using only the five dominant variables 

(observed during the study on multiple linear regression) considerably drops the 
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model performance produced by the ANN. Nevertheless, the setup with five predictor 

variables is able to achieve 90% of the best correlation. 

 

Number of predictor 
variables 

Coefficient of       
Correlation (r) 

Coefficient of 
Determination (r

2
) 

13 predictor variables 0.7893 0.6229 

10 predictor variables 0.7869 0.6192 

5 predictor variables 0.7329 0.5371 

Table 4-14 – Comparison of ANN performance using different predictor variables. 

Temporal behaviour 

NO2 concentrations (and atmospheric pollutants in general) are directly 

affected by meteorological conditions. Wind, temperature, weather conditions and air 

pressure are fundamental factors for atmospheric pollutants dispersion (Kukkonen, et 

al., 2003), (Agirre-Basurko, et al., 2006), (Juhos, et al., 2008). These meteorological 

conditions can change from month to month and between different hours of the day 

(as observed in section 4.5.3), thus affecting the atmospheric pollutants 

concentrations. In order to capture these changes, the previous artificial neural 

network, based on a multilayer perceptron with 15 hidden layers, is applied to data 

sets split by month and daily periods, summarized in Table 4-15:  

 

Month 
Coefficient of 
Correlation  

Daily period 
Coefficient of 
Correlation 

September 0.6867 
 

Morning  0.6804 

October 0.7879 
 

Afternoon 0.7666 

November 0.7134 
 

Night 0.6985 

December 0.7721 
   

Table 4-15 – Comparison of ANN performance on different temporal periods. 

October, closely followed by December, is the month when the ANN performed 

best. On the other side, data from September shows the lowest performance. The 

behavior of individual variables is unable to explain this scenario. For instance, the 

average temperature gradually decreases from September to December, while the 

weather conditions gradually worsen in the same period, as described in section 4.4.2. 

However, the performance of the ANN neither gradually improves nor degrades from 

September to October. This is an indication of the interplay of different variables on 

the process of pollutants concentration and dispersion.  
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By analyzing the performance during different daily periods, we can observe 

that afternoon (4 PM – 12 AM) is the period with the highest performance from the 

ANN. This is also the period with the highest temperature and wind speed. Although 

these two meteorological conditions should help disperse atmospheric pollutants, the 

daily profile of NO2 (and other pollutants, observed on section 4.5.1) shows a peak of 

concentrations between 6 PM and 10 PM, especially during cold months. As a possible 

explanation, we should also consider that the afternoon and nightfall register an 

increase of traffic (commuting from work to home) and on winter the increase of 

domestic heating. These emissions will add to existing atmospheric pollutants from the 

morning period. The performance during  morning (8 AM – 4 PM) and night (12 AM – 8 

AM) periods are reasonably similar.  

Finally, the performance of the ANN on weekdays (r = 0.7641) is quite similar to 

the performance on weekends (r = 0.7694). This observation is surprising, since 

previous chapters have shown that traffic, on weekends, is less regular and has a 

decrease in activity (weekdays are characterized by repeated activities in temporal 

orders, such as commuting to work, lunch time at same similar places, school activities, 

etc.). However, in a way, it is a possible indication that atmospheric pollutants follow 

the traffic patterns to some extent. 

Effect of meteorological conditions 

A similar study is performed using wind speed and temperature, as described in 

Table 4-16: 

 

Wind speed 
(km/h) 

Coefficient of 
Correlation  

Temperature 
(ºC) 

Coefficient of 
Correlation 

1 - 10 0.6473 
 

1 - 10 0.6144 

11 - 20 0.6415 
 

11 - 20 0.6795 

21 - 30 0.7708 
 

21 - 30 0.6290 

31 - 40 0.7692 
   

Table 4-16 – Comparison of ANN performance on different meteorological conditions. 

With the increase of wind speed, the performance of the model seems to 

improve. Nevertheless, during the period under observation, there is no register of 

extreme wind speeds (maximum wind speed registered of 45 km/h, with an average of 

14.4km/h). However, the same effect is not observed with the variation in 
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temperature. Temperatures between 11ºC and 20ºC (the average) enable the highest 

performance, while lower performance is observed during temperature extremes (very 

low or very high temperatures). Similar to the wind speed, no extreme temperatures 

were registered during the period under observation (a minimum of 2ºC, maximum of 

33ºC and average of 18.2ºC). On the other hand, clear or cloudy weather conditions 

enable a better performance of the model, as described in Table 4-17.  

 

Weather conditions 
Coefficient of 
Correlation 

Clear 0.7122 

Cloudy 0.7187 

Rain 0.6612 

Table 4-17 – Comparison of ANN performance on different weather conditions. 

As a final note, the model seems to perform best on stable meteorological 

conditions during the afternoon and nightfall: stable weather conditions (clear or 

cloudy), with average temperatures (11ºC to 20ºC) and reasonable wind speed (21-30 

km/h). 

It is important to stress again that the behavior of atmospheric pollutants is the 

result of a complex interaction between different meteorological variables (wind, 

temperature, humidity, and weather conditions). Individually, none of the variables is 

able to completely explain the behavior of exhaust gases in the atmosphere. 

Therefore, unexpected behaviors from exhaust gases can be observed when individual 

meteorological variables are analyzed. 

4.6.5 Reproduce the experiment on the remaining monitoring stations 

Up until now, the inference analysis was performed using NO2 - a 

representative exhaust gas - with data collected at ‘Av. Liberdade’ monitoring station, 

a predominant monitoring station. At the end of the analysis, the same procedure is 

applied to the remaining monitoring stations. Although NO2 is strongly correlated with 

NO, NOx and CO, this subsection also studies how suitable are the models to estimate 

the remaining exhaust gases. 
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4.6.5.1 Overall performance of NO2 estimation 

Monitoring stations are located in urban areas with specific profiles. We are 

interested to observe the performance of the models in different scenarios, especially 

between traffic and background stations. Results for comparison of different 

techniques are summarized in Table 4-18: 

 

Monitoring Station 
Multilayer 
Perceptron 

Linear 
Regression 

Av. Liberdade (T) 0.7869 0.6254 

Beato (B) 0.6811 0.6218 

Chelas (B) 0.6531 0.6102 

Entrecampos (T) 0.7172 0.5880 

Olivais (B) 0.6706 0.6095 

Restelo (B) 0.6069 0.5688 

S. C. Benfica (T) 0.6996 0.6473 

Table 4-18 - Values of coefficient of correlation obtained from different techniques to model NO2, 

applied on different monitoring stations. 

The monitoring station with the highest correlation values is “Av. Liberdade”, 

followed by “Entrecampos” and “S. C. Benfica”, both traffic stations (T).  Considering 

that the experiment aimed to estimate the value of NO2, and traffic stations are 

positioned adjacent to main roads to perceive traffic emissions, this is an expected 

outcome. The vicinity to highway infrastructures, packed with traffic, could intuitively 

explain the observed results. Coincidentally, these three stations present the highest 

average concentrations of NO2, as observed during data exploration (Section 4.5.5, 

Table 4-9). We can conclude that the highest correlation between NO2 and the 

predictor variables is achieved in traffic stations. 

These observations are in line with Pleijel et al. (Pleijel, et al., 2004), Gilbert et 

al. (Gilbert, et al., 2003), Zou et al. (Zou, et al., 2006) and Ndoke & Jimoh (Ndoke & 

Jimoh, 2005). The authors observed that concentrations of exhaust gases decrease 

with distance from roads. Therefore, concentrations of NO2 sensed in traffic stations 

can be higher in comparison to background stations, as stated by Colls & Tiwary (Colls 

& Tiwary, 2009). Moreover, since traffic is one of the main anthropogenic sources of 

air pollutants - namely NO2 -  through the photochemical oxidation at ground-level of 

NO produced during internal combustion (Zavala, et al., 2006), (Karlsson, 2004), traffic 

stations can better perceive the concentrations of NO2 due to their location (near 

traffic).  Since traffic stations are deployed to mainly perceive emissions from vehicles, 
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our model seems to perform better in monitoring pollutants emitted by traffic. 

Moreover, the KNN model outperforms linear regression model, which is in line with 

other authors (Perez & Reyes, 2001), (Kukkonen, et al., 2003), (Agirre-Basurko, et al., 

2006), (Grivas & Chaloulakou, 2006). 

4.6.5.2 Overall performance of NO estimation 

As stated before, NO2 is not directly emitted to the atmosphere by most 

vehicles, it is instead a byproduct of a photochemical oxidation at ground-level of NO, 

with NO being directly emitted during fuel burning (Clapp & Jenkin, 2001). In that 

sense, the same experiences are performed to estimate the concentrations of NO. 

Table 4-19 summarizes the results, using the 10 non-correlated predictor variables, 

following a holdout method (the oldest 2/3 forming the training set and the latest 1/3 

used for testing): 

 

Monitoring Station 
Multilayer 
Perceptron 

Linear 
Regression 

Av. Liberdade (T) 0.6350 0.4964 

Beato (B) 0.4733 0.3739 

Chelas (B) 0.4911 0.4241 

Entrecampos (T) 0.6431 0.4809 

Olivais (B) 0.5324 0.3632 

Restelo (B) 0.4211 0.3739 

S. C. Benfica (T) 0.5504 0.4988 

Table 4-19 - Values of coefficient of correlation obtained from different techniques to model NO, 

applied on different monitoring stations. 

In the same line with the estimation of NO2 concentrations, higher values of 

correlation are observed in traffic stations (“Av. Liberdade”, “Entrecampos”, and “S. C. 

Benfica”). Similarly, the artificial neural network shows consistently a better 

performance than the linear regression approach. However, the best results produced 

by ANN are achieved using 5 hidden layers (to estimate NO2 concentrations best 

results were achieved with 15 hidden layers).  

Most significantly, the correlation values between NO and the predictor 

variables are noticeably lower than the correlation values between NO2 and the same 

predictor variables, similar to the observations of Allen et al. (Allen, et al., 2011). 

Furthermore, this difference is higher in background stations (on average 26%, against 

16% in traffic stations). Therefore, in our analysis, NO2 appears to be a better marker 
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for exhaust-pipe emissions on road-adjacent locations, as observed by other authors 

(Krzyzanowski & Schneider, 2005), (Becker, et al., 2000). 

4.6.5.3 Overall performance of NOx estimation 

NOx is composed of NO and NO2, thus it should reflect the performance of the 

latter exhaust gases. Table 4-20 summarizes a similar experience, performed to 

estimate the concentrations of NOx. As expected, ANN outperforms the linear 

regression. Results are, on average, lower than those obtained with NO2 but higher 

than those obtained with NO. The “Av. Liberdade” station is once again the monitoring 

station with the best performance, using both ANN and linear regression. Traffic 

stations also outperform background stations in both approaches. 

 

Monitoring Station 
Multilayer 
Perceptron 

Linear 
Regression 

Av. Liberdade (T) 0.6394 0.5354 

Beato (B) 0.5799 0.5108 

Chelas (B) 0.6043 0.5222 

Entrecampos (T) 0.6209 0.5199 

Olivais (B) 0.6009 0.4900 

Restelo (B) 0.5285 0.4931 

S. C. Benfica (T) 0.6112 0.5420 

Table 4-20 - Values of coefficient of correlation obtained from different techniques to model NOx, 

applied on different monitoring stations. 

4.6.5.4 Overall performance of CO estimation 

Finally, Table 4-21 summarizes a similar experience, performed to estimate the 

concentrations of CO. Although, as expected, ANN also outperforms linear regression, 

the best performance is not achieved by “Av. Liberdade” station, like in the previous 

scenarios. The best performance using ANN is achieved by “Chelas” station, a 

background station, while the best performance using linear regression is achieved by 

“Santa Cruz de Benfica”, a traffic station. Interestingly, the estimation of CO achieves 

better results, on average, in background stations with both techniques. The 

performance of ANN outperforms the same technique applied to NOx, however, the 

overall performance of linear regression is quite similar to the performance achieved 

with NOx. Nevertheless, NO, NOx, and CO underperformed in both techniques against 

NO2. 
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Monitoring Station 
Multilayer 
Perceptron 

Linear 
Regression 

Av. Liberdade (T) 0.6141 0.4866 

Beato (B) 0.6445 0.5108 

Chelas (B) 0.6792 0.5196 

Entrecampos (T) 0.6357 0.4919 

Olivais (B) 0.6237 0.4972 

Restelo (B) 0.6168 0.5599 

S. C. Benfica (T) 0.6214 0.5824 

Table 4-21 - Values of coefficient of correlation obtained from different techniques to model CO, applied 

on different monitoring stations. 

4.7 Chapter summary and conclusions 

This section summarizes the work developed to estimate the concentration of 

exhaust gases using taxi data and meteorological conditions. Main contributions and 

results are presented along with a discussion of the limitations of the study and future 

improvements to the work. 

4.7.1 Overview and contributions 

With the rapid increase in size and population of urban areas, it becomes 

important to understand urban environmental influencers, so that better informed 

decisions can be made for more sustainable urban environments. Taxis represent one 

of the urban mobility modes from which city planners can gain a better understanding 

of mobility in general, as well as its relationship with other environmental elements.  

Although air pollutants can be generated naturally, they have been strongly 

linked to anthropogenic sources. Traffic is one of the main urban sources of exhaust 

gases (together with industrial burning and domestic heating). Additionally, taxis can 

be used as a probe for traffic conditions (Castro, et al., 2012), (Yuan, et al., 2011a), 

(Gühnemann, et al., 2004), (Liu, et al., 2009a), while meteorological conditions (wind, 

temperature, weather conditions) are the fundamental factor to atmospheric 

pollutants dispersion (Kolehmainen, et al., 2001), (Kukkonen, et al., 2003), (Agirre-

Basurko, et al., 2006), (Juhos, et al., 2008). Moreover, NO2 appears to be a good 

marker for exhaust-pipe emissions (Krzyzanowski & Schneider, 2005), (Becker, et al., 
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2000). Therefore, a combination of these predictor variables can be used to estimate 

NO2 concentrations in an urban area. 

In this chapter, we studied the exhaust gas concentration patterns in Lisbon, 

Portugal, and explored techniques to estimate the levels of NO2 concentrations 

through the analysis of other related urban variables, such as taxi location and 

meteorological conditions. 

Based on four months of data we revealed the daily and seasonal patterns of 

exhaust gases, how they are correlated with weather conditions (humidity, 

temperature, and wind speed), and how NO2 is strongly correlated with other exhaust 

gases (NO, NOx, and CO). 

This study has shown a relationship between exhaust gas concentration and 

other urban variables. Using a multilayer perceptron, with 15 hidden layers and a 

sigmoid activation function, we were able to estimate the NO2 concentrations, with a 

coefficient of correlation of 0.7869 (“Av. Liberdade” monitoring station). Linear 

regression was only able to provide a correlation of 0.6254. Therefore, we concluded 

that KNN models outperform linear regression models, which is in line with other 

authors (Perez & Reyes, 2001), (Kukkonen, et al., 2003), (Agirre-Basurko, et al., 2006), 

(Grivas & Chaloulakou, 2006). 

The multicollinearity analysis identified correlations among some predictor 

variables, which could lead to overfitting. Therefore, the initial data set of 13 predictor 

variables was reduced to 10. Moreover, we were able to obtain 90% of the highest 

correlation using just five variables (hour, temperature, humidity, wind speed and taxi 

pick-up). This result is in line with studies of literature, stating that wind and 

temperature are among the most important factors in the dilution and spreading of 

atmospheric pollution. 

Monitoring stations located near main roads (traffic stations) are able to sense 

exhaust gas concentrations with a higher coefficient correlation. The performance of 

the model considerably drops on stations located distantly from roads (background 

stations). 

The performance of the model was tested with different meteorological 

scenarios. The model seems to perform best on stable meteorological conditions 
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during the afternoon and nightfall: stable weather conditions (clear or cloudy), with 

average temperatures (11ºC to 20ºC) and reasonable wind speed (21-30 km/h). 

Moreover, the model is more suitable to estimate NO2 concentrations than NO. These 

results were published in (Veloso, et al., 2013) and submitted to (Veloso, et al., 2015). 

The proposed approach is based on existing infra-structures and does not 

demand a deployment of new hardware. It takes advantage of opportunistic sensing, 

using data collected by in-board taxi-GPS devices, and meteorological stations already 

installed and covering most of urban areas. 

This approach can be used to improve spatial resolution of exhaust gas 

monitoring. Since few monitoring stations are deployed in urban areas, the model 

could be used to overcome the absence of local measurements. Moreover, the 

proposed approach relies on existing equipment, and does not demand for a dedicated 

infrastructure. We hope that this work shed some new light on the complex 

interrelationships of urban system variables. 

4.7.2 Limitations and future work 

The current work also shows weaknesses and limitations. The low performance 

from applying linear regression is an indication of the complex interplay between the 

predictor variables. Although the artificial neural network presents an improvement, 

the achieved coefficient of determination is far from being an optimal output. As a 

result, our work cannot conclude that the use of this set of predictor variables is able 

to accurately estimate NO2 concentrations and other atmospheric pollutants in all 

conditions. Therefore, further studies are needed to explore alternative sets of 

variables available and models produced using different techniques.  

The ANN model presents a fair performance (it is able to estimate the NO2 

concentrations with a coefficient of correlation of 0.7869). Although the model cannot 

be used to accurately predict concentration values of NO2, it can be used to estimate 

areas with dangerous levels of atmospheric pollutants, where no current monitoring is 

available, especially on ground-level, near roads. This could be the first level of a 

warning system to assess air quality. If the model estimates values over a safety 

threshold, a warning should be automatically triggered and further actions should be 

taken, namely the confirmation of the prediction with local measurements. 
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Additionally, using historical data, the system could be able to anticipate areas where 

exhaust gases’ concentrations will overreach a safety threshold and become 

dangerous for human health. However, although taxi activity follows a daily and 

weekly pattern, meteorological variables are more instable and can change quickly. To 

note that although hour is a predominant predictor variable in the model, the same is 

not true for day of the week.  

The complex dynamics of atmospheric pollutants’ dispersion prevents the 

existence of models based on a single predictor variable. In consequence, taxi data 

alone is unable to explain the behavior of NO2 concentrations, and its contribution to 

the model is, in fact, inferior to that from other variables (e.g. wind or temperature). 

However, major concerns are related to the representativeness of taxi data. As 

mentioned in previous chapters, although at the time of collection the data provider 

accounted for nearly 20% of taxi share in the city, the representativeness of the data 

can also be disputed.  Therefore, the argument that taxis can be used as a probe for 

traffic conditions (Castro, et al., 2012) can also be disputed. Moreover, the quality of 

taxi data could also have a negative impact on the performance of the model. Newer 

data sets should be gathered to confirm the validity of the findings. 

Besides temperature, wind speed, and weather conditions, other variables play 

an important role in the formation and dispersion of atmospheric pollutants. Among 

them, the topography, air pressure, and wind direction are relevant factors. However, 

our work does not explore their contribution to the model. This absence could explain 

why the proposed model is unable to completely describe the behavior of NO2. Spatial 

patterns of atmospheric pollution should be discussed and explored in future work, 

providing inputs for the model to capture spatial effects.  

Besides NO2, NO, NOx, and CO2, other toxic gases pose a danger to human 

health, namely SO2 (Sulphur Dioxide) and C6H6 (Benzene). These gases were not 

analyzed in this study due to the lack of data in most of the monitoring stations. 

Therefore, future work should consider collecting newer data set with a broader set of 

toxic gases. 

Although the approach is based on presently deployed infra-structures, for 

optimal performance it needs data in real-time, at the very least provided in one-hour 

intervals. It is not clear if current systems are able to transmit and provide data within 

that timeframe. All the analysis performed in this study is based on an offline 
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database. Moreover, although present meteorological stations are able to survey all 

(or most) urban areas, some variables - essential to the model - may present changes 

between small spatial areas (e.g. between neighbor block of houses) that are not 

captured (e.g. humidity, wind speed). 

Finally, the model was not tested in other urban areas. Therefore the 

geographic replicability can be disputed. This limitation is due to the lack of data 

available for the same temporal window for other regions.  As stated before, newer 

data set should be collected for the same urban region alongside with data sets from 

different locations, with a wider temporal window, in order to validate the temporal 

and geographic replicability of the model. 

 

We hope our findings are a relevant contribution to the complex urban 

dynamics, especially to improve spatial atmospheric pollution monitoring. We aim to 

continue our investigation as aforementioned. Our future work will explore more 

robust approaches, improve the size and quality of the data set, and validate the 

results on different urban areas.  
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Chapter 5 
Conclusions 

5.1 Overview  

As stated by Castro et al. (Castro, et al., 2013), GPS-equipped taxis can be 

viewed as pervasive sensors, and the large quantity of GPS traces produced, allow us 

to reveal facts about social urban life. In this work, we explored the potential for 

historic taxi-GPS traces to represent the city’s dynamics and its relation with other 

urban data sources. In order to do that, we studied different data sets containing 

information about taxi activity, mobile phone activity, exhaust gases’ concentrations, 

points of interest, and weather conditions, collected in Lisbon, Portugal, during 2009.  

The study was able to produce the following three main contributions: (a) 

developed a model to estimate taxi demand and explored the spatiotemporal 

distribution of taxi activity; (b) analysed the relationship between taxi and mobile 

phone activity and studied the spatiotemporal patterns of mobile phone call intensity; 

and (c) explored models that use taxi activity information and meteorological 

conditions in order to estimate atmospheric pollutants, and analyse the exhaust gases 

patterns. These three main contributions will be detailed, alongside their limitations, in 

the following sections. 

5.2 Contributions 

The main three contributions of this work can be further detailed, as follows. 

For better comprehension the contributions are grouped by section. 

A. Development of a model to estimate taxi demand and explore the 
spatiotemporal distribution of taxi activity  

Using taxi-GPS traces collected during a period of four months (September – 

December, 2009) the study was able to visualize the spatiotemporal variation of taxi 

activity, identified the main pick-up and drop-off locations and busy hours, and 

observed that trip distance and duration follow Gamma and Exponential distributions. 

The study was also able to identify the link between pick-up and drop-off locations, 
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observed strong links between public transportation hubs, where taxi service appears 

to operate as a bridge between different public transportation services. Additionally, 

an analysis of taxi driver behavior during downtime was performed – time spent 

searching for next pick-ups - when taxis tend to avoid making long trips to suburban 

areas for pick-ups. 

The analysis of taxi-GPS traces from top drivers showed specific strategies used 

to maximize the profit. Either by waiting for passengers in locations related with main 

public transportation hubs (airport, train stations, ferry dock or main bus stops), during 

specific hours of the day, or by avoiding traveling great distances to the next pick-up 

location, unless it was to return to the aforementioned locations. Low performance 

drivers showed no such specific strategy and were the major contributors to the 

apparently randomness of taxi flow. 

Our inference analysis explored the possibility to estimate the next pick-up 

area, given the current location (last drop-off), day of the week, hour, weather 

conditions, and area type (predominant POI). The inference engine is based on a naïve 

Bayesian classifier, achieving 56.3% of accuracy of the training samples, on specific 

conditions: weekdays, working hours, and in areas with reasonable taxi activity (cells 

with low taxi activity were disregarded).  Current location turned out to be the main 

contributor to the algorithm, contrary to weather conditions which was the variable 

with less weight in the calculation. Several effects to the classifier were explored, 

namely, the influence of daily and weekly periods and the impact of a cell’s size. 

The results achieved in this study show that to some extent, taxi volume follows 

daily and weekly patterns that can be modeled to infer the likelihood of the next pick-

up location, especially when the behavior of top drivers is taken into consideration.  

B. Analysis of the relationship between taxi and mobile phone activity and 
studied the spatiotemporal patterns of mobile phone call intensity 

Based on one-month of data (December 2009), the study performed an 

exploratory analysis of the mobile phone call intensity, which showed a fairly regular 

pattern, consistent throughout the day and during the entire time series. Comparisons 

between different urban areas showed only minor pattern deviations of mobile phone 

call intensity. Additionally, several indicators were identified that perfectly represent 

mobile phone activity, namely busy hour traffic (in erlangs) and number of calls 

successfully started. 
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During data analysis, a significant correlation between the taxi volume and 

mobile phone call intensity was found, over active hours of the day (8 AM-10 PM) and 

active days of the week (weekdays), in areas with medium and high taxi activity. 

Moreover, mobile phone call intensity had a significant correlation with taxi volume of 

the previous two hours, which means that the amount of taxis could be used to predict 

the intensity of mobile phone calls along the next two hours.  

Furthermore, we have found that this inter-predictability could be modeled 

with a linear function and varied across different times of the day. Intensity of mobile 

phone calls was a predictor of taxi volume in morning hours, while the amount of taxi 

flow became a predictor of mobile phone calls in the afternoon and evening. 

The results achieved in this study support the hypothesis of an inter-

predictability between taxi volume and mobile phone call intensity.  

C. Explored models that use taxi activity information and meteorological 
conditions in order to estimate atmospheric pollutants, and analysed the 
exhaust gases patterns  

Based on four months of data, we studied the exhaust gas concentration 

patterns in Lisbon, Portugal, and explored techniques to estimate the levels of NO2 

concentrations through the analysis of other related urban variables, such as taxi 

activity and meteorological conditions. 

The study revealed the daily and seasonal patterns of exhaust gases, how they 

were correlated with meteorological conditions (humidity, temperature, wind speed, 

and weather conditions), and how NO2 strongly correlates with other exhaust gases 

(NO, NOx, and CO). 

The study has shown a relationship between the exhaust gas concentration and 

other urban variables. Using a multilayer perceptron, with 15 hidden layers and a 

sigmoid activation function, we were able to estimate the NO2 concentrations, with a 

coefficient of correlation of 0.7869. Linear regression was able to provide a maximum 

correlation of 0.6254. Therefore, KNN model outperformed linear regression model, 

which is in line with the work of other authors (Perez & Reyes, 2001), (Kukkonen, et al., 

2003), (Agirre-Basurko, et al., 2006), (Grivas & Chaloulakou, 2006). 

The multicollinearity analysis identified correlations among some predictor 

variables, which could lead to overfitting. Therefore, the initial data set of 13 predictor 
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variables was reduced to 10. Moreover, we were able to obtain 90% of the highest 

correlation using just five variables (hour, temperature, humidity, wind speed, and 

number of taxi pick-ups). This result is in line with other studies in the literature, 

stating that wind and temperature are among the most important factors in the 

dilution and spreading of atmospheric pollution. 

Monitoring stations located near main roads (traffic stations) were able to 

sense exhaust gas concentration with a higher coefficient correlation. The 

performance of the model considerably dropped in background stations (located 

distant from roads). 

The performance of the model was tested with different meteorological 

scenarios. The model seemed to perform best on stable meteorological conditions, 

during the afternoon and nightfall: stable weather conditions (clear or cloudy), with 

average temperatures (11ºC to 20ºC) and reasonable wind speed (21-30 km/h). 

Moreover, the model was more suitable to estimate NO2 concentrations than NO.  

This approach can be used to improve spatial resolution of exhaust gas 

monitoring. Since few monitoring stations are deployed in urban areas, the model 

could be used to overcome the absence of local measurements. Moreover, the 

proposed approach relies on existing equipment, and does not demand a dedicated 

infrastructure.  

5.3 Limitations 

Several limitations can be pointed out in the current study. For better legibility, 

the contributions are grouped by sections. 

A. Development of a model to estimate taxi demand and explore the 
spatiotemporal distribution of taxi activity   

The highest accuracy of the inference engine (56.3%) is achieved under specific 

conditions: on weekdays; working hours; and in areas with reasonable taxi activity 

(cells with low taxi activity were disregarded), and considering neighbor cells as 

positive predictions. The approach was needed due to insufficient data in some 

temporal and spatial slots. By removing these special conditions, the classifier achieved 

a lower accuracy of 31%, as a result of a larger search space, composed by 370 possible 

locations, which includes areas without sufficient data (low taxi activity cells). This 
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lower performance is an expected result considering the search space is widened, and 

includes areas without sufficient data. Nevertheless, it was a fair outcome once we 

consider that a priori probability for the best cells was 2.4%.  Since the lack of data is a 

major limitation in applying the algorithm to all Lisbon municipality, a more 

comprehensive data set should collected. 

The adoption of a naïve Bayesian classifier to estimate the likelihood of the 

next pick-up location requires that the predictors are independent variables. However, 

POI may not be independent from day of the week and hour of the day. This possible 

dependency between the variables could affect the performance of the naïve Bayesian 

classifier. Therefore, other approaches should also be explored along with an 

alternative set of predictor variables.  

The study did not take into consideration urban events (e.g. sports, music 

concerts, cultural expositions, or even workers strikes from public transportation 

services), which could affect the patterns of taxi service. The occurrence of events and 

the impact on taxi service should be explored in the future. Since a possible bridge 

between public transportation hubs was identified, the timetables of these 

transportation services should also be considered. 

Additionally, future investigation should also deepen the exploratory study, to 

analyze the effect of different factors on taxi service (e.g. weather conditions or the 

hour of the day). In the same line, the reasons that drive a passenger to choose to use 

a taxi are not perfectly clear, and that knowledge could improve the performance of 

the inference engine. Therefore, it is advisable to perform a survey among taxi 

passengers. 

The process of grid creation can also be subject to discussion, since it doesn’t 

take into consideration the location of particular areas of the city that affect the traffic 

conditions, or the original density of the taxi-GPS traces. Thus, some hotspots could 

have been split between several grid cells, thus disturbing the outcome of the analysis. 

The clusters of GPS traces could be used to guide the size and placement of the grid as 

suggested by Castro et al. (Castro, et al., 2013). 

A full recommendation system was not built, focusing only at the inference 

engine. However, the development of a fully functional commercial framework would 

allow it to be tested on real conditions and to assess the true usefulness of the 

approach. Additionally, the recommendation system does not take into consideration 
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the current behavior of other taxi drivers. Therefore, they could be competing for the 

same resource (passenger). To improve the efficiency of the recommendation system, 

future work should consider a concurrent approach, where estimations are performed 

taking in consideration the current status of other taxis, thus avoiding competition for 

the same passenger. 

B. Analysis of the relationship between taxi and mobile phone activity and 
studied the spatiotemporal patterns of mobile phone call intensity 

The reduced amount of data used (only one month) and the absence of data 

(grid-cells with low taxi activity) could have limited the analysis. To validate the 

observations a newer data set should be collected, that encompass a broader 

temporal window. Additionally, an alternative data set from a different urban area 

would allow the validation of the geographical replicability of the approach. 

Another potential limitation was the linear relation that was assumed between 

the two data sources in this study. Further investigation should be done in finding a 

possibly more suitable function to model the relationship between taxi volume and 

mobile phone call intensity.  

Finally, the model achieved higher performance when applied to specific 

conditions: working hours, weekdays, and cells with medium and high taxi activity. The 

study showed a considerable degradation of the model on weekends, at night, and on 

national holidays. More evident was the low correlation between both time series on 

cells with low taxi activity, where the approach was not suitable, since there was 

insufficient data. This can be an indication of the possible low representativeness of 

taxi volume and the absence of data in certain areas (e.g. grid-cells with low taxi 

activity). As stated before, a new and broader data set should be attained in the future 

to confirm the results obtained in this study. 

C. Explored models that use taxi activity information and meteorological 
conditions in order to estimate atmospheric pollutants, and analysed the 
exhaust gases patterns 

The ANN model does not present a significant performance (estimates of NO2 

concentrations, with a coefficient of correlation of 0.7869). However, although the 

model cannot be used to accurately predict concentration values of NO2, it can be used 

to estimate areas with dangerous levels of atmospheric pollutants, where no current 

monitoring is available. This could be the first level of a warning system for air quality. 

If the model estimates values higher than a safety threshold, a warning should be 
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triggered and further actions should be taken, namely the confirmation of the 

prediction with local measurements. 

The low performance from the linear regression was an indication of the 

complex interplay between the predictor variables. Although the artificial neural 

network presented an improvement, the achieved coefficient of determination is not 

an optimal output. As a result, our work could not conclude that the use of this set of 

predictor variables is able to accurately estimate NO2 concentrations and other 

atmospheric pollutants in all conditions. In order to improve the performance of the 

model further studies are needed, to explore alternative sets of variables available and 

techniques.  

The complex dynamics of atmospheric pollutants’ dispersion prevent the 

existence of models based on a single predictor variable. Therefore, taxi data alone 

was unable to explain the behavior of NO2 concentrations. Besides temperature, wind 

speed and weather conditions - which were explored in this study - other variables 

play an important role in the formation and dispersion of atmospheric pollutants. 

Among then, topography, air pressure, and wind direction are also relevant factors. 

However, our work did not explore their contribution to the model. Spatial patterns of 

atmospheric pollution should be discussed and explored in future investigation, 

providing inputs for the model to capture spatial effects.  

 

Global limitations 

A set of limitations were common throughout the work, narrowing the analysis 

performed: 

- Geographic replicability; 

- Quality of the data set; 

- Conditions for optimal performance of the models; 

- Significance of the results. 

 The analysis focused on a single city (Lisbon). This is a consequence of a lack of 

data sets from other cities. The outcome could be strengthened if data from different 

urban areas were available to apply the same procedures, analyses, and to compare 
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results. Hence, future work should encompass the acquisition of data from different 

urban areas. 

Equally important are the concerns around the quality of data. Although the 

exploratory analysis showed that patterns are somewhat consistent between months 

and years (when data was available), the data set was collected in 2009, representing a 

considerable temporal gap to the results now being presented. Since then, the city 

under study has experienced several changes. Moreover, the limitation of the size of 

the time series (e.g. inter-predictability study between taxi volume and mobile phone 

call intensity) or the lack of data in certain areas of the target city (e.g. grid-cells with 

low taxi activity) were visible throughout the analysis. Additionally, although at the 

time of the data collection the data provider accounted for nearly 20% of taxi share in 

the city, the representativeness of the data can now be disputed. Therefore, as stated 

before, a newer data set should be collected to validate and improve our findings. 

The best results in each model were achieved under a specific set of conditions. 

For instance, to estimate the best location for a pick-up, the model performs better on 

weekdays, working hours, and in areas with reasonable taxi activity; the relationship 

between mobile phone activity and taxi volume is higher on active hours of the day (8 

AM-10 PM) and active days of the week (weekdays), in areas with medium and high 

taxi activity; and the estimation of NO2 concentrations are better perceived in traffic 

stations, located near main roads. This is due the aforementioned insufficient data in 

some temporal and spatial slots. As result, the study was unable to identify a universal 

model to perform under all conditions. Further investigation is planned to improve 

these results, putting efforts in the acquisition of newer data sets.  

Considering the aforementioned special conditions, the models can be 

described as fair in estimating or predicting the value of the dependent variables. 

Although taxis are related to and have influence in urban mobility (e.g. they can be 

used to estimate how inhabitants move, mobile phone usage, or concentrations of 

NO2), it is not the dominant predictor variable. This is especially true when estimating 

air pollutants concentrations. Despite taxis being a relevant and useful variable to 

estimate NO2 concentrations, the formation and dispersion of air pollutants are mainly 

affected and explained by meteorological conditions (temperature, wind speed, 

humidity and weather conditions). Nevertheless, taxis are an important player in urban 

mobility. 
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5.4 Future Work 

From the aforementioned limitations, it is clear that a new and broader data 

set should be gathered in the future, from the same municipality as well as other 

urban areas, to assess if the procedure still holds true for different temporal periods 

and spatial locations. Although each city has its own topography and culture, similar 

patterns can be observed; therefore the study should be expanded to other urban 

areas. 

The recommendation system should be fully developed. The experience 

learned from this study would be valuable to produce a complete and useful tool to 

assist taxi drivers with strategies to identify their next passenger, reducing the time, 

distance, and fuel necessary to accomplish that goal. Additionally, a survey on the 

motivations of the passenger to use (or avoid using) taxi service could shed light on 

certain patterns and help improve the inference engine.  

Other variables should also be explored in the future to improve the 

algorithms. For instance, social events affect urban mobility, thus influencing taxi 

patterns. In a similar way, the topography affects the dispersion of gases, thus 

influencing the concentration of exhaust gases in urban areas.  

 

Final remarks 

We hope that our work could contribute to a better comprehension of the 

complex interactions between the diversity of urban processes. Our findings, to some 

extent, unveil the relationships between different urban data sources, which describe 

the city from different perspectives, and can produce an aggregated and collective 

view of urban areas.  

We expect that our findings could suggest new ways to use multi-source data 

fusion to investigate the interplay between different urban entities. Our observations 

and results need further improvements, but nevertheless, could contribute to the 

intense research on urban dynamics that is currently ongoing, in order to assist the 

developing of more efficient intelligent transportation systems.  

Urban studies are growing in importance with the growth and expansion of 

urban areas. The need for a more efficient use of resources allied with the requirement 
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for sustainable communities demand new approaches and models, and the adaptation 

of current infra-structures for further activities and usage. Our work is a small 

contribution to this overall and embracing goal. 
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Appendix 

Throughout the study, several tools were used to assist the analysis: 

 PostgreSQL (with PostGIS module)21, a Database Management System 

(DBMS) to store data using an Entity-Relationship model; 

 Quantum GIS22, a Geographic Information System (GIS) used to visualize 

spatial data models; 

 Waikato Environment for Knowledge Analysis (WEKA)23, a data mining 

environment, used to clean, transform, and mine data; 

 Konstanz Information Miner (KNIME)24, a data mining environment, 

used to clean, transform and mine data; 

 MathWorks Matrix Laboratory (MATLAB)25, a numerical computing 

environment, used for data mining and data visualization; 

 Minitab Statistical Software26, a statistical environment, used for 

statistical analysis and data mining; 

 IBM Statistical Package for the Social Sciences (SPSS)27, a statistical 

environment, used for statistical analysis and data mining; 

 Programming Language Java28 with IDE Eclipse, used to program any 

additional features needed to clean, transform, or analyze the data. 

                                                      
21

 PostgreSQL. http://www.postgresql.org/ . 
22

 Quantum GIS. http://www.qgis.org/ . 
23

 Waikato Environment for Knowledge Analysis. http://www.cs.waikato.ac.nz/ml/weka/ . 
24

 Konstanz Information Miner. http://www.knime.org/ . 
25

 MathWorks Matrix Laboratory. http://www.mathworks.com/products/matlab/  . 
26

 Minitab Statistical Software. https://www.minitab.com/ . 
27

 Statistical Package for the Social Sciences. http://www-01.ibm.com/software/analytics/spss/ . 
28

 Programming Language Java. http://www.java.com/ . 
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