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Abstract 

Introduction: Usher syndrome (USH) is a recessive inherited disease characterized by 

sensorineural hearing loss (HL), visual loss due to retinitis pigmentosa (RP) and, in some 

cases, vestibular dysfunction. This syndrome is the most common cause that affects those two 

major senses, vision and hearing and encompasses three clinical sub-types (USH1, USH2 and 

USH3) as well as some additional atypical forms.  

Usher type II is the most common clinical form, in all published series; since the USH2A gene 

is the most commonly mutated gene, our aim is to characterize from a molecular and 

phenotypical standpoint, a cohort of 48 portuguese Usher patients, determine if they carry 

mutations in USH2A gene and establish potential genotype-phenotype correlations. 

 

Methods: Forty eight affected individuals were characterized from a molecular standpoint, 

and those carrying USH2A underwent complete phenotypical ophthalmological examination 

including, fundus photography, fundus autofluorescence (FAF), full-field ERG, multifocal 

electrophysiology (MF ERG), and ENT assessment. 

 

Results: Disease-causing mutations in the USH2A gene were identified in 15 patients, of ten 

independent families. Consanguinity could be documented in 40% of families. Fourteen 

different USH2A mutations were detected (6 missense, 14 nonsense, 1 small rearrangement, 2 

large gene rearrangements and 6 splice-site mutations), eight patients were homozygous and 

7, either compound heterozygous or heterozygous. Mutations in the DFNB31 gene (USH2D) 

were also identified in heterozygosity in two siblings. Five novel mutations were identified: 

three intragenic deletions encompassing several exons c. 7121_9258del, USH2A exon 3- 
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exon34 del, USH2A exon 39 – exon 47 del, a nonsense mutation, c.7932G>A, and a deep 

intronic homozygous mutation c.4988-19T>G, all of them showing potential to interfere with 

protein function.  

Concerning to ophthalmological phenotype, nyctalopia was consistently the presenting 

complaint in 100% of patients. Best Corrected Visual Acuity (BCVA) varied from 0.1 and 

0.8, at the last evaluation. Fundus appearance was compatible with RP in all probands varying 

from isolated peripheral bone spicules, patchy retinal pigment epithelium (RPE) areas of 

atrophy, thin vessels and normal discs (20%), to pale discs, near confluent peripheral bone 

spicules, extensive atrophic RPE changes and thin vessels (47%) to typical RP with preserved 

macula (33%). The full field ERG disclosed, in the majority, an unrecordable response (87%) 

and two probands had a severely attenuated, yet recordable, response (13%). Multifocal ERG 

analysis showed decreased central peak (100% cohort cases lower than 100microV), and 

occasional drift of the peak of maximal response to an extrafoveal hexagone. FAF revealed 

that 77% presented a typical ring of hyperautofluorescence while the remainder disclosed 

patchy hypoautofluorescence. 

 

Conclusion: We characterized from both clinical and genetic standpoints, the first series of 

Portuguese patients with type II Usher syndrome. Molecular characterization is essencial to 

improve early diagnosis of USH and better understand the molecular pathomechanism so that 

is possible to develop treatment strategies to stop or revert the degenerative process of the 

retina, in a near future.  

 

Keywords: Usher Syndrome; USH2A mutations; rearrangements; NGS; AON. 
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Resumo 

Introdução: A síndroma de Usher é uma condição com transmissão autossómica recessiva 

caracterizada por surdez neurossensorial, perda de visão por Retinopatia Pigmentar e, em 

alguns casos, disfunção vestibular. Esta síndroma é a causa mais comum da afeção destes dois 

sentidos, visão e audição, englobando três sub-tipos clínicos (USH1, USH2 e USH3) bem 

como formas atípicas adicionais. 

USH2 é o sub-tipo clinico mais comum, em todas as series publicadas; sendo USH2A o gene 

mais comummente mutado, o nosso objectivo é caracterizar de um ponto de vista  molecular e 

fenotípico 48 portugueses com Síndrome de Usher, determinar se são portadores de mutações 

no gene USH2A e estabelecer potenciais correlações genótipo-fenótipo. 

Métodos: Quarenta e oito indivíduos com a síndroma da Usher foram caracterizados do 

ponto de vista molecular, submetendo-se os portadores de USH2A a um exame oftalmológico 

fenotípico completo, fundoscopia, auto-fluorescência da retina, eletrorretinograma full field, 

eletrorretinograma multifocal e avaliação otorrinolaringológica. 

Resultados: Mutações patológicas no gene USH2A foram identificadas em 15 pacientes, de 

10 famílias não-relacionadas. Em 40% das famílias foi possível documentar consanguinidade. 

Detetaram-se 14 mutações diferentes no gene USH2A (6 missense, 14 nonsense, 1 pequeno 

rearranjo, 2 grandes rearranjos e 6 mutações de splicing; em 8 doentes as alterações genéticas 

eram homozigóticas e em 7, heterozigóticas compostas ou em heterozigotia. Foram 

igualmente identificadas mutações no gene DFNB31 em heterozigotia, em 2 irmãos. 

Foram identificadas cinco novas mutações: três delecções intragénicas envolvendo vários 

exões c. 7121_9258del, USH2A exon 3- exon 34 del, USH2A exon 39 – exon 47 del, uma 
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mutação nonsense c.7932G>A, e uma mutação homozigótica deep intronic c.4988-19T>G, 

todas mostrando potencial interferência com a função proteica. 

No que diz respeito ao fenótipo oftalmológico, a nictalopia foi, de forma consistente, o sinal 

de apresentação em 100% dos doentes. A melhor acuidade visual corrigida variou entre 0.1 a 

0.8, na última avaliação. Os aspetos fundoscópicos eram compatíveis com Retinopatia 

Pigmentar em todos os doentes, variando de espículas ósseas periféricas isoladas, áreas 

dispersas de atrofia do epitélio pigmentar da retina, vasos de calibre reduzido e disco óptico 

normal (20%), disco pálido, espículas ósseas confluentes periféricas, atrofia de áreas extensas 

do epitélio pigmentar da retina e redução importante do calibre vascular (47%) a um padrão 

típico de RP com preservação da mácula (33%). No ERG, a maioria dos doentes apresentou 

uma resposta indetetável (87%), com somente 2 doentes a revelar uma resposta 

profundamente atenuada mas detetável (13%). O MfERG evidenciou uma redução da 

amplitude do pico central (100% dos casos inferior a 100microV), e ocasionais picos de 

resposta maxima detetados fora do hexagono extra-foveal. A  auto-fluorescência mostrou em 

77% dos casos o típico anel de hiperautofluorescência macular enquanto nos restantes se 

observou um padrão mosqueado de hipoautofluorescência. 

Conclusão: Caracterizámos do ponto de vista clínico e genético, a primeira série de doentes 

portugueses com Síndroma de Usher tipo 2. A caracterização molecular é essencial para 

aprimorar o diagnóstico precoce desta síndroma e melhor conhecer os mecanismos  

patogénicos de forma a permitir o desenvolvimento de estratégias terapêuticas  para frenar ou 

reverter este processo degenerativo da retina, num futuro próximo. 

Palavras-chave: Síndrome de Usher; mutações USH2A; rearranjos; NGS; AON. 

 



10	  
	  

Introduction 

Usher syndrome (USH) is the most common form of deaf-blindness (responsible for more 

than 50%) (Saihan, et al., 2009) as an autosomal recessive disorder with a prevalence range 

from 3.3 to 6.4 per 100.000 live births (1) (Saihan et al. 2009). It is characterized by the 

association of sensorineural hearing loss (HL) and visual impairment due to retinitis 

pigmentosa (RP). Some patients will also exhibit vestibular areflexia (VAr). 

The earliest descriptions were given by Von Graefe (1858), Liebreich (1861), who observed 

the syndrome among Jews in Berlin, and Hammerschlag (1907). Named for Charles Usher 

(1914), a British ophthalmologist who emphasized their hereditary nature (1907). (2-5) 

It is clinically and genetically heterogeneous, so is divided into three types: USH1, USH2 and 

USH3 and nine genes have been identified responsible so far. Five causative genes have been 

reported for USH1: MYO7A (myosin VIIa; USH1B), USH1C (harmonin; USH1C), CDH23 

(cadherin 23, USH1D), PCDH15 (protocadherin 15, USH1F), and USH1G (SANS; USH1G), 

with MYO7A being the most prevalent (Le Quesne Stabej, et al., 2012; Roux, et al., 2011). 

Three genes for USH2: USH2A (Usherin; USH2A), GPR98 (GPR98/VLGR1; USH2C), and 

DFNB31 (whirlin; USH2D) with USH2A responsible for 70-80% of the USH2 cases 

(Besnard, et al., 2012; Le Quesne Stabej, et al., 2012); only one gene for USH3: clarin 1 

(CLRN1) and one additional locus has been mapped (6-10). In addition, one modifier gene 

(PDZD7) has been identified. (11,12). Other responsible genes are expected to be identified, 

as ~20% of clinical cases remain unsolved at the molecular level. 

Three clinical subtypes (USH1, USH2 and USH3) are distinguished by the severity and 

progression of HL and presence or absence of vestibular dysfunction; this distinction is 

generally used to guide molecular testing. USH1 is the most severe form with congenital 
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profound HL and VAr. USH2 appears to be the most common clinical form of the disorder, 

accounting for over a half of all USH cases and is characterized by congenital moderate-to-

severe HL, with normal vestibular function. In USH3, the HL is progressive in association 

with variable vestibular function. USH3 is rare, except in some populations with recognized 

founder effect where it may be responsible for over 40% of cases namely in the Finnish and 

Jewish Ashkenazi USH populations (Saihan, et al., 2009). 

Genetics, biochemistry and proteomics have demonstrated that functionally different USH 

proteins are organized in networks in the eye and inner ear (6,8,13). This knowledge explains 

why defects in proteins of different families are causative for similar symptoms and 

contributed to the current insights into the function of USH proteins in inner ear and retina. 

Since recent studies demonstrate that the USH interactome is molecularly connected to the 

Bardet Biedl syndrome (BBS) proteins and some proteins involved in Leber congenital 

amaurosis (LCA), overlapping molecular mechanisms may underlie retinal degeneration in 

USH, BBS and LCA (8,13). 

Since phenotypical heterogeneity is the hallmark of USH, an adequate clinical exam is 

crucial. A complete ophthalmological examination should include a morphological and 

functional evaluation of the retina, visual field testing and an electroretinogram (ERG) (14). 

Audiovestibular function should be assessed as part of a complete auditory and vestibular 

examination, including pyschoacoustic studies of hearing for puretones and speech, 

biomechanical measurement of middle ear integrity, including tympanometry and acoustic 

reflexes and neurophysiological studies of auditory brainstem function as well as vestibular 

studies such as electronystagmography and rotational chair, when appropriate or feasible. 

Molecular genetic diagnosis for Usher syndrome evolved from the restriction studies of USH 

genes (Adato, et al., 1997) to extensive direct sequencing (Aller, et al., 2006; Baux, et al., 
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2007; Besnard, et al.). Because of genetic heterogeneity, prioritization of the genes to be 

sequenced was facilitated by linkage analysis (Roux, et al., 2006; Roux, et al., 2011). Due to 

the large size of most Usher genes (totalizing more than 350 exons), Sanger sequencing of 

genes one-by-one remains expensive and time-consuming. Furthermore, large rearrangements 

have been described in MYO7A, CDH23, GPR98, USH2A and, particularly, in PCDH15, and 

their detection requires array-CGH studies, further complicating the analysis. Taken together, 

these strategies allow a reliable diagnosis for Usher patients with a mutation detection rate of 

about 90% for USH1 and USH2 patients (Besnard, et al., 2012; Roux, et al., 2011). However 

its application in clinical diagnosis is hampered by a very low detection rate, as most USH-

causing DNA alterations are private or restricted to one or two families. NGS technology has 

recently demonstrated its capacity to detect DNA variants in sensorineural disorders known to 

be genetically heterogeneous (Brownstein, et al., 2011; Neveling, et al., 2012; Redin, et al., 

2012), and a targeted NGS has shown potential use as a diagnostic platform applied to hearing 

loss (HL) (Shearer, et al., 2010). 

Due to newborn deafness screening programs, hearing deficiencies are detected early in life. 

Cochlear implants with recommended bilateral implantation in USH patients is most effective 

when performed before one year of age. If congenitally deaf children get cochlear implants 

early in life, the auditory pathway can mature quite normally resulting in close to normal 

speech perception and vocalization, as well as hearing abilities. 

To date, there is no clinical therapy for the retinal degenerative component of USH. However, 

the postnatal onset of retinal degeneration opens a time window for upcoming therapeutic 

interventions (9). Currently several non-gene-based therapy options are assessed for the retina 

(9, 15, 16). Especially, the identification of USH genes opens new doors such as gene-specific 

therapies, translational read-through-inducing drugs (TRIDs) or Antisense Oligonucleotides 

(AONs). 



13	  
	  

In most cases the clinical diagnosis is established in the second decade of life. Early diagnosis 

of USH supports parents in their choice for cochlear implants instead of learning sign 

language. Thus, the early diagnosis can improve the life-quality of USH patients and 

furthermore opens the time-window for upcoming therapeutic interventions to prevent 

blindness. 

As USH2 appears to be the most common clinical form of the disorder, accounting for more 

than 50% of all USH cases (18,19) and among the three cloned genes, USH2A is the most 

commonly mutated gene. The purpose of this paper is to characterize from a phenotypical and 

genotypical standpoint, for the first time in this country, 48 Portuguese patients carrying the 

diagnosis of Usher syndrome, determine if they carry mutations in USH2A gene, as it is the 

most commonly affected gene in all published series, and establish potential genotype-

phenotype correlations. 

 

 

 

 

 

 

 

 

 



14	  
	  

Population and Methods 

Patients carrying the tentative diagnosis of Usher syndrome were collected from the Center of 

Excellence for Hereditary Eye Diseases from the Department of Ophthalmology, Centro 

Hospitalar Universitário de Coimbra (CHUC), between 2001 and 2014. A total of 48 

probands with the diagnosis of retinitis pigmentosa or rod-cone dystrophy, in association with 

neurosensory deafness of variable severity, were collected during this period.  

Detailed phenotypical characterization was performed, including family history, geographic 

provenance, best-corrected visual acuity, determination of refractive error slit-lamp 

examination and dilated fundus examination. 

Fundus images were acquired in accordance with the internationally accepted guidelines using 

a TOPCON TRC 50X (Topcon Optical, Tokyo, Japan) and/or a Pan-retinal camera (Optomap 

R) (Optos PLC, Dunfermline, Scotland, UK). 

 

Electrophysiology (ERG and multifocal ERG) 

Ganzfeld ERG was performed in accordance with the ISCEV (International Society for 

Clinical Electrophysiology of Vision) guidelines. In brief, patients were dark-adapted for a 

period of 30 minutes followed by scotopic assessment. The full field ERG was then 

completed with recordings obtained in photopic conditions. 

Multifocal ERGs (mfERGs) were recorded using DTL fiber electrodes, after a light adaptation 

period of 10 minutes and pupil dilation with tropicamide, before fundus photography, with a 

commercial system (RETIscan System; Roland Consult) (Kutschbach, 1997). Refractive 

errors were corrected in relation to the viewing distance. The stimulus used in the mfERG 
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consisted of 61 hexagons covering a visual field of up to 30° and presented on a 20-inch 

monitor at a viewing distance of 33 cm. Luminance was 120 cd/m2 for white hexagons and 

approximately 1 cd/m2 for black hexagons, resulting in a Michelson contrast of 99%. The 

hexagonal areas increased with eccentricity to compensate for local differences in signal 

amplitude because of differences in cone density across the retina (leading to a fourfold 

change in hexagon area size). Each hexagon was temporally modulated between light and 

dark according to a binary m-sequence (frame rate, 60 Hz). Observers were instructed to 

fixate a small black cross in the center of the stimulus. Fixation was continuously checked by 

means of online video-monitoring during the approximately 8-minute recording sessions. To 

improve fixation stability, sessions were broken into 47-second segments; eight trials were 

recorded in total. Signals were amplified with a gain of 100,000 and were band-pass filtered 

(5–300 Hz). 

Reference and ground electrodes were attached to the ipsilateral outer canthus and forehead, 

respectively. The surface electrode impedance was less than 10 k_. Analyses were performed 

with the system software (RETIscan; Roland Consult) and standard statistical packages. First-

order kernels were used for mfERG analysis because of their close correlation with the 

function of the outer retina (Hood, 1997). The obtained local ERGs responses were 

normalized by the area of stimulus delivery to obtain a density response (nV/deg2). For each 

hexagon, the peak amplitude of P1—defined as the difference between N1 and P1 

amplitudes—the N1 peak, and the implicit time of P1 component were computed. To easily 

evaluate spatial differences of the local ERG responses, responses from the 61 elements were 

divided into averages of five concentric rings around the fovea. 
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Fundus Autofluorescence 

Fundus autofluorescence (FAF) was performed using the HRAII device (Heidelberg 

Engineering, Dossenheim, Germany) in accordance with the instructions from the 

manufacturer.  

 

ENT assessment 

To evaluate the audiological and vestibular characteristics of the affected individuals, 

probands underwent complete audiovestibular assessment. This included tonal and vocal 

audiometric testing, tympanometry to assess the normal middle ear function, transient evoked 

otoacoustic emissions, and auditory brainstem evoked responses to confirm absence of 

retrochoclear involvement. ENT evaluation was performed by a single physician at the ENT 

department of Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal, in accordance 

to departmental and internationally accepted standards of good practice. 

 

Usher molecular testing 

Peripheral blood samples with EDTA anticoagulant were collected from each patient and 

close relatives (for segregation analysis). Genomic DNA was extracted using an automated 

DNA extractor (BioRobot EZ1, Qiagen, Hilden, Germany).  

Molecular testing was performed in the Laboratoire de Génetique Moleculaire, INSERM, 

Montpellier, France (senior researcher: Anne F Roux). This is part of a multinational 

collaborative effort aiming for the identification of new genes and mutations associated with 

the Usher phenotype. For this purpose, this laboratory has developed a NGS (next generation 
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sequencing) approach (GS Junior, Roche 454 Sequencing) applied to a laboratory design of 

the USH-exome (SeqCap EZ Choice Library, Roche NimbleGen). Raw data obtained from 

this comprehensive molecular strategy are analyzed and deposited in a set of databases 

LSDBs USHbases freely available at https://grenada.lumc.nl/LOVD2/Usher_montpellier/. 

This set of databases includes links to tools such as USMA (USH Missense Analysis) that 

provides in silico analyses for any new missense alterations identified. 

This study was approved by the local ethics committee and followed the tenets of the 

Declaration of Helsinki. Informed consent was obtained from the participating individuals 

prior to the collection of clinical data and genomic samples.  
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Results 

Forty-eight portuguese probands, carrying USH as a tentative diagnosis, were included in this 

study. As our aim is to characterize the phenotype and establish potential genotype-phenotype 

correlations in those patients carrying USH2A gene mutations, we focused on the fifteen 

patients (11 males, 4 females) who present USH2A mutations/rearrangements in the molecular 

analysis.  

One family had 3 affected individuals in the same generation (no twins), 3 families presented 

with a pair of affected sibs (both cases non-consanguineous) while the remainder was single 

affected, comprising a total of 10 unrelated families. Consanguinity was documented in 40% 

of cases. Table 1 summarizes the molecular results for the 15 affected individuals. Fourteen 

different USH2A mutations were detected: 6 missense, 14 nonsense, 1 small rearrangement, 2 

large gene rearrangements and 6 splice-site mutations; eight patients were homozygous and 7, 

either compound heterozygous or heterozygous. In 3 cases, one simplex and a sibship of 2 

brothers, we were only able to identify an heterozygous nonsense USH2A mutation. 

Mutations in the DFNB31 gene were also identified, in heterozygosity, in the two siblings, in 

which only one heterozygous USH2A mutation could be identified.  

Five novel mutations in the USH2A gene were identified in this population: three intragenic 

deletions encompassing several exons c. 7121_9258del, USH2A exon 3 - exon34 del, USH2A 

exon 39 – exon 47 del, a nonsense mutation, c.7932G>A, and a deep intronic homozygous 

mutation c.4988-19T>G. The three intragenic deletions create a novel protein devoid of 

several highly conserved elements, and is likely to determine an important disruption in the 

complex protein network of USH genes. The novel nonsense mutation replaces a tryptophan 

by a stop codon at exon 41, eliminating critical elements of the N-terminus of the wild-type 

polypeptide, also interfering with protein function. The novel deep intronic mutation appears 
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to affect normal splicing, thus compromising translation beyond exon 25 of the USH2A gene. 

The basic demographics and clinical findings (ocular and auditory) are summarized in Tables 

2 and 3. The average age of diagnosis was 29,8 years, while the average age at the last clinical 

evaluation was 49,8 years. Regarding the ophthalmological features, nyctalopia was the 

presenting complaint, observed in 100% of cases, with an average age of presentation of 15,3 

years. At the last ophthalmological evaluation, best corrected visual acuity was below normal 

in all patients, varying from 0.1 and 0.8. 

In our cohort, slit-lamp examination revealed significant changes in 80% of cases, mostly 

cataract - nuclear, cortical and posterior subcapsular (the most prevalent), and 50% were 

pseudophakic. None of the IOL implanted cases presented significant opacification of the 

posterior capsule. Dilated fundus examination disclosed a clinical picture compatible with RP 

in 100% of probands; it varied from isolated peripheral bone spicules, patchy retinal pigment 

epithelium (RPE) areas of atrophy, thin vessels and normal discs (20%), to pale discs, near 

confluent peripheral bone spicules, extensive atrophic RPE changes and thin vessels (47%) to 

typical RP with preserved macula (33%). 

Full field ERG demonstrated that the majority presented with an unrecordable response (87%) 

and just two probands had a severely attenuated, yet recordable, response (13%). On the other 

hand, multifocal ERG analysis showed decreased central peak amplitude (100% cohort cases 

below 100 microV), and occasional drift of the peak of maximal response to an extrafoveal 

hexagone. 

FAF revealed that 77% of this cohort presented a macular ring of hyperautofluorescence 

associated with peripheral hypoautofluorescence while the remainder probands disclosed 

patchy hypoautofluorescence of the macula. 
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Concerning to auditory clinical findings, ENT Standard revealed 100% probands with 

neurosensorial deafness, with no possibility to know a precise presentation age average due to 

lack of knowledge from patients. 
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ID Gene/cDNA/Allele 1/Allele 2 Predicted protein(s) Type(s) 

USH2A1 USH2A/ c.2137G>C / c.2137G>C p.Gly713Arg Missense 

USH2A2 
USH2A/ c.923_924insGCCA/  

USH2A del exon 3- exon 34 
p.His308Glnfs*16/ - 

Nonsense/  

Large Rearrangement 

USH2A3                         USH2A/ c.923_924insGCCA/ ND 

 

p.His308Glnfs*16/ ND Nonsense/ - 

USH2A4 
USH2A/ c.7121_9258del/ 

USH2A/ c.7121_9258del 

p.Val2374_Gln3086delinsGl

yfs*1 
Nonsense 

USH2A5 USH2A/ c.7932G>A/ DFNB31:c.19G>A  
p.Trp2644X 

Gly7Ser 
Nonsense/ Missense 

USH2A6 USH2A/ c.7932G>A/ DFNB31:c.19G>A  
p.Trp2644X 

Gly7Ser 
Nonsense/ Missense 

USH2A7 
USH2A/ c.2809+1G>A/ 

USH2A/ c.2809+1G>A 
p.Gly937Aspfs*12 Nonsense 

USH2A8 
USH2A/ c.2809+1G>A/ 

USH2A/ c.2809+1G>A 
p.Gly937Aspfs*12 Nonsense 
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Table 1. Molecular results 

Legends: table 1 summarizes the changes identified in the USH2A gene and respective predicted changes in the protein. (a) Sibship of three 

USH2A9 USH2A/ c.2299delG/ c.5329C>T 
p.Glu767Serfs*21 

/p.Arg1777Trp 
Nonsense/ Missense 

USH2A10 
USH2A/ c.2299delG/  

c.5329C>T 

p.Glu767Serfs*21 

/p.Arg1777Trp 
Nonsense/ Missense 

USH2A11 
USH2A/ c.7932G>A/ 

USH2A/ c.7932G>A 
p.Trp2644X Nonsense 

USH2A12 
USH2A/ del exon 39-exon 47/ 

                           USH2A/ del exon 39-exon 47 
 Small Rearrangement 

USH2A13 (a) 
USH2A/ c.4988-19T>G/ 

USH2A/ c.4988-19T>G 
 Splice Site Mutation 

USH2A14 (a) 
USH2A/ c.4988-19T>G/  

USH2A/ c.4988-19T>G  
 Splice Site Mutation 

USH2A15 (a) 
USH2A/ c.4988-19T>G/  

USH2A/ c.4988-19T>G 
 Splice Site Mutation 
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Table 2: Basic demographics and auditory findings 

 

.Legends: (a) Sibship of three; M: Male; F: Female; NS: Neurosensory 

Patient ID Sex Age Age diagnosis Deafness Age hearing impairment 

USH2A1 M 63 50 NS Before 10 

USH2A2 M 68 40 NS Moderate hearing loss, 18 

USH2A3 F 67 45 NS Between 10-20 

USH2A4 M 48 24 NS Before 10 

USH2A5 M 43 18 NS Between 10-20 

USH2A6 M 44 30 NS Before 10 

USH2A7 M 36 22 NS Before 10 

USH2A8 F 34 20 NS Between 10-20 

USH2A9 M 44 33 NS Moderate hearing loss, 7. 

USH2A10 F 41 30 NS Moderate hearing loss, 12 

USH2A11 F 34 20 NS Between 10-20 

USH2A12 M 42 10 NS Before 10 

USH2A13 (a) M 60 40 NS Before 10 

USH2A14(a) M 52 25 NS Between 10-20 

USH2A15 (a) M 71 25 NS Between 10-20 
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Patient ID 
Age of 

nyctalopia 

VA 

OD/OS 
Slit-lamp Exam Fundus ERG MF ERG FAF 

USH2A1 25 0.5/0.5 
Pseudophakia 

OU 

RP with preservation 

macula 
Flat 

Central peak 

35 microV 

Macular ring of  

hyperautofluorescence 

USH2A2 30 0.4/0.5 
Pseudophakia 

OU 

Pale disc, peripheral 

bone spicules, 

atrophic RPE, thin 

vessels 

Flat 
Central peak 

26 microV 

Patchy 

hypoautofluorescence 

USH2A3 15 0.3/0.2 
Pseudophakia 

OU 

Pale disc, peripheral 

bone spicules, 

atrophic RPE, thin 

vessels 

Flat 
Central peak 

18 microV 

Patchy 

hypoautofluorescence 

USH2A4 7 0.5/0.4 PSC 

Pale disc, peripheral 

bone spicules, 

atrophic RPE, thin 

vessels 

Flat 
Central peak 

40 microV 

Macular ring of 

hyperautofluorescence 
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USH2A5 8 0.8/0.9 
Mild PSC 

cataract 

Peripheral bone 

spicules, patchy 

atrophy, thin vessels, 

normal discs 

Flat 
Central peak 

65 microV 

Macular ring of 

hyperautofluorescence 

USH2A6 10 0,6/0,7 
Mild PSC 

cataract 

Peripheral bone 

spicules, patchy 

atrophy, thin vessels, 

normal discs 

Flat 
Central peak 

50 microV 

Macular ring of 

hyperautofluorescence 

USH2A7 8 0.2/0.1 PSC cataract 

Pale disc, peripheral 

bone spicules, 

atrophic RPE, thin 

vessels 

Flat 
Central peak 

15 microV 

Patchy 

hypoautofluorescence 

USH2A8 10 0.6/0.6 
Mild PSC 

cataract 

Peripheral bone 

spicules, patchy 

atrophy, thin vessels, 

normal discs 

Flat 
Central peak 

45 microV 

Macular ring of 

hyperautofluorescence 
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USH2A9 12 0.2/0.2 PSC OU 

Pale disc, peripheral 

bone spicules, 

atrophic RPE, thin 

vessels 

Flat 
Central peak 

20 microV 

Patchy 

hypoautofluorescence 

USH2A10 6 0.8/0.8 Wnl 

Pale disc, peripheral 

bone spicules, 

atrophic RPE, thin 

vessels 

Severely 

attenuated 

Central peak 

42 microV 

Macular ring of 

hyperautofluorescence 

USH2A11 10 0.8/0.6 Wnl 
RP with preservation 

macula 
Flat 

Central peak 

55 microV 

 Macular ring of 

hyperautofluorescence 

USH2A12 3 0.6/0.7 Wnl 

Pale disc, peripheral 

bone spicules, 

atrophic RPE, thin 

vessels 

Flat 
Central peak 

17 microV 

Macular ring of 

hyperautofluorescence 
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Table 3: Clinical features and ocular findings. 

Legends: (a) Sibship of three; ND: Not Detected; VA: Visual Acuity; OD: Right eye; OS: Left Eye; OU: Both Eyes; PSC: Posterior Sub-capsular 

Cataract; Wnl: Within normal limits; RP: Retinitis Pigmentosa; ERG: Full-field Electroretinogram; MF ERG: Multifocal Electroretinogram; FAF: 

Fundus Autofluorescence 

 

USH2A13 (a) 35 

OD 

0,6/OE 

0,6 

Pseudophakia 

OU 

RP with preservation 

macula 

Severely 

attenuated 

Central peak 

45 microV 

Macular ring of 

hyperautofluorescence 

USH2A14(a) 25 0,6/0.5 
Pseudophakia 

OU 

RP with preservation 

macula 
Flat 

Central peak 

51 microV 

Macular ring of 

hyperautofluorescence 

USH2A15 (a) 25 0.2/0.3 
Pseudophakia 

OU 

RP with preservation 

macula 
Flat 

Central peak 

24 microV 

Patchy 

hypoautofluorescence 
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Discussion 

In this study, we present the first mutational study in a large cohort of USH patients ever 

carried in Portugal. Each individual was extensively characterized from a clinical standpoint 

in an attempt to correlate the clinical findings with the molecular results.  

A comprehensive phenotyical characterization of USH patients must be performed, as it is 

essential in differentiating patient’s clinical characteristics, defining their diagnosis in one of 

those three clinical different subtypes. 

Molecular testing is essential to better understand this condition. Knowing the enormous 

variability of phenotypes associated with this syndrome, including atypical cases and spurious 

associations of retinitis pigmentosa with hearing deficits, having a molecular diagnosis can 

confirm preliminary clinical suspicion, guide treatment options, help predict the prognosis 

and is very important for couples who wish to have genetic prenatal counselling. Nowadays it 

is possible, after several years of trying to achieve a technology capable of high detection 

rates, to perform a reliable molecular analysis using custom optimized NGS technology, 

putting us on track to reach gene therapy as a solution available for certain patients who have 

a specific molecular pattern. However, the substantial heterogeneity existent in USH and the 

high-costs inherent to those cutting-edge technologies can cause severe economic difficulties, 

therefore hampering the generalized use of such tests. 

This analysis led to identification of a total of 11 different pathogenic mutations, 5 unreported 

in the literature and databases, and 6 previously described: three missense and three nonsense. 

The analysis of the previously unreported mutations uncovered: three intragenic deletions 

encompassing several exons c. 7121_9258del, USH2A exon 3 - exon34 del, USH2A exon 39 – 

exon 47 del, all inherited in homozygosity; a nonsense mutation, c.7932G>A, homozygous in 
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one family and heterozygous in a sibship of 2 affected sibs; and a deep intronic homozygous 

mutation c.4988-19T>G, identified in a sibship of three brothers, with a very late diagnosis of 

USH2. It is important to underscore that in the case where c.7932G>A is inherited in 

heterozigosity, a second, also heterozygous missense mutation was identified in the DFNB31 

gene (USH2D). It remains to be demonstrated whether this represents a digenic mechanism, 

or whether the second mutated allele, either in USH2A or DFNB31 will be identified, and the 

heterozygous element represents a genetic modifier.  

The three intragenic deletions create a novel protein devoid of several highly conserved 

elements, including EGF Lam, FN3 and Lam G subunits, of variable extent; this fact is likely 

to determine novel polypeptides incapable of properly interacting with the remainder 

elements of the complex protein network of USH genes, thus affecting normal functioning of 

both photoreceptors and ciliated inner ear cells. 

The novel nonsense mutation replaces a tryptophan by a stop codon at exon 41, eliminating 

critical elements of the C-terminus of the wild-type polypeptide, including several FN3 

subunits, the TM element and the PDZ-binding motif. The absence of these critical elements 

also interferes with protein function and interactions.  

The novel deep intronic mutation appears to affect normal splicing, thus compromising 

translation beyond exon 25 of the USH2A gene. This intronic change, c.4988-19T>G, was the 

most prevalent mutation in this cohort, since it was identified in homozygosity in a sibship of 

three. This change is extremely interesting as it may be amenable for therapy using a 

Antisense Oligonucleotide (AON) approach to restore normal splicing. Several in vitro tests, 

namely a minigene approach will soon be used to fully confirm the pathogenicity of this novel 

change, as a pre-requisite to design the appropriate treatment. 

The two nonsense mutations, c.7932G>A and c. 2809+1G>A, are each one responsible for 



30	  
	  

13% of allele modifications. If we compare the relative allele frequencies of this Portuguese 

population with the ones observed in the Spanish population, due to geographical proximity, 

we didn´t find the c.2299delG mutation, as a widespread mutation, found in 15% of Spanish 

Population (20) as well as other Southern European populations (21). This mutation is also 

present in the Portuguese population, although at a much lower frequency (7%). The resulting 

pathogenic protein functional modification: p.Glu767Serfd*21, derives from that common 

ancestral mutation, which is the most prevalent in several populations (22). 

It should be underscored that the p.Arg1777Trp, also identified in our cohort was described as 

Probably Pathogenic, and that p. Gly713Arg and p.Gly7Ser have both been described as 

“Effect Unknown” [https://grenada.lumc.nl/LOVD2/Usher_montpellier, 35].  

In an attempt to establish a possible phenotype-genotype correlation between missense 

mutations and clinical findings, we focused on those five patients carried this class of 

mutation (one homozygous, four heterozygous) and compared them with all other mutation 

types. The patient who inherited an homozygous missense USH2A mutation evidenced 

slightly better clinical features, with later onset nyctalopia and relatively less severe RP. 

However, no real conclusions can be drawn, as we do not have important longitudinal data 

that would allow the establishment of a disease progression pattern of the retinal degeneration 

component. The remainder heterozygous cases did not display better phenotypical features 

compared to other patients. 

Since two distinct patterns were observed for FAF, an attempt was made to correlate the 

patchy hypoautofluorescence pattern with a specific genotype. We were unable to uncover a 

trend when comparing the hyperautofluorescence ring group with the other subgroup.  

However, the limited number of eyes would not allow the establishment of any statistically 

significant conclusions. Larger population studies and international collaborative efforts are 
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needed to allow adequate genotype-phenotype correlations, to further advance knowledge of 

this condition and promise better treatment and care for Usher patients. 
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