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Abstract 

In a society where the public awareness of environmental protection is increasing 

remarkably and the availability of resources and funding is limited, it is more vital than 

ever that highway agencies and decision-makers (DMs) seek new tools that enable them 

to make the best and most rational use of these resources, taking into account 

environmental and social factors, along with economic and technical considerations. 

However, the traditional practices adopted by highway agencies with regards to 

pavement management, have mostly consisted of employing life cycle costs analysis 

(LCCA) systems to evaluate the overall long-term economic efficiency of competing 

pavement design and maintenance and rehabilitation (M&R) activity alternatives. This 

way of supporting the decision-making process, as it relates to pavement management, 

in which little or no importance is given to environmental considerations, does not seem 

to be effective in advancing sustainability in pavement systems. In view of this, it is 

clear there is an urgent need for pavement management decision-support systems 

(DSSs), which, by integrating multi-disciplinary and complementary pavement life 

cycle approaches, will enable the DMs to properly account for, consider and assess the 

cumulative and long-term impacts of their decisions and practices regarding 

sustainability goals and targets. This can only be achieved by employing techniques and 

tools with a comprehensive and wide-scoped cradle-to-grave analysis capacity.  

This thesis presents a project-level optimization-based pavement management DSS, 

which includes several comprehensive stand-alone but logically interconnected 

pavement life cycle approaches. The following appraisal methods are presented: a life 

cycle assessment (LCA) model, a life cycle costs (LCC) model, an integrated LCC-

LCA model, a single-objective life cycle optimization model and a multi-objective life 

cycle optimization model.  

Initially, individual pavement LCA and LCC models are developed to quantify the 

environmental impacts and the costs incurred by highway agencies and road users 



Abstract 

 

xliv 

throughout six pavement lifecycle phases: materials extraction and production, 

construction and M&R; transportation of materials; work zone (WZ) traffic 

management; usage; and end-of-life (EOL). Subsequently, a comprehensive and 

integrated pavement LCC-LCA model is developed, in order to improve the consistency 

between the system boundaries of the pavement life cycle when analyzed concomitantly 

from the economic and environmental viewpoints. 

 In view of the progressive enhancement of the capability of analysis of the DSS, a 

single-objective life cycle optimization model is developed to tackle the pavement 

M&R strategy selection problem. The proposed approach relies on a non-linear discrete 

optimization model that is solved through an Adaptive Hybrid Genetic Algorithm 

(AHGA). The developed algorithm contains two dynamic learning mechanisms to 

adaptively guide and combine the exploration and exploitation search processes. The 

new AHGA is compared to a non-hybridized version of the GA by applying the 

algorithms to several case studies with the objective of determining the best pavement 

M&R strategy that minimizes the PV of the total M&R costs.  

Finally, to enhance the prospect of simultaneous accomplishment of both cost and 

environmental objectives, a multi-objective life cycle optimization methodology is 

proposed. The methodology contains three main components: (1) a multi-objective 

optimization (MOO) model; (2) a comprehensive and integrated pavement LCC-LCA 

model; and (3) a decision-support module. The proposed multi-objective optimization 

methodology is applied to determine the optimal M&R strategies for a flexible 

pavement section of a highway which yields the best tradeoff between the following 

three, often conflicting, objectives: (1) minimization of the PV of the total life cycle 

highway agency costs (LCHAC); (2) minimization of the PV of the life cycle road user 

costs (LCRUC); and (3) minimization of the life cycle environmental impacts (LCEI). 

All the pavement life cycle approaches are applied to either real or academic case 

studies based on highway agencies’ real practices, which, in addition to meeting the 

technical requirements, strive to enhance pavement sustainability by providing potential 

LCHAC and LCRUC savings and reduced environmental impacts. The results show the 

usefulness of the pavement life cycle-based methodologies integrating the DSS as 
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viable tools to help highway agencies and DMs in making decisions that are more 

sustainable for meeting the cumulative and long-term economic and environmental 

goals and targets. 
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Resumo 

Numa sociedade em que consciência pública sobre a protecção do ambiente é cada vez 

mais notória, e a disponibilidade de recursos naturais e de financiamento é limitada, as 

concessionárias rodoviárias e os decisores procuram, hoje, mais do que nunca, 

ferramentas que lhes possibilitem utilizar esses recursos de forma mais racional, tendo 

em conta factores ambientais e sociais juntamente com considerações económicas e 

técnicas. No entanto, as práticas tradicionalmente adoptadas pelas concessionárias 

rodoviárias no que diz respeito à gestão de pavimentos tem consistido essencialmente 

na aplicação de sistemas de Avaliação dos Custos do Ciclo de Vida (ACCV) com o 

objectivo de avaliar o valor económico de longo prazo de opções alternativas de 

investimento para novos projectos de construção, manutenção e reabilitação (M&R). 

Esta forma de apoio à tomada de decisão, em que nenhuma ou reduzida importância é 

dada às considerações ambientais, não é eficaz na promoção da sustentabilidade dos 

sistemas de pavimentos rodoviários. Nessa perspectiva, é evidente a necessidade 

urgente de Sistemas de Apoio à Decisão (SAD) para a gestão de pavimentos, que 

através da integração de abordagens complementares e multidisciplinares de ciclo de 

vida de pavimentos, permitam aos decisores contabilizar os efeitos cumulativos e de 

longo prazo das suas decisões e procedimentos, no que diz respeito à concretização dos 

objectivos e metas de sustentabilidade. Tal só será possível através da utilização de 

técnicas e ferramentas dotadas de uma capacidade de análise abrangente e com um 

âmbito alargado.  

Esta tese apresenta um SAD para optimizar a gestão de pavimentos ao nível de projecto 

que inclui várias abordagens de ciclo de vida de pavimentos, com uma natureza 

abrangente e autónoma, mas interligadas de forma lógica. Especificamente, os seguintes 

métodos de avaliação são apresentados: um modelo de Avaliação do Ciclo de Vida 

(ACV), um modelo de CCV, um modelo integrado de CCV-ACV, um modelo de 
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optimização mono-objectivo do ciclo de vida e um modelo de optimização multi-

objectivo do ciclo de vida. 

Inicialmente são desenvolvidos modelos individuais de ACV e CCV de pavimentos, 

que visam quantificar os impactes ambientais e os custos suportados pelas 

concessionárias rodoviárias e pelos utilizadores ao longo das seis fases do ciclo de vida 

de um pavimento rodoviário: extracção e produção de materiais; construção e M&R; 

transporte de materiais; gestão do tráfego nas zonas de trabalhos; utilização; e fim do 

ciclo de vida. Posteriormente, um modelo abrangente e integrado de CCV-ACV de 

pavimentos é desenvolvido, a fim de se melhorar a consistência das fronteiras do 

sistema do ciclo de vida de um pavimento, quando analisado concomitantemente dos 

pontos de vista ambiental e económico.  

Tendo em vista a melhoria progressiva da capacidade de análise do SAD, um modelo de 

optimização mono-objectivo do ciclo de vida é desenvolvido para lidar com o problema 

da selecção de estratégias de M&R dos pavimentos. A abordagem proposta assenta num 

modelo de optimização discreta e não-linear que é resolvido através de um algoritmo 

genético híbrido adaptativo (AGHA). O algoritmo desenvolvido possui dois 

mecanismos de aprendizagem dinâmica que tem como objectivos conduzir e combinar, 

de forma dinâmica, os processos de refinamento e exploração das soluções do 

problema. O novo AGHA é comparado com uma versão não híbrida do algoritmo 

genético através da aplicação dos algoritmos a vários casos de estudo.  

Por último, para melhorar a expectativa de realização simultânea dos objectivos 

ambientais e de custos, uma metodologia de optimização multi-objectivo do ciclo de 

vida é proposta. A metodologia possui três componentes: (1) um modelo de optimização 

multi-objectivo; (2) um modelo abrangente e integrado de CCV-ACV de pavimentos; e 

(3) um modelo de apoio à decisão. A metodologia de optimização multi-objectivo 

proposta é aplicada na identificação da estratégia óptima de M&R de um pavimento 

rodoviário flexível, que resulte no melhor compromisso entre os três objectivos 

seguintes: (1) minimização do valor actual dos CCV suportados pelas concessionárias 

rodoviárias; (2) minimização do valor actual dos CCV suportados pelos utilizadores; e 

(3) minimização dos impactes ambientais do ciclo de vida. 
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Todas as abordagens de ciclo de vida de pavimentos são aplicadas a casos de estudo 

reais ou a casos de estudos académicos baseados nas práticas reais adoptadas pelas 

concessionárias rodoviárias, que visam não só o cumprimentos dos requisitos técnicos, 

mas também a melhoria da sustentabilidade dos pavimentos através da redução dos 

impactes ambientais e dos CCV suportados pelas concessionárias rodoviárias e pelos 

utilizadores. Os resultados mostram a utilidade das metodologias de ciclo de vida que 

integram o SAD como ferramentas viáveis para ajudar as concessionárias rodoviárias e 

os decisores a concretizar os objectivos e as metas económicas e ambientais 

cumulativas e de longo prazo.     
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Chapter 1  

Introduction 

1.1 Motivation 

It has been recognized for a long time that road infrastructure systems play an important 

role in ensuring the delivery of goods and services that promote prosperity and growth 

and contribute to the quality of life, including the social well-being, health and safety of 

citizens, and the quality of their environments. Therefore, on-going investment in these 

systems will continue to be a pivotal requirement for countries aspiring to be, or to 

remain, fully and competitively integrated in a world economy, although the way the 

investment is applied will vary depending on the country’s level of development 

(OECD, 2007).  

Developing countries are still going through a phase of strong investment in the 

construction of new road infrastructures, whereas the majority of developed countries 

have just started to experience a change in their investment needs. While in the past we 

saw a considerable amount of financial resources being allocated to the expansion of 

their road network, the future trend will be towards making the best possible use of the 

available infrastructures in order to accommodate growing transport demands, while 

ensuring that traffic density and the condition of road infrastructures remain at desirable 
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levels, and that the road network is adaptable, automated and resilient (ERTRAC, 

2010).  

Nevertheless, for some countries, such as the United States (US), challenges that had 

been envisioned for the short/medium term are currently becoming realities that require 

an urgent and effective response. According to the most recent American Society of 

Civil Engineers’ (ASCE’s) report card, a considerable percentage of the country’s core 

public road infrastructures are showing signs of continued and accelerated deterioration 

or have even already reached the end of its expected service life (ASCE, 2013). Failure 

to make significant progresses towards fulfilling the road infrastructure investments 

needs could prove costly in terms of congestion, costing the economy an estimated $101 

billion a year in wasted time and fuel, growing environmental problems, with all the 

implications this has for living standards and quality of life, or maybe even lead to a 

permanent and irreversible partial loss of this important asset. 

During the last decade, practitioners and decision-makers (DMs) have responded to the 

needs of addressing road infrastructure issues by putting pressure on governments to 

increase the investment in road infrastructure with public budgets coming mostly from 

tax receipts. However, either due to the economic crisis, which has lead to a reduction 

of the consumption-based and income-based tax revenues, or simply due to a shift in the 

government policies, the solutions adopted in the past cannot be employed to solve the 

problems of the present. 

Moreover, the increasing global awareness of sustainability and climate change have 

motivated an ever-growing number of organizations and governing bodies to embrace 

the principles of sustainability in managing their activities and conducting business. For 

instance, in its Strategic Plan for the fiscal years 2014-2018, the United States 

Department of Transportation (US DOT) includes a separate strategic goal to “Advance 

environmentally sustainable policies and investments that reduce carbon and other 

harmful emissions from transportation sources” (US DOT, 2014). Similarly, the 

European Union (EU), in an effort  to improve sustainability in the European 

community, released a Strategic Research Agenda (SRA), which defines the research 
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and innovation priorities, with the goal of increasing the current efficiency of the 

European road transport system by 50% by 2030 (ERTRAC, 2010). The approach taken 

by the SRA recognizes, in particular, the societal demand for both increasing the energy 

efficiency of road transport activities and decarbonizing the energy they consume. 

Highways are ideal targets for effective sustainable design and construction initiatives. 

Frequently, they are large in project scope and involve considerable amounts of 

financial resources (ERF, 2013). Also, highway road pavement construction and 

maintenance consume significant amounts of materials and energy and produce large 

amounts of waste, which may have adverse effects on the environment and cause social 

perturbations (Santero and Horvath, 2009). This is further worsened by the project’s 

long construction time and service life that, ideally, requires maintenance to be 

performed on a regular basis. Therefore, to advance the integration of the road 

pavement infrastructures into the concept of sustainable development in a progressive 

and balanced manner, infrastructure owners should add sustainability considerations to 

the construction and maintenance concepts. 

Sustainability considerations are not new, and in fact have often been considered 

indirectly or informally, but in recent years increased efforts are being made to assess 

the sustainability of road projects and to incorporate the results of that assessment into 

the road pavement decision-making process in a more systematic, organized and 

comprehensive fashion. An example of the endeavors undertaken at the forefront of the 

sustainable movement is the development of sustainability rating systems to 

qualitatively assess the sustainability of construction practices. Taking the Greenroads 

rating system as an example, it identifies the attributes of a road project that may 

contribute to enhancing sustainability, and then it sets sustainability best practices for 

each attribute (Greenroads, 2011). However, because the rating systems are mostly 

focused on environmental issues related to materials and construction processes rather 

than the usage phase (Bueno et al., 2015), it may be that a road project awarded with a 

“green” label is not always synonymous with a project that is globally “green” (Harvey 

et al., 2011). In fact, the most environmentally-friendly strategy may not be the one with 
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the highest performance. In other words, simply using “greener” materials than others, 

or blindly performing recycle-related practices may lead to an increase in the amount of 

M&R treatments needed, due to a hypothetically lower performance over the life cycle, 

which may in turn result in higher total emissions produced and network congestion due 

to work-zones (WZs) (Giustozzi et al., 2012). Furthermore, while these systems may be 

promising in pointing out areas where sustainability can be enhanced during the 

construction and maintenance phases, they lack an analytical approach that enables the 

benefits associated with sustainable design and construction procedures to be quantified. 

A pro-active consideration of sustainability goals for managing pavement assets 

therefore requires the setting of targets and the development of tools and methodologies 

that will allow DMs, owners and operators to assess the current state of road pavement 

infrastructures, report on their technical, economic, environmental and social 

performances, and predict future conditions and performances from a cradle-to-grave 

perspective. This multi-dimensional and life cycle thinking-based approach goes well 

beyond the traditional single-discipline evaluation of performance prevailing in some 

rating systems and “Report Cards”. It provides a more consistent platform for 

improving pavement management in a holistic way by helping to put decisions in 

context with facts from all stages of the system’s life cycle, and thereby avoids shifting 

the environmental, economic and social burdens from one life cycle phase or 

stakeholder to another. These attributes are important features which enable the 

benchmarking and assessment of the level of achievement of the highway agency’s 

goals and objectives towards sustainability. 

Two instruments with a life cycle thinking-based philosophy that can be used to 

quantify the economic and environmental performances of sustainability considerations 

are life cycle assessment (LCA) and Life Cycle Costs Analysis (LCCA). While LCCA 

provides an effective evaluation to pinpoint long-term cost-effective solutions for the 

design and maintenance of pavement systems (Walls and Smith, 1998), the 

environmental impacts associated with their life cycle are best characterized using a 

LCA approach (Santero et al., 2011). LCA is an objective methodology for evaluating 
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the environmental loads associated with a product, process, or activity over their entire 

life cycle (Guinée et al., 2002). This method is based on identifying and quantifying the 

energy and materials used in a process in order to translate them into a set of 

meaningful environmental indicators that inform users about the impact caused in 

different categories. The performance achieved in these damage categories can then be 

employed to assess different process alternatives that can be implemented to achieve 

environmental improvements.  

Neither LCCA nor LCA  are synonymous with a sustainability assessment but they 

provide critical information and metrics, which, when complemented with other 

appraisal techniques, can be used either to find the most cost-effective paving solutions 

to reduce environmental impacts or, at a higher decision level, to measure progress 

towards sustainability targets. 

One of the techniques that can further extend the achievements obtained through the 

conjoint application of the aforementioned life cycle-based approaches is the multi-

objective optimization (MOO) technique. MOO is well suited to incorporating 

environmental concerns in the optimization of sustainable processes, since it allows 

them to be treated as decision-making objectives to be optimized in conjunction with 

the traditional economic-based criteria. Therefore, by embracing these concepts and 

incorporating them into decision-support systems (DSSs) for pavement management, 

those in charge of deciding how sustainable pavement systems will be tackled, will be 

in a much better position to adapt and advance current pavement management practices 

towards enhancing pavement sustainability. 

1.2  Problem statement 

In a society where the public awareness of environmental protection is increasing 

remarkably and the availability of resources and funding is limited, it is more vital than 

ever that DOTs and DMs seek new tools that enable them to make the best and most 

rational use of these resources, taking into account environmental and social factors, 

along with economic and technical considerations. However, the practices adopted by 
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highway agencies with regards to pavement management have mostly consisted of 

employing LCCA systems to evaluate the overall long-term economic efficiency of 

competing pavement design and maintenance and rehabilitation (M&R) activity 

alternatives. This way of supporting the decision-making process for pavement 

management does not seem to be effective and efficient in advancing sustainability in 

pavement systems. 

In view of this, it is clear there is an urgent need for pavement management DSS, 

which, by integrating multi-disciplinary and complementary pavement life cycle 

modelling approaches, will enable the DMs to properly account for, consider and assess 

the cumulative and long-term impacts of their decisions and practices regarding 

sustainability goals and targets. This can only be achieved by employing techniques and 

tools provided with a comprehensive and wide-scoped cradle-to-grave capacity of 

analysis.  

In this context, LCCA has the potential to contribute to enhancing the sustainability of 

road pavement systems, since it provides a means to minimize the costs incurred by the 

several pavement stakeholders throughout the project analysis period (PAP) (Santos and 

Ferreira, 2013). However, contrary to what an effective application of LCCA techniques 

requires (Ozbay et al., 2003), the state of practice reveals that the LCCA rarely 

incorporates non-highway agency costs (HAC) (Chan et al., 2008; Rangaraju et al., 

2008; Hallin et al., 2011), and may thus favor non-optimal alternatives if the long-term 

pavement performance is taken into account. In turn, if the common shortcomings of 

existing pavement LCA models, namely the omission of some of the potentially most 

important pavement life cycle phases (i.e., usage and WZ traffic management) are 

properly addressed and corrected (Santero et al., 2010), a comprehensive LCA approach 

with wide system boundaries is well suited to estimate the long-term environmental 

performance of road pavement systems.  

Notwithstanding the recognized merits of LCCA and LCA methods in evaluating the 

economic and environmental dimensions of sustainability, respectively, these methods 

applied individually are inefficient to optimally address the common tradeoff 



Chapter 1 Introduction 

 

 

7 

relationships and interactions between life cycle sustainability indicators. Rather, they 

are better employed when a wide-scoped LCCA system is integrated with a 

comprehensive LCA model into an optimization-based pavement life cycle management 

framework accounting for various objectives and constraints, and allowing LCCA and 

LCA to be carried out in parallel.  

However, the traditional practice in optimized decision-making in pavement 

management has been based on the optimization of a single objective, mostly the 

minimization of life cycle costs (LCC), which can be either the total highway agencies, 

or less often, the summation of the total HAC and road user costs (RUC). It is therefore 

evident that the steady and effective implementation of a sustainable pavement 

management system (SPMS), by way of the addition of the environmental dimension to 

the traditional cost-based optimization framework, requires the mathematical 

formulation of the decision problems to migrate from the single-objective optimization 

(SSO) to the MOO domain, in which the DMs are provided not with a single preferred 

solution, but with a set of potentially preferred solutions. In this way, a tradeoff analysis 

can be performed in a flexible manner, with respect to objectives that are deemed 

important for the perspective of the DM tackling the problem.  

Therefore, to enable such a holistic approach, many different modeling, appraisal and 

operational research techniques need to be advanced and properly coupled to enable 

DMs to identify the procedures that they should implement to positively define the 

overall sustainability of the current and future road pavement systems by appropriately 

selecting, designing and optimizing the management of those assets. 

1.3  Research objectives 

The main objective of this thesis is to develop an optimization-based pavement 

management DSS which includes several comprehensive stand-alone but logically 

interconnected pavement life cycle approaches. The system represents a tool for DMs, 

(1) to evaluate the current pavement management practices and policies as it pertains to 

the technical and economic effectiveness and the associated impacts on the natural 
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environment and, (2) to identify more sustainable paving engineering solutions resulting 

from either a comprehensive MOO-based or a non-optimization-based decision-making 

process, depending on the DM’s interests and scope of analysis. 

The fulfillment of this objective requires the following research tasks to be undertaken: 

1. To draw up a conceptual framework for a project-level pavement LCA model 

tailored for both US and European conditions, namely for the Portuguese 

context, which covers all of the six pavement life cycle phases: materials 

extraction and production; construction and M&R; transportation of materials; 

WZ traffic management; usage and end-of-life (EOL);  

2. To develop a comprehensive project-level pavement LCC model that accounts 

for the different categories of costs incurred by highway agencies and road users 

in every phase of the pavement life cycle; 

3. To develop a comprehensive and integrated project-level pavement life cycle 

costs-life-cycle assessment (LCC-LCA) model, which encompasses all six 

pavement life cycle phases into the system boundaries, including the usage 

phase, and accounts for the upstream impacts in the production of elements 

commonly disregarded by the majority of the existing pavement LCA models; 

4. To investigate from a life cycle perspective the extent to which several 

pavement engineering solutions, namely hot in-plant recycling mixtures, Warm-

mix Asphalt (WMA), cold central plant recycling (CCPR) and preventive 

treatments, are efficient in improving the environmental and economic 

dimensions of pavement infrastructure sustainability, when applied either 

separately or in combination, in the construction and management of a road 

pavement structure; 

5. To develop (1) a project-level single-objective-based life cycle optimization 

model to address the pavement M&R strategy selection problem and (2) a 

genetic algorithm (GA) to solve the abovementioned model; 
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6. To develop a comprehensive and modular MOO-based pavement management 

DSS, which integrates a comprehensive pavement LCC-LCA model, along with 

a decision-support module, within a MOO framework; 

7. To foster the sustainability of the pavement management policies and practices 

adopted by a highway agency through: (1) the identification of pavement M&R 

strategies that optimally account for the tradeoff relationship between life cycle 

highway agency costs (LCHAC), life cycle road user costs (LCRUC) and life 

cycle environmental impacts (LCEI); (2) the quantification of the economic and 

environmental benefits that can be achieved by implementing those optimal 

M&R strategies in lieu of pre-defined ones; and, (3) the assessment of how new 

pavement engineering solutions can potentially amplify the economic and 

environmental benefits obtained with the implementation of optimal M&R 

strategies. 

To sum up, this thesis provides a practical, scientifically-based, comprehensive and 

wide-scoped pavement management DSS to help and guide DMs in promoting 

economically and environmentally sustainable decision-making processes related to 

pavement construction and maintenance management. The feasibility and practicality of 

the components integrating the DSS are illustrated with various case studies. 

1.4  Structure of the thesis 

This thesis is organized into nine chapters. Excluding Chapter 1 (Introduction) and 

Chapter 9 (Summary, conclusions and future work), all chapters are written in the 

format of a scientific article and can be considered as an independent element. 

Consequently, they may be read independently or in sequence. For this reason, some 

sections, namely the background information, the description of the pavement life cycle 

approaches and the features of some case studies are partially repeated in several 

chapters. 

Even though each chapter can be read independently, this thesis is not a simple 

assembly of scientific articles, as they were conceived to portray the planned evolution 
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of the research work developed throughout the doctoral studies. The relationship 

between chapters is displayed in Figure 1.1. 

LCA model

Chapter 2
Conceptual pavement LCA 

framework

Chapter 3
Pavement LCA model 

tailored for Portuguese 
conditions

Chapter 4
Pavement LCA model 

tailored for US conditions

Integrated LCC-LCA model LCC model

Chapter 6
Pavement LCC-LCA model

Chapter 5
Pavement LCC model

Single-Objective Life Cycle
Optimization Model

Chapter 7
AHGA

Multi-Objective 
Life Cycle Optimization Model

Chapter 8
Pavement MOO-based LCC-LCA 

model

Optimization-based Pavement Management Decision-Support System

Introduction

Chapter 1

Chapter 9

Summary, conclusions and future work

 

Figure 1.1- Schematic diagram of the research outline. 
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Chapter 1 provides an introduction to the thesis. It presents the motivation, the problem 

statement, the research objectives, and the organization of this thesis. 

Chapter 2 presents the development of both a conceptual pavement LCA framework 

and a highly customizable LCA tool that provides an integrated, project-level approach 

that includes all six pavement life cycle phases: extraction of raw materials and 

production; construction and M&R; transportation of materials; WZ traffic 

management; usage; and EOL. It also describes in detail the models developed or 

selected for modelling the processes that occur in each pavement life cycle phase. 

Finally, it suggests several data sources with potential relevance for a LCA conducted in 

the Portuguese context. 

Chapter 3 illustrates the potential and usefulness of the pavement LCA model 

introduced in the previous chapter for conducting a comprehensive and attributional 

LCA. For that purpose, we present the results of a study aiming to estimate and compare 

the LCEI of the flexible pavement structures defined in the Portuguese pavement design 

catalogue (JAE, 1995). The analysis assesses the functional units over a 40-year PAP 

considering all pavement life cycle phases.  

Chapter 4 describes the development of a comprehensive pavement LCA model tailored 

for US conditions, according to the conceptual framework introduced in Chapter 2. It 

also presents the results of a pavement LCA conducted for an in-place pavement 

recycling rehabilitation project in the state of Virginia, USA. The project under 

consideration incorporated several in-place pavement recycling techniques and a unique 

traffic management approach. The results for the recycling-based project are compared 

to two other pavement management alternatives: (1) a traditional pavement 

reconstruction and, (2) a corrective maintenance approach. 

Chapter 5 presents the development of a comprehensive pavement LCC model intended 

to give DMs a systematic framework that provides an in-depth perspective of the costs 

incurred by highway agencies and road users during the materials, construction and 

M&R, WZ traffic management, usage and EOL pavement life cycle phases. It also 
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presents the results from an extensive (cradle-to-grave) LCCA of the in-place pavement 

recycling rehabilitation project detailed in Chapter 4.  

Chapter 6 introduces a comprehensive and integrated pavement LCC-LCA model that 

builds on the process-based LCA and LCC models presented in Chapters 4 and 5, 

respectively. The proposed pavement LCC-LCA model relies on a hybrid life cycle 

inventory (LCI) approach that allows the sub-models to connect with one another by 

data flows; specifically, the monetary flows associated with exchanges of the pavement 

life cycle system that are directly covered by the LCC model but for which specific 

process-based LCI data are either completely or partially unavailable. Like the 

preceding models, it also encompasses all six pavement life cycle phases into the 

system boundaries and accounts for the upstream impacts in the production of elements 

commonly disregarded by the majority of the existing pavement LCA models. Finally, 

the applicability of the model is illustrated through its application to a case study that 

aims to investigate, from a life cycle perspective, the extent to which several pavement 

engineering solutions, namely hot in-plant recycling mixtures, WMA, CCPR and 

preventive treatments, are efficient in improving the environmental and economic 

dimensions of pavement infrastructure sustainability, when applied either separately or 

in combination, in the construction and management of a road pavement section located 

in Virginia, USA. 

Chapter 7 focuses on the work undertaken to develop a new adaptive hybrid GA 

(AHGA), which combines a traditional GA with a Local Search (LS) mechanism for 

optimally solving the pavement M&R strategy selection problem. The proposed AHGA 

framework contains two dynamic learning mechanisms to adaptively guide and 

combine the exploration and exploitation search processes.  In this way, it improves the 

overall efficiency of the search, either by accelerating the discovery of good solutions, 

for which evolution alone would take too long to find, or by reaching solutions that 

would otherwise be unreachable either by evolution or a local method alone. The first 

learning mechanism aims to reactively assess the worthiness of conducting an LS, and 

to efficiently control the computational resources allocated to the application of this 
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search technique. The second learning mechanism uses instantaneously learned 

probabilities to select which one, from a set of pre-defined LS operators which compete 

against each other for selection, is the most appropriate for a particular stage of the 

search to take over from the evolutionary-based search process. The new AHGA is 

compared in terms of efficiency and effectiveness to a non-hybridized version of the 

GA by applying the algorithms to several case studies with the objective of determining 

the best pavement M&R strategy that minimizes the present value (PV) of the life cycle 

M&R costs.  

Chapter 8 presents a comprehensive and modular MOO-based pavement management 

DSS. The main novelty of the DSS lies in the incorporation of the comprehensive and 

integrated pavement LCC-LCA model introduced in Chapter 6, along with a decision-

support module, within a MOO framework applicable to pavement management. The 

capabilities of the proposed DSS are demonstrated by its application to two case studies 

consisting of determining the optimal M&R strategy, which yields the best tradeoff 

between the following three, often conflicting, objectives: (1) minimization of the PV of 

the total LCHAC; (2) minimization of the PV of the LCRUC; and (3) minimization of 

the life cycle climate change score (LCCCsc), when implemented, respectively, on two 

one-way flexible pavement sections of a typical Interstate highway in Virginia, USA. 

Furthermore, for each case study two scenarios are considered, depending on the 

features of the M&R activities available for employment throughout the PAP. They 

differ from each other in that the former comprises exclusively conventional asphalt 

layers, whereas, in the latter, the most structurally robust M&R activity available for 

employment combines conventional asphalt layers with in-place recycling layers. The 

model is solved through the augmented weighted Tchebycheff method using an adapted 

version of the AHGA presented in Chapter 7. 

Chapter 9 summarizes the research work described in this thesis, highlights its 

contributions, and delineates a set of research lines and DSS improvements for future 

development. 
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1.5  Publications 

As mentioned in the previous section, this thesis is based on the scientific articles drawn 

up on the basis of the research work developed during the doctoral studies. Some of the 

scientific articles have been submitted to international peer-reviewed journals and are 

either published or under review, and others will be submitted soon. Apart from 

eventual minor layout-specific issues they have not been meaningfully changed. Below, 

the list of references for the thesis chapters is presented: 

1) Scientific articles already published: 

a. Chapter 2: Santos, J., Ferreira, A. and Flintsch, G., 2015. A life cycle 

assessment model for pavement management: methodology and computational 

framework. International Journal of Pavement Engineering, 16 (3), 268-286. 

DOI:10.1080/10298436.2014.942861 

b. Chapter 3: Santos, J., Ferreira, A. and Flintsch, G., 2015. A life cycle 

assessment model for pavement management: road pavement construction and 

management in Portugal. International Journal of Pavement Engineering, 16 

(4), 315-336. DOI:10.1080/10298436.2014.942862 

c. Chapter 4: Santos, J., Bryce, J., Flintsch, G., Ferreira, A. and Diefenderfer, B., 

2015. A life cycle assessment of in-place recycling and conventional pavement 

construction and maintenance practices. Structure and Infrastructure 

Engineering: Maintenance, Management, Life-Cycle Design and Performance, 

11 (9), 1199-1217. DOI:10.1080/15732479.2014.945095 

d. Chapter 5: Santos, J., Bryce, J., Flintsch, G. and Ferreira, A. A comprehensive 

life cycle costs analysis of in-place recycling and conventional pavement 

construction and maintenance practices. International Journal of Pavement 

Engineering (available online), DOI: 10.1080/10298436.2015.1122190 
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2) Scientific articles under review: 

a. Chapter 6: Santos, J., Flintsch, G. and Ferreira, A. Environmental and 

economic assessment of pavement construction and management practices for 

enhancing pavement sustainability. Resources, Conservation & Recycling. 

3) Scientific articles to be submitted soon: 

a. Chapter 7: Santos, J., Ferreira, A. and Flintsch, G. An adaptive hybrid genetic 

algorithm for pavement management. The submission to Engineering 

Optimization is currently being considered. 

b. Chapter 8: Santos, J., Ferreira, A. and Flintsch, G. A multi-objective 

optimization-based pavement management decision-support system for 

considering life cycle agency costs, user costs and environmental impacts. The 

submission to Journal of Cleaner Production is currently being considered. 

Complementarily, a considerable number of scientific articles have been presented and 

discussed in several international and national conferences. The complete list of 

conferences is as follows: 

1) Conference articles: 

a. Chapters 2 and 3: Santos, J., Ferreira, A. and Flintsch, G., 2014. Development 

and application of a life-cycle assessment model for pavement management. 

Proceedings of the Transport Research Arena, CD Ed., 

TRA2014_Fpaper_18702.pdf, 1-10, Paris, France. 

b. Chapter 4: Santos, J., Bryce, J., Flintsch, G., Ferreira, A. and Diefenderfer, B., 

2014. A life cycle assessment of in-place recycling and conventional pavement 

construction and maintenance practices. Papers from the International 

Symposium on Pavement Life Cycle Assessment 2014, Harvey, Jullien and Jones 

(Eds), SBN 978‐0‐692‐29357‐7, Davis, CA, USA. 

c. Chapter 5: Santos, J., Bryce, J., Flintsch, G. and Ferreira, A., 2014. A 

comprehensive life cycle costs analysis of in-place recycling and conventional 
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pavement construction and maintenance practices. 10
th

 Annual Inter-University 

Symposium on Infrastructure Management (AISIM), Virginia Tech 

Transportation Institute, Blacksburg, VA, USA. 

d. Chapter 5: Santos, J., Bryce, J., Flintsch, G. and Ferreira, A., 2015. A 

comprehensive life cycle costs analysis of in-place recycling and conventional 

pavement construction and maintenance practices. 9
th

 International Conference 

on Managing Pavement Assets (ICMPA), Alexandria, VA, USA. 

e. Chapter 5: Santos, J., Bryce, J., Flintsch, G. and Ferreira, A., 2015. A 

comprehensive life cycle costs analysis of pavement maintenance and 

rehabilitation practices. Workshop on Assessment Methodologies 2015, 

Coimbra, Portugal. 

Finally, the author has also been involved in other research work and contributed to the 

following publications: 

1) Scientific articles already published: 

a. Bryce, J., Katicha, S., Flintsch, G., Sivaneswaran, N. and Santos, J., 2014. 

Probabilistic lifecycle assessment as a network-Level evaluation tool for the use 

and maintenance phases of pavements. Transportation Research Record: 

Journal of the Transportation Research Board, 2455 (1), 44-53.  

DOI:10.3141/2455-06 

2) Conference articles: 

a. Bryce, J., Santos, J., Flintsch, G., Katicha, S., McGhee, K. and Ferreira, A., 

2014. Analysis of rolling resistance models to analyze vehicle fuel consumption 

as a function of pavement properties. Proceedings of the 3
rd

 International 

Symposium on Asphalt Pavements and Environment, in Asphalt Pavements, Y. 

Richard Kim, CRC Press 2014, 263–273, Print ISBN: 978-1-138-02693-3, 

eBook ISBN: 978-1-315-73675-4, DOI: 10.1201/b17219-39, Raleigh, North 

Carolina, USA.  
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Chapter 2  

A Life Cycle Assessment Model for 

Pavement Management: 

Methodology and Computational 

Framework 

2.1  Introduction 

The road transportation infrastructure is vital for the movement of people and goods. In 

2010, total amount of transported goods in the EU-27 was estimated to have come to 

3,831 billion tonne-kilometers, with road transport accounting for 45.8% of this total. In 

the passenger sector, the road transport accounted for 73.7% of the 12,869 km travelled 

on average per person (EC, 2012).  

The challenges of satisfying this rising demand for accessibility and mobility can be 

framed using the concept of sustainability. Many organizations have focused on 

reducing greenhouse gas (GHG) and pollutant emissions. Recently, the EU targeted a 

reduction of GHG for the transport sector of at least 60% from 1990 levels by 2050 

(EC, 2011). Similar to GHG emissions, the energy use due to transportation is also 

considerable, accounting for approximately 30% of the overall energy use in Europe 
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(EC, 2012). Road transportation is responsible for more than 80% of this energy 

consumption, and since mainly fossil fuels are used, the emissions of both GHG and air 

pollutants are considerable. For instance, in 2009, the European transport sector 

accounted for 25% of all carbon dioxide (CO2) equivalent emissions, with road 

transport generating 71.7% of this total (EC, 2012). Current practices intended to reduce 

the environmental footprint of the transportation sector include new powertrains and 

improvements in vehicle technology, fuel refinements, a reduction in the consumption 

of non-renewable fossil fuel resources, optimization of urban traffic management, and 

the implementation of tighter emission standards (EC, 2012). However, with a 97% 

dependence on fossil fuels, the transportation sector has not significantly reduced its 

GHG intensity by switching to cleaner energy sources.  

Pavement management decisions taking into account the potential environmental 

impacts over the road pavement’s whole life cycle can contribute to sustainable 

development (Santero and Horvath, 2009). Those decisions are not all about applying 

recycling techniques and recycled materials, secondary products, low temperature 

mixtures, environmentally-friendly construction methods, etc. (Miller and Bahia, 2009). 

Indeed, for specific conditions, the impacts related to on-site equipment operation, have 

been shown to represent a minimal part of the environmental burden of a road 

pavement. Even modest reductions in vehicle energy consumption could offset the 

energy consumption in the pavement construction process (Santero and Horvath, 2009).  

Pavement condition has been identified in published literature as having an influence on 

vehicle fuel consumption (FC) due to its relationship with rolling resistance, one of the 

resistive forces acting on the vehicle that can be roughly defined as the energy lost 

through pavement-tire contact. Results from a research project carried out by European 

and US partners, “Models for rolling resistance In Road Infrastructure Asset 

Management Systems (MIRIAM)”, have shown that when road surface evenness 

expressed by the International Roughness Index (IRI) is increased by one unit (1 m/km), 

rolling resistance increases by approximately 4.6%, 7.1%, and 7.9%, respectively, for a 

car, heavy truck, and heavy truck with trailer travelling at 90 km/h. Further, this project 
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has shown that when pavement surface texture, expressed as Mean Profile Depth 

(MPD), increases one unit (1 mm), rolling resistance increases by 15.1%, 18.4%, and 

20.3%, respectively, for a car, heavy truck, and heavy truck with trailer travelling at the 

same speed (Hammarström et al., 2012).  

There is also evidence that the stiffness of the pavement structure and its viscoelastic 

properties contribute to rolling resistance. Akbarian and Ulm (2012) presented a 

mechanistic model that estimates the change in FC due to pavement deflection as a 

function of the pavement’s structural capacity and material properties. However, given 

the small number of studies performed, it is still unadvisable to draw a general 

conclusion on the relationship between fuel efficiency and the structural behavior of 

pavements. 

In order to effectively understand how pavements impact the environment and to 

allocate significant efforts to increase their environmental performance, it is necessary 

to introduce a methodology that is able to analyze every phase of a pavement’s life and 

provide the required metrics to set benchmarks that can be used to encourage 

continuous improvement. LCA, due to its flexibility, versatility, and comprehensiveness 

in investigating all the environmental aspects of a product system, has often been 

chosen to establish an effective path towards reaching environmental goals (ISO, 

2006a). 

2.2 Literature review on pavement life cycle assessment 

In recent years, the LCA methodology has received increasing attention from academia 

(Carlson, 2011). Despite such interest, its effective application to road pavement is still 

at an embryonic stage. Some reasons for this scarce implementation include (1) a sense 

that environmentally-friendly solutions have a high initial cost even though they might 

be cost-effective when assessed under the PAP time frame; (2) the pavement 

practitioners’ aversion to trust a methodology that entails several sources of uncertainty; 

(3) the lack of customizable and pavement-tailored tools that allow LCA to be carried 

out quickly; and (4) the lack of pavement-specific guidelines. 
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In general, the standards of the International Standard Organization (ISO) 14040 series 

have been adopted as guidelines for conducting pavement LCA. However, these 

standards only provide generic guidance for conducting well-documented and 

transparent LCAs of different products and services, leaving a considerable degree of 

freedom in the hands of the analysts and decision makers. Consequently, several 

initiatives have focused on identifying inconsistencies and proposing solutions for a 

standardized LCA protocol for pavement. The 2010 Pavement LCA Workshop (Harvey 

et al., 2011), held in California, introduced system definitions for elements of pavement 

LCA and provided a guide on how to conduct pavement LCA studies. Huang et al. 

(2013) assessed the impact of methodological choices (allocation among co-products or 

at EOL) concerning LCA and the footprint evaluation of road pavements. Santero et al. 

(2011a) and Santero et al. (2011b) provided a critical review of the strengths and 

weaknesses of the body of work, and developed future research directions for improving 

the credibility and utility of pavement LCAs for decision-making in policy-setting and 

transportation engineering contexts. According to Santero et al. (2011a) most existing 

studies are focused on the comparison of asphalt and concrete materials. However, 

framework gaps and inconsistencies in the functional unit, system boundaries, data 

quality, and environmental metrics have made the results of the different studies 

incomparable. Moreover, Santero et al. (2011a) identified the omissions of the usage 

phase from nearly all studies as “the most significant shortfall from a system boundary 

perspective”. This stresses the need for developing LCA methodologies that broaden the 

system boundaries, particularly by including the effects on traffic energy due to the 

surface characteristics and eventual traffic delays imposed by M&R activities. Although 

literature already includes some LCA approaches moving in this direction (Huang et al., 

2009a; Zhang et al., 2010; Wang et al., 2012; Yu and Lu, 2012), new studies and 

methodologies are needed because the existing ones tend to exhibit at least one of the 

following drawbacks: (1) they incorporate both outdated and closed data and 

irreproducible methodologies (e.g., fixed mixtures recipes, procedures, etc.), which 

make them unsuitable for use in geographic and technical contexts different from those 

for which they have been developed; (2) the boundaries exclude important phases; (3) 
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they contain only LCIs and do not provide life cycle impact assessment (LCIA); or (4) 

they are not available in user-friendly and customizable software able to be applied to 

any number of different scenarios and functional units. 

Currently, LCA-based software encompasses a set of tools for supporting DMs in 

evaluating the environmental performance of their pavement-related decisions. For 

instance, pavement-related tools, such as Athena Impact Estimator for Highways 

(ASMI, 2012), AggRegain CO2 Tool (TRL, 2010), PaLATE (Horvath, 2007), ROAD-

RES (Birgisdóttir et al., 2006), ROADEO (The World Bank, 2010), CHARGER 

(Zammataro, 2011), asPECT (TRL, 2011), PE-2 (Mukherjee and Cass, 2012), CFET 

(Melanta et al., 2013), and the CMS RIPT (Fox et al., 2011), provide life cycle 

emissions predictions, essentially life cycle GHG, resulting from material production, 

material transport, and construction phases. NONROAD 2008 (US EPA, 2010a) 

estimates the emissions released during the use of construction equipment, whereas 

MOVES (US EPA, 2010b), EMFAC 2007 (CARB, 2007), and COPERT 4 (Gkatzoflias 

et al., 2012) predict on-road vehicle emissions. However, all these tools remain 

fragmented in terms of pavement life cycle coverage and limited in terms of the 

environmental indicators taken into account. 

In an attempt to address some of the scope and customization limitations evidenced by 

the current state-of-the-practice LCA approaches and tools, this chapter presents the 

development of a fully integrated and highly customizable DSS that hosts a project-

level pavement LCA model intended to give DMs a computational and systematic 

platform to organize and cross their “in-house” data (e.g., inventories of materials, 

equipment, construction activities, etc.) in order to facilitate the benchmarking of their 

designs, construction and management options at the early design phase of a pavement 

project. The DSS includes all six pavement life cycle phases (e.g., materials extraction 

and production; construction and M&R; transportation of materials; WZ traffic 

management; usage; and EOL) and user-friendly communication platforms between the 

user and the model. 
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2.3 Pavement life cycle assessment model description 

2.3.1  Model structure 

Modeling the LCA of a complex system requires a modeling approach and a 

computational platform able to keep the integrity of all data within the system without 

constraining the movement of inputs and outputs across the life cycle phases. Another 

important feature is the ability to enable users to improve the accuracy of all estimates 

by introducing their own data. Such a customization property, by allowing easy 

modification of the default values of process parameters and data, can be beneficial to 

evaluate the results of different decision-making scenarios, as well as to perform 

sensitivity analysis on the results due to variations of design and operational parameters, 

assumptions, and methodological choices. 

Microsoft’s Excel software has been used by some pavement LCA models (Horvath, 

2007; Huang et al., 2009b). While the spreadsheet approach allows for easy sharing of 

information between system components and quick response to changes in many system 

parameters, it imposes several limitations (1) in managing and storing a large amount of 

data; (2) in dealing with information and processes that tend to change and evolve over 

the PAP; and (3) in modeling the intrinsic complexity of some processes, such as 

vehicle FC modeling, even using macros. In some types of analysis, such limitations do 

not inhibit spreadsheet-based models from being used; however, other tools can conduct 

the analyses more efficiently and provide greater customization. Therefore, the DSS that 

hosts the process-based pavement LCA model described in this chapter was written in 

Visual Basic .NET (VB.NET) (Loureiro, 2010) and SQL programming languages 

(Damas, 2005), the latter being used for managing the data introduced and held in the 

system.  

Figure 2.1 provides an overview of the architecture of the pavement LCA model. It 

encompasses three types of VB.NET Classes: Pavement Life Cycle Phase Class 

(PLCPC), Database Class (DbC), and Other Classes (OC), those not covered by the two 

classes previously mentioned. Each PLCPC is linked to several classes, including a 
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Main Class that is the hub of the model. Apart from other functions, the hub is 

responsible for the interaction between all classes, so that the system is automatically 

updated whenever the user makes a decision that affects the remaining system 

components. For example, assuming that the user deletes a single material (e.g., 

bitumen 50/70, etc.) from the database, all downstream materials (e.g., Hot-mix Asphalt 

[HMA], etc.) and processes (i.e., bitumen 50/70 transportation from the refinery to 

mixing plant and HMA transportation from the mixing plant to the work site) related in 

some way to that single material are automatically deleted, avoiding future errors and 

lack of coherence when executing the model. 

The majority of the data required to run the model is input through windows, either by 

scrolling through the classes representing the pavement life cycle phases or directly 

accessing the classes existing in the database. The exception is the data regarding the 

evolution over time of both the on-road vehicle fleet composition and pavement quality. 

In these cases, due to the extensive amount of data involved, the data must be imported 

from a Microsoft Excel file. Once the data is entered into the DbC, it becomes available 

for all future analysis, unless it is directly or indirectly (due to the reasons mentioned 

above) deleted by the user. Moreover, given the open nature of the database, project-

specific data can be added and pre-existing data can be edited to fit the characteristics 

and particularities of the analysis being performed.  
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Figure 2.1- Pavement LCA model: computational framework. 
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The LCA model is intended to be applicable for a wide range of deliverables, for 

different scenarios, and for a wide variety of questions addressed during the project 

planning stage (e.g., types of mixtures and compositions to be adopted in a specific 

layer, selection of M&R actions, etc.). However, to properly use the model, users must 

first elucidate the processes occurring in each pavement life cycle phase, the model’s 

potentialities and limitations, and the interdependencies between the components. The 

following sections describe the pavement life cycle phases, as well as the sub-models 

and database components linked to those phases. They also introduce the default data 

potentially suitable for use in studies carried out in the Portuguese context. 

2.3.2 Goal and scope definition 

The model presented in this chapter is intended to give highway agencies a highly 

customizable tool to assist them in quantitatively assessing the total environmental 

footprint of their procedures, strategies, and decisions regarding the construction and 

maintenance of flexible pavements used for a rural/interurban highway at project level. 

The target audience for using the methods, data, and results made available by the 

model includes LCA practitioners, pavement engineers, and other technical experts. The 

model enables the user to assess the environmental impacts and resources consumption 

(energy sources and materials) of alternative solutions for pavement design and 

maintenance throughout the different phases of the PAP of alternative solutions for 

pavement design and maintenance. The user can track where in the life cycle of the 

pavement’s PAP environmental impacts are greatest and which materials, energy 

sources, equipment and processes contribute to the impact on the environment. After 

acknowledging the environmental consequences of their potential decisions, they will 

be more prepared to adopt more sustainable pavement design and management 

practices. 
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2.3.2.1 Functional unit 

The functional unit is the physical unit on which all measures are computed. It allows 

for the comparison between systems with the same utility for the same function. 

Regarding the pavement domain, this means a unit of pavement that can safely and 

efficiently carry the same traffic over the same PAP. In order to define the functional 

unit, the user is asked to identify and quantify the relevant quantifiable properties and 

the technical/functional performance of the system, such as PAP length, beginning year 

of the PAP, traffic-related data, characteristics of the pavement structure, pavement 

dimensions, and type of M&R activities, etc.  

Setting the system boundaries is an indispensable procedure in conducting any LCA. It 

consists of defining which parts of the life cycle and which processes belonging to the 

analyzed system are required for providing its function as defined by its functional unit. 

Therefore, these boundaries are drawn in such a way that only elements of minor 

importance or elements for which there is either no sufficient or solid knowledge are 

left out. This selection criterion contributes to ensuring that the quality of data is 

sufficient to provide trustable results for the intended applications. 

2.3.2.2 System boundaries and system processes 

The system boundaries of the proposed pavement LCA model entail six pavement life 

cycle phases, modeled through individual but interconnected modules. They are the 

following: (1) extraction of materials and production, consisting of the acquisition and 

processing of raw materials, and the mixing process of asphalt mixtures in plants; (2) 

construction and M&R, including all construction and M&R procedures and related 

construction equipment usage; (3) transportation of materials, accounting for the 

transportation of materials to and from the construction site and between intermediate 

facilities (e.g., transportation of aggregates from the quarries to asphalt mixing plants, 

etc.); (4) WZ traffic management, which models the traffic delays resulting from the 

application of M&R activities; (5) usage, which addresses the interactions of the 

pavement with vehicles and environment throughout the PAP; and (6) EOL, which 
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models the destination of the pavement structure after the PAP. Various supplementary 

sub-models that are attached to the corresponding modules, as well as the data required 

to run those models, are introduced and discussed in the following sections. 

Apart from the general system boundaries, there are less embracing scope-related 

decisions that must be made, which might result in the exclusion of certain processes. 

The processes for which the current version of the proposed model is not able to 

account are the following: (1) manufacturing and maintenance of production asphalt 

mixing plants and construction equipment necessary for the construction and M&R of 

road pavements; (2) road related safety and signaling equipment; (3) transportation of 

equipment and workers to the construction site; and (4) capital investments attributable 

to the construction and maintenance phase. The exclusion of those processes was 

governed by one of the following reasons: (1) the uniqueness of the condition to which 

it refers; (2) the lack of reliable information; or (3) unsuitability for the model’s global 

scope (pavement LCA rather than a roadway LCA). 

2.3.2.2.1 Materials extraction and production phase 

Most materials used in asphalt pavement construction and M&R processes consist of 

aggregates of various gradations and asphalt binders of different performance grades. 

Pavement-related environmental burdens assigned to this phase are due to material 

acquisition and processing, which include the manufacturing processes of all materials, 

from extraction of raw materials to their transformation into a pavement input material 

(material extraction sub-phase), and ending up with the mixture production at a mixing 

plant (materials production sub-phase). The manufacture of facilities, such as mixture 

production plants, is excluded from the system boundaries. 

Until becoming a pavement input material (e.g., aggregate, bitumen, etc.), all 

environmental burdens stemming from transportation between facilities are assigned to 

the materials extraction and production phase. Isolating transportation from other 

manufacturing steps can become complex and often depends on the boundary 

conditions of the cradle-to-gate LCI considered as the data source. Therefore, 
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transportation activities taking place after pavement input material has been produced 

are calculated in the transportation of materials phase. 

Available literature includes various sets of data sources for the various materials, 

representing different geographic conditions, procedures, technologies, and system 

boundaries. Ideally, before inclusion in the database of an LCA model, the process 

system underlying the material under assessment should be broken down into lower-

level processes (unit processes), which may occur within and/or between facilities, in 

such a manner that inputs and outputs at its boundary are elementary and product flows. 

These processes should be recalculated based on unit process data that best suit the goal 

and scope of the study being performed. While such a level of discretization may be 

useful to meet the ISO data quality requirements (temporal, geographical, and 

technological representativeness, precision, completeness, consistency) for the goal and 

scope being considered in the analysis, there is a point in this procedure of data 

disaggregation where it is necessary to truncate some processes and to exclude other 

ones.  

The cradle-to-gate LCIs referring to bitumen and bitumen emulsion are perhaps the best 

examples to illustrate the previous statement. Emissions from bitumen should include 

emissions due to oil extraction, transportation to the plant, refinement of crude oil into 

bitumen, transportation, and storage in depots, etc. As bitumen is one of the many 

products that come from crude oil, a proper allocation of the environmental flows from 

crude oil acquisition through the refining process to bitumen production is a difficult 

task. Therefore, the data with regard to bitumen, as well as bitumen emulsion 

production, has been collected from the Eurobitume report (Eurobitume, 2011) without 

performing any reanalysis of the bitumen and bitumen emulsion cradle-to-gate LCIs. 

Although it is considered to be a construction material by the road pavement 

construction and management sector, bitumen may also be considered an energy source 

from a broader point of view. However, due to its highly impure organic nature, burning 

or processing of bitumen is associated with extra environmental burdens compared with 

those of alternative and conventional fuels. This fact means that in practical terms the 
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applicability of bitumen is constrained to the condition of construction material. 

Therefore, in the case of bitumen, the feedstock energy (FsE), which represents the 

heating value of a material when burned, was dealt with differently from that of 

conventional energy sources. This analysis procedure is advocated by the University of 

California Pavement Research Center’s (UCPRC’s) Pavement LCA Guideline (Harvey 

et al., 2010). Following this recommendation, the FsE of bitumen is presented 

separately from other primary energy usage. The pavement model assumes a value of 

40.2 MJ/kg by default (Garg et al., 2006), although that value can be edited by the 

model’s user. 

With respect to aggregates cradle-to-gate LCI, the data has been collected from a study 

carried out in a French quarry (Jullien et al., 2012). The pollutants released into the air 

at a quarry site stem from emissions produced during explosions and from operating 

quarry vehicles. Those emissions are allocated to different grading outputs at the plant. 

The energy consumption accounted for includes the electricity demand of the equipment 

in the production lines and the fuel consumed by non-road vehicles.  

Supplementary materials that may be used in the construction and maintenance 

activities of flexible pavements include additives, fibers, waxes, pigments, etc. As these 

materials only represent a small percentage of the total mass of a given mixture, and the 

number of cradle-to-gate LCIs existing in literature is scarce or even non-existent, no 

data with regard to those materials have been inserted by default into the database.  

After being produced, the pavement input materials intended for producing, for 

instance, a HMA are transported to an asphalt mixing plant. Asphalt mixing plants are 

commonly classified as a batch mixing plant or a drum mixing plant. The default data 

entered into the database concerning the performance of an asphalt mixing plant has 

been gathered from a Portuguese company that owns and operates a batch plant 

powered by natural gas. The FC during one year of operation has been divided by the 

total output of HMA produced during an equal period of time. Data on the average 

amount of natural gas consumed per tonne of HMA produced has been combined with 
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the emissions factors published by the AP-42 study of HMA plants (US EPA, 2004) for 

a batch mixing plant powered by natural gas. 

Data for the materials extraction and production phase are input into the database 

through the “Materials Extraction and Production” DbC, which has two tabs named as 

follows: “Materials Extraction” and “Materials Production”. The “Materials 

Extraction” tab is allocated to defining the features of the individual materials. The user 

is asked to identify the material category by picking a label from a drop-down list, and 

then to enter a name, a description, a data source, an energy source, respective 

consumption (up to five different energy sources, picked from those available in the 

LCA model database), and an emission factor (EF) per tonne of material extracted for 

each of the substances inventoried. The “Materials Production” tab plays a similar role 

to the “Materials Extraction” tab but with respect to the production of mixtures. Beyond 

entering the type of information required in “Materials Extraction”, the user has to 

identify the plant location, the type of plant (batch or drum plant), and the annual and 

hourly production rates. The new material and the new mixture will then become a 

permanent item in the LCA model database and can be chosen for future mix designs, 

pavement layers, and M&R actions. For computer modelling purposes, whenever a new 

mixture is defined, the user is directed to the “Mixtures Composition” tab in the 

“Mixtures Design” DbC in order to identify the materials that integrate the mixture 

composition and to type in its percentage by mixture weight.  

2.3.2.2.2 Transportation of materials phase 

The transportation of materials phase is directly linked to the materials extraction and 

production, construction and M&R, and EOL phases. For instance, materials for a new 

pavement or for an existing pavement subject to M&R interventions need to be hauled 

from a mixing plant or quarry to the work site, whereas the waste materials resulting 

from M&R interventions need to be hauled from the work site to a disposal facility or to 

a mixing plant. The environmental impacts resulting from the transportation of 

materials are influenced by five primary characteristics: (1) engine technology; (2) 
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payload capacity of the transportation mode; (3) transportation distance; (4) 

transportation speed; and (5) the mass of materials being transported. As FC and 

emissions profile vary with the load scenario, in the proposed LCA model all materials 

and wastes are assumed to be hauled by heavy-duty vehicles (HDVs) that run at their 

maximum legal capacity when loaded and empty on return journeys. Emissions data 

associated with the operation of those vehicles have been obtained from the EMEP/EEA 

Emission Inventory Guidebook 2013 (EEA, 2013). More details on this methodology 

are provided in Section 2.3.2.2.3. 

In the “Transportation” PLCPC, the user is asked to assign a set of data for each 

material and mixture being transported: (1) type of movement (transport of materials 

from source/extraction place to mixing plant; transport of mixtures from mixing plant to 

work site; transport of materials directly from source/extraction place to work site; 

transport of materials from work site to landfill; transport of materials from work site to 

mixing plant or recycling facility); (2) type of HDV (fourteen categories available) and 

engine technology (seven Euro legislation classes available); (3) average distance in 

kilometers from the origin to the destination (only one direction); and (4) average speed 

that the HDV is supposed to travel at from the origin to the destination (km/h) and vice-

versa. The payload capacity of each HDV has been defined according to (Hausberger et 

al., 2009). 

2.3.2.2.3 Construction and maintenance and rehabilitation phase 

In the construction and M&R phase, the environmental burdens are due to the 

combustion-related emissions from construction equipment usage. Environmental 

impacts resulting from traffic congestion and detouring occurring during M&R 

interventions are dealt with in the WZ traffic management phase. The consumption-

related emissions associated with the operation of construction equipment have been 

obtained by applying a methodology based on the Tier 3 approach described in the 

EMEP/EEA Emission Inventory Guidebook 2013 for non-road mobile sources and 
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machinery (EEA, 2013). The expression used for this methodology is as follows 

(Expression (2.1)): 

ei
equipmentonconstructi

eieewe

equipmentonconstructi

wei
DFEFLFHPHRSE ,,,,,

  (2.1) 

Where 
equipmentonconstructi

wei
E

,,  is the environmental burden i resulting from the operation of the 

construction equipment e during the construction, M&R, or EOL activity w; weHRS ,  is 

the operation time of the construction equipment e for completing the activity w; eHP  is 

the average rated horsepower (kWh) of the construction equipment e; eLF  is the 

average load factor of construction equipment e; 
equipmentonconstructi

ei
EF

,  is the average 

emissions factor of the environmental burden i (or FC) per unit of use of construction 

equipment e (g/kWh); e,iDF  is the degradation rate of the emission factor of 

environmental burden i (or FC) due to aging of construction equipment e. 

As default, the average rated horsepower value has been taken from the technical 

specifications of the construction equipment. The load factor is applied to indicate the 

average proportion of rated power used, due to the effect of operation at idle and partial 

load conditions, as well as transient operation. Those values have been obtained from 

US EPA (2010c). The baseline emissions factors are given by EEA (2013) based on the 

EU directive emission limits. The degradation rates take into account the change of 

emissions with the aging of the construction equipment. Those values have been taken 

from EEA (2013). 

The parameters in the previous expression are inputted in the “Construction Equipment” 

DbC. A new data file is created each time the user stores information about a new piece 

of equipment. Beyond the parameters above, the user is asked to insert the name, brand, 

type of equipment, type of fuel consumed, Euro legislation class compliance, year of 

manufacture, and age of the construction equipment at the beginning of the PAP. The 

EFs and FC fields are automatically filled in, as long as the year of manufacture, engine 

power, and Euro legislation class data are entered by the user. Once in the database, the 
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information on the construction equipment is available to be allocated to any sort of 

construction, M&R, or EOL activity, either pre-existing or customized by the user. In 

the “Equipment and Crews” tab existing in the “Construction & EOL Activities” DbC, 

the names of all construction, M&R, and EOL activities, and the construction 

equipment are displayed. The user is then able to match the construction equipment 

with the activities by specifying an assignment factor between 0 and 1 that represents 

the effective construction equipment operation time during one hour of a determined 

activity. For example, if the assignment factor of a tandem roller allocated to “Asphalt 

Paving: laying and compacting” is equal to 0.8, then during one hour of that activity, the 

tandem roller’s operation time will be 48 minutes. 

2.3.2.2.4 Work-zone traffic management phase 

In this pavement LCA model, the FC and airborne emissions resulting from traversing 

and detouring a WZ have been determined by adopting a two-step method. In the first 

step, changes in traffic flow are modeled using the capacity and delay models proposed 

by the Highway Capacity Manual (HCM) 2000 (TRB, 2000) to determine several 

outputs, such as the number of vehicles that changed speed, the number of queued 

vehicles, the number of vehicles that traversed the WZ, the average length of the queue, 

and the average vehicle speed in the queue, which are recorded by the “WZ traffic 

management” PLCPC. In the second step, those traffic outputs are then fed into two hot 

exhaust emissions models. The FC resulting from acceleration and deceleration 

movements associated with speed changes in between homogeneous driving patterns 

are estimated through the macroscopic four-mode “elemental model” as described by 

Akçelik et al. (2012), in a recalibration of Bowyer et al. (1985). It consists of a set of FC 

expressions derived from a microscopic FC model that comprises a polynomial model 

of acceleration and deceleration profiles. The FC estimations based on the acceleration 

and deceleration models are later combined with the Tier 1 FC-dependent EFs 

(minimum values) defined in the EMEP/EEA Emission Inventory Guidebook 2013 

(EEA, 2013). The Tier 3 approach presented in the EMEP/EEA Emission Inventory 
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Guidebook 2013 (EEA, 2013) is adopted to estimate the emissions released by on-road 

vehicles during driving patterns characterized by a constant average speed. 

The basic formula for estimating the FC and hot emissions released by on-road vehicles 

approaching a WZ is as follows (Expression (2.2)): 

jj,k

technologyvehicle

k

roadon
j,i,k

roadon

j,i LNVehEFE   

 
(2.2) 

Where 
roadon

j,iE


 is the total environmental burden i resulting from the operation of all on-

road vehicles at operation condition j (e.g., decelerating, accelerating, queuing, etc.);

roadon

jkiEF


,, is the average emission factor of environmental burden i (or FC) released by an 

on-road vehicle of technology k while driving along a segment of road 1 kilometer in 

length at operation condition j (g/km); jkNVeh , is the number of on-road vehicles of 

technology k facing the operation condition j; jL is the length (km) of a road segment 

under the operation condition j. 

The development of the Tier 3 approach was based on on-road European studies and 

can be found in COPERT 4 software (Gkatzoflias et al., 2012). It is an EFs model used 

to estimate the FC, air pollutant emissions, and GHG produced by various vehicle 

categories as a function of the speed, according to technological classification and 

European legislation. Baseline EFs are estimated for every major pollutant for every 

country and region in Europe. For FC and regularly studied pollutants, such as carbon 

monoxide (CO), volatile organic compounds (VOC), nitrogen oxide (NOx), and 

particulate matter (PM), detailed EFs are available, whereas for other pollutants, more 

simple bulk EFs and expressions are used. Bulk emissions factors represent three 

driving modes: “Urban”, “Rural”, and “Highway”. In the proposed model, “Urban” bulk 

factors have been assumed to represent the emissions released by vehicles queuing, 

“Rural” bulk factors have been considered to model the emissions released by vehicles 

traversing the WZ segment, and “Highway” bulk factors account for emissions released 

during normal operating conditions. There are other substances, namely CO2, sulfur 

dioxide (SO2), and heavy metals, whose emissions estimation methods do not fall into 



Chapter 2 A Life Cycle Assessment Model for Pavement Management:  

Methodology and Computational Framework 

 

39 

the previous methodologies. The emissions of those substances are calculated on the 

basis of the FC. The adopted model is still able to account for factors like vehicle age, 

fuel improvements (e.g., changes in fuel properties, such as sulfur content, eyc.), 

gradient, and vehicle loads by using correction factors defined in EEA (2013).  

Apart from the “On-Road Vehicles Emissions Models”, predicting the marginal 

emissions due to congestion requires knowledge of both the distribution of the vehicle 

fleet into different exhaust emission legislation classes and traffic conditions during 

M&R activities. Regarding the former, the “On-Road Vehicle Fleet Distribution” DbC 

has been filled in with detailed data on Portuguese vehicle stocks, which are available 

for order on the EMISIA SA website (EMISIA SA, 2009). The default data in this 

worksheet-based DbC comprises the Portuguese fleet distribution per vehicle category, 

type, and legislation/technology (Euro legislation class), from 2010 to 2030. For years 

beyond the period 2010 to 2030, the tendency observed in the aforementioned period of 

time is extrapolated.  

Using these inputs, the annual average daily traffic (AADT) is proportionally 

distributed into different vehicle classes and technologies, according to the vehicle 

population observed in each year of the “On-Road Vehicle Fleet Distribution” DbC. 

With respect to WZ traffic conditions, in the “WZ traffic management ” PLCPC, the 

user is asked to provide a set of inputs such as the number of open lanes in each 

direction, speed limit, WZ hourly schedule, WZ length, detour rate, detour length, 

driving speed on the detour road, etc. The fuel consumed and vehicle emissions from 

detoured vehicles are added to the remaining components of WZ traffic management 

phase after the on-road vehicles emissions model has been run for the detour conditions. 

Finally, the marginal FC and airborne emissions due to WZ delays are calculated by 

subtracting FC and emissions released during a WZ period from the results of an 

equivalent non-WZ period (Expression (2.3)): 
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(2.3) 

Where 
roadon

iTotalE


is the total marginal value of the environmental burden i, such as FC or 

airborne emissions. The remaining variables have the same meaning as in Expression 

(2.2). 

2.3.2.2.5 Usage phase 

The usage phase of a pavement life cycle accounts for the impacts resulting from the 

interaction of the pavement with the vehicles and environment throughout its PAP. 

These impacts include additional FC for vehicle operation due to the deterioration of the 

pavement (increased RR), the albedo, the roadway lighting effect, the carbonation of 

concrete pavement, the non-GHG climate change effect, and water pollution from 

leachate and runoff (Harvey et al., 2010). Only the RR effect has been included in the 

proposed pavement LCA model. Roads in rural/interurban areas generally do not 

require lighting (except at intersections). Carbonation is a process that only occurs in 

pavements with cement in their composition, which is not the case with the flexible 

pavements for which this model is intended. The albedo should only be taken into 

account for locations where air conditioning is used, such as in the city (Harvey et al., 

2010). Although Akbari et al. (2009) have proposed a mathematical expression to 

estimate the radiative forcing in pavement LCAs, there are still great uncertainties about 

how to consider several factors, e.g. pavement aging, which have been shown to 

influence this phenomenon. Lastly, there is general agreement in published literature 

that most contaminants found in runoff water originate from vehicle sources rather than 

pavement materials (Santero et al., 2011b). This is due to most pavement materials 

being inert, so leachates do not occur, at least not at a level significant enough to 

deserve to be accounted for in a pavement LCA. 
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The RR force describes the energy loss associated with pavement-vehicle interaction. 

Pavement deterioration increases RR, which in turn lowers fuel economy and increases 

the energy consumed by traffic. Additional FC due to the deteriorated pavement can be 

evaluated through the change in pavement condition over the PAP. In this pavement 

LCA model, the additional FC originated by RR has been estimated through the 

MIRIAM models (Hammarström et al., 2012). Derived FC function for a car (similar 

models exist for heavy trucks and heavy trucks with trailers) is as follows (Expression 

(2.4)): 

0560

1631

2

22

0002970006110

000080700006670

0394000048102091

02860 .

.

cs v

RF.RF.

vADC.v.

MPD.vIRI..

.F 









































  (2.4) 

Where csF  is the FC due to RR (l/km); IRI  is the pavement roughness, measured using 

the IRI (m/km); v  is the vehicle speed (m/s); MPD  is the pavement’s macrotexture, 

represented by the parameter MPD (mm); ADC  is the road curvature (rad/km), and; RF  

is the road slope (m/km). 

As one can see from Expression (2.4), the influence of pavement condition on RR 

comes partially from changes in the pavement’s roughness and macrotexture. Therefore, 

the first step in estimating the influence of rolling resistance on FC requires prediction 

of the IRI and MPD progression over the PAP. For each year of the PAP, the values of 

those pavement surface quality indicators are compared with their values at initial 

construction, taken as the baseline scenario. FC and emissions are then calculated based 

on the progressive deviation from that initial scenario. 

Apart from the direct effect on rolling resistance, IRI has long been recognized as a 

factor able to affect the vehicle operating speed (Watanatada, 1981). In order to account 

for this effect, the speed-IRI relationship described by Yu and Lu (2014) has been 

included into the LCA model. According to Yu and Lu (2014), the average vehicle 

speed decreases linearly with the increase of IRI at a rate of -0.84 km/h. However, due 

to the increased frequency of “cruise control” equipment, the IRI effect on speed might 
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not be verified in practice. Therefore, in this model the inclusion of this effect into the 

analysis depends on the model user’s decision. 

In Portugal, the Pavement Management System (PMS) of the Portuguese Road 

Administration (Picado-Santos and Ferreira, 2008; Ferreira et al., 2011) and other 

municipal PMSs (Ferreira et al., 2009a; Ferreira et al., 2009b) use the pavement 

performance model of the flexible pavement design method developed by AASHTO 

(1993) to predict the future quality of pavements. Integrating this new pavement LCA 

model with current Portuguese practice on pavement management requires the 

transformation the Present Serviceability Index (PSI) to the IRI. From the conceptual 

point of view, such conversion does not seem to represent an obstacle, as roughness is 

widely recognized as the main contributor to PSI. Thus, several expressions relating 

those indicators are included in the usage module and made available for choice 

according the model user’s preference (Patterson, 1987; Al-Omari and Darter, 1994; 

Gulen et al., 1994). Additionally, since the relation between PSI and IRI is commonly 

described by a standard expression whose formulation is presented below (Expression 

(2.5)), users are given the option to insert their own calibration parameters.  











b

PSI
LnaIRI  (2.5) 

Where IRI  is the International Roughness Index (m/km); PSI is the Present 

Serviceability Index, and; a and b are calibration parameters.  

Once the additional FC due to rolling resistance is calculated, those values are coupled 

with the Tier 1 FC-dependent EFs (minimum values) defined in the EMEP/EEA 

Emission Inventory Guidebook 2013 (EEA, 2013). 

2.3.2.2.6 End-of-life phase 

When a road pavement reaches the end of the PAP, it can be given two main 

destinations: (1) remain in place, serving as support for a new pavement structure, and; 

(2) be removed. If the pavement is removed, the debris can be landfilled or recycled in a 
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central plant. Once recycled, those materials can be used again as a replacement for 

virgin aggregate sub-bases/bases or as a replacement for virgin asphalt and aggregate in 

new asphalt mixtures. An in-situ recycling process will not be considered by the model 

as an EOL treatment; rather it is more accurately considered an M&R activity (Levis et 

al., 2011). 

Regardless of whether the pavement is landfilled or recycled, whatever the fate of the 

pavement, it will imply carrying out a set of actions which will have some sort of 

environmental impact. By definition, the environmental performance of those activities 

would be accounted for in other phases of the pavement LCA, namely in the 

construction and M&R (construction equipment operation), and transportation of 

materials phases. However, for the purpose of assessing the contribution of the EOL to 

the pavement LCA, the environmental burdens of those activities were assigned to the 

EOL phase. 

In the pavement LCA model, the “EOL” PLCPC prompts the user to define the 

pavement’s final destination: either to remain in place, or to be removed and the 

materials transported to either a recycling center (e.g., asphalt mixing plant, etc.) or a 

landfill. This PLCPC contains three tabs. The first one, designated “Handling the multi-

functionality of the EOL processes”, requires the user to define the assignment approach 

that would govern the share of the environmental burdens and credits between the 

pavement system producing the recyclable materials, or providing support capacity for a 

new pavement structure, and the one taking advantage of those exported functions.  

Taking into account the multiplicities of scenarios involving the EOL, the uncertainties 

and the scope of an LCA, the pavement LCA model features two different approaches 

to handle the multi-functionality of the EOL phase: (1) the cut-off; and (2) the 

substitution variant of the system expansion approach. The cut-off approach, commonly 

applied in LCA of open recycling systems, follows the principle that each product is 

assigned only the burdens directly associated with it. On the other hand, the substitution 

approach, also called “avoided burden approach” or “crediting approach”, consists of 

expanding the boundaries of the current pavement system to account for the 
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environmental burdens that would be generated within the next pavement system to 

deliver a new pavement structure that incorporates either the recycled materials or the 

remaining pavement structure. The avoided environmental burdens are later “credited” 

or subtracted from those produced during the pavement system under analysis.  

In both scenarios the model’s user is later directed to the tabs “EOL Activities” and 

“EOL Materials” either to set where in the interface of the two pavement systems the 

cut-off is located (i.e., to define which activities belong to the current system and, thus, 

requiring accounting), or to set the system boundaries of the processes whose 

environmental burdens are avoided.  

The tab labeled “EOL Materials”, asks the user to define the types of pavement layers 

(bounded or unbounded, and respective mixtures/material) and the dimensions of the 

pavement section (width, length, and depth) that is to undergo the activities inherent to 

the selected EOL modeling approach. They can be considered either an avoided activity 

or an effective activity depending on the selected EOL modeling approach. In the 

second tab, designated “EOL Activity”, the user must pick the type of work to be 

performed (e.g., pavement milling, materials transportation, etc.) and input the 

production rates. Along with the previous steps, the user is also directed to the 

“Transportation of materials” PLCPC in order to define the input variables required by 

this PLCPC (see section 2.3.2.2.2) to model the transportation processes in case they are 

required. 

2.3.2.3 Other modules 

2.3.2.3.1 Fuel and electricity production 

The overall environmental impact of a process depends on both the combustion of 

energy for operating equipment and vehicles, and the upstream energy requirements for 

producing and delivering the energy source. In that sense, it is important not to 

constrain the EFs related to energy sources to pre-established values that might not 

comply with the scope of the analysis. For this reason, model users are given the 

freedom to enter their own inventory data into the “Fuels and Electricity Production” 
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DbC. The required information includes the type of fuel/electricity (nine types are 

available: coal, crude oil, gasoline, diesel, fuel oil, burning oil, natural gas and liquefied 

petroleum gas [LPG], and electricity), name, description, data source, input date, 

airborne EFs, eight cumulative energy demand (CED) indicators (fossil, nuclear, 

primary forest, biomass, wind, solar, geothermal, and hydro energy), and the 

consumption of non-energetic resources per unit of energy source (depending on the 

type of energy source it can be given in g/kWh, g/kg, or g/m
3
). The energy source data 

becomes a permanent item in the LCA model database and is used to compute the 

environmental impacts coming from the upstream processes associated with the energy 

sources consumed by the various modeled processes over the pavement life cycle.  

For computation, all energy sources are converted into a universal energy unit (MJ), 

according to the lower heating values (LHVs) presented in Table 2.1. The default 

pavement LCA database was mostly populated with EFs derived from the ELCD 2.0 

databases (EC, JRC - IES and DGE - DG, 2008).  

Table 2.1- LHVs of the energy sources. 

Energy source Unit Value Data source 

Burning oil MJ/kg 43.9 
DECC (2013) 

Mine gas MJ/ m
3
 18.9 

Crude oil MJ/kg 43.2 

Frischknecht et al. (2007) 

Diesel MJ/kg 42.8 

Electricity MJ/kWh 3.6 

Fuel oil MJ/kg 41.2 

Gasoline MJ/kg 42.5 

Hard coal MJ/kg 28.9 

Soft coal MJ/kg 8.4 

Natural gas MJ/m
3
 36.32 

LPG MJ/kg 46.15 IEA (2005) 
Legend: LPG- liquefied petroleum gas. 

 

2.3.3 Life cycle impact assessment 

In the LCIA, the inventory results are assigned to different impact categories based on 

the expected types of impacts on the environment. The first step of LCIA consists of 

classifying the environmental loading into various categories, known as classifications. 

Characterization factors are then used to quantify the magnitude of the contribution that 
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an LCI analysis result may have in producing the associated impact. In this model, the 

impact categories were set at the midpoint of the impact pathway rather than at the 

endpoint. Application of the latter is still not seen as mature in terms of fulfilling the 

criteria for scientific and stakeholder acceptance due to the insufficient level of 

scientific quality, the uncertainties and complexities surrounding the methodological 

assumptions, and a lack of completeness of scope (Hauschild et al., 2013). On the other 

hand, the application of a midpoint method in the interpretation of LCA results provides 

several advantages (Mizsey et al., 2009): (1) it exposes the multidimensionality of the 

problem of environmental assessment; (2) it does not require additional steps for data 

collection, modeling, and computation; and (3) it makes possible the iterative evaluation 

of impact indicators and the exclusion of indicators with excessively high uncertainty.  

According to the LCI results and the impact categories commonly recognized as the 

most representative of the three protection areas (human health, natural environment, 

and natural resources), the following impact categories have been selected to be 

modeled in LCIA: CC, acidification (Ac) due to airborne emissions, terrestrial 

eutrophication (TE), human toxicity (HT) due to airborne emissions, photochemical 

ozone formation (POF), and abiotic resource depletion in terms of fossil fuels (ARD 

FF) and mineral resources (ARD MR). Characterization models and associated 

characterization factors proposed to quantify the contribution of each LCI element to 

the aforementioned impact categories have been selected according to the 

recommendations of the International Reference Life Cycle Data System (ILCD) 

handbook (Hauschild et al., 2013), but taken into account the compatibility between the 

LCI detail level promoted by the pavement LCA model and those required by the 

methods suggested in the ILCD handbook, as well as the recent literature addressing 

emissions timing in LCA. The energy intensity of the processes was evaluated through 

the CED indicator, which calculates the primary energy use throughout the life cycle of 

the product under assessment (Hischier et al., 2010). 

Current state-of-the-practice consists of providing characterization factors that linearly 

represent the contribution of a mass of a given substance to a specific impact category. 
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Emissions occurring at different points in time are added together as if they occurred at 

the same time, which means that emissions profiles with different effects at different 

times are treated equally (Kendall, 2012). The adoption of such procedures has been 

demonstrated to potentially overestimate the system contribution for certain impact 

categories (Kendall, 2012; Collinge et al., 2013). Therefore, in this model the user is 

given the option to choose between the Intergovernmental Panel on Climate Change’s 

(IPCC) Global Warming Potentials (GWPs) and the time-adjusted warming potentials 

(TAWPs) proposed by Kendall (2012). The lack of either consistent or geographically 

suitable sets of other time-adjusted characterization factors across multiple impact 

categories does not allow for the accounting of time effects in impact categories other 

than CC. If dynamic characterization factors for other impact categories are developed 

in the future, these can be incorporated into the LCA model. Impact categories and 

respective characterization factors selected for the model are summarized and exhibited 

in Table 2.2.  

Lastly, according to ISO (2006b) normalization, grouping, and weighting steps in LCA 

are optional. While they might be useful in translating the impact scores of different 

impact categories into a more understandable and somehow digestible form (Dahlbo et 

al., 2013), they also entail a risk of oversimplifying the results. Therefore, this first 

version of the pavement LCA model does not include those three optional steps, 

although its modular nature will allow easy integration into a future version of the 

model. 
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Table 2.2- Environmental impact categories, and respective characterization factors. 

Impact category 
Impact category 

indicator 

Characterization 

factor name 

Characterization factor 

unit 

Inventory  

loading 

Characterization 

factor value 
Model 

CC 

Infrared 

Radiative 
Forcing 

GWP100 CO2-eq/kg 

CO2 

CH4 
N2O 

-a Kendall 

(2012) 

       

Ac:  

emissions to air 

Accumulated 

Exceedance 
(AE) 

Acidification 

Potential 
molc H+-eq/kg 

SO2 0.6 Seppala et 
al. (2006); 

Posch et al. 

(2008) 

NO2 0.2 

NH3 1 

       

TE:  
emissions to air 

AE 
Eutrophication 
Potential 

molc N-eq/kg 

NO2 2.6 Seppala et 

al. (2006); 
Posch et al. 

(2008) 

NH3 9.4 

       

HT:  

emissions to air  

Acceptable Daily 

Intake 

Human Toxicity 

Potential (HTP100) 

kg 1.4-

dichlorobenzene eq/kg 
(kg 1.4-DB-eq/kg) 

NOx 1.2 

Guinée et 

al. (2002)c 

SO2 0.096 

NH3 0.100 
Lead  

PM2.5 

29.136 

0.82 

       

POF 
Photochemical 
Ozone Creation 

Potential (POCP) 

Ozone Formation 

Potential  
kg NMVOC-eq/kg 

NOx 1 van Zelm et 

al. (2008) as 

applied in 
ReCiPe 

2008 

(Goedkoop 
et al., 2013) 

NMVOC 1 

CH4 0.0101 
CO 0.0456 

SOx 0.0811 

 
VOC 

0.235 

       

ARD MR  Scarcity 
Abiotic Depletion 
Potential: mineral 

resources (ADP MR) 

kg Antimony eq/kg 

(kg Sb-eq/kg) 

Mineral 

resources 
1.40E-11b Guinée et 

al. (2002)c 

       

ARD FF Scarcity 

Abiotic Depletion 

Potential: fossil fuels 

(ADP FF) 

MJ/kg or MJ/m3 
Fossil 
fuels 

LHVsd Guinée et 
al. (2002)c 

Legend: CC- climate change; Ac- acidification; TE- terrestrial eutrophication; HT- human toxicity; POF- photochemical ozone 
formation; ARD FF- abiotic resource depletion in terms of fossil fuels; ARD MR- abiotic resource depletion in terms of mineral 

resources; AE- accumulated exceedance; POCP- photochemical ozone creation potential; LHV- lower heating value. 

Notes: a The value depends on time and type of GHG. 

b Figure for Silicium. For the remaining mineral resources accounted for, the recommended characterization factor values were 

considered. 
c Characterization factors according to the updated version of the Center Environmental Studies of the University of Leiden´s 
“CML” factors (CML, 2013). 

d The ADP FF are given by the LHVs of the fossil fuels. 

 

2.3.4 Calculation and model outputs 

The proposed pavement LCA model is able to deal efficiently with a significant amount 

of information and related models. Most of that information is further broken down and 

differentiated into several emissions sources within each pavement life cycle phase. 

From this exhaustive analysis might result a set of detailed outputs that exceed the real 

users’ needs. Such usage of unnecessary computational resources increases the 

computation time and, depending on the user’s experience, might cause some 
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difficulties in handling and interpreting the model’s outputs. Thus, in order to make the 

model supportive of the decision-making process, the user is able to choose the exact 

outputs and level of disaggregation displayed. Outputs are customized using the “LCA: 

Life Cycle Inventory” and “LCA: Life Cycle Impact Assessment” tabs hosted in the 

“Desired Outputs” OC.  

Each pavement life cycle phase has its own mode of exhibiting outputs. For each life 

cycle phase, the results are split into emissions related to the process energy combustion 

and emissions related to the upstream energy requirements. The emissions due to both 

sources are further displayed with different levels of discretization depending on the 

pavement life cycle phase. The desired impact categories and the analytical time 

horizon are selected in the “LCA: Life Cycle Impact Assessment” tab. For the impact 

categories enabled to account for the temporal variation, in this case CC, the user selects 

between time-adjusted characterization factors, and respective time horizon, and non-

time-sensitive characterization factors.  

The selected LCI and LCIA results are then exported to a Microsoft Excel file and 

displayed in individual life cycle phase worksheets through tables and charts. Apart 

from the individual treatment given to each phase, the Excel file also contains several 

worksheets aimed at comparing the environmental performance of each phase against 

the remaining phases. Table 2.3 summarizes the features of the worksheets hosted by 

the Microsoft Excel file that gathers the LCA model outputs. 
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Table 2.3- Features of the worksheets hosted by the Microsoft Excel generated to export the LCA model outputs. 

Worksheet 

type 

LCA 

stage 
Worksheet Description Sub worksheet name Notes 

1 

Goal and 

scope 

definition 

Project 

description 

Project general data: descriptive data identifying the project 

‘Project Description’ 

 
Analysis data: PAP; pavement life cycle phases selected 

 
Project detail data: traffic over PAP 

 
Construction: layers dimensions; mixtures typology 

 

Maintenance: schedule; WZ dimensions; type of M&R activity; traffic-related inputs 
 

2 

LCI 

Process energy 

combustion 

Inventory outputs resulting from the process energy combustion in each pavement 
life cycle phase 

‘LCI_MaterialsExtraction_and_Production‘ 
‘LCI_Construction_and_Maintenance’; 

‘LCI_Transportation’; 
‘LCI_WZ_Traffic_Manag.’ 

’LCI_Usage’; 

‘LCI_EOL’ 

Lowest discretization 
level: pavement layer 

and M&R activity 

Inventory outputs resulting from the process energy combustion per unitary 

processes of several pavement life cycle phases 

‘LCI_UnitProcess_MaterialsExtraction_and_Production’ 
‘LCI_UnitProcess_Construction_and_Maintenance’; 

’LCI_UnitProcess_Transportation’ 

‘LCI_UnitProcess_WZ_Traffic_Manag.’ 

’LCI_UnitProcess_Usage’; 

‘LCI_UnitProcess _EOL’ 

Lowest discretization 
level: pavement 

materials 

3 

Pre-
combustion 

energy-related 

processes 

Inventory outputs associated with the pre-combustion energy-related processes 

corresponding to the process energy consumed in each pavement life cycle phase 

‘LCI_MaterialsExtraction_and_Production’ 
’LCI_Construction_and_Maintenance’; 

‘LCI_Transportation ’ 

‘LCI_WZ_Traffic_Manag.’; 
‘LCI_Usage’; 

‘LCI_EOL’ 

Lowest discretization 
level: pavement layer 

and M&R activity 

Inventory outputs associated with the pre-combustion energy-related processes 

corresponding to the process energy consumed per unitary processes of several 
pavement life cycle phases 

‘LCI_UnitProcess_MaterialsExtraction_and_Production’ 
‘LCI_UnitProcess_Construction_and_Maintenance’ 

‘LCI_UnitProcess_Transportation’; 

‘LCI_UnitProcess_WZ_Traffic_Manag.’; 
‘LCI_UnitProcess_Usage’; 

‘LCI_UnitProcess _EOL’ 

  

Lowest discretization 

level: pavement 
materials 

Legend: LCI- life cycle inventory; WZ- work-zone; EOL- end-of-life. 
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(continued) 

Legend: LCI- life cycle inventory; LCIA- life cycle impact assessment; WZ- work-zone; EOL- end-of-life. 

 

 

Worksheet 

type 

LCA 

stage 
Worksheet Description Sub worksheet name Notes 

4 LCI 
Comparative 

worksheets 

The results displayed by worksheets type 2 and 3 are gathered and exhibited in 

comparative tables and charts 

‘LCI_MaterialsExtraction_and_Production_Comparison’; 

‘LCI_Construction_and_Maintenance_Comparison’; 
‘LCI_Transportation_Comparison’; 

’LCI_WZ_Traffic_Manag._Comparison’; 

’LCI_Usage_Comparison’; 
‘LCI_EOL_Comparison’; 

‘LCI_UnitProcess_MaterialsExtraction_and_Production_Comparison’; 

‘LCI_UnitProcess_Construction_and_Maintenance_Comparison’; 
’LCI_UnitProcess_Transportation_Comparison’; 

’LCI_UnitProcess_WZ_Traffic_Manag._Comparison’; 

’LCI_UnitProcess_Usage_Comparison’; 
‘LCI_UnitProcess_EOL_Comparison’ 

Lowest discretization 

level in accordance with 
worksheets types 2 and 3 

5 

LCIA 

Process energy 

combustion 

For each worksheet type 2, the inventory loads are assigned to the defined impact 

categories and characterized according to the information presented in Table 2.2 

Names are equal to those adopted in the worksheet types 2, 3 and 4 but 

start with “LCIA” instead of “LCI” 

Lowest discretization 

level in accordance with 
worksheets type 2 

6 

Precombustion 

energy-related 

processes 

For each worksheet type 3, the inventory loads are assigned to the defined impact 
categories and characterized according to the information presented in Table 2.2 

Lowest discretization 

level in accordance with 

worksheets type 3 

7 
Comparative 

worksheets 

The results displayed by worksheets type 5 and 6 are gathered and exhibited in 

comparative tables and charts 

Lowest discretization 
level in accordance with 

worksheets types 5 and 6 
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2.3.5 Uncertainties and limitations 

The LCA methodology requires multiple choices, many of which are constrained by 

uncertainties and limitations of several types, making problems less tangible and 

decision-making difficult (Funtowicz et al., 1999). According to the scope of the LCA 

study, some of these factors might represent additional difficulties in achieving the 

desired goals. Overall, the main sources of uncertainties and limitations in conducting 

an LCA study come from the decision-making process related to data, models, and the 

practitioner’s choices and assumptions. This section addresses the sources of 

uncertainty, the limitations of the LCA model, and provides justifications that support 

several choices made during the development of the model that have introduced some 

type of uncertainty. 

According to the EC, JRC - IES (2010) the quality of LCI data quality can be 

characterized by representativeness (technological, geographical, and time-related), 

completeness (regarding impact category coverage in the inventory), 

precision/uncertainty (of the collected or modeled inventory data), and methodological 

appropriateness and consistency. The presented LCA model uses, when feasible, 

recognized data sources, peer-reviewed studies and reports from recognized institutions, 

that are geographically and technologically compatible, to meet these criteria. However, 

even recognized sources do not always describe all the processes accounted for in the 

cradle-to-gate LCI of some materials. This introduces difficulties in assessing whether 

the system boundaries associated with the cradle-to-gate of such materials fully match 

the system boundaries set by the user. 

The time-related issues are certainly significant sources of uncertainty when conducting 

an LCA, especially for a long PAP. During a long PAP, such as the one typically 

considered in both pavement LCA and pavement LCCA, what is now at the cutting-

edge technologically might be out-of-date ten years from now or even sooner. This fact 

is valid not only for technology but also for knowledge, as well as pavement 

construction and M&R-related practices. In the materials extraction and production 
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phase, the FC and emissions factors associated with the several processes accounted for 

are kept constant over the PAP. Factors could be included to account for technological 

improvement, but what values would be considered is an issue that by itself represents a 

source of uncertainty. In the construction model, this issue was addressed by 

considering the degradation rates of airborne EFs and the average lifespan of 

construction equipment. Whenever a construction vehicle reaches its life expectancy, 

the LCA model replaces it with a new one possessing an engine that meets the Euro 

legislation class in force at the time. Though new and increasingly constrained 

regulations are expected to come into force in the future, all new construction 

equipment has been assumed to be powered by an engine meeting Euro Stage IV 

standards because at this moment there is no way to quantitatively measure such 

improvements. Still, the airborne emission model considered for construction equipment 

is a static one. Although the load factor attempts to represent average engine 

performance during the operation time, it is not truly able to model the diversity of 

scenarios experienced by the engine. In the case of on-road vehicles, no additional or 

improved engine technologies, apart from those known right now and recognized by the 

COPERT model, have been considered.  

With respect to the usage phase, several projects have acknowledged the importance of 

the pavement on vehicle FC. For example, the structural deflection effect, although it 

may be significant, was not added to the usage phase model. Concerning the marginal 

FC due to this resistive force, the MIRIAM models have been used. Those models, part 

of an ongoing research project, have been developed only for three categories of 

vehicles and are based on a restrictive spectrum of pavement conditions, types of tires, 

and climatic conditions. Moreover, MPD and IRI, which have been found to be the 

pavement surface characteristics with the most influence on FC, are difficult to predict 

and control during the PAP. Few MPD/mean texture depth (MTD) prediction models 

are available in published literature, and those which do exist have been developed for 

particular road sections and climates, and only address short periods of time. Therefore, 
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the usage of up-to-date and road-section-customized models is desirable and welcome 

as soon as new models are available. 

Lastly, in the proposed pavement LCA model, the environmental burdens assessed do 

not represent all the flows. Other emissions outside the scope of this study, or even 

inside the scope but for which there is no data, could result in additional environmental 

impacts. As many of the meaningful flows as possible were captured, but due to the 

diversity of models integrated in the proposed LCA model, it has not been possible to 

collect exactly the same outputs in all of them. In addition, some models either overlap 

or do not report the emissions classified as hydrocarbons (HC) or VOC explicitly 

enough. These are compounds containing combinations of carbon and hydrogen, and 

may also contain oxygen, sulfur, nitrogen, and halogens like fluorine and chlorine 

(Petchers, 2003). Such a lack of clarification in the LCIA stage may lead to under- or 

over-estimation in some impact categories due to an inaccurate characterization. 

2.4 Summary and conclusions 

Over the past decades the LCA methodology has been used intensively to assess the 

environmental performance of multiple systems in diverse fields. For the specific case 

of pavement, the effective integration of LCA into pavement infrastructure decision-

making is still in its infancy. Some highway agencies feel that the environmental 

concerns are somehow negligible or do not fall under their responsibility. Others believe 

that environmental analyses imply further expenses. In addition, the lack of available 

tools that allow DMs to use their own data and to model their own procedures, instead 

of imposing a “black-box” with a set of incomplete, subjective, and unclear data and 

methods, hinders change. 

To enhance the current state-of-practice, this chapter has presented the development of a 

VB.NET-based pavement LCA model able to consider the pavement cycle as an 

integrated whole, from materials extraction and production to construction, to usage and 

EOL. Various models, research papers, reports, and guidelines have been analyzed in 

order to determine appropriate methods that broaden our awareness of the impacts 
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caused by the entire life cycle, typically estimated in the state-of-the-practice 

methodologies applied in the pavement field. The developed model expands the LCIA 

to categories other than CC and upgrades the impact assessment techniques typically 

incorporated in the majority of pavement LCA tools through the inclusion of dynamic 

characterization factors. Additionally, thanks to the open and customizable database that 

comes with the pavement LCA model, the approach can be applied to a diversity of case 

studies and projects while providing trust and credibility to the geographical and 

temporal context of the results.  

Because the highly customizable nature is present throughout the various steps of the 

model, the user is not constrained to a set of pre-established and imposed conditions and 

assumptions. The software allows the user to handle the singularity of road pavement 

projects and the remarkable diversity of the materials, structures, construction 

techniques, and M&R plans associated with them. Therefore, the more relevant areas 

and related key points of the pavement life cycle can be measured and benchmarked 

against other solutions and projects. 

In the near future, the development of this model will proceed in five main directions. 

First, the applicability of this LCA model will be illustrated through its application to a 

case study representative of the current Portuguese practice on pavement construction 

and management. Second, the geographical applicability of the LCA model will be 

extended, in a first stage, by including sub-models tailored for other countries, namely 

the US, and in a second stage by fully applying the model to a case study. Third, the 

methodologic approach of this LCA model will be upgraded from the process-based 

approach to the hybrid approach. This improvement in the model’s approach will be 

performed by integrating it with a comprehensive pavement LCC model that allows the 

several sub-models to connect with one another by monetary flows associated with 

exchanges of the pavement life cycle system that are directly covered by the LCC 

model but for which specific process-based LCI (P-LCI) data are either completely or 

partially unavailable. Fourth, the comprehensive pavement LCC-LCA model will be 

incorporated, along with a decision-support module, within a MOO framework to 
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identify optimal pavement M&R strategies that yield the best tradeoff between 

conflicting objectives. Fifth, the analysis level of the optimization-based LCC-LCA 

model will be updated from the project to the network level to ensure that the decisions 

taken at project level end up in optimal sustainable solutions for the whole road 

pavement network. 
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Chapter 3  

A Life Cycle Assessment Model for 

Pavement Management: Road 

Pavement Construction and 

Management in Portugal 

3.1 Introduction 

Worldwide, transportation authorities are setting targets and adopting policies to 

promote sustainable development and mitigate adverse environmental changes such as 

global warming, ozone depletion, and soil acidification. The European Commission 

(EC) has recently presented a roadmap that defines the key elements that should shape 

the climate actions of the EU and help the EU become a competitive, low-carbon 

economy by 2050 (EC, 2011). Similar objectives have been adopted by the State of 

California through a legislative mandate that requires statewide GHG emissions to be 

reduced to the 1990 level by 2020 and to 20 percent of the 1990 level by 2050 (CARB, 

2008). 

The transportation sector, due to its significant contribution to current emissions, has a 

key role to play in achieving an expressive inversion of the current trend. Within this 
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sector, the highway infrastructure, and in particular road pavements, have a set of 

specificities that can be addressed accordingly to help achieve the established 

milestones. For instance, pavement construction requires large amounts of materials 

obtained through highly energy-demanding processes, which often occur far away from 

the construction site (Zapata and Gambetese, 2005). Additionally, the long lives of 

pavements make them vulnerable to deterioration, which might not be tolerated by 

increasingly demanding road users. Agencies must provide a service with high levels of 

quality, comfort, and safety. This requires regular maintenance work over the 

pavement’s life, which often results in additional emissions and consumption of mineral 

and energy resources. 

To improve the sustainability of road pavements, road agencies and construction 

companies need appropriate methodologies and tools to identify priority areas. It is 

necessary to know the impact of pavements on the environment to develop and 

implement approaches and procedures that can produce the greatest gains in all aspects 

and dimensions of the system, including the environmental impacts. The LCA method 

is a versatile tool capable of informing decisions on resource and process selection to 

better understand, measure, and reduce the environmental impacts of a system (Glass et 

al., 2013). 

Since the application of LCA was extended to the pavement field in the late 1990s 

(Häkkinen and Mäkelä, 1996; Horvath and Hendrickson, 1998), the number of 

pavement LCA studies published in peer-reviewed journals has proliferated (examples 

include Goss et al., 2012; Kim et al., 2012; Kucubar and Tatari, 2012; Wang et al., 

2012; Yu and Lu, 2012; Michael Fitch et al., 2012; Qian et al., 2013; Blankendaal et al., 

2014). Those studies differ from each other in the system boundaries, functional units, 

analysis methodologies, processes considered, and computational structure. However, 

most of the examples have one feature in common: they focus on comparing alternative 

pavement materials based on estimated inventories and/or particular case studies to 

draw general conclusions.  
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Aside from those studies that rely on the application of LCA methodologies to 

particular case studies, there have been others that intend to elucidate DMs on the 

environmental footprint of various pavement classes. Loijos et al. (2013) quantified the 

GHG of twelve cement-based functional units, representing average conditions for each 

major roadway classification in the US. Seo and Kim (2013) estimated the overall and 

unit CO2 emissions due to the consumption of materials for the construction of twelve 

expressway sections constructed between 2006 and 2007 in Korea. The unit emissions 

were utilized to predict the total emissions that might have been released from all types 

of roads (i.e., expressways, national highways, and local roads) up to the year 2007. In 

addition, average annual emissions were calculated based on road construction plans 

from 2009 to 2020. Gschösser et al. (2014) conducted an environmental analysis of the 

processes needed to construct (material production, pavement construction, transport) 

and maintain (pavement deconstruction, recycling, material production, pavement 

construction, transport) representative Swiss asphalt, concrete, and composite 

pavements used in highways and cantonal roads. While those studies have undeniable 

value in presenting LCA methodologies, documenting assumptions, and disclosing data 

sources (Loijos et al., 2013), their results cannot be extended to other geographical and 

technical contexts. By illustrating the applicability of the LCA model presented in 

Chapter 2 (Santos et al., 2015), this chapter provides Portuguese stakeholders with 

insights into the potential LCEI stemming from the construction and management of 

representative Portuguese road pavement structures. 

3.2 Background 

LCA is an emerging and systematic method to evaluate the environmental burdens 

associated with a product, process, or activity by identifying and quantifying energy and 

materials usage and environmental releases. Among other capabilities, LCA assesses 

the impacts of the emissions released to the environment as a consequence of the energy 

and material consumed and identifies opportunities for environmental improvements. 

The assessment includes the entire life cycle of the product, process, or activity and 
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encompasses the extraction and processing of raw materials, manufacturing, 

transportation and distribution, use/reuse/maintenance, recycling, and final disposal 

(SETAC, 1993).  

The LCA approach formalized by the ISO 14040 series has been internationally 

accepted as a set of valuable guidelines to perform a well-documented and transparent 

analysis. ISO divides the LCA framework into four stages: goal and scope definition, 

inventory analysis, impact assessment, and interpretation (ISO, 2006). The goal and 

scope definition describes the functional unit used for the analysis, the life cycle system 

boundaries, and the target audience. The inventory analysis quantifies relevant inputs 

and outputs of a product or system and attributes them to processes within the life cycle 

system boundaries. In the LCIA phase, the inventory results are assigned to different 

impact categories based on the expected impact on the environment. These impact 

categories can be global (e.g., global warming, ozone depletion, etc.), regional (e.g., 

eutrophication, acidification, photo-oxidant formation, etc.), or local (e.g., nuisance, 

working conditions, effects of hazardous waste, effects of solid waste, etc.). The impact 

assessment in LCA includes two mandatory elements: classification and 

characterization. Classification is the process of assignment and initial aggregation of 

LCI data into common impact groups. Characterization is the assessment of the 

magnitude of potential impacts of each inventory flow into its corresponding 

environmental impact. Impact assessment may also include other additional steps, i.e., 

normalization, grouping, and weighting. The final phase of the LCIA process is aimed 

at interpreting the results from the inventory analysis and/or the impact assessment to 

point out conclusions, make suggestions, identify analysis refinements and 

improvements, and, in general, aid in the decision-making process. 

3.3 Methodology 

3.3.1 Goal and scope definition 

In Chapter 2 (Santos et al., 2015) it is presented the development of a project-level, 

customizable pavement LCA tool that includes all six pavement life cycle phases. The 
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main objectives of this chapter are (1) to demonstrate the potentialities and usefulness of 

this model for conducting a comprehensive and attributional LCA and (2) to provide 

Portuguese DMs with knowledge on the potential life cycle environmental performance 

of the standard flexible pavement structures defined in the Portuguese pavement design 

catalogue (JAE, 1995). Secondary objectives include (1) to identify the most relevant 

areas, key components, and processes of a pavement’s life cycle and to assess their 

contribution to the overall LCEI and (2) to assess the contribution of the traffic and 

pavement foundation classes to the total environmental impacts. 

The procedures, techniques, and assumptions used in this analysis represent typical 

Portuguese practices with regard to pavement construction and management. However, 

given the multiplicity of solutions and processes available to perform the same 

functions, the results presented in this chapter are just illustrative and should not be 

considered fully representative of the pavement systems assessed. Rather, they should 

be seen as a guide and an incentive to road agencies and stakeholders to take advantage 

of comprehensive pavement LCA methodologies and tools, for conducting well-

informed and tailored project-based LCA. 

3.3.1.1 Functional unit 

The functional unit is the central core of any LCA and forms the basis for comparisons 

between different systems. This study considers different functional units in order to 

cover the multiple combinations resulting from the various pavement structures, 

pavement foundations, and traffic classes. Each functional unit includes the 

construction, M&R, usage, and EOL phases of a flexible pavement structure for a 

straight and flat, interurban motorway segment, with two lanes per direction and two 

separate carriageways, which would provide safe, comfortable, economical, and durable 

driving conditions over a 40-year PAP. 

In the Portuguese pavement design catalogue (JAE, 1995), called MACOPAV, a 

pavement structure is recommended depending on traffic class, which varies between 

T1 and T6, and pavement foundation class, which varies between F1 and F4. The traffic 
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class is defined by the number of 80 kN equivalent single axle load (ESAL) applications 

for a design life. The ESALs are calculated using the annual average daily heavy-traffic 

(AADTh), the annual average growth rate of heavy-traffic (gh), and the average heavy-

traffic damage factor or, simply, truck factor (α). On the other hand, the pavement 

foundation class is defined by the California Bearing Ratio (CBR) value and the design 

stiffness modulus (E) of the subgrade. The Portuguese manual considers 16 different 

flexible pavement structures for different combinations of traffic levels and pavement 

foundation classes. These pavement structures were defined using the Shell pavement 

design method (Shell, 1978), with verification by using the University of Nottingham 

(Brunton et al., 1987) and Asphalt Institute (Asphalt Institute, 2001) pavement design 

methods. 

The results presented in the next sections were obtained for the following data and 

conditions: two traffic classes (T1 and T5) characterized in Table 3.1, three types of 

pavement foundations, and sixteen different pavement structures with the characteristics 

presented in Table 3.2. The properties of the materials in each pavement layer were 

provided by a certified Portuguese construction company and are within the range of 

values established by the Portuguese Road Administration. 

For traffic composition, HDVs are assumed to represent 10% of the total AADT, of 

which 7.5% are rigid HDVs and the remaining percentage (2.5%) articulated HDVs. 

The outer lanes of each direction are assumed to carry 45% of the total HDV traffic. 

The remaining percentage of the total AADT (90%) is passenger cars (PCs).  

The two main vehicles types (PC and HDV) are broken down into several engine 

capacity categories, and each of these engine capacity categories is further split into 

several levels of Euro stages compliance. This desegregation of the traffic categories 

was done for each year of the PAP, proportionally to the Portuguese traffic fleet 

distribution defined in the “On-Road Vehicle Fleet Distribution” Database Class (see 

Figure 2.1 in Chapter 2). 
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Table 3.1- Traffic classes and corresponding values. 

Traffic class AADTh g (%) α 

T5 300 3 3 

T1 2000 3 5.5 
Legend: AADTh- annual average daily heavy-traffic; g- annual average growth rate of traffic; α- average heavy-traffic damage 

factor. 

Table 3.2- Characteristics of the pavement structures. 

Pavement 
structure 

Surface layer Binder layer Base layer Sub-base layer 

SN0 
W 

(m) 
L 

(km) Mat. 
Mixture 

name 

tS 

(cm) 
Mat. 

Mixture 

name 

tBi 

(cm) 
Mat 

Mixture 

name 

tB 

(cm) 
Mat. 

Mixture 

name 

tSb 

(cm) 

P1 HMA 
AC 14 

Surf 
4 HMA - - HMA 

AC 20 

Base 
6 CA 

Tout-

Venant 
20 2.36 

24a 1 

P2 HMA 
AC 14 

Surf 
4 HMA - - HMA 

AC 20 

Base 
8 CA 

Tout-

Venant 
20 2.63 

P3 HMA 
AC 14 
Surf 

4 HMA 
AC 14 

Bin 
5 HMA 

AC 20 
Base 

7 CA 
Tout-

Venant 
20 3.17 

P4 HMA 
AC 14 

Surf 
4 HMA 

AC 14 

Bin 
6 HMA 

AC 20 

Base 
8 CA 

Tout-

Venant 
20 3.43 

P5 HMA 
AC 14 

Surf 
5 HMA 

AC 14 

Bin 
6 HMA 

AC 20 

Base 
8 CA 

Tout-

Venant 
20 3.61 

P6 HMA 
AC 14 

Surf 
5 HMA 

AC 20 

Bin 
6 HMA 

AC 32 

Base 
10 CA 

Tout-

Venant 
20 3.87 

P7 HMA 
AC 14 

Surf 
4 HMA 

AC 20 

Bin 
7 HMA 

AC 32 

Base 
11 CA 

Tout-

Venant 
20 3.97 

P8 HMA 
AC 14 
Surf 

5 HMA 
AC 20 

Bin 
6 HMA 

AC 32 
Base 

11 CA 
Tout-

Venant 
20 4.01 

P9 HMA 
AC 14 
Surf 

5 HMA 
AC 20 

Bin 
7 HMA 

AC 32 
Base 

12 CA 
Tout-

Venant 
20 4.28 

P10 HMA 
AC 14 

Surf 
6 HMA 

AC 20 

Bin 
6 HMA 

AC 32 

Base 
12 CA 

Tout-

Venant 
20 4.32 

P11 HMA 
AC 14 

Surf 
5 HMA 

AC 20 

Bin 
8 HMA 

AC 32 

Base 
12 CA 

Tout-

Venant 
20 4.41 

P12 HMA 
AC 14 

Surf 
6 HMA 

AC 20 

Bin 
8 HMA 

AC 32 

Base 
12 CA 

Tout-

Venant 
20 4.56 

P13 HMA 
AC 14 
Surf 

5 HMA 
AC 20 

Bin 
8 HMA 

AC 32 
Base 

15 CA 
Tout-

Venant 
20 4.81 

P14 HMA 
AC 14 
Surf 

6 HMA 
AC 20 

Bin 
7 HMA 

AC 32 
Base 

15 CA 
Tout-

Venant 
20 4.85 

P15 HMA 
AC 14 

Surf 
6 HMA 

AC 20 

Bin 
9 HMA 

AC 32 

Base 
15 CA 

Tout-

Venant 
20 5.12 

P16 HMA 
AC 14 

Surf 
6 HMA 

AC 20 

Bin 
11 HMA 

AC 32 

Base 
15 CA 

Tout-

Venant 
20 5.39 

Legend: Mat.- material; HMA- hot-mix asphalt; AC- asphalt concrete; CA- crushed aggregates; tS- thickness of surface layer; tBi- 

thickness of binder layer; tB- thickness of base layer; tSb- thickness of sub-base layer; SN0- structural number of a pavement structure 
immediately after construction (year 0); W- width; L- length. 

Notes: aThis value corresponds to a cross-section with four main lanes, two outer shoulders, and two inner shoulders. The lanes are 

3.75 m wide, whereas the outer and the inner shoulders are 3 m and 1.50 m wide, respectively. 

3.3.1.2 System boundaries and system processes 

The functional units were assessed throughout the total pavement life cycle phases 

covered by the pavement LCA model: materials extraction and production; 

transportation of materials; construction, M&R; WZ traffic management; usage; and 
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EOL (Chapter 2). However, further and more detailed insights on this topic are worthy 

of consideration here.  

The analysis boundaries for the road pavement were set at the sub-base and at the 

finished road surface. They include (1) the construction of all layers contained by the 

limits stated above and subsequent M&R activities; (2) the extraction of the materials 

needed to produce the mixtures used in those layers; and (3) the movement involved in 

hauling materials between facilities, between facilities and work site, and vice-versa. 

The characteristics of the trucks used during the materials/mixtures transportation of 

materials phase, as well as transportation distances, are shown in Table 3.3. The 

upstream emissions and resources consumption associated with the production of the 

energy sources used to power the different processes, construction equipment, and on-

road vehicles were also included in the system boundaries. 

On the other hand, construction equipment and facilities production processes, road-

related safety and signaling equipment (including road marking), road accessories 

(fences, road lighting software, etc.), and the earthworks required to build the pavement 

foundation were not included in the system boundaries. The earthworks were excluded 

because the environmental impacts related to those works are specific to a particular 

project. This fact makes it unsuitable for the general application of the pavement LCA 

model that is the objective of this case study.  
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Table 3.3- Description of the parameters referring to the materials/mixtures transportation of 

materials phase. 

Type of transportation 

movement 

Payload capacity 

(tonnes) 

Material/ 

mixture 

Distance 

(km) 

Transport mode and vehicle 

technology 

Average speed 

(km/h) 

From extraction/ 

production facility to 
mixing plant 

15 Bitumen 130 
Rigid 26 - 28 t; HD Euro IV - 

2005 Standards 
60 

25 
Aggregate: 
0/31.5 mm 

40 
Articulated 34 - 40 t; HD Euro 
IV - 2005 Standards 

60 

25 
Aggregate: 
0/4 mm 

40 
Articulated 34 - 40 t; HD Euro 
IV - 2005 Standards 

60 

25 
Aggregate: 

4/8 mm 
40 

Articulated 34 - 40 t; HD Euro 

IV - 2005 Standards 
60 

25 
Aggregate: 

4/14 mm 
40 

Articulated 34 - 40 t; HD Euro 

IV - 2005 Standards 
60 

25 
Aggregate: 

4/15 mm 
40 

Articulated 34 - 40 t; HD Euro 

IV - 2005 Standards 
60 

25 
Aggregate: 

8/15 mm 
40 

Articulated 34 - 40 t; HD Euro 

IV - 2005 Standards 
60 

25 
Aggregate: 
15/25 mm 

40 
Articulated 34 - 40 t; HD Euro 
IV - 2005 Standards 

60 

25 Tout-Venanta 40 
Articulated 34 - 40 t; HD Euro 
IV - 2005 Standards 

60 

From mixing/ 

production plant to work 

site 

21 CA 30 
Rigid >32 t; HD Euro IV - 

2005 Standards 
60 

 AC 4 reg 30 
Rigid >32 t; HD Euro IV - 

2005 Standards 
60 

21 AC 14 surf 30 
Rigid >32 t; HD Euro IV - 
2005 Standards 

60 

21 AC 14 bin 30 
Rigid >32 t; HD Euro IV - 

2005 Standards 
60 

21 AC 20 bin 30 
Rigid >32 t; HD Euro IV - 
2005 Standards 

60 

21 AC 20 base 30 
Rigid >32 t; HD Euro IV - 

2005 Standards 
60 

21 AC 32 base 30 
Rigid >32 t; HD Euro IV - 

2005 Standards 
60 

15 
Bitumen 
Emulsion  

40 
Rigid 26 - 28 t; HD Euro IV - 
2005 Standards 

60 

From work site to mixing 

plant 

21 
Milled HMA 

layers 
30 

Rigid >32 t; HD Euro IV - 

2005 Standards 
60 

21 
Milled HMA 

layers 
30 

Rigid >32 t; HD Euro IV - 

2005 Standards 
60 

21 Removed CA 40 
Rigid >32 t; HD Euro IV - 
2005 Standards 

60 

Legend: AC- asphalt concrete; CA- crushed aggregates; HMA- hot-mix asphalt. 
aAlthough labeled as “Tout-Venant” this material was modeled as “Aggregate: 0/31.5 mm.” 

 

The PMS of the Portuguese Road Administration uses the pavement performance model 

of the flexible pavement design method developed by the American Association of 

State Highways and Transportation Officials (AASHTO, 1993) to compute the overall 

quality of pavements defined by the present serviceability index in each year t (PSIt) of 

the PAP. The system triggers a corrective intervention when this value drops below a 

determined value (warning value). The corrective M&R intervention is performed in 

order to restore the functional and structural capacities of the pavement. The OPTPAV 
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system developed by Santos and Ferreira (2013) was used to determine the timing, 

materials type, and respective quantities for the M&R interventions applied to each 

functional unit. The model applies a rehabilitation activity when the PSI value is lower 

than 2.0 such that the PSI is restored to its initial value (4.5). The evolution of the PSI 

over the PAP for each functional unit is displayed in Figure 3.1. The M&R actions 

included in the rehabilitation activity are shown in Table 3.4. Table 3.5 presents the 

M&R plans applied throughout the PAP. The duration estimated for each M&R action 

relies on the productivity data collected from several contractors based on the 

Portuguese experience. 

 

Figure 3.1- Evolution of PSI over the PAP for the six functional units. 

Table 3.4- M&R activity description. 

M&R 

activity 

M&R actions  

involved 
Mixtures applied 

Thickness (cm) or area (m2)  Duration per 

direction (days) Value Unit  

Structural 

Rehabilitation 

Wearing layer AC 14 surf 5 cm  

8 

Tack coat application  Bitumen Emulsion 3750a m2  

Base layer AC 20 base 10 cm  

Tack coat application  Bitumen Emulsion 3750a m2  

Surface leveling AC 4 reg  2 cm  

Prime coat application  Bitumen Emulsion 3750a m2  

Milling HMA layers - 17 cm  

Notes:a Value per lane. 

0.0
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Table 3.5- M&R plans. 

Pavement foundation Traffic 

class 

Pavement 

structure 

M&R schedule 

(year) 
PSIf  

Class CBR (%) E (MPa) υ 

F2 10 60 0.35 
T5 P7 20 - 3.50 

T1 P16 16 38 4.36 

F3 20 100 0.35 
T5 P4 35 - 4.34 

T1 P14 23 - 3.45 

F4 30 150 0.35 
T5 P3 - - 3.25 

T1 P12 30 - 4.07 

Legend: CBR- Californian Bearing Ratio; E- stiffness modulus; υ- Poisson’s ratio; M&R- maintenance and rehabilitation; PSI- 

present serviceability index; PSIf - present serviceability index at the end of the project analysis period. 

 

Prior to the paving operations described in Table 3.4, the initial layers are milled at the 

thickness required for the new layers, and the debris are transported to an asphalt 

mixing plant (recycling center). This procedure ensures (1) the required clearance for 

vertical obstacles; (2) compatibility with the existing drainage system; and (3) the 

protection of the new layers from the propagation of the distresses existing in the 

previous layers. 

Another assumption is that the WZ is maintained in place during all M&R interventions 

because of the type of actions that are required to be performed during M&R 

interventions. This implies that the constraints imposed on the traffic exist whether 

work is being carried out or not. Regarding the WZ layout, the original lanes were 

narrowed and shifted laterally, taking advantage of the existing shoulders. The operation 

speed of the PCs and HDVs was reduced from 120 km/h and 90 km/h, respectively, to 

80 km/h. Moreover, it was assumed that 10% of drivers self-detoured 10 km on a road 

with no limited access at an average speed of 60 km/h. The way in which the M&R 

activities impact the normal traffic flow depends, among other factors, on the hourly 

traffic distribution. In this case study, the Federal Highway Administration’s (FHWA’s) 

default weekday hourly traffic distribution was adopted (FHWA, 2004). Summaries of 

all relevant M&R traffic-related inputs are presented in Table 3.6. 

 

 



Chapter 3 A Life Cycle Assessment Model for Pavement Management: 

Road Pavement Construction and Management in Portugal 

 

78 

Table 3.6- M&R traffic-related inputs. 

Parameter Value 

Non-WZ Conditions 
 

Passenger car as % of AADT 90 

AADTh (%) 10 

Maximum legal speed (km/h): PCs 120 

Maximum legal speed (km/h): HDVs 90 

Number of lanes 2 

Free flow capacity (veh./lane/hour) 2190 

Rural/urban capacity rural 

Queue dissipation capacity (veh./lane/hour) 1714 

Maximum AADT (total for both directions) 210286 

Maximum queue length (km) 8 

WZ Conditions 
 

Number lanes open in each direction 2 

WZ length (km) 1 

WZ speed limit (km/h) 80 

WZ capacity (veh./lane/hour) 1500 

Detour Conditions 
 

Detour rate (%) 10 

Detour length (km) 10 

Detour speed (km/h) 60 
Legend: WZ- work-zone; AADT- annual average daily traffic; AADTh- annual average daily heavy-traffic; PC- passenger car; 
HDV- heavy duty vehicle. 

 

Regarding the calculation of the marginal environmental burdens incurred during the 

usage phase, the expression proposed by Al-Omari and Darter (1994) was used to 

convert the PSI to the IRI. The IRI degradation effect on vehicle operation speed has 

been taken into account by means of the model proposed by Yu and Lu (2014), 

according to which every 1 m/km increase of the IRI leads to a 0.84 km/h decrease of 

the free flow average speed. 

Finally, when accounting for the EOL phase, a methodology based on the concept of 

“avoided burden approach,” or “crediting,” was developed and applied. Given the high 

hierarchy level of the road segments analyzed, it is expected that the most likely EOL 

scenario is that the pavement structures will remain in place after reaching the end of 

the PAP, serving as foundation for new pavement structures. From the LCA modeling 

perspective, such an assumption represents a situation where the current system 

interacts with the subsequent system by avoiding or displacing the environmental 

burdens that would have been generated during the pavement life cycle phases 

associated with the pavement construction/reconstruction of the subsequent system (i.e., 
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raw materials extraction and mixtures production, materials and mixtures transportation, 

and construction equipment operation). 

The extent to which the existing pavement structure may offset the environmental 

burdens that would occur within the next pavement system depends on its structural 

capacity at the end of the PAP, which in the case of flexible pavements is represented 

by the structural number (SN). To determine the value of this property when the 

pavement reaches the EOL (SNf), the pavement remaining life (RL) was first computed; 

see Expression (3.1). It relies on the assumption that a pavement would fail when the 

PSI is equal to 1.5 (AASHTO, 1993). 

%100
5.15.4

5.1







fPSI
RL  

(3.1) 

Where RL is the remaining life of a pavement structure at the end of its PAP, and fPSI  

is the PSI value of a pavement structure at the end of its PAP. 

With the RL determined, the corresponding condition factor (CF) was calculated; see 

Expression (3.2). This factor represents the ratio between the pavement structural 

capacity at a given point in time of the PAP and the initial structural capacity. In order 

to determine the RL as a function of CF, several points of this relationship presented by 

AASHTO (1993) were plotted and a function in the form of Expression (3.2) was fitted 

to the data.  

dRLcRLbRLaCF  23
 (3.2) 

Where 𝐶𝐹 is the correction factor; 𝑅𝐿 is remaining life of a pavement structure at the 

end of its PAP; and a, b, c and d are parameters that were found by minimizing the sum 

of square errors between the fitted function and the measured data. The values of the 

parameters a, b, c, and d were found to be 9 × 10
-7

, -2 × 10
-4

, 1.51 × 10
-2

, and 5.2 × 10
-1

, 

respectively. The value for 𝑅2 in Expression (3.2) is 0.99.  

Finally, the terminal structural capacity, as measured by SNf, was estimated by 

multiplying the initial SN (SN0), calculated from the material thickness and structural 
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coefficients, by CF; see Expression (3.3). Once the SNf was known, the thickness of an 

equivalent pavement structure with equal SN was determined according to layer 

structural coefficients representing the relative strength of the layer materials. 

Analogous to the pavement structures recommended by the Portuguese pavement 

design catalogue, the subsequent pavement structure was assumed to be constituted by 

asphalt-bound layer(s) placed on top of a previously prime coated granular sub-base 

layer with a maximum thickness of 20 cm. The drainage system was assumed to 

perform well, and the drainage coefficients were considered equal to 1.0. Moreover, as 

neither the PAP of the subsequent pavement system nor the project traffic are known, 

no further considerations were made regarding the number of bound layers, their 

thickness, or their mixture compositions. 

0SNCFSN f   (3.3) 

Where SNf is the SNf value of a pavement structure at the end of its PAP, CF is the 

correction factor, and; SN0 is the SN value of a pavement structure immediately after 

construction (year 0). 

The potential avoided impacts accounted for during the EOL phase of the current 

pavement system are those that would be potentially generated during the construction 

of the equivalent pavement structure and were calculated according to the Expression 

(3.4). 

 

J

j

p

ijB

EOL

iA EE 
 

(3.4) 

Where 
EOL

iAE is the environmental burden i, accounted for in the EOL phase of the 

current pavement system (A); p

ijB
E  is the contribution of the process j to the 

environmental burden i, accounted for in the pavement life cycle phase p of the 

subsequent pavement system (B); and 𝛼 is a weighting factor between 0 and 1. 

The calculation method relies on the assumption that both the construction activities and 

respective preceding processes will be performed according to the same procedures, 

techniques, and assumptions as those considered in the equivalent pavement life cycle 
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phases of the current pavement system. Moreover, it was also considered that the SN of 

a pavement structure is restored to its initial value when an M&R activity is applied. 

The rationale for making this assumption lies in the fact that the initial layers were 

previously milled at the thickness required for the new layers and that the structural 

capacity provided by the new materials is identical to that of the replaced ones. 

As can be seen from Expression (3.4), the potential avoided environmental burdens 

were multiplied by a weighting factor, which in this case study was considered to be 

equal to 0.5. Therefore, only a fraction of the total potential benefits of the avoided 

environmental burdens were accounted for. This assumption was performed to avoid 

overestimating the benefits of considering the remaining structural capacity of the 

current pavement system as a reason to displace the need for new materials that 

otherwise would be applied in the subsequent system. The main reason to not fully 

credit the current pavement system the total avoided impacts is related to the several 

degrees of uncertainty inherent in the assumptions performed during the application of 

the “avoided burden approach.” Examples of uncertainties are those related to (1) the 

computation of the remaining life of a pavement and its relationship with the structural 

capacity and (2) the prediction of which materials, construction processes, and 

equipment will actually be adopted in a distant future (over 40 years), and how much 

different the environmental efficiency of those elements may be compared with the 

present state-of-practice. The main data and results referring to the EOL phase modeling 

are displayed in Table 3.7. 

Table 3.7- Data and results referring to EOL phase modelling. 

Pavement  
foundation class 

Traffic 
class 

Pavement  
structure 

SN0 PSIf 
RL 
(%) 

CF SNf 

Granular sub-
base layer 

 
Asphalt-bound 
layer 

Mixture 
tSb 

(cm) 
 Mixture 

tA-b 

(cm) 

F2 
T5 P7 3.96860 3.50 66.70 0.90426 3.58864 CA 20  AC 32 20 

T1 P16 5.38594 4.36 95.17 0.92118 4.96144 CA 20  AC 32 30 

F3 
T5 P4 3.43316 4.34 94.70 0.92050 3.16023 CA 20  AC 32 17 

T1 P14 4.85050 3.45 65.03 0.90348 4.38233 CA 20  AC 32 26 

F4 
T5 P3 3.16544 3.25 58.43 0.89882 2.84516 CA 20  AC 32 14 

T1 P12 4.58278 4.07 85.53 0.91135 4.17649 CA 20  AC 32 24 

Legend: SN0- structural number of a pavement structure immediately after construction (year 0); PSIf - present serviceability index 

of a pavement structure at the end of its PAP; RL- remaining life of a pavement structure at the end of its PAP; CF- correction 

factor; SNf - SN value of a pavement structure at the end of its PAP; tSb- thickness of equivalent granular sub-base layer; tA-b- 
thickness of equivalent asphalt-bound layer; CA- crushed aggregates; AC- asphalt concrete. 
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3.4 Life cycle inventory 

An LCI was determined for each pavement life cycle phase for each functional unit by 

using the default database of the pavement LCA model presented in Chapter 2. Table 

3.8 summarizes the references for the data sources considered in the present study. The 

processes addressed in the materials and construction phases were modeled with help 

from Portuguese construction companies. Detailed information with regard to the 

processes addressed during both the materials phase (e.g., HMA compositions, batch 

plant production rate, energy consumption, etc.) and the construction and maintenance 

phases (e.g., construction equipment required and respective production rates, etc.) has 

been gathered and accounted for in the LCI. 

Table 3.8- Summary of data sources considered in the case study. 

Element Data source 

Bitumen Eurobitumen (2011) 

Bituminous Emulsion Eurobitumen (2011) 

Aggregates Jullien et al. (2012) 

Tap water Althaus et al. (2007) 

HMA production US EPA (2004) 

Transportation of materials  

EEA (2013) Construction equipment operation 

On-road vehicles operation 

Electricity 

Dones et al. (2007); EC, JRC - IES and DGE - DG 

(2008) 

Coal 

Crude oil 

Diesel 

Gasoline 

Natural gas 

LPG 
Legend: HMA- hot-mix asphalt; LPG- liquid petroleum gas. 

 

The inventory analysis was used to determine, both qualitatively and quantitatively, the 

materials, the energy flows, and the atmospheric emissions associated with each 

individual process in the systems under analysis. The outputs from those unit processes 

were posteriorly combined in order to derive the total environmental burden of the 

systems. Table 3.9 provides the overall LCI per pavement life cycle phase of each 

functional unit, expressed in terms of atmospheric emissions. 
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Table 3.9- LCI per pavement life cycle phase of each functional unit. 

Foundation 

class 

Traffic 

class 

Pavement 

structure 

Life 

cycle phase 

Primary energy 

sub-component 

CO2 

(kg) 

CH4 

(kg) 

N2O 

(kg) 

SO2 

(kg) 

NOx 

(kg) 

NH3 

(kg) 

CO 

(kg) 

VOC 

(kg) 

NMVOC 

(kg) 

PM2.5 

(kg) 

Pb 

(kg) 

F2 

T5 P7 

Materials  
P.E. 5.75E+05 6.20E+02 2.63E+02 9.31E+02 3.19E+03 1.94E-01 5.89E+03 1.20E+03 5.72E+02 2.26E+02 5.34E+01 

P.C.E. 9.06E+04 1.08E+03 0.00E+00 6.15E+02 3.23E+02 3.83E-01 3.28E+01 8.02E+02 1.34E+02 1.99E+01 1.53E-02 

Construction  

and M&R 

P.E. 8.40E+04 8.53E+00 3.51E+00 2.13E+00 4.77E+02 2.01E-01 4.25E+02 1.08E+02 9.99E+01 5.45E+01 0.00E+00 

P.C.E. 5.45E+03 4.80E+01 0.00E+00 8.64E+01 3.46E+01 1.04E-01 1.05E+01 7.84E+01 3.03E+01 2.89E+00 8.94E-04 

Transportation 

of materials 

P.E. 1.65E+05 1.69E+01 4.51E+00 4.21E+00 1.04E+03 6.36E-01 7.56E+01 9.52E+00 0.00E+00 7.33E+00 0.00E+00 

P.C.E. 1.08E+04 9.50E+01 0.00E+00 1.71E+02 6.85E+01 2.06E-01 2.08E+01 1.55E+02 6.00E+01 5.72E+00 1.77E-03 

WZ traffic  
management 

P.E. 3.94E+04 2.06E+00 1.16E+00 5.22E-01 1.57E+02 2.71E-01 1.47E+03 3.12E+00 1.84E+01 1.22E+03 0.00E+00 

P.C.E. 4.52E+03 3.16E+01 0.00E+00 3.89E+01 1.59E+01 7.70E-02 6.17E+00 4.34E+01 1.18E+01 8.79E-01 9.86E-04 

Usage 
P.E. 1.39E+05 5.31E+00 2.56E+00 1.27E+00 8.26E+02 4.33E+00 7.60E+02 0.00E+00 1.05E+02 2.28E+01 0.00E+00 

P.C.E. 1.47E+04 1.05E+02 0.00E+00 1.36E+02 5.56E+01 2.54E-01 2.09E+01 1.48E+02 4.23E+01 3.31E+00 3.14E-03 

EOL 
P.E. -2.26E+05 -1.76E+02 -1.03E+02 -2.58E+02 -1.39E+03 -2.72E-01 -1.83E+03 -3.66E+02 -1.91E+02 -8.34E+01 -2.05E+01 

P.C.E. -2.68E+04 -3.32E+02 0.00E+00 -2.23E+02 -1.08E+02 -1.77E-01 -1.67E+01 -2.81E+02 -6.05E+01 -7.30E+00 -4.46E-03 

Total net 
 

8.75E+05 1.50E+03 1.72E+02 1.51E+03 4.70E+03 6.21E+00 6.87E+03 1.90E+03 8.22E+02 1.47E+03 3.29E+01 

T1 P16 

Materials  
P.E. 9.28E+05 1.00E+03 3.74E+02 1.49E+03 4.61E+03 3.09E-01 9.25E+03 1.87E+03 8.63E+02 3.35E+02 5.34E+01 

P.C.E. 1.41E+05 1.74E+03 0.00E+00 9.57E+02 5.03E+02 5.88E-01 5.11E+01 1.31E+03 2.14E+02 3.10E+01 2.37E-02 

Construction  
and M&R 

P.E. 1.27E+05 1.40E+01 5.18E+00 3.21E+00 6.82E+02 2.96E-01 6.42E+02 1.61E+02 1.47E+02 8.18E+01 0.00E+00 

P.C.E. 8.23E+03 7.24E+01 0.00E+00 1.30E+02 5.22E+01 1.57E-01 1.59E+01 1.18E+02 4.57E+01 4.36E+00 1.35E-03 

Transportation 
of materials 

P.E. 2.50E+05 2.56E+01 6.83E+00 6.37E+00 1.58E+03 9.62E-01 1.11E+02 1.44E+01 0.00E+00 1.11E+01 0.00E+00 

P.C.E. 1.63E+04 1.44E+02 0.00E+00 2.59E+02 1.04E+02 3.12E-01 3.15E+01 2.35E+02 9.08E+01 8.65E+00 2.68E-03 

WZ traffic  
management 

P.E. 4.17E+05 2.30E+01 1.22E+01 5.36E+00 1.81E+03 -4.53E-01 1.30E+04 1.25E+03 2.07E+03 2.91E+04 0.00E+00 

P.C.E. 4.68E+04 3.30E+02 0.00E+00 4.13E+02 1.68E+02 8.01E-01 6.47E+01 4.56E+02 1.26E+02 9.56E+00 1.01E-02 

Usage 
P.E. 1.60E+06 6.20E+01 3.01E+01 1.50E+01 9.45E+03 5.15E+01 8.98E+03 0.00E+00 1.23E+03 2.61E+02 0.00E+00 

P.C.E. 1.72E+05 1.23E+03 0.00E+00 1.58E+03 6.42E+02 2.96E+00 2.43E+02 1.72E+03 4.87E+02 3.78E+01 3.69E-02 

EOL 
P.E. -3.23E+05 -2.59E+02 -1.47E+02 -3.75E+02 -1.81E+03 -3.62E-01 -2.60E+03 -5.15E+02 -2.57E+02 -1.09E+02 -2.05E+01 

P.C.E. -3.66E+04 -4.83E+02 0.00E+00 -3.02E+02 -1.47E+02 -2.35E-01 -2.25E+01 -4.09E+02 -8.42E+01 -9.93E+00 -6.06E-03 

Total net 
 

3.35E+06 3.90E+03 2.82E+02 4.18E+03 1.76E+04 5.68E+01 2.98E+04 6.22E+03 4.93E+03 2.98E+04 3.29E+01 

Legend: LCI- life cycle inventory; WZ- work-zone; EOL- end-of-life; P.E.- process energy; P.C.E.- pre-combustion energy. 
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(continued) 

Foundation 

class 

Traffic 

class 

Pavement 

structure 

Life 

cycle phase 

Primary energy 

sub-component 

CO2 

(kg) 

CH4 

(kg) 

N2O 

(kg) 

SO2 

(kg) 

NOx 

(kg) 

NH3 

(kg) 

CO 

(kg) 

VOC 

(kg) 

NMVOC 

(kg) 

PM2.5 

(kg) 

Pb 

(kg) 

F3 

T5 P4 

Materials  
P.E. 5.10E+05 5.51E+02 2.27E+02 8.32E+02 2.93E+03 1.75E-01 5.26E+03 1.07E+03 5.19E+02 2.06E+02 5.34E+01 

P.C.E. 8.92E+04 9.71E+02 0.00E+00 6.02E+02 3.16E+02 3.80E-01 3.14E+01 7.08E+02 1.21E+02 1.93E+01 1.51E-02 

Construction  

and M&R 

P.E. 8.19E+04 8.23E+00 3.38E+00 2.07E+00 4.59E+02 1.93E-01 4.16E+02 1.07E+02 9.85E+01 5.44E+01 0.00E+00 

P.C.E. 5.32E+03 4.68E+01 0.00E+00 8.42E+01 3.38E+01 1.02E-01 1.03E+01 7.64E+01 2.96E+01 2.82E+00 8.71E-04 

Transportation 

of materials 

P.E. 1.52E+05 1.56E+01 4.16E+00 3.88E+00 9.62E+02 5.86E-01 7.10E+01 8.80E+00 0.00E+00 6.77E+00 0.00E+00 

P.C.E. 9.96E+03 8.77E+01 0.00E+00 1.58E+02 6.33E+01 1.90E-01 1.92E+01 1.43E+02 5.54E+01 5.28E+00 1.63E-03 

WZ traffic  
management 

P.E. 6.15E+04 3.21E+00 1.83E+00 8.19E-01 2.48E+02 6.67E-01 2.31E+03 5.15E+00 2.57E+01 1.89E+03 0.00E+00 

P.C.E. 7.07E+03 4.94E+01 0.00E+00 6.08E+01 2.48E+01 1.21E-01 9.65E+00 6.78E+01 1.83E+01 1.37E+00 1.55E-03 

Usage 
P.E. 1.81E+05 7.09E+00 3.44E+00 1.72E+00 1.07E+03 5.93E+00 1.03E+03 0.00E+00 1.41E+02 2.91E+01 0.00E+00 

P.C.E. 1.96E+04 1.39E+02 0.00E+00 1.78E+02 7.26E+01 3.37E-01 2.75E+01 1.94E+02 5.50E+01 4.25E+00 4.20E-03 

EOL 
P.E. -1.98E+05 -1.51E+02 -9.01E+01 -2.22E+02 -1.26E+03 -2.45E-01 -1.60E+03 -3.21E+02 -1.72E+02 -7.55E+01 -2.05E+01 

P.C.E. -2.38E+04 -2.87E+02 0.00E+00 -1.99E+02 -9.64E+01 -1.60E-01 -1.50E+01 -2.43E+02 -5.34E+01 -6.51E+00 -3.98E-03 

Total net 
 

8.96E+05 1.44E+03 1.49E+02 1.50E+03 4.82E+03 8.27E+00 7.57E+03 1.82E+03 8.39E+02 2.14E+03 3.29E+01 

T1 P14 

Materials  
P.E. 6.79E+05 7.29E+02 3.20E+02 1.09E+03 3.60E+03 2.24E-01 6.89E+03 1.39E+03 6.56E+02 2.59E+02 5.34E+01 

P.C.E. 1.04E+05 1.27E+03 0.00E+00 7.09E+02 3.72E+02 4.38E-01 3.78E+01 9.48E+02 1.57E+02 2.29E+01 1.75E-02 

Construction  
and M&R 

P.E. 9.01E+04 9.52E+00 3.73E+00 2.28E+00 5.04E+02 2.13E-01 4.59E+02 1.15E+02 1.06E+02 5.83E+01 0.00E+00 

P.C.E. 5.85E+03 5.15E+01 0.00E+00 9.27E+01 3.71E+01 1.12E-01 1.13E+01 8.41E+01 3.25E+01 3.10E+00 9.59E-04 

Transportation 
of materials 

P.E. 1.85E+05 1.90E+01 5.06E+00 4.72E+00 1.17E+03 7.13E-01 8.29E+01 1.07E+01 0.00E+00 8.22E+00 0.00E+00 

P.C.E. 1.21E+04 1.07E+02 0.00E+00 1.92E+02 7.69E+01 2.31E-01 2.34E+01 1.74E+02 6.73E+01 6.42E+00 1.98E-03 

WZ traffic  
management 

P.E. 2.22E+05 1.26E+01 6.56E+00 2.92E+00 9.32E+02 -2.78E-01 7.43E+03 1.99E+03 2.07E+03 1.45E+04 0.00E+00 

P.C.E. 2.53E+04 1.77E+02 0.00E+00 2.20E+02 8.96E+01 4.32E-01 3.47E+01 2.44E+02 6.66E+01 4.99E+00 5.51E-03 

Usage 
P.E. 1.08E+06 4.16E+01 2.01E+01 1.00E+01 6.43E+03 3.41E+01 5.97E+03 0.00E+00 8.21E+02 1.77E+02 0.00E+00 

P.C.E. 1.15E+05 8.24E+02 0.00E+00 1.06E+03 4.33E+02 1.99E+00 1.63E+02 1.15E+03 3.30E+02 2.57E+01 2.46E-02 

EOL 
P.E. -2.84E+05 -2.26E+02 -1.29E+02 -3.28E+02 -1.64E+03 -3.26E-01 -2.30E+03 -4.55E+02 -2.31E+02 -9.90E+01 -2.05E+01 

P.C.E. -3.27E+04 -4.22E+02 0.00E+00 -2.70E+02 -1.31E+02 -2.12E-01 -2.02E+01 -3.57E+02 -7.47E+01 -8.88E+00 -5.42E-03 

Total net 
 

2.20E+06 2.59E+03 2.27E+02 2.79E+03 1.19E+04 3.76E+01 1.88E+04 5.30E+03 4.00E+03 1.49E+04 3.29E+01 

Legend: LCI- life cycle inventory; WZ- work-zone; EOL- end-of-life; P.E.- process energy; P.C.E.- pre-combustion energy. 
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(continued) 

Foundation 

class 

Traffic 

class 

Pavement 

structure 

Life 

cycle phase 

Primary energy 

sub-component 

CO2 

(kg) 

CH4 

(kg) 

N2O 

(kg) 

SO2 

(kg) 

NOx 

(kg) 

NH3 

(kg) 

CO 

(kg) 

VOC 

(kg) 

NMVOC 

(kg) 

PM2.5 

(kg) 

Pb 

(kg) 

F4 

T5 P3 

Materials  
P.E. 2.92E+05 3.10E+02 1.91E+02 4.82E+02 2.05E+03 9.89E-02 3.19E+03 6.50E+02 3.37E+02 1.39E+02 5.34E+01 
P.C.E. 5.65E+04 5.61E+02 0.00E+00 3.81E+02 2.00E+02 2.46E-01 1.96E+01 3.86E+02 7.13E+01 1.21E+01 9.66E-03 

Construction  
and M&R 

P.E. 4.80E+04 4.30E+00 2.00E+00 1.21E+00 2.89E+02 1.14E-01 2.50E+02 6.38E+01 5.96E+01 3.10E+01 0.00E+00 

P.C.E. 3.12E+03 2.74E+01 0.00E+00 4.93E+01 1.98E+01 5.95E-02 6.02E+00 4.48E+01 1.73E+01 1.65E+00 5.11E-04 

Transportation 
of materials 

P.E. 9.41E+04 9.66E+00 2.56E+00 2.40E+00 5.94E+02 3.62E-01 4.47E+01 5.42E+00 0.00E+00 4.18E+00 0.00E+00 

P.C.E. 6.15E+03 5.42E+01 0.00E+00 9.75E+01 3.91E+01 1.18E-01 1.19E+01 8.84E+01 3.42E+01 3.26E+00 1.01E-03 

WZ traffic  

management 

P.E. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

P.C.E. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Usage 
P.E. 1.13E+05 4.43E+00 2.15E+00 1.08E+00 6.64E+02 3.71E+00 6.45E+02 0.00E+00 8.80E+01 1.81E+01 0.00E+00 

P.C.E. 1.22E+04 8.70E+01 0.00E+00 1.11E+02 4.52E+01 2.10E-01 1.72E+01 1.21E+02 3.42E+01 2.64E+00 2.63E-03 

EOL 
P.E. -1.69E+05 -1.25E+02 -7.71E+01 -1.87E+02 -1.13E+03 -2.18E-01 -1.37E+03 -2.77E+02 -1.52E+02 -6.77E+01 -2.05E+01 

P.C.E. -2.09E+04 -2.42E+02 0.00E+00 -1.75E+02 -8.47E+01 -1.42E-01 -1.33E+01 -2.04E+02 -4.62E+01 -5.72E+00 -3.50E-03 

Total net 
 

4.35E+05 6.91E+02 1.20E+02 7.63E+02 2.69E+03 4.56E+00 2.81E+03 8.79E+02 4.44E+02 1.39E+02 3.28E+01 

T1 P12 

Materials  
P.E. 6.44E+05 6.93E+02 3.01E+02 1.04E+03 3.47E+03 2.14E-01 6.55E+03 1.33E+03 6.28E+02 2.48E+02 5.34E+01 

P.C.E. 1.01E+05 1.21E+03 0.00E+00 6.85E+02 3.60E+02 4.25E-01 3.65E+01 8.99E+02 1.50E+02 2.21E+01 1.70E-02 

Construction  

and M&R 

P.E. 8.70E+04 9.05E+00 3.66E+00 2.20E+00 4.95E+02 2.09E-01 4.41E+02 1.10E+02 1.01E+02 5.36E+01 0.00E+00 

P.C.E. 5.65E+03 4.97E+01 0.00E+00 8.95E+01 3.59E+01 1.08E-01 1.09E+01 8.12E+01 3.14E+01 3.00E+00 9.26E-04 

Transportation 

of materials 

P.E. 1.78E+05 1.83E+01 4.87E+00 4.54E+00 1.13E+03 6.86E-01 8.04E+01 1.03E+01 0.00E+00 7.92E+00 0.00E+00 

P.C.E. 1.17E+04 1.03E+02 0.00E+00 1.85E+02 7.40E+01 2.23E-01 2.25E+01 1.68E+02 6.48E+01 6.18E+00 1.91E-03 

WZ traffic  

management 

P.E. 2.21E+05 1.24E+01 6.53E+00 2.89E+00 9.32E+02 3.21E-01 7.06E+03 1.92E+03 1.99E+03 1.45E+04 0.00E+00 

P.C.E. 2.51E+04 1.76E+02 0.00E+00 2.18E+02 8.91E+01 4.29E-01 3.45E+01 2.42E+02 6.62E+01 4.97E+00 5.46E-03 

Usage 
P.E. 1.09E+06 4.23E+01 2.04E+01 1.02E+01 6.48E+03 3.47E+01 6.07E+03 0.00E+00 8.33E+02 1.77E+02 0.00E+00 

P.C.E. 1.16E+05 8.32E+02 0.00E+00 1.07E+03 4.37E+02 2.01E+00 1.65E+02 1.16E+03 3.32E+02 2.59E+01 2.49E-02 

EOL 
P.E. -2.65E+05 -2.09E+02 -1.20E+02 -3.05E+02 -1.56E+03 -3.08E-01 -2.14E+03 -4.26E+02 -2.17E+02 -9.38E+01 -2.05E+01 

P.C.E. -3.07E+04 -3.92E+02 0.00E+00 -2.54E+02 -1.24E+02 -2.00E-01 -1.90E+01 -3.32E+02 -7.00E+01 -8.35E+00 -5.10E-03 

Total net 
 

2.18E+06 2.54E+03 2.16E+02 2.75E+03 1.18E+04 3.88E+01 1.83E+04 5.16E+03 3.91E+03 1.49E+04 3.29E+01 

Legend: LCI- life cycle inventory; WZ- work-zone; EOL- end-of-life; P.E.- process energy; P.C.E.- pre-combustion energy 
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3.5 Life cycle impact assessment 

The LCEI that are likely to stem from the different functional units were evaluated at 

the midpoint level, according to the potential effects on the impact categories accounted 

for in the pavement LCA model presented in Chapter 2. The impact categories included 

are CC, Ac, TE, HT due to air emissions, POF, ARD FF and ARD MR. The CED was 

adopted to determine and compare the energy intensity of processes and pavement life 

cycle phases. 

The resulting LCEI allow for the identification of the phases with the highest 

environmental burdens and thus most worthy of major consideration by pavement 

engineers when designing the road pavement structures and planning for their 

management during the PAP. However, one should bear in mind that the processes 

modeled in each pavement life cycle are subjected to uncertainties even if they are 

framed by the same context. Therefore, the results presented in the next sections should 

be seen as a way to identify hot spots rather than definitive numerical results. 

3.6 Results and discussion 

The LCIA profile of each functional unit is presented in Table 3.10. In the context of 

the “avoided burdens approach”, positive values of LCIA category indicators represent 

environmental impacts (thus, a potential environmental burden or damage) and negative 

values represent avoided impacts (thus, a kind of potential environmental “benefit”). 

Hereafter, the expression “life cycle net environmental impact category indicator” is 

used to designate the quantifiable representation of an impact category corresponding to 

the whole life cycle of a given functional unit after deducting the avoided impacts 

assigned to the EOL phase. This expression differs from another one, named “life cycle 

environmental impact category indicator”, by subtracting the avoided impacts. In other 

words, the last expression only regards the impacts that are likely to be produced by the 

current system. In this sense, to avoid a misleading interpretation of the outcomes 

referring to the contribution of the several pavement life cycle phases to a determined 
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impact category, the relative contributions are calculated in relation to the life cycle 

environmental impact category indicators. 

According to the results shown in Table 3.10, the contribution of the several pavement 

life cycle phases across all the impact categories considered depends on the traffic class. 

 

3.6.1 Influence of the traffic class in the life cycle impact 
assessment results 

3.6.1.1 Roads with lower traffic volumes 

For traffic class T5, the contribution of the materials production and extraction phase is 

dominant for all impact categories. Its share of the LCEI indicators ranges between 48% 

(impact category ARD MR corresponding to the pavement structure laid on pavement 

foundation F3) and 68% (impact category HT corresponding to the pavement structure 

laid on pavement foundation F4). When comparing the environmental performance of 

the materials phase referring to the materials consumed during the construction and 

maintenance sub-phases, the former was found to be responsible for the greatest share. 

Excluding the case of the pavement laid on foundation F4, which is supposed to 

undergo no M&R activity throughout the PAP, the construction sub-phase contributes 

65-82% of the overall LCEI, while the maintenance sub-phase accounts for the 

remaining percentage.  

The second life cycle phase that exhibits a significant contribution to the overall LCEI 

is the usage phase, as it contributes 10-21% of the LCEI of a given category. It is 

followed by the transportation of materials phase which overall was found to be 

responsible for 11-20% of the environmental impacts in every category. Of that share, 

66-73% is incurred during the construction sub-phase, while the remaining percentage 

is due to the maintenance sub-phase. The importance of the transportation of materials 

phase to the overall environmental performance of a pavement system demonstrates that 

the acquisition costs cannot be the only element to take into account when selecting the 

materials/HMA suppliers and the depositary/recycling facilities. 
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Table 3.10- LCIA per pavement life cycle phase of each functional unit. 

Foundation 

class 
Traffic class 

Pavement 

structure 
Life cycle phase 

CC (tonnes 

CO2-eq) 

Ac (molc 

H+-eq) 

TE (molc N-

eq) 

POF (kg 

NMVOC-eq) 

HT (kg 1.4-

DB-eq) 

ARD MR 

(g Sb-eq) 

ARD FF 

(MJ) 

F2 

T5 P7 

Materials 752 1631 9140 5095 6122 47.54 10,595,427 

Construction and M&R 86 156 1332 713 669 9.82 1,353,497 

Transportation of materials 171 328 2896 1229 1361 19.44 2,678,731 

WZ Traffic management 38 59 452 285 1209 4.12 639,254 

Usage 128 254 2209 1102 1093 14.62 2,225,308 

EOL -202 -587 -3888 -1960 -2664 -23.69 -3,929,064 

Total net 972 1840 12,140 6464 7790 71.84 13,563,154 

T1 P16 

Materials 1153 2488 13,291 7573 8221 74.12 16,955,011 

Construction and M&R 122 227 1914 1034 965 14.81 2,041,033 

Transportation 247 496 4380 1859 2058 29.40 4,052,054 

WZ traffic management 368 1924 5144 5206 26,302 43.90 6,766,343 

Usage 1442 3020 26,646 12,680 12,520 168.64 25,737,638 

EOL -288 -798 -5096 -2602 -3497 -27.05 -5,552,704 

Total net 3044 7358 46,278 25,749 46,569 303.82 49,999,373 

F3 

T5 P4 

Materials 642 1513 8441 4670 5771 48.24 9,652,461 

Construction and M&R 79 151 1285 691 647 9.57 1,319,271 

Transportation of materials 150 303 2673 1135 1256 17.94 2,472,281 
WZ traffic management 50 92 716 445 1884 6.43 997,887 

Usage 161 341 3002 1435 1413 19.05 2,911,160 

EOL -177 -524 -3527 -1768 -2414 -17.83 -3,442,345 
Total net 906 1876 12,591 6609 8558 83.40 13,910,714 

T1 P14 

Materials 888 1874 10,344 5814 6731 54.91 12,423,771 

Construction and M&R 92 165 1409 756 709 10.53 1,451,810 
Transportation 191 368 3247 1378 1526 21.80 3,004,518 

WZ Traffic management 207 338 2657 4044 13,124 23.28 3,603,743 

Usage 996 1988 17,354 8591 8508 113.92 17,350,993 
EOL -254 -714 -4613 -2345 -3164 -24.21 -4,903,017 

Total net 2121 4020 30,399 18,239 27,432 200.23 32,931,817 

Legend: LCIA- life cycle impact assessment; CC- climate change; Ac- acidification; TE- terrestrial eutrophication; POF- photochemical ozone formation; HT- human toxicity; ARD FF- abiotic 

resource depletion: fossil fuels; ARD MR- abiotic resource depletion: mineral resources; M&R- maintenance and rehabilitation; WZ- work-zone; EOL- end-of-life. 
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(continued) 

Foundation 

class 
Traffic class 

Pavement 

structure 
Life cycle phase 

CC (tonnes 

CO2-eq) 

Ac (molc 

H+-eq) 

TE (molc N-

eq) 

POF (kg 

NMVOC-eq) 

HT (kg 1.4-

DB-eq) 

ARD MR 

(g Sb-eq) 

ARD FF 

(MJ) 

F4 

T5 P3 

Materials 428 969 5861 3131 4466 28.70 5,671,102 

Construction and M&R 52 92 805 427 402 5.61 773,075 

Transportation of materials 103 187 1651 701 776 11.08 1,526,822 

WZ traffic Management - - - - - - - 

Usage 97 200 1712 893 879 11.86 1,814,092 

EOL -151 -461 -3165 -1575 -2165 -15.71 -2,955,560 

Total net 528 987 6864 3577 4359 41.55 6,829,531 

T1 P12 

Materials 829 1799 9951 5579 6533 52.92 11,846,885 

Construction and M&R 87 161 1382 737 692 10.17 1,402,238 

Transportation of materials 181 354 3127 1327 1469 20.99 2,892,590 

WZ traffic Management 191 338 2663 3932 13,144 23.15 3,580,938 

Usage 1003 2041 17,961 8670 8576 114.79 17,494,254 

EOL -236 -672 -4371 -2217 -2997 -22.79 -4,578,239 

Total net 2054 4021 30,713 18,028 27,417 199.23 32,638,667 

Legend: LCIA- life cycle impact assessment; CC- climate change; Ac- acidification; TE- terrestrial eutrophication; POF- photochemical ozone formation; HT- human toxicity; ARD FF- abiotic 
resource depletion: fossil fuels; ARD MR- abiotic resource depletion: mineral resources; M&R- maintenance and rehabilitation; WZ- work-zone; EOL- end-of-life. 
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Another pavement life cycle phase whose contribution deserves to be highlighted is the 

EOL phase. Accounting for the potential avoided impacts of the subsequent pavement 

system in the EOL phase of the current pavement system may reduce the LCEI of 

several impact categories by as much as 33% (impact category HT). A reduction in the 

impact category indicators of this magnitude was verified in the case of the pavement 

(P3) recommended for pavement foundation F4. Although seemingly counterintuitive 

due to the low remaining life value exhibited by pavement structure P3 at the end of its 

PAP, this outcome can be explained by the fact that this pavement structure is supposed 

to undergo no M&R activity throughout the PAP. This fact results in a strengthening of 

the role played by the materials phase in driving the environmental performance of the 

pavement structures subjected to traffic class T5. Therefore, any LCA modeling 

consideration affecting or related to the materials phase may result in noteworthy 

changes in the environmental performance of the system under analysis. 

In addition, the WZ traffic management phase denotes a small contribution to the 

spectrum of impact categories, with percentages of the impact categories indicators 

ranging between 0% and 17%. This result, although seemingly counterintuitive finds 

support in the literature. For instance, Barth and Boriboonsomsin (2008) have shown 

that if moderate congestion brings average speeds down from a free flow speed of about 

105 km/h to a slower speed of 73 km/h to 80 km/h, this moderate congestion can 

actually lower CO2 emissions. Similar outcomes have been recently demonstrated by 

Avetisyan et al. (2014) in a study that quantified the effect of incidents and WZs on 

emissions production from on-road traffic. In our case study traffic queues are only 

expected to develop in limited time periods of M&R events taking place in advanced 

years of the PAP. Therefore, the traffic delay emissions occur mostly due to speed 

changes upstream and downstream of the WZ and as a consequence of additional 

distances that detouring vehicles are required to travel. 

Another contribution of small relative magnitude is that attributable to the construction 

and M&R phase. This pavement LCA phase, which tracks and categorizes the 
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emissions released by the construction equipment, was found to contribute not more 

than 6-10% to the overall LCEI. 

3.6.1.2 Roads with higher traffic volumes 

When considering traffic class T1, a different relative and absolute contribution to the 

overall impact categories was found for the various pavement life cycle phases. Traffic 

class T1 requires pavement structures to be more robust than those fulfilling the design 

criteria corresponding to traffic class T5. This fact entails an increase in the 

environmental burdens assigned to the pavement life cycle phases whose environmental 

performance is roughly proportional to the volume of materials consumed (i.e., 

materials, transportation of materials, and EOL phases). However, it does not 

necessarily imply that those phases keep the same preponderance in driving the life 

cycle environmental performance of the functional units. As revealed in Table 3.10, the 

usage phase relegates the materials phase to second place in the ranking of the largest 

contributor in the majority of the impact categories. In general, the usage phase was 

found to be responsible for 42-52% of the values of each impact category indicator. 

Overall, the relative places of the remaining phases (i.e., transportation of materials, 

construction, and M&R) in the ranking of the phases with the worst environmental 

performance remained nearly the same as those observed with regard to traffic class T5. 

The main exceptions to this trend were verified in the cases of the WZ traffic 

management phase, as a consequence of the increase of the congestion level, and EOL 

phase. The pavement structures recommended for carrying high traffic volumes reach 

their EOL with greater remaining life than the pavement structures suggested for low 

traffic volumes. However, given that for high traffic volumes the usage phase is the 

most preponderant phase, it shadows the benefits of the avoided impacts associated with 

the EOL phase. Consequently, the EOL phase presents lower relative savings than those 

observed in the case of low traffic volumes. 
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Another point worthy of notice when analyzing Table 3.10 is the influence of the 

foundation class on the environmental performance of the recommended pavement 

structures. 

For traffic class T5, since the environmental performance is mainly driven by the 

materials phase, one might expect that as the bearing capacity of the pavement 

foundation increases, the life cycle environmental burdens of a pavement system 

decrease. A stronger pavement foundation requires less cross-sectional area for a 

pavement structure than a weaker pavement foundation. Moreover, the design process, 

when performed taking into account the whole pavement’s life cycle, can be used to 

obtain environmental benefits by reducing the maintenance frequency. The fact that 

better pavement foundations require pavement structures to undergo rehabilitation 

activities later on in the PAP may also be advantageous, since more environmentally-

friendly and efficient processes, materials, construction methods, and vehicle 

technologies are expected to be unveiled throughout the PAP. Another issue connected 

with the M&R schedule is the fact of whether or not the emissions timing is taken into 

account during the LCIA. In this case study, TAWPs (Kendall, 2012) were applied to 

calculate the potential global warming effects of emissions that occur over the 

functional units’ life cycle at a particular time in the future. In doing so, emissions 

occurring later during the PAP have a lower global warming effect than those occurring 

sooner if that effect is reported with reference to the year 0. 

However, the aforementioned environmental advantages may be offset by the additional 

impacts resulting from the higher traffic volumes experiencing the M&R events and 

riding on pavements in poorer condition. In a scenario where the traffic volume is 

expected to increase throughout the PAP, and when the functional units in comparison 

do not behave much differently during the materials phase, the importance of the 

impacts stemming from both the traffic delays associated with the M&R activities and 

the influence of pavement roughness on vehicle FC may play a key role in driving the 

functional unit’s overall environmental performance. Taking the TE impact category as 

an example, the life cycle net environmental impact indicators of the pavement 
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structures recommended for the foundations F2 (P7) and F3 (P4) are 12,140 and 12,591 

kg 1.4-DB-eq, respectively. Despite the worse environmental performance 

demonstrated by the materials phase corresponding to pavement structure P7 and the 

greater impact potentially avoided in the EOL phase, pavement structure P4 presents an 

inferior life cycle environmental performance, mostly as a consequence of an increase 

in the emissions released during the usage and WZ traffic management phases 

(respectively plus 793 and 264 kg 1.4-DB-eq relative to those released by pavement 

structure P7). As stated previously, a rehabilitation operation is applied when the PSI 

value reaches its minimum quality value of 2.0. Analyzing Figure 3.1, one can see that 

for pavement structure P7 the first and only rehabilitation operation will be applied in 

year 20 when the PSI value is 1.99. For pavement structure P4, the first and only 

rehabilitation will be applied in year 35 when the PSI value is only 1.56. The 

application of the rehabilitation operation when the PSI value is higher permits the PSI 

degradation rate to remain lower for pavement structure P7 than for pavement structure 

P4 during a time frame of the PAP in which the traffic volume is greater than that 

carried in the early stages of the PAP. This outcome exemplifies why a general 

conclusion relating the bearing capacity of the pavement foundation and the pavement 

system’s life cycle environmental performance for traffic classes representing low 

traffic volumes cannot be drawn. 

However, for traffic classes representing high traffic volumes (i.e., traffic class T1) the 

results presented in Table 3.10 show that overall environmental benefits may be 

obtained by adopting better pavement foundations. The environmental advantages are 

essentially a consequence of improvements in the environmental performance of the 

materials and usage phases. Such improvements are achieved through the 

implementation of pavement structure that is less demanding in terms of consumption 

of raw materials and that simultaneously does not excessively degrade its structural and 

functional behavior.  

To illustrate the potential effect of improved pavement foundations on the overall 

pavement system’s life cycle net environmental impacts, Figure 3.2 illustrates the 
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carbon and raw materials consumption intensity per unit of the pavement foundation’s 

bearing capacity as measured by the average stiffness modulus. As can be seen in 

Figure 3.2, moving from pavement foundation F2 to pavement foundation F4 would 

allow savings of approximately 37 tonnes CO2-eq (73%) and 3.74 g Sb-eq (74%) per 

unit of bearing capacity added to the pavement foundation. This figure also highlights 

the importance of the material phase in driving the overall life cycle performance 

(second most important, just behind the usage phase), as both curves depicted in the 

chart behave similarly. 

 

Figure 3.2- Carbon and raw material consumption intensity per unit of pavement foundation’s 

bearing capacity. 

3.6.2 Energy consumption of the analysed functional units 

Table 3.11 presents the feedstock, process, and primary energy along with the CED 

computed for each functional unit, split up into the following categories: fossil (CED F), 

nuclear (CED Nuc.), primary forest (CED PF), and renewable resources (CED RR). 

Similar to the procedure adopted when analyzing the LCIA results referring to the 

remaining impact categories (e.g., CC, TE, etc.), the relative contributions (percentages) 

are calculated in relation to the life cycle environmental impact category indicators (i.e., 

they do not account for the avoided environmental burdens). By definition, CED should 

account for the usage of any sort of energy, including direct and indirect energy, 
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throughout the life cycle. That means that the FsE of bitumen should also be included 

when accounting for CED. However, since the FsE inherent in bitumen remains 

unexploited while used as a binder in a pavement, it was presented separately from the 

primary energy as recommended by the UCPRC’s Pavement LCA Guideline (Harvey et 

al., 2010). 

For all functional units whose environmental performance was analyzed in detail, Table 

3.11 shows an identical relationship between the values of the different CED indicators 

and the CC indicator. An analogous connection is also observed in the case of the CED 

Total and the Primary Energy indicators. Although both indicators refer to the sum of 

upstream energy requirements and process energy, the fact that the former is calculated 

with upper heating values (UHVs) while the latter is calculated with LHVs (Hischier et 

al., 2010) explains the difference of 6-16% between the values of the two energy 

indicators. 

For traffic class T5, the materials phase was the most energy-consuming phase in terms 

of CED F, comprising 61%, 56%, and 59% of the 18.91 TJ, 18.73 TJ and 10.55 TJ 

corresponding to the life cycle of the pavement structures recommended for foundation 

classes F2, F3, and F4, respectively. An identical relationship has already been 

acknowledged with regard to CC, for which the aforementioned pavement structures 

were found to contribute to 64%, 59%, and 63% of the 1,174, 1,083 and 679 tonnes of 

CO2-eq, respectively. 

In the case of the pavement structures recommended for traffic class T1, the usage 

phase overtakes the materials phase as the highest energy intensive phase in all the 

foundation classes. Taking the CED F category as an example, it was found to be 

responsible for 46%, 45%, and 47% of the 59.57, 40.59, and 39.92 TJ consumed during 

the life cycle of the pavement structures recommended for the foundation classes F2, 

F3, and F4, respectively.  
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Table 3.11- Energy consumption analysis per pavement life cycle phase of each functional unit. 

Foundation 

class 

Traffic 

class 

Pavement 

structure 
Life cycle phase FsE (MJ) 

Process energy 

(MJ) 

Primary energy 

(MJ) 

CED F 

(MJ) 

CED Nuc. 

(MJ) 

CED PF 

(MJ) 

CED RR 

(MJ) 

CED Total 

(MJ) 

F2 

T5 P7 

Materials 42,190,576 8,451,495 11,065,226 11,577,926 87,684 8 383,713 12,049,331 

Construction and M&R 
 

1,137,456 1,375,654 1,438,201 18,834 2 3301 1,460,337 

Transportation of 
materials  

2,251,160 2,722,583 2,846,371 37,249 4 6533 2,890,157 

WZ traffic management 
 

532,517 647,628 679,713 10,573 0.540 1338 691,625 

Usage 
 

1,669,454 2,068,620 2,365,942 25,396 2 4767 2,396,107 

EOL 
 

-3,211,931 -4,061,754 -4,263,566 -37,076 -4 -95,610 -4,396,107 

Total net 42,190,576 10,830,151 13,817,958 14,644,587 142,661 12 304,041 15,091,301 

T1 P16 

Materials 68,104,113 13,595,875 17,684,246 18,534,715 137,151 12 593,678 19,265,556 

Construction and M&R 
 

1,715,249 2,074,445 2,168,764 28,408 3 4977 2,202,152 

Transportation of 

materials  
3,405,277 4,118,388 4,305,639 56,346 6 9882 4,371,872 

WZ traffic management 
 

5,638,983 6,856,059 7,194,354 86,755 6 14,276 7,295,392 

Usage 
 

19,310,416 23,929,536 27,364,614 291,988 24 54,927 27,711,552 

EOL 
 

-4,565,871 -5,733,194 -6,032,249 -78,062 -5 -129,983 -6,240,299 

Total net 68,104,113 39,099,929 48,929,481 53,535,836 522,585 45 547,758 54,606,225 

F3 

T5 P4 

Materials 37,647,106 7,584,148 10,117,011 10,540,583 81,632 7 384,517 11,006,739 
Construction and M&R 

 
1,108,693 1,340,868 1,401,833 18,358 2 3217 1,423,410 

Transportation of 

materials  
2,077,663 2,512,753 2,627,000 34,379 4 6029 2,667,412 

WZ traffic management 
 

831,206 1,010,931 1,061,049 16,463 0.838 2086 1,079,599 

Usage 
 

2,193,114 2,715,729 3,095,209 32,926 3 6201 3,134,338 

EOL 
 

-2,806,063 -3,560,700 -3,733,358 -33,053 -3 -85,299 -3,851,713 
Total net 37,647,106 10,988,761 14,136,592 14,992,317 150,705 13 316,751 15,459,786 

T1 P14 

Materials 49,697,834 9,942,866 12,962,527 13,579,304 100,627 9 439,726 14,119,666 

Construction and M&R 
 

1,220,076 1,475,577 1,542,667 20,201 2 3540 1,566,410 
Transportation of 

materials  
2,524,946 3,053,703 3,192,546 41,780 4 7327 3,241,657 

WZ Traffic management 
 

3,002,387 3,651,114 3,831,790 51,276 3 7560 3,890,630 

Usage 
 

13,036,835 16,149,660 18,447,610 197,681 16 37,128 18,682,435 

EOL 
 

-4,024,101 -5,064,383 -5,324,530 -45,128 -4 -116,233 -5,485,896 

Total net 49,697,834 25,703,008 32,228,199 35,269,387 366,436 30 379,049 36,014,902 

Legend: FsE-feedstock energy; CED F- cumulative energy demand: fossil; CED Nuc.- cumulative energy demand: nuclear; CED PF.- cumulative energy demand: primary forest; CED RR.- cumulative 
energy demand: renewable resources; CED Total- cumulative energy demand: total; M&R- maintenance and rehabilitation; WZ- work-zone; EOL- end-of-life.
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(continued) 

Foundation 

class 

Traffic 

class 

Pavement 

structure 
Life cycle phase FsE (MJ) 

Process energy 

(MJ) 

Primary energy 

(MJ) 

CED F 

(MJ) 

CED Nuc. 

(MJ) 

CED PF 

(MJ) 

CED RR 

(MJ) 

CED Total 

(MJ) 

F4 

T5 P3 

Materials 21,488,923 4,381,224 5,965,386 6,187,215 48,975 4 246,912 6,483,106 

Construction and M&R 
 

649,679 785,730 821,455 10,750 1 1885 834,092 

Transportation of 
materials  

1,283,115 1,551,817 1,622,373 21,231 2 3723 1,647,330 

WZ traffic management 
 

- - - - - - - 

Usage 
 

1,366,277 1,691,989 1,928,789 20,489 2 3861 1,953,140 

EOL 
 

-2,400,139 -3,059,580 -3,203,079 -29,029 -3 -74,988 -3,307,099 

Total net 21,488,923 5,280,156 6,935,342 7,356,754 72,416 6 181,393 7,610,569 

T1 P12 

Materials 47,232,128 9,455,935 12,368,971 12,946,926 96,661 8 427,023 13,470,618 

Construction and M&R 
 

1,178,417 1,425,193 1,489,992 19,511 2 3420 1,512,925 

Transportation of 

materials  
2,430,884 2,939,944 3,073,614 40,223 4 7054 3,120,895 

WZ traffic management 
 

2,983,495 3,628,057 3,807,532 50,978 3 7517 3,866,030 

Usage 
 

13,190,487 16,329,351 18,599,982 199,082 16 37,408 18,836,487 

EOL 
 

-3,753,271 -4,730,044 -4,970,740 -42,442 -4 -109,358 -5,122,545 

Total net 47,232,128 25,485,947 31,961,472 34,947,305 364,013 30 373,063 35,684,411 

Legend: FsE-feedstock energy; CED F- cumulative energy demand: fossil; CED Nuc.- cumulative energy demand: nuclear; CED PF.- cumulative energy demand: primary forest; CED RR.- cumulative 

energy demand: renewable resources; CED Total- cumulative energy demand: total; M&R- maintenance and rehabilitation; WZ- work-zone; EOL- end-of-life. 
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The results described above can be seen as representative of a road transportation mode, 

and particularly the road sector, which is still excessively dependent on the combustion 

of fossil fuels. A similar conclusion can be drawn by interpreting the very small 

contributions of approximately 1.0%, 1.2%, and 0.000083% of the CED Nuc., CED RR, 

and CED PF, respectively, to the CED Total category. In all the functional units 

analyzed, the main purpose of the latter three types of energy is the production and 

delivery of other energy sources, mainly electricity, to their point of consumption, as 

opposed to the fossil energy (e.g., diesel, gasoline, etc.) that is used, amongst other 

functions, to power the processes directly linked to the construction, maintenance, and 

usage phases of the pavement systems.  

Moreover, the majority of the airborne emissions released during the diverse pavement 

life cycle phases stem from the combustion of fossil fuels, as the production of the 

materials consumed to construct and maintain the pavement structures does not include 

the chemical reactions that would contribute to additional airborne emissions (e.g., 

limestone’s calcination during cement production, etc.). 

Comparing FsE and CED F, Table 3.11 shows the FsE of the bituminous materials to 

be, on average, approximately 3.7 times the CED F corresponding to the materials 

phase of the various functional units. 

3.6.3 Influence of the pavement surface properties and vehicle 

types in the life cycle impact assessment results of the usage 

phase  

In the usage phase of the pavement LCA model applied in this case study, only the RR 

effect was accounted for. RR is a result of a complex interaction between tires and road 

surface properties, of which the macrotexture, as measured by MPD, is one indicator. 

The macrotexture is difficult to control and predict, since it strongly depends on the 

quality of materials and processes used during the construction and maintenance phases 

of the pavement life cycle, as well as the sort of distresses that develop on the pavement 

throughout the PAP. Therefore, the environmental performance of all pavement 
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structures was analyzed by assuming that the MPD remains constant (equal to 1 mm) 

during the whole PAP. 

In addition to the baseline scenario, four alternative scenarios were analyzed to enhance 

the understanding of how the environmental impacts of the usage phase are influenced 

by the macrotexture and the effect of the various vehicle types. Those scenarios 

consisted of ranging, in a stepwise way, the MPD from 0.6 mm (nearly the lowest value 

allowed by the Portuguese road administration) to 1.4 mm (close to the highest value 

achieved by typical Portuguese HMA wearing courses). 

Figure 3.3 depicts, for each scenario, the usage phase’s total CO2-eq emissions 

corresponding to the pavement structure (P16) recommended for traffic class T1 and 

foundation class F2, broken down by vehicle type. This figure shows that the relative 

contributions of the several vehicle types to the total CO2-eq emissions are considerably 

different from the traffic composition. The traffic was assumed to be composed of 90% 

PCs, 7.5% rigid HDVs, and 2.5% articulated HDVs. However, when analyzing Figure 

3.3 one can see that for all five scenarios, the single HDVs and articulated HDVs 

contribute between 14% and 36% of the total CO2-eq emissions, whereas the PCs are 

responsible for only 50%. Those results agree well with the findings of Hammarström et 

al. (2012), who noticed that the FC of PCs is less affected by road surface 

characteristics than heavier vehicles. 

Figure 3.4 depicts the marginal CO2-eq emissions corresponding to each scenario 

relative to the baseline scenario. As shown in this figure, changes in the CO2-eq 

emissions of the usage phase resulting from considering different macrotexture values 

are small, following an almost linear trend. By increasing the macrotexture by 0.4 mm 

the total CO2-eq emissions of the usage phase would rise 2,206 kg. This increment 

represents a difference of 0.077% and 0.067% relative to the emissions released during 

the usage phase and total life cycle of the baseline scenario, respectively. Reductions 

with an analogous consequence in terms of the amount of emissions of CO2-eq are 

expected if the macrotexture value is set at 0.6 mm. 
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Figure 3.3- Usage phase’s total CO2-eq emissions corresponding to pavement structure 

recommended for traffic class T1 and foundation class F2, broken down by vehicle type. 

 

 

Figure 3.4- Usage phase’s marginal CO2-eq emissions corresponding to each scenario in relation to 

the base scenario. 

3.7 Summary and conclusions 

This chapter presents the results of a comprehensive LCA of the standard flexible 

pavement structures defined in the Portuguese pavement design manual. The 

potentialities and usefulness of a pavement LCA model were demonstrated by 

estimating the potential environmental impacts of the six life cycle phases of the 
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functional units at midpoint level. Complementarily, an energy consumption indicator 

(CED) was used to identify the most energy-demanding processes and the type of 

energy consumed.  

From the results presented and thoroughly discussed in the previous sections, the 

following findings are worth highlighting: 

 The level of traffic has a significant impact on the dominant life cycle phase. For 

lower volume traffic classes, the materials phase is the main contributor to the 

road pavement’s overall life cycle environmental impacts (LCEI). On the other 

hand, if the road pavement is expected to carry a significant volume of traffic 

throughout its PAP, the usage phase becomes more prevalent; 

 The bearing capacity of the pavement foundation is also an important factor in 

driving the life cycle environmental performance of pavements, especially for 

roads with heavy traffic. In this case, a high bearing capacity would result in 

lower overall LCEI than a foundation with lower bearing capacity. However, 

this pattern was not observed in pavements with low traffic volumes; 

 During the usage phase, the contributions of HDVs to the environmental 

performance of a pavement system exceed several times their percentage of the 

traffic. In addition, these vehicle types were also found to be more sensitive to 

macrotexture variations than other types. 

Given the success achieved at the project level, the authors believe that the pavement 

LCA model can be expanded to support pavement management decisions at the 

strategic and network levels. However, the particularity of each project would always 

require tools to deal with project-specific features while implementing the higher 

decision level’s orientations. 

In the near future, the development of this model will proceed in four main directions. 

First, the geographical applicability of the LCA model will be extended, in a first stage, 

by including sub-models tailored for other countries, namely the US, and in a second 

stage by fully applying the model to a case study. Second, the methodologic approach 

of this LCA model will be upgraded from the process-based approach to the hybrid 



Chapter 3 A Life Cycle Assessment Model for Pavement Management: 

Road Pavement Construction and Management in Portugal 

 

102 

approach. This improvement in the model’s approach will be performed by integrating 

it with a comprehensive pavement LCC model that allows the several sub-models to 

connect with one another by monetary flows associated with exchanges of the pavement 

system that are directly covered by the LCC model but for which specific P- LCI data 

are either completely or partially unavailable. Third, the comprehensive pavement LCC-

LCA model will be incorporated, along with a decision-support module, within a MOO 

framework to identify optimal pavement M&R strategies that yield the best tradeoff 

between conflicting objectives. Fourth, the analysis level of that optimization-based 

LCC-LCA model will be updated from the project to the network level to ensure that 

the decisions taken at project level end up in optimal sustainable solutions for the whole 

road pavement network. 
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Chapter 4  

A Life Cycle Assessment of In-Place 

Recycling and Conventional 

Pavement Construction and 

Maintenance Practices 

4.1 Introduction 

The US’ National Highway System (NHS) includes over 264000 km of highways 

(FHWA, 2011). With the majority of highway construction complete since the 1980’s, a 

large part of the national highway system is reaching the end of its design life. Recently, 

the ASCE report card (ASCE, 2013) evaluated the US’ roads, and assigned it a grade of 

D, partly as a result of the fact that 32% of the major roads are in poor or mediocre 

conditions. The report card estimates that traveling on deficient pavements cost US 

motorists approximately $67 billion a year, or $324 per motorist. 

In an effort to address poor pavements condition, agencies have adopted different M&R 

approaches. However, M&R of such an extensive road network consumes a significant 

amount of natural resources, mainly aggregates and bitumen. For example, the United 

States Geological Survey (USGS) reported that 460 million tonnes of crushed aggregate 
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were used in 2011, mostly in the construction, maintenance, and rehabilitation of the US 

pavement network (USGS, 2013). Furthermore, approximately 23.4 million tonnes of 

paving bitumen was produced in 2008, according to Freedonia Group (2009). This 

pattern of consumption of natural resources does not appear to be sustainable and there 

has been growing societal concern about the environmental effects of constructing, 

operating, and maintaining the highway infrastructure network. In an attempt to mitigate 

the adverse environmental impacts, transportation authorities are seeking more 

sustainable pavement technologies and strategies. 

Some common practices highlighted by the literature to increase the environmental 

performance of the road projects include the usage of asphalt mixes requiring lower 

manufacturing temperatures (Rubio et al., 2013), and the incorporation of recycled 

materials and byproducts (Jullien et al., 2006; Chiu et al., 2008; Huang et al., 2007; 

Huang et al., 2009; Sayagha et al., 2010). In particular, in-place pavement recycling 

reduces the need for virgin materials and reuses materials that would be otherwise 

hauled away and stockpiled or landfilled. While the true environmental benefit resulting 

from applying some of the aforementioned measures appears to be dependent on the 

system boundaries considered in the analysis (Tatari et al., 2012; Vidal et al., 2013), 

some recycling practices have been proven to enhance the life cycle environmental 

performance of pavements. One example is the application of in-place pavement 

recycling techniques to rehabilitate distressed pavements (Thenoux et al., 2007). 

A LCA is the tool that is generally used to account for a systems’ environmental 

performance. The results of an LCA can provide beneficial information to an agency 

that is in charge of managing infrastructure; for example, it can help determine which 

processes and maintenance techniques produce the highest and lowest environmental 

burdens. An important consideration for LCA is the boundaries chosen for the analysis. 

Ideally, an LCA is a cradle to grave analysis that accounts for the entire life cycle of the 

materials, including all the processes involved with the system, as well as other 

processes impacted by the system. However, a lack of information and an inability to 

accurately predict certain parameters, such as material life and the impact of the system 
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condition on the user, sometimes lead to a constraint on the system boundaries for a 

pavement LCA. Thus, in the case of pavements, most LCA have excluded the use phase 

of the project (Park et al., 2003; Zapata and Gambatese, 2005; Huang et al., 2009). 

Recently, research has produced more reliable models to quantify the impact of the 

pavement condition on vehicle FC and emissions (Karlsson et al., 2012; Chatti and 

Zaabar, 2012), which facilitates the inclusion of the use phase into a pavement LCA. By 

including the usage phase in the pavement LCA, the environmental footprint associated 

with the application of in-place pavement recycling techniques can be analyzed more 

thoroughly than in the previous LCA studies analyzing the environmental performance 

of this pavement M&R alternative (Thenoux et al., 2007; Miliutenko et al., 2013). 

4.2 Objectives 

This chapter presents the results of a pavement LCA conducted for an in-place 

pavement recycling rehabilitation project in the state of Virginia. It also illustrates the 

development of a comprehensive pavement LCA model that includes the usage phase 

into the system boundaries and accounts for the upstream impacts in the production and 

delivery of the energy sources. The project under consideration incorporated several in-

place pavement recycling techniques and a unique traffic management approach. The 

results for the recycling-based project are compared to two other pavement management 

alternatives: (1) a traditional pavement reconstruction, and (2) a corrective maintenance 

approach. The three alternatives are summarized in Table 4.1. The reason for including 

more future actions in the corrective maintenance strategy will be discussed more 

thoroughly in a later section of this chapter. 

4.3 Methodology 

A comprehensive pavement LCA model was developed to calculate and compare the 

LCEI and energy consumption of multiple M&R activities applied in a road pavement 

section. The LCA was performed taking into account the guidelines provided by ISO 
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(ISO, 2006a; ISO, 2006b) and the UCPRC’s Pavement LCA Guideline (Harvey et al., 

2010). Field data for the case study were provided by the Virginia Department of 

Transportation (VDOT) (Diefenderfer et al., 2012). In the cases where no field data 

were available from VDOT, data were gathered from LCA inventories and relevant 

literature.  

In order to automatically compute the environmental burdens assigned to the case study, 

the framework of the LCA model was implemented in a software written in VB.NET 

(Loureiro, 2010) and SQL programming languages (Damas, 2005), the latter being used 

for managing the data introduced and held in the system. 

Table 4.1- Summary of the M&R Strategies. 

M&R Strategy Initial M&R Activity Future M&R Activities 

Recycling-

Based 

Left lane: Cold in place recycling (CIR) method to mill, 

refine and replace the top 13 cm (5 inches) of pavement. 

Right lane: A combination of full depth reclamation (FDR) 

and CCPR to treat 45 cm (18 inches) in depth. 

Both lanes: Apply an AC riding surface. 

Maintenance actions 

performed in years 12, 

22, 32 and 44 (Table 

4.2) 

Traditional 

Reconstruction 

Left lane: Mill and replace the top 5 cm (2 inches) of 

pavement. 

Right lane: Mill and replace full depth of existing pavement 

and apply a cement treatment to the base/subgrade.  

Both lanes: Apply an AC riding surface. 

Maintenance actions 

performed in years 12, 

22, 32 and 44 (Table 

4.3) 

Corrective 

Maintenance 

Both Lanes: 5% full depth patching followed by a 10 cm (4 

inch) mill and overlay. 

Maintenance actions 

performed in years 4, 

10, 14, 18, 24, 28, 34, 

38, 44 and 48 (Table 

4.4) 
Legend: AC- asphalt concrete; CIR- cold in-place recycling; FDR- full depth reclamation.  

Note: Throughout this document the pavement M&R strategies are named “M&R Strategies”, whereas the individual activities that 
integrate each M&R strategy are named “M&R Activities”. 

4.3.1 Goal and scope definition 

This chapter presents the results from an extensive LCA conducted for three M&R 

strategies applied on a pavement segment. The first step consisted of developing a 

comprehensive pavement LCA model to estimate the environmental burdens related to 

the entire life cycle of the pavement section. The application of the pavement LCA 

model to the case study presented in this chapter allowed us to:  
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(1) Estimate the potential environmental advantages resulting from applying in-

place pavement recycling techniques against two traditional M&R methods;  

(2) Demonstrate a methodology that facilitates the inclusion of environmental loads 

assigned to the processes and pavement LCA phases typically excluded from the 

system boundaries of a pavement LCA;  

(3) Identify the most important processes, and consequently pavement life cycle 

phases, in driving the environmental load of a road pavement section throughout 

its life cycle.  

These results will provide state and local agencies with quantitative evidence to support 

the adoption of sustainable pavement management processes. 

4.3.1.1 Functional unit 

The specific project chosen for achieving the aforementioned objectives is a 5.9-km 

long, 2-lane (in one direction) asphalt section of Interstate 81 near Staunton, Virginia. 

The PAP is 50 years, beginning in 2011 with the in-place pavement recycling project 

that rehabilitated the existing pavement structure. The AADT for the first year was 

obtained from the VDOT traffic website
1
 and consisted of approximately 25,000 

vehicles with 28% trucks (85% of the truck traffic consisted of five- and six-axle tractor 

trailer combination vehicles). The traffic growth rate was assumed as 3%. 

4.3.1.1.1 Pre-maintenance and rehabilitation conditions 

Prior to the initial rehabilitation, the distresses along the pavement included cracking 

that extended through the full pavement depth in the right lane, and extensive rutting 

and patching throughout both lanes. The left lane was determined to be in better 

condition than the right lane, such that it was decided to design separate treatments for 

each lane. The overall structure of the pavement was evaluated, and deflection testing 

                                                 

1 http://www.virginiadot.org/info/ct-trafficcounts.asp 
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was used to determine that the structure of the pavement was in poor condition to the 

depth of the subgrade in the right lane. Thus, it was determined that a full reconstruction 

was needed for the right lane, and a heavy rehabilitation for the left lane. The project 

included two different construction methods, and further details about the project can be 

found in Diefenderfer et al. (2012). The left lane used a cold in-place recycling (CIR) 

method to mill, refine, and replace the top layers of the pavement. The CIR was 

performed using one machine on the site.  The reconstruction of the right lane consisted 

of a combination of CCPR and FDR to extend to the subgrade. 

4.3.1.1.2 Maintenance and rehabilitation scenarios 

This study compared the three maintenance alternatives presented in Table 4.1. Details 

on the actions performed in each M&R strategy, as well as the respective schedule for 

future M&R actions are presented in Tables 4.2, 4.3 and 4.4.  

For the recycling-based and traditional reconstruction M&R strategies, the expected 

M&R activities and respective M&R actions outlined by VDOT were followed (VDOT, 

2011). For the corrective M&R scenario, past performance and construction history 

indicates that a 5-cm mill and overlay would be required every 4-6 years, along with 

partial depth patching. This was verified by using deflection data obtained prior to the 

rehabilitation of the road to calculate the Modified Structural Index (MSI) of the 

pavement, and using it as a predictor of future performance as outlined in Bryce et al. 

(2013). 

The MSI is a modified version of the structural capacity index (SCI) initially developed 

by the Texas DOT to describe the in-situ structural state of the pavement. It is 

calculated by dividing the effective structural number over the required structural 

number, which means that it is an unbounded index. According to the definition of its 

general form, if the ratio is greater than one, no structural rehabilitation is expected to 

be required as the effective structural number is greater than the required structural 

number. For further details on the MSI development and applications the reader is 

referred to Bryce et al. (2012). 
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Table 4.2- Features of the M&R actions included in the recycling-based M&R strategy. 

M&R activity M&R actions 
Mixture  

name 

Thickness 

(cm) 

Schedule 

(year) 

Recycling-

based 

reconstruction 

Right lane: mill bound layers - 25 

0 

Right lane: FDR using calciment as the stabilizing 

agent 

FDR- stabilized 

layer 
30 

Right lane: CCPR using hydraulic cement and 

foamed asphalt as the stabilizing agents  

CCRP- material 

produced 
15 

Right lane: tack coat application 
Bituminous 

emulsion 
- 

Right lane: lay AC IM layer IM 19.0D 10 

Right lane: tack coat application 
Bituminous 

emulsion 
- 

Right lane: overlay SMA wearing course SMA 12.5E 5 

Left lane: mill bound layers - 5 

Left lane: CIR using hydraulic cement and 

foamed asphalt as the stabilizing agents  

CIR- stabilized 

layer 
13 

Left lane: tack coat application - - 

Left lane: lay AC IM layer IM 19.0D 5 

Left lane: tack coat application 
Bituminous 

emulsion 
- 

Left lane: overlay SMA wearing course SMA 12.5E 5 

Functional 

mill and 

replace 

Right and left lanes: pre-overlay full-depth 

patching 1% 
IM 19.0D 36 

12 
Right and left lanes: mill bound layers - 5 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC wearing course SM 12.5A 5 

Structural mill 

and replace 

Right and left lanes: pre-overlay full-depth 

patching 1% 
IM 19.0D 36 

22 

Right and left lanes: mill bound layers - 5 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC IM layer IM 19.0D 5 

Right and left lanes and shoulders: tack coat 

application 

Bituminous 

emulsion 
- 

Right and left lanes and shoulders: overlay AC 

wearing course 
SM 12.5A 5 

Major 

rehabilitation 

Right and left lanes: pre-overlay full-depth 

patching  5% 
IM 19.0D 41 

32 

Right and left lanes: mill SM and IM layers - 10 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC IM layer IM 19.0D 5 

Right and left lanes and shoulders: tack coat 

application 

Bituminous 

emulsion 
- 

Right and left lanes and shoulders: overlay AC 

wearing course 
SM 12.5A 5 

Functional 

mill and 

replace 

Right and left lanes: pre-overlay full-depth 

patching 1% 
IM 19.0D 41 

44 
Right and left lanes: mill bound layers - 5 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC wearing course SM 12.5A 5 

Legend: AC- asphalt concrete; CCPR- cold central plant recycling; CIR- cold in-place recycling; FDR- full depth reclamation; IM- 
intermediate mixture; SM- surface mixture; SMA- stone mastic asphalt. 
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Table 4.3- Features of the M&R actions included in the traditional reconstruction M&R strategy. 

M&R activity M&R actions 
Mixture  

name 

Thickness 

(cm) 

Schedule 

(year) 

Reconstruction 

Right lane and outside shoulder: mill bound layers - 32 

0 

Right lane and outside shoulder: undercut the existing 

base/subgrade 
- 46 

Right lane and outside shoulder: lay geotextile fabric - - 

Right lane and outside shoulder: lay open graded base 

(OGB) 
OGB 25.0 30 

Right lane and outside shoulder: lay 21B aggregate base 

material 
DGAB 21B 15 

Right lane and outside shoulder: lay bound base layer BM 25.0D 25 

Left lane and inside shoulder: mill bound layers - 5 

Right and left lanes, and shoulders: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes, and shoulders: lay AC IM layer IM 19.0D 5 

Right and left lanes, and inside shoulder: tack coat 

application 

Bituminous 

emulsion 
- 

Right and left lanes, and inside shoulder: overlay SMA 

wearing course  
SMA 12.5E 5 

Outside shoulder: tack coat application 
Bituminous 

emulsion 
- 

Outside shoulder: overlay AC wearing course SM 12.5A 5 

Functional mill 

and replace 

Right and left lanes: pre-overlay full-depth patching 1% IM 19.0D 36 

12 

Right and left lanes: mill bound layers - 5 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC wearing course SM 12.5A 5 

Structural mill 

and replace 

Right and left lanes: pre-overlay full-depth patching 1% IM 19.0D 36 

22 

Right and left lanes: mill bound layers - 5 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC IM layer IM 19.0D 5 

Right and left lanes and shoulders: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes and shoulders: overlay AC wearing 

course 
SM 12.5A 5 

Major 

rehabilitation 

Right and left lanes: pre-overlay full-depth patching  5% IM 19.0D 41 

32 

Right and left lanes: mill SM and IM layers - 10 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC IM layer IM 19.0D 5 

Right and left lanes and shoulders: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes and shoulders: overlay AC wearing 

course 
SM 12.5A 5 

Functional mill 

and replace 

Right and left lanes: pre-overlay full-depth patching 1% IM 19.0D 41 

44 

Right and left lanes: mill bound layers - 5 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC wearing course SM 12.5A 5 

Legend: AC- asphalt concrete; BM- base mixture; DGAB- dense graded aggregate base; IM- intermediate mixture; OGB- open 
graded base; SM- surface mixture; SMA- stone mastic asphalt. 
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Table 4.4- Features of the M&R actions included in the corrective M&R strategy. 

M&R activity M&R actions 
Mixture  

name 

Thickness 

(cm) 

Schedule 

(year) 

Major 

rehabilitation 

Right and left lanes: pre-overlay full-depth patching 5% IM 19.0D 31 

0 

Right and left lanes: mill SM and IM layers - 10 

Right and left lanes: replace AC IM layer IM 19.0D 5 

Right and left lanes, and shoulders: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes, and shoulders: overlay AC wearing 

course  
SM 12.5A 5 

Functional 

mill and 

replace 

Right and left lanes: pre-overlay full-depth patching 1% IM 19.0D 36a 

4, 18, 34, 38, 

48 

Right and left lanes: mill bound layers - 5 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC wearing course SM 12.5A 5 

Structural 

mill and 

replace 

Right and left lanes: pre-overlay full-depth patching 1% IM 19.0D 36 

10, 24 

Right and left lanes: mill bound layers - 10 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC IM layer IM 19.0D 5 

Right and left lanes, and shoulders: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes, and shoulders: overlay AC wearing 

course  
SM 12.5A 5 

Major 

rehabilitation 

Right and left lanes: pre-overlay full-depth patching 5% IM 19.0D 41b 

14, 28, 44 

Right and left lanes: mill SM and IM layers - 10 

Right and left lanes: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes: replace AC IM layer IM 19.0D 5 

Right and left lanes, and shoulders: tack coat application 
Bituminous 

emulsion 
- 

Right and left lanes, and shoulders: overlay AC wearing 

course  
SM 12.5A 5 

Legend: AC- asphalt concrete; BM- base mixture; IM- intermediate mixture; SM- surface mixture. 
Notes: aWhenever the “pre-overlay full-depth patching 1%” M&R action is applied, its thickness increases 5 cm relatively to the 

previous application. An exception to this rule occurs in the case of the first type of “Functional mill and replace” M&R activity. 

The “Right and left lines: pre-overlay full-depth patching 1%” M&R action scheduled at years 34 and 38 have the same thickness 
(46 cm).  
bWhenever the “pre-overlay full-depth patching 5%” M&R action is applied, its thickness increases 5 cm relatively to the previous 

application. 

 

For the pavement section under assessment the MSI value was found to be 0.78, which 

indicates a considerably weak structural condition and that the deterioration of the 

condition should occur much more rapidly than a pavement with adequate structure 

(i.e., a pavement with an MSI of 1) (Bryce et al., 2013). The predicted deterioration 

curve along with past condition data (in terms of the Critical Condition Index [CCI]), is 

shown in Figure 4.1a. 
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In order to determine the roughness of the pavement as a function of time for the 

corrective M&R strategy, past IRI data for the pavement section was plotted and a 

function in the form of the Expression (4.1) was fitted to the data. 

cbtattIRI  2)(  (4.1) 

Where IRI(t) is the IRI value (m/km) in year t; c is the IRI value (m/km) after M&R is 

performed; a and b are parameters that were found by minimizing the sum of square 

errors between the fitted function and the measured data. The values the parameters a, b 

and c are presented in Table 4.5. 

 

(a) 
  

(b) 

Figure 4.1- (a) Predicted deterioration for the rehabilitation M&R strategy, and (b) predicted 

roughness for each M&R strategy. 

Table 4.5- Parameters values of the Expression (4.1). 

M&R strategy 
Parameters 

a b c 

Recycling-based 0.002 0.017 0.868 

Traditional Reconstruction 0.002 0.017 0.868 

Corrective Maintenance 0.015 0.05 0.868 

 

A similar procedure was conducted for the cases of the recycling-based and traditional 

reconstruction M&R strategies; however, in those M&R strategies data from an 

adjacent pavement section that was rehabilitated in 2005 was used. The reason for using 

data from the adjacent pavement section was the lack of long term IRI measurements 
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for the pavement section under investigation. Furthermore, the adjacent pavement 

section had an MSI value of 1.3 (structurally adequate) and was expected to be 

subjected to similar environmental and traffic loading as the pavement section under 

investigation. The values of the parameters are presented in Table 4.5. The functions 

and measured data are shown in Figure 4.1b. 

4.3.1.2 System boundaries, system processes and life cycle 

inventory data 

The life cycle of a road pavement is generally divided into five phases (Harvey et al., 

2010): (1) materials extraction and production; (2) construction; (3) M&R; (4) usage; 

and (5) EOL. However, in the proposed model, the environmental impacts associated 

with the on-road vehicles when subject to a WZ traffic management plan (implemented 

during the reconstruction and M&R activities) are treated as an individual phase and 

designated as WZ traffic management phase. The WZ traffic management phase was 

separated out in order to highlight the influence of the WZ on the environmental 

performance when compared to normal traffic flow. Transportation of materials and 

asphalt mixtures between facilities and work site, and vice-versa, was also analyzed 

separately. Therefore, the proposed pavement LCA model entails six pavement life 

cycle phases: (1) materials extraction and production; (2) construction and M&R; (3) 

transportation of materials; (4) WZ traffic management; (5) usage; and (6) EOL. The 

various models evoked while modeling each pavement LCA phase, as well as the data 

required to run those models, are introduced and discussed in the following sections. 

4.3.1.2.1 Materials extraction and production phase 

Pavement-related environmental burdens assigned to this phase are due to material 

acquisition and processing. This includes all materials manufacturing processes, from 

extraction of raw materials to their transformation into a pavement input material 

(material extraction sub-phase), and ending up with the mixture production at a mixing 

plant (materials production sub-phase). The latter sub-phase accounts for the 
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environmental burdens associated with the operation of the mixing plant (e.g., dryer, hot 

screen, mixers, etc.), as well as the operation of the wheel loader during the movement 

of aggregates from the stockpiles to the feed bins. The manufacturing of the facilities, 

such as the construction of the mixture production plants, is excluded from the system 

boundaries. All environmental burdens stemming from transportation between facilities 

(i.e., transporting aggregates from the quarry to the mixture production plant) are 

assigned to the transportation of materials phase. The LCI data of the materials and 

mixtures used in this case study was collected from several published LCI and LCA 

reports.  

Inventory data for both fine and coarse natural aggregate was taken from Stripple 

(2001). The LCI data for the bitumen, which in this case study was used either as binder 

in asphalt mixtures or as stabilizing agent, were obtained from Eurobitumen (2011). The 

LCI data for the hydraulic cement used as an active filler was obtained by adapting 

Marceau et al. (2006) LCI data corresponding to the hydraulic cement production 

through the precalciner process. The LCI data of calciment (the stabilizing agent used 

during the FDR portion), a combination of hydraulic cement (70%) and lime kiln dust 

(30%), was determined by multiplying by a factor of 0.7 the hydraulic cement’s LCI 

data. No environmental load was assigned to the lime kiln dust given that it is an 

existing by-product of another manufacturing process.  

The LCI data associated with the operation of natural gas fired dryers, hot screens and 

mixers at a drum mix plant were obtained by combining the emissions factors published 

by the AP-42 study of HMA plants (US EPA, 2004) corresponding to a fabric filter-

controlled drum-mix plant with the energy consumption presented by Sathaye et al. 

(2009) for the same type of plant. The electricity consumption referring to the operation 

of the conveyor system was obtained from Stripple (2001). Emissions and energy 

consumption due to the operation of the wheel loader were estimated based on the rate 

at which the wheel loader can move aggregates (Expression (4.2)) and the methodology 

adopted by the US EPA’s NONROAD 2008 model (US EPA, 2010b). Further 

information on this methodology is given in section 4.3.1.2.3. The environmental 
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burdens from CCPR process are accounted by the construction and M&R phase, since 

they are produced by a mobile plant which is classified as construction equipment. 

trip

aggregatescap

WL
t

WL
r




 (4.2) 

Where rWL  is the rate at which the wheel loader can move aggregates (Kg/hr); WLcap is 

the volumetric capacity of the bucket’s wheel loader (3.3 m
3
); ρaggregates is the average 

density of the aggregates in the bucket of the wheel loader (1700 Kg/m
3
), and; ttrip is the 

time required to complete a round trip from the stockpile to the feed bins (min). The 

value assumed was 2 min. 

4.3.1.2.2 Transportation of materials phase 

The environmental impacts resulting from the transportation of materials are due to the 

combustion process emissions released by the transportation vehicles. All materials and 

mixtures were assumed to be hauled by HDVs, and the United States Environmental 

Protection Agency (US EPA) Motor Vehicle Emissions Simulator (MOVES) (US EPA, 

2010a) was used to determine the average FC and airborne emissions factors for 

operating diesel powered, single unit short-haul trucks and long-haul combination 

trucks. These factors were computed for the typical climate conditions during the month 

of April for Augusta County in Virginia.The transportation distances considered for 

each material and mixture used in this case study, as well as the payload capacity of the 

hauling trucks are shown in Table 4.6. Outside of the system boundaries of this model 

are the air emissions associated with the production and maintenance of the hauling 

HDVs, as well as the transportation of the construction equipment from the construction 

company’s facilities to the work-site. 
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Table 4.6- Features of the movements of transportation of materials. 

Material/ mixture One-way trip distance (km) 
Hauling trucks payload 

capacities (tonnes) 

Milled asphalt material (prior to FDR) 1.9 20 

Milled asphalt material (prior to CIR) 25 20 

Removed granular material (subgrade) 25 20 

CCRP material produced 1.9 20 

Hydraulic cement and calciment 346 27 

Tap water 20 15 

Crushed and fine aggregates 0.6 20 

Binder and bitumen emulsion 125 15 

Open graded base- 25.0 granular material 25 20 

21B aggregate material 25 20 

Asphalt mixtures (to site) 25 20 
Legend: CCRP- cold central plant recycling; CIR- cold in-place recycling; FDR- full depth reclamation. 

4.3.1.2.3 Construction, maintenance and rehabilitation phase 

The construction and M&R related environmental burdens were obtained by applying 

the methodology adopted by the US EPA’s NONROAD 2008 model (US EPA, 2010b). 

Pollutants covered by this methodology include HC, CO, NOx, PM, CO2, and SO2. FC 

is accounted for on the basis of the brake specific FC (BSFC) indicator. The calculation 

of N2O and CH4 emissions used the US EPA’s guide on calculating GHG emissions 

from mobile sources (US EPA, 2008). Information regarding the type and features (e.g., 

brand, model, engine horsepower, etc.) of each equipment used to perform the several 

M&R activities, as well as their respective production rates were taken from 

Diefenderfer et al. (2012) and complemented with technical specifications from the 

equipment’s manufacturers. Future M&R activities are assumed to take place during the 

month of April, as was the reconstruction and rehabilitation performed in the beginning 

of the PAP of each M&R scenario. The same production rates of construction 

equipment were assumed for the remaining M&R activities. 

4.3.1.2.4 Work-zone traffic management phase 

The WZ traffic management includes aspects for two routes: the single lane of I-81 to 

remain open during the work, and the detour road.  As discussed in Diefenderfer et al. 

(2012), this project included an innovative traffic management technique that consisted 

of detouring cars from the road onto a parallel route, while trucks were allowed to 
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remain on I-81 during construction.  In this pavement LCA model, the FC and airborne 

emissions assigned to on-road vehicles during the WZ traffic management plan have 

been determined by adopting a two-step method. First, the US EPA’s MOVES model 

was run multiple times to compute a set of FC and emissions factors representing the 

national scale vehicle fleet characteristics per type of vehicle, and Augusta county’s 

average climatic conditions during the month of April in three distinct years of the PAP 

(2011, 2035 and 2050). For years between 2011 and 2050, the emissions factors were 

interpolated according to a Lagrangian interpolation function. The EFs for the year 2050 

were applied to analysis years beyond 2050. Each model run generated an output file 

displaying the emissions factors on an hourly basis as a function of sixteen speed 

ranges, called speed bins, and two types of road categorized as rural restricted access 

and rural unrestricted access. The former category is assumed to represent the operating 

conditions existing in I-81, whereas the latter fits the features of the detour road 

(Virginia Route 11).  

Secondly, changes in driving patterns were modelled using the capacity and delay 

models proposed by the HCM 2000 (TRB, 2000) to determine several outputs, such as 

the number of vehicles that traversed the WZ, the average queue length, the average 

queue speed in each hour, etc. Each section where there is a change in driving pattern 

was considered to be a new road “link”. The characteristics of each link (length, number 

of vehicles and average speed) was combined with the MOVES FC and emissions 

factors previously computed and stored in look up tables to derive the environmental 

load of a WZ day. Finally, the marginal FC and airborne emissions due to the WZ 

traffic management plan were calculated by subtracting FC and airborne emissions 

released during a WZ period from the results of an equivalent non-WZ period. 

4.3.1.2.5 Usage phase 

The usage phase addresses the pavement’s environmental burdens resulting from the 

interaction of the pavement with the vehicles and environment throughout its PAP. The 

following are factors that have been identified in past research as pertinent to consider 



Chapter 4 A Life Cycle Assessment of In-Place Recycling and Conventional  

Pavement Construction and Maintenance Practices 

 

124 

during the usage phase of the pavement (Santero et al., 2011; Sandberg et al., 2011; 

Chatti and Zaabar, 2012); Tire-Pavement Interaction, Traffic Flow, Albedo, Leachate 

and Runoff, Carbonation, and Lighting. However, many of these factors (i.e., Albedo, 

Carbonation and Lighting) do not directly apply to the project currently under 

evaluation. Thus, the main contribution that was considered from the usage phase in this 

analysis is the tire-pavement interaction. Tire-pavement interaction influences vehicle 

RR, and is impacted by several variables such as: macro-texture, pavement stiffness, 

roughness and the transversal slope of the pavement. Given that this study compared 

several maintenance plans using the same surface materials, the only factor that was 

considered in the usage phase is the impact of the pavement roughness on the 

pavements overall environmental burden. 

In order to determine the impact of the pavement roughness on vehicle FC and 

emissions, the HDM 4 FC model (Bennett and Greenwood, 2003), calibrated and 

validated for US conditions by Chatti and Zaabar (2012), was combined with data from 

the EPA’s MOVES model. The approach proposed in this chapter differs from other 

proposed approaches (i.e., Wang et al., 2012) in that the impact of increasing RR can be 

combined with the MOVES emissions rates models without the need to modify the 

vehicle specific power model within the MOVES program (which calculates emissions 

rates from vehicles travelling along a smooth surface). The first step in the proposed 

approach is to use the model given in Chatti and Zaabar (2012) to calculate the 

additional FC due to the vehicles travelling over the rough pavement surface when 

compared to the FC of the vehicles travelling over a smooth surface. Then, instead of 

using the actual AADT in the MOVES emissions rate model, an effective AADT was 

used to relate the increase in roughness to the increase in FC and emissions. The 

effective AADT (AADTE) for a given roughness at time t, in terms of the IRI, was 

calculated using Expression (4.3). 

Smooth

tIRI

E
FC

FC
tAADTtAADT

)(
)()(   (4.3) 
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Where FCIRI(t) is the FC for the vehicle fleet travelling on a pavement with a specified 

IRI at time t, and FCSmooth is the FC of the same vehicle fleet travelling along a typical 

smooth pavement. 

4.3.1.2.6 End-of-life phase 

When a road pavement reaches its service life, it can be given two main fates: (1) 

remain in place serving as support for a new pavement structure, and (2) be removed. 

Removed pavements materials are: (1) disposed in a landfill (generally a very small 

percentage in the US), or (2) recycled and re-used either as a replacement for virgin 

aggregate in a base layer or as a replacement for virgin asphalt and aggregate in new 

asphalt mixtures. It is expected that the most likely EOL scenario for the pavement 

sections in this analysis is that they remain in place after reaching the end of the PAP, 

serving as foundation for the new pavement structure. Thus, by adopting a “cut-off” 

allocation method no environmental impacts were assigned to the EOL phase of all 

M&R scenarios in comparison in the current pavement system. 

4.3.1.3 Energy sources production 

Energy source production refers to the impact of producing and delivering the energy 

that is used to power the various equipment and processes that are required for the 

project (e.g., the production of the fuel to power the transportation of the materials, 

etc.). Although it is not considered a pavement life cycle phase, as those previously 

introduced, the energy sources production and transportation is an unavoidable process 

that is common to all pavement life cycle phases. For this reason their life cycle impacts 

should be considered and displayed separately from the impacts due to the process 

energy consumption. Presenting the impacts from the energy sources production 

facilitates the understanding of where in the pavement life cycle the use of less 

environmentally burdensome energy sources may help reduce the environmental load of 

a road pavement. Therefore, before inclusion in the database, the LCI data of each 

material and mixture was disaggregated to the processes level in order to distinguish the 
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LCI due to the pre-combustion energy, from that due to the process energy combustion 

in the final destination. In this case study, the GREET model (Argonne National 

Laboratory, 2013) was used as the source of the LCI data for the production and 

delivery of energy sources. For all energy sources except electricity, the GREET model 

default data was used. In the case of the electricity, a default electricity mix was 

modified to reflect the electricity production in the state of Virginia (US EIA, 2012). 

4.3.2 Life cycle inventory 

The LCI corresponding to the case study was performed for each life cycle phase of 

each pavement M&R strategy using the models and data sources presented in the 

previous sections. The inventory analysis was used to determine, both qualitatively and 

quantitatively, the materials, the energy flows, and the atmospheric emissions associated 

with each individual process within the system under analysis. The outputs arisen from 

those unit processes were posteriorly combined in order to derive the total 

environmental burden of the system. Table 4.7 provides the overall LCI per pavement 

life cycle phase of each pavement M&R strategy, expressed in terms of atmospheric 

emissions. 
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Table 4.7- LCI per pavement life cycle phase of each M&R strategy. 

Legend: : LCI- life cycle inventory; M&R- maintenance and rehabilitation; WZ- work-zone; EOL- end-of-life; P.E.- process energy; P.C.E.- pre-combustion energy. 

 

 

M&R  

strategy 
Life cycle phase 

Sub 

component 

CO2 

(Kg) 

CH4 

(Kg) 

N2O 

(Kg) 

SO2 

(Kg) 

NOx 

(Kg) 

NH3 

(Kg) 

CO 

(Kg) 

VOC 

(Kg) 

NMVOC 

(Kg) 

PM2.5 

(Kg) 

Pb 

(Kg) 

R
ec

y
cl

in
g

-b
as

ed
 

Materials 
P.E. 1.11E+06 5.04E+02 4.35E+00 5.88E+02 2.08E+03 2.94E-01 3.78E+03 1.18E+03 6.16E+01 1.58E+02 1.70E-02 

P.C.E. 5.96E+05 1.22E+04 7.80E+02 1.54E+03 1.29E+03 0.00E+00 3.10E+02 1.52E+02 0.00E+00 2.01E+02 0.00E+00 

Construction and 

M&R 

P.E. 1.38E+05 7.80E+00 3.47E+00 1.62E+02 8.16E+02 0.00E+00 5.55E+02 0.00E+00 0.00E+00 3.28E+01 0.00E+00 

P.C.E. 2.87E+04 2.50E+02 3.87E-01 4.48E+01 8.11E+01 0.00E+00 2.07E+01 1.43E+01 0.00E+00 0.00E+00 0.00E+00 

Transportation of 

materials 

P.E. 2.38E+05 8.85E+00 4.37E-01 1.62E+00 5.59E+02 4.55E+00 1.75E+02 3.57E+01 2.89E+01 1.99E+01 0.00E+00 

P.C.E. 5.02E+04 4.38E+02 6.78E-01 7.85E+01 1.42E+02 0.00E+00 3.64E+01 2.50E+01 0.00E+00 0.00E+00 0.00E+00 

WZ traffic  
management 

P.E. 3.48E+06 2.29E+02 3.60E+01 4.69E+01 3.15E+03 2.11E+02 1.51E+04 7.69E+02 5.40E+02 1.82E+02 0.00E+00 

P.C.E. 7.45E+05 6.50E+03 1.01E+01 1.17E+03 2.12E+03 0.00E+00 5.38E+02 9.81E+02 0.00E+00 1.27E+02 0.00E+00 

Usage 
P.E. 1.12E+08 2.33E+03 2.46E+02 1.54E+03 1.39E+05 2.91E+04 1.09E+05 0.00E+00 6.39E+03 7.12E+05 0.00E+00 

P.C.E. 3.00E+07 2.61E+05 4.04E+02 4.71E+04 8.50E+04 0.00E+00 2.17E+04 3.11E+04 0.00E+00 3.36E+03 0.00E+00 

Total 1.48E+08 2.84E+05 1.49E+03 5.23E+04 2.35E+05 2.93E+04 1.51E+05 3.43E+04 7.02E+03 7.16E+05 1.70E-02 

T
ra

d
it

io
n

al
 R

ec
o
n

st
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ct
io

n
 

Materials 
P.E. 2.14E+06 7.91E+02 1.55E+01 1.51E+03 5.31E+03 4.03E-01 6.24E+03 1.89E+03 4.85E+01 2.57E+02 2.76E-02 

P.C.E. 1.12E+06 1.97E+04 1.40E+03 2.86E+03 2.34E+03 0.00E+00 5.50E+02 2.67E+02 0.00E+00 2.91E+02 0.00E+00 

Construction and 

M&R 

P.E. 2.22E+05 1.25E+01 5.56E+00 3.29E+02 1.28E+03 0.00E+00 8.96E+02 0.00E+00 0.00E+00 3.36E+01 0.00E+00 

P.C.E. 4.60E+04 4.01E+02 6.20E-01 7.19E+01 1.30E+02 0.00E+00 3.33E+01 2.29E+01 0.00E+00 0.00E+00 0.00E+00 

Transportation of 

material 

P.E. 5.38E+05 1.74E+01 1.04E+00 3.65E+00 2.01E+03 1.07E+01 6.60E+02 1.67E+02 1.52E+02 7.75E+01 0.00E+00 

P.C.E. 1.13E+05 9.88E+02 1.53E+00 1.77E+02 3.21E+02 0.00E+00 8.20E+01 5.64E+01 0.00E+00 0.00E+00 0.00E+00 

WZ  traffic  

management 

P.E. 3.76E+06 2.41E+02 4.08E+01 5.31E+01 3.43E+03 2.45E+02 1.85E+04 9.84E+02 7.43E+02 2.21E+02 0.00E+00 

P.C.E. 8.04E+05 7.02E+03 1.09E+01 1.27E+03 2.28E+03 0.00E+00 5.81E+02 1.10E+03 0.00E+00 1.44E+02 0.00E+00 

Usage 
P.E. 1.12E+08 2.33E+03 2.46E+02 1.54E+03 1.39E+05 2.91E+04 1.09E+05 0.00E+00 6.39E+03 7.12E+05 0.00E+00 

P.C.E. 3.00E+07 2.61E+05 4.04E+02 4.71E+04 8.50E+04 0.00E+00 2.17E+04 3.11E+04 0.00E+00 3.36E+03 0.00E+00 

Total 1.51E+08 2.93E+05 2.12E+03 5.49E+04 2.41E+05 2.94E+04 1.58E+05 3.56E+04 7.34E+03 7.16E+05 2.76E-02 
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(continued) 

Legend: : LCI- life cycle inventory; M&R- maintenance and rehabilitation; WZ- work-zone; EOL- end-of-life; P.E.- process energy; P.C.E.- pre-combustion energy. 

 

 

 

M&R 

strategy 
Life cycle phase 

Sub 

component 

CO2 

(Kg) 

CH4 

(Kg) 

N2O 

(Kg) 

SO2 

(Kg) 

NOx 

(Kg) 

NH3 

(Kg) 

CO 

(Kg) 

VOC 

(Kg) 

NMVOC 

(Kg) 

PM2.5 

(Kg) 

Pb 

(Kg) 

C
o
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ec
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v
e 

M
ai

n
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n
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ce
 

Materials 
P.E. 2.36E+06 1.07E+03 6.94E+00 9.97E+02 4.05E+03 5.91E-01 8.37E+03 2.56E+03 5.68E+01 3.41E+02 3.79E-02 

P.C.E. 1.22E+06 2.52E+04 1.62E+03 3.18E+03 2.61E+03 0.00E+00 6.26E+02 3.13E+02 0.00E+00 3.31E+02 0.00E+00 

Construction and 

M&R 

P.E. 2.30E+05 1.30E+01 5.77E+00 1.92E+02 1.39E+03 0.00E+00 1.03E+03 0.00E+00 0.00E+00 7.68E+01 0.00E+00 

P.C.E. 4.77E+04 4.16E+02 6.44E-01 7.46E+01 1.35E+02 0.00E+00 3.45E+01 2.37E+01 0.00E+00 0.00E+00 0.00E+00 

Transportation of 

material 

P.E. 4.95E+05 1.97E+01 9.49E-01 3.36E+00 9.77E+02 9.83E+00 3.27E+02 7.00E+01 5.35E+01 3.19E+01 0.00E+00 

P.C.E. 1.04E+05 9.09E+02 1.41E+00 1.63E+02 2.95E+02 0.00E+00 7.55E+01 5.18E+01 0.00E+00 0.00E+00 0.00E+00 

WZ  traffic  

management 

P.E. 7.26E+06 4.83E+02 7.18E+01 9.10E+01 7.48E+03 3.91E+02 2.59E+04 1.36E+03 8.74E+02 3.67E+02 0.00E+00 

P.C.E. 1.55E+06 1.35E+04 2.09E+01 2.44E+03 4.40E+03 0.00E+00 1.12E+03 1.93E+03 0.00E+00 2.41E+02 0.00E+00 

Usage 
P.E. 1.54E+08 3.29E+03 3.42E+02 2.16E+03 1.89E+05 4.04E+04 1.47E+05 0.00E+00 9.01E+03 1.00E+06 0.00E+00 

P.C.E. 4.22E+07 3.68E+05 5.69E+02 6.63E+04 1.20E+05 0.00E+00 3.05E+04 4.40E+04 0.00E+00 4.77E+03 0.00E+00 

Total 2.10E+08 4.13E+05 2.64E+03 7.56E+04 3.30E+05 4.08E+04 2.15E+05 5.03E+04 9.99E+03 1.01E+06 3.79E-02 
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4.3.3 Life cycle impact assessment 

The purpose of the LCIA is to assign the LCI results to different impact categories 

based on the expected types of impacts on the environment. According to the type of 

substances released and resources consumed and the impact categories commonly 

recognized as the most representative of the three protection areas (human health, 

natural environment, and natural resources), the following categories were selected: CC, 

Ac due to air emissions, EU due to air emissions, human health criteria pollutants (HH), 

photochemical smog formation (PSF) and ARD. The US-based impact assessment tool, 

the Tool for the Reduction and Assessment of Chemical and other environmental 

Impacts 2.0 (TRACI 2.0), was chosen as the main methodology to conduct the impact 

assessment step of the LCA. The reader is referred to Bare (2011) for a more detailed 

discussion of TRACI. The characterization models and associated characterization 

factors from TRACI 2.0 were applied to quantify the contribution of each LCI element 

to the Ac air, EU air, HH and PSF impact categories. The time-adjusted characterization 

model for the CC impact category that was proposed by Kendall (2012) was used in this 

approach as opposed to the traditional time-steady IPCC model. The characterisation 

factors present in the April 2013 updated version of the LCIA methodology developed 

by the Center of Environmental Science (CML) of Leiden University in Netherlands 

(Guinée, 2002) were used to determine the impact assessment for ARD of mineral 

resources (ARD MR) and fossil fuels (ARD FF). Furthermore, an energy analysis was 

carried out based on the CED indicators, expressed as CED F, CED Nuc. and CED RR. 

This indicator was computed according to Hischier et al. (2010) but adopting the UHVs 

defined in the GREET model. 

Lastly, according to ISO 14044, normalization, grouping, and weighting steps in LCA 

are optional. While they might be useful in translating the impact scores of different 

impact categories into a more understandable and somehow digestible form (Dahlbo et 

al., 2013), they also entail a risk of oversimplifying the results. Therefore, in the 

pavement LCA model application reported in this chapter the normalization, grouping, 

and weighting steps were not included. 
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4.4 Results and discussion 

4.4.1 Life cycle impact assessment results 

The potential life cycle impacts for each pavement M&R strategy are shown in Table 

4.8. Figure 4.2 shows the relative contribution of each life cycle phase for each impact 

category. As can be seen from Figure 4.2, the usage phase possesses greatest impact in 

almost all the impact categories. Its contribution ranges between 89% (HH in traditional 

reconstruction M&R strategy) and 97% (EU in recycling-based M&R strategy) 

depending on the impact category and the M&R strategy under analysis. Those results 

agree well with the literature that have accounted for the effects of this phase on the 

environmental performance of a pavement structure (Wang et al., 2012; Yu and Lu, 

2012; Loijos et al., 2013). The exception to the usage phase’ dominance is for the ARD 

MR where the materials phase is the main contributor. This outcome can be explained 

by the fact the mineral resources consumed during the pre-combustion energy-related 

processes are not tracked by the GREET model. Consequently, all the mineral resources 

accounted for the ARD MR are exclusively those existing in the aggregates and cement-

based materials consumed during the M&R activities. 

Due to the relatively high influence of the usage phase on the overall environmental 

performance of the M&R strategies in comparison, it can be inferred that the M&R 

strategy with the worst environmental performance during the usage phase is 

simultaneously the least environmentally-friendly overall. Therefore, it seems plausible 

to expect that the adoption of an M&R strategy able to slow down the deterioration rate 

of the pavement roughness would lead to valuables improvements in the life cycle 

environmental performance of a pavement system. 
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Table 4.8- Total LCEI per pavement life cycle phase of each M&R strategy. 

M&R  

Strategy 
Life cycle phase 

CC  

(tonnes CO2-eq.) 

Ac 

(Kg SO2 eq.) 

EU  

(Kg N eq.) 

HH 

(Kg PM2.5 eq.) 

PSF 

(Kg O3 eq.) 

ARD MR  

(g Sb- eq.) 

ARD FF  

(MJ- eq.) 

Recycling-based 

Materials (-51%) 1,937 (-42%) 4,349 (-49%) 150 (-47%) 515 (-50%) 88,944 (-40%) 2.273 (-49%) 30,630,859 

Construction and M&R (-37%) 152 (-37%) 835 (-41%) 40 (-50%) 52 (-41%) 22,315 0 (41%) 9,870,565 

Transportation of materials (-50%) 260 (-46%) 579 (-45%) 32 (-42%) 30 (-45%) 17,607 0 (-42%) 2,796,061 

WZ traffic management (-51%) 3,593 (-56%) 7,776 (-57%) 417 (-50%) 441 (-55%) 137,776 0 (-53%) 119,846,834 

Usage (-28%) 112,926 (-27%) 334,441 (-27%) 18,178 (-28%) 13,614 (-27%) 5,753,783 0 (-29%) 2,021,713,679 

Total (-30%) 118,868 (-28%) 348,023 (-28%) 18,816 (-30%) 14,652 (-29%) 6,020,425 (-40%) 2.273 (-31%) 2,184,857,998 

Traditional 

Reconstruction 

Materials (-5%) 3,788 (25%) 9,361 (15%) 339 (6%) 1,036 (12%) 198,092 (12%) 4.272  (-10%) 54,490,152 

Construction and M&R (6%) 258 (4%) 1,390 (-7%) 63 (-34%) 69 (-7%) 35,155 0 (-15%) 5,910,886 

Transportation of materials (33%) 694 (70%) 1,834 (82%) 105 (104%) 106 (83%) 58,688 0 (61%) 7,757,770 

WZ traffic management (-46%) 3,942 (-72%) 4,956 (-53%) 456 (-42%) 510 (-51%) 150,306 0 (-49%) 127,594,511 

Usage (-28%) 112,926 (-27%) 334,441 (-27%) 18,178 (-28%) 13,614 (-27%) 5,753,783 0 (-29%) 2,021,713,679 

Total (-28%) 121,607 (-28%) 351,981 (-27%) 19,140 (-27%) 15,335 (-27%) 6,196,024 (12%) 4.272 (-30%) 2,217,466,998 

Corrective 

Maintenance 

Materials 3,980 7,517 295 979 176,562 3.810 60,530,715 

Construction and M&R 242 1,334 68 104 37,952 0 6,989,318 

Transportation of materials 524 1,076 58 52 32,020 0 4,823,867 

WZ traffic management 7,335 17,862 975 885 308,212 0 252,602,364 

Usage 156,859 458,264 24,790 18,961 7,914,396 0 2,847,020,941 

Total 168,940 486,053 26,185 20,981 8,469,142 3.810 3,171,967,206 

Legend: LCEI- life cycle environmental impacts; CC- climate change; Ac- acidification; EU- eutrophication; HH- human health criteria pollutant; PSF- photochemical ozone formation; ARD FF- 

abiotic resources depletion: fossil fuels; ARD MR- abiotic resources depletion: mineral resources; Sb- antimony; M&R- maintenance and rehabilitation; WZ- work-zone. 
Note 1: The potential environmental impacts in terms of CC were estimated for a 100-year time horizon. 

Note 2: The numbers in brackets represent the reduction (negative values) or the increase (positive values) of the impact category scores with respect to the homologous phase of the corrective M&R 

strategy.
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Figure 4.2- Relative contributions to each impact category (in percentage) per pavement life cycle 

phase of each M&R strategy. Impact category acronyms: CC- climate change; Ac- acidification due 

to airborne emissions; EU- eutrophication due to airborne emissions; HH- human health criteria 

pollutants; PSF- photochemical smog formation; ARD MR- abiotic resources depletion of mineral 

resources; ARD FF- abiotic resources depletion of fossil fuels.  

 

In response to the issues raised in the previous paragraph, this study demonstrated that 

by implementing a recycled-based M&R strategy, a reduction of approximately 28%-

30% in the overall life cycle impacts can be achieved relatively to those of a corrective 

M&R strategy. Moreover, in the case that only the materials and construction and M&R 

phases are considered in the LCA system boundaries, the recycling-based M&R 

strategy was still found to outperform the remaining M&R strategies in comparison. 

Table 4.9 presents the feedstock, process and primary energy along with the CED Total 

corresponding to each M&R strategy, split up in fossil, nuclear and renewable 

resources. By definition, CED should account for the usage of any sort of energy, 

including direct and indirect energy, throughout the life cycle. That means that the FsE 

of bitumen should also be included when accounting for CED. However, since the FsE 

inherent to bitumen remains unexploited while used as a binder in a pavement, it was 

presented separately from the process and pre-combustion energy as recommended by 

the UCPRC’s Pavement LCA Guideline (Harvey et al., 2010). 

Recycling-based Traditional Reconstruction Corrective Maintenance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
el

a
ti

v
e 

C
o

n
tr

ib
u

ti
o

n
 

M&R Strategy 

Materials Construction and M&R Transportation WZ Traffic Mangement Usage



Chapter 4 A Life Cycle Assessment of In-Place Recycling and Conventional 

Pavement Construction and Maintenance Practices 

 

133 

Table 4.9- Feedstock, process and primary energy and CED indicators per pavement life cycle phase of each M&R strategy. 

M&R 

strategy 

Life cycle 

Phase 
FsE (MJ) 

Process energy 

(MJ) 

Primary energy 

(MJ) 

CED F 

(MJ) 

CED Nuc 

(MJ) 

CED R 

(MJ) 

CED Total  

(MJ) 

Recycling- 
based 

Materials (-51%) 150 020 350 (-49%) 32,407,121 (-49%) 38,416,682 (-50%) 40,498,823 (-52%) 478,720 (-52%) 235,497 (-50%) 41,213,490 

Construction  
and M&R 

0 (-40%) 1,854,509 (-40%) 2,226,086  (-40%) 2,374,473 (-40%) 3,974 (-40%) 2,487 (-40%) 2,380,933 

Transportation 

of materials 
0 (-52%) 2,250,145 (-52%) 3,901,356  (-52%) 4,161,414 (-52%) 6,965 (-52%) 4,358 (-52%) 4,172,736 

WZ traffic 

management 
0 (-52%) 48,210,242  (-52%) 57,897,901 (-50%) 61,818,525 (-50%) 198,809 (-54%) 99,796 (-50%) 62,117,129 

Usage 0 (-29%) 1,938,650,938 (-29%) 2,327,831,483 (-29%) 2,484,626,525 (-29%) 4,157,553 (-29%) 2,601,593 (-29%) 2,491,385,490 

Total (-51%) 150 020 350 (-30%) 2,024,372,955 (-30%) 2,430,273,508 (-30%) 2,593,479,578 (-33%) 4,846,020 (-33%) 2,944,180 (-30%) 2,601,269,779 

Traditional  

Reconstruction 

Materials (-32%) 208 041 104 (-16%) 53,285,763 (-15%) 64,375,381 (-16 %) 67,635,921 (-10%) 901,930 (-10%) 444,755 (-16%) 68,982,606 

Construction  

and M&R 
0 (-4%) 2,976,271 (-4%) 3,572,608 (-4%) 3,810,752 (-4%) 6,378 (-4%) 3,991 (-4%) 3,821,121 

Transportation 
of materials 

0 (9%) 7,335,245 (9%) 8,804,963  (9%) 9,391,886 (9%) 15,718 (9%) 9,835 (9%) 9,417,440 

WZ traffic  

management 
0 (-48%) 52,045,077 (-48%) 62,505,020 (-46%) 66,741,303 (-45%) 217,508 (-52%) 104,541 (-46%) 67,063,351 

Usage 0 (-29%) 1,938,650,938 (-29%) 2,327,831,483 (-29%) 2,484,626,344 (-29%) 4,157,553 (-29%) 2,601,593 (-29%) 2,491,385,490 

Total (-32%) 208 041 104 (-29%) 2,054,293,295 (-29%) 2,467,089,456 (-29%) 2,632,206,207 (-27%) 5,299,087 (-28%) 3,165,714 (-29%) 2,640,670,008 

Corrective  

Maintenance 

Materials 306 134 253 63,788,792 75,765,936 80,231,939 1,004,434 494,185 81,730,559 

Construction 
and M&R 

0 3,088,334 3,707,125 3,954,235 6,618 4,141 3,964,994 

Transportation 

of materials 
0 6,746,643 8,098,426 8,638,253 14,457 9,046 8,661,756 

WZ traffic 

management 
0 100,376,784 120,542,044 123,082,069 397,567 217,687 123,697,322 

Usage 0 2,729,510,520 3,277,462,866 3,498,239,621 5,853,635 3,662,918 3,507,756,174 

Total 306 134 253 2,903,511,072 3,485,576,396 3,714,146,117 7,276,711 4,387,978 3,725,810,805 

Legend: FsE- feedstock energy; CED F- cumulative fossil energy demand; CED Nuc- cumulative nuclear energy demand; CED R- cumulative renewable energy demand; CED Total- cumulative total 
energy demand; M&R- maintenance and rehabilitation; WZ- work-zone. 

Note 1: The feedstock energy, process energy and primary energy were computed through the GREET model’s LHVs. The CED indicators values were computed through the GREET model’s UHVs. 

Note 2: The numbers in brackets represent the reduction (negative values) or the increase (positive values) of the impact category scores with respect to the homologous phase of the corrective M&R 
strategy. 
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Following the trend noticed for the remaining impact categories, the results presented in 

Table 4.9 show that the recycling-based M&R strategy is also the least harmful to the 

environment from the point of view of energy consumption. Overall, a reduction of 

about 30%-33% in all the types of energy can be achieved as a result of implementing 

the recycling-based M&R strategy over the corrective maintenance one. Similar overall 

reductions might be obtained through the reconstruction M&R strategy, even though it 

denotes the most energy demanding transportation phase among the various strategies 

under assessment. This is because the reconstruction M&R activity requires the 

removal, and consequent transportation, of all the materials applied in the existing 

subgrade/base. The poor performance of the corrective M&R activity with respect to the 

CED indicator can be explained by the higher rate of change of IRI and pavement 

condition over the PAP, which requires vehicles to spend additional amounts of fuel to 

overcome the rolling resistance. Although less energy demanding than the usage phase, 

the WZ traffic management phase exhibit the second worst behavior, as considerable 

amount of fuel is burned by the light vehicles while detouring the WZ. 

When analyzing the relevance of each type of energy (fossil energy, nuclear energy and 

renewable energy) in the energy consumption, it can be seen that the nuclear and 

renewable energy sources are only consumed to power the pre-combustion energy-

related processes. This fact explains the residual contributions of approximately 0.20% 

and 0.12% given by the CED Nuc. and CED RR to the CED Total. The negligible role 

played by the nuclear and renewable energy sources can be seen as a mirror of a road 

transport mode, and particularly a road pavement construction and management sector, 

still excessively depending on the consumption of fossil fuels for energy sources. It is 

expected that the results would differ slightly if the introduction of alternative 

automotive fuels was taken into account in modeling the usage phase. However, there 

are both considerable uncertainties on how the rolling resistance effect would change 

the FC pattern of the vehicles propelled by alternative fuels, and the assumptions on the 

proliferation of alternative fuels in the long-term market.  
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Another notable result from Table 4.9 is that approximately 17% of the primary energy 

attributable to each pavement life cycle phase is due to the pre-combustion energy for 

all M&R strategies. However, in the case of the remaining impact categories, the 

environmental impacts due to the upstream processes might be of such dimension that 

they turn out to be the main contributor to the global value of a determined impact 

category result. Thus, it is clear that the pre-combustion energy has a significant indirect 

impact on the environmental burdens of the several competing M&R strategies. 

Therefore, adopting narrowly defined system boundaries by neglecting supply-chain 

related impacts can result in underestimates of life cycle environmental footprint of 

pavement systems. 

When comparing FsE and CED F, Table 4.9 shows the FsE of the bitumen to be almost 

three to four times the energy spent during the materials phase corresponding to the 

traditional reconstruction, recycling-based and corrective M&R strategies. This result is 

roughly 6%-8% of the CED Total for each of the strategies. If the energy spent during 

the usage phase were excluded from the CED indicator, the values would rise to be 

137%-140% of the CED Total in all the strategies in comparison. 

To further elaborate on the potential environmental differences arising from 

implementing the recycling-based activity as opposed to the traditional reconstruction 

activity, the results were separated into the materials, construction and M&R, 

transportation of materials and WZ traffic management phases. In doing so, the 

environmental impacts assigned to the M&R activities that are expected to take place in 

the remaining years of the PAP were disregarded. The difference between the 

environmental impacts stemmed from the recycling-based activity and those arisen from 

the traditional reconstruction activity can be interpreted as “potential environmental 

impact savings”, since the pavement is assumed to behave similarly after the initial 

recycling-based/traditional reconstruction. Figure 4.3 presents the impact of the two 

M&R activities on CC, with regard to materials, construction and M&R, transportation 

of materials and WZ traffic management phases, respectively. Table 4.10 shows the 

changes in environmental impacts of each phase of the recycling-based M&R activity 
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relative to the traditional reconstruction M&R activity, presented in absolute value and 

percentage. Those results are to be understood as follows: negative relative numbers 

mean that the recycling-based M&R activity improves the LCIA results in relation to 

those associated with the traditional reconstruction M&R activity, while positive 

numbers represent a deterioration of the environmental profile. The CC impact category 

has been chosen to be analysed in more detail due to three main reasons: (1) it is the 

impact category with which most of the stakeholders tend to be more familiar with; (2) 

the majority of the measures aiming at reducing the environmental footprint of a process 

or an activity focus on attenuating the GHG emissions; (3) for both intervention 

strategies the relative contribution of each phase to the remaining impact categories is 

analogous to that observed in the case of the CC. Furthermore, the results were 

discretized in terms of the contributions given by the process energy and pre-

combustion energy related processes. 

 

Figure 4.3- Comparison of the global warming score associated with the application of the 

recycling-based and traditional reconstruction M&R activities. Legend: Const. and M&R- 

construction, maintenance and rehabilitation; Transp. of materials- transportation of materials; 

WZ Traffic Manag.- work-zone traffic management. 
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Table 4.10- Changes in global warming score of the recycling-based M&R activity relative to the 

traditional reconstruction M&R activity (absolute values in tonnes CO2-eq./km.lane). 

Pavement life cycle phase 

Total 
Materials 

Construction and 

M&R 

Transportation 

of materials 

WZ traffic 

management 

-157 (-75%) -9 (-62%) -32 (-81%) -30 (-35%) -228 (-65%) 

Legend: M&R- maintenance and rehabilitation; WZ- work-zone. 

 

As can be seen from the Figure 4.3, the most meaningful environmental advantage, in 

absolute value, resulting from applying the recycling-based M&R activity comes from 

the materials phase. A reduction of 157 tonnes of CO2-eq/lane-km, i.e. 75% of the 

emissions occurred during homologous phase of the traditional reconstruction M&R 

activity, is expected to be achieved if the recycling-based M&R activity is undertaken. 

Although the reduction of the virgin materials consumption is mainly responsible for 

this achievement, it also benefits from the fact that the in-place production of the 

recycling-based mixtures (FDR, CCPR and CIR) are included in the construction and 

M&R phase, whereas the production of the asphalt mixtures applied in the traditional 

reconstruction activity are accounted for the materials extraction and production phase. 

However, if the analysis is carried out on a relative basis, then the transportation of 

materials phase would be the greatest benefited from the application of the recycling-

based M&R activity. The resulting reduction in the CO2-eq/lane-km emissions from 39 

tonnes to 7 tonnes translates to an improvement in the environmental performance as 

measured by the CC impact category of 81%. Such an outcome is a consequence of a 

reduction in the total hauling movements from 10.875 mega tonne-km to 1.771 mega 

tonne-km. However, it should be noted that the transportation of materials phase-related 

environmental benefits associated with the recycling-based M&R activity would be 

greater if the quarry that supplied the aggregates consumed during the project was not 

inside the boundary of the asphalt drum plant facility. 
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4.4.2 Key findings 

From the results presented and thoroughly discussed in the previous section, the 

following findings are worth highlighting:  

 The usage phase accounts for the majority of the overall LCEI of the studied 

pavement system; 

 A significant decrease in environmental pollutants is realized by increasing the 

strength of the pavement, and thus decreasing the frequency of needed 

maintenance; 

 The recycling-based M&R strategy significantly enhance the environmental 

performance of the pavements over the life cycle by lowering the environmental 

impacts of the initial activity; 

 The recycling-based M&R strategy reduces the overall LCEI and energy 

consumption by as much as 30%, when compared to the corrective M&R 

strategy; 

 The pre-combustion energy represents approximately 17% of the primary energy 

consumed over the life cycle of a pavement system. Furthermore, this value 

might be of such magnitude that it turns out to be the main contributor to the 

global value of a given impact category result; 

 A reduction of 75% in the environmental impacts occurred during the raw 

materials extraction and mixtures production can be achieved by undertaking the 

recycling-based M&R activity as an alternative to traditional reconstruction 

M&R activity; 

 The recycling-based M&R activity allows savings of about 84% in the hauling 

movements, as measured by tonnes-kilometer, what represents a reduction of 

approximately 81% in the GHG emissions. 
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4.5 Summary and conclusions 

This chapter presents the results of a comprehensive LCA of three M&R strategies for a 

pavement segment, and compares the relative environmental impacts of each strategy. A 

comprehensive pavement LCA model was developed that allows accounting for the 

environmental impacts resulting from the entire life cycle of a pavement system, 

including the upstream processes underlying to the production and transportation of the 

energy sources. The pavement LCA model comprises six pavement life cycle phases: 

(1) materials extraction and production; (2) construction and M&R; (3) transportation of 

materials; (4) WZ traffic management; (5) usage; and (6) EOL. In addition, an original 

methodology is implemented that easily combines the vehicle emissions model MOVES 

with the HDM-4 rolling resistance model calibrated to North American conditions, to 

estimate the additional FC, and consequently the environmental impacts, resulting from 

the deterioration of the pavement over the life cycle. 

The results from this case study show that for the conditions considered the usage phase 

is the phase of the life cycle with the greatest contribution across the majority of the 

impact categories. It was also found that the corrective M&R strategy entails an 

additional total energy consumption, as measured by the CED Total, of 44% and 42% 

relatively to the total energy consumed in the case that the recycling-based and 

traditional reconstruction M&R strategies are alternatively adopted. 

When analyzing the relevance of each type of energy (fossil energy, nuclear energy and 

renewable energy) in the energy consumption, it was displayed that the nuclear and 

renewable energy sources have residual contributions of 0.20% and 0.12% to the CED 

Total. Concerning the contribution given by the upstream processes in the production 

and transportation of the energy sources, it was shown that approximately 17% of the 

primary energy consumed during each pavement life cycle phase is due to the energy 

sources production. The magnitude of this value clearly suggests that the consumption 

of more sustainable energy sources may play an important role in lowering the life cycle 

environmental burdens of a road pavement. 
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By comparing the in-place recycling-based activity against the traditional reconstruction 

activity, a reduction of 157 tonnes of CO2-eq/lane.km is expected to be achieved 

exclusively due to the materials phase if the recycling-based activity is undertaken. This 

value represents a reduction of 75% relatively to the CO2-eq emissions accounted for 

equal phase of the rehabilitation activity. Despite the lower impact when compared to 

the materials phase, the environmental benefits arisen from the WZ traffic management 

and transportation phases should also not be disregarded. However, it is important to 

note that the results may be strongly dependent on the traffic management and material 

location decisions made within this particular project. 

Moreover, because the highway rehabilitation project analyzed in this chapter was 

innovative in incorporating several in-place pavement recycling techniques, in the 

future, it would be desirable to assess the reliability of the proposed methodology based 

on the analysis of multiple sites with the same characteristics and rehabilitated with the 

same techniques, and thus arriving to a prediction model based on statistical analysis. 

Consequently, the generalization of the results presented in this chapter must be made 

carefully. 

Despite the exclusivity of each project, by implementing in-place recycling strategies, 

the highway agencies are moving in the right direction towards reducing the overall 

LCEI related to the pavement construction and management practices. However, while 

the LCA is useful to increase the environmental consciousness of the highway agencies, 

the environmental aspect is only one of the three elements that compose the triple 

bottom line that schematically represent the concept of sustainability. 

To guide highway agencies towards complete life cycle thinking, future work on this 

specific topic should compare the various M&R strategies according to their 

performance in terms of the criteria addressed by the remaining branches of the 

sustainability concept. 
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Chapter 5  

A Comprehensive Life Cycle Costs 

Analysis of In-Place Recycling and 

Conventional Pavement Construction 

and Maintenance Practices 

5.1 Introduction 

Transport infrastructure is one of the main backbones of all commodity and passenger 

flows in the US, and the availability of transport is an essential condition for trade and 

economic growth. Despite its undeniable contribution to the national economy, the 

current road network requires significant investments in M&R to maintain its quality at 

an acceptable level. For example, the most recent American Society of Civil Engineers’ 

report card (ASCE, 2013) estimates that maintaining all of the nation’s highways in 

their current condition would cost $101 billion in annual capital investment between 

2008 and 2028, whereas improving the nation’s highways would require an annual 

capital investment of $170 billion, or an additional $79 billion annually from current 

investments, during that same time period. Therefore, it is important to use long-term 

scope-based decision support methodologies to help DMs determine the costs of 
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providing road infrastructures services beyond the construction phase, and to allocate 

road investment funds to competing projects is of the utmost importance. 

LCCA is an analytical methodology that uses economic principles to evaluate long-term 

alternative investment options in infrastructure management processes and to select 

optimum strategies. By comparing the resulting LCC of two or more alternatives an 

optimal investment alternative can be found that should minimize the total long-term 

cost by finding a suitable tradeoff between spending today and future savings (Walls 

and Smith, 1998). Thus, LCC involves the evaluation of all future costs related to 

design, construction and/or production, distribution, operation, maintenance and 

support, retirement, and material disposal; that means every phase in the system life 

cycle (Fabrycky and Blanchard, 1991). 

During the last decade, many state departments of transportation (DOTs) and 

researchers have dedicated their efforts to four main key areas:  

(1) improving LCCA concepts and methodologies (Salem et al., 2003; Li and 

Madanu, 2009; Swei et al., 2013; Salem et al., 2013; Mirzadeh et al., 2014) 

and computer tools (Chen and Flintsch, 2007; Santos and Ferreira, 2012; 

Santos and Ferreira, 2013);  

(2) providing guidance on how to apply and handle the LCCA methodology and 

their key issues (Walls and Smith, 1998; FHWA, 2002; FHWA, 2003; Hall 

et al., 2003; Ozbay et al., 2003);  

(3) documenting how LCCA has been applied by DOTs (Rangaraju et al., 2008; 

Chan et al., 2008), and;  

(4) applying the LCCA concept for making comparative assessments of the cost 

effectiveness of pavement design, materials and M&R alternatives (Tighe et 

al., 2007; Amini et al., 2012; Sakhaeifar et al., 2013). 

Recently, as society has become more aware of the effects of human activity on the 

environment, sustainability has started to play a more significant role in the decision-

making and planning processes, including pavement management. To embrace the 
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concept of sustainability, pavement managers need to deliver infrastructures that are 

both economically competitive and less environmentally damaging. 

An important part of these sustainable pavement practices can be achieved by 

constructing new pavement structures that incorporate recycled materials in the sub-

base and base layers and by implementing in-place pavement recycling techniques to 

rehabilitate distressed pavements (Thenoux et al., 2007; Lee et al., 2010; Miliutenko et 

al., 2013; Santos et al., 2015). However, a solution which is found to be 

environmentally advantageous might not be preferred over another which is technically 

equivalent, if it is not economically competitive. Although rehabilitation using in-place 

recycling is commonly presented as advantageous from an economic point of view, 

there are still some questions about the extent to which such techniques are cost 

effective throughout their life cycle. It is also important to quantify which factors are the 

key drivers of economic performance, and which stakeholders benefit the most with the 

application of in-place pavement recycling. 

Answering those questions requires a change in the way LCCA has been conducted in 

the pavement management field. Instead of merely using a cash flow analysis, it would 

be better to use a process-oriented accounting method, to allow us to understand the 

interaction of the contributing costs that accumulate among the relevant stakeholders 

during the different phases of the asset (Lindholm and Suomala, 2005). 

To implement the LCC methodology this way it is necessary to comprehensively track 

the consumption of resources in their multiple categories (e.g., raw materials, energy 

sources, labour, equipment, etc.). Moreover, the operations chain preceding the 

pavement life cycle phase in which a construction and M&R activity is delivered should 

not be merely summarised by its bid price, and viewed as a “black box” (Settanni and 

Emblemsvåg, 2010). A detailed characterization of all the costs incurred by highway 

agencies when performing road construction and maintenance activities and imposed on 

other affected stakeholders over the entire life cycle of those activities is important to 

gain in-depth insights into the extent to which new technical solutions, such as in-place 
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recycling, provide cost reductions, and thereby allow more transparent and informed 

decisions to be made at an early stage of project development. 

In summary, when conducting a LCCA of in-place recycling techniques there is a 

growing and significant need for a general LCCA model that includes a long-term 

scope-based and explicit cost-tracking mechanism, bringing together information from 

various sources, which would result in the basis for the calculation of the delivery cost 

of new pavement construction and M&R practices. Such a model is essential to account 

for the connection between technical changes and production and downstream costs, 

and to provide the DM with a complete understanding of construction and M&R 

activity costs over time. This detailed analysis can also be used to update or clarify the 

understanding of assumptions in the pavement management decision-making process. 

5.2 Objectives 

This chapter presents the results from an extensive (cradle-to-grave) LCCA of an in-

place pavement recycling rehabilitation project in the state of Virginia. It also illustrates 

the development of a comprehensive pavement LCC model intended to give DMs a 

systematic framework that provides an in-depth perspective of the costs incurred by 

highway agencies and road users during pavement construction and maintenance 

activities. The results for the recycling-based project are compared to two other 

pavement management alternatives: (1) a traditional pavement reconstruction and (2) a 

corrective maintenance approach. The features of the three M&R strategies are 

summarised in Table 5.1. 

5.3 Methodology 

A comprehensive pavement LCC model was developed to calculate and compare 

several categories of costs borne by highway agencies and road users during the M&R, 

usage, and EOL pavement phases. This model builds on the LCA model presented in 

Chapter 4 (Santos et al., 2015) to calculate and compare the environmental impacts of 
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in-place recycling and conventional pavement construction and M&R practices. 

Therefore, besides the main references on how to conduct LCCA of pavements (Walls 

and Smith, 1998; FHWA, 2002; FHWA, 2003; Hall et al., 2003), the methodology 

adopted to develop this model took into account, as far as possible and suitable, the 

UCPRC’s Pavement LCA Guideline (Harvey et al., 2010).  

The pavement LCC model described in this chapter is intended to give highway 

agencies a systematic framework that allows them to get an in-depth perspective of the 

costs incurred by the various stakeholders when performing highway construction and 

maintenance activities. This required the adoption of more data- and time-intensive sub-

models than had traditionally been used for pavement LCCA.  The “traditional” less 

data-intensive models do not allow analysis to be performed with the same level of 

detail and customization when applied to specific projects.  

The data required to carry out the case study were provided by the VDOT (Diefenderfer 

et al., 2012) and gathered from relevant literature as it will be seen in the next sections. 

The strategies compared are summarised in Table 5.1. 

Table 5.1- Summary of the M&R strategies. 

M&R Strategy Initial M&R Activity Future M&R Activities 

Recycling-

Based 

Left lane: CIR method to mill, refine and replace the top 13 

cm (5 inches) of pavement. 

Right lane: A combination of FDR and CCPR to treat 45 cm 

(18 inches) in depth. 

Both lanes: Apply an AC riding surface. 

Maintenance actions 

performed in years 12, 

22, 32 and 44 (Table 

4.2) 

Traditional 

Reconstruction 

Left lane: Mill and replace the top 5 cm (2 inches) of 

pavement. 

Right lane: Mill and replace full depth of existing pavement 

and apply a cement treatment to the base/subgrade.  

Both lanes: Apply an AC riding surface. 

Maintenance actions 

performed in years 12, 

22, 32 and 44 (Table 

4.3) 

Corrective 

Maintenance 

Both Lanes: 5% full depth patching followed by a 10 cm (4 

inch) mill and overlay. 

Maintenance actions 

performed in years 4, 

10, 14, 18, 24, 28, 34, 

38, 44 and 48 (Table 

4.4) 
Legend: M&R- maintenance and rehabilitation; AC- asphalt concrete; CIR- cold in-place recycling; FDR- full depth reclamation; 
CCPR- cold central plant recycling.  

Note: Throughout this document the pavement M&R strategies are named “M&R Strategies”, whereas the individual activities that 

integrate each M&R strategy are named “M&R Activities”. 
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In order to automatically cross the data between the multiple sub-models and compute 

the costs inherent to the successive pavement life cycle phases, the framework of the 

LCC model was implemented in a software written in VB.NET (Loureiro, 2010) and 

SQL (Damas, 2005) programming languages, the latter used for managing the data 

introduced and held in the system. 

5.3.1 Goal and scope definition 

This chapter presents the results from a comprehensive LCCA conducted for three 

M&R strategies applied to a pavement segment. The first step consisted of developing a 

comprehensive pavement LCC model to thoroughly estimate the costs incurred by the 

highway agency and road users throughout the entire life cycle of the pavement section. 

However, we should keep in mind that this study was not intended to be strictly the 

counterpart of the LCA performed according to the life cycle sustainability assessment 

(LCSA) scheme defined in Klöpffer (2008), since it imposes several methodological 

requirements (e.g., the share of the same system boundaries, etc.) that have not been 

intentionally adopted. Rather, it used the LCI of resources flows, operating parameters 

and other exchanges reported in Chapter 4 (Santos et al., 2015) as a starting basis for 

modelling the relationships between pavement life cycle phases and the costs incurred 

by highway agencies and road users. 

However, the concern with gathering cost information from different entities to 

implement the LCC methodology is constrained to some extent by supply chain 

relationships. In this case, it may be impossible to gain insight into the costs structure of 

other supply chain actors with different and competing interests, and with whom the 

highway agencies interact (e.g., raw materials, energy sources and construction 

equipment suppliers, etc.). Unless an unlikely joint effort to achieve cost savings 

beyond the influence of a highway agency is undertaken, there is no way of truly 

managing the drivers that control cost propagation through the supply chain upstream 

from the highway agency. Therefore, this part of the whole pavement supply chain is 

left out of the scope of this model. The total value of the costs within the boundaries of 
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those organizations or actors is viewed by the highway agency as a cradle-to-factory 

gate cost that reflects the complete upstream process. In this case, the market price for a 

given process input is used as a measure for the aggregated upstream costs, thus not 

requiring any differentiation and knowledge of the detailed costs and added values of 

those upstream processes. The same assumption is made with regard to the expenses 

incurred by the road users due to pavement deterioration and WZ traffic management 

plans (e.g., FC, oil consumption tyre wear, vehicles maintenance and repair, etc.). 

Additionally, planning, engineering, design, administrative overhead costs (e.g., office 

and management, etc.) and profit were not accounted for and added to the total HAC 

because they do not depend on the scope and nature of the work being performed, or in 

other words, they are not a direct consequence of the pavement management decision-

making process. Rather, they are determined by the overall agency and/or contractor 

structure, scope, size and geographic location, and are allocated according to the 

organization-specific cost allocation. 

Another important clarification which should be made is regarding whether or not, the 

asphalt mixtures production and delivery should be seen as a product acquired by the 

highway agency in which only the final cost is important (it falls into the case 

mentioned above), or as an in-house product, thus requiring a detailed process costs 

analysis that includes accounting for raw materials cost, energy sources costs, 

transportation of materials costs, etc. Given the core importance of this activity for the 

pavement management decision-making process, the proposed model sees it as a 

product manufacturer, meaning that the process costs inherent to it are thoroughly 

analysed. 

The application of the pavement LCC model to the case study presented in this chapter 

aims to: 

(1) estimate the potential economic advantages resulting from applying in-place 

pavement recycling techniques compared to two traditional M&R methods;  

(2) demonstrate a methodology that explicitly tracks the costs resulting from the 

use of various materials, energy sources, equipment and technological 
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processes, allowing the connection between technical aspects, production 

(agency) costs, and costs imposed on other affected stakeholders (i.e., road 

users), to be accounted for, and; 

(3) identify the most important processes, and consequently pavement life cycle 

phases, in driving the economic performance of a road pavement section 

throughout its life cycle, from the perspective of different stakeholders. 

These results provide state and local agencies with quantitative evidence to support the 

adoption of cost effective pavement management processes. 

5.3.1.1 Functional unit 

The specific project chosen for achieving these objectives is a 5.9-km long, 2-lane (in 

one direction) section of Interstate 81 near Staunton, Virginia. The PAP is 50 years, 

beginning in 2011 (date of completion of the in-place pavement recycling project that 

rehabilitated the existing pavement structure). The AADT for the first year was obtained 

from the VDOT traffic website
2
 and consisted of approximately 25,000 vehicles with 

28% trucks (85% of the truck traffic consisted of five- and six-axle tractor trailer 

combination vehicles). The traffic growth rate was assumed as 3%. 

5.3.1.2 System boundaries, system processes and life cycle 

inventory data 

The life cycle of a road pavement is generally divided into five main phases (Harvey et 

al., 2010). They are the following: (1) materials extraction and production; (2) 

construction; (3) M&R; (4) usage; and (5) EOL. However, in the proposed model, the 

costs incurred by road users when facing a WZ traffic management plan (implemented 

during the reconstruction and M&R activities) are accounted for in an individual phase 

designated as WZ traffic management phase. The WZ traffic management phase was 

                                                 

2 http://www.virginiadot.org/info/ct-trafficcounts.asp 
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separated out from the construction and M&R phase in order to facilitate the 

identification, computation and report of the costs borne by different actors (highway 

agency and road users) who may have conflicting goals. The costs associated with the 

transportation of materials and asphalt mixtures between facilities and work site, and 

vice-versa, were also analysed separately. Therefore, the proposed pavement LCC 

model entails six pavement life cycle phases: (1) materials extraction and production; 

(2) construction and M&R; (3) transportation of materials; (4) WZ traffic management; 

(5) usage; and (6) EOL. The various models evoked while computing the costs incurred 

during each pavement life cycle phase, as well as the data required to run those models, 

are introduced and discussed in the following sections. 

5.3.1.2.1 Materials extraction and production phase 

This phase accounts for the costs incurred by the highway agency in producing the 

mixtures to be applied during the construction and M&R phases. The typical total bid 

cost provided by DOTs comprises manufacturing and transportation of raw materials, 

manufacturing of mixtures, labour, overheads, profit margins and other costs as one 

number. This practice makes it difficult: (1) to differentiate the relative contribution of 

the fixed and variable costs; (2) to investigate the impact of variability in pricing, types 

of mixtures, mixture compositions and mixture process technologies on the total bid 

price; and (3) to identify the main cost drivers of the life cycle, and then point out 

improvements that can be advantageous for all or some of the stakeholders involved in 

the system. Therefore, for a detailed LCCA, the calculation procedure of the materials 

extraction and production phase costs cannot rely on bid prices. 

To address this issue, the materials extraction and production phase costs were divided 

into three main categories: (1) raw materials costs, corresponding to the materials that 

make up the asphalt mixtures, as well as those that are directly applied at the work site 

(e.g., lime, hydraulic cement, etc.); (2) energy sources costs, meaning specifically  the 

cost of the energy required to produce the asphalt mixtures; and (3) asphalt plant 

operating costs, which are the costs incurred due to the operation of the asphalt plant. 
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This last category was further divided into fixed and variable costs sub-categories. The 

fixed costs sub-category are those costs that remain fairly much the same regardless of 

the volume of the mixtures produced, and were calculated by allocating an annual cost. 

Typically, they include: (1) the asphalt plant depreciation cost; (2) the auxiliary 

equipment depreciation costs; (3) insurance; (4) taxes, licensing and permits; (5) 

utilities; and (6) the labour costs (e.g., asphalt plant operator, auxiliary equipment 

operator, maintenance technician, etc.). Other fixed costs incurred prior to asphalt plant 

installation, such as engineering design/planning and real estate purchase were 

disregarded. 

The variable costs sub-category includes the costs which depend on production volume. 

Apart from the raw materials costs and asphalt mixture production-related energy costs 

that were accounted for as individual categories, the variable asphalt plant operating 

costs include costs resulting from the operation of the asphalt plant (e.g., filters, oils and 

grease applied in the asphalt plant setup and auxiliary equipment, diesel consumed by 

the wheel loader, etc.). The unit costs adopted to calculate the several categories and 

sub-categories of costs incurred during this pavement life cycle phase are presented in 

Table 5.2, Table 5.3 and Table 5.4. 

Table 5.2- Unit costs of the raw materials items (in 2011 US dollars). 

Raw material item 
Unit cost 

Data source 
Unit Value

a
 

Asphalt binder $/tonne 653.94 
VDOT (http://www.virginiadot.org/business/const/indices-

previous.asp) 

Calciment $/tonne 76.98
b
 US ACE (2011a) 

Hydraulic cement $/tonne 76.81 USGS (2013a) 

Asphalt emulsion $/tonne 792.52 Virginia Paving Company (www.virginiapaving.com) 

Crushed aggregates $/tonne 10.73
c
 USGS (2013b) 

Fine aggregates $/tonne 10.96
c
 USGS (2013b) 

Notes: aFree on board costs. 
bValue bid adopted by the material supplier: Mintek. 
cData referring to aggregates sold or used by producers in the US, by use, in 2011. 
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Table 5.3- Unit costs of the energy sources items (in 2011 US dollars). 

Energy source item 
Unit cost 

Data source 
Unit Value 

Diesel $/litre 1.00  US EIA(2014a) 

Electricity $/kWh 0.065
a
  US EIA (2014b) 

Natural gas $/m
3
 0.227

a
  US EIA (2014c) 

Gasoline $/litre 0.93  US EIA (2014a) 
Notes: aIndustrial sector price. 

Table 5.4- Unit values of the asphalt plant operating costs items (in 2011 US dollars). 

Sub-category Item 
Unit costa 

Data source 
Unit Value 

Fixed 

Asphalt plant depreciation costs 

$/tonne of 
asphalt 

mixture 

0.75b Morgan (2005)c 
Auxiliary equipment depreciation costs  0.32d Morgan (2005)c 

Utilities (water and electricity) 0.66e Morgan (2005)c 

Licensing, taxes and general operation permits 0.09f Estimated  
Insurance 0.18g Estimated 

Labour: asphalt plant operator 0.63h US DL (2011a) 

Labour: wheel loader operator 0.46i US DL (2011a) 
Labour: maintenance technician 0.48j US DL (2011a) 

Variable 

Asphalt plant maintenance and repair 1.00 Morgan (2005)c 

Diesel consumed by the wheel loader 0.24k US EIA (2014a) 

Anti-strip additive 0.50l Epps at al. (2003) 

Notes: aThe calculation procedure relies on the average annual asphalt mixtures production per plant (114,000 tonnes) during the 

year of 2011 in Virginia (Hansen and Copeland, 2013). 
bValue obtained by considering an acquisition cost of $1,500,000.00 depreciated over 15 years and a residual value equal to 15% of 

the acquisition cost ($225,000.00). 
cSince these unit costs depend on a large number of factors, the values reported by this source were used as reference in setting 
representative values. 
dIncludes the acquisition costs of the following auxiliary equipment: quality control laboratory ($100,000.00; 15 years; 15%), anti-

strip system ($20 000.00; 8 years; 15%), platform scales ($45,000.00; 15 years; 15%) and wheel loader ($246,000.00; 8 years; 
15%). Where ($; years; %) stands for (acquisition cost; depreciation period; residual value as percentage of the acquisition cost). 
eAlthough the utilities cost comprises a fixed and a variable component, the total cost was assigned to the fixed sub-category due to 

the absence of more detailed information that would allow for a further division of this item. 
fBased on an annual value of $10,000.00. 
gBased on 1% of the value of all assets existing in the facility. 
 hValue obtained by considering the annual 90th percentile total compensation for the “Paving, Surfacing, and Tamping Equipment 
Operators” occupational group in Virginia. It results from considering the wages and salaries equal to 66.9% of the total 

compensation (US DL, 2011b). 
iValue obtained by considering the annual 50th percentile total compensation for the “Paving, Surfacing, and Tamping Equipment 
Operators” occupational group in Virginia. It results from considering the wages and salaries equal to 66.9% of the total 

compensation (US DL, 2011b). 

jValue obtained by considering the annual 50th percentile total compensation for the “Maintenance and Repair Workers, General” 
occupational group in Virginia. It results from considering the wages and salaries equal to 68% of the total compensation (US DL, 

2011b). 
kEnergy consumption corresponding to the operation of a wheel loader Caterpillar 950K estimated according to the rate at which the 
wheel loader can move aggregates and the methodology adopted by the US EPA’s NONROAD 2008 model (US EPA, 2010a). See 

Chapter 4 (Santos et al., 2015) for further details. 
lBased on an additive usage rate of 0.5% by weight of the binder (Diefenderfer and Hearon, 2010). The 2003 price was scaled up to 

the 2010 price by using the Producer price index (PPI) for “material and supply inputs to highway and street construction sector”. 

2010 is the last year for which the annual index is known. 
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5.3.1.2.2 Construction, maintenance and rehabilitation phase 

The construction and M&R phase costs include the costs incurred by the highway 

agency during the actual performance of a construction or M&R activity at a particular 

work site on a specific day and time. They comprise: (1) the owning costs of 

construction equipment (i.e., depreciation, interest, insurance, taxes and licenses); (2) 

construction equipment operation costs (i.e., FC, equipment planned maintenance, 

equipment repairs, tyre wear, special wear items, mobilization and demobilization); and 

(3) labour costs corresponding to the wages and benefits paid to the crew members. The 

materials costs, as well as the costs associated with the hauling movements required to 

deliver the materials from the production to the destination places are accounted for in 

individual phases. A detailed description of the LCC model formulation referring to this 

pavement life cycle phase can be found in Appendix A.1.  

Data required for computing the various subcategories of construction equipment 

owning and operating costs were collected for each piece of equipment according to the 

information made available by equipment manufacturers, suppliers and dealers, or 

existing in the literature (US ACE, 2011b; Caterpillar Inc., 2012). Table A.1 in 

Appendix A.1. shows the costs of the variables corresponding to each piece of 

equipment required to perform the M&R actions that constitute the M&R activities 

considered in the case study analysed in this chapter.  

Finally, the labour costs were calculated according to the data displayed in Table A.2 

presented in Appendix A.1. The number of workers needed for carrying out the various 

M&R actions that comprise a given M&R activity was estimated according to data 

gathered in the field during visits to similar recycling projects, or existing in the 

literature (EAPA and NAPA, 2011). 

5.3.1.2.3 Transportation of materials phase 

The economic advantage of recycling-based construction and M&R practices is strongly 

affected by material transportation costs and how those costs compare to the cost of new 

virgin materials delivered to the construction site. Thus, unlike the majority of the LCC 
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models existing in the literature, the proposed LCC model presents the costs incurred by 

the highway agencies due to the transportation of the materials separated out from the 

remaining categories that make up the total delivery price. 

Similar to construction and M&R phase costs, three main cost categories are 

considered: (1) hauling trucks owning costs; (2) hauling trucks operation costs; and (3) 

labour costs. The two first categories were further divided into several subcategories as 

shown in Appendix A.2. The meaning of each cost category and subcategory, its 

respective formulation and the values of the variables required to calculate them are 

presented in Appendix A.2.  

5.3.1.2.4 Work-zone traffic management phase 

When an M&R activity takes place on a highway segment, it is likely that the drivers 

using those highways segments will experience changes to their normal travelling 

patterns, such as delays, which force vehicles to be operated at less than-optimal speeds, 

and detours (either externally or self-imposed) that require drivers to increase the 

distance travelled.  

Operating a vehicle in those WZ conditions commonly results in additional costs to road 

users, which are commonly referred to road user costs (RUC). Therefore, the WZ traffic 

management costs comprise the additional costs borne by the road users when facing a 

disruption of the normal traffic flow as a consequence of the constraints imposed by a 

WZ traffic management plan. 

In this LCC model, the following WZ traffic management costs categories are 

considered: (1) time delay costs (TDC), and (2) vehicle operating costs (VehOperC). 

The accidents costs, typically considered as another WZ RUC category, were 

disregarded due to the high level of uncertainty associated with the factors that might 

determine their occurrence (which are often related with driver errors and other factors 

not related with the WZ). The methodologies adopted to calculate these costs are 

described in the following sections. 
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5.3.1.2.4.1 Time delay costs 

The TDC are calculated as the difference between the cost of the time spent by the 

vehicle’s occupants and goods while travelling at detour speed, or WZ reduced speed 

and normal operating speed during a non-WZ period. Four types of WZ delays were 

considered to contribute to the total TDC: (1) the time necessary to decelerate from the 

upstream approaching speed to the WZ speed and then to accelerate back to the initial 

approaching speed after traversing the work-zone under unrestricted traffic flow; (2) the 

time required to go through the WZ section at the WZ speed; (3) the idling time 

corresponding to stop-and-go driving conditions in the upstream queue; and (4) the time 

required to travel the additional distance resulting from detouring around the WZ 

section.  

The capacity and delay models proposed by the HCM 2000 (TRB, 2000) were used to 

determine, in each hour of a WZ period, the number of vehicles that undergo a variation 

in their normal operation speed and the distance during which it is experienced. Finally, 

to calculate the TDC, the estimated delays to personal travel, business travel, and freight 

inventory caused by the WZ is multiplied by the unit cost ($/hr) of travel time. The 

monetary value of the time for users and goods was estimated according to the US DOT 

Office of the Secretary of Transportation (OST)’s guidelines and procedures for 

calculating the value of travel time saved or lost by road users (US DOT, 2003). It relies 

on the concept that time spent traveling would otherwise have been spent productively, 

whether for remunerative work or recreation (Mallela and Sadasivam, 2011). The unit 

cost of travel time adopted for the various categories of vehicles is presented in Table 

5.5. The values of the main parameters used in the calculation of the unit costs of travel 

time are presented in Appendix A.3.  
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Table 5.5- Unit cost of travel time for the several categories of vehicles (in 2011 US dollars). 

Vehicle category 
Unit cost 

Unit Value 

Hourly time value of passenger cars (PCs) 

$/hr 

28.70 

Hourly time value of single-unit trucks (SUTs) 22.42 

Hourly time value of combination-unit trucks (CUTs) 29.27 

Hourly freight inventory costs for SUTs 0.21 

Hourly freight inventory costs for CUTs 0.31 
Legend: PC- passenger car; SUT- single-unit truck; CUT- combination unit truck. 

5.3.1.2.4.2 Vehicle operation costs 

The WZ-related VehOperC represent the costs incurred by the vehicle drivers due to the 

vehicle owning, operating and maintenance, and are computed as the difference 

between the costs incurred while travelling at detour speed or WZ reduced speed, and 

those corresponding to transverse the highway WZ section at the normal operating 

speed during a non-WZ period. Five types of VehOperC subcategories were considered 

to contribute to the total VehOperC: (1) FC; (2) oil consumption; (3) tyre wear; (4) 

vehicle maintenance and repair; and (5) vehicle depreciation. The costs of operating a 

vehicle on a given road section are obtained by multiplying the “consumption” of the 

aforementioned subcategories with the corresponding unit cost. 

The methodology adopted for quantifying the additional VehOperC resulting from 

changes in traffic flow conditions consisted of initially modelling each cost subcategory 

separately, and then adding them to obtain the total VehOperC value. This modelling 

procedure was adopted in order to ensure coherence with the work performed in 

Chapter 4 (Santos et al., 2015) and to allow for a better integration with subsequent 

research work. The FC was determined using the US EPA’s MOVES (US EPA, 2010b) 

as detailed in Chapter 4 (Santos et al., 2015). The speed-constant and speed-change 

cycles Highway Economic Requirements System- State Version (HERS-ST) sub-

models (FHWA, 2005) were considered in calculating the rates of oil consumption, tyre 

wear and maintenance and repair. Finally, the vehicle depreciation costs were equally 

estimated according to the methodology outlined in the HERS-ST Technical Report 

(FHWA, 2005). This relies on the assumption that vehicles depreciate both as a result of 

their usage and their aging, which is independent of the vehicle use. Thus, the time lost 
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by the occupants of the different vehicle categories while traversing or detouring a WZ 

was considered to contribute to the time-related depreciation costs, whereas the 

additional distance travelled to detour the WZ was assumed to contribute to the 

mileage-related depreciation costs. 

The unit costs expressed in 2011 US dollars, and respective data sources, required to 

compute the additional VehOperC incurred during the WZ period are shown in Table 

5.6. To estimate the costs for the beginning of the PAP (year 2011), the unit costs were 

multiplied by standard prices indices, such as Consumer Prices Index (CPI) and 

Producer Prices Index (PPI). 

Table 5.6- Economic unit costs of the WZ-related VOC subcategories (in 2011 US dollars). 

WZ-related VehOperC 

subcategory 
Cost unit 

Unit cost per vehicle category 
Data source 

PC SUT CUT 

Fuel: gasoline $/litre 0.93 - - US EIA (2014a) 

Fuel: diesel $/litre - 1.00 1.00 US EIA (2014a) 

Oil $/ litre 9.58 3.83 3.83 FHWA (2005) 

Tyres $/tyre 93.11 613.32 613.32 FHWA (2005) 

Maintenance and repair $/1000 miles 158.79 553.23 553.23 FHWA (2005) 

Time-related depreciation $/hr 1.23 3.16 9.57 FHWA (2005) 

Mileage-related depreciation $/hr 0.58 0.49 2.20 FHWA (2005) 
Legend: WZ- work-zone; VehOperC- vehicle operation costs; PC- passenger car; SUT- single-unit truck; CUT- combination unit 

truck. 

5.3.1.2.5 Usage phase 

The usage phase costs, frequently named non-WZ RUC, account for the marginal 

VehOperC incurred by the vehicle drivers throughout the PAP as a consequence of the 

deterioration of the pavement condition. In the proposed LCC model, the pavement 

roughness, as measured by the IRI, was used to estimate the RUC associated with the 

overall pavement surface condition. The following cost categories were considered to 

be contributors to the total usage phase costs: (1) FC; (2) tyre wear; (3) vehicle 

maintenance and repair; and (4) mileage-related vehicle depreciation. 

The first three costs categories were estimated by adopting the VehOperC model 

developed by Chatti and Zaabar (2012) as result of the calibration of the HDM-4 

VehOperC model to consider US conditions. 
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In order to allow for an automatic calculation of the usage phase costs categories and an 

easy integration with the remaining LCC sub-models, the Chatti and Zaabar’s model 

was run multiple times to compute a set of unit cost factors representing the usage phase 

costs originated by the full range of IRI values that are likely to be measured over the 

PAP in the three M&R strategies in comparison. The model runs were conducted in a 

step wise way, keeping the surface texture, pavement grade and unit traffic composition 

constant, but changing the temperature according to Stauton’s monthly average air 

temperature in the months of February, April and June. The generated unit cost factors 

referring to each usage phase cost category were plotted and trend lines following a 

linear equation were fitted to the data. The unit cost factors obtained by using those 

equations were then combined accordingly to derive, for each cost category, the unit 

cost factors representing both Stauton’s annual average climatic conditions and the road 

segments’ pavement condition. 

With regard to the mileage-related depreciable value, the study carried out by Barnes 

and Langworthy (2003) was used to estimate the effect of the pavement roughness on 

vehicle depreciation costs. It relies on the assumption that a vehicle driven almost 

exclusively on smooth highways will be able to travel more kilometres than one that is 

driven mostly on rough pavement. Therefore, since mileage-related depreciation reflects 

the loss in “life expectancy” of the vehicle as it is driven more, factors that reduce the 

ultimate number of kilometres that the car can be driven must be taken into account by 

increasing the rate at which the car depreciates. 

Expression (5.1) was incorporated into the LCC model to estimate the marginal effects 

of pavement roughness on the mileage-related depreciable value. It was developed by 

fitting a function in the form of Expression (5.1) to the adjustment factors reported by 

Barnes and Langworthy (2003) to estimate VehOperC as a function of pavement 

condition taking as baseline an IRI value of 1.2 m/km.
 
 



Chapter 5 A Comprehensive Life Cycle Costs Analysis of In-Place Recycling and  

Conventional Pavement Construction and Maintenance Practices 

 

166 

cIRIbIRIaAF ondepreciatirelatedMileage 
2

 (5.1) 

where ondepreciatirelatedMileageAF   is the adjustment factor that represents the effect of pavement 

roughness on VehOperC, and  is the International Roughness Index (m/km). The 

values of the parameters a, b and c were found to be 0.0125, 0.0225 and 0.9625, 

respectively. The value for 2R  in Expression (5.1) is 0.9966. 

5.3.1.2.6 End-of-life phase 

When a road pavement reaches its service life, it can be given two main destinations: 

(1) remain in place serving as support for a new pavement structure, and (2) be 

removed. Removed pavement materials are: (1) disposed of in a landfill (increasingly 

less adopted in the US), or (2) recycled and re-used either as a replacement for virgin 

aggregate base or as a replacement for virgin asphalt and aggregate in new HMA. 

From the LCCA perspective, these two alternatives can be considered mutually 

exclusive and entail different costs (or benefits) for the highway agencies that reflect the 

remaining worth of a pavement at the end of the PAP, or in other words, the salvage 

value. If the pavement is expected to remain in place after reaching the end of the PAP, 

the salvage value is designated as remaining service life value and refers to the value 

(positive cash flow) of the structural and functional life remaining in the pavement at 

the end of the PAP. On the other hand, if the pavement is expected to be demolished 

once the end of the PAP is reached, then the salvage value is designated as residual 

value and refers to either: (1) the net value of the recycled materials (the monetary value 

of the recycled materials minus the costs of removal, transportation and recycling) if the 

pavement debris is to be recycled, or (2) the sum of the costs resulting from the 

removal, transportation and landfilling of the pavement debris if the pavement is 

supposed to be landfilled. 

In the case study the most likely EOL scenario for the analysed pavement structure is 

that it will remain in place after reaching the end of the PAP, serving as the foundation 

IRI
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for the new pavement structure. Thus, the residual value of the pavement structure is 

given as the value of its remaining service life. The service life of the pavement was 

assumed to end when the IRI exceeds 3.16 m/km (200 in/mile), which according to the 

VDOT’s Highway System Performance Dashboard (VDOT, 2012) corresponds to the 

threshold ( alminTerIRI ) beyond which a ride is classified as “very poor”. 

In order to compute the value of the remaining service life, and thus, the residual value 

of the pavement at the end of the PAP, Expression (5.2) was adopted. It quantifies the 

residual value of the pavement as the proportion of the total HAC incurred due to the 

application of the last M&R activity equal to the proportion of the remaining life of that 

M&R activity (Walls and Smith. 1998). 

InitialalminTer

EOLalminTer
activityR&MLastphaseEOL

IRIIRI

IRIIRI
CC




  (5.2) 

where activityR&MLastC is the total HAC resulting from the application of the last M&R 

activity. This is obtained by adding up the costs incurred by the highway agency during 

the materials, M&R and transportation of materials phases associated with the last 

M&R activity; InitialIRI  is the IRI value of a new pavement (0.87 m/km); EOLIRI is the IRI 

of the pavement at the end of the PAP, and alminTerIRI
 is the IRI value beyond which a 

ride is classified as “very poor” (3.16 m/km). 

5.3.2 Life cycle costs computation 

Once all the cost categories associated with each M&R strategy under assessment were 

identified and calculated, the net present value (NPV) was computed to compare the 

M&R strategies according to their life cycle economic performance (Expression (5.3)). 

It allows expenses occurring at different points in time to be added up on a yearly basis 

by using a discount rate in the calculations to reflect the “time value of money”. 

In this case study a real discount rate of 2.3% was used. It follows the Office of 

Management and Budget (OMB)’s guidelines for conducting benefit-cost of federal 
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programs with durations longer than 30 years for the calendar year of 2011 (OMB, 

2013). 
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(5.3) 

where NPV  is the net present value of the total LCC of a given M&R strategy; i is the 

pavement life cycle phase; T is the number of years of the PAP; iX
 is a factor equal to 

one if i is not equal to the  phase, otherwise it is equal to zero; jX  is a factor equal 

to one if t  is lower or equal to , otherwise it is equal to zero;  tCijk  is the value in the 

year  of the costs subcategory  belonging to the costs category , accounted for 

during the pavement life cycle phase ; iNCostCateg  is the number of cost categories 

considered in the pavement life cycle phase ; ijtegNCostSubCa  is the number of costs 

subcategories belonging to the cost category  accounted for during the pavement life 

cycle phase , and;  tCEOLjk  is the value in the year  of the costs subcategory  

belonging to the costs category  accounted for during the  phase; EOLNCostCateg
 is the 

number of cost categories considered in the  phase; EOLjtegNCostSubCa  is the number of 

costs subcategories belonging to the cost category  accounted for during the  

phase, and is the discount rate. 

5.4 Results and discussion 

The following sections provide an overview and discussion of the outcomes obtained by 

applying the pavement LCC model to the case study. Firstly, the costs incurred by the 

several pavement stakeholders in each pavement life cycle phase are introduced. 

Secondly, the total LCC corresponding to each M&R strategy are presented and 
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compared. Thirdly, a sensitivity analysis is performed to enhance the understanding of 

the sensitivity of the results to variation of the input parameters. 

5.4.1 Costs per pavement life cycle phase 

5.4.1.1 Materials extraction and production phase 

Table 5.7 shows the present value (PV) of the LCC incurred by the highway agency 

during the materials extraction and production phase corresponding to each M&R 

strategy. They are estimated at approximately $2,438,588 for the recycling-based M&R 

strategy, $4,538,675 for the traditional reconstruction M&R strategy, and $4,737,806 

for the corrective maintenance M&R strategy. According to these values, the recycled-

based M&R strategy would allow highway agency savings throughout the pavement life 

cycle of about $2,299,217 (49%) and $2,100,086 (46%) with regards to the expenses 

incurred during the homologous phase of the corrective maintenance and traditional 

reconstruction strategies, respectively.  

Regarding the contributions of the various categories to the total cost, the raw materials 

were found to be by far the main costs driver of this pavement life cycle phase. Its 

contribution ranges between 87% (traditional reconstruction and corrective maintenance 

strategies) and 88% (recycling-based strategy), whereas the costs incurred with the 

remaining categories do not exceed 6% of the total share in all M&R strategies. 

To give insights into which elements are behind this high contribution and to what 

extent they dominate the costs incurred by highway agencies during this life cycle 

phase, Figure 5.1 shows the breakdown of the PV of the total life cycle raw materials 

costs. As can be seen, the majority of the costs assigned to this category are due to the 

consumption of the asphalt binder. It represents 76%, 65% and 76% of the PV of the 

total life cycle raw materials costs corresponding to the recycling-based, traditional 

reconstruction and corrective maintenance M&R strategies, respectively. On the other 

hand, the consumption of aggregates although being 16, 28 and 17 times greater (in 

mass)  than the consumption of asphalt binder represents merely 19%, 33% and 21% of 

the PV of the total life cycle raw materials costs. Therefore, the adoption of construction 
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and M&R solutions that do not rely exclusively on the application of virgin bituminous-

related materials, such as in-situ recycling techniques, has been demonstrated to be an 

effective way of lowering highway agency expenditures. 

Table 5.7- Materials extraction and production phase costs per cost category for each M&R 

strategy. 

M&R strategy 
Asphalt plant operation costs ($) 

Raw materials ($) Energy ($) Total ($) 
Fixed Variable 

Recycling-based 140,995 (6%) 68,837 (3%) 2,143,750 (88%) 85,006 (3%) 2,438,588 

Traditional reconstruction 274,610 (6%) 134,072 (3%) 3,964,745 (87%) 165,247 (4%) 4,538,675 

Corrective maintenance 305,642 (6%) 149,222 (3%) 4,098,819 (87%) 184,122 (4%) 4,737,801 

 

 

Figure 5.1- Breakdown of the raw material cost category for each M&R strategy. Legend: PV- 

present value. 

5.4.1.2 Construction, maintenance and rehabilitation phase 

Table 5.8 displays the PV of the LCC incurred by the highway agency during the 

construction and M&R phase corresponding to each M&R strategy. The total costs 

associated with the ownership and operation of the construction equipment over the 

pavement life cycle ranges from $358,230, for the recycling-based strategy, to $726,126 

for the traditional reconstruction strategy. The majority of the costs incurred by the 

highway agency during this phase are labour costs (38%-42%), followed by fuel 
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consumed (17%-18%), construction equipment repairs (15%) and the construction 

equipment depreciation costs (12%-13%), respectively. The costs associated with the 

allocation of the construction equipment to the work site represent a small share of the 

total costs (6%-7%), whereas the contribution of the remaining subcategories is almost 

negligible (less than 2%). 

Looking at the life cycle construction and M&R costs associated with the application of 

the various competing M&R strategies, the recycling-based strategy reveals a 

remarkable economic advantage over the traditional reconstruction and corrective 

maintenance strategies. It would allow life cycle highway agency savings of about 51% 

and 31%, respectively. 

Table 5.8- PV of the LCC incurred by the highway agency during the construction and M&R phase 

per cost subcategory for each M&R strategy. 

M&R strategy 
Owning costs ($) 

Depreciation Interest Insurance Taxes 

Recycling-based 44,100 (12%) 1,744 (0%) 8,158 (2%) 5,439 (6%) 

Traditional Reconstruction 92,741 (13%) 3,755 (1%) 17,857 (2%) 11,904 (2%) 

Corrective Maintenance 60,641 (12%) 2,387 (0%)  10,990 (2%) 7,327 (1%) 

(continued) 

M&R strategy 

Operating costs ($) 

Labour ($) Totala ($) 
FC 

PlM and 

FOG 
Repair 

Tyre 

wear 

Special 

wear items 
Mobilization 

Recycling-based 
65,422 

(18%) 

7,742 

(2%) 

54,175 

(15%) 

4,724 

(1%) 

1,943 

(1%) 

21,428 

(6%) 

143,355 

(40%) 

358,230 

(100%) 
Traditional 

Reconstruction 

131,415 

(18%) 

16,129 

(2%) 

109,764 

(15%) 

9,024 

(1%) 

13,313 

(2%) 

42,373 

(6%) 

277,852 

(38%) 

726,126 

(100%) 

Corrective 
Maintenance 

87,596 
(17%) 

10,423 
(2%) 

75,996 
(15%) 

9,273 
(2%) 

859 
(0%) 

34,727 
(7%) 

221,890 
(42%) 

522,108 
(100%) 

Legend: PV- present value; FC- fuel consumption; LCC- life cycle costs; M&R- maintenance and rehabilitation; PlM and FOG- 

planned maintenance and filters, oil and greases. 

Notes: aIt corresponds to the sum of the costs associated with the ownership and operation of the construction equipment, including 
the labour costs. 

5.4.1.3 Transportation of materials phase 

Table 5.9 summarises the PV of the LCC incurred by highway agency during the 

transportation of materials phase corresponding to each M&R strategy. The results 

presented in Table 5.9 show that the bulk of the materials transportation costs comes 

from the labour costs category, which was found to be 53%-55% of the total life cycle 
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transportation of materials costs. The two remaining costs categories (i.e., owning and 

operating costs) represent nearly 9 % and 37% of the total LCC incurred during this 

phase. The main contributors to these outcomes are hauling trucks depreciation costs 

(5%-6%) and the cost of the fuel consumed (25%-26%), respectively. The plausibility 

of such results is sustained by the American Transportation Research Institute (ATRI) 

that reports, on an annual basis, the operational costs of trucking. According to the 2013 

updated version of this report (Fender and Pierce, 2013), driver wages and fuel costs 

were also found to be the main costs incurred by motor carriers in 2011. 

When comparing the various M&R strategies according to their economic performance 

during this pavement life cycle phase, the recycling-based strategy evidences an 

outstanding performance in comparison to that of the competing alternatives. For the 

conditions considered in this study a reduction of approximately 66% and 51% in the 

total life cycle materials transportation costs can be achieved compared to those of 

traditional reconstruction and corrective strategies, respectively. 

Table 5.9- PV of the LCC incurred by the highway agency during the transportation of materials 

phase per cost subcategory for each M&R strategy. 

M&R strategy 
Owning costs ($) 

Depreciation Interest Insurance Taxes 

Recycling-based 13,353 (6%) 854 (0%) 4,415 (2%) 2,944 (1%) 

Traditional Reconstruction 35,061 (5%) 2,442 (0%) 13,046 (2%) 8,697 (1%) 

Corrective Maintenance 25,902 (5%) 1,727 (0%) 9,070 (2%) 6,047 (1%) 

(continued) 

M&R strategy 
Operating costs ($) 

Labour ($) Totala ($) 
FC PlM and FOG Repair Tyre wear 

Recycling-based 61,786 (26%) 7,353 (3%) 14,581 (6%) 3,234 (1%) 124,704 (53%) 233,224 (100%) 

Traditional 

Reconstruction 
176,404 (26%) 20,992 (3%) 40,182 (6%) 9,262 (1%) 379,527 (55%) 685,612 (100%) 

Corrective 

Maintenance 
119,971 (25%) 14,277 (3%) 29,357 (6%) 6,627 (1%) 258,988 (55%) 471,965 (100%) 

Legend: PV- present value; FC- fuel consumption; LCC- life cycle costs; M&R- maintenance and rehabilitation; PlM and FOG- 
planned maintenance and filters, oil and greases. 

Notes: aIt corresponds to the sum of the costs associated with the ownership and operation of the construction equipment, including 

the labour costs. 
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5.4.1.4 Work-zone traffic management phase 

Table 5.10 illustrates the PV of the additional life cycle WZ traffic management costs 

associated with the application of M&R activities. As can be seen in this Table, the 

TDC are the main contributors to the life cycle WZ traffic management costs. This 

result is strongly attributable to the cost of the additional time required to creep through 

the queues under forced flow conditions and to transverse both the WZ and the detour at 

the lower posted speed. They represent 62%-68% and 11%-17%, respectively, of the 

total life cycle RUC incurred during this pavement life cycle phase. Less expressive 

than the previous subcategories but equally worthy of mention is the relative importance 

of the cost of the fuel consumed within the set of costs that constitute the WZ traffic 

management phase costs. With a LCC ranging between $855,968 (recycling-based 

M&R strategy) and $1,678,343 (traditional reconstruction M&R strategy), it was found 

to be responsible for 9%-10% of the life cycle RUC accounted for this phase. In 

contrast, several cost subcategories, such as vehicle maintenance and repair costs and 

mileage-related vehicle depreciation costs had a negligible share of the total costs 

(slightly greater than 0%). 

Table 5.10- PV of the marginal life cycle RUC incurred during the WZ traffic management phase 

per cost subcategory for each M&R strategy. 

M&R strategy 

VehOperC ($)   

 TDC ($) Total ($) 
FC 

Oil 

consump

. 

Tyre 
wear 

Vehicles 

maintenance 
& 

repair 

Vehicles 

time-related 

depreciation 

Vehicles 

mileage-
related 

depreciation 

Recycling-

based 

855,968 

(9%) 

86,414  

(1%) 

43,084 

(0%) 

152 

(0.0017%) 

851,363 

(9%) 
19,460 (0%) 

7,265,082 

(80%) 

9,121,523 

(100%) 
Traditional 

Reconstruction 

967,485 

(10%) 

96,855 

(1%) 

50,777 

(1%) 

182 

(0.0018%) 

935,501 

(9%) 
24,388 (0%) 

8,033,503 

(79%) 

10,108,69

2 (100%) 

Corrective 
Maintenance 

1,678,343 
(9%) 

268,001 
(1%) 

117,69
3 (1%) 

392 
(0.0021%) 

1,736,790 
(9%) 

30,020 (0%) 
14,663,04
9 (79%) 

18,494,28
7 (100%) 

Legend: PV- present value; RUC- road user costs; WZ- work-zone; M&R- maintenance and rehabilitation; VehOperC- vehicle 

operation costs; FC- fuel consumption; Oil consump.- oil consumption; TDC- time delay costs.  

 

Regarding the economic performance of the competing M&R strategies, the recycling-

based strategy was found to outperform the remaining ones, giving road user savings of 

$987,168 (10%) and $9,372,764 (51%) compared to the expenses incurred during the 

homologous phase of the traditional reconstruction and corrective maintenance 
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strategies, respectively. When compared with the traditional reconstruction strategy, its 

advantage results from the lower time required to complete the recycling-based M&R 

activity compared to that of the traditional reconstruction. On the other hand, the 

corrective maintenance strategy exhibited the poorest economic performance. From the 

broader point of view of the life cycle, this M&R strategy is particularly penalizing for 

the road users due to the greater number of M&R activities that need to be performed 

during this M&R strategy compared to that for the other M&R strategies. 

5.4.1.5 Usage phase 

Table 5.11 illustrates the PV of the marginal life cycle usage phase costs per cost 

category for each M&R strategy. From the results in Table 5.11, the corrective 

maintenance M&R strategy was found to be the least suitable for the road users, as it 

requires vehicle owners to spend $1,061,820 (43%) more throughout the pavement life 

cycle than predicted in the same time period for either a recycling-based or a traditional 

reconstruction M&R strategy. The fact that the recycling-based and traditional 

reconstruction M&R strategies entail the same life cycle roughness-related RUC is 

related to the schedule and features of the M&R actions included in the M&R strategies, 

and respective consequences on pavement performance. As thoroughly discussed in 

Chapter 4 (Santos et al., 2015) both M&R strategies are expected to have the same 

pavement deterioration pattern.  

Table 5.11- PV of the marginal life cycle RUC due to pavement roughness per cost category for 

each M&R strategy. 

M&R strategy FC ($) 
Tyre wear 

($) 

Vehicles maintenance 

& repair ($) 

Vehicles mileage-

related depreciation ($) 
Total ($) 

Recycling-

based 

1,465,882 

(30%) 

96,674 

(2%) 
0 (0%) 902,588 (18%) 

2,465,14

5 (100%) 

Traditional 

Reconstruction 

1,465,882 

(59%) 

96,674 

(4%) 
0 (0%) 902,588 (37%) 

2,465,14

5 (100%) 

Corrective 

Maintenance 

2,067,987 

(59%) 

136,383 

(4%) 
0 (0%) 1,322,595 (37%) 

3,526,96

4 (100%) 
Legend: PV- present value; RUC- road user costs; M&R- maintenance and rehabilitation; FC- fuel consumption. 
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An interesting result from Table 5.11 is the fact that no additional vehicle maintenance 

and repair costs are expected to be incurred throughout the 50-year PAP. Although this 

seems unlikely, it can be explained because: (1) Chatti and Zaabar (2012) showed that 

there is no effect of roughness on vehicle maintenance and repair costs up to an IRI of 3 

m/km and (2) according to the roughness prediction models developed in Chapter 4 

(Santos et al., 2015) and applied in this case study, the pavement roughness, as 

measured by IRI, is never expected to reach that threshold value throughout the life 

cycle of any M&R strategy.  

In contrast to the vehicle maintenance and repair costs category, the greatest share of the 

life cycle usage phase costs is attributable to FC, which amounts to 59%. On the other 

hand, tyre wear costs show a reduced relative contribution (4%), whereas the vehicle 

mileage-related depreciation costs category exhibits an intermediate relevance by 

accounting for 37% of the PV of the total LCC. 

5.4.1.6 End-of-life phase 

Table 5.12 presents the PV of the EOL phase costs for each M&R strategy. In this case 

study, the EOL phase costs represent the salvage value of the pavement structures and 

are given as the value of the remaining service life. Thus, they are better designated as a 

credit given to the highway agency rather than a cost incurred by this authority. This 

explains the negative values of the cost displayed in Table 5.12. As can be seen in this 

table, regardless of which M&R strategy is adopted, the IRI value at the end of the PAP 

is approximately the same and the EOL costs are practically negligible when compared 

with the most relevant costs components. However, as the discounted total cost incurred 

by the highway agency with the application of the last M&R activity is lower for the 

corrective maintenance strategy than for the remaining competing strategies, the former 

M&R strategy entails a credit to the highway agency that is approximately 11% lower 

than that associated with the recycled-based and traditional reconstruction strategies. 
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Table 5.12- PV of the EOL cost incurred by the highway agency for each M&R strategy. 

M&R strategy 
Total HAC corresponding to the last M&R 

Activity ($) 

IRI at EOL 

(m/km) 

EOL cost [Remaining 

service life value] ($) 

Recycling-based 163,363 1.03 - 151,932 

Traditional 

reconstruction 
163,363 1.03 - 151,932 

Corrective 

maintenance 
145,394 1.02  - 135,856 

Legend: PV- present value; EOL- end-of-life; M&R- maintenance and rehabilitation; HAC- highway agency costs; IRI- 

international roughness index. 

5.4.2 Total life cycle costs 

Figure 5.2 compares the NPV of the LCC for the three M&R strategies and the 

distribution per pavement life cycle phase. Table 5.13 shows the difference in the PV of 

the LCC associated with each phase of the recycled-based strategy in relation to those 

of the traditional reconstruction and corrective maintenance strategies. Those results are 

to be understood as follows: negative relative numbers mean that the recycling-based 

M&R strategy allows for cost savings in relation to the expenditures associated with the 

traditional reconstruction and corrective maintenance strategies, while positive numbers 

represent additional costs. 

With a life cycle PV of about $14.465 million, the recycling-based strategy is the least 

costly M&R strategy, with life cycle net savings of $3.908 million (21%) and $13.152 

million (48%) compared to the expenses incurred with the adoption of traditional 

reconstruction and corrective maintenance strategies, respectively. In absolute value, the 

majority of the economic advantage the recycling-based strategy’s life cycle has over 

the traditional reconstruction strategy is obtained during the materials phase (less 

$2.100 million), mostly as a consequence of a reduction in the consumption of 

bituminous-related materials. In relative terms, the largest cost saving happens during 

the transportation of materials phase (66%). With respect to the decrease in the 

expenditures that are expected to be achieved by implementing the recycling-based 

strategy in detriment of a corrective maintenance M&R strategy, the reduction of the 

WZ traffic management phase costs (less $9.373 million) is the main factor behind this 

result in absolute value, whereas in relative terms, the transportation of materials and 
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WZ traffic management phases are both responsible for the most meaningful LCC 

reduction (51%). 

 

Figure 5.2- Breakdown of the NPV of LCCs of each M&R alternative per pavement life cycle 

phase. 

Table 5.13- Difference between the PV of the LCC associated with each phase of the recycled-based 

strategy and those of the traditional reconstruction and corrective maintenance strategies. 

M&R strategy 

Pavement life cycle phase 

Total 
Materials 
extraction and 

production 

Construction 

and M&R 

Transportation of 

materials 

WZ Traffic 

management 
Usage EOL 

Traditional 

reconstruction 
-2.100 (-46%) -0.368 (-51%) -0.452 (-66%) -0.987 (-10%) 0 (0%) 0 (0%) 

-3.908 

(-21%) 
Corrective 

maintenance 
-2.299 (-49%) 0.164 (31%) -0.239 (-51%) -9.331 (-51%) 

-1.062 

(-30%) 

-0.016 

(-12%) 

-13.152 

(-48%) 

Legend: PV- present value; LCC- life cycle costs; M&R- maintenance and rehabilitation; WZ- work-zone; EOL- end-of-life. 

 

To give pavement stakeholders a better perception of the costs borne by highway 

agencies and road users when one M&R strategy is preferred over another, Figure 5.3 

depicts the PV of the total LCC split into HAC and RUC. Two interesting facts are: (1) 

the traditional reconstruction strategy is more costly to the highway agencies than the 

corrective maintenance strategy, and (2) the lower preponderance of the usage phase 

(16%-21%) in driving the total RUC in comparison to that of the WZ traffic 

management phase (79%-84%). 
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With respect to the former, despite the greater number of M&R activities that need to be 

implemented throughout the PAP in the case of the corrective maintenance strategy, 

such a result can be explained by the fact that the reconstruction activity requires the 

removal, and consequent transportation, of all the materials applied in the existing 

subgrade/base. Therefore, the economic benefit resulting from the materials phase as a 

consequence of the reduction of the number of required M&R activities is offset by the 

greater operation time associated with the material removal. 

  

(a)       (b) 

Figure 5.3- PV of the life cycle highway agency costs (a), and RUC (b). Legend: PV- present value. 

               

To explain the second outcome, two main reasons can be pointed out. First, the WZ 

traffic management plan implemented during all the M&R activities of any M&R 

strategy was exclusively designed to be efficient in dealing with the traffic demand 

existing in the year 0 of the PAP. In other words, it is unable to prevent road users and 

freight from experiencing substantial delays when facing the M&R events scheduled for 

the next years. Second, either M&R strategy allows the pavement condition throughout 

the PAP to be kept at an IRI level lower than 3 m/km. As mentioned previously this IRI 

value is the threshold after which the vehicle maintenance and repair costs will start to 

be incurred by vehicle owners (Chatti and Zaabar, 2012). This fact is particularly 

important given that Islam and Buttlar (2012) have shown that for IRI values greater 

 $2.88  

 $5.80   $5.60  

 (5)

 -

 5

 10

 15

 20

 25

Recycling-based Traditional

Reconstruction

Corrective

Maintenance

P
V

 (
M

$
) 

M&R Strategy 

Materials Production and Extraction
Construction and M&R
Transportation of Materials
End-of-Life
Total Highway Agency Costs

 $11.59  

 $12.57  

 $22.02  

0

5

10

15

20

25

Recycling-based Traditional

Reconstruction

Corrective

Maintenance

P
V

 (
M

$
) 

M&R Strategy 

Roughness-related User Costs

WZ User Costs

Total Road User Costs



Chapter 5 A Comprehensive Life Cycle Costs Analysis of In-Place Recycling and  

Conventional Pavement Construction and Maintenance Practices 

 

179 

than 3 m/km this cost category may amount to about 58% to 62% of the total usage 

phase costs. Consequently, its inexistence strongly contributes for the reduction of the 

total RUC incurred during the usage phase. 

To further elaborate on the potential cost differences arising from implementing the 

recycling-based activity as opposed to the traditional reconstruction activity, the results 

were separated into the materials extraction and production, transportation of materials, 

construction and M&R, and WZ traffic management phases. In doing so, the costs 

incurred by highway agencies and road users due to the M&R activities that are 

expected to take place in the remaining years of the PAP were disregarded. Figure 5.4 

presents the costs of the two M&R activities broken down by pavement life cycle 

phases. Table 5.14 presents the difference in the costs associated with the recycling-

based M&R activity compared to the traditional reconstruction M&R activity, presented 

in absolute values and as a percentage. These results should be interpreted in the same 

way as those displayed in Table 5.13. 

 

Figure 5.4- Costs of the recycling-based and traditional reconstruction M&R activities broken 

down per pavement life cycle phase. Legend: PV- present value; M&R- maintenance and 

rehabilitation; WZ- work-zone. 
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Table 5.14- Difference between the costs corresponding to recycling-based M&R activity and those 

of the traditional reconstruction M&R activity (K $/lane-km). 

Pavement life cycle phase 

Total  Materials  extraction and 

production 

Construction 

and M&R 

Transportation of 

materials  

WZ Traffic 

management  

-178.162 (-67%) -31.442 (-65%) -38.352 (-83%) -83.658 (-35%) -331.614 (-55%) 
Legend: M&R- maintenance and rehabilitation; WZ- work-zone. 

 

Looking at the results presented in Figure 5.4 and Table 5.14 from the perspective of the 

highway agency, it can be seen that the most meaningful cost savings, in absolute 

values, from applying the recycling-based M&R activity comes in the materials phase. 

It shows a reduction of $178.162 thousands/lane-km, or 67% of the costs incurred 

during the homologous phase of the traditional reconstruction M&R activity. However, 

if the analysis is carried out on a relative basis, then the transportation of materials 

phase would lead highway agencies to the greatest cost savings, as the transportation 

costs are expected to decrease by 83%, which in absolute value corresponds to a 

reduction from $46.416 thousands/lane-km to $8.065 thousands/lane-km.  

As for the road users, Figure 5.4 and Table 5.14 unsurprisingly reveal that the adoption 

of the recycling-based M&R activity in lieu of the traditional reconstruction can also be 

beneficial. Although less expressive than the savings for highway agencies, road users 

are likely to benefit from a costs reduction that amounts to $83.658 thousands/lane-km 

(35%).  

5.4.3 Sensitivity analysis 

A sensitivity analysis was conducted to examine how variations across a set of 

parameters and assumptions affect the robustness of the reported outcomes, and thereby, 

the relative merits of the alternatives being considered and compared. 

Based on the costs drivers identified in the previous sections and the critical 

assumptions common to any LCCA, the potential effects on the LCC due to the 

variation in the value of the following parameters were analysed: (1) discount rate; (2) 

bituminous materials costs (BMC); (3) TDC; and (4) hauling distance of the virgin 



Chapter 5 A Comprehensive Life Cycle Costs Analysis of In-Place Recycling and  

Conventional Pavement Construction and Maintenance Practices 

 

181 

aggregates. Each single parameter was varied uniformly on a unit-by-unit basis from the 

established baseline value in the positive and negative direction, while holding all others 

at their average values. An exception to this methodological procedure was considered 

in the case of the hauling distances of the virgin aggregates. The influence of this 

parameter on the results was assessed by considering three distinct values (20 km, 50 

km and 80 km) in addition to the baseline value (0.6 km). 

Figure 5.5 presents the impacts of varying the discount rate and BMC, ± 60%, on the 

HAC. It can be seen that the recycling-based strategy’s LCC advantage over the 

remaining M&R strategies is robust even when considerable relative changes in the 

parameter values were tested against the baseline values. Unless a very high discount 

rate is considered, the recycling-based strategy is always preferable for the highway 

agency. In contrast, the relative differences in the economic performance of the 

remaining M&R strategies denote some volatility as the discount rate and BMC are 

changed. If the increase in the costs of the BMC exceeds approximately 35% of the 

baseline value, the corrective maintenance strategy would become more attractive than 

the traditional reconstruction strategy. A similar consequence is observed when the 

discount rate varies more than approximately -15% (in absolute value) in relation to the 

baseline value. Finally, Figure 5.5 also shows that the HAC are more sensitive to 

changes in the BMC than in the discount rate, as can be seen from the steeper slope of 

the curves representing the impacts of varying the first input on the HAC. 

Figure 5.6 depicts the sensitivity of changes in discount rate and TDC on RUC. The 

analysis indicates that overall neither the TDC nor the discount rate are critical 

parameters when evaluating the relative differences between the RUC over the ± 60% 

sensitivity range. However, a more careful analysis of the behaviour of the curves 

shows that the disadvantage of the corrective maintenance strategy over the remaining 

alternatives is attenuated as the discount rate and the TDC increase and decrease, 

respectively. The corrective maintenance strategy requires more M&R events 

throughout the PAP but its first M&R event is less time consuming than the 

homologous event in the competing alternatives. This fact explains why at higher 
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discount rates the economic performance of all M&R strategies tends to become closer. 

With regard to the influence of the TDC on the RUC, the results suggest that for the 

conditions considered in this case study, at higher TDC the effect of the number of 

M&R events prevails over the effect of their duration. 

 

Figure 5.5- Sensitivity analysis of total HAC. Legend: HAC- highway agency costs; DR- discount 

rate; BMC- bituminous materials costs. 

 

 

Figure 5.6- Sensitivity analysis of RUC. Legend: RUC- road user costs; DR- discount rate; TDC- 

time delay costs. 

 

 -

 1

 2

 3

 4

 5

 6

 7

 8

-60% -40% -20% 0% 20% 40% 60%

M $ 

Percentage change in input value 

Recycling-based: DR Recycling-based: BMC

Traditional Reconstruction: BMC Traditional Reconstruction: DR

Corrective Maintenance: DR Corrective Maintenance: BMC

 -

 5

 10

 15

 20

 25

 30

 35

-60% -40% -20% 0% 20% 40% 60%

M $ 

Percentage change in input value 

Recycling-based: DR Recycling-based: TDC

Traditional Reconstruction: DR Traditional Reconstruction: TDC

Corrective Maintenance: DR Corrective Maintenance: TDC



Chapter 5 A Comprehensive Life Cycle Costs Analysis of In-Place Recycling and  

Conventional Pavement Construction and Maintenance Practices 

 

183 

A similar study was conducted which aims to evaluate how the economic benefits 

resulting from implementing the recycling-based M&R activity in lieu of the traditional 

reconstruction M&R activity (see Table 5.14) varies as a function of changes in the 

value of (1) BMC, (2) transportation distance of the virgin aggregates, and (3) TDC. 

Unlike the previous analyses, the influence of the discount rate on the outcomes was not 

assessed because the two alternative M&R activities are undertaken in year 0 of the 

PAP. On the other hand, the analysis includes the assessment of the impacts on the 

highway agency costs resulting from considering different values of the transportation 

distance of virgin aggregates. Although it is not as important as the BMC, the economic 

competitiveness of in-place pavement recycling techniques is also affected by material 

transportation costs and how such costs compare to the cost of new virgin material 

delivered to the construction site. The recycling project analysed in this case study did 

not take full advantage of this common feature of in-place recycling techniques given 

that quarry that supplied the aggregates consumed during the project was inside the 

boundary of the asphalt plant facility. To provide insights into the magnitude of the 

influence of this parameter on the highway agency costs, three distinct transportation 

distance values of virgin aggregates were considered (20 km, 50 km and 80 km) in 

addition to the baseline value (0.6 km). 
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(c) 

Figure 5.7- Sensitivity analysis of the economic benefits resulting from applying the recycling-based 

M&R activity in lieu of the traditional reconstruction M&R activity, due to variability in: (a) BMC; 

(b) transportation distance of the virgin aggregates, and (c) TDC. Legend: HAC- highway agency 

costs; RUC- road user costs; WZ- work-zone; BMC- bituminous materials costs; TDC- time delay 

costs. 

 

Unsurprisingly, the results presented in Figure 5.7(a) underline the importance of the 

BMC in driving the superior economic performance demonstrated by the recycling-

based M&R activity. In a theoretical scenario where the costs of the binder and 
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importance of the transportation distance of virgin aggregates to the economic 

advantage associated with the transportation of materials phase is not as expressive as 

the BMC to the total economic benefit of the recycling-based M&R activity, we should 

bear in mind that this analysis only addresses the influence of the transportation distance 

of virgin aggregates. Additional costs savings are expected to be incurred during this 

pavement life cycle phase if the transportation distances of the asphalt mixtures were 

greater than those considered in this case study.  

Finally, from Figure 5.7(c) it can be concluded that changes in the TDC lead to similar 

relative costs savings experienced by the road users during the WZ traffic management 

phase. For example, when the TDC increase by 60%, the RUC savings increase by 

47%. This value is greater than the relative savings (27%) made by the highway agency 

during the materials phase when the BMC increases accordingly. 

5.4.4 Key findings 

From the results presented and thoroughly discussed in the previous sections, the 

following findings were identified:  

 the recycling-based M&R strategy is the least costly M&R strategy, allowing 

life cycle net savings of 21% and 48% compared to the expenses incurred with 

the adoption of the traditional reconstruction and corrective maintenance 

strategies; 

 the recycling-based M&R strategy significantly enhances the overall economic 

performance of the pavements over the life cycle by lowering the costs incurred 

during the materials transportation and materials extraction and production 

phases, independently of whether the analysis is carried out from the perspective 

of relative or absolute values;  

 although the corrective maintenance strategy costs road users more 9 % than the 

traditional reconstruction, it was found to be 4% less costly to the highway 

agencies than the traditional reconstruction strategy; 
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 regardless of the type of M&R strategy adopted, the main LCC incurred by 

highway agencies and road users are due to materials extraction and production 

and WZ traffic management phases, respectively; 

 the cost of the bituminous-related materials was found to be the main cost driver 

of the materials phase costs, whereas the TDC have the greatest impact on the 

WZ traffic management phase’s economic performance; 

 the life cycle RUC can be as much as 4 times greater than the LCHAC; 

 a reduction of 67% in the costs incurred by highway agencies during the 

materials extraction and production phase can be achieved by undertaking the 

recycling-based M&R activity in lieu of the traditional reconstruction M&R 

activity; 

 the recycling-based strategy’s LCC advantage over the remaining M&R 

strategies is robust even when considerable relative changes in the discount rate, 

TDC and BMC values were tested against the baseline values; 

 if the transportation distance of the virgin aggregates increases to 50 km and 

80Km, the HAC savings will increase by 37% and 61%, respectively, when the 

recycling-based M&R activity is adopted in lieu of the traditional reconstruction 

M&R activity. 

5.5 Summary and conclusions 

This chapter presents the development of a cradle-to-grave and comprehensive LCC-

based decision support tool that can assist DMs in determining whether current interest 

in the adoption of more environmentally-friendly construction and M&R practices leads 

to an increase in the expenditures incurred by the different pavement stakeholders. 

Rather than relying on aggregated inputs, the proposed model allows for the 

disaggregation of the costs of new construction and M&R techniques and materials, not 

only in terms of the pavement life cycle phases where they are incurred, but also from 

the perspective of the delivery cost’s upstream supply chain.  
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The chapter showed that through a step-wise and thorough analysis, the proposed LCC 

model can be applied to calculate and compare several categories of costs incurred by 

the highway agencies and road users arising from assumptions and parameters 

considered across a wider range of the processes modelled throughout six pavement life 

cycle phases: (1) materials extraction and production; (2) construction and M&R; (3) 

transportation of materials; (4) WZ traffic management; (5) usage; and (6) EOL. 

The proposed LCC model was applied to quantify the economic benefits of an in-place 

pavement recycling rehabilitation project. The results of the LCCA of three competing 

M&R strategies for a pavement segment show that, for a rehabilitation project with 

features similar to those of the case study introduced in this chapter, the implementation 

of recycling-based M&R strategies has the potential to be simultaneously advantageous 

from the environmental and economic perspectives. In addition to the environmental 

benefits previously acknowledged in Chapter 4 (Santos et al., 2015), those rehabilitation 

solutions proved to be also efficient in lowering the total LCC incurred both by highway 

agencies and road users.  

From the perspective of the highway agencies, the majority of the economic advantage 

the recycling-based strategy’s life cycle has over the competing alternatives is expected 

to be obtained during the materials phase, essentially due to the reduction in the 

consumption of bituminous-related materials. From the road users’ perspective, the WZ 

traffic management phase has a more significant impact than the usage phase, as it 

provides the greatest source of RUC savings thanks to the reduction of the TDC.  

A sensitivity analysis was undertaken to assess the robustness of the outcomes in 

response to variations in some of the most relevant input values. The analysis has shown 

that variances to the key assumptions applied within LCC analysis do not alter the cost 

advantage of the recycling-based M&R strategy’s life cycle over the remaining M&R 

strategies. 

To guide highway agencies towards an optimised allocation of resources while meeting 

the environmental concerns, future work on this topic should focus on the development 

of a MOO-based framework that integrates this LCC model in a systematic and parallel 
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way with an upgraded version of the pavement LCA model presented in Chapter 4 

(Santos et al., 2015). 
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Chapter 6  

Environmental and Economic 

Assessment of Pavement 

Construction and Management 

Practices for Enhancing Pavement 

Sustainability 

6.1 Introduction 

With the recent launch of the Build America Investment Initiative (White House, 2014), 

a US government-wide initiative that aims to tackle the pressing infrastructure 

investment needs of the US as well as to promote economic growth, many DOTs will 

likely renew their efforts both in the construction of new highway infrastructures and in 

the maintenance of those already built. 

The activities underlying to the construction, operation and maintenance of highway 

infrastructures are notorious for the large amounts of natural materials and energy 

resources they consume, as well as for the considerable environmental impacts they 
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generate (BCRB and HCA, 2011). In addition, the strong and growing evidence of the 

environmental effects of these activities along with stringent environmental regulations 

has strengthened the commitment of DOTs in delivering infrastructures in a more 

environmentally-friendly way, while also using funds in the most economically 

responsible manner possible. This fact has motivated DOTs, and the pavement 

community in general, to investigate strategies that improve the environmental 

performance and reduce the costs of road pavement construction and maintenance 

practices by using sustainable engineering solutions. Some examples of solutions 

commonly mentioned in the literature that possess the potential to improve pavement 

sustainability include (but are not limited to): (1) asphalt mixes requiring lower 

manufacturing temperatures, such as WMA (Kristjánsdóttir et al., 2007; Hamzah et al., 

2010; Tatari et al., 2012; Vidal et al., 2013; Mohammad et al., 2014; Rodríguez-Alloza 

et al., 2015) and half-warm mix asphalt (HWMA) technologies (Rubio et al., 2013); (2) 

in-place pavement recycling (Thenoux et al., 2007; Robinette and Epps, 2010; Santos et 

al., 2015b); (3) pavement preservation strategies and preventive treatments (Giustozzi et 

al., 2012); (4) long-lasting pavements (Lee et al., 2011; Sakhaeifar et al., 2013); (5) 

reclaimed asphalt pavement (RAP) materials (Lee et al., 2010; Aurangzeb et al., 2014); 

(6) reclaimed asphalt shingles (RAS) materials (Illinois Interchange, 2012); (7) 

industrial wastes and byproducts (Birgisdóttir et al., 2006; Carpenter et al., 2006; 

Carpenter and Gardner, 2009; Huang et al., 2009; Lee et al., 2010; Sayagh et al., 2010; 

Mladenovič et al., 2015), etc. 

Despite the fact that the majority of the results of those studies have to some extent 

corroborated the environmental benefits with which they are a-priori associated, it is not 

uncommon that they have been obtained by applying methodologies that disregarded 

the environmental burdens of some processes and pavement life cycle phases. Added to 

this, as the primary goal of a transportation agency still remains to provide maximum 

pavement performance within budgetary constraints, a solution which is found 

environmentally advantageous might not be preferred to another one technically 

equivalent if it is not economically competitive. Furthermore, there are still some 
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questions about (1) the extent to which such solutions are cost effective throughout their 

life cycle, (2) which factors are the key drivers of their economic performance, and (3) 

who are the  stakeholders that benefit most from the application of those solutions. 

Facing this bicephalous challenge and providing answers to the aforementioned 

questions requires multidimensional life cycle modelling approaches, such as LCA and 

life cycle costing, which enable long-term economic and environmental factors to be 

included in the decision- making process by providing a comprehensive and cumulative 

view of both the environmental and economic dimensions of a given technical solution. 

However, it is important to underline that life cycle modelling approaches by 

themselves will not necessarily determine which solution is most suitable for a given 

purpose. Rather, the information that they make available should be used as one 

component of a more comprehensive decision-making process, which among other 

merits, will allow the tradeoffs between the interests of the multiple stakeholders to be 

assessed. 

6.2 Objectives 

The main objective of this chapter is to investigate from a life cycle perspective the 

extent to which several pavement engineering solutions, namely hot in-plant recycling 

mixtures, WMA, CCPR and preventive treatments, are efficient in improving the 

environmental and economic dimensions of pavement infrastructure sustainability, 

when applied either separately or in combination, in the construction and management 

of a road pavement structure. 

For this purpose, a comprehensive and integrated pavement LCC-LCA model has been 

developed, which encompasses all six pavement life cycle phases into the system 

boundaries, including the usage phase, and accounts for the upstream impacts in the 

production of elements commonly disregarded by the majority of the existing pavement 

LCA models. 
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Finally, to account for the often conflicting interests of the multiple stakeholders 

involved in the decision-making process within pavement management, the pavement 

construction and maintenance scenarios considered in this chapter were further analyzed 

by employing a multi-criteria decision-making (MCDM) method. 

6.3 Background to the life cycle modelling approaches 

adopted in the proposed framework 

6.3.1 Life cycle assessment 

LCA is a widespread, though still evolving, systematic environmental management tool 

used for assessing the potential environmental impacts and resources consumed 

throughout a product’s lifecycle from a cradle-to-grave perspective, i.e., from raw 

material acquisition, via production and use phases, to the end-of-life phase. 

The LCA approach formalized by the ISO 14040 series divides the LCA framework 

into four iteractive stages (ISO, 2006a; ISO, 2006b): (1) goal and scope definition; (2) 

LCI; (3) LCIA; and (4) interpretation. The goal and scope definition introduces the 

purpose for carrying out the study, the intended application, and the intended audience. 

It is also in this stage that the system boundaries of the study are described and the 

functional unit is defined. The LCI compiles the inputs (resources) and the outputs 

(emissions) from the product over its life cycle in relation to the functional unit. The 

LCIA seeks to establish a linkage between the system and the potential to cause human 

and environmental damage. In the interpretation, the results from the previous phases 

are evaluated in relation to the goal and scope in order to identify analysis refinements 

and improvements, reach conclusions and recommendations, and, in general, aid in the 

decision-making process (Finnveden et al., 2009). 

On the basis of the approaches for compiling the LCI, an LCA methodology can be 

classified into three main categories: (1) process-based LCA (P-LCA); (2) input-output 

LCA (I-O LCA); and (3) hybrid LCA.  
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In the P-LCA, process-specific data for each process of the product life cycle is 

compiled to form a tailored process diagram that covers the whole life cycle. Each of 

the diverse processes within the system boundaries is then thoroughly analyzed, which 

leads to very accurate LCI results. However, due to the commonly high number of 

single processes existing in a product life cycle, accounting for all of them can be a time 

consuming and detail-intensive procedure. A P-LCA practitioner has to define which 

processes are included within the chosen system boundaries. Ideally, those that are left 

out should have an insignificant contribution to the results. However, due to the fact that 

decisions on the inclusion or exclusion of processes are commonly taken on the basis of 

subjective choices rather than on a scientific basis, it might happen that significant 

processes are also left out of the analysis along with the insignificant ones. This 

problematic feature of P-LCA method is known as truncation error. 

The I-O LCA is a top-down approach that relies on the theory introduced and developed 

by Nobel Prize winner Wassily Leontief (Leontief, 1970). It uses available sectorial 

monetary transaction matrixes describing complex interdependencies of industries in an 

economy to estimate the sector level environmental burdens and the resources 

consumed throughout the upstream supply-chain to deliver a certain amount of different 

goods and services (Suh et al., 2004). 

Although the I-O LCA method eliminates the truncation error by tracking all upstream 

processes, there are several drawbacks: (1) it uses aggregate data representing the 

averages of several sectors of an economy, and aggregate industry sectors may make the 

method unable to provide information on the particular product or activity under 

investigation, such as specific raw materials and energy sources, and to compare similar 

products within an industry sector, especially if the product falls into a sector which is 

broadly characterized; (2) from the I-O LCA practitioner’s perspective it may look like 

a “black box”, because comprehensively analyzing a specific process is always 

impossible; (3) monetary value, the most commonly used representation of inter-

industry transactions, can distort physical flow relations between industries due to price 

inhomogeneity; (4) the proportionality assumption, according to which the inputs to a 
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sector are assumed to be linearly proportional to its output, represent another source of 

errors given that in practice it is not always true; (5) available I-O tables are generally 

several years old. Thus, assessing rapidly developing sectors and new technologies may 

introduce errors because of base-year differences between the product system under 

study and I-O data; and (6) data used in the I-O model are incomplete, with inherent 

uncertainties, thus, potentially, underestimating results such as environmental impacts 

(Suh et al., 2004). Quantitative evaluations of the limitations of both P-LCA and I-O 

LCA models are presented by Junnila (2006), Ferrão and Nhambiu (2009), Mattila et al. 

(2010), Majeau-Bettez et al. (2011). 

To combine the advantage of both P-LCA and I-O LCA models while mitigating their 

respective limitations, four main hybrid LCA models have been developed, namely 

tiered, I-O-based, integrated hybrid (Suh et al., 2004) and augmented process-based 

approach (Bilec et al., 2006; Bilec et al., 2010). Although significant differences 

distinguish the inventory stage of those models (Suh and Huppes, 2005), all are based 

on the principle of a disaggregated and detailed process-based description of the most 

important activities linked to an aggregated but complete model of the rest of the 

economy (Majeau-Bettez et al., 2011). In doing so, it allows for flows which were not 

included in the P-LCA to be estimated with an environmentally extended I-O model. A 

review of LCI approaches including hybrid approaches and their advantages and 

disadvantages is provided by Suh and Huppes (2005) and Bilec et al. (2006). 

6.3.2 Life cycle costing 

Life cycle costing is defined by the building and construction asset standard ISO15686-

5 as a technique used for predicting and assessing the cost performance of constructed 

assets over a specific period of time while meeting all the functional and operational 

maintenance and other performance requirements, taking into account all relevant 

economic factors, both in terms of initial and future operational costs (ISO, 2008).  

Despite the (often) hypothetical  ambiguities generated by the term “life cycle”, shared 

by LCC and LCA, this methodology was initially developed by the US Department of 
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Defense in the mid-sixties (Sheriff and Kolarik, 1981), and to a large extent, its 

maturation process occurred outside the environmental context (Gluch and Baumann, 

2004). The abovementioned standards already allude the possibility of including inputs 

from other evaluation techniques (e.g., environmental assessment). Similar intents were 

also expressed in the revised framework ISO 14040 by claiming that “…LCA typically 

does not address the economic or social aspects of a product, but the life-cycle 

approach and methodologies described in this International Standard may be applied to 

these other aspects.” (ISO, 2006a). However, the most expressive step towards its 

integration into the environmental decision-making process was taken first by Hunkeler 

et al. (2008), and, later, by Swarr et al. (2011), through the disclosure of a code of 

practice that builds on the four-phase structure of the ISO 14040 standards (ISO, 

2006a). This code of practice aims to provide guidance on how to define consistent 

system boundaries for complementary and parallel LCC and LCA studies of a given 

product system. 

On the basis of the approach adopted to account for the externalities, Hunkeler et al. 

(2008) divide life cycle costing into conventional, environmental or societal. 

Conventional life cycle costing is a collection of all costs associated with the life cycle 

of a product that are directly covered by the main producer or user in the product life 

cycle. Environmental life cycle costing, on the other hand, assesses the costs associated 

with the life cycle of a product, covered by one or more of the actors involved in the life 

cycle of the product, and also includes the externalities that might be internalized and 

reflected in real monetary flows within a foreseeable time frame. Another point that 

distinguishes this approach from the previous one lies with the fact that it also requires a 

complementary LCA with equivalent system boundaries and functional units. However, 

in this LCA-type life cycle costing based on physical LCA, there is no conversion from 

environmental measures to monetary measures in order to avoid double counting of 

externalities in life cycle costing and the complementary LCA. Finally, in the Societal 

life cycle costing the scope is extended to the macro-economic system level, including 

costs for society overall. Environmental costs are defined as either environmental 
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damage expressed in monetary terms (costs of external effects), or as the market-based 

cost of measures to prevent environmental damage. However, to avoid double counting, 

the monetized environmental effects of the investigated product should not be 

complemented by an LCA. 

6.4 Methodology 

6.4.1 Principles of the integrated pavement life cycle costs- life 

cycle assessment model 

The research work presented in this chapter builds on the P-LCA and LCC models 

introduced in Chapters 2 and 4 (Santos et al., 2015a; Santos et al., 2015b) and Chapter 5 

(Santos et al., 2015c), respectively, to develop a comprehensive and integrated 

pavement LCC-LCA model. The proposed pavement LCC-LCA model relies on a 

hybrid inventory approach that allows the sub-models to connect with one another by 

data flows; specifically, the monetary flows associated with exchanges of the pavement 

life cycle system that are directly covered by the LCC model but for which specific 

process data are either completely or partially unavailable. In other cases it is available, 

but collection of the data and subsequent analysis is highly demanding, either in time or 

resource consumption (e.g., construction equipment manufacturing and maintenance, 

on- and off-road vehicles tires manufacturing, lubricant oil production, etc.) and, thus, 

was disregarded in the previous P-LCA models (Chapters 2, 3 and 4). These are 

combined with the I-O methodology for deriving the underpinning environmental 

burdens.  Thus, by interactively integrating the strengths of P-LCI and I-O LCI, the 

resources which are readily available can be used in a more efficient, consistent and 

rational way and with less effort, helping to reduce the “cutoff” errors and improving 

the consistency between the system boundaries of the pavement life cycle when 

analyzed concomitantly from the economic and environmental viewpoint. For this 

purpose, the pavement LCC-LCA model uses the Carnegie Mellon University’s 

Economic Input-Output Life Cycle Assessment tool (EIO-LCA) (Carnegie Mellon 

University Green Design Institute, 2010). This tool utilizes the Leontief’s methodology 
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to relate the inter-sector monetary transactions sectors in the US economy, compiled in 

a set of matrices by the Bureau of Economic Analysis (BEA) of the US Department of 

Commerce, with a set of environmental indicators (e.g., consumption of fossil energy, 

airborne emissions, etc.) per monetary output of each industry sector of the economy. 

The environmental burdens at sector level associated with a particular commodity under 

analysis is therefore calculated by multiplying its monetary value, previously adjusted 

to US dollars of the EIO-LCA model’s year according to sector-specific economic 

indices from the US DL, by the respective sectorial environmental multipliers obtained 

from the EIO-LCA model. 

The US 2002 EIO-LCA benchmark consumer price model for the US economy was 

preferred to the producer model because the monetary quantities of the commodities 

whose environmental burdens the study aims to quantify are better represented by retail 

price (e.g., construction equipment acquisition, tires acquisition, lubricating oil 

acquisition, etc.), which allows for further accounting of the environmental impacts 

associated with their distribution to wholesalers. 

6.4.2 Goal of the study 

The main goal of this study is to quantify and compare the life cycle environmental and 

economic performances of multiple pavement construction and maintenance practices 

that hold the potential for improving the environmental and economic dimensions of 

pavement sustainability. To this end, several scenarios involving the construction, M&R 

of a flexible road pavement section in Virginia, USA, were analyzed. The scenarios 

include the use of hot in-plant recycling mixtures, Sasobit
®
 WMA, CCPR and 

preventive treatments.  

The application of the pavement LCC-LCA model to the case study presented in this 

chapter will advance the state-of-the-art by: 

1) comprehensively estimating the potential environmental and economic 

advantages resulting from applying, individually or combined, new 
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pavement engineering solutions instead of conventional materials and 

construction and M&R methods; 

2) demonstrating an integrated methodology that enables the inclusion of 

environmental loads and costs originated by processes and pavement LCA 

phases typically excluded from the system boundaries of pavement life cycle 

modeling approaches; 

3) identifying the compromise solutions that best suit the often conflicting 

interests of the multiple stakeholders involved in the decision-making 

process in the pavement management; 

4) concluding how robust the suitability of the obtained compromise solutions 

are, when all ranges of combination of weights assigned to the criteria 

representing the stakeholder’s perspectives are taken into account, as 

opposed to considering only a few sets of weights. 

The results will provide an audience consisting of designers, contractors, local and state 

agencies and road users with an improved understanding of how materials 

considerations, treatment typology, design, construction, and application timing promise 

to enhance pavement sustainability while considering the tradeoffs between the 

requirements imposed by these players. 

6.4.3 Scope of the study 

The integrated pavement LCC-LCA model developed to carry out this study follows a 

cradle-to-grave approach, and consists in a parallel application of the LCA methodology 

taking into account, as far as possible and suitable, the guidelines provided by the ISO 

(ISO, 2006a; ISO, 2006b) and the UCPRC’s Pavement LCA Guideline (Harvey et al., 

2010) and the life cycle costing methodology based on the Swarr et al. (2011). 

6.4.3.1 Functional unit 

The functional unit considered in this case study for achieving these goals was defined 

as a 1km-long one-way road pavement section of an Interstate highway in Virginia, 
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USA, with 2 lanes, each of which is 3.66m wide. The PAP was 50 years, beginning in 

2011 with the construction of the pavement structure. The AADT for the first year was 

20,000 vehicles of which 25% were trucks (5% of the truck traffic consisted of SUT and 

the remaining percentage of CUT). The traffic growth rate was set equal to 3% per year. 

6.4.3.2 Product system: the pavement structure 

6.4.3.2.1 Initial pavement structure design 

The initial pavement structure was designed using the pavement structural design 

method AASHTO’93 (AASHTO, 1993) for flexible pavements, as defined by the 

Chapter V- Pavement Evaluation and Design of the VDOT’s Manual of Instructions for 

the Materials Division (VDOT, 2014). The assumptions considered during the design 

process are presented in Table 6.1. Based on the assumptions listed in the Table a 

pavement structure was designed with a SN of 6.72. The details of the interstate flexible 

pavement structure and HMA mixtures properties are described in Table 6.2.  

Table 6.1- Pavement design inputs. 

Pavement design variable Value 

Initial construction design (years) 30 

Lanes in design direction 2 

Lane distribution factor (%) 90 

PCs ESAL factor (ESALs/vehicle) 0.0002 

SUT ESAL factor (ESALs/vehicle) 0.46 

CUT ESAL factor (ESALs/vehicle) 1.05 

Reliability (%) 95 

Zr -1.645 

So 0.49 

Initial PSI 4.2 

Terminal PSI 3 

MR subgrade (psi) 9,200 

SN 6.72 
Legend: PC- passenger car; SUT- single unit truck; CUT- combination unit truck; ESAL- equivalent single axle load; PSI- present 

serviceability index; ZR- standard normal deviate; S0- combined standard error of the traffic prediction and performance prediction; 

SN- structural number; W18- number of 80 kN ESAL. 
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Table 6.2- Interstate flexible pavement structure and mixes properties. 

Layer 

ID 
Material Thickness (cm) Asphalt binder PG 

Binder  

content (%) 

Fine 

aggregates 

(%) 

Coarse 

aggregates 

(%) 

1 SM 12.5 5.08 (2 in.) 70-22 5.6 38 62 

2 IM 19.0 7.62 (3 in.) 70-22 5.1 35 65 

3 BM 25.0 17.78 (7 in.) 70-22 4.6 30 70 

4 21-B 30.48 (12 in.) - - - - 

5 A-7-6 30.78 (12 in.) - - - - 

6 A-7-6 infinite - - - - 
Legend: PG- performance grade; SM- surface mixture; IM- intermediate mixture; BM- base mixture.  
Notes: Tack coats are applied in between bound layers; prime coat is applied in between bound layer and unbound layer. All WMA 

mixes have a Sasobit® content of 1.5% by total weight of bitumen and an aggregate blend equal to the homologous HMA mix. RAP 

was assumed to consist of 50% fine particles and 50% coarse particles. It was also assumed that RAP has a binder content of 5% 
(benchmark value) and is 100% active, therefore requiring neither compensation for lower levels of activity nor rejuvenation. An 

asphalt binder PG 64-22 was used in all mixes when the RAP content is equal to 30%. In all mixes hydrated lime was used as 

antistrip agent at a dosage rate of 1% by total weight of bitumen in mixture. 

6.4.3.2.2 Maintenance and rehabilitation scenarios 

This study analyzed and compared the environmental and economic performance of 

three main groups of alternative M&R strategies (scenarios) applied over the PAP of the 

pavement structure presented in the previous section. The first two groups were based 

on the M&R plan outlined by VDOT (VDOT, 2014), in which functional and structural 

treatments and a major rehabilitation are applied in pre-established years. Nevertheless, 

they were considered to differ from each other to the extent that in the first group only 

conventional asphalt materials and treatments were implemented, while in the second 

group the major rehabilitation was carried out through the combination of an in-place 

recycling technique, namely CCPR, and conventional asphalt layers. The recycling-

based M&R activity was designed in such a way that it provides equivalent structural 

capacity to non-recycling-based one and takes into account the VDOT’s surface layers 

requirements for layers placed over recycling-based layers (VDOT, 2013). In turn, the 

third group consisted of preventive maintenance (PrM) strategies.  

The first two groups of alternative M&R strategies, hereafter named VDOT strategy and 

Recycling-based VDOT strategy, respectively, were further divided into HMA and 

Sasobit
®
 WMA scenarios with three distinct RAP contents (0%, 15% and 30%). As for 

the preventive alternative maintenance strategies, two additional scenarios were 

considered depending on the type of preventive treatments adopted: microsurfacing and 
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thin hot mix asphalt overlay concrete (THMACO). A summary of the names of all 

considered scenarios is given in Table 6.3. Details on the M&R activities and M&R 

actions considered in the several M&R scenarios are presented in Table 6.4. Table 6.5 

presents the M&R activities considered in each M&R scenario, and respective 

application years. 

Regarding the typologies of M&R activities, VDOT classifies them into five categories: 

(1) Do Nothing (DN); (2) Preventative Maintenance (PrM); (3) Corrective Maintenance 

(CM); (4) Restorative Maintenance (RM); and (5) Reconstruction/Rehabilitation (RC). 

Using the base form corresponding to Expression (6.1), VDOT defines PPPM for the 

last three categories (Stantec Consulting Services and Lochner, 2007). The coefficients 

of VDOT’s load-related PPPM expressed through the Expression (6.1) for asphalt 

pavements of Interstate highways are presented in Table 6.6 (Stantec Consulting 

Services and Lochner, 2007). 











t

ln

cbaeCCI)t(CCI

1

0  (6.1) 

where )t(CCI  is the critical condition index in year t since the last M&R activity, i.e. 

CM, RM or RC; 
0CCI  is the critical condition index immediately after treatment; and a, 

b, and c are the load-related PPPM coefficients (Table 6.6). 

Contrary to the remaining categories, VDOT did not develop individual PPPM for 

preventive treatments. Thus, in this case study the considered preventive treatments, i.e. 

microsurfacing and THMACO, were respectively modelled as a 8-point and 15-point 

improvement in the CCI of a road segment which take place whenever the CCI falls 

below the trigger value of 85 (Chowdhury, 2011). Once the treatment is applied, it is 

assumed that the pavement deteriorates according to the PPPM of a CM, without 

reduction of the effective age. On the other hand, in the case of the application of CM, 

RM and RC treatments, the CCI is brought to the condition of a brand new pavement 

(CCI equal to 100) and the age is restored to 0 regardless of the CCI value prior to the 

M&R activity application.  
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Table 6.3- Identification of the alternative M&R scenarios. 

Type of scenario Scenario ID Scenario name 

VDOT 

1 HMA - 0% RAP 

2 HMA - 15% RAP 

3 HMA - 30% RAP 

4 Sasobit
®
 WMA - 0% RAP 

5 Sasobit
®
 WMA - 15% RAP 

6 Sasobit
®
 WMA - 30% RAP 

Recycling-based VDOT 

7 HMA - 0% RAP 

8 HMA - 15% RAP 

9 HMA - 30% RAP 

10 Sasobit
®
 WMA - 0% RAP 

11 Sasobit
®
 WMA - 15% RAP 

12 Sasobit
®
 WMA - 30% RAP 

Preventive maintenance 
13 Microsurfacing - 0% RAP 

14 THMACO - 0% RAP
a
 

Legend: VDOT- Virginia Department of Transportation; HMA- hot-mix asphalt; RAP- reclaimed asphalt pavement; WMA- warm-
mix asphalt; THMACO- thin hot mix asphalt concrete overlay.  

Notes: The types of bound mixes used in the construction of the initial pavement structure are coherent with the scenario name. 
aAccording to VDOT (2012a), RAP cannot be incorporated into the THMACO formulation. 

Table 6.4- Types of M&R activities and M&R actions. 

M&R activity 
M&R actions Thickness (cm) 

Mixture 

name ID Name 

1 

Conventional 

functional 

mill and 

replace 

Mill surface layer 5.08 (2 in.) - 

Mill full-depth prior patching 1% 25.4 (10 in.) - 

Surface cleaning - - 

Prime coat application prior full-depth patching - 
Bituminous 

emulsion 

Pre-overlay full-depth patching 1% 25.4 (10 in.) BM 25.0 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of AC surface layer 5.08 (2 in.) SM 12.5 

2 

Conventional 

structural 

mill and 

replace 

Mill surface and intermediate layers 8.89 (3.5 in.) - 

Mill full-depth prior patching 1% 21.59 (8.5 in.) - 

Surface cleaning - - 

Prime coat application prior full-depth patching - 
Bituminous 

emulsion 

Pre-overlay full-depth patching 1% 21.59 (8.5 in.) BM 25.0 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC 

intermediate layer 
5.08 (2 in.) IM 19.0 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC surface 

layer 
3.81 (1.5 in.) SM 12.5 

Legend: M&R- maintenance and rehabilitation; BM- base mixture; IM- intermediate mixture; SM- surface mixture; AC- asphalt 

concrete. 
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(continued) 

M&R activity 
M&R actions 

Thickness 

(cm) 
Mixture name 

ID Name 

3 
Major 

rehabilitation 

Mill surface, intermediate, base layers and 

1 in. unbound layer 
33.02 (13 in.) - 

Subgrade compaction - - 

Prime coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC base 

layer 
17.78 (7 in.) BM 25.0 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC 

intermediate layer 
10.16 (4 in.) IM 19.0 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC 

surface layer 
5.08 (2 in.) SM 12.5 

4 

Recycling-

based major 

rehabilitation 

Mill surface, intermediate, base layers and 

1 in. unbound layer 
33.02 (13 in.) - 

Subgrade compaction - - 

Lay down and compaction of CCPR 

materials in base course 
20.32 (8 in.) 

CCPR 

materials
a,b

 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC 

intermediate layer 
7.62 (3 in.) IM 19.0 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC 

surface layer 
5.08 (2 in.) SM 12.5 

5 Microsurfacing 

Surface preparation: brushing - 
 

Surface preparation: tack coat application - 

Diluted 

bituminous 

emulsion 

Microsurfacing spreading - 
Microsurfacing

- Type C
c
 

6 Thin Overlay 

Mill surface layer 1.91 (0.75 in.) - 

Surface preparation: brushing - - 

Surface preparation: tack coat application - 
Bituminous 

emulsion 

Thin overlay placement and compaction 1.91 (0.75 in.) THMACO
d
 

Legend: M&R- maintenance and rehabilitation; BM- base mixture; IM- intermediate mixture; SM- surface mixture; AC- asphalt 
concrete; CCPR- cold central plant recycling; THMACO- thin hot mix asphalt concrete overlay. 

Notes: aA layer coefficient value of 0.40 was used for design purpose based on Diefenderfer (2014). 
bA PG 64-22 asphalt binder at a content of 2% by weight of total mixture was used to produce the foamed asphalt mix. For each 
mix, 1% of hydraulic cement and 1% of moisture were added and mixed before the foamed asphalt was added (Diefenderfer 2014). 
cBased on Ducasse et al. (2004), a mix formulation consisting of 180 liters of emulsion per m3 aggregates, 3% of Styrene-Butadiene 

Rubber (SBR) by weight of asphalt binder, 2% of Portland cement by weight of aggregate and 140 liters of water by m3 of aggregate 
was used. 
dMix formulation consists of 58.9% coarse aggregates, 36.1% fine aggregates, 5%  asphalt binder PG 70-28 and 1% hydrated lime 
by weight of asphalt binder (VDOT, 2012a). 
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Table 6.5- M&R activities considered in each M&R scenario, and respective application years. 

M&R scenario ID 
M&R activity ID 

1 2 3 4 5 6 

1 to 6 12, 44 22 32 - - - 

7 to 12 12, 44 22 - 32 - - 

13 9, 17, 25, 41, 49 - 32 - 7, 15, 23, 39, 47 
 

14 10, 18, 27, 41, 50 - 32 - - 7, 16, 24, 39, 47 
Legend: M&R- maintenance and rehabilitation. 

 
Table 6.6- Coefficients of VDOT’s load-related PPPM expressed by the Expression (6.1) for asphalt 

pavements of interstate highways. 

M&R activity category 0CCI  a b c 

CM 100 9.176 9.18 1.27295 

RM 100 9.176 9.18 1.25062 

RC 100 9.176 9.18 1.22777 
Legend: VDOT- Virginia Department of Transportation; PPPM- pavement performance prediction models; M&R- maintenance and 

rehabilitation;
0CCI - critical condition index immediately after a treatment; a, b, and c are load-related PPPM coefficients; CM- 

corrective maintenance; RM- restorative maintenance; RC- reconstruction/Rehabilitation. 

 

For the purpose of estimating the environmental impacts and costs incurred by road 

users during the pavement usage phase due to the vehicles travelling over a rough 

pavement surface, a linear roughness prediction model, expressed in terms of IRI, was 

considered (Expression (6.2)).  

tIRIIRI)t(IRI grw 0  (6.2) 

where )t(IRI  is the IRI value (m/km) in year t , 0IRI is the IRI immediately after the 

application of a given M&R activity and grwIRI is the IRI growth rate over time, which 

was set at 0.08 m/km (Bryce et al., 2014). It was assumed that the application of an 

M&R activity other than preventive treatment restore the IRI to the value of a brand 

new pavement (IRI equal to 0.87 km/h). The IRI reduction due to the application of a 

preventive treatment was determined based on the expected treatment life and assuming 

that there is no change in the grwIRI  value after the preventive treatment application (the 

same assumption was also made in the case of the remaining M&R activities). Thus, by 

assuming treatment life periods of 3 and 5 years (Chowdhury, 2011), respectively for 

microsurfacing and THMACO preventive treatments, reductions in the IRI value of 

0.24 and 0.40 m/km were obtained. 
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Figure 6.1 shows the variation of the IRI over the PAP resulting from the 

implementation of the alternative M&R scenarios. One can see that the pavement 

deterioration pattern corresponding to M&R scenarios 1 to 12 is the same. Such an 

outcome is the consequence of taking as premise the fact that all mixtures perform in 

the same way throughout the PAP. 

 

Figure 6.1- IRI over the PAP resulting from the implementation of the alternatives M&R scenarios. 

 

6.4.3.3 System boundaries, system processes, life cycle 

inventory data and main assumptions 

The proposed pavement LCC-LCA model entails six pavement life cycle phases: (1) 

materials extraction and production; (2) construction and M&R; (3) transportation of 

materials; (4) WZ traffic management; (5) usage; and (6) EOL. These phases were 

broken down into multiple components for each life cycle phase.  

The environmental burdens and costs of planning, research, design activities, purchase 

of necessary rights-of-way, relocating utilities, constructing the roadway cuts and fills, 

and placing major drainage features for the mainline were not included into the system 

boundaries since the majority of those items regards to the whole road infrastructure and 

are either not exclusive to the pavement structure or entail a high level of subjectivity. 

Also excluded from the system boundaries were the environmental burdens due to 

labor. Furthermore, with regard to economic modelling performance, only real 
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monetary flows were accounted for in order to avoid double counting the environmental 

impacts (Swarr et al., 2011).  

The various models evoked while modelling each component of the pavement life cycle 

phases, as well as the main data required to run those models, are introduced and 

discussed in the following sections. Further details on the P-LCA modelling 

considerations can be found in Chapter 4 (Santos et al., 2015b). Detailed inventory data 

and complementary assumptions performed throughout the model application are shown 

in Appendix B  

6.4.3.3.1 Environmental dimension 

6.4.3.3.1.1 Materials extraction and production phase 

This pavement LCA phase addresses the environmental burdens arising from the 

acquisition and processing of the materials applied during the initial construction and 

future M&R of a road pavement segment. This includes all materials manufacturing 

processes, from extraction of raw materials to their transformation into a pavement 

input material (material extraction sub-phase), ending with the mixture production at a 

mixing plant (materials production sub-phase). The latter sub-phase accounts for the 

environmental burdens associated with the operation of the (1) mixing plant (i.e., dryer, 

hot screen, mixers, etc.), (2) wheel loader during the movement of aggregates from the 

stockpiles to the feed bins and (3) RAP processing unit so that the RAP ensures the 

required properties to be incorporated into a new asphalt mixture. 

6.4.3.3.1.1.1 Materials extraction sub-phase 

P-LCI data collected from several published LCI and LCA reports was adopted in this 

case study for modelling the LCI of the following materials: fine and coarse aggregates 

(Stripple, 2001), bitumen and asphalt emulsion (Eurobitume, 2011), and tap water 

(Weidema et al., 2013). On the other hand, the LCI data for the following materials was 

obtained through the I-O LCI approach: hydrated lime, SBR, WMA additive (Sasobit
®

). 
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Information about the economic sectors responsible for manufacturing the previously 

mentioned materials are presented in Table 6.7. 

Table 6.7- I-O LCI data sources (Carnegie Mellon University Green Design Institute, 2008). 

Pavement life 

cycle phase(s) 
  Element name Sector ID and name Notes 

Materials 

 
Hydrated lime manufacturing 327410 Lime and gypsum product manufacturinga - 

 
SBR manufacturing 325110 Petrochemical Manufacturinga - 

 
Sasobit® manufacturing 325110 Petrochemical Manufacturinga - 

A
sp

h
al

t 
p

la
n
t 

Setup manufacturing 333120 Construction Machinery Manufacturingb Proxy 

Auxiliary equipment 

manufacturing 
333120 Construction Machinery Manufacturingb - 

Planned maintenance (FOG) 
324191 Petroleum lubricating oil and grease 

manufacturingb 
- 

Repair 
811300 Commercial and industrial machinery and 

equipment repair and maintenanceb 
- 

Interest on loan 
532400 Construction, Transportation, Mining, and 

Forestry Machinery and Equipment Rental and Leasingb 
- 

Asset insurance 524100 Insurance Carriersb - 

Taxes on property 
541200 Accounting, tax preparation, bookkeeping, and 

payroll servicesb  
proxy 

Construction and 

M&R 

C
o
n

st
ru

ct
io

n
 e

q
u

ip
m

en
t 

Manufacturing 333120 Construction Machinery Manufacturingb - 

Planned maintenance (FOG) 
324191 Petroleum lubricating oil and grease 

manufacturingb 
- 

Repair 
811300 Commercial and industrial machinery and 
equipment repair and maintenanceb 

- 

Tyres manufacturing 326210 Tire Manufacturingb - 

special wear item 

manufacturing 
333120 Construction Machinery Manufacturingb proxy 

Interest on loan 
532400 Construction, Transportation, Mining, and 

Forestry Machinery and Equipment Rental and Leasingb 
- 

Asset insurance 524100 Insurance Carriersb - 

Taxes on property 
541200 Accounting, tax preparation, bookkeeping, and 

payroll servicesb 
proxy 

Transportation of 

materials 

H
au

li
n

g
 t

ru
ck

s 

Manufacturing 336120 Heavy Duty Truck manufacturingb  - 

Planned maintenance (FOG) 
324191 Petroleum lubricating oil and grease 
manufacturingb 

- 

Repair 
8111 Automotive repair and maintenance, except car 

washesb             
proxy 

Tyres manufacturing 326210 Tire Manufacturingb - 

Interest on loan 
532400 Construction, Transportation, Mining, and 

Forestry Machinery and Equipment Rental and Leasingb 
- 

Asset insurance 524100 Insurance Carriersb - 

Taxes on property 
541200 Accounting, tax preparation, bookkeeping, and 

payroll services b 
- 

WZ traffic 

management and 

Usage 

P
C

s 

Manufacturing 336111 Automobile manufacturingb  - 

Maintenance and repair 
8111 Automotive repair and maintenance, except car 

washesb             
- 

Tyres manufacturing 326210 Tire Manufacturingb - 

Oil manufacturing 
324191 Petroleum lubricating oil and grease 

manufacturingb 
- 

H
D

V
 

Manufacturing 336120 Heavy Duty Truck manufacturingb  - 

Maintenance and repair 
8111 Automotive repair and maintenance, except car 
washesb             

- 

Tyres manufacturing 326210 Tire Manufacturingb - 

Oil manufacturing 
324191 Petroleum lubricating oil and grease 

manufacturingb 
- 

Legend: FOG- filters, oil and greases; WZ- work-zone; PC- passenger car; HDV- heavy duty vehicle.  

Notes: aUS 2002 (428 sector) Producer Price Model. The monetary value used as input into the EIO-LCA model was obtained from 
the retail price but discounting 15% to account for sales markups. 
bUS 2002 (428 sector) Consumer Price Model. 
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As far as the system boundaries for RAP are concerned, it is assumed that prior to its 

utilization the material is processed via a crushing operation, which reduces the variable 

RAP fragments to uniform size in order to promote final blend consistency. The 

environmental burdens resulting from milling or removing the pavement and hauling 

the recycled materials from the work site to the recycling unit were not included into the 

system boundaries on the basis of a ‘cut-off’ allocation criterion. Thus, only the post-

processing of these materials is considered. 

To accomplish the RAP processing task, a crusher unit located within the asphalt plant 

facility is considered, which consists of diesel-powered crusher (model Cone LS1200 

from Kolberg-Pioneer, Inc.), a diesel-powered mobile screening plant (model FNG 

2612D from Kolberg-Pioneer, Inc.), an electrically-powered stackable conveyor (model 

47-3050S from Kolberg-Pioneer, Inc.) and a wheel loader (model 924HZ from 

Caterpillar). Based on the technical features of the equipment, a RAP processing 

capacity of 184 tonnes per hour was considered. The environmental burdens from 

processing RAP are those resulting from the operation of the engines and were obtained 

by applying the methodology adopted by the US EPA’s NONROAD 2008 model (US 

EPA, 2010a). However, the crusher units also emit fugitive PM when processing RAP. 

The total emissions of fugitive PM released when crushing and screening RAP were 

determined from the Crushed Stone Processing and Pulverized Mineral Processing 

section of the US EPA’s AP-42: Compilation of Air Pollutant Emission Factors (US 

EPA, 2004). 

6.4.3.3.1.1.2 Materials production sub-phase 

This section addresses the LCI of the asphalt production process by considering 

different types of mixes, both with and without different RAP content. In this case study 

it was assumed that all asphalt mixes were produced through a natural gas-fired 

conventional drum-mix plant. In a conventional drum mix plant, RAP is not heated 

directly to prevent additional aging of RAP binder. Instead, the virgin aggregates are 

previously superheated so that when the RAP is introduced into the drum they dry and 
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heat the RAP by conduction. However, such a superheating temperature is likely to 

cause additional energy consumption, which may eventually offset the economic and 

environmental benefits associated with the use of RAP.  

In order to capture these tradeoffs along with the sensitivity of the air emissions due to 

the variations in composition and manufacturing temperature of the mixes and the 

moisture content of the raw materials, the heat energy required to produce the asphalt 

mixes was determined through an energy balance represented by Expression (6.3). 

 

FHeatingEff
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(6.3) 

where Q is the heat energy required to produce the asphalt mixture (J);  is the mass 

of material i (kg); M is the total number of materials, including water; is the final 

temperature of material i (ºC); is the initial temperature of material i (ºC);  is 

the specific heat capacity coefficient, as a function of temperature, of material i 

[J/(kg/ºC)];  is the latent heat required to evaporate water (2256 J/kg);  is the 

initial mass of water vapor (kg);  is the final mass of water vapor (kg); and 

HeatingEffF is a factor that represents the casing losses.  

To account for the fact that specific heat capacities of minerals and fluids increase 

substantially with temperature, the equations presented by Waples and Waples (2004a) 

and Waples and Waples (2004b) were adopted, taking the temperature of 20ºC as the 

reference temperature. The heating requirements for the aggregates applied in bound 

layers other than surface layers were modeled by considering the specific heat value of 

limestone [880 J/(kg/ºC)]. In the case of the surface layers, the value for quartzite [1013 

J/(kg/ºC)] and diabase [860 J/(kg/ºC)] were taken to represent the aggregated used in the 

SM-type mixes and THMACO, respectively. With regard to binder and water, the third 

equation proposed by Gambill (1957) and the equation developed by Somerton (1992), 

both cited and displayed in Waples and Waples (2004b), were adopted, respectively. 

The initial moisture content of fine and coarse aggregates were assumed to be 3% and 
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1% (Harder, 2008), whereas for RAP a value of 4% was considered. As for the 

HeatingEffF, a value of 80% was adopted for the production of all mix types after 

calibrating the model with the data corresponding to the HMA production in the case 

study of Munster, Indiana, reported by West et al. (2014). The HMA mixing 

temperature was set at 160ºC (Asphalt Pavement Environmental Council, 2000) and the 

initial temperature of all raw materials other than bitumen was assumed to be equal to 

the ambient temperature of 15ºC. In the case of the latter, it was considered that it 

remains stored at 160ºC in heated tanks located in the asphalt plant facility. The volume 

of natural gas required to heat the insulated storage tanks was calculated based on the 

total quantity of binder heated, the total time the bitumen spends in the tanks throughout 

the paving season and the heat capacity of the tanks (Table B.1, Table B.2 and Table 

B.3 in Appendix B ). As for the WMA, whose mix design was considered the same as 

that of the homologous HMA, it was assumed that the addition of 1.5% of Sasobit
®
  per 

mass of bitumen reduces the mixing temperature by 25ºC in relation to the reference 

temperature of 160ºC. This assumption was based on the range values of reduction of 

temperature of 20-30ºC commonly referred to in the literature (D’Angelo et al., 2008; 

Rubio et al., 2012; Zhao and Guo, 2012). Moreover, it was also assumed that the RAP 

used in WMA can be blended with new asphalt binder at this lower temperature. 

In order to determine the air emissions resulting from the mixing process of all mixes 

considered in this case study, a methodology was developed based on the EFs published 

by the AP-42 study of HMA plants (US EPA, 2004) corresponding to a natural gas-fired 

filter-controlled drum-mix plan, and the thermal energy required to produce the asphalt 

mixes. Firstly, the average EFs referring to the production of a HMA with 0% RAP 

were taken as reference. Secondly, as the CO2 emissions primarily result from FC, the 

average emission of this GHG was combined with the fuel emission coefficient (53.1 

Kg/MMBtu) reported by United Sates Energy Information Agency (US EIA) to 

determine the quantity of natural gas whose combustion would release the same amount 

of CO2 (US EIA, 2013). Thirdly, for each mix an EF multiplier was determined through 

the ratio between the thermal energy computed with Expression (6.3) and the thermal 



Chapter 6 Environmental and Economic Assessment of Pavement Construction 

and Management Practices for Enhancing Pavement Sustainability  

 

219 

energy calculated according to the procedures previously described. Finally, GHG and 

air pollutant EFs from mixes production were derived by multiplying the EFs taken as 

reference by the EF multipliers. The values of the EF multipliers as well as the natural 

gas consumption requirements for producing all mixes considered in this case study are 

shown in Table 6.8. The natural gas consumption reported in this table was 

complemented with the consumption of electricity to account for the operation of the 

electric components of the asphalt plant setup, e.g. conveyor, screens, etc. (Stripple, 

2001).  

Table 6.8- Natural gas consumption requirements for producing the asphalt mixes and EF 

multiplier values. 

Type of mix  
Natural gas consumption

a
   Natural gas consumption

b
 

MJ m
3
 EF multiplier  MJ m

3
 

Reference mixture 247 6.74 1 - - 

HMA: BM - 25.0 D, 0% RAP 217 5.93 0.880 225 6.15 

HMA: IM - 19.0 D, 0% RAP 219 5.99 0.888 228 6.23 

HMA: SM - 12.5 D, 0% RAP 245 6.69 0.992 254 6.94 

THMACO 218 5.95 0.882 226 6.18 

HMA: BM - 25.0 D, 15% RAP 229 6.26 0.929 236 6.44 

HMA: IM - 19.0 D, 15% RAP 228 6.23 0.924 236 6.43 

HMA: SM - 12.5 D, 15% RAP 254 6.93 1.028 262 7.16 

HMA: BM - 25.0 D, 30% RAP 242 6.59 0.978 247 6.74 

HMA: IM - 19.0 D, 30% RAP 244 6.65 0.987 250 6.82 

HMA: SM - 12.5 D, 30% RAP 270 7.36 1.091 276 7.55 

WMA: BM - 25.0 D, 0% RAP 181 4.94 0.733 189 5.15 

WMA: IM - 19.0 D, 0% RAP 183 4.99 0.740 191 5.22 

WMA: SM - 12.5 D, 0% RAP 203 5.55 0.823 213 5.81 

WMA: BM - 25.0 D, 15% RAP 193 5.27 0.781 199 5.45 

WMA: IM - 19.0 D, 15% RAP 195 5.32 0.788 202 5.52 

WMA: SM - 12.5 D, 15% RAP 215 5.88 0.872 224 6.11 

WMA: BM - 25.0 D, 30% RAP 205 5.60 0.830 210 5.74 

WMA: IM - 19.0 D, 30% RAP 207 5.65 0.837 213 5.81 

WMA: SM - 12.5 D, 30% RAP 228 6.21 0.921 235 6.40 
Legend: EF- Emission factor; HMA- hot-mix asphalt; WMA- warm-mix asphalt; BM- base mixture; IM- intermediate mixture; SM- 

surface mixture; RAP- reclaimed asphalt pavement; THMACO- thin hot-mix asphalt overlay;  

Notes: aIt does not include the requirements for heating the insulated bitumen storage tanks. 
bIt includes the requirements for heating the insulated bitumen storage tanks. 

 

Emissions and energy consumption due to the operation of the wheel loader at asphalt 

the plant facility were estimated based on the rate at which the wheel loader can move 

aggregates (Chapter 4) and the methodology adopted by the US EPA’s NONROAD 

2008 model (US EPA, 2010a). 
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In addition to the process-based components described throughout this section, the I-O 

LCI approach was adopted to estimate the environmental burdens associated with the 

manufacturing, repair, maintenance, interest on loan and insurance of the asphalt plant 

setup and auxiliary equipment (Table 6.7). The amortization of the environmental 

burdens was done by applying the portion of the asphalt plant setup and auxiliary 

equipment’s depreciation that was actually allocated to the quantity of asphalt mixes 

consumed in a given construction activity and considering the average annual 

production of asphalt mixes. For example, if the annual depreciation of the asphalt plant 

setup is $150,000, the average annual production of asphalt mixes in 2011 is 114,000 

tonnes (Hansen and Copeland, 2014) and the quantity of asphalt mixes to be consumed 

in the construction activity is 1,000 tonnes, then (150,000/114,000) 1,000 = $1,360 is 

the economic value that will be input into the EIO-LCA model to determine the 

environmental burdens resulting from the manufacturing of asphalt plant that will be 

allocated to the construction activity considered. A similar approach was adopted in the 

construction, M&R and transportation of materials phases for determining the 

environmental burdens associated with the construction equipment and hauling trucks, 

but taking as allocation factors the number of usage hours and hauling kilometers 

travelled to undertake a given construction activity. 

6.4.3.3.1.2 Construction, maintenance and rehabilitation 

phase 

In the construction and M&R phase, the process-based environmental burdens are due 

to the combustion-related emissions from construction equipment usage and were 

obtained by applying the methodology adopted by the US EPA’s NONROAD 2008 

model (US EPA, 2010a). Information regarding the type and features (e.g., brand, 

model, engine horsepower, etc.) of each equipment used to perform the several 

construction and M&R activities, as well as their respective production rates were taken 

from the technical specifications provided by the equipment’s manufacturers and 

complemented with the literature (US ACE, 2011; Caterpillar Inc., 2012). 
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In addition to the process-based components presented previously, the I-O LCI 

approach was adopted to estimate the environmental burdens associated with the 

equipment manufacturing, repair, maintenance, FOG consumption, interest on loan, 

asset insurance, taxes on property, special wear items consumption and tire 

consumption of the equipment that define the construction or M&R process being 

considered (Table 6.7). 

In this section it is worth mentioning that the operating conditions of paving machines 

were considered the same, regardless of the type of asphalt mix considered, i.e. HMA or 

WMA. Although a reduction in the number of roller passes needed to achieve a 

specified density was theoretically expected due to the lower viscosity of WMA (Rubio 

et al., 2012; Zaumanis, 2014), there is no accurate and consistent scientific knowledge 

in the literature on the close relation between the reduction of the compactive effort 

required, in terms of roller passes, and the enhancement of WMA workability. 

6.4.3.3.1.3 Transportation of materials phase 

The process-based environmental impacts resulting from the materials and mixture 

transportation are due to the combustion process emissions released by the 

transportation vehicles. All materials and mixtures were assumed to be HDVs. The US 

EPA’s MOVES (US EPA, 2010b) was used to determine the average fuel consumption 

and airborne emissions factors for operating diesel powered, single unit short-haul 

trucks and long-haul combination trucks. The I-O LCI components considered in this 

pavement life cycle phase can be found in Table 6.7. 

6.4.3.3.1.4 Work-zone traffic management phase 

This pavement life cycle phase accounts for the fuel consumption and airborne 

emissions resulting from on-road vehicles traversing and detouring a WZ. It was 

assumed that whenever a WZ is in place, all vehicles will take a 10km detour on a lower 

hierarchical level road at a speed 15 mph lower than the normal operating speed of 70 

mph (112 km/h). The environmental burdens were calculated by adopting a process-
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based two-step method. First, the US EPA’s MOVES model was run multiple times to 

compute a set of fuel consumption factors (FCFs) and airborne EFs on an hourly basis 

as a function of sixteen speed ranges. Second, the changes in traffic flow were estimated 

using the HCM 2000 (TRB, 2000) to determine several outputs, such as the number of 

vehicles that traversed the WZ, the average queue length, the average queue speed in 

each hour, etc. Once the changes in driving patterns were determined, they were 

combined with the FCFs and tailpipe vehicle EFs previously computed and stored in 

look up tables to derive the environmental load of a WZ day. 

Finally, the marginal fuel consumption and airborne emissions due to the WZ traffic 

management plan were calculated by subtracting fuel consumption and airborne 

emissions released during a WZ period from the results of an equivalent non-WZ 

period. The same methodology was adopted to calculate the I-O LCI components shown 

in Table 6.7. 

6.4.3.3.1.5 Usage phase 

The usage phase addresses the pavement’s environmental burden resulting from the 

interaction of the pavement with the vehicles, environment and humans throughout its 

PAP. Among the factors that have been identified in past research as being worthy of 

consideration during the usage phase of the pavement (i.e., tire-pavement interaction, 

traffic flow, albedo, leachate and runoff, carbonation and lighting) only the contribution 

from the tire-pavement interaction, namely the pavement roughness, was taken into 

account in this analysis. The rationale for this decision lies with the fact that the 

remaining components either do not apply to the features of the case study under 

evaluation or lack well established and consistent scientific background. In order to 

determine the influence of the pavement roughness on vehicle FC and tailpipe 

emissions, the HDM-4 fuel consumption model (Bennett and Greenwood, 2003), 

calibrated and validated for US conditions by Chatti and Zaabar (2012), was combined 

with data from the US EPA’s MOVES model according to the approach proposed in 

Chapter 4 (Santos et al., 2015b). As far as the I-O LCI components are concerned, the 
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environmental burdens related to the following items were considered: on-road vehicles 

manufacturing, maintenance and repair and tire consumption (Table 6.7). 

6.4.3.3.1.6 End-of-life phase 

Given the hierarchical level of the road under consideration the most likely EOL 

scenario for the pavement section in this analysis is that it will remain in place after 

reaching the end of the PAP, serving as the foundation for the new pavement structure. 

Thus, in order to model this pavement life cycle phase a ‘cut-off’ allocation method was 

adopted. According to this allocation method, each product is assigned only the burdens 

directly associated with it (Nicholson, 2009). Therefore, no environmental burdens were 

assigned to the EOL phase of all alternative scenarios. 

6.4.3.3.1.7 Energy production 

Although it is not considered a pavement life cycle phase, as are those previously 

introduced, energy source production and transportation is an unavoidable process that 

is common to all pavement life cycle phases. In this case study, the GREET model 

(Argonne National Laboratory, 2013) was used as the source of the LCI for the 

production and delivery of energy sources. For all energy sources except electricity, the 

GREET model default data was used. In the case of electricity, a default electricity mix 

was modified to reflect the electricity production in the state of Virginia (US EIA, 

2012). 

6.4.3.3.2 Economic dimension 

6.4.3.3.2.1 Materials extraction and production phase 

This phase accounts for the costs incurred by the highway agency in producing the 

mixtures to be applied during the construction and M&R phases. Materials extraction 

and production phase costs were divided into three main categories: (1) raw materials 

costs; (2) energy sources costs; and (3) asphalt plant operating costs. The last category 

was further divided into fixed and variable costs sub-categories.  
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In this section, it should be mentioned that a change in the price of the virgin asphalt 

binder was considered when a RAP percentage of 30% was used in the mixes due to the 

lower PG category of the asphalt binder used in those circumstances (VDOT, 2012a). 

6.4.3.3.2.2 Construction, maintenance and rehabilitation 

phase 

The construction and M&R phase costs represent the costs incurred by the highway 

agency during the actual performance of a construction or M&R activity at a particular 

work site on a specific day and time. They include the construction equipment owning 

costs (depreciation, interest, insurance, taxes on property and allocation to work site), 

the construction equipment operation costs (fuel consumption, planned maintenance and 

FOG, repair, tire consumption and special wear items) and the labor costs 

corresponding to the wages and benefits paid to the crew members for the work 

performed at a work place. The materials costs, as well as the costs associated with the 

hauling movements required to deliver the materials from the point of production to 

their destinations are accounted for in individual phases. Data required for computing 

the various subcategories of construction equipment owning and operating costs were 

collected for each piece of equipment according to the information made available by 

equipment manufacturers, suppliers and dealers, or existing in the literature (US ACE, 

2011; Caterpillar Inc., 2012). The number of workers needed to carry out the several 

M&R actions for a given M&R activity was estimated according to data gathered in the 

field during visits to similar recycling projects, or existing in the literature (EAPA and 

NAPA, 2011). 

6.4.3.3.2.3 Transportation of materials phase 

The theoretical economic advantage of recycling-based construction and M&R practices 

is strongly affected by material transportation costs and how those costs compare to the 

cost of new virgin materials delivered to the construction site. Thus, unlike the majority 

of the LCC models existing in the literature, the proposed LCC model presents the costs 



Chapter 6 Environmental and Economic Assessment of Pavement Construction 

and Management Practices for Enhancing Pavement Sustainability  

 

225 

incurred by the highway agencies due to the transportation of the materials separated 

out from the remaining categories that constitute the total delivery price. 

As with construction and M&R phase costs, three main cost categories were considered: 

(1) hauling trucks owning costs (depreciation, interest, insurance and taxes on property); 

(2) hauling trucks operation costs (fuel consumption, planned maintenance and FOG, 

repair, tire consumption and special wear items); and (3) labor costs (hauling truck 

drivers’ wages and benefits).  

6.4.3.3.2.4 Work-zone traffic management phase 

The WZ traffic management costs consist of the additional costs borne by the road 

users, which are commonly referred to RUC, when facing a disruption of the normal 

traffic flow as a consequence of the constraints imposed by a WZ traffic management 

plan. In this LCC model the following WZ traffic management costs categories were 

considered: (1) TDC and (2) VehOperC. Accident costs, typically considered as another 

WZ RUC category, were disregarded due to the high level of uncertainty associated 

with the factors that might determine their occurrence (which are often related with 

driver errors and other factors not related with the WZ).  

6.4.3.3.2.5 Usage phase 

The usage phase costs, frequently named non-WZ RUC, account for the marginal 

VehOperC supported by the vehicle drivers throughout the PAP as a consequence of the 

deterioration of the pavement condition. In the proposed LCC sub-model, the pavement 

roughness, as measured by the IRI, was used to estimate the RUC associated with the 

overall pavement surface condition. The following costs categories were considered to 

be contributors to the total usage phase costs: (1) fuel consumption; (2) tire wear; (3) 

vehicle maintenance and repair; and (4) mileage-related vehicle depreciation. The first 

three costs categories were estimated by adopting the VehOperC model developed by 

Chatti and Zaabar (2012). The effect of the pavement roughness on vehicle depreciation 
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costs was determined according to the methodology presented by Barnes and 

Langworthy (2003). 

6.4.3.3.2.6 End-of-life phase 

In the case study, the most likely EOL scenario for the analyzed pavement structure is 

that it will remain in place after reaching the end of the PAP, serving as the foundation 

for the new pavement structure. Thus, the salvage value of the pavement structure is 

given by the value of its remaining service life. The service life of the pavement was 

assumed to end when the CCI exceeds the value of 49, which according to the VDOT’s 

Highway System Performance Dashboard (VDOT, 2012b) corresponds to the threshold 

( ) beyond which a ride is classified as “very poor”. 

In order to compute the value of the remaining service life, and thus, the salvage value 

of the pavement at end of the PAP, Expression (6.4) was adopted. It quantifies the 

salvage value of the pavement as the proportion of the total HAC incurred due to the 

application of the last M&R activity equal to the proportion of the remaining life of that 

M&R activity (Walls and Smith, 1998). 

 
 (6.4) 

where is the total highway agency cost resulting from the application of the 

last M&R activity. It is obtained by summing up the costs incurred by the highway 

agency during the materials, M&R and transportation of materials phases associated 

with the last M&R activity; is the CCI of the pavement at the end of the PAP; 

and is the CCI value beyond which a ride is classified as “very poor”. 

6.4.4 Life cycle impact assessment 

The US-based impact assessment methodology, the Tool for the Reduction and 

Assessment of Chemical and other environmental Impacts 2.0 - TRACI 2.0 (Bare et al., 

2011) from the US EPA, was adopted in this study to conduct the impact assessment 
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step of the LCA on the basis of obtained inventory as compiled in the previous step. The 

TRACI impact categories used in the analysis include: Ac due to air emissions, EU due 

to air emissions, HH and PSF. The time-adjusted characterization model for the CC 

impact category that was proposed by Kendall (2012) was used, as opposed to the 

traditional time-steady IPCC model. Furthermore, three energy-based indicators were 

also included in the assessment: (1) primary energy obtained from fossil resources 

(FoPE); (2) primary energy obtained from non-fossil resources (NFoPE); and (3) FsE. 

The FsE was fully allocated to the virgin binder, with none attributed to RAP. This 

assumption aims to avoid double counting since it would be expected to be accounted 

for in the previous pavement system. 

6.4.1 Life cycle costs computation 

Once all the cost categories associated with each scenario under assessment are 

identified and calculated, the concept of NPV was applied. This allows expenses 

occurring at different points in time to be summed up on a yearly basis by using a 

discount rate in the calculations to reflect the “time value of money”. In this case study, 

a real discount rate of 2.3% was used. It follows the OMB’s guidelines for conducting 

benefit-cost of federal programs with durations of longer than 30 years for the calendar 

year of 2011 (OMB, 2013). 

6.5 Results and discussion 

6.5.1 Life cycle impact assessment 

Figure 6.2(a)-6.2(h) display the normalized life cycle impacts of the alternative 

scenarios across the eight impact and energy demand categories. Each scenario is 

normalized by the impact category score observed in the first scenario, where all 

conventional materials and M&R activities were applied. In addition, for each pavement 

life cycle phase, the relative savings in relation to the homologous phase of scenario 1 

are presented. Complementarily, the absolute value of the impact category scores are 

illustrated with labels placed right below the top of the bars. 
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Figure 6.2- Life cycle impact assessment results: (a) CC, (b) Ac, (c) EU, (d) HH, (e) PSF, (f) FoPE, 

(g) NFoPE and (h) FsE. 
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These results clearly indicate that scenario 14 (PrM: THMACO) is the least harmful to 

the environment, as it was found to cause the lowest impact in seven out of eight impact 

and energy demand categories. Compared to scenario 1, a reduction in all impacts 

ranging from 20% (CC) to 40% (NFoPE), can be achieved as a result of implementing 

the THMACO-based preventive M&R strategy. The second best environmental 

performance is denoted by the microsurfacing-based preventive M&R scenario. 

Although this PrM scenario presents the poorest performances in three out of five 

pavement life cycle phases, the fact that the implementation of preventive M&R 

strategies results in a better pavement condition throughout the PAP along with the key 

role played by the usage phase in driving the environmental performance of a pavement 

system, explains the greater reduction in the environmental impact associated with the 

implementation of scenarios 13 and 14. 

Contrary to the merits exhibited by the PrM scenarios, the scenarios consisting of 

implementing the VDOT M&R strategy present the highest environmental impact. In 

particular, scenario 1 (VDOT M&R strategy: HMA - 0% RAP) entails the highest 

environmental impact for five out of eight impact and energy demand categories. 

However, it is worth mentioning that this result should not be seen as conclusive with 

regard to the disadvantages of conventional mixtures over WMA, since the 

environmental burdens that scenario1 originate are quite similar to those of the scenario 

4 (VDOT M&R strategy: WMA - 0% RAP), and do not show a steady pattern of 

improvement or deterioration of the environmental performance across all impact 

categories. For instance, examining the lines in Figure 6.2(a), which display the savings 

of emissions of CO2-eq incurred during the materials phases, one can see that the 

difference between the aforementioned scenarios is just 0.69%. Residual savings are 

also observed in the remaining impact and energy demand categories. The exception is 

the NFoPE energy demand, where a decay of the environmental performance was 

observed, which can be as high as 27.86%. Such residual and contradictory values mean 

that for the conditions considered in this case study, the overall impacts of WMA are 

not substantially different from those of HMA with the same RAP content, and a 



Chapter 6 Environmental and Economic Assessment of Pavement Construction 

and Management Practices for Enhancing Pavement Sustainability  

 

233 

general conclusion on which type of mix is environmentally preferable cannot be 

drawn. Therefore, one noteworthy outcome of this case study is that the decrease in the 

impacts of WMA due to the reduction of production temperature is offset by the 

increase in the impacts due to the production of Sasobit
®
, despite its small proportion in 

mixture composition. Furthermore, even if the lower compacting efforts associated with 

the WMA were taken into account, there would be no meaningful change in the 

environmental performance of the system under analysis, as the environmental burdens 

associated with the operation of construction equipment have a relatively small impact 

over the life of a pavement.  

Regarding the environmental benefits resulting from incorporating RAP into asphalt 

mixtures, the comparison of scenarios involving the application of the same type of 

mixture but with different RAP contents shows that the environmental impacts can be 

reduced by as much as 17% (EU and PSF due to transportation of materials phase), and 

29% (FsE). Overall, in relative terms, the greatest advantage stems from the 

transportation of materials phase, while in absolute terms the materials phase plays the 

most important role in lowering the overall environmental impact. 

As far as the potential environmental benefits of implementing recycling-based M&R 

activities, as opposed to the conventional M&R practices, are concerned, Figure 6.2(a)-

6.2(h) show considerable environmental impact reductions across all categories. The 

maximum reduction in environmental burden can be as high as 19% and was observed 

in the EU, PSF and NFoPE energy demand and impact categories of the materials phase 

and in the FoPE and NFoPE energy demand categories of the transportation of materials 

phase. In absolute terms, the majority of the environmental benefits spring from 

materials and WZ traffic management phases, depending on the impact category being 

considered. Despite the overall benefits associated with the implementation of the 

recycling-based VDOT M&R strategies (scenarios 7 to 12), it should be noted that the 

construction and M&R phases of those scenarios present the poorest environmental 

performance among competing scenarios. The reason for this outcome lies with the fact 
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that the implementation of recycling-based M&R activities requires the use of heavy 

construction equipment with high-rated power engines. 

6.5.2 Life cycle costs analysis 

Figures 3(a) shows the normalized LCHAC corresponding to the alternative scenarios. 

Each scenario is normalized by the net life cycle highway agency cost observed in the 

first scenario. In addition, for each pavement life cycle phase, the relative savings in 

relation to the homologous phase of scenario 1 are presented. Complementarily, the 

absolute value of the net LCHAC are illustrated with the labels placed right below the 

top of the bars. 

From the analysis of Figure 3(a), it can be seen that overall, the recycling-based VDOT 

M&R scenarios are the most advantageous from the highway agency’s perspective. 

Four out of six scenarios rank in the top six of the least expensive, with scenario 9 

(recycling-based VDOT strategy: HMA - 30 % RAP), being the one that allows 

highway agencies the greatest life cycle savings. A reduction of approximately 28% of 

the net LCHAC can be achieved if this scenario is implemented instead of the first one. 

The contributions to the reduction of the net LCHAC for the scenario 9 come from the 

materials (32%) and transportation of materials (26%) phases. Despite the overall 

benefits resulting from implementing recycling-based VDOT scenarios, their 

construction and M&R phases exhibit worse economic performances than the non-

recycling-based counterparts. This is because undertaking recycling-based M&R 

activities requires the use of heavy construction equipment which commonly incurs 

high owning and operating costs. 

In contrast, the PrM scenarios are the least beneficial for the highway agency’s interests, 

as they imply an increase in the life cycle costs of about 9 and 7% in relation to scenario 

1. These outcomes are explained by the greater number of interventions that are 

required to be implemented in order to comply with the M&R triggering policy. 



Chapter 6 Environmental and Economic Assessment of Pavement Construction 

and Management Practices for Enhancing Pavement Sustainability  

 

235 

 

(a) 

 

(b) 

Figure 6.3- Life cycle costing results: (a) highway agency costs (HAC) and (b) road user costs 

(RUC). 
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Another outcome worth highlighting in Figure 6.3(a) concerns the third poorest 

performance, among all the competing alternatives, as seen in scenario 4 (VDOT M&R 

strategy: Sasobit
®
 WMA - 0% RAP), as it implies a slight increase in the HAC of about 

2.3% in relation to scenario 1. This result means that the benefits resulting from energy 

cost savings associated with the manufacturing of WMA were offset by the increased 

production costs related to the asphalt plant modifications, which in this case study, 

consisted of adding a pneumatic Sasobit
®
 feeder to the default equipment existing in an 

asphalt plant facility, and the acquisition and transportation costs of the Sasobit
®
. 

As for the costs incurred by road users, Figure 6.3(b) shows the normalized life cycle 

RUC. Analogously to Figure 6.3(a), each scenario is normalized by the road user life 

cycle cost observed in the first scenario. The relative savings in relation to the 

homologous phase of scenario 1 and the absolute value of the life cycle RUC, expressed 

in thousands of US dollars, are also presented in the same figure. Scenarios 7 to 12 

(recycling-based VDOT M&R scenarios), exhibit the lowest life cycle RUC among 

alternatives, with a value of approximately $2,745,434. These scenarios are followed by 

the THMACO-based scenario, which imposes on road users a life cycle cost of about 

$2,867,890. On the other hand, the microsurfacing-based scenario implies the highest 

costs for road users, with a life cycle value of approximately $3,612,945. Comparing the 

contribution given by each type of RUC, Figure 3(b) shows that the percentage of non-

WZ RUC in the total value incurred by these stakeholders ranges from 15 to 33%, with 

an average value of 32%. 

6.5.3 Overall performance 

In order to determine the preference order of alternative scenarios, a MCDM method 

was applied. Specifically, the TOPSIS method (Hwang and Yoon, 1981), was chosen 

due to its (1) simple, rational and understandable concept; (2) straightforward 

computation; (3) ability to depict the relative performance of decision alternatives in a 

simple mathematical form (Anupam et al., 2014); and (4) broad recognition and 

application in the construction sector (Jato-Espino et al., 2014). Three main criteria 
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were considered: HAC, RUC and environmental impacts. The last criterion was further 

broken down into 8 sub-criteria, each representing one environmental impact category.  

Depending on policy makers’ preferences, different weights can be assigned to each 

criterion. This is a challenging task since there are often multiple DMs with different 

agendas and biases towards their interests. To elucidate DMs on the consequences of 

the weighting in the ranking of the alternative scenarios, a combinatorial weight 

assignment method was undertaken for the main criteria, while the weights assigned to 

the environmental sub-criteria remained unchangeable and equal to those adopted by the 

US-based Building for Economic and Environmental Sustainability (BEES) software 

(Lippiatt, 2007). Since the energy demand indicators considered in the proposed LCC-

LCA model are not available in the BEES software, they were given a weight of 5 

points each, as much as the weight assigned to the Fossil Fuel Depletion impact 

category considered in BEES software. All the weights assigned to the environmental 

sub-criteria were posteriorly rescaled, so that the sum of their values totals 100 points. 

Thus, in the MCDM, the final weight of each environmental sub-criterion is the value 

resulting from multiplying the weight of the main environmental criterion by the weight 

determined, as explained above.  

The best scenario for all possible weighting combinations between the three main 

criteria is displayed in Figure 6.4 through a triangular diagram (Hofstetter et al., 1999; 

Graham and Midgley, 2000). The axes are scaled so they increase in a clockwise 

direction around the diagram. Each point in the triangle area corresponds to a specific 

weighting set and the relative weights always add up to a total weight of 1 (or 100%). 

This leads to a graphical representation of two dominance areas separated by a straight 

equilibrium line. This line comprises a set of points in the triangle where the scenarios 

being compared have the same ranking position. From the analysis of Figure 6.4 one 

can conclude that of the competing scenarios, only two (scenarios 9 and 14) have the 

potential to rank best. Of those, scenario 9 is clearly the one that presents the largest 

area of superiority. If the decision is exclusively based on either HAC or RUC, scenario 
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9 ranks best. In turn, if the environmental performance is the only criterion taken into 

account, then scenario 14 outperforms the remaining ones. 

 

Figure 6.4- Best scenarios for all possible weighting combinations of the main criteria. Legend: 

WHAC- weight assigned to highway agency costs; WRUC- weight assigned to road user costs; WEnv- 

weight assigned to environmental impacts. 
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 Producing asphalt mixes with 30% of RAP allows environmental impacts to be 

reduced by as much as 29% (FsE impact category). In relative terms, the greatest 

advantage springs from the transportation of materials phase, while in absolute 

terms the materials phase plays the most important role in lowering the overall 

environmental impacts; 

 Applying a recycling-based VDOT M&R strategy where the structural 

treatments is carried out through a CCPR technique leads to reduction in the 

environmental burdens of some pavement life cycle phases that can be as high as 

19% in relation to those generated by an equivalent and conventional M&R 

strategy; 

 Applying the microsurfacing-based preventive M&R strategy is the most costly 

strategy for both highway agency and road users. On the other hand, 

implementing a recycling-based VDOT M&R scenarios where the asphalt 

mixtures are of type HMA containing 30% of RAP (scenario 9), yields the 

greatest life cycle highway agency and RUC savings; 

 The recycling-based VDOT M&R strategy: HMA - 30 % RAP is prominently 

the scenario that best suits the majority of the interests of the stakeholders as a 

whole. 

6.6 Summary and conclusions 

A shift towards more environmentally and economically responsible behavior in the 

road pavement construction and management field triggered the need to develop and 

implement new pavement engineering solutions. Complementarily, a comprehensive 

and wide-scoped assessment of the effectiveness of those solutions in achieving their 

intended objectives, requires the use of comprehensive life cycle modelling approaches, 

which provide valuable information for those in charge of making decisions.  

Keeping this in mind, a comprehensive and integrated LCC-LCA model was developed 

and used to investigate the potential environmental and economic benefits resulting 

from applying in-plant recycling mixtures, WMA, CIR and preventive treatments 
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throughout the life cycle of a pavement structure. For the conditions considered in this 

case study, the recycling-based VDOT M&R strategy, where the asphalt mixtures are of 

type HMA containing 30% of RAP has been shown to be more compliant with the 

highway agency and road users’ demands for affordable road maintenance and usage 

over its life cycle than the remaining technical solutions investigated. Moreover, this 

solution also revealed a superior overall performance when the interests of all three 

stakeholders, meaning highway agency, highway users and the environment, were 

concomitantly taken into account in a MCDM. On the other hand, from the exclusive 

environmental performance’s point of view, implementing a THMACO-based PrM 

strategy has proven to be the most environmentally-friendly solution. 

Providing life cycle perspectives of the environmental and economic implications of 

implementing new pavement engineering solutions and management practices is 

without doubt an essential first step towards enhancing pavement infrastructure 

sustainability. However, it is no less true that decision-making in a pavement 

management context is a much more complex exercise, where other variables and 

constraints came into play, so it cannot be efficiently conducted through the exclusive 

use of LCA and LCC approaches. Improved approaches for optimizing the selection of 

treatments, materials and application timings based on specific and often conflicting 

objectives and constraints are required. Thus, future work on this topic will focus on 

enhancing the potentialities and capabilities of the proposed LCC-LCA model by 

integrating it into a multi-objective optimization (MOO) framework. 
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Chapter 7  

An Adaptive Hybrid Genetic 

Algorithm for Pavement 

Management 

7.1 Introduction 

In the current economic paradigm, the need to maintain and preserve existing highway 

infrastructure assets has been at the forefront of the transportation infrastructure 

decision-makers’ concerns. This is reflected by highway agency budgets shifting 

funding from new construction and/or reconstruction to maintenance. For instance, in 

the US the FHWA reported that throughout the 10-year period from 2000 to 2010, 

highway and bridge systems rehabilitation expenditures grew at an average annual rate 

of 6.4 percent. In turn, systems expansion expenditures have increased at a slower 

average annual rate of 1.8 percent, resulting in a decline in share of total capital outlays 

from 37.4 percent in 2000 to 27.4 percent in 2010 (FHWA, 2014). This shift in 

priorities is not likely to change over the coming decades, underlining the importance of 

establishing consistent procedures and developing innovative and optimization-based 

engineering management systems to achieve effectiveness in: (1) managing huge 

investments in M&R of pavement systems; (2) identifying and implementing proven 
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maintenance, rehabilitation and preservation practices and techniques; and (3) ensuring 

proper timing and intensity of application of those treatments. 

Optimization is a broad concept that can be applied at different levels of evaluation and 

for different categories of infrastructure assets. Pavement M&R is one of the most 

critical and costly forms of infrastructure asset management that has benefited from the 

potentialities of the optimization techniques. The first widely recognized PMS that took 

advantage of the mathematical optimization dates back to 1982, when the state of 

Arizona developed and implemented a PMS to optimize maintenance policies for its 

highway network (Golabi et al., 1982). Savings of $14 million were reported in the first 

year of implementation, and $101 million was predicted for the following 4 years. Since 

then, due to computational capabilities enhancements, many systems have been 

developed, using integrated techniques of performance prediction and optimization 

methods, such as linear programming, non-linear programming, integer programming, 

dynamic programming, etc. (Zimmerman, 1995), with the intention of helping the 

highway agencies to design optimal pavement structures and to plan optimal M&R 

activities that should be implemented in new pavement segments or in existing 

pavement segments. 

The growing complexity of large-scale problems required to be solved optimally, such 

as those that the PMS have to deal with, has imposed great obstacles to the efficiency 

and effectiveness of the traditional optimization techniques. For instance, the problem 

of identifying adequate M&R activities for individual pavement segments is usually 

formulated using integer variables to represent M&R activities selected for individual 

pavement segments. This problem is a combinatorial one which, due to a huge solution 

space, is very difficult to solve optimally using the traditional optimization techniques.  

Evolutionary algorithms (EA), which is a subfield of artificial intelligence, have 

demonstrated their effectiveness over the last few decades as powerful optimizers for 

difficult, nonlinear, multimodal optimization problems (Eiben and Smith, 2010). EA are 

generally, but not always, based on some natural process. Some popular EA include 

particle swarm optimization (PSO) (Kennedy and Eberhart, 1995), differential evolution 
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(DE) (Storn and Price, 1995), ant colony optimization (ACO) (Dorigo et al., 1999), 

genetic programming (GP) (Banzhaf et al., 2000), evolutionary programming (EP) 

(Fogel, 1999) and GA (Mitchell, 1996; Goldberg, 1989). From the above mentioned 

EA, GA have had one of the most successful applications on occasions in which there is 

a need to deal with complex engineering optimization problems. Like any other 

heuristic method, GA do not guarantee global optimum solutions. However, if properly 

designed, they will often provide either optimum or near-optimum solutions to the 

optimization problems. 

In the field of infrastructure management, the GA has been object of considerable 

attention. For instance, Fwa et al. (1996) applied GA to develop a road maintenance 

strategy based on different agency costs. Ferreira et al. (2002a) and Ferreira et al. 

(2002b) formulated a mixed integer optimization model for network level PMS. They 

used GA heuristics to solve the optimization problem that aimed to minimize the 

expected total discounted costs of pavement M&R actions over a planning period. 

Jawad and Ozbay (2006) paired GA as a search toll with Monte Carlo simulations as a 

risk analysis technique in a lifecycle cost optimization model for pavement management 

at project-level. Santos and Ferreira (2012) presented a GA-based road pavement design 

optimization model, called OPTIPAV, which considers pavement performance, 

construction costs, M&R costs, user costs, the residual value of the pavement at the end 

of the PAP, and preventive M&R interventions. The model was developed and 

programmed to help pavement designers to choose the best pavement structure for a 

road or highway. Mathew and Isaac (2014) developed a deterministic optimization 

model with the objectives of maximizing the performance of the road network and 

minimizing the maintenance cost using GA as the optimization tool. The applicability of 

the model was illustrated using a case study for the rural road network of Kerala state in 

India.  

The examples of applications of GA in the pavement management sector presented 

below are merely illustrative, since many others could have been given. The same is 

also true with respect to the particular allusion to PMS, since its versatility has been 
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proven through its application to other infrastructure management systems, such as 

bridges (Frangopol and Liu, 2007; Almeida et al., 2015), water pipes (Maier et al., 

2014; Bi et al., 2015; Stokes et al., 2015), and railways (Jha et al., 2007; Caetano and 

Teixeira, 2013). 

In view of such an extensive usage for solving a wide variety of combinatorial 

optimization problems, in which traditional approaches may not work adequately, it is 

worth looking at the specific attributes of GA that give them an edge over other 

traditional optimization techniques. These are (TRB, 2007): (1) GA do not require the 

objective function to be continuous or differentiable; (2) GA have good robustness for 

many applications; (3) GA have outstanding global search capabilities for convex and 

non-convex problems; (4) GA have inherent parallel processing capabilities; and (5) GA 

are relatively easy to implement. 

Notwithstanding the advantages recognized above due to the stochastic search 

mechanisms behind the GA and the remaining bio-inspired and space-based EA, there 

may also be drawbacks with algorithms as follows: (1) long computing time; (2) 

premature convergence; and (3) limited capacity to fine-tune solutions. To alleviate, and 

in some cases overcome integrally many of the shortcomings, several advances have 

been made in the evolutionary computation field. Abu-Lebdeh et al. (2014) pointed out 

six courses of action that can make the application of GA more efficient, rapid and 

productive. They are: (1) selection of appropriate operators and parameter values; (2) 

appropriate problem-specific representations of candidate solutions; (3) faster or better 

evaluation of solutions (or individuals); (4) structuring of individuals into 

subpopulations or various other classes that are treated separately with respect to, e.g., 

application of various operators; (5) division of workload among multiple loosely-

coupled processors (as in a cluster or network, for example); and (6) hybridizing GA 

with other none evolutionary search methods.  

While it is intuitive that the first three areas need to be done right in order to get the 

most from the GA, and that the fifth action can be done regardless of the structure of 

GA employed or any of the other actions, the fourth and sixth points represent 
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promising research domains that are still in their early days. In particular, research 

studies have found that a skilled combination of EA with LS heuristics, named 

“memetic algorithms” (MA) (Moscato, 1989), can improve the performance of EA in 

terms of efficiency (i.e., requiring orders of magnitude fewer evaluations to find optimal 

solutions) and effectiveness (i.e., identifying higher quality solutions), especially when 

dealing with real-world and large scale problems (Ting and Liao, 2010; Souza et al., 

2011; Vidal et al., 2013). 

Several GA-based MA have been developed in the past few years in various 

engineering fields (Espinoza and Minsker, 2006; Singh and Bhukya, 2011; 

Arivudainambi and Rekha, 2013; Zong and Dhanasekar, 2014). However, to the best of 

our knowledge no study exists in the literature that has applied this concept to the 

pavement management sector. 

In this chapter, an AHGA combing GA with an LS mechanism is presented for solving 

the pavement M&R strategy selection problem. The AHGA framework is provided with 

a pool of LS operators and an Adaptive Local Search Operator Selection (ALSOS) 

method to decide dynamically and on-the-fly on the relevance of conducting an LS 

according to a given search strategy. Online learning probabilities are then used to 

select both the LS operator from the pool and the LS intensity that leads to the best 

gains of search efficiency and effectiveness. 

7.2 Problem statement: the pavement maintenance and 

rehabilitation strategy selection problem 

From the highway agency’s standpoint, the pavement M&R strategy selection problem 

is traditionally formulated as an optimization problem where the objective consists in 

minimizing the present value (PV) of the total M&R costs over the PAP, while 

satisfying several technical, quality standards and budgetary requirements. 

Notwithstanding the particular pavement management policies and practices of each 
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highway agency, the optimization model introduced above can be formulated 

generically, as follows: 
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Where R is the number of alternative M&R activities; S is the number of pavement 

sections considered for analysis; T is the number of years of the PAP; MCrst is the 

maintenance cost for applying M&R activity r to pavement section s in year t; Xrst is 

equal to one if M&R activity r is applied to pavement structure s in year t, otherwise it 

is equal to zero; d is the discount rate; Zst are the condition variables for pavement 

section s in year t;  are the warning levels for the condition variables of pavement 

structures; Bt is the highway agency budget for pavement maintenance in year t; Nmaxs 

Z
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is the maximum number of M&R activities that may occur in pavement section s over 

the PAP; are the pavement condition functions; a are the highway agency cost 

functions;  are the feasible operations sets;  is the time interval between the 

application of two consecutives M&R activities of type r;  is the maximum time 

interval between the application of two consecutives M&R activities of type r.  

Equation (7.1), the objective function of this quite complex, highly non-linear discrete 

optimization model, expresses the minimisation of the PV of the total M&R costs over 

the PAP, while keeping the pavement sections condition above specified quality 

standards. Constraints (7.2) correspond to the pavement condition functions, expressing 

pavement condition in each section and year as a set of functions of the initial pavement 

state and the M&R activities previously applied to the pavement section. These 

functions can describe the pavement condition with regard to variables such as cracking, 

rutting, longitudinal roughness, surface disintegration (potholing and ravelling) and 

overall quality of pavements, etc. Constraints (7.3) are the warning level constraints 

which define the minimum level (or the maximum, depending on the type of indicator) 

for the pavement condition variables. Constraints (7.4) represent the feasible operation 

sets, i.e. the M&R activities that can be applied to maintain or rehabilitate the pavement 

structure in relation to its condition. Constraints (7.5) indicate that only one M&R 

activity should be performed per pavement structure in each year. Constraints (7.6) 

represent the M&R costs, which express the costs for the highway agency involved in 

the application of a given M&R activity to a pavement section in a given year as a 

function of the pavement condition in that section and year. Constraints (7.7) are the 

annual budget constraints. They specify the maximum amount of money to be spent on 

M&R activities during each year. Constraints (7.8) were included in the model to avoid 

the frequent execution of M&R activities on the same pavement section. Constraints 

(7.9) represent technical limitations which may impose limits to the life of a given 

M&R activity. 

Φ

Ω rt

max
rt
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7.3 Adaptive Hybrid Genetic Algorithm framework 

7.3.1 Components of the Adaptive Hybrid Genetic Algorithm 

The framework of the proposed AHGA is illustrated in simple terms in Figure 7.1. It 

features the following main components: (1) the encoding of solutions; (2) the initial 

population generation; (3) the solutions’ fitness evaluation; (4) the parents selection; (5) 

the reproduction process; (6) the population replacement process; (7) the stagnation 

prevention methodology; (8) the iterations stopping criteria; and (9) the adaptive LS 

mechanism. 

Below, each of the aforementioned components is thoroughly described. 

7.3.1.1 Encoding of solutions 

After identifying the parameters that characterize the problem at hand and defining the 

objective function and constraints (problem formulation), the problem solutions are 

encoded into genetic representation. The use of an appropriate encoding representation 

is of great importance for the efficiency of a GA when applied to real-world problems. 

In the developed AHGA an integer coding is adopted to represent the M&R 

alternatives. Each individual represents a potential solution (M&R strategy) and consists 

of a sequence of TS   genes, where S is the number of pavement sections considered 

for analysis, T represents the PAP defined by the decision-maker, and the allele values 

for each of these genes represent a possible M&R activity. 

7.3.1.2 Initial population generation 

The first step in applying a GA to solve an optimization problem is to generate an initial 

population. In the proposed AHGA the initial population with size N is randomly 

generated, and the best  individuals are copied and stored in an archive 

pool according to a user-defined rate ( ). This scheme prevents solutions of the 

highest relative fitness from being excluded from the next generation through the 

nondeterministic selection process.  

rate_EliteN 

rate_Elite
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Additionally, the AHGA’s user is given the change of seeding the initial population 

with pre-defined solutions. 
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Figure 7.1- Adaptive Hybrid Genetic Algorithm framework. 
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7.3.1.3 Fitness evaluation 

Once the population has been created at each generation, the individual’s fitness has to 

be evaluated according to the objective function and constraints corresponding to the 

features of the problem being tackled. 

GA were initially developed to tackle unconstrained optimization problems. The 

challenges in solving constrained optimization problems arise from the various limits on 

the decision variables, the constraints involved, the interference among constraints, and 

the interrelationship between the constraints and the objective functions (Tessema and 

Yen, 2006). Because GA do not have any explicit constraint-handling mechanism, the 

application of the traditional genetic search operators (i.e., crossover and mutation), 

which are ‘‘blind’’ with respect to constraints, may produce infeasible solutions. 

Therefore, an important issue that needs to be taken into account when designing GA to 

solve constrained optimization problems is how to handle the constraints. 

In the literature, many constraint handling techniques have been proposed for single-

objective evolutionary algorithms (Mezura-Montes and Coello Coello, 2011). Due to its 

simplicity and satisfactory performance, the penalty function method has become very 

popular and is one of the most common approaches to handling constraints. The main 

idea behind this method is to transform a constrained optimization problem into an 

unconstrained one by adding a constraint violation measure to the objective function as 

a penalty term, based on the amount of constraint violation. 

In this research work a dynamic and parameter-free penalty approach based on the 

concept of superiority of feasible solutions was developed and incorporated into the 

AHGA. 

Without loss of generality, let the formulation represented by Expressions (7.10)-(7.12) 

be the formulation of a minimization-type constrained optimization problem. It is 

transformed into an unconstrained one, by defining a new modified objective function 

(Expression (7.13)). 
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Where X


 is a T-dimensional vector of design variables; )q,...,j()X(g j 1


 are the q 

inequality constraints; )c,...,qj()X(h j 1


 are the 
qc   equality constraints.  is 

the penalized objective function of individual ;  is the scalar constraint violation 

of individual ; P is a single penalty factor. The scalar constraint violation, , of 

individual  is calculated as the summation of the normalized constraint violations 

divided by the number of constraints (Expression (7.14)): 
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Where is the constraint violation of an individual  on the j
th
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calculated according to Expression (7.15); is the maximum violation of the j
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constraint in the population (Expression (7.16)); C is the total number of constraints. 
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In Expression (7.15),  is a tolerance parameter (0.0001) that transforms equality 

constraints into inequality ones, allowing all constraints to be treated by the same 

constraint-handling approach. 

Finally, the penalty parameter P, which varies from one generation to another, is 

determined according to Expression (7.17). 

 (7.17) 

Where and  are, respectively, the objective function values of the 

worst and best feasible and unfeasible individuals currently available in the population, 

whilst )X(CV UF
Lowest


 is the lowest value of the constraint violation of an unfeasible 

individual. Thus, the fitness of an infeasible individual not only depends on the amount 

of constraint violation, but also on the population of individuals of each generation. 

7.3.1.4 Parents selection method 

The parent selection process is used to determine which solutions of the population will 

be used by the crossover operator to generate new solutions, called offspring solutions. 

In the developed AHGA a Ranking-based Selection (RS) method (Chuang et al., 2015) 

was implemented after preliminary experiments revealed the superiority of this method 

over the traditional tournament selection method. In the RS method the chromosomes in 

the population are firstly ranked based on their fitness. Then, the  

chromosomes that have relatively lower rankings (i.e., worse fitness) are rejected while 

at the same time an equal amount of chromosomes that present higher ranking are 

reproduced, thus ensuring the constancy of the number of chromosomes in the 

population. The above mentioned parameter  is a user-defined value 

representing the percentage of individuals from the population of a given generation 

that will be rejected. 
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7.3.1.5 Reproduction process 

7.3.1.5.1 Crossover operator 

Crossover is the process by which one or more new individuals are created through the 

combination of genetic material selected from two or more parents of the source 

population, to form the members (offspring chromosomes) of a successor population. In 

the proposed AHGA a Direction-based Crossover (DBX) operator was implemented 

(Chuang et al., 2015). This crossover operator work as follows. Once the RS is 

performed, the N population members are sorted in ascending order according to their 

fitness, after which the chromosomes are divided into two groups: the leading group 

(group A: ), which contains the fitter solutions, and the 

inferior group (group B: ), which as the name suggests 

comprises the worst chromosomes in the current population. The  chromosomes 

belonging to the leading group are then paired with the individual having the 

homologue ranking position in the inferior group. Next, for each pair of parents a 

random number in the interval [0,1] is generated with uniform probability and compared 

to a pre-determined crossover rate (pc). If the random number is greater than the 

crossover rate, no crossover is performed and the pair members will undergo mutation. 

In turn, if the random number is lower than or equal to the crossover rate, they are 

guided to generate two new candidate offspring according to the following rules: 

 (7.18) 

 (7.19) 

Where  and  are, respectively, the offspring individuals obtained from the 

parents  and ; is the crossover step-size given by Expression (7.20); 

 is the crossover direction vector, in which their components are 

generated according to Expression (7.21). 
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In Expression (7.20),  and  represent the objective function value of the i
th

 

individual belonging to the groups A and B, respectively;  and  symbolize 

the objective function value of the worst and best individuals in the current population, 

respectively. Finally, in Expression (7.21)  represents a number randomly chosen 

from the interval [0,1] for the j
th

 gene of a given individual. 

From the expressions presented above, it is perceptible that two specific situations may 

occur in which no crossover would be performed. One situation happens when the 

paired parents’ chromosome has the same fitness value originating a null step size . 

The second is a consequence of a random number  lower than 0.5, which 

generates a direction vector  with null elements. In the event of the first situation, the 

crossover process is replaced by mutation according to the procedure that will be 

described in the next section. In turn, the second situation is dealt with by randomly 

selecting a non-zero crossover direction  from . 

7.3.1.5.2 Mutation operator 

The mutation operator aims to introduce new genetic material into an existing 

individual, ensuring that the full range of allele is accessible for each gene. Thereby, it 

allows the exploration of different areas of the search space by potentially generating 

solutions that have never been analysed while it prevents the search from being trapped 

in a local optima.  

As previously stated, in the proposed AHGA each pair of parents which do not meet the 

crossover criterion will automatically undergo mutation according to the Dynamic 
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Random Mutation (DRM) operator (Chuang et al., 2015). The way this operator works 

is described by Expressions (7.22) and (7.23). 

)XX(SXX LU
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Where is a random perturbation vector in the n-dimensional cube ;  is a 

user-defined number chosen from the interval [0,1];  and  represent individuals in 

which all genes are equal to the greatest and lowest value of the decision variables, 

respectively ( );  is the mutation step size 

defined according to Expression (7.24). 
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Where b is a parameter used to control the decay rate of ; k and kmax denote, 

respectively, the current generation number and the maximum number of generations. 

7.3.1.6 Truncation procedure for integer restrictions 

After reproduction has been performed (or LS operations as will be shown later on in 

this chapter), in order to ensure that the integer restrictions are satisfied, the following 

truncation procedure is applied (Expressions (7.25) and (7.26)): 
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where Xj is the continuous value of the variable to be integerized; is the integer 

portion of Xj;  is the integerized value of the variable Xj; Xmin and Xmax are, 

respectively, the minimum and maximum values of the set of decision variables (M&R 

activities) considered for the problem being tackled. 

7.3.1.7 Replacement process 

The replacement process aims to determine which solutions among parents, offspring 

and elite members (if applicable) of the current population, are selected to compose the 

successor population. There are several evolutionary schemes that can be used, 

depending on the extent to which chromosomes from the source population are allowed 

to pass unchanged into the successor population. These range from complete 

replacement, where all members of the successor population are generated through 

selection and recombination, to steady state, where the successor population is created 

by generating one new chromosome at each generation and using it to replace a less-fit 

member of the source population (McCall, 2005). 

In the developed AHGA a replacement-with-elitism methodology was adopted. By this 

process, each offspring chromosome is directly compared with its parent and the better 

(fitter) chromosome moves to the next generation. The survivor chromosomes are 

posteriorly joined by the elite chromosomes initially preserved. In this way, the 

performance of the algorithm is enhanced by ensuring that the good individuals survive 

to the next generation. 

7.3.1.8 Stagnation prevention methodology 

Due to the evolutionary nature of the GA, it may happen that at some given time the 

population achieves a low diversity level such that the search process stalls around a 

local optimum. To avoid this situation, a stagnation prevention methodology was 

implemented in the proposed AHGA. It consists of refreshing all chromosomes of the 

population, excepting the current best one, whenever a stagnation index (SI), expressed 

by the standard deviation of the population’s fitness, falls below a pre-defined 

int
jX

int*
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convergence threshold value (τ). Once the stagnation prevention methodology is 

triggered, the population is regenerated according to two mechanisms, a random 

regeneration and a biased regeneration, aiming to strike a balance between the 

exploration of the search space and the exploitation of the best solution. In the random 

regeneration, 25% of N individuals are randomly generated in order to introduce some 

diversity into the genetic material available for generating new offspring chromosomes 

in the upcoming recombination processes. With respect to the biased regeneration, the 

best individual is used to construct the remaining individuals by using two especially 

designed operators. These operators, which are meant to promote the exploitation, work 

as follows. Considering each real M&R activity of the best individual as reference (i.e., 

an M&R activity different from DN), the first operator acts on that individual by 

moving those M&R activities back and forward on a yearly basis and within a 3-year 

time window. In relation to the second operator, it simply replaces each real M&R 

activity by a DN M&R activity. For instance, if the best individual involves the 

execution of a given real M&R activity in year 12, 7 new solutions are created by 

applying the first operator, which consist in moving this M&R activity to years 9, 10, 

11, 13, 14 and 15. In turn, the second operator generates one only solution in which the 

DN M&R activity is performed in year 12. These procedures are repeated for all years 

(genes) where it is supposed that a real M&R activity is to be implemented. If the total 

number of new chromosomes exceeds the spots available to complete the population of 

size N, the recently created chromosomes are ranked based on the fitness value and the 

fittest ones are selected. 

7.3.1.9 Iteration stopping criteria 

The implementation of an efficient stopping criterion is an important aspect for any 

iterative method. If properly designed it may lead to substantial savings in 

computational times. The proposed AHGA incorporates the following termination 

criteria: (1) the number of generations attains the user-specified maximum number 

(Max_gen) and (2) the number of continuous generations without improvement of the 

best solution attains the user-specified maximum number (Max_gen_NoImprov). A 
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generation is considered to be a no improvement with regard to its predecessor if the 

difference of the fitness values of their best individuals is inferior to 0.01%. 

7.3.1.10 Local search mechanism 

In the proposed algorithm a GA with a classic framework without any kind of LS is 

hybridized with an adaptive LS mechanism that aims to either accelerate the discovery 

of good solutions, for which evolution alone would take too long to discover, or to reach 

solutions that would otherwise be unreachable by evolution or a local method alone 

(Krasnogor et al., 2006). 

Two of the most important aspects that need to be taken into account when designing a 

hybrid algorithm are concerned with the computational budget and the need to maintain 

a suitable level of diversity in the population. Performing LS until a solution converges 

to a local optimum, which is referred to as complete LS, or, in the case of partial LS, if 

the search space under consideration has wide basins of attraction from which crossover 

and mutation could not easily escape, may lead to the loss of population diversity 

(Whitley et al., 1994) and may also be computationally expensive. This can be even 

more significant when the LS is applied on all individuals of the population on costly 

function evaluations (El-Mihoub et al., 2006). 

With these points in mind, in the developed AHGA a partial LS is applied, instead of 

performing a complete LS in every solution generated by the evolutionary operators. 

Specifically, the LS is carried out on the current best solutions of a generation based on 

a best first improvement strategy. That means that the LS stops when the first better 

neighbor solution is found, up to a user-specified maximum number of attempts 

(MaxNumLS_iter). If the LS succeeds, the improved solution replaces the starting 

solution. In turn, if no better solution has been found by the time the LS process is 

halted, the solution that underwent LS is kept in the archive of best solutions. 

Another issue worthy of note when setting the features of LS regards the connection 

between the features of the search space, the type of LS operators, the LS intensity (i.e., 

the number of LS iterations) and the LS frequency (i.e., the number of continuous 



Chapter 7 An Hybrid Genetic Algorithm for Pavement Management 

 

 

271 

uninterrupted generations that a GA performs before applying LS (El-Mihoub et al., 

2006)). Depending on the type of problem and the LS operator being applied, an 

improving move may be achieved after a great number of attempts, or, contrarily, a few 

or even one single attempt may be enough for the LS to succeed (Hsiao et al., 2012). 

To avoid a waste of algorithm resources due to an improper use of eventually expensive 

LS, the AHGA incorporate a dynamic approach that controls both the LS frequency and 

the LS intensity, or, in other words, the maximum number of LS iterations allowed for 

the LS algorithm to get a successful move (MaxNumLS_iter).  

In the proposed AHGA the LS frequency is initially set to 1. However, after a given 

number of unsuccessful LS executions, the decision on whether or not to perform LS is 

made probabilistically according to a user-defined probability (p_minLS). For that 

purpose, a sliding time window with a user-defined size W_LS is adopted to record the 

performance of the last W_LS LS operations. When none of the last W_LS LS 

operations were successful, the execution of the LS at a given time point t is triggered 

probabilistically. 

With respect to the LS intensity, the value of MaxNumLS_iter at time point t is initially 

set to MaxNumLS_itermax and will be linearly reduced according to the consecutive 

number of unsuccessful LS operations (UnsucLS_iter) up to a user-defined limit value 

(MaxNumLS_itermin) (Expression (7.27)). The MaxNumLS_iter is restored to the initial 

value whenever a LS operation is successful. 

iter_UnsucLS
LS_W

iter_MaxNumLSiter_MaxNumLS
iter_MaxNumLSiter_MaxNumLS minmax

max 


  (7.27) 

Given the underlying idea in the previous paragraph, a sensible LS design approach 

would not be based on a priori choice of one single LS operator that may prove to be 

unproductive for the problem at hand. Rather, a more efficient design would consider 

the incorporation of multiple LS operators and the decision of which LS operator to 

apply on a given search moment would be more rational if made dynamically. This 

system of adaptive LS process promotes both cooperation and competition among 
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various problem-specific LS operators and favors neighborhood structures containing 

high quality solutions that may be arrived at by low computational efforts (Ong et al., 

2006). To this aim, the AHGA framework is provided with a pool of LS operators and 

an Adaptive Local Search Operator Selection (ALSOS) method in order to decide 

dynamically and on-the-fly, based on their recent performances, if it is worthy to 

perform an LS, and if so, to select the LS operator, from the several available options, 

that leads to the best gains in search efficiency. 

Next, the components of the LS mechanism will be described in detail. 

7.3.1.10.1 Adaptive local search operator selection method 

The ALSOS method is divided into two main modules: (1) a credit assignment module, 

which assigns a reward to each LS operator based on their impacts on the progress of 

the search and (2) an operator selection module, which selects the operator to apply to 

the next LS step, based on the credits previously assigned. The details of the previously 

mentioned modules are provided in the next sections. 

7.3.1.10.1.1 Credit assignment module 

In the proposed AHGA, the assessment of the performance of each LS operator, based 

on the impact of its application on the progress of the search, is carried out by applying 

the fitness improvement rate (FIR) method. This method was chosen over the 

commonly applied raw values of the fitness improvements because they not only vary 

from problem to problem but also change depending on the stage of the optimization 

process. Typically, the raw fitness improvement value is much greater at early stages 

than at later ones (Li et al., 2014). The FIR achieved by an LS operator k at the time 

point t is computed as follows (Expression (7.28)): 
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where  is the fitness value of the neighbor solution;  is the fitness value 

of the initial solution.  

Once the performance is assessed, the reward of each operator is determined according 

to the Extreme Value approach (Fialho et al., 2008). Relying on the principle that rare 

but possibly large improvements in the performance criterion are likely to be more 

effective than frequent but small ones, it advocates that LS operators should be 

rewarded based on the maximal FIR values recently achieved. For that purpose, a 

sliding window with fixed size W_CredAssig was adopted for each LS operator to store 

the FIR values resulting from the last W_CredAssig applications of the LS operators. 

The sliding windows work as a first-in, first-out (FIFO) queue, to the extent that the 

most recent FIR values are added at the tail of the sliding window, while the oldest ones 

are removed to preserve the window size. The reward of each LS operator at the point 

time t is then calculated as the greatest FIR value among the current values stored in the 

sliding window. Formally, if t is the current time point and  the fitness 

improvement rate observed at that moment of the search, then the expected reward for 

LS operator k at time t ( ) is calculated as follows (Expression (7.29)): 

 (7.29) 

The sliding window is mean to represent the time scale of the process and can be 

thought of as a memory. Small W_CredAssig values disregard the performance of the 

LS operators at early stages of the search, meaning that LS operators originating large 

but infrequent performance improvements will be missed. On the other hand, big 

W_CredAssig values lead to extended learning periods, which may delay the switch 

from the previous best operator to the next best one. 

7.3.1.10.1.2 Local search operator selection module 

The LS operator selection is performed by adapting the application rates of the LS 

operators according to a proportional probability scheme. The proposed AHGA was 
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equipped with two selection methods, namely the Probability Matching (ProMat) 

method (Goldberg, 1990) and the Adaptive Pursuit (AP) method (Thierens, 2005). 

Let K be the set of LS operators available in a pool , 

the selection probability of each LS operator at time point t be , 

such that , and the estimated quality of LS operator k be 

. At each time point t, these methods: (1) randomly select a LS operator k with a 

probability )t(pk , and assign it a reward , calculated according to the Extreme 

Value-based credit assignment mechanism and (2) update the quality of the selected LS 

operator k ( ) according to the reward , based on the quality empirical 

estimate presented by Expression (7.30). 

)t(rew)t(q̂)()t(q̂ kkk  11  (7.30) 

where α ∊ [0, 1] is a user-defined parameter that represents the adaptation rate. 

After having performed preliminary experiments considering the two abovementioned 

methods, the second one was selected to adaptively update the probability  of LS 

operator k when applied to the computational experiments described in sections 7.4.1 

and 7.5.1.  

The AP method, originally proposed for learning automata, adopts a winner-takes-all 

strategy to increase the chance of selecting the best LS operator k
*
 up to  while the 

remaining probabilities are decreased to . According to this method, the probability 

of each LS operator is updated as follows: 
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K,...,k)],t(q̂[maxarg*k kk 11   (7.33) 

Under the constraints: 

K
pandpKpp minminminmax

1
1   (7.34) 

This constraint ensures that if , then the sum of the updated probabilities 

remains equal to 1, i.e., 11
1

 

K

i
k )t(p  (Thierens, 2005). 

In addition to the adaptation rate α used to update the empirical quality estimates 

(Expression (7.30)), the AP contemplates another parameter, the learning rate β ∊ [0, 1], 

which controls the greediness of the winner-takes-all strategy. 

7.3.1.10.1.2.1 Pool of local search operators 

In the proposed AHGA, a set of LS operators were considered to generate several 

neighbors’ structures, and consequently neighborhood solutions, for the problem being 

tackled. It should be mentioned that the choice of LS operators for the pool is to some 

extent subjective, as there is no conventional procedure in the literature for guiding the 

selection of the best set of LS operators for a given problem. Thus, the choice of the LS 

operators presented in the list below was based on the authors’ knowledge of the 

problem and on empirical evidence, and resulted from narrowing down an initial 

extended list. The LS operators are the following: 

1) Swap mutation (SWM), which consists of randomly selecting two genes and 

swapping their positions in the chromosome; 

2) Forward shift mutation (FSM), which consists of randomly selecting two genes 

and moving the first gene into the position immediately preceding the second 

gene; 

3) Backward shift mutation (BSM), which consists of randomly selecting two 

genes and moving the second gene into the position immediately succeeding the 

first gene; 

1
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4) Cauchy Distribution-based Mutation (CaDM), which consists of randomly 

performing a Cauchy-based mutation on a randomly selected gene ( ) 

according to Expression (7.35). 

 

 baj
new
j XX()cauchyXX   (7.35) 

Where  is a random number generated by the Cauchy distribution function 

(Expression (7.36)); and are two randomly selected genes different from . 

 (7.36) 

5) Chaotic Dynamic-based Mutation (ChDM), which consists of randomly 

performing a Chaotic dynamic-based mutation on a randomly selected gene ( ) 

according to Expression (7.37). 

 

 
(7.37) 

 

Where  is the chaotic variable after k iterations; jrand  is a number randomly chosen 

from the interval [0,1]; minX  and maxX  represent, respectively, the minimum and 

maximum values of the set of decision variables (M&R activities) considered for the 

problem being tackled. The sinusoidal iterator, represented by Expression (7.38), was 

selected to perform the chaotic local search after k=300 iterations. The first chaotic 

variable, ch0, was generated randomly in the range [0,1]. 
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6) Delete Mutation (DelMut), which consists of randomly selecting one gene of the 

chromosome among those representing a real M&R action and replacing it with 

another one where a DN M&R action is supposed to be performed. 

7.4 Parameters setting for the proposed Adaptive Hybrid 
Genetic Algorithm 

Before measuring and comparing the performances of the AHGA and traditional GA 

when applied to different case studies, a parameter tuning campaign was undertaken to 

determine the set of parameter values that yields the best algorithm performance.  

For a reduced number of parameters with a few alternative levels, the usage of 

calibration approaches relying on a full factorial design, where all possible 

combinations for a given set of parameters are identified and examined, would be a 

costly and time consuming process due to the huge number of experiments required. An 

alternative approach consists of using orthogonal arrays (OAs) to reduce the number of 

experiments required, while maximizing the test coverage (Wang et al., 2014). 

A commonly used orthogonal method, which was applied in this study to carry out the 

parameter tuning, is the Taguchi approach (Roy, 2010). Extensively used for 

engineering process optimization, it aims to produce high quality products at low cost to 

the manufacturer, following the philosophy that quality is best achieved by minimizing 

the deviation from a target. To reduce errors in the product, Taguchi designs 

experiments using OAs to systematically vary and test the different levels of the control 

factors (i.e., parameter settings). The appropriate levels for those factors are those that 

make the system more “robust”, or in other words, less sensitive to variations in 

uncontrollable (noise) factors. To conclude on the robustness of a given process or 

system, a criterion entitled Signal-to-Noise (S/N) ratio ( ) is adopted, where factor 

levels that maximize the appropriate S/N ratio are optimal. The usage of this criterion is 

suggested when multiple runs are conducted for the same experiment and the results are 

measured in quantitative terms. 

dB
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The S/N ratio is derived from the quality loss function and depending on the desired 

performance response can be of three standard types: 

1) The “smaller-the-better” (Expression (7.39)): 
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2) The nominal is the best (Expression (7.40)): 
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3) The “larger-the-better” (Expression (7.41)): 
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Where S/N is the Signal-to-Noise ratio in dB; N is the total number of trials for a given 

experiment; is the value of the performance characteristic for trial i;  is the mean 

value of the performance characteristic for a given experiment;  is the variance of the 

performance characteristic for a given experiment. 

Once all of the S/N ratios have been computed for each run of an experiment, the 

Taguchi method suggests a graphical approach to analyze the data. According to this 

approach, the S/N ratios and average responses are plotted for each factor against each 

of its levels. The graphs are then examined to determine the optimal factor level, i.e., to 

select the factor level which (1) best maximizes the mean of the S/N rations and (2) 

minimizes the mean of the average responses. 

7.4.1 Experimental design 

To concretize the parameter tuning process, the AHGA was applied to a case study 

consisting of determining the best M&R strategy that minimizes the total discounted 

iy y

2S
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M&R costs of a one-way road pavement section of an Interstate highway in Virginia, 

USA, with the features displayed in Table 7.1. 

Table 7.1- Features of the case study. 

Name Value Unit 

PAP 50 year 

Beginning year 2011 year 

AADT0 20000 vehicle 

Percentage of PCs in the AADT 75 % 

Percentage of HDVs in the AADT 25 % 

Traffic growth rate 3 %/year 

CCI0 85 - 

Age 5 year 

Number of lanes 2 - 

Lanes length 1 km 

Lane width 3.66 m 
Legend: PAP- project analysis period; AADT0- initial annual average daily traffic; AADT- annual average daily traffic; PC- 
passenger car; HDV- heavy duty vehicle; CCI0- Initial Critical Condition Index. 

 

The M&R activities considered were based on Chowdhury (2011), and defined as DN, 

PrM, CM, RM and RC. Details on the M&R actions comprising each M&R activity can 

be found in Chapter 6 (Santos et al., 2015a).The M&R costs were determined according 

to the methodology presented in Chapter 5 (Santos et al., 2015b) and are presented in 

Table 7.2.  

In order to determine the pavement performance over time, the VDOT’s PPPM were 

used. VDOT developed a set of PPPM in units of CCI as a function of time and 

category of the last M&R activity applied. CCI stands for Critical Condition Index and 

is an aggregated indicator ranging from 0 (complete failure) to 100 (perfect pavement) 

that represents the worst of either load-related or non-load-related distresses. Using the 

base form corresponding to Expression (7.42), VDOT defines PPPM for the last three 

categories (Stantec Consulting Services and Lochner, 2007). The coefficients of 

VDOT’s load-related PPPM expressed by Expression (7.42) for asphalt pavements of 

Interstate highways are presented in Table 7.3 (Stantec Consulting Services and 

Lochner, 2007). 
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where  is the critical condition index in year t since the last M&R activity, i.e. 

CM, RM or RC;  is the critical condition index immediately after treatment; a, b, 

and c are the load-related PPPM coefficients (Table 7.3). 

Table 7.2- Unit costs of the M&R activities. 

ID Name Total MC ($/Km.lane) 

1 DN 0 

2 PrM: microsurfacing 6,621 

3 PrM: THMACO 17,593 

4 CM 35,696 

5 RM 58,969 

6 RC 169,594 
Note: MC- maintenance and rehabilitation costs; DN- do nothing; PrM- preventive maintenance; THMACO- thin hot-mix asphalt 
concrete overlay; CM- corrective maintenance; RM- restorative maintenance; RC- reconstruction/rehabilitation. 

Table 7.3- Coefficients of VDOT’s load-related PPPM expressed by Expression (7.42) for asphalt 

pavements of interstate highways. 

M&R activity category  a b c 

CM 100 9.176 9.18 1.27295 

RM 100 9.176 9.18 1.25062 

RC 100 9.176 9.18 1.22777 
Legend: VDOT- Virginia Department of Transportation; PPPM- pavement performance prediction models; M&R- maintenance and 

rehabilitation;
0CCI - critical condition index immediately after treatment; a, b, and c are load-related PPPM coefficients; CM- 

corrective maintenance; RM- restorative maintenance; RC- reconstruction/Rehabilitation. 

 

Unlike the other categories, VDOT did not develop individual PPPM for PrM 

treatments. Thus, in this case study the considered PrM treatments, i.e. microsurfacing 

and THMACO, were respectively modelled as an 8-point and 15-point improvement in 

the CCI of a road segment (Chowdhury, 2011). Once the treatment is applied, it is 

assumed that the pavement deteriorates according to the PPPM of a CM, without 

reduction of the effective age. On the other hand, in the case of the application of CM, 

RM and RC treatments, the CCI is brought to the condition of a brand new pavement 

(CCI equal to 100) and the age is restored to 0 regardless of the CCI value prior to the 

M&R activity application. 

)t(CCI

0CCI

0CCI
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Based on the generic formulation presented in section 7.2 and on the considerations 

introduced above, the optimization problem was formulated as follows: 
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6 r,tt max
RCr  (7.46) 

Where Xrt is equal to one if M&R activity r is applied in year t, otherwise it is equal to 

zero; d is the discount rate and was set to 2.3% according to OMB (2013); CCIt is the 

CCI value in year t; CCImin is the minimum CCI value allowed for a pavement structure 

and was set to 40;  is the time interval between the application of two consecutives 

M&R activities of type r;  is the maximum time interval between the application of 

two consecutives M&R activities of type RC and was considered to be equal to 30 years 

according to VDOT (2014). The values of the index r identifying the M&R activities 

are coherent with the ID values presented in Table 7.2. 

For simplicity, the presentation of the constraints represented by Expressions (7.2), (7.4) 

and (7.6) in section 7.2 was omitted from the formulation listed above. 

7.4.2 Parameter tuning using the Taguchi method 

The parameter tuning process described in this section focus exclusively on the 

parameters specifically related to the hybrid version of the GA (i.e., AHGA). The value 

of the parameters common to both algorithms are presented in Table 7.4. This parameter 

setting was chosen based on the guidelines provided by Chuang et al. (2015) and on the 

rt

max
RCt
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best and most stable results obtained from preliminary and exploratory tests on 

parameter sensitivity conducted with the non-hybridized version of the proposed GA. 

Table 7.4- Parameters setting. 

Parameter Value 

N 100 

 1% 

  

C 2 

pc 90% 

 0.35 

b 1 

ε 10
-4

 

Max_gen 300 

Max_gen_NoImprov 100 

 

As stated in the previous section, the application of the Taguchi method requires the 

determination of a suitable quality loss function as the objective function. Preliminary 

AHGA runs revealed that the algorithm was always able to converge to the best known 

solution regardless of the selected parameter setting. Thus, the objective considered in 

calibrating the AGHA was to ensure it converges to the best known solution at the 

lowest computational running time. In other words, the quality loss will be smaller if the 

required computational running time of the algorithm to find the best known solution is 

smaller. Thus, the objective function for the calibration of the AHGA was defined by 

choosing a quality loss function with the characteristics of “smaller-the-better” 

(Expression (7.39)). 

In the process of parameter tuning, the control factors are referred to as parameters and 

the levels as parameters values. The parameters (control factors) that were calibrated 

through the Taguchi method are the following: (1) maximum number of LS iterations 

(MaxNumLS_itermax); (2) minimum number of LS iterations (MaxNumLS_itermin); (3) 

probability of performing LS (p_minLS); (4) size of the sliding time window used to 

store the status of the LS operations (W_LS); (5) size of the sliding time window used to 

store the performance of the LS operators, expressed in terms of FIR (W_CredAssig); 

rate_Elite

rate_Discard
N

1

o
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(6) adaptation rate (α) considered by the credit assignment module of the ALSOS 

method; (7) minimum probability of selecting a given operator ( ) considered by the 

AP method; and (8) learning rate (β) considered by the AP method. Overall, for each 

parameter three alternative values (levels) were considered based on preliminary tests 

(Table 7.5).  

Table 7.5- Parameters levels. 

ID Name L1 L2 L3 

1 MaxNumLS_itermax 50 150 - 

2 MaxNumLS_itermin 5 25 45 

3 p_minLS 5% 20% 50% 

4 W_LS 5 15 25 

5 W_CredAssig 10 50 100 

6 α 0.1 0.5 0.9 

7  5% 10% 15% 

8 β 0.2 0.5 0.8 

 

According to the Taguchi method, for a calibration process with such features, i.e., eight 

parameters with three alternative values, the L18 OA is recommended for the matrix 

experiment. The OA comprises eight columns of parameters and eighteen rows of 

experiments representing a specific design alternative with a defined set of design 

parameter values. When compared to factorial design, the time savings are evident, as 

the same number of parameters and alternative values examined with factorial design 

would require 6561 (3
8
) experiments, whereas with the Taguchi method only eighteen 

are needed. 

After implementing the AHGA in MATLAB
®

 programming software (MATLAB, 

2015), each experiment defined by the OA was run 10 times on a computational 

platform Intel Core 2 Duo 2.4 GHz processor with 4.00 GB of RAM, on the Windows 7 

professional operating system. 

The results obtained for the Taguchi experiment are summarized in Table 7.6 along 

with the layout of the L18 OA. Figure 7.2 depicts the mean of S/N ratios along with the 

averaged responses for each parameter, expressed in terms of computational running 

time (seconds). 

minp

minp
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Table 7.6- Taguchi experiment results and L18 OA layout. 

Experiment 

ID 

Parameter ID Averaged computational  

running time (sec.) 
S/N (dB) 

1 2 3 4 5 6 7 8 

1 50 0.1 0.05 5 10 0.1 0.05 0.2 111.0091 -42.2906 

2 50 0.1 0.2 15 50 0.5 0.1 0.5 80.69418 -38.9327 

3 50 0.1 0.5 25 100 0.9 0.15 0.8 56.39403 -36.4397 

4 50 0.5 0.05 5 50 0.5 0.15 0.8 116.901 -42.3645 

5 50 0.5 0.2 15 100 0.9 0.05 0.2 99.92245 -41.2259 

6 50 0.5 0.5 25 10 0.1 0.1 0.5 71.27712 -37.3086 

7 50 0.9 0.05 15 10 0.9 0.1 0.8 76.39255 -38.0864 

8 50 0.9 0.2 25 50 0.1 0.15 0.2 57.11317 -35.6053 

9 50 0.9 0.5 5 100 0.5 0.05 0.5 64.76956 -36.8037 

10 150 0.1 0.05 25 100 0.5 0.1 0.2 78.68935 -38.688 

11 150 0.1 0.2 5 10 0.9 0.15 0.5 109.3454 -41.5612 

12 150 0.1 0.5 15 50 0.1 0.05 0.8 85.39461 -39.8269 

13 150 0.5 0.05 15 100 0.1 0.15 0.5 52.89346 -34.8525 

14 150 0.5 0.2 25 10 0.5 0.05 0.8 80.92878 -38.517 

15 150 0.5 0.5 5 50 0.9 0.1 0.2 91.88262 -39.9784 

16 150 0.9 0.05 25 50 0.9 0.05 0.5 68.04786 -37.1613 

17 150 0.9 0.2 5 100 0.1 0.1 0.8 109.6858 -42.2859 

18 150 0.9 0.5 15 10 0.5 0.15 0.2 80.27925 -39.6368 
Legend: S/N - Signal-to-Noise ratio. 

 

The optimal parameter values were then identified by applying the Taguchi’s parameter 

design approach, according to which the optimal parameter values are the ones that best 

maximize the mean of S/N ratios and minimize the mean of the average responses. 

Table 7.7 summarizes the optimal value of the parameters. These parameter values will 

be used by the AHGA when comparing its performance against that of the non-

hybridized version of the GA. 
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Figure 7.2- Mean of means and S/N ratios for each parameter. 

Table 7.7- Optimal parameters values. 

Name Level Value 

MaxNumLS_itermax L2 150 

MaxNumLS_itermin L3 45 

p_minLS L3 50% 

W_LS L3 25 

W_CredAssig L3 100 

α L1 0.1 

 
L3 15% 

β L2 0.5 

7.5 Comparison of the algorithms performance 

7.5.1 Experimental setup 

In this section, the proposed AHGA is compared with the non-hybrid version of the GA 

with respect to (1) its ability to consistently reach the fittest solution achieved (

) by employing the two algorithms and (2) the convergence behavior during 

the search process. The fittest solution obtained from the usage of both algorithms is 

considered the point of comparison of the effectiveness of the algorithms because the 

problem size (i.e., number of M&R considered and PAP length), the complexity of the 
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PPPM and the way they relate to each other (see section 7.4.1) mean the use of 

analytical or exhaustive optimization approaches would not reach the global optimum 

solution within the span of a human lifetime. 

Both algorithms were applied to several case studies with the objective of determining 

the best pavement M&R strategy that minimizes the total discounted M&R costs of a 

one-way road pavement section of an Interstate highway in Virginia, USA, with the 

geometric and traffic characteristics formerly displayed in Table 7.1 of section 7.4.1, 

and complying with the types of M&R activities and PPPM described in the same 

section. With respect to pavement conditions, 16 different scenarios with the features 

presented in Table 7.8 were considered, and for each scenario ten independent 

computational runs were performed. To provide a fair basis for the comparison of the 

performance of both algorithms, they were run considering the same values for the 

parameters common to both algorithms as listed in Table 7.4 of section 7.4.2. In turn, 

the parameter setting displayed in Table 7.7 of section 7.4.2 was adopted when 

specifically applying the AHGA. 

In order to examine the statistical difference between the algorithms, two non-

parametric tests were carried out: the Wilcoxon signed-rank test (Hollander et al., 2014) 

and Page’s trend test (Page, 1963). Non-parametric tests were preferred over parametric 

ones because the latter require the assumptions of normality, independence and 

homoscedasticity of the data for the sake of reliability (Derrac et al., 2011), which either 

may not be easy to guarantee or may be impossible to ensure at all when considering 

stochastic search algorithms such as those introduced in this chapter.  

Specifically, the non-parametric Wilcoxon signed-rank test was conducted to compare 

the algorithms’ final results with the significance level (α) of 5%. According to this test, 

the optimum objective function value found by the AHGA on each of the ten 

independent computational runs is compared to the optimum objective function value 

found by the GA on that same run. The difference between these two optimum objective 

function values, di, was stored in a vector of differences, D, of length 10 (nruns = 10). 

The Wilcoxon signed-rank test was then performed to test the null hypothesis that the 
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data in the vector D is a random sample with a mean value of 0 against the two-sided 

alternative hypothesis that the mean difference is different from 0. The computation of 

the p-value for this test was done by using the function “signrank” existing in 

MATLAB
®
. 

Table 7.8- Features of the case studies. 

Case study ID PAP (years) Initial pavement age (years) Initial pavement CCI CCI warning level 

1 50 30 40 40 

2 50 0 100 40 

3 50 10 68 40 

4 50 5 85 40 

5 50 30 50 50 

6 50 0 100 50 

7 50 10 68 50 

8 50 5 85 50 

9 30 30 40 40 

10 30 0 100 40 

11 30 10 68 40 

12 30 5 85 40 

13 30 30 50 50 

14 30 0 100 50 

15 30 10 68 50 

16 30 5 85 50 
Legend: PAP- project analysis period; CCI- critical condition index. 

 

Page’s trend test was adopted to assess the algorithms’ convergence performance, 

considering intermediate results instead of just the final results in each case study. This 

test is applied under the assumption that an algorithm with a good convergence 

performance will advance towards the optimum faster than another algorithm with a 

worse performance (Derrac et al., 2014). According to this test, the averages of the 

optimum objective function values found by the AHGA over the ten independents 

computational runs at c different steps of the search (cut-points) are subtracted by the 

homologous values resulting from employing the traditional GA. Next, for each case 

study the c cut-points are ranked from 1 to c, where the cut-point with the greatest 

absolute difference is given the ranking 1 and the cut-point with the lowest absolute 

difference is given the ranking c. Once this procedure is performed, the value of the 

ranks obtained by each cut-point in the several case studies are summed up and 

numbered from 1 to c, where the cut-point with the smallest sum of ranks is given the 
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number 1 and the cut-point with the largest sum is given the number c. Page’s L statistic 

is then calculated to test the null hypothesis that the equality between the c cut-points 

analyzed can be rejected in favor of a predefined ordered alternative with a significance 

level of α=0.05. 

7.5.2 Analysis of the results 

7.5.2.1 Optimum objective function values 

Table 7.9 presents the performance of each algorithm with respect to their ability to 

consistently reach the fittest solution obtained ( ) by employing the two 

algorithms. For each scenario, the best (Min.), the worst (Max.), the median (Avg.) and 

the standard deviation (σ) of the results over ten computational runs are reported. In 

addition, the average relative percentage deviation ( ) from the best known 

objective function value obtained through the application of both algorithms is also 

calculated for each scenario according to the Expression (7.47). 
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(7.47) 

where  is the best known solution produced over ten computational runs by 

the two algorithms;  is the solution given by the computational run i; nruns is 

the maximum number of independent computational runs considered. 

From Table 7.9 it can be seen that the AHGA was always able to reach the best known 

solution regardless of the case study considered, whereas the GA did not present this 

general capacity by failing to converge to the best solution in case study 5. With respect 

to the ability of the algorithms to more consistently achieve the best know solutions, the 

AHGA was found to almost always converge to the best known solution in 10 out of the 

10 computational runs, with the exception of case studies 7 and 8. In the case of the first 

exception, it was found to converge to within 10% of the best known solution on 9 out 

of 10 computational runs, representing a  of 2%. This results is slightly worse than 
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that observed in the second exception, as the AHGA was found to converge to the best 

known solution within 1% of this value on 9 of the 10 computational runs, leading to an 

 equal to 0.34%, whereas for higher deviations, i.e. 5% and 10% of the best known 

solution, it always converged on all of the ten computational runs. 

Table 7.9- Statistics of the objective function values and number of runs (of 10) converged within δ 

(%) of lowest achieved objective function values. 

Case study 

ID 
Algorithm Min. ($) Avg. ($) Max. ($) σ  

δ (%) 

≤ 1 ≤ 5 ≤ 10 

1 
AHGA 522,470.00 522,470.00 522,470.00 0 0.00 10 10 10 
GA 522,470.00 599,355.00 672,920.00 56385 14.72 2 2 4 

2 
AHGA 198,950.00 198,950.00 198,950.00 0 0.00 10 10 10 

GA 198,950.00 198,950.00 198,950.00 0 0.00 10 10 10 

3 
AHGA 270,400.00 270,400.00 270,400.00 0 0.00 10 10 10 

GA 270,400.00 288,557.00 355,090.00 22470 6.71 1 9 9 

4 
AHGA 230,640.00 230,640.00 230,640.00 0 0.00 10 10 10 
GA 230,640.00 231,186.00 236,100.00 1638 0.24 9 10 10 

5 
AHGA 537,670.00 539,947.00 540,200.00 759 0.42 10 10 10 

GA 558,110.00 615,805.00 702,350.00 40889 14.53 0 2 2 

6 
AHGA 217,220.00 217,220.00 217,220.00 0 0.00 10 10 10 

GA 217,220.00 223,321.00 241,060.00 9308 2.81 7 7 9 

7 
AHGA 333,210.00 338,320.00 384,310.00 15330 1.53 9 9 9 
GA 333,210.00 349,247.00 396,600.00 21488 4.81 5 7 8 

8 
AHGA 266,950.00 267,976.00 272,080.00 2052 0.38 8 10 10 

GA 266,950.00 270,031.00 275,530.00 3410 1.15 5 10 10 

9 
AHGA 370,020.00 370,020.00 370,020.00 0 0.00 10 10 10 

GA 370,020.00 378,522.00 422,260.00 17552 2.30 8 8 9 

10 
AHGA 47,390.00 47,390.00 47,390.00 0 0.00 10 10 10 
GA 47,390.00 49,578.60 69,276.00 6566 4.62 9 9 9 

11 
AHGA 244,160.00 244,160.00 244,160.00 0 0.00 10 10 10 

GA 244,160.00 244,160.00 244,160.00 0 0.00 10 10 10 

12 
AHGA 210,610.00 210,610.00 210,610.00 0 0.00 10 10 10 

GA 210,610.00 210,610.00 210,610.00 0 0.00 10 10 10 

13 
AHGA 403,700.00 403,700.00 403,700.00 0 0.00% 10 10 10 
GA 403,700.00 409,250.00 421,000.00 6774 1.37 6 10 10 

14 
AHGA 76,629.00 76,629.00 76,629.00 0 0.00 10 10 10 

GA 76,629.00 76,629.00 76,629.00 0 0.00 10 10 10 

15 
AHGA 265,000.00 265,000.00 265,000.00 0 0.00 10 10 10 

GA 265,000.00 265,000.00 265,000.00 0 0.00 10 10 10 

16 
AHGA 228,590.00 228,590.00 228,590.00 0 0.00 10 10 10 
GA 228,590.00 228,590.00 228,590.00 0 0.00 10 10 10 

Legend: AHGA- adaptive hybrid genetic algorithm; GA- genetic algorithm; Min.- minimum; Max.- maximum; Avg.- median; σ- 

standard deviation; - average relative percentage deviation; δ- tolerance of the best known solution. 

Note: For each case study the 
 
corresponds to the lowest value of the best solutions (Min.) obtained by employing the 

two algorithms. 

 

By contrast, GA was only able to converge to the best known solution in all of the ten 

computational runs when it was applied to case studies 2, 11, 12, 14, 15 and 16. The 

poorest performances were observed in case studies 1 and 5, where it was found to 

converge to within 10% of the best know solution on 4 and 2 out of the 10 

computational runs, respectively. This inconsistency translates, in both cases, to an 
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 equal to 15%. Moreover, excluding the case studies where it revealed full ability 

to converge to the best known solution regardless of the relative deviation considered 

(i.e., 1%, 5% and 10%), only in case studies 4 and 8 did the GA converge to within 10% 

of the best know solution in all of the ten computational runs. However, it should be 

noted that, overall, for this relative deviation it was found to fail the “10 in 10” by only 

one computational run. 

Finally, Table 7.10 shows the difference between the objective function values, di, of 

the best solutions obtained by the two algorithms as well as the p-values computed by 

the Wilcoxon signed-rank test. From this Table it can be concluded that the AGHA does 

not present an overwhelming superiority over the GA with respect to its capacity to 

consistently achieve fitter solutions. Indeed, the null hypothesis can be rejected in only 

4 of the 10 case studies in which differences were observed in the fitness of the best 

solutions obtained by the algorithms in at least 1 of the 10 computational runs. From 

those four case studies, three feature a PAP of 50 years, which may suggest that the 

AHGA should be preferred over the GA with respect to the performance’s criterion 

under analysis when the case study being tackled possesses a long PAP.  

Therefore, the overall conclusion that can be extracted from the Wilcoxon signed-rank 

test results, if only the fitness of the best solutions produced by the algorithms were to 

be analyzed, would be that the two algorithms exhibit a similar behavior. However, this 

conclusion should not be overemphasized since it strongly depends on the stopping 

criterion adopted. In fact, if enough time is given to the GA (it seems to be what 

happened in the case studies analyzed) it will reach a comparable solution to the 

AHGA, but the point of using the AHGA is not only to obtain high-quality solutions but 

also to do it in a shorter time. In the next section, the issue of how quick the algorithms 

are in achieving the best know solutions will be addressed. 
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Table 7.10- Difference between the objective function values ($), di, of the best solutions obtained by the two algorithms and Wilcoxon signed-rank test 

results. 

Case study ID  

Computational run ID 
p-value 

1 2 3 4 5 6 7 8 9 10 

1 522,470.00 117,100.00 - 102,040.00 26,720.00 29,800.00 - 138,390.00 137,620.00 150,450.00 66,730.00 0.01172 

2 198,950.00 - - - - - - - - - - - 

3 270,400.00 12,110.00 12,110.00 12,110.00 12,110.00 - 12,110.00 12,110.00 12,110.00 84,690.00 12,110.00 0.00389 

4 230,640.00 - - - - - 5,460.00 - - - - 0.31731 

5 537,670.00 17,910.00 65,590.00 98,150.00 60,810.00 17,910.00 65,590.00 65,480.00 106,840.00 98,150.00 162,150.00 0.00498 

6 217,220.00 - - 17,480.00 - - 23,840.00 - - 19,090.00 600.00 0.06789 

7 333,210.00 - 3,120.00 8,410.00 17,340.00 1,080.00 63,390.00  -38,120.00 51,100.00 - 2,950.00 0.09289 

8 266,950.00 8,010.00 8,580.00 -  -2,290.00 - - - 1,120.00 5,130.00 - 0.13801 

9 370,020.00 - - - - - - 52,240.00 - - 32,780.00 0.17971 

10 47,390.00 21,886.00 - - - - - - - - - 0.31731 

11 244,160.00 - - - - - - - - - - - 

12 210,610.00 - - - - - - - - - - - 

13 403,700.00 - - 16,300.00 17,300.00 6,300.00 - - - 12,300.00 3,300.00 0.04311 

14 76,629.00 - - - - - - - - - - - 

15 265,000.00 - - - - - - - - - - - 

16 228,590.00 - - - - - - - - - - - 

Legend:  - best known solution produced over ten computational runs by the two algorithms.   
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7.5.2.2 Computational running time 

As mentioned previously, the computational speed of an algorithm is also an important 

performance criterion that shouldn’t be neglected when assessing its applicability. Table 

7.11 reports the computational running times, per algorithm and case study, 

corresponding to two different instants of the search process: the discovery of the best 

know solution and the completion of the iteration process. From this Table it can be 

observed that the AHGA not only requires less time to converge to the best known 

solution but also denotes greater precision, as substantiated by the lower standard 

deviation values associated to this algorithm in comparison to those of the GA for the 

same case study.  

Additionally, Table 7.11 is also useful in validating the results of the AHGA’s 

calibration process. By comparing the average computational running time of case study 

4, which corresponds to the discovery of the optimum solution (43.1 seconds), with the 

values presented in Table 7.6, one can see that none of the experiments required an 

inferior averaged computational running time to converge to the best know solution. 

The best performance was attained by experiment 13, which required, on average, 

approximately 10 more seconds than case study 4. A confirmation test would have been 

conducted if the case study considered for the calibration purpose was not among those 

used to compare the performances of the algorithms. 

In order to assess the statistical significance of the difference of the algorithm’s 

convergence performance throughout the search process, Page’s trend test was 

conducted. Table 7.12 displays the cut-point rankings (rj) computed for the absolute 

difference in the objective function value of the best solutions produced by the two 

algorithms and the summation of all rj per cut-point (Rj). 

 

 

 



Chapter 7 An Hybrid Genetic Algorithm for Pavement Management 

 

 

294 

Table 7.11- Statistics of the computational running time. 

Case 

study ID 

Type of computational 

running time (sec.) 

GA AHGA 

Min. Avg. Max. σ. Min. Avg. Max. σ 

1 
1 326.62 425.06 472.25 46.13 52.14 93.46 124.49 23.05 
2 435.08 469.81 501.25 21.23 243.73 316.11 371.08 31.06 

2 
1 194.53 289.24 423.56 66.98 31.04 83.97 168.87 40.02 

2 369.67 431.70 479.34 30.35 248.48 319.45 397.11 49.81 

3 
1 137.77 323.15 448.26 90.32 61.00 131.87 172.04 33.61 

2 321.87 483.96 656.20 90.98 241.21 321.67 361.69 34.50 

4 
1 160.03 302.85 518.88 102.24 30.71 43.10 55.13 7.86 
2 351.72 479.39 555.77 57.47 206.92 248.74 313.69 31.16 

5 
1 464.08 550.32 780.65 98.62 31.97 92.64 166.36 51.85 

2 494.21 579.93 825.10 101.80 254.46 310.49 377.26 43.61 

6 
1 145.37 343.93 519.09 124.14 40.74 60.53 95.90 17.57 

2 325.27 467.25 625.18 82.46 249.20 281.04 316.55 23.30 

7 
1 281.59 391.11 429.03 46.38 66.66 170.24 337.76 101.79 
2 438.05 457.96 484.49 15.13 293.31 434.41 647.03 106.63 

8 
1 122.35 306.83 444.73 91.12 35.96 131.16 217.96 67.14 

2 296.63 421.31 454.25 45.67 248.71 349.04 441.53 73.87 

9 
1 69.83 174.02 286.32 82.44 12.61 32.52 82.15 18.12 

2 186.21 254.45 298.79 47.27 151.45 192.64 223.89 24.62 

10 
1 14.68 80.06 156.64 46.13 19.42 75.40 274.36 67.72 
2 129.26 196.19 269.06 46.66 142.96 232.88 446.69 93.28 

11 
1 38.62 115.76 196.33 57.74 12.58 26.25 42.48 9.68 

2 162.51 268.23 411.06 86.72 133.04 178.66 237.75 37.19 

12 
1 58.03 89.55 144.62 25.00 12.90 20.03 38.99 7.32 

2 183.26 217.96 277.99 27.07 137.61 158.79 195.79 17.99 

13 
1 90.09 205.23 315.30 91.72 11.08 34.51 84.20 19.51 
2 217.69 284.45 337.43 42.63 138.00 162.10 208.00 18.94 

14 
1 23.06 48.26 76.27 17.11 10.12 19.82 31.42 7.48 

2 150.64 176.49 209.13 18.23 139.52 155.93 191.29 15.06 

15 
1 12.14 98.28 204.46 59.44 9.59 44.29 134.29 44.92 

2 147.44 227.48 327.36 57.83 133.91 171.49 250.04 39.70 

16 
1 17.28 111.10 252.76 64.69 11.24 66.45 150.46 42.72 
2 152.60 238.90 333.35 54.39 156.12 217.66 309.63 48.00 

Legend: AHGA- adaptive hybrid genetic algorithm; GA- genetic algorithm; Min.- minimum; Max.- maximum; Avg.- median; σ- 

standard deviation. 

Notes: 1- computational running time when the optimum solutions is found; 2- computational running time when the stopping 

criteria is triggered. 

Table 7.12- Computation of ranks for Page’s trend test. 

Case study ID 
Cutting-point ID (generation ID) 

1 (12) 2 (24) 3 (36) 4 (48) 5 (60) 6 (72) 7 (84) 8 (96) 

1 1 2 3 4 5 6 7 8 

2 1 2 3 4 5 6 7 8 
3 1 5 3 2 4 6 7 8 

4 1 2 3 4 5 6 7 8 

5 1 2 3 4 5 6 7 8 
6 1 2 3 4 5 6 7 8 

7 1 2 3 5 8 7 6 4 

8 1 2 3 4 6 5 7 8 
9 1 2 3 4 5 6 7 8 

10 8 7 2 1 3.5 3.5 5.5 5.5 

11 1 2 3 4 5 6 7 8 
12 1 2 3 4 5 6 7 8 

13 1 2 3 4 5 6 7 8 

14 1 2 3 4 5 6 7 8 
15 1 2 3 4 5 6 7 8 

16 1 2 4 7 3 6 5 8 

Rj 23 40 48 63 79.5 93.5 107.5 121.5 

j 1 2 3 4 5 6 7 8 

Rj × j 23 80 144 252 397.5 561 752.5 972 



Chapter 7 An Hybrid Genetic Algorithm for Pavement Management 

 

 

295 

From the results presented in Table 7.12, a Page’s L statistic value of 3182 was 

computed, which corresponds to a p-value inferior to 0.0001 at a significance level of 

α=0.05. Thus, given the low p-value the hull hypothesis can be strongly rejected. This 

fact allows us to conclude that the increasing trends in the rankings observed in the last 

row of the Table 7.12 are backed up statistically, or, in other words, that the AHGA 

converges faster than the GA. 

Therefore, the overall conclusion that can be extracted from the Page’s trend test results 

is that if the computational running time is a limiting factor, the AHGA may achieve 

better results in less time through the definition of stopping criteria that terminates the 

optimization process either when a determined amount of improvement is not achieved 

after a given number of iterations or when a predefined number of iterations is reached.  

7.5.2.3 Analysis of learned local search operators selection 
probabilities and frequency of usage 

This section provides insights on the role played by the several LS operators and the 

dynamic behavior of the ALSOS method throughout the optimization process. For that 

purpose, one computational run of case studies 4 and 12 was taken as an example. 

Figure 7.3 displays the values of the learned LS operator selection probabilities 

throughout the computational run of case study 4, whereas Figure 7.4 presents the 

identity of the LS operator applied in each LS call and the FIR resulting from its 

employment. In turn, Figure 7.5 and Figure 7.6 introduce the same type of information 

as Figure 7.3 and Figure 7.4 do, but for case study 12. From these Figures it can be seen 

that the outline of the applied LS operators seems to vary depending on the features of 

the case study being tackled as well as the stage of the optimization process at the time 

LS is performed. Such a result cannot be obviously disassociated from the relationship 

between the frequency of usage of a given LS operator and the FIR produced, although 

there is some randomness inherent to the stochastic nature of the AP rule employed. 

Although in case study 4 the largest FIR were achieved with the usage of LS operator 5, 

in case study 12 the most prominent FIR were obtained thanks to LS operator 4. 

Therefore, one can say that there is not a single best LS operator. Instead, all of them 
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seem to play different but cooperating roles in the process of effectively solving a given 

problem.

 

Figure 7.3- Online LS operator learned probabilities throughout the computation run for case 

study 4. 

 
Figure 7.4- Identity of the LS operator applied in each LS call and FIR resulting from its 

employment for case study 4. 

 

Figure 7.5- Online LS operator learned probabilities throughout the computation run for case 

study 12. 
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Figure 7.6- Identity of the LS operator applied in each LS call and FIR resulting from its 

employment for case study 12. 

 

7.6 Summary and conclusions 

This chapter presents the development of an AHGA intended to help decision makers in 

the field of pavement management tackle the optimization problem consisting in 

minimizing the life cycle M&R costs of a given pavement section throughout its PAP, 

while keeping the pavement condition above a predefined threshold value, meeting 

technical constraints and considering deterministic and non-linear PPPM.  

The proposed algorithm maintains the exploring ability of a traditional GA and 

improves its exploiting aptitude through the execution of LS operations. Its main 

novelty lies on the inclusion of a pool of LS operators and the use of an adaptive LS 

operator selection approach within the framework of a traditional GA. Specifically, a 

dynamic-based learning mechanism was developed to decide on the worthiness of 

performing an LS and to automatically select which LS operator should be applied at 

each instant of the search, while solving the problem, according to how well each of the 

LS operators included in the pool have recently performed in the same optimization 

process.  

After the algorithm parameters had been calibrated using the Taguchi method, its 

efficiency and effectiveness were compared with those of a traditional GA through its 

application to several case studies designed to replicate VDOT’s real-pavement 
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management problems for a pavement section. The outcomes of the comparative 

experiments undertaken and accordingly supported by statistical tests proved the 

superiority of the proposed algorithm in consistently converging to the optimum 

solution while requiring a lower computational running time. 

The analysis of the learned probabilities and selection frequency of the LS operators in 

the pool revealed that different case studies possess different patterns of LS operator 

usage. Furthermore, it was clearly observed that there is not a single best LS operator 

common to the whole search process. Rather, different search moments require distinct 

LS operators, advocating the usefulness of using dynamic-based adaptive mechanisms 

to select the most suitable LS operator while solving the problem. 

Further work on this topic will follow different directions: 

1) Assess the impact on the efficiency and effectiveness of the search process due 

to the consideration of other (i) LS operators, (ii) credit assignment mechanisms 

and (iii) LS operator selection techniques; 

2) Investigate the benefits resulting from extending the dynamic nature of the 

AHGA by considering: (i) multiple selection strategies for choosing individuals 

in the population that will create offspring for the next generation and how many 

offspring each will create; (ii) multiple evolutionary operators (i.e., crossover 

and mutation operators); and (iii) multiple replacement strategies to determine 

which of the current members of the population, if any, should be replaced by 

the new solutions. Furthermore, work should also be carried out to study the 

impact of allowing  automatic selection not only of which parameter and/or 

evolutionary operator to apply at a given moment of the search process but also 

the rate at which the chosen parameter and/or operator should be applied; 

3) Extend the applicability of the proposed algorithm to other objective functions 

and problems on a larger scale. 
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Chapter 8  

A Multi-Objective Optimization-

based Pavement Management 

Decision-Support System for 

Enhancing Pavement Sustainability 

8.1 Introduction 

Road infrastructure provides a fundamental foundation to the performance of all 

national economies, delivering a wide range of economic and social benefits. 

Adequately maintaining road infrastructure is therefore essential to preserve and 

enhance those benefits. In order to efficiently manage their networks of this physical 

asset, many private and governmental agencies around the world have relied on the core 

principles and processes of Asset Management (AM) (World Road Association, 2014).  

AM is a business process and a decision-making framework that covers an extended 

time horizon, drawing from economics and engineering theory and practice, to tradeoff 

between alternative investment options at multiple levels of decision-making, and uses 

this information to help agencies make cost-effective investment decisions (FHWA, 

2007). Most of the current AM practices adopted by transportation agencies consist of 
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applying economic analysis techniques, such as the LCCA, to select from among 

various infrastructures designs and/or M&R intervention alternatives those that are most 

economically appealing, according to their interests and existing constraints. However, 

recent recognition that transportation infrastructure management decisions and practices 

also have substantial impacts on the environment (Santero and Horvath, 2009), along 

with the increasing awareness of sustainability and climate change, have motivated 

governmental agencies to promote a shift in focus in the management of transportation 

infrastructures towards achieving sustainable transportation systems. For instance, the 

US DOT’s Strategic Plan for the fiscal years 2014-2018 includes a separate strategic 

goal to “Advance environmentally sustainable policies and investments that reduce 

carbon and other harmful emissions from transportation sources.” (US DOT, 2014). 

In the particular case of the road pavement sector, the implementation of effective 

sustainable pavement management systems requires the development of approaches that 

enable the prediction of (1) the pavement performance, (2) the construction and 

maintenance-related budget requirements, (3) the costs incurred by road users and (4) 

the environmental impacts related to the pavement life cycle, using appropriate 

performance measures. 

While LCCA provides an effective evaluation to pinpoint cost effective solutions for the 

design and maintenance of pavement systems (Walls and Smith, 1998), the 

environmental impacts associated with their life cycle are best characterized using a 

LCA approach (Santero et al., 2011). LCA is a method for determining the 

environmental sustainability of a product or system by calculating the resources and 

energy flows consumed and the consequent environmental effects from a “cradle to 

grave” perspective (Harvey et al., 2015). LCA provides metrics that can be used to 

measure progress towards sustainability (Keoleian and Spitzley, 2006), and, thus, 

anticipate unintended consequences of a policy or practice.  

Despite the recognized merits of LCCA and LCA methods in evaluating the economic 

and environmental dimensions of sustainability, these methods applied individually are 

inefficient to optimally address the common tradeoff of relationships and interactions 
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between life cycle sustainability indicators. Rather, they are better employed when 

integrated into an optimization-based pavement life cycle management framework 

accounting for various objectives and constraints, and allowing LCCA and LCA to be 

carried out in parallel. However, the traditional practice in optimized decision-making 

in pavement management has been based on the optimization of a single objective, 

mostly the minimization of LCC, which can be either the total HAC or, less often, the 

summation of the total HAC and RUC. It is therefore evident that a steady and effective 

implementation of a SPMS, through the addition of the environmental dimension to the 

traditional cost-based optimization framework, requires the mathematic formulation of 

the decision problems to migrate from the SSO to the MOO domain, in which the DMs, 

are provided not with one single preferred solution, but with a set of potentially 

preferred solutions. 

Currently, the literature addressing the concomitant consideration of (1) LCC incurred 

by highway agencies and road users, (2) environmental metrics covering the whole 

pavement life cycle phases and (3) life cycle optimization models aiming to identify 

optimal pavement designs and/or M&R strategies based on specific objectives and 

constraint(s) is still in its infancy.  

To the best authors’ knowledge, the Zhang et al. (2010) study was the first time that 

environmental criteria, namely the minimization of the life cycle energy consumption 

and GHG emissions, were combined with costs (HAC and RUC) in a life cycle 

optimization model. The developed dynamic programing-based SOO model was 

applied at project-level to help DMs to select optimal overlay preservation strategies for 

three pavement overlay systems in Michigan: concrete, HMA and engineered 

cementitious composites (ECC), according to three different objective functions.  

Since then, a few other studies have been undertaken. Zhang et al. (2012) extended the 

model introduced above to the network-level and applied it to compare the optimal 

preservation strategies with the Michigan DOT’s current preservation practice. 

However, they did not analyze the tradeoffs between the costs and environmental 

indicators, since the former were converted into marginal damage costs. Yu et al. (2013) 
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applied a dynamic programming-based life cycle optimization model to determine an 

optimal preservation strategy for pavement overlay systems of a road segment that 

minimized LCC and energy consumption/GHG emissions. Nevertheless, the study only 

considered the major maintenance activities while ignoring minor ones and, similarly as 

the previous study, the tradeoffs between the costs and environmental indicators were 

not performed. Lidicker et al. (2013) used a bi-objective multi-criteria optimization 

model to account for the tradeoffs between environmental impacts and agency and RUC 

in the resurfacing problem of two pavement segments already built in California, while 

Reger et al. (2014) extended the previous model to tackle the multi-facility problem. 

However, in both cases only one type of pavement treatment, “mill-and-fill” 

rehabilitation activity, was accounted for and the WZ traffic management phase, which 

is one of the most environmentally damaging and costly for road users, was disregarded. 

Gosse et al. (2013) presented an expanded PMS framework with respect to the Virginia 

highway system, to incorporate GHG emissions and pavement performance by utilizing 

a multi-objective genetic algorithm (MOGA). Despite addressing the tradeoff problem 

between costs and environmental indicators and considering multiple treatments with 

different levels of robustness, the system boundaries of the LCA model did not include 

the two most harmful pavement life cycle phases, i.e. the usage and WZ traffic 

management phases, and the RUC were not accounted for. Faghih-Imani and Amador-

Jimenez (2013) proposed a three-step integer linear programming method to identify the 

optimal set of treatments for a planning horizon, which minimize highway agency and 

RUC (i.e., VehOperC) energy use and GHG emissions, while trying to achieve as high a 

level of service as possible. Nevertheless, the environmental burdens associated with the 

usage and the WZ traffic management phases were once again left out of the system 

boundaries. Bryce et al. (2014) presents a practical optimization-based MCDM 

technique that relates highway agency costs, pavement condition and energy 

consumption resulting from implementing pavement maintenance plans at network-

level. However, the environmental burdens associated with the WZ traffic management 

phase and the RUC were not taken into accounted. 
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Despite the unneglectable merits and achievements of the above mentioned studies, all 

of them suffer from at least one or a combination of drawbacks such as: (1) the inability 

to estimate the environmental and economic burdens associated with the usage and/or 

WZ traffic management phases; (2) the consideration of a reduced number of M&R 

treatment alternatives, which in some studies means that promising treatments for 

improving the sustainability of pavement systems, such as preventive and in-place 

recycling-based treatments, were not considered; (3) the consideration of short PAPs, 

which do not allow for the assessment of the long-term and cumulative economic and 

environmental impacts resulting from the decision-making process; (4) the tradeoff 

analysis between the costs incurred by the several pavement management stakeholders 

(i.e., highway agencies and road users) and environmental indicators were not carried 

out or if they were, they were limited to a bi-objective perspective encompassing HAC 

and environmental indicators, and (5) the HAC, RUC are environmental impacts are 

presented in an excessively aggregated manner, making it difficult for the DM to 

acquire insights into (i) the relative contribution of the subcomponents to the total 

figures, and (ii) the economic and environmental implications resulting from 

implementing new pavement management policies and practices, due to the lack of 

understanding of the relationship between parameters/processes and outcomes. 

8.2 Objectives 

The objective of this chapter is to present a comprehensive and modular MOO-based 

pavement management DSS for enhancing pavement sustainability. The main novelty 

of the DSS lies in the incorporation of a comprehensive and integrated pavement LCC-

LCA model, along with a decision-support module, within a MOO framework 

applicable to pavement management. The aims of the DSS are twofold: (1) to enhance 

the sustainability of the pavement management policies and practices by identifying the 

most economically and environmentally promising pavement M&R strategies, given a 

set of constraints, and (2) to help DMs to select a final optimum pavement M&R 

strategy among the set of Pareto optimal pavement M&R strategies. 
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8.3 Multi-objective optimization and Pareto optimality 

concept 

Many real-world problems commonly require optimizing more than one objective. In 

general, these objectives are conflicting and compete with each other, meaning that 

finding a solution that is optimal for all objectives at the same time is an impossible 

task. Therefore, the goal becomes a search for a set of solutions that are optimal 

according to the Pareto optimum concept.  

Without loss of generality, let us consider a MOO problem defined as (Expression 

(8.1)): 

 subject to  ∊ Ω (8.1) 

Where  is the vector of objective functions, ( ) is 

the number of objectives,  is the vector representing the decision 

variables,  represents the set of feasible solutions associated with equality and 

inequality constraints and bounds,  represents the set of feasible solutions in 

the objective space and , where , is a point of the 

objective space. 

In light of the Pareto dominance concept extended to solutions, a solution  is 

called dominated by a solution  ( ) if and only if (Expression (8.2)): 
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solutions is called the Pareto optimal set and represents the solutions of the MOO 

problem. The objective values of the Pareto optimal set in the objective space is named 

Pareto front. Finding the Pareto optimal set is then the main goal when tackling a MOO 

problem in the Pareto sense. Given that this goal is in many circumstances 

computationally intractable, heuristic algorithms are commonly employed to find as 

good an approximation as possible to the Pareto front (Ehrgott and Gandibleux, 2004). 

8.4 Decision-support system methodology 

The methodological framework of the DSS comprises three main modules (Figure 8.1): 

(1) a MOO module; (2) a comprehensive and integrated pavement LCC-LCA module; 

and (3) a decision-support module. The MOO module is further divided into three sub-

components: (i) the formulation of the MOO model, which consists of defining the 

decision variables, the objective functions and constraints; (ii) the solution approach, 

which hosts the method to be employed to solve the MOO model and find the Pareto 

optimal set of solutions; and (iii) the optimization algorithm developed to solve the 

MOO model. 

In addition to the aforementioned main modules, the architecture of the DSS includes 

(1) a data management module, which is responsible for gathering data, storing it in 

several libraries and ensuring the integrity and readiness of the data required by the 

multiple models incorporated into the DSS, and (2) a results report module, which 

provides a detailed description of the optimization results. In the following sections, 

each main component will be introduced in detail. 

8.4.1 Multi-objective optimization model module 

8.4.1.1 Multi-objective optimization model formulation 

The formulation of the MOO model encompasses three main steps: (1) identification of 

the decision variables of the problem to be tackled; (2) definition of the objective 

functions; and (3) set the constraints. 
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Figure 8.1- Flowchart outlining the DSS framework. Legend: MOO- multi-objective optimization; 

AHGA- adaptive hybrid genetic algorithm; T- transportation of materials phase; M&R- 

maintenance and rehabilitation; WZ Traff. Manag.- work-zone traffic management; EOL- end-of-

life; BOCS- best optimal compromise solution; LCHAC- life cycle highway agency costs; LCRUC- 

life cycle road user costs; LCI- life cycle inventory; LCEI- life cycle environmental impacts. 
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The main set of decision variables of the pavement M&R strategy selection problem, 

which are defined by an integer figure, is designed to represent all feasible M&R 

activities to be performed in each pavement section and in each year of the PAP. 

Examples of other sets of variables include those describing the pavement performance 

in each year of the PAP. 

As far the definition of the objective functions is concerned, the main goal underlying 

the development of this DSS suggests the definition of objective functions representing 

the commonly conflicting perspectives and interests of the three main pavement 

management stakeholders: highway agency, road users, and environment. Given this, 

the following objectives were inserted by default into the DSS: (1) minimization of the 

PV of the total costs incurred by highway agencies with the construction, M&R and 

EOL of a road pavement section throughout its life cycle; (2) maximization of the 

pavement performance over the PAP; (3) the minimization of the PV of the total 

LCRUC incurred during both the execution of a M&R activity and the normal operation 

of the infrastructure; and (4) the minimization of the life cycle environmental burdens 

arising from all pavement life cycle phases. Metrics of environmental impact are 

obtained by employing the US-based impact assessment methodology, the Tool for the 

Reduction and Assessment of Chemical and other environmental Impacts 2.0 - TRACI 

2.0 (Bare et al., 2011) from the US EPA. The TRACI impact categories available for 

analysis include: CC; Ac due to airborne emissions; EU due to airborne emissions; HH 

and PSF. Furthermore, three energy-based indicators are also made available: (1) FoPE; 

(2) NFoPE; and (3) FsE. 

Finally, the main set of constraints to be considered in the MOO model is meant to 

ensure that the problem solutions comply with: (1) pavement performance quality 

requirements; (2) annual budget limitations; and (3) technical and policy requirements. 

8.4.1.2 Solution approach 

Several approaches have been developed to solve MOO problems, which include, 

among others, aggregation methods (e.g., weighted sum method), weighted metric 
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methods (e.g., compromise programming methods), goal programming method, 

achievement functions method, goal attainment method, ε-constrained method, 

dominance-based approaches (e.g., NSGA-II, SPEA2, PESA-II, etc.). (Miettinen, 1999; 

Marler and Arora, 2004; Talbi, 2009). For a thorough review of the application of MOO 

techniques to the highway AM problems the reader is referred to Wu et al. (2012).  

In the proposed DSS, the augmented weighted Tchebycheff method is adopted to solve 

the MOO model. This is a modified version of the compromise programming method in 

which the value of the parameter p is equal to ∞. Unlike the widely applied weighted 

sum method, it can be applied to generate solutions on the non-convex portions of the 

Pareto front and overcomes the drawback of its unmodified version by alleviating the 

potential for solutions that are only weakly Pareto optimal (Marler and Arora, 2004). 

8.4.1.3 Solution algorithm 

The optimization model described in the previous sections is extremely difficult to solve 

to an exact optimum given its marked combinatorial nature and the difficulties in 

verifying, when they exist, the required mathematical properties of continuity, 

convexity and derivability. In fact, previous experience with a segment-linked 

optimization model (Ferreira et al., 2002), has shown that we cannot rely on exact 

methods to find guaranteed optimal solutions within an acceptable time period when 

applying this type of models to a real-world road network. Even for small-size 

instances, those algorithms may require impractically high computational times to solve 

them to the exact optimum when the pavement performance in the years following the 

application of a given treatment is modelled through a non-linear equation, which varies 

depending on the type of the last treatment, and in some circumstances, on the type of 

treatments preceding the last one, as in case study introduced later on in this chapter. 

Therefore, to solve the transformed SOO model, and thus generate the Pareto front, the 

GA-based search heuristic developed in Chapter 7 (Santos et al., 2015e) was employed. 

Although the GA has been thoroughly presented in the aforementioned reference, a 

brief overview of the method is provided in this section because it is a core component 

of the optimization-based DSS introduced in this chapter. 
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This GA possesses a hybrid nature in that LS techniques have been incorporated into 

the traditional GA framework to improve the overall efficiency of the search. 

Specifically, it contains two dynamic learning mechanisms to adaptively guide and 

combine the exploration and exploitation search processes. The first learning 

mechanism aims to reactively assess the worthiness of conducting an LS and to 

efficiently control the computational resources allocated to the application of this search 

technique. The second learning mechanism uses instantaneously learned probabilities to 

select which one, from a set of pre-defined LS operators which compete against each 

other for selection, is the most appropriate for a particular stage of the search to take 

over from the evolutionary-based search process.  

Compared to its initial version, a change was made in the set of LS operators available 

for on-line selection. In particular, the “delete” LS operator originally defined in 

Chapter 7 (Santos et al., 2015e) was replaced by another one, named “displacement” LS 

operator, which can be described by the following steps: (1) randomly select a 

subchromosome corresponding to the time period between the application of two of the 

most structurally robust M&R activities; (2) randomly select one gene of the 

subchromosome which encodes a real M&R activity; (3) displace backwards all genes 

between the first gene of the subchromosome and the gene picked in the previous step; 

(4) in the position of the gene picked in step (1) encode a DN M&R activity. The 

remainders components and parameters of the algorithm remained unchanged. 

8.4.2 Integrated pavement life cycle costs-life cycle assessment 

module 

The integrated pavement LCC-LCA model follows a cradle-to-grave approach, and 

consists of a parallel application of the LCA methodology taking into account, as far as 

possible and suitable, the guidelines provided by the ISO (ISO, 2006a; ISO, 2006b) and 

the UCPRC’s Pavement LCA Guideline (Harvey et al., 2010) and the life cycle costing 

methodology based on the Swarr et al. (2011). 
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The pavement life cycle model covers six phases: (1) materials extraction and 

production; (2) construction and M&R; (3) transportation of materials; (4) WZ traffic 

management; (5) usage; and (6) EOL. These phases were broken down into multiple 

components which connect to each other by data flows computed through a hybrid life 

cycle inventory (LCI) approach. Specifically, the monetary flows associated with 

exchanges of the pavement life cycle system that are directly covered by the LCC 

model but for which specific process data are either completely or partially unavailable 

are combined with an I-O methodology for deriving the underpinning environmental 

burdens. By interactively integrating the strengths of P-LCI and I-O LCI, the resources 

which are readily available are used in a more efficient, consistent and rational way and 

with less effort, helping to reduce the “cutoff” errors and improving the consistency 

between the system boundaries of the pavement life cycle when analyzed concomitantly 

from the economic and environmental viewpoint. 

For this purpose, the pavement LCC-LCA model builds on the P-LCA and LCC models 

introduced in Chapters 2 and 4 (Santos et al., 2015a; Santos et al., 2015b) and Chapter 5 

(Santos et al., 2015c), respectively, and complement them with the Carnegie Mellon 

University’s EIO-LCA (Carnegie Mellon University Green Design Institute, 2010). This 

tool utilizes the Leontief’s methodology to relate the inter-sector monetary transactions 

sectors in the US economy, compiled in a set of matrices by the BEA of the US 

Department of Commerce, with a set of environmental indicators (e.g., consumption of 

fossil energy, airborne emissions, etc.) per monetary output of each industry sector of 

the economy. The environmental burdens at sector level associated with a particular 

commodity under analysis are therefore calculated by multiplying its monetary value, 

previously adjusted to US dollars of the EIO-LCA model’s year according to sector-

specific economic indices from the US DL, by the respective sectorial environmental 

multipliers obtained from the EIO-LCA model.  
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8.4.3 Decision-support module 

Once a set of non-dominated solutions is generated representing the optimums for the 

problem being tackled, the DM faces a MCDM problem should he desire to choose a 

single Pareto optimal solution out of the Pareto optimal set. A natural idea would be to 

choose the solution in the Pareto front furthest from the most inferior solution, in which 

the most inferior solution is the one with the maximum value for all objectives, 

assuming that all the objective functions are meant to be minimized. In order to assist 

the DM with this task, a decision-support model is implemented in the proposed DSS, 

where the calculation of distances from the most inferior solution relies on the 

membership function concept in the fuzzy set theory (Zimmormann, 1996).  

According to the adopted methodology the accomplishment level of each non-

dominated solution j in satisfying the objective i is given by the membership function 

represented by Expression (8.3). The sum of the accomplishment levels of each non-

dominated solution j is posteriorly rated with respect to all the M non-dominated 

solutions by normalizing its accomplishment over the sum of the accomplishments of 

the M non-dominated solutions (Expression (8.4)). The normalized membership 

function j  provides de fuzzy cardinal priority ranking of each non-dominated solution 

j. The solution with the maximum value of j is considered as the best optimal 

compromise solution (BOCS). 
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Where 
j

iu  is the membership function value for the j
th

 non-dominated solution with 

respect to the i
th 

objective; 
max

if  and 
min

if  are the maximum and minimum values of the 

i
th

 objective, respectively; 
j

if is i
th

 objective value for the j
th

 non-dominated solution; 

j  is the normalized membership function value for the j
th

 non-dominated solution; 

Nobj is the number of objectives for the MOO problem; and M is the number of non-

dominated solutions. 

8.5 Case study 

8.5.1 General description 

In order to illustrate the capabilities of the proposed DSS, it is applied to two case 

studies consisting of determining the optimal M&R strategy for a one-way flexible 

pavement section of a typical Interstate highway in Virginia, USA, that yields the best 

tradeoff between the following three, often conflicting, objectives: (1) minimization of 

the PV of the total LCHAC; (2) minimization of the PV of the LCRUC; and (3) 

minimization of the LCEI, which in this case study is limited to one impact category for 

the sake of brevity. In that sense, the CC was selected because it is increasingly 

regulated and discussed by both governmental and non-governmental institutions.  

Furthermore, for each case study two scenarios were considered depending on whether 

or not the most structurally robust M&R activity available for employment throughout 

the PAP includes recycling-based layers. The features of the case studies are shown in 

Table 8.1. 

The road pavement sections previously described were assessed according to their 

economic and environmental performances in the following pavement life cycle phases: 

(1) materials extraction and production; (2) construction and M&R; (3) transportation of 

materials; (4) WZ traffic management; and (5) usage. The EOL phase was excluded 

from the system boundaries because the road pavement sections are expected to remain 

in place after reaching the end of the PAP, serving as a support for the new pavement 
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structures. In view of this scenario, the salvage values of the pavement structures are 

given as the value of their remaining service life, which was proven to be negligible 

when compared to the costs incurred during the remaining pavement life cycle phases 

(Santos et al., 2015c). With regard to the environmental impacts assigned to this phase, 

they were disregarded on the basis of the ‘cut-off’ allocation method, which is the most-

widely used technique to handle the EOL phase in pavements LCAs (Aurangzeb et al., 

2014). According to this technique, all benefits are given to the pavement taking 

advantage of the reduction in the use of virgin materials due to the structural capacity 

provided by the existing pavement structure.  

For detailed information on the processes within the system boundaries of each life 

cycle phase, applied modelling methodologies, assumptions and relevant data sources, 

the reader is referred to (Santos et al., 2015d).  

Table 8.1- Features of the case study. 

Name 
Parameter value 

Parameter unit 
Case study I Case study II 

PAP 50 50 year 

Beginning year 2011 2011 year 

AADT0 5000 20000 vehicle 

Percentage of PCs in the AADT 75 75 % 

Percentage of HDVs in the AADT 25 25 % 

Traffic growth rate 3 3 %/year 

Initial CCI 87 87 - 

Initial IRI 1.27 1.27 m/km 

Age 5 5 year 

Number of lanes 2 2 - 

Lanes length 1 1 km 

Lanes width 3.66 3.66 m 
Legend: PAP- project analysis period; AADT0- Initial annual average daily traffic; AADT- annual average daily traffic; PC- 

passenger car; HDV- heavy duty vehicle; CCI- critical condition index; IRI- international roughness index. 

 

8.5.2 Maintenance and rehabilitation activities 

The M&R activities considered for application over the PAP were based on Chowdhury 

(2011), and defined as DN, PrM, CM, RM and RC. In the case of the PrM treatments, 

two types of treatments were considered: microsurfacing and THMACO. As for the RC 

treatment, two alternatives were also considered. They were named conventional RC 
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and recycling-based RC and differ from each other in that the former comprises 

exclusively conventional asphalt layers, whereas the latter consists of a combination of 

conventional asphalt layers with in-place recycling layers. The recycling-based RC 

activity was designed in such a way that it provides equivalent structural capacity to its 

non-recycling-based counterpart and takes into account the VDOT’s surface layers 

requirements for layers placed over recycling-based layers (VDOT, 2013). Details on 

the M&R actions comprising each M&R activity are shown in Table 8.2. 

In order to provide insights into the economic and environmental advantages resulting 

from applying recycling-based M&R activities as opposed to conventional ones, M&R 

activities 6 and 7 were considered mutually exclusive. Therefore, in the first analysis 

scenario the set of feasible M&R activities comprises  M&R activities numbers 1, 2, 3, 

4, 5 and 6, whereas in the second analysis scenario M&R activity number 6 is replaced 

by its recycling-based counterpart (i.e., M&R activity number 7).  

Table 8.2- Types of M&R activities and M&R actions. 

M&R activity 
M&R actions 

Thickness 

(cm) 

Mixture 

name ID Name 

1 DN - - - 

2 Microsurfacing 

Surface preparation: brushing - - 

Surface preparation: tack coat application - 

Diluted 

bituminous 

emulsion 

Microsurfacing spreading - 
Microsurf.- 

Type C
a
 

3 THMACO 

Mill surface layer 1.91 (0.75 in.) - 

Surface preparation: brushing - - 

Surface preparation: tack coat application - 
Bituminous 

emulsion 

Thin overlay placement and compaction 1.91 (0.75 in.) THMACO
b
 

4 CM 

Mill surface layer 5.08 (2 in.) - 

Mill full-depth prior patching 1% 25.4 (10 in.) - 

Surface cleaning - - 

Prime coat application prior full-depth 

patching 
- 

Bituminous 

emulsion 

Pre-overlay full-depth patching 1% 25.4 (10 in.) BM 25.0
c
 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of AC surface 

layer 
5.08 (2 in.) SM 12.5

c
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(continued) 

M&R activity 
M&R actions Thickness (cm) Mixture name 

ID Name 

5 RM 

Mill surface and intermediate layers 8.89 (3.5 in.) - 

Mill full-depth prior patching 1% 21.59 (8.5 in.) - 

Surface cleaning - - 

Prime coat application prior full-depth patching - 
Bituminous 

emulsion 

Pre-overlay full-depth patching 1% 21.59 (8.5 in.) BM 25.0c 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC intermediate 

layer 
5.08 (2 in.) IM 19.0c 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC surface layer 3.81 (1.5 in.) SM 12.5c 

6 
Conventional 

RC 

Mill surface, intermediate, base layers and 1 in. 

unbound layer 
33.02 (13 in.) - 

Subgrade compaction - - 

Prime coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC base layer 17.78 (7 in.) BM 25.0c 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC intermediate 

layer 
10.16 (4 in.) IM 19.0c 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC surface layer 5.08 (2 in.) SM 12.5c 

7 
Recycling-

based RC 

Mill surface, intermediate, base layers and 1 in. 

unbound layer 
33.02 (13 in.) - 

Subgrade compaction - - 

Lay down and compaction of CCPR materials in 

base course 
20.32 (8 in.) 

CCPR 

materialsd,e 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC intermediate 

layer 
7.62 (3 in.) IM 19.0c 

Tack coat application - 
Bituminous 

emulsion 

Lay down and compaction of the AC surface layer 5.08 (2 in.) SM 12.5c 

Legend: BM- base mixture; IM- intermediate mixture; SM- surface mixture; AC- asphalt concrete; CCPR- cold central plant 

recycling; THMACO- thin hot mix asphalt concrete overlay; DN- do nothing; CM- corrective maintenance; RM- restorative 
maintenance; RC- reconstruction. 

Notes: aBased on Ducasse et al. (2004), a mix formulation consisting of 180 liters of emulsion per m3 aggregates, 3% of SBR by 

weight of asphalt binder, 2% of Portland cement by weight of aggregate and 140 liters of water by m3 of aggregate was used. 
bMix formulation consists of 58.9% coarse aggregates, 36.1% fine aggregates, 5%  asphalt binder PG 70-28 and 1% hydrated lime 

by weight of asphalt binder (VDOT, 2012). 
cAll mixes have a reclaimed asphalt pavement (RAP) content equal to 15%. For details on mixes properties the reader is referred to 
Chapter 6 (Santos et al., 2015d).  

dA layer coefficient value of 0.40 was used for design purpose based on Diefenderfer (2014). 
eA PG 64-22 asphalt binder at a content of 2% by weight of total mixture was used to produce the foamed asphalt mix. For each 

mix, 1% of hydraulic cement and 1% of moisture were added and mixed before the foamed asphalt was added (Diefenderfer, 2014). 
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8.5.3 Pavement performance modelling 

In order to determine the pavement performance over time, the VDOT’s PPPM were 

used. VDOT developed a set of PPPM in units of CCI as a function of time and 

category of the last M&R activity applied. CCI stands for Critical Condition Index and 

is an aggregated indicator ranging from 0 (complete failure) to 100 (perfect pavement) 

that represents the worst of either load-related or non-load-related distresses.  

Using the base form corresponding to Expression (8.5), VDOT defines PPPM for the 

following types of M&R activities (Stantec Consulting Services and Lochner, 2007): 

CM, RM and CM. The coefficients of VDOT’s load-related PPPM represented by 

Expression (8.5) for asphalt pavements of Interstate highways are presented in Table 8.3 

(Stantec Consulting Services and Lochner, 2007). 











t

ln

cbaeCCI)t(CCI

1

0  
(8.5) 

where  is the critical condition index in year t since the last M&R activity, i.e. 

CM, RM or RC;  is the critical condition index immediately after treatment; and a, 

b, and c are the load-related PPPM coefficients (Table 8.3). 

Table 8.3- Coefficients of VDOT’s load-related PPPM expressed by Expression (8.5) for asphalt 

pavements of interstate highways. 

M&R activity category  a b c 

CM 100 9.176 9.18 1.27295 

RM 100 9.176 9.18 1.25062 

RC 100 9.176 9.18 1.22777 
Legend: VDOT- Virginia Department of Transportation; PPPM- pavement performance prediction models; M&R- maintenance and 

rehabilitation;
0CCI - critical condition index immediately after a treatment; a, b, and c are load-related PPPM coefficients; CM- 

corrective maintenance; RM- restorative maintenance; RC- reconstruction/Rehabilitation. 

 

Unlike the previous M&R activity categories, VDOT did not develop individual PPPM 

for PrM treatments. Thus, in this case study the considered PrM treatments, i.e. 

microsurfacing and THMACO, were respectively modelled as an 8-point and 15-point 

improvement in the CCI of the road segment. Once the treatment is applied, it is 

assumed that the pavement deteriorates according to the PPPM of a CM, but without 

)t(CCI

0CCI

0CCI
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reduction of the effective age. On the other hand, in the case of the application of CM, 

RM and RC treatments, the CCI is brought to the condition of a brand new pavement 

(CCI equal to 100) and the age is restored to 0 regardless of the CCI value prior to the 

M&R activity application.  

For the purpose of estimating the environmental impacts and costs incurred by road 

users during the pavement usage phase due to the vehicles travelling over a rough 

pavement surface, a linear roughness prediction model, expressed in terms of 

International Roughness Index (IRI), was considered (Expression (8.6)).  

 

tIRIIRItIRI grw 0)( ,  (8.6) 

 

where )t(IRI  is the IRI value (m/km) in year t; 0IRI is the IRI immediately after the 

application of a given M&R activity; and grwIRI  is the IRI growth rate over time, which 

was set at 0.08 m/km (Bryce et al., 2014). It was assumed that the application of an 

M&R activity other than PrM restore the IRI to the value of a brand new pavement (IRI 

equal to 0.87 km/h). The IRI reduction due to the application of a PrM treatment was 

determined based on the expected treatment life and assuming that there is no change in 

the value after the PrM application (the same assumption was also made in the case of 

the remaining M&R activities). Thus, by assuming treatment life periods of 3 and 5 

years (Chowdhury, 2011), respectively for microsurfacing and THMACO treatments, 

reductions in the IRI value of 0.24 and 0.40 m/km were obtained. 

8.5.4 Model formulation 

The MOO problems introduced above can be mathematically expressed as follows: 
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Where d is the discount rate and was set to 2.3% according to OMB (2013); odPrMatExt
rtC  is 

the materials extraction and production phase costs incurred by the highway agency for 
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applying M&R activity r in year t; R&M.C
rtC  is the M&R phase costs incurred by the 

highway agency for applying M&R activity r in year t; TM
rtC  are the transportation of 

the materials phase costs incurred by the highway agencies for applying M&R activity r 

in year t; Xrt is equal to one if M&R activity r is applied in year t, otherwise it is equal 

to zero; WZTM
rtVehOperC  are the VehOperC incurred by the road users during the WZ 

traffic management phase due to the application of the M&R activity r in year t. It 

includes five types of VehOperC subcategories: (1) FC; (2) oil consumption; (3) tyre 

wear; (4) vehicle maintenance and repair; and (5) vehicle depreciation. WZTM
rtTDC  are the 

TDC incurred by the road users during the WZ traffic management phase due to the 

application of the M&R activity r in year t; Usage
tVehOperC  are the marginal VehOperC 

incurred by the road users in year t of the PAP as a consequence of the deterioration of 

the pavement condition. It includes four types of VehOperC subcategories: (1) FC; (2) 

tyre wear; (4) vehicle maintenance and repair; and (5) mileage-related vehicle 

depreciation. 
CC

iCF  is the CC characterization factor for inventory flow i, given by the 

IPCC’s characterization model for a horizon period of 100 years (IPCC, 2007). The 

following GHG were considered to contribute to CC impact category: carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O). odPrMatExt
irtLCI is the quantity of the 

inventory flow i, released during the materials extraction and production phase 

associated with the execution of the M&R activity r in year t; R&M.C
irtLCI  is the quantity 

of the inventory flow i, released during the M&R phase associated with the execution of 

the M&R activity r in year t; 
TM
irtLCI  is the quantity of the inventory flow i, released 

during the transportation of materials phase associated with the execution of the M&R 

activity r in year t; 
WZTM
irtLCI  is the quantity of the inventory flow i, released during the 

WZ traffic management phase associated with the execution of the M&R activity r in 

year t; Usage
itLCI  is the quantity of the inventory flow i, released in year t of the usage 

phase of the road pavement section; CCIt is the CCI value in year t; CCImin is the 

minimum CCI value allowed for a pavement structure and was set to 40; RCt  is the 
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time interval between the application of two consecutives M&R activities of type RC; 

max
RCt  is the maximum time interval between the application of two consecutives M&R 

activities of type RC; Φ are the pavement condition functions; Ω  are the feasible M&R 

activities sets; a are the HAC; u are the RUC functions; LCIi are the LCI 

functions. 

Expression (8.7), the first objective function of this quite complex, highly non-linear 

discrete optimization model, expresses the minimization of the PV of the total LCHAC. 

Expression (8.8) expresses the minimization of the PV of the total LCRUC. Expression 

(8.9) expresses the minimization of total life cycle CC score (LCCCsc). 

Constraints (8.10) correspond to the pavement condition functions given by Expression 

(8.5) and Table 8.3. They express the CCI of the pavement section in each year t as a set 

of functions of the initial condition (CCI0) and the M&R activities previously applied to 

the pavement. Constraints (8.11) represent the feasible operation sets, i.e. the M&R 

activities that can be applied to maintain or rehabilitate the pavement structure in 

relation to its quality condition. In this case study, two sets were considered. The first 

one, adopted in scenario analysis I, comprises M&R activities 1, 2, 3, 4, 5 and 6 (Table 

8.2). The second, adopted in scenario analysis II, includes M&R activities 1, 2, 3, 4, 5 

and 7 (Table 8.2). Constraints (8.12) are the warning level constraints which define the 

minimum CCI value allowed for a pavement structure. Constraints (8.13) indicate that 

only one M&R activity should be performed in each year. Constraint (8.14) represents 

technical limitations which impose limits to the life of the initial pavement design and 

RC treatment. Its inclusion in the model is based on the VDOT criteria according to 

which the initial pavement design is equal to 30 years (VDOT, 2014). Constraints (8.15) 

represent the LCHAC which are computed in relation to the pavement condition and the 

M&R activity applied to the pavement in a given year. The total unitary M&R costs are 

presented in Table 8.4 and were computed according to the methodology presented in 

Chapter 5 (Santos et al., 2015c). Constraints (8.16) represent the LCRUC which are 

computed in relation to the M&R activity applied to the pavement in a given year. 

Constraints (8.17) represent the LCRUC which are computed in relation to the 
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pavement condition observed in each year t of the PAP. The values of the unit costs of 

travel time are given in Table 8.5. Constraints (8.18) correspond to the LCI functions 

which are computed in relation to the M&R activity applied to the pavement in a given 

year. Constraints (8.19) correspond to the LCI functions which are computed in relation 

to the pavement condition observed in each year t of the PAP. For a deep understanding 

on the methodologies and formulations adopted to calculate the multiple subcategories 

of HAC and RUC as well as the LCI associated with the several pavement life cycle 

phases, the reader is referred to the Chapters 4, 5 and 6 (Santos et al., 2015b; Santos et 

al., 2015c; Santos et al., 2015d). 

Table 8.4- Unit costs of the M&R activities. 

ID Name Total MC ($/Km.lane) 

1 DN 0 

2 PrM: microsurfacing 6,621 

3 PrM: THMACO 17,593 

4 CM 35,696 

5 RM 58,969 

6 Conventional RC 199,594 

7 RC 120,960 
Legend: MC- maintenance and rehabilitation costs; DN- do nothing; PrM- preventive maintenance; THMACO- thin hot-mix asphalt 
concrete overlay; CM- corrective maintenance; RM- restorative maintenance; RC- reconstruction/rehabilitation. 

 

Table 8.5- Unit cost of travel time for the several categories of vehicles. 

Item Unit cost of travel time ($/hr) 

Hourly time value of PCs 28.70 

Hourly time value of SUTs 22.42 

Hourly time value of CUTs 29.27 

Hourly freight inventory costs for SUTs 0.21 

Hourly freight inventory costs for CUTs 0.31 
Legend: PC- passenger car; SUT- single-unit truck; CUT- combination unit truck. 

8.5.5 Solution approach 

In order to solve the MOO model and find the Pareto optimal set of solutions the 

augmented weighted Tchebycheff method was employed (Dächert et al., 2012). To that 

end, the MOO problems were converted into a SOO one, by combining the three 

aforementioned objectives into a single objective, which is expressed as follow 

(Expression (8.20) and Expression (8.21)): 
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Subject to: 
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Where iw  is the weight assigned to the objective i;  Xfi


 is the value of the objective 

function i for the solution X


; min
if  is the minimum allowed value of the i

th
 objective 

function; max
if  is the maximum allowed value of the i

th
 objective function; Nobj is the 

number of objectives for the MOO problem being considered (i.e., 3) and ρ is a non-

negative scalar, which was set at 10
-3

 based on Steuer (1986). 

8.5.6 Results and discussion 

The aforementioned non-linear optimization model was solved with the AHGA 

developed in Chapter 7 (Santos et al., 2015e), by varying the weights through a grid of 

values from 0 to 1 in an increment step of 0.01. The AHGA was written in MATLAB
®

 

programming software (MATLAB, 2015), and run on a computational platform Intel 

Core 2 Duo 2.4 GHz processor with 4.00 GB of RAM, on the Windows 7 professional 

operating system. AHGA parameters utilized for this case study are the same as those 

determined in Chapter 7 (Santos et al., 2015e). 

8.5.6.1 Non-recycling-based maintenance and rehabilitation 
strategies 

Figure 8.2 displays the Pareto optimal set of solutions in the objective space, outlining 

the optimal pavement M&R strategies for the non-recycling-base case study, along with 

the M&R strategy defined by VDOT. Complementarily, to determine the strength of the 

relationship between the objectives considered in the MOO analysis, and thus help to 

interpret the behavior of the Pareto front, a Spearman’s correlation analysis was 
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performed. It uses a correlation coefficient, named Spearman rank correlation 

coefficient (rs) to measure the monotonic relationship between two variables (i.e., 

whether one variable tends to take either a larger or smaller value, though not 

necessarily linearly) by increasing the value of the other variable (Expression (8.22)) 

(Machin et al., 2007). The value of the correlation coefficient defines two properties of 

the correlation: (1) the sign of rs (i.e., negative or positive) defines the direction of the 

relationship and (2) the absolute value of rs, which varies between -1 and 1, indicates 

the strength of the correlation. In turn, the square of rs, named coefficient of 

determination, gives the proportion of the variation of one variable explained by the 

other (Zou et al., 2003).  

The Spearman rank correlation method was employed in detriment of the well-known 

Pearson correlation method because the first does not require the assumptions of 

normality and linearity. Furthermore, to test whether a calculated rs value is 

significantly different from a hypothesized population correlation coefficient (ρ) of 

zero, a significant test was used. The statistical test of the null hypothesis ρ = 0 is given 

by Expression (8.23) and follows a Students’ t-distribution with 2 ndf  (Machin et 

al., 2007). 
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Where rs is the Spearman rank correlation coefficient; di is the difference in paired 

ranks i; n is the number of paired ranks; and t is the two tailed t-test value calculated for 

a significance level (α) of 0.05. The rs and rs
2 

values along with the statistical tests 

results are presented in Table 8.6. 
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(a) 

 

(b) 

Figure 8.2- M&R strategy defined by VDOT and non-recycling-based Pareto optimal fronts: (a) 

case study I and (b) case study II. Legend: LCHAC- life cycle highway agency costs; LCRUC- life 

cycle road user costs; LCCCsc- life cycle climate change score. Note: The fuzzy cardinal priority 

ranking of each non-dominated solution was normalized so that it falls into the range [0;1]. 
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Table 8.6- Spearman rank correlation coefficient values, determination coefficient values and 

statistical tests results (rs; rs
2
; t(calc.); t(α=0.05)). 

Case 

study  
LCHAC LCRUC LCCCsc 

I 

LCHAC - -0.90; 0.81; -79.834; 2.002 -0.86; 0.74; -47.399; 2.002 

LCRUC -0.90; 0.81; -79.834; 2.002 - 0.98; 0.96; 35.080; 2.002 

LCCCsc -0.86; 0.74; -47.399; 2.002 0.98; 0.96; 35.080; 2.002 - 

II 

LCHAC - -0.70; 0.49; -8.575; 2.001 -0.81; 0.65; -21.229; 2.001 

LCRUC -0.70; 0.49; -8.575; 2.001 - 0.74; 0.55; 4.931; 2.001 

LCCCsc -0.81; 0.65; -21.229; 2.001 0.74; 0.55; 4.931; 2.001 - 

Legend: LCHAC- life cycle highway agency costs; LCRUC- life cycle road users costs; LCCCsc- life cycle climate change score; 
rs- Spearman rank correlation coefficient; rs

2- coefficient of determination; t(calc.)- two tailed t-test value calculated for a 

significance level (α) of 0.05; t(α=0.05)- critical value of the t-distribution for α equal to 0.05. 

Key (http://www.statstutor.ac.uk/): rs = 0- no correlation; rs ∊ ]0; 0.2[- very weak correlation; rs ∊ [0.2; 0.4[- weak correlation; rs ∊ 

[0.4; 0.6[- moderate correlation; rs ∊ [0.6; 0.8[- strong correlation; rs ∊ [0.8; 1[- very strong correlation; rs = 1- perfect correlation. 

 

For a low-volume traffic roadway the results in Table 8.6 show a very strong correlation 

between the objective functions. In other words, an increase in the LCHAC not only 

leads to a reduction in the LCRUC but it is also beneficial in reducing the LCCCsc. 

Moreover, over 96% of the variance of one objective function can be explained by the 

other. On the other hand, for a high-volume traffic roadway the results in Table 8.6 

show a degradation of the strength of the association between the objective functions. 

Specifically, while a ‘very strong’ correlation between the LCHAC and LCCCsc is still 

observed, the correlations between LCHAC and LCRUC and between LCRUC and 

LCCCsc are only ‘strong’. That explains why for the low-volume traffic roadway the 

Pareto front is nearly two-dimensional, whereas for the heavier traffic class its shape is 

better described as a cloud of points, meaning that highway agencies are presented with 

a greater variety of potential solutions within a narrow range of LCHAC values.  

As far the statistical significance of the relationships between the objective functions 

described above is concerned, the results presented in Table 8.6 provide evidence in 

support of the rejection of the null hypothesis (|t(calc)|>t(0.05)) in all statistical 

hypothesis tests undertaken.  

Despite the overall reduction in LCRUC and LCCCsc that can be achieved by 

increasing highway agency expenditures, a carefully analysis of Figure 8.2 reveals that 

there exists an investment level after which the Pareto fronts denote a flat trend, though 
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it is more evident in the case of the least trafficked roadway. That trend means that any 

increase in pavement M&R expenditures has a greatly reduced reflex in reducing both 

the LCRUC and LCCCsc. Moreover, when a rough comparison is made, for low-

volume traffic roadways, the majority of the non-dominated M&R strategies seems to 

be located in the flatter section of the Pareto front (which corresponds to the higher 

LCHAC), whereas for high-volume traffic roadways, the majority of the non-dominated 

M&R strategies seems to be located in the steeper section of the Pareto front. The 

practical implication of this change in the tradeoff relationships is that for pavement 

sections carrying high traffic volumes the money is likely to have a better marginal 

value than that for pavement sections carrying low traffic volumes. However, due to the 

deterioration of the strength of the relationships between the objectives observed for the 

heavier traffic class, the validity of the relationships previously described cannot be 

fully taken as guaranteed.  

Table 8.7 and Table 8.8 detail the features of the BOCSs chosen according to the 

methodology described in section 8.4.3 as well as the M&R strategy defined by VDOT. 

Table 8.9 and Table 8.10 present the variation of the LCHAC, LCRUC and LCCCsc for 

the BOCSs when compared to the current VDOT practice. These results are to be 

understood as follows: positive numbers mean that the BOCSs improve on VDOT 

practice, while negative numbers represent a deterioration of the metrics considered. 

According to the results presented in these tables, the selected optimal M&R strategies 

always improve on VDOT practice with regard to LCRUC and LCEI for both traffic 

classes. However, if for the heavier traffic class this result is accompanied by a 

reduction in the LCHAC (16%), in the case of the least demanding traffic class it comes 

at the cost of an increase in the expenditures incurred by the highway agency (8%). This 

result is explained by the type and frequency of M&R activities belonging to the 

respective optimal M&R strategies. While the optimal M&R strategy for case study II 

comprises six M&R activities, five of which are scheduled to take place in the second 

half of the PAP when the traffic volume is more intense and the discounting factors 

present lower values, the optimal M&R strategy for case study I features ten evenly 

distributed M&R activities. Although half of the ten M&R activities are PrM treatments 
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(i.e., microsurfacing or THMACO), which incur the lowest costs among those available 

for selection, the fact that the total number of required M&R activities is double that of 

the VDOT practice (i.e., 5) explains the increase in the LCHAC.  

Table 8.7- M&R strategies of the best non-recycling-based optimal compromise solutions and 

current VDOT practice. 

Case 

study 

Type of 

M&R 

strategy 

M&R activity ID (application year) 
Avg. 

CCI 

Avg.

IRI 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

I Current 

VDOT 

practice 

4  

(7) 

5 

(17) 

6 

(27) 

4 

(39) 

5 

(49) 
- - - - - 82.74 1.27 

II 
4 

(7) 

5 

(17) 

6 

(27) 

4 

(39) 

5 

(49) 
- - - - - 82.74 1.27 

I 

Optimal 

2 

(2) 

4 

(6) 

4 

(14) 

2 

(20) 

6 

(24) 

2 

(30) 

4 

(33) 

3 

(38) 

4 

(43) 

3 

(47) 
82.88 1.08 

II 
4 

(13) 

6 

(25) 

2 

(32) 

4 

(36) 

4 

(41) 

3 

(46) 
- - - - 77.18 1.30 

Legend: M&R- maintenance and rehabilitation; VDOT- Virginia Department of Transportation; Avg.- average; CCI- critical 

condition index; IRI- international roughness index. 

Table 8.8- Objective function values of the best non-recycling-based optimal compromise solutions 

and current VDOT practice. 

Case 

study 

Type of M&R 

strategy 
LCHAC ($) LCRUC ($) 

LCCCsc 

(Kg CO2-eq) 
WHAC WRUC WEnv 

I Current VDOT 

practice 

425,163.98 373,159.66 1,451,953 - - - 

II 425,163.98 2,665,172.68 4,512,113 - - - 

I 
Optimal 

460,727.78 255,321.72 968,758 0.4 0.4 0.2 

II 357,559.71 1,925,908.77 3,356,906 0.8 0.1 0.1 

Legend: M&R- maintenance and rehabilitation; VDOT- Virginia Department of Transportation; LCHAC- life cycle highway 
agency costs; LCRUC- life cycle road users costs; LCCCsc- life cycle climate change score; WHAC- weight assigned to the highway 

agency costs objective function; WRUC- weight assigned to the road users costs objective function; WEnv- weight assigned to the 

environmental impacts objective function. 

 

Another result of interest shown in Table 8.7-Table 8.10 is the fact that the reduction in 

the LCRUC and LCEI for the heavier traffic class is achieved even though the optimal 

M&R strategy leads to a slight reduction in the average pavement condition throughout 

the pavement life cycle. This is because in the optimal M&R strategy five out of six 

M&R activities are scheduled to take place in the second half of the PAP, whereas the 

VDOT practice consists of applying only three M&R activities in the same time period, 

thereby ensuring that the pavement is kept in good overall condition when the traffic is 

particularly intense. 
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Table 8.9- Variation of the LCHAC and LCRUC for the non-recycling-based BOCSs when 

compared to the current VDOT practice. 

Stakeholder Life cycle phase 

Case study 

I II 

Absolute ($) Relative (%) Absolute ($) Relative (%) 

Highway 

agency 

Materials  -24,315.82 -5.72 49,497.71  11.64 

M&R -1,194.01 -0.28 7,564.73  1.78 

Transp. of materials -10,053.97 -2.36 10,541.82  2.48 

Total -35,563.80 -8.36 67,604.27  15.90 

Road 

users 

WZ traffic management -11,364.37 -3.05 768,696.39  28.84 

Usage 129,202.31  34.62 -29,432.48 -1.10 

Total 117,837.94  31.58 739,263.91  27.74 

 
Total global 82,274.14  23.21 806,868.18  43.64 

Legend: LCHAC- life cycle highway agency costs; LCRUC- life cycle road users costs; BOCS- best optimal compromise solution; 
VDOT- Virginia Department of Transportation; M&R- maintenance and rehabilitation; Transp. of Materials- transportation of 

materials; WZ- work-zone. 

Table 8.10- Variation of the LCCCsc for the best non-recycling-based optimal compromise 

solutions when compared to the current VDOT practice. 

Stakeholder Life cycle phase 

Case study 

I II 

Absolute 

(Kg CO2-eq) 

Relative 

(%) 

Absolute 

(Kg CO2-eq) 

Relative 

(%) 

Highway 

agency 

Materials 153,878 10.60 210,375 4.66 

M&R 425 0.03 3,661 0.08 

Transp. of materials -12,006 -0.83 12,988 0.29 

Road 

users 

WZ traffic management -2,307 -0.16 562,000 12.46 

Usage 343,204 23.64 366,184 8.12 

 
Total global 483,195 33.28 1,155,207 25.60 

Legend: LCCCsc- life cycle climate change score; VDOT- Virginia Department of Transportation; M&R- maintenance and 

rehabilitation; Transp. of Materials- transportation of materials; WZ- work-zone. 

 

When analyzing the relevance of each pavement life cycle phase in the relative variation 

of the three metrics as a consequence of implementing the optimal M&R plans, Table 

8.9 and Table 8.10 show that the materials phase, among those directly related to the 

highway agencies’ responsibilities (i.e., materials extraction and production, M&R and 

transportation of materials), always has the greatest influence in either the increase or 

decrease of the LCHAC. With regard to LCRUC, it can be seen that the traffic volume 

does not play a uniform role. In other words, for low-volume traffic roadways 
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implementing the best optimal compromise M&R strategy results in a reduction of the 

non-WZ RUC (approximately 35%) and in a slight increase of the WZ RUC 

(approximately 3%). In turn, for high-volume traffic roadways there is a reduction in the 

WZ RUC (approximately 29%) and a small increase in the non-WZ RUC 

(approximately 1%) when the best optimal compromise M&R strategy is implemented 

in lieu of the current VDOT’s M&R strategy. However, regardless of the traffic volume, 

the reductions in the LCRUC achieved through the implementation of the optimal M&R 

strategies always outperform the increase in the costs occurred during either the WZ 

traffic management phase or the usage phase. Finally, the analysis of the variations of 

the LCCCsc allows us to come to a conclusion on the GHG emissions reductions that 

are expected to be obtained across all pavement life cycle phases when the optimal 

M&R strategy is implemented in a high-volume traffic roadway. Such reductions are 

more substantial during the WZ traffic management (12%) and materials (5%) phases. 

Different relative results are reported in the case of low-volume traffic roadways, where 

the most meaningful reductions are attained during the usage phase (24%), while 

transportation of materials and WZ traffic management were found to contribute 

negatively to a small percentage increase in the environmental burdens. 

To provide an overall understanding of the relative importance of the traffic volume in 

the distribution of the costs and environmental impacts, the breakdown of the LCC and 

LCCCsc per pavement life cycle phase is provided in Figure 8.3a and Figure 8.3b, 

respectively. Figure 8.3a depicts that for low-volume traffic roadways the LCHAC are 

slightly greater than the LCRUC. Behind this result are the materials and usage phases 

that were found to be the biggest contributors to the total LCC in contrast to the M&R 

phase that is only a minor contributor. This is true for both M&R strategies, i.e. current 

VDOT practice and optimal M&R strategy, although the latter implies, respectively, an 

increase and a decrease in the contributions the materials and usage phases and a rise in 

the importance of the WZ traffic management. For high-volume traffic roadways, the 

LCRUC overwhelm the LCHAC, although the pavement life cycle phase that is 

responsible for the greatest share varies depending on the M&R strategy considered. 

Specifically, in a maintenance scenario where the current VDOT practice is adopted, the 
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majority of the LCRUC are incurred during the WZ traffic management phase, whereas 

the usage phase is more costly to road users when the optimal M&R strategy is 

implemented. Regardless of the maintenance scenario adopted, the M&R and 

transportation of materials remain the least costly life cycle phases. 

In terms of the LCCCsc, analysis of Figure 8.3b reveals the existence of two dominant 

phases. For heavily trafficked pavements, the cumulative effects of rolling resistance on 

fuel economy and vehicle emissions become much greater than the environmental 

burdens arising from the joint effect of the remaining phases. On the other hand, for 

pavements carrying low volumes of traffic, the materials phase takes the leader in the 

raking of the least environmentally-friendly pavement life cycle phases, although in 

percentage terms this is not as marked as the usage phase in the case of the high-volume 

traffic roadways.  

 

  

(a) (b) 

Figure 8.3- Breakdown of the (a) LCC and (b) LCCCsc per pavement life- cycle phase. Legend: 

M&R- maintenance and rehabilitation; Transp. of Materials- transportation of materials; WZ- 

work-zone. 
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8.5.6.1 Recycling-based maintenance and rehabilitation 
strategies 

Figure 8.4 depicts the Pareto optimal set of solutions for the maintenance scenario 

where the M&R activity of type RC combines conventional asphalt layers with in-place 

recycling layers. From this figure one can see that the Pareto front exhibits the same 

overall trend as that observed when the RC treatment consists of exclusively non-

recycling-based asphalt layers (Figure 8.2). More interestingly, this figure, when 

analyzed in conjunction with Figure 8.2, also shows that the entire Pareto front shifts 

down and towards the intersection of the LCHAC and LCRUC axis, resulting in 

significant costs and emissions savings across the pavement life cycle. This change will 

benefit both the highway agency and road users, with each seeing a decrease in the 

limits of the range of costs corresponding to the set of non-dominated solutions. Taking 

the high-volume traffic roadway section as an example, the lower and upper bounds of 

the LCHAC will respectively decrease by 29% and 14%, whereas the road users are 

expected to experience more modest reductions in the incurred costs, which amount to 

2% and 1%, respectively, for the lower and upper boundaries. With regard to the range 

of GHG emissions, the lower and upper boundaries are likely to be reduced by 8% and 

3%, respectively.  

 

(a) 
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(b) 

Figure 8.4- M&R strategy defined by VDOT and recycling-based Pareto optimal fronts: (a) case 

study I and (b) case study II. Legend: LCHAC- life cycle highway agency costs; LCRUC- life cycle 

road user costs; LCCCsc- life cycle climate change score. Note: The fuzzy cardinal priority ranking 

of each non-dominated solution was normalized so that it falls into the range [0;1]. 

 

Table 8.11 and Table 8.12 detail the features of the best recycling-based optimal 

compromise M&R strategies chosen according to the methodology described in section 

8.4.3 as well as the M&R strategy defined by VDOT, but in which no recycling-based 

M&R activities are considered. Table 8.13 and Table 8.14 present the variation of the 

LCHAC, LCRUC and LCCCsc for the BOCSs when compared to the current VDOT 

practice. As stated in the previous paragraph, Table 8.12-Table 8.14 show that, 

compared to the M&R plan in current VDOT practice, both costs and GHG emissions 

are considerably lower for the best optimal compromise M&R strategies in both traffic 

scenarios. For instance, GHG emissions could be reduced by 45% and LCHAC and 

LCRUC by 13% and 59%, respectively, if the highway agency switched the adopted 

M&R strategy to the BOCS among those lying on the Pareto front for a high-volume 

traffic roadway.  
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Table 8.11- M&R strategies of the best recycling-based optimal compromise solutions and current 

VDOT practice. 

Case 

study 

Type of M&R 

strategy 

M&R activity ID (application year) 
Avg. 

CCI 

Avg. 

IRI 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

I Current 

VDOT 

practice 

4 (7) 
5 

(17) 

6 

(27) 

4 

(39) 

5 

(49) 
- - - - - 82.74 1.27 

II 4 (7) 
5 

(17) 

6 

(27) 

4 

(39) 

5 

(49) 
- - - - - 82.74 1.27 

I 
Recycling-

based optimal 

2 (1) 
4 

(8) 

3 

(14) 

4 

(20) 

7 

(25) 

3 

(31) 

4 

(37) 

3 

(42) 

4 

(47) 
- 81.24 1.08 

II 2 (2) 
4 

(4) 

3 

(12) 

4 

(18) 

7 

(24) 

4 

(30) 

3 

(36) 

4 

(41) 
- - 80.76 1.11 

Legend: M&R- maintenance and rehabilitation; VDOT- Virginia Department of Transportation; Avg.- average; CCI- critical 
condition index; IRI- international roughness index. 

Table 8.12- Objective functions values of the best recycling-based optimal compromise solutions 

and current VDOT practice. 

Case 

study 

Type of M&R 

strategy 
LCHAC ($) LCRUC ($) 

LCCCsc 

(Kg CO2-eq) 
WHAC WRUC WEnv 

I Current VDOT 

practice 

425,163.98  373,159.66  1,451,953 - - - 

II 425,163.98  2,665,172.68  4,512,113 - - - 

I Recycling-based 

optimal 

366,597.22  247,082.78  814,726 0.3 0.4 0.3 

II 369,013.26  1,083,439.83  2,499,971 0.2 0.8 0 

Legend: VDOT- Virginia Department of Transportation; M&R- maintenance and rehabilitation; LCHAC- life cycle highway 

agency costs; LCRUC- life cycle road users costs; LCCCsc- life cycle climate change score; WHAC- weight assigned to the highway 

agency costs objective function; WRUC- weight assigned to the road users costs objective function; WEnv- weight assigned to the 
environmental impacts objective function. 

Table 8.13- Variation of the LCHAC and LCRUC for the best recycling-based optimal compromise 

solutions when compared to the current VDOT practice. 

Stakeholder Life cycle phase 

Case study 

I II 

Absolute ($) Relative (%) Absolute ($) Relative (%) 

Highway  

agency 

Materials  53,930.18  12.68 52,440.58  12.33 

M&R -6,489.01 -1.53 -7,137.23 -1.68 

Transportation of 

materials 
11,125.59  2.62 10,847.37  2.55 

Total 58,566.76  13.78 56,150.72  13.21 

Road  

users 

WZ traffic management -4,819.44 -1.29 1,160,552.62  43.55 

Usage 130,896.32  35.08 421,180.23  15.80 

Total 126,076.87  33.79 1,581,732.85  59.35 

 
Total global 184,643.63  47.56 1,637,883.57  72.56 

Legend: LCHAC- life cycle highway agency costs; LCRUC- life cycle road users costs; VDOT- Virginia Department of 
Transportation; M&R- maintenance and rehabilitation; Transp. of materials- transportation of materials; WZ- work-zone. 
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Table 8.14- Variation of the LCCCsc for the best recycling-based optimal compromise solutions 

when compared to the current VDOT practice. 

Stakeholder Life cycle phase 

Case study 

I II 

Absolute  

(Kg CO2-eq) 

Relative 

(%) 

Absolute 

(Kg CO2-eq) 

Relative 

(%) 

Highway 

agency 

Materials 276,930 19.07 288,159 6.39 

M&R -3,183 -0.22 -2,304 -0.05 

Transportation of 

materials 
19,209 1.32 24,286 0.54 

Road  

users 

WZ traffic 

management 
122 0.01 804,717 17.83 

Usage 344,149 23.70 897,283 19.89 

 
Total global 637,227 43.89 2,012,142 44.59 

Legend: LCCCsc- life cycle climate change score; VDOT- Virginia Department of Transportation; M&R- maintenance and 

rehabilitation; Transp. of Materials- transportation of materials; WZ- work-zone. 

 

An interesting analysis is to understand how the use of a recycling-based RC treatment 

changes the frequency and type of treatments integrating the optimal M&R strategies, 

and how that translates into savings in both costs and GHG emissions. The results in 

Table 8.11-Table 8.14 show that for a low-volume traffic roadway, the savings across 

all considered metrics are achieved by reducing by one the number of M&R activities 

performed throughout the PAP in relation to that of the optimal non-recycling-based 

M&R strategy. While the reduction in the LCHAC and in the GHG emissions released 

during the materials phase are not necessarily surprising, the same cannot be said about 

the savings in both the LCRUC and GHG emissions released during the remaining 

phases. With regard to the metrics previously mentioned, the optimal recycling-based 

M&R strategy would not only mean a reduction in the increase of the WZ RUC in 

relation to those arising from the VDOT’s M&R strategy, but,  surprisingly, would also 

lead to a reduction in the roughness-related environmental and economic burdens, 

despite the slight deterioration of the average pavement condition over the PAP when 

compared to that associated with implementation of either the current VDOT practice or 

the optimal non-recycling-based M&R strategy. This stems from a combination of 

M&R activities, and respective timing of application, that turns out to be more cost-

effective and environmentally-friendly over the PAP.  
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As for the high-volume traffic roadways, the benefits are obtained by increasing the 

number of M&R activities applied over the PAP (majority PrM treatments), which 

translates into a smoother pavement surface over the PAP, thus reducing both the RUC 

and GHG emissions associated with the most important phase for a high-volume traffic 

roadway, i.e. the usage phase. Obviously, the increase in the frequency of M&R 

activities, without raising the expenditures incurred by the highway agency, was only 

possible because the recycling-based RC is cheaper than its non-recycling-based 

counterpart. Thereby, highway agencies are allowed to get more done with lower 

consumption of resources. 

8.5.7 Key findings 

From the results presented and thoroughly discussed in the previous section, the 

following findings are worth highlighting: 

 In a tri-objective optimization analysis, minimizing LCHAC and LCCCsc are 

conflicting objectives, while LCRUC and LCCCsc denote the same trend; 

 For low-volume traffic roadways: 

i) the Pareto front is nearly two-dimensional; 

ii) the best optimal compromise M&R strategy implies an increase in the 

LCHAC and a reduction in the remaining metrics when compared to the 

non-optimized pavement M&R strategy; 

iii) the LCHAC are greater than the LCRUC, regardless of the type of M&R 

strategy adopted; 

iv) the materials phase plays the most important role in driving the road 

pavement section’s environmental performance; 

 For high-volume traffic roadways: 

i) The Pareto front is better described as a cloud of points, meaning that 

highway agencies are presented with a greater variety of potential 

solutions within a narrow range of LCHAC values; 
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ii) the money has potentially a better marginal value than that for roadways 

carrying low traffic volumes; 

iii) the best compromise optimal M&R strategy always improves on VDOT 

practice with regard to the three considered metrics; 

iv) the LCRUC are considerably greater than the LCHAC, regardless of the 

type of M&R strategy adopted; 

v) the usage phase is by far the most meaningful driver of the 

environmental performance of a road pavement section; 

 The best recycling-based optimal compromise M&R strategies always improve 

on VDOT practice with regard to the three considered metrics. Relatively 

speaking, the greatest reductions are achieved in the LCCCsc for a low-volume 

traffic roadway (44%), whereas, in the case of a high-volume traffic roadway, 

there is an outstanding reduction of the LCRUC, which can be up to 

approximately 60%. 

8.6 Summary and conclusions 

This chapter presents the development of a DSS framework for pavement management 

that has the ability to involve road users and environmental concerns, in addition to the 

highway agencies, in the road pavement maintenance decision-making process, by 

comprehensively identifying and quantifying from a cradle-to-grave perspective the 

HAC, RUC and environmental impacts arisen throughout the pavement life cycle. 

Moreover, beyond the traditional economic objective (i.e., minimization of HAC), it 

enables environmental and road user-related objectives to be jointly optimized by 

employing a tri-objective optimization procedure to generate a set of potentially optimal 

pavement M&R strategies for a road pavement section while satisfying multiple 

constraints. Finally, the capabilities of the presented framework are enhanced by 

including a decision-support module that provides the DM with the BOCS among those 

lying on the Pareto front. 
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The capabilities of the proposed DSS were demonstrated by mean of two case studies 

consisting of determining, respectively, the optimal M&R strategy for a low-volume 

and a high-volume traffic road flexible pavement section of a typical Interstate highway 

in Virginia, USA. The MOO results revealed the existence of conflict between the 

LCHAC and LCRUC and between LCHAC and LCCCsc, whereby an increase in one 

of the objectives leads to a decrease in the other. In turn, LCRUC and LCCCsc were 

found to follow the same trend since an increase in one metric is accompanied by an 

increase in the other. Furthermore, to assess the strength of relationships between the 

objective functions previously described, Spearman’s correlation analysis was 

performed along with significant tests of correlation coefficients. The results of the 

analysis not only demonstrate that the relationships are at least strong but also that they 

are backed up statistically. 

The results of this case study also indicate that for a low-volume traffic roadway the 

best optimal compromise M&R strategy allows LCRUC and LCCCsc metrics to be 

reduced in relation to those associated with the current VDOT’s pavement M&R 

practice, although it comes at the cost of an increase in the pavement M&R 

expenditures (i.e., LCHAC). On the other hand, for a high-volume traffic roadway the 

best optimal compromise M&R plan has the potential to improve on current VDOT’s 

pavement M&R practice with regard to the three considered metrics. 

Furthermore, in order to assess the extent to which new pavement engineering solutions 

can potentially enhance pavement sustainability, a complementary analysis scenario 

was performed in which the most structurally robust M&R activity initially considered 

was replaced by an equivalent recycling-based M&R activity. The results of this 

analysis showed that reductions in all three considered metrics can be achieved by 

moving from the current pavement M&R practice to the best recycling-based optimal 

compromise M&R strategy, regardless of the traffic volume the road pavement section 

is expected to carry throughout the PAP. 

In the future, the development of this DSS will proceed in two main directions. First, 

the decision level for which the current version is intended for will be upgraded from 
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the project level to the network level to ensure that the road pavement maintenance 

decisions taken at project level end up in optimal sustainable solutions for the whole 

road pavement network. Second, the number of LCA-based metrics allowed to be 

simultaneously optimized with highway agencies and road user-related objectives will 

be extended. In an effort to overcome the computational limitations associated with 

solving many-objective optimization (MaOO) problems, the use of dimensionality 

reduction techniques in improving the efficiency and efficacy of the current DSS’s 

solution algorithm when applied to solve MaOO problems will be assessed. If the 

applicability of those techniques to the pavement management problems is found to be 

successful, they will become the MaOO problems computationally tractable by 

identifying redundant objectives that can be omitted while still preserving the problem 

structure as far as possible.  
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Chapter 9  

Summary, Conclusions and Future 

Work 

9.1 Summary and conclusions 

With finite natural resources, sensitive environmental conditions and limited economic 

resources, transportation agencies are increasingly recognizing that enhancing pavement 

sustainability must be a priority. A key aspect in the process of moving towards more 

sustainable pavement systems lies in the ability of the transportation agencies, owners, 

operators and DMs in general to assess the current state of road pavement 

infrastructures, report on their technical, economic, environmental and social 

performances, predict future conditions and performances from a cradle-to-grave 

perspective, and, based on the indicators and metrics obtained, make decisions that, 

hopefully, are effective in enhancing pavement sustainability. In view of this, the 

decision-making process involved in sustainable pavement management, requires 

practical tools and techniques, which relying on comprehensive and life cycle-based 

appraisal methods, allow users to assess sustainability from a multi-dimensional 

perspective and in all of the life cycle phases of road pavement infrastructures. Current 

approaches for road pavement infrastructure appraisal are to some extent, and from an 

overall standpoint, valuable for helping DMs meet some of their sustainability targets 
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within their specific scope.  However, as economic considerations have until now been 

the main focus of DMs in pavement management, their manner of analysis is biased 

towards a merely economic assessment, failing to effectively account for the 

environmental impact, and thus preventing the pavement community to move towards 

building and maintaining the road pavement infrastructures in a more environmentally 

friendly fashion. Furthermore, they are overly focused both on certain phases of the 

pavement life cycle and on the particular transportation agency’s interests. 

Recognizing the limitations of state-of-practice life cycle-based analytical models and 

tools in highway asset management, this thesis developed a highly customizable 

optimization-based pavement management DSS, which includes several comprehensive 

stand-alone but logically interconnected pavement life cycle approaches that aim 

ultimately to foster pavement sustainability. By integrating and combining LCA, 

LCCA, life cycle optimization, MCDM methods (i.e., Multi-Attribute Decision Making 

(MADM) and Multi-Objective Decision Making (MODM) methods) into the same 

computational platform, this DSS provides a basis for establishing benchmark values 

and setting future performance goals, tracking trends and monitoring progresses towards 

or regression from desired sustainability targets, and comparing the performance 

between different pavement design and M&R strategy alternatives. 

The development of the proposed DSS started with the design of a conceptual 

framework for a project-level pavement LCA. In Chapter 2, in addition to the 

conceptual framework, a methodology incorporated into a software environment for a 

pavement LCA tool was presented. In comparison with the traditional approaches 

described in the literature it has five main distinctive features. Firstly, it is 

comprehensive in that it incorporates all six pavement life cycle phases, i.e., materials 

extraction and production, construction and M&R, transportation of materials, WZ 

traffic management, usage and EOL, and considers several processes within the 

boundaries of each phase. Secondly, all phases and models are logically connected but 

differentially recognized so that the user can both understand the overall environmental 

impacts and the specific contributions from individual phases, models, processes and 
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components. Therefore, the more relevant areas and related key points of the pavement 

life cycle can be measured and benchmarked against other solutions and projects. 

Thirdly, by accounting for as many variables in a pavement project as possible, it is 

flexible enough to add, delete, combine and divide component units to adapt to a 

particular project, with minimum repetitive work. It is also flexible as will allow users 

to update models and revise formulas in the future. Fourthly, all phases and models are 

fed by an open and customizable database. This customization property promotes the 

accuracy of all estimates by allowing the user either to add project-specific data or to 

edit pre-existing data so that it fits the characteristics and particularities of the analysis 

being performed. It is also beneficial for evaluating the results of different decision-

making scenarios, as well as for performing sensitivity analysis on the results due to 

variations of design and operational parameters, assumptions, and methodological 

choices. Fifthly and lastly, it expands the LCIA to categories other than CC and 

upgrades the impact assessment techniques typically incorporated in the majority of 

pavement LCA tools through the inclusion of dynamic characterization factors. Still in 

Chapter 2, several data sources were suggested with potential relevance for an LCA 

conducted in the Portuguese context. 

On the basis on the features summarized previously, the research described in the 

abovementioned chapter provides a widely applicable pavement LCA model that will 

enable highway agencies, private companies and the construction industry to estimate 

emissions and environmental impacts during the PAP of a road pavement. The use of 

the proposed tool for benchmarking current practices in pavement construction and 

management will enhance the scientific basis for understanding where further efforts 

can be undertaken to promote sustainable pavement investment decisions. 

To illustrate the potential and usefulness of the pavement LCA model introduced in the 

Chapter 2 for conducting a comprehensive and attributional LCA, in Chapter 3, we 

presented the results of a study aimed to estimate and compare the LCEI of the flexible 

pavement structures defined in the Portuguese pavement design catalogue. The analysis 

assessed the functional units over a 40-year PAP, considering all pavement life cycle 
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phases: (1) extraction of raw materials and production; (2) transportation of materials; 

(3) construction and M&R; (4) WZ traffic management; (5) usage; and (6) end-of-life. 

The results of the case study showed that for the least demanding traffic classes the 

materials phase is the main contributor to the road pavement’s overall LCEI. However, 

if the road pavement is expected to carry significant volumes of traffic over its PAP, 

then the usage phase dominates the road pavement’s overall environmental 

performance.  

An important element in improving the environmental sustainability of road pavement 

projects that is commonly mentioned by the literature is the use of new technologies, 

processes, and products that possess the potential to enhance the projects’ 

environmental sustainability through reduced consumption of fossil energy and virgin 

materials. A good example is the use of recycled materials or more environmentally-

friendly pavement M&R practices. The likely environmental benefits, however, need to 

be quantified and compared against the burdens they impose if they require additional 

processing and implementation efforts. Therefore, comparative studies are needed to 

investigate the many impacts that arise from implementing alternative practices to 

ensure that the pavement project is carried out with the smallest environmental impact 

in terms of energy use, emissions released and natural resources consumed. On the other 

hand, an essential feature to enhance the credibility of the results produced by life cycle 

approaches is related to their ability to properly address the context- and geographical-

sensitive nature of the models, processes, practices and concerns of the society where 

the project under assessment is located. In view of those two main aspects, Chapter 4 

described the development of a comprehensive pavement LCA model tailored for US 

conditions, which rely on the conceptual framework introduced in Chapter 2. One of its 

main novelties lies in the development and implementation of a methodology that easily 

combines the vehicle emissions model MOVES with the HDM-4 RR model calibrated 

to North American conditions, to estimate the additional FC, and consequently the 

environmental impacts, resulting from the deterioration of the pavement over the life 

cycle. The model was applied to conduct an LCA study of an in-place pavement 
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recycling rehabilitation project in the state of Virginia, USA. The project under 

consideration incorporated several in-place pavement recycling techniques, namely 

CIR, CCPR and FDR, and a unique traffic management approach. The results for the 

recycling-based project were compared to two other pavement management 

alternatives: (1) a traditional pavement reconstruction and (2) a corrective maintenance 

approach. The results obtained for the conditions considered in that case study showed 

that the usage phase is the part in the pavement life cycle that contributes most across 

the majority of the impact categories. It was also found that the corrective M&R 

strategy entails additional energy consumption, as measured by the CED Total, of 44% 

and 42% of the total energy consumed in the case where the recycling-based and 

traditional reconstruction M&R strategies are adopted as an alternative. Moreover, 

when comparing the in-place recycling-based activity to the traditional reconstruction 

activity, a reduction of 157 tonnes of CO2-eq/lane.km is expected to be achieved, 

exclusively due to the materials phase if the recycling-based activity was undertaken. 

This value represents a reduction of 75% in comparison to the CO2-eq emissions 

accounted for in the same phase of the rehabilitation activity. Despite the lower impact 

compared to the materials phase, the environmental benefits arising from the WZ traffic 

management and transportation phases should also not be disregarded. 

The potential of in-place recycling techniques to enhance the environmental 

sustainability of highway agencies’ pavement management decisions for asphalt 

pavements has been demonstrated in Chapter 4. However, a solution which an LCA 

finds environmentally advantageous might not be preferred over another which is 

technically equivalent, if it is not economically competitive. Indeed, it may seem 

intuitive to think that there is a direct relationship between a reduction in costs and a 

reduction in environmental impact when adopting pavement recycling techniques. 

However, the potential existence of such a connection can only be confirmed when the 

complete life cycle of the pavement is taken into account. In this vein, Chapter 5 

presented the development of a comprehensive pavement LCC model intended to give 

DMs a systematic framework that provides an in-depth perspective of the costs incurred 
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by highway agencies and road users during the materials, construction and M&R, WZ 

traffic management, usage and EOL pavement life cycle phases. When compared with 

the existing LCCA tools, the proposed model, by not relying on “black-box” and 

aggregated process costs, depicts more accurately the new outlook of costs resulting 

from changes in construction and maintenance techniques, productivity rates, crew sizes 

and composition, equipment fleets, etc. The proposed model was applied to perform a 

comprehensive, cradle-to-grave LCCA of the in-place pavement recycling rehabilitation 

project introduced in Chapter 4. The results showed that for a rehabilitation project with 

features similar to those of the case study introduced in the chapter previously 

mentioned, the implementation of recycling-based M&R strategies has the potential to 

be simultaneously advantageous from both the environmental and economic 

perspectives. From the highway agencies’ standpoint, the reduction in the consumption 

of bituminous-related materials was found to be the main source of the economic 

advantage exhibited by the recycling-based strategy’s life cycle over the competing 

alternatives. From the road users’ perspective, the RUC savings incurred during the WZ 

traffic management phase due to the reduction of the TDC was shown to be more 

expressive than those arising from the usage phase. Furthermore, the sensitivity analysis 

performed to assess the robustness of the outcomes in response to variations in some of 

the most relevant input values showed that the key assumptions considered within 

LCCA do not alter the cost advantage of the recycling-based M&R strategy over the 

competing M&R strategies. 

Chapters 2, 3 4 and 5 addressed the development and individual application of 

comprehensive LCA and LCC tools. Although these appraisal tools can be used alone 

or in tandem to measure sustainability, using them together allows for a better 

assessment of the total impacts of a proposed project, practice or policy, making it 

easier to arrive at balanced conclusions regarding the economic and environmental 

goals. With this in mind, in Chapter 6 the development of a new pavement life cycle 

approach was presented. In particular, a comprehensive and integrated LCC-LCA 

model was developed which builds on the P-LCA and LCC models introduced in 
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Chapters 2, 4 and 5. Compared to the previous P-LCA framework, the LCA 

methodology adopted by the tool proposed in Chapter 6 relies on a hybrid LCI approach 

that allows the sub-models assessing the economic and environmental dimensions of 

sustainability to connect with one another by monetary flows associated with exchanges 

of the pavement life cycle system that are directly covered by the LCC model, but for 

which specific process data are either completely or partially unavailable. In this way, it 

allows the “cutoff” errors to be reduced and the consistency between the system 

boundaries of the pavement life cycle, when analyzed concomitantly from the economic 

and environmental viewpoint, to be improved by determining the underpinning 

environmental burdens associated with several processes, such as the manufacturing and 

maintenance of construction  equipment, manufacturing of on- and off-road vehicle 

tires, lubricant oil production, etc., that had been disregarded in the previous P-LCA 

models. Furthermore, to strengthen the proposed pavement LCC-LCA model as a tool 

and to improve its usefulness for sustainability decision-making, and thus, enabling the 

DM to choose between multiple alternatives when they have conflicting performances 

in the considered criteria, a MCDM, the TOPSIS method, was added to the tool’s 

framework.  Its usefulness was illustrated with a case study that consisted of 

investigating, from a full life cycle perspective, the extent to which several pavement 

engineering solutions, namely hot in-plant recycling mixtures, WMA, CCPR and 

preventive treatments, are efficient in improving the environmental and economic 

dimensions of pavement infrastructure sustainability, when applied either separately or 

in combination, in the construction and management of a road pavement section located 

in Virginia, USA. For the conditions considered in the case study, the results showed 

that a recycling-based VDOT M&R strategy, where the asphalt mixtures are of type 

HMA, containing 30% of RAP are more compliant with the highway agency and road 

users’ demands for affordable road maintenance and usage over its life cycle than the 

other technical solutions investigated. Moreover, this solution also revealed a superior 

overall performance when the interests of all three stakeholders, meaning highway 

agency, highway users and the environment, were concomitantly taken into account in a 

multi-criteria decision analysis. On the other hand, from the viewpoint of pure 
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environmental performance, implementing a THMACO-based PrM strategy has proven 

to be the most environmentally-friendly solution. 

With the objective of endowing the DSS with life cycle approaches with increasing 

complexity of analysis, in Chapter 7, an optimization model was presented to tackle the 

pavement M&R strategy selection problem.  The objective of the model was to 

minimize the PV of the life cycle M&R costs of a given pavement section throughout its 

PAP, while keeping the pavement condition above a predefined threshold value, 

meeting technical constraints and considering deterministic and non-linear PPPM. Due 

to the nature of this problem, it is very difficult to solve to an exact optimum using 

traditional optimization techniques. Therefore, a new AHGA combing GA with an LS 

mechanism was developed for tackling the pavement life cycle optimization problem. 

The main novelty of this algorithm lies on the incorporation of dynamic LS techniques 

into a GA framework to improve the overall efficiency of the search, either by 

accelerating the discovery of good solutions, for which evolution alone would take too 

long to find, or by reaching solutions that would otherwise be unreachable by evolution 

or a local method alone. The proposed AHGA framework contains two dynamic 

learning mechanisms to adaptively guide and combine the exploration and exploitation 

search processes. The first learning mechanism aims to reactively assess the worthiness 

of conducting an LS, and to efficiently control the computational resources allocated to 

the application of this search technique. The second learning mechanism uses 

instantaneously learned probabilities to select which one, from a set of pre-defined LS 

operators which compete against each other for selection, is the most appropriate for a 

particular stage of the search to take over from the evolutionary-based search process. 

After the algorithm parameters had been calibrated using the Taguchi method, its 

efficiency and effectiveness were compared with those of a traditional GA by applying 

it to several case studies designed to replicate VDOT’s real pavement management 

problems for a flexible pavement section. The outcomes of the comparative experiments 

undertaken and accordingly supported by statistical tests proved the superiority of the 
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proposed algorithm in consistently converging to the optimum solution while requiring 

a lower computational running time, in spite of the very simple calibration process used. 

Despite the fact that multi-attribute decision analysis can deal explicitly with different 

components of sustainability as shown in Chapter 6, the applicability of that category of 

MCDM methods is constrained to the situation in which the DM has to select an 

alternative among a set of pre-defined alternatives. Thus, it may well be the case that 

none of the pre-defined alternatives available for selection make the best possible use of 

the resources available and leads to best possible performance in all the considered 

metrics. In that sense, a better incorporation of the sustainability concept into the 

decision-making process is obtained when the sustainability concerns, expressed 

through metrics, are considered as the criteria for designing the alternatives by using a 

MOO method. In view of that, Chapter 8 described the last enhancements performed in 

the DSS, which aimed to improve its life cycle optimization capabilities. In particular, 

the single-objective-based life cycle optimization model developed in Chapter 7 was 

extended to a multi-objective formulation and combined with the comprehensive and 

integrated pavement LCC-LCA model introduced in Chapter 6. Finally, as MOO 

problems give rise to a set of optimal solutions, a decision-support module was added to 

the DSS methodology to help the DM to conveniently select a final optimal solution.  

The enhanced capabilities of the proposed DSS were illustrated with two case studies 

consisting of determining the optimal M&R strategy for a one-way flexible pavement 

section of a typical Interstate highway in Virginia, USA, which yields the best tradeoff 

between the following three, often conflicting, objectives: (1) minimization of the PV of 

the total LCHAC; (2) minimization of the PV of the LCRUC; and (3) minimization of 

the LCCCsc. The MOO results demonstrated the existence of conflict between the 

LCHAC and LCRUC and between LCHAC and LCCCsc, whereas LCRUC and 

LCCCsc were found to follow the same trend. The strength of relationships between the 

considered sustainability criteria was assessed through a Spearman’s correlation 

analysis and the statistical significance of the correlation coefficients was successfully 

ascertained by mean of hypothesis tests. The results of these case studies also indicate 
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that for a low-volume traffic roadway the best optimal compromise M&R strategy 

allows LCRUC and LCCCsc metrics to be reduced in relation to those associated with 

the current VDOT’s pavement M&R practice, although it comes at the expense of an 

increase in the LCHAC. On the other hand, for a high-volume traffic roadway the best 

optimal compromise M&R plan was found to improve on current VDOT pavement 

M&R practice in the three considered metrics. Finally, in order to assess the extent to 

which new pavement engineering solutions can potentially enhance pavement 

sustainability, a complementary analysis scenario was performed in which the most 

structurally robust M&R activity initially considered was replaced by an equivalent 

recycling-based M&R activity. The results of this analysis showed that reductions in all 

three considered metrics can be achieved by moving from the current VDOT pavement 

M&R practice to the best recycling-based optimal compromise M&R strategy, 

regardless of the traffic volume the road pavement section is expected to carry 

throughout the PAP. 

9.2 Future work 

A software environment was developed to incorporate the DSS and the different 

pavement life cycle approaches described in this thesis. Since it is a prototype software, 

not all the user interfaces exhibit the same level of user-friendliness. A few 

improvements are required to make it easily usable for third party users. There are also 

several pavement life cycle approaches that can benefit from either further research or 

improvements. In addition, some of the findings could be expanded to consider 

scenarios beyond those considered in the case studies analyzed in this thesis. In this 

sense, at the end of each chapter several topics were mentioned that deserve further 

research and/or developments. Some of those topics have been addressed in the 

following chapters, but others were left for future research. 

For instance, the pavement LCA framework proposed in Chapter 2 can be enhanced 

mainly in the three first steps that characterize an LCA study. Starting with the scope, 

two main lines for future development are suggested. The first regards the number of 
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processes and phenomena considered in each phase, whereas the second one deals with 

the accuracy of the methodologies and models adopted to model the processes 

underlying each phase. The best example to illustrate this first line has to do with the 

usage phase. In the proposed framework, only the environmental burdens arising from 

the RR, and in particular those arising from the pavement surface properties (i.e., 

roughness and macrotexture), were taken into account. For that purpose, it was 

considered that the former surface property varies equally in all lanes, whereas the latter 

was assumed to not vary either over time or across pavement section. Therefore, future 

enhancements on this topic can be undertaken on two levels. Firstly, the roughness 

evolution over time should be considered in distinct ways across the pavement section 

by considering lane distribution factors. As far as the macrotexture is concerned, the 

first step to be taken lies in the inclusion of macrotexture prediction models into the 

LCA framework as soon as they are available, whereas a second step aims to account 

for the lane effect on the macrotexture evolution by means of lane distribution factors. 

Secondly, the number of considered physical mechanisms affecting the RR should be 

extended by considering the pavement structural responsiveness to loading. Pavement 

structural responsiveness to loading is determined by layer thicknesses, stiffness and 

material types that determine viscoelastic and elastic pavement response under different 

conditions of wheel loading, vehicle speed, temperature and moisture conditions. This 

mechanism of RR affects the on-road vehicle’s FC based on the premise that pavements 

are deflected as vehicles pass overhead, thus absorbing energy that would otherwise be 

used for accelerating the vehicle (Zaniewski, 1989). This topic has been subject to 

recent and ongoing research, but the influence of structural responsiveness on fuel 

economy and associated environmental impacts has not been comprehensively validated 

with an experiment that accounts for the broad range of environmental conditions or the 

various types of pavement structures and respective properties. As a result, the available 

models have not been calibrated with the type of data that allows the general application 

of the models to evaluate in-service pavements under the range of traffic and climatic 

conditions that occur daily, seasonally, and from location to location (Van Dam et al., 

2015). Research is thus needed that uses field measurements of fuel economy for a 
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range of vehicles, climates, and pavement structural responses, controlling roughness 

and macrotexture, to complete calibration and validation of models. After those studies 

have been completed and the developed models properly validated and matured, they 

should be included into the pavement LCA framework.  

Due to different reasons several other usage phase effects were not accounted for. They 

include tire-pavement noise, storm water runoff through permeable pavement surfaces, 

thermal pavement performance and its contribution to urban and global climate, 

lighting, pavement friction and safety. Thus, future developments of the pavement LCA 

framework should address these aspects.  

With regard to the second line for future developments previously mentioned, it may 

focus on the improvement of the methodology employed to capture the impact of traffic 

disruptions caused by the execution of M&R activities on environmental and economic 

WZ-related burdens. The current methodology relies on the HCM methodology which 

utilizes hourly traffic demand data and capacity analyses to estimate WZ mobility 

impacts such as traffic delays, queuing, and associated WZ RUC and environmental 

impacts. While it is good for analyzing the performance of isolated WZ sections with 

relatively moderate congestion problems by quickly predicting capacity, density, speed, 

delay, and queuing, it is limited in its ability to analyze both network or system effects 

(e.g., detours) and lane closure strategies, such as the WZ layout in which one lane is 

often closed down at a time, while flagman at either end of the WZ alternate the traffic 

flow in both directions through the remaining open lane. For instance, the limitations 

associated with the consideration of a constant detour rate during a WZ period may be 

overcome by using a traffic assignment mechanism. In this context, road users will 

adapt their behavior, i.e. go through the WZ or detour, in such a way that they reduce 

travel costs. A better solution, which would mean surpassing not only the limitations 

related to the detour modelling, but also those associated with the static nature of the 

HCM’s approach in predicting traffic performance, consists of using traffic simulation 

tools. By dividing the analysis period into short time slices, a simulation model can 

evaluate the buildup, dissipation, and duration of traffic congestion in short time 
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periods. Also, it can evaluate the interference that occurs when congestion builds up at 

one location and impacts the capacity of another location (Alexiadis et al., 2004). 

However, one should bear in mind that those simulation tools, particularly the micro-

simulation tools, require a plethora of input data and manipulation of a large amount of 

potential calibration parameters. Moreover, they imply the loss of the unity of the LCA 

framework because they need to be run in an individual software platform, after which 

the simulation outputs produced are fed into the pavement LCA model. 

Another relevant issue is the ability to acquire and employ high quality input data to 

carry out the LCI step of a LCA study. Although an effort has been made to employ, as 

far as possible, the best data available for the technical, geographical and social contexts 

associated with the case studies, the quality of the data used was not always as high as it 

could have been due to several reasons, such as data scarcity, reliability and lack of 

tailored data. In fact, data quality and availability are key issues that have received 

attention from the pavement LCA community, which has underlined the need for a 

centralized database of non-proprietary LCIs for materials, equipment, vehicles, and 

other items that can be used as a reference database for pavement LCA. 

In the majority of the pavement LCA models available in the literature, if not all, the 

point in time at which a substance is released is usually not accounted for in the LCIA 

step, whereby the distribution of emissions over time is lost. The LCA models 

developed in this thesis took a step further by allowing the models’ users to choose 

between the IPCC’s GWPs and the TAWPs proposed by Kendall (2012). However, the 

lack of either consistent or geographically suitable sets of other time-adjusted 

characterization factors across multiple impact categories did not allow for the 

accounting of time effects in impact categories other than CC. Therefore, a future field 

for improving the pavement LCA models integrating the DSS should focus on 

extending the dynamic nature of the LCA to other impact categories.   

In Chapter 5 a comprehensive pavement LCC model was developed which was 

particularly suited to determining the costs incurred by highway agencies and road users 

when new pavement practices are implemented. Despite the considerable 
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comprehensiveness of the developed model, it can be further enhanced with regard to 

this attribute. In particular, other cost categories may be added to the current 

framework. For example, the costs of accidents associated with WZ and WZ-related 

detours, which were left out of the system boundaries due to the high level of 

subjectivity associated with their occurrence. However, for the sake of confidence in the 

results, the inclusion of this cost category into the LCCA should be constrained to the 

situations in which there is historical accident rate data covering a large time period for 

the road pavement section under analysis. This would allow the implementation of the 

accident costs calculation methodologies, which rely on the knowledge of the pre-

existing accident rate and crash modification factors. Other categories and sub-

categories of highway agency costs, such as (1) indirect costs, i.e. overhead expenses 

related to a specific project but not directly linked to any specific work item (e.g., 

staffing for project management and supervision, office trailers and vehicles assigned to 

the project team, etc.), (2) general overhead costs, i.e. company level general and 

administrative overhead expenses incurred by the contractor/highway agency in support 

of the overall construction program and shared by all projects in proportion to their cost 

and duration (e.g., office maintenance, office personnel, office equipment and services, 

etc.) and (3) markup costs, i.e. project contingency costs and contractor profit, which 

are likely to vary from project to project, from contractor/highway agency to 

contractor/highway agency and from one geographic location to another, could easily be 

added to the LCC framework as well. 

In order to improve the consistency between the system boundaries of the pavement life 

cycle when analyzed concomitantly from the economic and environmental viewpoints, a 

comprehensive and integrated pavement LCC-LCA model was developed and presented 

in Chapter 6. In the proposed model, the P-LCA model presented in Chapter 4 was 

combined with an I-O methodology for deriving the underpinning environmental 

burdens of processes commonly disregarded by the pavement LCA models available in 

the literature. However, I-O LCA has a limitation, which lies in the fact that the same 

output is generated when producing one monetary unit of goods in each productive 
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sector because it uses the national average data for each productive sector of the 

economy (Lenzen, 2000; Suh et al., 2004). Therefore, the level of aggregation inherent 

in I-O data makes it impossible to obtain the same level of detail for individual items as 

can be achieved by P-LCA. In this context, the accuracy of the results provided by the 

LCA sub-model could be enhanced through the disaggregation of the existing I-O 

models by combining top-down economic information with bottom-up emissions data 

to better represent the underlying economic transactions, supply chains, and emissions 

for the specific sub-sector that best describes the process for which we want to calculate 

the environmental burdens. 

An important component of the research developed in this thesis addressed the 

economic and environmental assessment of new pavement engineering solutions, of 

which the recycling-based materials and WMA are examples. The assessments were 

carried out on the basis that those new paving solutions perform in the same way as 

their conventional counterparts. Although this assumption finds support in several 

studies (Mohammad et al., 2015), there are also other studies suggesting that some of 

those solutions may not perform as well as the conventional solutions (Modarres et al., 

2014). Given the lack of results obtained from comprehensive field studies about the 

long term performance of road pavements incorporating new pavement engineering 

solutions, it would be pertinent to consider that new paving materials/solutions may not 

be as durable as the conventional materials and, thus result in more frequent M&R, 

which may compromise their economic and environmental advantages, as found in 

Chapters 4, 5 and 6 of this thesis. In view of this, a pertinent line for future research 

would be the application of the pavement life cycle approaches described in the 

aforementioned chapters to homologous case studies, but considering that pavement 

structures incorporating alternative materials present a greater degradation rate, and 

thereby need to undergo M&R activities more often. 

Another additional line for future research relates to the pavement life cycle 

optimization model introduced in Chapter 7. In particular, the further research direction 

can be explored on four main fronts: (1) to extend the calibration efforts to other 
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objective functions, such as (i) the maximization of the pavement performance over 

time, (ii) the minimization of the LCRUC, (iii) the minimization of a given life cycle 

environmental metric, etc.; (2) to calibrate the algorithm by employing a better 

calibration method (see Eiben and Smit (2011) for an overview on tuning methods and a 

discussion on related methodological issues); (3) to assess the impact on the efficiency 

and effectiveness of the search process due to the consideration of other (i) LS 

operators, (ii) credit assignment mechanisms and (iii) LS operator selection techniques; 

(4) to investigate the benefits resulting from extending the dynamic nature of the AHGA 

by considering (i) multiple selection strategies for choosing individuals in the 

population that will create offspring for the next generation and how many offspring 

each will create, (ii) multiple evolutionary operators (i.e., crossover and mutation 

operators) and (iii) multiple replacement strategies to determine which of the current 

members of the population, if any, should be replaced by the new solutions; and (4) to 

study the impact of allowing automatic selection not only of which parameter and/or 

evolutionary operator to apply at a given moment of the search process, but also the rate 

at which the chosen parameter and/or operator should be applied. 

The penultimate chapter of this thesis formulated the pavement M&R strategy selection 

problem as a tri-objective optimization problem in which only one environmental metric 

was considered as an objective function to be minimized. However, a more 

comprehensive analysis should be performed that considers a wider set of aspects of the 

natural environment, human health and resources. With this in mind, the current 

approach could be improved by extending the number of LCA-based metrics allowed to 

be simultaneously optimized with highway agencies and road user-related objectives. 

This enhancement in the analysis capability of the proposed life cycle optimization 

model can be introduced, for instance, by employing dimensionality reduction 

techniques to overcome the computational limitations associated with solving MaOO 

problems.  

Still within the optimization domain, an interesting analysis that could also be 

performed would be to analyze whether or not the introduction of emissions pricing, for 
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instance, under an emissions trading scheme or as a methodology to account for 

environmental damages, would make the use of a MOO approach unnecessary when the 

life cycle emissions costs, LCHAC and LCRUC are all added and tackled from a SOO 

problem perspective, or whether such an approach can provide additional insights that 

are useful in a decision-making context.  

Life cycle-based studies are generally subject to assumptions and simplifications 

regarding their scope, system boundaries and data, leading unavoidably to uncertainties 

in the assessments. Taking the LCA approach as an example, Huijbregts et al. (2001) 

discuss the existence of three sources of uncertainty: parameter uncertainty (due to data 

variability), uncertainty due to choices (due to scenario assumptions), and model 

uncertainty (due to different impact assessment methods). Thus, given the deterministic 

nature of the pavement life cycle approaches proposed in this thesis, another interesting 

line for future developments would be to add probabilistic capabilities to the developed 

approaches to propagate the uncertainty into the comparative analysis and characterize 

the difference from a statistical standpoint.  

Throughout this thesis, the sustainability concept has been addressed from the economic 

and environmental perspectives. However, from a broader perspective, it should also 

consider the social aspects related to pavement systems. In this context, an additional 

line for future enhancements should address the development of life cycle approaches to 

assess the social performance of pavement management practices. The development of 

social LCA is still in its infancy, and up to now a standardized framework for assessing 

the social dimension of sustainability has not been developed yet. Possible social 

impacts to be measured may include the impacts on workers, infrastructure users, the 

local community, the general public (including non-users), and supply-chain actors 

(Benoît et al., 2010), and indicators may assess fair salaries, working hours, 

discrimination, health and safety, consumer privacy, EOL responsibility, cultural 

heritage, community engagement, local employment, technology development, 

corruption, and fair competition (Parrish and Chester, 2014). However, no agreed 
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method is available for the selection of impact categories and the measurement of 

indicators. 

The last line suggested for future development relates to the decision level for which the 

life cycle approach is intended. Current approaches can be extended from the project 

level to the network level to ensure that the road pavement maintenance decisions taken 

at project level end up in optimal sustainable solutions for the whole road pavement 

network. 

To sum up, the total or partial accomplishment of the research lines suggested above 

will certainly provide the proposed DSS with valuable enhancements in its capability to 

advance the state-of-the-practice as it relates to improving pavement sustainability. 

Nevertheless, the author believes that the life cycle approaches developed in this thesis 

can already be seen as useful tools for helping DMs striving for more sustainable 

pavement systems. 
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Appendix A  

A.1. Construction and M&R phases 

 

(i) Model formulation: 
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 (A.1.13) 

 (A.1.14) 

  

 (A.1.15) 

 

(ii) Notation:  

 

 costs incurred by the highway agency during the actual performance of a construction or 

M&R activity at a particular work site on a specific day and time; 

 construction equipment owning costs. They are the same regardless of whether the 

construction equipment are parked in the constructor’s yard, or operating (or idling) at a 

given work site; 

 construction equipment operating costs. They vary in proportion to hours of actual 

operation; 

 hourly costs fully incurred by the employer with the human resources required at work 

site to actually perform a given construction and M&R action (i.e. including wages and 

benefits); 

 hourly cost to protect the asset’s value. If the equipment is owned by the constructor this 

subcategory is named depreciation cost (Expression (A.1.4)). On the other hand, when 

the equipment is not owned by the constructor, the most likely scenario is that the 

equipment is leased. In this case the is named leasing cost (Expression (A.1.5)), 

and depending on the clauses set out in the leasing contract, some of the remaining

subcategories may be exempted from direct and individual accounting; 

 costs incurred due to the capital invested in an equipment, regardless of whether the 

equipment is purchased with constructor assets’ or financed; 

 
costs of property tax and license for the equipment; 

 costs incurred due to fire, theft, accident, and liability insurance for the equipment; 

 cost of acquisition of the construction equipment; 

 cost of a new set of tyres ($); 

AOP  average ownership period (years); 

 salvage or resale value ($) of the construction equipment at the end of the ; 

 average yearly usage (hr); 

 leasing contract value ($); 

 leasing contract duration (hr); 

 interest rate expressed in decimal value; 

 annual insurance cost ($); 

 tax rate expressed in decimal value; 

 insurance rate expressed in decimal value; 

  

 cost of the fuel consumed per each equipment piece at a work site; 

 cost for routine servicing of the construction equipment, as typically specified in the 

operation and maintenance manuals provided for each construction equipment, including 
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filters, oils and greases; 

 cost for equipment repairs, maintenance, and major overhauls performed either in the 

work site or in the shop; 

 
tyre wear costs; 

 
costs incurred with high-wear items, such as cutting edges and bucket teeth; 

 costs of construction equipment mobilization and demobilization; 

 hourly fuel consumption during the operation period (litres/hr) estimated according to 

the methodology adopted by the US EPA’s NONROAD2008 model (US EPA, 2010a); 

 unit fuel cost ($/litre); 

 factor that represent the  as a percentage of the hourly fuel cost; 

 factor that represent the  as a percentage of the cost of a new equipment after 

subtracting the tyres cost ( ); 

 

factor that accounts for the cost of recapping tyres. It represents the purchase of the 

original tyre plus one recap. According to US ACE (2011) it is estimated at 1.5, which 

means that a recap costs approximately 50 % of the cost of new tyres ;  

 estimated tyre life (hr); 

 factor that represents the original tyre life plus one recap. According to US ACE (2011) 

it is estimated that a recap lasts approximately 80 percent of the life of a new tyre; 

 factor that represents the intensity of the tyre wear as a function of their position, type 

and condition of use. It is estimated according to the methodology proposed by the US 

ACE (2011); 

 hourly cost of special wear items ($/hr); 

 hourly cost of equipment mobilization/demobilization ($/hr); 

 hourly cost fully incurred by the employer with the human resources required at work 

site to actually perform a given construction and M&R action (i.e. including wages and 

benefits); 

 
total number of work categories required to perform the construction and M&R action 

; 

 
number of workers of the category  that integrate the crew in charge of 

performing the construction and M&R action ; 

 total annual employer cost ($) for employee compensation of the category , which 

includes wages, salaries and total benefits; 

 total number of paid working days per year; 

 coefficient representing the ratio between the number of days per year that a worker of a 

given category is actually available for working and the total number of paid working 

days per year ( ). The numerator of this ratio is obtained from the denominator by 

deducting the vacations, holidays, sick days, breaks, training and meeting days, and 

other; 

 number of working hours per day; 

 
total duration in hours of a construction and M&R action ; 

 
assignment factor ranging between 0 and 1 that represents the time during one hour of a 

construction and M&R action  that a worker of the category  is allocated to that 

construction and M&R action; 
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Table A.1- Values of the variables corresponding to each piece of construction equipment needed to compute the construction equipment owning and 

operating costs. 

Lane Activity Process Name Brand Model 
 (hr) 

 
(years) 

 

($) 

 

($) 
  

 
(%) 

 
(%)  (%) 

R
ig

h
t 

FDR 

Milling Milling Machine Wirtgen W 2100 606 8 700,000 140,000 0.119 1 3.25 3 2 

Reclaiming 

Reclaimer Wirtgen 
WR 
2400 

606 8 523 000 104,600 0.119 1 3.25 3 2 

Water tank truck 

(skid-mounted, 

4000 gallons) 

Mack 
Granite 
GU713 

1,641 8 175,000 35,000 0.119 0.65 3.25 3 2 

Cement spreader 

truck (truck 
mounted spreader- 

27 tonnes) 

Truck: 
Mack 

Cement 

spreader: 
Stoltz  

Granite 
GU713 

1,641 8 190,000 38,000 0.119 0.65 3.25 3 2 

Compacting 
6-ton vibratory 

soil compactor 
Caterpillar CP44 760 8 124,000 24,800 0.102 0.8 3.25 3 2 

Grading Motor Grader Caterpillar 120H 962 8 280,000 70,000 0.144 0.75 3.25 3 2 

CCPR 

CCPR 

CCPR mobile 

plant 
Wirtgen 

KMA 

220 
606 8 517,000 103,400 0.119 0.9 3.25 3 2 

Wheel loader Caterpillar 950K 761 8 246,000 61,500 0.111 0.7 3.25 3 2 

Paving and 
compacting 

Paver Dynapac 
SD2550
C 

821 8 340,000 51,000 0.119 1.00 3.25 3 2 

12-ton Double 

steel-drum 

vibratory roller 

Hamm 
HD+ 
120 VO 

760 8 150,000 22,500 0.102 1.20 3.25 3 2 

14-ton Double 
steel-drum 

vibratory roller 

Hamm 
HD 
+120 

VV 

760 8 213,000 31,950 0.102 1.20 3.25 3 2 

10-ton vibratory 

rubber tyre roller 
Hamm GWR10 760 8 109,000 16,350 0.102 1.20 3.25 3 2 

Legend: FDR- full-depth reclamation; CCPR- cold central plant recycling. 
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(continued) 

Lane Activity Process Name Brand Model 
 

 

($)   (hr) ($/hr) ($/hr) 

R
ig

h
t 

FDR 

Milling Milling Machine Wirtgen W 2100 - - - - - 35 10.5 

Reclaiming 

Reclaimer Wirtgen WR 2400 1.5 13,662 1.8 0.9 3,000 35 10.5 

Water tank truck (skid-mounted, 4000 

gallons) 
Mack Granite GU713 1.5 4,976 1.8 0.9 5,000 - 10.5 

Cement spreader truck (truck 
mounted spreader- 27 tonnes) 

Truck: Mack 
Cement spreader: Stoltz  

Granite GU713 1.5 4,976 1.8 0.9 5,000 - 10.5 

Compacting 6-ton vibratory soil compactor Caterpillar CP44 1.5 4,082 1.8 0.9 5,000 - 10.5 

Grading Motor Grader Caterpillar 120H 1.5 2,031 1.8 0.9 5,000 - 10.5 

CCPR 

CCPR 
CCPR mobile plant Wirtgen KMA 220 - - - - - - 10.5 

Wheel loader Caterpillar 950K 1.5 9,810 1.8 0.9 5,000 - 10.5 

Paving and 

compacting 

Paver Dynapac SD2550C - - - - - - 10.5 

12-ton Double steel-drum vibratory 

roller 
Hamm HD+ 120 VO - - - - - - 10.5 

14-ton Double steel-drum vibratory 

roller 
Hamm HD +120 VV - - - - - - 10.5 

10-ton vibratory rubber tyre roller Hamm GWR10 1.5 4,339 1.8 0.9 5,000 - 10.5 

Legend: FDR- full-depth reclamation; CCPR- cold central plant recycling. 
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(continued) 

Legend: CIR- cold in-place recycling; HMA- hot-mix asphalt; SMA- stone mastic asphalt. 

 

 

Lane Activity Process Name Brand Model 
 (hr) 

 

(years) 

 

($) 

 
 ($) 

  
(%)  (%)  (%) 

L
ef

t 

CIR 

Milling Milling Machine Wirtgen W 2100 606 8 700,000 140,000 0.119 1 3.25 3 2 

Recycling 

Cement spreader truck 

(truck mounted 

spreader- 27 tonnes) 

Truck: Mack 
Cement 

spreader: 

Stoltz  

Granite 

GU713 
1,641 8 190,000 38,000 0.119 0.65 3.25 3 2 

 Asphalt heated tank 

truck 

(trailer, 4000 gallons) 

Truck: Mack 

Asphalt 

tank: Etnyre 

CHU613 1,641 8 205,000 41,000 0.119 0.85 3.25 3 2 

Cold recycler Wirtgen 3800 CR 606 8 900,000 180,000 0.119 1 3.25 3 2 

Compacting 

16- ton double steel-

drum vibratory roller 
Hamm  HD 120 760 8 104,000 15,600 0.102 1.20 3.25 3 2 

16- ton double steel-
drum vibratory roller 

Hamm  HD 120 760 8 104,000 15,600 0.102 1.20 3.25 3 2 

25-ton vibratory 

rubber-tyre roller 
Hamm  GWR 280 760 8 148,000 22,200 0.102 1.20 3.25 3 2 

B
o
th

 L
an

es
 Asphalt 

Paving 

HMA and 

SMA paving 

and 
compacting 

Paver Dynapac  SD2550C 821 8 340,000 51,000 0.119 1.00 3.25 3 2 

Breakdown  roller Dynapac  CP 142 760 8 120,000 18,000 0.102 1.20 3.25 3 2 

Breakdown  roller Dynapac  CP 142 760 8 120,000 18,000 0.102 1.20 3.25 3 2 
Finishing roller Dynapac CC324HF 760 8 122,000 18,300 0.102 1.20 3.25 3 2 

Tack coat 
application 

Diesel Engine Perkins 
1100 

Series 
815 8 10,000 1,000 0.102 0.6  - 2 

Skid steer (sweeper) Bobcat  S630 818 8 38,000 7,600 0.111 0.8 3.25 3 2 
Asphalt distributor 

truck (skid mounted, 
3000 gallons) 

Truck: Mack 

Asphalt 
tank: Etnyre 

Granite 
GU713 

1,641 8 195,000 39,000 0.119 0.85 3.25 3 2 

Unbound 

Layers 

Removal 

Excavation Excavator Hitachi 
Zaxis 
350LC-5 

1,092 8 410,000 102,500 0.149 0.8 3.25 3 2 
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(continued) 

Lane Activity Process Name Brand Model 
TCF
 

 

($)   
 

(hr) ($/hr) ($/hr) 

L
ef

t 

CIR 

Milling Milling Machine Wirtgen W 2100 - - - - - 35 10.5 

Recycling 

Cement spreader truck (truck mounted 

spreader- 27 tonnes) 

Truck: Mack 
Cement spreader: 

Stoltz  

Granite 

GU713 
1.5 4,976 1.8 0.9 5,000 - 10.5 

 Asphalt heated tank truck 

(trailer, 4000 gallons) 

Truck: Mack Asphalt 

tank: Etnyre 
CHU613 1.5 9,358 1.8 0.8 5,000 - 10.5 

Cold recycler Wirtgen 3800 CR - - - - - 35 10.5 

Compacting 

16- ton double steel-drum vibratory roller Hamm  HD 120 - - - - -- - 10.5 

16- ton double steel-drum vibratory roller Hamm  HD 120 - - - - - - 10.5 

25-ton vibratory rubber-tyre roller Hamm  GWR 280 1.5 4,016 1.8 0.9 1,500 - 10.5 

B
o
th

 L
an

es
 Asphalt 

Paving 

HMA and SMA 
paving and 

compacting 

Paver Dynapac  SD2550C - - - - - - 10.5 

Breakdown  roller Dynapac  CP 142 1.5 1,523 1.8 0.9 1,500 - 10.5 

Breakdown  roller Dynapac  CP 142 1.5 1,523 1.8 0.9 1,500 - 10.5 
Finishing roller Dynapac CC324HF - - - - - - 10.5 

Tack coat 
application 

Diesel Engine Perkins 1100 Series - - - - - - 10.5 

Skid steer (sweeper) Bobcat  S630 1.5 1,188 1.8 0.9 5,000 - 10.5 
Asphalt distributor truck (skid mounted, 

3000 gallons) 

Truck: Mack Asphalt 

tank: Etnyre 

Granite 

GU713 
1.5 5,720 1.8 0.9 5,000 - 10.5 

Unbound 
Layers 

Removal 

Excavation Excavator Hitachi 
Zaxis 

350LC-5 
- - - - - 25 10.5 

 

 

TC
TLF TWF TL SWIC Mob



Appendix A 

 

 

 

A-8 

Table A.2- Values of the variables corresponding to each worker category needed to compute the 

respective hourly labor cost. 

 

($/year)
a
  (days)

e
 

e
 (hr) 

Foremen 71,853.51
a
 260 0.77 8 

Paving equipment 

operator 
52,212.26

b
 260 0.77 8 

Laborers 41,061.29
c
 260 0.77 8 

Screed man 52,212.26
b
 260 0.77 8 

Hauling truck driver 55,798.19
d
 260 0.77 8 

aValue obtained by considering the annual 90th percentile total compensation for the “Paving, Surfacing, and Tamping Equipment 
Operators” occupational group in Virginia. It results from considering the wages and salaries equal to 66.9% of the total 

compensation (US DL, 2011). 
bValue obtained by considering the annual 50th percentile total compensation for the “Paving, Surfacing, and Tamping Equipment 
Operators” occupational group in Virginia. It results from considering the wages and salaries equal to 66.9% of the total 

compensation (US DL, 2011). 
cValue obtained by considering the annual 50th percentile total compensation for the “Construction laborers” occupational group in 
Virginia. It results from considering the wages and salaries equal to 66.9% of the total compensation (US DL, 2011). 

dValue obtained by considering the annual 50th percentile total compensation for the “Heavy and Tractor-Trailer Truck Drivers” 

occupational group in Virginia. It results from considering the wages and salaries equal to 66.4% of the total compensation (US DL, 
2011). 

eData source: Wiegmann et al. (2011). It corresponds to a “year-round, full-time” hours figure of 2,080 hours. 

 

A.2. Transportation of materials phase 

 

(i) Model formulation: 

 

 (A.2.16) 

 (A.2.17) 

 (A.2.18) 

 

  
(A.2.19) 

 
(A.2.20) 
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(A.2.23) 

 (A.2.24) 

 (A.2.25) 

 
(A.2.26) 

 
(A.2.27) 

 (A.2.28) 

 

(ii) Notation: 

 

 costs incurred by the highway agency due to the transportation of the materials; 

 hauling truck owning costs. They are the same regardless of whether the hauling truck is 

parked in the hauling truck owner’s yard, or operating; 

 hauling truck operating costs. They vary in proportion to hours of actual operation; 

 hourly costs fully incurred by the employer with the hauling truck driver (i.e. including 

wages and benefits); 

  

 hourly cost to protect the value of assets. If the hauling truck is owned by the constructor 

this subcategory is named depreciation cost (Expression (A.2.19)). On the other hand, 

when the hauling truck is not owned by the constructor, the most likely scenario is that it 

is leased. In this case the is named leasing cost (Expression (A.2.20)), and 

depending on the clauses set out in the leasing contract, some of the remaining HTOwC

subcategories may be exempted from a direct and individual accounting; 

 costs incurred due to the capital invested in the hauling truck, regardless of whether it is 

purchased with constructor assets’ or financed; 

 
costs of property tax and license for the hauling truck; 

 costs incurred due to fire, theft, accident, and liability insurance for the hauling truck; 

 cost of the fuel consumed by the hauling trucks; 

 cost for routine servicing of the hauling truck, as typically specified in the operation and 

maintenance manuals provided for each hauling truck; 

 cost for hauling trucks repairs, maintenance, and major overhauls; 

 
tyre wear costs; 

 fuel consumption (litres/km) estimated according to the US EPA’s MOVES (US EPA, 

2010b) as detailed by Santos et al. (2015); 

 distance of the hauling movement [km] (1 way); 

 average speed of the hauling movement (km/hr); 

The meaning of the remaining variables is the same as that presented in “Appendix A.1. Construction and 

M&R phase”. 
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Table A.3- Values of the variables corresponding to each hauling truck needed to compute the materials transportation costs. 

Name Brand Model 
(km) (years) 

 

($) 

 

($) 
FOGPMF &

 RepairF

 

InsR

(%) 

IntR

(%) 

TxR

(%) 
TCF  

TC  

($) 
TLF  TWF  

TL  

(km) 

Dump truck Mack 
Granite 

GU 713 
166,000 10 140,000 60,000 0.119 0.65 3 3.25 2 1.5 4,976 1.8 0.77 322,000 

Water tank 

truck  
Mack 

Granite 

GU 713 
166,000 10 175,000 35,000 0.119 0.65 3 3.25 2 1.5 4,976 1.8 0.77 322,000 

Cement 

tank truck  
Mack 

Granite 

GU 713 
166,000 10 190,000 38,000 0.119 0.65 3 3.25 2 1.5 4,976 1.8 0.77 322,000 

Asphalt 

distributor 

tank truck 

Mack 

Granite 

CHU 

613 

166,000 10 205,000 41,000 0.119 0.65 3 3.25 2 1.5 9,358 1.8 0.77 322,000 

Bituminous 

emulsions 

distributor 

tank truck 

Mack 
Granite 

GU 713 
166,000 10 195,000 39,000 0.119 0.65 3 3.25 2 1.5 4,976 1.8 0.77 322,000 

Acronyms: as specified in the formulation presented in section “Appendix A.1. Construction and M&R phase”. 
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A.3. Work-zone traffic management phase 

Table A.4- Values of the main parameters used in the computation of the unit cost of travel time for 

PC. 

Parameter 
Data Source 

Name Unit Value  

Proportion of PC on personal travel % 93.7 

National Household 

Transportation Survey [NHTS] 

(http://nhts.ornl.gov/tools.shtml) 

Average vehicle occupancy of PC for 

personal travel 
person/veh 1.67 

NHTS 

(http://nhts.ornl.gov/tools.shtml) 

Hourly value of personal travel time as a 

percentage of wage rate for an intercity 

travel type 

% 70 US DOT (2003) 

Median annual household income of all US 

households 
$ 50 054  DeNavas-Walt et al. (2012) 

Hourly time value of a person on personal 

time 
$/person.hr 16.85  - 

Hourly time value of a vehicle on personal 

travel 
$/veh.hr 28.13  - 

    

Proportion of PC on business travel % 6.3 
NHTS 

(http://nhts.ornl.gov/tools.shtml) 

AVO of PC for business travel person/veh 1.24 
NHTS 

(http://nhts.ornl.gov/tools.shtml) 

Hourly value of personal travel time as a 

percentage of wage rate for an intercity 

travel type 

% 100 US DOT (2003) 

Total hourly wages and benefits of all 

civilian workers 
$ 29.98 US DL(2011) 

Hourly time value of a person on business 

time 
$/person.hr 29.98  - 

Hourly time value of a vehicle on business 

travel 
$/veh.hr 37.18  - 

Weighted average of hourly time value 

of PC 
$/hr 28.70 - 

Legend: PC- passenger car; AVO- Average vehicle occupancy. 
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Table A.5- Values of the main parameters used in the computation of the unit cost of travel time for 

trucks. 

Parameter 
Data Source 

Name Unit Value 

AVO of SUT person/veh 1.025 FHWA (2005) 

AVO of CUT person/veh 1.12 FHWA (2005) 

Average wages and benefits for SUT drivers $ 21.87 US DL (2011) 

Average wages and benefits for CUT drivers $ 26.13 US DL (2011) 

Hourly time value of SUT $/hr 22.42 - 

Hourly time value of CUT $/hr 29.27 - 

Legend: AVO- Average vehicle occupancy; SUT- single-unit truck; CUT- combination unit truck. 

Table A.6- Values of the main parameters used in the computation of the cost of freight inventory 

delay. 

Parameter 
Data Source 

Name Unit Value 

Percentage of empty loaded SUT % 29 Alam at al. (2007) 

Percentage of empty loaded CUT % 24 Alam at al. (2007) 

Average payload of SUT lb 27,859 Alam and Rajamanickam (2007) 

Average payload of CUT lb 42,527 Alam and Rajamanickam (2007) 

Average prime bank lending rate % 3.25 

Board of Governors of the 

Federal Reserve System 

(http://www.federalreserve.gov/r

eleases/H15/data.htm#fn2) 

Average value of commodities shipped by 

truck 
$/lb 1.52 FHWA (2005) 

Hourly value of freight shipped by truck $/lb.hr 7.36 ×10
-06

 - 

Hourly freight inventory costs for SUT $/hr 0.21 - 

Hourly freight inventory costs for CUT $/hr 0.31 - 

Legend: SUT- single-unit truck; CUT- combination unit truck. 
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Appendix B  

B.1.Materials extraction and production phase 

Table B.1- Time that a volume of asphalt binder is heated at an asphalt plant. 

Data item Value Unit 

Total annual HMA production per asphalt mixing plant 114000 tonnes 

Number of tanks at a typical asphalt mixing plant 2 - 

Percentage of aggregates in HMA (average value) 95 % 

Density of asphalt binder 1.03 tonnes/m
3
 

Annual throughput of asphalt binder per storage tank 2767 m
3
 

Time that a typical mixing plant is in operation annually 8 months 

Time that a volume of asphalt binder is heated  2.08 hr/m
3
 

Table B.2- Tanks features. 

Data item Value Unit 

Tank type Vertical - 

Insulation thickness 7.62 (3) cm (in) 

Diameter 9.18 m 

Length 3.38 m 

Surface area 229.85 m
2
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Table B.3- Heating requirements for maintaining tanks temperature against heat losses. 

Data item Value Unit 

Storage temperature (ºC) 160 ºC 

Ambient temperature (ºC) 15 ºC 

Heat loss rate   42.59 W/m
2
/hr 

Insulation adjustment factor (fiberglass) 1 - 

Heat loss through the insulated tank body 9.79 kWhr 

Heat loss through the accessories: 100 feet of asphalt piping, 4-in. diameter  2.91 kWhr 

Heat loss through the accessories: 230 feet of hot oil piping, 2-1/2 in. diameter 4.37 kWhr 

Heat loss due to heater inefficiency (for an heating efficiency of 85%)  1.47 kWhr 

Total heat losses  18.54 kWhr 

   

Design safety factor 25 % 

Total Heat Loss (including safety factor)  23.18 kWhr 

   

Energy required to heat asphalt binder at an asphalt mixing plant  138.97 MJ/m
3
 

Notes: Based on http://www.pentairthermal.com/literature/literature-types.aspx#dg1 
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Table B.4- Unit costs of the raw materials items (in 2011 US dollars). 

Raw material item 
Unit cost 

Data source 
Unit Value

a
 

Asphalt binder PG 64-22 $/tonne 653.94  

VDOT 

(www.virginiadot.org/business/const/in

dices-previous.asp) 

Asphalt binder PG 70-22 $/tonne 703.94
b
  

VDOT 

(www.virginiadot.org/business/const/in

dices-previous.asp) 

Asphalt binder PG 70-28 $/tonne 703.94
b
  

VDOT 

(http://www.virginiadot.org/business/co

nst/indices-previous.asp) 

Hydrated lime $/tonne 130.90  USGS (2013a) 

Bitumen emulsion $/tonne 792.52  
Virginia Paving Company 

(www.virginiapaving.com) 

Limestone: coarse aggregates, 

graded- bituminous aggregate, 

coarse 

$/tonne 10.30  USGS (2013b) 

Limestone: fine aggregates- Stone 

sand, bituminous mix or seal 
$/tonne 10.62  USGS (2013b) 

Crushed stone: coarse aggregates, 

graded- bituminous surface 

treatment aggregate 

$/tonne 12.61  USGS (2013b) 

Quartzite: coarse aggregates, 

graded- bituminous aggregate, 

coarse 

$/tonne 11.96  USGS (2013b) 

Quartzite: fine aggregates- Stone 

sand, bituminous mix or seal 
$/tonne 7.56  USGS (2013b) 

Crushed stone: coarse and fines 

aggregates- graded road base or 

subbase 

$/tonne 7.63  USGS (2013b) 

Traprock: coarse aggregates, 

bituminous aggregate, coarse 
$/tonne 10.68  USGS (2013b) 

Traprock: fine aggregates- Stone 

sand, bituminous mix or seal 
$/tonne 12.65  USGS (2013b) 

Tap water $/tonne 1.05
c
 

City of Richmond 

www.richmondgov.com/publicutilities/

UtilityRates.aspx#ResidentialWater 

RAP (processed at asphalt plant) $/tonne 1.22
d
 - 

SBR $/tonne 1,547.06
e
 

www.argusmedia.com/Petrochemicals/

Argus-DeWitt-Butadiene-Services 

Sasobit®  $/tonne 2,502.83
f
 Kristjánsdóttir et al. (2007) 

aFree On Board costs. 
bPG 64-22 unit cost plus $50 to account for the higher quality of the crude required to produce this grade, based on Willis et al. 

(2012). 
cCharge for industrial water usage in Richmond after adjusting the US 2014 Dollar value to US 2011 Dollar. 
dValue corresponding to the ownership and operating costs of the RAP processing unit (which comprises a diesel-powered crusher, 

a diesel-powered mobile screening plant, an electrically-powered stackable conveyor and a wheel loader) plus the wheel loader 

operator wage and benefits. 
eButadiene cost as a proxy for SBR. 
fThe 2006 value was scaled up to the 2011 value by using the Producer price index (PPI) for “Petrochemical manufacturing” sector. 
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Table B.5- Unit values of the asphalt plant operating costs items (in 2011 US dollars). 

Sub- 

category 
Item 

Unit cost
 
($/ tonne 

of asphalt mixture)
 a
 

Data source 

Fixed 

Asphalt and pugmill plant 

depreciation costs 
1.47

b
 

Morgan (2005)
c
 and US ACE 

(2011)
c
 

Auxiliary equipment depreciation 

costs  
0.28

d
 or 0.32

e
 

Morgan (2005)
c
, US ACE 

(2011)
c
, Kristjánsdóttir et al. 

(2007)
f
 and http://www.con-

crete.com/silos.htm
f
 

Utilities (water and electricity) 0.66
g
 Morgan (2005)

c
 

Licensing, taxes and general 

operation permits 
0.37

h
 or 0.38

i
 Estimated  

Insurance 0.35
j
 Estimated 

Interest  0.57
k
  

Labour: plant supervisor 1.08
 l
 US DL (2011a) 

Labour: asphalt plant operator 0.63
m
 US DL (2011a) 

Labour: wheel loader operator 0.46
n
 US DL (2011a) 

Labour: maintenance technician 0.48
o
 US DL (2011a) 

Variable 

Filters, oils and greases (FOG): 

asphalt plant , pugmill plant and 

wheel loader 

0.30
p
 US ACE (2011) 

Repair: asphalt plant , pugmill 

plant and wheel loader 
1.64

q
 US ACE (2011) 

Diesel consumed by the wheel 

loader 
0.078

r
 US EIA (2014) 

aThe calculation procedure relies on the average annual asphalt mixtures production per plant (114,000 tonnes) during the year of 
2011 in Virginia (Hansen and Copeland, 2013). 
bValue obtained by considering acquisition costs of $2,638,802.00 and $194,815.00 for asphalt and pugmill plants, respectively, 

depreciated over 15 and 7 years, respectively, and a residual value equal to 20% and 10% of the acquisition costs. 
cSince these unit costs depend on a large number of factors, the values reported by these sources were used as reference in setting 

representative values. 
dIncludes the acquisition costs of the following auxiliary equipment: quality control laboratory ($100,000.00; 15 years; 15%), anti-
strip system ($20 000.00; 8 years; 15%), platform scales ($45,000.00; 15 years; 15%) and wheel loader ($155,104.00; 6 years; 

25%). Where ($; years; %) stands for (acquisition cost; depreciation period; residual value as percentage of the acquisition cost). 
eIn addition to the items referred in d it also includes the acquisition cost of the Sasobit®  feeder ($25,000.00; 7 years; 15%). 
fReference sources used in particular to estimate the equipment modification and/or installation costs required to produce WMA 

mixtures. 
gAlthough the utilities cost comprises a fixed and a variable component, the total cost was assigned to the fixed sub-category due to 
the absence of more detailed information that would allow for a further division of this item. 
hObtained by applying a rate of 2.15% to the total annual assets value of $42,611.56. 
i
It differs from the value in h because the total annual assets value also includes the annualised value of the modifications required to 

produce WMA mixtures ($341.70). 
jObtained by applying a rate of 2% to the total annual assets value. The value is approximately the same regardless of whether or not 

the asphalt plant modification required to produce WMA mixtures are accounted for. 
kObtained by applying a rate of 3.25% to the total annual assets value. The value is approximately the same regardless of whether or 

not the asphalt plant modification required to produce WMA mixtures are accounted for. 
lValue obtained by considering the annual 50th percentile total compensation for the “Civil Engineers” occupational group in 
Virginia. It results from considering the wages and salaries equal to 66.9% of the total compensation (US DL, 2011b). 
mValue obtained by considering the annual 90th percentile total compensation for the “Paving, Surfacing, and Tamping Equipment 

Operators” occupational group in Virginia. It results from considering the wages and salaries equal to 66.9% of the total 
compensation (US DL, 2011b). 
nValue obtained by considering the annual 50th percentile total compensation for the “Paving, Surfacing, and Tamping Equipment 

Operators” occupational group in Virginia. It results from considering the wages and salaries equal to 66.9% of the total 
compensation (US DL, 2011b). 

oValue obtained by considering the annual 50th percentile total compensation for the “Maintenance and Repair Workers, General” 

occupational group in Virginia. It results from considering the wages and salaries equal to 68% of the total compensation (US DL, 
2011b). 

http://www.con-crete.com/silos.htm
http://www.con-crete.com/silos.htm
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pTotal value resulting from considering the factors (0.88;0.135), (0.88;0.45) and (0.88;0.11) for the asphalt plant, pugmill plant and 

wheel loader, respectively. Where (X;Y) stands for (labour adjustment factor; FOG factor). 
qTotal value resulting from considering the factors (1.00;0.88), (0.70;0.62) and (0.65;0.57) for the asphalt plant, pugmill plant and 
wheel loader, respectively.  Where (X;Y) stands for (repair cost factor; repair factor). 

rEnergy consumption corresponding to the operation of a wheel loader Caterpillar 924Hz estimated according to the rate at which 

the wheel loader can move aggregates and the methodology adopted by the US EPA’s NONROAD 2008 model (US EPA, 2010a). 
See Santos et al. (2015) for further details. 

 

B.2.Construction and M&R phase 

(i) Model formulation: 

 

LaborEOpEOwR&M.C CCCC   (B.2.1) 

EOw:InsEOw:TxEOw:IntEOw:CEOw CCCCC   (B.2.2) 

Mob:EOpSWI:EOpTw:EOpEOp:RFOG&PM:EOpFC:EOpEOp CCCCCCC   (B.2.3) 

  

AYUAOP

SVTCAC
CEOw:C




   (B.2.4) 

LCD

LCV
CEOw:C   (B.2.5) 

AYU

IntR
AOP

AOPSVAOPAC

CEOw:Int






 2

)1()1(

 
(B.2.6) 

AYU

TxR
AOP

AOPSVAOPAC

C TxEOw






 2

)1()1(

:  
(B.2.7) 

AYU

InsR
AOP

AOPSVAOPAC

C InsEOw






 2

)1()1(

:  
(B.2.8) 

  

FCostFCC FCEOp :  (B.2.9) 

FOGPMFCEOpFOGPMEOp FCC &:&:   (B.2.10) 

 
AYUAOP

FTCAC
C R

EOp:R



  (B.2.11) 

TLTWFTLF

TCTCF
C TWEOp




:  (B.2.12) 

SWICC SWIEOp :  (B.2.13) 

MCC Mob:EOp   (B.2.14) 

  









WCatN

WCat

actWCatact

Eff

WCat
WcatLabor AFV

WHWDWD

WB
nC

0

,  (B.2.15) 

(ii) Notation:  
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RMCC &.  costs incurred by the highway agency during the actual performance of a construction or 

M&R activity at a particular work site on a specific day and time; 

EOwC  construction equipment owning costs. They are the same regardless of whether the 

construction equipment are parked in the constructor’s yard, or operating (or idling) at a 

given work site; 

EOpC  construction equipment operating costs. They vary in proportion to hours of actual 

operation; 

LaborC  hourly costs fully incurred by the employer with the human resources required at work 

site to actually perform a given construction and M&R action (i.e. including wages and 

benefits); 

CEOwC :  hourly cost to protect the asset’s value. If the equipment is owned by the constructor this 

subcategory is named depreciation cost (Expression (B.2.4)). On the other hand, when 

the equipment is not owned by the constructor, the most likely scenario is that the 

equipment is leased. In this case the CEOwC : is named leasing cost (Expression (B.2.5), 

and depending on the clauses set out in the leasing contract, some of the remaining

EOwC subcategories may be exempted from direct and individual accounting; 

IntEOwC :  costs incurred due to the capital invested in an equipment, regardless of whether the 

equipment is purchased with constructor assets’ or financed; 

TxEOwC :  
costs of property tax and license for the equipment; 

InsEOwC :  costs incurred due to fire, theft, accident, and liability insurance for the equipment; 

AC  cost of acquisition of the construction equipment; 

TC  cost of a new set of tyres ($); 

AOP  average ownership period (years); 

SV  salvage or resale value ($) of the construction equipment at the end of the AOP ; 

AYU  average yearly usage (hr); 

LCV  leasing contract value ($); 

LCD  leasing contract duration (hr); 

IntR  interest rate expressed in decimal value; 

AInsC  annual insurance cost ($); 

TxR  tax rate expressed in decimal value; 

InsR  insurance rate expressed in decimal value; 

  

FCEOpC :  cost of the fuel consumed per each equipment piece at a work site; 

FOGPMEOpC &:  cost for routine servicing of the construction equipment, as typically specified in the 

operation and maintenance manuals provided for each construction equipment, including 

filters, oils and greases; 

REOpC :  cost for equipment repairs, maintenance, and major overhauls performed either in the 

work site or in the shop; 

TWEOpC :  
tyre wear costs; 

SWIEOpC :  
costs incurred with high-wear items, such as cutting edges and bucket teeth; 

Mob:EOpC  costs of construction equipment mobilization and demobilization; 

FC  hourly fuel consumption during the operation period (litres/hr) estimated according to 

the methodology adopted by the US EPA’s NONROAD2008 model (US EPA, 2010a) ; 

FCost  unit fuel cost ($/litre); 

FOGPMF &  factor that represent the FOGPMEOpC &:  as a percentage of the hourly fuel cost; 
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RF  factor that represent the EOp:RC  as a percentage of the cost of a new equipment after 

subtracting the tyres cost ( TC ); 

TCF  factor that accounts for the cost of recapping tyres. It represents the purchase of the 

original tyre plus one recap. According to US ACE (2011) it is estimated at 1.5, which 

means that a recap costs approximately 50 % of the cost of new tyres ;  

TL  estimated tyre life (hr); 

TLF  factor that represents the original tyre life plus one recap. According to US ACE (2011) 

it is estimated that a recap lasts approximately 80 percent of the life of a new tyre; 

TWF  factor that represents the intensity of the tyre wear as a function of their position, type 

and condition of use. It is estimated according to the methodology proposed by the US 

ACE (2011); 

SWIC  hourly cost of special wear items ($/hr); 

Mob  hourly cost of equipment mobilization/demobilization ($/hr); 

LaborC  hourly cost fully incurred by the employer with the human resources required at work 

site to actually perform a given construction and M&R action (i.e. including wages and 

benefits); 

WCatN  
total number of work categories required to perform the construction and M&R action 

act ; 

Wcatn  
number of workers of the category WCat  that integrate the crew in charge of 

performing the construction and M&R action act ; 

WCatWB  total annual employer cost ($) for employee compensation of the category WCat , which 

includes wages, salaries and total benefits; 

WD  total number of paid working days per year; 

EffWD  
coefficient representing the ratio between the number of days per year that a worker of a 

given category is actually available for working and the total number of paid working 

days per year ( WD ). The numerator of this ratio is obtained from the denominator by 

deducting the vacations, holidays, sick days, breaks, training and meeting days, and 

other; 

WH  number of working hours per day; 

actV  
total duration in hours of a construction and M&R action act ; 

actWCat
AF

,  
assignment factor ranging between 0 and 1 that represents the time during one hour of a 

construction and M&R action act  that a worker of the category WCat  is allocated to that 

construction and M&R action; 
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Table B.6- Values of the variables corresponding to each piece of construction equipment needed to compute the construction equipment owning and 

operating costs. 

Activity Process Name Brand Model 
AYU

(hr) 
AOP  

(years) 

AC

($) 
SV  ($) FOGPMF &  RF  IntR (%) InsR

(%) 

TxR

 (%) 

FDR 

Milling Milling Machine Wirtgen W 2100 606 8 700,000 140,000 0.119 1 3.25 3 2 

Reclaiming 

Reclaimer Wirtgen 
WR 

2400 
606 8 523 000 104,600 0.119 1 3.25 3 2 

Water tank truck 
(skid-mounted, 

4000 gallons) 

Mack 
Granite 

GU713 
1,641 8 175,000 35,000 0.119 0.65 3.25 3 2 

Cement spreader 

truck (truck 
mounted spreader- 

27 tonnes) 

Truck: 
Mack 

Cement 

spreader: 
Stoltz 

Granite 
GU713 

1,641 8 190,000 38,000 0.119 0.65 3.25 3 2 

Compacting 
6-ton vibratory 

soil compactor 
Caterpillar CP44 760 8 124,000 24,800 0.102 0.8 3.25 3 2 

Grading Motor Grader Caterpillar 120H 962 8 280,000 70,000 0.144 0.75 3.25 3 2 

CCPR 

CCPR 

CCPR mobile 

plant 
Wirtgen 

KMA 

220 
606 8 517,000 103,400 0.119 0.9 3.25 3 2 

Wheel loader Caterpillar 950K 761 8 246,000 61,500 0.111 0.7 3.25 3 2 

Paving and 

compacting 

Paver Dynapac 
SD2550

C 
821 8 340,000 51,000 0.119 1.00 3.25 3 2 

12-ton Double 
steel-drum 

vibratory roller 

Hamm 
HD+ 

120 VO 
760 8 150,000 22,500 0.102 1.20 3.25 3 2 

14-ton Double 

steel-drum 
vibratory roller 

Hamm 

HD 

+120 
VV 

760 8 213,000 31,950 0.102 1.20 3.25 3 2 

10-ton vibratory 

rubber tyre roller 
Hamm GWR10 760 8 109,000 16,350 0.102 1.20 3.25 3 2 

Legend: FDR- full-depth reclamation; CCPR- cold central plant recycling. 
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(continued) 

Legend: FDR- full-depth reclamation; CCPR- cold central plant recycling. 

 

 

Activity Process Name Brand Model TCF  TC ($) TLF  TWF  
TL
(hr) 

SWIC

($/hr) 
Mob

($/hr) 

FDR 

Milling Milling Machine Wirtgen W 2100 - - - - - 35 10.5 

Reclaiming 

Reclaimer Wirtgen WR 2400 1.5 13,662 1.8 0.9 3,000 35 10.5 

Water tank truck (skid-mounted, 4000 gallons) Mack 
Granite 
GU713 

1.5 4,976 1.8 0.9 5,000 - 10.5 

Cement spreader truck (truck mounted spreader- 27 tonnes) 

Truck: Mack 

Cement spreader: 
Stoltz 

Granite 

GU713 
1.5 4,976 1.8 0.9 5,000 - 10.5 

Compacting 6-ton vibratory soil compactor Caterpillar CP44 1.5 4,082 1.8 0.9 5,000 - 10.5 

Grading Motor Grader Caterpillar 120H 1.5 2,031 1.8 0.9 5,000 - 10.5 

CCPR 

CCPR 
CCPR mobile plant Wirtgen KMA 220 - - - - - - 10.5 

Wheel loader Caterpillar 950K 1.5 9,810 1.8 0.9 5,000 - 10.5 

Paving and 
compacting 

Paver Dynapac SD2550C - - - - - - 10.5 

12-ton Double steel-drum vibratory roller Hamm 
HD+ 120 

VO 
- - - - - - 10.5 

14-ton Double steel-drum vibratory roller Hamm 
HD +120 

VV 
- - - - - - 10.5 

10-ton vibratory rubber tyre roller Hamm GWR10 1.5 4,339 1.8 0.9 5,000 - 10.5 
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(continued) 

Notes: CIR- cold in-place recycling. 

(continued) 

Legend: CIR- cold in-place recycling. 

Activity Process Name Brand Model 
AYU

(hr) 

AOP

(years) 

AC

($) 
SV  ($) FOGPMF &  RF  

IntR

(%) 
InsR

(%) 

TxR

(%) 

CIR 

Milling Milling Machine Wirtgen W 2100 606 8 700,000 140,000 0.119 1 3.25 3 2 

Recycling 

Cement spreader truck (truck 

mounted spreader- 27 tonnes) 

Truck: Mack; 
Cement spreader: 

Stoltz  

Granite 

GU713 
1,641 8 190,000 38,000 0.119 0.65 3.25 3 2 

Asphalt heated tank truck 

(trailer, 4000 gallons) 

Truck: Mack; 
Asphalt tank: 

Etnyre 

CHU613 1,641 8 205,000 41,000 0.119 0.85 3.25 3 2 

Cold recycler Wirtgen 3800 CR 606 8 900,000 180,000 0.119 1 3.25 3 2 

Water tank truck (skid-
mounted, 4000 gallons) 

Mack 
Granite 
GU713 

1,641 8 175,000 35,000 0.119 0.65 3.25 3 2 

Compacting 

16- ton double steel-drum 

vibratory roller 
Hamm  HD 120 760 8 104,000 15,600 0.102 1.20 3.25 3 2 

16- ton double steel-drum 

vibratory roller 
Hamm  HD 120 760 8 104,000 15,600 0.102 1.20 3.25 3 2 

25-ton vibratory rubber-tyre 
roller 

Hamm  GWR 280 760 8 148,000 22,200 0.102 1.20 3.25 3 2 

Activity Process Name Brand Model TCF  TC ($) TLF  TWF  TL  (hr) 
SWIC

($/hr) 

Mob
($/hr) 

CIR 

Milling Milling Machine Wirtgen W 2100 - - - - - 35 10.5 

Recycling 

Cement spreader truck (truck mounted 
spreader- 27 tonnes) 

Truck: Mack 
Cement spreader: Stoltz  

Granite GU713 1.5 4,976 1.8 0.9 5,000 - 10.5 

 Asphalt heated tank truck 

(trailer, 4000 gallons) 

Truck: Mack Asphalt 

tank: Etnyre 
CHU613 1.5 9,358 1.8 0.8 5,000 - 10.5 

Cold recycler Wirtgen 3800 CR - - - - - 35 10.5 

Water tank truck (skid-mounted, 4000 

gallons) 
Mack Granite GU713 1.5 4,976 1.8 0.9 5,000 - 10.5 

Compacting 

16- ton double steel-drum vibratory roller Hamm  HD 120 - - - - -- - 10.5 

16- ton double steel-drum vibratory roller Hamm  HD 120 - - - - - - 10.5 

25-ton vibratory rubber-tyre roller Hamm  GWR 280 1.5 4,016 1.8 0.9 1,500 - 10.5 
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(continued) 

Legend: HMA- hot-mix asphalt; THMACO- thin hot mix asphalt overlay concrete. 

 

 

 

 

 

Activity Process Name Brand Model 
AYU

(hr) 

AOP  
(years) 

AC ($) SV  ($) FOGPMF &  
RF  

IntR

(%) 

InsR

(%) 

TxR

(%) 

Asphalt Paving 

HMA 

paving and 

compacting 

Paver Dynapac  SD2550C 821 8 340,000 51,000 0.119 1.00 3.25 3 2 

Breakdown  roller Dynapac  CP 142 760 8 120,000 18,000 0.102 1.20 3.25 3 2 
Breakdown  roller Dynapac  CP 142 760 8 120,000 18,000 0.102 1.20 3.25 3 2 

Finishing roller Dynapac CC324HF 760 8 122,000 18,300 0.102 1.20 3.25 3 2 

Tack coat 
application 

Diesel Engine Perkins 1100 Series 815 8 10,000 1,000 0.102 0.6  - 2 
Skid steer (sweeper) Bobcat  S630 818 8 38,000 7,600 0.111 0.8 3.25 3 2 

Asphalt distributor truck 

(skid mounted, 3000 
gallons) 

Truck: Mack; 

Asphalt tank: 
Etnyre 

Granite 

GU713 
1,641 8 195,000 39,000 0.119 0.85 3.25 3 2 

Unbound 

Layers Removal 
Excavation Excavator Hitachi 

Zaxis 

350LC-5 
1,092 8 410,000 102,500 0.149 0.8 3.25 3 2 

Unbound 

Layers Laying 

and Compacting 

Grading Motor grader Caterpillar 120H 962 8 280,000 70,000 0.144 0.75 3.25 3 2 

Compacting Finishing roller Dynapac CC324HF 760 8 122,000 18,300 0.102 1.20 3.25 3 2 

Subgrade 
Preparation 

Compacting Finishing roller Dynapac CC324HF 760 8 122,000 18,300 0.102 1.20 3.25 3 2 

Microsurfacing 
Materials 

spreading 
Materials spreader truck 

Truck: Mack; 

Materials 

spreader: 

Bergkamp M210 

Granite 

GU713 
1,641 8 175,000 35,000 0.119 0.65 3.25 3 2 

Asphalt Paving 

THMACO 

paving and 

compacting 

Paver Dynapac  SD2550C 821 8 340,000 51,000 0.119 1.00 3.25 3 2 

Breakdown  roller Dynapac  CP 142 760 8 120,000 18,000 0.102 1.20 3.25 3 2 

Breakdown  roller Dynapac  CP 142 760 8 120,000 18,000 0.102 1.20 3.25 3 2 

Finishing roller Dynapac CC324HF 760 8 122,000 18,300 0.102 1.20 3.25 3 2 
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(continued) 

Legend: HMA- hot-mix asphalt; THMACO- thin hot mix asphalt overlay concrete. 

 

 

 

 

Activity Process Name Brand Model TCF  TC ($) TLF  TWF  
TL  

(hr) 

SWIC

($/hr) 

Mob

($/hr) 

Asphalt Paving 

HMA paving 

and 

compacting 

Paver Dynapac  SD2550C - - - - - - 10.5 

Breakdown  roller Dynapac  CP 142 1.5 1,523 1.8 0.9 1,500 - 10.5 
Breakdown  roller Dynapac  CP 142 1.5 1,523 1.8 0.9 1,500 - 10.5 

Finishing roller Dynapac CC324HF - - - - - - 10.5 

Tack coat 

application 

Diesel Engine Perkins 1100 Series - - - - - - 10.5 
Skid steer (sweeper) Bobcat  S630 1.5 1,188 1.8 0.9 5,000 - 10.5 

Asphalt distributor truck (skid 

mounted, 3000 gallons) 

Truck: Mack Asphalt tank: 

Etnyre 
Granite GU713 1.5 5,720 1.8 0.9 5,000 - 10.5 

Unbound 

Layers Removal 
Excavation Excavator Hitachi Zaxis 350LC-5 - - - - - 25 10.5 

Unbound 
Layers Laying 

and Compacting 

Grading Motor grader Caterpillar 120H 1.5 2,031 1.8 0.9 5,000 - 10.5 

Compacting Finishing roller Dynapac CC324HF - - - - - - 10.5 

Subgrade 

Preparation 
Compacting Finishing roller Dynapac CC324HF - - - - - - 10.5 

Microsurfacing 
Materials 

Spreading 
Materials spreader truck 

Truck: Mack; Materials 

spreader: Bergkamp M210 
Granite GU713 1.5 4,976 1.8 0.9 5,000 - 10.5 

Asphalt Paving 

THMACO 

paving and 

compacting 

Paver Dynapac  SD2550C - - - - - - 10.5 

Breakdown  roller Dynapac  CP 142 1.5 1,523 1.8 0.9 1,500 - 10.5 

Breakdown  roller Dynapac  CP 142 1.5 1,523 1.8 0.9 1,500 - 10.5 

Finishing roller Dynapac CC324HF - - - - - - 10.5 
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Table B.7- Values of the variables corresponding to each worker category needed to compute the 

respective hourly labor cost. 

WCat  WCatWB ($/year)
a
 WD  (days)

e
 effWD e

 WH (hr) 

Foremen 71,853.51
a
 260 0.77 8 

Paving equipment 

operator 
52,212.26

b
 260 0.77 8 

Labourers 41,061.29
c
 260 0.77 8 

Screed man 52,212.26
b
 260 0.77 8 

Hauling truck driver 55,798.19
d
 260 0.77 8 

aValue obtained by considering the annual 90th percentile total compensation for the “Paving, Surfacing, and Tamping Equipment 
Operators” occupational group in Virginia. It results from considering the wages and salaries equal to 66.9% of the total 

compensation (US DL, 2011b). 
bValue obtained by considering the annual 50th percentile total compensation for the “Paving, Surfacing, and Tamping Equipment 
Operators” occupational group in Virginia. It results from considering the wages and salaries equal to 66.9% of the total 

compensation (US DL, 2011b). 
cValue obtained by considering the annual 50th percentile total compensation for the “Construction laborers” occupational group in 
Virginia. It results from considering the wages and salaries equal to 66.9% of the total compensation (US DL, 2011b). 

dValue obtained by considering the annual 50th percentile total compensation for the “Heavy and Tractor-Trailer Truck Drivers” 

occupational group in Virginia. It results from considering the wages and salaries equal to 66.4% of the total compensation (US DL, 
2011b). 

eData source: Wiegmann et al. (2011). It corresponds to a “year-round, full-time” hours figure of 2,080 hours. 

 

B.3.Transportation of materials phase 

The model formulation and notation are equal to those presented in section “Appendix A.1. Construction 

and M&R phase”. 
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Table B.8- Values of the variables corresponding to each hauling truck needed to compute the materials transportation costs. 

Name Brand Model (km) 
(years) 

 

($) 
 

($) 

FOGPMF &

 

RepairF

 

InsR

(%) 

IntR

(%) 

TxR

(%) 

TCF
 

TC  

($) 

TLF
 

TWF
 

TL  

(km) 

Dump truck Mack 
Granite GU 

713 
166,000 10 140,000 60,000 0.119 0.65 3 3.25 2 1.5 4,976 1.8 0.77 322,000 

Water tank truck  Mack 
Granite GU 

713 
166,000 10 175,000 35,000 0.119 0.65 3 3.25 2 1.5 4,976 1.8 0.77 322,000 

Cement tank truck  Mack 
Granite GU 

713 
166,000 10 190,000 38,000 0.119 0.65 3 3.25 2 1.5 4,976 1.8 0.77 322,000 

Asphalt distributor tank 
truck 

Mack 
Granite 
CHU 613 

166,000 10 205,000 41,000 0.119 0.65 3 3.25 2 1.5 9,358 1.8 0.77 322,000 

Bituminous emulsion 

distributor tank truck 
Mack 

Granite GU 

713 
166,000 10 195,000 39,000 0.119 0.65 3 3.25 2 1.5 4,976 1.8 0.77 322,000 

Acronyms: as specified in the formulation presented in section “Appendix A.1. Construction and M&R phase”. 
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Table B.9- Features of the movements of transportation of materials. 

Material Truck name 
Distance (one 

way trip) 

Hauling trucks payload 

capacity (tonnes) 

PG 70-22 binder 
Asphalt distributor tank 

truck 
125 15 

Limestone: coarse aggregates Dump truck 40 20 

Hydraulic cement Cement tank truck 346 27 

Limestone: fine aggregates Dump truck 40 20 

Tap water Water tank truck 25 15 

IM19.0D: HMA- 0% RAP  Dump truck 25 20 

SM12.5D: HMA- 0% RAP  Dump truck 25 20 

Quartzite: coarse aggregates Dump truck 40 20 

Bitumen emulsion 
Bituminous emulsion 

distributor tank truck 
125 11 

BM25.0D: HMA- 0% RAP  Dump truck 25 20 

Quartzite: fine aggregates Dump truck 40 20 

Crushed stone: surface treatment 

Aggregates 
Dump truck 40 20 

Hydrated lime Cement tank truck 346 27 

SBR Dump truck 125 20 

SM9.5D: HMA- 0% RAP  Dump truck 25 20 

Removed materials Dump truck 25 20 

Removed materials Dump truck 0.6 20 

CCPR: mixtures produced Dump truck 0.6 20 

Unbound sub-base mix- 0% RAP  Dump truck 25 20 

Sasobit®  Dump truck 125 20 

PG 70-28 (PMB) 
Asphalt distributor tank 

truck 
125 15 

IM19.0D: HMA- 15% RAP  Dump truck 25 20 

SM12.5D: HMA- 15% RAP  Dump truck 25 20 

BM25.0D: HMA- 15% RAP  Dump truck 25 20 

SM9.5D: HMA- 15% RAP Dump truck 25 20 

Unbound sub-base mix- 15% RAP Dump truck 25 20 

Unbound sub-base mix- 30% RAP Dump truck 25 20 

IM19.0D: HMA- 30% RAP  Dump truck 25 20 

SM12.5D: HMA- 30% RAP Dump truck 25 20 

BM25.0D: HMA- 30% RAP Dump truck 25 20 

SM9.5D: HMA- 30% RAP Dump truck 25 20 

IM19.0D: WMA Sasobit® - 0% RAP Dump truck 25 20 

SM12.5D: WMA Sasobit® - 0% RAP Dump truck 25 20 

BM25.0D: WMA Sasobit® - 0% RAP Dump truck 25 20 

SM9.5D: WMA Sasobit® - 0% RAP Dump truck 25 20 

SM9.5D: WMA Sasobit® - 15% RAP Dump truck 25 20 
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(continued) 

Material Truck name 
Distance (one 

way trip) 

Hauling trucks payload 

capacity (tonnes) 

M19.0D: WMA Sasobit® - 15% RAP Dump truck 25 20 

SM12.5D: WMA Sasobit® - 15% 

RAP 
Dump truck 25 20 

BM25.0D: WMA Sasobit® - 15% 

RAP 
Dump truck 25 20 

SM9.5D: WMA Sasobit® - 30% RAP Dump truck 25 20 

IM19.0D: WMA Sasobit® - 30% RAP Dump truck 25 20 

SM12.5D: WMA Sasobit® - 30% 

RAP 
Dump truck 25 20 

BM25.0D: WMA Sasobit® - 30% 

RAP 
Dump truck 25 20 

PG 64-22 binder 
Asphalt distributor tank 

truck 
125 15 

Crushed stone: coarse and fine 

aggregates 
Dump truck 40 20 

Traprock: coarse aggregates Dump truck 40 20 

Traprock: fine aggregates Dump truck 40 20 

THMACO 9.5: 0% RAP Dump truck 25 20 

 

B.4.Work-zone traffic management phase 

i) Time delay costs 

Table B.10- Unit cost of travel time for the several categories of vehicles. 

Vehicle category Unit cost of travel time ($/hr) 

Hourly time value of passenger cars (PCs) 28.70 

Hourly time value of single-unit trucks (SUTs) 22.42 

Hourly time value of combination-unit trucks (CUTs) 29.27 

Hourly freight inventory costs for SUT 0.21 

Hourly freight inventory costs for CUT 0.31 
Legend: PC- passenger car; SUT- single-unit truck; CUT- combination unit truck. 
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Table B.11- Values of the main parameters used in the computation of the unit cost of travel time 

for PC. 

Parameter 
Data Source 

Name Unit Value 

Proportion of PCs on personal travel  % 93.7 

NHTS 

(http://nhts.ornl.gov/t

ools.shtml) 

Average vehicle occupancy of PCs for personal 

travel 
person/veh 1.67 

NHTS 

(http://nhts.ornl.gov/t

ools.shtml) 

Hourly value of personal travel time as a 

percentage of wage rate for an intercity travel 

type 

% 70 US DOT (2003) 

Median annual household income of all US 

households 
$ 50 054  

DeNavas-Walt et al. 

(2012) 

Hourly time value of a person on personal time $/person.hr 16.85  - 

Hourly time value of a vehicle on personal travel $/veh.hr 28.13  - 

    

Proportion of PC on business travel % 6.3 

NHTS 

(http://nhts.ornl.gov/t

ools.shtml) 

AVO of PCs for business travel person/veh 1.24 

NHTS 

(http://nhts.ornl.gov/t

ools.shtml) 

Hourly value of personal travel time as a 

percentage of wage rate for an intercity travel 

type 

% 100 US DOT (2003) 

Total hourly wages and benefits of all civilian 

workers 
$ 29.98 US DL (2011) 

Hourly time value of a person on business time $/person.hr 29.98  - 

Hourly time value of a vehicle on business travel $/veh.hr 37.18  - 

Weighted average of hourly time value of PCs $/hr 28.70 - 
Legend: PC- passenger car; SUT- single-unit truck; CUT- combination unit truck; AVO- Average vehicle occupancy. 

 

 

Table B.12- Values of the main parameters used in the computation of the unit cost of travel time 

for trucks. 

Parameter 
Data Source 

Name Unit Value 

AVO of SUTs person/veh 1.025 FHWA (2005) 

AVO of CUTs person/veh 1.12 FHWA (2005) 

Average wages and benefits for SUTs drivers $/hr 21.87 US DL (2011b) 

Average wages and benefits for CUTs drivers $/hr 26.13 US DL (2011b) 

Hourly time value of SUTs $/hr 22.42 - 

Hourly time value of CUTs $/hr 29.27 - 
Legend: AVO- Average vehicle occupancy; SUT- single-unit truck; CUT- combination unit truck. 
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Table B.13- Values of the main parameters used in the computation of the cost of freight inventory 

delay. 

Parameter 
Data Source 

Name Unit Value 

Percentage of empty loaded SUTs % 29 Alam at al. (2007) 

Percentage of empty loaded CUTs % 24 Alam at al. (2007) 

Average payload of SUTs lb 27 859 Alam and Rajamanickam (2007) 

Average payload of CUTs lb 42 527 Alam and Rajamanickam (2007) 

Average prime bank lending rate % 3.25 

Board of Governors of the Federal 

Reserve System 

(http://www.federalreserve.gov/release

s/H15/data.htm#fn2) 

Average value of commodities shipped 

by truck 
$/lb 1.52 FHWA (2005) 

Hourly value of freight shipped by truck $/lb.hr 7.36 ×10
-06

 - 

Hourly freight inventory costs for 

SUTs 
$/hr 0.21 - 

Hourly freight inventory costs for 

CUTs 
$/hr 0.31 - 

Legend: SUT- single-unit truck; CUT- combination unit truck. 

ii) Vehicle operation costs 

Table B.14- Economic unit costs of the WZ-related VehOperC subcategories (in 2011 US dollars). 

WZ-related VehOperC 

subcategory 
Cost unit 

Unit costs per vehicle category 
Data source 

PC SUT CUT 

Fuel: gasoline $/litre 0.93 - - US EIA (2014) 

Fuel: diesel $/litre - 1.00 1.00 US EIA (2014) 

Oil $/ litre 9.58 3.83 3.83 FHWA (2005) 

Tyres $/tyre 93.11 613.32 613.32 FHWA (2005) 

Maintenance and repair $/1000 miles 158.79 553.23 553.23 FHWA (2005) 

Time-related depreciation $/hr 1.23 3.16 9.57 FHWA (2005) 

Mileage-related depreciation $/hr 0.58 0.49 2.20 FHWA (2005) 
Legend: WZ- work-zone; VehOperC- vehicle operation costs; PC- passenger car; SUT- single-unit truck; CUT- combination unit 
truck. 
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