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Electrical and Computer Engineering, who is the main supervisor of this work. Without

his support and guidance, I would not be able to overcome the obstacles of this project

and all the small but so important details. Also, my colleagues from the professor’s lab-

oratory Nuno Almeida, Nuno Carvalho, Pedro Rocha, Ricardo Rocha and Rui Peliteiro

provided special support during the writing of this document.

There is no doubt that what I accomplished during this 5-year adventure is because

I had the great pleasure of meeting and making new friends in Biomedical Engineering,

most of them graduating at the same time, that helped me to grow up a lot.

None of my accomplishments would make sense without the presence of my lifetime
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Abstract

Diabetic retinopathy is the most frequent and serious complication of diabetes mellitus

that affects vision. In advanced stages its progress can be delayed with recourse to

laser photocoagulation treatments which destruct retinal tissue alleviating retinal hy-

poxia conditions and thus slowing the neovascularization processes typical of diabetic

retinopathies. Currently, screening programs rely on automatic algorithms implemented

to detect signs of diabetic retinopathy in patients. Unfortunately, these systems can mal-

function if the patients screened have already undergone laser photocoagulation treat-

ments.

This work, proposed by Retmarker S.A., presents a digital retinal fundus image tree-

based classifier which uses features computed from candidate regions extracted from an

input image to decide if that image shows evidence of previous photocoagulation laser

treatments. A scientific paper describing the proposed algorithm and providing two new

public accessible datasets of retinal images containing retinal images with laser marks

was also prepared in order to submit to a scientific journal in the near future.

Three state-of-the-art image processing segmentation algorithms were combined to iden-

tify candidate laser marks, then features based on geometrical, texture, spatial distribu-

tion and intensity descriptors were calculated. The final decision about the presence of

laser marks was obtained using specifically trained classifiers. A simple threshold-based

classifier as well as four different tree-based classifiers, all of them using the image-based

features, were tried and the ones providing the best classification performance were kept

as the choice classifiers.

The performance of each algorithm was obtained after training and testing using reti-

nal images with positive (containing laser marks) and negative cases from eight public

datasets and three proprietary datasets, making a total of 233 images with laser marks

and 2401 images without laser marks. A classifier based on a decision tree proved to

be the best solution for this application with a sensitivity of 88.1% and a specificity of

98.9%. Further aspects and results of this novel contribution are presented and discussed

in detail in this document.

Finally, some considerations on possible improvements and future developments, such

as the optimization of the implemented algorithm in order to reduce the computation

time, are made to close this thesis dissertation.

Keywords: diabetic retinopathy, digital retinal fundus image, photocoagulation treat-

ment, laser marks, medical image processing, feature extraction, classification

xiii





Resumo

A retinopatia diabética é a complicação mais grave e frequente da diabetes mellitus

que afecta a visão. Em estados avançados, o seu progresso pode ser travado com re-

curso a tratamentos de fotocoagulação que usam laser e que destroem tecido da retina.

Actualmente, existem programas de rastreio que usam métodos automáticos implemen-

tados que detectam sinais de retinopatia diabética nos doentes. Contudo, estes sistemas

podem funcionar indevidamente perante doentes que já foram tratados.

Este trabalho, no âmbito do projecto de tese proposto pela empresa Retmarker S.A.,

apresenta um classificador de retinografias baseado em árvores, que usa caracteŕısticas

calculadas a partir de regiões candidatas que por sua vez são extráıdas a partir da imagem

da retinografia, e decide se essa imagem contém ind́ıcios de tratamentos prévios de foto-

coagulação por laser. Adicionalmente, resultou deste trabalho um artigo cient́ıfico, para

ser submetido a revista da especialidade num futuro próximo, que descreve o método de

deteção de marcas laser proposto, assim como dois conjuntos de imagens retinográficas

com marcas laser abertos ao uso pela comunidade cient́ıfica.

Três algoritmos estado-da-arte de segmentação em processamento de imagem foram com-

binados com o intuito de detectar candidatos a marcas laser. Resultam destes algoritmos

vários parâmetros baseados em descriptores geométricos, texturais, de distribuição es-

pacial e de intensidade que funcionam como elementos caracteŕısticos das imagens e que

são as entradas dos classificadores testados. Para efectuar a detecção de marcas laser

foram testados um classificador simples baseado em limiar e quatro classificadores em

árvore, todos eles recebendo os parâmetros caracteŕısticos das imagens como entradas,

tendo os melhores sido escolhidos para um estudo mais aprofundado e escolhido como a

solução de classificação a adoptar.

A performance de cada algoritmo foi avaliada após a respectiva fase de treino e de teste,

usando imagens de retinografia com casos positivos (imagens com marcas laser) e com

casos negativos provenientes de oito datasets públicos e de três datasets proprietários,

num total de 233 imagens com marcas laser e de 2401 imagens sem marcas laser. A

árvore de decisão demonstrou ser a melhor solução para o problema da classificação

para esta aplicação, tendo sido conseguida uma sensibilidade de 88.1% e uma especifici-

dade de 98.9%. Os caṕıtulos que se seguem descrevem em maior detalhe a abordagem

seguida, fornecendo informação sobre os métodos estudados e apresentando também

mais resultados.

Finalmente, algumas considerações sobre posśıveis melhorias e ideias para trabalhos fu-

turos, tais como optimização e redução do tempo de cálculo do algoritmo implementado,

concluem esta dissertação.

Palavras-Chave: retinopatia diabética, retinografia digital do fundo da retina, foto-

coagulação, marcas laser, processamento de imagem médica, extracção de parâmetros

caracteŕısticos, classificação
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Chapter 1

Introduction

1.1 Problem Contextualization and Motivation

Diabetes Mellitus is one of the diseases with higher prevalence amongst the world’s

population, currently. As a matter of fact, the International Diabetes Federation (IDF)

registered 382 million cases of diabetes in 2013 and predicted that this number will rise

to 592 million by 2035. In 2013, there were 5.1 million deaths caused by diabetes, which

means that every seven seconds a person dies from this systemic disease. IDF’s Atlas

also states that 80% of people with diabetes live in low and middle-income countries and

at least USD 548 billion dollars were spent in health expenditure in 2013 [1].

Eyesight tends to deteriorate as part of the ageing process. However, there are also

some specific eye conditions that may cause vision loss: cataracts, glaucoma, age-related

macular degeneration and diabetic retinopathy, which are the most common causes of

sight reduction. As a result, these eye conditions are the priority of the VISION 2020 - a

global project launched by World Health Organization (WHO) in 1999, whose purpose is

to research mechanisms to prevent and treat these ocular diseases by the year of 2020 [2].

Diabetic Retinopathy (DR) is the most frequent and most serious complication of dia-

betes that afflicts vision. It is a sight-threatening and chronic ocular disease that results

from retinal blood vessels damage. It affects up to 80% of all patients who have had

diabetes for 10 years or more [3] and it is the leading cause of blindness amongst the

1
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Figure 1.1: Number of people with diabetes by IDF Region, 2013 [1].

working-age population. Laser treatment and vitrectomy (still very controversial in sci-

entific community) reduce the risk of blindness in patients with DR by more than 90%,

if this condition is detected early [4].

It is recommended that each diabetic patient participates in a DR Screening Program

annually by taking digital retinal fundus photographies and having them analysed and

graded by an ophthalmologist or optometrist [5, 6]. However, this is a slow and difficult

process because the number of persons with potential risk to develop DR is much higher

than the total number of specialists. There are around 300 000 optmetrists [7] and

206 812 ophthalmologists [8] worldwide, which is equivalent to 30 ophthalmologists per

million.

Taking into account the total number of people with diabetes and the percentage of

this population that develops DR, it is clear that a huge number of people must be

periodically seen by specialists in order to detect and track the existence of early lesions

and signs of DR.

Meetings, strategies and recommendations to implement cost-effective DR Screening

Programs have been multiplying these last years [9, 10]. The main objective of these
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cost-effective programs is to reduce the workload and the burden of the specialists and

ensure a high coverage (reaching at least 80% of the target population) in a short period

of time [11].

Several studies of DR mass screening programs in different countries concluded that

the implementation of these initiatives in remote rural areas, where the availability

of healthcare professionals is scarce, is possible and effective if the correct procedure is

followed. In these screening sessions conducted in remote areas, only a photographer and

a grader are required at the local where the screening program is held. The photographer

captures, stores the retinal images of the patients, which are then sent to the grader

who observes and identifies those with signs of DR. The cases detected with lesions need

more medical attention and hence are referred to an ophthalmologist by the grader.

Moreover, in these studies, around 20% of the participants were detected with DR, so

the ophthalmologists’ burden reduction is huge [12–14].

However, the screening programs discussed that are based on telemedicine technologies

still require that graders and specialists observe and analyze an enormous amount of

retinal images. Since there are 30 ophthalmologists per million people with diabetes,

automated grading algorithms have been recently developed to cover this issue [6]. Some

of these algorithms are shortly described and reviewed by Dawn Sim et al. [15].

Retmarker R© is one of these automated assessment algorithms. It is a product developed

by Retmarker S.A. and its main purpose is to decrease the human grading workload

and improve and simplify this healthcare system [16]. This automated algorithm de-

tects lesions related to DR such as microaneurysms (MAs) and exudates (EXs) and it

is integrated in a DR Screening Program in the Central Region of Portugal, coordi-

nated by Administração Regional de Saúde do Centro (ARS Centro) and Association

for Innovation and Biomedical Research on Light (AIBILI).

In these screening initiatives, such as the Portuguese example, each person with diabetes

mellitus is called for screening and sometimes patients that already underwent laser

surgery show up. This situation occurs because these patients do not know or cannot

recall having been treated and there are even cases where they are aware of the fact that

they were treated, but are called to participate in the screening.
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Such scenario poses 2 problems: one concerning the coordination and management of

the program and the other one concerning technical issues related to the operation

of the automatic diagnostic procedures. First, there is a risk that the patient might

be scheduled for further treatment again. Also, the detection and removal of these

patients would avoid unnecessary processing, which would result in a more reduced

workload. In the DR screening program in the Central Region of Portugal, there were

219 subjects with signs of treatment out of 13305 during 2014, which is equal to 1.65%

of the participants. It is important to note that not only will the diabetic population

grow, but also will the total number of DR-treated patients rise. Second, the treatment

usually leaves behind scars produced by laser incidence on the retina and this fact causes

misbehaviours in automatic diagnostic algorithms used in Telemedicine. For example,

these laser marks can interfere negatively by being identified as MAs or as EXs or as

other signs of eye pathology by the automatic algorithms, resulting in false detections.

It is therefore important to be able to automatically detect laser marks that result from

photocoagulation treatment on retinal fundus images, which is the main objective of

this thesis. By doing so, not only treated patients are removed from the screening

programs and directed to adequate follow-up, but also a filtering step is performed

before the processing of the images to detect DR lesions. Figure 1.2 shows how the

developed automatic laser mark detector in this thesis should be implemented in a DR

screening program. Moreover, there are no publicly available datasets of retinal images

with photocoagulation scars, so it is also of great importance to provide the scientific

community with images containing these special characteristics, thus contribution for

the development of algorithms with similar aims as ours.

Figure 1.2: Overview of this work’s problem.
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1.2 Document Overview

This thesis is structured in seven chapters plus four appendixes.

Chapter 2: Background on Ophthalmology and Eye-related Pathologies re-

views the the foundations on eye anatomy, eye physiology and retinal images. Also, the

different eye pathologies and respective treatments are explained to provide a clarifying

background so that the reader understands the problem stated in chapter 1.

Chapter 3: Laser Marks Detection State-of-the-Art summarizes previous re-

search based on image processing techniques and lists the previous work developed on

this classification problem and the respective results and conclusions.

Chapter 4: Automatic Laser Mark Detection Algorithm describes the content

and the details of the datasets used in this work and explains the proposed algorithm

step-by-step.

Chapter 5: Results presents the performance of the algorithm explained in chapter 4

when applied to the images from the datasets described in the same chapter.

Chapter 6: Discussion analyses and discusses the results presented in chapter 5.

Chapter 7: Conclusion and Future Work evaluates the results of the work, in

confront with its objectives and provides suggestions for future work.

Appendix A: Performance and Information Theory Measures details some

mathematical parameters used in this thesis.

Appendix B: Datasets contains images and further details of some datasets described

in chapter 4.

Appendix C: Pre-processing Examples illustrates the image processing steps of

three different retinal images.

Appendix D: Misclassified Retinal Images shows examples of retinal images with-

out laser marks that were classified as having laser marks.





Chapter 2

Background on Ophthalmology

and Eye-related Pathologies

2.1 Eye Anatomy and Physiology

The human eye transduces energy into nerve impulses. This energy is the visible light

and it is a range of energy of the electromagnetic spectrum with wavelength between

400nm and 700nm. The eye is structured in three main anatomical structures (Figure

2.1): the outer layers’ lenses of the eyeball, the retina and the Optic Disc (OD) [17].

Considering the light path of the eye, the sclera comes first, which is a coat of connective

tissue continuous with the cornea and it can be seen externally as the white of the eyes.

Light passes through the cornea to enter the anterior chamber and then passes through

the pupil, which is surrounded by a pigmented muscle known as the iris. This anatomical

element functions like a diaphragm of a camera: the aperture (the pupil) is widened or

narrowed to admit more or less light. The light then passes through the lens, a crystalline

and biconvex structure placed between posterior and vitreous chambers. The aqueous

humor is a fluid that provides nutrients to the avascular lens and cornea and it fills the

anterior chamber and the posterior chamber, that is located between the iris and the

lens. Finally, the light suffers a refraction in the lens and reaches the retina after passing

through a thick substance called vitreous humor [17]. Figure 2.1 shows all these parts

in greater detail.

7
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Figure 2.1: Anatomy of the Eye [17].

The retina is a neural layer that contains photoreceptors, bipolar and ganglion cells.

The phototreceptors translate the received light into electric impulses and the bipolar

and ganglion cells are activated by the photoreceptors to carry the message to a region

where all the perceptual information is gathered: the optic disc. The information is

then transferred to the brain by several neuron fibers that constitute the optic nerve.

In the external layer of the retina, there are two types of photoreceptor neurons with

different shapes: the cones and rods. The cones are light sensitive receptors with a conic

shape responsible for colour vision and most of them are in the fovea (central region of

the retina - macula). On the other hand, the rods are thin and long and have a bigger

diameter than the few cones located on the peripherical area of the retina. The rods are

responsible for the black and white vision [17, 18].

Figure 2.2: Histology of the Retina [17].
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2.2 Retinal Images

There is a wide range of medical diagnostic exams in the ophthalmology area and with

the evolution of science, it is likely that there will be more and some of them will be

further developed. For instance, there are two imaging modalities that are the most

popular: digital fundus imaging and optical coherence tomography (OCT).

(a) (b)

Figure 2.3: Most frequent retinal imaging modalities: (a) Digital fundus image of a
right eye [19] (b) OCT Image of the macular region [20].

Digital retinal colour fundus imaging is the most frequently used in screening initiaves.

It is not an invasive technique, unlike angiography with intravenous fluorescein which is

too invasive, although it provides images with good quality for diagnostic purposes [21].

Moreover, medical image analysis is currently a research area that atracts both scientists

and physicians to develop computational tools and systems that support and assist

the diagnosis process. This kind of technology is easy to use and very compatible

with digital fundus images [22]. Also, this imaging modality is convenient to use with

subjects who do not have any sight-threatning disease, because unnecessary invasive

interventions are avoided, the time spent capturing the image is short and the subject

can resume his or her normal activities comfortably without any problems. These facts

make screening programs based on colour fundus photography more cost-effective and

a popular choice [23].

In this work, different datasets are used that are made up of images captured using

different protocols. For example, in the ongoing DR screening in the centre region of

Portugal, the images are from right and left eyes. For each eye, a photo is taken centered

on the optical disc and nasal region (field 1), as presented in Figure 2.4a and another

photo is taken centered on the macula (field 2), as shown in Figure 2.4b [24].
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(a) (b)

Figure 2.4: Example of a photographic protocol: (a) Field 1 image of a left eye [25] (b)
Field 2 image of a left eye [25].

2.3 Eye Pathologies

The eye is composed of several layers of different type of cells. Like any other biological

tissue, it is vulnerable to damage and to disease.

There are several pathologies related to failures of the eye’s optical arrangement. Some

of them result from a deficiency of the focal distance (hyperopia, myopia) of the lens

and/or from geometrical imperfections of the eye (astigmatism). Others result from

damages of the supporting structures: strabismus is caused by weakness of the muscles

that control the movements of the eyeball and conjunctivitis result from an inflamation

of the sclera’s surface.

In this section, only the four sight-threatning diseases considered as priorities by the

VISION 2020, namely cataract, glaucoma, age-related macular degeneration (AMD)

and diabetic retinopathy, will be covered in detail.

2.3.1 Cataract

Cataract, which according to 2005 numbers affect 16 million people worldwide, is caused

by the opacification of the lens. It is undoubtedly one of the main causes for vision loss

and blindness. Age is the principal risk factor, but there are others such as genetic

composition, exposure to ultraviolet light and diabetes. It is no surprise that several

patients that show up in DR screenings have cataracts [26] thus justifying the widespread

use of automatic cataract detection algorithms [27].
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2.3.2 Glaucoma

Glaucoma is a pathology that results from a set of diseases such as high intra-ocular

pressure and damage to the OD. It affects peripheral vision and it has no cure but its

early diagnosis and treatment can prevent the vision loss.

There are two main types of Glaucoma: Primary Open Angle (POAG) and Angle Closure

Glaucoma (ACG). POAG is the most common form of Glaucoma accounting for at least

90% of all cases. With POAG, the main problem originates inside the drainage canals of

the eye, which results in a high intra-ocular pressure. There are essencially four changes

to the retinal structures when Glaucoma occurs [28]:

• OD variance - The OD, also known as the blind spot due to lack of receptors, is

easily visible on retinal images as a bright elliptic region. If this structure becomes

larger, it means that more optic nerve fibres disappeared, so the risk to develop

Glaucoma is higher.

• Neuroretinal Rim Loss Determination - Although it does not happen with

every patient, the positions of the Nasal and Temporal regions are changed and as

a consequence the usual pattern of the Neuroretinal Rim is not followed.

• Retinal Nerve Fibre Layer defects - If detected, it serves as the earliest sign

of Glaucoma. Normally, this layer appears as bright bundle striations unevenly

distributed, but in the presence of Glaucoma it appears as a wedge-shaped dark

area.

• Peripapillary Atrophy (PPA) - It is one of the most important risk factors and

its progression may lead to haemorrhage of the OD. PPA is the degeneration of

the retinal pigment epithelial layer and photoreceptors in the region surrounding

the OD.

2.3.3 Age-related Macular Degeneration

It is estimated that in many countries, more than 20% of the population has age-related

macular degeneration, which is a progressive chronic disease of the central retina and

a leading cause of blindness worldwide. Despite having this name, older age is not the
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only cause as smoking, nutritional factors, genetic markers and cardiovascular diseases

are also risk factors.

In early stage of AMD, symptoms are usually inexistent but in retinal images it is pos-

sible to observe yellow drusens underneath the retinal pigment epithelium. In advanced

AMD, patients might develop neovascular (wet) AMD or geographic atrophy (late dry).

When neovascular AMD occurs, there is a rapid visual loss and patients describe sud-

den worsening of central vision with distortion (metamorphopsia) or a dark patch in the

central vision (scotoma) or both. This condition is also characterised and identified by

haemorrhages and intraretinal fluid. When geographic atrophy occurs, the progression

of the vision loss is much slower over many years. In retinal images, it is easily identified

when a sharply demarcated area of depigmentation is seen near the fovea.

Three decades ago, the Macular Photocoagulation was the technique used for treatment.

Although this laser photocoagulation procedure was able to reduce long-term severe

visual loss, there was a 40% risk of immediate moderate visual loss. This is an issue that

will be discussed in more detail on section 2.4. Currently, the use of vascular endothelial

growth factor (VEGF) inhibitors (ranibizumab and bevacizumab) is the most common

treatment strategy for this disease. Although it is not an easy process because patients

need a monthly injection of anti-VEGF, there is a very good recovery in vision acuity

even for the patients with advanced AMD.

Screening initiatives are also useful in order to monitor the disease progression, which

is similar to what happens with DR. AMD can be detected with automatic diagnostic

algorithms, but the performance (sensitivity of 75%) is not as good as the automatic

algorithms used to detect DR [29].

2.3.4 Diabetic Retinopathy

Diabetic retinopathy is a set of lesions on the retina caused by complications that ac-

company diabetes mellitus. It is the leading cause of preventable blindness amongst

working age population. During the first 20 years of diabetes, nearly all patients with

type 1 diabetes develop DR, while more than 60% of patients with type 2 diabetes have

DR. It is clear that type 1 diabetic patients are much more prone to develop DR than

type 2 diabetic patients.
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Some of the risk factors are ageing (the principal), genetic variation, poor control of

blood sugar, high blood pressure and obesity. In other words, if a diabetic person does

not have a healthy lifestyle and does not properly control the disease, it is very likely

to develop DR. As for the ageing, it is an uncontrollable factor and for that reason DR

screening programs play an important role to detect early signs of retinal lesions and

to prevent sight loss. According to the American Diabetes Association, approximately

18.3% of Americans aged 60 and older have diabetes, because the prevalence of this

disease also increases with age. Therefore, not only the working age population is of

concern, but also the elderly population because a high percentage has diabetes and, as

a consequence, the incidence of DR is also very high.

Nonproliferative DR’s presence is detected in retinal images when MAs and small haem-

orrhages are visible (Figure 2.5). These initial lesions are focal and located within the

inner nuclear layer of the retina and hyperglycemia is sufficient to serve as a trigger

to this pathology, due to excessive transport of glucose near the cells surrounding the

deep retinal vascular network. The rupture of MAs and small vessels may lead to the

formation of intraretinal haemorrhages. Another characteristic of nonproliferative DR is

the presence of hard exudates, which are extracellular accumulations of lipids, proteins

and lipoproteins resulting from leakage from abnormal vessels.

Figure 2.5: Example of a retinography with MAs and haemorrhages [30].

The existence of exudates indicate a more severe stage of nonproliferative DR. If further

progression of DR is verified, there is a risk of developing complications of DR, which are

sight-threatning situations. The complications are the Proliferative Retinopathy and the

Diabetic Macular Edema, discussed on subsubsections 2.3.4.1 and 2.3.4.2, respectively.

A severe DR patient can develop either one of these complications or both [3, 30, 31].

Figure 2.6 is a scheme that describes the possible progressions of DR.
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Figure 2.6: Overview of the progression of DR [30].

2.3.4.1 Proliferative Retinopathy

The first sign of Proliferative Retinopathy (PR) is the observation of retinal areas with

capillary nonperfusion, also known as capillary closure (Figure 2.7). Vasoregression is

the initial step of a series of vascular damages.

Figure 2.7: Example of a retinography with PR [30].

As the name itself suggests, PR is the growth of new vessels that occurs when the dam-

aged blood vessels are not able to properly nourish the retina with oxygen and nutrients.

These new vessels arise from the OD but are very fragile and their presence leads to

retraction of the vitreous humor. This pulling effect and consequent shrinkage of the

vitreous humor results in vitreous haemorrhage which cause vision loss and permanent

low vision.

It is important to highlight that PR is not specific to DR, as it also occurs in other

retinal vascular diseases such as sickle cell disease and retinal vein occlusion. Besides

the neovascularization in the OD region, if PR is DR-specific, there is growth of new

vessels from the remaining perfused vessels in the posterior pole [3, 30, 32].
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2.3.4.2 Diabetic Macular Edema

Diabetic Macular Edema (DME) is the largest cause of sight loss in diabetes because

it affects central vision (fovea). Although it is a complication of DR, DME can occur

during any stage of DR, but it is more likely to accompany PR. It is a fact that about half

of those with PR also have DME. Also, DME affects particularly older type 2 diabetic

patients.

Diabetic Macular Edema is a thickening of the macula due to accumulation and swelling

of fluid in the central macular area by the retinal pigment epithelium resulting from fluid

leakage because of the changes in the blood-retinal barrier, which can lead to scarcity

of oxygen (ischaemia). Due to the swelling, the retinal tissue volume in the macular

area increases and may provoke changes in this region’s position (Figure 2.8). For that

reason, DME is easier to detect using OCT.

Although it is a deeply studied and well-known disease, it is not always easy to classify

the severity and the stage of the DME. Some guidelines were estlabished to solve this

issue and hence DME is considered clinically significant under two circumstances [3, 30,

32]:

• Thickening of the retina within 500 µm of the center of the fovea, only observable

in OCT.

• Presence of EXs within 500 µm of the center of the fovea, which can be seen in

digital colour fundus images.

Figure 2.8: Example of a retinography with DME [32].
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2.4 Treatment using Laser Photocoagulation

Laser photocoagulation is an intervention that is commonly used to treat DR, in which

energy in the form of light is applied to the retina with the purpose of preserving vision

but not reversing it, although it causes some damage to the photoreceptors. It is indeed

one more reason why it is so important that patients with sight-threatning diseases such

as DR be identified before irreversible visual loss occurs [33, 34].

”It is the second-most common eye procedure after cataract extraction, and yet little has

changed in laser design over the last 35 years until recently” [35]. Using laser to treat DR

has been demonstrated to be a very successful and effective procedure throughout the

years, as confirmed by the Diabetic Retinopathy Study (DRS) [36] and Early Treatment

Diabetic Retinopathy Study (ETDRS) [37].

More recently, VEGF inhibitors and steroids have been used alone to treat complications

of DR. The use of these substances has been proven to be more effective and produce a

larger gain in vision than laser photocoagulation. However, there are two disadvantages

when using these compounds: they have a short-effect duration and there is a significant

increase in intraocular pressure and, as a consequence, increase the risk of incidence

of cataract. Therefore, anti-VEGF and steroids have been used in low dosages as a

supplement to laser photocoagulation. The idea of this combination is to enhance the

effectiveness of the traditional treatment procedure [38, 39].

The photocoagulation procedure using laser pulses is either controlled manually or semi-

automatically by the laser operator. In either case, the scars left on the retinal pigment

have special visual characteristics. After an observation of a number of such images from

the DR screening coordinated by ARS, it can be concluded that the laser mark patterns

usually have the following properties:

• They are not randomly distributed over the retina,

• They tend to occur in clusters,

• They occur in periphery regions, far from the fovea and from the OD so that the

central vision is not affected,

• They present a dark or bright appearance and their colour can be yellow or green.
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• They usually have a circular or asymmetric shape.

It can be assumed that the observed characteristics in these images are universal since

there is no reason to believe that using the same methodologies during retinal imaging

capture in different places produces different results.

Even though it is possible to describe some generally occurring laser spot patterns, af-

ter observation of several retinographies, it is very important to consider the treatment

parameters. For example, the use of pattern or single spot, type of pattern, spot size,

power, burn duration, number of burns per session and retinal coagulation are vari-

ables that contribute to a wide range of possible laser marks size, shape, colour and

distribution [35].

The treatment applied varies depending on the complication of DR. As stated in sub-

section 2.3.4, the most severe stages of DR are PR and DME. So there are two types of

laser treatment, one for each of the mentioned DR complications, described in subsec-

tions 2.4.1 and 2.4.2, respectively. The following subsections present information about

the treatments’ procedure and the formation of the laser marks.

2.4.1 Panretinal Photocoagulation

Panretinal Photocoagulation (PRP) is the most proven and accepted treatment for PR.

This treatment is recommended when neovascularization on the OD is greater than one-

third of its diameter or when there are haemorrhages resulting from new vessels [40].

Since the 1980s until 2006, the conventional argon lasers were the most frequently used

in clinical practices. Patients did not have to go to the hospital, because the slit-lamp-

delivered laser system through a wide angle contact lens was simple enough to deliver

treatment in clinical centers. Only those who were unable to cooperate needed to go

to the hospital to be treated while under anesthesia. After 2006, Pattern Scan Laser

(PASCAL) started to be used more frequently (Figure 2.9). It is a semi-automatic system

containing a 532 nm frequency-doubled (Nd:YAG) solid-state laser. Even though the

type of laser design and respective pulse frequency changed, the clinical procedure did

not change much [35, 40, 41].
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(a) (b)

Figure 2.9: Examples of PRP: (a) Pattern of PRP with argon laser [40] (b) PRP with
combined argon laser and PASCAL photocoagulation [35].

Panretinal Photocoagulation treatment involves applying a large number of large and

intense burns (spot sizes range from 100 µm to 500 µm) with pulse durations from 20 to

500 miliseconds. Muqit et al. proved that laser mark visibility and spot size increase in

a linear relationship for both power and pulse duration. The number of spots delivered

to the peripheral retina may vary between 1000 and 3000 depending on the severity of

the PR, which means it depends on the nonperfused zones and on the size and extent

of neovascularization. The main purpose of PRP is to force the regression of the new

vessels’ growth in order to delay the progression and limit the damage to the OD and

macula and hence preserve the central vision. As a result, there is an improved tissue

oxygenation of the peripheral retina [33, 35, 40, 41].

Normally, a PRP treatment session takes about 30 minutes. During a treatment session,

the eye must be kept still to ensure accurate delivering of the laser pulses. Moreover,

the patient cannot see at all from the treated eye or eyes immediately after treatment.

It is a normal reaction and it tends to fade over the following days or weeks.

Doft et al. studied the differences between single and multiple treatment sessions of

PRP. They concluded that there were no major differences in terms of the effect on visual

acuity and DR risk factors. However, the risk for side-effects with single session is much

higher. Besides becoming very sensitive to light and having a reduced peripheral vision,

the patient may have exudates and may potentially develop DME. In case that situation

occurs, PRP must be fractioned over several visits to avoid or minimize worsening of

DME [33, 42].

It is possible to verify a positive response to the treatment after a short period of time,
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but PRP only achieves full effect after several months or years. For example, in 1985,

Little et al. performed a study where they did long-term follow-up and repeated PRP

when needed on 86 males and 122 females in a total of 351 eyes. After 5 to 12 years

follow-up, they concluded that 75% of the total number of eyes had 20/100 or better

visual acuity and only 8% had less than 20/400 [40]. This confirms that the reduction

of the risk of severe vision loss is verified in more than 90% of the cases.

2.4.2 Macular Edema Photocoagulation

Macular Edema Photocoagulation (MEP) is the treatment of choice for DME. It has

some similarities to PRP, specially in terms of equipment. In fact, the conventional argon

laser inserted in the slit-lamp system and PASCAL are also used in DME. Moreover,

subthreshold diode laser has been used more recently for this type of treatment and

it produces very small and almost invisible scars on the retina. However, the clinical

procedure is slightlly different from PRP.

Diabetic Macular Edema occurs in the macular area, so there is a huge risk that central

vision is compromised. For that reason, this treatment is much more difficult and delicate

to apply than PRP and it demands more precision, because a slight mistake by the laser

operator can displace the laser beam and directly aim to the fovea, causing a potential

visual loss. This is a very unlikely occurrence, because anaesthesia is administrated,

the eye is kept still and the laser operator warns the patient several times to avoid

looking directly at the laser beam before the treatment. In MEP therapy, the patient

also experiences bright flashes but no pain is felt, since it occurs in the macular area

and consequently no special precautions are needed after the photocoagulation. This

treatment takes only about 10 minutes and the side-effects are fewer: some reduction in

colour vision and presence of small dark spots in central vision might be perceived by

the patient in the initial moments after the treatment [33].

Macular Edema Photocoagulation takes the form of focal (Figure 2.10a) or grid (Figure

2.10b) laser photocoagulation, depending on the distribution of the fluid leakages that

come from MAs and/or EXs. If the number of leakages is small and they are located

in a small area of the thickened retina, the focal laser is more adequate. If there is

diffused leakage spread over great part of the area of the thickened retina, the grid laser

is the most used. The settings of the laser used and consequent laser scars produced are
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different from the settings used in PRP. The number of spots left is only around 200 and

the size of each one ranges from 50 µm to 100 µm. The duration of each pulse is 100

miliseconds and the power of the laser varies between 70-150 mW, which is much lower

than the one used in PRP. If the linear relationship between laser mark visibility plus

spot size and power plus pulse duration is taken into account, the combination of all

these parameters result in smaller, fewer and much more difficult to observe and detect

laser marks compared to the laser marks left by PRP [33, 41, 43].

(a) (b)

Figure 2.10: Examples of fluorescein angiographies after MEP: (a) Focal Laser Photo-
coagulation [33] (b) Grid Laser Photocoagulation [33].

The ETDRS performed a study in 1987 [37] where they treated patients with DME

using focal and grid photocoagulation and after a three year follow-up, MEP reduced

the chance of moderate vision loss in 50% of the cases. Moreover, 12% of the MEP

treated eyes and 24% of the control group (non-treated patients) experienced significant

visual loss. These results reveal the advantages and effectiveness of MEP. However, 12%

of unsuccess is a percentage that exceeds what should happen in a clinical environment.

This study was the trigger that initiated the use of anti-VEGFs and steroids to treat

DME. Although it is possible to use these substances for both PR and DME, as discussed

in subsubsection 2.3.4.2, their use in clinical studies increased substantially in DME

treatment due to the MEP’s lower performance in terms of vision loss reduction [37, 39,

44].
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Laser Marks Detection

State-of-the-Art

As mentioned before, classifying retinal images as showing the results of laser treatments

or not is important to avoid automatic retinal image processing malfunctions and un-

necessary processing. It is a complex task because the detection of laser scars must be

efficient and have a very good performance, given that these structures can have different

shapes, sizes, colours and brightness. Section 3.1 briefly presents and describes some ex-

amples of classification problems where state-of-the-art image segmentation algorithms

are used and have applications in other fields besides medical imaging.

Very few papers were produced concerning the detection of scars left by laser pho-

tocoagulation in retinal images. A bibliography search uncovered three works: one

about laser mark recognition by trained ophthalmologists in different retinal imaging

modalities [45] (Section 3.2) and two other describing automatic laser marks detection

algorithms [46, 47] (Sections 3.3 and 3.4).

3.1 Classification Problems in Image Processing

Detecting and classifying objects and structures is a problem not only in medical imag-

ing but also in many other image processing application areas. In section 2.4, it was

stated that laser marks may present a circular or an asymmetric shape, a bright or a

21
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dark appearance and have different colours. A somewhat similar problem is grain de-

tection and size measurement through visual means, for which several methods have

been proposed and published. These methods are also used to identify structures with

shapes, colours and brightness similar to the ones described previously in the context of

the problem addressed in this thesis. Taking this fact into account, before searching and

studying about classification methods, the research in this thesis started with finding

segmentation algorithms such as grain detectors in geological images, with the purpose

of adapting these algorithms to the identification of laser marks in retinal images.

Kingshuk Choudhury et al. [48] proposed an automated grain detection based on a

seeded region growing algorithm. The accuracy of this boundary detection was validated

by comparison with hand-drawn benchmark image datasets. Although it had a good

performance, the author noted that it was not entirely automatic because it required

some user intervention. In fact, for the region growing algorithm to work correctly, it

is necessary to manually set an initial point (seed) that initiates the algorithm, which

means that the user needs to point the region where he or she wants the grain to be

detected. Therefore, this is a good segmentation algorithm, but it needs input from the

user, which even if small, makes the method not appropriate for this work.

Yingkui Li et al. [49] proposed a grain detection applied in the context of a Geographic

Information System (GIS). The approach used in this work is different than the previous

one, because the priority was to completely avoid the user’s intervention. The purpose

was to extract the centroids and textural features from geological images and save this

information to a database in order to be used as a reference for other works. This

algorithm applies a noise reduction and then uses an edge detector. It had a perfor-

mance accuracy slightly above 70%, but it only worked on geological images exclusively

containing grains and no other structure in the images.

Chauris et al. [50] proposed a very interesting approach to detect objects with circular

shapes. The authors of this work developed a robust classification algorithm using the

circlet transform. It is a simple and efficient detector that operates directly on the image

gradient using Fast Fourier transforms. It proved to have a very good accuracy in im-

ages from different fields: ophthalmology (OD’s detection), astronomy (crater detection

detection) and oceanography (detection of eddies).



Chapter 3. Laser Marks Detection State-of-the-Art 23

Kaichang Di et al. [51] pointed out in 2014 that most grain and crater detectors were very

specific for some particular images. Therefore, in order to add robustness, a machine

learning approach to detect craters was proposed and tested in images with different

resolution and geological surfaces. The algorithm starts with the detection of the craters

with a local analysis using the Circular Hough Transform, extracts Haar-like and local

binary pattern features and then a boosting classifier is applied to obtain the final result.

The best performance achieved had a sensitivity of 90% and a specificity of 79%.

There are several segmentation algorithms used in retinal images. For example, the

algorithms proposed in [52] and [53] are interesting and detect structures that resemble

to laser marks. Sekhar et al. [52] used the Circular Hough Transform to locate the OD,

which is a circular and bright object like most laser marks, only larger in size. Salem

et al. [53] proposed a segmentation of retinal blood vessels based on the analysis of the

Hessian matrix but the authors stated that the Hessian matrix approach can also be

used to detect blob-like structures, which is a common characteristic of laser marks.

The examples presented in this section clearly show that a machine learning approach is

essential to add robustness and to allow the classification algorithms to be automatic and

have good performances, but the task of choosing the best image processing techniques

to accurately detect structures in images is demanding.

3.2 Detection of Macular Photocoagulation Scars With

Confocal Infrared Reflection Imaging

Macular Edema Photocoagulation using argon laser is a technique that causes some

damage to the retina, leaving very few and small scars on the retina that can barely be

seen. In clinical practices, it is important to know whether a patient had MEP treatment

in previous occasions.

Kotoula et al. performed a comparative study with the purpose of evaluating the diag-

nostic reliability of four imaging modalities in detecting laser scars provoked by MEP.

This work analyses the accuracy of ophthalmologists in identifying patients with DME

using four different imaging modalities: biomicroscopic fundus imaging, digital colour

fundus imaging, fluorescein angiography and infrared reflection imaging.
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The authors examined 56 eyes of 56 patients with diabetes mellitus type 2 who had

significant DME. From these 56 eyes, 34 of them needed to be treated again and the

other 22 demanded treatment for the first time. Every subject that had undergone

treatment had MEP applied by a laser operator 12 to 16 weeks before image capture.

Three retina specialists examined these images blindly and independently. On the day

of biomicroscopic fundus imaging examination, one of these three was randomly selected

to perform a direct examination of the source eye/patient. As for the other three types

of images, 56 images of each were given to the three specialists in randomized order.

Each specialist had then to answer the following question: Has the patient undergone a

MEP? All the answers were then sorted according to the imaging technique in order to

obtain the results presented on Table 3.1.

Imaging Modality
Classifications for images with

Laser Treatment (n=34)
Classifications for images without

Laser Treatment(n=22)
Sensitivity1 Specificity1

Digital colour fundus 20 yes, 14 no 4 yes, 18 no 59% 81.8%
Biomicroscopic fundus 24 yes, 10 no 0 yes, 22 no 70.6% 86.4%
Fluorescein angiography 31 yes, 3 no 0 yes, 22 no 91.2% 100%
Infrared reflection 33 yes, 1 no 0 yes, 22 no 97% 100%

Table 3.1: Results of the examiners’ answer for each imaging modality. Adapted from
Table 1 and Table 2 of Kotoula et al.[45]

Sensitivity refers to the number of patients with laser marks correctly classified over the

total of 34 patients and specificity refers to the number of patients without laser marks

correctly classified over the total of 22 patients.

The authors concluded that biomicroscopic and digital colour fundus images have limited

value in clinical use when it comes to direct human based detection of laser marks left by

MEP. In fact, for both of these types of images the human based classification resulted in

low sensitivity performance, which means that the human based detection of laser marks

is very poor. On the other hand, fluorescein angiography and infrared reflection proved

to be the best options for clinical application. The preference is given to the infrared

reflection, because it is the method with the best performance and it is a noninvasive

technique, unlike fluorescein angiography.

The main conclusion to retain for this thesis’ work is that even ophthalmologists are not

able to accurately detect laser marks produced by MEP using digital fundus images,

hence it is clear that this thesis’ classification problem is challenging.

1The detailed description about sensitivity and specificity can be found on Appendix A
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3.3 Detection of Laser Marks in Retinal Images

João Dias et al. proposed another solution to the problem of detecting laser marks in

retinal fundus images. The authors of this paper recognised and described the impact

and importance of automatically flagging patients that had undergone laser treatments

based on images captured during DR Screening Programs.

The proposed laser mark detection algorithm combines the results obtained by two

different approaches: Generic Parameter Classification (GPC) and Structural Parameter

Classification (SPC). Each one of these approaches return a binary classification and if

both outputs are positive, then the retinal image is classified as containing laser marks,

otherwise it is considered an image of a non-treated patient, as described in Figure 3.1.

Figure 3.1: Flowchart of the laser marks detection algorithm [46].

The concept behind GPC is very similar to that used in an Image Quality Assesment

method proposed in [54]. The fourteen image-related measures used the Quality Assess-

ment work are the input of the GPC. In fact, colour, focus, contrast and illumination are

parameters that change and vary between images with laser marks and without them,

so these features can distinguish these two classes. Thus, the same methodology is used,

but the classes are different. A dataset with 40 retinal images with laser marks and 176

images without laser marks was used with a 4-fold cross validation where 75% of the
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dataset was used for training and 25% was used for testing, in order to build the binary

classifier.

Structural Parameter Classification has as inputs four features: three of them are re-

lated to colour information (CM1, CM2 and CM3) and the other is a single measure

(SM) related to the structural information. The colour information is obtained through

histogram projection on three specific colourmaps constructed through statistical anal-

ysis of 101 retinal images with laser marks and 141 retinal images without laser marks.

The colourmaps are eye-fundus, bright marks and dark marks and they are used to per-

form colour indexing in order to compute CM1, CM2 and CM3, respectively. SM is a

value obtained after applying several image processig steps on the retinal image. First,

a sobel operator is applied to compute a gradient map of the greyscaled image. Then,

five erosion operators with different structuring elements are applied and summed to

obtain a binary image. A morphological opening is used to remove small objects from

the binary image and finally SM is calculated by computing the percentage of the total

of foreground pixels that are within laser marks. The retinal images and the validation

process used in GPC are the same as the ones used in SPC. The only difference is that

CM1, CM2, CM3 and SM are inputs to a Feed Forward Neural Network.

To evaluate the performance of this algorithm (Table 3.2), the authors used a public

dataset containing 1200 retinal images without laser marks called Messidor [55]. Also,

996 retinal images were collected for the algorithm’s performance evaluation from the

ongoing DR screening program in the centre region of Portugal, with 101 of those showing

laser marks.

Dataset Classification Accuracy

Laser Treatment (n=101) 63.37%
No Laser Treatment (n=2095) 99.90%

Table 3.2: João Dias et al. laser mark detection algorithm performance. Adapted from
Table 1 of [46].

Considering the images classified with laser marks as the positive case, then Sensitivity

= 63.37% and Specificity = 99.90%. In the final remarks, the authors state that this

result is noteworthy given the complexity of the classification problem. However, this is

the first paper about this topic and hence some further work to improve the algorithm

is suggested, such as using or adding spatial dispersion metrics and different classifiers

and decision methods.
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The most outstanding aspect of this work is the fact that specificity is close to 100%,

which means that almost no retinal image without laser marks is incorrectly classified.

This is of great importance, because it is not clinically acceptable to wrongly identify

a patient as having undergone treatment, when he or she can potentially develop DR,

because it has not been treated yet. However, the sensitivity value is not very high and

the diversity of the dataset used is poor in terms of resolution, models of fundus cameras

and even types of laser marks. For instance, after inspecting the dataset, it was found

that the images with laser photocoagulation scars were captured with the same model of

camera and all of them had a significant number of large-sized PRP-related laser marks.

These facts may indicate that the algorithm proposed in [46] is in fact detecting camera

and type of mark specific features. Since this is an algorithm to detect visual objects

and structures on retinal images, visual spatially based segmentation techniques should

play a major role.

3.4 Laser Marks Detection From Fundus Images

Faraz Tahir et al. work is another published solution proposed to the problem of au-

tomatically detecting laser marks. Its authors state that laser scars hinder other auto-

matic systems and that treated patients represent unnecessary workload for graders in

DR Screening Programs.

The proposed algorithm is divided into four steps: pre-processing, candidate region

identification, feature computation and classification.

Pre-processing: Retinal images are often noisy and lack proper illumination. To

reduce the effect of these problems, all the processing is performed only on the green

channel, which usually has better contrast. Then, a circular averaging filter is applied

to blur the image and remove the noise and then adaptive histogram equalization is

applied to enhance the contrast and make the laser marks fairly visible. The uneven

illumination is corrected by estimating the background illumination and subtracting it

to the image (top-hat filtering).

Candidate Region: The purpose of this step is to identify all possible laser marks,

even if that leads to the detection of some undesirable regions that are false detections.
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A binary image identifying the masked candidate regions is computed by thresholding

the previous stage output, with a small-valued threshold.

Feature Computation: For each candidate region identified in the previous step, 10

features are computed: Compactness, Max hue, Max saturation, Standard deviation

of saturation, Intensity mean, Intensity max, Intensity standard deviation, Mean Red

channel, Max Red channel, Max Green channel.

Classification: In this final step, the false regions are removed from the candidate

regions set. Then, a Minimum Distance classifier is used to decide whether the retinal

image has laser marks or not, using the 10 features computed as input.

To evaluate the performance of the proposed algorithm (Table 3.3), 51 retinal images

with laser marks and 329 retinal images wihout laser marks were used. These images

were taken with a Topcon mydriatic camera, have a resolution of 1504 by 1296 pixels

and were classified by ophthalmologists. The dataset also contains some images from

normal patients and others with different levels of retinal disease but without any laser

treatment.

Dataset Classification Accuracy

Laser Treatment (n=51) 94%
No Laser Treatment (n=329) 97%

Table 3.3: Faraz Tahir et al. laser mark detection algorithm performance. Adapted
from Table 3 of [47].

The results presented indicate that the proposed algorithm has a really good performance

and is quite acceptable for a clinical environment, despite of the fact that Specificity is

not 100%. Although the performance results provided in the paper are remarkable, the

number of images containing laser marks is small and there is no explanation about the

method used to choose the threshold used to obtain the maximum possible laser marks

(even if there are undesired false detections), there is little explanation on how this value

is computed to obtain the binary image.
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Automatic Laser Mark Detection

Algorithm

As stated in the introduction, the purpose of the implemented algorithm is to detect if

the patient had already undergone treatment in order to avoid misfunctioning of further

processing steps, unnecessary processing and to reduce the burden of the photographer

and of the grader relieving them of the cumbersome direct observation and analysis of all

the images captured during screening sessions. The implemented laser mark detection

algorithm returns two possible outputs: ”Laser” or ”No Laser” (as illustrated in the two

cases of Figure 4.1).

(a) (b)

Figure 4.1: Examples of (a) ”Laser” and (b) ”No Laser” retinal images.

The approach followed in this thesis follows the procedure typical for this type of image

classification problem and involves pre-processing steps, segmentation techniques, fea-

tures computation and a final binary classification. Figure 4.2 summarizes the workflow

of this algorithm and this chapter describes in detail each step represented. This chapter

29
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also includes a section at the beginning (Section 4.1) characterising the image datasets

used in this thesis.

Figure 4.2: Flowchart of the proposed algorithm.

The retinal image from Figure 4.1a is the file named 0087.jpg from the Screening Dataset

(described in section 4.1) and it is used as the main example throughout chapter 4. Other

examples can be found on Appendix C.

4.1 Materials

In order to develop and test the performance of the proposed algorithm, eight public

datasets and three proprietary datasets were used. 1

1For more detailed information, please consult Appendix B
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4.1.1 Public Datasets

The following eight datasets result from other studies and they are available online. All

these datasets are labeled as ”No Laser”.

Messidor (M) [55]: 1200 retinal images without laser marks from three ophthalmology

research departments in France. All of the images were captured using a colour video

3CCD camera on a Topcon TRC NW6 non-mydriatic retinograph with a 45o field of

view (FOV). The images have a resolution of 1444 by 960 pixels, 2240 by 1488 pixels or

2304 by 1536 pixels. For this work, 13 images from this dataset were not used as they

presented laser scars, according to image processing experts from Retmarker S.A. These

13 images are listed on Table B.1.

e-ophtha MA (EOMA) [56]: 148 images with a total of 1306 MAs. The images have

a resolution of 1440 by 960 pixels, 1504 by 1000 pixels, 2048 by 1360 pixels or 2544 by

1696 pixels. These images are part of ANR-TECSAN-TELEOPHTA project funded by

the French Research Agency.

e-ophtha No MA (EONMA) [56]: 233 images of healthy patients without any signs

of DR and treatment. The images have a resolution of 1440 by 960 pixels, 1504 by

1000 pixels, 2048 by 1360 pixels or 2544 by 1696 pixels. These images are part of

ANR-TECSAN-TELEOPHTA project funded by the French Research Agency.

e-ophtha EX (EOEX) [56, 57]: 47 images with a total of 12,278 EXs. The images

have a resolution of 1440 by 960 pixels, 1504 by 1000 pixels, 2048 by 1360 pixels or 2544

by 1696 pixels. These images are part of ANR-TECSAN-TELEOPHTA project funded

by the French Research Agency.

e-ophtha No EX (EONEX) [56, 57]: 35 exudate-free images and contain structures

such as reflections and optical artifacts which can mislead automatic detection algo-

rithms [57]. The images have a resolution of 1440 by 960 pixels, 2048 by 1360 pixels or

2544 by 1696 pixels. These images are part of ANR-TECSAN-TELEOPHTA project

funded by the French Research Agency.

Vessel-Based Registration (VBR) [58]: 22 retinal images without laser marks.

These images were acquired with Topcon 3D OCT-1000 Camera and have a resolu-

tion of 1200 by 1143 pixels. Although this public set consists of 22 pairs of images (17
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macular and 5 prepapillary) from different patients, each of these pairs contains one

OCT image and one colour fundus images. This last imaging modality mentioned is the

one used in this work.

50 Healthy People (HP) [19]: 100 retinal images without laser marks. These colour

fundus photographies come from left and right eyes of 50 healthy volunteers and have a

resolution of 1612 by 1536 pixels.

Foveal Avascular Zone Detection (FAZD) [25]: 60 retinal images without laser

marks. This dataset includes 25 retinal images of healthy subjects and 35 retinal images

of patients with DR. Each image has a resolution of 720 by 576 pixels. It is important

to note that on this study’s website it is stated that there are 30 images of patients with

DR. However, their download link contains 35 images with DR lesions.

4.1.2 Proprietary Datasets

Screening (S): 203 retinal images classified by optometrists as having laser marks from

an ongoing DR screening program in the centre region of Portugal, managed by ARS

Centro. All of the images are non-mydriatic and have a 45o FOV and they were acquired

between the 7th week of 2014 and the 3rd week of 2015. There are 26 images captured

using Nidek AFC-330 Retinal Camera and with a resolution of 1920 by 1920 pixels. The

remaining 177 images were captured using Canon CR6-45NM Retinal Camera and have

a resolution of 768 by 584 pixels.

It also includes 419 retinal images without laser marks from the same screening program

in the same time interval. There are 68 images that were captured using Nidek AFC-330

Retinal Camera: 18 have a resolution of 2448 by 2448 and 50 have a resolution of 1920 by

1920 pixels. There is one image captured using CSO Cobra Retinal Camera with 60ox45o

FOV and a resolution of 1624 by 1232 pixels. The remaining 350 images were captured

using Canon CR6-45NM Retinal Camera and have a resolution of 768 by 584 pixels.

Amongst the 419 images without laser marks, six were graded by ophthalmologists with

MAs, six were graded with EXs and 20 were commented as having drusens (AMD-related

lesions).
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Each image corresponds to a different patient, so the total number of patients that

contributed to the constitution of this dataset is equal to the total number of images:

622. The Table B.2 and Figure B.1 are a summary of the structure of this dataset.

Before and After Treatment (BAT): 34 retinal images with laser marks and 15

without laser marks. The images were kindly provided by Centro Cirúrgico de Coimbra

(CCC). This dataset is composed by images from 9 patients. Each patient contains

retinal fundus images from before and after treatment. The images with the letter ”A”

in their filenames are labeled as ”Laser” and the images with the letter ”B” in their

filenames are labeled as ”No Laser”. The Table B.3 and Figure B.2 are a summary of

the structure of this dataset.

Proprietary Dataset João Dias (PDJD) [46]: 101 retinal images with laser marks

from a DR screening program in the centre region of Portugal before 2013, managed

by ARS Centro. All of the images are non-mydriatic and have a 45o FOV and were

captured using Canon CR6-45NM Retinal Camera and have a resolution of 768 by 584

pixels. This dataset contains images selected by image processing experts and they were

not classified by any optometrist or ophthalmologist.

4.2 Image Pre-Processing

Before analysing the content of the retinal images, each image is subjected to a pre-

processing step. This is one of the most important phases because the photographic

protocol, the image acquisition technique and the camera itself may not allow to clearly

identify all the different anatomical structures of the retina. For these reasons, getting a

”clean” version of the original retinal image is a huge progress towards having an efficient

segmentation that allows a good performance of the algorithm in the end. Figure 4.3

shows the sequence of techniques applied in this pre-processing step.

The following subsections will cover the different operations represented in Figure 4.3.

Subsection 4.2.5 was added to explain how the sizes of the kernels used throughout the

pre-processing and following sections were chosen.



Chapter 4. Automatic Laser Mark Detection Algorithm 34

Retinal Image

Processing Image

Resizing and Cropping

Correction of Uneven Illumination

Contrast Enhancement using Adaptive
Histogram Equalization

Vascular Network + OD Segmentation

Green Channel Separation + Noise 
Reduction

Figure 4.3: Flowchart of the pre-processing step.

4.2.1 Retinal Image Resizing and Cropping

Image resizing is performed only in case the image diagonal is smaller than 400 pixels or

larger than 1500 pixels. When these conditions are met, this resizing step changes the

number of rows and columns so that the corresponding diagonal is within the 500 and

1400 pixels, using a bicubic interpolation.

Then, the resized image is cropped circularly leaving only the central region of interest

(ROI) of the retinal image. This operation uses a mask similar to the one shown in

Figure 4.4a. The result of this cropping operation (application of the circular ROI mask

on the retinal image) is shown in Figure 4.4b.
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(a) (b)

Figure 4.4: (a) Region of Interest (ROI) and (b) cropped version of the original retinal
image.

4.2.2 Vascular Network and Optic Disc Segmentation

In any digital retinal fundus image, there are at least three identifiable anatomical

structures: the Vascular Network, the Optic Disc and the Fovea. Other structures and

lesions can be seen in a retinal image depending on the patient’s condition, but these

three are common to every person.

During a treatment session, the operator cannot aim the laser to any of these anatomical

structures. As it was already explained in chapter 2, if the patient looks directly to the

beam, the central vision (fovea) is immediately compromised. Also, the laser beam can

be used to stop and destroy growing blood vessels, but does not leaves scars in the

vascular network. Moreover, photocoagulation treatment is not applied to the OD and

no scars will occur in its vicinity, for clinical reasons.

Therefore, since there will not be any laser marks on the regions co-located with the

vascular tree, OD and fovea, these regions can be excluded from further processing

performed to identify candidate laser marks.

A mask for the Vascular Network and a mask for the OD were obtained and the respective

binary images shown in Figure 4.5 will be useful for further processing, specially for

extracting Candidate Regions (Section 4.3).

The extracted vascular network is used to remove false detections during Candidate

Regions Extraction. Since laser marks are not found on top of the vascular tree or in its

vicinity, as a first step the vessels in the vascular tree binary mask are enlarged through

the application of a dilation operation as described in Equation 4.1
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(a) (b)

Figure 4.5: (a) Vascular Network mask and (b) OD mask of the original retinal image.

vesselfinal mask = vesseloriginal mask ⊕ kvessel (4.1)

where vesseloriginal mask is the vascular network extracted, ⊕ represents dilation and

kvessel represents the circle-shaped structuring element. The size of this kernel is defined

in subsection 4.2.5).

The fovea was not extracted because not only it is a very small point (very few pixels),

but also it was not easily detectable or present on every image used in this work, since

some field 1 retinal images did not cover it. The blood vessels extraction is based on the

Contourlet Transform [59]. The OD identification method is based on [60].

4.2.3 Uneven Illumination Correction and Contrast Enhancement

Poor illumination of the retina and other problems occuring during the image capture can

result in fundus images with large spatial variations in the locally averaged luminances.

This is a common problem that brings additional difficulties to the identification of the

anatomical and pathology-related structures of the retinal image. There are several

state-of-the-art techniques to correct this illumination issue such as top-hat filtering [61,

62], homomorphic filtering [62] and changing the Value channel in HSV colorspace [63].

In this work, the retinal image is converted to the L*a*b* colorspace [64] in order to

correct the uneven illumination by changing the L* color component (Figure 4.6). Each

value of L* represents the brightness of the corresponding pixel.
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Figure 4.6: L* color component of the retinal image.

Firstly, a local means image (Llm) is computed from the L* component (Equation 4.3).

This image was obtained by performing a 2D convolution btween L* and the kernel klum

(Equation 4.2, where J is a square matrix of ones). The size of this kernel is clum and

the value of each element is 1
c2lum

. For the retinal images with a resolution of 584 by

768 pixels, clum value was set to 28 after observing the result of the uneven illumination

correction with clum varying between 20 and 40.

klum =
1

c2lum
× Jclum (4.2)

Llm = L*(x, y) ∗ klum(x, y) =
∞∑

n1=−∞

∞∑
n2=−∞

L*(n1, n2) · klum(x− n1, y − n2) (4.3)

In other words, Llm is a map of luminance values where each pixel is equal to the mean

of L* in the pixel’s neighbourhood clum by clum and it is normalised to [0,1]. Then,

L* is divided by Llm plus a constant in order to obtain the final L* color component.

The purpose of this mathematical expression (Equation 4.4) is to reduce the luminance

of the brightest areas (higher values in Llm) and increase the luminance in the darkest

areas (lower values in Llm). The value of the constant depends on the mean value of

L* and it was determined empirically by observation: if the mean is lower than 0.32,

the constant is 0.45, otherwise this constant is equal to 0.3. The uneven illumination

problem is solved by replacing L* with L*final (Figure 4.7).

L*final = L*
Llm+0.45 , meanL* < 0.32

L*final = L*
Llm+0.3 , meanL* > 0.32

(4.4)
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Figure 4.7: L* color component after uneven illumination correction (L*final).

Most laser marks present a bright appearance and to take advantage of this charac-

teristic an adaptive histogram equalization step is applied to the ilumination corrected

L* channel, improving the contrast between the laser marks and the background and

enhancing the brightness. The result of this color-domain image enhancement is shown

in Figure 4.8.

Figure 4.8: Retinal Image after Adaptive Histogram Equalization in the L*a*b* col-
orspace.

4.2.4 Green Channel Separation and Noise Reduction

The image is then converted back to the RGB colorspace. At this point, several channels

are extracted and saved because they will be useful to calculate some features. The Red

channel from the RGB colorspace, the Hue and the Saturation channels from the HSV

colorspace are obtained in order to be used for intensity-based descriptors in subsection

4.4.4.
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Further processing is done using only the information from the green channel. Not only

there are bright laser marks, but also there are several with a dark appearance. However,

most of these dark laser marks are green, so extracting the green channel results in an

image where the intensity of the pixels containing the laser marks, whether they are

bright or green, is very high. On the other hand, the pixels of the vascular network

have a very low intensity, which means that the green channel shows the best contrast

between anatomical structures and background [65].

An additional filtering of the green channel is then performed using a 5x5 median filter

(for the retinal images with a resolution of 584x768) to reduce the noise. The result of

this latest operation is represented in Figure 4.9 which shows a gray-level encoding of

the green-channel image obtained after median filtering.

Figure 4.9: Final image resulting from the pre-processing step.

4.2.5 Kernels and Constants

Some morphological operations and mathematical expressions in image processing re-

quire choosing some parameter values and kernel sizes. In this case, the main objective is

to develop an automatic and robust algorithm, so a criterion is necessary to set these val-

ues automatically because we desire a method that requires as little human intervention

as possible.

The sizes of the filter kernels have a considerable impact on the output of the image

processing operations. It is therefore very important to take into consideration the ROI

area, the FOV angle, the brightness and the size of the anatomical structures of the

retinal images.
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The first experiments of the proposed algorithm were performed on several images with

a resolution of 584x768 from the Screening Dataset and some constant values and kernel

sizes were determined for these images. However, after testing the algorithm with these

same values on other datasets, the results were far from acceptable. For this reason, it

was decided to adopt a scaling approach such that some constants and parameters, such

as kernel sizes, are scaled according to the major characteristics of the image, such as

ROI and OD size. This scaling uses a parameter called scaling constant defined shortly

(Equation 4.5).

After carefully inspecting a wide range of retinal images, it is possible to conclude that:

• There is a wide variety of different resolutions, so it is important to obtain measures

independent to resolution. In other words, relative distances and sizes are the

measures used in this work.

• A lower FOV angle usually leads to a higher ROI area, so the anatomical structures

are larger, if the resolution is kept constant. In another perspective, it is similar

to the effect of a zoom-in command.

• Laser marks are typically about 20%-50% of the OD’s size, so this anatomical

structure is a good term of comparison. The application of these relative measure-

ments is not a novelty in ophthalmology, since it is common to use the OD’s size

as the measurement unit.

The images with a resolution of 584x768 were used as the reference. Every ROI of

these images have the same area, so does the (ROI diameter = 480) pixels. Most of

the segmented ODs have a OD diameter = 110 pixels and the observed ODs vary be-

tween 100 and 120 pixels. Taking the stated observations into account, for each image,

ROI diameter and OD diameter are calculated and then divided by the reference (de-

nominator of Equation 4.5) in order to obtain scaling constant.

scaling constant =
ROI diameter −OD diameter

480− 110
=
ROI diameter −OD diameter

370
(4.5)
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Let us take clum as the example to explain the application of scaling constant. For

the images with a resolution of 584x768, clum =28. However, in order to adapt this

parameter to different retinal images, this luminance constant was changed to clum =

28 × scaling constant, where 28 was obtained after a series of empirical experiences.

The same happens to every other kernel size used in this thesis except for kvessels, which

is slightly different. Most kernel sizes were determined after several experiments in

images with a resolution of 584x768, for example by varying a certain kernel size in an

interval of values and selecting the value that produced better results. The value of

kvessels was obtained according to the description in [57]: the maximal width of vessels

is estimated to be ROI diameter
74 . The purpose of the filter used to enlarge the vessels is

to avoid detections of laser marks in the areas nearby the vasculature, the size of the

kernel size was determined to be the double of the maximal width of the vessels, hence

kvessels = 2× ROI diameter
74 × scaling constant.

To clarify how the Equation 4.5 was obtained, let us take the images from the EOEX

dataset for example. After the resizing step, every image of this dataset has a reso-

lution of 1024x683 pixels. As a consequence, the anatomical structures are larger and

therefore a larger kernel is needed. This part of the problem is solved by the fact that

ROI diameter is greater than the diameter of 480 pixels from the reference ROI, so ini-

tially it was set that scaling constant = ROI diameter
480 . However, there is still an issue to

consider: the use of this initially proposed scaling constant in images with low ROI size

from the S dataset and in images with high resolution from the BAT dataset was making

the clum and the minimum radius used in the segmentation algorithms (Section 4.3) so

high that the small-sized laser marks were not being detected as candidates, so the task

of detecting images ”Laser” became more difficult. For this reason, OD diameter is

subtracted from ROI diameter with the purpose to slightly lower this constant, so that

more laser marks can be detected even if some false detections also occur. Also, retinal

images with a large OD also have thick vessels, so if a high scaling constant value is

used, the masking operation using the binary image containing the blood vessels (Figure

4.5a) after applying the morphological operation in equation 4.1 may incorrectly lead

to the removal of laser marks detected by the segmentation algorithms. In these situ-

ations it is also important to reduce the value of the constant, hence the subtraction

operation solves this problem. Some retinal images illustrating this issue can be found

on Appendix C.
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4.3 Candidate Regions Extraction

As a first step to obtain the features that will be used to classify the retinal images,

the proposed algorithm identifies small patches of pixels which represent potential laser

scars. The detection of these candidates is performed using three different algorithms:

Circular Hough Transform (CHT), Frangi Vesselness Filter (FVF) [66] and an algorithm

proposed in [67], which will be referred as Laser Mark Segmentation (LMS). Each of

these algorithms will be discussed in detail in the following subsections. In the end, the

outputs of each of these three segmentation algorithms are merged to obtain the entire

set of candidate laser marks.

4.3.1 Circular Hough Transform

Hough Transform is a very popular method introduced by Paul Hough and used in

Computational Vision that efficiently identifies lines and circles in images. This trans-

form has several variants and each of them has applications in various fields, specially

in automated digital image analysis for shape detection [68].

One of these variants is the Circular Hough Transform which was firstly introduced by

Duda and is used to detect circular shapes in digital images. It is very used in medical

imaging, for example to detect welded joints in radiographies [69] and even to detect

MAs [70, 71] and the OD [60] in retinal images. Since in many cases the laser beam leaves

circle-like scars, CHT is one of the best operators one can use to detect laser marks, also

due to its robustness in the presence of noise, occlusion and varying illumination.

Circular Hough Transform is a technique equivalent to a convolution between the image

and a circle operator. Firstly, an edge detector is applied to the processing image in

order to obtain a binary image space of edge points. Each edge point in the image space

contributes a circumference of radius R to a parameter space or accumulator array. In

other words, for each pixel of the binary image with edge points, a circumference with

a desired R is drawn in the parameter space. Figure 4.10 represents schematically the

concept of this step of the algorithm [70, 72].

If enough circles with a certain radius R drawn in the parameter space intersect in the

same point, it can be concluded that a circumference with that radius R is found at
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Figure 4.10: Brief explanation of the CHT algorithm: a) Contribution of edge points to
the accumulator space b) Edge point contribution to a single accumulator point [72].

the pixel (x0, y0), which is the center of the found circumference. Therefore, the task

of detecting shapes in the image space is simplified to peak finding in an accumulator

array, as shown in Figure 4.11 [69, 70, 72].

Figure 4.11: Example of an accumulator array containing a peak corresponding to a
detected center of a circle resulting from CHT [70].

In the proposed algorithm, the accumulator array is normalised to [0,1] and the threshold

value to consider a pixel as the center of a circumference is set to 0.225. The interval

of radius values used during CHT varies between 6 and 30 pixels for images with a

resolution of 584x768.

Obtaining the binary image with the edge points is a defining phase that has a consider-

able impact on the final output of the CHT algorithm. Sobel and canny edge detectors

are the most popular state-of-the-art techniques and the last one mentioned is usually

used in CHT. The canny edge detector smooths the processing image with a gaussian

filter to reduce noise and then computes gradients using sobel operators to find the edges

where the change in grayscale intensity is maximum. A non-maximum suppression is
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carried out to preserve all local maxima and finally a double threshold is applied to get

the final binary image with the edge points.

However, the authors in [73] and [74] pointed out two problems: although the gaus-

sian filter removes the noise, it also smoothes and weakens the important edges which

increases false edges detection and the two thresholds used are set manually. These

problems were also verified when applying the traditional CHT in these retinal images.

As a consequence, Gao Jie and Liu Ning proposed the use of a bilateral filter [75] instead

of gaussian filter and the use of Otsu’s method for thresholding [76]. These two sugges-

tions were applied in the proposed algorithm and proved to be very effective. In fact,

the bilateral filter not only smooths the image but also sharply detects and preserves

the edges, reducing the probability of false edges.

The output of the proposed CHT is a vector for each laser mark detected containing

the pixel coordinates of the center of the detected circle, the corresponding radius and

the value of the center in the accumulator array, which will be called lCHT from now on

because it indicates how similar to a circle the detected laser mark is. Figure 4.12 shows

a binary image with circles that represent the output of the CHT algorithm.

Figure 4.12: Binary image of the detected laser mark candidates using Circular Hough
Transform.

4.3.2 Frangi Vesselness Filter

Alejandro Frangi et al. [66] developed a filter that measures vesselness of medical images

based on the eigenvalues of the Hessian of the image. They tested their algorithm on

Digital Subtraction Angiography (DSA) and Magnetic Ressonance Angiography (MRA)
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images, proving that the Frangi Vesselness Filter shows very good noise and background

suppression and vessel enhancement in both 2D and 3D images.

The algorithm proposed by Frangi has been widely used in different imaging modali-

ties. For example, FVF can be used in 3D lung vessel segmentation [77], in coronary

artery segmentation in Computed Tomography (CT) images [78, 79] and even in vessels

enhancement in digital colour fundus images [53, 80, 81].

The FVF is based on a multiscale vesselness approach that detects tubular, ridge and

blob-like objects in medical images. In fact, when FVF is applied on retinal images

with photocoagulation scars, not only the vascular network is detected but also the laser

marks that have a blob-like shape. For this reason, FVF is another of the three operators

used to identify potential laser marks. After applying the FVF to the retinal image, a

binary image containing the blood vessels and the laser marks is obtained and since a

mask with the vascular network is obtained for each image during pre-processing (Figure

4.5a), the vessels resulting from FVF are removed, keeping solely the laser marks as the

final output.

Frangi Vesselness Filter searches for geometrical structures which can be regarded as

tubular and blob-like and these can appear in different sizes. Therefore, a multiscale

approach is used, so this is an iterative algorithm that merges the vesselness measure

computed for each scale size σ. For each iteration, the retinal image is convolved with a

Gaussian filter with a kernel of size σ. Then, the Hessian matrix is calculated, according

to Equation 4.6, where I is the processing image.

H(I) =

 ∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

 (4.6)

From the Hessian matrix, the eigenvalues λ1 and λ2 are calculated with | λ1 |<| λ2 |.

The idea behind eigenvalue analysis of the Hessian is to extract the principal directions

in which the local second order structure of the image can be decomposed. Therefore,

low λ1 values occur when the structures are tubular and high λ1 values occur when the

structures are blob-like. Also, if λ2 <0, the structures are bright, otherwise the objects

have a dark appearance. Figure 4.13 is Table 1 reproduced from [66] that summarizes

the type of objects detected as a function of the Hessian’s eigenvalues.
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Figure 4.13: Possible patterns in 2D and 3D, depending on the value of the eigenvalues.
N - Null, L - Low, H - High. It is a copy from Table 1 in [66].

For 2D images, Frangi originally proposed a vesselness measure for each scale Vσ, ac-

cording to Equation 4.7

Vσ =

0, λ2 > 0

exp(− R2
b

2β2 )(1− exp(− S2

2c2
)), λ2 < 0

(4.7)

where Rb = λ1
λ2

is the blobness measure and S =
√
λ21 + λ22 is the Hessian’s matrix norm,

also known as Frobenius norm. If the value of this norm is low, it means that Vσ is low

in the background pixels, where no structure is present and the eigenvalues are small

for the lack of contrast. The parameters β and c control the sensitivity of FVF to the

measures Rb and S respectively. The authors in [82] suggest that β =0.5, c = half of

the maximum value of the Frobenius norm and that the set of σ values to be used is

{1,3,5,7,9}. In this work, c and the set of σ values used are the same as in [82], but β

is equal to 0.25 because using the recommended value resulted in the detection of noisy

pixels, so the value of this parameter had to be lowered in order to avoid this situation.

In the proposed algorithm, there is another slight but very important change compared

to the original FVF. Since the processing image results from the green channel of the

original RGB image, the vessels have the lowest intensity so they have a dark appearance.

As a consequence, the condition used for Vσ=0 in Equation 4.7 is λ2 >0. Another reason

for changing this condition is because the CHT already searches for bright objects, so it

is important to have an algorithm that detects the dark laser marks, which is the role

of the FVF used in the proposed algorithm.
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FVF returns a grayscale image where the presence high intensity pixels means a potential

vessel or blob-like structure. A threshold value is computed using Otsu’s method in

order to get a binary image. Afterwards, the pixels belonging to the OD and Vascular

Network masks are removed. Also, an area opening operation is performed to remove

the small regions detected, so regions with an area lower than 100 pixels for images

with a resolution of 584x768 are removed to obtain the output binary image of the FVF

algorithm, such as the one shown in Figure 4.14.

Figure 4.14: Binary image of the detected laser mark candidates using Frangi Vesselness
Filter.

4.3.3 Laser Mark Segmentation

The third and last segmentation algorithm used was based on a dissertation by Sohini

Roy Chowdbury from University of Minnesota titled ”Automated Segmentation and

Pathology Detection in Ophthalmic Images” [67] to complete her PhD degree. In this

dissertation, several segmentation algorithms are proposed: automated vessel segmen-

tation, automated OD segmentation, automated non-proliferative DR detection, auto-

mated PR detection and automated segmentation of OCT images. The automated PR

detection is proposed in chapter 6 of Sohini’s work and one of the steps is the detection

of laser scars and fibrosis described in section 6.2.1 [67].

The author suggests an initial pre-processing step not very different to the one described

in section 4.2: the green channel from each retinal image is extracted and the pixel

intensities are scaled in the range [0,1] followed by contrast enhancement.

A morphological operation - erosion - is performed on the image (I) using a circular

structuring element and then an image reconstruction is performed on I, using the output
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of the erosion operation as the mask. Finally, the reconstructed image is subtracted from

I and subjected to contrast enhancement in order to obtain the final image that will

be used in the LMS segmentation (ILMS). The circular structuring element used by

Sohini has a radius of 15 pixels for images with a resolution of 500x500. In the proposed

algorithm, the structuring element also has a radius of 15 pixels for a resolution of

584x768.

For each retinal image, a threshold value is computed and applied to ILMS using Otsu’s

method. Then, the pixels superimposing the Vascular Network and the OD are ignored.

Finally, two discriminating parameters are computed in order to select which regions of

ILMS represent potential laser marks. These parameters are:

• Roundedness (f1) - it is the ratio of the major to minor axis length of the region.

Most laser marks have a circular shape, as it was stated when describing the CHT

algorithm. Therefore, f1 ≥1 and f1 =1 for regions that have a circular shape.

• Solidity (f2) - it is the ratio of the area to the convex hull bordering the region.

It is a parameter with a range of [0,1] and it is high for regions that are convex,

which is characteristic for laser scars.

A candidate region is considered a potential laser mark if 1< f1 <2.5 and f2 >0.8.

Moreover, regions with an area lower than 100 pixels for images with a resolution of

584x768 are removed, similar to what was done during FVF algorithm. The output

binary image of LMS is represented in Figure 4.15.

Figure 4.15: Binary image of the detected laser mark candidates using Laser Mark
Segmentation.



Chapter 4. Automatic Laser Mark Detection Algorithm 49

After applying CHT, FVF and LMS algorithms, the regions detected with each algorithm

are merged in order to obtain the final set of candidate regions. The potential laser marks

drawn in Figure 4.16 are the starting point to compute the features that will be used

for the final classification.

Figure 4.16: Original retinal image with all the detected candidate regions drawn: CHT
- yellow, FVF - blue, LMS - green.

4.4 Features Computation

After identifying the regions candidate to be laser marks, a total of 65 features are

calculated for each retinal image in order to obtain a vector containing 65 values that

will be used with a classifier to determine if the image is ”Laser” or ”No Laser”. The

features are divided in 4 categories:

• Geometrical Descriptors - a set of 12 features that includes the number of

candidate regions, their total area, average radius and likelihoods to a circle for

the segmentation algorithms described in Section 4.3.

• Texture Descriptors - a set of 27 features that represent an analysis of texture

statistics. This is the only category where the features are computed directly from

the processing image and not from the candidate regions. There are six texture

descriptors introduced by Gonzalez and Woods [83] and the remaining 21 result

from an implementation of 11 Haralick features [84] plus 10 features based on

[85, 86].

• Spatial Distribution Descriptors - a set of 10 features that describe the distri-

bution of the candidate regions in the retinal image. In short words, these features
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represent the distances between the laser marks and describe if they are dispersed,

clustered or randomly distributed in the ROI of the retinal image.

• Intensity-based Descriptors - a set of 16 features related to the intensity values

of the candidate regions on each channel saved during pre-processing (red, hue

and saturation) plus the processing image (green channel with median filter). The

computation of these features was inspired by Tahir Fazar’s work [47].

4.4.1 Geometrical Descriptors

The features in this category depend on general characteristics of the detected candidate

laser marks.

number CHT , number FVF and number LMS are the number of regions detected

by the Circular Hough Transform, by the Frangi Vesselness Filter and by the Laser

Mark Segmentation algorithms, respectively, after exclusion of false marks overlapping

the OD and the Vascular Network.

area CHT is the total number of pixels detected by the Circular Hough Transform

divided by the number of pixels of the OD. In this category of features, the OD is used

as the term of comparison. area FVF and area LMS are calculated in the same way

as area CHT but for the blobs detected by the Frangi Filter and for the marks detected

by the Laser Mark Segmentation.

Moreover, two likelihood features are calculated. For CHT, one of the outputs already

mentioned is the value of the accumulator array at the position of the center of each

circle detected. This value indicates the likelihood lCHT that the detected region is a

circle. Therefore, likelihood CHT is the mean of the likelihoods lCHT of all circles

detected by the CHT algorithm. For the FVF detector, the likelihood of each blob is

lFV F=1-ecc, where ecc is the eccentricity value computed for each blob and if ecc=0,

it means that the corresponding blob is a perfect circle. The value of likelihood FVF

is the average of the likelihoods lFV F of all blobs detected by the FVF algorithm. The

individual likelihoods lCHT and lFV F take values in the interval [0,1] with 1 indicating

a perfect circle.

Two other features are calculated based on the likelihood measures. These two features

are weighted areas, which are the sum of the products between the number of pixels of
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each region (area) and their respective likelihood parameter divided by the number of

pixels of the OD, as described in Equation 4.8.

weighted area =

n∑
i=1

liπR
2
i

OD
(4.8)

Therefore, weighted area CHT is the weighted area of the circles detected by the

CHT, where n is number CHT , li is the lCHT and Ri is the radius of each circle and

weighted area FVF is the weighted area of the blobs detected by the FVF, where n

is number FV F , li is the lFV F and Ri is the radius of each blob.

To complete the set of 12 geometrical features, two features related with the radius of

the regions are computed. For each potential laser mark, the radius Ri is extracted

and divided by the radius of the OD. The same procedure is performed for all the

other regions and then the mean and variance of those values are calculated to obtain

radius mean and radius var , respectively. These are the only two features of this

category where there is no discrimination between the three segmentation algorithms.

The normalization reflected in the divisions by the number of pixels in the OD and by

the radius of the OD performed during these features computations is fundamental to

make the algorithm invariant to changes in image resolution.

4.4.2 Texture Descriptors

The features in this category describe the retinal image texture based on the intensity

histogram of the image in the ROI. Haralick stated that ”too small a subimage region

will not have enough textural information to separate image categories of interest, while

a large subimage region may have objects belonging to several different categories” [84].

This means that an image containing only the laser marks lacks textural information

and hence it does not provide enough conditions to compute features that allow a good

classification performance. On the other hand, the ROI of the retinal image is better

suited, although every image contains the same two structures: the OD and the retinal

blood vessels. However, images where the retina is covered with PRP scars have a very

distinguishable texture in comparison to the normal ones.

Gonzalez and Woods [83] proposed six statistical texture measures:
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• avg green level - a measure of average intensity. It is described as

avg green level =
L−1∑
i=1

zip(zi) (4.9)

where zi is a random variable indicating intensity, p(zi) is the normalized histogram

of the intensity levels of the processing image and L is the number of possible

intensity levels.

• avg contrast - a measure of average contrast, which is the standard deviation of

the image. In Equations 4.10 and 4.12, m is the avg green level.

avg contrast =

√√√√L−1∑
i=1

(zi −m)2p(zi) (4.10)

• smoothness - a measure of the relative smoothness of the intensity in the ROI

of the retinal image. This feature is 0 for an image of constant intensities and 1 if

the intensity values vary drastically.

smoothness = 1− 1

1 + σ2
(4.11)

• skewness - a measure of the third moment of the histogram of the processing

image’s intensity levels. This feature is equal to 0 for symmetric histograms,

positive by histograms skewed to the right (about the mean) and negative for

histograms skewed to the left.

skewness =

L−1∑
i=1

(zi −m)3p(zi) (4.12)

• uniformity - a measure that is maximum when all green levels are equal. It takes

values in the interval [0,1].

uniformity =

L−1∑
i=1

p2(zi) (4.13)

• entropy - it is a statistical measure of randomness of the processing image.

entropy = −
L−1∑
i=1

p(zi)log2p(zi) (4.14)
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Table 4.1 contains the names of the remaining 21 features implemented [87] and the

reference of the work on which they were based [84–86]. These features were computed

from the Green Level Co-occurrence Matrix (GLCM). Most of these statistical texture

measures (11 features) were introduced by Haralick in 1973, giving birth to the so called

and famous Haralick features [84].

Texture Descriptor Reference

autocorrelation [85]
contrast [84, 85]

correlation [84, 85]
cluster prominence [85]

cluster shade [85]
dissimilarity [85]

energy [84, 85]
entropy glcm [85]

inv diff [86]
homogeneity [85]

max prob [85]
variance [84]
sum avg [84]
sum var [84]

sum entropy [84]
diff var [84]

diff entropy [84]
info corr 1 [84]
info corr 2 [84]

inv diff norm [86]
inv diff moment norm [86]

Table 4.1: Implemented 21 texture features based on [84–86].

4.4.3 Spatial Distribution Descriptors

The ten features in this category are representative of spatial descriptive statistics. It

is reasonable in this work to estimate these statistical parameters that describe spatial

patterns because laser marks can be regarded as a set of points/regions in a plane (retinal

image), so they can be represented as gridded data. The comparative values used to

normalize the computed features in this category are related to the ROI (ROI diameter

and ROI area, which is the total number of pixels in the ROI of the retinal image).
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First, the binary image containing the candidates in Figure 4.16 is used as input to

obtain the Convex Hull, illustrated in Figure 4.17. Three features are computed using

the Convex Hull [88, 89]:

• hull - it is the total number of pixels detected by the three segmentation algorithms

divided by the number of pixels inside the Convex Hull. This value varies between

[0,1] and if it is near to 1, it means that the laser marks are clustered.

• hull area - it is the number of pixels inside the Convex Hull divided by ROI area.

This value represents the portion of the retinal image occupied by the Convex Hull

of the laser marks.

• point density - it is the number of candidate regions divided by hull area. This

value represents the number of laser marks in function of the size of the Convex

Hull. For few laser marks, if the size of the hull is large, then point density will

be low, so it means that the laser scars are more dispersed.

(a) (b)

Figure 4.17: Convex Hull of the candidate regions (a) drawn in the binary image (b)
drawn in the processing retinal image.

To compute the remaining features, the centroid of each region is obtained and the

respective coordinates are stored. Also, it is very important to note that for the following

features, if there are less than three candidate regions, their values are set to zero. Three

simple measures of spatial dispersion can be defined by using the covariance matrix of the

coordinates of the centroids: the trace , the determinant and the max eigen (largest

eigenvalue) of the covariance matrix are three features that describe the dispersion of

the laser marks in the ROI of the retinal image, using only the set of centroids [90]. All

these three values are divided by ROI area to normalize.
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The analysis of the distances between the potential laser marks is also a good approach

to study the spatial pattern. A candidate region very distant from all the others has a

high probability of being an outlier and hence the probability of not being a laser mark

is high. Taking this premise into consideration, m dist total and v dist total are two

features based on the distances between each region and its closest neighbour. In order

to obtain these two features, the distance matrix (D) is computed using the matrix

containing the coordinates of the centroids. Then, the minimum value in each column

i of the distance matrix D (Di) is determined, divided by ROI diameter and saved in

a vector. The average of the elements of this vector is m dist total and the variance is

v dist total as decribed respectively in Equations 4.15 and 4.16 where i is the index of

the candidate region and n is the total number of candidate regions.

m dist total =

n∑
i=1

min{Di}
ROI diameter

n
(4.15)

v dist total =

n∑
i=1

(
min{Di}

ROI diameter −m dist total
)2

n− 1
(4.16)

The two features left to describe are Moran’s I Observed Value (moran i) and Moran’s

I Statistic (moran null hipot) [91, 92], two indicators of the spatial autocorrelation of

the given set of centroids. The practical examples and applications of these two measures

are presented in [93].

Moran’s I Observed Value varies between [-1,1]. If it is equal to -1, it indicates perfect

dispersion of the points; if it is equal to 1, it means perfect autocorrelation of the set

of points (clustered); if it is equal to 0, it indicates the presence of a random spatial

pattern.

Moran’s I Statistic is a statistical test that represents the confidence of moran i value,

so moran null hipot is a binary feature. The null hypothesis states that the attribute

being analyzed, which is the set of the calculated centroids, is randomly distributed in

the ROI. If the p-value is statistically significant at the 5% level, the null hypothesis

can be rejected and moran null hipot =1. On the other hand, if the p-value is not

statistically significant at the 5% level, the value of moran null hipot is null.
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4.4.4 Intensity-based Descriptors

As mentioned in the beggining of this section, the 16 features of this category are inspired

on Faraz’s work [47] and they describe the intensity values of the potential laser marks

on four different image planes.

The binary image of the candidates present in Figure 4.16 is used to mask the processing

image, the red channel of the retinal image in the RGB colorspace, the Hue dimension

of the retinal image in the HSV colorspace and the Saturation dimension of the retinal

image in the HSV colorspace, resulting in four different images: green, red, hue and

sat.

Four features are computed from each of these images normalized to [0,1]. In each image,

the average intensity value and respective variance are calculated for each laser mark

and stored in the arrays mean intensities and var intensities. Then:

• The average of mean intensities is extracted and the result are the features

mean laser green , mean laser red , mean laser hue and mean laser sat .

• The average of var intensities is extracted and the result are the features var laser green ,

var laser red , var laser hue and var laser sat .

• The maximum value of mean intensities is extracted and the result are the fea-

tures max laser green , max laser red , max laser hue and max laser sat .

• The variance of var intensities is extracted and the result are the features vari-

ance var green , variance var red , variance var hue , variance var sat ,

4.5 Classification

A classifier is an algorithm that receives data containing descriptive information as

input and returns a final decision for each instance of the input data. The classifiers

used in this work were the Decision Tree (pruned C4.5) [94] and Random Forests [95].

Also, a classifier beased on a simple threshold method was applied. (Subsection 4.5.3).

Tree-based classifiers are knowledge-based systems that are very popularly used to solve

difficult and complex real-world problems. They are characterised for being accurate,
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robust, with high execution speed, reliable and producing descriptive outputs that can

be interpreted by the user, using a set of features as inputs. Not only do these properties

make the tree-based classifiers well-known in the scientific community, but also they are

very simple to use and to implement because the user only needs to provide learning data,

such as the 65 features computed previously, in order to train and build the classifier and

generate a representation of the acquired knowledge [94, 96]. The subsections 4.5.1 and

4.5.2 briefly describe the theoretical concepts of the Decision Tree and of the Random

Forest, respectively.

4.5.1 Decision Tree

Ross Quinlan introduced an algorithm (ID3) based on a family of learning systems

that are characterized by their representation of acquired knowledge, such as decision

trees [96]. ID3 is a supervised learning algorithm that builds a classification rule ex-

pressed as a decision tree from a given set of examples (features) and the resulting tree

is used to receive new instances and make a decision for each instance of the input [97].

Quinlan explains the generation of a decision tree by giving a pratical example: according

to the weather of a Saturday morning, should an unspecified activity be positive (P)

or negative (N)? The attributes used to describe the weather are the outlook (sunny,

overcast, rain), temperature (cool, mild, hot), humidity (high, normal), windy (true,

false). The author used the attributes and respective values in Table 1 in [96] as the

training set and obtained the tree shown in Figure 4.18.

Figure 4.18: Decision Tree built using the training set of attributes and respective
values of the weather a Saturday morning. This figure corresponds to Figure 2 in [96].

For example, an instance with the following parameters (outlook=rain, windy=true) will

be classified as N by the tree in Figure 4.18. During training phase, each node of the
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decision tree is obtained by calculating a gain for each attribute and the one with the

highest gain is the attribute selected for the corresponding node. This measure is the

Information Gain1 and it is based on the entropy of each attribute. The ID3 algorithm

stops after every attribute are used or after every instance of the training set can be

correctly classified by the tree model in construction [96].

There are some limitations to the ID3 algorithm: it only works with nominal attributes,

there is a risk of overfitting which leads to a loss of predictive accuracy and it is too

sensitive to attributes with a wide range of values which contributes to a biased tree

model. To overcome these issues, Quinlan et al. [98] developed latter another algorithm

using decision tree - C4.5. The latter algorithm is compatible with continuous variables

and instead of Information Gain it uses Gain Ratio1 for attribute selection at each node.

Overfitting can be avoided by adding a stopping criterion during training phase, but in

this specific case the decision tree is built first and then some of the structure of the tree

is removed (pruning) [98].

4.5.2 Random Forest

Leo Breiman [95] introduced the concept of Random Forest, an ensemble learning

method that is based on the building and aggregation of several decision trees. Random

Forests are accurate classifiers and regressors that were originally developed correct the

overfitting risk of decision trees. The main criterion of random forests is the minimization

of a generalization error. This error converges to a limit as the number of decision trees

in the forest becomes large because of the Law of Large Numbers and it depends on the

strength of the individual trees and on the correlation between them.

At the training phase, a random selection of features from the training set is performed

to split each node for each tree of the forest. In other words, each set of randomly

selected features is generated to govern the growth of each tree, which are not pruned,

in the ensemble. The purpose of this randomness approach is to minimize the correlation

between trees in order to improve the accuracy of the random forest.

Out-of-bag estimates are calculated during training with the purpose of monitoring the

generalization error. This means that before the random feature selection one-third of

1For more details about the Information Gain and Gain Ratio, please consult Appendix A
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the instances are left out so that the error rates computed from the growing trees using

this portion of instances overestimate the current/real error rate. This bagging strategy

allows the enhancement of the accuracy when random features are used and it gives

ongoing estimates of the generalization error as well as the stength and correlation.

In the end, after the generation of a certain number of trees chosen by the user, a voting

process is carried to select the most frequent class and make the final decision [95].

4.5.3 Threshold-based classification

The threshold-based classifier is a very simple approach and easy to implement. The

simplicity of this method is due to the fact that the final decision is directly extrapolated

from very few features, which are the candidate regions detected for each segmentation

algorithm in this work. For instance, a threshold is applied to the number of candidates

detected by one of the three segmentation algorithms. The number of candidates was

varied and the condition applied was that if a retinal image presented an equal or greater

number of candidates than the threshold, that image would be classified as ”Laser”. The

number of candidates for which this simple classifier had the smallest classification error

was considered the optimal threshold and its computation can be interpreted as the

training step.

4.6 Features Selection

Feature selection is a fundamental problem in many areas because it reduces the di-

mensionality of feature space, removes redundant, irrelevant and noisy data. For this

specific problem, all features might be important but usually only a small subset of fea-

tures is relevant. ”Until recently, classification tasks with more than 50 attributes were

considered to have a high dimensionality” [99]. Therefore, the purpose of this section is

to identify which minimum size subset of the 65 features is more suitable for performing

a fast and accurate final classification [100, 101].

The software used for feature selection, classifiers’ training and testing was the WEKA

framework [102]. The dataset used to train the classifiers is a union of the S and

EONMA datasets, resulting in 203 retinal images ”Laser” and 652 retinal images ”No
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Laser”. These two datasets were chosen because their images have different resolution

and were captured by different cameras so that the selected features are more likely to

represent the diverse type of images encountered in real life. This is one of the most

crucial steps to certify that the algorithm is robust and at the same time has a wide

variety of datasets for testing.

There are two types of feature selection methods: Filter and Wrapper methods. The

filter method uses statistical characteristics of the data to evaluate and returns a score of

variable importance for each feature. It is independent of any learning algorithm and it is

computationally simple. This method ranks and selects the most relevant features that

can be provided as input to different classifiers. The inconvenience of filter method is

that the resulting features are usually redundant. The wrapper method leads to a better

performance than filter methods because it is a scheme-dependent attribute evaluator,

which means it is optimized for the classification algorithm to be used, although it needs

a high computational effort. Wrappers are a type of feature selection that calculate a

score for a subset of features by making use of a classifier that uses only the features

from that subset and return a predictive performance. In other words, this features

selection method selects several subsets, then it uses the classification algorithm itself

to measure the predictive quality of each subset of features and the one which provides

the best performance is considered the best set of features to be used with that specific

classifier. Choosing all possible subsets means a huge consumption of computional time,

so a search method is usually coupled to the wrapper with the purpose to reduce the

complexity without compromising the performance [99, 101, 103].

In this work, it was used a mixture of these two methods similar to what was proposed

in [99]. First, an attribute evaluator based on information theory is used to rank all

65 features according to their relevance score. Then a threshold is applied to remove

the least important features. The output of this filter method serves as input to a

wrapper method with a forward selection as the searching method, which will eliminate

the redundant features and keep only the most important ones.
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Several approaches to the variable selection problem using information theoretic crite-

ria have been proposed. Information Gain (IG) and Gain Ratio (GR) 2 are scheme-

independent attribute evaluators that rely on empirical estimates of the mutual infor-

mation between each variable and the target or class [104]. Information Gain is based

on entropy, which is a common information theory measure and it scores the system’s

unpredictability. One inconvenience of IG is that it is biased in favor of features with a

wide range of values, even if they are not more informative. Gain Ratio is a modification

of IG to correct its bias by dividing IG by the intrinsic information of a split. This is

an approach similar to a normalisation, so GR decreases as intrinsic information gets

larger [100, 103, 105].

The purpose of using one of these filters is to discard irrelevant features from the feature

vector because they introduce noise in the data and may overshadow the important

information present. Therefore, using the training dataset (S+EONMA), two feature

ranks were obtained: one using IG as attribute evaluator and the other one using GR.

For each rank, the filter method was completed by applying a threshold t = 0.1. This

threshold operation using IG resulted in 40 out of 65 features remaining, while for GR

43 out of 65 features followed the criteria. Figure 4.19 shows the features that had a

value greater than 0.1 for at least one of the filters (IG or GR) and their respective

scores for each filter method. Some bars are absent in the figure because for one of the

information measures the score was lower than 0.1 and therefore set to zero. A high

score of a feature for a certain filter means that the corresponding feature is important

when using that filter method. Figure 4.19 confirms that the importance of each feature

is different depending on the filter method applied.

The subsets that resulted from the filtering method were used as input for the wrapper

evaluation. The wrapper used is a WEKA-implementation with default settings that

evaluates subsets using a classifier determined by the user and performs an inner strat-

ified 5-fold cross-validation on the training dataset. Sequential Forward Selection is the

hill-climbing search technique used in the wrapper. It starts with the empty subset,

it evaluates all possible single-feature extension of the current subset and the feature

that leads to the best accuracy of the current classifier is added permanently. Usually

the search terminates when no single-feature extension improves the current accuracy.

This poses a problem: is the optimal value a local or an absolute maxima? To solve

2For more about the information theory measures, please consult Appendix A
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Figure 4.19: Information Gain (red) and Gain Ratio (blue) measures of each feature
after thresholding at t = 0.1. The features are ordered in descending order of GR

measure.
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this problem, a bi-directional search was proposed by the scientific community, but in

this work a different approach is followed. The classical forward selection is used, but

a stop criteria of 15 nodes is added: this means that the search only terminates after

consecutively adding 15 features without improving the accuracy, instead of stopping

right after the first attempt without improving the performance [99].

The classifiers used in this wrapper method were: pruned C4.5 Decision Tree (DT),

which is the J48 classifier on WEKA, Random Forest with 5 trees (RF5), Random

Forest with 50 trees (RF50), Random Forest with 500 trees (RF500) and the training

dataset used was (S+EONMA).

The following subsections describe the results of this features’ selection phase. Subsec-

tion 4.6.1 presents the accuracy of the wrapper method for each of the four tree-based

classifiers after filtering the initial 65 features with the IG evaluator thresholded at

t = 0.1. Subsection 4.6.2 shows the results of the wrapper method for each of the 4 tree-

based classifiers after filtering the initial 65 features using the GR evaluator thresholded

at t = 0.1.

4.6.1 Selection using Information Gain

A filter using the IG measure is applied to the 65 features contained in the images from

the dataset (S+EONMA) resulting in 40 features. With the remaining 40 features, the

wrapper method is applied in the training dataset (S+EONMA) using four different

tree-based classifiers.

Table 4.2 reveals the 13 most suitable features to be used in a Decision Tree classifier

and the respective accuracy score, after IG filtering followed by the wrapper method.

Table 4.3 lists the four most suitable features to be used in a Random Forest with 5 trees

classifier and the respective accuracy score, after IG filtering followed by the wrapper

method.

Table 4.4 tabulates the 17 most suitable features to be used in a Random Forest with

50 trees classifier and the respective accuracy score, after IG filtering followed by the

wrapper method.
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Best Subset: IG-DT

weighted area CHT
area CHT
hull area

likelihood CHT
determinant
v dist total

weighted area FVF
trace

var laser green
var laser red
number LMS

mean laser green
mean laser hue

Accuracy: 92.8%

Table 4.2: Best subset of features and respective accuracy after applying the IG filter
and using wrapper evaluation with the classifier DT.

Best Subset: IG-RF5

number CHT
weighted area FVF
moran null hipot

determinant

Accuracy: 92.2%

Table 4.3: Best subset of features and respective accuracy after applying the IG filter
and using wrapper evaluation with the classifier RF5.

Table 4.5 itemizes the six most suitable features to be used in a Random Forest with

500 trees classifier and the respective accuracy score, after IG filtering followed by the

wrapper method.



Chapter 4. Automatic Laser Mark Detection Algorithm 65

Best Subset: IG-RF50

number CHT
weighted area CHT

area CHT
m dist total

moran null hipot
determinant

weighted area FVF
trace

max eigen
variance var red
variance var hue

number FVF
var laser green
max laser red
var laser hue

mean laser green
mean laser sat

Accuracy: 93.2%

Table 4.4: Best subset of features and respective accuracy after applying the IG filter
and using wrapper evaluation with the classifier RF50.

Best Subset: IG-RF500

number CHT
weighted area CHT

area CHT
moran i

likelihood CHT
moran null hipot

Accuracy: 92.4%

Table 4.5: Best subset of features and respective accuracy after applying the IG filter
and using wrapper evaluation with the classifier RF500.

4.6.2 Selection using Gain Ratio

A filter using the GR measure is applied to the 65 features contained in the dataset

(S+EONMA) resulting in 43 features. With the remaining 43 features, the wrapper

method is applied in the training dataset (S+EONMA) using four different tree-based

classifiers.

Table 4.6 enumerates the eight most suitable features to be used in a Decision Tree

classifier and the respective accuracy score, after GR filtering followed by the wrapper
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method.

Best Subset: GR-DT

weighted area CHT
moran i

area CHT
weighted area FVF

variance var red
hull area

hull
mean laser hue

Accuracy: 92.6%

Table 4.6: Best subset of features and respective accuracy after applying the GR filter
and using wrapper evaluation with the classifier DT.

Table 4.7 shows the 15 most suitable features to be used in a Random Forest with 5 trees

classifier and the respective accuracy score, after GR filtering followed by the wrapper

method.

Best Subset: GR-RF5

moran null hipot
max laser green

weighted area CHT
moran i

number CHT
determinant

variance var green
variance var hue

hull
number FVF

mean laser hue
mean laser sat
mean laser red

mean laser green
var laser sat

Accuracy: 92.7%

Table 4.7: Best subset of features and respective accuracy after applying the GR filter
and using wrapper evaluation with the classifier RF5.

Table 4.8 displays the 14 most suitable features to be used in a Random Forest with

50 trees classifier and the respective accuracy score, after GR filtering followed by the

wrapper method.
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Best Subset: GR-RF50

moran null hipot
likelihood CHT

weighted area CHT
area CHT
max eigen

number CHT
m dist total
determinant

variance var red
max laser sat
mean laser sat
max laser red
mean laser red

mean laser green

Accuracy: 93.3%

Table 4.8: Best subset of features and respective accuracy after applying the GR filter
and using wrapper evaluation with the classifier RF50.

Table 4.9 presents the 17 most suitable features to be used in a Random Forest with

500 trees classifier and the respective accuracy score, after GR filtering followed by the

wrapper method.

Best Subset: GR-RF500

moran null hipot
likelihood CHT

weighted area CHT
moran i

area CHT
trace

max eigen
number CHT
m dist total
determinant
area LMS

variance var red
variance var hue

point density
var laser hue
number LMS

mean laser sat

Accuracy: 93.0%

Table 4.9: Best subset of features and respective accuracy after applying the GR filter
and using wrapper evaluation with the classifier RF500.





Chapter 5

Results

The content in this chapter presents the classification results for the automatic laser

mark detection algorithm addressing four different tree-based classifiers: Decision Tree

(Subsection 5.1.1), Random Forest with 5 Trees (Subsection 5.1.2), Random Forest with

50 Trees (Subsection 5.1.3) and Random Forest with 500 Trees (Subsection 5.1.4). Also,

some results of a simple threshold-based classification are presented (Subsection 5.1.5).

The latter method and respective results are listed to provide a comparison anchor in

the form of a very simple naive classifier. The evaluation of each classifier was performed

by computing the confusion matrix for each tested dataset and by calculating two widely

known classification performance measures for each tested dataset, sensitivity and speci-

ficity. Furthermore, this chapter contains an assessment of the time consumption of the

proposed algorithm for each retinal image (Section 5.2).

5.1 Performance Evaluation

In section 4.6 two approaches were followed to select the features to use in the decision

trees and forests. One of these approaches was to apply a filter using Information Gain

and then performing a wrapper method using the four classifiers. The other was similar

but uses the Gain Ratio as filter. From both methods, the best subset of features and

respective accuracy for each classifier was obtained. This chapter lists results for the

best case of each type of classifier.

69
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Using the DT classifier, 13 features were selected with a classification accuracy of 92.8%

after applying the IG filter, while 8 features were selected with a classification accuracy

of 92.6% after applying the GR filter. Therefore, only the case with application of IG

filter is considered in this chapter, since it showed a better accuracy. A similar procedure

was taken with the other three classifiers. For instance, the 15 features selected using

RF5 after GR filtering (92.7% against 92.2% with IG filtering), the 14 features selected

using RF50 after GR filtering (93.3% against 93.2% with IG filtering) and the 17 features

selected using RF500 after GR filtering (93% against 92.4% with IG filtering) are the

other three classifiers and features sets considered in this chapter.

The first four subsections of this chapter have a standard structure. First, a stratified 5-

fold cross validation is performed on the dataset (S+EONMA) using the corresponding

classifier with the selected features and the performance measures are presented along

with the Receiving Operator Characteristic (ROC) Curve, which is the True Positive

Rate in function of the False Positive Rate. True Positive Rate is the equivalent of

Sensitivity and False Positive Rate= FP
FP+TN = 1 − Specificity. Then, the classifier

is trained using the dataset (S+EONMA) and tested on the remaining datasets, thus

obtaining the performance for each dataset. In the end, every testing datasets (except

the datasets S and EONMA used for training) are aggregated in order to obtain the

final performance measures of the implemented algorithm, which are the accuracy, the

sensitivity, the specificity, the positive predictive value (PPV), the negative predictive

value (NPV)1 and the area under the ROC curve (AUC) [106].

The ROC curves on WEKA are generated by plotting the True Positive Rate in function

of the False Positive Rate for different probabilities that the classifier assigns to the

negative class. For instance, each point of the curve corresponds to setting a threshold

on the probability assigned by the classifier to the negative class. The performance

measures presented on Table 5.1 occur when this probability is equal to 0.5. This

method of obtaining the ROC curve is applicable to subsections 5.1.1, 5.1.2, 5.1.3 and

5.1.4.

1For further information about the performance measures, please consult Appendix A
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5.1.1 Decision Tree

As described in Section 4.6.1, 13 attributes were choosen during features selection phase

using a Decision Tree wrapper method after a IG filtering. Table 5.1 shows the results

of a stratified 5-fold cross validation using a Decision Tree classifier with the selected 13

features on the retinal images of the dataset (S+EONMA).

Dataset: (S+EONMA) 5-fold CV Laser No Laser

Laser 155 (76.4%) 48 (23.6%)
No Laser 16 (2.5%) 636 (97.5%)

Table 5.1: Confusion Matrix after a 5-fold Cross Validation using DT of the images
from the datasets S+EONMA.

Training the pruned C4.5 classifier using the dataset (S+EONMA) resulted in a Decision

Tree model with 15 leaves and containing only 8 of the selected 13 features used to build

the classifier (Figure 5.1).

Considering the class ”Laser” as the positive case and the class ”No Laser” as the

negative case, a ROC curve was obtained by thresholding the output of the built model

of the Decision Tree after the stratified 5-fold cross validation (Figure 5.2). The area

under ROC was also computed and has a value of AUC(S+EONMA)=0.885.

The DT classifier was trained using the dataset (S+EONMA) and was tested on the

remaining 9 datasets of this work. The performance measures were calculated for each

dataset: M (Table 5.2), EOMA (Table 5.3), EOEX (Table 5.4), EONEX (Table 5.5),

VBR (Table 5.6), HP (Table 5.7), FAZD (Table 5.8), BAT (Table 5.9), PDJD (Table

5.10). The BAT dataset contains retinal images from 9 patients and after presenting

the testing results of this dataset (Table 5.9), an evaluation is performed concerning the

number of patients correctly detected. A patient correctly detected contains at least one

”Laser” image correctly classified and cannot have any ”No Laser” image classified as

having laser marks.

Dataset: M Laser No Laser

Laser - -
No Laser 12 (1%) 1175 (99%)

Table 5.2: Confusion Matrix after testing the trained DT on M.
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Figure 5.1: Decision Tree model built after training the classifier with the dataset
(S+EONMA).
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Figure 5.2: ROC Curve after thresholding the output of the DT classifier with 5-fold
cross validation.
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Dataset: EOMA Laser No Laser

Laser - -
No Laser 0 (0%) 148 (100%)

Table 5.3: Confusion Matrix after testing the trained DT on EOMA.

Dataset: EOEX Laser No Laser

Laser - -
No Laser 0 (0%) 47 (100%)

Table 5.4: Confusion Matrix after testing the trained DT on EOEX.

Dataset: EONEX Laser No Laser

Laser - -
No Laser 1 (2.9%) 34 (97.1%)

Table 5.5: Confusion Matrix after testing the trained DT on ENOEX.

Dataset: VBR Laser No Laser

Laser - -
No Laser 0 (0%) 22 (100%)

Table 5.6: Confusion Matrix after testing the trained DT on VBR.

Dataset: HP Laser No Laser

Laser - -
No Laser 1 (1%) 99 (99%)

Table 5.7: Confusion Matrix after testing the trained DT on HP.

Dataset: FAZD Laser No Laser

Laser - -
No Laser 3 (5%) 57 (95%)

Table 5.8: Confusion Matrix after testing the trained DT on FAZD.

Dataset: BAT Laser No Laser

Laser 21 (28.2%) 13 (61.8%)
No Laser 1 (6.7%) 14 (93.3%)

Table 5.9: Confusion Matrix after testing the trained DT on BAT.

The retinal image 07 B2.jpg was the only one without laser marks that was classified as

”Laser”. As for the 13 misclassified ”Laser” images, at least one retinal image ”Laser”

per patient was correctly classified by the algorithm, except for patient 09 where none

of the 3 ”Laser” images was detected. Therefore, only patients 07 and 09 were not
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correctly classified by the implemented algorithm, so 7 out of 9 patients were accurately

detected using the DT classifier.

Dataset: PDJD Laser No Laser

Laser 98 (97%) 3 (3%)
No Laser - -

Table 5.10: Confusion Matrix after testing the trained DT on PDJD.

Table 5.11 presents the DT classifier sensitivity and specificity values of the 5-fold cross

validation using the dataset (S+EONMA) plus the 9 tested datasets.

Dataset Sensitivity Specificity

S+EONMA 76.4% 97.5%

M - 99%

EOMA - 100%

EOEX - 100%

EONEX - 97.1%

VBR - 100%

HP - 99%

FAZD - 95%

BAT 61.8% 93.3%

PDJD 97% -

Table 5.11: Algorithm’s performance on each dataset using Decision Tree.

The retinal images of the 9 datasets used for testing were merged and resulted in a

single dataset containing a total of 1749 images: 135 images ”Laser” and 1614 images

”No Laser”. This merged dataset was used to test the DT classifier and the results are

shown in Table 5.12.

Correctly
Classified

Incorrectly
Classified

Sensitivity Specificity PPV NPV AUC

98.06% 1.94% 88.1% 98.9% 0.869 0.99 0.946

Table 5.12: Performance stats using the trained Decision Tree averaged over all testing
datasets.

Considering the class ”Laser” as the positive case and the class ”No Laser” as the

negative case, a ROC curve was obtained by thresholding the output of the implemented

binary DT classifier after testing it on the merged dataset containing 1749 images (Figure

5.3). The area under ROC was also computed and has a value of AUCTest=0.946.
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Figure 5.3: ROC Curve obtained by thresholding the output of the trained DT classifier
tested on 9 datasets.

5.1.2 Random Forest with 5 Trees

As described before, 15 attributes were choosen during features selection phase using

a Random Forest with 5 Trees classifier wrapper method after a GR filtering. Table

5.13 shows the results of a stratified 5-fold cross validation using a Random Forest

with 5 Trees classifier with the selected 15 features on the retinal images of the dataset

(S+EONMA).

Dataset: (S+EONMA) 5-fold CV Laser No Laser

Laser 152 (74.9%) 51 (25.1%)
No Laser 33 (5.1%) 619 (94.9%)

Table 5.13: Confusion Matrix after a 5-fold Cross Validation using RF5 of the images
from the datasets S+EONMA.

A ROC curve was obtained by thresholding the output of the RF5 classifier after the

stratified 5-fold cross validation (Figure 5.2). The area under ROC was also computed

and has a value of AUC(S+EONMA)=0.9.

The RF5 classifier was trained using the dataset (S+EONMA) and was tested on the

remaining 9 datasets of this work. The performance measures were calculated for each

dataset: M (Table 5.14), EOMA (Table 5.15), EOEX (Table 5.16), EONEX (Table

5.17), VBR (Table 5.18), HP (Table 5.19), FAZD (Table 5.20), BAT (Table 5.21), PDJD

(Table 5.22). As described in subsection 5.1.1, an evaluation is performed concerning
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Figure 5.4: ROC Curve obtained by thresholding the output of the RF5 classifier with
5-fold cross validation.

the number of patients from the BAT dataset (Table 5.9) correctly detected. A patient

correctly detected contains at least one ”Laser” image correctly classified and cannot

have any ”No Laser” image classified as having laser marks.

Dataset: M Laser No Laser

Laser - -
No Laser 17 (1.4%) 1170 (98.6%)

Table 5.14: Confusion Matrix after testing the trained RF5 on M.

Dataset: EOMA Laser No Laser

Laser - -
No Laser 0 (0%) 148 (100%)

Table 5.15: Confusion Matrix after testing the trained RF5 on EOMA.

Dataset: EOEX Laser No Laser

Laser - -
No Laser 0 (0%) 48 (100%)

Table 5.16: Confusion Matrix after testing the trained RF5 on EOEX.

Dataset: EONEX Laser No Laser

Laser - -
No Laser 1 (2.9%) 34 (97.1%)

Table 5.17: Confusion Matrix after testing the trained RF5 on ENOEX.
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Dataset: VBR Laser No Laser

Laser - -
No Laser 1 (4.5%) 21 (95.5%)

Table 5.18: Confusion Matrix after testing the trained RF5 on VBR.

Dataset: HP Laser No Laser

Laser - -
No Laser 4 (4%) 96 (96%)

Table 5.19: Confusion Matrix and after testing the trained RF5 on HP.

Dataset: FAZD Laser No Laser

Laser - -
No Laser 4 (6.7%) 56 (93.3%)

Table 5.20: Confusion Matrix after testing the trained RF5 on FAZD.

Dataset: BAT Laser No Laser

Laser 23 (67.6%) 11 (32.4%)
No Laser 3 (20%) 12 (80%)

Table 5.21: Confusion Matrix after testing the trained RF5 on BAT.

After inspecting the images from the BAT dataset that were incorrectly classified, it

was verified that 06 B1.jpg, 07 B2.jpg and 09 B2.jpg are retinal images without laser

marks that were classified as ”Laser”. As a consequence, patients 06, 07 and 09 were

not correctly detected. As for the 11 misclassified ”Laser” images, at least one retinal

image ”Laser” per patient was correctly classified by the algorithm. Therefore, 6 out of

9 patients were accurately detected using the RF5 classifier.

Dataset: PDJD Laser No Laser

Laser 97 (96%) 4 (4%)
No Laser - -

Table 5.22: Confusion Matrix after testing the trained RF5 on PDJD.

Table 5.23 presents the RF5 classifier sensitivity and specificity values of the 5-fold cross

validation using the dataset (S+EONMA) and of the 9 tested datasets.

According to the standard structure of this chapter, the retinal images of the 9 datasets

used for testing were merged and resulted in a single dataset containing a total of 1749
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Dataset Sensitivity Specificity

S+EONMA 74.9% 94.9%

M - 98.6%

EOMA - 100%

EOEX - 100%

EONEX - 97.1%

VBR - 95.5%

HP - 96%

FAZD - 93.3%

BAT 67.6% 80%

PDJD 96% -

Table 5.23: Algorithm’s performance on each dataset using Random Forest with 5
Trees.

images. This merged dataset was used to test the RF5 classifier and the results are

shown in Table 5.24.

Correctly
Classified

Incorrectly
Classified

Sensitivity Specificity PPV NPV AUC

97.43% 2.57% 88.9% 98.1% 0.8 0.991 0.955

Table 5.24: Performance stats using the trained Random Forest with 5 Trees averaged
over all testing datasets.

A ROC curve was obtained by thresholding the output of the implemented binary clas-

sifier RF5 after testing it on the merged dataset containing 1749 images (Figure 5.5).

The area under ROC was also computed and has a value of AUCTest=0.955.
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Figure 5.5: ROC Curve obtained by thresholding the output of the trained RF5 classifier
tested on 9 datasets.
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5.1.3 Random Forest with 50 Trees

As described in Section 4.6.2, 14 attributes were choosen during features selection phase

using a Random Forest with 50 Trees classifier wrapper method after a GR filtering.

Table 5.25 shows the results of a stratified 5-fold cross validation using a Random Forest

with 50 Trees classifier with the selected 14 features on the retinal images of the dataset

(S+EONMA).

Dataset: (S+EONMA) 5-fold CV Laser No Laser

Laser 156 (76.8%) 47 (23.2%)
No Laser 22 (3.4%) 630 (96.6%)

Table 5.25: Confusion Matrix after a 5-fold Cross Validation using RF50 of the images
from the datasets S+EONMA.

Once again, considering the class ”Laser” as the positive case and the class ”No Laser”

as the negative case, a ROC curve was obtained by thresholding the output of the

implemented binary classifier RF50 after the stratified 5-fold cross validation (Figure

5.6). The area under ROC was also computed and has a value ofAUC(S+EONMA)=0.918.
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Figure 5.6: ROC Curve after thresholding the output of the RF50 classifier with 5-fold
cross validation.

The RF50 classifier was trained using the dataset (S+EONMA) and was tested on

the remaining 9 datasets of this work. The performance measures were calculated for

each dataset: M (Table 5.26), EOMA (Table 5.27), EOEX (Table 5.28), EONEX (Table

5.29), VBR (Table 5.30), HP (Table 5.31), FAZD (Table 5.32), BAT (Table 5.33), PDJD

(Table 5.34). Moreover, an evaluation is performed concerning the number of patients



Chapter 5. Results 80

from the BAT dataset (Table 5.33) correctly detected. A patient correctly detected

contains at least one ”Laser” image correctly classified and cannot have any ”No Laser”

image classified as having laser marks.

Dataset: M Laser No Laser

Laser - -
No Laser 24 (2%) 1163 (98%)

Table 5.26: Confusion Matrix after testing the trained RF50 on M.

Dataset: EOMA Laser No Laser

Laser - -
No Laser 1 (0.7%) 147 (99.3%)

Table 5.27: Confusion Matrix after testing the trained RF50 on EOMA.

Dataset: EOEX Laser No Laser

Laser - -
No Laser 1 (2.1%) 46 (97.9%)

Table 5.28: Confusion Matrix after testing the trained RF50 on EOEX.

Dataset: EONEX Laser No Laser

Laser - -
No Laser 1 (2.9%) 34 (97.1%)

Table 5.29: Confusion Matrix after testing the trained RF50 on ENOEX.

Dataset: VBR Laser No Laser

Laser 0 0
No Laser 0 (0%) 22 (100%)

Table 5.30: Confusion Matrix after testing the trained RF50 on VBR.

Dataset: HP Laser No Laser

Laser - -
No Laser 1 (1%) 99 (99%)

Table 5.31: Confusion Matrix after testing the trained RF50 on HP.

Dataset: FAZD Laser No Laser

Laser 0 0
No Laser 4 (6.7%) 56 (93.3%)

Table 5.32: Confusion Matrix after testing the trained RF50 on FAZD.
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Dataset: BAT Laser No Laser

Laser 24 (70.6%) 10 (29.4%)
No Laser 4 (26.7%) 11 (73.3%)

Table 5.33: Confusion Matrix after testing the trained RF50 on BAT.

The images 01 B2.jpg, 05 B1.jpg 06 B1.jpg and 07 B2.jpg from the BAT dataset are

the retinal images ”No Laser” incorrectly classified. For that reason, patients were not

correctly detected by the implemented algorithm. As for the 10 misclassified ”Laser”

images, at least one retinal image ”Laser” per patient was correctly detected by the

algorithm. Therefore, 5 out of 9 patients were accurately detected using the RF50

classifier.

Dataset: PDJD Laser No Laser

Laser 94 (93.1%) 7 (6.9%)
No Laser - -

Table 5.34: Confusion Matrix after testing the trained RF50 on PDJD.

Table 5.35 presents the RF50 classifier sensitivity and specificity values of the 5-fold

cross validation using the dataset (S+EONMA) plus the 9 tested datasets.

Dataset Sensitivity Specificity

S+EONMA 76.8% 96.6%

M - 98%

EOMA - 99.3%

EOEX - 97.9%

EONEX - 97.1%

VBR - 100%

HP - 99%

FAZD - 93.33%

BAT 70.6% 73.3%

PDJD 93.1% -

Table 5.35: Algorithm’s performance on each dataset using Random Forest with 50
Trees.

The retinal images of the 9 datasets used for testing were merged and resulted in a single

dataset containing a total of 1749 images. This merged dataset was used to test the

RF50 classifier and the results are shown in Table 5.36.

The ROC curve was obtained by thresholding the output of the implemented classifier

RF50 after testing it on the merged dataset containing 1749 images (Figure 5.7). The

area under ROC was also computed and has a value of AUCTest=0.959.
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Correctly
Classified

Incorrectly
Classified

Sensitivity Specificity PPV NPV AUC

96.97% 3.03% 87.4% 97.8% 0.766 0.989 0.969

Table 5.36: Performance stats using the trained Random Forest with 50 Trees averaged
over all testing datasets.
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Figure 5.7: ROC Curve obtained by thresholding the output of the trained RF50 clas-
sifier tested on 9 datasets.

5.1.4 Random Forest with 500 Trees

Accrding to the results in 4.6.2, 17 features were choosen during the selection phase

using a Random Forest with 500 Trees classifier wrapper method after a GR filtering.

Table 5.37 shows the results of a stratified 5-fold cross validation using a Random Forest

with 500 Trees classifier with the selected 17 features on the retinal images of the dataset

(S+EONMA).

Dataset: (S+EONMA) 5-fold CV Laser No Laser

Laser 157 (22.7%) 46 (77.3%)
No Laser 17 (2.6%) 635 (97.4%)

Table 5.37: Confusion Matrix after a 5-fold Cross Validation using RF500 of the images
from the datasets S+EONMA.

The ROC curve in Figure 5.8 was obtained by thresholding the output of the imple-

mented classifier RF500 after the stratified 5-fold cross validation. The area under ROC

was also computed and has a value of AUC(S+EONMA)=0.934.
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Figure 5.8: ROC Curve after thresholding the output of the RF500 classifier with 5-fold
cross validation.

The RF500 classifier was trained using the dataset (S+EONMA) and then tested on

the remaining 9 datasets of this work. The performance measures were calculated for

each dataset: M (Table 5.38), EOMA (Table 5.39), EOEX (Table 5.40), EONEX (Table

5.41), VBR (Table 5.42), HP (Table 5.43), FAZD (Table 5.44), BAT (Table 5.45), PDJD

(Table 5.46). After presenting the testing results of the BAT dataset (Table 5.45), an

evaluation is performed concerning the number of patients correctly detected. A patient

correctly detected contains at least one ”Laser” image correctly classified and cannot

have any ”No Laser” image classified as having laser marks.

Dataset: M Laser No Laser

Laser - -
No Laser 32 (2.7%) 1155 (97.3%)

Table 5.38: Confusion Matrix after testing the trained RF500 on M.

Dataset: EOMA Laser No Laser

Laser - -
No Laser 2 (1.4%) 146 (98.6%)

Table 5.39: Confusion Matrix after testing the trained RF500 on EOMA.

Dataset: EOEX Laser No Laser

Laser - -
No Laser 1 (2.1%) 46 (97.9%)

Table 5.40: Confusion Matrix after testing the trained RF500 on EOEX.
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Dataset: EONEX Laser No Laser

Laser - -
No Laser 1 (2.9%) 34 (97.1%)

Table 5.41: Confusion Matrix after testing the trained RF500 on ENOEX.

Dataset: VBR Laser No Laser

Laser - -
No Laser 0 (0%) 22 (100%)

Table 5.42: Confusion Matrix after testing the trained RF500 on VBR.

Dataset: HP Laser No Laser

Laser - -
No Laser 1 (1%) 99 (99%)

Table 5.43: Confusion Matrix after testing the trained RF500 on HP.

Dataset: FAZD Laser No Laser

Laser - -
No Laser 4 (6.7%) 56 (93.3%)

Table 5.44: Confusion Matrix after testing the trained RF500 on FAZD.

Dataset: BAT Laser No Laser

Laser 23 (67.6%) 11 (32.4%)
No Laser 2 (13.3%) 13 (86.7%)

Table 5.45: Confusion Matrix after testing the trained RF500 on BAT.

In this case, 05 B1.jpg and 07 B2.jpg are the retinal images without laser marks that

were classified as ”Laser”. As a result, patients 05 and 07 are not correctly classified

by te algorithm. As for the 11 misclassified ”Laser” images, at least one retinal image

”Laser” per patient was correctly classified by the algorithm, except for patient 09 where

none of the 3 ”Laser” images was detected. Therefore, 6 out of 9 patients were accurately

classified using the RF500 classifier.

Dataset: PDJD Laser No Laser

Laser 92 (91.1%) 9 (8.9%)
No Laser - -

Table 5.46: Confusion Matrix after testing the trained RF500 on PDJD.
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Table 5.47 presents the RF500 classifier sensitivity and specificity values of the 5-fold

cross validation using the dataset (S+EONMA) plus the 9 tested datasets.

Dataset Sensitivity Specificity

S+EONMA 77.3% 97.4%

M - 97.3%

EOMA - 98.6%

EOEX - 97.9%

EONEX - 97.1%

VBR - 100%

HP - 99%

FAZD - 93.33%

BAT 67.6% 86.7%

PDJD 91.1% -

Table 5.47: Algorithm’s performance on each dataset using Random Forest with 500
Trees.

Once again, the retinal images of the 9 datasets used for testing were merged and resulted

in a single dataset containing a total of 1749 images. This merged dataset was used to

test the RF500 classifier and the results are shown in Table 5.48.

Correctly
Classified

Incorrectly
Classified

Sensitivity Specificity PPV NPV AUC

96.40% 3.60% 85.2% 97.3% 0.728 0.987 0.963

Table 5.48: Performance stats using the trained Random Forest with 500 Trees averaged
over all testing datasets.

The ROC curve was obtained by thresholding the output of the binary classifier RF500

after testing it on the merged dataset (Figure 5.9). The area under ROC was also

computed and has a value of AUCTest=0.963.
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Figure 5.9: ROC Curve obtained by thresholding the output of the trained RF500
classifier tested on 9 datasets.

5.1.5 Simple threshold-based classifier

A threshold-based classifier was built using each segmentation algorithm’s detected can-

didates, according to the description in subsection 4.5.3. The dataset (S+EONMA) was

used for training in order to obtain the optimal threshold and the testing phase was the

application of the selected threshold to the images from the merged dataset containing

1749 retinal images.

Figure 5.10 shows a ROC curve that was obtained by thresholding the number of can-

didates detected by the CHT algorithm and calculating the True Positive Rate and the

False Positive Rate for each threshold value, using the (S+EONMA) dataset. The val-

ues used for thresholding vary between [0,9] and the condition used was greater than or

equal.

The best accuracy value (smallest classification error) was 91.46% and it occurred when

number CHT ≥3 (optimal threshold). Table 5.49 shows the matrix confusion after

applying the condition previously stated on the (S+EONMA) dataset.

According to the standard structure of this section, the retinal images of the 9 datasets

used for testing were merged and resulted in a single dataset containing a total of 1749

images. This merged dataset was used to test the built threshold-based classifier and

the results are shown in Table 5.50.
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Figure 5.10: ROC Curve after thresholding by the number of regions detected by the
CHT algorithm.

Dataset: (S+EONMA) Laser No Laser

Laser 143 (70.4%) 60 (29.6%)
No Laser 13 (2%) 639 (98%)

Table 5.49: Confusion Matrix after applying the optimal threshold for the number of
regions detected by the CHT algorithm (number CHT ≥3 means that the retinal image

is ”Laser”).

Correctly
Classified

Incorrectly
Classified

Sensitivity Specificity

96.34% 3.66% 79.3% 97.8%

Table 5.50: Performance stats using the simple threshold-based classifier
number CHT ≥3 averaged over all testing datasets.

Figure 5.11 shows a ROC curve that was obtained by thresholding the number of can-

didates detected by the FVF algorithm and calculating the True Positive Rate and the

False Positive Rate for each threshold value, using the (S+EONMA) dataset. The val-

ues used for thresholding vary between [0,9] and the condition used was greater than or

equal.

The best accuracy value (smallest classification error) was 86.31% and it occured when

number FV F ≥3 (optimal threshold). Table 5.51 shows the matrix confusion after

applying the condition previously stated on the (S+EONMA) dataset.

According to the standard structure of this section, the retinal images of the 9 datasets

used for testing were merged and resulted in a single dataset containing a total of 1749
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Figure 5.11: ROC Curve after thresholding by the number of regions detected by the
FVF algorithm.

Dataset: (S+EONMA) Laser No Laser

Laser 106 (52.2%) 97 (47.8%)
No Laser 20 (3.1%) 632 (96.9%)

Table 5.51: Confusion Matrix after applying the optimal threshold for the number of
regions detected by the FVF algorithm (number FV F ≥3 means that the retinal image

is ”Laser”).

images. This merged dataset was used to test the built threshold-based classifier and

the results are shown in Table 5.52.

Correctly
Classified

Incorrectly
Classified

Sensitivity Specificity

95.03% 4.97% 78.5% 96.4%

Table 5.52: Performance stats using the simple threshold-based classifier
number FV F ≥3 in every testing dataset.

Figure 5.12 shows a ROC curve that was obtained by thresholding the number of can-

didates detected by the LMS algorithm and calculating the True Positive Rate and the

False Positive Rate for each threshold value, using the (S+EONMA) dataset. The val-

ues used for thresholding vary between [0,9] and the condition used was greater than or

equal.

The best accuracy value (smallest classification error) was 83.97% and it occurred when

number LMS ≥5 (optimal threshold). Table 5.53 shows the matrix confusion after

applying the condition previously stated on the (S+EONMA) dataset.
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Figure 5.12: ROC Curve after thresholding by the number of regions detected by the
LMS algorithm.

Dataset: (S+EONMA) Laser No Laser

Laser 73 (36%) 130 (64%)
No Laser 7 (1.1%) 645 (98.9%)

Table 5.53: Confusion Matrix after applying the optimal threshold for the number of
regions detected by the LMS algorithm (number LMS ≥5 means that the retinal image

is ”Laser”).

According to the standard structure of this section, the retinal images of the 9 datasets

used for testing were merged and resulted in a single dataset containing a total of 1749

images. This merged dataset was used to test the built threshold-based classifier and

the results are shown in Table 5.54.

Correctly
Classified

Incorrectly
Classified

Sensitivity Specificity

95.25% 4.75% 49.6% 99.1%

Table 5.54: Performance stats using the simple threshold-based classifier
number LMS ≥5 in every testing dataset.

5.2 Computation Time

An important characteristic of the algorithm is its typical computation time per retinal

image. This is specially true in the cases where one wants to do laser mark detections

in real-time to allow online applications.



Chapter 5. Results 90

Training the tree-based classifiers using WEKA consumes computation time. For in-

stance, the time taken was:

• 0.14 seconds to train the Decision Tree using the dataset (S+EONMA) with the

selected 13 features.

• 0.16 seconds to train the Random Forest with 5 Trees using the dataset (S+EONMA)

with the selected 15 features.

• 0.28 seconds to train the Random Forest with 50 Trees using the dataset (S+EONMA)

with the selected 14 features.

• 3.24 seconds to train the Random Forest with 500 Trees using the dataset (S+EONMA)

with the selected 17 features.

However, these computation costs are incurred only once during classifier training and

so can be disregarded and not included in the following analysis presented for the com-

putational complexity of the classification.

In summary, having the classifier built with the selected features, each retinal image

has to go through four time-consuming phases until the proposed algorithm makes the

final decision: pre-processing, candidate regions extraction, features computation and

the test performed by the built classifier.

The resizing step plus the extraction of the ROI, OD and the Vascular Network are

performed by Retmarker R© taking on average about 9 seconds per image with a resolution

of 768x584. For the remaining steps of the pre-processing phase plus the candidate

regions extraction plus the computation of all 65 features, the average processing times

per image for each resolution are presented in Table 5.55. Figure 5.13 shows that for a

higher total number of pixels, the computation time per image increases. Note that the

resolution values presented are obtained after the resizing step.

For example, each retinal image with a resolution of 768x584 takes a total of 27.95

seconds (9s+18.95s) to process and obtain all the 65 features. Then each image will be

tested by the built classifier, which is almost instantaneous, so it can be assumed that

for each retinal image with the previously mentioned resolution the proposed algorithm

takes approximately a total of 27.95 seconds to make the final decision. However, if we



Chapter 5. Results 91

Image Resolution Number of Pixels Computation Time per Image (s)

720x576 414720 21.93
768x584 448512 18.95
768x768 589824 28.65
1024x680 696320 28.68
1024x681 697344 28.52
1024x683 699392 28.73
1024x687 703488 32.12
1024x729 746496 39.11
806x768 619008 28.54
782x768 600576 30.56
937x768 719616 42.89
938x768 720384 38.63
948x768 728064 41.85

Table 5.55: Computation time per image of the algorithm for each resolution.
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Figure 5.13: Plot of the Computation time per image against the total number of pixels.

consider the proposed algorithm integrated within the Retmarker software package, the

9 seconds are not contemplated as additional computation time since the pre-processing

step of Retmarker’s algorithm is applicable to all images, hence the effective computation

time would be the one presented in table 5.55.

The processing time for each retinal image was measured using a non-optimized MATLAB R©
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implementation of the proposed using a machine with an Intel R© Xeon I5520 processor

with a speed of 2.27 GHz and equipped with 24 GB of RAM in each node.



Chapter 6

Discussion

Each of the four tree-based classifiers has its own best subset of features and the per-

formance measures were obtained in chapter 5 after testing the algorithm with the

different classifiers in 9 different datasets. Overall, for the 5-fold cross validation with

(S+EONMA) dataset, the sensitivity value was higher than 74.8% and the specificity

value was higher than 94.8% and for the merged dataset with 1749 images the sensi-

tivity value was higher than 85.1% and the specificity value was higher than 97.2%.

The RF500 classifier had the best accuracy during the 5-fold cross validation since it

correctly classified 92.6% of the retinal images of (S+EONMA). The Decision Tree had

the best accuracy while testing the remaining 1749 images because 98.1% of those im-

ages were correctly classified. It is also interesting to analyze the results in chapter 5

class-by-class. For instance, RF50 and DT were both the classifiers that correctly de-

tected most images ”Laser”, having correctly detected 274 out of a total of 338 images

”Laser”, which means an overall sensitivity of 81.1%. Regarding the class ”No Laser”,

DT was by far the best classifier, once it presented the best specificity value for ev-

ery single dataset. Therefore, DT correctly detected 2232 out of a total of 2266 ”No

Laser” images, having an overall specificity of 98.5%. Moreover, a particular evaluation

was performed using the BAT dataset for each classifier. BAT is a special proprietary

dataset because it contains images from 9 patients before and after the treatment. It is

therefore important that the implemented algorithm distinguishes the different retinal

images for each patient. Although RF500 was the one that correctly classified most

images from the BAT dataset (36 of 49), the DT was the classifier that detected more
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accurately the patients (7 of 9), considering that a single false positive or no true posi-

tive detected for each patient means a failed classification for that patient. A brief note

for the simple threshold-based classifier: the decision method that used the number of

regions detected by the CHT algorithm as the criteria was the one with the best per-

formance amongst this type of classification. As expected, this threshold approach had

the lowest classification accuracy (96,34%) compared to the tree-based classifiers.

Regarding the performance of the four implemented classifiers, there is no doubt that

the Decision Tree showed the best results when comparing to the results obtained with

the Random Forests. In fact, it had the best sensitivity, specificity and accuracy values.

Also, it is the simplest classifier to implement, the generated model is very easy to

interpret (Figure 5.1) and its training time is only 0.14 seconds, which means that it

allows the possibility of retraining the classifier more frequently after gathering more

retinal images. Not only it is the best classifier for its accuracy and simplicity, but also

it is the most adequate for clinical practice. The proposed algorithm with DT classifier

is the best option to integrate a DR screening program, because it is the one with best

specificity values which is the most important requirement since it is not acceptable to

remove a patient for having laser marks, when in fact that same patient as not undergone

any kind of treatment.

The proposed automatic system relies on 2 main steps: image processing and classifica-

tion. The importance of the image processing step is to retrieve the features from any

retinal image that are used for the final classification. The testing results on the datasets

described in this thesis confirm that the proposed algorithm is robust to images with

different resolution, FOV angle and captured by different cameras. For instance, this

fact can be confirmed by observing every specificity values in chapter 5 which do not

vary very much. However, a considerable difference can be observed in the sensitivity

values between datasets S, BAT and PDJD. Any classifier can detect between 60% and

80% of the retinal images ”Laser” from S and BAT datasets, while for PDJD the per-

centage of images ”Laser” detected is above 90%. The source images from S and BAT

datasets are labeled and identified by optometrists during screening initiatives and by

ophthalmologists in clinical environments, respectively, during a certain period of time.

On the other hand, the images from PDJD (which are from the same retinal camera

Canon used to capture the images in S) were carefully selected by image processing

experts and all the chosen images very clearly show PRP scars, whereas images where
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the marks were not clear would not be selected, i.e. it is less realistic. It is important

to remind that this was the first work and experiment in laser marks detection.

Relative to the features selected, there are some noteworthy remarks. First, none of

the 27 texture descriptors was selected in any of the filter+wrapper methods. Most of

these texture features are removed during filtering, whether by using information gain

or gain ratio. Nevertheless, this observation means that texture statistical measures

do not contribute to detect laser marks at all. The accuracy of a wrapper method

is a prediction of the classification quality of the corresponding classifier with the se-

lected best subset. In subsection 4.6, every attribute subset chosen had at least ge-

ometrical and spatial distribution descriptors. Indeed, features related to the CHT

(number CHT, area CHT, weighted area CHT, likelihood CHT) and to the FVF (num-

ber FVF, area FVF, weighted area FVF, likelihood FVF) segmentation algorithms were

very frequent. Moreover, features related to spatial dispersion (max eigen, determinant

and trace), convex hull of the candidate regions (hull and hull area) and autocorrelation

(moran i and moran null hipot) were shown to be almost always included in the best

subsets and consequently be important for the final classification. Not less important

are the intensity-related features proposed by Fazar [47]. Although these features do not

appear in every selected subset, they have a very important role on the Decision Tree.

Despite the fact that four spatial distribution features are used to train the Decision

Tree, only hull area is part of the built model, while mean laser green, var laser green

and var laser red are the intensity-related features used in the terminal nodes of the

built Decision Tree (Figure 5.1).

As for the tree-based classifiers used, the Random Forest is an ensemble learning method

that operates by constructing several decision trees (in this work it is used with 5, 50

and 500 trees) at training time that uses a random subset of features at each node split.

Originally, random forests were developed to correct the tendency of decision trees to

overfit, but it is interesting to verify in the results that the decision tree proved to be

the best classifier to be used in this application.

As it was already stated, in a clinical context it is more important to classify correctly

the non-treated patients. However, the algorithm’s specificity is not 100% for any of the

classifiers. Therefore, there are retinal images ”No Laser” where the features extracted

from the candidates are similar to the standard set of features of an image ”Laser”.
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The candidates falsely detected are the trigger that mislead the tree-based classifiers

and, as a consequence, incorrect outputs are obtained. Some examples of retinal images

that were misclassified by the Decision Tree and the Random Forests can be found

on Appendix D. For example, images 06 B1.jpg (Figure D.4) and 07 B2.jpg (Figure

D.5) represent very severe PR and a huge number of haemorrhages and small EXs

can be seen. These structures promote differences of contrast that are segmented as

candidates and the largest haemorrhages are detected as blobs by the FVF algorithm.

Image 0219.jpg (Figure D.1) from the screening dataset contains some artifacts: the

round bubbles resulting from the fact that the lens is not cleaned are detected as circles

by the CHT. Images 0225.jpg (Figure D.2) and 0419.jpg (Figure D.3) represent thin

retinas, which results in highly illuminated images with bright spots that are detected

as candidates. Furthermore, some candidates in image 0419.jpg are detected near small

branches of blood vessels, which means that the vessel extractor is also not 100% efficient.

As for the images 15.jpg (Figure D.6), 28.jpg (Figure D.7) and 32.jpg (Figure D.8)

from the FAZD dataset, they all presented EXs with a huge size and since these are

bright structures, the probability of false detection by the CHT algorithm is very high.

Moreover, 32.jpg, as well as image 20051214 51733 0100 PP.jpg (Figure D.10) from the

Messidor dataset, presents some failures in the vascular network detection. Images

20051130 60691 0400 PP.jpg (Figure D.9) and 20051214 51733 0100 PP.jpg from the

Messidor dataset are also thin retinas, so the candidate region extraction is not the

most desirable.

Figure 5.13 confirms that a retinal image with a higher resolution results in a longer

processing step of the image. It is not possible to state that it is a linear relation

because there are images with a similar total number of pixels that have quite different

processing times. For example, the images with a resolution of 1024x680, 1024x681,

1024x683 and 1024x687 (696320, 697344, 699392, 703488 pixels respectively) are “No

Laser” and take about 30 seconds, due to the fact that not many candidates are detected

and analyzed. On the other hand, the images with a resolution of 806x768 and 782x768

(619008 and 600576 pixels respectively) are “Laser” and take about 30 seconds and the

images with a resolution of 97x768, 938x768 and 948x768 (719616, 720384 and 728064

pixels respectively) are “Laser” and take about 40 seconds, because many regions are

extracted and processed to calculate most features.

In the screening program coordinated by ARS Centro, the automatic DR detector takes
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about 90 seconds per retinal image, using MATLAB. The proposed laser mark detec-

tor takes between 18 and 42 seconds depending on the resolution. A great portion of

processing time is spent on the LMS algorithm, on the bilateral filter of the CHT, on

removing the false detections located on the vessels and on the OD and on computing all

65 features, which would not happen in an integration with a screening program because

it was already confirmed that only a small subset of features is sufficient to obtain a

very good performance.





Chapter 7

Conclusion and Future Work

This thesis contribution consists of a robust automatic detection algorithm for signs

of treatment on digital retinal fundus images and preparation of a paper describing the

algorithm created and providing the datasets Screening and Before and After Treatment

for public access. In order to do so, the steps followed were:

• Studying the problem, reviewing the scientific bibliography about DR complica-

tions and the different type of treatment practices and researching previous work

on this topic.

• Gathering retinal fundus images datasets with and without laser marks.

• Developing the algorithm by organising it in three parts: extracting candidates

in each retinal image, computing features from the candidates and then using a

tree-based classifier to label the image as ”Laser” or ”No Laser”.

• Evaluating the performance of the algorithm on the gathered datasets.

Using the described automated algorithm it is possible to identify a considerable amount

of images with laser marks, a noteworthy result considering the complexity of the task

even for a human expert.

The simple threshold-based classifier had a poor classification performance, proving that

using solely the number of detected regions is insufficient for this classification problem.

Although it is an extremely simple approach, the accuracy of the final decision is worse.
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After testing the algorithm with three Random Forest classifiers and with a Decision

Tree classifier, the last one proved to be more effective, as confirmed in chapter 6. As a

matter of fact, using DT with the 13 features listed in Table 4.2 resulted in an overall

sensitivity of 81.1% and in an overall specificity of 98.5%. This final result indicates

that the proposed robust algorithm detects a reasonable quantity of retinal images with

laser marks. However, even if a specificity of 98.5% seems to be a high measure value, it

is still not enough to implement the automatic system in a screening program because

it is much less tolerable to remove patients that have not undergone under treatment

whether they are healthy or not, even if it is a small percentage.

Taking the results mentioned before into account, the performance of the implemented

algorithm is comparable to that of Kotoula et al. [45], of João Dias et al. [46] and

of Faraz et al. [47]. The first referred work consisted in a manual grading of three

ophthalmologists where they had to identify images with signs of Macular Edema Pho-

tocoagulation, which are much smaller and much more difficult to detect. Nevertheless,

the performance by the ophthalmologists when observing digital colour retinal fundus

images was very poor: 58% sensitivity and 81.1% specificity. Although Kotoulo’s work

only considers MEP-related scars and the proposed algorithm does not discriminate the

type of photocoagulation scar, it is clear that the classification algorithm has a better

performance than the ophthalmologists themselves. João Dias proposed the first auto-

matic laser mark detection algorithm. The specificity of 99.9% achieved is outstanding

and for that reason it is much more resistant to false positives than the algorithm pro-

posed in this thesis (98.5%). However, there is a remarkable difference in the capacity of

detecting laser marks: while João Dias’ algorithm only captures 63.37% of the treated

patients, the current algorithm detects 97% of those same patients. The approach used

in [46] is based on quality parameters and therefore only the most evident cases are

detected. Fazar’s consists in a classical image processing classification problem that

follows a very similar approach to the one used in this work. It uses different image

processing techniques, different features and a different classifier (minimum distance).

The paper [47] reports a sensitivity of 94% and a specificity of 97%, but no comparison

can be made for the same images, since the dataset is not public. It is important to note

that they included images with MAs and EXs in the ”No Laser” category, so at first it

is possible to conclude that this algorithm is more vulnerable to false positives than the

one proposed in this thesis. As for the retinal images ”Laser”, the content and criteria
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is completely unknown, hence they might have chosen manually the most evident ones,

like in João Dias work.

The value of this work is in the fact that it uses simple, effective and robust to noise and

resolution segmentation algorithms like the Circular Hough Transform and the Frangi

Filter plus a very simple to interpret and to implement tree-based classifier in order

to accurately solve a quite complex problem - detecting structures (laser marks) with

variable shape, size and colour. The other novelty are the type of features used: texture

descriptors proved to have no importance in this specific classification; features derived

directly from the candidate regions properties are the most relevant (specially the ones

related to CHT); spatial distribution descriptors are in fact crucial to determine if the

segmented candidates have a regular or dispersed pattern characteristic of patients with

laser photocoagulation scars; it was confirmed that the intensity-based features proposed

by Faraz are important and effective to classify images with laser marks.

The automatic laser mark detection algorithm described in this work should be subjected

to further work in order to improve the performance of the current algorithm. The

priority should be focusing in alternatives that allow less detection of false positives. It

is true that it is important to detect laser marks in the retinal images ”Laser” where they

were not detected, but more important than that is to reduce the number of candidate

regions in retinal images without treatment applied, so that specificity is closer to 100%

and therefore applicable in clinical context.

One possibility is finding a criteria to remove false detected candidate regions. For ex-

ample, regions detected nearby the OD and the blood vessels are removed, so identifying

other characteristics that would indicate that the region detected is not a laser mark

(such as large EXs or bright spots resulting from thin retinas as described in chapter

6) would be one valid approach. Besides, although the vessel extractor is quite effec-

tive, it would be important to improve it in order to avoid detections in blood vessels

not segmented. Another interesting approach would be researching and possibly adding

another blob detector that makes use of the Hessian matrix. Moreover, finding more

features is a key to add more relevant features to the classifier in order to get a better

performance. According to the remarks written in this document, there is no need to

research for texture descriptors and finding new spatial distribution descriptors are po-

tentially the best type of features to add to this work. For example, geographical and
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econometrics tools contain many statistical measures that describe the distribution of

points in a 2D plane (for example, Ripley K is a good measure of point dispersion).

Finally, there is a very wide variety of classifiers. Only simple tree-based classifiers are

used in this work, so it is possible that using other more complex classifiers such as naive

bayes, SVM, neural networks or even fuzzy logic may increase the accuracy.

Furthermore, in order to implement the proposed algorithm in the Retmarker family

of products, the computation time should be reduced. Although the computation time

increases for higher resolutions, it is possible to fasten the algorithm by optimizing the

script in MATLAB and by converting it to a compiled language, such as C++. Also,

the algorithm spends a great percentage of its time on candidate region extraction,

specially on the LMS and on the bilateral filter of the CHT algorithm that together take

approximately 14 seconds in retinal images “Laser” with a resolution of 768x584.

In conclusion, the contribution of this thesis was to propose an automatic algorithm

with a very promising performance, as confirmed by the results, that detects treatment

signs of diabetic retinopathy in digital colour fundus images by combining the results of

three state-of-the-art segmentation algorithms adapted to this context, extracting and

selecting the most important features and adding a decision tree classifier. There was

an additional effort towards publishing two datasets containing retinal images with laser

marks that serve as benchmarks for future work developed on this complex task even

for a human expert.



Appendix A

Performance and Information

Theory Measures

Sensitivity and Specificity are two parameters that measure the quality of a classifier,

its ability to correctly classify instances and are computed according to Equations A.1

and A.2. The positive case is when a retinal image is classified as having laser marks.

Sensitivity =
TP

TP + FN
(A.1)

Specificity =
TN

TN + FP
(A.2)

where

• TP are true positives, meaning the number of retinal images with laser marks

correctly classified.

• TN are true negatives, meaning the number of retinal images without laser marks

correctly classified.

• FP are false positives, meaning the number of retinal images without laser marks

classified as ”Laser”.

• FN are false negatives, meaning the number of retinal images with laser marks

classified as ”No Laser”.
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Positive Predictive Value and Negative Predictive Value are two measures that

indicate the probability of an instance being correctly classified. Positive Predictive

Value is the percentage of retinal images classified as ”Laser” that actually present laser

marks (Equation A.3) and Negative Predictive Value is the percentage of retinal images

classified as ”No Laser” that actually do not present signs of laser treatment (Equation

A.4).

Positive Predictive V alue =
TP

TP + FP
(A.3)

Negative Predictive V alue =
TN

TN + FN
(A.4)

Information Gain an attribute evaluator based on entropy, a common information

theory measure. Let S be a set that is composed by s data samples with m classes, in

this case m =2. The entropy, which is the expected information necessary to classify a

sample is given by

H(S) = −
m∑
i=1

pilog2(pi) (A.5)

where pi is the probability that a random sample belongs to class Ci and is equal to si
s .

Considering that feature F has n distinct values and that sij is the number of samples

of class Ci in a subset Sj that has the samples in S that have a value fj of F . Then,

the entropy based on the partitioning into subsets by F is given by

H(F ) = −
n∑
j=1

H(S)
s1j + s2j + ...+ smj

s
(A.6)

Therefore, the Information Gain of feature F in relation to both classes ”Laser” and

”No Laser” is the difference between the two entropies mentioned above, as described

in Equation A.7 [100, 103].

IG(F ) = H(S)−H(F ) (A.7)
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Gain Ratio corrects the issue involving the bias of the Information Gain attribute eval-

uator. It normalises the Information Gain measure of a feature F by taking the intrinsic

information into account. Intrinsic information (Equation A.8) is the information gen-

erated by splitting the training dataset S into n partitions corresponding to n outcomes

of a test on the feature F .

SIS(F ) = −
n∑
j=1

|Sj |
|S|

log2(
|Sj |
|S|

) (A.8)

Therefore, the Gain Ratio measure of a feature is the Information Gain measure of that

feature divided by the intrinsic information, as described in Equation A.9. Gain Ratio

decreases as intrinsic information gets larger [103, 105].

GR(F ) =
IG(F )

SIS(F )
(A.9)





Appendix B

Datasets

Messidor ID

20051020 44843 0100 PP.png
20051020 54209 0100 PP.png
20051021 40377 0100 PP.png
20051021 40450 0100 PP.png
20051021 59459 0100 PP.png
20051021 59504 0100 PP.png
20051205 31396 0400 PP.png
20051212 41432 0400 PP.png
20051213 62648 0100 PP.png
20051214 40912 0100 PP.png
20051214 41582 0100 PP.png
20051214 56821 0100 PP.png
20051214 57940 0100 PP.png

Table B.1: List of images not considered from Messidor Dataset.

Screening Dataset Folder Files

Laser 0001.jpg to 0203.jpg

No pathologies
0204.jpg to 0622.jpg excluding the images in Drusens,

Exudates and Microaneurysms folders

Drusens

0212.jpg, 0284.jpg, 0352.jpg, 0354.jpg, 0355.jpg,
0383.jpg, 0391.jpg, 0424.jpg, 0453.jpg, 0460.jpg,
0467.jpg, 0473.jpg, 0488.jpg, 0505.jpg, 0532.jpg,
0540.jpg, 0548.jpg, 0577.jpg, 0608.jpg, 0612.jpg

Exudates 0204.jpg, 0220.jpg, 0233.jpg, 0267.jpg, 0348.jpg, 0382.jpg

Microaneurysms 0237.jpg, 0340.jpg, 0360.jpg, 0379.jpg, 0513.jpg, 0544.jpg

Table B.2: Summary of Screening Dataset.
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Figure B.1: Overview of Screening Dataset.

Figure B.2: Overview of BAT Dataset.
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Patient # Images ”No Laser” # Images ”Laser”

01 2 4
02 2 6
03 2 3
04 1 3
05 1 8
06 2 1
07 2 4
08 1 2
09 2 3

Table B.3: Details of BAT Dataset.

(a) (b)

(c) (d)

Figure B.3: Examples of images with laser marks from the Screening Dataset: (a),(b)
Retinal images of patients treated with PRP (c),(d) Retinal images of patients treated

with MEP.
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(a) (b)

(c) (d)

Figure B.4: Examples of images without laser marks from the Screening Dataset: (a)
Retinal image of a patient with drusens (b) Retinal image of a healthy person (c)

Retinal image of a patient with EXs (d) Retinal image of a patient with MAs.

(a) (b) (c)

Figure B.5: Images of patient 08 from the BAT Dataset: (a) Retinal image before
treatment (healthy) (b),(c) Retinal images after PRP.

(a) (b)

(c) (d)

Figure B.6: Examples of images with laser marks from the PDJD.



Appendix C

Pre-processing Examples

This section of the Appendix presents the results obtained during Pre-processing (Sub-

section 4.2) and Candidate Regions Extraction (Subsection 4.3) of three other retinal

images with laser marks besides the one used in the main text: 0002.jpg, 0132.jpg and

0198.jpg. Also, some examples of retinal images that support the explanation of the

scaling constant expression in section 4.2.5 are given at the end of this section.

Figure C.4 represents the retinal image 0010.jpg (ROI diameter =447 andOD diameter =112)

from the Screening dataset with the candidates to laser marks drawn after using scaling constant =

ROI diameter
480 (Subfigure C.4b) and after using scaling constant = ROI diameter−OD diameter

370

(Subfigure C.4c). Even though there are few false detections, subfigure C.4c shows more

laser marks detected.

Figure C.5 represents the retinal image 0189.jpg (ROI diameter =479 andOD diameter =118)

from the Screening dataset with the candidates to laser marks drawn after using scaling constant =

ROI diameter
480 (Subfigure C.5b) and after using scaling constant = ROI diameter−OD diameter

370

(Subfigure C.5c). Even though there are few false detections, subfigure C.5c shows more

laser marks detected.

Figure C.6 represents the retinal image 04 A1.jpg (ROI diameter =836 andOD diameter =128)

from the BAT dataset with the candidates to laser marks drawn after using scaling constant =

ROI diameter
480 (Subfigure C.6b) and after using scaling constant = ROI diameter−OD diameter

370

(Subfigure C.6c). There are no laser marks detected in subfigure C.6b. On the contrary,

the retinal image in subfigure C.6c presents two laser marks detected.

111



Appendix C. Pre-processing Examples 112

The retinal images from the EOEX dataset displayed in figure C.7 have the same

ROI diameter =698. However, the OD’s size are very different from each other. The

retinal image in subfigure C.7a has OD diameter =142, while the retinal image in sub-

figure C.7b has OD diameter =187 (it can be observed that the vessels are also larger).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure C.1: Pre-processing outputs and candidates extraction of image 0002.jpg from
the Screening Dataset: a) Original image b) ROI c) OD d) Vascular Network e) Image
cropped f) L* dimension before uneven illumination correction g) L* dimension after
uneven illumination correction h) After adaptive histogram equalization i) Processing
image j) CHT binary output k) FVF binary output l) LMS binary output m) Convex

Hull n) Original image with candidates drawn - yellow=CHT; blue=FVF.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure C.2: Pre-processing outputs and candidates extraction of image 0132.jpg from
the Screening Dataset: a) Original image b) ROI c) OD d) Vascular Network e) Image
cropped f) L* dimension before uneven illumination correction g) L* dimension after
uneven illumination correction h) After adaptive histogram equalization i) Processing
image j) CHT binary output k) FVF binary output l) LMS binary output m) Convex

Hull n) Original image with candidates drawn - yellow=CHT.



Appendix C. Pre-processing Examples 115

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure C.3: Pre-processing outputs and candidates extraction of image 0198.jpg from
the Screening Dataset: a) Original image b) ROI c) OD d) Vascular Network e) Image
cropped f) L* dimension before uneven illumination correction g) L* dimension after
uneven illumination correction h) After adaptive histogram equalization i) Processing
image j) CHT binary output k) FVF binary output l) LMS binary output m) Convex
Hull n) Original image with candidates drawn - yellow=CHT; blue=FVF; green=LMS.
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(a) (b) (c)

Figure C.4: Retinal image 0189.jpg from the S dataset: (a) original (b) candi-
dates detected using scaling constant = ROI diameter

480 (c) candidates detected using

scaling constant = ROI diameter−OD diameter
370

(a) (b) (c)

Figure C.5: Retinal image 0189.jpg from the S dataset: (a) original (b) candi-
dates detected using scaling constant = ROI diameter

480 (c) candidates detected using

scaling constant = ROI diameter−OD diameter
370

(a) (b) (c)

Figure C.6: Retinal image 04 A1.jpg from the BAT dataset: (a) original (b) candi-
dates detected using scaling constant = ROI diameter

480 (c) candidates detected using

scaling constant = ROI diameter−OD diameter
370

(a) (b)

Figure C.7: Images from the EOEX dataset: (a) C0007248.jpg (b) C0007240.jpg



Appendix D

Misclassified Retinal Images

This section of the Appendix presents some results obtained during Pre-processing (Sub-

section 4.2) and Candidate Regions Extraction (Subsection 4.3) of 10 retinal images ”No

Laser” that were classified as ”Laser”. Of these 10 images, 3 are from the S dataset, 2

are from the BAT dataset, 2 are from the Messidor and 3 are from the FAZD dataset.

(a) (b)

(c) (d)

Figure D.1: Pre-processing outputs and candidates extraction of image 0219.jpg from
the S Dataset: a) Original image b) Original image with candidates drawn - yel-

low=CHT; green=LMS c) Vascular Network d) Convex Hull.
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(a) (b)

(c) (d)

Figure D.2: Pre-processing outputs and candidates extraction of image 0225.jpg from
the S Dataset: a) Original image b) Original image with candidates drawn - yel-

low=CHT; blue=FVF; green=LMS c) Vascular Network d) Convex Hull.
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(a) (b)

(c) (d)

Figure D.3: Pre-processing outputs and candidates extraction of image 0419.jpg from
the S Dataset: a) Original image b) Original image with candidates drawn - yel-

low=CHT; blue=FVF; green=LMS c) Vascular Network d) Convex Hull.
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(a) (b)

(c) (d)

Figure D.4: Pre-processing outputs and candidates extraction of image 06 B1.jpg from
the BAT Dataset: a) Original image b) Original image with candidates drawn - yel-

low=CHT; green=LMS c) Vascular Network d) Convex Hull.
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(a) (b)

(c) (d)

Figure D.5: Pre-processing outputs and candidates extraction of image 07 B2.jpg from
the BAT Dataset: a) Original image b) Original image with candidates drawn - yel-

low=CHT; blue=FVF c) Vascular Network d) Convex Hull.
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(a) (b)

(c) (d)

Figure D.6: Pre-processing outputs and candidates extraction of image 15.jpg from
the FAZD Dataset: a) Original image b) Original image with candidates drawn - yel-

low=CHT c) Vascular Network d) Convex Hull.
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(a) (b)

(c) (d)

Figure D.7: Pre-processing outputs and candidates extraction of image 28.jpg from
the FAZD Dataset: a) Original image b) Original image with candidates drawn - yel-

low=CHT; blue=FVF; green=LMS c) Vascular Network d) Convex Hull.
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(a) (b)

(c) (d)

Figure D.8: Pre-processing outputs and candidates extraction of image 32.jpg from
the FAZD Dataset: a) Original image b) Original image with candidates drawn - yel-

low=CHT; blue=FVF c) Vascular Network d) Convex Hull.
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(a) (b)

(c) (d)

Figure D.9: Pre-processing outputs and candidates extraction of image
20051130 60691 0400 PP.jpg from the Messidor Dataset: a) Original image b)
Original image with candidates drawn - yellow=CHT; blue=FVF; green=LMS c)

Vascular Network d) Convex Hull.

(a) (b)

(c) (d)

Figure D.10: Pre-processing outputs and candidates extraction of image
20051214 51733 0100 PP.jpg from the Messidor Dataset: a) Original image b) Orig-
inal image with candidates drawn - yellow=CHT; blue=FVF; green=LMS c) Vascular

Network d) Convex Hull.
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