

Raphael Costa Cristovam da Rocha

DEFORESTATION AND CLIMATE IMPACT IN THE PANTANAL OF NHECOLÂNDIA A statistical analysis with the contribution of GIS and Remote Sensing

Master's dissertation in Physical Geography — Environment and Spatial Planning, supervised by Nuno Ganho Gomes da Silva, PhD and co-supervised by Arnaldo Yoso Sakamoto, PhD, presented to the Geography Department of the Faculty of Letters of the University of Coimbra

Universidade de Coimbra

Faculdade de Letras

DEFORESTATION AND CLIMATE IMPACT IN THE PANTANAL OF NHECOLÂNDIA A statistical analysis with the contribution of GIS and Remote Sensing

Ficha Técnica:

Tipo de trabalho	Dissertação de Mestrado
Título	DEFORESTATION AND CLIMATE IMPACT IN THE PANTANAL OF NHECOLÂNDIA
	A statistical analysis with the contribution of GIS and Remote Sensing
Autor/a	Raphael Costa Cristovam da Rocha
Orientador/a	Nuno Ganho Gomes da Silva
Co-Orientador/a	Arnaldo Yoso Sakamoto
Júri	Presidente: Doutor Luciano Fernandes Lourenço
	Vogais:
Identificação do Curso	 Doutor António Manuel Rochette Cordeiro Doutor Nuno Ganho Gomes da Silva 2º Ciclo em Geografia
Área científica	Geografia
Especialidade/Ramo	Geografia física
Ano apresentação	2015
Data da defesa	22-10-2015
Classificação	17 valores
	1

Universidade de Coimbra

This dissertation is dedicated to my parents Milton and Ione for believing in me, and to my loving wife, Eliane, who was always on my side in the difficult times. She was the light to my darkened path. To all of you, thank you very much.

AKNOWLEDGEMENT

I would like to thank my supervisor Nuno Ganho Gomes da Silva, PhD, for the helpful and knowledgeable comments and advices; for his professionalism and dedication to promptly answer my requested questions and doubts. A professor who is also a good friend who I admire and am inspired by his knowledge and passion for climatology.

To my co-supervisor Arnaldo Yoso Sakamoto, PhD, from the Federal University of Mato Grosso do Sul, Brazil, Campus Três Lagoas, to immediately accepting my request to co-supervise my dissertation. Also, for helping me to solve my problems faced throughout the making of this dissertation. For the friendship and the science lessons while on barbecues in his house or field tripping in Pantanal that were always inspiring.

To my parents Milton and Ione who always believed in me and in my insane propositions to achieve my objectives without questioning the setbacks of life that I would face.

To my mother-in-law Elva who had to put up with my wife and I "invading" her house while on a financial savings period changing all her routine to adapt ours in hers.

Lastly and the most important, to my beautiful wife Eliane for being the one, without a doubt, who had the most faith on me and the certainty that I could finish a project that I bargained more than I could chew. For defogging my blurred path towards the beginning of my studies and keeping me calm during my distresses.For silently answering my own doubts and questions. To you my dearest wife, thank you kindly.

ABSTRACT

The Pantanal is a region of distinct landscapes and fauna of great importance being considered by UNESCO as a World Natural Heritage Site and Biosphere Reserve. The Pantanal of Nhecolândia is regarded as the region that suffered most deforestation among other Pantanal regions. The Nhecolândia is one of the regions of Brazil with high meat production, leading the farmers to continuously deforest large areas of trees and "cordilheiras" to increase the pasture for livestock.

Deforestation has taken place since the dawn of humanity. This practice leads to consequences to the surrounding environment beyond just logging, as changing and impacting the whole dynamic of the ecosystem in question.

Studies related to a geographical character of an area has been supported by the geographic information systems and remote sensing, especially when it comes to map the changes in land use and occupation.

The use of new technologies in such old problems as the practice of deforestation has increased considerably, thus being able to consider it as the era of the Geotechnology.

Using the available tools of the highest existing technologies in our planet, this dissertation aimed at seeking a relationship between deforestation in the Pantanal region of Nhecolândia with a climate impact caused by this activity through statistical techniques applications looking for a correlation between the variables provided by the Brazilian Institute of Meteorology and the techniques of geographic information systems along with the science of remote sensing.

Maps were performed to show the evolution of land use for the region of Nhecolândia in a quadrangle layer, where are located the Firm and Nhumirim farms, responsible for studies in micro scale for climate impacts caused by deforestation and the meteorological data, respectively. Various multiple and linear regressions were made in the study focused onthree variables: maximum and minimum temperatures and rainfall.

The preliminary results showed the importance of studies in a micro scale level and raised the importance of the influence of the atmospheric circulation in the region as the most influential in changing the local dynamicsas well as causing both beneficial and/or harmful implications to the study region.

Keywords: Deforestation; Climate impact; Statistical Analysis; Remote Sensing; Pantanal of Nhecolândia

RESUMO

O Pantanal é uma região de distintas paisagens e rica biodiversidade sendo considerado, pela UNESCO, como Patrimônio Natural Mundial e Reserva de Biosfera. O Pantanal da Nhecolândia é considerado como a região que mais sofreu desmatamento dentre as outras regiões do Pantanal. A Nhecolândia é uma das regiões do Brasil com maiores produções de carne, o que acarretou que seus fazendeiros continuamente desmatassem grandes áreas de árvores e "cordilheiras" para aumentar a pastagem para o gado.

O desmatamento acontece desde os primórdios da humanidade. Essa prática leva a consequências para o ambiente envolvente para além da derrubada de árvores, mas modificando e impactando toda a dinâmica do ecossistema em questão.

Estudos relacionados ao cartáter geográfico de uma área tem sido auxiliados pelos sistemas da informação geográfica e detecção remota, especialmente em se tratando em cartografar as alterações no uso e ocupação do solo.

A utilização de novas tecnologias em problemas tão antigos como a prática do desmatamento tem aumentado consideravelmente, podendo assim entender como a era das geotecnologias.

Utilizando-se das ferramentas disponíveis no contexto das mais altas tecnologias, o dispor das investigação em geociênciasdesta dissertação visou buscar uma relação entre o desmatamento na região do Pantanal da Nhecolândia com os impactos climáticos causados por essa atividade através de aplicações de técnicas estatísticas procurando uma correlação entre as variáveis fornecidas pelo Instituto de Meteorologia brasileiro e com as técnicas dos sistemas da informação geográfica juntamente com a ciência da detecção remota.

Foram realizadas mapas para mostrar a evolução da ocupação do solo para a região da Nhecolândia em um quadrângulo onde estava inserida as fazendas Firme e Nhumirim, responsáveis por estudos em escala micro para os impactos climáticos causado pelo desmatamento e pelos dados meteorológicos, respectivamente.

7

Foram feitas várias regressões lineares e múltiplas a três variáveis em que o estudo se focou: temperatures máxima e mínima e precipitação.

Resultados preliminares mostraram a importância dos estudos em escala micro e elevou a importância da influência da circulação atmosférica na região como maior influente nas mudanças ocorridas, quer causadoras de impactos quer benéficas para a região de estudo.

Palavras-chave: Desmatamento; Impacto climático; Análise Estatística; Detecção Remota; Pantanal da Nhecolândia

TABLE OF CONTENTS

AKNOWLE	DGEMENT	4
ABSTRACT		5
RESUMO		7
INDEX OF F	FIGURESI	I
INDEX OF 1	TABLESI	I
INDEX OF (GRAPHICS I	2
INDEX OF A	APPENDIX I	3
INTRODUC		4
I- Cha	aracterization of the problemI	5
2 - Obj	jectives I	6
2.1 -	General objectivesI	6
2.2 -	Specific objectivesI	6
3 - Met	thodologyI	6
3.1 -	Meteorological and satellite dataI	6
3.2 -	Linear and multiple regressionI	7
4 - Stru	ucture of the dissertationI	8
CHAPTER I	- THEORETICAL FOUNDATION I	9
I - Ger	neral aspects of deforestation and climate impactI	9
1.1 -	The influence of deforestation in the climate2	0
1.2 -	The use of Remote Sensing and GIS in the deforestation ar	
climatei	mpact studies	•••
2 - Ren	note Sensing	2
2.1 -	Spectral behaviour in land use	
2.1 -	Spectral, spatial, radiometric and temporal resolution	
2.2 -	LANDSAT satellite	
2.5 -		

2.4	- Digital processing of images2	28
3 -	Statistics	<u>1</u> 9
3.1	- Linear and multiple regression2	<u>9</u>
СНАРТ	ER 2 – GEOGRAPHICAL CHARACTERIZATION OF THE STUDY AREA 3	10
Ι-	Brief historical of the Pantanal Mato-Grossense and the Nhumirim and Firm	۱e
Farm	s3	10
2 -	Climatology3	4
3 -	Hydrology3	15
4 -	Geology and geomorphology3	6
5 -	Biogeography3	17
CHAPT	ER 3 – THE CLIMATE OF THE PANTANAL OF NHECOLÂNDIA	19
Ι-	Characteristics of the regional climate3	19
1.1	- Insolation and cloudiness	19
1.2	2 - Temperature4	łO
1.3	8 - Wind4	11
1.4	- Humidity4	12
1.5	- Precipitation4	13
2 -	Dynamic factors of the climate - Action centres and atmospheric circulation	
	4	15
CHAPT	ER 4 – THERMAL AND HYGROMETRIC TOPOCLIMATE VARIABILIT	Y
ANALY	ŚIS4	17
۱ -	Maximum and minimum temperatures regarding absolute values4	17
2 -	Precipitation values regarding absolute values5	6
CHAPT	ER 5 – DEFORESTATION AND CLIMATE IMPACT6	50
Ι-	Deforestation – Land use imagery time series6	50
2 -	Statistical analysis7	' 4
3 -	Climate impact	}5
CONC	LUSION	39

BIBLIOGRAPHY	
APPENDIX	

INDEX OF FIGURES

Figure I: Location of the Pantanal in the South American continent	
Figure 2: Electromagnetic spectrum	
Figure 3: LANDSAT program time series	
Figure 4: Sub-regions of the Pantanal Mato-Grossense	
Figure 5: Pantanal of Nhecolândia	
Figure 6: Location of the Firme Farm	
Figure 7: Pedology of the Pantanal Mato-Grossense	
Figure 8: Brazilian air masses	
Figure 9: Re-forested and deforested areas. Google Maps and HRC Ca	amera from
CBERS satellite	63
Figure 10: Zoom of the same area from Google Maps in the HRC CBERS	image. True
Color composition	64
Figure 11: False colour - September 02, 1984	65
Figure 12: Supervised classification - September 02, 1984	66
Figure 13: Radiative temperature - September 02, 1984	67
Figure 14: False colour - September 12. 1999	
Figure 15: Supervised Classification - September 12, 1999	69
Figure 16: Radiative temperature - September 12, 1999	70
Figure 17: False colour - September 21, 2014	71
Figure 18: Supervised classification - September 21, 2014	72
Figure 19: Radiative temperature – September 21, 2014	73

INDEX OF TABLES

Table I: Reference table of the types of systems in Remote Sensing	24
Table 2: Monthly values for maximum temperatures series with statistics technic	Jues
applied	49

Table 3: Comparison among years with the lowest values for the maximum
temperature series
Table 4: Statistics results organized according to the lowest to the highest values for
the maximum temperatures series
Table 5: Monthly values for minimum temperatures series with statistics techniques
applied53
Table 6: Comparison among years with the lowest values for the minimum
temperature series
Table 7: Table 4: Statistics results organized according to the lowest to the highest
values for the minimum temperatures series54
Table 8: Increasing order of the mean of the maximum and minimum temperatures
mean values
Table 9: Monthly values for precipitation series 58
Table 10: Statistical techniques of the precipitation series
Table II: Classification report for the supervised classification image of September
02, 1984
Table 12: Supervised classification report for September 12, 1999
Table 13: Classification report for September 21, 2014
Table 14: Frequency of linear regressions with p-values under 0.05 and over 0.0584

INDEX OF GRAPHICS

Graphic I: Insolation compared with the Climate Normal40
Graphic 2: Cloudiness compared with the Climate Normal
Graphic 3: Minimum temperature compared with the Climate Normal
Graphic 4: Maximum temperature compared with the Climate Normal
Graphic 5: Wind intensity compared with the Climate Normal
Graphic 6: Humidity compared with the Climate Normal
Graphic 7: Precipitation compared with the Climate Normal
Graphic 8: Graphic comparing the years 1985 and 1989 for maximum temperature 48
Graphic 9: Graphic comparing the years 1988 and 1992 for maximum temperatures
Graphic 10: Graphic comparing the years 2010 and 2005 for minimum temperatures

Graphic II: Graphic comparing the years 2009 and 2006 for minimum temperat			
	52		
Graphic 12: Comparison between the driest years of 1999 and 2002	57		
Graphic 13: Comparison between the rainiest years, 1989 and 1992	57		
Graphic 14: Linear Regression - Max Temp (Y) and Precipitation (X) and	Minimum		
Temperature (X)	75		

INDEX OF APPENDIX

Appendix 1: Insolation data from 1986 until 2011	101
Appendix 2: Cloudiness data from 1993 until 2011	102
Appendix 3: Minimum temperature data from 1985 until 2011	103
Appendix 4: Maximum temperature data from 1985 until 2011	104
Appendix 5: Wind data from 1993 until 2011	105
Appendix 6: Humidity data from 1986 until 2011	106
Appendix 7: Precipitation data from 1984 until 2011	107
Appendix 8: 1985	108
Appendix 9: 1987	
Appendix 10: 1988	
Appendix II: 1989	
Appendix 12: 1990	121
Appendix 13: 1997	124
Appendix 14: 1999	129
Appendix 15: 2000	133
Appendix 16: 2002	137
Appendix 17: 2005	146
Appendix 18: 2009	151
Appendix 19: 2010	160

INTRODUCTION

In the past few decades the geographic information system along with various disciplines has been a constant in various studies, especially those with a geographical nature theme.

With the advent of satellite images and the development of informatics, a greater increase in the reading possibilities of geographical space in various degrees resulted in a sophisticated developed tool focused on spatial analysis and for such case, we can call it today the era of geoprocessing.

As technology nowadays progressively updates and upgrades almost as fast as the speed of light, they also "walk" beside and jointly with the human's interventions in our planet. In order to fulfil the needs of our society, the industry of every kind fulfils the society's needs, most of the times, in a no-matter-what-are-the-consequences attitude. Deforestation is among the variety of consequences.

Deforestation is no fresh news for humankind. The consequences of such activity is beyond its border. Affects widely the environment where it is being practiced. In every environment in the world deforestation happens and it's most likely due to economic reasons.

The Pantanal is not off of this threat. The Pantanal is worldly known for its environmental singularities and wonderfulness, being considered by UNESCO a World Heritage Site and Biosphere Reserve. (Figure 1)

Figure 1: Location of the Pantanal in the South American continent Source: Wikipedia

Extensive beef-cattle raising is considered the main economic activity in the Pantanal and it demands major land use with vast pasture areas culminating in huge farms throughout the entire Pantanal. One of the most important regions for livestock in Brazil is the subregion of "Nhecolândia", located in the alluvial fan of the Taquari River in the Mato Grosso do Sul state of Brazil. (RODELAet *al.*, 2007)

This area has a very unique system of vegetation distribution with its units arranged in mosaic, alternating "cerradões" (savannah like environment) and seasonal forests in the "cordilheiras", seasonal and humid fields, flooded in parts or/and in the surrounding ponds;seasonal forest in the intermediate parts of the environment, etc.

I - Characterization of the problem

Since the early 1970's, local farmers progressively deforested their land in order to increase their pasture land by replacing the native pasture and "cordilheiras" introducing exotic forage, predominantly *Brachiara* ssp resulting in vast deforested areas within their farms. (BODDEYet al., 2004).PADOVANIET al. (2004) presented in their article that the Nhecolândia area is the most deforested of all the Pantanal's sub-regions.

Deforestation of "cordilheiras" not only has negative impacts on the Pantanal's flora, it also contributes: to the reduction of a number of timber species; has negative repercussions on wildlife, hampering the nesting of thejacaré-do-pantanal (*Caiman yacare*); decreases the refuge areas in times of major floods for several species such as the pampas deer (*Ozotocerosbezoarticus*) (BACANIET *al.*, 2010). Nesting of jabiru (*Jabiru mycteria*) and many other bird species is also impacted negatively. The habitat loss is the major cause of species extinction (PIMMetal, 1995*apud*BACANIET *al.*, 2010).

In addition to the negative impacts appointed to the biotic environment, it is important to evaluate others, such as the climate impact caused in recurrence of deforestation as is well-known studied by several scientist all over the world.

Many articles about the climate impact caused by deforestation and also its impact in the Pantanal had been written. Many relate to the soil transformation, the increase of acidity in the saline water ponds in the Nhecolândia region due to landscape transformation, depletion of the sandy boundaries facilitating the entrance of fresh water to the saline pond environment altering the alkalinity and, thus, altering the surrounded environment.

As little introduced, the impacts in the climate and due to the climate within the Pantanal are well known and documented, but not entirely understood. Many methodologies are tested and new results are produced.

2 - Objectives

2.1 - General objectives

This dissertation aims to study the impacts caused in the regional climate of the Pantanal of Nhecolândia due to the deforestation that it has happened since the years 1970's through the analyse of a time series meteorological data such as temperature (maximum and minimum) and precipitation from 1985 until 2011. It will have the contribution of GIS and Remote Sensing as mapping the progression of deforestation from 1984 until 2014 utilizing LANDSAT imagery. It will also analyse if there is a correlation between deforestation and the impacts in the regional climate.

2.2 - Specific objectives

- To understand the dynamics of the climate of the Pantanal of Nhecolândia;
- To introduce a brief historical of the study area;
- To analyse the meteorological data;
- To map the evolution of the deforestation;
- To verify about the impacts caused in the regional climate due to deforestation;

3 - Methodology

3.1 - Meteorological and satellite data

The USGS (U.S. Geological Survey) Landsat Mission and INPE (Instituto Nacional de Pesquisas Espaciais) provided most of the imagery used in this dissertation. It was used images from the Landsat 5 and 8 and the Chinese-Brazilian satellite CBERS2.

The Meteorological data were acquired for free in the BDMEP (Banco de Dados Meteorológicos para Ensino e Pesquisa) of SADMET.

Images from Landsat 5 and 8 satellites dates from September2nd, 1984, until September 21st, 2014, orbit 226/073 for both satellites;the images will assess the deforestation progression in the Nhumirim and Firme Farms. It was chosen the Nhumirim Farm to do the studies simply because the meteorological station is located within the property and the Firme Farm because many authors study the area and its natural features.

The meteorological data is from the Nhumirim Station from INMET (*Instituto Nacional de Meteorologia*) dating from January 1st, 1985, until December31st, 2011. They were analysed, hourly, daily and monthly. However, only the years with a complete set of data for every day and every month of the year were used. The climatological station is located at latitude 18°59'S and longitude 56°39'W, about 97 meters above sea level in the Nhumirim Farm that belongs to EMBRAPA (*Empresa Brasileira de Pesquisa Agropecuária*); the precipitation (mm), air temperature (minimum, maximum and mean - °C), relative humidity (%), evaporation (%), insolation (hours) and evaporation of the tank "Class A" (mm) data are collected daily at 08, 14 and 20 hours.

The land use map area was elaborated with the analysis of the imagery (from 1984 to 2014) provided by the Landsat program, using the technique of "Supervised classification" which it'll be compared among each other.

The "Supervised Classification" was applied after thecomposition of the bands of the Landsat satellite to assess the coverage of the vegetated area utilizing the open-source software QGIS and its plugin "Semi-Automatic Classification Plugin" and also the proprietary software ArcGIS 10.1.

3.2 - Linear and multiple regression

It will be explored the impacts on the climate by using the linear regression model to seek the correlation with the variables minimum temperature and precipitation and maximum temperature and precipitation, also a multiple regression model with the variables precipitation and maximum and minimum temperatures.

4 - Structure of the dissertation

This dissertation structures in 5 chapters.

The first chapter introduces the theory that supports the study. The second chapter addresses a brief history of the Pantanal of Nhecolândia and its geographical characteristics. The third chapter analyses the characteristics of the regional climate. The fourth chapter analyses the thermal and hygrometric topoclimate variability. The fifth and last chapter finalise the dissertation with the results obtained with the theory, the statistical and GIS techniques and the remote sensing science.

CHAPTER I – THEORETICAL FOUNDATION

I - General aspects of deforestation and climate impact

Since the dawn of civilization that deforestation occurs. In the early days the capacity of regeneration of the natural resources was able to follow the slow pace of consumerism. With the growth of the population in exponential scale, natural resources and the environment have been degraded to maintain the global needs for raw materials. As the result of this process are many direct and indirect effects in our days, such as disappearance of species, induced mutation, desertification and climate change (RÊGO&HOEFLICH, 2001). Direct actions are represented by deforestation, exploration of soil resources, urbanization and industrialization. Indirect actions are felt in the form of impacts aroused from lower production, susceptibilities caused by climate change, and diseases caused by mutagenic agents. (INOUE, 1992 apudRÊGO&HOEFLICH, 2001). Deforestation is the process of removing a forest or stand of trees, mainly caused by human activities in order to convert to a nonforest use. There are many reasons why forests gets cleared, as they are used as timber or charcoal for industries, while cleared areas are used as settlements, pasture for livestock, plantations of commodities, etc. Deforestation causes a great impact in the global environment as well as in the human life causing negative effects in the economy, society, culture and biological aspects, affecting virtually every living-being in our planet, directly or indirectly (ComissãodasComunidadesEuropeias, 2008).

The consequences of deforestation are numerous, as cited above, because not only affects the biodiversity but also affects the climate. According to DUBREULLet al. (2011, p. 1) in an article about the Brazilian Amazon, "[...] the forest promotes the maintenance of strong humidity and a range of high temperatures (30 °C to 34 °C during daytime and 15 °C to 20 °C during the night, on average). Major modifications in vegetation cover have consequences on hydrology and climate (LEAN&WARRILOW, 1989; ICHIIet al., 2003)." As trees transpire, they release a great deal of water back to the atmosphere regulating the cycle of rain regionally and globally. Forests purify the water, regulate the level of the groundwater and are responsible for the regulation of about 57% of the freshwater (ADAMOWICZet al., 2005).

Deforestation can contribute to the decrease of precipitation. The decrease of precipitation degrades other parts of the forest leading it to the savannah expansion and semi-desertification (OYAMA&NOBRE, 2003), erosion of the soil, loss of fertility of the soil by leaching in periods of rainy season, laterites (ESPINDOLA&DANIEL, 2008), damaging crops and pastures from regions that can be far away from the deforested area (DUBREUILet al., 2011), and also reducing the amount of renewable freshwater sources for human consumption. Hence, changes of surface cover have implications that broaden well further than the lower layers and influence all the climate parameters such as temperature, humidity, rainfall, etc.

I.I - The influence of deforestation in the climate

According to THE WORD BANK (2012), forests cover 31% of the land on our planet producing vital oxygen, also acting as a carbon dioxide sink, as it would otherwise be free in our atmosphere playing a critical role in mitigating the climate change scenario (WWF, 2014). Lost or degraded forests set off a sequence of changes that distress life both locally and around the world.

As put by DUBREUIL*et al.* (2011, p. 3), "The synthesis of deforestation (substitution of forest by pasture) and climate presents a systematic decrease in evaporation allied to an increase in albedo (less energy absorbed), and decrease in rugoses, root system and foliar surface (PIELKE, 2001; VONRANDOW*et al.*, 2004; SHEIL&MURDIYARSO, 2009). The decrease in evaporation is linked with an increase in surface temperatures. The majority of the models (but not all) predict a decrease in precipitation linked to a reduction in convection due to albedo increase and low rugoses. Moreover, latent and sensible heat fluxes vary little above the forest (the Bowen ratio has a year-round stable value around 0.3-0.4), while above pastures, these fluxes are variable throughout the year."

Complex exchanges among the dynamical processes in the atmosphere and thermodynamic processes at the Earth-atmosphere boundary determine the equilibrium climate. Therefore, estimating quantitatively, the effects that hefty changes in terrestrial ecosystems can have on temperature, circulation and rainfall has been a complex task. (NOBREet al., 1991).

Changing the land use, as deforestation, alters the land cover of the globe, causing all sorts of problems. However, it also produces greenhouse gases (GSGs, notably CO_2 , CH_4 and N_2O) and aerosols (e.g. smoke and dust particles), thus being responsible for important

effects on climate in which they affect by reflecting and absorbing radiation. Indeed, "landscape transformation and particularly land changes from tropical forest to pastures or crops contribute to sensibly modify the radiative exchanges in local scale" (DUBREUIL*et al.*, 2011)

Anthropogenic changes in the physical aspects of the Earth's surface can arouse climatic disturbances such as exerting alterations of the albedo – the albedo of forested land is lower than deforested areas because of "the greater leaf area of a forest canopy and multiple reflections within the canopy result in a higher fraction of incident radiation being absorbed" (IPCC, 2007) inducing "radiative forcing" by perturbing the shortwave radiation budget. Changes in the land use can also affect the emissivity, fluxes of moisture through evaporation and transpiration, also the surface energy balance by altering the water cycle (e.g. irrigation), the ratio of latent and sensible heat and the rugoses of the terrain exerting frictional drag in the atmosphere altering the turbulent transfer of heat and moisture affecting the air temperature near the ground modifying humidity, precipitation and the velocity of the wind (IPCC, 2007; ONÇA, 2011). MARENGO (2006, p. 2) states "Changes in land use patterns due to deforestation might produce changes in latent heat and can ultimately influence precipitation in two important ways. First, an increase in evapotranspiration adds moisture to the atmosphere, which, if recycled, directly increases rainfall. Second, increased latent heating associated with this increased rainfall can drive an intensified circulation (e.g. the Hadley cell), resulting in changes to the moisture convergence from remote sources. Land-use practices, such as agriculture or urbanization often disrupt the supply of fresh water through changes in the surface water balance and the partitioning of precipitation into evapotranspiration, runoff and groundwater flow".

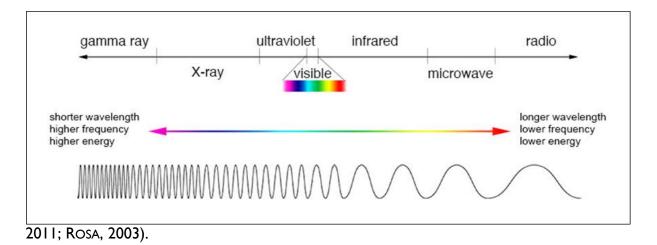
¹ (IPCC, 2007) "Anthropogenic greenhouse gases and aerosols affect the climate system by altering the balance between absorbed solar radiation and emitted infrared radiation. The imbalance is quantified as the "radiative forcing", which is defined as the change in net downward radiation (combined solar and infrared) at the tropopause when, for example, greenhouse gas or aerosol amounts are altered, after allowing for the adjustment of stratospheric temperatures only. The surface climate responds to the initial change in net radiation at the tropopause rather than at the surface itself or at the top of the atmosphere because the surface and troposphere are tightly coupled through heat exchanges, and respond as a unit to the combined heating perturbation. The adjustment of the stratosphere is included in the radiative forcing because the stratosphere responds quickly and independently from the surface-troposphere system."

1.2 - The use of Remote Sensing and GIS in the deforestation and climateimpact studies

The use of geotechnologies is growing within the geographical analysis and its responsibilities. Outcomes and outputs have been of fundamental importance to the scientific research and technical documents in the area of counselling and environmental consulting (CARDOSO, 2011).

Geotechnologies solutions consist of a set of technologies for collecting, processing, analysing and delivering information with geographic references that together constitute tools for decision-making (ROSA, 2003).

In this perspective, GIS and Remote Sensing has been an important tool to analyse and visualize spatial data, being used extensively in different applications such as cartography for land use (urban planning), analysis and transporting management (input network and emergencies), geodemographic analysis (service locations), cartography of infrastructure networks (gas, water, electricity) and multiple applications for natural resources (CARDOSO, 2011).


Remote Sensing and GIS has been used in many fields of expertise and climate impacts and deforestation studies are one of them(DUBREUIL*et al.*, 2009). As ZAKARIA (2010, p.8) well elucidated, "remote sensing data are capable of capturing changes in vegetation cover by multi-temporal monitoring through time series. Remote sensing is also one of the most reliable devices having high capability in research work for spatial information and data collection concerning different fields. As remote sensing has routinely provided a newly quality of imagery of the Earth's surface, it has become intertwined with GIS as a means to constantly and inexpensively updates some of the data such as land use and land cover".

2 - Remote Sensing

The set of methods for data acquisition of targets on Earth's surface (objects, areas, events) through the exchange of electromagnetic radiation with the surface performed by distant or remote sensors is known as Remote Sensing (Figure 2).

There are many definitions for Remote Sensing. As put by LILLESAND (1987), it is the science that obtains the information from a determined object, area or phenomena through the analysis of the data acquired without direct contact with the object investigated.

The absorption, the incidence, the reflection and emission of the electromagnetic waves from Earth's surface and the interpretation of its reflectance patterns are part of the Remote Sensing activities with various applications to different sciences subjects and human activities, which among them are the deforestation studies and climate change (CARDOSO,

Source: http://imagine.gsfc.nasa.gov/docs/science/know II/emspectrum.html

Before Remote Sensing, it was common to use aerial photography and yet some of the photos are irreplaceable to many applications. According to CARDOSO (2011, p.52), "there are many data acquisition systems such as airborne cameras, satellites, radar systems, sonar or microwave (Table 1). The systems can be active, as the microwave systems, which record the difference in their frequency between the signal emitted by them and the

Figure 2: Electromagnetic spectrum

ed signal from the surface (the Doppler effect), or passive and active, such as photographic cameras, which record the reflectance or emittance of a surface".

The level of acquisition of data in Remote Sensing thoroughly connects with the sensor's height. Depending on its height, there will be differences in the data acquired such as the dimension of the detected area, in the environmental factors and in the

rec

eiv

Electromagnetic Radiation registered by the sensor as with the level of information. (MAZZOCATO, 1998 apudRODRÍGUEZ, 2005)

The satellites used in Remote Sensing have evolved since 1970's in many temporal and spatial scales offering diverse use in any area of expertise. Depending on the needs of one, such images acquired from a certain satellite and with a proper spectral sign, it would allow the perfect discrimination of the target and its neighbours being a fast, inexpensive and an efficient way to detect the many diverse environments in our planet (RIBEIRO, 1998).

I able 1: Reference table of the types of systems in Remote Sensing					
Taxonomy of remote sensing systems					
Platform of recording	Record Mode	Ways of Recording	Spectral Coverage	Spectral Resolution	Spatial Resolution
Satellite /Shuttle	Passive (Visible)	Analogic	Visible /Ultraviolet	PAN I Band	Very Low >250m
Airplane /Balloon Stationary			Infra-red reflected	Multi-Spectral 2-20 Bands	Low 50-250m Medium 10- 50m
	Active (Radar, Laser)	Digital	Infra-red thermal	Hyper-Spectral 20- 250 bands	High 4-10m Very High 1-
			Microwave	Ultra-Spectral >250 bands	4m Ultra-High <1m

 Table I: Reference table of the types of systems in Remote Sensing

Source: CARDOSO, 2011. Translation: Author

2.1 - Spectral behaviour in land use

The basis for interpretation remote sensing images is the interaction of radiation with matter. According to GIRARD&GIRARD (2003, p. 72), "An object situated in a given geographic position at a given moment, viewed under a given field of view and receiving a given radiation, exhibits a spectral behaviour that is specific to it. Hence, some authors use the term spectral signature. This term is inappropriate since a signature implies constancy whereas, in reality, the spectral behaviour of an object varies with time, place, mode of data acquisition and incident radiation."

Remote Sensing image bases on general laws of physics and the spectral behaviour of objects is quite important when we are dealing with analysis and interpretation (GIRARD&GIRARD, 2003).

Although there are many objects we can study, it normally reduces to a few broad circumstances such as vegetation (organic matter), soils (mineral matter), water, snow and ice.

2.1.1-Spectral behaviour in vegetation

The spectral characteristics of the vegetation relates to the leaf composition chemistry, morphology and internal structure, as it has been the largest contributor to detect the electromagnetic radiation sign (VERONESE, 2000).

In the visible region, healthy vegetation has a high interaction because of the high absorption rate in the visible region due to the presence of pigments in the vegetation leavessuch as chlorophyll which absorbs a large amount of energy in the regions that are concentrated in the 0.45 and 0.67µm. Due to this fact, we are able to colourize the image of the healthy vegetation in the green colour. Because vegetation suffers hydric stress, thus producing low amount of chlorophyll, the absorption decreases in the visible region leaving a yellowish colour (CARVALHO, 2005; COURA, 2007 *apud*VILELA, 2009).

In the near infrared region, the reflectance of healthy vegetation can reach values close to 50% of the incident energy (CARVALHO, 2005 apud VILELA, 2009) due to internal structure of leaves (THIAM&EASTMAN, 1999 *apud*VILELA, 2009). According to VILELA (2009, p. 11) "Wavelengths greater than 1.3 microns the incident energy on the vegetation is usually absorbed or reflected occurring low or no transmittance. For wavelengths of about 1.4, 1.9 and 2.7 microns, the increase in absorption is due to the presence of water in the leaves(CARVALHO, 2005)."

2.1.2- Spectral behaviour in water

Water provides distinct spectral behaviour due to its physical state. The liquid form emits a low reflectance (less than 10%) in the range between 0.38and 0,7 μ m, absorbing all radiation with values higher than 0,7 μ m. According to VERONESE (2000, p. 36), "[...] Nevertheless, this behaviour is affected by the concentration of suspended materials and dissolved in water and by the depth of the water body. The increase in concentration of suspended material implies an increase of the reflectance in the red range." Clouds have high reflectance (approximately 70%) throughout the optical spectrum. The smooth waves in the spectral curve are due to light absorption on 1.3 and 2μ m (VERONESE, 2000; VILELA, 2009).

2.1.3- Spectral behaviour in soil

The presence of organic matter and moisture and the mineral formation determine the spectral behaviour of soils. The reflectance has lower values in the blue wavelength, positively increasing in the red, near infrared and near mid-infrared wavelengths. The iron oxides and hydroxides increase the spectral range from green to near infrared and reduce the reflection in the blue wavelengths. Reduced reflectance at all wavelengths is occasioned by the high moisture content in the soil and an increase in organic matter leads to the reduction of the reflectance. The level of organic material is better detailed in the visible and infrared (VERONESE, 2000; VILELA, 2009).

2.2 - Spectral, spatial, radiometric and temporal resolution

2.2.1-Spectral resolution

Spectral resolution defines as the capacity of the sensor to distinguish spectrally similar bodies. The resolution relates to the number of spectral channels and their thickness. Different objects may have similar spectral response within a certain range of wavelength and provide different responses in another portion of the spectrum. Thus, a larger number of spectral channels imply a higher spectral resolution. (VILELA, 2009)

2.2.2- Spatial resolution

Spatial resolution relates to the ability of a sensor to distinguish objects that are close spatially (VERONESE, 2000; VILELA, 2009). A reference to this resolution is the pixel size. Normally, only objects bigger than the pixel size can be identified, although it depends on its reflectance and contrast between the nearby objects.

Spatial resolution is one of the most important factors when one chooses to work on getting information about the terrestrial resources. (VERONESE, 2000)

2.2.3- Radiometric resolution

According to VERONESE (2000, p. 19) "Grey levels of the pixels are represented by integers that fall within a certain range". The larger the value number, the higher the radiometric resolution. The number of Grey levels is usually expressed in terms of the

number of binary digits (bits) needed to store in digital form the value of the maximum level. The value in bits is always a power of 2. Thus, n bits expresses 2^n values of Grey levels.

2.2.4- Temporal resolution

Temporal resolution is defined as the frequency at which a sensor revisits a given area. According to FONSECA (2000), the appropriate temporal resolution is essential in the process of identification studies that dynamically change such as atmospheric flow, growing crops, and land use.

2.3 - LANDSAT satellite

LANDSAT stands for Land Remote Sensing Satellite. The program was first initiated in mid-1960s. The satellite was conceived exclusively to the observation of terrestrial natural resources. The first of the LANDSAT satellite to be launched was the LANDSAT I in July 23rd, 1972. The last update in the program was the LANDSAT 8, launched in February 11th, 2013.

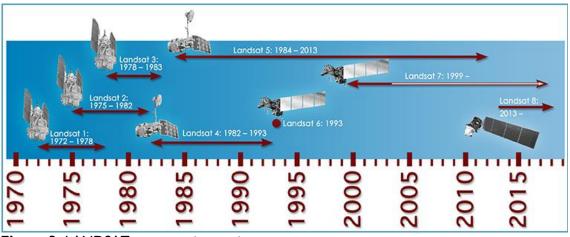


Figure 3: LANDSAT program time series. Source: http://landsat.gsfc.nasa.gov/?p=3166

The LANDSAT satellites orbit our planet from North to South in a geocentric orbit, polar and sun-synchronous. LANDSAT 1, 2 and 3 satellite images the entire Earth every 18 days and LANDSAT 5, 7 and 8 every 16 days.

Our knowledge of diverse things such as coral reefs, tropical deforestation, and Antarctica's glaciers for example, increased with the advent of the LANDSAT program. Since it collects data from all over the world in a regular basis and from a considered period of the 20th century, LANDSAT have helped to improve our understanding of Earth. The 30 meters spatial resolution and 185 kilometres swath of LANDSAT are detailed enough to characterize human-scale processes such as urban growth, agricultural irrigation, and deforestation allowing scientists to evaluate environmental change over time (NASA, 2014).

2.4 - Digital processing of images

The main purpose of the digital processing of images is to take the digital data and computers and to manipulate them in order to obtain parameters of correction and highlights enabling them to promote the identification and extraction of the image's data (VILELA, 2009).

2.4.1-Pre-processing

It is common to images coming from remote sensors be subject to a number of spatial distortion mainly caused by the platform of instability as well as by scenic effects related to the acquisition geometry and the curvature and rotation of the Earth (VILELA, 2009). According to VERONESE (2000), it is necessary to submit images to a geometric correction when such distortions are present in order to provide mapping accuracy in the placement of objects depicted therein, utilizing the ground control points for example. There are other techniques of correcting geometrically as image registering, elimination of noises, interpolation correlation, etc. Also MATHER (2004) *apud*VILELA (2009, p. 22) refers that "geometric correction of images is required in various situations, such as when you want to match an image and a map; locate points of interest on the map and image; overlapping temporal sequences of images relating to the same area, as they may be obtained by different sensors".

Thus, pre-processing is the technique applied on raw data, providing the proper rectification and correction of the distortions in remote sensed images.

2.4.2- Digital classification of images

Digital classification of images is the process of extraction of information from images enabling the user to identify the patterns and homogeneous objects. The end product obtained results in a thematic map.

During the process of digital classification, the user chooses different classes according to one's project and gives a pattern recognition based on pixels information.

According to FONSECA (2000) the classification is implemented based on differences in behaviour of materials throughout the electromagnetic spectrum.

There are two groups of training in the automatic classification which are called supervised and non-supervised.

3 - Statistics

Statistics is a tool to processdata in an investigation through a set of methods. Therefore, it is a set of tools to collect, explore, discuss and interpret data.

Statistics is not a science, because it is a set of methods, analysis tools and does not has a theory. It alone does not explain anything. Need something to explain it, such as geography, economics, medicine, etc., in an appropriate scientific framework.

When we have many observations, we make a successive reduction and thus there is a loss of conditioned specificity and individuality. It is important to have several observations in statistics, but there is also a gain of generality.

3.1 - Linear and multiple regression

Regression analysis is a statistical process to calculate and assess the relationship among variables. According to JOHNSON&WICHERN (2013, p. 360), "Regression analysis is the statistical methodology for predicting values of one or more *response* (dependent) variables from a collection of *predictor* (independent) variable values. It can also be used for assessing the effects of the predictor variables on responses". Indeed, regression analysis assists one to interpret how the typical value of the dependent variable changes when any one of the independent variables is varied, while the other independent variables are held fixed.

The association between a single dependent variable Y and a collection of predictor variable z_1 , z_2 , ..., z_r is one of the concerns of the classical linear regression model (JOHNSON&WICHERN, 2013). Specifically, the methods that establish linear relations to the parameter of a model between two or more variables are denominated as methods of linear regression. We can establish a functional relation between a random variable Y (dependent) and another independent variable, which can be either random or fixed. A fixed variable is the one that the user controls its reactions (FERREIRA, 2009). When one independent

variable is used, we call a simple linear regression. As we need more than one independent variable, we call it a multiple linear regression (WALPOLE*et al.*, 2009).

CHAPTER 2 – GEOGRAPHICAL CHARACTERIZATION OF THE STUDY AREA

I - Brief historical of the Pantanal Mato-Grossense and the Nhumirim and Firme Farms

ASSINE (2003) states that the Pantanal is a sedimentary basin tectonically active with changes in its landscape happening since the Pleistocene caused by climatic and tectonic changes.

According to GODOI FILHO (1986), the Pantanal Mato-Grossense covers an area of approximately 140.000 km², with 65% of its territory in the State of Mato Grosso do Sul and 35% in the State of Mato Grosso. It has an average elevation of 100m, being an integral part of the Paraguay River Basin (500.000 km²), also representing the centre of South America. The Planalto Cristalino surrounds it with altitudes varying from 600 to 700m, which represents the area of water and sediment sources. (BACANI, 2007).

CALHEIROS & OLIVEIRA (1996) consider the Pantanal as a mosaic of aquatic ecosystems. It is a remarkable interspace of transition and contact influenced by four other large Brazilian biomes: Amazonian, Savannah, Chaco and Atlantic Forest. As AB'SABER's (1988, p. 9) said, "In the category of a large and relatively complex alluvial detritic coalescing plain, the Pantanal Mato-Grossense includes savannah and Chaco ecosystems, biotic components of the dry North-east and peri-Amazon regions. From the phytogeoGraphical point of view, this is an old regional 'complex', which vegetation maps elaborated from documents of remote sensing images turned into a perfectly understandable mosaic of natural organization of space, somewhat 'complex'".

According to FRANCO & PINHEIRO (1982) *apud*BACANI, (2007), the usual designation of the Pantanal is based on the fact that the area is often flooded by surface water. However, most researchers agree that the term is not appropriate because "the area does not present characteristics of a swamp genesis" (SÁNCHEZ, 1977 *apud*BRASIL, 1982, *apud*BACANI, 2007, p. 35).

The Pantanal is formed by extensive surface of accumulation of modern alluvium in a continuous sedimentation process experiencing annual periodic flooding. It has relatively flat topography and low topographic gradient ranging from 0.3 to 0.5m/km East to West and from 0.03 to 0.15m/km in the North-South direction (ALMEIDA, 1965; FRANCO&PINE, 1982; ALVARENGAet al., 1984, apudGRADELLAet al., 2010). As an active sedimentary basin, its landscape ismoulded by successive depositional events and it is mainly formed by fluvial plains.

The Pantanal Mato-Grossense has many sub-regions (Figure 4) and the Pantanal of Nhecolândia situates between the Taquari River, in the North and the Negro River, in the South (Figure 5).

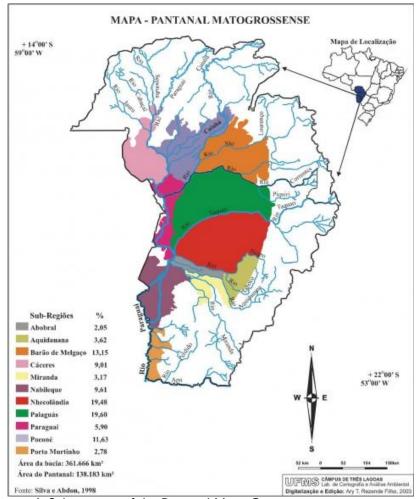


Figure 4: Sub-regions of the Pantanal Mato-Grossense

Source: SILVAet al., 2015

This sub-region characterizes by the presence of rivers, bays, saline, ebbs, streams, "cordilheiras", tropical grassland, savannah, forests and seasonal forests (BRASIL, 1982 *apud*SAKAMOTO, 1997). FERNANDES (2007) mentioned that some characteristics of spatial patterns are popular terminologies for particular hydrological and morphological features

that became widely known. However, it has been adapted to the scientific literature, such as "cordilheiras", anelongated elevation that does not exceed 3 meters above the level of the lakes, but only 1-2 meters above the bays and ebbs.

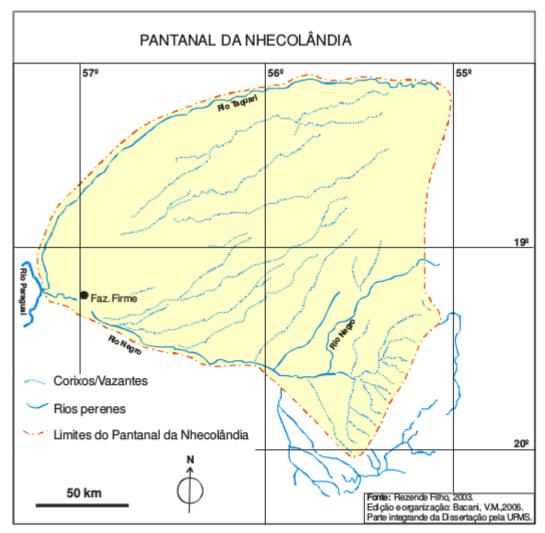


Figure 5: Pantanal of Nhecolândia Source: BACANI, 2007

The Brazilian Agricultural Research Corporation (EMBRAPA), installed in 1975 a research unit in the Pantanal region that could investigate ways of producing and developing technologies and innovations to the activities performed in the biome. The company had as main objective to conduct research in cattle ranching subject, investigating topics such as health, reproductive and nutritional management of beef cattle, as well as native and cultivated pastures (EMBRAPA, 2015).

In 1982, the institution acquired the Nhumirim Farm, located about 160 km from Corumbá (18°59'S and 56°39'W), in the Mato Grosso do Sul state, Brazil, with an area of over 4300 hectares, which it was used as the base of climate, soil, limnology, ichthyology,

fauna, flora, environmental impacts and conservation nucleus "in situ" of Pantanal's breeds and horses studies (EMBRAPA, 2015).

A 16°S BOLIVIA 18 Corur 199 COMPARTIMENTOS DA "NHECOLÂNE Alta Nhecolândia 120 - 180 m Baixa Nhecolândia 80 - 120 m PARAGUAI Área de Transição da Alta e Baixa Nhecolândia 120 - 140 m 21 nície Aluvial do Rio Taquari 90 - 190 m Área de Vazante do Corinho 90 - 130 m Pantanal do Negro 90 - 110 m FAZENDA FIRME W 56° 53' 24,69" S 19° 04' 34,47" S 19° 21' 00" 🕂 W 57° 05' 25" 2 4 6 km Fonte: Imagem de satélite CBERS-2/CCD, composição col 4R, 3G e 2B de 29/10/2004. Datum: WCC 4004

The Firme Farm situates in the western portion of the Pantanal of Nhecolândia (Figure 6);

Figure 6: Location of the Firme Farm **Source:** BACANI, 2007

It bounds in the North by the ebb tide of "Corixão" and South by the Negro River, with an area of 34229.7 hectares (SAKAMOTO, 1997). This region is known regionally as "Curva do Leque".

The Firme Farm was the first farm in Pantanal to raise cattle, founded in 1847 by Joaquim José Gomes da Silva (Baron of Vila Maria), by the banks of the Paraguay River (SAKAMOTO, 1997).

2 - Climatology

According to the Köppen climate classification, which is based on systematic thermal and rainfall regimes and distribution of plant associations (VIANELLO&ALVES, 1991), the Pantanal Mato-Grossense can be classified as belonging to the climate type Aw (tropical savannah climate), mega thermic (average temperature of the coldest month is above 18 °C), with dry winter and rainy summer (SORIANO, 1997). TARIFA (1986) classifies the climate of the Pantanal region by high temperatures and by the highest thermal amplitudes in Brazil. Mainly the tropical latitude and its geographic area, also related to orographic and low altitudes, determine the mega thermic character. The rainfall follows the tropical regime, with annuals ranging from 800 mm to 1400 mm, presenting the rainy season from October to March (80% of the annual rainfall) and the dry season from April to September. The rainy trimester comprehend December until February, being January the rainiest. July is the driest month of the year. The evaporation exceeds the precipitation in the dry season (CADAVIDGARCIA, 1984, apud, ALLEM&VALS, 1987, apud, BACANI, 2007). The mean annual temperature is 25,5 °C, with the mean annual minimum and maximum temperatures, respectively, 20 °C and 32 °C. The maximum absolute temperature is over 40 °C between September and January and the minimum absolute occurs between May and August, being common cooling under 10 °C, also been registered minimum absolute temperatures close to 0 °C (SORIANO, 2002).

According to SAKAMOTO (1997, p. 135), "the climate and hydrology of the Pantaneira plain is known in general terms by studying the flow of the main rivers and rainfall conditions (DNOS, 1974; SANCHES, 1977; ADÁMOLI, 1986, CADAVIDGARCIA, 1984; CARVALHO, 1986; TARIFA, 1986; TUCCI, 1995)".

According to DNOS (1974) *apud* BACANI (2007), the infiltration of rainfall in wetlands is moderate, according to the observation of the water level in wells. The differentiated rate of infiltration in similar soils is the saturation index these soils may present. Part of the area between the Taquari and Negro rivers, transition area between the Chaco and the Savannah, provides about 40 to 50% of the rainfall to the groundwater. Currently, the existing network of weather stations in the Alto Paraguay Basin are poor because many of the stations are disabled and others have their records incomplete. In the Pantanal, the density of these stations is very low due to the difficult access at certain times of the year and the shortage of qualified staff that are willing to reside at the place of station to make observations (SORIANO & GALDINO, 2002).

3 - Hydrology

The hydrological regime is tropical, with the maximum in February or March and the minimum in August or September, although the behaviour of the tributary rivers presents, often, gaps with the main river and among each other, causing various effects on the volume of water transported in various sectors of the Paraguay River (DNOS, 1974 *apud*SAKAMOTO, 1997).

The Paraguay River has its flow slower when it runs from North to South and faster towards the East-West direction, which is the general orientation of most of its tributaries (ALVARENGAet al., 1986).

According to DNOS (1974 *apud*SAKAMOTO, 1997), it was estimated that the flood of the tributaries rivers can take up to 10 to 30 days to cross the entire Pantanal and the flooded area may vary from 10.000 to 30.000 km² from one year to another. Ebb tides, streams and lakes with various lengths and extensions cause considerable losses of great volume of water. The precipitation in the North sector may increase the runoff during the rainy season.

The seasonal alluvial regime of the Great Pantaneira Depression is the greatest contributor to the major floods in the Pantanal. The Paraguay River is considered the main watercourse of the Pantanal, with meandering, angular and straight sectors.

The Pantanal is largely covered by small ponds, old abandoned meanders, even old riverbeds, partially or completely covered by vegetation ("water hyacinth" or "beach grass"). The ponds and the abandoned meanders usually have permanent water with little depth and vegetation growing in the water rooted at the bottom or floating on the surface. Water can flow from one pond to another during floods. During periods of low discharges, ponds and meanders seem independent, although erstwhile abandoned channels covered with grass assisted by soil permeability maintain the connection. The water flows very slowly, about I to 5 m³/s on these channels because of the low slope and the resistance opposed by the

vegetation; as a result, there is a longer period of time for filling or emptying in the high or low discharges occasions of the Paraguay River and its tributaries (DNOS, 1974 *apud* BACANI, 2007).

According to GRADELLA (2008, p. 22), "ASSINE (2003) states that the Paraguay River has a very complex partitioning due to the fact it runs through different geomorphological areas where outside the Pantanal it has erosive characteristics and in the Pantaneira plain features a strong decrease in the topographic gradient, becoming sedimentary and receiving waters of several alluvial fans."

4 - Geology and geomorphology

The Pantanal is mainly formed by metamorphic rocks of low-grade and neo-Proterozoic magmatic rocks (Cuiabá Group); on the western edge, inconsistent with the Cuiabá Group, occur Proterozoic sub-horizontal rocks slightly deformed from the Corumbá Group, slightly leaning to South-West, forming the Maciço do Urucum (Planalto Residual do Urucum-Amolar). At its eastern edge of the Precambrian crystalline rocks occur Palaeozoic and Mesozoic sequence of the Paraná Basin, constituting the Taquari-Itiquira and Maracajú-Campo Grande plateaus (ASSINE, 2003).

The Pantanal is a depositional area formed by sediments of the Formação Pantanal, known as the Sedimentary Basin of the Pantanal. OLIVEIRA&LEONARDOS (1943 *apud*ALMEIDA, 1964) describes the sediment as fine and silt-clay sandy, rarely presents gravel, usually handled by the current drain (GRADELLA, 2008).

Wells drilled by PETROBRAS (*Petróleo Brasileiro S.A*) of 412,5m deep did not reach the foundation. The stratigraphy shows that in the bottom predominates coarse sandstones and conglomerates, while at the top occurs quartz sands mainly fine to medium. From bottom to top, the sediments tend to get thinner. In some parts, there is the presence of iron oxide, sometimes forming laterites (ASSINE, 2003). USSAMIet al. (1999, apudASSINE, 2003) inferred through earthquakes an approximate depth of 550m.

It is assumed that the sedimentation of the Pantanal might have occurred during the Pliocene era after the uplift and dismantling of the South American continent and the tectonic subsidence of the Pantanal region (ASSINE, 2003).

The geomorphological unit "Planície and the Pantanal Mato-Grossense" is an extensive accumulation surface formed by modern alluviums in continuous process of accumulation. This unit is relatively flat causing annual periodic flooding in result of the weak topographic gradient ranging from 0.3 to 0.5m/km in the East-West and 0,03 to 0,15m/km in the North-South direction, and altimetry ranging between 80-150m (ALMEIDA, 1965; FRANCO&PINHEIRO, 1982;. ALVARENGAet *al.*, 1984 *apud* GRADELLA, 2008)

One of the most remarkable geomorphological features of the Pantanal is the mega alluvial fan Taquari, with approximately 50,000 km² and about 37% of the total area of the Pantanal. Its altitude varies from 85-190m with topographic gradient of 36 cm/km (ASSINE, 2003 *apud*GRADELLA, 2008).

5 - Biogeography

In the Pantanal Mato-Grossense' soils there is a large dominance of Hydromorphic soils as in the northern portion of the Pantanal prevails soils with clayey subsurface horizon such as: Hydromorphic Laterite, Planosols, red-yellow Podzolic, Glei with little humidity and Alluvial soils (AMARALFILHO, 1986 *apud* BACANI, 2007); towards the centre of the plain, it is possible to find sandy sediment carried out by the Taquari river, such as Hydromorphic Podzol with highest occurrence, followed by Hydromorphic Quartz Sand, Planosols, Hydromorphic Laterite and Glei with little humidity (CUNHA, 1981 *apud*AMARALFILHO, 1986 *apud*BACANI, 2007) (Figure 7)

The E and N portion of the Pantanal of Nhecolândia present ancient alluvial deposits, with sandy surface materials and the presence of thinner materials in abandoned pits and beds, also presenting sparse bays and divergent and semi-active streams and ebb, Hydromorphic Podzolic soils and dystrophic Planosols with vegetation of seasonal forest and tropical grassland with little humidity in the NE and N and humid in the S and NW (BRAUN, 1977; FRANCO&PINHEIRO, 1982. In: BRAZIL RADAMBRASIL *apud*SAKAMOTO, 1997).

The S and SW portion of the Pantanal of Nhecolândia in the river-lake plain is characterized by the presence of a large number of lakes, surrounded by the "cordilheiras" and ebbs, linked to intermittent and diffluent watercourses of the Taquari river and subject to the flooding of the Paraguay and Negro rivers, also presenting Hydromorphic Podzolic soils and vegetation of grassland and seasonal forest (BRAUN, 1977; FRANCO&PINHEIRO, 1982. In: BRAZIL RADAMBRASIL *apud*SAKAMOTO, 1997).

In the lower flat lands, it is found grassy vegetation in large areas and savannah interspersed with woody vegetation, with palm trees in the higher lands of the "cordilheiras" (LOUREIROet al., 1982. In: BRASIL. RADAMBRASIL apudSAKAMOTO, 1997).

The contrast between the qualities of the water of the lakes is one of the peculiarities of the Pantanal, which goes beyond the intermittent character of flooding in low waters and bays. CUNHA (1943 *apud*SAKAMOTO, 1997) had pointed out that perennial ponds would present alkaline water, bicarbonate, or chlorinated sodic, with a pH close to 10 while other ponds, ebbs and streams would be acidic, just as CUNHA (1980, 1981, 1985 *apud*SAKAMOTO, 1997) and ORIOLLI*et al.* (1982 *apud*SAKAMOTO, 1997) found about the soils of the region.

The constancy of the permanence of the water table near the surface causes a low percolation of the water in the soils of the Pantanal, making the leaching of the salt that exists in the sediments difficult. Hence, the soils in the most flooded areas are found to be acidic (DELL'ARCOet al., 1982 In: BRASIL. RADAMBRASIL apudSAKAMOTO, 1997).

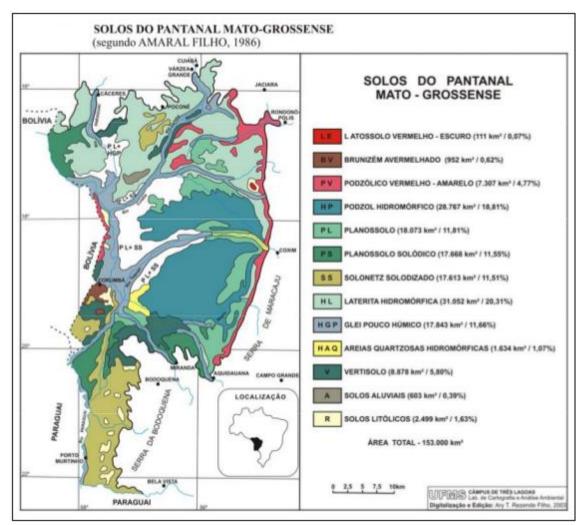
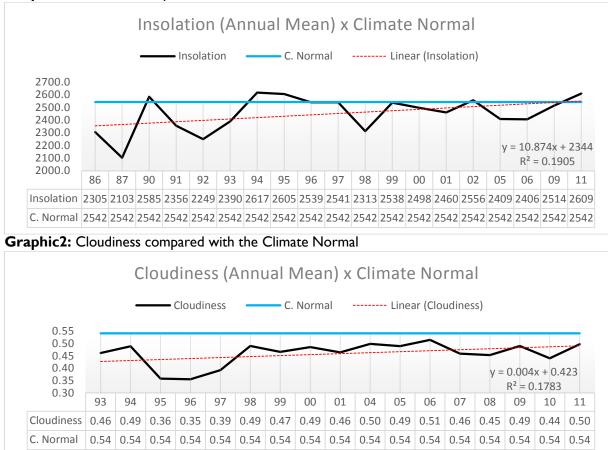


Figure 7: Pedology of the Pantanal Mato-Grossense

CHAPTER 3 – THE CLIMATE OF THE PANTANAL OF NHECOLÂNDIA

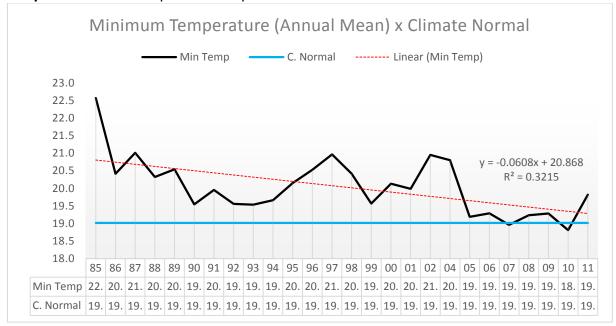

I - Characteristics of the regional climate

The Pantanal has a typical tropical climate of Aw in the Köppen classification, characterized by two distinct seasons as it is dry in winter and rainy in the summer (GARCIA, 1984), with annual averages of the temperature around 25 °C and the relative humidity around 82% (SORIANO, 1996).

I.I - Insolation and cloudiness

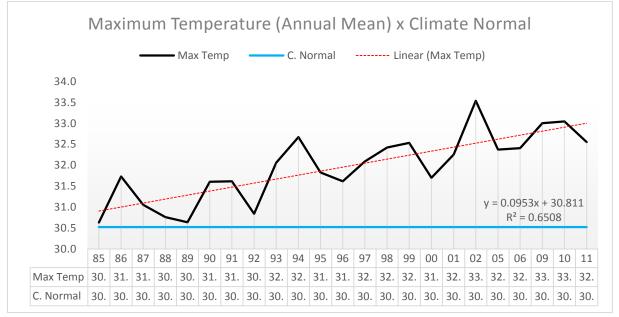
It was analyzed only the years with a complete set of data of every month to be compared with the climatological normal (1961-1990), being 19 years analyzed. Only 5 years (1990, 1994, 1995, 2002 and 2011) had a total of insolation hours higher than the climatological normal (2542,50 hours) (Graphic I, Appendix I). In addition, the Graphic showed a positive tendency, but not a strong correlation though. April was the month with most averages above the climatological normal with a total of 8 years out of 19, also with most insolation hours; February and September were the months that presented the lesser numbers of hours of insolation in a total of 7 years out of 19.

The cloudiness data analyzed consisted in 17 years of a complete set of data of every month (Graphic 2). The whole period analyzed showed that it never went over the total of the CN (Climate Normal). The year 1996 was the lowest of cloud coverage and 2006 was the highest. Even though the tendency of the data showed a positive line, the correlation is not strong. The cloudiest month was February and August had the lowest cloud coverage (Appendix 2).


Graphicl: Insolation compared with the Climate Normal

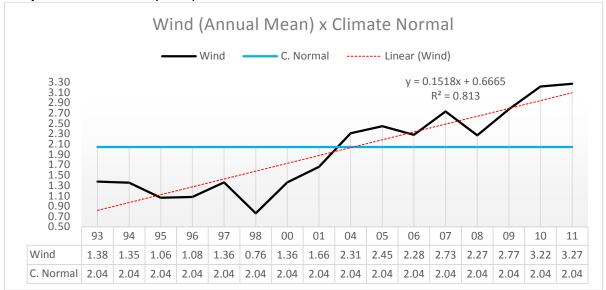
I.2 - Temperature

It was analysed 27 years of a complete set of data of every month for the minimum temperature (Graphic 3). Only the years 2007 and 2010 were not over the CN. The year 1987 was with the highest minimum temperature and 2010 the lowest. The tendency of the data is negative, but it hasn't a strong correlation. After the year 2002, the average dropped significantly when compared to the previous years with most of the years around the average of the CN, some of them lower and others just a little bit over, with the exception of the year 2011. July had the lowest minimum temperature for 18 years and February had the highest for 10 years (Appendix 3).


For the maximum temperature, it was analysed 23 years of a complete set of data of every month and all of them had their yearly average over the CN (Graphic 4). 1985 was the year with the lowest yearly average and 2002 was the highest. The tendency of the data is

positive with a strong correlation (R^2 = 0.65). The averages seem to grow each year, as after 1993, they always stayed at least 1,1 °C over the CN. June and July had for 10 years the lowest averages and September had for 7 the highest (Appendix 4).

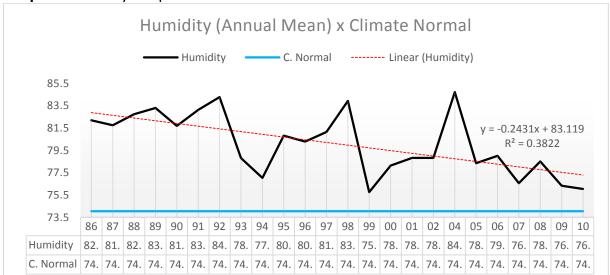
Graphic3: Minimum temperature compared with the Climate Normal



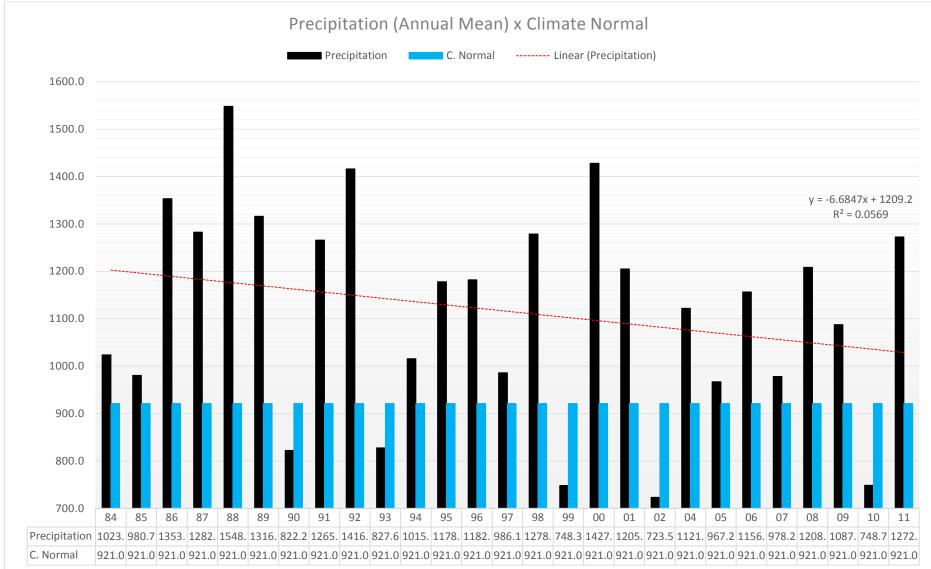


1.3 - Wind

It was analysed 16 years and half of them went over the CN (Graphic 5). The year 1998 had the lowest average and 2011 had the highest. The month of March had the lowest average for 7 years and the months of August and September both had the highest averages


for 5 years(Appendix 5). The tendency for the data has a positive line with a strong correlation.

I.4 - Humidity


A total of 24 years were analysed and all of them are over the CN (Graphic 6). The year with the lowest average is 1999 and with the highest, 1992. September had the lowest average for 11 years and March had the highest for 8 (Appendix 6)with negative tendency.

Graphic6: Humidity compared with the Climate Normal

I.5 - Precipitation

27 years were analysed with a complete set of data of every month and 5 years are under the CN(921 mm) (Graphic 7). The year with the lowest average of precipitation is 2002 and with the highest is 1988. The tendency of the data shows a negative line with a very weak correlation. The months of June and August had for 10 years the lowest monthly average when compared to the CN, also July had for 9 years. January was the month with the highest average for 11 years (Appendix 7).

Graphic7: Precipitation compared with the Climate Normal

2 - Dynamic factors of the climate - Action centres and atmospheric circulation

The Mato Grosso do Sul State situates in the confluence of the main atmospheric systems of the South American continent, with more than one rain regime. The air masses operating in the region are unstable and very humid having relevant factors in the dynamics of the rainfall and temperature. Although the geomorphology is considered limited, the height of the mountains also has significant effects on the climate (BRASIL, 1979).

Equatorial air masses formed on the Atlantic Ocean precipitates its moisture over the South American continent from East to West at low latitudes; they are resupplied by water intake arising from the Amazon forest (SALATIEt al., 1978 apudDUBREUILEt al., 2006). These air masses bring rainfall to the Central–Southern Brazil, Northern Argentina and Paraguay (Chaco). When they reach the Andes, they change to a Southward path, also known as "Rios Voadores" (Flying Rivers) because of its estimated volume of water transported through this "corridor" is close to that flowing in the Amazon River (MARENGO 2006; DUBREUILet al., 2006). The Atlantic Subtropical Anticyclone produces NE-NW winds deflecting the Continental Equatorial air mass in the Pantanal. The moist air-mass coming from the south of the Amazon basin is deflected by the winds produced by the low temperatures in the summer at the eastern part of the Andes located at the Tropic of Capricorn, latitude 30° South. The winds are generally weak in the lowlands, except during storms. The cold fronts, which its origin comes from the instability of polar fronts in Antarctic, do not reach the entire biome, only further South and Southeast. The warm fronts are frequent and very important, inducing the ascent of the continental Equatorial airmasses over the polar air, resulting in a wet weather with rainy summer (October to April, as the wettest months are December, January and February) and dry winter (May to September, as the driest months are June, July and August)(DNOS, 1974; GARCIA, 1984; SALVI-SAKAMOTO, 2004; ALMEIDA&LIMA, 1959; CAMPOS, 1969 apudTOZATOet al., 2013) (Figure 8).

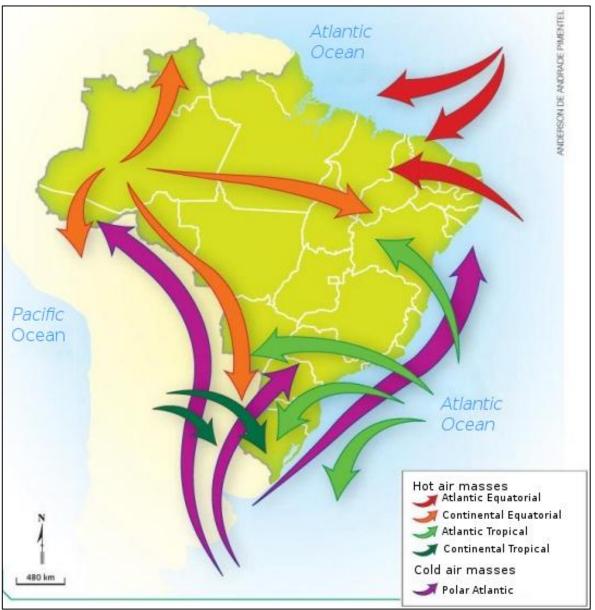


Figure 8: Brazilian air masses Source: Anderson de Andrade Pimentel. Adaptation: The author.

ENSO (El Niño Southern Oscillation), South Atlantic Convergence Zone (SACZ) and the Intertropical Convergence Zone (ITCZ) act directly and indirectly in the Pantanal's airmasses (DUBREUIL, 2008; SETTE, 2000 *apud*TOZATO*et al.*, 2013) as the Atlantic anticyclone acts regulating with its high pressure resulting in a dry season (autumn and winter), and the convection in Amazon regulates the rainy season (spring and summer) (ZAVATINI, 1990; SETTE, 2000 *apud*TOZATO*et al.*, 2013).

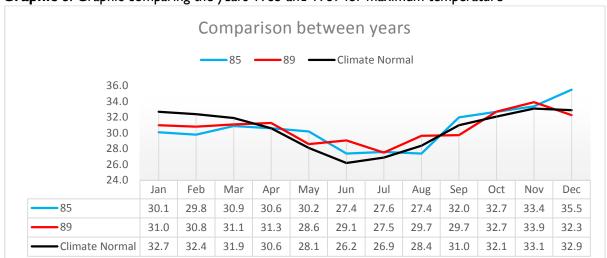
CHAPTER 4 – THERMAL AND HYGROMETRIC TOPOCLIMATE VARIABILITY ANALYSIS

I - Maximum and minimum temperatures regarding absolute values

The maximum temperature series shows us that none of the years had mean values under the Climate Normal mean value (Table 2, Graphic4).

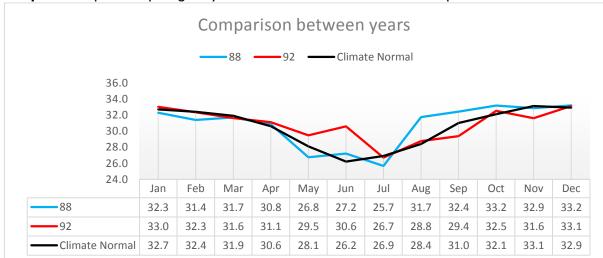
The years 1985 and 1989 have the lowest mean values for the series. Although they have the lowest values, they are notnecessarily the mildest. When applying statistics techniques such as variances and standard deviation, we rapidly see that those years had a lot of variation among the months and a great value of amplitude between the maximum and minimum temperatures (Graphic8).

Comparing the years with the second lowest mean values, the years 1988 and 1992 are quite milder than the years above. The statistics shows a high value for variance and standard deviation for the year 1988 and high amplitude of maximum and minimum temperatures for both years, but the maximum and minimum temperatures for 1988 are lower than the above years, also it has both the second lowest maximum and minimum temperature for the series (Graphic9).


The statistics shows that the year 1992 has a high variance and standard deviation with a high amplitude between maximum and minimum temperatures, but comparing with the other years, it is noticed that the temperatures are lower (it has the lowest value for maximum temperature and the fifth place for minimum temperature), being considered the mildest year for the series (Table 2).

It is also noticed that the year 2002 has the highest value for maximum temperature and the third highest minimum value for maximum temperature, which we can easily assume that it is the hottest year of the series (Table 3).

Analysing it seasonally (rainy and dry seasons, as in the tropical world it is appropriate to consider them instead of spring, autumn, winter and summer),the rainy season is the season that had the most quantity of years that had the maximum temperature above the Climate Normalcomparing with the other seasons. Considering the rainy seasonfrom October until March. November and December had both 18 years, out of 23, of mean maximum temperature over the Climate Normal mean value.January had 13 years and February had 14.March had 16 years of mean maximum temperature above the Climate Normal.October had all the years of the series above the Climate Normal.


The dry season starts inApriland ends in September. Aprilhad 21 years and May 22 years above the Climate Normal. June had none of the years under the Climate Normal, only in 1996 that the mean maximum temperature was the same as the Climate Normal. July had 19 years of maximum temperature above the Climate Normal and August, 21 years. September had 15 years over the Climate Normal.

In 1985, February had the lowest mean value (29.8 °C) of maximum temperature for the rainy season and October of 2002 had a scalding 38 °C as the highest mean value. July of 1990 had 25.6 °C as the lowest mean value for the dry season and September of 2010 had the highest mean value, 35.2 °C.

Graphic 8: Graphic comparing the years 1985 and 1989 for maximum temperature

Graphic9: Graphic comparing the years 1988 and 1992 for maximum temperatures

Maximum Temperature																							
Months	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	05	06	09	10	П
Jan	30.1	32.4	32.8	32.3	31.0	32.5	32.8	33.0	32.9	33.5	31.8	32.6	32.2	34.6	33.4	35.1	32.7	34.0	32.5	33.3	33.8	33.2	33.8
Feb	29.8	32.2	31.4	31.4	30.8	32.2	33.0	32.3	31.9	33.2	32.0	33.5	32.2	33.1	33.8	32.7	33.4	32.7	33.7	33.3	33.7	34.I	32.5
Mar	30.9	32.2	32.1	31.7	31.1	33.8	31.7	31.6	33.7	32.4	32.6	32.5	32.2	33.7	32.2	31.7	33.2	33.6	33.5	33.3	33.7	35.2	31.2
Apr	30.6	32.5	31.8	30.8	31.3	32.7	31.4	31.1	31.9	32.5	30.5	31.9	30.8	32.2	32.2	32.9	32.8	33.8	32.4	32.1	34.3	33.1	32.3
May	30.2	30.4	27.5	26.8	28.6	28.0	29.8	29.5	30.0	31.0	29.0	30.0	29.2	31.1	30.2	30.3	28.9	31.9	31.1	28.6	31.5	28.6	29.7
Jun	27.4	29.9	27.0	27.2	29.1	27.4	28.2	30.6	29.4	29.5	29.4	26.2	27.4	30.5	29.9	29.0	27.8	29.2	31.1	30.9	28.5	30.9	29.2
Jul	27.6	28.9	29.8	25.7	27.5	25.6	29.4	26.7	28.4	29.2	30.2	29.8	31.0	33.7	29.5	26.4	30.5	29.2	28.3	31.6	30.0	29.2	30.0
Aug	27.4	30.8	28.3	31.7	29.7	32.1	31.0	28.8	29.5	32.9	31.9	32.9	30.5	30.7	32.6	31.7	34.I	33.8	33.3	32.9	32.5	33.3	31.9
Sep	32.0	30.5	30.8	32.4	29.7	30.6	32.8	29.4	32.4	34.8	33.9	30.9	35.1	30.8	34.8	30.4	34.2	34.0	31.0	32.9	33.1	35.2	34.5
Oct	32.7	32.5	33.3	33.2	32.7	34.8	33.3	32.5	34.7	35.7	32.7	33.0	35.1	32.9	35.1	34.7	33.6	38.0	33.9	33.5	35.5	34.4	34.3
Nov	33.4	35.I	34.8	32.9	33.9	34.7	33.2	31.6	35.8	34.8	33.9	32.5	35.1	33.4	32.2	32.8	33.7	37.6	34.2	33.8	35.4	33.8	35.9
Dec	35.5	33.4	33.1	33.2	32.3	34.9	33.0	33.I	34.0	32.5	34.0	33.4	34.3	32.5	34.5	33.0	32.1	34.6	33.5	32.6	34.0	35.6	35.4
Mean	30.6	31.7	31.1	30.8	30.6	31.6	31.6	30.8	32.1	32.7	31.8	31.6	32.1	32.4	32.5	31.7	32.3	33.5	32.4	32.4	33.0	33.0	32.6

Table 2: Monthly values for maximum temperatures series with statistics techniques applied

Table 3: Comparison among years with the lowest values for the maximum temperature series

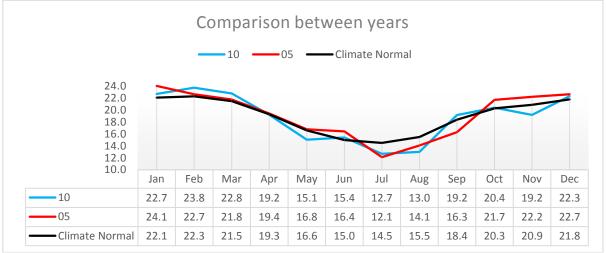
1985		1989		1988		1992		
Mean	30.63	Mean	30.64	Mean	30.76	Mean	30.84	
Standard Deviation	2.50	Standard Deviation	1.83	Standard Deviation	2.66	Standard Deviation	1.95	
Variance	6.26	Variance	3.34	Variance	7.09	Variance	3.79	
Range	8.10	Range	6.40	Range	7.51	Range	6.41	
Minimum	27.4 °C	Minimum	27.52 °C	Minimum	25.67 °C	Minimum	26.7 °C	
Maximum	35.5 °C	Maximum	33.92 °C	Maximum	33.18 °C	Maximum	33.11 °C	

Years	rs Mean Years/CN 30.5		Varia		Std D	eviation	Max Temp		Min Temp		Range Ten	nperatures
Tears	Years/CN	30.5	Years/CN	5.6	Years/CN	2.4	Years/CN	33.I	Years/CN	26.2	Max - Min	Years/CN
Ι	85	30.6	98	1.7	98	1.3	92	33.I	90	25.6	4.1	98
2	89	30.6	06	2.0	06	1.4	88	33.2	88	25.7	5.0	95
3	88	30.8	86	2.6	86	1.6	91	33.3	96	26.2	5.0	91
4	92	30.8	91	2.7	91	1.6	96	33.5	00	26.4	5.2	06
5	87	31.1	05	2.7	05	1.6	06	33.8	92	26.7	5.5	99
6	90	31.6	95	2.8	95	1.7	89	33.9	87	27.0	5.8	05
7	91	31.6	89	3.1	89	1.8	95	34.0	85	27.4	6.2	86
8	96	31.6	99	3.3	99	1.8	05	34.2	97	27.4	6.4	89
9	00	31.7	92	3.5	92	1.9	01	34.2	89	27.5	6.4	92
10	86	31.7	94	3.7	94	1.9	98	34.6	01	27.8	6.4	01
11	95	31.8	01	4.0	01	2.0	87	34.8	91	28.2	6.5	94
12	93	32.1	09	4.0	09	2.0	90	34.9	05	28.3	6.7	11
13	97	32.1	96	4.I	96	2.0	99	35.1	93	28.4	7.0	09
14	01	32.3	11	4.6	11	2.2	00	35.1	09	28.5	7.1	10
15	05	32.4	10	4.9	10	2.2	97	35.I	10	28.6	7.3	96
16	06	32.4	93	5.0	93	2.2	86	35.I	06	28.6	7.4	93
17	98	32.4	00	5.5	00	2.3	09	35.5	86	28.9	7.5	88
18	99	32.5	87	5.6	87	2.4	85	35.5	95	29.0	7.7	97
19	11	32.6	97	5.6	97	2.4	10	35.6	- 11	29.2	7.9	87
20	94	32.7	85	5.7	85	2.5	94	35.7	02	29.2	8.1	85
21	09	33.0	88	6.5	88	2.6	93	35.8	94	29.2	8.7	00
22	10	33.0	02	6.6	02	2.6	- 11	35.9	99	29.5	8.8	02
23	02	33.5	90	8.8	90	3.0	02	38.0	98	30.5	9.3	90

Table 4: Statistics results organized according to the lowest to the highest values for the maximum temperatures series

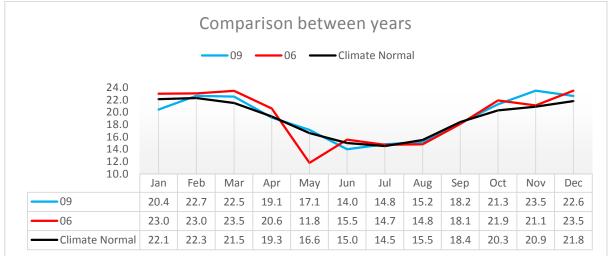
The minimum temperature series had only the year 2010 with the total mean value under the Climate Normal mean value (Graphic3).

The years with the lowest total mean values are 2005, 2006, 2009 and 2010. (Table 5) The years 2010 and 2005 have the lowest total mean values, respectively. The statistic shows that both years had high values for variance and standard deviation, as well as one of the highest range for the series. However, 2005 have the second lowest mean minimum temperature of the series, but the second highest range. 2010 did not have the lowest minimum temperature, but the Graphic 10 shows that its means values followed the Climate Normal line closely, also having 5 years under the line.


As for 2009 and 2006, they are in the third and fourth position of years with lowest total mean minimum temperatures, respectively. The year 2009 has the lowest variance and standard deviation in comparison with the years 2005, 2006 and 2010. It's ranked 4th in maximum temperature for the minimum temperature series and has, also, the highest minimum temperature compared with the mentioned years. However, it has the lowest range. As for 2006, variance and standard deviation is the highest of the whole series and ranks the 3rd position of the highest range values. As for the minimum temperature mean value, 2006 has the lowest the value of the whole series. (Graphic 11)

Even though 2006 has the lowest minimum temperature mean value, it is not the mildest of the years. The range and variation of temperatures are the highest of the series. As for 2010 and 2009, both years present mild transitions in the mean temperatures over the months. (Table 6)

The years 1987, 1997 and 2002 have equally the highest mean minimum temperature of the series. Their variance and standard deviation are lower than the above-analysed years. Also, they all present high values for the maximum and minimum mean temperature. Although they present range value as well lower than the years with the lowest total mean values, they are easily considered the warmest of the series, with 1997 being considered the warmest. (Table 7)


The year 2004 was taking out of the statistical analysis table since the maximum temperature series does not have a full set of data for this year.

51

Graphic 10: Graphic comparing the years 2010 and 2005 for minimum temperatures

Minimum Temperature																										
Month s	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	04	05	06	07	08	09	10	
					-						_								-						-	
Jan	22.9	23.4	23.5	24.5	23.4	22.9	23.5	22.8	23.5	22.6	23.9	23.4	25.0	23.4	24.1	23.4	23.7	23.5	22.9	24.1	23.0	23.9	22.7	20.4	22.7	22.6
Feb	22.9	24.I	22.9	23.4	23.2	22.1	23.5	22.8	22.6	23.4	24.4	23.2	24.5	23.9	24.1	23.7	23.6	23.5	22.5	22.7	23.0	23.4	23.0	22.7	23.8	23.1
Mar	24.2	23.6	24.9	25.2	23.5	22.7	22.9	21.9	23.3	21.7	24.2	23.3	22.2	23.2	23.7	22.4	22.8	23.9	21.6	21.8	23.5	22.5	22.8	22.5	22.8	23.0
Apr	Apr 22.9 23.3 22.4 23.8 23.3 22.0 21.4 19.3 21.6 20.2 20.2 22.3 20.4 23.0 20.1 22.3 20.4 23.0 20.1 22.3 20.9 21.9 21.5 19.4 20.6 20.9 20.2 19.1 19.2 22.4																									
May	20.5	20.6	18.9	19.1	18.4	17.1	19.4	19.7	16.2	18.2	17.2	19.5	18.4	16.6	16.4	18.6	16.8	19.5	16.3	16.8	11.8	15.5	16.7	17.1	15.1	17.9
Jun	15.7	15.8	17.0	16.4	18.7	15.2	17.4	17.7	15.2	16.0	16.8	15.4	18.1	16.3	15.5	17.2	13.8	15.5	15.8	16.4	15.5	13.7	14.8	14.0	15.4	15.7
Jul	15.7	14.5	18.6	13.1	14.8	12.5	13.6	12.7	13.3	13.6	16.4	14.1	15.1	16.3	14.4	12.1	15.9	15.4	14.1	12.1	14.7	12.3	14.3	14.8	12.7	15.4
Aug	15.8	18.5	15.5	16.4	18.1	15.8	14.5	14.8	14.1	13.8	15.3	18.4	16.1	18.0	14.3	17.0	16.7	18.4	13.9	14.1	14.8	12.6	16.7	15.2	13.0	15.5
Sep	22.0	17.7	17.7	18.6	18.2	16.9	19.3	17.4	18.1	19.2	18.6	17.4	21.7	18.1	18.8	18.8	19.2	18.2	17.2	16.3	18.1	17.9	16.0	18.2	19.2	18.6
Oct	21.3	18.1	24.9	20.3	20.2	21.7	19.7	21.8	20.9	21.7	20.4	22.0	22.8	21.1	21.6	21.8	21.6	23. I	20.1	21.7	21.9	21.3	21.2	21.3	20.4	20.8
Nov	22.8	22.4	23.5	20.6	21.9	22.8	21.5	21.1	22.5	21.8	21.4	22.8	23.8	22.0	19.4	21.9	22.3	24. I	20.8	22.2	21.1	21.1	21.3	23.5	19.2	20.9
Dec	22.7	23.2	22.4	22.3	23.0	22.9	22.8	22.8	23.2	23.8	22.9	24.6	23.5	23.1	22.4	22.5	22.5	24.5	22.2	22.7	23.5	22.4	21.2	22.6	22.3	21.9
Maan	20.	20.	21.	20.	20.	19.	20.	19.	19.	19.	20.	20.	21.	20.	19.	20.	20.	21.	20.	19.	19.	19.	19.	19.	18.	19.
Mean	ð	4	U	5	5	5	U	0	2		2	2	U	4	0		U	U	8	2	5	U	2	3	8	8

Table 5: Monthly values for minimum temperatures series with statistics techniques applied

Table 6: Comparison among years with the lowest values for the minimum temperature series

2010		2005		2009		2006			
Mean	18.8	Mean	19.2	Mean	19.3	Mean	19.3		
Standard Deviation	3.9	Standard Deviation	3.9	Standard Deviation	3.4	Standard Deviation	4.1		
Variance	15.3	Variance	15.3	Variance	11.5	Variance	17.1		
Range	11.1	Range	12.0	Range	9.5	Range	11.7		
Minimum	12.7	Minimum	12.1	Minimum	14.0	Minimum	11.8		
Maximum	23.8	Maximum	24.1	Maximum	23.5	Maximum	23.5		

Years	Mean Years/CN 19.0		Variand	e	Std Deviat	tion	Max Tempera	atures	Min Tempera	tures	Range Temp	eratures
I cars	Years/CN	19.0	Years/CN	7.9	Years/CN	2.8	Years/CN	22.3	Years/CN	14.5	Max - Min	Years
I	10	18.8	89	7.6	89	2.8	92	22.8	06	11.8	7.6	98
2	05	19.2	11	8.6	11	2.9	90	22.9	05	12.1	7.7	11
3	09	19.3	98	8.9	98	3.0	11	23.1	00	12.1	8.5	85
4	06	19.3	85	9.3	85	3.0	93	23.5	90	12.5	8.6	89
5	93	19.5	87	9.7	87	3.1	89	23.5	10	12.7	9.1	02
6	90	19.5	95	9.9	95	3.1	06	23.5	92	12.7	9.1	95
7	92	19.6	97	10.1	97	3.2	09	23.5	88	13.1	9.4	87
8	99	19.6	92	10.2	92	3.2	91	23.5	93	13.3	9.5	09
9	94	19.7	91	10.3	91	3.2	00	23.7	94	13.6	9.5	86
10	11	19.8	86	10.4	86	3.2	01	23.7	91	13.6	9.8	99
11	91	20.0	01	10.4	01	3.2	94	23.8	01	13.8	9.9	01
12	01	20.0	02	10.5	02	3.2	10	23.8	09	14.0	9.9	91
13	00	20.1	09	10.6	09	3.3	98	23.9	96	14.1	9.9	97
14	95	20.2	00	10.9	00	3.3	86	24.I	99	14.3	10.1	93
15	88	20.3	96	11.1	96	3.3	05	24.1	86	14.5	10.2	92
16	86	20.4	94	11.7	94	3.4	99	24.1	89	14.8	10.2	94
17	98	20.4	99	12.6	99	3.5	85	24.2	97	15.1	10.3	90
18	96	20.5	88	12.9	88	3.6	95	24.4	95	15.3	10.5	96
19	89	20.5	90	13.0	90	3.6	02	24.5	11	15.4	11.1	10
20	85	20.8	93	13.8	93	3.7	96	24.6	02	15.4	11.6	00
21	02	21.0	05	14.0	05	3.7	87	24.9	87	15.5	11.7	06
22	97	21.0	10	14.0	10	3.7	97	25.0	85	15.7	12.0	05
23	87	21.0	06	15.6	06	4.0	88	25.2	98	16.3	12.1	88

 Table 7: Table 4: Statistics results organized according to the lowest to the highest values for the minimum temperatures series

In order to evaluate the maximum and minimum temperature series, the table 8 consists of the sum of the mean values of both series showingan increasing order the years with the lowest to the highest mean values. This table provides the coldest and the hottest year of the series.

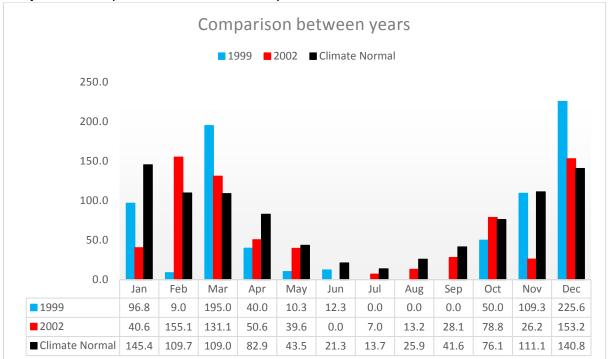
Years	Max Temp	Min Temp	Mean	Years	Mean
C. Normal	30.5	19.0	24.8	C. Normal	24.8
85	30.6	20.8	25.7	92	25.2
86	31.7	20.4	26.1	88	25.5
87	31.1	21.0	26.0	90	25.6
88	30.8	20.3	25.5	89	25.6
89	30.6	20.5	25.6	85	25.7
90	31.6	19.5	25.6	05	25.8
91	31.6	20.0	25.8	91	25.8
92	30.8	19.6	25.2	93	25.8
93	32.1	19.5	25.8	06	25.8
94	32.7	19.7	26.2	00	25.9
95	31.8	20.2	26.0	10	25.9
96	31.6	20.5	26.1	95	26.0
97	32.1	21.0	26.5	87	26.0
98	32.4	20.4	26.4	99	26.1
99	32.5	19.6	26.1	86	26.1
00	31.7	20.1	25.9	96	26.1
01	32.3	20.0	26.1	01	26.1
02	33.5	21.0	27.2	09	26.1
05	32.4	19.2	25.8	94	26.2
06	32.4	19.3	25.8	11	26.2
09	33.0	19.3	26.1	98	26.4
10	33.0	18.8	25.9	97	26.5
11	32.6	19.8	26.2	02	27.2

 Table 8: Increasing order of the mean of the maximum and minimum temperatures mean values

As the previous tables of maximum and minimum temperatures showed, the year 1992 was the mildest year for the maximum temperature series, but in the minimum temperature series, 1992 stood out as only having the lowest value for the maximum temperature. The years 2010 and 2009 had the lowest mean values in the minimum temperature series, but in the maximum temperature series, they had high mean values, which in the end of the analysis, they are not, in fact, the mildest years of the series.

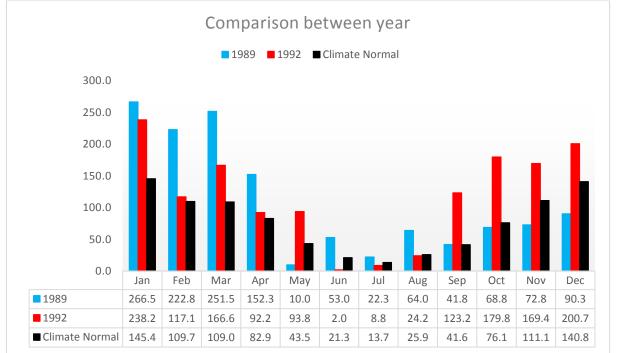
2 - Precipitation values regarding absolute values

The precipitation series is the longest in terms of years with complete data. It was analysed from 1984 until 2011, except the year 2003 because of lacking information (Table 9). The year with the highest mean total value is 1988 and the year with the lowest is 2002.


Only 5 years of the series had a mean total value under the Climate Normal mean total value. The years are 1990, 1993, 1999, 2002 and 2010 (Graphic7). Even though they have the lowest mean values, the year of 1999 had the most years under the Climate Normal totalling 10 months. It also had 3 straight months without a drop of water and February had the lowest mean value of precipitation of the rainy season. Considering the low amount of precipitation of the whole year, it is easily noticeable that the year 1999 is the driest of the series if analysed continuously. The year 2002 had the lowest total mean value for the series, but only 8 months under the Climate Normal. It also had a constancy of precipitation during the months, having the second lowest variance and standard deviation and the lowest value of range (Graphic 14).

Although the year 1988 had the highest mean value, it also has the highest variance and standard deviation of the series. In the dry season, it had about 4 months with no rain, assuming that the month of September did not rain enough to consider it. The year of 1992 had the most constancy of precipitation over the months. The months of June, July and August were the only ones under the Climate Normal. June was the month that rained the least, only 2 mm. July rained 8.8 mm and August 24.2 mm. All the other months rained at least 92.2 mm of rain.Even though the year 2000 rained more than the year 1989, the latterkeeps a very good constancy of precipitation over the months(Graphic 15).However, its variance, standard deviation and range are higher than the year 1992, but lower than the year 2000.

Analysing the statistical techniques of the series, we can easily notice that the rainiest years had the highest variances and standard deviations and the driest years had the lowest values of variances and standard deviation, also the lowest ranges, except for the year 1999. (Table 10)


The minimum mean value for the rainy season happened in February of 1999 with 9 mm and maximum mean value was in March of 2011 with 455.2 mm. As for the dry season,

several years and months had no precipitation whatsoever and the highest mean value happened in August of the year 2000 with 124 mm.

Graphic12: Comparison between the driest years of 1999 and 2002

Graphic13: Comparison between the rainiest years, 1989 and 1992

Table 9: Monthly values for precipitation series

Precipitation																											
Months	84	85	86	87	88	89	90	91	92	93	94	95	96	97	9 8	99	00	01	02	04	05	06	07	08	09	10	11
Jan	182.3	255.6	296.2	346.5	297.7	266.5	112.2	227.4	238.2	94.2	67.5	264.9	154.0	225.2	97.3	96.8	88.1	168.2	40.6	63.4	275.4	162.2	282.2	392.8	193.4	181.4	187.9
Feb	114.6	99.9	222.2	58.9	308.7	222.8	173.8	93.1	7.	110.5	188.9	240.7	41.6	110.4	283.0	9.0	245.3	74.4	155.1	182.2	99.4	165.6	211.7	167.6	146.4	64.4	153.9
Mar	97.2	109.0	158.1	80.2	331.6	251.5	62.8	182.5	166.6	170.9	102.1	136.4	219.0	82.6	108.4	195.0	340.9	67.4	131.1	56.2	37.4	152.2	31.8	123.0	190.2	67.8	455.2
Apr	59.1	81.7	33.5	175.2	146.9	152.3	107.4	253.9	92.2	79.4	39.6	56.4	101.4	140.8	159.4	40.0	127.0	113.6	50.6	75.5	41.6	54.6	10.4	27.0	1.4	10.4	168.8
May	27.7	89.5	92.7	104.6	37.7	10.0	116.7	55.6	93.8	7.8	64.4	11.6	59.9	54.6	71.1	10.3	1.4	88.2	39.6	158.7	44.2	52.5	85.4	86.0	54.9	71.8	2.5
Jun	0.0	0.0	0.3	34.4	0.0	53.0	18.0	21.3	2.0	4.3	45.9	3.7	0.0	103.2	9.5	12.3	3.0	11.0	0.0	21.9	33.6	2.6	0.0	22.3	11.1	7.4	1.0
Jul	0.0	98.2	7.1	9.0	0.0	22.3	17.2	5.2	8.8	14.5	12.2	18.2	7.4	0.0	1.0	0.0	9.0	10.4	7.0	8.0	27.4	14.2	12.0	0.0	32.3	0.0	3.2
Aug	112.2	9.0	67.4	24.0	0.0	64.0	24.2	0.0	24.2	4.4	0.0	0.0	25.8	11.5	30.0	0.0	124.0	10.0	13.2	0.5	0.0	16.4	0.0	4.6	56.6	0.0	2.0
Sep	53.4	22.1	60.5	4.7	1.0	41.8	28.4	36.1	123.2	1.3	1.1	3.2	119.5	52.6	66.5	0.0	21.0	124.9	28.1	17.0	45.6	31.0	0.0	43.3	1.5	18.5	30.0
Oct	14.0	104.2	13.3	109.0	78.4	68.8	22.6	47.4	179.8	44.7	100.3	126.0	95.8	57.6	159.2	50.0	51.0	219.6	78.8	200.0	64.2	112.4	76.6	85.9	101.8	96.3	150.1
Nov	182.5	79.4	113.2	125.8	111.5	72.8	58.9	151.6	169.4	37.3	158.9	187.4	161.4	66.8	127.3	109.3	223.4	141.1	26.2	278.0	126.5	183.4	176.7	116.6	81.8	108.9	50.2
Dec	180.9	32.1	288.8	210.2	234.5	90.3	80.0	191.7	200.7	258.3	234.8	129.6	196.4	80.8	165.8	225.6	193.8	176.3	153.2	60.4	171.9	209.3	91.4	139.2	216.2	121.8	67.8
Total	1023. 9	980.7	1353.3	1282. 5	1548.0	1316. I	822.2	1265. 8	1416.0	827.6	1015. 7	1178.1	1182. 2	986.1	1278. 5	748.3	1427.9	1205. I	723.5	1121. 8	967.2	1156. 4	978.2	1208.3	1087. 6	748.7	1272.6
Mean	85.3	81.7	112.8	106.9	129.0	109.7	68.5	105.5	118.0	69.0	84.6	98.2	98.5	82.2	106.5	62.4	119.0	100.4	60.3	93.5	80.6	96.4	81.5	100.7	90.6	62.4	106.1
Total CN	921.0	921. 0	921.0	921.0	921.0	921.0	921. 0	921.0	921.0	921. 0	921.0	921.0	921.0	921. 0	921.0	921. 0	921.0	921.0	921. 0	921.0	921. 0	921.0	921. 0	921.0	921.0	921. 0	921.0
Variance	4943	4558	11259	9844	17342	8200	2541	8317	5961	6358	5737	9320	5419	3578	6365	6183	12395	4834	3162	8014	6044	5701	8974	11519	6148	3324	17300
Std Dev	70.31	67.5	106.1	99.22	131.7	90.56	50.4	91.2	77.21	79.7	75.74	96.54	73.62	59.8	79.78	78.6	111.3	69.53	56.2	89.52	77.7	75.5	94.7	107.3	78.41	57.7	131.5
Max	182.5	255.6	296.2	346.5	331.6	266.5	173.8	253.9	238.2	258.3	234.8	264.9	219.0	225.2	283.0	225.6	340.9	219.6	155.1	278.0	275.4	209.3	282.2	392.8	216.2	181.4	455.2
Min	0.0	0.0	0.3	4.7	0.0	10.0	17.2	0.0	2.0	1.3	0.0	0.0	0.0	0.0	1.0	0.0	1.4	10.0	0.0	0.5	0.0	2.6	0.0	0.0	1.4	0.0	1.0
Range	182.5	255.6	295.9	341.8	331.6	256.5	156.6	253.9	236.2	257.0	234.8	264.9	219.0	225.2	282.0	225.6	339.5	209.6	155.1	277.5	275.4	206.7	282.2	392.8	214.8	181.4	454.2
Season	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	04	05	06	07	08	09	10	11
Rainy	771.5	680.2	1091. 8	930.6	1362. 4	972.7	510.3	893.7	1071. 8	715.9	852.5	1085. 0	868.2	623.4	941.0	685.7	1142. 5	847.0	585.0	840.2	774.8	985.1	870.4	1025. I	929.8	640.6	1065. I
Dry	252.4	300.5	261.5	351.9	185.6	343.4	311.9	372.1	344.2	111.7	163.2	93.1	314.0	362.7	337.5	62.6	285.4	358.1	138.5	281.6	192.4	171.3	107.8	183.2	157.8	108.1	207.5
January	182.3	255.6	296.2	346.5	297.7	266.5	112.2	227.4	238.2	94.2	67.5	264.9	154.0	225.2	97.3	96.8	88.1	168.2	40.6	63.4	275.4	162.2	282.2	392.8	193.4	181.4	187.9
July	0.0	98.2	7.1	9.0	0.0	22.3	17.2	5.2	8.8	14.5	12.2	18.2	7.4	0.0	1.0	0.0	9.0	10.4	7.0	8.0	27.4	14.2	12.0	0.0	32.3	0.0	3.2

Total Mean Variance Standard Deviation Maximum Precipitation **Minimum Precipitation** Range Quantity of C. Normal 921.0 76.8 2011.3 C. Normal C. Normal C. Normal 44.8 C. Normal 145.4 C. Normal 13.7 Years Years Max - Min Value Value Value Years Years Years Value Years Years Value Years Value 02 84 Т 723.5 02 60.3 90 2540.9 90 50.4 02 155.1 0.0 02 155.1 2 99 02 3161.6 56.2 85 90 156.6 748.3 99 62.4 02 90 173.8 0.0 3 10 748.7 10 62.4 10 3324.2 10 10 181.4 88 10 181.4 57.7 0.0 4 822.2 90 97 3577.9 97 59.8 84 182.5 91 84 182.5 90 68.5 0.0 5 93 827.6 93 69.0 85 4557.7 85 67.5 06 209.3 94 0.0 06 206.7 6 05 05 95 967.2 80.6 01 4834.1 01 69.5 09 216.2 0.0 01 209.6 7 07 978.2 07 81.5 84 4943.4 84 70.3 96 219.0 96 0.0 09 214.8 8 85 980.7 85 81.7 96 5419.3 96 73.6 01 219.6 97 0.0 96 219.0 9 97 986.I 97 82.2 06 5700.9 06 75.5 97 225.2 99 0.0 97 225.2 10 94 1015.7 94 84.6 94 5736.9 94 75.7 99 225.6 02 0.0 99 225.6 84 77.2 234.8 94 234.8 11 1023.9 84 85.3 92 5960.8 92 94 05 0.0 12 09 1087.6 09 90.6 05 6044.I 05 77.7 92 238.2 07 0.0 92 236.2 253.9 253.9 13 04 1121.8 04 93.5 09 6147.7 09 78.4 91 80 0.0 91 14 06 1156.4 06 96.4 99 6183.0 99 78.6 85 255.6 10 0.0 85 255.6 15 95 1178.1 95 98.2 93 6357.9 93 79.7 93 258.3 86 0.3 89 256.5 16 96 1182.2 96 98 98 79.8 95 264.9 04 0.5 93 257.0 98.5 6364.5 17 01 1205.1 01 100.4 04 8014.2 04 89.5 89 266.5 98 1.0 95 264.9 18 80 1208.3 80 100.7 89 8200.3 89 90.6 05 275.4 н 1.0 05 275.4 19 91 1265.8 91 105.5 91 8316.6 91 91.2 04 278.0 93 1.3 04 277.5 1272.6 07 94.7 07 282.2 00 1.4 98 282.0 20 11 11 106.05 8974.I 07 21 98 1278.5 98 106.5 95 9319.6 95 96.5 98 283.0 09 1.4 07 282.2 22 87 1282.5 87 106.9 87 9844.I 87 99.2 86 296.2 92 2.0 86 295.9 23 89 89 86 86 106.1 06 2.6 88 1316.1 109.7 11259.1 88 331.6 331.6 24 86 1353.3 86 112.8 80 11519.5 80 107.3 00 340.9 87 4.7 00 339.5 89 25 00 12394.8 00 87 346.5 10.0 87 341.8 92 1416.0 92 118.0 111.3 26 00 1427.9 00 119.0 ш 17300.1 Ш 131.5 80 392.8 01 10.0 80 392.8 88 88 88 90 н 27 1548.0 129.0 17341.7 88 131.7 11 455.2 17.2 454.2

Table 10: Statistical techniques of the precipitation series

CHAPTER 5 – DEFORESTATION AND CLIMATE IMPACT

I - Deforestation - Land use imagery time series

The area of the study has approximately 2318 square kilometres in the Pantanal of Nhecolândia with both Firme and Nhumirim farms inserted in the quadrangle layer in the Landsat image. Its geographic coordinates are, for the left superior corner, 57° 3' 14" W and 18° 55' 41" S; right superior corner, 56° 36' 45.8" W and 18° 56' 6" S; left inferior corner, 57° 3' 44" W and 19° 22' 41" S and for the right inferior corner, 56° 37' 11" W and 19° 23' 6" S. It was chosen both farms mainly because they are the sources of data presented here. The meteorological data belongs to the Nhumirim farm, where all the meteorological equipment are located. The other data and studies are from the Firme farm as well as from neighbouring farms.

The deforestation process in the Firme farm are diverse. Nevertheless, the main reason to deforest the areas is to transform the dense vegetated areas ("cordilheiras") into pastures for cattle raising. From 1962 until 1974, the deforestation was modest since it was a dry period for the region exposing native pastures. From 1974 forth, the flood seasonality was back in its normal regularity reducing the native pasture area for the cattle, inducing the farmers to deforest areas such as the "cordilheiras" and planting new species of exotic pasture such as the Brachiaria ssp (the B. humidicola, B. decumbens, B. ruziziensis and B. brizantha covers about 85% of the cultivated pasture in Brazil) (BODDEYet al., 2004; PADOVANIET al., 2004; BACANI, 2007; SILVAET al., 2013). This situation reduced the amount of cattle in the region between the years 1970s and 1980s. Other reasons why the farmers deforested the native vegetation to introduce the cultivated pastures, as cited above, is the fact that the cattle has a smaller proportion of available food during the year (seasonal floods) when compared to other regions of the country which this variability in the availability of food affects the growth of the cattle. Such situation triggered a competition among the meat producers in the Pantanal while compared to the rest of the country producers, which it was an incentive to expand the areas deforesting great portions to increase the production of meat and, thus, enabling the farmer's to compete outside the Pantanal (PADOVANIEt al., 2004).

The time series analysis of the deforestation comprises 3 selected images. The date of the images are September 02^{nd} , 1984 (Figures 11, 12 and 13), September 12^{th} , 1999

(Figures 14, 15 and 16) and September 21st, 2014 (Figures 17, 18 and 19). It was made 3 images as false colour, here used as the guide image for the 3 supervised classification images. Another 3 images were done to assess the radiative temperatures of the surface region.

The process of creation of the band set for the false colour, the supervised classification and the radiative temperatures were all done with the open source GIS software QGIS utilizing a plugin called "Semi-Automatic Classification Plugin". The assembling of the end-map were done with the proprietary GIS software ArcGIS 10.1, available for the University of Coimbra's students.

It is important to mention here that the accuracy presented by the supervised classification is not 100 % accurate to the real world. The classes assigned for the classification had some errors where the object of one class is also recognized in the region of interest by the training plugin in another class, thus, disturbing the reality. As the main focus of this study is to assess the deforestation using the remote sensors of the satellites, the "high vegetation" class was the only one with high precision of accuracy. The "high vegetation" class represents the dense forested areas of the region, mainly "cordilheiras" and some sparse dense aggregate of trees. Still, the "high vegetation" class did not have 100 % of accuracy.

All the supervised classification presented a classification report containing the size of the areas occupied by each pre-determined class. For the year 1984, the class high vegetation covered approximately 18.78 % of the quadrangle, which it represents around 32909.4 hectares (table 11).

Class	PixelSum	Percentage (%)	Area (m ²)
High Vegetation	365525	18.77251071	329093969.1
Water	164371	8.441710847	147988522.8
Low Vegetation	1032083	53.00537355	929217675.7
Burned Areas	179512	9.219317261	161620454.4
Saline	3280	0.168453143	2953089.99
Macrophyte	202358	10.39263449	182189446.4

Table 11: Classification report for the supervised classification image of September 02, 1984

The false colour image showed the presence of a great amount of water in the surface. It was possible to distinguish the areas where fire had happened from the bare

soil/grass/low vegetation areas. Some alkaline ponds and fresh water ponds where macrophytes were growing also is shown in the image. The thermal image showing the radiative temperature of the surface went through a process called *pan-sharpening* to get a better resolution of the pixels. The original image has a pixel resolution of 120 meters. After the *pan-sharpening* process, the pixel resolution is now 30 meters. It is interesting to see the radiative temperature for the areas where water and vegetation is present. It is clear that they are cooler than the bare soil/grass/low vegetation areas. It also proves the cooling effect that high vegetation plays in the environment.

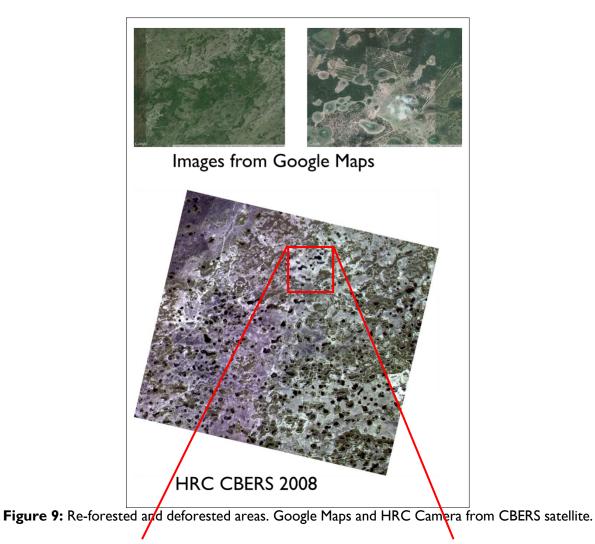
The year 1999 presented in the false colour major areas of bare soil because of the use of fire to clear the biomass. The image presents either new and/or past fires. As for the classification report of the supervised classification, the area of the "high vegetation" had a loss of almost 2%, but it also had a major increase of burned areas when comparing both years. The total "high vegetation" area in hectares is approximately 29717.1 hectares. (Table 12). For the radiative temperature image, we clearly see the rise of the surface temperature due to less high vegetation and the increase of burned area, which this year it accounts as a larger area than the "high vegetation".

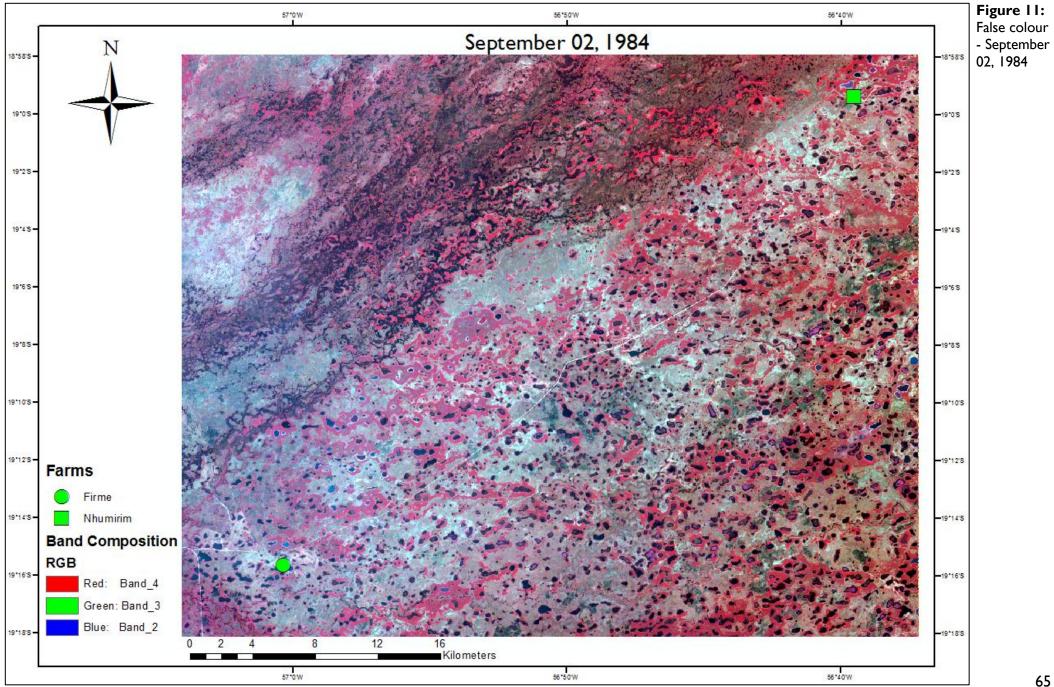
Class	PixelSum	Percentage (%)	Area (m ²)
High Vegetation	330068	16.95152196	297170886.3
Water	55471	2.848861067	49942333.8
Low Vegetation	1194938	61.36922618	1075841295
Burned Areas	342994	17.61537114	308808581.7
Saline	1005	0.051614454	904833.9757
Macrophytes	22653	1.163405198	20395227.91

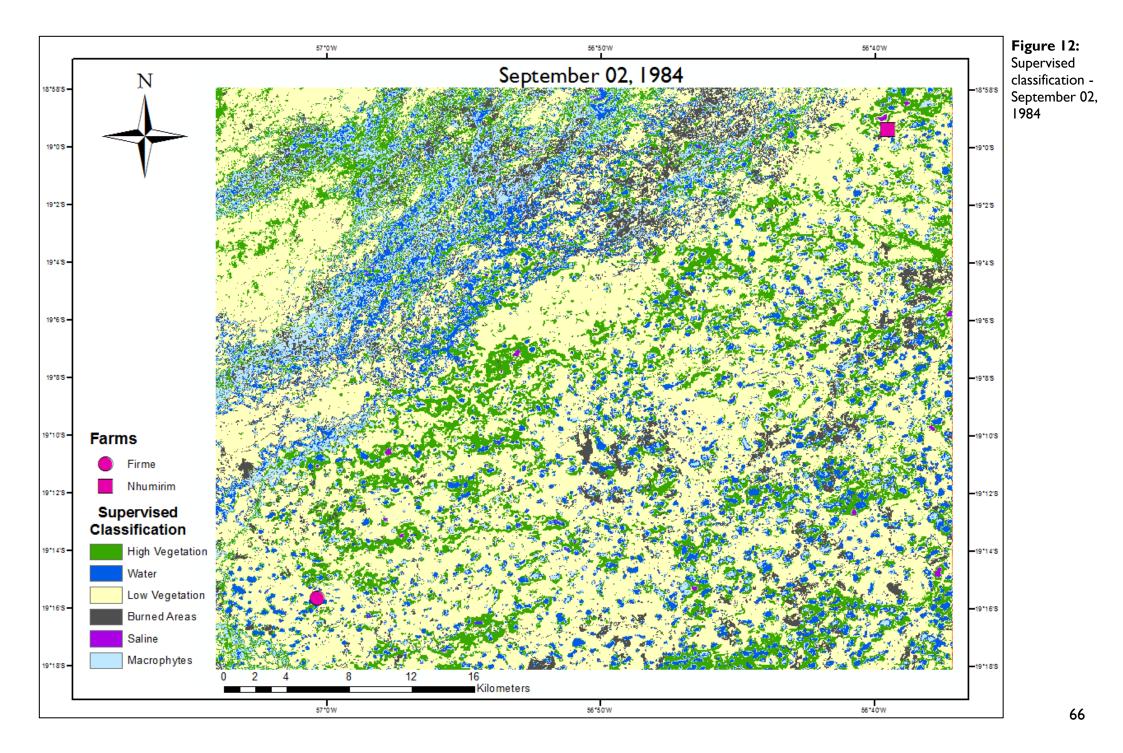
Table 12: Supervised classification report for September 12, 1999

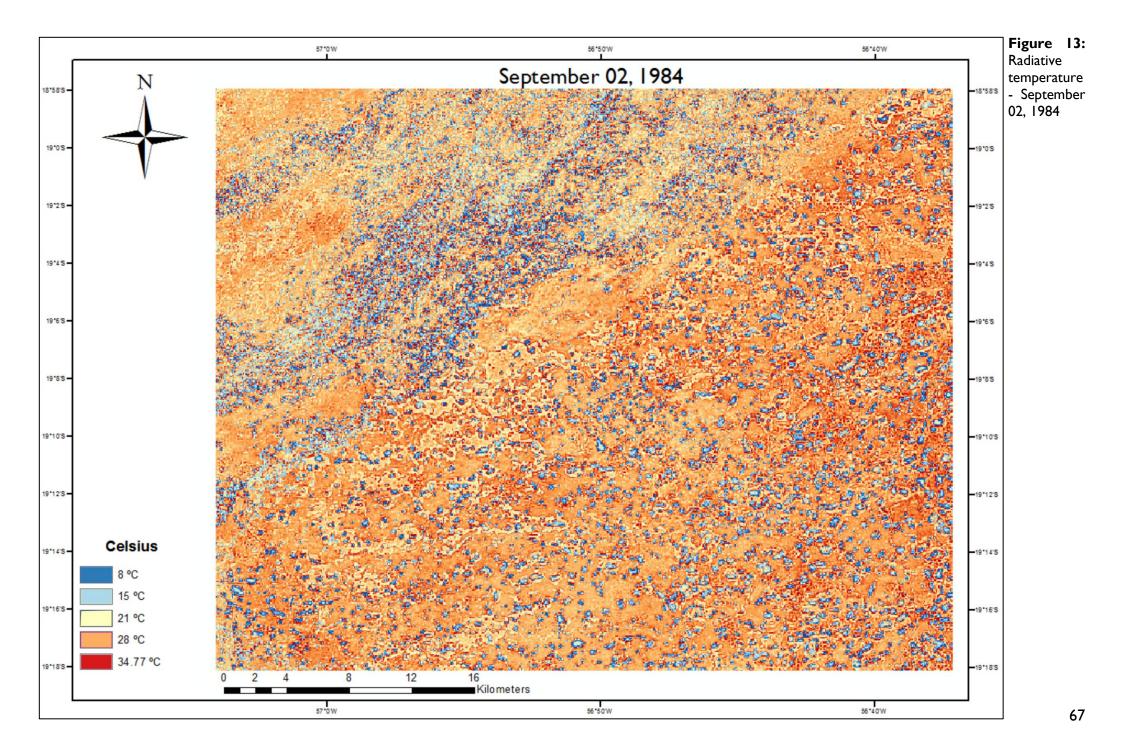
For the last series of images, the year 2014 presented, at a first glance, in the false colour image, a higher presence of the red colour, which it represents the "high vegetation" class in the supervised classification. It also present huge areas of burned areas and bare soil. The classification report for the supervised classification image presented an increase of the "high vegetation" area (Table 13). It is possible to see throughout the region deforested chunks of "cordilheiras" and some parts where trees had grown in the past 15 years. This is possible to be identified with the open source software Google Maps, either using it as the software itself or as a QGIS plugin called "Openlayers". This plugin is very useful when one needs to verify the real situation of the area. But also it is possible whenever one has the

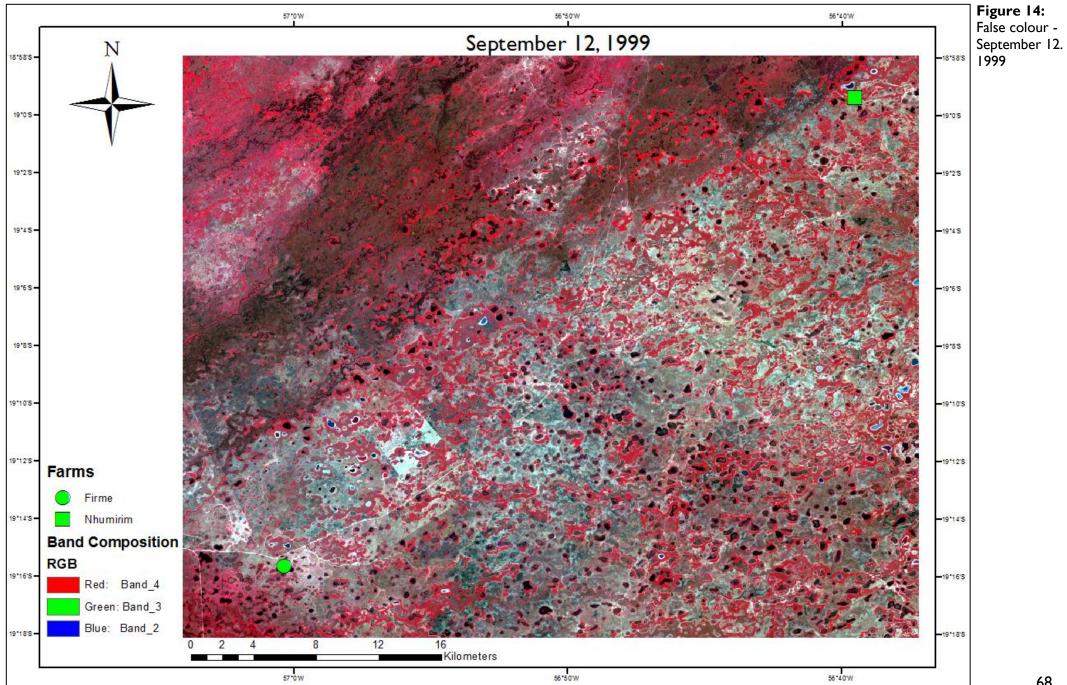
financial resource to purchase images from commercial satellites. Brazil provides free imagery from its satellites CBERS. The satellite has a high resolution panchromatic camera with a resolution pixel of 2.7 meters, ideal to identify objects remotely. Unfortunately, these images were only available from January 2007 until June 2010. (Figures 9 and 10)

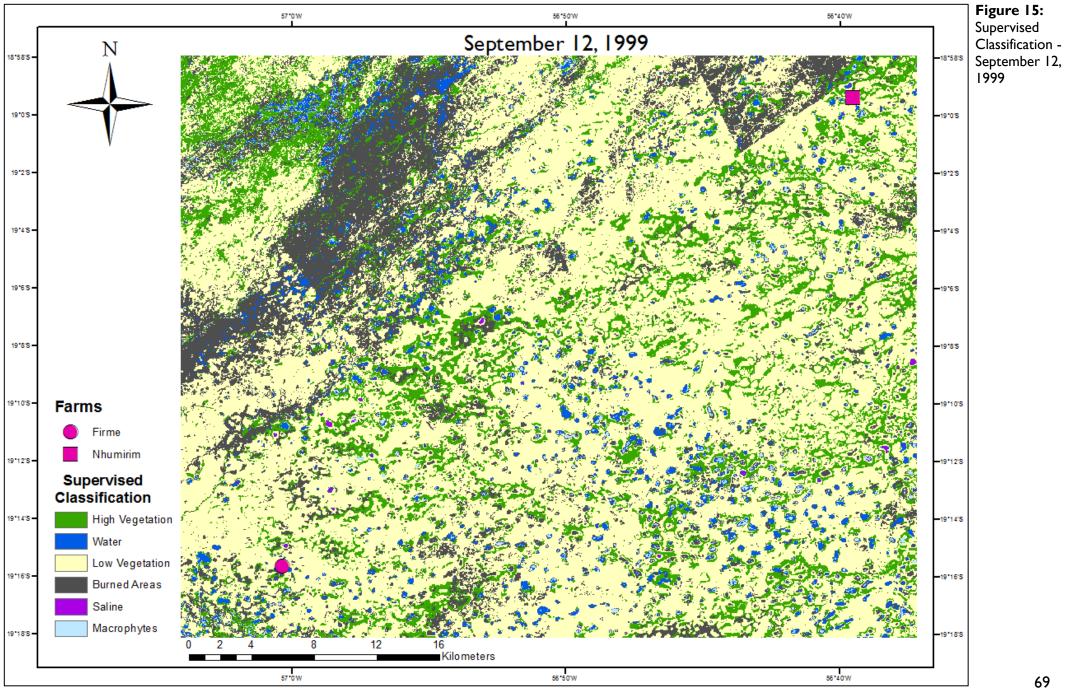


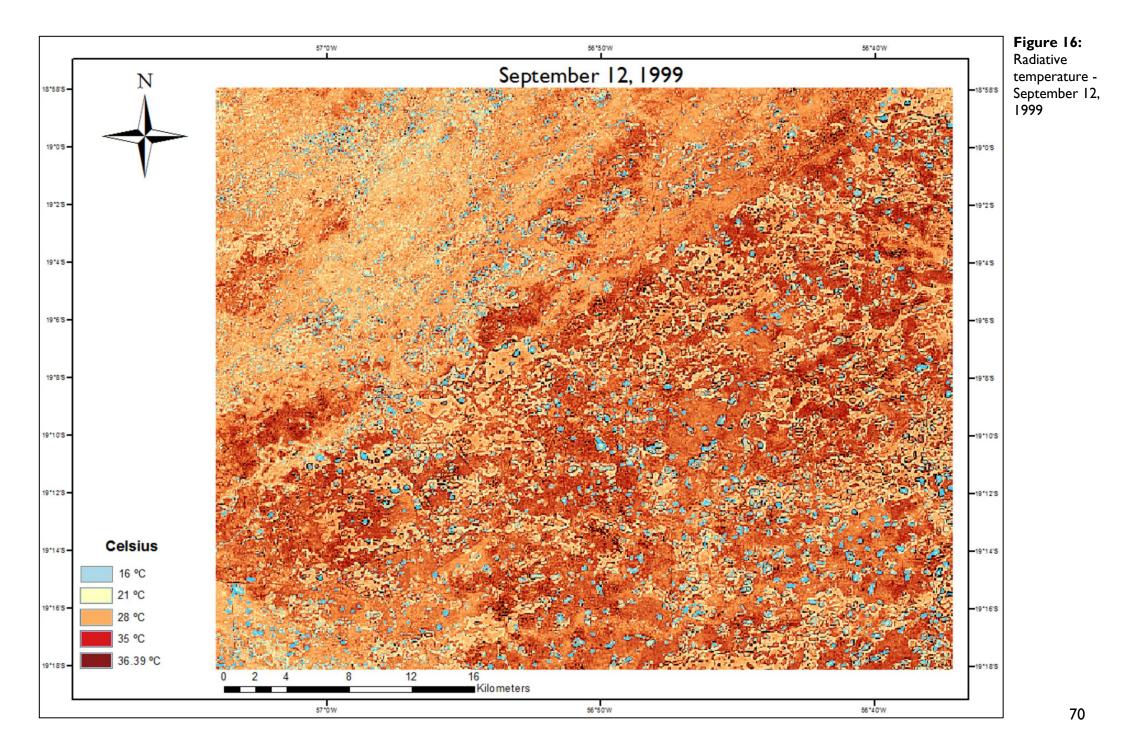


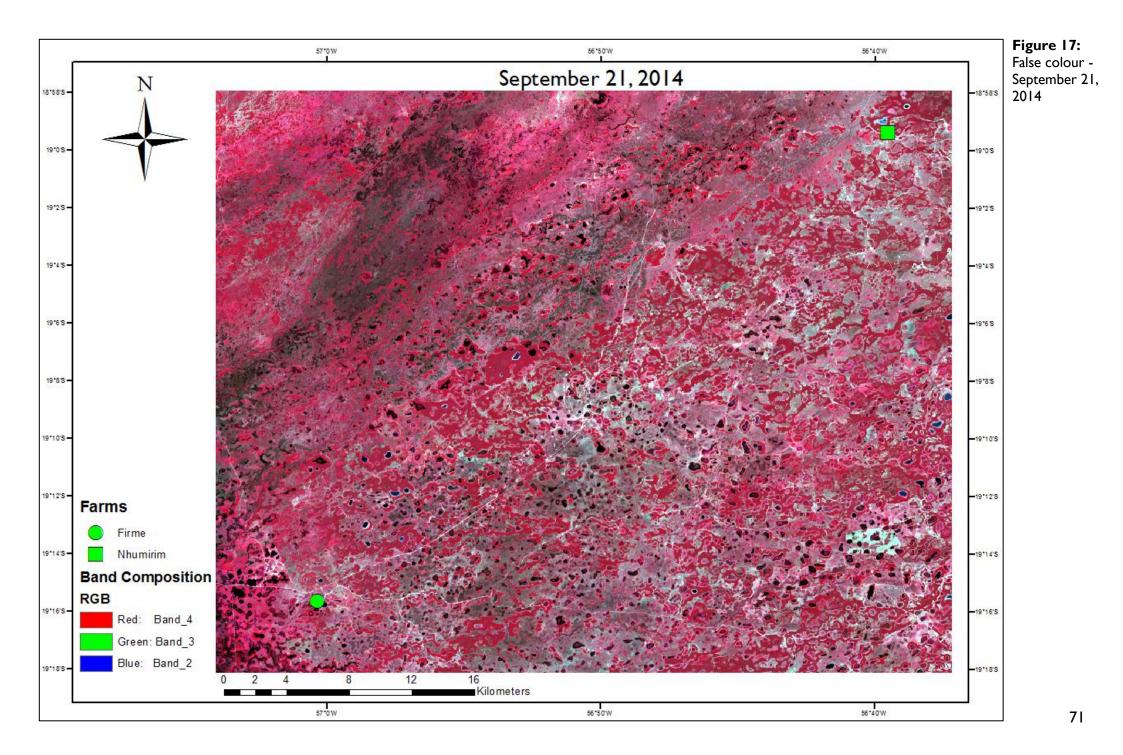

Figure 10: Zoom of the same area from Google Maps in the HRC CBERS image. True Color composition

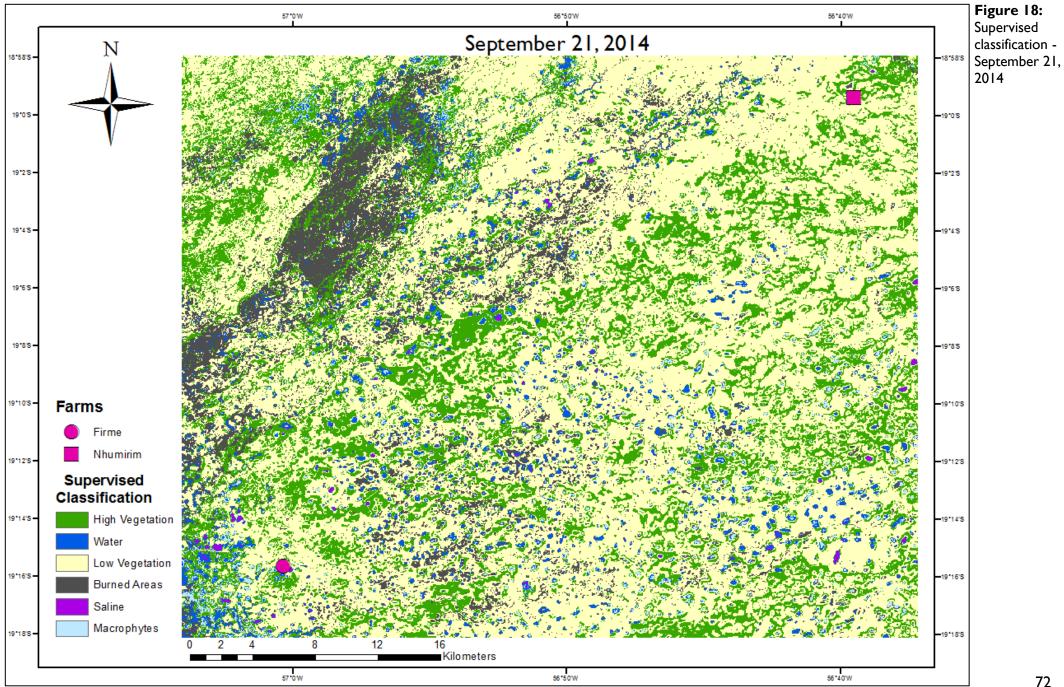

Class	Pixel Sum	Percentage (%)	Area (m2)
High Vegetation	484352	24.87518803	436077757
Water	58912	3.025582794	53040377.29
Low Vegetation	1160694	59.61053428	1045010315
Burned Areas	202817	10.41620766	182602699
Saline	3433	0.176310866	3090840.834
Macrophytes	36921	1.89617637	33241169.37

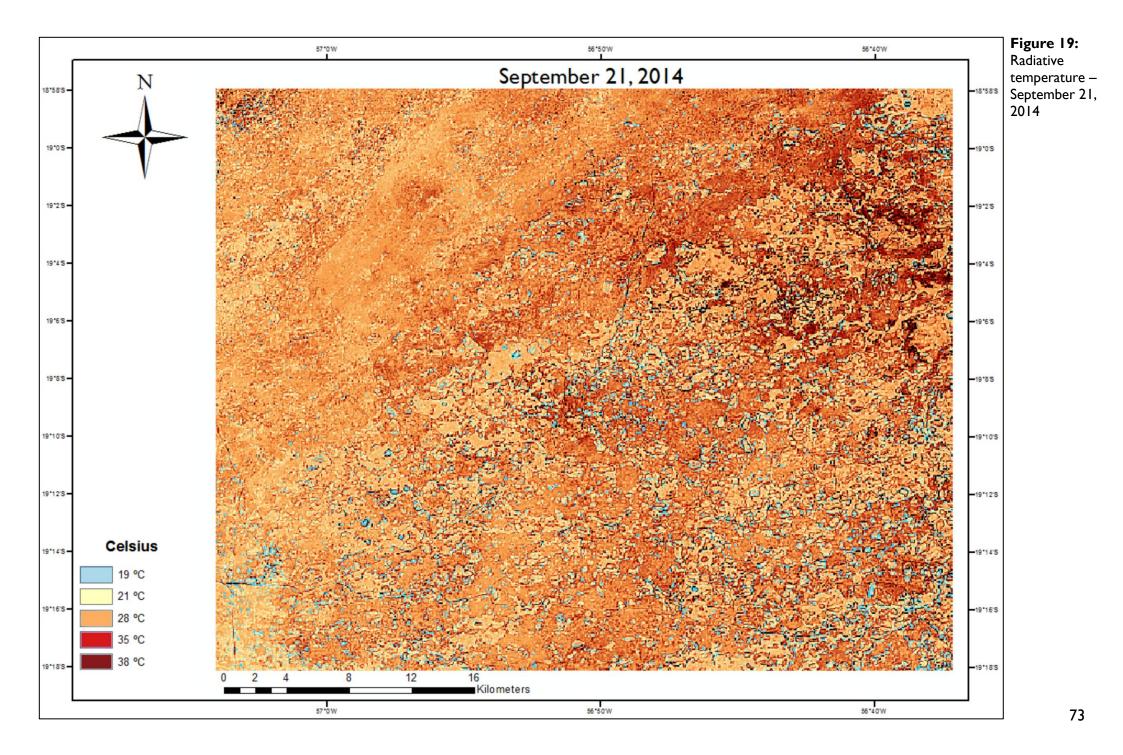

 Table 13: Classification report for September 21, 2014


The increase of "high vegetation" was quite significant, almost 6 %. The burned area also had a major decrease. The radiative temperature image shows as previously images had proven, the hotter spots are where bare soil/burned areas are and the cooler sports, the water and vegetation. It is important to mention that the increase of "high vegetation" is quite significant, but it didn't happened where "cordilheiras" where cut down. The increase happened in different areas of the region and the cut down of "cordilheiras" continued to happened.



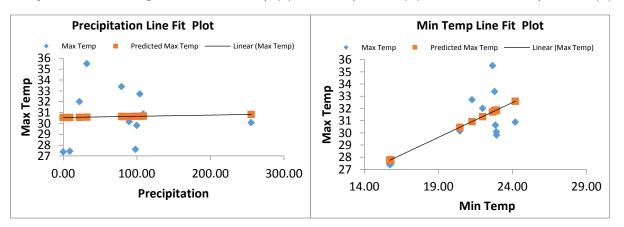


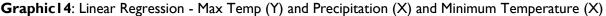




2 - Statistical analysis

On a regional scale, the average annual temperature of the Pantanal is a quantity related to the local balance of radiation, air masses, topography and exchange of energy of natural areas such as the mosaic of vegetation and altered areas.


As far as this study goes, this dissertation relied on the statistical results obtained from the meteorological data, which was gathered from the INMET-BDMEP website and from EMBRAPA-Pantanal, also from articles, bachelor's degree monographies, master's degree dissertations, PhD thesis, and all the other sources of information available. It also had the help of the Remote Sensing science and GIS techniques to support the decision making of the results here presented.


The statistical analysis was based on the years with the lowest and highest mean values for precipitation and maximum and minimum temperatures only in order to seek a correlation with the deforestation previously presented. The years analysed were 1985, 1987, 1988, 1989, 1992, 1997, 1999, 2000, 2002, 2005, 2009, and 2010. To support the statistical results, thermal imagery from the Landsat series were used in order to enhance them. Also, the same statistics techniques were applied to the Climate Normal data.

Several years had both the highest and lowest mean values for the variables. 1989 had the lowest mean value for maximum temperature and the highest mean value for precipitation. 2009 had the highest mean value for the maximum temperature and the lowest mean value for the minimum temperature. The year 2002 had the highest mean value for the maximum and minimum temperature variables and the lowest mean value for precipitation. 2010 had the highest mean value for the maximum temperature and the lowest mean value for the minimum temperature variables.

1985 had only the precipitation and the maximum and minimum temperatures data available. The Climate Normal data is from the Corumbá station from INMET dating from 1961 to 1990. As far as the statistical analysis, a single regression with the variables maximum temperature as the independent variable and the precipitation as the dependent variable, the results showed a weak R^2 of 0.0009 and a very high value for the Sig-F of 0.92. The coefficient is insignificant, 0.001.The *p*-value clearly shows that this regression is not statistically significant. When the regression had as the dependent variable the minimum temperature, the scenario changed drastically where we can clearly see that the correlation

is strong and one variable explains the other. We definitely can reject the null hypothesis for this regression. The R² is 0.52, the Sig-F is 0.007 and the coefficient is 0.57. Those are strong values what we can assume that the minimum temperature plays a vital role in the maximum temperature changes. As a multiple regression, the results are straightforward. The precipitation is not a strong variable here, hence, it should be removed since we cannot reject the null hypothesis and is more likely it will jeopardise the study (Appendix 8). The overall for the 1985 regressions is that the minimum temperature does affect the maximum temperature and the precipitation has no response in the changes of maximum temperature, even when analysed together with the minimum temperature. But one thing that stood out this year was the fact that in all the years analysed, July 1985 was the month that most rained, especially when it was in the dry season, more specifically, considered the driest month. In 2 days rained 95.7 mm (01/07/1985 - 35.4 mm; 02/07/1985 - 60.3). The maximum and minimum temperatures for these days almost didn't change, having a little amplitude (01/07/1985 – maximum temperature= 19.1 °C and minimum temperature= 19 °C; 02/07/1985 – maximum temperature= 21.5 °C and minimum temperature= 18 °C). Due to the lack of availability of detailed data of the weather conditions and weather satellite imagery for the region, unfortunately it will not be possible to do a detailed analysis of the synoptic conditions for those days.

1987 had the highest mean value of the minimum temperature series along with the years of 1997 and 2002. The regression between minimum temperature (Y) and the precipitation (X) showed a R^2 value of 0.32 and a Sif-F of 0.05 with a coefficient value of 0.01. A medium strength of correlation and a low coefficient value. It is prudent to say that the p-value is over 0.05, what we can assume that the variable precipitation does not associate to the changes in the minimum temperature. The linear regression between the minimum

temperature and maximum temperature presents a strong correlation with a R^2 of 0.69, Sig-F 0.0007 and a coefficient value of 1.10. The maximum temperature has a huge influence in the minimum temperature. As far as the insolation and the relative humidity influencing in the minimum temperature numbers, they both lack of correlation presenting results close to zero to the R^2 values (0.05 and 0.01, respectively) and a very high value for Sig-F (0.45 and 0.66, respectively) as well the coefficient values (0.02 and 0.09, respectively). A multiple regression was done in order to assess the influence of the response variables in the predictor. The results show a strong correlation between the variable when analysing only the R^2 (0.86) and the Sig-F (0.003). Moreover, the p-value gives us a different approach. Only the maximum temperature and relative humidity have acceptable values (0.002 and 0.02, respectively), forcing the other variables to be taken out due to no statistical significance(Appendix 9). Hence forth, another multiple regression was done to properly assess the results obtained from the previous regression and it confirmed a very strong correlation among the variables [minimum temperature (Y) - maximum temperature and relative humidity (X)]. The R^2 has a value of 0.81 and Sig-F of 0.0004. The coefficient are 0.25 for relative humidity and 1.21 for maximum temperature. Both variables presented strong pvalues under 0.05.

1988 had the third lowest mean value for maximum temperature and also it is the year that rained the most of all the years in the series withonly four months with no rain whatsoever. As this year had two variables among the highest and lowest values of the whole data here presented, it was produced linear regression for both variables. The maximum temperature (Y) and the precipitation (X) regression showed a R^2 of 0.21 and a Sig-F of 0.12. The coefficient value is 0.009, very low. This variable should not be used since it does not present a statistical significance. The regression with the minimum temperature, as the X, presented a R^2 of 0.37, a Sig-F of 0.03 and a coefficient value of 0.43. It has a good correlation. The relative humidity regression shows a poor value for R^2 of 0.08, Sig-F of 0.35. The p-value is over 0.05, forcing us to eliminate this variable. As a multiple regression, the result is interesting. It has a high value for R^2 , 0.85 and Sig-F of 0.001. The p-value for the variables are valid only for the minimum temperature and relative humidity variables. The precipitation went over 0.05. An even stronger multiple regression with the minimum temperature and relative humidity was done to observe the results and it was concluded that, when these variables are together, the changes in the maximum temperature values are highly responsive to the variables analysed, the minimum temperature and relative humidity.

It presented a R^2 of 0.85, a Sig-F of 0.0001 and extremely low *p*-values. The coefficient values are reasonably high, as 0.71 for minimum temperature and -0.45 for relative humidity. Its residual output shows how little the prediction were off the real values. For the precipitation linear regression as it being the independent variable, the minimum temperature variable here is the X. The results showed a R^2 of 0.78, a Sig-F of 0.0001 and a coefficient value of 31.08. It presented a very strong correlation between the variables, assuming valid changes that the minimum temperature do to the precipitation. As for the relative humidity, the R^2 is 0.31, but the Sig-F is 0.056 and high coefficient value of 15.74. But this is a classic misinterpretation of the R^2 value since it shows a good value of correlation, but the Sig-F and the *p*-value is over 0.05, which we will not use this variable since we cannot reject the null hypothesis; in other words, it is not a meaningful addition to our study since the changes in the precipitation being the Y and the rest of the variables the X, it shows the same situation as the linear regression of the relative humidity, good value of R^2 (0.80), but high *p*-values for all the variables (all of them are over 0.05 – Appendix 10).

The year 1989 had the second lowest mean value for maximum temperature and was the most constant in precipitation, having only one month with low precipitation (10 mm in May). The maximum temperature (Y) and precipitation (X) regression showed a weak R^2 value of 0.10 and a high Sig-F value of 0.29. The coefficient value was a poor 0.006. This regression should not be used since the p-value was over 0.05. As for the maximum temperature as Y and the minimum temperature as X, the correlation is very strong, with a R^2 of 0.52 and a very low value for Sig-F of 0.007. The coefficient value is good, 0.45. As far as the relative humidity variable as X and the maximum temperature Y, the regression analysis showed a good correlation with a R^2 of 0.18 with a Sig-F of 0.18 and coefficient of -0.17. This variable is not valid as far as statistical significance. The multiple regression for the maximum temperature as Y and all the other variables showed a very strong correlation between them, but the precipitation variable went over the p-value, being excluded of the analysis. The next multiple regression done was only with the minimum temperature and relative humidity and it definitely showed the strongest correlation for this year of all the regression done. Not only had a high value for R² of 0.93 and Sig-F 5.15358⁻⁰⁶, but for the pvalues as well. The variables are, indeed, major players in the changes on the maximum temperature(Appendix 11).

1992 had the third highest mean value for precipitation. The regression between precipitation (Y) and the maximum temperature (X) presents a strong correlation of the variables. The R² has a good value of 0.64 and the Sig-F value is also very good, 0.001 showing us that changes in the predicator's value (X) are related to changes in the response variable (Y). The coefficient value is 31.75. The minimum temperature and precipitation regression is stronger than the previous regression, with a R^2 of 0.70 and a Sig-F of 0.0005 and also a poor coefficient of 0.03. Analysing the insolation influence in the precipitation, the results show no correlation whatsoever when taking the value of the R^2 0.03 and the Sig-F 0.56. The coefficient value is negative (-0.68). This regression is not appropriate to be used when seeking the correlation between insolation and precipitation (Appendix 12). As for the relative humidity influencing the precipitation, the regression shows us no correlation with a value of R² of 0.02, Sig-F of 0.65 and coefficient of -5.73. As the previous regression, this one cannot be accounted in the study since itsp-value is very high and, therefore, we cannot reject the null hypothesis and is not statistically significant. The multiple regression results shows a very strong correlation, with a R^2 of 0.84 and a Sig-F of 0.006. Although the numbers seem very straightforward, the p-values for the variables show another scenario where the changes in predicator's value (X) are not related to changes in the response variable (Y) for most of the variable, except for the minimum temperature. We should not considered this regression because it is not statistically significant and we cannot reject the null hypothesis.

1997 had the second highest mean value for minimum temperature(Appendix 13). This year had its values a little over the Climate Normal in most of the variables with complete data. Only the insolation, average wind speed and cloudiness were under. Analysing the linear regression with the precipitation being the X and the minimum temperature being the Y, the results showed a medium correlation with the value for R^2 of 0.38, Sig-F of 0.03 and coefficient of 0.03. A little stronger correlation presented when the X variable was the maximum temperature. The R^2 has a value of 0.41, Sig-F of 0.024 and the coefficient of 0.86. An even stronger correlation is noticed with the results of the linear regression with the cloudiness being the X variable with a R^2 of 0.43, Sig-F 0.02 and coefficient of 1.95. For the insolation variable as X, the results showed a weak correlation, with a R^2 of 0.10 and a high Sig-F value of 0.3 with a negative coefficient of -0.04. As the *p*-value for it has a value over 0.05, we are not going to consider this linear regression due to statistical insignificance. For the relative humidity and the average wind speed values, the

linear regression for both showed a very poor correlation, having the R² for both variables the value of 0.00, both having also high values for Sig-F, 0.88 and 0.79, respectively, and both had p-values over 0.05. The multiple regression results are very interesting since it shows highs values for R² and Sig-F, 0.94 and 0.004, respectively. But, as previously presented in the other multiple regressions, the p-values for the variables over 0.05 making them, for this study, not statistical significant, hence, the only variable under the 0.05 value was the maximum temperature. It is interesting because this variable, in the linear regression, did not havethe strongest results. The cloudiness variable had better results, showing more correlation and influence in the minimum temperature variable. For this matter, another multiple regression was done in order to see if the correlation gets better with the all the variable that had statistical significant results. The X variables this time were maximum temperature, cloudiness and insolation. Indeed, the results presented were very promising. But the insolation variable, this time, had the p-value over 0.05. The other variable had great values. A final multiple regression was done with the maximum temperature and cloudiness as the X variable and the results were really good. The correlation got a lot stronger. The R^2 has a value of 0.77 and Sig-F of 0.001. The p-values are both 0.00 for the X variables.

1999 had the second lowest mean value for precipitation(Appendix 14).Of all the linear regression and the multiple regression done for this year, only when the minimum temperature was the X variable in a linear regression that the results showed a little correlation. All the other variables, cloudiness, maximum temperature, insolation and relative humidity showed very weak correlation, very high values for Sig-F and *p*-values. For the minimum temperature linear regression results, the R² has a value of 0.36, Sig-F of 0.03 and coefficient 12.85.

2000 had the second highest mean value for precipitation. The maximum temperature series acting as the variable X and the precipitation, always as the Y variable for this year, showed a weak result. The R^2 value is only 0.17 and the Sig-F is 0.18. The coefficient is 18.8. But the *p*-value is over 0.05. For the minimum temperature, the values aren't high, but they do show better results and stronger correlation. The R^2 is 0.38, the Sig-F is 0.03 and the coefficient is 20. It proves the influence on the changes of precipitation by the minimum temperature rise. For the insolation variable, the results aren't good since it shows a weak value for R^2 of 0.17, Sig-F of 0.17 and a negative coefficient value of -1.4. The *p*-value is over 0.05. As for the relative humidity, the value of R^2 is 0.40 and Sig-F is 0.02. The

coefficient value is 17.45. The cloudiness variable presented the best results so far, is a R² of 0.52, Sig-F of 0.00 and coefficient of 623. It is the variable with the strongest correlation. Finally, the average wind speed is not statistical significant since its *p*-value is over 0.05. The multiple regression showed exciting results with a R² 0.73, but the Sig-F is very high, 0.18, and all the variables had the *p*-value over 0.05. Another multiple regression was done to seek the correlation with all the variables that had positive results regarding *p*-value-wise, and it also failed with all the variables (minimum temperature, relative humidity and cloudiness) having the *p*-value over 0.05(Appendix 15).

2002 was a year with extreme ranges for precipitation, maximum and minimum temperatures. It had the lowest mean value for precipitation, the highest mean value for maximum temperature and the third highest mean value for minimum temperature. Summarizing, it was the hottest and driest year of the series. The first linear regression was done with the precipitation being the Y variable and the minimum temperature as the X variable. They presented very good correlation with a R^2 of 0.52 and Sig-F of 0.007. The coefficient value is 11.99. Good relation of the minimum temperature with the precipitation. All the other variables (insolation, relative humidity and maximum temperature) presented not as good results as the minimum temperature. In fact, all of them had their p-values over 0.05. Those variables are not good as far as significance for the statistics here applied, as we can see in the multiple regression (appendix 16). A linear regression was also done to assess the influence of the variables in the maximum temperature. The X variable this time was the minimum temperature and the Y variable the maximum temperature. The results showed excellent correlation between the variables: R² of 54%, Sig-F of 0.005 and coefficient 0.58. It definitely has bidirectional influence. The insolation as the X variable and the maximum temperature as the Y, it does not present correlation. The *p*-value is over 0.05 and the R^2 is very low. For the relative humidity variable as X, it also went over 0.05 of the p-value. Analysing the multiple regression, we can see that only the minimum temperature and relative humidity variables had the p-value under 0.05 and the rest (precipitation and insolation) over. Another multiple regression was done with the variables minimum temperature and relative humidity. The results definitely shows that they are strong together. The R² is 0.86 and the Sig-F is 0.0001. And lastly, the linear regression for the minimum temperature variable as Y. For both insolation and relative humidity variables the results are not statistically significant. In the multiple regression results shows that the only variable worth analysing is the maximum temperature since it is the only one with the pvalue under 0.05. But, when the maximum temperature and precipitation are together, even though the precipitation presented a p-value over 0.05 in the previous analysis (precipitation p-value= 0.053718822), in this case, the multiple regression gets stronger and the p-values for both variables are very low, suggesting that these variables are very important when explaining the changes in the minimum temperature.

The year 2005 had the second lowest mean minimum temperature value of the series. Most of variables analysed for this year had good correlation, being only 2 out 6 not statistically significant. The 2 variables are the insolation and average wind speed. The other 4 (maximum temperature, precipitation, relative humidity and cloudiness) all had high values for R^2 , especially the cloudiness (R^2 0.82) and also very low values for Sig-F (Appendix 17). As for the multiple regression, the results weren't so great the linear regressions. Only 2 variables had *p*-values under 0.05, maximum temperature and cloudiness. Now, for the multiple regression with those variables, the results are excellent, showing an excellent correlation. The R^2 is 95%, the Sig-F 9.30562⁻⁰⁷. In a final analysis, the maximum temperature and cloudiness in the minimum temperature values.

2009 had both the third highest mean value for maximum temperature and the third lowest mean value for minimum temperature. (Appendix 18) This year had interesting results. A linear regression with the maximum temperature as the Y variable and the minimum temperature as the X variable was done. The results shows excellent correlation between the variables. As for the rest of variables available for this year (insolation, relative humidity, average wind speed, cloudiness and precipitation), they all presented p-values under 0.05. None of them had significant results. Nevertheless, as multiple regression, they present different and satisfactory results. The variables minimum temperature, relative humidity and average wind speed showed excellent correlation with a R^2 of 0.97 and Sig-F of 1.86819⁻⁰⁶. None of them went over the *p*-value. Most of the variables may not be passive of changes when analysed alone, but as a group, they definitely show important influence. As for the minimum temperature as the Y variables, the results were quite different from the linear regression of the maximum temperature. 3 out of 6 variables were worthy analysing. The variables are maximum temperature, cloudiness and precipitation. They had good correlation values basing on the R^2 and Sig-F. As a multiple regression, the p-values, again, were over 0.05, exception of the 3 previous variables mentioned. A multiple regression with

them were done and the result couldn't be better, with very high R^2 and very low Sig-F meaning a great influence of those variables in the minimum temperature.

The last year of the series to be analysed is the 2010. This year had the third lowest precipitation values, the second highest mean value for maximum temperature and the lowest value for minimum temperature. Starting with the minimum temperature as the X variable, the results showed that for insolation and relative humidity, these variable did not influenced the minimum temperature since their R^2 were not valuable and also had p-values over 0.05. The maximum temperature variable had the highest value for R^2 0.53 of the other variables with high correlation (cloudiness= 0.45, precipitation= 0.43). As a multiple regression, all the variables made the R^2 rise, but 2 of them were over 0.05 for the *p*-value. The multiple regression with only the variable with significant statistical showed a very strong correlation with a value of R^2 of 96% and very low values for Sig-F and p-values. For the maximum temperature being the Y variable, the linear regression that stood out of the pack was the only one with the minimum temperature being the X variable. All the rest had values not significant as far as statistics significance. As a multiple regression, 3 out of 5 had interesting results: the minimum temperature, relative humidity and cloudiness variables. A multiple regression with those variables was done and the results were excellent comparing to the linear regression. The R^2 was 94%, the Sig-F was 2.57532⁻⁰⁵ and the *p*-values were very low. The variables are much more powerful and more influential when they are together. Lastly, the precipitation variable as the Y. The variables that had values under the p-value were the minimum temperature and cloudiness. All the rest had very low R² and high Sig-F values. The multiple regression with all the variables presented all the variables with very high values for p-value. Another multiple regression was done only with the minimum temperature and cloudiness variables to check their correlation together and also presented p-values higher than 0.05(Appendix 19).

The frequency of the linear regressions with *p*-values under 0.05 and over 0.05 is shown in the table 14. As for the multiple regressions, every year had different variables to be compared, but 5 years had the same variables for its multiple regression. The years are the following with their respective variables:

• 1987 and 2002, minimum temperature as the Y variable and the precipitation, maximum temperature, insolation and relative humidity as the X variable;

- 1988 and 1989 had two multiple regressions with the same variables. The first
 multiple regression had the maximum temperature as the Y variable and the
 precipitation, minimum temperature and relative humidity as the X variable; the
 second multiple regression had also the maximum temperature as the Y variable and
 the minimum temperature and the relative humidity as the X variable;
- 1997, 2005 and 2009, minimum temperature as the Y variable and the precipitation, maximum temperature, cloudiness, insolation, relative humidity and the average wind speed as the X variable;
- 1997 and 2005, minimum temperature as the Y variable and the maximum temperature and cloudiness.

The results for the multiple regression of 1987 and 2002 had different values for their *p*-values. 1987 had 2 variables under 0.05, maximum temperature and relative humidity. 2002 had 1 variable under 0.05, maximum temperature. Although they had the same variables for their multiple regression, the years are quite different weather-wise. 1987 had the highest mean value for minimum temperature. 2002 had the lowest mean value for precipitation and the third highest mean value for minimum temperature and the highest mean value for maximum temperature. 1987 rained a lot more than 2002, it was more humid and had a lower mean value for maximum temperature. Also it had about 453 hours less insolation. 1987 has a stronger correlation when analysed with the maximum temperature and relative humidity together and 2002 has a stronger correlation when analysed with the maximum temperature and precipitation.

For the years 1988 and 1989, their regression had the same results. Their differences are that 1988 had the highest mean for precipitation and the third lowest mean for maximum temperature and 1989 had the second lowest mean for maximum temperature. The biggest difference between these years is that 1988 not only rained a lot more than 1989, but it, also, had 3 months without a single drop of rain.

The reason why the years 1997, 2005 and 2009 having the same variables for their multiple regression is only because they all had the same set of data and also being in the top 3 of lowest and highest mean values for the series here studied. 1997 has the second highest mean value for minimum temperature. 2005 has the second lowest mean value for minimum temperature and 2009 has the third lowest mean for minimum temperature and the third highest mean value for maximum temperature. As for the years 1997 and 2005, they had

their strongest multiple regression with the minimum temperature as the Y variable and the maximum temperature and the cloudiness as the X variable.

Table 14. Trequency of mical regressi		•	ntity of Yea	
Linear Regressions	p-va	alue	Frequency	- Variables
	<0.05	>0.05	<0.05	>0.05
Max Temp - Precipitation	0	6	0%	100%
Max Temp - Min Temp	6	0	100%	0%
Max Temp - Cloudiness	0	2	0%	100%
Max Temp - Insolation	0	2	0%	100%
Max Temp - Relative Humidity	0	5	0%	100%
Max Temp - Wind	0	2	0%	100%
Total	6	17	I 7%	83%
Min Temp - Precipitation	5	1	83%	17%
Min Temp - Max Temp	6	0	100%	0%
Min Temp - Cloudiness	4	0	100%	0%
Min Temp - Insolation	0	5	0%	100%
Min Temp - Relative Humidity	0	6	0%	100%
Min Temp - Wind	0	4	0%	100%
Total	15	16	47%	53%
Precipitation - Max Temp	1	5	١7%	83%
Precipitation - Min Temp	6	0	100%	0%
Precipitation - Cloudiness	2	1	67%	33%
Precipitation - Insolation	0	4	0%	100%
Precipitation - Relative Humidity	0	6	0%	100%
Precipitation - Wind	0	2	0%	100%
Total	9	18	31%	69 %

Table 14: Frequency of linear regressions with p-values under 0.05 and over 0.05

Analysing the frequency table 14, we easily see that of all the variables, the minimum temperature is the one that excels from the others. The 6 years analysed that had the lowest and the highest mean value for maximum and minimum temperature and precipitation, the linear regression with the minimum temperature variable being either the Y or the X had 100% of statistical significance. The maximum temperature linear regressions had almost no variables that explained their changes, except by the minimum temperature

variable explaining 100% of the 6 years analysed. As far as the minimum temperature being the Y, the linear regressions showed that the insolation, relative humidity and average wind speed has no statistical significance and the cloudiness, maximum temperature and precipitation are representative of changes. And the last variable of the table, the precipitation as the Y, the variables of insolation, relative humidity and average wind speed also are not statistical significant, but in this case, the variable that are more suitable to the analysis are the cloudiness and minimum temperature.

3 - Climate impact

A mixture of various analyses including articles, dissertations, the fields of GIS, remote sensing and statistics techniques supports the results gathered in this topic.

The pressure to develop more pasture in the region resulted in a total ignorance of the cultural and environmental values that the Pantanal has to offer to the world resulting in great impacts in every part of the ecosystems, such as the dendro-phytophysiognomy (SALIS&CRISPIM, 1999 *apud*BACANI, 2007); the "Pantaneira" fauna contributing to the extinction of some species (ALHOet al., 1988; CAMPOS, 1993; PIMMet al., 1995 *apud* BACANI, 2007); the ponds and lakes there within (SAKAMOTO, 1997); the pedology (SAKAMOTO, 1997) as well as the micro-climate within the region (GRADELLAet al., 2004; SALVI-SAKAMOTOet al., 2004; QUÉNOLet al., 2005; BACANI, 2007; BACANIet al., 2010; TOZATOet al., 2013); to name a few.

Many are the ways to deforest an area, but a common one among the farmers of the Pantanal is the controlled burning of the aerial biomasses of aboveground herbaceous (CARDOSOet al., 2003). Such technique is applied in various countries of the world. The idea is to prevent and to reduce the quantity of flammable material in areas subject to long periods of dryness decreasing the risk of wild intense fire (FERNANDEZet al., 1997 apudCARDOSOet al., 2003) and also to contain the expansion of undesirable species and promote the rebirth of the forages with low acceptability. Although the fire acts as selective element over the vegetation, it provides the appearance of the indicator flora by stimulating rapid formation of green shoots, regardless of rainfall, through its pruning effect on these plants, using stored reserves in the root system. (COUTINHO, 1990 apudCARDOSOet al., 2003) However, when this technique is applied to the Pantanal, it did not result in a good technique, as shown by CARDOSOet al. (2003) in his study. CARDOSO shows us that it takes

about 7 months to recover the values of an area where the burning techniques was not applied. It also exposed the soil to weathering, compromising it. In a long term, the periodic burning would affect the soil mainly because the Pantanal soil is characterized by low natural fertility and sandy textures.

The impacts in the climate of the Pantanal are, yet, not conclude in a regional scale since the area suffers of lots of influences from distance such the Amazon forest, possibly the glaciers in Peru and the Andes. (DUBREUILet *al.*, 2011; SALVI-SAKAMOTO*et al.*, 2004; GRADELLA*et al.*, 2004; ZAVATINI, 2009). As for a micro scale analysis, many were the articles published regarding the subject, which we are going to cover some. SILVA&SAKAMOTO(2002) and SILVA(2003) had published an article and a monography, respectively, assessing the differences among different landscape unities: old meanders, salted pond, "cordilheiras" and beach. Their results showed a similar behaviour between the salted pond and the beach and the old meander with the bay. They all presented higher thermal amplitude and temperature, while the "cordilheiras" presented lower temperature and lower thermal amplitude. In constructed areas, the temperatures were higher. During the autumn, there were low cloudiness and scarce winds. The beach area had 6 °C of temperature higher than the "cordilheiras" and the latter presented higher humidity. The article and the monography showed the importance of the "cordilheiras" in terms of maintenance of a standard pattern of temperature and humidity range.

The main problems that the Pantanal of Nhecolândia suffer is the fact that these "cordilheiras" are cut down to broaden the cattle area for pasture which the consequences are detect, as showed above. As put by LAWTONet al. (2001, p. 584) "Deforestation and conversion of land to pasture or cropland generally increase surface albedo, reduce aerodynamic roughnesslength and mechanically turbulent mixing in theboundary layer, reduce evapotranspiration, and increase the ratio of convective sensibleheat transfers to latent heat transfers from the surface to the atmosphere. Conversion offorest to grassland or cropland also commonlyalters surface soil structure by compaction and thus reduces infiltration of rainfall and increases runoff, with the end result of reducingsoil moisture. Because grasses and crops usually have shallower roots than do forest trees, the volume of water available for transpirationand latent heat transfer is greater for forests thanfor agricultural land developed from them".

GRADELLAet al.(2004) also found, yet, little differences between the beach and the "cordilheiras" in his study while analysing the temperature ranges. The author also measured the input and output of the radiative energy in both areas and concluded that in the beach, the gain and loss of energy is a lot faster than the "cordilheiras". The study emphasized the importance of a vegetal coverage to the area and its influence.

QUÉNOLet al. (2005) had as objective of the study to determine the climatic conditions of a saline pond and to assess the influence of its evaporation process since a study conduct by BARBIÉROet al. (2002) (in QUÉNOLet al, 2005) showed that this process is responsible for 90% of the geochemical transformations in the Pantanal of Nhecolândia. After fixing 7 meteorological determined points in a transect trajectory crossing the landscape unities (beach, saline pond and "cordilheiras"), the authors observed that there are a strong spatial variability of the temperatures and relative humidity among the points and, also, an alternated breeze system established between the beach and the "cordilheiras" showing a specific local climatic system in the saline environment. They were able to measure the speed of these breezes and their directions, which later was compared to the alternation of lake breezes with land breezes phenomenon, but in a much finer scale. They also found out that the temperature within the "cordilheiras" were considerable lower when compared to the other environments which is explained by the limitation of solar radiation input of the "cordilheira's" vegetation. They concluded that the strong heterogeneity of the land cover (water, bare soil, grass, forest) and a closed environment (saline pond and beach, which its form is oval and surround by the "cordilheiras" vegetation of about 15 meters of height) are responsible for the localized thermodynamics phenomena.

In BACANI's (2007) master's degree dissertation, the author researched the use of Remote Sensing science to assess the land use and land occupation in the Pantanal of Nhecolândia using as example, the Firme farm. The author did an exhaustive study of the land use process and evolution from the year 1987 until 2004 identifying the areas with high anthropogenic alteration following an analysis of the microclimate behaviour and the morphology of the soils there within. It was concluded that an intensification of the deforestation occurred during the years analysed and oscillations on the hydrology regime configured by the different flood levels. The microclimate behaviour and the morphology of the soil showed profound alterations due to the deforestation (from "cordilheiras" to

pasture). His studies proved that the consequences of deforestation affects this micro-region and all its environmental aspects, thus the importance of proper and sustainable use of it.

Many of the above studies proves the relation between the deforestation and its impacts in their area of interest for their studies.

Although the studies showed the impacts, they also are studied in small areas of the Nhecolândia region. They presented impacts in a micro-climate scale. In this study, the data analysed had a region of interest much bigger and with only one meteorological station to collect the data.

The methodology here applied intended to seek a climate impact caused by the correlation of the deforestation, proven by the satellite imagery, with the statistical analysis of the meteorological data.

Although the deforestation had happened and the above mentioned studies had showed results where the climate impact occurred, the study here did not presented a conclusive and, yet, real correlation. The deforestation results showed an increase of the deforested area from 1984 to 1999. As for 1999 to 2014, it showed an increase of the vegetated area. The fact that the area of vegetated area had grown does not exclude the results presented in the studies mentioned here as the impact problem were solved. The vegetated area had grown not where the "cordilheiras" were cut-down. Instead, they actually grew where old "cordilheiras" were not deforested. And even though the vegetated are had grown, the deforestation kept going around the saline/fresh water ponds where the "cordilheiras" are located. The impacts are still happening for those areas.

As for the statistical analysis, they do not show a trend regarding the deforestation. Their changes are not direct related to the deforestation. The variable that had more statistical representability was the minimum temperature influencing both the maximum temperature and the precipitation. They present great statistical significance. But they do not explain any climate impact in the region.

The impacts are caused not by direct factors such the deforestation, but by indirect factors. The explanation for its changes is certainly the atmospheric circulation. Many are the actors that participate in this scenario. As previously mentioned in this topic and in chapter 3, topic 2, the Pantanal is on the influence of the ENSO (El Niño Southern Oscillation), South Atlantic Convergence Zone (SACZ), the Intertropical Convergence Zone (ITCZ), the

Atlantic anticyclone, responsible forthe dry season (autumn and winter), and the convection in Amazon, which regulates the rainy season (spring and summer) (ZAVATINI, 1990; SETTE, 2000 *apud*TOZATOet *al.*, 2013)

CONCLUSION

The results here presented are important to understand that the climate is not influenced by a direct system, but, instead, by indirect systems.

Deforestation is a problem that has been affecting humanity since the beginning of the civilization. But, yet, alone it does not explain the alterations of the climate in a regional level as far as this dissertation methodology observed. It does explain the impacts and alterations in a micro-scale level, as presented in this dissertation by several studies.

The initial hypothesis of this dissertation was to seek whether deforestation could affect and cause a climate impact in the Pantanal of Nhecolândia through the statistical techniques applied to the meteorological data and the Remote Sensing science.

The initial results were obtained through the Remote Sensing science with the study of a time series deforestation cartography from the years of 1984 and 2014. It was proven that the deforestation happens, but it also presented a growth in the vegetated area. The cartography for the Nhecolândia presented difficulties while doing a supervised classification technique since the targets are easily mismatched with each other. New techniques and methodology are greatly advised.

The statistical results are very straightforward depending on the analyses. In this study, it was focused on the *p*-values results since they present the statistical significance of a variable to the given regression. It is clear that the influence of the deforestation is not entirely impactful as far as the regional analysis of the area. The deforestation has a negative impact in a micro scale level, where it shows changes in the surrounding dynamics of the area, as shown by some studies here presented. As for this study, the results does not present ambiguous direct relation of the deforestation and the climate impact. It shows, mostly, the influence of the analysed variables in each variable.

It is concluded that the climate impact in the region does not seem to be caused by the deforestation, but the changes in the regional climate is, therefore, caused by the atmospheric circulation.

BIBLIOGRAPHY

AB'SABER, A. N. (1988) - O Pantanal Mato-Grossense e a teoria dos refúgios. Revista Brasileira de Geografia, Rio de Janeiro, n. 50, número especial 1-2, p. 9-57, 1988. Accessed in January 14th, 2015. Available at:

<http://biblioteca.ibge.gov.br/visualizacao/periodicos/115/rbg_1988_v50_n2_especial.pdf>

ADAMOWICZ, W.L. ;H. AKÇAKAYA, R; ARCENAS, A; BABU, S; BALK, D; CONFALONIERI, U; CRAMER, W; FALCONI,F; FRITZ, S; GREEN, R; GUTIÉRREZ-ESPELETA, E; HAMILTON, K; KANE, R;LATHAM, J;MATTHEVVS, E; RICKETTS, T;YUE, T. X.(2005) – Chapter 2 - Analytical Approaches for Assessing Ecosystem Condition and Human Wellbeing. In: Ecosystems and Human Well-being: Current State and Trends, Volume 1. Island Press. p. 901.

ALVARENGA, S. M.; BRASIL, A. E.; PINHEIRO, R. & KUX, H. J.H. (1986) – Estudo Geomorfológico aplicado à Bacia do Alto Paraguai e Pantanais Mato-Grossenses. In: Brasil. RADAMBRASIL – Boletim Técnico, série Geomorfológica. Ministério das Minas e Energia. Secretaria Geral. Brasília, DF. p. 89-187

ASSINE, M. L. (2003) - Sedimentação na Bacia do Pantanal Mato-grossense, Centro-oeste do Brasil. Habilitation thesis, UNESP, Rio Claro, SP, Brazil. p. 115

BACANI, V. M. (2007) – Sensoriamento Remoto aplicada à análise evolutiva do uso e ocupação do solo no Pantanal da Nhecolândia (MS): o exemplo da fazenda Firme. Master's dissertation. UFMS Campus Aquidauana, Aquidauana, MS, Brazil. p. 161. Available at: http://livros01.livrosgratis.com.br/cp037541.pdf>.

BACANI, V. M; SAKAMOTO, A. Y.; LUCHIARI, A; QUENOL, H. (2010) –*Caracterização das* diferenças microclimáticas e pedomorfológicas do entorno de uma lagoa salina no Pantanal da Nhecolândia, MS. GEOGRAFIA, Rio Claro, v. 35, n. 1, p. 149-163, jan./abr. 2010

BODDEY, R. M.; MACEDO, R.; TARRÉ, R. M.; FERREIRA, E.; OLIVEIRA, O. C.; REZENDE; C. P.; CANTARUTTI, R. B.; PEREIRA, J. M.; ALVES, B. J. R.; URQUIAGA, S. (2004) - *Nitrogen cycling in Brachiaria pastures: the key to understanding the process of pasture decline.* Elsevier: Agriculture, Ecosystems & Environment. Vol. 103, Issue 2, July 2004. Pgs 389-403. Soil Processes under Pastures in Intertropical Areas. Available at: <http://www.sciencedirect.com/science/article/pii/S016788090300447X>

BOS, R.; CAUDILL, C.; CHILTON, J.; DOUGLAS, E. M.; MEYBECK, M.; PRAGER, D. (2005) - *Chapter 7 - Fresh Water.* In: Ecosystems and Human Well-being: Current State and Trends, Volume 1. Island Press. p. 901.

CALHEIROS, D. F.; OLIVEIRA, M.D. (1996) - Pesquisa Limnológica no Pantanal: uma revisão. In: "Il Simpósio Sobre Recursos Naturais E Sócio-Econômicos Do Pantanal: Manejo E Conservação, 1996, Corumbá". Anais... Corumbá: EMBRAPA - CPAP, 1996. p.115-135.

CARDOSO, C. F. (2011) – Geotecnologias aplicadas a criação e organização de banco de dados geoambientais da bacia hidrográfica do rio Sucuriú – MS/BR. Master's dissertation. UFMS Campus Três Lagoas, Três Lagoas, MS, Brazil. p. 180

CARDOSO, E. L.; CRISPIM, S. M. A.; RODRIGUES, C. A. G.; JUNIOR, W. B. (2003) – Efeitos da queima na dinâmica da biomassa aérea de um campo nativo no Pantanal. Pesq. agropec. bras., Brasília, v. 38, n. 6, p. 747-752

COMUNICAÇÃO DAS COMUNIDADES EUROPÉIAS (2008) - Comunicação da Comissão ao Parlamento Europeu, ao Conselho, ao Comité Económico e Social Europeu e ao Comité das Regiões - Enfrentar os desafios da deflorestação e da degradação florestal para combater as alterações climáticas e a perda de biodiversidade. {SEC(2008) 2618} {SEC(2008) 2619} {SEC(2008) 2620} / COM/2008/0645 final. Brussels, Belgium. Accessed in: November 14th, 2014. Available at: < http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0645:FIN:PT:HTML>

DUBREUIL, V. (2008) - Climats et pionniers du Mato Grosso. Geography. Université Rennes 2, 2005. <tel-00319198>. Accessed in: March 17th, 2015. Available at: <https://halshs.archives-ouvertes.fr/tel-00319198/document>

DUBREIUL, V.; ARVOR, D.; FUNATSU, B.; DELAHAYE, F.; DEBORTOLI, N. (2009) - Climat et occupation du sol par télédétection au Mato Grosso (Amazonie brésilienne). Actes du colloque « Climat et Occupation du sol » de la Commission « Climat et Société » du Comité National Français de Géographie. Poitiers 09/2010;

DUBREUIL, V.; DEBORTOLI, N.; FUNATSU, B.; NÉDÉLEC, V.; DURIEUX, L. (2011) -Impact of land-cover in the Southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil.Springer, Environ Monit Assess. DOI 10.1007/s10661-011-2006-x

EMBRAPA (2015) – Empresa Brasileira de Pesquisa Agropecuária – Embrapa.In Embrapa Pantanal, A Unidade, História. Accessed in January 15th, 2015. Available at:<https://www.embrapa.br/pantanal/historia>

ESPINDOLA, C., R.; DANIEL, L. A. (2008) – Lateritas e solos lateríticos no Brasil. Boletim Técnico da FATEC-SP-BT/24 – pág. 21 a 24.

FERNANDES, E. (2007) – Organização espacial dos componentes da paisagem da baixa Nhecolândia – Pantanal de Mato Grosso do Sul. PhD Thesis, USP, São Paulo, SP, Brazil. p. 177.

92

FERREIRA, D., F. (2009) – Estatística básica. 2ª ed. Rev. UFLA, Lavras. Editora UFLA. p. 664.

FONSECA, L. M. G. (2000) - Introdução ao Processamento Digital de Imagens. Manuais Técnicos em Geociências - número 9. INPE.

GIRARD, C., M.; GIRARD, MC. (2003) – Processing of Remote Sensing Data. CRC Press. p. 508.

GODOI FILHO, J. D. (1986) - Aspectos geológicos do Pantanal Mato-Grossense e de sua área de influência. In: "I Simpósio Sobre Recursos Naturais E Sócio- Econômicos Do Pantanal, I., 1984, Corumbá". Anais... Brasília: EMBRAPA, 1986. p. 63-76. Accessed in January 14th, 2015. Available at: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/787689/anais>.

GRADELLA, F. S.; SAKAMOTO, A. Y.; SALVI-SAKAMOTO, L. L.; BARBIERO, L.; NETO, J. P. Q. (2004) – Microclima no Pantanal da Nhecolânida, MS: lagoa Salina da fazenda Santo Inácio e lagoa Salina da Reserva na fazenda Nhumirim/Embrapa Pantanal. IV Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal. Corumbá-MS.

GRADELLA, F. S. (2008) - Aspectos da dinâmica hidroclimática da lagoa salina do Meio da Fazenda Nhumirim e seu entorno no Pantanal da Nhecolândia, MS – Brasil. Master's dissertation, UFMS/CPAQ, Aquidauana, MS, Brazil. p. 76

GRADELLA, F. S.; ZANI, H.; SILVA, A.; KUERTEN, S.; CORRADINI, F. A.; SAKAMOTO, A. Y. (2010) - Formas do relevo e a evolução deposicional na porção sul do megaleque fluvial do Taquari, Pantanal Sul-mato-grossense. Anais 3° Simpósio de Geotecnologias no Pantanal, Cáceres, MT, 16-20 de outubro 2010. Embrapa Informática Agropecuária/INPE, p. 250 -259 HOLME, A. McR.; BURNSIDE, D.G.; MITCHELL, A.A. (1987). The development of a system for monitoring trend in range condition in the arid shrublands of Western Australia. Australian Rangeland Journal 9:14-20

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (2007) - Climate Change 2007: The Physical Science Basis. Cambridge, New York. Cambridge University Press, 2007

JOHNSON, R. A.; WICHERN, D. W. (2013) – Applied Multivariate Statistical Analysis. Sixth Edition. Pearson Publisher. p. 800

LAWTON, R. O., NAIR, U. S., PIELKE, R. A. &WELCH, R.M. (2001) -Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294, 584 – 587

LILLESAND, T. M.; KIEFER, R. W. (1987) – Remote Sensing and Image Interpretation. 2° Edition. New York: John Welley. p. 721

MARENGO, J. A. (2006) – On the hydrological cycle of the Amazon basin: a historical review and current state-of-the-art. Revista Brasileira de Meteorologia, v. 21, n. 3, pgs. 1–19.

NASA (2014) – Landsat Science. National Aeronautics and Space Administration. Accessed in: November 25th, 2014. Available at: http://landsat.gsfc.nasa.gov/?page_id=2295.

NOBRE, C. A.; SELLERS, P. J.; SHUKLA, J. (1991) - Amazonian Deforestation and Regional Climate Change. Journal of climate, Volume 4, October 1991.

NOEDA, B (2014) – Normalized Difference Vegetation Index (NDVI) products by using OCM2-GAC sensor data. SDAPSA National Remote Sensing Centre. Accessed in November 26th, 2014. Available at: http://nrsc.gov.in/nices2/pdf/GAC.pdf>. ONÇA, D. S. (2011) - "Quando o sol brilha, eles fogem para a sombra...": a ideologia do aquecimento global. PhD thesis, USP, São Paulo, SP, Brazil. p. 523.

OYAMA, M. D.; NOBRE, C. A. (2003) - A new climate-vegetation equilibrium state for Tropical South America. Geophysical Research Letters, Vol. 30, No. 23, 2199, DOI:10.1029/2003GL018600

PADOVANI, C. R.; CRUZ, M. L. L. da; GUIEN PADOVANI, S. L. A. (2004) - Desmatamento do Pantanal brasileiro para o ano de 2000. In: "Simpósio Sobre Recursos Naturais E Sócio-Econômicos Do Pantanal: Sustentabilidade Regional, 2004", Corumbá. Anais... Corumbá: EMBRAPA, CPAP/UFMS, 2004

QUÉNOL, H.; SAKAMOTO, A. Y.; FORT, M.; SALVI-SAKAMOTO, L. L. (2004) – Climatologia em escalas finas num ambiente representativo do Pantanal da Nhecolândia (Brasil): exemplo da Salina do Meio. Anais do XI Simpósio Brasileiro de Geografia Física Aplicada. USP, São Paulo, Brazil.

RÊGO, G., M.; HOEFLICH, V., A. (2001) - Contribuição da pesquisa florestal para um ecossistema em extinção: floresta Atlântica do Nordeste do Brasil. Aracaju: Embrapa Tabuleiros Costeiros, 2001. 80p. (Embrapa Tabuleiros Costeiros. Documento 21)

RIBEIRO, F. L (1998) – Sistemas de informação geográfica aplicados ao mapeamento dos usos atual e adequado da terra do alto Rio Pardo – Botucatu – SP. Master's dissertation. UNESP. p. 114

RODELA, L. G.; QUEIROZ NETO, J. P.; SANTOS, S. A. (2007) - Classificação das pastagens nativas do Pantanal da Nhecolândia, Mato Grosso do Sul, por meio de imagens de satélite. In: "Xiii

Simpósio Brasileiro De Sensoriamento Remoto, 2007", Florianópolis. Anais... São José dos Campos: INPE, 2007. p. 4187- 4194.

RODRÍGUEZ, A. C. M (2005) – Sensoriamento Remoto e Geoprocessamento Aplicados na Análise da Legislação Ambiental no Município de São Sebastião (SP). Master's dissertation. USP, São Paulo, Brazil. p. 197

ROSA, R.(2003) - Introdução ao Sensoriamento Remoto. 5ª ed. Publisher EDUFU, Uberlândia. p. 135

SAKAMOTO, A. Y. (1997) – Dinâmica hídrica em uma lagoa "salina" e se entorno no Pantanal da Nhecolândia: contribuição ao estudo das relações entre o meio físico e a ocupação, fazenda São Miguel do Firme, MS. PhD thesis, USP, São Paulo, SP, Brazil. p. 196

SALVI-SAKAMOTO, L. L. (2004) - A chuva na Bacia do Alto Paraguai: aspectos das flutuações interanuais durante o século XX. In: SIMPAN2004 – Sustentabilidade Regional. Corumbá-MS, 23 a 26 November, 2004.

SILVA, L. R. B. – (2003) -Microclima no Pantanal Sul-Matogrossense: análise do campo térmico em unidades da paisagem da Nhecolândia. Bachelor's degree Monography. UniversidadeFederal de Mato Grosso do Sul. Três Lagoas.

SILVA, L. R. B.; SAKAMOTO, A. Y. – (2002) -Estudos da variações da temperatura na lagoa salina do Meio e seu entorno, Pantanal-MS. Universidade Federal de MatoGrosso do Sul. Três Lagoas.

SILVA, M. H. S.; PASSOS, M. M.; SAKAMOTO, A. Y. (2013) - As Lagoas Salitradas do Pantanal da Nhecolândia: um estudo da paisagem baseado no modelo GTP – Geossistema, Território e

Paisagem.Confins[En ligne], 19 | 2013, mis en ligne le 12 novembre 2013, Accessed in January 15th,2015. Available at: http://confins.revues.org/8614. DOI: 10.4000/confins.8614

SILVA, P. ITet al.(2013) - Development and validation of microsatellite markers for Brachiaria ruziziensis obtained by partial genome assembly of Illumina single-end reads. BMC Genomics 2013. 14:17. Available at: http://www.biomedcentral.com/1471-2164/14/17. DOI:10.1186/1471-2164-14-17

SORIANO, B. M. A (1996) - Caracterização climática da sub-região da Nhecolândia, Pantanal -MS. In: "Simposio Sobre Recursos Naturais E Socio-Economicos Do Pantanal, 2., 1996", Corumbá, MS. Manejo e conservação: anais... Corumbá: Embrapa Pantanal, 1999. p.151-158.

_____(1997) - Caracterização climática de Corumbá-MS. Corumbá, MS: EMBRAPA-CPAP, 1997. p. 25 (EMBRAPA-CPAP. Boletim de Pesquisa, 11).

_____(2002) – Estação climatológica de Nhumirim, Pantanal-MS. Corumbá, MS: EMBRAPA-CPAP, 2002.

SORIANO, B.M.A.; GALDINO, S. (2002) - Análise das Condições Climáticas em 2000 na Sub-Região da Nhecolândia, Pantanal, Mato Grosso do Sul, Brasil. Corumbá, MS: Embrapa Pantanal. p.
33. (Embrapa Pantanal. Boletim de Pesquisa e Desenvolvimento, 30).

TARIFA, J. R. (1986) - O Sistema Climático do Pantanal: da compreensão do sistema à definição de prioridades de pesquisa climatológica. In: "I Simpósio Sobre Recursos Naturais E Sócio-Econômicos Do Pantanal, I., 1984", Corumbá. Anais... Brasília: EMBRAPA. p. 09 - 27.

THE WORLD BANK (2014) - Forest area (% of land area). In: Data - The World Bank.Accessedin:November13th,2014.Availableat:<http://data.worldbank.org/indicator/AG.LND.FRST.ZS/countries/IW-BR?display=graph>

97

TOZATO, H. C., DUBREUIL, V., DE MELLO-THÉRY, N. A. (2013) - Tendências E Rupturas Climato-Hidrológicas No Sítio Ramsar Parna Pantanal (MT, Brasil). Revista Brasileira de Climatologia. ISSN: 1980-055x (Printed) 2237-8642 (Online). Ano 9, vol. 13 – Jul/Dez 2013. pgs. 164-184. Accessed in: March, 17th, 2015. Available at: <http://ojs.c3sl.ufpr.br/ojs/index.php/revistaabclima/article/view/34111>.

VERONESE, V. R., Introdução ao Processamento Digital de Imagens. Manuais Técnicos em Geociências - número 9. Introdução ao processamento digital de imagens / IBGE, Primeira Divisão de Geociências do Nordeste. - Rio de Janeiro: IBGE, 1999. Manuais técnicos em geociências, ISSN 0103-9598; n.9. ISBN 85-240-0762-1. p. 92.

VIANELLO, R. L.; ALVES, A. R. (1991) - Meteorologia básica e aplicações. UFV Publisher, Viçosa, MG: UFV. p. 449

VILELA, T. A. (2009) – Avaliação do desmatamento e seus possíveis impactos nas mudanças climáticas da bacia do rio Turvo Sujo – MG. Master's dissertation. UFV, Viçosa, MG, Brazil. p. 111

WALPOLE, R. E.; MYERS, R. H.; MYERS, S. L; YE, K. (2009) – Probability & statistics for engineers & scientists. 8^{Th} edition. Pearson Publisher.

WWF (2014) - Threats – Deforestation. In: World Wildlife Fund. Accessed in: November 13th, 2014. Available at: http://www.worldwildlife.org/threats/deforestation>

APPENDIX

Appendix	I:Insolation	data from	1986 until 2011
----------	--------------	-----------	-----------------

									Insola	ation									
Mont hs	86	87	90	91	92	93	94	95	96	97	98	99	00	01	02	05	06	09	11
Jan	169.5	158.7	208.3	180.7	187.8	205.5	234.7	172.6	191.5	178.1	198.0	229.5	242.3	217.9	211.9	138.9	156.7	222.6	174.0
Feb	161.8	185.0	191.7	197.3	205.0	185.6	192.5	197.6	205.5	177.3	150.3	161.1	154.9	98.0	159.7	206.3	197.2	171.2	133.2
Mar	196.4	176.4	240.2	201.7	186.1	220.9	224.8	242.6	194.9	220.8	201.4	167.5	152.5	226.1	240.2	224.2	181.0	168.9	150.0
Apr	244.7	177. 9	211.1	222.3	203.3	196.3	247.0	223.I	261.0	226.7	192.3	210.1	253.3	225.3	254.0	202.2	194.1	260.6	225.0
May	152.5	158.6	194.0	217.3	179.9	216.5	241.0	218.1	201.7	214.4	186.3	267.9	226.I	200.6	236.3	215.9	235.7	212.0	262.3
Jun	238.2	167.0	194.1	177.2	220.9	229.4	226.4	213.0	207.3	185.2	213.9	217.9	210.9	214.3	222.8	215.4	208.6	207.9	204.3
Jul	231.7	239.3	230.4	239.0	207.6	188.7	222.5	267.5	260.6	253.5	262.1	227.7	218.0	234.8	196.2	228.1	253.8	196.3	231.7
Aug	160.0	148.9	212.3	204.4	150.3	170.8	235.5	233.6	181.0	207.2	147.9	216.5	231.3	264.8	207.8	221.9	253.9	243.6	248.4
Sep	162.8	130.4	190.9	119.0	151.2	172.0	152.2	165.8	196.0	188.1	116.9	182.4	187.8	224.6	185.6	174.7	184.9	195.3	240.5
Oct	229.2	161.1	241.5	208.9	183.3	228.1	215.2	197.1	226.2	230.6	203.7	213.0	179.4	191.6	192.6	190.2	201.7	233.4	249.2
Nov	213.5	229.5	243.1	187.5	185.3	195.1	240.6	233.7	203.2	212.5	227.4	227.2	225.8	181.3	209.3	181.1	202. I	225.2	265.9
Dec	145.1	170.8	227.5	201.0	188.6	181.2	185.3	241.0	210.9	246.6	213.3	217.2	215.7	181.6	240.5	210.4	136.9	177.8	225.3
	2305	2103	2585	2356	2249	2390	2617	2605	2539	2541	2313	2538	2498	2460	2556	2409	2406	2514	2609
Total	.4	.6	.1	.3	.3	.1	.7	.7	.8	.0	.5	.0	.0	.9	.9	.3	.6	.8	.8
Mean	192. I	175. 3	215. 4	196. 4	187. 4	199. 2	218. I	217. I	211. 7	211. 8	192. 8	211.	208. 2	205. I	213. I	200. 8	200. 6	209. 6	217. 5

								Cloudin	ess								
Months	93	94	95	96	97	98	99	00	01	04	05	06	07	08	09	10	
Jan	0.51	0.53	0.70	0.45	0.54	0.48	0.73	0.55	0.56	0.51	0.68	0.79	0.81	0.64	0.55	0.76	0.68
Feb	0.46	0.71	0.60	0.40	0.53	0.63	0.77	0.66	0.63	0.56	0.66	0.67	0.61	0.65	0.72	0.73	0.77
Mar	0.49	0.59	0.36	0.41	0.44	0.55	0.74	0.76	0.48	0.42	0.56	0.50	0.45	0.43	0.48	0.41	0.69
Apr	0.43	0.49	0.32	0.26	0.36	0.49	0.51	0.41	0.45	0.43	0.50	0.53	0.35	0.45	0.42	0.48	0.48
May	0.36	0.43	0.30	0.36	0.36	0.44	0.33	0.36	0.46	0.66	0.42	0.32	0.45	0.54	0.41	0.51	0.36
Jun	0.40	0.45	0.29	0.33	0.37	0.41	0.45	0.53	0.32	0.39	0.41	0.45	0.29	0.42	0.44	0.23	0.36
Jul	0.43	0.36	0.18	0.19	0.24	0.27	0.32	0.41	0.30	0.42	0.36	0.24	0.38	0.15	0.49	0.32	0.21
Aug	0.32	0.22	0.19	0.30	0.36	0.51	0.18	0.32	0.19	0.30	0.19	0.36	0.27	0.26	0.37	0.12	0.28
Sep	0.35	0.38	0.17	0.33	0.21	0.51	0.24	0.42	0.29	0.21	0.34	0.36	0.13	0.33	0.42	0.18	0.26
Oct	0.52	0.48	0.39	0.35	0.33	0.47	0.38	0.39	0.55	0.49	0.49	0.68	0.47	0.60	0.49	0.44	0.45
Nov	0.60	0.58	0.40	0.43	0.55	0.52	0.42	0.49	0.64	0.57	0.64	0.60	0.68	0.47	0.54	0.58	0.44
Dec	0.65	0.66	0.39	0.46	0.42	0.60	0.53	0.53	0.68	0.52	0.63	0.68	0.63	0.50	0.53	0.53	0.49
Total	5.54	5.87	4.29	4.26	4.71	5.88	5.59	5.82	5.57	5.48	5.88	6.18	5.5 I	5.44	5.88	5.28	5.47
Mean	0.46	0.49	0.36	0.35	0.39	0.49	0.47	0.49	0.46	0.50	0.49	0.51	0.46	0.45	0.49	0.44	0.50

Appendix 2: Cloudiness data from 1993 until 2011

											Mir	nimum	Tempe	erature												
Month s	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	04	05	06	07	08	09	10	
Jan	22.9	23.4	23.5	24.5	23.4	22.9	23.5	22.8	23.5	22.6	23.9	23.4	25.0	23.4	24.1	23.4	23.7	23.5	22.9	24.1	23.0	23.9	22.7	20.4	22.7	22.6
Feb	22.9	24.1	22.9	23.4	23.2	22.1	23.5	22.8	22.6	23.4	24.4	23.2	24.5	23.9	24.1	23.7	23.6	23.5	22.5	22.7	23.0	23.4	23.0	22.7	23.8	23.1
Mar	24.2	23.6	24.9	25.2	23.5	22.7	22.9	21.9	23.3	21.7	24.2	23.3	22.2	23.2	23.7	22.4	22.8	23.9	21.6	21.8	23.5	22.5	22.8	22.5	22.8	23.0
Apr	22.9	23.3	22.4	23.8	23.3	22.0	21.4	19.3	21.6	20.2	20.2	22.3	20.4	23.0	20. I	22.3	20.9	21.9	21.5	19.4	20.6	20.9	20.2	19.1	19.2	22.4
May	20.5	20.6	18.9	19.1	18.4	17.1	19.4	19.7	16.2	18.2	17.2	19.5	18.4	16.6	16.4	18.6	16.8	19.5	16.3	16.8	11.8	15.5	16.7	17.1	15.1	17.9
Jun	15.7	15.8	17.0	16.4	18.7	15.2	17.4	17.7	15.2	16.0	16.8	15.4	18.1	16.3	15.5	17.2	13.8	15.5	15.8	16.4	15.5	13.7	14.8	14.0	15.4	15.7
Jul	15.7	14.5	18.6	13.1	14.8	12.5	13.6	12.7	13.3	13.6	16.4	14.1	15.1	16.3	14.4	12.1	15.9	15.4	14.1	12.1	14.7	12.3	14.3	14.8	12.7	15.4
Aug	15.8	18.5	15.5	16.4	18.1	15.8	14.5	14.8	14.1	13.8	15.3	18.4	16.1	18.0	14.3	17.0	16.7	18.4	13.9	14.1	14.8	12.6	16.7	15.2	13.0	15.5
Sep	22.0	17.7	17.7	18.6	18.2	16.9	19.3	17.4	18.1	19.2	18.6	17.4	21.7	18.1	18.8	18.8	19.2	18.2	17.2	16.3	18.1	17.9	16.0	18.2	19.2	18.6
Oct	21.3	18.1	24.9	20.3	20.2	21.7	19.7	21.8	20.9	21.7	20.4	22.0	22.8	21.1	21.6	21.8	21.6	23.1	20.1	21.7	21.9	21.3	21.2	21.3	20.4	20.8
Nov	22.8	22.4	23.5	20.6	21.9	22.8	21.5	21.1	22.5	21.8	21.4	22.8	23.8	22.0	19.4	21.9	22.3	24.1	20.8	22.2	21.1	21.1	21.3	23.5	19.2	20.9
Dec	22.7	23.2	22.4	22.3	23.0	22.9	22.8	22.8	23.2	23.8	22.9	24.6	23.5	23.1	22.4	22.5	22.5	24.5	22.2	22.7	23.5	22.4	21.2	22.6	22.3	21.9
Maar	22.	20.	21.	20.	20.	19.	20.	19.	19.	19.	20.	20.	21.	20.	19.	20.	20.	21.	20.	19.	19.	19.	19.	19.	18.	19.
Mean	Ó	4	U	3	2	2	U	Ó	5		2	2	0	4	6		U	0	8	2	3	0	2	3	8	8

Appendix 3: Minimum temperature data from 1985 until 2011

										Maxim	um Tei	mperat	ure										
Months	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	05	06	09	10	П
Jan	30.1	32.4	32.8	32.3	31.0	32.5	32.8	33.0	32.9	33.5	31.8	32.6	32.2	34.6	33.4	35.1	32.7	34.0	32.5	33.3	33.8	33.2	33.8
Feb	29.8	32.2	31.4	31.4	30.8	32.2	33.0	32.3	31.9	33.2	32.0	33.5	32.2	33.1	33.8	32.7	33.4	32.7	33.7	33.3	33.7	34.I	32.5
Mar	30.9	32.2	32.1	31.7	31.1	33.8	31.7	31.6	33.7	32.4	32.6	32.5	32.2	33.7	32.2	31.7	33.2	33.6	33.5	33.3	33.7	35.2	31.2
Apr	30.6	32.5	31.8	30.8	31.3	32.7	31.4	31.1	31.9	32.5	30.5	31.9	30.8	32.2	32.2	32.9	32.8	33.8	32.4	32.1	34.3	33.I	32.3
May	30.2	30.4	27.5	26.8	28.6	28.0	29.8	29.5	30.0	31.0	29.0	30.0	29.2	31.1	30.2	30.3	28.9	31.9	31.1	28.6	31.5	28.6	29.7
Jun	27.4	29.9	27.0	27.2	29.1	27.4	28.2	30.6	29.4	29.5	29.4	26.2	27.4	30.5	29.9	29.0	27.8	29.2	31.1	30.9	28.5	30.9	29.2
Jul	27.6	28.9	29.8	25.7	27.5	25.6	29.4	26.7	28.4	29.2	30.2	29.8	31.0	33.7	29.5	26.4	30.5	29.2	28.3	31.6	30.0	29.2	30.0
Aug	27.4	30.8	28.3	31.7	29.7	32.1	31.0	28.8	29.5	32.9	31.9	32.9	30.5	30.7	32.6	31.7	34.1	33.8	33.3	32.9	32.5	33.3	31.9
Sep	32.0	30.5	30.8	32.4	29.7	30.6	32.8	29.4	32.4	34.8	33.9	30.9	35.1	30.8	34.8	30.4	34.2	34.0	31.0	32.9	33.1	35.2	34.5
Oct	32.7	32.5	33.3	33.2	32.7	34.8	33.3	32.5	34.7	35.7	32.7	33.0	35.1	32.9	35.1	34.7	33.6	38.0	33.9	33.5	35.5	34.4	34.3
Nov	33.4	35.1	34.8	32.9	33.9	34.7	33.2	31.6	35.8	34.8	33.9	32.5	35.1	33.4	32.2	32.8	33.7	37.6	34.2	33.8	35.4	33.8	35.9
Dec	35.5	33.4	33.1	33.2	32.3	34.9	33.0	33.1	34.0	32.5	34.0	33.4	34.3	32.5	34.5	33.0	32.1	34.6	33.5	32.6	34.0	35.6	35.4
Mean	30.6	31.7	31.1	30.8	30.6	31.6	31.6	30.8	32.1	32.7	31.8	31.6	32.1	32.4	32.5	31.7	32.3	33.5	32.4	32.4	33.0	33.0	32.6

Appendix 4: Maximum temperature data from 1985 until 2011

Appendix								A // I							
							\	Nind							
Months	93	94	95	96	97	98	00	01	04	05	06	07	08	09	10
Jan	1.18	1.19	0.96	1.09	1.28	1.61	0.18	1.57	2.30	4.06	1.73	2.97	2.69	2.09	3.15
Feb	1.05	1.23	1.11	1.18	1.15	1.23	1.14	0.70	1.84	1.81	1.98	2.46	2.55	2.24	3.64
Mar	0.60	1.11	0.74	0.67	0.65	0.96	1.01	1.23	I.45	1.73	1.72	1.96	1.49	1.33	2.05
Apr	1.20	1.20	1.00	0.96	0.89	1.02	0.88	1.28	3.06	2.08	1.73	1.69	2.17	0.98	2.94
May	1.38	1.26	0.71	0.76	0.84	0.75	0.92	1.49	2.11	2.30	2.15	2.23	2.51	2.32	3.20
Jun	1.32	1.26	1.23	1.03	1.80	0.64	1.67	1.50	2.26	1.86	1.72	2.76	1.84	2.62	2.17
Jul	I.70	1.83	1.11	0.73	1.24	0.36	1.74	2.26	2.61	2.28	2.43	2.46	1.92	3.01	3.59
Aug	1.44	1.25	1.26	1.09	1.61	0.43	1.56	2.53	2.22	2.91	3.46	4.10	2.39	2.75	2.96
Sep	1.90	1.49	1.29	1.31	1.52	0.55	2.80	2.14	2.77	3.79	2.82	3.12	3.08	4.46	4.52
Oct	1.82	1.49	1.33	1.24	1.68	0.49	1.38	1.94	2.41	2.58	2.40	2.69	3.00	3.90	2.84
Nov	1.54	1.39	1.07	1.17	1.94	0.96	1.49	1.64	2.71	2.07	2.50	3.42	1.86	4.33	3.80
Dec	1.39	1.55	0.96	1.71	1.72	0.14	1.54	1.66	2.01	1.88	2.72	2.96	1.75	3.27	3.72
Mean	1.38	1.35	1.06	1.08	1.36	0.76	1.36	1.66	2.31	2.45	2.28	2.73	2.27	2.77	3.22

Appendix 5: Wind data from 1993 until 2011

П

3.27

3.04

3.33

2.70

2.22

3.40

2.94

4.62

4.09

3.28

4.02

2.31

3.27

Appendix 6: Humidity data from 1986 until 2	2011	
---	------	--

											Hu	midity												
Month		07	00	00	00		02	02		05	0/	07	00				02		05	0/	07	00		10
S	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	04	05	06	07	08	09	10
Jan	84.9	86.4	87.3	86.7	83.7	86.0	84.5	86.3	81.7	85.3	83.6	84.7	82.3	83.9	75.0	81.8	81.8	78.2	86.8	82.9	86.8	87.9	76.I	80.8
Feb	85.6	83.2	86.9	87.9	82.6	85.0	84.I	86.3	83.8	85.8	80.7	85.7	85.I	85.4	82. I	84.0	84.0	83.3	83.6	83.4	85.4	81.8	82.9	80.7
Mar	86.2	84.7	86.8	86.9	82.6	86.4	86.2	86.8	82.3	86.4	86.I	83.3	84.9	86.0	86.3	85.0	85.0	83.3	86.3	85.8	79.5	87.0	86.9	83.I
Apr	84.2	85.5	87.4	86.7	85.5	87.4	86.4	84.3	82.3	83.7	83.0	86.2	84.7	76.5	81.6	81.9	81.9	85.6	80.0	85.6	81.7	82.5	79.4	76.2
May	86.5	86.6	87.3	84.4	86.4	85.7	87.7	83.2	81.8	85.I	86.8	83.5	85.0	79.2	80.2	80.2	80.2	85.4	78.7	80.8	79.8	80.5	79.6	80.3
Jun	83.8	85.3	84.6	85.5	88.6	87.3	86.0	81.4	80.3	81.8	82.5	84.8	86.3	78.0	80. I	79.3	79.3	79.9	81.5	80.7	79.0	81.6	78.8	86.8
Jul	81.4	82.0	80.4	83.0	81.4	83.9	82.7	77.5	75.5	81.3	74.5	80.3	82.9	74.7	73.4	76.7	76.7	79.7	73.2	76.5	74.7	74.0	77.2	75.3
Aug	82.2	77.7	79.3	84.8	77.4	75.9	83.3	74.0	67.8	73.3	72.1	77.4	87.0	62.2	76.0	67.8	67.8	68.5	66. I	62.2	69.4	72.3	69.7	65.7
Sep	78.1	73.0	76.5	78.4	75.2	78.4	81.7	67.0	64.7	70.9	77.2	75.5	84.2	65.5	73.0	70.8	70.8	62.3	67.4	70.0	57.6	64.8	66.7	68.9
Oct	74.7	75.0	74.2	75.6	78.5	78.3	82.2	69.3	70.4	76.9	76.8	75.5	80.3	66.9	74.4	76.3	76.3	73.4	78.4	78.6	70.4	75.6	67.4	69.9
Nov	74.4	77.7	79.I	76.6	78.I	80.6	82.5	71.3	72.8	78.I	80.3	76.8	80.9	72.5	78.0	80.7	80.7	75.8	77.5	76.4	75.8	77.6	72.7	72.1
Dec	84.2	83.7	83.0	83.0	80.3	82.6	83.8	78.4	80.9	81.1	80.0	80.1	83.7	78.3	77.3	81.3	81.3	76.3	80.6	85.2	78.7	76.3	78.8	72.6
	82.	81.	82.	83.	81.	83.	84.	78.	77.	80.	80.	81.	83.	75.	78.	78.	78.	84.	78.	79.	76.	78.	76.	76.
Mean	2	7	7	3	7		3	8	0	8	3		9	8		8	8	7	3	0	6	5	3	0

Appendix 7: Precipitation da	ta from 1984 until 2011
------------------------------	-------------------------

												I	Precipita	ation													
Month s	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	00	01	02	04	05	06	07	08	09	10	11
Jan	182.3	255.6	296.2	346.5	297.7	266.5	112.2	227.4	238.2	94.2	67.5	264.9	154.0	225.2	97.3	96.8	88.1	168.2	40.6	63.4	275.4	162.2	282.2	392.8	193.4	181.4	187.9
Feb	114.6	99.9	222.2	58.9	308.7	222.8	173.8	93.1	117.1	110.5	188.9	240.7	41.6	110.4	283.0	9.0	245.3	74.4	155.1	182.2	99.4	165.6	211.7	167.6	146.4	64.4	153.9
Mar	97.2	109.0	158.1	80.2	331.6	251.5	62.8	182.5	166.6	170.9	102.1	136.4	219.0	82.6	108.4	195.0	340.9	67.4	131.1	56.2	37.4	152.2	31.8	123.0	190.2	67.8	455.2
Apr	59.1	81.7	33.5	175.2	146.9	152.3	107.4	253.9	92.2	79.4	39.6	56.4	101.4	140.8	159.4	40.0	127.0	113.6	50.6	75.5	41.6	54.6	10.4	27.0	1.4	10.4	168.8
May	27.7	89.5	92.7	104.6	37.7	10.0	116.7	55.6	93.8	7.8	64.4	11.6	59.9	54.6	71.1	10.3	1.4	88.2	39.6	158.7	44.2	52.5	85.4	86.0	54.9	71.8	2.5
Jun	0.0	0.0	0.3	34.4	0.0	53.0	18.0	21.3	2.0	4.3	45.9	3.7	0.0	103.2	9.5	12.3	3.0	11.0	0.0	21.9	33.6	2.6	0.0	22.3	11.1	7.4	1.0
Jul	0.0	98.2	7.1	9.0	0.0	22.3	17.2	5.2	8.8	14.5	12.2	18.2	7.4	0.0	1.0	0.0	9.0	10.4	7.0	8.0	27.4	14.2	12.0	0.0	32.3	0.0	3.2
Aug	112.2	9.0	67.4	24.0	0.0	64.0	24.2	0.0	24.2	4.4	0.0	0.0	25.8	11.5	30.0	0.0	124.0	10.0	13.2	0.5	0.0	16.4	0.0	4.6	56.6	0.0	2.0
Sep	53.4	22.1	60.5	4.7	1.0	41.8	28.4	36.1	123.2	1.3	1.1	3.2	119.5	52.6	66.5	0.0	21.0	124.9	28.1	17.0	45.6	31.0	0.0	43.3	1.5	18.5	30.0
Oct	14.0	104.2	13.3	109.0	78.4	68.8	22.6	47.4	179.8	44.7	100.3	126.0	95.8	57.6	159.2	50.0	51.0	219.6	78.8	200.0	64.2	112.4	76.6	85.9	101.8	96.3	150.1
Nov	182.5	79.4	113.2	125.8	111.5	72.8	58.9	151.6	169.4	37.3	158.9	187.4	161.4	66.8	127.3	109.3	223.4	141.1	26.2	278.0	126.5	183.4	176.7	116.6	81.8	108.9	50.2
Dec	180.9	32.1	288.8	210.2	234.5	90.3	80.0	191.7	200.7	258.3	234.8	129.6	196.4	80.8	165.8	225.6	193.8	176.3	153.2	60.4	171.9	209.3	91.4	139.2	216.2	121.8	67.8
Total	1023. 9	980. 7	1353. 3	1282. 5	1548. 0	1316. I	822. 2	1265. 8	1416. 0	827. 6	1015. 7	78. 	1182. 2	986. I	1278. 5	748. 3	1427. 9	1205. I	723. 5	1121. 8	967. 2	1156. 4	978. 2	1208. 3	1087. 6	748. 7	1272. 6

Appen	dix	8:	1985
-------	-----	----	------

Months	Precipitation	Min Temp	Max Temp	
Jan	255.60	22.93	30.08	
Feb	99.90	22.93	29.82	
Mar	109.00	24.20	30.88	
Apr	81.70	22.86	30.63	
May	89.50	20.46	30.16	
Jun	0.00	15.73	27.38	
Jul	98.20	15.74	27.62	
Aug	9.00	15.81	27.44	
Sep	22.10	21.99	32.02	
Oct	104.20	21.28	32.72	
Nov	79.40	22.81	33.39	
Dec	32.10	22.66	35.51	
Total/Mean	980.70	20.78	30.64	

Max Temp (Y) - Precipitation (X)		Precipitation Line Fit Plot					
Regression Statistics		 Max Temp					
Multiple R R Square Adjusted R Square	0.030222225 0.000913383 -0.098995279	40.00 55.00 35.00 30.00	• •	•			
Standard Error	2.622214449	¥ 30.00 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓					
Observations	12	0.00	50.00 10	0.00 150.00	200.00 250.0	0 300.00	
ANOVA		Precipitation					
	df	SS	MS	F	Significance F		
Regression	1	0.062861702	0.0628617	0.00914218	0.925715496		
Residual	10	68.76008616	6.87600862				
Total	11	68.82294786					
	Coefficients	Std Error	t Stat	P-value	Lower 95%	Upper 95%	
Intercept	30.546	1.220	25.032	0.000	27.827	33.265	
Precipitation	0.001	0.012	0.096	0.926	-0.025	0.027	
RESIDUAL OUTPUT							
Observation	Predicted Max Temp	Residuals					
1	30.83222744	-0.754808081					
2	30.65788153	-0.840640146					
3	30.6680713	0.212573862					
4	30.63750198	-0.004168644					
5	30.64623607	-0.481719941					
6	30.54601796	-3.162684631					
7	30.65597794	-3.039848909					
8	30.55609576	-3.120611891					
9	30.57076456	1.445902109					
10	30.66269647	2.059884172					
11	30.63492654	2.758406793					
12	30.58196211	4.927715308					

Max Temp (Y) - Min Te	emp (X)		Min	Temp Line Fit	Plot		Max Temp (Y) - Pro	ecipitation, Min Temp (X)		
Regression	Statistics	 Max T 	emp = Prec	licted Max Tem	p —— Linear (M	lax Temi	Regres	sion Statistics		
Multiple R R Square	0.723713184	음 ^{40.00}					Multiple R R Square	0.79163163 0.626680638		
Adjusted R Square Standard Error	0.47613685 1.810419497	40.00 - 40.00 - 35.00 - 30.00 - W 35.00 -	-				Adjusted R Square Standard Error			
Observations	12	≥ 25.00 + 15.00	17.00	19.00	21.00 23.00	2	Observations	12		
ANOVA		_		Min Tem	p		ANOVA			
	df	SS	MS	F	Significance F			df	SS	
Regression	1	36.04676033	36.0467603	10.9978503	0.007795973		Regression	2	43.13000889	2:
Residual	10	32.77618754	3.27761875				Residual	9	25.69293897	
Total	11	68.82294786					Total	11	68.82294786	
lata and	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppei 26.82		Coefficients	Standard Error	
Intercept	18.76600822	3.617697163	5.18728002		10.70527662		Intercept	17.27019529	3.507283948	4.
Min Temp	0.571229377	0.17224897	3.31630069	0.00779597	0.187434756	0.9	Precipitation	-0.013235422	0.008402474	-
RESIDUAL OUTPUT	o 1:1 111	Residuals					Min Temp	0.695251473	0.179000607	3.
Observation 1	Predicted Max Temp 31.86190235	-1.784483					RESIDUAL OUTPUT			
	31.86685852	-1.784485					Observation	Predicted Max Temp	Residuals	
2	32,58975914	-2.049617137						1 29.82642225	0.250997103	
4	31.82240768	-1.189074345						2 31.8932096	-2.07596822	
4	30.45225567	-0.287739537						3 32.65261999	-1.771974828	
6	27.74954222	-0.366208887						4 32.07999252	-1.446659186	
7	27.75457887	-0.138449834						5 30.30912455	-0.144608424	
8	27.79511773	-0.359633855						6 28.20418346 7 26.91059524	-0.820850124 0.705533796	
9	31.32924632	0.687420351						8 28.14053526	-0.705051394	
10	30.92029522	1.802285425						9 32.26858987	-0.251923204	
11	31.79575031	1.597583026						30.68422151	2.03835913	
12	31.71264565	3.797031773						10 30.08422131 11 32.07798892	1.315344414	
								12 32.60287648	2.906800937	

/lax Temp (Y) - Prec	ipitation, Min Temp (X)					
Regressi	on Statistics					
Aultiple R	0.79163163					
Square	0.626680638					
djusted R Square	0.54372078					
tandard Error	1.689606758					
bservations	12					
NOVA	15				<u></u>	
	df	SS	MS	F	Significance F	
egression	2	43.13000889		7.55402254	0.011867584	
esidual	9	25.69293897	2.854771			
otal	11	68.82294786				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
ntercept	17.27019529	3.507283948	4.92409384	0.00081997	9.33616779	25.2042228
recipitation	-0.013235422	0.008402474			-0.032243138	0.0057723
/lin Temp	0.695251473	0.179000607	3.88407327	0.0037083	0.290323968	1.10017898
ESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	29.82642225	0.250997103				
2	31.8932096	-2.07596822				
3	32.65261999	-1.771974828				
4	32.07999252	-1.446659186				
5	30.30912455	-0.144608424				
6	28.20418346	-0.820850124				
7	26.91059524	0.705533796				
8	28.14053526	-0.705051394				
9	32.26858987	-0.251923204				
10	30.68422151	2.03835913				
11	32.07798892	1.315344414				
12	32.60287648	2.906800937				

Appendix	k 9: 1987
----------	------------------

	Precipitatio	Humidit	Max	Insolatio	Min
Months	n	у	Temp	n	Temp
Jan	346.50	86.42	32.83	158.70	23.46
Feb	58.90	83.18	31.44	185.00	22.88
Mar	80.20	84.68	32.08	176.40	24.85
Apr	175.20	85.50	31.81	177.90	22.43
May	104.60	86.55	27.47	158.60	18.93
Jun	34.40	85.27	26.96	167.00	17.02
Jul	9.00	82.03	29.83	239.30	18.61
Aug	24.00	77.74	28.30	148.90	15.49
Sep	4.70	73.00	30.76	130.40	17.71
Oct	109.00	75.03	33.31	161.10	24.90
Nov	125.80	77.67	34.82	229.50	23.49
Dec	210.20	83.74	33.05	170.80	22.39
Total/Mea					
n	1282.50	81.73	31.05	2103.60	21.01

	Min Temp (Y) - Precip	itation (X)			Р	recipitatio	n Line	e Fit Plot	
Min	Regression	Statistics			6.00 -	• •			-
Гетр	Multiple R	0.566335984			2.00 -	-	-	+	•
23.46	R Square	0.320736447			0.00 -				
	Adjusted R Square	0.252810091		Ξ ¹	8.00 -				
22.88	Standard Error	2.815947364			4.00				
24.85	Observations	12				100.00		0.00 300.00	400.00
22.43	ANOVA					Р	recip	itation	
18.93		df	SS		MS	F		Significance F	
	Regression	1	37.442	00233	37.4420023	4.72182	623	0.054893227	
17.02	Residual	10	79.295	59557	7.92955956				
18.61	Total	11	116.73						
15.49		Coefficients	Standard		t Stat	P-value	_	Lower 95%	Upper 95%
	Intercept	19.02527582			15.5484448	2.4748E		16.29889663	21.751655
17.71	Precipitation	0.018594911	0.0085	57346	2.17297635	0.05489	323	-0.00047204	0.03766187
24.90	RESIDUAL OUTPUT								
	Observation 1	Predicted Min Temp	Residu						
23.49	2	25.46841233 20.12051605	-2.0071 2.7616						
22.39	3	20.51658765	4.3285						
	4	22.28310415	0.1435						
21.01	5	20.97030347	-2.0412						
	6	19.66494074	-2.6482	74076					
	7	19.19263001	-0.5861	78401					
	8	19.47155367	-3.9780	05286					
	9	19.1126719	-1.3993	38565					
	10	21.05212107	3.8446	53122					
	11	21.36451557	2.1221	51097					
	12	22.93392602	-0.5403	77635					

Min Temp (Y) - Relat	tive Humidity (X)				Humidity Lin	e Fit Plot	
Regressio	on Statistics			6.00	•	•	
Multiple R	0.139952721			2.00 -	•	*• •	•
R Square	0.019586764			0.00 - 🛏			-
Adjusted R Square	-0.078454559		1 <u>1</u>	8.00 - 🔹		• •	•
Standard Error	3.383062017			6.00 - 4.00 -	•		
Observations	12		1	4.00 + 70.00	75.00	80.00 85.00	9
ANOVA				10.00		umidity	5
	df	SS	·	MS	F	Significance F	-
Regression	1	2.2865	11806	2.28651181	0.199780	7 0.664422646	
Residual	10	114.45	10861	11.4451086			
Total	11	116.73	75979				
	Coefficients	Standard	l Error	t Stat	P-value	Lower 95%	Uppe
Intercept	13.04046791	17.862	74283	0.73003726	0.4821188	8 -26.7602034	52.84
Humidity	0.097537863	0.2182	20964	0.44696834	0.6644226	5 -0.38868875	0.583
RESIDUAL OUTPUT							
Observation	Predicted Min Temp	Residu	ials				
1	21.46962709	1.9916	63237				
2		1.7286	14859				
3	21.29972242	3.5454	38869				
4		1.0467	11487				
5		-2.5531	80358				
6	21.35719634	-4.3405	29678				
7		-2.4352	67429				
8		-5.129	70176				
9		-2.4473	98561				
10	20.358954	4.5378	20191				
11	20.61590859	2.8707	58079				
12	21.20847732	1.1850	71063				

Min Temp (Y) - Max Te	emp (X)				Ν	/lax Temp Line	Fit Plot		
Regression	Statistics			6.00			• •	_	
Multiple R	0.83526205			2.00 -				•	
R Square	0.697662692			0.00 -					
Adjusted R Square	0.667428961		- ⁵ 1	8.00 -		· · ·	•		
Standard Error	1.878673231			6.00 - 4.00		•			
Observations	12		1	,	27.0	0 29.00 3:	1.00 33.00	35.00 37.00	0
							Temp		
ANOVA									
	df	SS		MS		F	Significance		
Regression	1					23.0756401	0.0007196	08	
Residual	10	35.294	13109	3.529413:	11				
Total	11	116.73							
	Coefficients	Standard	Error	t Stat		P-value	Lower 95%	Upper 95	i%
Intercept	-13.25491439	7.1541	37085	-1.852762	21	0.09362015	-29.19532	52 2.68549	964
Max Temp	1.103484666	0.2297	15036	4.8037110	08	0.00071961	0.5916476	68 1.615321	166
RESIDUAL OUTPUT									
Observation	Predicted Min Temp	Residu	als						
1	22.96785967	0.4934	30652						
2	21.43391428	1.4482	28576						
3	22.14558561	2.6995	75678						
4	21.85061111	0.5760	55557						
5	17.06243689	1.8665	95364						
6	16.49135392	0.525	31275						
7	19.6609653	-1.0545	13688						
8	17.97370165	-2.4801	53264						
9	20.69195221	-2.9786	18877						
10	23.49824424	1.3985	29958						
11	25.16474339	-1.6780	76723						
12	23.20991437	-0.8163	65984						

Min Temp (Y) - Insol	ation (X)				Insolation Line	Fit Plot	
Regressio	on Statistics			26.00	• •		
Multiple R	0.237993117			22.00 -	**		
R Square	0.056640724			20.00			
Adjusted R Square	-0.037695204		Min	18.00 - 🔹	•••	*	
Standard Error	3.318516173			16.00 - 14.00 -	•		
Observations	12				0.00 180.00	210.00 240.	00 27
					Inso	lation	
ANOVA							
	df	SS		MS	F	Significance F	-
Regression	1				0.60041519	0.456350767	
Residual	10			11.0125496			
Total	11	116.73					
	Coefficients	Standard		t Stat	P-value	Lower 95%	Uppe
Intercept	16.6536394			2.91839298			
Insolation	0.024865759	0.0320	90455	0.77486463	0.45635077	-0.04663623	0.096
RESIDUAL OUTPUT				-			
Observation	Predicted Min Temp	Residu	als	_			
1		2.8614					
2		1.6283					
3		3.8052					
4		1.3494					
5		-1.668					
6							
7							
8		-4.8626					
9	19.89613432						
10		4.2372					
11	22.360331	1.1263					
12	20.90071097	1.4928	37414				

Min Temp (Y) - Precip	pitation, Max Temp, In:	solation, Relative	e Humidity (X)			
Regressio	n Statistics					
Multiple R	0.931351806					
R Square	0.867416186					
Adjusted R Square	0.791654006					
Standard Error	1.486967959					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	4	101.2600819	25.3150205	11.4491979	0.003425021	
Residual	7	15.47751598	2.21107371			
Total	11	116.7375979				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-63.03727077	20.25895106	-3.1115762	0.01704354	-110.942078	-15.132464
Precipitation	-0.013458252	0.009086968	-1.4810498	0.18214309	-0.03494552	0.00802901
Max Temp	1.68668883	0.352712876	4.78204496	0.00200752	0.85265541	2.52072225
Insolation	-0.026083649	0.019254254	-1.3546954	0.21760891	-0.07161273	0.01944543
Humidity	0.461038183	0.167470237	2.75295593	0.02838273	0.065033998	0.85704237
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	23.36951323	0.091777094				
2	22.7153287	0.166814161				
3	24.43181114	0.413350148				
4	23.04252094	-0.615854275				
5	17.66065584	1.268376422				
6	16.9224936	0.094173065				
7	18.73208645	-0.12563484				
8	16.33117041	-0.837622022				
9	19.04212568	-1.328792348				
10	22.06405973	2.832714464				
11	23.8156653	-0.328998638				
12	24.02385162	-1.630303231				

-	on Statistics					
Multiple R	0.905247767					
R Square	0.819473519					
Adjusted R Square	0.779356524					
Standard Error	1.530222486					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	95.66337019	47.8316851	20.4270909	0.000451268	
Residual	9	21.07422771	2.34158086			
Total	11	116.7375979				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-37.238099	11.34341169	-3.2827953	0.00948683	-62.898679	-11.5
Humidity	0.250452641	0.101632328	2.46430094	0.03590441	0.020544343	0.480
Max Temp	1.216602171	0.192656443	6.31487924	0.00013852	0.780783019	1.652
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	24.34180403	-0.880513704				
2	21.83895212	1.043190741				
3	22.99896684	1.846194449				
4	22.87977219	-0.453105519				
5	17.86333662	1.065695638				
6	16.91270203	0.10396464				
7	19.59716206	-0.990710452				
8	16.66241548	-1.168867093				
9	18.4716819	-0.758348563				
10	22.07462951	2.822144679				
11	24.57175502	-1.085088352				
12	23.93810485	-1.544556464				

Months	Precipitation	Min Temp	Humidity	Max Temp
Jan	297.70	24.54	87.32	32.28
Feb	308.70	23.43	86.93	31.37
Mar	331.60	25.21	86.77	31.70
Apr	146.90	23.82	87.37	30.84
May	37.70	19.12	87.29	26.75
Jun	0.00	16.43	84.63	27.19
Jul	0.00	13.13	80.39	25.67
Aug	0.00	16.40	79.32	31.73
Sep	1.00	18.58	76.47	32.41
Oct	78.40	20.30	74.19	33.16
Nov	111.50	20.60	79.07	32.86
Dec	234.50	22.32	83.00	33.18
Total/Mean	1548.00	20.32	82.73	30.76

Appendix 10: 1988

Max Temp (Y) - Precipitation (X)	Precipitation Line Fit Plot	Max Temp (Y) - Min Ten	mp (X)			Min Temp Line	Fit Plot	
Regression Statistics	35.00	Regression		-	5.00 - 3.00 -			
Multiple R 0.467118504	§ 31.00	Multiple R	0.611969623	2	1.00 -	• •		
R Square 0.218199697	¥ 29.00	R Square	0.374506819	Ē	9.00 -		•	
Adjusted R Square 0.140019666	¥ 29.00 27.00	Adjusted R Square	0.311957501		7.00 -			
Standard Error 2.470140265	25.00	Standard Error	2.209454119	-	5.00	* *		
Observations 12	0.00 100.00 200.00 300.00 40	Observations	12	2	10.00	15.00 20	0.00 25.00	30.00
ANOVA	Precipitation	ANOVA			10.00		Temp	55.55
df	SS MS F Significance F		df	SS	MS	F	Significance F	
Regression 1	17.02948594 17.0294859 2.79099018 0.125749426	Regression	1	29.22854023	29.2285402	5.98738453	0.034439205	
Residual 10	61.01592931 6.10159293	Residual	10	48.81687502	4.8816875			
Total 11	78.04541525	Total	11	78.04541525				
Coefficients	Standard Error t Stat P-value Lower 95% Uppe		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept 29.54199097	1.020168793 28.9579442 5.6211E-11 27.26891325 31.81	Intercept	21.91819477	3.669648067	5.97283292	0.00013699	13.74170934	30.0946802
Precipitation 0.009448412	0.005655613 1.67062568 0.12574943 -0.00315308 0.02	Min Temp	0.435096892	0.177814595	2.44691327	0.03443921	0.038901284	0.8312925
RESIDUAL OUTPUT		RESIDUAL OUTPUT						
Observation Predicted Max Temp	Residuals	Observation P	Predicted Max Temp	Residuals				
1 32.35478321	-0.077363854	1	32.59631462	-0.318895261				
2 32.45871574	-1.093198499	2	32.11446538	-0.748948135				
3 32.67508437	-0.971858567	3	32.88544352	-1.182217711				
4 30.92996269	-0.093296021	4	32.28220273	-1.445536064				
5 29.8981961	-3.153034814	5	30.23837017	-3.493208879				
6 29.54199097	-2.348657641	6	29.06828702	-1.874953689				
7 29.54199097	-3.874249038	7	27.6305959	-1.96285396				
8 29.54199097	2.183815478	8	29.05238025	2.673426197				
9 29.55143939	2.855227281	9	30.00229502	2.40437165				
10 30.28274647	2.881769659	10	30.75066167	2.413854458				
11 30.59548891	2.267844428	11	30.87974042	1.983592918				
12 31.75764357	1.423001587	12	31.62927668	1.551368476				

Max Temp (Y) - Relat	tive Humidity (X)				Humidity Li	ne Fit Plot	
Regressio	on Statistics			5.00			
Multiple R	0.294867701		e 3	3.00 -	*	<u>.</u>	
R Square	0.086946961		Ten	1.00 -			
Adjusted R Square	-0.004358343		<u>_</u>	9.00 -			
Standard Error	2.669449448		- 4	7.00 -			•
Observations	12		2	5.00	75.00	80.00 85.00)
				70.00		lumidity	
ANOVA						,	
	df	SS		MS	F	Significance F	_
Regression	1	6.7858	11695	6.78581169	0.9522662	0.35215825	L
Residual	10	71.259	60355	7.12596036			
Total	11	78.045	41525				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe
Intercept	44.56556039	14.167	45781	3.14562859	0.0104100	12.9984972	2 76.1
Humidity	-0.166865685	0.1709	96741	-0.9758413	0.3521582	-0.5478701	0.2
RESIDUAL OUTPUT							
Observation	Predicted Max Temp	Residu	als				
1	29.99441817	2.2830	01188				
2	30.05975379	1.3057	63456				
3	30.08592516	1.6173	00651				
4	29.98706172	0.8496	04944				
5	29.99980093	-3.2546	39641				
6							
7		-5.4839	70498				
8		0.3964					
9		0.6007					
10							
11		1.4912					
12	30.71570855	2.4649	36615				

Max Temp (Y) - Prec	ipitation, Min Temp, Re	lative Humidity ()	K)			
		-				
	on Statistics	-				
Multiple R	0.924157452					
R Square	0.854066996					
Adjusted R Square	0.79934212					
Standard Error	1.193178627					
Observations	12	-				
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	66.65601335	22.2186711	15.6065587	0.001048862	
Residual	8	11.38940189	1.42367524			
Total	11	78.04541525				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	55.48734001	8.220984513	6.74947628	0.00014513	36.52971572	74.4449643
Precipitation	0.002470754	0.006141385	0.40231213	0.6979896	-0.01169131	0.01663281
Min Temp	0.646539677	0.205616045	3.14440284	0.0137138	0.172388226	1.12069113
Humidity	-0.46156545	0.092475246	-4.9912325	0.00106443	-0.67481375	-0.2483171
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	. 31.78513219	0.49228716				
2	31.27702254	0.088494703				
3	32.55164333	-0.848417519				
4	30.92543402	-0.088767351				
5	27.65379751	-0.908636221				
6	27.04831945	0.145013888				
7	26.87187378	-1.204131847				
8	29.47594247	2.249863986				
9	32.20814655	0.198520118				
10	34.56062399	-1.396107863				
11	32.58494968	0.278383655				
12	32.18714787	0.993497293				

Regressi	on Statistics					
Multiple R	0.922558669					
R Square	0.851114497					
Adjusted R Square	0.818028829					
Standard Error	1.136262436					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	66.42558433	33.2127922	25.7245679	0.000189599	
Residual	9	11.61983092	1.29109232			
Total	11	78.04541525				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	53.45182634	6.170546955	8.66241303	1.166E-05	39.49307935	67.41
Min Temp	0.716258619	0.105385418	6.79656289	7.9361E-05	0.477860242	0.9
Humidity	-0.450235569	0.083881123	-5.3675434	0.00045182	-0.63998785	-0.26
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	31.71446737	0.562951981				
2	31.09753282	0.267984418				
3	32.43733615	-0.734110348				
4	31.17752577	-0.340859099				
5	27.84733149	-1.102170199				
6		0.075927344				
7		-0.994736662				
٤						
9						
10		-1.422785702				
11		0.257592627				
12	32.06870439	1.111940775				

Precipitation (Y) - I	Min Te	emp (X)				Min Temp Line	Fit Plot	
Regress	ion St	atistics			400			
Multiple R		0.88424894			300 -		• 📬	
R Square		0.781896187		atio	200 -			
Adjusted R Square		0.760085806		Precipitation	100 -	_	* *	
Standard Error		64.50205904		Prec			•	
Observations		12			0	15	20 25	30
				-	100 ¹⁰ 🖌		Zo Zo Temp	30
ANOVA							remp	
		df	SS		MS	F	Significance F	
Regression		1	14915	3.3438	149153.344	35.8497257	0.000134337	
Residual		10	4160	5.1562	4160.51562			
Total		11	190	0758.5				
		Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept		-502.6768265	107.13	04691	-4.6921929	0.0008516	-741.378387	-263.97527
Min Temp		31.08128138	5.1910	59376	5.98746405	0.00013434	19.5148803	42.6476825
RESIDUAL OUTPUT								
Observation	Pred	licted Precipitation	Residu	als				
	1	260.1179759	37.582	02414				
	2	225.6969261	83.003	07391				
;	3	280.7719886	50.828	01135				
	4	237.6792959	-90.779	29595				
	5	91.67748323	-53.977	48323				
	6	8.092230834	-8.0922	30834				
	7	-94.60968064	94.609	68064				
	8	6.955925924	-6.9559					
	9	74.81338153	-73.813					
1	0	128.2731855		31855				
1	1	137.4939656	-25.993	96564				
1	2	191.0373214	43.462	67856				

Precipitation (Y) - F	elative Humidity (X)				Humidity Line	Fit Plot		Precipitation
Regress	ion Statistics				50 - 00 -			\$.	R
Multiple R	0.56292	5564			250 -				Multiple R
R Square	0.31688	5191			200 -		· ·	-	R Square
Adjusted R Square	0.2485	7371		cipi	.50 - .00 -	•		•	Adjusted R So
Standard Error	114.153	3864		Pre	50 -	•		•	Standard Err
Observations		12			0				Observation
ANOVA					-50 70		80 85 midity		ANOVA
	df		SS		MS	F	Significance F		
Regression		1	60448.	54363	60448.5436	4.63882771	0.056700365		Regression
Residual		10	130309	9.9564	13030.9956				Residual
Total		11	190	0758.5					Total
	Coefficients		Standard	Error	t Stat	P-value	Lower 95%	Uppe	
Intercept	-1173.92	6016	605.84	15109	-1.9376784	0.0813933	-2523.82502	175.9	Intercept
Humidity	15.7492	2017	7.3123	15697	2.15379379	0.05670037	-0.54363453	32.04	Max Temp
RESIDUAL OUTPUT									RESIDUAL OU
Observation	Predicted Precipit	ation	Residu	als					Observat
:	1 201.336	5322	96.363	46776					
:	2 195.169	9855	113.53	00145					
:	3 192.699	8631	138.90	01369					
	4 202.030	8527	-55.130	85269					
!	5 200.828	4929	-163.12	84929					
	5 158.982	9842							
1	7 92.1080								
	3 75.3427								
	30.3643								
10									
1:									
13	2 133.25	9258	101.2	40742					

Precipitation (Y) -	Max	Temp (X)			Max	x Temp Line Fit	Plot	
				 Precip 400.00 		dicted Precipita	ation —— Linear	(Precipitation)
Regress	sion S	Statistics		400.0	']			
Multiple R		0.467118504		.e			** •	
R Square		0.218199697		200.00			٠	
Adjusted R Square		0.140019666		Precipitation				
Standard Error		122.1208636		- F			•	
Observations		12		0.0	,			
					25.00 27.00	0 29.00	31.00 33.0	0 35.00
ANOVA						Max T	emp	
		df		SS	MS	F	Significance F	
Regression		1	41	.623.44685	41623.4469	2.79099018	0.125749426	
Residual		10	14	9135.0531	14913.5053			
Total		11		190758.5				
		Coefficients	Stan	dard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept		-581.3844703	42	6.6794559	-1.362579	0.20291178	-1532.08554	369.316603
Max Temp		23.09379588	13	.82344118	1.67062568	0.12574943	-7.70675048	53.8943422
RESIDUAL OUTPUT								
Observation	Pre	edicted Precipitation	R	esiduals				
	1	164.0236638	13	3.6763362				
	2	142.9643825	16	5.7356175				
	3	150.7633552	18	0.8366448				
	4	130.7512153	1	6.1487847				
	5	36.26282529	1.4	437174707				
	6	46.61281897	-46	.61281897				
	7	11.38112263	-11	.38112263				
	8	151.284828	-1	51.284828				
	9	167.0084748	-16	6.0084748				
1	0	184.5100956	-10	6.1100956				
1	1	177.5546416	-66	05464162				
1	2	184.8825762	4	9.6174238				

Regressi	on Statistics					
Multiple R	0.897801457					
R Square	0.806047456					
Adjusted R Square	0.733315253					
Standard Error	68.00560297					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	153760.4037	51253.4679	11.0824011	0.003200327	
Residual	8	36998.09628	4624.76204			
Total	11	190758.5				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-1252.856225	1128.508294	-1.1101879	0.29917016	-3855.20102	1349
Min Temp	22.46887411	15.61954446	1.43851021	0.18823703	-13.54986	58.48
Humidity	8.199260717	10.28999978	0.79681836	0.44855604	-15.5295213	31.92
Max Temp	8.026161878	19.95008688	0.40231213	0.6979896	-37.978821	54.03
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1		24.08216832				
2	238.2051528	70.49484723				
3	279.4438218	52.15617822				
4	246.1945127	-99.29451266				
5		-69.483739				
6						
7		92.7334355				
8						
9						
10		0.622058815				
11	121.9823326	-10.48233257				
12	195.4864178	39.01358218				

Appendix II: 1989

Months	Precipitation	Min Temp	Humidity	Max Temp
Jan	266.50	23.36	86.68	31.00
Feb	222.80	23.18	87.86	30.81
Mar	251.50	23.47	86.94	31.10
Apr	152.30	23.27	86.70	31.28
May	10.00	18.43	84.42	28.60
Jun	53.00	18.65	85.53	29.07
Jul	22.30	14.83	83.03	27.52
Aug	64.00	18.09	84.77	29.65
Sep	41.80	18.19	78.37	29.73
Oct	68.80	20.17	75.61	32.73
Nov	72.80	21.86	76.57	33.92
Dec	90.30	23.00	83.03	32.28
Total/Mean	1316.10	20.54	83.29	30.64

Max Temp (Y) - Pre	cip				P	recipitation Lin	e Fit Plot	
Regres	sior	Statistics		-	5.00			
Multiple R		0.330254124		₽ ³	3.00 -	÷		-
R Square		0.109067786		Ē	1.00 -		•	• •
Adjusted R Square		0.019974565		Xey 2	9.00	•		
Standard Error		1.809622279		-	7.00 -			
Observations		12		2		00 100 00 15	0.00 200.00 250	00 30
					0.00 50.		oitation	.00 50
ANOVA								
		df	SS		MS	F	Significance F	
Regression		1	4.0089	22907	4.00892291	1.22419848	0.294444193	
Residual		10	32.747	32792	3.27473279			
Total		11	36.756	25083				
		Coefficients	Standard		t Stat	P-value	Lower 95%	Uppe
Intercept		29.90981888	0.8423	65739	35.5069271	7.4515E-12	28.03291105	31.78
Precipitation		0.006666574	0.0060	25274	1.10643503	0.29444419	-0.00675857	0.020
RESIDUAL OUTPUT								
Observation		Predicted Max Temp	Residu	ials				
	1	31.68646095	-0.6896	86757				
	2	31.39513165	-0.5808	45936				
	3	31.58646234	-0.4896	88142				
	4	30.92513816	0.3548	61844				
	5	29.97648462						
	6	30.26314732	-1.1898					
	7	30.05848349						
	8	30.33647964						
	9	30.18848169						
-	10	30.36847919						
_	1	30.39514549						
1	12	30.51181054	1.7688	34618				

Max Temp (Y) - Min T	emp (X)					Min Temp Line	Fit Plot		
Regressio	n Statistics		-	5.00					
Multiple R	0.722592434		e 3	3.00 -			•	_	-
R Square	0.522139826		Ĕ	1.00 -		_			*
Adjusted R Square	0.474353808			9.00 -	-	•			
Standard Error	1.325305566		- 2	7.00 -	*				
Observations	12		2	+ 5.00 ± 14.0	0 14	5.00 18.00	20.00	22.00	24.00
				14.0	0 10		1 Temp	22.00	24.00
ANOVA						IVIII	remp		
	df	SS	·	M	s	F	Significance	e F	
Regression	1	19.19	19024	19.19	19024	10.9266236	0.0079388	819	
Residual	10	17.564	34843	1.756	43484				
Total	11	36.756	25083						
	Coefficients	Standard	Error	t St	at	P-value	Lower 959	%	Upper 95%
Intercept	21.21135891	2.878	20728	7.369	64257	2.3982E-05	14.798313	344	27.6244044
Min Temp	0.459085417	0.1388	83453	3.305	54437	0.00793882	0.1496337	799	0.76853703
RESIDUAL OUTPUT									
Observation	Predicted Max Temp	Residu	als						
1	31.93766753	-0.9408	93336						
2	31.85066344	-1.0363	77724						
3	31.98653791	-0.8897	63719						
4	31.89274627	-0.6127	46268						
5	29.67037794	-1.0671	52133						
6	29.77177164	-0.698	43831						
7	28.01915136	-0.5030	22328						
8	29.51636219	0.1384	76523						
9	29.56059235	0.1660	74315						
10	30.47155604	2.257	47622						
11	31.24543583	2.6745	64169						
12	31.76884257	0.5118	02592						

Max Temp (Y) - Relat	ive number (x)				Humidity Line	Fit Plot	
Regressio	n Statistics		-	5.00			
Multiple R	0.409879589		<u>و</u> 3	3.00 -	_	•	
R Square	0.168001277		Ten 3	1.00 -			4
Adjusted R Square	0.084801405		-	9.00 -	•		
Standard Error	1.748746801		- 2	7.00 -		•	
Observations	12		2	5.00	80.00	85.00	9
				15.00		nidity	
ANOVA							
	df	SS		MS	F	Significance F	
Regression	1	6.1750	97093	6.17509709	2.01924922	0.185740042	
Residual	10	30.581	15374	3.05811537			
Total	11	36.756	25083				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe
Intercept	45.490701	10.462	35879	4.34803488	0.00144803	22.1791129	68.80
Humidity	-0.17828448	0.125	46384	-1.4210029	0.18574004	-0.45783534	0.101
RESIDUAL OUTPUT							
Observation	Predicted Max Temp	Residu	als				
1	30.03746237	0.9593	11819				
2	29.82713598	0.9871	49731				
3	29.99145348	1.1053	20717				
4	30.0334366	1.2465	53404				
5	30.44004023	-1.8368	14426				
6	30.24143516	-1.1681	01823				
7	30.68733806	-3.1712	09027				
8	30.376778	-0.7219	39288				
9	31.5191406	-1.7924	73929				
10	32.01009388	0.718					
11	31.84005266	2.0799	47341				
12	30.68733806	1.5933	07102				

Max Temp (Y) - Preci	pitation, Min Temp, Re	lative Humidity ()	0			
max remp (i) i ree	preactor, white remp, ne	in the manner of the	~			
Regressio	on Statistics					
Multiple R	0.967220105					
R Square	0.935514732					
Adjusted R Square	0.911332757					
Standard Error	0.544315703					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	34.38601415		38.6864479	4.14414E-05	
Residual	8	2.370236679	0.29627958			
Total	11	36.75625083				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	41.03483304	4.842615355	8.47369242	2.8796E-05	29.867742	52.2019241
Precipitation	-0.001957479	0.003636374	-0.5383052	0.60501578	-0.01034297	0.00642801
Min Temp	0.622298722	0.099226983	6.27146669	0.00024007	0.393480887	0.85111656
Humidity	-0.275669993	0.049489217	-5.5703041	0.00052826	-0.38979233	-0.1615477
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	31.15850978	-0.161735587				
2	30.8009016	0.013384115				
3	31.18297603	-0.086201832				
4	31.31493748	-0.034937484				
5	29.20973106	-0.606505257				
6	28.95591005	0.117423283				
7	27.32976705	0.186361985				
8	28.79743763	0.857401082				
9	30.66721136	-0.940544689				
10	32.60831739	0.120714864				
11	33.3865718	0.533428198				
12	32.27943384	0.001211323				

Regressio	on Statistics					
Multiple R	0.966011892					
R Square	0.933178975					
Adjusted R Square	0.918329859					
Standard Error	0.522397288					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	34.30016049	17.1500802	62.8440736	5.15358E-06	
Residual	9	2.456090342	0.27289893			
Total	11	36.75625083				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upp
Intercept	42.95911382	3.135318264	13.7016756	2.4699E-07	35.86653115	50.0
Min Temp	0.579545684	0.057087606	10.1518652	3.1559E-06	0.450404546	0.70
Humidity	-0.290807282	0.039083999	-7.4405713	3.9311E-05	-0.37922143	-0.2
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	31.29349355	-0.296719355				
2	30.84058811	-0.026302395				
3	31.28014008	-0.183365888				
4	31.2302187	0.049781301				
5	29.08794728	-0.484721469				
6	28.8919928	0.181340531				
7	27.40683016	0.109298873				
8	28.79032937	0.864509344				
9	30.70952064	-0.982853976				
10	32.66032823	0.068704029				
11	33.35990641	0.560093589				
12	32.14040975	0.140235416				

	Precipitatio	Max	Min	Insolatio	Humidit
Months	n	Temp	Temp	n	у
Jan	238.20	33.00	22.83	187.80	84.48
Feb	117.10	32.33	22.84	205.00	84.10
Mar	166.60	31.61	21.85	186.10	86.19
Apr	92.20	31.09	19.28	203.30	86.43
May	93.80	29.47	19.68	179.90	87.71
Jun	2.00	30.58	17.72	220.90	86.03
Jul	8.80	26.70	12.68	207.60	82.71
Aug	24.20	28.75	14.81	150.30	83.29
Sep	123.20	29.37	17.35	151.20	81.70
Oct	179.80	32.51	21.78	183.30	82.16
Nov	169.40	31.59	21.08	185.30	82.47
Dec	200.70	33.11	22.81	188.60	83.81
Total/Mea					
n	1416.00	30.84	19.56	2249.30	84.26

Appendix 12: 1990

Precipitation (Y) -	Ma	ax Temp (X)				Max Temp Lin	e Fit Plot	
Regre	ssi	on Statistics			300 - 250 -			
Multiple R		0.800044884		E	200 -			•
R Square		0.640071816		atic	150 -		2	
Adjusted R Square	2	0.604078998		Precipitation	100 -		· ·	
Standard Error		48.57985499		Pre	50 -			
Observations		12			0		•	1
ANOVA					-50 25	27 29 Ma	31 s x Temp	33
		df	SS	·	MS	F	Significance F	
Regression		1	41968.6	7689	41968.6769	17.7833203	0.001779985	
Residual		10	23600.0	2311	2360.00231			
Total		11	655	568.7				
		Coefficients	Standard I	Frror	t Stat	P-value	Lower 95%	Uppe
Intercept		-861.3848669	232.668	3344	-3.70220068	0.00409361	-1379.80222	-342.9
Max Temp		31.75469111	7.53011	2554	4.21702742	0.00177999	14.97655477	48.53
RESIDUAL OUTPUT								
Observation		Predicted Precipitation	Residua	ls				
	1	186.4175052	51.7824	9483	-			
	2	165.3866452	-48.2866	4523				
	3	142.3706756	24.2293	2443				
	4	125.8684796	-33.6684	7964				
	5	74.35417591	19.4458	2409				
	6	109.6735872	-107.673	5872				
	7	-13.43217983	22.2321	7983				
	8	51.51128521	-27.3112	8521				
	9	71.25041094	51.9495	8906				
1	10	170.8474631	8.95253	6923				
1	11	141.8516742	27.5483	2583				
1	12	189.9002777	10.7997	2226				

Precipitation (Y) - N	1in Temp (X)				Min Temp Line	e Fit Plot	
Regress	sion Statistics	•		300			
Multiple R	0.841860474	•	Ę	250 - 200 -			*
R Square	0.708729058		atio	150 -		<u>.</u>	
Adjusted R Square	0.679601963		Precipitation	100 -		•	•
Standard Error	43.70155265		Free	50 -			
Observations	12			0		• '	1
		•		-50 10	15	20 n Temp	25
ANOVA					IVIII	remp	
	df	SS		MS	F	Significance F	
Regression	1	46470.4	4296	46470.443	24.3322953	0.000593493	
Residual	10	19098.2	5704	1909.8257			
Total	11	655	568.7				
	Coefficients	Standard E	rror	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-262.4368439	78.1492	4311	-3.35814953	0.00726492	-436.564209	-88.3094791
Min Temp	19.451368	3.94328	9036	4.93277764	0.00059349	10.66517249	28.2375635
RESIDUAL OUTPUT							
Observation	Predicted Precipitation	Residua	ls				
1	181.6190635	56.5809	3647				
2	181.9263043	-64.8263	0427				
3	162.5441736	4.05582	6373				
4	112.5206932	-20.3206	9316				
5	120.3786275	-26.5786	2752				
6	82.17655909	-80.1765	5909				
7	-15.78094845	24.5809	4845				
8	25.56889513	-1.36889	5129				
9	74.97955293	48.2204	4707				
10	161.2892467	18.5107	5334				
11	147.5979934	21.8020	0656				
12	181.1798391	19.5201	6091				

Precipitation (Y) - In:	solation (X)			Insolation Lin	e Fit Plot		Precipitation (Y)	- Relative Humidity (X)	
Regressi	ion Statistics		300.00				Rear	ession Statistics	
Multiple R	0.186076797		200.00		•		Multiple R	0.143821592	•
R Square	0.034624574	Precipitation	200.00	•			R Square	0.02068465	
Adjusted R Square	-0.061912968	-100	3 100.00 -	• •			Adjusted R Squar	e -0.077246885	
Standard Error	79.56029894	ā	-	•			Standard Error	80.13266149	
Observations	12		0.00 + 140.00	160.00 180.0	0 200.00 220	.00 24	Observations	12	
ANOVA					solation		ANOVA		
	df	SS	MS	F	Significance F			df	SS
Regression	1	2270.288323	3 2270.2883	2 0.35866434	0.562569174		Regression	1	1356.265
Residual	10	63298.41168	6329.8411	7			Residual	10	64212.43
Total	11	65568.7	'				Total	11	655
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppel		Coefficients	Standard E
Intercept	246.1056965	215.1361271	1.1439533	7 0.27928735	-233.247467	725	Intercept	600.8131294	1050.803
Insolation	-0.683443008	1.141190647	-0.5988859	2 0.56256917	-3.22617423	1.859	Humidity	-5.730200346	12.46829
RESIDUAL OUTPUT			-				RESIDUAL OUTPUT	Г	
Observation	Predicted Precipitation	Residuals	_				Observation	Predicted Precipitation	Residual.
1	117.7550996	120.4449004	ŧ.					1 116.7036227	121.4963
2	105.9998798	11.10012015						2 118.883521	-1.783520
3	118.9169527	47.6830473						3 106.9068286	59.69317
4	107.161733	-14.96173296						4 105.5328128	-13.33281
5	123.1542994	-29.35429935						5 98.21910549	-4.419105
6	95.13313602	-93.13313602						6 107.8248929	-105.8248
7	104.222928	-95.42292802						7 126.8701072	-118.0701
8	143.3842124	-119.1842124						8 123.5428941	-99.34289
9	142.7691137	-19.56911369						9 132.6557611	
10	120.8305931	58.96940687						10 130.0124751	49.78752
11	119.4637071	49.93629289						11 128.2626075	41.13739
12	117.2083452	83.49165482						12 120.5853714	80.11462

Precipitation (Y) - Re	elative Humidity (X)				Humidity Line	Fit Plot	
Regress	ion Statistics			300			
Multiple R	0.143821592		tion	200 -			
R Square	0.02068465		Precipitation		••	•	
Adjusted R Square	-0.077246885		eci	100 -			
Standard Error	80.13266149		Ч	0	. •		
Observations	12			- 1	2.00 84.00	86.00 88.	00 90.00
				00.00 0.		nidity	50.00
ANOVA						marcy	
	df	SS		MS	F	Significance F	
Regression	1	1356.265	631	1356.26563	0.21121542	0.655645502	
Residual	10	64212.43	3437	6421.24344			
Total	11	655	68.7				
	Coefficients	Standard E	rror	t Stat	P-value	Lower 95%	Upper 95%
Intercept	600.8131294	1050.803	8519	0.57176543	0.58010495	-1740.52302	2942.14928
Humidity	-5.730200346	12.46829	9289	-0.45958179	0.6556455	-33.5112882	22.0508875
RESIDUAL OUTPUT							
Observation	Predicted Precipitation	Residual	5				
1	116.7036227	121.4963	3773				
2	118.883521	-1.783520	972				
3	106.9068286	59.69317	141				
4		-13.33281					
5		-4.419105					
6							
7		-118.0701					
8		-99.34289					
9		-9.455761					
10		49.78752					
11		41.13739					
12	120.5853714	80.11462	865				

Regress	sion Statistics					
Multiple R	0.91773791	2				
R Square	0.84224287	5				
Adjusted R Square	0.75209594	7				
Standard Error	38.440918	5				
Observations	1:	2				
ANOVA						
	df	SS	MS	F	Significance F	
Regression	4	4 55224.77044	13806.1926	9.34300139	0.006156333	
Residual	1	7 10343.92956	1477.70422			
Total	1:	1 65568.7				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper
Intercept	788.834295	7 794.6419464	0.99269149	0.35392742	-1090.19532	2667
Max Temp	-5.38472460	20.5875921	-0.26155194	0.80119573	-54.0666442	43.2
Min Temp	24.0856861	5 12.05423098	1.99811055	0.08585824	-4.41804076	52.58
Insolation	-0.73630900	0.623118574	-1.18165151	0.27592698	-2.2097503	0.737
Humidity	-9.943538074	4 7.094141628	-1.40165486	0.20376684	-26.7185174	6.831
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	182.661240	7 55.53875935				
2	177.726171	-60.62617156				
8	150.76234	5 15.837654				
4	76.5701889	9 15.62981101				
5	99.5739558	-5.773955885				
6	32.7611048	5 -30.76110486				
7	-24.8177582	4 33.61775824				
8	51.7879572	5 -27.58795726				
9	124.774320	5 -1.574320521				
10	186.536125	5 -6.736125509				
11	169.9906614	4 -0.590661443				
12	187.673685	5 13.02631444				

Months	Precipitati on	Max Temp	Cloudine ss	Insolatio n	Humidit y	Wind Mean	Min Temp
Jan	225.20	32.22	5.44	178.10	84.69	1.28	25.00
Feb	110.40	32.16	5.31	177.30	85.68	1.15	24.49
Mar	82.60	32.20	4.43	220.80	83.34	0.65	22.16
Apr	140.80	30.75	3.58	226.70	86.16	0.89	20.35
May	54.60	29.24	3.57	214.40	83.51	0.84	18.37
Jun	103.20	27.41	3.69	185.20	84.81	1.80	18.12
Jul	0.00	31.03	2.35	253.50	80.28	1.24	15.14
Aug	11.50	30.50	3.62	207.20	77.35	1.61	16.14
Sep	52.60	35.11	2.09	188.10	75.48	1.52	21.69
Oct	57.60	35.12	3.31	230.60	75.46	1.68	22.77
Nov	66.80	35.09	5.51	212.50	76.77	1.94	23.84
Dec	80.80	34.26	4.15	246.60	80.08	1.72	23.52
Total/Mea n	986.10	32.09	3.92	2541.0 0	81.13	1.36	20.97

Appendix 13: 1997

Min Temp (Y) - Pre	cipi	tation (X)				F	recipi	tation Lin	e Fit Plot		
Regress	ion	Statistics			29.00	ר'					
Multiple R		0.622473263		6	24.00				_		-
R Square		0.387472963		Min Temp	2		*	<u>.</u>	-		
Adjusted R Square		0.32622026		Min	19.00		•	•	•		
Standard Error		2.72412703		-	14.00						
Observations		12					0.00	100.00	150.00	200.0	0 25
						0.00 5	0.00		itation	200.0	
ANOVA								Treen	nution		
		df	SS			MS		F	Significa	ince F	
Regression		1	46.943	0012	8 46	.9430013	6.32	580997	0.030	64275	
Residual		10	74.208	6807	8 7.4	2086808					
Total		11	121.15	1682	1						
		Coefficients	Standard	Error		t Stat	P-	value	Lower	95%	Uppe
Intercept		18.12829588	1.3753	7448	5 13	.1806254	1.2	031E-07	15.063	77056	21.19
Precipitation		0.034536242	0.0137	3146	9 2.5	1511629	0.03	064275	0.0039	40622	0.065
RESIDUAL OUTPUT					_						
Observation	- 1	Predicted Min Temp	Residu	als	_						
	1	25.90585762	-0.9058	5762	2						
	2	21.94109702	2.5481	8898	1						
	3	20.98098949	1.1770	7551	4						
	4	22.99099878	-2.6376	6578	2						
	5	20.01397471	-1.6397	8070	5						
	6	21.69243608	-3.5724	3607	5						
	7	18.12829588	-2.9928	1188	2						
	8	18.52546267	-2.3835								
	9	19.94490222	1.7417								
-	0	20.11758343	2.6566								
-	1	20.43531686	3.404								
1	2	20.91882425	2.603	7567	5						

Min Temp (Y) - Max	Temp (X)					Max Temp Line	Fit Plot	
Regressio	on Statistics		2	9.00 -				
Multiple R	0.642775067		₽ 2	4.00 -				_
R Square	0.413159787		Min Temp					2
Adjusted R Square	0.354475765		.⊑ 1	9.00 -	•			
Standard Error	2.66639605		- <u>-</u>	4.00 -	-	••		
Observations	12		1		.00 2	9.00 31.00	33.00 35.	.00 37.00
				27.	.00 2.		(Temp	.00 57.00
ANOVA						1102	() cmp	
	df	SS		٨	ЛS	F	Significance F	
Regression	1	50.055	00313	50.05	550031	7.04041368	0.0241725	
Residual	10	71.096	67893	7.109	966789			
Total	11	121.15	16821					
	Coefficients	Standard	Error	t \$	Stat	P-value	Lower 95%	Upper 95%
Intercept	-6.674183044	10.44	54961	-0.63	389532	0.53721295	-29.9481987	16.5998326
Max Temp	0.861345608	0.3246	22303	2.653	337779	0.0241725	0.138042043	1.58464917
RESIDUAL OUTPUT								
Observation	Predicted Min Temp	Residu	als					
1	21.08059556	3.9194	04435					
2	21.03038342	3.4589	02578					
3	21.05836682	1.0996	98182					
4	19.81219439	0.5411	38612					
5	18.51322922	-0.1390	35225					
6	16.93242919	1.1875	70806					
7	20.05253738	-4.9170	53376					
8	19.59685799	-3.4549	22987					
9	23.56479037	-1.8781	23372					
10		-0.7987						
11	23.54756346	0.292	43654					
12	22.83385077	0.6887	30233					

Min Temp (Y) - Cloud	iiness (X)				Cloudiness Line	Fit Plot	
Regressio	n Statistics		2	9.00			
Multiple R	0.657133781		문 2	4.00 -			
R Square	0.431824806		Ten	•	٠		
Adjusted R Square	0.375007287		7 Min Temp	9.00 -	••		
Standard Error	2.623649757		_	4.00	•		
Observations	12		1	2.00	3.00	1.00 5.00	
				2.00		idiness	
ANOVA							
	df	SS		MS	F	Significance F	
Regression	1				7.60020519	0.020239016	
Residual	10	68.835	38047	6.88353805			
Total	11	121.15					
	Coefficients	Standard		t Stat	P-value	Lower 95%	Uppe
Intercept	13.28686291	2.8867	18995	4.60275591	0.00097599	6.854852166	19.71
Cloudiness	1.958229264	0.7103	14823	2.75684697	0.02023902	0.37554921	3.540
RESIDUAL OUTPUT							
Observation	Predicted Min Temp	Residu					
1	23.94131419						
2	23.68412819						
3	21.96203004						
4	20.29297249						
5	20.2775299						
6	20.5105533						
/ 8	17.89817755 20.38281213						
8 9	17.37738648	4.3092					
10	19.77218142		01258				
10	24.07888175	-0.2388					
12	21.41777155	2.1048					

Min Temp (Y) - Insol	ation (X)					Insola	tion Line	Fit Plot		
Regressio	on Statistics		2	9.00 -						
Multiple R	0.320524596		₽ 2	4.00 -						
R Square	0.102736017		Min Temp			-	-	• •		
Adjusted R Square	0.013009618		- i j 1	9.00 -	•		•			
Standard Error	3.29704475		- ₋	4.00 -			٠			
Observations	12		1	4.00 - 170	00 19	90.00	210.00	230.00	250.0	0 270.00
				170	.00 13	0.00		lation	250.0	0 270.00
ANOVA							11130	ation		
	df	SS		٨	//S		F	Significa	nce F	
Regression	1	12.446	64123	12.44	466412	1.14	499209	0.30974	7122	
Residual	10	108.70	50408	10.87	705041					
Total	11	121.15	16821							
	Coefficients	Standard	l Error	t S	Stat	P-v	alue	Lower 9	95%	Upper 95%
Intercept	29.75212261	8.2656	88306	3.599	947309	0.00	485215	11.3350	2136	48.1692239
Insolation	-0.041491433	0.0387	75481	-1.0	070043	0.30	974712	-0.1278	8859	0.04490572
RESIDUAL OUTPUT										
Observation	Predicted Min Temp	Residu	ıals							
1	22.36249832	2.6375	01682							
2	22.39569146	2.0935	94535							
3	20.59081411	1.5672	50889							
4	20.34601465	0.0073	18346							
5	20.85635928	-2.4821	65285							
6	22.06790914	-3.9479	09141							
7	19.23404424	-4.0985	60238							
8	21.15509761	-5.0131	62605							
9	21.94758398	-0.2609	16984							
10	20.18419806	2.5899	95937							
11	20.93519301	2.9048	06992							
12	19.52033513	4.0022	45871							

Min Temp (Y) - Relative	e Humidity (X)			Humidity Line	Fit Plot		Min Temp (Y) - Wi	nd Me	ean (X)			Wind Mean Lin	e Fit Plot	
Regression :	Statistics		29.00				Regres	sion S	tatistics		29.00			
Multiple R	0.046475751	e	24.00 -		•	•	Multiple R		0.083770282	문	24.00 -			
R Square	0.002159995	Temp	1		*		R Square		0.00701746	Ter	24.00 -		.	
Adjusted R Square	-0.097624005	Mi	19.00 -		• •		Adjusted R Square	2	-0.092280794		L9.00 -		•	
Standard Error	3.476923856		14.00	• •			Standard Error		3.468450734		4.00	•	•	
Observations	12			0 78 00 80 00	82.00 84.00 8	86.00 8	Observations		12		0.50	1.00	1.50 2.00	2.50
ANOVA			74.00 70.0		midity		ANOVA				0.50		d Mean	2.50
	df	SS	MS	F	Significance F				df	SS	MS	F	Significance F	
Regression	1	0.26168707	4 0.26168707	0.02164671	0.885954839	-	Regression		1	0.850177093	0.85017709	0.07067053	0.795763329	
Residual	10	120.88999	5 12.0889995				Residual		10	120.301505	12.0301505			
Total	11	121.151682	1				Total		11	121.1516821				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe			Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	17.88834299	20.9443790	1 0.85408801	0.41304841	-28.7786416	64.55	Intercept		20.06204552	3.545851929	5.65789151	0.00021015	12.16139507	27.962696
Humidity	0.037936973	0.25784975	1 0.14712821	0.88595484	-0.53658807	0.612	Wind Mean		0.664812715	2.500806836	0.26583929	0.79576333	-4.90733216	6.23695759
RESIDUAL OUTPUT			_				RESIDUAL OUTPUT							
Observation F	Predicted Min Temp	Residuals					Observation	Pr	redicted Min Temp	Residuals	-			
1	21.10105389	3.89894611	2					1	20.91271992	4.087280078				
2	21.1387286	3.35055739	8					2	20.82974598	3.659540023				
3	21.04996136	1.10810364	1					3	20.49095675	1.667108248				
4	21.15692932	-0.8035963	2					4	20.65372883	-0.300395833				
5	21.05638618	-2.68219217	_					5	20.61963059	-2.245436589				
6	21.10571441	-2.98571440						6	21.2587084	-3.138708404				
7	20.93400882	-5.79852482						7	20.88412566	-5.748641663				
8	20.82295141	-4.68101640	-					8	21.13432394	-4.992388939				
9	20.75195214	0.93471486						9	21.07403806	0.612628943				
10	20.7510547	2.023139	-					10	21.177215	1.596979004				
11	20.80063794	3.03936205	-					11	21.35473661	2.485263388				
12	20.92636024	2.59622076	4					12	21.20580926	2.316771744				

		tation, Max Temp, Cl Statistics	-	-			
Multiple R		0.973022122					
R Square		0.946772051					
Adjusted R Square		0.882898511					
Standard Error		1.135663296					
Observations		12					
ANOVA							
		df	SS	MS	F	Significance F	
Regression		6	114.7030265	19.1171711	14.822602	0.004764226	
Residual		5	6.448655605	1.28973112			
Total		11	121.1516821				
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept		-51.28913788	28.26768923	-1.8144086	0.12933646	-123.953546	21.37
Precipitation		0.009767937	0.011547644	0.84588141	0.43621834	-0.01991623	0.03
Max Temp		1.273378716	0.284493	4.47595798	0.00654311	0.542066177	2.004
Cloudiness		0.632844808	0.436680015	1.44921862	0.20695529	-0.48967691	1.75
Insolation		-0.023059966	0.016965845	-1.3591994	0.23217459	-0.06667206	0.020
Humidity		0.39513998	0.262461357	1.50551679	0.1925345	-0.27953842	1.069
Wind Mean		0.685314979	1.248420607	0.54894558	0.60665617	-2.52385236	3.894
RESIDUAL OUTPUT							
Observation		Predicted Min Temp	Residuals				
	1	25.61791949	-0.617919494				
	2	24.66453691	-0.175250914				
	3	21.6009056	0.557159403				
	4	20.93359953	-0.580266533				
	5	17.36753577	1.006658234				
	6	17.42649826	0.693501745				
	7	16.43727959	-1.30179559				
	8	16.84776734	-0.705832341				
	9	21.78278541	-0.096118407				
1	0	21.73456726	1.039626744				
1	1	24.29554644	-0.455546439				
1	2	22.88679741	0.635783593				

Regressio	on Statistics					
Multiple R	0.903675815					
R Square	0.816629978					
Adjusted R Square	0.74786622					
Standard Error	1.666417812					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	98.93609546	32.9786985	11.8758776	0.002569805	
Residual	8	22.2155866	2.77694832			
Total	11	121.1516821				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-5.693175393	7.677021089	-0.7415865	0.47953977	-23.3964178	12.010067
Max Temp	0.848954316	0.208992726	4.06212375	0.00362275	0.367016225	1.33089241
Cloudiness	1.511373094	0.493847676	3.06040337	0.01557306	0.372558311	2.65018788
Insolation	-0.030745771	0.021658775	-1.4195526	0.1935079	-0.080691	0.01919945
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	24.40967151	0.590328488				
2	24.18628064	0.30300536				
3	21.54729477	0.610770229				
4	18.84946106	1.503871936				
5	17.93543706	0.438756938				
6	17.45500373	0.664996265				
7	16.41404274	-1.278558736				
8	19.30610378	-3.164168785				
9	21.48459229	0.202074714				
10	22.03424694	0.739947055				
11	25.88967065	-2.04967065				
12	22.08393381	1.438647186				

Min Temp (Y) - Max	Temp, Cloudiness (X)					
Regressio	on Statistics					
Multiple R	0.877747506					
R Square	0.770440684					
Adjusted R Square	0.719427503					
Standard Error	1.757886903					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	93.34018478	46.6700924	15.1027766	0.001330538	
Residual	9	27.81149728	3.09016636			
Total	11	121.1516821				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-11.19296046	6.991490308	-1.6009406	0.14385414	-27.0088103	4.622
Max Temp	0.783457961	0.215024648	3.64357281	0.00537095	0.297038414	1.269
Cloudiness	1.789609427	0.478166963	3.74264549	0.00460665	0.707920606	2.871
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	23.78909149	1.210908507				
2	23.50837967	0.980906333				
3	21.96002149	0.198043514				
4	19.30119707	1.052135926				
5	18.10557868	0.268615315				
6	16.88068151	1.239318488				
7	17.33122375	-2.195739753				
8	19.18743629	-3.045501285				
9	20.04993273	1.636734272				
10	22.24592897	0.528265029				
11	26.15870432	-2.318704322				
12	23.07756302	0.445017977				

Months	Precipitati on	Max Temp	Min Temp	Insolatio n	Humidit Y	Cloudine ss
Jan	96.80	33.45	24.10	229.50	83.89	7.30
Feb	9.00	33.80	24.05	161.10	85.43	7.71
Mar	195.00	32.20	23.66	167.50	86.01	7.42
Apr	40.00	32.25	20.12	210.10	76.53	5.07
May	10.30	30.17	16.39	267.90	79.22	3.30
Jun	12.30	29.86	15.53	217.90	77.99	4.47
Jul	0.00	29.51	14.40	227.70	74.67	3.23
Aug	0.00	32.58	14.33	216.50	62.15	1.83
Sep	0.00	34.77	18.83	182.40	65.53	2.36
Oct	50.00	35.05	21.59	213.00	66.86	3.83
Nov	109.30	32.24	19.36	227.20	72.53	4.16
Dec	225.60	34.54	22.43	217.20	78.27	5.28
Total/Mea n	748.30	32.54	19.57	2538.0 0	75.76	4.66

Appendix 14: 1999

Precipitation (Y) -	Max	Temp (X)			Max Temp	Line Fit Plot		Precipitation (Y) -	Min Te
Regre	ession	Statistics		250.00 -			•	Regre	ession St
Multiple R		0.310453673				•		Multiple R	
R Square		0.096381483		200.00 - 150.00 - 100.00 - 50.00 -		•	_	R Square	
Adjusted R Square	e	0.006019631		50.00 -			_	Adjusted R Square	2
Standard Error		78.39487321		0.00		-		Standard Error	
Observations		12		28.0	00 30.00	32.00 34	.00	Observations	
ANOVA						Max Temp		ANOVA	
		df	SS	MS	F	Significance F			
Regression		1	6555.167711	6555.16771	1.06661696	0.326041388	3	Regression	
Residual		10	61457.56146	6145.75615				Residual	
Total		11	68012.72917					Total	
		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe		
Intercept		-354.3484004	404.1181188	-0.87684364	0.40114539	-1254.77968	3 546.0	Intercept	
Max Temp		12.80795247	12.40153564	1.03277149	0.32604139	-14.8243909	9 40.44	Min Temp	
RESIDUAL OUTPUT	г							RESIDUAL OUTPUT	-
Observation	Р	redicted Precipitation	Residuals					Observation	Prec
	1	74.07760985	22.72239015						1
	2	78.56039321	-69.56039321						2
	3	58.06766926	136.9323307						3
	4	58.70806688	-18.70806688						4
	5	32.06752574	-21.76752574						5
	6	28.09706047	-15.79706047						6
	7	23.6142771	-23.6142771						7
	8	62.93469119	-62.93469119						8
	9	90.98410711	-90.98410711						9
	10	94.5703338	-44.5703338					:	10
	11	58.57998735	50.72001265					:	11
	12	88.03827804	137.561722						12

Precipitation (Y) - Mi	in Temp (X)			Min Temp	Line Fit Plot	
Regressi	on Statistics		250			•
Multiple R	0.605898321		200 - 5 450			•
R Square	0.367112776		- 150 - 100 - 50 -			-
Adjusted R Square	0.303824053		ig 100 -			•
Standard Error	65.60822158			_	•	•
Observations	12		0		• • •	
			-50 10	15	20 Min Temp	25
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	24968.34178	24968.3418	5.80060335	0.036781045	
Residual	10	43044.38739	4304.43874			
Total	11	68012.72917				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-189.1600578	106.1354044	-1.7822522	0.10504194	-425.644476	47.3243604
Min Temp	12.85497974	5.337462195	2.40844418	0.03678104	0.962372854	24.7475866
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	120.644954	-23.84495398				
2	120.002205	-111.002205				
3	114.9887629	80.0112371				
4	69.48213461	-29.48213461				
5	21.53306017	-11.23306017				
6	10.47777759	1.822222413				
7	-4.048349522	4.048349522				
8	-4.948198104	4.948198104				
9	52.89921074	-52.89921074				
10	88.37895483	-38.37895483				
11	59.71235	49.58765				
12	99.17713781	126.4228622				

Precipitation (Y) -	msonation (x)			Insolation l	ine Fit Plot	
Regre	ssion Statistics		250 - E 200 -		•	
Multiple R	0.142499365		ing 200 -	•		
R Square	0.020306069		- 200 - 150 - 150 - - 50 -			
Adjusted R Square	-0.077663324		- 100 - 		•	
Standard Error	81.62821693			· · · · · · · · · · · · · · · · · · ·		
Observations	12		150.00	200.00	250.00	3
					solation	
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	1381.071177	1381.07118	0.20726952	0.658640752	
Residual	10	66631.65799	6663.1658			
Total	11	68012.72917				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	143.2573881	179.2508082	0.79920079	0.44274273	-256.138302	542.6
Insolation	-0.382501441	0.840166488	-0.45526862	0.65864075	-2.25450903	1.489
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
	1 55.4733074	41.3266926				
	2 81.63640595	-72.63640595				
	3 79.18839673	115.8116033				
	4 62.89383535	-22.89383535				
	5 40.78525207	-30.48525207				
	6 59.91032411	-47.61032411				
	7 56.16180999	-56.16180999				
	8 60.44582613	-60.44582613				
	9 73.48912526	-73.48912526				
1	.0 61.78458117	-11.78458117				
1	.1 56.35306071	52.94693929				
1	.2 60.17807512	165.4219249				

Precipitation (Y) - R	elative Humidity (X)			Humidity L	ine Fit Plot	
Regress	ion Statistics		250 - 5 200 -		•	
Multiple R	0.405741113		in 200 -			•
R Square	0.164625851		ig 100 -		•	-
Adjusted R Square	0.081088436		- 200 - 150 - 100 - 50 -			
Standard Error	75.37643913					•
Observations	12		60.00	70.00	80.00	90.00
					Humidity	
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	11196.6534	11196.6534	1.97068404	0.190660001	
Residual	10	56816.07577	5681.60758			
Total	11	68012.72917				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-247.5119847	221.8050262	-1.1158989	0.29056194	-741.724381	246.700412
Humidity	4.090337282	2.913738822	1.40381054	0.19066	-2.40187739	10.582552
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	95.6264099	1.173590103				
2	101.9255293	-92.92552931				
3	104.2979249	90.70207506				
4	65.5215275	-25.5215275				
5	76.52453479	-66.22453479				
6	71.49341993	-59.19341993				
7	57.91350015	-57.91350015				
8	6.702477378	-6.702477378				
9	20.52781739	-20.52781739				
10	25.96796598	24.03203402				
11	49.16017837	60.13982163				
12	72.63871437	152.9612856				

Precipitation (Y) - Cl	oudiness (X)			Cloudiness	Line Fit Plot	
Regress	ion Statistics		250.00		•	
Multiple R R Square Adjusted R Square	0.506638438 0.256682507 0.182350758		itation			
Standard Error	71.10207544		_			
Observations	12		+ 0.00 0.0	0 2.00	4.00 6.00	8.00
			0.0	0 2.00	4.00 6.00 a	6.00
ANOVA					cioudilless	
	df	SS	MS	F	Significance F	_
Regression	1	17457.67785	17457.6779	3.45320149	0.09277665	
Residual	10	50555.05131	5055.50513			
Total	11	68012.72917				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-32.03287639	54.78521419	-0.5846993	0.57170515	-154.101941	90.0
Cloudiness	20.24114576	10.89241382	1.85827917	0.09277665	-4.02866466	44.5
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	115.7274877					
2						
3		76.84357486				
4	/0.505/0201	-30.58973261				
5		-24.46290461				
6		-46.14504515				
7		-33.34602441				
8	5.000 1200 15					
9		-15.7362276				
10		4.509288133				
11		57.12971003				
12	74.84037322	150.7596268				

Precipitation (Y) - Ma	ax Temp, Min Temp, Inso	lation, Relative H	umidity, Cloud	iness (X)		
Regressi	on Statistics					
Multiple R	0.651703148					
R Square	0.424716993					
Adjusted R Square	-0.054685514					
Standard Error	80.75329444					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	5	28886.16179	5777.23236	0.88592985	0.543159217	
Residual	6	39126.56738	6521.09456			
Total	11	68012.72917				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.68031146	1759.005639	0.05610005	0.9570836	-4205.45143	4402.81205
Max Temp	-18.38308606	48.80102402	-0.37669468	0.71936274	-137.79489	101.028718
Min Temp	29.27325141	35.43292224	0.82615967	0.44032122	-57.4279859	115.974489
Insolation	0.31054449	1.150826147	0.26984483	0.79632049	-2.50542565	3.12651463
Humidity	0.289404	11.7860081	0.02455488	0.98120629	-28.5499189	29.1287269
Cloudiness	-21.14115943	60.09598584	-0.35178988	0.73702123	-168.190739	125.908421
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	130.46904	-33.66904002				
2	93.10786099	-84.10786099				
3	119.3905059	75.60949407				
4	75.01141166	-35.01141166				
5	60.20682338	-49.90682338				
6	0.112235876	12.18776412				
7	1.765094322	-1.765094322				
8	-34.22392064	34.22392064				
9	36.43055615	-36.43055615				
10	90.88753031	-40.88753031				
11	76.33872131	32.96127869				
12	98.8041407	126.7958593				

Append	lix I5	: 2000
--------	--------	--------

Months	Precipit ation	Max Temp	Min Temp	Insolat ion	Humi dity	Cloudi ness	Wind Mean
				242.3			
Jan	88.10	35.09	23.40	0	75.02	0.55	0.18
				154.9			
Feb	245.30	32.69	23.67	0	82.05	0.66	1.14
				152.5			
Mar	340.90	31.68	22.39	0	86.35	0.76	1.01
				253.3			
Apr	127.00	32.87	22.30	0	81.58	0.41	0.88
				226.I			
May	I.40	30.27	18.60	0	80.24	0.36	0.92
				210.9			
Jun	3.00	28.96	17.15	0	80.14	0.53	1.67
				218.0			
Jul	9.00	26.36	12.12	0	73.40	0.41	1.74
				231.3			
Aug	124.00	31.66	16.99	0	76.04	0.32	1.56
				187.8			
Sep	21.00	30.37	18.85	0	73.03	0.42	2.80
				179.4			
Oct	51.00	34.68	21.77	0	74.37	0.39	1.38
				225.8			
Nov	223.40	32.76	21.86	0	78.02	0.49	1.49
				215.7			
Dec	193.80	33.03	22.50	0	77.30	0.53	1.54
Total/M	1427.9						
ean	0	31.70	20.13	2498	78.13	0.49	1.36

Precipitation (Y) - N	lax Temp (X)				M	lax Temp Line	Fit Plot	
Rearess	ion Statistics		4	100.00				
Multiple R	0.414178247		ion :	300.00 -			•	
R Square	0.17154362		Precipitation	200.00 -			1. N. S.	
Adjusted R Square	0.088697982		ecit	100.00 -		_		
Standard Error	106.2800316		4	0.00	-			•
Observations	12				27.0	00 29.00 3	1.00 33.00	35.00 37.00
				20.00	27.0		k Temp	55.00 57.00
ANOVA								
	df	SS		MS		F	Significance F	
Regression	1	23388.8	1798	23388.81	8 3	2.07064155	0.18071392	6
Residual	10	112954.4	4512	11295.445	1			
Total	11	136343.2	2692					
	Coefficients	Standard E	rror	t Stat		P-value	Lower 95%	Upper 95%
Intercept	-480.1521096	417.4980	0157	-1.150070)4 (0.27687518	-1410.3956	6 450.09144
Max Temp	18.89936272	13.13393	3002	1.4389723	9 (0.18071393	-10.36485	7 48.1635825
RESIDUAL OUTPUT								
Observation	Predicted Precipitation	Residual	ls					
1		-94.87166						
2	137.7267026	107.5732						
3		222.308						
4		-14.00699						
5		-90.54989						
6		-64.11044						
7		-8.99852:						
8		5.712936						
9		-72.82153						
10		-124.3057						
11		84.34599						
12	144.0755466	49.7244	4534					

Precipitation (Y) - N	Min Temp (X)				Min Temp Line	Fit Plot	
Reares	sion Statistics			400.00			
Multiple R	0.620970573		=	300.00 -			•
R Square	0.385604453		atio	200.00 -		•	•
Adjusted R Square	0.324164898		ipiti	100.00		•	•
Standard Error	91.52524104		Precipitation				•
Observations	12			0.00	15.00	20.00	2
				-100.0010.00		n Temp	4
ANOVA							
	df	SS		MS	F	Significance F	
Regression	1	52574.5	57169	52574.5717	6.27615963	0.031166498	
Residual	10	83768.6	59747	8376.86975			
Total	11	136343	.2692				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-283.9151608	162.982	23262	-1.74199968	0.11212181	-647.062414	79.23
Min Temp	20.01176319	7.98800	05673	2.50522646	0.0311665	2.2133774	37.8
RESIDUAL OUTPUT				-			
Observation	Predicted Precipitation	Residue	als	_			
:	1 184.4246557	-96.3246	55575				
	2 189.8115823	55.4884					
	3 164.0901228						
	4 162.3471583						
	5 88.30363449						
	5 59.33008343						
	7 -41.45005652	50.4500					
	8 56.15569749						
	9 93.23987608						
10		-100.822					
1:		69.9247					
1:	2 166.3495109	27.4504	18907				

Precipitation (Y) - In	solation (X)				Insolation Line	Fit Plot	
Regress	ion Statistics			400.00			
Multiple R	0.420695546		Precipitation	300.00 -			
R Square	0.176984743		pita	200.00 -			
Adjusted R Square	0.094683217		reci	100.00 -		· · · ·	•
Standard Error	105.9304445		-	0.00	• •		-
Observations	12				0.00 190.00 2	10.00 230.00 250	00 270 00
				150.00 17		plation	
ANOVA							
	df	SS		MS	F	Significance F	
Regression	1	24130.6	57843	24130.6784	2.15044304	0.173257048	
Residual	10	112212	.5907	11221.2591			
Total	11	136343	.2692				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	417.8279532	206.065	2453	2.02764883	0.07007936	-41.3140259	876.969932
Insolation	-1.435562626	0.97894	4728	-1.4664389	0.17325705	-3.61678741	0.74566216
RESIDUAL OUTPUT							
Observation	Predicted Precipitation	Residua	als				
1	69.99112904	18.1088	37096				
2	195.4593025	49.8406	9747				
3	198.9046528	141.995	3472				
4	54.19994016	72.8000)5984				
5	93.24724358	-91.8472	4358				
6	115.0677955	-112.067	7955				
7	104.8753008	-95.8753	80085				
8		38.2176	8207				
9		-127.229					
10		-109.288					
11	93.67791237	129.722	0876				
12	108.1770949	85.6229	0511				

Precipitation (Y) -	Relativ	e Humidity (X)				Humidity Line	Fit Plot	
Regres	ssion Si	tatistics			400.00			
Multiple R		0.635156127		Precipitation	300.00 -			<u> </u>
R Square		0.403423306		oital	200.00 -		-	-
Adjusted R Square		0.343765636		eci	100.00 -		•	
Standard Error		90.18825688		2	0.00	and the second s		
Observations		12			70.00	75.00	80.00 85.00) 9
					70.00		umidity	, .
ANOVA							annarcy	
		df	SS		MS	F	Significance F	
Regression		1	55004.0)5238	55004.0524	6.76230416	0.026471365	;
Residual		10	81339.2	21678	8133.92168			
Total		11	136343	.2692	2			
		Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe
Intercept		-1244.68314	525.046	58352	-2.37061355	0.03923613	-2414.56039	-74.8
Humidity		17.45422079	6.71201	18039	2.60044307	0.02647136	2.498912624	32.4
RESIDUAL OUTPUT					_			
Observation	Pre	dicted Precipitation	Residua	als	_			
	1	64.664939	23.43	85061	L			
	2	187.4657675	57.8342	23246	5			
	3	262.4325186	78.4674	18144	t i i i i i i i i i i i i i i i i i i i			
	4	179.2903676	-52.2903	86761	L			
	5	155.8773107	-154.477	/3107	,			
	6	154.1272109	-151.127					
	7	36.51297392	-27.5129	97392	2			
	8	82.54144721	41.4585					
	9	30.05677983	-9.05677					
_	.0	53.39371884	-2.39371					
1	1	117.0369918	106.363					
1	.2	104.499974	89.3000	2596	5			

Precipitation (Y) - Cl	loudiness (X)				Cloudin	ess Line	Fit Plot	
Rearess	ion Statistics			400.00				
Multiple R	0.725257859		Precipitation	300.00 -				-
R Square	0.525998962		pita	200.00 -		٠	•	
Adjusted R Square	0.478598858		reci	100.00 - *	٠	-		
Standard Error	80.39082727		ā	0.00				
Observations	12			0.00	0.40	0.50	0.60 0	.70 0.80
				0.00	0.10		udiness	
ANOVA								
	df	SS		MS	- 1	•	Significance F	_
Regression	1	71716.4	1807	71716.4181	11.09	70002	0.00760226	
Residual	10	64626	.8511	6462.68511				
Total	11	136343	.2692					
	Coefficients	Standard	Error	t Stat	P-vo	alue	Lower 95%	Upper 95%
Intercept	-183.3586488	93.6826	51965	-1.9572323	0.078	79734	-392.096533	25.3792359
Cloudiness	623.0389624	187.03	0489	3.33121603	0.007	60226	206.3090634	1039.76886
RESIDUAL OUTPUT				-				
Observation	Predicted Precipitation	Residua	als	_				
1	157.6379272	-69.5379	2721					
2		17.5961						
3		50.6150						
4		56.9894	4996					
5		-36.989						
6		-145.462						
7		-63.5562						
8		108.388						
9		-56.6254						
10		-6.39594						
11		100.777						
12	149.5987309	44.2012	6913					

Precipitation (Y) - W	ind Mean (X)				Wind Mean Lir	ne Fit Plot	
Rearessi	ion Statistics			400.00			
Multiple R	0.277716535		tion	300.00 -	•		
R Square	0.077126474		oital	200.00 -	•	*	
Adjusted R Square	-0.015160879		recipitation	100.00 -			
Standard Error	112.1728994		Ā	0.00		•	
Observations	12			0.00	0.50 1.00	1.50 2.00	2.50
				0.00		ind Mean	2.20
ANOVA							
	df	SS		MS	F	Significance F	-
Regression	1	10515	6756	10515.675	6 0.83572095	0.38213697	2
Residual	10	125827	5936	12582.759	4		
Total	11	136343	2692				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe
Intercept	185.6461488	79.7791	6861	2.3270002	9 0.0422657	7.88708364	4 363.4
Wind Mean	-48.99335986	53.5928	1617	-0.9141777	5 0.38213697	-168.40559	6 70.4
RESIDUAL OUTPUT							
Observation	Predicted Precipitation	Residua	ıls				
1	176.7430754	-88.6430	7545				
2	129.7261567	115.573	8433				
3	136.1259633	204.774					
4	142.3686973	-15.3686					
5	140.3404701	-138.940					
6	103.6543403	-100.654					
7	100.3029005	-91.302					
8	109.2586417	14.7413					
9	48.4647412	-27.464					
10	117.9022462	-66.9022					
11	112.7004742	110.699					
12	110.3122929	83.4877	0709				

Precipitation (Y) - N	lax Temp, Min Temp, Inso	lation, Relative H	umidity, Cloud	iness, Wind N	1ean <mark>(</mark> X)	
Regress	ion Statistics					
Multiple R	0.857251264					
R Square	0.73487973					
Adjusted R Square	0.416735405					
Standard Error	85.02630696					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	6	100195.9048	16699.3175	2.3098942	0.188192878	
Residual	5	36147.36437	7229.47287			
Total	11	136343.2692				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-2876.716263	1782.541392	-1.61382859	0.16748448	-7458.88479	1705.45226
Max Temp	51.04437208	43.05389724	1.18559237	0.2890517	-59.6291941	161.717938
Min Temp	-24.30606064	32.00442877	-0.75945929	0.48182841	-106.576064	57.9639426
Insolation	0.56129338	1.235805975	0.45419216	0.66872685	-2.61544701	3.73803377
Humidity	17.19338246	11.61044211	1.4808551	0.19872844	-12.6522091	47.0389741
Cloudiness	627.6697203	405.2720955	1.54876126	0.18212206	-414.115367	1669.45481
Wind Mean	75.07619474	70.80696161	1.06029397	0.33751958	-106.938895	257.091284
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	128.3986142	-40.29861416				
2	214.1986437	31.10135626				
3	319.4980691	21.40193092				
4	125.355678	1.644321978				
5	15.71399932	-14.31399932				
6	140.6691734	-137.6691734				
7	-52.77417327	61.77417327				
8	81.25401596	42.74598404				
9	49.65123335	-28.65123335				
10	90.06350529	-39.06350529				
11	152.5641502	70.83584984				
12	163.3070908	30.4929092				

Regress	ion Statistics					
Multiple R	0.805011502					
R Square	0.648043519					
Adjusted R Square	0.516059839					
Standard Error	77.44909395					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	88356.37193	29452.124	4.91002764	0.031982683	
Residual	8	47986.89723	5998.36215			
Total	11	136343.2692				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-783.4642161	520.4915921	-1.50523895	0.17067957	-1983.71998	416.7
Min Temp	10.04821531	7.910039773	1.2703116	0.23967109	-8.19236911	28.28
Humidity	6.769299394	7.52895727	0.89910185	0.39485445	-10.5925072	24.1
Cloudiness	352.9359691	248.9705033	1.41758146	0.19406331	-221.191041	927.0
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	152.6690948	-64.56909475				
2	242.6905818	2.609418207				
3	294.3005726	46.59942739				
4	136.4002978	-9.400297759				
5	72.22912308	-70.82912308				
6	119.3556151	-116.3556151				
7	-19.86092774	28.86092774				
8	14.74212125	109.2578787				
9	48.13660842	-27.13660842				
10	75.14311474	-24.14311474				
11	137.6052285	85.79477152				
12	154.4885697	39.31143027				

Precipitatio Min Insolatio Humidit Max Temp Months Temp n n У 40.60 23.51 211.90 76.43 34.04 Jan 155.10 23.46 159.70 84.63 32.68 Feb 131.10 23.89 240.20 83.06 33.63 Mar 254.00 82.79 33.84 Apr 50.60 21.90 39.60 19.54 236.30 81.58 31.85 May 222.80 29.19 0.00 15.46 82.63 Jun 7.00 15.42 196.20 74.09 29.20 Jul 13.20 18.41 207.80 70.45 33.80 Aug 34.00 28.10 18.20 185.60 66.88 Sep 78.80 23.10 192.60 70.10 38.00 Oct 26.20 24.07 209.30 67.68 37.60 Nov 153.20 240.50 34.60 Dec 24.50 75.00 Total/Mea 723.50 20.96 2556.90 76.28 33.54 n

Appendix 16: 2002

Precipitation (Y) - I	Max Temp (X)				Max Temp	Line Fit Plot		Precipitation (Y)
Regres	sion Statistics			200.00				Regro
Multiple R	0.274054295		Precipitation	150.00 -		* • •		Multiple R
R Square	0.075105757		oitat	100.00 -		•	_	R Square
Adjusted R Square	-0.017383668		eci	50.00 -			-	Adjusted R Square
Standard Error	56.71509276		a a				٠	Standard Error
Observations	12			0.00	30.00	35.00	4	Observations
ANOVA					Ma	x Temp		ANOVA
	df	SS		MS	F	Significance F		
Regression	1	2612.03	31703	2612.0317	0.81204697	0.388703294		Regression
Residual	10	32166.0	01746	3216.60175				Residual
Total	11	34778.0	04917					Total
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe	
Intercept	-132.0281578	214.046	52641	-0.61682066	0.55113703	-608.952955	344.8	Intercept
Max Temp	5.734697094	6.36384	19616	0.90113649	0.38870329	-8.44484348	19.91	Min Temp
RESIDUAL OUTPUT								RESIDUAL OUTPUT
Observation	Predicted Precipitation	Residua	als					Observation
	1 63.17353356	-22.5735	53356					
	2 55.35306978	99.7469	93022					
	3 60.84265445	70.2573	34555					
	4 62.0339919	-11.433	39919					
	5 50.63119474	-11.0311	19474					
	6 35.38676415	-35.3867	76415					
	7 35.44349751	-28.4434	19751					
1	8 61.80460401	-48.6046	50401					
	9 62.95154343							
1		-7.09033	31807					
1	1 83.59645297	-57.3964	15297					
1	2 66.39236169	86.8076	53 <u>83</u> 1					

Precipitation (Y) - Mi	in Temp (X)				Min	Temp Line	Fit Plot	
Regressi	on Statistics			200.00 -				
Multiple R	0.722352614		_	150.00 -				• •
R Square	0.521793299		Precipitation	100.00 -				•
Adjusted R Square	0.473972629		pita					-
Standard Error	40,78124097		reci	50.00 -		-	•	••
Observations	12		-	0.00			1 1	1
				-50.0014.00	16.00			24.00 26.00
ANOVA						IVIII	n Temp	
	df	SS		MS		F	Significance F	
Regression	1	18146.9	5302	18146.95	3 10.	9114594	0.00796963	8
Residual	10	16631.0	9615	1663.1096	1			
Total	11	34778.0	4917					
	Coefficients	Standard	Error	t Stat	P	-value	Lower 95%	Upper 95%
Intercept	-191.093896	77.007	6792	-2.4814914	3 0.0	3245981	-362.67769	8 -19.510094
Min Temp	11.99638402	3.63169	1414	3.3032498	2 0.0	0796964	3.9044712	8 20.0882968
RESIDUAL OUTPUT								
Observation	Predicted Precipitation	Residua	ıls	-				
1	90.9372174	-50.337	2174					
2	90.30699937	64.7930	0063					
3	95.54228133	35.5577	1867					
4	71.58693002	-20.9869	3002					
5	43.29997235	-3.69997	2348					
6	-5.66978306	5.6697	8306					
7	-6.078691806	13.0786	9181					
8	29.75565891	-16.5556						
9	27.28027705	0.81972						
10	86.02257479	-7.22257						
11	97.69905123	-71.4990						
12	102.8175124	50.3824	8759					

Precipitation (Y) - Ir	nsolation (X)				Insolation Line	Fit Plot	
Regress	ion Statistics			200.00			
Multiple R	0.0148627		Precipitation	150.00 - 🔹		*	
R Square	0.0002209		oitai	100.00 -		•	
Adjusted R Square	-0.09975701		ecip	50.00			-
Standard Error	58.96640289		-	0.00	•		
Observations	12				70.00 190.00 2	10.00 230.00 250	00 27
				150.00 1		plation	0.00 21
ANOVA					113		
	df	SS		MS	F	Significance F	
Regression	1	7.68246	5488	7.68246549	0.00220949	0.963434596	
Residual	10	34770	.3667	3477.03667			
Total	11	34778.0)4917				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe
Intercept	66.8343941	140.228	6204	0.47661022	0.64388303	-245.614443	379.2
Insolation	-0.030706218	0.65325	1864	-0.04700517	0.9634346	-1.48624208	1.424
RESIDUAL OUTPUT							
Observation	Predicted Precipitation	Residua	als				
1	60.32774647	-19.7277	4647				
2	61.93061106	93.1693	8894				
3	59.4587605	71.641	2395				
4	59.03501469	-8.43501	4688				
5	59.57851475	-19.9785	1475				
6	59.9930487	-59.993	0487				
7	60.8098341	-53.809	8341				
8	60.45364197	-47.2536	64197				
9	61.13532001	-33.0353	2001				
10	60.92037648	17.8796	2352				
11	60.40758264	-34.2075	8264				
12	59.44954863	93.7504	5137				

Precipitation (Y) - Rel	ative Humidity (X)					Humidi	ity Line I	Fit Plot		
Regressio	on Statistics			200.00 -	1					
Multiple R	0.363733217		Precipitation	150.00	-		•		. •	
R Square	0.132301853		pita	100.00 -						
Adjusted R Square	0.045532039		reci	50.00		•				
Standard Error	54.93345866		-	0.00	•	•	. '	•		
Observations	12				.00	70.00	75.00	80.00	85.0	00.00
						10.00		midity	00.0	50.00
ANOVA								,		
	df	SS	· · · · ·	M	s	F		Significano	e F	
Regression	1	4601.20	0365	4601.	20037	1.5247	74514	0.245129	867	
Residual	10	30176	.8488	3017.	68488					
Total	11	34778.0	04917							
	Coefficients	Standard	Error	t St	at	P-va	lue	Lower 95	%	Upper 95%
Intercept	-178.9630261	194.406	8296	-0.920	55936	0.3789	95259	-612.128	436	254.202384
Humidity	3.136693806	2.54023	32669	1.234	80571	0.245:	12987	-2.5232	973	8.79668491
RESIDUAL OUTPUT				_						
Observation	Predicted Precipitation	Residuo	als	_						
1	60.76638567	-20.1663	8567							
2	86.47968722	68.6203	31278							
3	81.58492672	49.5150	07328							
4	80.72908295	-30.1290								
5	76.93047775	-37.3304	7775							
6	80.23243768	-80.2324								
7	53.43057163	-46.4305								
8	42.022112	-28.82								
9	30.80337216	-2.70337								
10	40.91920968	37.8807								
11	33.3127272	-7.11272								
12	56.28900933	96.9109	9067							

Precipitation (Y) - N	1in Temp, Insolation, Rela	tive Humidity, Ma	ax Temp (X)			
Regress	sion Statistics					
Multiple R	0.841235311					
R Square	0.707676849					
Adjusted R Square	0.540635048					
Standard Error	38.10967054					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	4	24611.62025	6152.90506	4.23652551	0.046957997	
Residual	7	10166.42892	1452.34699			
Total	11	34778.04917				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	45.27448387	477.6720526	0.09478152	0.92714449	-1084.24044	117
Min Temp	18.46249358	7.97210099	2.31588807	0.05371882	-0.38852975	37.3
Insolation	-0.42455647	0.453584072	-0.93600392	0.38042985	-1.49711237	0.64
Humidity	0.926119425	3.411710971	0.27145307	0.79387378	-7.14129508	8.99
Max Temp	-10.49746359	11.86531794	-0.88471827	0.40567051	-38.5544821	17.
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	102.8190273	-62.21902726				
2	145.9184014	9.181598576				
3	108.3047546	22.79524543				
4	63.1450178	-12.5450178				
5	46.87737046	-7.277370459				
e	6.124302416	-6.124302416				
7	8.770999209	-1.770999209				
8	7.372531028	5.827468972				
9	7.57619639	20.52380361				
10	56.00586497	22.79413503				
11	68.83907202	-42.63907202				
12	101.7464625	51.45353754				

Max Temp (Y) - Precip	itation (X)			Р	recipitation Lin	e Fit Plot	
Regressio	n Statistics		-	9.00	•		
Multiple R	0.274054295		d 3	5.00 -			
R Square	0.075105757			3.00	* • •		
Adjusted R Square	-0.017383668		Max 3	1.00 -	•		
Standard Error	2.710346253		- 2	9.00			
Observations	12		2	7.00	50.00 10	0.00 150.00	200.00
				0.00		oitation	200.00
ANOVA					Precip	ntation	
	df	SS		MS	F	Significance F	
Regression	1	5.9652	78215	5.96527822	0.81204697	0.388703294	
Residual	10	73.459	76812	7.34597681			
Total	11	79.4250	04634				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	32.74655489	1.1747	27135	27.8758819	8.1914E-11	30.12909972	35.3640101
Precipitation	0.013096726	0.0145	33565	0.90113649	0.38870329	-0.01928608	0.04547953
RESIDUAL OUTPUT							
Observation	Predicted Max Temp	Residu	als				
1	33.27828197	0.760	42803				
2	34.7778571	-2.1028	57102				
3	34.46353568	-0.8312	77677				
4	33.40924923	0.430	75077				
5	33.26518524	-1.4135	72244				
6	32.74655489	-3.5532	21892				
7	32.83823197	-3.6350	05974				
8	32.91943168	0.8805	58324				
9	33.11457289	0.8854	27106				
10	33.7785769	4.2214	23095				
11	33.08968911	4.5103	10886				
12	34.75297332	-0.1529	73323				

Max Temp (Y) - Min Tem	np (X)			Min Temp Line	Fit Plot		Max Temp (Y) - Ins	solat	tion (X)		Insolation Line Fit Plot				
Regression	Statistics		40.00				Reare	ssion	n Statistics		40.00	1			
Multiple R	0.739478482		ଣ୍ଟୁ 35.00 -		_		Multiple R		0.049129021		है 35.00	_		•	
R Square	0.546828425		F 1			** *	R Square		0.002413661		Tei	•		•••••• ••	-
Adjusted R Square	0.501511268		₩ 30.00 - 🗲				Adjusted R Square	•	-0.097344973		ă 30.00	-	•	•	
Standard Error	1.897186688		25.00				Standard Error		2.814841758		25.00				
Observations	12			17.00 19.00	21.00 23	3.00 2	Observations		12			0.00 170.	00 190.00 21	0.00 230.00 25	0.00 270.00
ANOVA					Temp		ANOVA						Insc	lation	
	df	SS	MS	F	Significance F		11016		df	SS		MS	F	Significance F	
Regression	-, 1	43.431873		12.0666974		_	Regression		-, 1	0.1917051			0.02419501		·
Residual	10	35.993173					Residual		10	79.233341		333412			
Total	11	79.425046	634				Total		11	79.425046	34				
	Coefficients	Standard Err	ror t Stat	P-value	Lower 95%	Uppe			Coefficients	Standard Erro	or ts	Stat	P-value	Lower 95%	Upper 95%
Intercept	21.23794427	3.5824791	111 5.9282814	0.00014542	13.25568338	8 29.22	Intercept		34.56971377	6.6940046	68 5.1	642799	0.0004226	19.65454189	49.4848856
Min Temp	0.586884692	0.1689501	146 3.47371521	0.00598379	0.210440308	8 0.963	Insolation		-0.004850571	0.031183	87 -0.15	554744	0.8794848	-0.07433256	0.06463142
RESIDUAL OUTPUT							RESIDUAL OUTPUT								
Observation F	Predicted Max Temp	Residuals	5				Observation		Predicted Max Temp	Residuals					
1	35.03541382	-0.9967038	818					1	33.54187775	0.4968322	46				
2	35.00458242	-2.3295824	417					2	33.79507757	-1.1200775	66				
3	35.26070183	-1.6284438	831					3	33.40460659	0.2276514	08				
4	34.08876294	-0.2487629	941					4	33.33766871	0.5023312					
5	32.70491407	-0.8533010						5	33.42352382	-1.571910					
6	30.30922552	-1.1158925						6	33.48900653	-4.2956735					
7	30.28922097	-1.0859949						7	33.61803172	-4.4148057					
8	32.04230189	1.7576981						8	33.5617651	0.2382349					
9	31.92120175	2.0787982						9	33.66944777	0.3305522					
10	34.79498066	3.2050193						10	33.63549378	4.3645062					
11	35.3662149	2.2337851						11	33.55448924	4.0455107					
12	35.61661923	-1.0166192	226				1	12	33.40315142	1.1968485	79				

Max Temp (Y) - Relat	ive Humidity (X)					Humi	idity Line	Fit Plot		
Regressi	ion Statistics			40.00 -	1.					
Multiple R	0.525746583		ę	35.00 -						
R Square	0.276409469		Ten	55.00	•	٠			* .	
Adjusted R Square	0.204050416		Max Temp	30.00 -	-		•		•	
Standard Error	2.397315404		~	25.00 -						
Observations	12				.00 7	0.00	75.00	80.00	85.0	00 9
				05		0.00		nidity	05.0	
ANOVA							- Tal	marcy		
	df	SS		٨	1S		F	Significar	nce F	
Regression	1	21.9538	3489	21.9	538349	3.81	997079	0.07915	8698	
Residual	10	57.4712	1145	5.74	712115					
Total	11	79.4250)4634							
	Coefficients	Standard	Error	t S	itat	P-	value	Lower 9	5%	Uppe
Intercept	50.06264793	8.4839	8223	5.90	084309	0.00	015089	31.159	1575	68.96
Humidity	-0.216666491	0.11085	6645	-1.95	447456	0.0	791587	-0.4636	7049	0.030
RESIDUAL OUTPUT				-						
Observation	Predicted Max Temp	Residua	als	_						
1	33.50338721	0.53532	2786							
2	31.7272461	0.94775	3898	1						
3	32.06535069	1.56690								
4	32.12446793	1.7155								
5	32.38685582	-0.53524								
6	32.1587736	-2.96544								
7	34.01010709	-4.80688								
8	34.79814413	-0.99814								
9	35.57307632	-1.57307								
10	34.87432689	3.12567								
11	35.39974313	2.20025								
12	33.81266108	0.7873	3892							

Max Temp (Y) - Precip	pitation, Min Temp, Inso	lation, Relative H	umidity (X)			
Regressio	on Statistics					
Multiple R	0.939776108					
R Square	0.883179132					
Adjusted R Square	0.816424351					
Standard Error	1.151303784					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	4	70.14654351	17.5366359	13.2302003	0.002229279	
Residual	7	9.278502829	1.3255004			
Total	11	79.42504634				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	34.68155322	6.056370365	5.72645844	0.00071554	20.36051298	49.0025935
Precipitation	-0.009580625	0.010829013	-0.88471827	0.40567051	-0.03518717	0.01602592
Min Temp	0.722832213	0.166746969	4.33490467	0.00341729	0.328538287	1.11712614
Insolation	0.00058389	0.014533464	0.04017556	0.96907502	-0.03378229	0.03495007
Humidity	-0.207656003	0.067637615	-3.07012604	0.01806431	-0.36759355	-0.0477185
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	35.53924566	-1.500535657				
2	32.67153484	0.003465163				
3	33.58796445	0.044293548				
4	32.98051129	0.859488713				
5	31.62263202	0.228980977				
6	28.82491311	0.368419888				
7	30.49202106	-1.288795058				
8	33.35382854	0.446171459				
9	33.79166793	0.208332065				
10	36.1797955	1.820204501				
11	37.9006096	-0.300609603				
12	35.489416	-0.889415998				

Regressi	on Statistics					
Multiple R	0.931501537					
R Square	0.867695113					
Adjusted R Square	0.838294027					
Standard Error	1.08055139					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	68.91672459	34.4583623	29.5123492	0.000111453	
Residual	9	10.50832175	1.16759131			
Total	11	79.42504634				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	38.56108339	4.23225857	9.11123051	7.721E-06	28.98704935	48.13
Min Temp	0.611164877	0.096366571	6.34208385	0.00013412	0.393168547	0.829
Humidity	-0.233781471	0.050039673	-4.67192248	0.00116542	-0.34697907	-0.12
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	35.06205778	-1.02334778				
2	33.1135083	-0.438508298				
3	33.74503595	-0.112777951				
4	32.58839946	1.251600539				
5	31.43041347	0.421199533				
6	28.68951321	0.50381979				
7	30.66625558	-1.46302958				
8	33.34214963	0.457850374				
9	34.05218527	-0.05218527				
10	36.29091091	1.709089091				
11	37.45269792	0.14730208				
12	36.00101253	-1.401012528				

Min Temp (Y) - Insolat	ion (X)				Insolation Line	Fit Plot	
Regressio	n Statistics		1	29.00			
Multiple R	0.117644427		đ	24.00 -			
R Square	0.013840211		Min Temp				-
Adjusted R Square	-0.084775768		- E	19.00 -	• •	•	
Standard Error	3.52634779			14.00	•	•	
Observations	12				.00 190.00 21	0.00 230.00 250	0.00 270.00
				100.00 170		lation	
ANOVA							
	df	SS		MS	F	Significance F	
Regression	1	1.74520	2051	1.74520205	0.14034451	0.715760915	
Residual	10	124.351	2873	12.4351287			
Total	11	126.096	64894				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	17.83671453	8.38604	4615	2.12695202	0.05932507	-0.84855729	36.5219863
Insolation	0.014635207	0.039	0662	0.37462583	0.71576092	-0.07240971	0.10168012
RESIDUAL OUTPUT							
Observation	Predicted Min Temp	Residuo	als				
1	20.93791496	2.57176	2035				
2	20.17395714	3.28318	85859				
3	21.35209133	2.54145	66668				
4	21.55405719	0.34260	9806				
5	21.29501402	-1.75630	04024				
6	21.09743872	-5.64077	1725				
7	20.70814221	-5.28556	51209				
8	20.87791061	-2.46823	3615				
9	20.55300901	-2.34967	6012				
10	20.65545546	2.44454	4537				
11	20.89986343	3.17346	59574				
12	21.35648189	3.14351	8105				

Min Temp (Y) - Relat	tive Humidity (X)					Humidity Line	e Fit Plot	
Regress	ion Statistics			29.00				
Multiple R	0.053929942		đ	24.00	•	•		
R Square	0.002908439		Min Temp			•		-
Adjusted R Square	-0.096800717		Min	19.00 -	٠	•	•	
Standard Error	3.545839047			14.00		٠	•	
Observations	12			14.00 + 65.0	0 7	0.00 75.00	80.00	85.00 9
							umidity	
ANOVA								
	df	SS		MS		F	Significanc	e F
Regression	1	0.366743	905	0.3667	4391	0.02916922	0.867795	108
Residual	10	125.7297	455	12.572	9745			
Total	11	126.0964	894					
	Coefficients	Standard Er	ror	t Sta	nt	P-value	Lower 95	% Uppe
Intercept	18.81908627	12.54855	136	1.499	97019	0.16458333	-9.14082	855 46.77
Humidity	0.028003867	0.163966	668	0.1	7079	0.86779511	-0.33733	664 0.393
RESIDUAL OUTPUT								
Observation	Predicted Min Temp	Residuals	5	-				
1	20.95934954	2.550327	456					
2		2.268229	489					
3		2.748334						
4		0.759093						
5		-1.564949						
6		-5.676472						
7		-5.471275						
8		-2.382326						
9		-2.488511						
10		2.317842						
11		3.359085						
12	20.91937629	3.580623	708					

Min Temp (Y) - Max T	emp (X)				N	1ax Temp Line	Fit Plot	
Rearessi	on Statistics		:	29.00				
Multiple R	0.739478482		<u>e</u> .	24.00 -				
R Square	0.546828425		Min Temp	24.00		•		*
Adjusted R Square	0.501511268		l in i	19.00 -	_		•	
Standard Error	2.390467415		-	•				
Observations	12		-	14.00 + 29.00	31.	00 33.00	35.00 37	.00 39.00
				25.00	51.		Temp	.00 33.00
ANOVA						TTTU.	remp	
	df	SS		MS		F	Significance F	
Regression	1	68.9531	14475	68.953144	17 :	12.0666974	0.00598378	5
Residual	10	57.1433	34464	5.7143344	16			
Total	11	126.096	54894					
	Coefficients	Standard	Error	t Stat		P-value	Lower 95%	Upper 95%
Intercept	-10.29214362	9.02177	71718	-1.140811	18 (0.28053258	-30.393903	7 9.80961646
Max Temp	0.931747638	0.26822	27987	3.4737152	21 (0.00598379	0.3340984	4 1.52939684
RESIDUAL OUTPUT								
Observation	Predicted Min Temp	Residua	als					
1	21.42334403	2.08633	32973					
2	20.15271046	3.30443	32545					
3	21.04463334	2.84891	14664					
4	21.23819645	0.65847	70546					
5	19.38552156	0.15318	38437					
6	16.90867545	-1.45200	08452					
7	16.91789323	-1.49531	12231					
8	21.20092655	-2.79124						
9	21.38727608	-3.18394						
10	25.11426663							
11	24.74156757	-0.66823						
12	21.94632466	2.55367	75341					

Min Temp (Y) - Precip	oitation (X)			F	Precipitation	Line Fit P	lot	
Regressi	on Statistics		2	29.00				
Multiple R	0.722352614		은 2	24.00 - 🔹				
R Square	0.521793299		Ten ,		•		•	
Adjusted R Square	0.473972629		Min Temp	19.00 🖡 🔫 🦿				
Standard Error	2.455609622		_	14.00				
Observations	12			0.00	50.00	100.00	150.00	20
				0.00		cipitation		-
ANOVA								
	df	SS		MS	F	Signij	ficance F	
Regression	1	65.7963	0324	65.7963032	10.911459	94 0.00	7969638	
Residual	10	60.3001	8616	6.03001862				
Total	11	126.096						
	Coefficients	Standard		t Stat	P-value		er 95%	Uppe
Intercept	18.33267214	1.06431	8351	17.2248013	9.1952E-0	09 15.9	6122307	20.70
Precipitation	0.043495882	0.01316	7603	3.30324982	0.0079696	54 0.01	4156634	0.072
RESIDUAL OUTPUT								
Observation	Predicted Min Temp	Residuo						
1	20.09860493	3.41107	2069					
2	25.07888338	-1.62174	0378					
3	24.03498222	-0.14143						
4	20.53356375	1.36310						
5	20.05510905	-0.51639						
6	18.33267214	-2.87600						
7	18.63714331	-3.21456						
8	18.90681777	-0.49714						
9	19.55490641	-1.3515						
10	21.76014761	1.33985						
11	19.47226424	4.60106						
12	24.9962412	-0.49624	1203					

Min Temp (Y) - Insol	ation, Humidity, Max Tem	np, Precipitation ((X)			
Regressi	ion Statistics					
Multiple R	0.947307403					
R Square	0.897391315					
Adjusted R Square	0.83875778					
Standard Error	1.359547981					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	4	113.1578944	28.2894736	15.3050865	0.001432966	
Residual	7	12.93859498	1.84837071			
Total	11	126.0964894				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-28.25150016	13.29433818	-2.12507759	0.07118575	-59.6876146	3.1846143
Insolation	0.007488708	0.016929223	0.44235392	0.67157818	-0.03254254	0.04751996
Humidity	0.162448063	0.105828707	1.53500944	0.16865622	-0.08779706	0.41269319
Max Temp	1.007967924	0.232523666	4.33490467	0.00341729	0.458136825	1.55779902
Precipitation	0.023496818	0.010145921	2.31588807	0.05371882	-0.00049447	0.04748811
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	21.0147419	2.4949351				
2	23.27132219	0.185820807				
3	24.02162731	-0.128079307				
4	22.39855113	-0.501884133				
5	19.80657751	-0.267867514				
6	16.26655213	-0.80988513				
7	14.85374459	0.568836406				
8	19.12885526	-0.719178259				
9	18.93328826	-0.729955258				
10	24.73276457	-1.632764572				
11	22.82476966	1.24856334				
12	24.20854148	0.29145852				

Min Temp (Y) - Max T	emp, Precipitation					
Regressio	on Statistics					
Multiple R	0.915884121					
R Square	0.838843722					
Adjusted R Square	0.803031216					
Standard Error	1.502636233					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	105.7752486	52.8876243	23.4232064	0.000270777	
Residual	9	20.32124084	2.25791565			
Total	11	126.0964894				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-5.825079195	5.777917329	-1.00816243	0.33971112	-18.8956363	7.245
Max Temp	0.737718866	0.175319039	4.20786511	0.00228	0.341119647	1.134
Precipitation	0.03383418	0.008378287	4.03831733	0.00293602	0.014881179	0.052
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	20.65958703	2.850089965				
2	23.52756602	-0.070423022				
3	23.42173299	0.471815006				
4	20.85133672	1.045330283				
5	19.01229014	0.526419863				
6	15.71139331	-0.254726312				
7	15.95553082	-0.532949824				
8	19.55642964	-1.146752639				
9	20.20810269	-2.004769691				
10	24.87437107	-1.774371067				
11	22.79960567	1.273727334				
12	24.8833899	-0.383389897				

Min Max Precipit Insolat Humi Wind Cloudi Months Temp Temp ation ion dity Mean ness 24.06 32.47 275.40 138.90 86.79 4.06 6.82 Jan 99.40 206.30 22.66 33.68 83.64 1.81 6.60 Feb 21.77 86.29 Mar 33.49 37.40 224.20 1.73 5.56 19.44 32.43 202.20 2.08 Apr 41.60 79.96 5.03 16.78 31.13 44.20 215.90 78.74 4.15 May 2.30 16.43 31.05 33.60 215.40 81.52 4.11 1.86 Jun Jul 12.11 28.33 27.40 228.10 73.18 2.28 3.57 14.08 33.28 0.00 221.90 66.10 2.91 1.87 Aug Sep 16.31 30.97 45.60 174.70 67.37 3.79 3.43 21.73 33.92 64.20 190.20 78.37 4.90 Oct 2.58 Nov 22.23 34.17 126.50 181.10 77.49 2.07 6.38 22.66 33.53 210.40 80.60 Dec 171.90 1.88 6.34 Total / 2409.3 19.19 967.20 78.34 2.45 4.90 Mean 32.37

Appendix 17: 2005

Min Temp (Y) - Max	(Temp (X)					Max Temp l	ine l	Fit Plot		
Regressi	ion Statistics			25.00					•	
Multiple R	0.758923114	-	đ	20.00 -						
R Square	0.575964294		Min Temp							
Adjusted R Square	0.533560723		Min	15.00 -		/			•	
Standard Error	2.670628427		-	10.00						
Observations	12			27.00)	29.00	31	.00	33.00	3
				27.00				Temp	00.00	5
ANOVA										
	df	SS		MS		F		Signifia	ance F	
Regression	1	96.8768	36296	96.87	6863	13.58291	97	0.004	207979	
Residual	10	71.3225	6193	7.1322	5619					
Total	11	168.199	94249							
	Coefficients	Standard	Error	t Stat	t	P-value		Lowe	r 95%	Uppe
Intercept	-36.78790326	15.208	80215	-2.41898	8022	0.036124	54	-70.6	734868	-2.90
Max Temp	1.729244703	0.46920	02036	3.68550	0128	0.004207	98	0.683	797418	2.774
RESIDUAL OUTPUT										
Observation	Predicted Min Temp	Residua	als							
	1 19.36234616		1884							
	2 21.45058725		5749							
	3 21.12506039									
	4 19.29726604									
	5 17.04181044									
	5 16.91090835									
	7 12.19434673									
	8 20.76805437									
	9 16.76104162									
10										
1:										
12	2 21.19199773	1.47251	18272							

Min Temp (Y) - Preci	pitation (X)			Р	recipitation Lin	e Fit Plot	
Regressio	on Statistics			30.00			
Multiple R	0.721850497		đ	25.00 -			-
R Square	0.521068141		Ter	20.00 - 💲			
Adjusted R Square	0.473174955		Min Temp	15.00			
Standard Error	2.838240006		_	10.00			
Observations	12			0.00 50.0	00 100 00 15	0.00 200.00 250	00 300 00
				0.00 50.		pitation	
ANOVA					Trea	http://	
	df	SS		MS	F	Significance F	
Regression	1	87.6433	6159	87.6433616	10.879797	0.008034454	
Residual	10	80.556	0633	8.05560633			
Total	11	168.199	4249				
	Coefficients	Standard I	rror	t Stat	P-value	Lower 95%	Upper 95%
Intercept	16.26281614	1.20765	4879	13.4664435	9.8105E-08	13.57199339	18.9536389
Precipitation	0.036307682	0.01100	7486	3.29845373	0.00803445	0.011781476	0.06083389
RESIDUAL OUTPUT							
Observation	Predicted Min Temp	Residua	ls				
1	26.26195184	-2.20388	6835				
2	19.87179976	2.7853	4324				
3	17.62072346	4.1534	7054				
4	17.77321573	1.66345	1274				
5	17.8676157	-1.09019	6699				
6	17.48275427	-1.04942	1268				
7	17.25764664	-5.15119	4638				
8	16.26281614	-2.17894	5144				
9	17.91844645	-1.60511	3455				
10	18.59376934	3.13848	8656				
11	20.85573795	1.37759	5051				
12	22.50410672	0.16040	9277				

Min Temp (Y) - Inso	lation (X)					Insolation Li	ne Fit Plot	
Regressi	ion Statistics	•		25.00	•			
Multiple R	0.520758367	-	슱	20.00				•
R Square	0.271189277		Temp					-
Adjusted R Square	0.198308204		Ξ	15.00 ·				
Standard Error	3.501221851			10.00				•
Observations	12	_			00 150	00 170 00	190.00 210.00 2	230 00 25
							solation	
ANOVA								
	df	SS		N	15	F	Significance I	F
Regression	1	45.6138	8038	45.63	138804	3.7209836	2 0.08257293	33
Residual	10	122.585	5445	12.25	585545			
Total	11	168.199	4249					
	Coefficients	Standard	Error	t S	tat	P-value	Lower 95%	Uppei
Intercept	35.04163997	8.27993	2488	4.232	211663	0.0017379	6 16.5928007	1 53.49
Insolation	-0.078956168	0.04093	1455	-1.928	898513	0.0825729	3 -0.1701571	.3 0.01
RESIDUAL OUTPUT								
Observation	Predicted Min Temp	Residuo	als					
:	24.07462823	-0.01656	3232					
	2 18.7529825							
	3 17.3396671							
	4 19.07670279							
	5 17.99500329							
	5 18.03448138							
	7 17.03173804							
	8 17.52126628							
	9 21.24799742							
10								
1:								
12	2 18.42926222	4.23525	3784					

Min Temp (Y) - Relat	ive Humidity (X)					Humidity Lir	ne Fit Plot	
Regressio	on Statistics			25.00 -	1			
Multiple R	0.728818477		du	20.00 -			•••••	-
R Square	0.531176372		Min Temp					
Adjusted R Square	0.484294009		'n	15.00 -			•	
Standard Error	2.808128641		_	10.00 -		٠		
Observations	12			65	00 7	70.00 75.0	0 80.00 8	5.00 90.00
				00			lumidity	5.00 50.00
ANOVA							i i i i i i i i i i i i i i i i i i i	
	df	SS		N	1S	F	Significance I	=
Regression	1	89.3435	6024	89.34	435602	11.32998	3 0.00716948	4
Residual	10	78.8558	6465	7.885	558646			
Total	11	168.199	4249					
	Coefficients	Standard E	rror	t S	tat	P-value	Lower 95%	Upper 95%
Intercept	-14.66428391	10.090	0904	-1.453	333524	0.1767808	6 -37.146406	4 7.81783854
Humidity	0.432152133	0.1283	8729	3.3	366004	0.0071694	8 0.14608742	4 0.71821684
RESIDUAL OUTPUT				_				
Observation	Predicted Min Temp	Residua	ls					
1	22.84233931	1.21572	5687	-				
2	21.48215517	1.17498	7833					
3	22.62626325	-0.85206	9246					
4	19.88988026	-0.45321	3261					
5	19.36421127	-2.5867	9227					
6	20.56331762	-4.12998	4623					
7	16.95949381	-4.85304	1811					
8	13.89957797	0.1842	9303					
9	14.44836494	1.86496	8061					
10	19.20389709	2.5283	6091					
11	18.82390529	3.40942	7713					
12	20.16717802	2.49733	7976					

Min Temp (Y) - Wind	Mean (X)					Wind	l Mean L	ine Fit 🛛	Plot	
Regressio	n Statistics			25.00 -						•
Multiple R	0.064370912		đ	20.00 -	•**	•	٠			
R Square	0.004143614		Min Temp	20.00	_	-				
Adjusted R Square	-0.095442024		Min	15.00 -				•		
Standard Error	4.092706578		-	10.00 -			•			
Observations	12			10.00 -	50 2.	00	2.50	3.00	3.50	4.00
								ind Me		
ANOVA										
	df	SS		N	S		F	Sign	ificance F	
Regression	1	0.69695	3541	0.696	95354	0.0	416085	5 0.8	4245915	4
Residual	10	167.502	4714	16.75	02471					
Total	11	168.199	94249							
	Coefficients	Standard	Error	t S	tat	P	-value	Lo	wer 95%	Uppe
Intercept	19.98559838	4.07903	86213	4.899	58837	0	000623	5 10.	8969393	2 29.07
Wind Mean	-0.325551602	1.59598	3994	-0.203	98175	0.8	424591	5 -3.	8816255	5 3.230
RESIDUAL OUTPUT										
Observation	Predicted Min Temp	Residua								
1										
2	19.39650494									
3	19.42200898	2.35218								
4	19.30859918	0.12806								
5	19.23647973									
6	19.38151915									
7	19.24348072									
8	19.03694818 18.75139612	-4.95307 -2.43806								
9 10		2.58679								
10	19.14546527	2.92054								
11	19.37300142	3.29151								

Min Temp (Y) - Wind	Mean (X)				,	Wind Mean Lin	e Fit Plot	
Regression	n Statistics			25.00				•
Multiple R	0.064370912		đ	20.00 -	•**	• •		
R Square	0.004143614		Min Temp			•		-
Adjusted R Square	-0.095442024		Ξ	15.00 -			•	
Standard Error	4.092706578			10.00		•		
Observations	12			1.5	0 2.0	00 2.50	3.00 3.50	4.00 4.50
						Win	d Mean	
ANOVA								
	df	SS		MS	; ;	F	Significance F	_
Regression	1	0.69695	3541	0.6969	95354	0.04160855	0.84245915	4
Residual	10	167.502	4714	16.750	02471			
Total	11	168.199	4249					
	Coefficients	Standard I	Frror	t Sta	at	P-value	Lower 95%	Upper 95%
Intercept	19.98559838	4.07903	6213	4.8995	58837	0.0006235	10.8969393	2 29.0742574
Wind Mean	-0.325551602	1.59598	3994	-0.2039	98175	0.84245915	-3.8816255	5 3.23052234
RESIDUAL OUTPUT								
Observation	Predicted Min Temp	Residua	ls					
1	18.66238869	5.39567	6313					
2	19.39650494	3.26063	8056					
3	19.42200898	2.35218	5018					
4	19.30859918	0.12806	7825					
5	19.23647973	-2.45906	0729					
6	19.38151915	-2.94818	6153					
7	19.24348072	-7.13702	8716					
8	19.03694818	-4.95307	7175					
9	18.75139612	-2.43806	3122					
10	19.14546527	2.58679	2733					
11	19.31279163	2.92054	1371					
12	19.37300142	3.29151	4579					

Min Temp (Y) - Cloud	liness (X)		Cloudiness Line Fit Plot	
Regressio	n Statistics		25.00	
Multiple R	0.908548675	ę	20.00 -	
R Square	0.825460694	Min Temp		
Adjusted R Square	0.808006764	Min	15.00	
Standard Error	1.713400445	-	10.00	
Observations	12			5.50 6.50
			Cloudiness	
ANOVA				
	df	SS	MS F Signific	ance F
Regression	1	138.842014	138.842014 47.293685 4.313	49E-05
Residual	10	29.35741085	2.93574109	
	Coefficients	Standard Error	t Stat P-value Lower	95% Uppe
Intercept	7.773406922	1.732110592	4.48782368 0.00116483 3.9140	024017 11.63
Cloudiness	2.331110805	0.33897006	6.87704042 4.3135E-05 1.5758	838445 3.086
RESIDUAL OUTPUT				
Observation	Predicted Min Temp	Residuals		
1	23.66506483	0.39300017		
2	23.14763749	-0.490494489		
3	20.73237825	1.041815755		
4	19.50666387	-0.069996866		
5	17.4487709	-0.671351902		
6	17.3568622	-0.923529197		
7	16.09522074	-3.988768738		
8	12.13484064	1.949030356		
9	15.77688658	0.536446423		
10	19.20337003	2.528887968		
11	22.64071413	-0.407381133		
12	22.56217435	0.102341652		

Min Temp (Y) - Max	Temp, Precipitation, In	solation, Relative	e Humidity, Wi	nd Mean, Clou	udiness (X)	
Regressio	n Statistics					
Multiple R	0.993524597					
R Square	0.987091124					
Adjusted R Square	0.971600473					
Standard Error	0.65897883					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	6	166.0281594	27.6713599	63.7217328	0.000146362	
Residual	5	2.171265493	0.4342531			
Total	11	168.1994249				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-34.44639937	10.60374329	-3.24851314	0.02273336	-61.7041893	-7.1886095
Max Temp	1.02074779	0.139087099	7.33891064	0.00073691	0.66321302	1.37828256
Precipitation	-0.006570079	0.00683685	-0.96098042	0.38069693	-0.02414476	0.0110046
Insolation	0.003221331	0.025646424	0.12560546	0.90493842	-0.0627049	0.06914756
Humidity	0.106721534	0.05693584	1.87441749	0.11973212	-0.0396367	0.25307977
Wind Mean	1.343688741	0.908586607	1.478878	0.19923323	-0.99190749	3.67928497
Cloudiness	1.802817594	0.538743634	3.3463367	0.02041045	0.417932995	3.18770219
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	24.35032868	-0.292263676				
2	23.1903644	-0.533221405				
3	21.7725974	0.001596596				
4	19.43960989	-0.002942886				
5	16.7116307	0.065788301				
6	16.32879839	0.104534614				
7	12.33037299	-0.223920986				
8	14.5852943	-0.501423301				
9	15.89914879	0.414184207				
10	21.04197395	0.690284055				
11	22.72637565	-0.493042645				
12	21.89408887	0.770427126				

Rearessia	n Statistics					
Multiple R	0.976893297					
R Square	0.954320514					
Adjusted R Square	0.944169517					
Standard Error	0.923956666					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	160.5161616	80.2580808	94.0124919	9.30562E-07	
Residual	9	7.683263285	0.85369592			
Total	11	168.1994249				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-20.0793729	5.606118698	-3.58168886	0.00591511	-32.7612945	-7.39
Cloudiness	1.811795944	0.209844791	8.63398101	1.1976E-05	1.337094047	2.286
Max Temp	0.93899128	0.186355472	5.03871054	0.00070101	0.517425914	1.360
Observation	Predicted Min Temp	Residuals				
1		1.296099532				
2	23.49373706	-0.836594057				
3	21.43977567	0.334418328				
4	19.49461629					
5	16.67044462	0.106974378				
6	16.52793024					
7	12.98622778	-0.879775784				
8	14.56370397	-0.479832972				
9	15.21855619	1.094776807				
10	20.65727984	1.074978161				
11	23.5580618					
12	22.89828506	-0.233769064				

Appendix 18: 2009

Months	Max Temp	Min Temp	Insolat ion	Humi dity	Wind Mean	Cloudi ness	Precipit ation
Jan	33.84	20.43	222.60	76.06	2.09	5.53	193.40
Feb	33.66	22.65	171.20	82.87	2.24	7.20	146.40
Mar	33.74	22.53	168.90	86.90	1.33	4.85	190.20
Apr	34.32	19.12	260.60	79.36	0.98	4.24	1.40
May	31.50	17.13	212.00	79.56	2.32	4.12	54.90
Jun	28.50	13.99	207.90	78.84	2.62	4.36	11.10
Jul	29.96	14.79	196.30	77.15	3.01	4.94	32.30
Aug	32.47	15.17	243.60	69.68	2.75	3.69	56.60
Sep	33.12	18.25	195.30	66.65	4.46	4.17	1.50
Oct	35.47	21.28	233.40	67.36	3.90	4.95	101.80
Nov	35.42	23.49	225.20	72.72	4.33	5.41	81.80
Dec	34.03	22.64	177.80	78.81	3.27	5.33	216.20
Total / Mean	33.00	19.29	2514.8	76.33	2.77	4.90	1087.60

Max Temp (Y) - Mir	n Ter	np (X)					Min Temp Lin	e Fit Plot		N
Regress	ion .	Statistics		3						F
Multiple R		0.849691329		e ^{3!}				• • • • •	-	Ν
R Square		0.721975354		Max Temp		•				R
Adjusted R Square		0.69417289		Xe 33 W 29						A
Standard Error		1.16022854		- 2	- (•				s
Observations		12		2	13	15	17	19 21	23	C
ANOVA							Min	Temp		A
		df	SS		M	s	F	Significance F	_	Γ
Regression		1	34.956	35694	34.95	63569	25.9680343	0.000466824	ŧ.	R
Residual		10	13.461	30266	1.346	13027				R
Total		11	48.41	76596						Т
		Coefficients	Standard	Error	t St	at	P-value	Lower 95%	Uppei	
Intercept		22.88437245	2.0138	65754	11.36	34051	4.8694E-07	18.39719992	27.3	h
Min Temp		0.524641347	0.1029	53941	5.095	88406	0.00046682	0.295245671	0.754	h
RESIDUAL OUTPUT										R
Observation	F	Predicted Max Temp	Residu	als						L
	1	33.6039798	0.2379	55199						L
	2	34.76749895	-1.1067							L
	3	34.70403414	-0.9620							
	4	32.91376637	1.4062							
	5	31.87097086	-0.3677							
	6	30.22585352	-1.7225							
	7	30.64229493	-0.6777							
	8	30.84199704	1.6321							
	9	32.4573284	0.6626							
	0	34.05077119	1.4234							
	.1	35.20644905	0.2102							
1	.2	34.76157575	-0.735	76975						L

Max Temp (Y) - Insola	ation (X)					Insolation Line	Fit Plot			
Rearessio	n Statistics		4	0.00 -						
Multiple R	0.166439113		£ 3	5.00 -			• •			
R Square	0.027701978		Le SS.00		2					
Adjusted R Square	-0.069527824		Max Temp	0.00 -		•				
Standard Error	2.169709535			5.00 -			•			
Observations	12		2		00 170	00 190 00 21	0.00 230.00 25	0 00 270 00		
				150	.00 170.		lation	0.00 270.00		
ANOVA						moo				
	df	SS		٨	1S	F	Significance F			
Regression	1	1.3412	64954	1.34	126495	0.28491242	0.605160341			
Residual	10	47.076	39465	4.70	763946					
Total	11	48.41	76596							
	Coefficients	Standard	Error	t S	tat	P-value	Lower 95%	Upper 95%		
Intercept	30.48281202	4.764	46168	6.39	795512	7.853E-05	19.86692984	41.0986942		
Insolation	0.012029893	0.0225	37518	0.53	377188	0.60516034	-0.03818683	0.06224661		
RESIDUAL OUTPUT										
Observation	Predicted Max Temp	Residu	als							
1	33.16066628	0.6812	68723							
2	32.54232976	1.1183	84241							
3	32.514661	1.2272	73996							
4	33.61780222	0.7021	97777							
5	33.03314941	-1.5299	23407							
6	32.98382684	-4.4804	93844							
7	32.84428008	-2.8797	64082							
8	33.41329404	-0.9391	00037							
9	32.83225019	0.2877	49812							
10	33.29058912	2.1836	04875							
11	33.191944	2.2247	23001							
12	32.62172705	1.4040	78945							

Max Temp (Y) - Relat	ive Humidity (X)				Humidity Line	Fit Plot	
Rearessic	on Statistics		4	0.00			
Multiple R	0.201749084		£ 3	5.00 - 🔹	•		
R Square	0.040702693		Ten			- <u>**</u>	•
Adjusted R Square	-0.055227038		Max Temp	0.00 -		•	
Standard Error	2.155154994		-			•	
Observations	12		2	5.00	0.00 75.00	80.00 85.	00 9
				03.00 /		midity 85.	00 5
ANOVA					10	marty	
	df	SS		MS	F	Significance F	
Regression	1	1.9707	29133	1.97072913	0.42429696	0.529484784	
Residual	10	46.446	93047	4.64469305			
Total	11	48.41	76596				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Upper
Intercept	38.24138543	8.0646	57891	4.74184844	0.0007899	20.27220786	56.2
Humidity	-0.068617287	0.1053	41279	-0.65138081	0.52948478	-0.30333228	0.166
RESIDUAL OUTPUT							
Observation	Predicted Max Temp	Residu	als				
1	33.02204469	0.8198	90311				
2	32.55534044	1.1053	73565				
3	32.27887521	1.4630	59791				
4	32.7960319	1.5239	68099				
5	32.78188418	-1.2786	58183				
6	32.83185877	-4.3285	25771				
7		-2.9828	24362				
8		-0.9861					
9		-0.5480					
10		1.8550					
11		2.1649					
12	32.83390048	1.1919	05521				

Max Temp (Y) - Win	d Mean (X)					Wind Mean	Lin	e Fit Plot		
Regressi	on Statistics		4	0.00 -]					
Multiple R	0.14122312		Ê 3	5.00 -				•	•	
R Square	0.01994397		Ter		-			-		
Adjusted R Square	-0.078061633		Max Temp	0.00 -		•		•		
Standard Error	2.17834844		-	5.00 -			Ť.,			
Observations	12		2		50 1	1.50 2.	50	3.50	4.5	0 5.50
				0.	50 1			d Mean	4.5	5.50
ANOVA							•••••	amean		
	df	SS	· · · · ·	1	VIS	F		Significance	F	
Regression	1	0.9656	40336	0.96	564034	0.203498	326	0.6615362	14	
Residual	10	47.452	01927	4.74	520193					
Total	11	48.41	76596							
	Coefficients	Standard	Error	t.	Stat	P-value		Lower 95%	6	Upper 95%
Intercept	32.25134151	1.7827	79645	18.0	904811	5.7105E	-09	28.279060	92	36.2236221
Wind Mean	0.27120051	0.601	18779	0.45	110781	0.661536	521	-1.068329	36	1.61073038
RESIDUAL OUTPUT										
Observation	Predicted Max Temp	Residu	als							
1	. 32.81707174	1.0248	63256							
2	32.85831402	0.8023	99981							
3	32.61235902	1.1295	75978							
4	32.51651541	1.8034	84594							
5	32.88122667	-1.3780	00665							
e	32.96248946	-4.4591	56457							
7	33.06669283	-3.1021	76829							
8	32.9978719	-0.5236	77903							
9	33.45969057	-0.3396	90573							
10	33.3098984	2.1642	95605							
11	33.42654363	1.9901	23367							
12	33.13784635	0.8879	59649							

Max Temp (Y) - Clou	diness (X)				Cloudiness Line	e Fit Plot	
Regressi	on Statistics		4	0.00			
Multiple R	0.326522118		Ê 3	5.00 -	•	•	
R Square	0.106616694		Max Temp			*	•
Adjusted R Square	0.017278363		Aax Aax	0.00 -			
Standard Error	2.079796356		25.00		•		
Observations	12		2	3.50	4.50	5.50 6.50	
				5.50		udiness	
ANOVA					cio	Juness	
	df	SS		MS	F	Significance F	
Regression	1	5.162	13078	5.16213078	1.19340369	0.300262755	
Residual	10	43.255	52882	4.32555288			
Total	11	48.41	76596				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe
Intercept	29.39177864	3.3605	46036	8.74613183	5.3481E-06	21.90401545	36.87
Cloudiness	0.737438662	0.6750	44206	1.09243018	0.30026275	-0.76665356	2.241
RESIDUAL OUTPUT							
Observation	Predicted Max Temp	Residu	als				
1	33.46751511	0.3744	19892				
2	34.70309285	-1.0423	78848				
3	32.96795941	0.7739	75591				
4		1.7982					
5		-0.9255	31534				
e		-4.100					
7		-3.0668					
8		0.3626					
9		0.6555					
10		2.4348					
11		2.0345					
12	33.32478459	0.7010	21408				

Max Temp (Y) - Preci	pitation (X)				Preci	pitation Lin	e Fit Plot	
Regressio	on Statistics		4	0.00				
Multiple R	0.447601803		Ê a	5.00		• •	_	
R Square	0.200347374		Ter			-		
Adjusted R Square	0.120382111		Max Temp	80.00 - 🔪 🍕	· · ·			
Standard Error	1.967671432		-	25.00				
Observations	12			0.00	50.00	100.00	150.00 20	0.00 250.00
				0.00	20.00		pitation	2.00 2.00
ANOVA							predetori	
	df	SS		MS		F	Significance F	_
Regression	1	9.7003	50945	9.7003509	5 2.5	0543007	0.144536632	2
Residual	10	38.717	30866	3.8717308	7			
Total	11	48.41	76596					
	Coefficients	Standard	Error	t Stat	P	-value	Lower 95%	Upper 95%
Intercept	31.91838071	0.890	47365	35.844273	1 6.	7837E-12	29.93428178	33.9024796
Precipitation	0.011976785	0.0075	66571	1.5828550	4 0.1	4453663	-0.00488259	0.02883616
RESIDUAL OUTPUT								
Observation	Predicted Max Temp	Residu	als					
1	34.23469094	-0.3927	55945					
2	33.67178205	-0.0110	58047					
3	34.19636523	-0.4544	30232					
4	31.93514821	2.3848	51787					
5	32.57590621	-1.0726	80214					
6	32.05132303	-3.5479						
7	32.30523087	-2.3407						
8	32.59626675	-0.1220						
9	01.0000.000	1.1836						
10		2.3365						
11		2.5185						
12	34.50776164	-0.4819	55644					

Max Temp (Y) - Min	Temp, Insolation, Humi	dity, Wind Mean,	Cloudiness, Pr	ecipitation (X	.)	
Regressio	on Statistics					
Multiple R	0.990649338					
R Square	0.981386111					
Adjusted R Square	0.959049445					
Standard Error	0.424556457					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	6	47.51641868	7.91940311	43.9361046	0.00036243	
Residual	5	0.901240926	0.18024819			
Total	11	48.4176596				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppei
Intercept	39.6309125	6.39498769	6.19718355	0.00159666	23.1920733	56.06
Min Temp	0.698841362	0.063165048	11.0637352	0.00010508	0.536470438	0.861
Insolation	0.004239841	0.008517564	0.49777618	0.63975826	-0.01765526	0.026
Humidity	-0.227729927	0.058505318	-3.89246544	0.01149629	-0.37812263	-0.077
Wind Mean	-0.86173232	0.296716982	-2.90422313	0.03362496	-1.6244676	-0.098
Cloudiness	-0.21549127	0.202877966	-1.06217188	0.33674446	-0.73700569	0.306
Precipitation	-0.001831301	0.002768917	-0.66137815	0.53762517	-0.00894903	0.005
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	34.18868034	-0.34674534				
2	33.56565427	0.095059731				
3	33.76215873	-0.020223728				
4	34.26327782	0.056722182				
5	31.39157841	0.111647593				
6	29.1195664	-0.616233396				
7	29.51346809	0.45104791				
8	32.12544888	0.348745124				
9	33.29215542	-0.172155419				
10	35.53815838	-0.063964376				
11	35.38939698	0.027270018				
12	33.8969763	0.128829702				

Max Temp (Y) - Min T	emp, Relative Humidity	, Wind Mean (X)				
Regressio	n Statistics					
Multiple R	0.985085721					
R Square	0.970393879					
Adjusted R Square	0.959291583					
Standard Error	0.423299407					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	46.9842005	15.6614002	87.4047965	1.86819E-06	
Residual	8	1.433459104	0.17918239			
Total	11	48.4176596				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	44.58469944	2.851297663	15.6366345	2.7908E-07	38.00959524	51.1598036
Min Temp	0.641663006	0.040491495	15.846859	2.5155E-07	0.548289452	0.73503656
Humidity	-0.27610338	0.034236465	-8.06459965	4.121E-05	-0.35505281	-0.19715395
Wind Mean	-1.038880257	0.190107519	-5.46469842	0.00059819	-1.47726898	-0.60049153
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	34.52652649	-0.684591487				
2	33.91365152	-0.252937523				
3	33.66575844	0.076176564				
4	33.92425922	0.395740785				
5	31.19485026	0.308375743				
6	29.07258567	-0.569252668				
7	29.64742244	0.317093556				
8	32.21939425	0.254799751				
9	33.26183119	-0.141831194				
10	35.58766245	-0.113468447				
11	35.07609314	0.340573857				
12	33.95648494	0.069321061				

Min Temp (Y) - Ins	sola	tion (X)					Insolation Line	Fit Plot	
Regres	ssio	n Statistics			25.00			•	
Multiple R		0.285682227		đ	20.00	-			
R Square		0.081614335		Min Temp			•	•	-
Adjusted R Square	e	-0.010224232		Min	15.00		•	•	
Standard Error		3.415176212		-	10.00				
Observations		12				00 170	00 190 00 21	0.00 230.00 25	0 00 25
					10			plation	0.00 2.
ANOVA									
		df	SS			VIS	F	Significance F	
Regression		1	10.364	95885	5 10.3	649588	0.8886717	0.368054175	
Residual		10	116.63	42856	5 11.6	634286			
Total		11	126.99	92445	5				
		Coefficients	Standard	Error	t	Stat	P-value	Lower 95%	Uppe
Intercept		26.29668751	7.4993	79956	5 3.50	651489	0.00566453	9.587027666	43.00
Insolation		-0.033441695	0.0354	74608	3 -0.94	269385	0.36805418	-0.11248405	0.045
RESIDUAL OUTPUT	Г				_				
Observation		Predicted Min Temp	Residu	als	_				
	1	18.85256624	1.5796	91756	5				
	2	20.57146936	2.0785		-				
	3	20.64838526	1.8806						
	4	17.58178184	1.5348						
	5	19.20704821	-2.0780						
	6	19.34415916	-5.3508						
	7	19.73208282	-4.9449						
	8	18.15029065	-2.9825						
	9	19.76552451							
	10	18.49139594	2.792						
	11	18.76561784	4.7210						
	12	20.35075417	2.2879	55828	3				

Min Temp (Y) - Relativ	ve Humidity (X)					Hum	idity Line	Fit Plot		
Rearession	n Statistics		2	5.00 -	1		•			
Multiple R	0.191516235		e 2	.00.09	٠		•	•	•	-
R Square	0.036678468		7 Min Temp			-			-	
Adjusted R Square	-0.059653685		- <u>1</u>	5.00 -		•		•		
Standard Error	3.497729359			.0.00 -						
Observations	12		· ·		.00	70.00	75.00	80.00	85.0	0 90.00
				05	.00	70.00		nidity	05.0	0 50.00
ANOVA								mancy		
	df	SS		1	VIS		F	Significan	ce F	
Regression	1	4.6581	37781	4.65	813778	8 0.38	075001	0.55099	2053	
Residual	10	122.34	11067	12.2	341107	7				
Total	11	126.99	92445							
	Coefficients	Standard	Error	t	Stat	P-	value	Lower 9	5%	Upper 95%
Intercept	11.23616911	13.088	61347	0.85	846902	2 0.41	073815	-17.9270	0791	40.3994173
Humidity	0.105493631	0.1709	64633	0.61	704944	4 0.55	099205	-0.2754	3931	0.48642657
RESIDUAL OUTPUT										
Observation	Predicted Min Temp	Residu	als							
1	19.26049111	1.1717	66892							
2	19.97801184	2.6719	88157							
3	20.40305518	2.1259	76823							
4	19.60796782	-0.4913	00824							
5	19.62971882	-2.5006	86817							
6	19.55288686	-5.5595	53856							
7	19.37534308	-4.588	24608							
8	18.58669305	-3.4189								
9	18.26731963	-0.020								
10	18.34252636	2.9413	44644							
11	18.90731436	4.5793	52639							
12	19.54974789	3.0889	62107							

Min Temp (Y) - Wind	d Mean (X)				Wind Mean Line	e Fit Plot	
Regressi	on Statistics		2	5.00			
Multiple R	0.062943567		₽ 2	0.00 -	•	• •	
R Square	0.003961893		Ten	•••			
Adjusted R Square	-0.095641918		Min Temp	5.00 -		•	
Standard Error	3.55662884		-		•		
Observations	12		1	0.00	.50 2.50	3.50 4.	50
				0.50 1		d Mean	50
ANOVA					win	u wean	
	df	SS		MS	F	Significance F	
Regression	1	0.5031	57374	0.50315737	0.03977652	0.845915167	
Residual	10	126.49	60871	12.6496087			
Total	11	126.99	92445				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Upper
Intercept	18.74520893	2.9107	76525	6.43993407	7.4428E-05	12.25959466	25.23
Wind Mean	0.195764853	0.9815	70163	0.19944051	0.84591517	-1.99130976	2.382
RESIDUAL OUTPUT							
Observation	Predicted Min Temp	Residu	als				
1	19.15357872	1.2786	79283				
2	19.18334927	3.4666	50734				
3	19.00580777	3.5232	24229				
4	18.93662349	0.1800	43507				
5	19.19988865	-2.0708	56655				
e	19.25854783	-5.2652	14831				
7	19.33376656	-4.5466	69561				
8		-4.1163	46489				
9	9 19.61745019	-1.3707	83193				
10		1.7745	47608				
11	19.59352323	3.8931	43774				
12	19.38512841	3.2535	81593				

Min Temp (Y) - Cloudi	iness					Cloudiness Line	Fit Plot	
Regression	n Statistics		3	0.00				
Multiple R	0.641231127		<u></u> 문 ²	5.00 -			•	-
R Square	0.411177358		E 12	0.00 -				•
Adjusted R Square	0.352295094		d 21 21 21 21 21	5.00 -	-			
Standard Error	2.734593765			0.00		• •		
Observations	12		1	3.00	4	.00 5.00	6.00	7.00 8.00
				5.00	-		udiness	7.00 0.00
ANOVA						ción	idine 33	
	df	SS		MS		F	Significance	F
Regression	1	52.219	21386	52.2192	139	6.98304259	0.02462617	76
Residual	10	74.78	00306	7.47800	306			
Total	11	126.99	92445					
	Coefficients	Standard	Error	t Stat		P-value	Lower 95%	Upper 95%
Intercept	7.800006001	4.4185	71179	1.76527	789	0.10797616	-2.0451841	11 17.6451961
Cloudiness	2.345452089	0.8875	73282	2.64254	472	0.02462618	0.36781557	4.3230886
RESIDUAL OUTPUT								
Observation	Predicted Min Temp	Residu	als					
1	20.76304293	-0.3307	84933					
2	24.69284556	-2.0428	45562					
3	19.17418678	3.3548	45221					
4	17.75514605	1.3615	20953					
5	17.45923443	-0.3302	02429					
6	18.01575392	-4.0224	20919					
7	19.37594726	-4.5888	50258					
8	16.45043672	-1.2826	94722					
9	17.57272382	0.673	94318					
10	19.4011679	1.8827	03095					
11	20.4915076	2.9951	59401					
12	20.30908303	2.3296	26974					

Min Temp (Y) - Prec	ipitatio	n (X)				Preci	pitation Lin	e Fit Plot		
Regress	ion Stati	stics		2	5.00		•		-	
Multiple R		0.697079328		₽ 2	0.00 -		•		•	
R Square		0.485919589		din Temp 1						
Adjusted R Square		0.434511548		- i 🖞 1	5.00 - 💊 🔹	٠				
Standard Error		2.55514821		- <u>-</u>	0.00					
Observations		12		1		50.00	100.00	150.00	200.0	00 25
					0.00	20.00		pitation	200.	
ANOVA										
		df	SS		MS		F	Significan	ce F	
Regression		1	61.71	14207	61.711420	7 9.4	15220979	0.01175	5143	
Residual		10	65.287	82376	6.5287823	8				
Total		11	126.99	92445						
	0	Coefficients	Standard	Error	t Stat	- 1	P-value	Lower 95	5%	Uppe
Intercept		16.55052504	1.1563	37443	14.312885	2 5.	4819E-08	13.97404	466	19.12
Precipitation		0.03020851	0.009	82568	3.0744446	3 0.0	01175143	0.00831	553	0.052
RESIDUAL OUTPUT										
Observation	Predi	icted Min Temp	Residu	als						
	1	22.39285088	-1.9605	92877						
	2	20.97305091	1.6769	49093						
	3	22.29618364	0.2328	48355						
	4	16.59281696	2.5238	50041						
	5	18.20897224	-1.0799							
	6	16.88583951	-2.8925							
	7	17.52625992	-2.7391							
	8	18.26032671	-3.092							
	9	16.59583781		82919						
_	0	19.62575136	1.6581							
_	1	19.02158116	4.4650							
1	2	23.0816049	-0.4428	94904						

Min Temp (Y) - Max Te	emp (X)				N	lax Temp Line F	it Plot	
Regression	n Statistics		27.00	1				
Multiple R	0.849691329		₽ 22.00	-			••	•
R Square	0.721975354		di 22.00 Juji 17.00					•
Adjusted R Square	0.69417289		·블 17.00	-			•	
Standard Error	1.879066789		-			•	•	
Observations	12		12.00	27.00	29.00	0 31.00	33.00 35.	00 37.00
				27.00	25.00	Max T		00 57.00
ANOVA	16							
D i	df		SS	M	-	F	Significance F	-
Regression Residual	1		6903245 30891996			25.9680343	0.000466824	
	10			5.5	30892			
Total	11 Coefficients		9992445 ard Error	t St	test.	P-value	Lower 95%	Upper 05%
Intercept	-26.12924319				at 29892	0.01513636	-46.0245387	Upper 95% -6.23394765
Max Temp	1.376131254		70047599			0.00046682		
RESIDUAL OUTPUT	1.576151254	0.21	/004/399	5.095	00400	0.00040082	0.774427707	1.9776346
Observation	Predicted Min Temp	Res	siduals					
1	20.44170127		09443265					
2	20.19231738		57682617					
3	20.30408814		22494386					
4	21.09958145		82914453					
5	17.22333072		94298716					
6	13.0950842		.8982488					
7	15.10586379	-0.3	18766794					
8	18.55951013	-3.39	91768128					
9	19.44822395	-1.20	01556948					
10	22.68790389	-1.4	40403289					
11	22.60873919	0.87	77927813					
12	20.6947319	1.94	43978105					

Regressio	on Statistics					
Multiple R	0.992995306					
R Square	0.986039678					
Adjusted R Square	0.969287292					
Standard Error	0.59547465					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	6	125.2262942	20.871049	58.8596564	0.000177741	
Residual	5	1.772950296	0.35459006			
Total	11	126.9992445				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-55.31108025	9.302645083	-5.94573691	0.00192267	-79.2242907	-31.3
Insolation	-0.00391819	0.012112918	-0.32347201	0.7594291	-0.03505544	0.02
Humidity	0.321973384	0.080029423	4.02318765	0.01008892	0.116251204	0.52
Wind Mean	1.245786606	0.393658078	3.16464129	0.02496465	0.233856302	2.25
Cloudiness	0.345090589	0.274632496	1.2565541	0.26442366	-0.36087472	1.05
Precipitation	0.003578038	0.003720428	0.96172736	0.380356	-0.00598563	0.0
Max Temp	1.374783328	0.124260325	11.0637352	0.00010508	1.055361994	1.69
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	20.03081406	0.401443937				
2	22.77247077	-0.122470767				
3	22.40533265	0.123699345				
4	19.08950396	0.027163041				
5	17.29708408	-0.16805208				
6	13.25290207	0.740430934				
7	15.51993869	-0.732841693				
8	15.71823579	-0.550493792				
9	17.90996373	0.336703269				
10	21.1665373	0.117333705				
11	23.46803323	0.018633767				
12	22.83025967	-0.191549667				

Min Temp (Y) - Relati	ve Humidity, Wind Mea	an, Max Temp (X)				
Regressio	n Statistics					
Multiple R	0.986626829					
R Square	0.9734325					
Adjusted R Square	0.963469687					
Standard Error	0.649427868					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	123.625192	41.2083973	97.7065959	1.21293E-06	
Residual	8	3.374052445	0.42175656			
Total	11	126.9992445				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-67.60868077	5.711770769	-11.8367287	2.3796E-06	-80.7800478	-54.4373138
Humidity	0.426637182	0.049356486	8.64399419	2.4908E-05	0.31282092	0.54045344
Wind Mean	1.616407016	0.275713557	5.86263161	0.00037734	0.980610413	2.25220362
Max Temp	1.510335822	0.095308214	15.846859	2.5155E-07	1.290554687	1.73011696
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	19.32781727	1.104440732				
2	22.20172082	0.448279181				
3	22.57741249	-0.048380487				
4	19.66374739	-0.547080387				
5	17.67118705	-0.542155051				
6	13.31395931	0.679373694				
7	15.42388613	-0.636789131				
8	15.61469958	-0.446957578				
9	18.05100179	0.195665214				
10	21.01798616	0.265884844				
11	23.91044382	-0.423776823				
12	22.68721421	-0.048504209				

Appen	dix	19:	2010	
-------	-----	-----	------	--

Months	Min Temp	Humi dity	Wind Mean	Cloudin ess	Precipita tion	Max Temp
Jan	22.71	80.84	3.15	7.57	181.40	33.19
Feb	23.76	80.7 I	3.64	7.35	64.40	34.08
Mar	22.80	83.08	2.05	4.08	67.80	35.17
Apr	19.21	76.21	2.94	4.79	10.40	33.08
May	15.05	80.27	3.20	5.13	71.80	28.57
Jun	15.41	86.83	2.17	2.33	7.40	30.88
Jul	12.67	75.3 I	3.59	3.19	0.00	29.24
Aug	12.99	65.65	2.96	1.17	0.00	33.32
Sep	19.18	68.89	4.52	1.76	18.50	35.20
Oct	20.42	69.89	2.84	4.38	96.30	34.40
Nov	19.19	72.08	3.80	5.78	108.90	33.78
Dec	22.34	72.62	3.72	5.30	121.80	35.63
Total / Mean	18.81	76.03	3.22	4.40	748.70	33.05

Max Temp (Y) - Min T	Temp (X)				Min Temp Line	e Fit Plot	
Regressio	n Statistics			40.00			
Multiple R	0.730361358		e.	35.00 -		• • •	
R Square	0.533427713		Max Temp		•	-	• •
Adjusted R Square	0.486770485		Max	30.00 -			
Standard Error	1.652948847		-		•		
Observations	12			25.00 + 10.00	15.00	20.00	25.00
				10.00		1 Temp	25.00
ANOVA							
	df	SS		MS	F	Significance F	
Regression	1	31.237	44207	31.2374421	11.4329061	0.006987806	
Residual	10	27.32	23989	2.73223989			
Total	11	58.559	84097				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	24.9396264	2.44420	04987	10.203574	1.3211E-06	19.49359831	30.3856545
Min Temp	0.430891566	0.1274	35279	3.38125806	0.00698781	0.146948069	0.71483506
RESIDUAL OUTPUT							
Observation	Predicted Max Temp	Residu	als				
1	34.72503468	-1.5347	11683				
2	35.17637895	-1.0978	07948				
3	34.7639541	0.4102	39898				
4	33.21848954	-0.1384	89543				
5	31.4252395	-2.8510	45495				
6	31.58110159	-0.70110	01592				
7	30.39943964	-1.1607	29643				
8	30.53843664	2.7776	92355				
9	33.20412663	1.9992	06366				
10	33.73815425	0.6650	71749				
11	33.20699939	0.5696	57612				
12	34.56379808	1.0620	07924				

Max Temp (Y) - Humic	dity (X)			Humidity Lin	e Fit Plot		Max Temp (Y) - W	ind I	Mean (X)				Wind Mean Lir	ne Fit Plot	
Regression	n Statistics		40.00				Regres	sion	Statistics		40.00	רי			
Multiple R	0.351347046	Temm	35.00	• •	•		Multiple R		0.158405166		und 135.00) _ •			•
R Square	0.123444747	l a	•				R Square		0.025092197		Tei				
Adjusted R Square	0.035789221	New York	30.00 -	•		•	Adjusted R Square	e	-0.072398584		Mag 30.00) -		•	
Standard Error	2.265633162	-	25.00		Ť		Standard Error		2.389360708		25.00		*		
Observations	12			70.00 75.00	80.00 85	5.00 5	Observations		12		25.00		2.50 3.00	3.50 4.00	4.50 5.00
ANOVA					umidity		ANOVA							nd Mean	
	df	SS	MS	F	Significance F	_			df	SS		MS	F	Significance F	_
Regression	1	7.22890473	2 7.22890473	1.40829396	0.262767055		Regression		1	1.469395	052 1.4	6939505	0.2573802	0.622925853	
Residual	10	51.3309362	4 5.13309362				Residual		10	57.09044	592 5.7	0904459			
Total	11	58.5598409	7				Total		11	58.55984	097				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppei			Coefficients	Standard Er	ror	t Stat	P-value	Lower 95%	Upper 95%
Intercept	42.64493527	8.11581470	3 5.25454767	0.00037095	24.56177321	60.72	Intercept		31.36160656	3.389282	191 9.2	5317067	3.2223E-06	23.80981523	38.9133979
Humidity	-0.126262793	0.10639684	1 -1.1867156	0.26276705	-0.36332973	0.110	Wind Mean		0.523498924	1.031877	693 0.5	0732652	0.62292585	-1.77566785	2.8226657
RESIDUAL OUTPUT			_				RESIDUAL OUTPUT	Г							
Observation	Predicted Max Temp	Residuals	_				Observation		Predicted Max Temp	Residual					
1	32.43801398	0.7523090						1	33.01090982	0.179413					
2	32.4537241	1.62484689	-					2	33.26863828	0.809932					
3	32.15494101	3.01925299						3	32.43674928	2.737444					
4	33.02265831	0.05734168						4	32.90301983	0.176980					
5	32.51030966	-3.93611565	-					5	33.03905469	-4.464860					
6	31.68216829	-0.80216828						6	32.49585441	-1.615854					
7	33.13653233	-3.89782232						7	33.24169955	-4.00298					
8	34.3553756	-1.039246						8	32.90958712	0.406541					
9	33.94648099	1.25685200						9	33.72898491	1.474348					
10	33.82079522	0.58243077						10	32.84766819	1.555557					
11	33.54454448	0.2321225						11	33.34973926	0.426927					
12	33.47560904	2.15019696	5					12	33.30924766	2.316558	336				

Max Temp (Y) - Clou	udiness (X)			Cloud	tiness Lin	e Fit Plot		Max Temp (Y) - Pre
Regressi	ion Statistics	.	40.00 -]				Regress
Multiple R	0.103856133		Ê 35.00 -	•		•. •		Multiple R
R Square	0.010786096		Ter					R Square
Adjusted R Square	-0.088135294		Max Temp 30.00 -	•	•	•		Adjusted R Square
Standard Error	2.406827972		25.00 -			•		Standard Error
Observations	12			50 2.00	3.50	5.00 6	50	Observations
		·		2.00		udiness		
ANOVA								ANOVA
	df	SS	N	15	F	Significance F		
Regression	1	0.6316320	083 0.631	63208 0.10	903705	0.748056714		Regression
Residual	10	57.928208	888 5.792	82089				Residual
Total	11	58.559840	097					Total
	Coefficients	Standard En	ror tS	tat P-1	value	Lower 95%	Uppei	
Intercept	32.52570854	1.7195313	332 18.91	54498 3.69	988E-09	28.69435397	36.35	Intercept
Cloudiness	0.118002403	0.3573582	249 0.330	20758 0.74	805671	-0.6782414	0.91	Precipitation
RESIDUAL OUTPUT								RESIDUAL OUTPUT
Observation	Predicted Max Temp	Residuals						Observation
1	L 33.41897398	-0.2286509	983					
	33.39246427	0.6861067	729					
3	3 33.00660007	2.1675939	929					
4	4 33.09080895	-0.0108089	946					
5	33.13094664	-4.5567526	637					
	5 32.80104744	-1.9210474	437					
1	32.90255487	-3.6638448	874					
8	32.66401243	0.652116	574					
9	32.73286836	2.4704646	538					
10		1.3610983	356					1
11	33.20750022	0.5691667	776					1
12	33.15124812	2.4745578	875					1

Max Temp (Y) - Precip	pitation (X)				Precipitation Li	ne Fit Plot	
Regression	n Statistics			40.00			
Multiple R	0.317973774		đ	35.00 - 🔹			
R Square	0.101107321		Max Temp	***	•	<u> </u>	•
Adjusted R Square	0.011218053		Мах	30.00 🚽 🕈			
Standard Error	2.29431934		_	25.00	•		
Observations	12			25.00 + 0.00	50.00 10	0.00 150.00	200.00
				0.00		pitation	200.00
ANOVA					Theorem 1	pitation	
	df	SS		MS	F	Significance F	
Regression	1	5.92082	8631	5.92082863	1.12479858	0.313830696	
Residual	10	52.6390	1234	5.26390123			
Total	11	58.5598	4097				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	32.25117252	0.99951	9104	32.2666894	1.9254E-11	30.02410517	34.4782399
Precipitation	0.012724833	0.01199	8162	1.06056522	0.3138307	-0.01400874	0.0394584
RESIDUAL OUTPUT							
Observation	Predicted Max Temp	Residuc	als				
1	34.55945731	-1.36913	4307				
2	33.07065179	1.00791	9209				
3	33.11391622	2.06027	7776				
4	32.38351078	0.69648	9217				
5	33.16481556	-4.59062	1558				
6	32.34533628	-1.46533	6283				
7	32.25117252	-3.01246	2515				
8	32.25117252	1.06495	6485				
9	32.48658193	2.71675	1066				
10	33.47657398	0.92665	2022				
11	33.63690688	0.1397	6012				
12	33.80105723	1.82474	8768				

Max Temp (Y) - Min 1	Temp, Relative Humidit	y, Wind Mean, Cl	oudiness, Pre	cipitation (X)		
Regressio	on Statistics					
Multiple R	0.974452515					
R Square	0.949557705					
Adjusted R Square	0.907522459					
Standard Error	0.701651953					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	5	55.60594819	11.1211896	22.5895599	0.000794963	
Residual	6	2.953892777	0.49231546			
Total	11	58.55984097				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe
Intercept	36.37966313	4.417042278	8.23620442	0.00017307	25.57155003	47.18
Min Temp	0.693573949	0.0768154	9.02910023	0.00010337	0.505613436	0.881
Humidity	-0.167226629	0.048480863	-3.4493327	0.01364413	-0.28585503	-0.048
Wind Mean	-0.356133859	0.400570906	-0.8890657	0.40819559	-1.33629556	0.624
Cloudiness	-0.566279287	0.207544461	-2.7284722	0.03425538	-1.07412229	-0.058
Precipitation	-0.00046869	0.006413998	-0.073073	0.94412316	-0.01616318	0.01
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	33.11841187	0.071911128				
2	33.87243617	0.206134828				
3	35.22892083	-0.054726829				
4	33.19612852	-0.116128518				
5	29.31715902	-0.742965024				
6	30.45408737	0.425912627				
7	29.48721382	-0.248503823				
8	32.69589428	0.620234715				
9	35.5485681	-0.345235101				
10	35.32068363	-0.917457627				
11	32.95878257	0.817884427				
12	35.3428668	0.282939197				

Max Temp (Y) - Clou	diness, Min Temp, Rela	tive Humidity (X)				
Regressio	on Statistics					
Multiple R	0.970973394					
R Square	0.942789332					
Adjusted R Square	0.921335331					
Standard Error	0.647132874					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	55.20959332	18.4031978	43.9446864	2.57532E-05	
Residual	8	3.350247648	0.41878096			
Total	11	58.55984097				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	33.37022598	2.57761539	12.9461618	1.1999E-06	27.42623423	39.3142177
Cloudiness	-0.624707898	0.13719207	-4.5535278	0.0018657	-0.94107338	-0.30834242
Min Temp	0.696736803	0.067719902	10.2885087	6.8615E-06	0.540574429	0.85289918
Humidity	-0.140492638	0.032717763	-4.2940783	0.00263678	-0.21593994	-0.06504534
RESIDUAL OUTPUT						
Observation	Predicted Max Temp	Residuals				
1	33.10667882	0.083644185				
2	33.99431071	0.084260288				
3	35.0377534	0.1364406				
4	33.05849569	0.02150431				
5	29.37629172	-0.802097719				
6	30.45333751	0.426662487				
7	29.62351898	-0.384808977				
8	32.46732966	0.848799342				
9	35.95815615	-0.75482315				
10	35.04458284	-0.641356843				
11	33.00285259	0.773814406				
12	35.41784493	0.20796107				

Γ

Min Temp (Y) - Relative H	lumidity (X)				Humidity	Line Fit Pl	ot		-	Min Temp (Y) - W	ind N	Nean (X)				,	Wind Mean Lir	e Fit Plot	
Regression St	atistics		25.00	1			: .			Regre	sion .	Statistics		25	5.00	•		•	
Multiple R	0.20385121		월 20.00	-	•		-	-		Multiple R		0.059709096		du 20	0.00 -		• · ·		
R Square	0.041555316		Tei				-			R Square		0.003565176							•
Adjusted R Square	-0.054289153		·탈 15.00	-			٠	•		Adjusted R Squar	e	-0.096078306		·탈 15	5.00 -	٠			
Standard Error	4.015626069		10.00	•		•				Standard Error		4.094436942		10			•	•	
Observations	12			+ 5.00 7	0.00 75	.00 80	.00 8	5.00	9	Observations		12		10).00 + 2.0	0 2.5	50 3.00	3.50 4.00	4.50 5.00
ANOVA			0.	,	0.00 /2	Humidity		5.00	-	ANOVA					2.0			nd Mean	4.50 5.00
	df	SS		MS	F	Sign	ificance F	F				df	SS		м	s	F	Significance	F
Regression	1	6.9914308	808 6.99	143081	0.43357	031 0.5	2511156	2		Regression		-, 1		1935			0.03577932		
Residual	10	161.25252	273 16.1	252527						Residual		10	167.644	1387	16.76	44139			
Total	11	168.2439	581							Total		11	168.243	9581					
	Coefficients	Standard En	ror t	Stat	P-value	e Lo	wer 95%	Upp	e.			Coefficients	Standard	Error	t St	tat	P-value	Lower 95%	Upper 95%
Intercept	9.370084537	14.384533	393 0.65	139994	0.52947	294 -22	2.680654	4 41.4	42	Intercept		17.73532533	5.80791	4294	3.053	64791	0.0121757	4.79448584	2 30.676164
Humidity	0.12417157	0.188578	599 0.65	846056	0.52511	156 -0.	2960077	3 0.54	44	Wind Mean		0.334469671	1.76823	7894	0.189	15423	0.8537559	-3.6054098	8 4.2743492
RESIDUAL OUTPUT										RESIDUAL OUTPU	г								
Observation Pre	edicted Min Temp	Residuals	;							Observation	F	Predicted Min Temp	Residua	als					
1	19.40795408	3.3017229	921								1	18.78908474	3.92059	2262					
2	19.39250416	4.3646388	845								2	18.95375051	4.80339	2488					
3	19.68633867	3.1136613	332								3	18.42224676	4.37775	3235					
4	18.8329929	0.380340	103								4	18.72015255	0.49318	80455					
5	19.3368558	-4.2852427	797								5	18.80706683	-3.75545	3831					
6	20.15128111	-4.737948	107								6	18.46000973	-3.04667	6728					
7	18.72100492	-6.0500369	917								7	18.93653904	-6.26557	1037					
8	17.52234869	-4.5288006	689								8	18.72434847	-5.73080	0467					
9	17.92447099	1.2555290	008								9	19.24787143	-0.06787	1433					
10	18.0480751	2.3712799	902								10	18.68478773	1.73456	7271					
11	18.31975045	0.8669165	551								11	19.00556689	0.18110	0113					
12	18.38754415	3.9479398	848						_		12	18.97969633	3.35578	37673					

Min Temp (Y) - Cloudi	ness (X)			Cloudiness Line	Fit Plot		Min Temp (Y) - Pre	ecipi	itation (X)		1	Precipitation Lir	ne Fit Plot	
Regression	Statistics		25.00			÷	Regres	sion	Statistics		25.00			-
Multiple R	0.674612225	물	20.00		•		Multiple R		0.660107242		20.00 -			Ť
R Square	0.455101654	Ter	•		•		R Square		0.435741571				•	
Adjusted R Square	0.400611819	Min	15.00 -	-	•		Adjusted R Square	e	0.379315729		15.00	•		
Standard Error	3.027802082		10.00	•			Standard Error		3.081121085		10.00			
Observations	12		1.00	3.00	5.00	7.00	Observations		12		0.00	50.00 10	0.00 150.00	200.00
ANOVA			2.00		udiness		ANOVA						pitation	
	df	SS	MS	F	Significance F				df	SS	MS	F	Significance F	
Regression	1	76.56810358	76.5681036	8.35204689	0.016107425	-	Regression		1	73.310886	57 73.3108867	7.72237594	0.019486859	
Residual	10	91.67585449	9.16758545				Residual		10	94.933071	9 9.49330714			
Total	11	168.2439581	L				Total		11	168.24395	31			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Uppe			Coefficients	Standard Erro	r t Stat	P-value	Lower 95%	Upper 95%
Intercept	13.09241012	2.163179341	6.05239236	0.00012322	8.272546188	17.91	Intercept		16.01727874	1.3422889	02 11.9328102	3.0798E-07	13.02647269	19.0080848
Cloudiness	1.299220028	0.449558532	2.88999081	0.01610743	0.297541196	2.300	Precipitation		0.04477598	0.0161127	48 2.77891633	0.01948686	0.008874539	0.08067742
RESIDUAL OUTPUT			_				RESIDUAL OUTPUT	Г			_			
Observation	Predicted Min Temp	Residuals	_				Observation	ŀ	Predicted Min Temp	Residuals				
1	22.92736542	-0.217688417	,					1	24.13964148	-1.4299644	78			
2	22.63549044	1.121652559)					2	18.90085184	4.8562911	57			
3	18.38708123	4.412918774						3	19.05309017	3.7469098				
4	19.31423062	-0.100897622	2					4	16.48294893	2.7303840				
5	19.75615122	-4.70453822						5	19.23219409	-4.1805810				
6	16.12392309	-0.710590087						6	16.34862099	-0.9352879				
7	17.24153164	-4.570563644						7	16.01727874					
8	14.61515186	-1.621603861						8	16.01727874	-3.0237307				
9	15.37326364	3.806736363						9	16.84563437	2.334365				
10	18.7782439	1.641111104						10	20.3292056	0.0901494				
11	20.59901502	-1.412348016						11	20.89338294	-1.7067159				
12	19.97967293	2.355811069)					12	21.47099308	0.8644909	17			

Min Temp (Y) - Max 1	Temp (X)				Max Temp Line	Fit Plot	
Rearessio	on Statistics		2	25.00			
Multiple R	0.730361358		Ê	20.00 -			
R Square	0.533427713		Min Temp				
Adjusted R Square	0.486770485		- i Mi	15.00 -			
Standard Error	2.801748886		-	10.00		•	
Observations	12			28.00	30.00 3	2.00 34.00	3
ANOVA					Max	Temp	
ANOVA	df	SS		MS	F	Significance F	
Regression		89.7459	8986				
Residual	10	78.4979	96821	7.84979682			
Total	11	168.243	39581				
	Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe
Intercept	-22.09767171	12.1256	53633	-1.8223927	0.0983916	-49.1152731	4.919
Max Temp	1.237962763	0.36612	4898	3.38125806	0.00698781	0.422185653	2.053
RESIDUAL OUTPUT				_			
Observation	Predicted Min Temp	Residua	als				
1	18.99071227	3.71896	54735				
2	20.09033021	3.66681	12787				
3	21.44667069	1.3533	32931				
4	18.8541365	0.35919	96501				
5	13.27611645	1.77549					
6		-0.7172					
7	14.09876252						
8							
9	21.48274369	-2.30274					
10		-0.07288					
11	19.7165843	-0.52991					
12	22.00574953	0.32973	34471				

Min Temp (Y) - Relati	ive Humidity, Wind Me	an, Cloudiness, F	Precipitation,	Max Temp (X)		
Regressio	n Statistics					
Multiple R	0.982855007					
R Square	0.966003965					
Adjusted R Square	0.937673936					
Standard Error	0.976356105					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	5	162.5243306	32.5048661	34.0982342	0.000248048	
Residual	6	5.719627459	0.95327124			
Total	11	168.2439581				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-47.9388925	9.047885575	-5.2983531	0.00183271	-70.0782709	-25.799514
Humidity	0.225169271	0.071593079	3.14512623	0.01993768	0.049987317	0.40035122
Wind Mean	0.476013972	0.56023119	0.84967417	0.4281018	-0.89482237	1.84685031
Cloudiness	0.813250296	0.276880191	2.93719205	0.02604248	0.135748875	1.49075172
Precipitation	0.002263651	0.008881165	0.25488218	0.80732552	-0.01946778	0.02399508
Max Temp	1.342968382	0.148737786	9.02910023	0.00010337	0.97902013	1.70691663
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	22.90359855	-0.193921552				
2	23.85527473	-0.098131728				
3	22.45145532	0.348544684				
4	18.96598023	0.24735277				
5	14.36782132	0.683791685				
6	16.02799164	-0.614658645				
7	12.59117896	0.079789038				
8	13.94743681	-0.95388881				
9	18.47258195	0.707418052				
10	19.1282972	1.291057801				
11	20.40426518	-1.217598178				
12	22.61523912	-0.279755116				

Regressio	on Statistics					
Multiple R	0.980745598	3				
R Square	0.961861927	,				
Adjusted R Square	0.94756015	5				
Standard Error	0.895579442	2				
Observations	12	2				
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	161.8274578	53.9424859	67.2547132	5.12631E-06	
Residual	8	6.416500295	0.80206254			
Total	11	168.2439581				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upp
Intercept	-43.459139	6.575061509	-6.6096931	0.00016768	-58.621258	-28
Max Temp	1.33441237	0.129699299	10.2885087	6.8615E-06	1.035325249	1.63
Cloudiness	0.927363475	0.148247249	6.25551895	0.00024425	0.585504705	1.26
Humidity	0.185352816	0.049810681	3.721146	0.00586175	0.07048918	0.30
RESIDUAL OUTPUT						
Observation	Predicted Min Temp	Residuals				
1	. 22.83416248	-0.124485485				
2	23.78805335	-0.030910351				
3	22.65622773	0.143772274				
4	19.24969209	-0.036359087				
5	14.30464893	0.746964066				
6	16.00462106	-0.591288056				
7	12.47720004	0.193767963				
8	14.25423586	-1.260687863				
9	17.91392703	1.266072972				
10	19.46118317	0.95817183				
11	20.33026778	-1.143600776				
12	22.45690149	-0.121417488				

Precipitation (Y) - Ma	ax Temp (X)					Max Te	mp Line	Fit Plot		
Regressi	on Statistics			200.00				•		
Multiple R	0.317973774		Precipitation	150.00 -						
R Square	0.101107321		pita	100.00 -				•	•	•
Adjusted R Square	0.011218053		reci	50.00 -		•			-	
Standard Error	57.33146769		4	0.00				٠.		•
Observations	12			27.0	00	29.00	31.00	33.00	35.0	00 37.00
							Max	x Temp		
ANOVA										
	df	SS		MS		F		Significant	ce F	
Regression	1	3697.09	7288	3697.09	9729	1.1247	79858	0.313830	696	
Residual	10	32868.9	7188	3286.89	9719					
Total	11	36566.0	6917							
	Coefficients	Standard E	rror	t Stat	t	P-va	lue	Lower 95	5%	Upper 95%
Intercept	-200.1737446	248.123	7812	-0.80674	4953	0.4385	57667	-753.027	7982	352.680492
Max Temp	7.945669474	7.4919	1973	1.06056	6522	0.313	38307	-8.74736	5795	24.6387069
RESIDUAL OUTPUT										
Observation	Predicted Precipitation	Residua	ls							
1	63.54559175	117.854	4083							
2	70.60331676	-6.20331	6765							
3	79.30877499	-11.5087	7499							
4	62.66900165	-52.2690	0165							
5	26.86735646	44.9326	4354							
6	45.18852881	-37.7885	2881							
7	32.14738096	-32.1473	8096							
8	64.54520464	-64.5452								
9	79.54030385	-61.0403								
10	73.18291809	23.1170								
11	68.20448737	40.6955	1263							
12	82.89713467	38.9028	6533							

Precipitation (Y) -	Min	Temp (X)				Min Temp Line	Fit Plot	
Regre	ssioi	n Statistics			200.00			•
Multiple R		0.660107242		Precipitation	150.00 -			
R Square		0.435741571		oita	100.00 -		• • •	
Adjusted R Square		0.379315729		eci	50.00 -	•		• •
Standard Error		45.42324595		-				
Observations		12			0.00	15.00	20.00	2
					10.00		1 Temp	-
ANOVA							cmp	
		df	SS		MS	F	Significance F	
Regression	_	1	15933.3	35644	15933.3564	7.72237594	0.019486859	
Residual		10	20632.7	71273	2063.27127			
Total		11	36566.0	06917				
		Coefficients	Standard	Error	t Stat	P-value	Lower 95%	Uppe
Intercept		-120.6685996	67.1670	06601	-1.79654415	0.10262821	-270.326149	28.98
Min Temp		9.731592105	3.50193	37794	2.77891633	0.01948686	1.92878845	17.53
RESIDUAL OUTPUT					_			
Observation	- 1	Predicted Precipitation	Residuo	als	_			
	1	100.3327138	81.0672	28618	1			
	2	110.5262257	-46.1262	22568	1			
	3	101.2117004	-33.4117	70041	L			
	4	66.30772015	-55.9077	72015	i			
	5	25.80755866	45.9924	44134	ł.			
	6	29.32767015	-21.9276	57015	i			
	7	2.640092568	-2.64009	92568	1			
	8	5.779309549	-5.77930					
	9	65.98333699						
_	0	78.04423433	18.2557					
	1	66.04821752	42.8517	78248	1			
1	2	96.69122018	25.1087	77982				

Precipitaiton (Y) - R	elative Humidity (X)					Humidity Line	Fit Plot	
Rearess	ion Statistics			200.00	1			
Multiple R	0.114904906		io,	150.00	-			
R Square	0.013203137		Precipitation	100.00	-			
Adjusted R Square	-0.085476549		ecip	50.00				
Standard Error	60.06936185		- ⁴			•		
Observations	12			0.00	+• 5.00	70.00 75.00	80.00 85.	00 90.00
				0.	5.00		midity	50.00
ANOVA								
	df	SS		M	IS	F	Significance F	
Regression	1	482.786	8336	482.7	786834	0.13379793	0.722145428	
Residual	10	36083.2	8233	3608	.32823			
Total	11	36566.0	6917					
	Coefficients	Standard	Error	t S	tat	P-value	Lower 95%	Upper 95%
Intercept	-16.06058559	215.176	58514	-0.0	074639	0.94197394	-495.504488	463.383317
Humidity	1.031850667	2.82092	9021	0.365	578399	0.72214543	-5.25357088	7.31727222
RESIDUAL OUTPUT				-				
Observation	Predicted Precipitation	Residuo	als	_				
1		114.047	1087					
2		-2.82450	04277					
3		-1.8662						
4		-52.1750						
5		5.03792						
6		-66.129						
7		-61.6444						
8		-51.6837						
9		-36.5253						
10		40.2475						
11		50.5899						
12	58.8734087	62.926	5913					

Precipitation (Y) - \	Wind Mean (X)					Wind Mean Lin	e Fit Plot	
Regres	sion Statistics			200.00		•		
Multiple R	0.08611835		tion	150.00 -				
R Square	0.00741637		oital	100.00 -		•	•	
Adjusted R Square	-0.091841993		Precipitation	50.00				
Standard Error	60.24523355		- -					•
Observations	12			0.00 + 2.0	0 2	.50 3.00	3.50 4.00	4.50
				2.0	.0 2		d Mean	4.50
ANOVA								
	df	SS		MS		F	Significance F	_
Regression	1	271.187	5073	271.18	37507	0.07471784	0.790149871	
Residual	10	36294.8	8166	3629.4	8817			
Total	11	36566.0)6917	,				
	Coefficients	Standard	Error	t Sta	nt	P-value	Lower 95%	Uppe
Intercept	39.5211503	85.4572	0891	0.4624	6713	0.65364536	-150.889377	229.9
Wind Mean	7.111829661	26.017	7178	0.2733	4564	0.79014987	-50.8592582	65.08
RESIDUAL OUTPUT				_				
Observation	Predicted Precipitation	Residuo	als	_				
	1 61.92723989	119.472	7601	L				
	2 65.42852876	-1.02852	8758	3				
:	3 54.12716291	13.6728	3709)				
	4 60.46153447	-50.0615	3447	,				
	5 62.30959319	9.49040	6811	L				
(6 54.93011693	-47.5301	1693	3				
	7 65.06256112	-65.0625	6112	2				
	8 60.55075237	-60.5507						
	9 71.68242285							
1		36.5904						
1	1 66.53030052	42.3696	9948	3				
1	2 65.98021472	55.8197	8528	3				

Precipitation (Y) - C	loudiness (X)				Cloudiness Lin	e Fit Plot	
Rearess	ion Statistics			200.00			
Multiple R	0.76965791		_	150.00 -			-
R Square	0.592373299		Precipitation	100.00		• •	
Adjusted R Square	0.551610629		jpit	50.00			•
Standard Error	38.60739067		Prec			•	
Observations	12			0.00	2.00	4.00 6.00	8.00
				-50.00 ^{0.00}		udiness	8.00
ANOVA							
	df	SS		MS	F	Significance F	
Regression	1	21660.7	6302	21660.763	14.5322497	0.003417335	
Residual	10	14905.3	0614	1490.53061			
Total	11	36566.0	6917				
	Coefficients	Standard I	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-33.79089031	27.5826	1856	-1.22507913	0.24861786	-95.2487944	27.6670137
Cloudiness	21.85222366	5.73230	3966	3.81211879	0.00341733	9.07985448	34.6245928
RESIDUAL OUTPUT							
Observation	Predicted Precipitation	Residua	ıls				
1	131.6280828	49.7719	1725				
2	126.7188933	-62.318	8933				
3	55.26279935	12.5372	0065				
4							
5							
6		-9.7976					
7							
8		8.17914					
9		13.9280					
10							
11		16.433					
12	82.04938623	39.7506	1377				

	ax Temp, Min Temp, Relat ion Statistics	,,				
Multiple R	0.820377922					
R Square	0.673019935					
Adjusted R Square	0.400536548					
Standard Error	44.63999639					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	5	24609.6935	4921.9387	2.46994851		
Residual	6	11956.37566	1992.72928			
Total	11	36566.06917				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upp
Intercept	215.7229392	981.8601748	0.21970841	0.83338238	-2186.80236	2618
Max Temp	-1.897100978	25.96172973	-0.07307298	0.94412316	-65.4231651	61.6
Min Temp	4.731961724	18.56529087	0.25488218	0.80732552	-40.6956685	50.
Humidity	-2.913966905	5.192662595	-0.56117008	0.59500301	-15.6199545	9.79
Wind Mean	-14.09858743	26.49358905	-0.53215091	0.61374083	-78.9260644	50.7
Cloudiness	19.81951168	18.03364429	1.09902976	0.3138868	-24.3072263	63.9
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	130.2709692	51.12903076				
2	122.5114745	-58.11147448				
3	66.60310305	1.19689695				
4	75.21597528	-64.81597528				
5	55.32441278	16.47558722				
6	-7.230837201	14.6308372				
7	13.4331038	-13.4331038				
8	4.232474313	-4.232474313				
9	9.986970363	8.513029637				
10	90.14666399	6.153336013				
11	93.3810338	15.5189662				
12	94.8246561	26.9753439				

Regression Statistics						
Multiple R 0.79296932						
R Square	0.628800343					
Adjusted R Square	0.54631153					
Standard Error	38.83485309					
Observations	12					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	2	22992.75684	11496.3784	7.62285603	0.011567355	
Residual	9	13573.31233	1508.14581			
Total	11	36566.06917				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-83.69579398	59.91370619	-1.39693902	0.19591733	-219.230014	51.8384256
Cloudiness	16.89993071	7.811288588	2.16352661	0.05872931	-0.77043172	34.5702931
Min Temp	3.811743079	4.055964856	0.93978701	0.37186327	-5.36348687	12.986973
RESIDUAL OUTPUT						
Observation	Predicted Precipitation	Residuals				
1	130.7983104	50.60168956				
2	130.9943447	-66.59434468				
3	72.08371195	-4.283711948				
4	70.47238739	-60.07238739				
5	60.35737311	11.44262689				
6	14.48903743	-7.089037433				
7	18.57342052	-18.57342052				
8	-14.36028183	14.36028183				
9	19.08221303	-0.582213035				
10	68.09745148	28.20254852				
11	87.08289903	21.81710097				
12	91.02913276	30,77086724				