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Abstract

The density functional theory (DFT) used in this thesis is a powerful tool to
simulate many-particle systems, however is not exact, the exchange-correlation
potential (Exc) represents an approximation of the particle interaction. With
the development of latter approximations for Exc, DFT becomes more useful
and credible to the scientific world. However, the dispersion of information is
becoming disturbing and confuse, so an agglomeration of this information is
necessary. The goal of this thesis is to analyse a large quantity of exchange-
correlation functionals and verify which ones gives an ionization energy closer to
the experimental values in a set of well defined molecules, called the G2 test set.





Resumo

A teoria de funcional de densidade (DFT) usada nesta tese é uma poderosa
ferramenta para simular sistemas de muitos corpos, no entanto, não é exacta, o
potencial de troca e correlação (Exc) representa a aproximação da interação entre
partículas. Com o desenvolvimento destas aproximações em Exc, DFT torna-se
cada vez mais útil e credível aos olhos do mundo científico. Contudo, a dispersão
de informação referente ao tema, começa a tornar-se confusa e perturbante, por
isso um aglomerar desta informação é necessária. O objectivo desta tese é analisar
a grande quantidade de funcionais de troca e correlação e verificar qual dará
uma energia de ionização mais próxima dos valores experimentais num conjunto
bem definido de moléculas, chamada de conjunto de testes G2.
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In a world where we are dependent of material properties that help us improve
our way of life it is necessary to study their properties so we can use them in
our favour. These materials are constituted by clouds of electrons that fluctuate
around a net of nuclei, where every particle interacts with each other within some
order, and the key features of the material are due to the electronic properties.[1]

A system composed by electrons and nuclei, which represent that material,
can be evaluated by the energies that act on them through the Hamiltonian
operator Ĥ. This operator applied to the particle system will determine the total
energy of that system and can be written as

Ĥ = − ℏ2

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i ̸=j

e2

|ri − rj|

−
∑
I

ℏ2

2MI

∇2
I +

1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
,

where electrons are denoted by lower case subscripts and nuclei by upper case
subscripts. The terms here included are the electrons and nuclei kinetic energy,
the attraction between electrons and nuclei, the repulsion between pairs of
electrons, and the repulsion between pairs of nuclei. One of the terms, the nuclei
kinetic energy, can be considered small compared to the others in the system,
due to the large value of the mass of the nuclei, and if we ignore it we still
have a good approximation to the real system. This approximation is called the
Born-Oppenheimer or adiabatic approximation.[2]

To know the characteristics and behaviour of a system we can use the time-
independent Schrödinger equation, where an Hamiltonian is applied to the
particle wave-function |Ψ(r1, . . . , rN)⟩, which contains all the information of the
system,

Ĥ|Ψ(r1, ..., rN)⟩ = E|Ψ(r1, ..., rN)⟩. (1)

The Schrödinger equation for interacting particles can be modified to an
equivalent, but simpler, scheme in which the system is defined by the Kohn-Sham
equation[3], where the particles do not interact and all the interaction effects are
expressed as a potential energy, the exchange-correlation energy, Exc [4]. The
conversion between the two equations is developed in Part II.
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The exchange-correlation energy is a very important term of the system and
there are very good approximations to its exact form. In the Chapter 2, Part
III, information about the exchange-correlation energy and its properties can be
found.

The goal of this thesis is to verify the quality of a large list of Exc constructions
in a set of molecules, called G2 set test[5, 6] (Chapter 3, Part III). This set was
a convenient choice, because there was a study already made to demonstrate
the results of G2 theory with experimental values. The property of the system
chosen as quality factor was the ionization potential (Chapter 4, Part III). This
choice was made because it is easy to calculate, it is the property used in G2
theory and having a direct relation to the total energy is significantly important.

In Part IV, the methodology is presented, where is made an overview of
the electronic structure software NWChem[7] that is used to solve the Kohn-
Sham equation, with the assistance of the Libxc library[8] for the Exc list and
Pyxcbench application to organize the information in a database and where
statistical calculations are performed.



Part II

Theory





Chapter 1

Density Functional Theory

One of the major problems in density functional theory[9] is to know an accurate
and easy way to calculate the Coulomb energy that reproduces well the interaction
between electrons,

V̂ee =
1

2

∑
i

∑
j ̸=i

1

|xi − xj|
. (1.1)

In the early days of quantum theory, Thomas and Fermi[10, 11] replaced the
expectation value

〈
V̂ee

〉
by the direct Coulomb functional energy that depends

on the electron number density n(r⃗),

U [n] =
1

2

∫
d3x

∫
d3x′

n(x)n(x′)

|x− x′|
(1.2)

But it was observed a deficiency in an one-electron system, where a spurious
self-interaction was found in this formulation.

To overcome this problem, the Hartree-Fock (HF)[12] approximation appeared,
where the interaction between electrons is given by the sum of direct and exchange
effects

〈
V̂ee

〉
= U [n] + Ex, (1.3)
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where the exchange energy is

Ex = −1

2

∑
σ

∑
α,α′

∫
d3r

∫
d3r′

Ψ∗
ασ(x)Ψ

∗
α′σ(x)Ψα′σ(x)Ψασ(x)

|x− x′|
. (1.4)

The electron density is the sum of each state density,

n(x) =
∑
α,σ

nασ(x), (1.5)

and nασ(x) gives the probability of an electron being in that state,

nασ(x) = |Ψασ(x)|2 . (1.6)

The Hartree-Fock approximation has a self-exchange energy which accurately
cancels the self-interaction in the Coulomb energy U [n], although this was an
improvement, the HF solutions needed a more elaborated treatment. The total
energy is dominated by high-density inner-shell electrons, but electronic properties
has direct us to the low-density valence electrons, for which another factor needs
to be considered, the correlation effect. Also the long range Coulomb interaction
produces unrealistic description in the HF eigenvalues near the Fermi level.

To improve this method we turn up to the density functional theory (DFT)
approach which is exact in principle and includes correlation explicitly in the
total energy. In the next section we will clarify this approach by developing the
Schrödinger equations into Kohn-Sham equations.

1.1 Many-Particle introduction

The Kohn-Sham[13] functional method uses N one-electron Schrödinger equations
to find the ground state total energy and the spin densities that describes the
same system with N interacting electrons.

In this section we will discuss how to simplify the complicated N interacting
electrons system by using the Hohenberg-Kohn theorem[14] formulated for a
local external potential that leads to a spin-independent and non-degenerated
ground-state and then extend it to a spin-dependent degenerated ground state.
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The non-relativistic time-independent Hamiltonian of a N particle system, in
atomic units, is

Ĥ = −1

2

N∑
i=1

∇2
i +

N∑
i=1

v(ri) +
1

2

∑
i=1

∑
j ̸=i

1

|ri − rj|
= T̂ + ˆVext + V̂ee, (1.7)

where the first term is the kinetic energy of the system, the second is an external
potential affecting the electrons, and the third is a Coulomb interaction between
the electrons. All the terms involving the nuclei are included in the external
potential.

The Born-Oppenheimer approximation was used in the Hamiltonian (1.7),
this consider that the electrons maintain the same state upon the movement of
nuclei and we can ignore the kinetic energy of atoms, because of it’s large mass.
However, if we encounter degeneracy or near degeneracy electronic states, this
approximation is no longer applicable.

The states of well-defined energy are the eigenstates of Ĥ:

ĤΨk(x1, ...,xN) = EkΨk(x1, ...,x1), (1.8)

where Ψk is a spin orbital with xi = {ri, σi}, ( σi = 1
2

or σi = −1
2

), and k is the
complete set of many-electron quantum numbers.

The electrons are fermions, so they follow the antisymmetry principle, a
general statement of the Pauli exclusion principle, where a wave function must
be antisymmetric with respect to the interchange of the coordinate x of any two
electrons,

Ψk(x1, ...,xi, ...,xj, ...,xN) = −Ψk(x1, ...,xj, ...,xi, ...,xN). (1.9)

The first postulate of quantum mechanics says that the wavefunctions must fol-
low the normalization condition for probabilistic interpretation, so the N! distinct
permutations that the antisymmetric property creates, imply the normalization
condition:

⟨Ψ|Ψ⟩ = 1

N !

∑
σ1...σN

∫
d3r1...

∫
d3rNN !|Ψ(x1, ...,xN)|2 = 1. (1.10)
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The probability for finding an electron with spin σ in volume element d3r at r
is found by calculating the electron spin density nσ(r). We find it by integrating
over all other electrons

nσ(r) =
1

(N − 1)!

∑
σ2...σN

∫
d3r2...

∫
d3rNN !|Ψ(x,x2, ...,xN)|2

= N
∑
σ2...σN

∫
d3r2...

∫
d3rN |Ψ(x,x2, ...,xN)|2, (1.11)

so it follows that

∑
σ

∫
d3rnσ(r) = N. (1.12)

These conditions let us write the expectation value of the external potential
with dependence on the electron density,

⟨V̂ext⟩ = ⟨Ψ|
N∑
i=1

v(ri)|Ψ⟩ =
∫
d3rn(r)v(r). (1.13)

1.2 Hohenberg-Kohn theorem

To obtain the Kohn-Sham equation in terms of the system density, we are going
to find an universal functional for the energy. To do this we use the Hohenberg-
Kohn theorem, where the first part says that v(r) is a unique functional of the
density, apart from a trivial additive constant, and that the density uniquely
determines the external potential.

To demonstrate this we will assume that another potential V̂ ′
ext with ground

state Ψ′ gives rise to the same density n(r) as V̂ext and Ψ, unless V̂ext−V̂ ′
ext = const.

The wave function Ψ′ cannot be equal to Ψ as they satisfy different Schrödinger
equations. Since we know that the ground state energy is the lowest energy of
the system and the ground state is non-degenerated

Egs = ⟨Ψ|Ĥ|Ψ⟩ < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ ′ + V̂ext − V̂ ′
ext|Ψ′⟩, (1.14)
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we find that

Egs < E ′
gs +

∫
n(r)[v(r)− v′(r)]. (1.15)

If we do the same, starting with E ′
gs, we get

E ′
gs < Egs +

∫
n(r)[v′(r)− v(r)]. (1.16)

Summing both inequalities, we get the contradiction

Egs + E ′
gs < Egs + E ′

gs. (1.17)

This means that v(r), within a constant, is a unique functional of n(r).

The second part of the Hohenberg-Kohn theorem establishes the variational
procedure for the energy functional.

Since Ĥ is a functional of n(r), so is the kinetic and the interaction energies.
We can thus define an universal functional,

FHK[n] = ⟨Ψ|T̂ + V̂ee|Ψ⟩, (1.18)

valid for any external potential. Thus the energy functional can be defined as

Ev[n] =

∫
v(r)n(r)dr+ FHK[n]. (1.19)

For an external potential V̂ext0 of a specific system, with ground state density
n0(r) and ground state energy E0, the variational principles shows that

E0 < Ev0 [n] for n ̸= n0, (1.20)

and
E0 = Ev0 [n0] for n = n0, (1.21)

so the exact ground state density can be determined by

E0 = min
n
Ev0 [n]. (1.22)
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1.3 Extension to degenerate ground states

To extend this theory to include degenerate ground states, instead of a single
ground state wave-function, each potential energy V will lead to a subspace
spanned by an orthonormal system of degenerate ground states,

ΨV =

{
| Ψ⟩ =

q∑
i=1

ci| Ψi⟩

}
. (1.23)

The same analogy can be made with the ground state densities. Nevertheless,
this creates a problem: the universal functional uniqueness is no longer guaranteed.
To overcome this, we will consider a ground state energy corresponding to an
unique external potential V̂ext[n] for a given density n(r) that is the same for all
degenerate ground state wave-functions

⟨Ψ|T̂ + V̂ee + V̂ext[n]|Ψ⟩ = ⟨Ψ′|T̂ + V̂ee + V̂ext[n]|Ψ′⟩ = E. (1.24)

The energy is fixed by the density to within a constant, which makes

FHK[n] = E −
∫
n(r)v(r)dr (1.25)

an unique functional of the density and any possible ground state wave-function
yielding the same density is allowed. [3]

1.4 v-Representability

A pure-state v-representability is a requirement to obtain physical solutions from
the Schrõdinger equation. This characteristic means that a n(r) function needs
to be the ground state density with a suitable local external potential v(r) of
the Hamiltonian. The unique functional FHK [n] was defined only for pure-state
v-representable functions. However, when applying the variational principle,

E0 = min
n
Ev0 [n], (1.26)

we need to be sure that the trial density belongs to the domain of pure-state
v-representable densities. To find out if a density belongs to this domain, we can
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represent the variational principle by the following way

δ

δn(r)
Ev0 [n] = 0 (1.27)

and choose the domain where the functional is differentiable in the vicinity of
the minimum.

There are some functions that are non-v-representable. An example of this
situation occurs when the density is an "ensemble of densities". The set of
densities are represented by the density matrix which describes a system in
a statistical mixture of states. To include this group we need to replace the
subspace ΨV of degenerate ground states associated with a potential V ∈ V by
a set of density matrices

DV =

{
D̂ =

q∑
i=1

di|Ψi⟩⟨Ψi| , d∗i = di >= 0 ,

q∑
i=1

di = 1

}
(1.28)

and an extension of the functional FHK[n] of ensemble v-representable densities
can be defined by

FEHK[n] = tr
{
D̂[n](T̂ + V̂ee)

}
. (1.29)

Other functions that do not correspond to the ground state of any external
potential were found by Englisch and Englisch[15]. To find a more general
domain so that FHK[n] or FEHK[n] can have a v-representable characteristic for
an arbitrary non-negative function, it is used the constrained search found by
Levy and Lieb [16, 17], where the functional FHK is replaced by

FLL = inf
Ψ→n

⟨Ψ|T̂ + V̂ee|Ψ⟩. (1.30)

The infimum of the observable is going to be searched over all antisymmetric,
normalised N-particle functions Ψ(x1, ..., xN) whose density equals the function
n(r). So for all pure-state v-representable functions n(r), FLL[n] = FHK[n], since
FLL[n] is an extension of FHK[n] . To prove this extension we need to show that
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the total-energy functional

Ev0 [n] = FLL[n] +

∫
n(r)v0(r)dr (1.31)

has its minimum at the correct ground state density n0(r), corresponding to the
potential v0(r) and with the ground state energy value E0. For the proof, we can
use the Rayleigh-Ritz principle in the form of

E0 = inf
Ψ
⟨Ψ|T̂ + V̂ee + V̂ext0|Ψ⟩

= inf
n(r)

[
inf
Ψ→n

⟨Ψ|T̂ + V̂ee + V̂ext0|Ψ⟩
]

= inf
n(r)

[
inf
Ψ→n

⟨Ψ|T̂ + V̂ee|Ψ⟩+
∫
n(r)v0(r)dr

]
= inf

n(r)

[
⟨Ψmin

n |T̂ + V̂ee|Ψmin
n ⟩+

∫
n(r)v0(r)dr

]
= inf

n(r)

[
FLL[n] +

∫
n(r)v0(r)dr

]
= inf

n(r)
[Ev0 ] .

This shows that the minimum of Ev0 is the ground state energy E0.

The same reasoning can be used with FEHK[n] for the functional

FL[n] = inf
D̂→n

tr
{
D̂(T̂ + V̂ee)

}
(1.32)

and the corresponding total-energy functional

Ev0 [n] = FL[n] +

∫
n(r)v0(r)dr. (1.33)

The functional FLL has a domain defined by all non-negative functions n(r)
with the condition that

∫
n(r)dr = N and can be represented as the density of

some antisymmetric N-particle function Ψ(x1, ..., xN ). These density functions are
considered N-representable. Since these functions are considered N-representable
an ensemble of these densities are also considered as N-representable.
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1.5 Kohn-Sham equations

The ground state energy, as we showed before, can be found by minimizing
⟨Ψ|Ĥ|Ψ⟩ over all normalized, antisymmetric N-particle wavefunctions,

E = min
Ψ

⟨Ψ|Ĥ|Ψ⟩, (1.34)

which is the same as the minimization of

E = min
Ψ

{
F [n] +

∫
d3rv(r)n(r)

}
, (1.35)

where v(r) is held fixed during the minimization and the minimized density is
the ground-state density. We changed the notation of FL[n] to F [n] as it is the
only functional for kinetic and interaction energy that we will be using for the
rest of the section.

To find this minimum the variational principle will be used with a constraint
on the number N of particles by using a Lagrange multiplier µ:

δ

{
F [n] +

∫
d3rv(r)n(r)− µ

∫
d3rn(r)

}
= 0, (1.36)

if we derive in order of n, by using the functional properties shown in appendix
A, the solution we obtain is equivalent to the Euler equation

δF

δn(r)
+ v(r) = µ (1.37)

and µ is adjusted until
∫
d3rn(r) = N is verified.

We can write the last equation in form of energy and we can find that the
Lagrangian multiplier µ is the exact chemical potential of the system

µ =
δF

δn(r)
+ v(r) =

δE

δn
→ ∂E

∂N
(1.38)

To find the Kohn-Sham equations, we define a system of non-interacting
electrons, where V̂ee vanishes from the Hamiltonian,

Ĥ = T̂S + V̂ext, (1.39)
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and the exact solution for the Schrödinger equation with this non-interacting
Hamiltonian system is

Ĥ|Ψi⟩ = ϵi|Ψi⟩, (1.40)

with a total energy of the system of

Es[n] =
∑
i

ϵi. (1.41)

We now introduce a classical electrostatic interaction potential VH of the
charge distribution n(r) where

VH(r) =

∫
n(r′)

|r− r′|
d3r′, (1.42)

and the relation between the potential and it’s energy is

VH(r) =
δEH
δn(r)

. (1.43)

Returning to our energy functional with the interacting particle system,
we introduce the exchange and correlation energy functional Exc to relate the
interacting particle system with the non-interacting one,

E[n] = (T + Vee)[n] + Vext[n]

= Ts[n] + EH [n] + (T − Ts + Vee − EH)[n] + Vext[n]

= Ts[n] + EH [n] + Exc[n] + Vext[n].

(1.44)

Using the relation of the chemical potential with this energy we get,

µ =
δE[n]

δn(r)
=
δTs[n]

δn(r)
+
δEH [n]

δn(r)
+
δExc
δn(r)

+
δVext[n]

δn(r)
. (1.45)

The functional derivatives are

δVext[n]

δn(r)
= v(r) (1.46)
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and
δExc
δn(r)

= Vxc(r). (1.47)

By substituting these energy derivatives in (1.45) we get

µ =
δE[n]

δn(r)
=
δTs[n]

δn(r)
+ VH(r) + Vxc(r) + v(r). (1.48)

Comparing this last relation to the Euler equation (1.37) and finding the
similarities to a non-interacting system where the Schrödinger equation is(

−1

2
∇2 + v (r)

)
|Ψi ⟩ = ϵi|Ψi ⟩ , (1.49)

we see that if vs = VH +Vxc+ v, and assuming that there exists a non-interacting
system with exactly the same density as the interacting system of interest, the
Kohn-Sham equation is written as

[
−1

2
∇2 + vs(r)

]
|Ψi⟩ =

[
−1

2
∇2 + VH(r) + Vxc(r) + v(r)

]
|Ψi⟩ = ϵi|Ψi⟩ (1.50)

and the orbitals Ψi reproduce the density n(r) from the original interacting
system, since both are the ground state densities for the same external potential,

n(r) = ns(r) =
N∑
i

|Ψi(r)|2. (1.51)

For the spin-dependent system, the total density is just divided into the sum
of both density spins

n(r) = n(r, ↑) + n(r, ↓). (1.52)
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with each spin-density state being the sum of the particles wave-functions with
the spin established by the density spin state,

n(r, ↑) =
N∑
i

|Ψi(r, ↑)|2

n(r, ↓) =
N∑
i

|Ψi(r, ↓)|2.

(1.53)

With the Kohn-Sham equations well defined and giving an exact solution, we
still have a problem: the exact form of the exchange-correlation energy is not
known and the only solution is to find an approximation that gives an accurate
result. In the next section we will see how we can find such functionals and their
properties.



Chapter 2

Exchange and Correlation
Functionals

2.1 Introduction

The exchange-correlation energy Exc definition can be retrieved from the equation
(1.44) and is the difference between the kinetic energies from the interacting
particle system and the independent one and the difference of the potential of
interacting particles and the classical electrostatic interaction energy. If the
functional Exc was known, then the exact ground state energy and it’s density
could be found.

The Exc[n] functional can be approximated as a local or non-local functional
of the density. It can be separated in two terms, the exchange energy and the
correlation energy

Exc[n] = Ex[n] + Ec[n]. (2.1)

In the next section we will start by specifying some properties and restrictions
of the exchange and correlation functionals and in the following sections we
will define these functionals in a system consisting of an uniform electron gas
and in the two most popular approximations used for the exchange-correlation
functionals, the Local Spin Density Approximation (LSDA/LDA/LDS) and the
Generalized Gradient Approximation(GGA).
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2.2 Properties and Restrictions

There are some restrictions that the density functionals are subject to and can
give some guidance in the development of new approximations to the functionals.

To define some of the constraints we need first to look in a different perspective
to the electron density interpretation. The alternative description can be related
to the way the exchange and correlation effects tend to separate electrons apart
and regard this effect as a hole involving an electron and keeping the others from
approaching it. We will start with the description of the exchange-correlation
energy with the coupling constant formulation[4]

Exc[n] =

∫ 1

0

dλ⟨Ψmin,λ
n |V̂ee|Ψmin,λ

n ⟩ − U [n], (2.2)

where λ = 0 corresponds to the non-interacting case and λ = 1 to full interac-
tion. The electron-electron potential and the Hartree electrostatic potential are
dependent of the densities as

⟨V̂ee⟩ =
1

2

∫
d3r

∫
d3r′

ρ2(r
′, r)

|r− r′|
(2.3)

and
U [n] =

1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
. (2.4)

The two-electron reduced density matrix ρ2(r′, r) is a pair correlation function
given by the density n(r) of finding an electron in d3r and n2(r, r

′) the conditional
density of finding an electron in d3r′, given that there is one at r.

ρ2(r
′, r) = n(r)n2(r, r

′). (2.5)

The conditioned density n2(r, r
′) can be interpreted as having an electron in

r′ with the effects of an hole in r

n2(r, r
′) = n(r′) + nλxc(r, r

′), (2.6)

where nλxc(r, r′) is the exchange-correlation hole density.
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The integral over space of the conditional density gives all the electrons in
the system except the one in r,∫

d3r′n2(r, r
′) = N − 1 (2.7)

and given the integration of n(r) from (1.12) on a unpolarized system,∫
d3rn(r) = N (2.8)

we can define a constraint to the domain of the functionals.

Exchange-correlation hole density sum rule
This limitation to the electron densities implies, from (2.6), that the
exchange-correlation hole density is an electron in r missing from the
rest of the system ∫

d3r′nλxc(r, r
′) = −1 (2.9)

Defining the coupling-constant averaged hole density as

n̄xc(r, r
′) =

∫ 1

0

dλnλxc(r, r
′), (2.10)

we can rewrite the exchange-correlation energy (2.2) as

Exc[n] =
1

2

∫
d3r

∫
d3r′

n(r)n̄xc(r, r
′)

|r− r′|
. (2.11)

For the Kohn-Sham non-interacting particle system λ = 0, the hole exchange
density can be given by

nx(r, r
′) = nλ=0

xc (r, r′) = −
∑
σ

|ρλ=0
1 (r′σ, rσ)|2

n(r)
, (2.12)

where ρ1(r′σ, rσ) is the one-electron reduced density matrix.

Hole exchange density inequality
Since ρ1(r′σ, rσ) and n(r) are positive, the hole exchange density (2.12)
needs to be negative

nx(r, r
′) ≤ 0 (2.13)
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With λ = 0 , the correlation effects, that represent the Coulomb interaction,
disappear and the exchange-correlation energy becomes the exchange energy

Ex[n] =
1

2

∫
d3r

∫
d3r′

n(r)nx(r, r
′)

|r− r′|
. (2.14)

Exchange energy inequality
The dependence of the exchange energy functional with the hole ex-
change density, show us that the exchange-energy is constrained to
negative values

Ex[n] ≤ 0 (2.15)

Exchange hole density sum rule

The constrain for the hole exchange-correlation density (2.9) is inde-
pendent of the λ value so (2.12) says us that the exchange hole density
also follows the same rule,∫

d3r′nx(r, r
′) = −1. (2.16)

Knowing that we can separate the exchange from the correlation terms in
the energy, the same happens to the density, particulary with the average of the
hole density

n̄xc(r, r
′) = nx(r, r

′) + n̄c(r, r
′). (2.17)

Correlation hole density sum rule
The sum rule can also be applied to the correlation hole density

∫
d3r′n̄c(r, r

′) = 0 (2.18)

Applying the coordinate scaling[18] to the density, we can find out how the
functionals that depend on the density will be transformed by this change. When
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scaling the density r → γr with a scale parameter γ > 0, the scaled density
appears as

nγ(r) = γ3n(γr), (2.19)

where this new density also conserves the electron number:
∫
d3rnγ(r) = N

If γ > 1, we have higher and more contracted densities or if γ < 1, the scaled
density will be lower and more expanded than n(r).

Scaling properties

Using this scaling method[18] in the Hartree electrostatic self-repulsion
of the electrons, the non-interacting kinetic energy, and the exchange
energy functional, we can verify how these energies scale by

U [nγ] = γU [n]

Ts[nγ] = γ2Ts[n]

Ex[nγ] = γEx[n]

(2.20)

The correlational functional does not have a simple scaling, but a
general inequality is obtained,

Ec[nγ] > γEc[n] (γ > 1)

Ec[nγ] < γEc[n] (γ < 1)
(2.21)

From the scaling relations in (2.20), we can verify that for the high-density
limit, γ → ∞, Ts[nγ ] dominates U [nγ ] and Ex[nγ ], while in the low-density limit,
γ → 0, U [nγ] and Ex[nγ] dominate Ts[nγ].

While Ec[nγ] in the high-density limit tends to a negative constant, in the
low-density limit it behaves as Ec[nγ] ≈ γD[n], where D[n] is an appropriately
chosen density functional.
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The Lieb-Oxford bound

A useful condition for functional approximations are the lower bounds,
Lieb and Oxford[19] have found that the non-interacting kinetic and
exchange-correlation functionals possess a lower bound, coming from
Thomas-Fermi theory

Ts[n] ≥ 2.87

∫
d3rn(r)5/3 (2.22)

Since,
Ex[n] ≥ Exc[n] ≥ Eλ=1

xc [n] (2.23)

and

Eλ=1
xc [n] ≥ −1.68

∫
d3rn(r)4/3 (2.24)

then this is also the lower bound for the exchange and exchange-
correlation functionals.

The fundamental band-gap[20, 21] (the difference between the bottom of the
conduction band and the top of the valence band) is a ground state quantity that
can be expressed in terms of ground-state energies of N-1, N, and N+1 particle
systems as

Eg = IP − EA = (Eg (N + 1)− Eg (N))− (Eg (N)− Eg (N − 1)) , (2.25)

where IP is the ionization potential and EA the electron affinity.

When considering the Kohn-Sham systems of N and N+1 particles, the true
band-gap can be obtained by the difference between the HOMO (highest-occupied
molecular orbital) and LUMO (lowest unoccupied molecular orbital):

Eg = ϵN+1(N + 1)− ϵN(N) (2.26)

but usually, what is available is the difference in HOMO and LUMO in a N-
electron calculation
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Derivative discontinuity

Eg = (ϵN+1(N)− ϵN(N)) + ∆xc (2.27)

The term in parenthesis is the Kohn-Sham band-gap and ∆xc is called
the derivative discontinuity. By verifying a discontinuity in the dif-
ference of the density, we can conclude that the derivatives of (1.45)
also have discontinuity, this loss is included in the exchange-correlation
potential.

Size Consistency

To avoid complexity the energy and the density of a system should be
able to be separated into subsystems.

E = E1 + E2 (2.28)

and
n(r) = n1(r) + n2(r) (2.29)

The LDA or GGA approximations that follow this constraint are
properly size consistent.

The functionals that are not size consistent should be avoided.

2.3 Uniform Electron Gas

The simplest system involving several electrons is a non-interacting uniform
electron gas. This system can be characterized by a null (constant) Kohn-Sham
potential vs(r) in a volume (V) with cyclic boundary conditions. The solution to
this system are the plane waves

Ψ(r) =
1√
V
exp(ik · r) (2.30)

where k is the wave vector, the energy is k2/2 and the number of orbitals in a
volume d3k of wave-vector space is 2[V/(2π)3]d3k.
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The number of electrons in volume V that occupy the N lowest Kohn-Sham
spin orbitals (k < kF ) is given by

N = V
k3F
3π2

, (2.31)

where kF is the Fermi wavevector and the electronic density is

n(r) =
k3F
3π2

=
3

4πr3s
(2.32)

where rs is the Seitz radius, the radius of a sphere containing one electron.

The kinetic energy of the system is given by

ts(n) =
3

5

k2F
2

=
3

10
(3π2n)2/3 =

3

10

(9π/4)2/3

r2s
. (2.33)

Whe can evaluate the exchange energy in the homogeneous electron gas by
using the description of this contribution in terms of a hole surrounding each
electron and keeping other electrons from approaching them, as this kind of
energy tend to keep electrons apart.

The one-matrix electron density of spin σ is given by[9]

ρλ=0
1 (r+ uσ, rσ) =

k3F
2π2

sin(kFu)− kFu cos(kF )u

(kFu)3
. (2.34)

Using it to calculate the exchange hole density (2.12), we obtain

nx(u) = −2
|ρλ=0

1 (r+ uσ, rσ)|2

n
. (2.35)

The exchange energy per electron is then,

ex(n) =

∫ ∞

0

du2πunx(u) = − 3

4π
kF = − 3

4π
(3π2n)1/3 = − 3

4π

(9π/4)1/3

rs
(2.36)

In a uniform gas the self-interaction correction vanishes, and the Pauli exclusion
principle is the only effect to consider.
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While kinetic and exchange energies were obtained exactly, the correlation
energy can only be obtained in the same form for high and low limits.[4]

In these limits the correlation energy can by given by many-body perturbation
theory for weak-coupling limit and from Madelung electrostatic and zero-point
vibrational energies of the Wigner crystal for the strong coupling limit or also
using expressions fitted to Quantum Monte Carlo calculations.

With the well established formulation for the limits at high density where
the system approaches a perfect gas and at low density approaches the structure
of a crystal, intermediate phases in the density, with small energy differences
between them, need to be found. The Quantum Monte Carlo method is used
because of it’s capability to give a solution of two orders of magnitude smaller
than an an approximate trial wave function. [22]

2.4 Local Spin Density Approximation

In the LSDA we assume that the density of a system is locally homogeneous, so
we can write the exchange-correlation energy density as

ELSDA
xc [n↑, n↓] =

∫
d3rn(r)

[
ϵhomx (n↑(r), n↓(r)) + ϵhomc (n↑(r), n↓(r))

]
. (2.37)

In unpolarized systems the following settings are found n↑(r) = n↓(r) =

n(r)/2.

It is expected that this approximation will work better with some solid
than with inhomogeneous cases like atoms and small molecules, because of the
nearly-free-electron characteristics similar to the homogeneous electron gas.

The Local Spin Density Approximation is exact for uniform densities and
nearly-exact for slowly-varying ones. The satisfactory results that show for many
systems is from application of the constrains, from previous section (section 2.2),
in the exchange and correlation functionals.

There is a constraint that LDA and GGA do not follow because of their local
and semi-local density structure, they predict a zero derivative discontinuity,
giving a poor approximations to the experimental gaps, by a factor of 2̃.
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2.5 Generalized-Gradient Approximation

The GGA[23] functionals have emerged to improve the LDA functionals. GGA
can be more accurate than the LDA functionals, as adding the dependency on
the gradient of the density allows for a better description of inhomogeneous
systems than LSDA does.

The GGA arises from the gradient expansions approximation (GEA) intro-
duced into LDSA, where the electrons are treated as in a homogeneous system.
The first term of the expansion, ∇n, disappears due the random direction of
electrons and only appears the 2nd order term, ∇2n. The terms of this expansion
are found by creating a weak external perturbation and finding out the response
of the energy.

The result obtained was good for the kinetic energy, acceptable for the
exchange energy, but poor in the correlation energy and, consequently, in the
exchange-correlation energy. The improvements upon LSDA were found for high
densities but display an inaccurate behaviour for small densities. With this
approximation, oscillations in the exchange density hole disobey the constraint
(2.13) and converges to -1 only with a convergence factor (2.16), while the
correlation density hole do not integrate to 0 (2.18).

The non-empirical generalized gradient approximation emerges from GEA by
applying a cut off to the large-u contributions, so that the constrains are fulfilled
correctly

EGGA
xc [n↑, n↓] =

∫
d3rf(n↑(r), n↓(r),∇n↑(r),∇n↓(r)). (2.38)



Chapter 3

Ionization Potential

The ionization potential[24] can be classified in two definitions the vertical
ionization energy and the adiabatic ionization energy.

Fig. 3.1 Difference between vertical ionization energy and adiabatic ionization
energy

When referring to the vertical ionization energy we can retrieve its interpre-
tation from Koopmans’ theorem in the Hartree-Fock theory, which states that
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the relaxation of the HF energy from a removal of an electron in an unrelaxed
orbital state ασ is related to the HF eigenvalue as

∆EHF
ασ |unrel = −ϵHF

ασ (3.1)

the difference between the unrelaxed energy and the relaxed one is established
by the orbital relaxation energy ΣHF

ασ by

∆EHF
ασ |rel = ∆EHF

ασ |unrel + ΣHF
ασ |unrel. (3.2)

The Koopmans’ theorem can give an acceptable removal energy from a single
calculation of the eigenvalues for a N-electron system.

However, when we work in a system with localized states the relaxation effect
Σασ are significant, additional transitions may exist between the ground state of
the neutral molecule and the excited state of the positive ion. There can also
exist an intrinsic self-interaction effect, like the one electron in the DFT theory.

Unless there is a functional that cancels the negative relaxation energy which
approximates the energy eigenvalue −ϵασ to the relaxed excitation energy, another
method to accurately calculate the ionization energy should be used and this
method is the adiabatic ionization energy.

The adiabatic ionization energy is a more correct way to calculate the ion-
ization energy. With this method we need to evaluate two calculation of the
total energy with different molecule geometries, because the lack of an electron
the equilibrium modifies the atomic positions, so the difference between the two
energy with different geometries gives a more accurate ionization energy, without
the additional transitions and the self-interaction effect can be cancel.
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Methodology





Chapter 4

Benchmark Dataset

In order to test the functionals, a suitable set of systems has to be chosen.
There are several such databases. They cover systems ranging from atoms, small
molecules and small ions to bulk structures. As the property we intended to
use as benchmarks for the functionals was the ionization potential, the most
adequate datasets would be sets of small, well-know, molecules.

There are several such datasets available: G1, G2, G3, etc

4.1 G2 Benchmark

The choice for the molecules from the list of Gaussian-2 theory[5, 6], was primarily
due to having already experimental and theoretical data evaluated and we can
use that previous work in our advantage.

The Gaussian-2 theory is an upgrade of the Gaussian-1 theory, some correc-
tions were made in G1 energy to G2 energy. The G1 theory is mainly based in
the Møller-Plesset perturbation theory, a post-Hartree-Fock ab initio method.
This method improves HF theory by adding electron correlation effects by means
of Rayleigh-Schrödinger perturbation theory normally used between 2nd (MP2)
to 4th (MP4) order.

The main goal of this theory is to obtain an equilibrium geometry, a total
electronic energy and a set of harmonic frequencies for each structure associated
with a local minimum on a potential surface.
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The steps to achieve the objectives starts by using the Hartree-Fock theory
with 6-31G* basis to get initial equilibrium structures using spin-restricted
for single states and spin-unrestricted for all other multiplicities. Then the
final structures are obtained by using MP2 and 6-31 G* basis set, with full
electron correlation. The calculation of the energy from this geometry, where
the electron correlation is treated only with the valence ones using the frozen-
core approximation, are carried by the full fourth-order Møller-Plesset theory
(MP4SDTQ).

After the main calculations some corrections are made, like the inclusion of
diffuse sp basis functions important for anions and molecules with lone pairs of
electrons, corrections in higher polarization functions on non-hydrogen atoms
and corrections of the deficiencies of Møller-Plesset theory truncated at fourth
order, with problems occuring in unsaturated radicals or molecules with multiple
bounds. Beside these corrections, the basis set also creates deficiencies and to
solve this issue, arrangements in the total energy are made.

The change from G1 to G2 theory occurs with three corrections in G1 energy.
The first result from non-additivity caused by the assumption of separate basis
set extensions for diffuse sp functions and higher polarization functions. The
second one there is an addition of a third d functions to the non-hydrogen atoms
and a second p function to the hydrogen. The last is a better fit to experimental
atomization energies of 55 molecules, to correct energy calculation error in the
H2 molecule and H atom .

We use the molecules studied by the Gaussian-2 theory and use them to
compare the DFT theory with the experimental data (Table 6.2), we not only
used the same molecules, but the same atomic geometry was applied.



Chapter 5

Application of DFT

5.1 Density Functional Theory calculations in a
Gaussian basis set

The solutions of the Kohn-Sham equation needs to be calculated by methods
that solve differential equations. The potentials used in the Hamiltonian are
the classical Coulomb and the Hartree contributions, besides the exchange-
correlations potential.

(−1

2
∇2 + vc(r))Ψi(r) +

∫
vxc(r, r′)Ψi(r

′)dr′ = ϵiΨi(r) (5.1)

with

vc(r) = −
∑
a

Za
|Ra − r|

+

∫
ρ(r, r)

|r− r′|
dr′ (5.2)

where ρ(r, r) is the diagonal of the electron density matrix

ρ(r, r′) =
∑
α

Ψ∗
α(r)Ψα(r

′) (5.3)

To obtain more easily the solutions of equation (5.1) the single-particle orbitals
Ψi(r) can be expanded in terms of a finite basis set.

There are two main types of basis set that can be used in NWChem[7], the
local basis implementation, that uses atom-centred Gaussian type orbitals (GTO)
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and the plane wave implementation, which uses PSPW (pseudo-potential plane
wave), band structures and PAW (projector augmented plane-wave).

In this project, the GTO basis are going to be use, as is more simple for small
molecules calculations, these orbitals are decompose into

Φµ(r) = xlymzne−ar
2

(5.4)

or in radial-angular description

Φµ(r) = Rl(r)Ylm(θ, ϕ). (5.5)

They can also be in linear combinations (contracted GTO’s).

The single-particle orbitals are written in terms of the GTO functions

Ψi(r) =
∑
µ

ciµΦµ(r−Raµ). (5.6)

Using the expansion of (5.6), the equation (5.1) can be transformed into the
matrix form

FC = SCE (5.7)

where C = {ciµ} is the matrix of expansion coefficients, E = {ϵi} the
eigenvalue matrix and S the overlap matrix

Sµν =

∫
Φµ(r)Φν(r)dr. (5.8)

The Fock matrix, F, consists on the kinetic, Coulomb and exchange-correlation
matrix elements

Fµν = tµν + vcµν + vxcµν (5.9)
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where

tµν = −1

2

∫
Φµ(r)∇2Φν(r)dr

vcµν =

∫
Φµ(r)v

c(r)Φν(r)dr

vxcµν =

∫ ∫
Φµ(r)v

xc(r, r′)Φν(r
′)drdr′

(5.10)

The generalized non-linear eigenvalue equation (5.7) is solved using a self-
consistent field (SCF) procedure. The two main computational steps involve the
construction of the Fock matrix and its diagonalization.

The Coulomb term and non-local component of the exchange-correlation
energy give a complexity of O(n4) and different methods can be used to reduce
them to O(n3), using charge density (CD) fitting or the resolution of identity
(RI) approach. While the local part of the exchange-correlation potential has to
be evaluated numerically on the radial grids with O(n3).

5.2 Input Files

Calculations in NWChem are done by creating input files and run them through
the software. They are free-format text files that contain start-up directives,
definition of the chemical system, specifications of parameters for calculations
and task directives.

An example of input file is:
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Fig. 5.1 Example of an input file

where the .xyz file is

Fig. 5.2 Example of a xyz file

The start-up directives are the ones that define the general features of the
calculation, including available memory, database name, file locations and other
global options. Once the start-up directives are processed, the parameters for
the calculation will be searched. During this process the only procedure that
is happening is saving these parameters to the database file, so when it parses
through the task directives the extraction of relevant data starts and appropriate
computational calculations are made.

We can see from the example, fig.(5.1), that the file title is a number, this
number represents the molecule ID in the G2 benchmark, from the line that
adds or removes a charge particle to the molecule is shown that the molecule is
neutral.

The geometry is in Cartesian format inside a xyz file and the basis set used
for all atoms is the 3-21G. In the DFT parameters part, the Libxc[8] library is
used to call the functionals, in the next section we will discuss more about this
library, and the multiplicity in a open-shell system (ODFT) is 1.

Finally the task to calculate the energy ends the input file. After we run it
through NWChem an output file will be created with all calculations and the
chosen and default options.
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5.3 Functionals Dataset

Since DFT began to have solid foundations, the improvement of this theory and
consequently the construction of new and more accurate exchange-correlation
energies started to emerge to give more precise results for different systems and
observable quantities. With the creation of a great number of Exc functionals
where all information was spread around and as new electronic structure software
simulator appeared in this new technology view of the world with dependence
on the functionals, a library was created so all the information could be located
in one place and be easily used by the new electronic structure software.

It was made an effort to include not only new functionals, but the functionals
that were used in the beginning of the density functional theory. Besides the
functionals, their derivatives of several orders were included in the analytic form,
so the numerical errors and instabilities are not introduced in the calculations.
The possibility to use the Libxc in several software codes, is an advantage to
make a comparison between them for any existing functional.

We can retrieve the functionals by using the functional id or functional name
and we obtain the information about it like it’s family or authors. The project is
still growing in code access and number of functionals, so we can expect more
from it.

5.4 Database and Statistical calculation

The Pyxcbench project is still being developed and is a fundamental tool for this
thesis. The Pyxcbench is a set of Python modules that can be used to evaluate
functionals by comparing them with others, by estimating the accuracy of a
system property calculated with any electronic structure software for any kind of
system. The data is stored in a data base and statistical studies can be made
with the information obtained.

In this thesis the system evaluated are the molecules from the G2 test set,
where the geometry and multiplicity are given and this information is used into
the NWChem software. A number of 1 exchange and 21 correlation functionals
from LDA and 45 exchange and 21 correlation functionals from GGA are studied.
The neutral and ionic molecule geometries were given and the energies were
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obtain from the output files, then the Ionized Potential is calculated and this
value is compared to the experimental ones.

The statistical studies made in the thesis are presented in the following
chapter with graphics and tables where is analysed the mean relative values or
smallest relative values by comparison of the different exchange and correlation
functionals and different molecules.



Part IV

Results and Conclusion





Chapter 6

Results

6.1 Exchange-Correlation Functional

After executing the NWChem electronic structure software through the pyxcbench
python library, the useful information was gathered into a database ready for
analyze and interpretation.

The relative error value for each valid run was obtained by comparing the
adiabatic ionization potential with it’s experimental value,

re =
|IP − IPexp|

IPexp
∗ 100%. (6.1)

The relative mean deviation was obtained from calculating how much the
result is a part from the mean value of the parameter being studied

rmd =
1
n

∑n
i=1 |xi − x̄|
|x̄|

(6.2)

For a first analyze we found out the mean values of the relative errors for all
molecules and determine where those values fit in small intervals of error.
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Fig. 6.1 Number of exchange-correlation functionals within the same range of
0.01% of the Ionization Potential mean relative error

The majority of the functionals have a mean relative error less than 0.1%. The
biggest number of functionals belong to the interval between 0.02% and 0.03%

with 726 functionals in a total of 1361 with relative error less than 1.0%. The
relative error of most of functional is an acceptable value since the experimental
value is determined with an uncertainty of 0.2%. [25]

From this list of functionals we gave attention to the top ten functionals and
presented them in the following table (6.1).

Table 6.1 Top ten functionals of the G2 test set.

Exchange Functional Correlation Functional Mean relative Error (%)

GGA_X_SSB_SW GGA_C_SOGGA11_X 0.02653
GGA_X_SSB GGA_C_SOGGA11_X 0.02755
GGA_X_PW91 GGA_C_SOGGA11_X 0.02766
GGA_X_APBE GGA_C_SOGGA11_X 0.02785
GGA_X_B86_MGC GGA_C_SOGGA11_X 0.02799
GGA_X_B86 GGA_C_SOGGA11_X 0.02814
GGA_X_XPBE GGA_C_SOGGA11_X 0.02814
GGA_X_DK87_R2 GGA_C_SOGGA11_X 0.02818
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GGA_X_PBE GGA_C_SOGGA11_X 0.02822
GGA_X_HJS_PBE GGA_C_SOGGA11_X 0.02822

We can notice that the exchange-correlation energy was best obtained by
the arrangement of the correlation functional GGA_C_SOGGA11_X, and the
exchange functional GGA_X_SSB_SW.

The correlation functional GGA_C_SOGGA11_X overcomes any other in
the top ten, while the exchange functional varies and the GGA_X_SSB_SW is
a modification from the succeeding functional, a different version from the same
authors.

From this result, we can see how the correlation functional is sensitive and are
they who affect in higher order the accuracy of an exchange-correlation functional.
The difference between GGA_C_SOGGA11 and GGA_C_SOGGA11_X is the
addition of a term in the exchange energy and a few additional databases with
experimental result. The general shape of these functionals are

ESOGGA11
xc = ESOGGA11

x + ESOGGA11
c (6.3)

and for SOGGA11-X,

ESOGGA11−X
xc =

(
X

100

)
EHF
x +

(
1− X

100

)
ESOGGA11
x + ESOGGA11

c . (6.4)

In the both functionals the same constrains were imposed, the uniform
electron gas limit (UEG) and the limitation to the second-order density-gradient
expansion.

The Monte Carlo fit of these functionals was made in conjunction with the
exchange term and by improving the exchange part on the exchange-correlation
functional, the coefficients for the correlation part also improved the accuracy in
the correlation part. So this improvement of the GGA_C_SOGGA11_X took
it to the top of the table.

Strangely, from the exchange functional GGA_X_SSB to GGA_X_SSB_SW
was the opposite of an improvement from the same authors. They began with
GGA_X_SSB_SW and then they enhanced to GGA_X_SSB.
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The GGA_X_SSB_SW was a mix between GGA_X_PBE and GGA_X_OPTX
functionals by using a switching function that changes between them in a smoothly
way when altering from a low reduced density gradient to a high one. But, sup-
posedly, this functional has a poor performance for spin states and reaction
barriers.

From a study made by Swart, Solà and Bickelhaupt, the optimization for
a kind of property will loose the accuracy for others. So by mixing the old
GGA_X_SSB_SW with GGA_X_KT1, they improved the overall performance,
but the atomization energies were improved.

To have a big picture from the big set of functionals used in this work, a color
map with the mean relative error was generated and showed in (Fig. 6.2) with
an interval between 0% and 0.1% since the values above 0.1% don’t contribute
for a better analyze of the functionals.
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From the map color figure we can notice some lines with bad accuracy in
the correlation functional part, most of them in the LDA side. This shows how
sensible this term is for the calculation of ionization potential. We can see also
a few lines in the exchange side, which start to show their differences when
comparing in a smaller relative error percentage, below 0.1%.The white spots can
be one of the three options: calculations that are still being made; divergence
during the calculation of the result; or mean relative error higher than 0.1%.

6.2 Exchange Functional and Correlation Func-
tional

By doing a statistical mean value in one of the type of functionals, e.g. exchange
functional, we can regard how the other type, e.g. correlation functional, affects
the system and verify what is the error value more probably to encounter for
any given exchange functional energy.

If the mean relative error of the exchange/correlation functional is low, it can
mean that the correlation/exchange functional will not affect much the result of
the system total energy, while if the error is high it can perturb drastically the
Kohn-Sham equation solution.
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Fig. 6.3 Mean error value of each correlation functional with the exchange one
averaged

Fig. 6.4 Mean error value of each exchange functional with the correlation one
averaged
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We can see from the mean relative error of the correlation functionals with
dependence in the exchange functionals, that there is no much change between
functionals, they have all approximately the same value as the mean value of
0.044%.

By regarding the analysis of both graphics, Fig.(6.3) and Fig.(6.4), we can
check that the most important term in the exchange-correlation functional energy
is the correlation one. Since there is an higher fluctuation around the mean value
with the variance of the correlation functional, this means that we need to have
to chose more carefully the correlation functional to have a more accurate value
for our ionization potential.

6.3 Molecules

Another way to classify the functionals is to see how they behave with different
molecules, the mean relative error for all functionals to each molecule was
calculated and is showed in the graphic below

Fig. 6.5 Mean relative error value of each molecule sorted by number of atoms
and number of electrons.
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We can see that there is an high fluctuation in the mean relative error of
the molecules, but there is only one that goes out of the 0.1%. The CH3Cl
(Chloromethane) with a near 0.9% error. From LDA we can retrieve that the
more similar the system is from an uniform electron cloud the better should be
the solution. So, with this, it is suppose that the higher the number of electrons
the system have the lesser should be the error, but is not noticeable in this
graphic.

Fig. 6.6 Relative Mean Deviation of each molecule sorted by number of atoms
and number of electrons.

From the Fig. (6.6), we can regard that the relative mean deviation is low,
so the exchange-correlation functionals don’t deviate from the mean value too
much, which indicates, that the molecule CH3Cl has all functionals give an high
error solution to the Kohn-Sham equation.

In the next graphic instead of the mean relative error we will see the functional
that gives the smallest relative error to each molecule.
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Fig. 6.7 Smallest error value of each molecule sorted by number of atoms and
number of electrons.

There is a limitation of the range for the y axis to 1e− 2 so we can see closer
how is the behaviour of the different molecules. The CH3Cl is the only not
represented in the graphic because of it’s high value of 0.6%.

For higher number of electrons and atomic mass it seams that the relative
error values are converging to a specific short limited interval, this observation
can give some reason to the property of LDA referred above about the uniform
electron cloud.



6.3 Molecules 53

Fig. 6.8 Error value of the GGA_X_SSB_SW + GGA_C_SOGGA11_X for
each molecule sorted by number of atoms and number of electrons.

The best functional of our top ten, doesn’t have the lowest errors in the list
of functionals, the smallest value is the ClF with an error of 1.43e− 3, they are
quite high by comparing with the Table (6.2). But instead of very high and very
low results they are in general well behaved. As we mentioned before the relative
error seams to be starting to decrease with the electron numbers.

Table 6.2 List with the ionization potential with the smallest relative error for
each molecule and it’s experimental results

Molecule Ionization Ionization (exp) Smallest relative
symbol Potential (Ha) Potential (Ha) error (%)

NH 0.481416 0.481423 1.4e-05
OH 0.47853 0.47837 3.3e-04
CN 0.499804 0.499798 1.2e-05
CO 0.51501258 0.51501231 5.2e-07
N2 0.572577 0.572599 3.9e-05
O2 0.44349 0.44357 1.8e-04
SH 0.383023 0.383007 4.3e-05
HCl 0.468349 0.468340 2.0e-05
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CS 0.416381 0.416376 1.3e-05
ClF 0.468176 0.468193 3.7e-05
P2 0.386980 0.386976 1.0e-05
S2 0.34709 0.34692 5.0e-04
Cl2 0.421948 0.421925 5.5e-05
NH2 0.396914 0.396898 4.0e-05
H2O 0.4624 0.4638 3.1e-03
HCO 0.2976758 0.2976737 7.1e-06
SiH2 0.32703 0.32707 1.5e-04
PH2 0.361054 0.361030 6.4e-05
HOF 0.466688 0.466723 7.5e-05
CO2 0.5071526 0.5071478 9.3e-06
CF2 0.418958 0.418948 2.3e-05
OCS 0.4115992 0.4115983 2.4e-06
CS2 0.371149 0.371173 6.5e-05
NH3 0.36828 0.36823 1.2e-04
N2H2 0.35287 0.35280 2.1e-04
SiH3 0.297677 0.297674 1.1e-05
PH3 0.362741 0.362721 5.5e-05
CH2S 0.3454461 0.3454485 7.2e-06
NCCN 0.4924460 0.4924479 4.0e-06
Si2H2 0.301356 0.301349 2.3e-05
BF3 0.57665 0.57697 5.5e-04
BCl3 0.426277 0.426298 4.9e-05
N2H3 0.279323 0.279299 8.7e-05
CH3O 0.39318 0.39322 1.2e-04
CH3F 0.45929 0.45937 1.9e-04
CH3Cl 0.67 0.42 6.0e-01
B2H4 0.3564747 0.3564735 3.3e-06

CH3OH 0.39657 0.39690 8.4e-04
CH3OF 0.4152745 0.4152732 3.0e-06
Si2H4 0.2976719 0.2976737 6.2e-06
C2H5 0.297680 0.297674 2.3e-05
C3H4 0.356496 0.356473 6.3e-05

CH3CHO 0.374854 0.374848 1.5e-05
Si2H5 0.279295 0.279299 1.4e-05

C6H5OH 0.31232 0.31237 1.7e-04
C6H5NH2 0.28288 0.28297 3.4e-04
C6H5CH3 0.323410 0.323399 3.7e-05
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In the following table we have the best three functionals for each molecule
and is very variable between the LDA and GGA functionals, as we can see the
top functional rarely appears in this list, but in general has a high outcome.

Table 6.3 Top three functionals for each molecule.

Molecule Exchange Correlation Mean relative
Functional Functional Error (%)

GGA_X_LG93 LDA_C_RPA 2.96e-06
CH3OF GGA_X_XPBE LDA_C_PW 2.19e-05

GGA_X_XPBE LDA_C_PW_MOD 2.23e-05

GGA_X_BPCCAC LDA_C_GL 3.36e-04
C6H5NH2 GGA_X_B88 LDA_C_GL 5.78e-04

GGA_X_PBE LDA_C_GL 7.46e-04

GGA_X_OL2 LDA_C_GL 1.71e-04
C6H5OH GGA_X_OPTX LDA_C_VWN_1 4.49e-04

GGA_X_SSB_SW LDA_C_OB_PW 5.54e-04

GGA_X_OPTPBE_VDW LDA_C_GL 2.13e-04
N2H2 GGA_X_HJS_B97X LDA_C_PW_RPA 5.63e-04

GGA_X_HJS_B97X LDA_C_VBH 1.56e-03

GGA_X_SSB_D GGA_C_SOGGA11_X 3.33e-06
B2H4 GGA_X_PBE GGA_C_PBE_SOL 4.98e-05

GGA_X_MPW91 GGA_C_PBE_SOL 5.39e-05

GGA_X_HJS_PBE LDA_C_VWN_2 7.53e-05
HOF GGA_X_PBE LDA_C_VWN_2 8.01e-05

GGA_X_B86_MGC LDA_C_GOMBAS 1.18e-04

GGA_X_FT97_A LDA_C_PW_MOD 8.73e-05
N2H3 GGA_X_FT97_A LDA_C_PW 8.78e-05

GGA_X_WPBEH LDA_C_WIGNER 9.37e-05

GGA_X_PBE_R GGA_C_RGE2 6.23e-06
Si2H4 GGA_X_HJS_PBE GGA_C_PBE 9.40e-06

GGA_X_PBE GGA_C_PBE 1.89e-05
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GGA_X_DK87_R1 GGA_C_APBE 2.35e-05
Si2H2 GGA_X_PW91 GGA_C_APBE 2.61e-05

GGA_X_RPBE GGA_C_SOGGA11_X 6.41e-05

GGA_X_OL2 LDA_C_VWN_1 3.90e-05
N2 GGA_X_OPTX LDA_C_VWN_1 1.51e-04

GGA_X_RPW86 LDA_C_VWN_1 1.69e-04

GGA_X_PBE_SOL LDA_C_GOMBAS 4.32e-05
SH GGA_X_MPBE GGA_C_SPBE 7.01e-05

GGA_X_BAYESIAN GGA_C_PBE_SOL 8.06e-05

GGA_X_HJS_B97X LDA_C_PW 4.94e-05
BCl3 GGA_X_HJS_B97X LDA_C_PW_MOD 4.97e-05

GGA_X_HJS_B97X LDA_C_VWN_4 5.68e-05

GGA_X_PW86 LDA_C_PZ_MOD 1.20e-04
CH3O GGA_X_PW86 LDA_C_PZ 1.49e-04

GGA_X_SSB_D LDA_C_OB_PZ 1.83e-04

GGA_X_HJS_PBE_SOL GGA_C_AM05 5.24e-07
CO GGA_X_PBE_SOL GGA_C_AM05 5.31e-06

GGA_X_RPW86 GGA_C_PW91 4.35e-05

GGA_X_PBEA GGA_C_PBE_SOL 7.07e-06
HCO GGA_X_MB88 LDA_C_VWN_3 1.73e-05

GGA_X_APBE GGA_C_PW91 7.96e-05

GGA_X_RPW86 GGA_C_WI 6.04e-01
CH3Cl GGA_X_APBE GGA_C_WI 6.11e-01

GGA_X_PBE_JSJR GGA_C_WI 6.62e-01

GGA_X_PBE_JSJR LDA_C_ML2 1.22e-05
CN GGA_X_HERMAN LDA_C_ML2 8.47e-05

GGA_X_SSB_SW GGA_C_WI 4.58e-04

GGA_X_SOGGA LDA_C_PZ_MOD 3.67e-05
ClF GGA_X_SOGGA LDA_C_PZ 5.39e-05

GGA_X_SSB_SW GGA_C_PBE_SOL 6.29e-05
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GGA_X_OL2 LDA_C_PW_RPA 8.39e-04
CH3OH GGA_X_OPTPBE_VDW LDA_C_PW_RPA 8.60e-04

GGA_X_OL2 LDA_C_VBH 8.91e-04

GGA_X_KT1 GGA_C_APBE 1.25e-05
CS GGA_X_BAYESIAN GGA_C_WI0 1.02e-04

GGA_X_MB88 GGA_C_APBE 1.20e-04

GGA_X_PBE_JSJR LDA_C_ML1 5.47e-05
Cl2 GGA_X_HTBS LDA_C_ML1 1.41e-03

GGA_X_AIRY GGA_C_WI0 1.59e-03

GGA_X_OPTB88_VDW GGA_C_AM05 3.96e-05
NH2 GGA_X_HERMAN LDA_C_OB_PZ 4.04e-05

GGA_X_FT97_B GGA_C_AM05 1.21e-04

GGA_X_RGE2 GGA_C_LYP 1.41e-05
NH GGA_X_RGE2 LDA_C_ML1 3.33e-05

GGA_X_KT1 GGA_C_APBE 1.20e-04

GGA_X_B88 LDA_C_GL 3.35e-04
OH GGA_X_PBE_JSJR LDA_C_PW_RPA 8.47e-04

GGA_X_OPTPBE_VDW LDA_C_PW_RPA 8.73e-04

GGA_X_B88 LDA_C_GL 1.18e-04
NH3 GGA_X_PBE LDA_C_GL 3.26e-04

GGA_X_HJS_PBE LDA_C_GL 3.42e-04

GGA_X_RPW86 LDA_C_VBH 3.09e-03
H2O GGA_X_SSB_SW LDA_C_GL 3.21e-03

GGA_X_SSB_D LDA_C_GL 4.80e-03

GGA_X_PBE_JSJR LDA_C_PZ 2.32e-05
CF2 GGA_X_PBEK1_VDW LDA_C_GOMBAS 2.91e-05

GGA_X_PBE_JSJR LDA_C_PZ_MOD 3.23e-05

GGA_X_PBEK1_VDW LDA_C_HL 3.66e-05
C6H5CH3 GGA_X_SSB_SW GGA_C_SPBE 9.41e-05

GGA_X_PW86 LDA_C_GOMBAS 9.46e-05
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GGA_X_OL2 GGA_C_LYP 2.26e-05
C2H5 GGA_X_MPBE LDA_C_ML1 4.77e-05

GGA_X_OPTX GGA_C_OP_G96 1.06e-04

GGA_X_SSB LDA_C_OB_PW 1.88e-04
CH3F GGA_X_AM05 GGA_C_WI0 1.89e-04

GGA_X_SSB LDA_C_OB_PZ 1.93e-04

GGA_X_RGE2 GGA_C_P86 7.16e-06
CH2S GGA_X_SSB GGA_C_WI0 6.55e-05

GGA_X_HERMAN GGA_C_PBE_SOL 1.19e-04

GGA_X_APBE LDA_C_HL 1.52e-05
CH3CHO GGA_X_XPBE LDA_C_VWN_1 2.58e-05

GGA_X_MPW91 LDA_C_VWN_3 6.19e-05

GGA_X_B86 GGA_C_SOGGA11_X 1.10e-05
SiH3 GGA_X_XPBE GGA_C_SOGGA11_X 1.02e-04

GGA_X_C09X GGA_C_PW91 1.10e-04

GGA_X_HTBS GGA_C_WL 3.96e-06
NCCN GGA_X_OL2 GGA_C_WL 2.34e-05

GGA_X_OPTPBE_VDW GGA_C_WL 3.23e-05

GGA_X_MPBE GGA_C_OPTC 1.42e-05
Si2H5 GGA_X_PBE_R GGA_C_SOGGA11_X 4.80e-05

GGA_X_RPBE GGA_C_SOGGA11_X 5.46e-05

LDA_X GGA_C_TCA 6.38e-05
PH2 GGA_X_MB88 GGA_C_SOGGA11_X 1.09e-04

GGA_X_PBE_R GGA_C_LYP 2.03e-04

GGA_X_WC GGA_C_RGE2 1.46e-04
SiH2 GGA_X_OPTPBE_VDW GGA_C_SOGGA11_X 1.72e-04

GGA_X_B88 GGA_C_PW91 1.84e-04

GGA_X_APBE LDA_C_ML2 5.00e-04
S2 GGA_X_AIRY GGA_C_LYP 5.19e-04

GGA_X_KT1 LDA_C_ML1 5.54e-04
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GGA_X_SSB_D LDA_C_ML1 1.02e-05
P2 GGA_X_BAYESIAN GGA_C_REVTCA 1.97e-05

GGA_X_DK87_R1 GGA_C_OP_PBE 4.90e-05

GGA_X_MB88 LDA_C_PZ 5.50e-05
PH3 GGA_X_MB88 LDA_C_PZ_MOD 5.80e-05

GGA_X_C09X LDA_C_PZ 1.48e-04

GGA_X_PBE_R LDA_C_WIGNER 2.39e-06
OCS GGA_X_PBE_R GGA_C_SPBE 2.98e-05

GGA_X_PBEK1_VDW LDA_C_RC04 5.30e-05

GGA_X_HTBS GGA_C_SOGGA11_X 2.01e-05
HCl GGA_X_KT1 GGA_C_AM05 9.97e-05

GGA_X_PBE_JSJR GGA_C_SOGGA11_X 1.48e-04

GGA_X_BAYESIAN LDA_C_ML2 1.83e-04
O2 GGA_X_SSB_D GGA_C_WI 6.83e-04

LDA_X LDA_C_ML1 1.04e-03

GGA_X_FT97_A LDA_C_GOMBAS 6.34e-05
C3H4 GGA_X_HJS_PBE_SOL LDA_C_VWN_4 8.66e-05

GGA_X_PBE_SOL LDA_C_VWN_4 9.00e-05

GGA_X_DK87_R1 LDA_C_PW 9.33e-06
CO2 GGA_X_WC LDA_C_PW 1.06e-04

GGA_X_WC LDA_C_PW_MOD 1.07e-04

GGA_X_WC LDA_C_VBH 5.52e-04
BF3 GGA_X_SSB_D LDA_C_PW_RPA 2.19e-03

GGA_X_SSB_D LDA_C_VBH 3.08e-03

GGA_X_SSB_SW LDA_C_ML1 6.51e-05
CS2 GGA_X_B86 GGA_C_OP_B88 9.04e-05

GGA_X_WC GGA_C_OP_PBE 1.89e-04





Chapter 7

Conclusion

With the development of this thesis, was made an improvement, for a better
analyze and organization, in the pyxcbench structure.

We found out the importance of the correlation functionals are of very
important matter to the exchange-correlation energy accuracy. They have higher
fluctuations than the exchange functionals and so picking the correct correlation
functional is very important.

The GGA_C_SOGGA11_X show us that is important to include a good
exchange term when doing the fitting for best coefficients in a list of datasets.
By including a big set of databases and giving excellent results in contrast to
the studies made in GGA_X_SSB, this can mean that the choice of the right
constrains and the functional terms that depend on the density is important.
The GGA_X_SSB was overcome by it’s previous version GGA_X_SSB_SW
probably because of these factors.

The reason for why no functional gave good results for the molecule CH3Cl
should be studied.

The LDA and GGA have similar high numbers as the best correlation func-
tional for each molecule, this occurs because they both use Monte Carlo method
for fitting, while the LDA of exchange even by being one, is rare to appear in
the molecule list, because it is only an approximation to the uniform electron
gas, i. e., it has a non-empirical form.





Part V

Future Work
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For the future I propose to continue improving the pyxbench application, to
include other properties, such as electron affinities, vibrational energy, spectrums
and much more. Beside the NWChem, the electronic software APE is already in
pyxbench but we can include much more like Abinit or Octopus. Another factor
to take into account is the systems, other types of systems should be included,
like solids.

As a database, pyxbench can also include the experimental data so we can
use it to build a better functional. With the access of a supercomputer, we can
try to produce a exchange-correlation functional with a considerable quantity of
terms and use a Monte Carlo method to fit that functional to the databases that
would be added.





Appendix A

Functionals

Definition

A functional F maps functions ψ(x) to numbers F [ψ]. An example of a functional
is doing the integration,

F [ψ] =

∫
dxψ2(x). (A.1)

We can define the functional derivative δF
δψ(x)

by

∫
dxf(x)

δF [ψ]

δψ(x)
= lim

ϵ→0

F [ψ + ϵf ]− F [ψ]

ϵ
, (A.2)

where f is an arbitrary function of function space called test function and ϵ

represents a real ( or any other type of number ) variable.

We will use this definition to calculate the functional derivative of example
(A.1).

lim
ϵ→0

F [ψ + ϵf ]− F [ψ]

ϵ
= lim

ϵ→0

1

ϵ

∫
dx

{
(ψ(x) + ϵf(x))2 − ψ2(x)

}
=

∫
dxf(x)2ψ(x)

(A.3)
consequently,

δF [ψ]

δψ(x)
= 2ψ(x) (A.4)
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The functional properties reviewed here are helpful through all the work
and mainly in the density functional theory, since the use of functional’s in the
potential energy of the Kohn-Sham equation.



Appendix B

List of Functionals

Table B.1 List of functionals used through this work.

LDA Functionals

LDA Exchange

LDA_X Slater exchange [26, 27]

LDA Correlation

LDA_C_WIGNER Wigner [28]
LDA_C_HL Hedin & Lundqvist [29]
LDA_C_GL Gunnarson & Lundqvist [30]
LDA_C_XALPHA Slater’s Xalpha [31]
LDA_C_VWN Vosko, Wilk & Nusair (VWN5) [32]
LDA_C_PZ Perdew & Zunger [33]
LDA_C_PZ_MOD Perdew & Zunger (Modified) [33]
LDA_C_OB_PZ Ortiz & Ballone (PZ parametriza-

tion)
[33–35]

LDA_C_PW Perdew & Wang [36]
LDA_C_PW_MOD Perdew & Wang (modified) [36]
LDA_C_OB_PW Ortiz & Ballone (PW parametriza-

tion)
[34, 35, 37]

LDA_C_VBH von Barth & Hedin [38]
LDA_C_GOMBAS Gombas [39]



70 List of Functionals

LDA_C_PW_RPA Perdew & Wang (fit to the RPA
energy)

[37]

LDA_C_VWN_1 Vosko, Wilk & Nusair (VWN1) [40]
LDA_C_VWN_2 Vosko, Wilk & Nusair (VWN2) [40]
LDA_C_VWN_3 Vosko, Wilk & Nusair (VWN3) [40]
LDA_C_VWN_4 Vosko, Wilk & Nusair (VWN4) [40]
LDA_C_RPA Random Phase Approximation

(RPA)
[41]

LDA_C_RC04 Ragot-Cortona [42]
LDA_C_ML2 Modified LSD (version 2) of

Proynov and Salahub
[43]

LDA_C_ML1 Modified LSD (version 1) of
Proynov and Salahub

[43]

LDA_C_VWN_RPA Vosko, Wilk & Nusair
(VWN5_RPA)

[44]

LDA Exchange-Correlation

LDA_XC_TETER93 Teter 93 [45]

GGA Functionals

GGA Exchange

GGA_X_SSB_SW Swarta, Sola and Bickelhaupt cor-
rection to PBE

[46]

GGA_X_SSB Swarta, Sola and Bickelhaupt [47]
GGA_X_SSB_D Swarta, Sola and Bickelhaupt dis-

persion
[47]

GGA_X_BPCCAC BPCCAC (GRAC for the energy) [48]
GGA_X_PBE Perdew, Burke & Ernzerhof [23, 49]
GGA_X_PBE_R Revised PBE from Zhang & Yang [50]
GGA_X_B86 Becke 86 [51, 52]
GGA_X_HERMAN Herman Xalphabeta GGA [53, 54]
GGA_X_B86_MGC Becke 86 with modified gradient

correction
[51, 55]

GGA_X_B88 Becke 88 [56]
GGA_X_PW86 Perdew & Wang 86 [57]
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GGA_X_PW91 Perdew & Wang 91 [37]
GGA_X_OPTX Handy & Cohen OPTX 01 [58]
GGA_X_DK87_R1 dePristo & Kress 87 version R1 [59]
GGA_X_DK87_R2 dePristo & Kress 87 version R2 [59]
GGA_X_LG93 Lacks & Gordon 93 [60]
GGA_X_FT97_A Filatov & Thiel 97 (version A) [61]
GGA_X_FT97_B Filatov & Thiel 97 (version B) [61]
GGA_X_PBE_SOL Perdew, Burke & Ernzerhof SOL [62]
GGA_X_RPBE Hammer, Hansen, and Nørskov [63]
GGA_X_WC Wu & Cohen [64]
GGA_X_MPW91 mPW91 of Adamo & Barone [65]
GGA_X_AM05 Armiento & Mattsson 05 [66, 67]
GGA_X_PBEA Madsen 07 [68]
GGA_X_MPBE Adamo & Barone modification to

PBE
[69]

GGA_X_XPBE Extended PBE by Xu & Goddard
III

[70]

GGA_X_BAYESIAN Bayesian best fit for the enhance-
ment factor

[71]

GGA_X_PBE_JSJR Reparametrized PBE by Pedroza,
Silva & Capelle

[72]

GGA_X_OPTB88_VDW opt-Becke 88 for vdW [73]
GGA_X_PBEK1_VDW Reparametrized PBE for vdW [73]
GGA_X_OPTPBE_VDW Reparametrized PBE for vdW [73]
GGA_X_RGE2 Regularized PBE [74]
GGA_X_RPW86 Refitted Perdew & Wang 86 [75]
GGA_X_KT1 Keal and Tozer, version 1 [76]
GGA_X_MB88 Modified Becke 88 for proton

transfer
[77]

GGA_X_SOGGA Second-order generalized gradient
approximation

[78]

GGA_X_C09X C09x to be used with the VdW of
Rutgers-Chalmers

[79]

GGA_X_LB van Leeuwen & Baerends [80]
GGA_X_LBM van Leeuwen & Baerends modified [81]
GGA_X_OL2 Exchange form based on Ou-Yang

and Levy v.2
[82, 83]



72 List of Functionals

GGA_X_APBE mu fixed from the semiclassical
neutral atom

[84]

GGA_X_HTBS Haas, Tran, Blaha, and Schwarz [85]
GGA_X_AIRY Constantin et al based on the Airy

gas
[86]

GGA_X_WPBEH short-range part of the PBE (de-
fault w=0 gives PBEh)

[87]

GGA_X_HJS_PBE HJS screened exchange PBE ver-
sion

[88]

GGA_X_HJS_PBE_SOL HJS screened exchange
PBE_SOL version

[88]

GGA_X_HJS_B97X HJS screened exchange B97x ver-
sion

[88]

GGA Correlation

GGA_C_SPBE PBE correlation to be used with
the SSB exchange

[47]

GGA_C_REVTCA Tognetti, Cortona, Adamo (re-
vised)

[89]

GGA_C_TCA Tognetti, Cortona, Adamo [90]
GGA_C_PBE Perdew, Burke & Ernzerhof [23, 49]
GGA_C_LYP Lee, Yang & Parr [91, 92]
GGA_C_P86 Perdew 86 [93]
GGA_C_PBE_SOL Perdew, Burke & Ernzerhof SOL [62]
GGA_C_PW91 Perdew & Wang 91 [37, 94]
GGA_C_AM05 Armiento & Mattsson 05 [66]
GGA_C_XPBE Extended PBE by Xu & Goddard

III
[95]

GGA_C_PBE_JRGX Reparametrized PBE by Pedroza,
Silva & Capelle

[72]

GGA_C_RGE2 Regularized PBE [74]
GGA_C_WL Wilson & Levy [96]
GGA_C_WI Wilson & Ivanov [97]
GGA_C_WI0 Wilson & Ivanov initial version [97]
GGA_C_SOGGA11_X To be used with

hyb_gga_x_SOGGA11-X
[98]
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GGA_C_APBE mu fixed from the semiclassical
neutral atom

[84]

GGA_C_OP_B88 one-parameter progressive func-
tional (B88 version)

[99]

GGA_C_OPTC Optimized correlation functional
of Cohen and Handy

[100]

GGA_C_OP_G96 one-parameter progressive func-
tional (G96 version)

[101]

GGA_C_OP_XALPHA one-parameter progressive func-
tional (Xalpha version)

[101]

GGA_C_SOGGA11 Second-order generalized gradient
approximation 2011

[102]

GGA_C_OP_PBE one-parameter progressive func-
tional (PBE version)

[101]

GGA Exchange-Correlation

GGA_XC_HCTH_407P HCTH/407+ [103]
GGA_XC_HCTH_P76 HCTH p=1/4 [104]
GGA_XC_HCTH_P14 HCTH p=1/4 [104]
GGA_XC_B97_GGA1 Becke 97 GGA-1 [105]
GGA_XC_HCTH_A HCTH-A [106]
GGA_XC_KT2 Keal and Tozer, version 2 [76]
GGA_XC_EDF1 EDF1 [107]
GGA_XC_XLYP XLYP [95]
GGA_XC_B97 Becke 97 [52]
GGA_XC_B97_1 Becke 97-1 [106]
GGA_XC_B97_2 Becke 97-2 [108]
GGA_XC_B97_D Becke 97-D [109]
GGA_XC_B97_K Boese-Martin for Kinetics [110]
GGA_XC_B97_3 Becke 97-3 [111]
GGA_XC_PBE1W PBE1W [112]
GGA_XC_MPWLYP1W mPWLYP1w [112]
GGA_XC_PBELYP1W PBELYP1W [112]
GGA_XC_MOHLYP Functional for organometallic

chemistry
[113]

GGA_XC_MOHLYP2 Functional for barrier heights [114]
GGA_XC_TH_FL Tozer and Handy v. FL [115]
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