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Abstract 

Nanocomposite thin films consisting of a dielectric matrix, such as titanium oxide 

(TiO2), with embedded gold (Au) nanoparticles were prepared and will be analysed and 

discussed in detail in the present work. The evolution of morphological and structural 

features was studied for a wide range of Au concentrations and for annealing treatments 

in air, for temperatures ranging from 200 to 800 ºC. Major findings revealed that for 

low Au atomic concentrations (at. %), there are only traces of clustering, and just for 

relatively high annealing temperatures, T ≥ 500 ºC. Furthermore, the number of Au 

nanoparticles is extremely low, even for the highest annealing temperature, T = 800 ºC. 

It is noteworthy that the TiO2 matrix also crystallizes in the anatase phase for annealing 

temperatures above 300 ºC. For intermediate Au contents (5 at.% ≤ CAu ≤ 15 at.%), the 

formation of gold nanoclusters was much more evident, beginning at lower annealing 

temperatures (T ≥ 200 ºC) with sizes ranging from 2 to 25 nm as the temperature 

increased. A change in the matrix crystallization from anatase to rutile was also 

observed in this intermediate range of compositions. For the highest Au concentrations 

(> 20 at.%), the films tended to form relatively larger clusters, with sizes above 20 nm 

(for T ≥ 400 ºC). It is demonstrated that the structural and morphological characteristics 

of the films are strongly affected by the annealing temperature, as well as by the 

particular amounts, size and distribution of the Au nanoparticles dispersed in the TiO2 

matrix. 

 

 

Keywords: Magnetron Sputtering; post-deposition thermal annealing; nanocomposite 

films, gold nanoparticles; titanium oxide. 
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1. Introduction 

The intense scattering and absorption of light by noble metal nanoparticles (NPs) 

and their sensitivity and dependence on the chemical and electromagnetic environments 

has been widely accepted to be of high scientific and technological interests, since these 

effects are not commonly observed in the responses of the correspondent bulk metals [1] 

[2].the strong absorption band in the visible region of the electromagnetic spectrum of 

some noble metals (e.g. gold or silver) is the result of some changes in the so-called 

localized surface plasmon resonance (LSPR) [1]. Localised surface plasmons, LSPs, are 

charge density oscillations, confined to metallic nanoparticles/nanostructures. In 

contrast to Surface Plasmons, SPs, which are longitudinal charge density oscillations 

that propagate along the surface of a conductor, LSPs do not propagate, and they can be 

used for some specific areas of scientific and/or technological interest [1]. 

The two most studied plasmonic metals are gold (Au) and silver (Ag) [3-9]. The 

first has the advantage of being chemically inert, whereas the second is preferable for 

some particular applications, since the damping of the SPs or LSPs is smaller than that 

of gold. Due to their unique properties, Au and Ag nanoparticles are often found in 

plasmonic metal-dielectric nanocomposites, randomly dispersed in several distinct 

dielectric matrices, which can vary from the very common TiO2 to more application-

driven such as those of SiO2, Al2O3, etc [10, 11]. 

Among the various technological applications, the examples in the fields of 

photovoltaics [12-19], pollutant-degradation materials [20], metamaterials [21], gas 

sensors [22, 23] and those of surface-enhanced raman spectroscopy [24] are of 

particular importance, associated with several other types of possibilities within optical 

and sensor devices [25-28]. Moreover, the interactions of noble metal clusters, dispersed 

in a dielectric matrix, with biological agents may result in changes of the 
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electrical/optical levels, which give interesting possibilities for bio-sensing applications 

[28-34]. 

Most of the mentioned applications rely on the tailoring of the LSPR absorption by 

the noble NPs, which, in a first approach, is highly dependent on the possibility of the 

metallic atoms form a network of clusters at the nanometric scale [2, 6]. Another 

important aspect of noble NPs, when dispersed in a dielectric matrix, is that their optical 

response strongly depends on their clustering tendency, namely the clusters size, shape 

and distribution [3, 35, 36], the interaction between them [7, 37], but also on the host 

matrix dielectric function itself [11, 38-41]. 

The present work puts the main focus on the basic analysis of the influence of Au 

concentration and in-air thermal annealing on the structure and morphology of Au:TiO2 

nanocomposite thin films. Since changes in size, shape and distribution of Au clusters 

are fundamental parameters for tailoring of the LSPR effect [1-3, 36], a set of films with 

a wide range of Au concentration was prepared. The films were deposited by direct 

current (DC) magnetron sputtering, and in order to promote the clustering of the Au 

nanoparticles, the as-deposited samples were subjected to an in-air annealing protocol. 

 

2. Experimental details 

The different Au:TiO2 thin films were prepared by reactive DC magnetron 

sputtering in a custom-made deposition system [42], using a titanium target (200×100×6 

mm
3
, 99.8% purity) containing various amounts of Au disks (or “pellets”) placed 

symmetrically in the preferred erosion zone (hereafter referred as a Ti-Au target). The 

number of Au pellets (1 mm thick) used in each deposition varied between 1 and 10, 

each one with typical dimensions of ~9 mm
2
 or ~18 mm

2
. Therefore, it was possible to 

increase the Au exposed area in the Ti target, and thus enhance the flux of Au atoms 
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towards the substrate in order to obtain different noble metal concentrations in the as-

deposited films. The power supply was set to operate in the current regulating mode, 

using a constant current density of 100 A.m
-2

 on the Ti-Au target. The films were 

prepared using a gas atmosphere composed of Ar (constant flow of 60 sccm) and O2 

(constant flow of 7 sccm, and a partial pressure of 5.6×10
-2

 Pa), corresponding to a total 

pressure of about 4.5×10
-1

 Pa. The O2 flow was chosen according to the hysteresis 

experiment: the discharge was ignited in pure argon, at a given pressure, introducing a 

certain argon flow to the vacuum chamber (60 sccm). Keeping the discharge current 

constant, the oxygen flow was stepwise increased (after reaching a steady state). When 

the target was completely poisoned, the process was reversed and thus the O2 flow was 

stepwise decreased, until the discharge was again in a pure Ar atmosphere. These results 

are presented in a discharge voltage vs. O2 flow plot, as it can be observed in Fig. 1. 

According to these results, the target was totally poisoned for an O2 flow of about 7 

sccm, meaning that the partial pressure of this gas in the chamber should be enough to 

produce stoichiometric TiO2 in the substrate. 

The films were deposited onto Si substrates with (100) orientation and placed in a 

grounded rotating substrate holder (9 r.p.m.), heated at 100 ºC. Before each deposition, 

the substrates were ultrasonically cleaned and then subjected to an in-situ etching 

process in pure Ar atmosphere (with a gas flow of 60 sccm), applying a pulsed DC 

current of 0.5 A (Ton= 1536 ns and f = 200 kHz) during 1200 s. After the deposition of 

the complete series of films (with different amounts of Au), an in-air annealing process 

was carried out in order to tailor the structural and morphological features of the 

prepared sets of samples. The selected annealing temperatures were in the range of 200 

to 800 ºC. The heating ramp used was 5 ºC/min. and the isothermal period was fixed to 
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1 h. The samples were let to cool down freely and then removed from the furnace, after 

it reached the room temperature. 

The chemical composition of the films was estimated by energy-dispersive X-ray 

spectroscopy, using a JEOL JSM-5310/Oxford X-Max. The structural analysis of the 

coatings were carried out using grazing incidence X-Ray Diffraction (XRD), using a 

Philips X-Pert diffractometer (Co-Kα radiation), operating at an angle  = 2º. The scans 

were done between 15º and 80º, with a scan step of 0.025º and an acquisition time of 1 

s. By using the Winfit software [43], the XRD patterns were deconvoluted, assuming 

Pearson-VII functions in order to obtain the peak position and intensity, the preferential 

growth of the crystalline phases and to calculate the grain size from the integral breadth 

method. The morphological features were probed by scanning electron microscopy 

(SEM), using a Zeiss Merlin instrument, equipped with a field emission gun and charge 

compensator. Both in-lens secondary electron and energy selective backscattered 

electron detectors were employed. The thickness of the samples was estimated by cross-

section SEM analysis and the growth rate was calculated by the ratio between the 

average thickness and the deposition time (90 min. for all samples). 

Cross sectional samples for transmission electron microscopy (TEM) analysis were 

prepared by conventional sample preparation method, finishing with a grazing incidence 

ion bombardment in a precision ion polishing system (Gatan 691) at 5 kV at a grazing 

angle of 6°, followed by 3 kV at 4°. TEM and Scanning TEM (STEM) analyses of the 

samples were carried out on a FEI Tecnai F30 TEM equipped with a field emission 

source operating at an accelerating voltage of 300 kV. Conventional TEM bright field 

images and STEM (Z-contrast) images were taken in different regions of the film in 

order to obtain the average particle size and the particle size distribution of Au in TiO2 

matrix. ImageJ and Digital Micrograph software were used for particle size analysis. 
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3. Results and Discussion 

3.1 Target Potential and deposition rate 

The evolution of the target potential and growth rate of the as-deposited films, as a 

function of the Au pellets area, is plotted in Fig. 2. According to the results obtained, 

there seems to be a clear indication that the target potential is nearly independent of the 

Au pellets area, since it was always very close to 470 V. On the other hand, the growth 

rate of the as-deposited films showed an increase by a factor of 2 when the Au pellets 

area changed from 9 mm
2
 to approximately 100 mm

2
, varying from 4.5 to 9.5 nm.min

-1
, 

respectively. 

In order to explain the target behaviour one has to keep in mind that the flow of O2 

used during the film’s deposition is sufficient to maintain the target totally poisoned 

with a superficial oxide layer, as it can be drawn by the evolution of the hysteresis 

curve, Fig. 1. The increase of the target potential from 320 V, in the clean target 

situation, towards ~470 V, can be explained by the decrease of the effective emission 

coefficient of the Ti target [44]. This target potential value, obtained for a discharge 

without any Au pellet, remains approximately constant for Au pellets areas up to ~120 

mm
2
. This means that the fraction of Au placed at the surface of the target is not enough 

to disturb significantly the plasma. In fact, taking into account the total area of the 

target, the maximum fraction of Au used was less than 1 % of its total surface area. 

Nevertheless, while the amount of Ti atoms arriving to the substrate is assumed to be 

nearly the same, the number of Au atoms sputtered from the compound target is 

significantly enhanced as the pellets area was increased. This is due to the much higher 

sputtering yield of gold than of titanium oxide [44]. This fact can thus explain the 

gradual increase of the deposition (growth) rate of the films. 
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3.2 Composition 

The atomic concentration (at. %) of Au in the films is represented in Fig. 3 as a 

function of the Au pellets area. The first important note is that the increase of the Au 

pellets area resulted in an expected almost linear increase of the composition. The 

elemental concentration analysis also revealed that the atomic ratio CO/CTi was always 

very close to 2 in all samples, which suggests the formation of a close-stoichiometric 

TiO2 matrix. The pellets area was gradually increased from 0 to ~120 mm
2
 in each 

deposition, which allowed obtaining atomic concentrations of Au up to 25 at.%. 

A closer look to the plotted results reveals that for pellets areas between 9 and 18 

mm
2
, the obtained Au concentration (CAu) was very close to 2 at.%. This part of the set 

will be named hereafter as belonging to a low Au content zone. When the Au pellets 

area was increased from about 30 to 70 mm
2
 the films revealed atomic concentrations 

ranging from 5 to 15 at.%, which will be noted as an intermediate Au contents region. 

Increasing the area of gold further in the Ti target (~100 to 120 mm
2
), the prepared 

films revealed Au atomic concentrations between 20 and 25 at.% of Au. This last group 

of 2 samples will be referred hereafter as within a high Au content region. These distinct 

regions are emphasized in Fig. 3. 

 

3.3 Structural and morphological analysis 

The XRD analysis of the films (see figures that follow), revealed a quasi-

amorphous structure for all as-deposited samples. This is also consistent with the 

formation of an amorphous TiO2 matrix, which is an expected result due to the low 

mobility conditions used to prepare the as-deposited samples: low substrate temperature 

and grounded conditions during deposition [45, 46]. 
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In order to promote some structural and morphological changes that will be 

required to tailor the LSPR effect, the films were thermally annealed in air, at 

temperatures ranging from 200 ºC up to 800 ºC. The thermal annealing favours the 

diffusion of the gold atoms throughout the oxide matrix and thus the possible formation 

of Au nanoparticles and clusters with different sizes and distributions, which will favour 

some important changes in the optical responses, as already demonstrated for annealing 

in vacuum atmospheres [2, 12]. 

The XRD patterns of representative Au concentrations as a function of the 

annealing temperature (displayed in the figures that follow), along with representative 

SEM cross-section images of the films, show a progressive crystallization of the films 

as the annealing temperature was increased. As expected, the crystallization of gold 

occurs in its typical face centred cubic (fcc) structure [ICDD card No. 04-0784]. 

Furthermore, one can also observe the titanium oxide (TiO2) matrix crystallization in 

the anatase (a-TiO2) form [ICDD card No. 73-1764] and, in some cases, in the rutile (r-

TiO2) form [ICDD card No. 88-1172] [45]. A detailed analysis of the three groups of 

samples will be carried out in the following sub-chapters. 

 

3.3.1 Low Au content 

The set of films with low Au concentrations, about 2 at.%, started to crystallize at 

an annealing temperature of 300 ºC, according to the results displayed in Fig. 4(b). For 

lower temperatures, the films exhibited broad and low intensity XRD patterns, 

consistent with amorphous-type structures. Regarding the oxide matrix, the diffraction 

patterns observed for T ≥ 300 ºC correspond mainly to reflections in planes indexed to 

the anatase phase of TiO2, a-TiO2, labelled in Fig. 4(b). This crystalline phase persists 
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up to 800 ºC and the corresponding diffraction patterns are narrow and relatively 

intense. 

Although the Au content in the films is relatively low (~ 2 at.%), one can observe 

some broad and low intensity XRD peaks for annealing temperatures between 500 and 

800 ºC. From the analysis of Fig. 4(b), it is most likely that the gold might be 

crystallizing in its common face centred cubic phase [ICDD card No. 04-0784], as 

demonstrated by the diffraction peak at ~44.6º, indexed to the (111) plane in that 

structure. However, this diffraction peak is somewhat difficult to characterize due to the 

a-TiO2 diffraction peaks present in its vicinity. There are also two other peaks, centred 

at 2 positions of 52.3º and 76.8º, corresponding to diffractions in the (200) planes and 

(220) of gold from the same structure. The broad XRD peaks of Au seem to become 

more intense and narrower, which might be an indication of increasing Au nanoclusters 

formation. 

The SEM characterisation of the group of films with low Au content is displayed in 

Figs. 4(a) for different annealing temperatures. The as-deposited films revealed a dense 

columnar-like growth [47] but, as the annealing temperature was increased, the 

morphology seems to have become more porous and the columns are increasingly 

difficult to distinguish. This is more evident in the case of the films annealed at 700 ºC 

and 800ºC, where the columns are replaced by grain-like regions. The SEM images of 

the samples annealed at 500 ºC and 700 ºC show also some bright spots, suggesting the 

existence of gold nanoparticles, consistent with the XRD results. The progressive 

growth of the Au nanoparticles with the annealing experiments results from diffusion 

and coalescence phenomena [48, 49], promoted by the thermal energy [12]. 

 

3.3.2 Intermediate Au content 
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When the gold concentration increases, the as-deposited samples maintained the 

columnar morphology, Fig. 5(a-i), and the XRD patterns are again broad, and with 

relatively low intensities. This means that the as-deposited films are also quasi-

amorphous, although the concentration of Au is now higher (close to 6 at.%). 

According to the XRD results for the sample with a Au concentration CAu = 6 at.%, 

Fig. 5(b), one can report that the crystallization of gold in these films seems to start at 

lower temperatures. It also revealed an early broad peak centred at 2 = 44.6º, for an 

annealing temperature of 200 ºC. This peak corresponds to diffraction in the (111) 

planes of the Au fcc structure. Moreover, the initial broad Au (111) peak becomes 

sharper and narrower as the annealing temperature rises. It is also evident from Fig. 5(b) 

the appearance of two other Au diffraction peaks, namely the (200) at 400 ºC, and the 

(220) at 500 ºC, which become more intense with the increase of the annealing 

temperature. The enhancement of the intensity of the peaks is led by the growth of gold 

nanoparticles, as demonstrated by the SEM images displayed in Figs. 5(a). The obtained 

results indicate that for the samples indexed to this intermediate Au contents group, 

lower temperatures are sufficient to begin the clustering process, due to higher Au 

volume fractions. As suggested by the SEM micrographs of the films annealed at 500 

ºC, Fig. 5(a-iii), and 700 ºC, Fig. 5(a-iv), the increase of the annealing temperatures 

induced the formation of larger gold nanoparticles. This process is also followed by the 

crystallization of the amorphous oxide matrix into a-TiO2, starting at a temperature of 

400 ºC, Fig. 5(b), which is higher than the value found for lower Au contents (300 ºC), 

Fig. 4(b). 

The most intense and representative diffraction peak indexed to the a-TiO2 occurs 

at 2 = 29.7º, which is consistent with the (101) planes of such crystalline structure. 

When present, this peak constitutes the preferential orientation of the polycrystalline a-
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TiO2 matrix and it is always more intense than the preferential orientation of gold, 

which is fcc-Au (111), for the films with Au concentrations up to 6 at. %. Nevertheless, 

as soon as the concentration of Au increased to higher concentrations (between 11 and 

15 at.%), the presence of polycrystalline Au becomes more relevant, as the XRD 

diffractograms plotted in Fig. 6(b) demonstrate. 

SEM analysis of the samples with intermediate gold concentrations (represented by 

the 11 at.% sample in Fig. 6) revealed the presence of Au NPs from annealing 

temperatures between 200 and 800 ºC, as demonstrated in Fig. 6(a), where the bright 

spots, corresponding to gold clusters, were screened. Due to their higher noble metal 

concentrations, it was possible to observe several gold nanoparticles randomly 

distributed in the TiO2 matrix as the annealing temperature was increased (namely at 

500 ºC), Fig. 6(a-ii). For even higher temperatures, namely 700 ºC and 800 ºC, the Au 

nanoparticles seem to aggregate in larger clusters, Fig. 6(a-iii). Furthermore, in this 

particular case, there are some morphological changes that stand out. In fact, not only 

the columnar-like growth is somewhat “destroyed” by the annealing, giving rise to 

porous microstructures, as observed in previous lower Au concentration films, but also 

nano-sized voids can be observed, Fig. 6(a-iii). 

An important feature about the series of samples prepared with Au concentration of 

11 at.% is that the XRD pattern of the as-deposited film has a very broad peak, between 

the angles of 30 and 40º, typical of poor crystalline (quasi-amorphous) films. This was 

not so evident in the samples with lower Au content. Since the SEM image of this as-

deposited sample did not reveal the presence of Au clusters, a more detailed analysis 

was carried out by TEM, in order to understand if the Au is already aggregated in 

clusters. 
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Fig. 7 shows the HR-TEM images obtained in bright field (BF) of the as-deposited 

and annealed films with Au concentration of 11 at.%. An important result is the 

presence of some crystalline Au grains in the as-deposited sample, with sizes of a few 

nanometres, Fig. 7(a), which is in agreement with the broad XRD peak observed for this 

sample. On the other hand, the thermal annealing induces morphological changes in the 

films, such as the coalescence of the small atomic Au clusters into nanoparticles. As the 

annealing temperature increases, larger Au NPs are formed with increasing distances 

between them. It should be noted that at annealing temperatures of 300 ºC and above, 

one can find smaller Au NPs with sizes of about 2-3 nm and also larger Au NPs. 

Regarding another sample from these intermediate compositions (CAu = 15 at.%), 

whose diffractograms and SEM micrographs are displayed in Fig. 8, there are some 

important changes occurring. In fact, another crystalline phase of TiO2 started to appear, 

the rutile phase (r-TiO2), for annealing temperatures of 700 ºC. The phase 

transformation from a-TiO2 to r-TiO2 starts to occur at 700 ºC, but both phases seem to 

coexist in the films. These results diverge slightly from those discussed in other related 

works. According to M. Torrell et al., when these type of films are annealed in vacuum, 

a complete phase transformation occurs at 700 ºC [12]. 

Another feature that must be highlighted is the formation of large and elongated Au 

clusters at higher annealing temperatures, as suggested by the SEM image of the film 

(CAu = 15 at. %) annealed at 700 ºC, Fig. 8(a-iii). The Au clusters can have sizes close 

to 100 nm, as demonstrated in Fig. 9. In fact, the energy filtered backscattered electrons 

(BSE) image (Fig. 9), shows a clear contrast between the bright clusters and the dark 

TiO2 matrix. 

 

3.3.3 High Au content 
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The films with relatively high gold amounts (above 20 at.%) show again some 

important changes in the structural and morphological features, as demonstrated by Fig. 

10. In this particular case (represented by a sample with CAu = 24 at. %), the high 

concentration of gold allows its diffusion throughout the coating surface, when the 

annealing temperature is about 400 ºC. This means that the high intensity and narrow 

Au peaks, observed for temperatures between 400 and 800 ºC, are the result of the 

formation of clusters with hundreds of nm on the top of the TiO2 matrix, as 

demonstrated in Fig. 10(a-ii). 

 

3.3.4 Grain Size and texture phenomena evolution 

Fig. 11 shows the results of the average size of the gold nanoparticles (grain size) in 

the films and the peak intensity ratio, Int. (111) /  Int. (hkl), as a function of the annealing 

temperature. The simulations of the XRD peaks were carried out for representative 

samples, except for the samples with gold concentrations of ~2 at. %, since the peak 

fitting was quite difficult to carry out with coherent and reliable results. Although the 

presence of gold nanoparticles was detected by SEM for annealing temperatures of 500 

ºC in these films (Fig. 4), the low intensity signal of the diffraction patterns did not 

allow a reliable quantification of the grain size. In the other samples (CAu > 2 at.%) it 

was taken into account for the calculation, when possible, the peaks indexed to the three 

different detected orientations: Au (111), (200) and (220). 

The values of gold nanoparticles size are nearly independent of the gold 

concentration for temperatures of 200 and 300 ºC, taking into account the simulations of 

XRD patterns. Their values are about 2-3 nm, meaning that the particles are confined to 

nanometrical scales, as already demonstrated by SEM and TEM analysis of the films. 

For temperatures of 400 ºC and above, the size of the Au particles clearly start to follow 
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different tendencies, Fig. 11(a). While the films with intermediate Au concentrations 

(between 6 and 15 at.%) revealed a gradual increase of the grain size, the values 

obtained for the sample with high Au concentration (24 at.%) increase sharply, about 

one order of magnitude.  

It was observed a smooth growth of the grain size with increasing temperature, 

from about 2-3 to 5-6 nm for a Au concentration of 6 at.%; a more important variation 

towards 12 nm for a Au concentration of 11 at.%; and a sharper increase up to about 26 

nm in the series with 15 at.% of Au. In Fig. 11(b) it is also evident that the texture of the 

films is gradually changing as the annealing temperature increases, and other 

orientations such as (200) are becoming more frequent rather than the preferred 

orientation (111). 

The samples with high Au concentrations revealed a sharp increase of the grain size 

when the annealing temperature was changed from 300 to 400 ºC, suffering a smooth 

increase thereafter. This tendency can be easily explained taking into consideration the 

SEM micrograph displayed in Fig. 10(a-ii). In this particular situation, one can observe 

the formation of (poli)crystals of Au on the top of the film, which can explain the higher 

values found for the grain size for temperatures between 400 and 800 ºC [12]. In this 

range of temperatures the texture of the films is almost unchanged, as can be observed 

in Fig. 11(b). 

Fig. 12 summarizes the results discussed above namely the overall behaviour of the 

three major zones identified, corresponding to low, intermediate and high Au content. In 

this figure, the tendency to form large clusters with the increase of gold in the samples 

is schematically represented and shown by the TEM images for different samples 

annealed at 500 ºC. The grain size of the NPs is illustrated by the colour map embedded 

in Fig. 12. The TEM observations and the XRD peak fitting allowed to conclude that for 
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low Au contents one can only find traces of NPs clustering, while for intermediate and 

higher Au concentration, the Au clustering was clearly evident. The TEM images 

displayed in Fig. 12 are elucidative of this particular point. While the low Au content 

samples reveal only traces of its clustering, the two samples within the intermediate Au 

contents reveal clear and large nanoclusters, with sizes in the range of tens of 

nanometers. 

The Au NPs clustering were only detected at relatively high temperatures (above 

500 ºC) for low Au concentrations (CAu = 2 at.%), while for the highest Au 

concentrations (CAu = 6, 11, 15 and 24 at.%), the clustering phenomena occurred quite 

earlier, for annealing temperatures above 200 ºC. It is also noteworthy that some Au 

nanoclusters were also detected in intermediate Au concentrations, namely in the as-

deposited samples, according to TEM analysis, Fig. 7. 

The size of clusters increased between 3 to 5 times when moving from the 

intermediate region to the high Au contents zone, at annealing temperatures of 400 and 

500 ºC. However, the clustering differences tend to be less abrupt in these two ranges of 

Au contents for high annealing temperatures. 

Another point emphasized in the diagram of Fig. 12 is the structural change 

observed in the matrix. The anatase phase of the matrix (a-TiO2) is present between 300 

and 800 ºC for the series with low Au content (CAu = 2 at.%) and between 400 and 800 

ºC for CAu > 2 at.%. In some cases (CAu ≥ 15 at.%) at high temperatures (T ≥ 700 ºC) 

both anatase and rutile (r- TiO2) phases coexist in the film. 

 

4. Conclusions 

In order to study the influence of gold concentration and annealing temperature on 

the microstructure of Au:TiO2 films, a set of samples with a wide variation of the noble 
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metal (Au) concentration was prepared, using two main steps: (i) magnetron sputtering 

deposition using a Ti target with small pellets of Au placed on the preferred erosion 

zone, followed by (ii) thermal (annealing) treatment in air atmosphere. 

The discharge voltage (-V) of the Ti-Au target was independent of the Au pellets 

area, remaining at ~470 V, while the deposition rate increased almost linearly form 4.5 

to 9.5 nm.min.
-1

. The Au pellets area variation allowed the production of several series 

of Au:TiO2 films with gold concentrations up to 25 at.%. 

For low gold concentrations, CAu: ~2 at.%, the gold nanoparticles start to form at 

about 500 ºC. The number of particles is low for temperatures up to 800 ºC. The 

amorphous TiO2 matrix crystallizes in its anatase phase from the temperature of 300 ºC. 

For intermediate gold concentration (between 5 at.% and 15 at.%) the formation of Au 

nanoparticles was clearly detected for annealing temperatures of 200 ºC. In this range of 

Au concentrations the matrix crystallizes in the anatase phase (a-TiO2) for temperatures 

of 400 ºC and a phase transformation to rutile (r-TiO2) is observed for gold 

concentration of about ~15 at.% at 700 ºC. The formation of Au clusters could also be 

observed for the as-deposited samples. Another important feature about the films with 

intermediate Au concentrations (6 to 15 at.%) is that the size and distribution of gold 

nanoparticles strongly depends on the Au concentration and annealing temperatures. 

While for temperatures up to 400 ºC it was possible to report the formation of small 

nanoparticles almost uniformly distributed throughout the matrix, for higher 

temperatures bigger clusters start to form, with elongated shapes, especially for Au 

concentrations between 11 and 15 at.%. Due to this aggregation of nanoparticles into 

clusters, the distance between them also tends to increase. For higher gold 

concentrations (> 20 at.%), and annealing temperatures of 400 ºC, gold crystals on the 

top of the films were observed.  
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A major conclusion that can be drawn from this work is that it is possible to obtain 

different Au:TiO2 nanocomposites with different morphological features and Au 

volume fractions and, above all, gold nanoparticles/clusters with different sizes and thus 

variable distances between them. These features are key factors to tune the LSPR 

effects, according to any particular application that might be envisaged. 
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Figure captions 

 

Figure 1- Discharge voltage as a function of the oxygen flow during reactive sputtering of a 

titanium target mounted on a magnetron at constant current (100 A.m
-2

) and constant argon 

pressure (0.3 Pa). 

 

Figure 2 –Evolution of the target potential and deposition (growth) rate of the films as a 

function of the Au pellets area. The target potential was monitored during 1,5 h deposition and 

each data point corresponds to the equilibrium target potential. The growth rate was determined 

based on cross-sectional SEM observations and corresponds to the ratio between the  thickness 

and deposition time (90 min.) of the film. 

 

Figure 3 – Au concentration (at. %) of the as-deposited Au:TiO2 films as a function of the Au 

pellets area. 

 

Figure 4 – (a) SEM micrographs of a series of Au:TiO2 films, with low Au content (CAu: 2 

at.%), annealed at different temperatures and (b) XRD diffractograms for all annealing 

temperatures. 

 

Figure 5 – (a) SEM micrographs of a series of Au:TiO2 films, with Au content of CAu: 6 at.%, 

annealed at different temperatures and (b) XRD diffractograms for all annealing temperatures. 

 

Figure 6 – (a) SEM micrographs of a series of Au:TiO2 films, with Au content of CAu: 11 at.%, 

annealed at different temperatures and (b) XRD diffractograms for all annealing temperatures. 

 

Figure 7 – Cross-sectional HR-TEM micrographs of the (a) as-deposited sample and samples 

annealed at (b) 300 ºC, (c) 600 ºC and (d) 800 ºC, with Au content of CAu: 11 at.%. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

24 

Figure 8 – (a) SEM micrographs of a series of Au:TiO2 films, with Au content of CAu: 15 at.%, 

annealed at different temperatures and (b) XRD diffractograms for all annealing temperatures. 

 

Figure 9 – SEM micrograph of the sample displayed in Fig. 8(a-iii) analyzed using the 

backscattered electrons (BSE) mode, providing a higher compositional contrast. 

 

Figure 10 – (a) SEM micrographs of a series of Au:TiO2 films, with high Au content (CAu: 24 

at.%), annealed at different temperatures and (b) XRD diffractograms for all annealing 

temperatures. 

 

Figure 11 – Comparison of the average grain size and intensity ratio of representative samples 

as a function of the annealing temperature. The grain size was estimated from the integral breath 

method, using the Winfit software. The peaks were fitted using Pearson VI functions with a 

reliability of 90-95%. 

 

Figure 12 – Diagram resuming the major results of this work. It can be observed the range of 

annealing temperatures where the Au NPs were detected for the different series of samples 

analysed; the evolution of the NPs size as a function of the temperature for different 

compositions; the range of temperatures where the anatase structure (a- TiO2) is present and the 

range of temperatures where both anatase (a- TiO2) and rutile (r- TiO2) structures coexist. The 

HR-TEM micrographs (w×h = 85×85 nm
2
) of representative samples (CAu: 2, 11 and 15 at. %), 

annealed at 500 ºC, are also displayed. 
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Highlights 

 

 Au:TiO2 films were produced by magnetron sputtering and post-deposition 

annealing; 

 The Au concentration in the films increases with the Au pellets area; 

 Annealing induced microstructural changes in the films; 

 The nanoparticles size evolution with temperature depends on the Au concentration 


