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Abstract 

 

 Heart Failure with preserved Ejection Fraction (HFpEF) is a common 

clinical syndrome that comprises 50% of Heart Failure (HF) patients. It is 

characterized by an abnormal diastolic left ventricular (LV) function, with 

impaired relaxation and increased stiffness that together contribute to the 

heart inability to fill properly. Understanding HFpEF has been difficult due to 

its heterogeneous etiology and pathophysiology, so, treatment options are still 

an enigma. Recent studies on HFpEF emphasize the importance of 

comorbidities frequently present in this syndrome, like diabetes mellitus (DM), 

obesity, hypertension and even aging, all promoting systemic inflammation 

and endothelial dysfunction.  

The recently characterize ZSF1 obese rat represents one of the most 

comprehensive animal model of HFpEF described to date. Using this model, 

we aim to better characterize HFpEF in terms of assessing inflammation, 

endothelial function and the relation between these injuries, allowing for a 

better understanding of this syndrome.  

Male rats Wistar Kyoto (WKY, n=21), ZSF1 Lean (ZSF1Ln, n=24) and 

ZSF1 Obese (ZSF1Ob, n=22) were subjected to echocardiographic 

examination at their 18th week of age and, at the end of the protocol, to 

morphometric and vascular function evaluation, as well as molecular and 

histological studies. 

 Compared to WKY and to ZSF1Ln, ZSF1Ob rats are heavier, present 

obesity with significantly more abdominal adiposity, other features of DM and 

also hypertension, three important risk factors for HFpEF. ZSF1Ob animals 

have LV hypertrophied and display diastolic dysfunction, in which an increase 

in E/E' was observed. Aortic rings, submitted to acetylcholine increasing 

concentrations, showed endothelium impairment of relaxation, suggesting 

endothelial dysfunction. ZSF1Ob animals do not presented systemic 

inflammation but had myocardial expression of inflammatory mediators, 

revealing itself to be the principal source of heart tissue inflammation. 
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We conclude that ZSF1Ob rat represent a solid animal model for 

HFpEF research and that cardiac endothelium underlies its pathophysiology 

thus representing an interesting pathway for future pharmacologic 

interventions. 

 

 Keywords: Heart Failure with preserved Ejection Fraction; inflammation; 

endothelial dysfunction; ZSF1 obese animal model 
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Resumo 

 

Insuficiência cardíaca com fração de ejeção preservada (ICFEP) é um 

síndrome clínico bastante comum que compreende 50% dos doentes com 

insuficiência cardíaca (IC). A ICFEP é caracterizada por uma função 

ventricular comprometida, nomeadamente com alterações no relaxamento e 

aumento da rigidez, que em conjunto contribuem para a incapacidade do 

coração de encher de maneira eficiente. Compreender a ICFEP tem sido 

difícil devido à sua etiologia e patofisiologia heterogéneas, o que limita as 

opções de tratamento. Descobertas recentes dão ênfase às comorbilidades 

frequentemente presentes na ICFEP, como a diabetes mellitus, obesidade e 

hipertensão e até mesmo o envelhecimento, como sendo promotoras de 

inflamação sistémica e disfunção endotelial.   

 O rato obeso ZSF1 recentemente caracterizado representa um dos 

melhores modelos animais para a investigação na ICFEP. Utilizando este 

modelo pretendemos avaliar a inflamação e a disfunção endotelial e ainda a 

relação entre ambos, permitindo assim uma melhor compreensão deste 

síndrome.    

 Ratos machos com nove semanas de idade Wistar Kyoto (WKY, 

n=21), ZSF1 magros (ZSF1Ln, n=24) e ZSF1 obesos (ZSF1Ob, n=22) foram 

submetidos a avaliações ecocardiográficas às 18 semanas de idade, e no fim 

do protocolo, a avaliações morfométricas e de função vascular, assim como a 

estudos moleculares e histológicos. 

 Comparando com os grupos WKY e ZSF1Ln, os ratos ZSF1Ob têm 

mais peso corporal, são obesos e têm mais gordura abdominal, possuem 

características da diabetes mellitus e hipertensão, três fatores de risco 

relacionados com a ICFEP. Os ratos ZSF1Ob têm hipertrofia ventricular 

esquerda e apresentam disfunção diastólica, com um aumento da razão E/E’. 

Anéis aórticos submetidos a concentrações crescentes de acetilcolina 

mostraram um comprometimento no relaxamento do endotélio, sugerindo um 

estado de disfunção endotelial. Células endoteliais cardíacas de animais 
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ZSF1Ob mostraram expressão de factores inflamatórios importantes, 

revelando ser a principal fonte de inflamação no tecido cardíaco. 

Conclui-se que os ratos ZSF1Ob representam um bom modelo animal 

para investigação na ICFEP e que o endotélio cardíaco é alvo interessante 

para futuras intervenções farmacológicas.  

 

Palavras-chave: Insuficiência cardíaca com fração de ejeção preservada; 

inflamação; disfunção endotelial; modelo animal ZSF1 obeso 
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Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“There are many hypotheses in science which are wrong. That’s perfectly all right: it’s 

the aperture to finding out what’s right. Science is a self-correcting process.” 

Carl Sagan 
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1. Heart Failure 

 

 
1.1.  Definition 

The first description of Heart Failure (HF) remotes to ancient Egypt 

times. Its definition remains controversial partly because of his complicated 

etiology and also because of the variability of the clinical symptoms and signs. 

HF is the end-result of many cardiovascular diseases and a clinical syndrome 

characterized by functional and structural irregularities in human heart that 

compromise its capacity to eject sufficient blood to fulfill all body’s metabolic 

needs or only at the expense of increased ventricular filling pressures [1-3]. 

 

1.2.  Epidemiology 

The epidemiology of HF had a remarkable revolution in the last 

decades. Worldwide the total number of estimated HF patients is around 26 

million. Results from the Framingham Heart Study suggest that in developed 

countries, at some point of their life, one in five persons will develop HF. In 

Europe, according to the Rotterdam study, the 5-year mortality risk is around 

41% [4, 5]. 

The number of patients with HF will grow to epidemic proportions 

considering the expected increase of population ageing, the sedentary 

lifestyle expected for the next years and the estimated increase of HF 

comorbidities like diabetes mellitus (DM) and obesity, thus representing a 

major public health problem [4-6].  
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1.3.  Symptoms and signs 

According to European Society of Cardiology, symptoms of HF include 

dyspnea (difficulty in breathing), fatigue and exercise intolerance [7, 8]. 

Signs of HF include leg, ankles and feet swelling, jugular distension, 

pulmonary rales, peripheral edema and some radiographic manifestations like 

pulmonary vascular redistribution, interstitial edema and pleural effusions [8]. 

 

1.4. Classification and Pathophysiology  

 

According to the European Society of Cardiology and to the American 

College of Cardiology Foundation/American Heart Association HF patients 

can be divided in two clinically distinct syndromes: HF with reduced Ejection 

Fraction (HFrEF) or systolic HF and HF with preserved Ejection Fraction 

(HFpEF) also known as diastolic HF [9]. 

 

HFrEF is correlated with ischemic injury, dilated and other genetic 

cardiomyopathies, whereas HFpEF is associated with chronic inflammation 

and the co-existence of other comorbidities which represent important 

cardiovascular risk factors. Comparing both types, HFpEF patients have fewer 

hospitalizations but higher mortality rate than HFrEF. Contrarily to HFrEF, 

there is not any effective medical treatment for HFpEF as a result of the 

diversity and complexity of pathophysiology of this condition [7, 10]. The 

heterogeneous etiologies and the challenging diagnostic make HFpEF an 

interesting topic for research. Current treatment strategies focus on control of 

volume status and comorbidities, but future research aimed at individualized 

therapies holds promise to improve outcomes in this increasingly prevalent 

form of cardiac failure. 
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1.4.1. Heart Failure with Preserved Ejection Fraction 

HFpEF constitutes almost 50% of all HF patients and its prevalence is 

increasing almost 1% per year [11]. HFpEF is more common in older women 

(61-76% of patients) with high prevalence of hypertension, DM, ischemic 

heart disease, coronary artery disease, atrial fibrillation and lifestyle related 

risk factors like smoking and obesity [1, 12-16].  

HFpEF is associated with left ventricle (LV) diastolic dysfunction and 

involves complex interactions between multiple factors. In the diastolic phase, 

the ventricle is unable to fill with sufficient blood maintaining adequate low 

pressures resulting from myocardium stiffness or impaired relaxation. The 

increased filling pressure (stiffness) induces wall thickness and an adjustment 

in ventricular size and volume (Figure 1) [8, 17-20]. Besides the diastolic 

dysfunction, some other mechanisms seem to be related with HFpEF 

pathophysiology, such as inflammation, chronic volume overload, venous 

constriction, irregular ventricular-vascular coupling, as well as cardiac 

autonomic impairment and chronotropic incompetence. In this condition the 

heart rate response to stress is abnormal what could lead to pulmonary 

arterial hypertension and endothelial dysfunction [15].  

 

Figure 1. Schematic representation of the evolution of a normal heart into HFpEF, 

involving the exposure to several risk factors. Risk factors are responsible for 

myocardium alterations that include readjustment in ventricular size and volume, 

myocardium stiffness and wall thickness, therefore contributing to the development of 

HFpEF. Figure was produced using Servier Medical Art.  
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The challenging diagnosis of HFpEF is assessed after clinical 

evaluation, Doppler echocardiography or invasive hemodynamic assessment 

and confirmed whenever the following conditions are observed [7, 21, 22]:  

 Signs and symptoms of HF;  

 Diastolic dysfunction;  

 Normal or lightly anomalous systolic function. 

 

Despite all advances in medicine, HFpEF continues to have a high rate 

of hospitalizations, subsequent readmission on hospital, a considerable 

mortality rate (10-30%) and will grow to epidemic proportions making it a 

major public health problem [1, 12, 23].  

 

 

1.5.  Comorbidities in HFpEF  

Non-cardiac comorbidities are highly prevalent in HFpEF and have an 

important role in the pathogenesis of this syndrome [11]. Several risk factors 

are involved, although only one is enough to cause HFpEF. Patients with 

HFpEF usually have multiple comorbidities that could cause or be contributors 

to this phenotype [15].  

Female gender is also an important risk factor being associated with 

more concentric remodeling, lower LV diastolic volumes and as well as 

systolic and diastolic LV stiffness. Woman have a probability two times higher 

to develop HFpEF [11, 24].   

Anemia is present in 50-70% of HFpEF patients and it is closely related 

with renal disease and it is characterized by iron deficiency and insufficient 

erythropoietin production generated by systemic inflammation. Chronic renal 

failure and HFpEF often co-exist and share common risk factors. Indeed, 

renal failure is present in 30-40% of patients and it is a predictor of mortality. 

Chronic obstructive pulmonary disease (COPD) also contributes to HFpEF 
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mortality and the adverse cardiovascular effects include reduction of cardiac 

output, less stroke volume and also impaired LV filling [11, 25].   

Hypertension is the most predominant risk factor, being present in 60-

88% of HFpEF patients. In hypertensive patients, the risk of developing 

HFpEF is 2 times higher in men and 3 times higher in women comparing with 

the normotensive patients. High blood pressure is capable of increase arterial 

stiffness, which compromises LV relaxation. Additionally, these patients 

frequently display obesity, microalbuminuria and impairment of insulin 

signaling and rapidly develop myocardial fibrosis and LV hypertrophy [11].  

Obesity, which has reached epidemic proportions partly because of the 

increase of energy intake and a sedentary life style, impairs cardiac structure 

and function that doubles the risk of having HFpEF. It is present in 32-46% of 

patients and it is an independent risk factor for cardiovascular morbidity and 

mortality. Along with adipose tissue expansion, pro-inflammatory cytokines 

and adipokines, like leptin and resistin, are released. Arterial resistance 

increases and contributes to LV hypertrophy and high diastolic pressures. 

Myocardial relaxation is compromised due to changes in cardiomyocyte 

calcium handling, along with lipotoxicity and mitochondrial dysfunction. All 

these alterations induce LV concentric remodeling, LV increase of mass e 

volume and arterial stiffness [11, 12].  

Diabetes mellitus (DM) is a recognized comorbidity affecting 30-45% of 

HFpEF patients, especially females. The Framingham Heart Study first 

showed that diabetic patients can develop diastolic LV thickness with stiffer 

cardiomyocytes and subsequent studies from our group further confirmed this 

evidence [26]. This is a result of hyperglycemia effects that causes interstitial 

and perivascular fibrosis, increase collagen deposition and reduction of 

degrading matrix metalloproteinases [11, 12, 15]. Additionally, high levels of 

glucose promote the generation of advanced glycation end-products (AGEs) 

in myocardium, which are molecules formed in the reducing sugars’ reaction 

that can form covalent bonds with proteins, namely collagen fibers cross-

linking, stiffening the myocardium. Moreover, AGEs can bind their receptors, 
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RAGEs, increasing collagen production thus, decreasing arteries distensibility 

and increasing LV stiffness [11, 27, 28]. 

All the previous comorbidities are associated with several pathological 

changes in the cardiovascular system that strongly contribute to HFpEF. 

Besides diastolic LV dysfunction, myocardial and systemic inflammation, 

oxidative stress and endothelial dysfunction represent important contributors 

to the pathophysiological mechanisms of HFpEF syndrome [11, 12]. The 

endothelium, located between the circulating blood and the vessel wall or the 

myocardium, occupies a strategic anatomic position and is undoubtedly 

involved in the abnormalities that occur in HFpEF [29-34]. 
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2. HFpEF and the endothelium  
 

2.1.  The endothelium 

Endothelium is an active organ formed by a monolayer of endothelial 

cells that separate the vascular wall or the myocardium from the circulation. It 

acts as a functional and structural barrier capable of sensing hormonal and 

mechanical stimuli. The endothelium plays an important role in cardiovascular 

homeostasis modulating vascular tone by balancing the production of 

vasodilators and vasoconstrictors agents (Table 1). In addition, this layer also 

regulates solute transport, prevent leucocyte and platelet adhesion and 

aggregation, modulates blood flow and mediates inflammatory and reparative 

response to injury [32, 35-37]. Cardiac endothelium integrates endothelial 

cells from endocardium, from the coronary microvasculature and also of the 

intramyocardial capillaries. The anatomical position of endothelial cells next to 

cardiomyocytes enables a bidirectional communication between those cells 

[38]. Several studies have shown that endothelium have a crucial role in 

several diseases, including HFpEF [35, 39].  

Table 1. Vasoactive and inflammatory substances released by endothelium [36, 40]. 

Action Substance 

Vasodilation 

 

Nitric Oxide (NO) 

Prostacyclin 

C-Type natriuretic peptide 

Vasoconstriction 

 

Endothelin-1 (ET-1) 

Angiotensin II (Ang II) 

Thromboxane A2 

Reactive Oxygen Species (ROS) 

Inflammation 

 

Nitric Oxide (NO) 

E and P-selectin 

Nuclear Factor kβ (NF- kβ) 

ICAM1 

VCAM1 
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Nitric oxide (NO) is the most important and the most characterized 

substance produced by the endothelium. This gas with a short life (about 6-30 

seconds) is generated from L-arginine amino acid by endothelial NO synthase 

(eNOS) which is continuously produced and release by endothelial cells 

through physical and hormonal stimuli [41]. Shear stress caused by blood 

flowing on the vessel wall is the most important physical stimuli for NO 

production. Chemical stimuli include acetylcholine, bradykinin and serotonin 

[41, 42]. In the healthy endothelium, when NO is released, binds to smooth 

muscle promoting the activation of soluble Guanylate Cyclase (sGC) and the 

production of cyclic Guanosine Monophosphate (cGMP) which opens calcium 

dependent potassium channels promoting blood vessel relaxation and 

vasodilation (Figure 2). Normally, NO is important to maintain the vascular 

wall in a quiescent state inhibiting inflammation, cell proliferation and 

thrombosis being the vasodilation prevalent (Table 2) [41-45].  

 

Figure 2. Synthesis of Nitric Oxide. In endothelial cells NO production is stimulated 

by several stimulus and inhibited by others. NO acts in smooth muscle cells in order 

to promote vasodilation and the decrease of cytokine synthesis, the monocyte 

adhesion and platelet aggregation, as well as the decrease of adhesion molecules.  

NO: Nitric Oxide; eNOS: endothelial Nitric Oxide Synthase; GTP: Guanosine 

Triphosphate; sGC: soluble Guanylate Cyclase; cGMP: cyclic Guanosine 

Monophosphate. Figure was produced using Servier Medical Art. Adapted from [41, 

42]. 
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Table 2. Role of Nitric Oxide. Adapted from [41]. 

Role Action 

Vasomotor action 

 

Endothelium vasodilation 

Decreases vasoconstriction in smooth muscle cells 

Regulation of systemic and coronary tone by acting on basal 

arterioles 

Inflammation 

 

Decreases endothelial permeability 

Decreases expression of E-selectin 

Reduction of leucocyte adherence to the endothelium 

Decreases production of macrophages cytokines 

Down-regulate platelet aggregation and adherence 

Antioxidant 

 

In vivo and in vitro free radical scavenger 

NO donors duplicate plasma anti-oxidant capacity 

 

 

 

2.2. Endothelial dysfunction  

As a consequence of HFpEF risk factors, endothelium loses his 

integrity and the homeostatic balance is disrupted, culminating in endothelial 

dysfunction. Endothelium acquires a pro-inflammatory and pro-thrombotic 

state with vasoconstriction that includes detachment and release of 

endothelial cells into the circulation [35, 39, 44, 46]. Endothelial dysfunction is 

associated with the beginning and the progression of HFpEF [32, 34, 40, 47]. 

The principal feature of endothelial dysfunction is the impairment of NO 

bioavailability. In this condition, reduced production of NO can result from 

diverse contributing factors, such as decreased production of eNOS, lack of 

eNOS substrates or due NO degradation by ROS (Figure 3). ROS are 

chemical oxygen species and cellular metabolism’s products that are highly 

reactive causing oxidative stress [37, 38]. ROS form peroxinitrites that impair 

the NO-induced vasodilation, essential to vascular homeostasis and 
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endothelial function. Reduced NO release by endothelium affects ventricular 

relaxation, particularly in the hypertrophied myocardium. Conventional 

antioxidant therapies have intended to correct the imbalance between NO and 

ROS, but sadly have not been totally successful yet [36, 40, 48-50].  

 The link between endothelial dysfunction and HFpEF pathophysiology 

is currently established [11, 32, 33, 36, 41]. However the precise mechanisms 

remain obscure. Understanding endothelial dysfunction mechanisms will be 

an important key to understand the pathophysiology of HFpEF. 
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Figure 3. Schematic representation of the differences between a healthy (A) and 

dysfunctional endothelium (B). In a healthy endothelium, endothelial cells are intact 

and produce a normal concentration of nitric oxide (NO) by endothelial nitric oxide 

synthase (eNOS). In a dysfunctional endothelium, endothelial cells are damaged and 

produce a reduced concentration of NO due reaction with reactive oxygen species 

(ROS) and a decreased eNOS activity. It becomes an inflammatory local and 

leucocytes and platelets migrate to this injury site. Figure was produced using 

Servier Medical Art.  

B – Dysfunctional endothelium 

A – Normal endothelium 
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2.3. Mechanisms of endothelial dysfunction in HFpEF: the role 

of comorbidities 

Newer insights suggest that endothelial dysfunction is more than a 

state of systemic vasoconstriction and that has a crucial role in HFpEF 

pathogenesis. In 2013 Paulus et al. suggested that endothelial dysfunction 

plays a central role in HFpEF progression. These new paradigm of HFpEF 

suggests that comorbidities are responsible for the pro-inflammatory state 

seen, causing coronary microvascular endothelial inflammation [51].     

 Hypertension, obesity and DM induce a systemic inflammatory state 

with the release of pro-inflammatory cytokines such as tumor necrosis factor α 

(TNFα), interleukin-1 (Il1), Il-6 and Il-8. Increased circulating levels of these 

cytokines are found in HFpEF patients [11, 13].  The adhesion molecules, 

vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 

(ICAM1) and E-selectin, which in normal conditions are expressed in small 

amounts in the surface of endothelial cells, are upregulated [13, 52]. 

Endothelial inflammation originates the production of ROS that leads to 

peroxynitrites (ONOO-) formation and a decrease in NO bioavailability. In 

response, cardiomyocyte production of soluble guanylate cyclase (sGC) is 

reduced, which contributes to a decrease in cGMP and protein kinase G 

(PKG) concentration. In HFpEF lower PKG levels are associated with 

cardiomyocyte hypertrophy and stiffness, and with high resting tension 

(Fpassive). This high resting tension is due to the hypophosphorylation of the 

N2B segment of the giant cardiomyocyte cytoskeletal protein titin [11, 38, 51, 

53]. Microvascular endothelial inflammation also stimulates fibroblasts 

differentiation in myofibroblasts resulting in myocardial fibrosis with collagen 

type 1 deposition and collagen cross-linking, which are contributors to 

myocardial stiffening [54]. These changes induce diastolic LV dysfunction, the 

major characteristic of HFpEF (Figure 4) [11, 38, 51]. 
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Figure 4. Schematic representation of the mechanisms induced by comorbidities that 

result in myocardial dysfunction and remodeling in HFpEF. Comorbidities generate a 

pro-inflammatory state with consequent release of Interleukin (Il) 1, Il-6, Il-8 and 

Tumor Necrosis Factor α (TNFα). Endothelium produces reactive oxygen species 

(ROS) that react with nitric oxide (NO) to produce peroxynitrites (ONOO-) and at the 

same time reduce NO bioavailability. In cardiomyocytes there is a reduction in 

soluble guanylate cyclase (sGC), which in turn decreases cyclic guanosine 

monophosphate (cGMP) concentration and protein kinase G (PKG) production. Titin 

hypophosphorylation induces an increase in passive force leading to cardiomyocyte 

hypertrophy. Endothelial cells increase the expression of adhesion molecules 

(ICAM1, VCAM1 and E-selectin) influencing the migration of monocytes that release 

transforming growth factor (TGFβ). This last induces the collagen production and 

deposition in interstitial space which is turn causes cardiomyocyte stiffness. Figure 

was produced using Servier Medical Art. Adapted from [11, 51]. 

 

 

Nevertheless, the exact role that comorbidities have on structural and 

functional remodeling in HFpEF is not entirely well known. The new paradigm 

of HFpEF could be a new therapeutic target and the development of 

experimental HFpEF models might be beneficial and helpful, in order to 

understand and possibly to cure this pathology [11].  
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3. Animal models in HFpEF research 

 

Understanding the pathophysiology of HFpEF has been restricted by 

the limited access to human myocardial biopsied due to obvious ethical 

constrictions. In addition, the lack of a proper animal model mimicking the 

human pathology has partly limited HFpEF research. Indeed, animal models 

can be very useful to clarify subcellular mechanisms under conditions where 

the comorbidities and other confounding factors can be precisely controlled 

[55, 56].   

There are several models used for HFpEF research, nevertheless, until 

recently, none had fulfilled all the features present in the human disease. 

Recently, we have characterized a rat model that meets the criteria of HFpEF, 

the obese ZSF1 [57]. 

 

3.1. The obese ZSF1 as an animal model of HFpEF 

ZSF1 rats were generated by crossing non-hypertensive lean female 

Zucker Diabetic Fatty rats (ZDF, +/fa) with lean spontaneously hypertensive 

HF prone male rats (SHHF/Mcc, +/facp) that share a common genetic 

background with Wistar Kyoto (WKY) rats and derive from spontaneously 

multifactorial hypertensive rats  [58-63]. Both lean and obese ZSF1 animals, 

inherit a hypertensive gene from the spontaneously hypertensive rat strain 

and show elevated blood pressure [59]. 

ZSF1 rats have myocardial hypertrophy induced by hypertension, more 

notorious in obese than in lean rats. The ZSF1 obese rats present 

considerable diastolic abnormalities such as increased left atrial area, 

prolonged time constant of isovolumetric relaxation, elevated arterial 

elastance and end-diastolic pressure as well as an upwards shift of end-

diastolic pressure-volume relation, thus highlighting a worse ventricular-

vascular coupling. Systolic function remained preserved in lean and obese 

ZSF1 rats [57]. 
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In terms of metabolic disturbances, ZSF1 obese animals developed 

obesity, abdominal adiposity, insulin resistance, oral glucose intolerance, 

hyperglycemia and glycosuria, consistent with type II DM phenotype [64] and 

thus represent a good animal model of metabolic syndrome. Moreover, 

compared to hypertensive ZSF1 lean, which represent a model of isolated 

ventricular overload, the ZSF1 obese will allow clarifying if imposing metabolic 

comorbidities on top of overload is per se capable of induced HFpEF. 

Recently, a full description of a rat model that meets the criteria of diastolic HF 

was described, the ZSF1 obese [57]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Part 2  

Aims 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The scientist is not a person who gives the right answers; he's one who asks the 

right questions.” 

Claude Lévi-Strauss 
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Considering the concepts reviewed before, the aim of the present study 

was to clarify the pathophysiology of HFpEF by investigating the contribution 

of endothelial dysfunction and inflammation for the development of this 

syndrome.  

 

In order to achieve the aim of the project we pretend to: 

 

 Characterize an animal model of HFpEF including metabolic, 

morphometric as well as cardiac structural and functional changes; 

 Evaluate endothelial dysfunction in the previous model; 

 Correlate endothelial dysfunction with cardiac function parameters 

to investigate potential therapeutic targets.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Part 3  

Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Those who are quite satisfied sit still and do nothing; those who are not quite 

satisfied are the sole benefactors of the world.” 

Walter Savage Landor 
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1. Experimental animal model 

 

This study was made according to the Guide for the Care and Use of 

Laboratory Animals published by the NIH (NIH Publication no. 85–23, revised 

2011) and was approved by the ethics committee of the Faculty of Medicine of 

Porto and by Direção-Geral de Alimentação e Veterinária (DGAV) from 

Portugal. The Faculty of Medicine of Porto is a governmental institution, 

granted approval by the Portuguese government to perform animal 

experiments. 

Nine-weeks old male rats Wistar Kyoto (WKY, n=21), ZSF1 Lean 

(ZSF1Ln, n=24) and ZSF1 Obese (ZSF1Ob, n=22) were obtained from 

Charles River (Barcelona, Spain) and had unlimited access to food (LabDiet® 

5008, International Product Supplies Ltd., UK) and water. Animals were 

housed in groups of 2 animals per cage in a ventilated cages system (IVC) in 

a controlled environment with a 12-h-light/-dark cycle at 22ºC room 

temperature. The room had a relative humidity of 30–70% and an air 

exchange rate of 40–50 air changes/hour.  

 

In the end of the experiment, at their 20th week of age, anesthetized 

animals (8% for induction and 2.5-3% for maintenance) were euthanized by 

exsanguination and blood and tissue were collected. Organs were weighed, 

RV and LV were weighed after dissection, and tibia length (TL) was 

measured. Fresh samples of LV were used in flow cytometry and the rest of 

the samples were snap-frozen in liquid nitrogen and stored at -80ºC for 

molecular studies (RNA extraction, western blot) or fixed in 10% buffered 

formalin for histological procedures and also for immunohistochemistry 

analysis. Weights were normalized to TL due to the large body weight 

differences between groups. 
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2. Echocardiography 

 

All animals were subjected to an echocardiography evaluation at their 

18th week.   Animals were anaesthetized by inhalation of sevoflurane (8% for 

induction and 1-2.5% for maintenance), orotracheally intubated and 

mechanically ventilated (150 min−1, 100% O2, 14–16cmH2O inspiratory 

pressure, with tidal volume adjusted to animal weight, and 4cmH2O end-

expiratory pressure) (TOPO Small Animal Ventilator, Kent Scientific Inc., 

USA). Rats were placed in a left-lateral decubitus position on a heating pad, 

the ECG was monitored and their temperature was kept at 38ºC. The skin of 

all animals was shaved, the echocardiography gel was applied and a linear 

15MHz probe (Sequoia 15L8W) was gently positioned on the thorax. Systolic 

and diastolic wall thickness and cavity dimensions were recorded, in M-mode 

and 2D echocardiography, at the level immediately above the papillary 

muscles in the parasternal short axis view.  

From these measurements end diastolic and end systolic volumes, 

(EDV and ESV, respectively), fractional shortening (FS), ejection fraction (EF) 

of the LV, stroke volume (SV) and cardiac output (CO) were derived. The 

following Doppler and tissue Doppler measurements were taken using the 

apical four-chamber early diastolic filling peak velocity (E wave), late diastolic 

peak velocity (A wave), E/A ratio, early peak diastolic filling velocity (E’), late 

peak diastolic filling velocity (A’) and mitral annular systolic velocity (S’).  

The myocardial performance or TEI index was retrieved from the mitral 

flow pattern and calculated by the formula = (IVCT + IVRT)/ET, were IVCT is 

the isovolumic contraction time, IVRT corresponds to the isovolumic 

relaxation time and ET to ejection time. Data was indexed for body surface 

area as described previously [65] and three representative cycles were 

measured per rat and their average was calculated. 
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3. ELISA assay 

 Blood samples collected from subclavian vein after echocardiographic 

evaluation were placed in tubes with EDTA (C10H16N2O8, pH 6.0). Samples 

were centrifuged at 5000 rpm for 15 minutes at 4°C and plasma was then 

separated and utilized for quantitative enzyme immunoassays (ELISA).    

  Levels of leptin (SK00050-08, Adipo bioscience, USA), Fatty Acid 

Binding Protein 4 (FABP4, SK00030-03, Adipo bioscience, USA) Angiotensin 

1-7 (Ang 1-7, E02A0225, BlueGene Biotech, China), Il6 (R6000B, R&D 

Systems, UK) and TNFα (ER3TNFA, Thermo Scientifics, USA) were 

measured according to the manufacturer’s instructions.  Results were 

analyzed using an ELISA plate reader (UVM-340, ASYS Hitech GmbH, 

Austria) and a calibration curve was constructed by plotting the absorbance 

values at 450nm (with specific correction, according to manufacturer’s 

protocol) and concentrations of unknown samples were determined. 

 

4. Array protein expression profile  

The expression of some inflammation related-proteins was performed 

using plasma samples and a Rat Adipokine Array Kit (ARY016, R&D systems, 

UK). 

Nitrocellulose membranes were blocked for 1 hour with an array buffer 

and then a cocktail of biotinylated detection antibodies was added and 

incubated overnight at 4ºC. The membranes were washed several times in 

order to remove all the unbound material. Streptavidin-HRP, an enzyme used 

for the detection of the substrate was applied, incubated for 30 minutes and 

washed. Finally Chemi Reagent Mix was added and the signal produced was 

measured in a chemiluminescence detection system (ChemiDoc™ MP, Bio-

Rad, USA). 
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5. Histology, cardiomyocyte and aorta dimensions   

LV and descending aortic samples were fixed in 4% paraformaldehyde, 

dehydrated with gradual ethanol, cleared with xylene and were included in 

paraffin blocks. Serial sections with 4 µm of thickness were cut using a 

microtome (RM2125RTS, Leica, Germany) and mounted on slides. Next the 

slides were dewaxed in xylene, hydrated through a series of decreasing 

concentration of alcohol solutions and stained for haematoxylin-eosin. Slides 

were subsequently submitted to a new series of decreasing concentration of 

alcohol solutions and xylene and finally mounted with Entellan (Merck, 

Germany). 

Cardiomyocyte cross-sectional area, descending aortic diameter and 

thickness were determined observing slides at light microscopy (Dialux 20, 

Leitz, Germany) and using image acquisition software (cell B, Olympus, USA).   

 

 

6. AGEs immunohistochemistry  

Immunohistochemistry was performed to determine AGEs expression 

in myocardium and in 25-50, 50-100, and >100 vessels caliber. Four- µm LV 

apex sections were sliced, placed and subjected to deparaffinization and 

rehydration.  

A heat solution of sodium citrate buffer 10mM (C6H5Na3O7.2H2O, pH 

6.0) was added for 30 minutes into the slides to induce antigen retrieval. All 

sections were encircled with a hydrophobic pen (Immunopen, Immunologic, 

Netherlands) to prevent splitting leakage and the endogenous peroxidase 

activity was blocked using 100µL/section of a 3% hydrogen peroxide solution 

(Sigma Aldrich, USA) and incubated at room temperature for 10 minutes. All 

slides were washed with distillated H2O (dH2O) and with Tris-Buffered Saline-

Tween (TBST; 100 mM Tris, 1.5 mM NaCl, pH 8.0 and 0.1% Tween-20) for 5 

minutes with agitation. Blockage of non-specific binding was prepared with 

5% normal goat serum (NGS, ab7481, abcam, Cambridge, UK) in TBST, 
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added 100 µL for section and incubated at 1 hour at room temperature. Next 

all slides were washed 3 times for 5 minutes with TBST with agitation. 

Blockage of endogenous avidin-biotin expression was preform at room 

temperature using an endogenous avidin + biotin blocking system (ab3387, 

abcam, Cambridge, UK) according to manufacturer’s instructions (1 drop and 

15 minutes of incubation). The primary antibody (Anti-AGE primary antibody, 

ab23722, abcam, UK) in a 1/500 dilution was incubated at 4ºC overnight. 

After incubation slides were washed 3 times for 5 minutes with TBST and with 

agitation and were incubated with the secondary antibody (goat anti-rabbit 

IgG, ab6720, abcam, UK) in a 1/250 dilution at room temperature for 2 hours. 

Slides were next washed with agitation 3 times for 5 minutes with TBST. All 

slides were incubated with 3.3-diaminobenzidine (DAB, ab94665, abcam, UK) 

at room temperature until brown color was observed. Then slides were 

washed with dH2O and counterstained with Gill haematoxylin (Merck, 

Germany) for 3 minutes. Finally all slides were submitted to decreasing 

concentration of alcohol solutions, xylene and mounted with Entellan (Merck, 

Germany).  

Negative control was made with the omission of the primary antibody. 

The slides were observed and photographed with a microscope (Dialux 20, 

Leitz, Germany) and AGE’s quantification was made using Image Pro Plus 6 

software (MediaCybernetics, USA). 

 

 

7. Western Blotting 

LV samples were homogenized on ice in 1 ml RIPA lysis buffer (150 

mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 

and 50 mM Tris, pH 8.0) containing the following protease inhibitors: 

phenylmethylsulfonyl fluoride (1mM), aprotonin (10g.ml−1), leupeptin 

(10 μg.ml−1) and pepstatin (10 μg.ml−1), all from Sigma Chemicals (USA). 

Samples were then centrifuged at 11000 rpm for 20 minutes at 4°C. The 

supernatants were collected and total protein concentration was determined. 
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Samples containing 20 μg of protein were loaded on a 6% SDS 

Polyacrylamide gel (SDS-PAGE), run and electroblotted into polyvinylidene 

difluoride membrane. Pre-stained molecular weight marker proteins were 

used as standards for the SDS-PAGE. Ponceau staining was performed to 

verify the quality of the transfer and to ensure equal protein loading. Blots 

were blocked in 5% non-fat skimmed milk in PBS for 1 hour, treated overnight 

with antibody against the different proteins (eNOS, 9572, Cell Signaling 

Technology, USA; β-actin, 4967, Cell Signaling Technology, USA; p-eNOS, 

9571, Cell Signaling Technology, USA) followed by incubation with alkaline 

phosphatase secondary antibodies for 1 hour. Immunoblots were developed 

with an ECFTM Western blotting detection system (GE Healthcare, UK). 

Protein content was determined using a Bio-Rad protein assay kit.  

 

 

8. Cardiac endothelial cells isolation  

A LV sample was cut and transferred into a gentleMACS C tube 

(Miltenyl Biotec, Germany) containing HBSS (CaCl2, MgCl2, 

Lifetechnologies,USA) with collagenase II (Worthington, USA) and DNase I 

(Applichem, USA). The C tube was connected to the gentleMACS dissociator 

(Miltenyl Biotec, Germany) and the sample was incubated for 30 minutes at 

37ºC with agitation every 5 minutes in order to resuspend the settled tissue 

fragments. Next the C tube was runned out again in the gentleMACS 

dissociator. In the end, the solution was passed into a 70µm cell strainer 

(Corning, USA), washed with cold HBSS and the cell suspension suffered a 

spin down at 1500 rpm for 10 minutes at 4ºC. Cold HBSS was immediately 

added and the cell suspension suffered a new spin down at 1500 rpm for 10 

minutes at 4ºC. Next cells were washed with FACS medium (eBioscience, 

USA), suffered another spin down at 1500 rpm for 10 minutes at 4ºC and 

resuspended in HBSS (1ml/heart). 
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9. Flow cytometry and sorting  

Cardiac endothelial cells were resuspended in ice-cold FACS medium 

(eBioscience, USA) and added into a 96 well plate (105-106 cells/well) in a 

way that surrounding each well stays an empty one. FACS medium was 

added, the plate was washed by centrifugation for 5 minutes for 2000 rpm and 

supernatant was discarded. CD90 Pacific blue (Biolegend, USA), PE anti-rat 

CD54 (Biolegend, USA), CD44 Purified (BD Biosciences, USA) and CD106-

Pe (BD Biosciences, USA) antibodies were added in a dilution in FACS 

medium to a maximum volume of 25-50 µl and incubated on ice for 20 

minutes protected from light. FACS medium was added and the plate was 

washed by centrifugation for 5 minutes for 2000 rpm. The supernatant was 

discarded. In order to loose cells, the plate suffered a shacking in a vortex set 

at medium speed. Cells were transferred into FACS tubes (eBioscience, USA) 

with the remaining volume up to a total of 400µL. The tubes were protected 

from light and read it in FACS (eBioscience, USA) and cells suffer cell sorting. 

 

10. RNA extraction and reverse transcription 

LV sample from each animal was cut and putted in tubes with 500 µl 

Tripure each (Roche, USA). In a fume hood each tube was homogenized and 

then incubated in room temperature for 5 minutes. Chloroform was added on 

all tubes, which suffered a rapid vortex, and then were incubated for 10 

minutes in room temperature. Next all tubes were centrifuged at 15000 rpm at 

4ºC for 15 minutes and the resulting aqueous phase was collected to a new 

tube with isopropanol. The tubes suffered a rapid vortex and were incubated 

at room temperature for 10 minutes. In the end all were centrifuged at 15000 

rpm at 4ºC for 10 minutes and the supernatant was discarded. The resulting 

pellet was washed with 70% ethanol and a rapid vortex was made. The tubes 

were centrifuged for 5 minutes at 15000 rpm at 4ºC, the supernatant was 

discarded again and the tubes were left opened and turned down in order to 

completely dry the pellet. RNase free water (Qiagen, Netherlands) was added 
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and for 30 minutes all tubes were left on ice to dissolve the pellet. In the end 

all tubes suffered a vortex and reverse transcription protocol. 

RNA concentration from all samples was adjusted in order to perform a 

1µg of total RNA in a 20 µL volume.  Random Primers in a 1/5 concentration 

were added to the samples and were incubated for 20 minutes at room 

temperature and 3 minutes on ice. 

A mix containing 5X buffer (Invitrogen, USA), dNTPs (Invitrogen, USA), 

DTT (Invitrogen, USA), RNase free water (Qiagen, Netherlands), RNasin 

(Promega, USA), MgCl2 (Thermo Scientific, USA) and SuperScript II 

(Invitrogen, USA), was made and distributed to each sample. Two negative 

controls were also prepared: no template control (NTC) in which samples 

were substituted by RNase free water to verify if reagents were contaminated; 

and RT- in which SuperScript II is substituted by RNase free water to verify if 

samples are contaminated with genomic DNA. The reaction mixtures were 

incubated in Thermocycler (Biometra, Germany) in 25ºC for 10 minutes, 42ºC 

for 50 minutes and 70ºC for 15 minutes. 

 

 

 

11. Real time - PCR  

Real-time PCR was performed StepOnePlus™ Real-Time PCR System 

(Applied Biosystems, USA) with myocardium cells, using 96-well 0.1 ml PCR 

plates (Applied Biosystems, USA) and carried out with SYBR Green 2X 

Master Mix (Qiagen, Netherlands). The primers were obtained from Thermo 

Scientific (Germany). Amplification reactions were performed in duplicate and 

the amount of RNA in the reactions was normalized with an internal control, 

the constitutively expressed gene Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) as its mRNA levels were similar between groups. 

Gene expression was quantified using the comparative Ct method (2-ΔCt), 

where ΔCt = Cttarget gene – CtGAPDH.  
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12. Vascular function 

Aortic rings with about 1.5 mm were isolated from ascending aorta 

samples and assembled between metal pins in an organ bath system 

(770MO, Danish Myo Technology). After stabilization, a curve of passive 

tension-length by progressive mono-axial stretching was obtained of the 

vascular rings at intervals of 20%, since the diameter with no tension - without 

stretching (L0) until 200% of L0. The strain (Ɛ) was defined as the proportional 

increase of length in relation to L0. The passive tension curve was 

mathematically modulated by an exponential function, in which β is a vascular 

stiffness index.  In every step an active tension curve with KCl stimulation was 

obtained. After passive tension adjustment of the vascular ring, and 

considering a resting transmural pressure of 100 mmHg, vascular reactivity 

was evaluated thought an dose-response curve to phenylephrine (Phe; 10-9 to 

10-5, in logarithmic 0.5 intervals) and the endothelial function thought an dose-

response curve to acetylcholine (Ach; 10-9 to 10-4, in logarithmic 0.5 intervals), 

being the relaxation evaluated according to the percentage of decrease, after 

pre-contraction with Phe. Acquisitions were made using LabChart 7 Pro 

v7.3.1 (ADInstruments, New Zealand). 

 

 

13. Statistical analysis 

Statistical analysis was performed using Graph Pad Prism software 

(version 5.0, Graph Pad software, USA). One-way ANOVA test was used for 

comparison among groups and two-way repeated-measures ANOVA test was 

used to performed analysis for repeated measures for the same animal. 

Single comparisons were assessed by an unpaired Student t test. Group data 

are presented as means ± SEM. Results were considered significantly 

different when p<0.05. 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

Part 4 

Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Science, in the very act of solving problems, creates more of them.” 

Abraham Flexner 
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1. Characterization of the animal model 
 

1.1. Morphometric data 

 Morphometric parameters were normalized to TL and are presented in 

Table 3. Body weight is significantly higher in ZSF1Ob when comparing 

ZSF1Ln and WKY and both ZSF1 groups are heavier than WKY. Regarding 

cardiac hypertrophy, ZSF1Ob and ZSF1Ln present increased LV weight/TL 

(Table 3), further confirmed histologically by their larger cardiomyocytes 

diameter (Figure 5) and echocardiographically by an augmented LV mass 

(Table 4). ZSF1Ob presented several organs that were significantly heavier 

than ZSF1Ln and WKY, such as perigonadal and perirenal fat, as expected in 

an obese model, and lung/TL, consistently with lung congestion. 

Gastrocnemius muscle weight normalized to TL was lower in ZSF1Ob when 

compared to ZSF1Ln, revealing cachexia (Table 3). 

Table 3. Morphological data from WKY (n=17), ZSF1Ln (n=14) and ZSF1Ob (n=18) 

animals. LV, left ventricle; RV, right ventricle; TL, tibial length. The values are 

represented as means ± S.E.M. p<0.05: * vs WKY, † vs ZSF1Ln. 

Morphometric parameters WKY ZSF1Ln ZSF1Ob 

Weight (g) 358.93±5.9 434.32±8.5* 606.13±6.6*† 

TL (mm) 39.75±0,8 43.10±1,0* 40.68±0.4† 

Heart weight/TL (mg.mm
-1

) 32.52±1.1 34.08±1.1 40.25±0.9*† 

RV weight/TL (mg.mm
-1

) 3.08±0.3 2.38±0.3 4.57±0.5† 

LV weight/TL (mg.mm
-1

) 8.56±0.8 9.44±0.8 10.81±0.5* 

Lung weight/TL (mg.mm
-1

) 41.59±2.2 44.08±2.3 63.73±4.0*† 

Spleen weight/TL (mg.mm
-1

) 15.18±1.0 16.69±1.0 21.58±1.1*† 

Pancreas weight/TL (mg.mm
-1

) 12.41±1.6 13.68±1.8 21.85±5.9 

Liver weight/TL (mg.mm
-1

) 275.32±9.1 324.15±11.8 936.36 ± 37.2*† 

Kidney weight/TL (mg.mm
-1

) 60.30±1.6 71.48±2.1 106.68±2.6*† 

Perirenal fat weight/TL (mg.mm
-1

) 62.32±4.3 52.64±5.7 372.30±10.3*† 

Perigonadal fat weight/TL (mg.mm
-1

) 57.82±3.1 58.28±3.5 137.19±6.4*† 

Gastrocnemius weight/TL (mg.mm
-1

) 54.31±1.0 62.17±1.7* 51.06±1.1† 
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Figure 5. Cardiomyocyte hypertrophy represented by its cross-sectional area (D). 

Representative images of hematoxylin-eosin stained section of LV from WKY (n=5, 

A), ZSF1Ln (n=5, B) and ZSF1Ob (n=5, C). The values are represented as means ± 

S.E.M. p<0.05: * vs WKY, † vs ZSF1Ln. 

 

1.2. Cardiac functional and structural changes 

Echocardiographic evaluation showed that ZSF1 groups presented 

preserved systolic function, as observed by similar cardiac index (CI), ejection 

fraction (EF) and end-diastolic volume index (EDVI) values. Global cardiac 

performance, assessed by the Tei index was similar between groups (Table 

4).  

In contrast with systolic parameters, significant disturbances in diastolic 

function were observed in ZSF1Ob animals compared to ZSF1Ln and WKY 

groups, namely, an increase in the maximum velocity of early diastolic 

D  
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transmitral flow to maximum velocity of myocardial displacement ratio at the 

lateral mitral annulus also in early diastole (E/E’) and a decrease in early and 

late LV filling velocities ratio (E/A). In addition, an increased left atrium area 

(LAA) was observed in ZSF1Ob (Table 4).  

 

 

Table 4. Echocardiographic evaluation of WKY (n=7), ZSF1Ln (n=9) and ZSF1Ob 

(n=15) animals at 18th week. CI, cardiac index; EF, ejection fraction; MPI, myocardial 

performance index  – Tei index; FS, fractional shortening; CO, cardiac output; LV, left 

ventricle; S’, mitral annular systolic velocity; SV, stroke volume; BSA, body surface 

area; ESVI, end-systolic volume index; ESDVI, end-diastolic volume index; E/E’, ratio 

of mitral velocity to early diastolic velocity of the mitral annulus; E/A, early and late 

LV filling velocities ratio; LAA, left atrium area; HR, Heart rate. The values are 

represented as means ± S.E.M. p<0.05: * vs WKY, † vs ZSF1Ln. 

 

Echocardiographic 

parameters 
WKY ZSF1Ln ZSF1Ob 

CI (mL.min-1.cm-2) 215.28 ± 21.20 193.49 ± 15.53 242.50 ± 12.89 

EF (%) 72.82 ± 3.28 74.30 ± 2.46 75.72 ± 1.19  

MPI (Tei index) 0.77 ± 0.04 0.74 ± 0.06 0.71 ± 0.03 

FS (%) 37.39 ± 2.66 38.61 ± 2.00 40.00 ± 1.03  

CO (L.min-1) 95.10 ± 10.45 95.36 ± 7.43 152.87 ± 8.70*† 

LVmass MM (mg) 0.57 ± 0.08 0.76 ± 0.10 0.92 ± 0.06* 

S' (mm.s-1) 0.03 ± 0.003 0.05 ± 0.01 0.05 ± 0.004 

SV (mL) 0.33 ± 0.04 0.29 ± 0.02 0.49 ± 0.03*† 

BSA (cm2) 439.83 ± 8.21 493.27 ± 6.27 628.19 ± 3.94*† 

ESV I (mL/cm-2) 0.47 ± 0.06 0.50 ± 0.07 0.50 ± 0.04 

EDV I (mL/cm-2) 1.75 ± 0.11 1.89 ± 0.11 2.10 ± 1.11 

E/E' 12.62 ± 0.62 12.06 ± 0.45 16.34 ± 0.43*† 

E/A 1.80 ± 0.11 1.57 ± 0.10 1.22 ± 0.05*† 

LAA (mm2) 0.21 ± 0.02 0.25 ± 0.01 0.36 ± 0.01*† 

HR (bpm) 290.53 ± 14.25 329.33 ± 11.16 318.91 ± 10.37 
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2. Aorta characteristics and vascular function  

 

Regarding structural changes, abdominal aorta from WKY and from 

both ZSF1 groups was analyzed and the diameter and thickness measured. 

Aortas from ZSF1Ob animals were clearly bigger (Figure 6A) and the 

diameter was significantly higher in both ZSF1 groups (Figure 6B). Regarding 

aortic thickness, ZSF1Ob aortas showed a tendency to be thicker relatively to 

the other two groups (Figure 6C). Interestingly, AGEs deposition was higher in 

vessels from WKY, meaning that AGEs were not responsible for vessels 

stiffening (Figure 6 D, E & F). 
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Figure 6. Descending aorta characteristics of WKY (n=5), ZSF1Ln (n=5) and 

ZSF1Ob (n=5) animals. A) Representative images of aorta morphology; B) Aortic 

diameter and C) Aortic thickness; D) 25-50µm caliber vessels AGEs; E) 50-100µm 

caliber vessels AGEs; F) >100µm caliber vessels AGEs. The values are represented 

as means ± S.E.M. p<0.05: * vs WKY. 

 

 

In terms of function, after stretching the aortic rings, the passive 

tension (Figure 7A) and the strain stiffness index was higher in ZSF1Ob 

(1.45±0.28, p<0.05) than in ZSF1Ln and WKY (1.12±0.06 and 0.89±0.04, 

p<0.05, respectively).  

Aortic rings were exposed to increasing concentrations of Phe to 

evaluate the vascular reactivity and the developed maximum active tension 

was significantly higher in ZSF1Ob group compared to WKY and ZSF1Ln 

groups (Figure 7B). ZSF1Ob group also displayed impaired relaxation 

(42±2%, p<0.05) comparing to ZSF1Ln and WKY (56±6% and 84±3%, 

D - 25-50µm caliber vessels E - 50-100µm caliber vessels 

F - >100µm caliber vessels 
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p<0.05, respectively) after the incubation with increasing concentrations of 

Ach (Figure 7C). 
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Figure 7. Vascular function of aortic rings from WKY (n=5), ZSF1Ln (n=5) and 

ZSF1Ob (n=5), animals. A) Strain-passive tension curve; B) Maximum active tension 

at phenylephrine (Phe) maximal concentration (10-5); C) Vascular relaxation to 

increasing doses of acetylcholine (Ach) pre-contracted with Phe. The values are 

means ± S.E.M. p<0.05: * vs WKY, † vs ZSF1Ln. 

 

 

3. Plasma levels of adipokines and inflammatory markers 

 

We performed a rat adipokine array kit to have an overview of the 

major plasma changes in ZSF1Ob versus ZSF1Ln using a small number of 

samples per group. Results are presented in table 5 and revealed that the 

expression of pro-inflammatory cytokines Il-1β and Il-6 displayed a small 

tendency to be lower in ZSF1Ob group when compared to ZSF1Ln. In 

contrast, the expression of ICAM1 showed a trend to increase in ZSF1Ob. No 

differences were found in relation to anti-inflammatory cytokines Il-11 and Il-

10 (Table 5). Interestingly, only levels of monocyte chemoattractant protein 1 

(MCP1), that actively recruits leukocytes into inflammatory sites, were 

significantly higher in ZSF1Ob. Lipocalin, a protein involved in the lipid 

transport which also has a role in inflammation, displayed a trend to have 

higher levels in the obese rats (Table 5). 

 

C 

WKY 
ZSF1Ln 
ZSF1Ob 
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Table 5. Plasma protein expression (% of change from the positive control) assessed 

by a profile array of ZSF1Ln (n=4) and ZSF1Ob (n=4) animals. Il-1β, interleukin-1β; 

Il-6, interleukin-6; TNFα, tumor necrosis factor α; ICAM1, intercellular adhesion 

molecule 1; Il-11, interleukin-11; Il-10, interleukin-10; MCP1, monocyte 

chemoattractant protein 1; RANTES, regulated on activation, normal T cell 

expressed and secreted. The values are represented as means ± S.E.M. p<0.05: † 

vs ZSF1Ln. 

Protein (%) ZSF1Ln ZSF1Ob 

Il-1β 6,1 4,0 

Il-6 2,9 1,8 

TNFα 2,5 2,8 

ICAM1 16,3 21,3 

Il-11 3,8 3,7 

Il-10 2,6 2,2 

MCP1 19,2 54,3 † 

RANTES 7,5 4,5 

Lipocalin 45,1 58,2 

 

 

 

We further confirmed some circulatory parameters by ELISA (Table 6), 

a more sensitive technique that revealed that plasma levels of leptin were 

significantly increased and there was a similar trend in FABP4 levels, 

consistently with metabolic syndrome (Table 6). In both ZSF1 groups, the 

vasodilator Ang 1-7 was significantly increase (p<0.05) to compensate for the 

increased ventricular overload and arterial stiffness present in these 

hypertensive groups (Table 6).  

Interestingly, plasma levels of pro-inflammatory cytokines such as Il-6 

and TNFα revealed a tendency to be higher in WKY group while, between 

ZSF1 groups, obese animals displayed slightly lower values than the lean 

ones, consistently with the array results (Table 6). 
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Table 6. Circulating plasma levels data from WKY (n=6), ZSF1Ln (n=9) and ZSF1Ob 

(n=8) groups. FABP4, fatty acid binding protein 4; Ang 1-7, angiotensin 1-7; Il-6, 

Interleukin-6;  TNFα, tumor necrosis factor α. The values are represented as means 

± S.E.M. p<0.05: * vs WKY, † vs ZSF1Ln. 

Protein WKY ZSF1Ln ZSF1Ob 

Leptin (pg.mL
-1

) 434.34 ± 136.67 405.77 ± 240.23 22150.15±10711.55*† 

FABP4 (ng.mL
-1

) 53.03 ± 18.53 83.27 ± 64.86 122.18 ± 81.34 

Angiotensin 1-7 (ng.mL
-1

) 1.84 ± 0.85 3.16 ± 1.04* 3.28 ± 0.46* 

Il-6 (pg.mL
-1

) 277.38 ± 218.29 176.67 ± 146.84 134.45 ± 68.92 

TNFα (pg.mL
-1

) 76.44 ± 42.15 71.57 ± 43.85 55.38 ± 15.44 

 

 

4. Markers of myocardial dysfunction 

 

 In addition, myocardial expression of some inflammatory-related and 

ROS-related genes and proteins was also measured by real-time PCR and 

western blotting and are shown in figures 8&9.  

When it comes to gene expression of endothelial function-related 

genes, E-selectin expression was higher in ZSF1 group (p<0.05), while in 

ICAM1, VCAM1, eNOS3 and endothelin 1 no significant differences were 

observed but only a trend towards their upregulation (Figure 8). 
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Figure 8. mRNA expression of WKY (n=5), ZSF1Ln (n=5) and ZSF1Ob (n=5) animals. 
A) ICAM1, intercellular adhesion molecule 1; B) VCAM1, vascular cell adhesion 
molecule 1; C) endothelin 1; D) eNOS, endothelial nitric oxide synthase; E) E-selectin. 
The values are represented as means ± S.E.M. p<0.05: * vs WKY. 
 

 

The expression of AGEs receptor (RAGEs) was not different between 

the ZSF1 groups (Figure 9A), but both results were significantly higher than 

WKY. AGES deposition, assessed by carboxymethyllysine (CML) expression, 

was similar between groups despite a trend towards an increase in ZSF1Ob 

(Figure 9B). Vasodilator-stimulated phosphoprotein (VASP) (Figure 9C) and 

eNOS protein (Figure 9D) expression had no differences.  

In ZSF1Ob rats, NOX2 expression, which promotes ROS production, 

increased in a significant way, compared with WKY and ZSF1Ln. Contrarily, 

NOX4 expression in ZSF1Ob, with protective properties against ROS, was 

significantly lower than the other groups (Figure 9E&F).  
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Figure 9. Protein expression of WKY (n=6), ZSF1Ln (n=6) and ZSF1Ob (n=5) 

animals assessed by western blotting. A) RAGE, receptor of AGEs; B) CML, 

carboxymethyllysine; C) VASP, vasodilator-stimulated phosphoprotein; D) eNOS, 

endothelial nitric oxide synthase; E) NOX 2, NADPH oxidase 2; F) NOX 4, NADPH 

oxidase 4. The values are represented as means ± S.E.M. p<0.05: * vs WKY, † vs 

ZSF1Ln. 
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5. Flow cytometry analysis 

 

Representative scatter plots of flow cytometry analysis is depicted in 

figures 10A&B. Flow cytometry analysis revealed similar levels of CD31, a 

marker of endothelial cells, between ZSF1Ln and ZSF1Ob groups (Figure 

10C). Differently, ZSF1Ob LV samples display a significantly higher number of 

CD45 positive cells (Figure 10D), a marker of inflammation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Flow cytometry analysis. (A) Example of a representative plot of CD31 

versus CD45 expression from a ZSF1Ln animal. (B) Example of a representative plot 

of CD31 versus CD45 expression from a ZSF1Ob animal. (C) Expression of CD31+ 

cells in ZSF1Ln (n=3) and ZSF1Ob (n=5). (D) Expression of CD45+ cells in in 

ZSF1Ln (n=3) and ZSF1Ob (n=5). The values are represented as means ± S.E.M. 

p<0.05: † vs ZSF1Ln. 
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Discussion  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The important thing in science is not so much to obtain new facts as to discover new 

ways of thinking about them.” 

William Lawrence Bragg 



 
 

 

 



69 
 

The present study explored a previously described animal model of 

HFpEF, the ZSF1 obese rat, aiming to identify the pathophysiologic 

mechanisms underlying diastolic dysfunction progression. We have shown 

that the highly prevalent comorbidities associated to HFpEF trigger 

inflammation, oxidative stress and endothelial dysfunction in this animal 

model. 

 

1. Metabolic risk-related HFpEF model 

In this study we used the ZSF1 animal model and demonstrated that 

ZSF1Ob develops HFpEF at their 20th week of age. Compared to ZSF1Ln or 

WKY rats, ZSF1Ob showed many features of high metabolic risk such as 

visceral obesity evident from elevated perirenal and perigonadal fat, insulin 

resistance, hyperglycemia and physical inactivity evident from striated muscle 

wasting. ZSF1Ob rats present two different mutations for leptin receptor gene 

and as a compensatory response, leptin levels significantly increase. Lipocalin 

and FABP4 levels are also elevated in ZSF1Ob group, showing that in these 

rats adipose tissue is already dysfunctional and secreting a different pattern of 

adipokines. 

Comparing with WKY group, ZSF1Ln presented hypertension and 

consequent LV hypertrophy both at the organ and cellular level, which was 

further aggravated in ZSF1Ob rats. This hypertrophic response represents an 

attempt to normalize increased ventricular wall stress imposed by systemic 

arterial hypertension. Indeed, hypertrophy parallels the cardiac remodeling 

associated to HFpEF, namely in terms of ventricular size, geometry, shape 

and composition. Besides obesity, ZSF1Ob animals also developed 

hyperglycemia, oral glucose intolerance, insulin resistance, glycosuria and 

DM, all features that trigger diastolic dysfunction progression towards HFpEF 

[57]. Indeed, this represents an interesting aspect of ZSF1 as we were able to 

demonstrate that overload imposed by hypertension, as in ZSF1Ln, is not 

enough to induce diastolic dysfunction. Instead, only the concomitant 

presence of other significant comorbidities, as in ZSF1Ob, prompted HFpEF. 

Several studies have supported this finding by showing the severity of cardiac 
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and vascular injuries imposed by hypertension in obese or diabetic patients 

when compared with hypertension per se [66-69].  

The HFpEF presentation observed in this metabolic risk model also 

shares features with clinical presentation of this syndrome. Systolic function, 

evaluated by CI and EF, was preserved in all groups. Regarding diastolic 

function, the ZSF1Ob rats presented significant diastolic abnormalities as 

demonstrated by echocardiography evaluation, mainly and increased 

myocardial stiffness that compromises a proper ventricular filling. Previous 

studies from our groups showed that the relaxation time constant  is 

prolonged in ZSF1Ob, denoting also impaired relaxation [57]. Additionally, the 

obese group displayed dilated left atrium, lung congestion and increased 

arterial elastance, contributing to a worse ventricle-vascular coupling, a well 

establish cause of HFpEF [70]. All these results support the idea of ZSF1Ob 

as a good animal model of HFpEF. 

 The current animal model differs from previous experimental HFpEF 

models, which largely overlooked metabolic risk as they were carried out in 

old, hypertensive dogs [71, 72]  or in Dahl salt sensitive hypertensive rats [73].  

ZSF1Ob however closely resembles clinical HFpEF where metabolic risk is 

highly prevalent as evident from numerous HFpEF registries or large outcome 

trials [74-76]. HFpEF is a complex disorder that alters cardiac structure and 

function. Comorbidities commonly adjacent to this pathology, such as obesity, 

hypertension and diabetes mellitus, are associated with endothelial 

dysfunction [11, 51]. As a result, patients with HFpEF have an impaired NO 

response, elevated levels of vasoconstrictors and increased expression of 

adhesion molecules. Endothelium acquires a chronic inflammatory and pro-

thrombotic state where vasodilatation is compromised [32, 36]. Therefore, 

endothelial dysfunction may be a critical early target for the prevention of 

HFpEF, since that treatment options are still limited.  
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2. Endothelial dysfunction and oxidative stress 

Supplementary data related to vascular function demonstrate that 

ZSF1Ob animal’s aortas are less reactive. Furthermore, ZSF1Ob aortas are 

the largest and the thickest. In this group, besides the high passive tension, 

which indicates vascular stiffness, we also observed impairment of relaxation 

after incubation with a vasodilator substance. Altogether these data suggest 

endothelial dysfunction. Our results are in agreement with previous studies 

showing precisely that aortic rings in obese rats had a vasoconstrictive 

response [77]. Interestingly, Ang 1-7 circulating levels are increased in an 

attempt to compensate for the increase stiffness of ZSF1Ob arteries.  

Many HFpEF-associated comorbidities are known to induce cardiac 

and systemic ROS production, which further contributes to oxidative stress 

[78].  In our study the expression of NADPH oxidases, NOX4 and NOX2, with 

opposite functions, was in agreement with other studies where NOX 2 

upregulation in cardiac tissue was observed [79]. In ZSF1Ob, NOX2 

upregulation versus NOX4 downregulation clearly imbalances ROS 

production/protective mechanisms, promoting an oxidative stress 

environment. 

It is well known that DM-induced oxidative stress contributes to the 

formation of AGEs in cardiomyocytes [80]. Both ZSF1 groups demonstrated 

significantly higher levels of RAGEs and a small tendency to increase CML in 

ZSF1Ob. Others studies found similar results of RAGE levels in diabetic 

hearts [81]. These results were not confirmed by immunohistochemistry 

analysis of myocardial tissue. Thus this important signaling pathway needs to 

be clarified in subsequent studies. 

Increased systemic inflammation is a hallmark of all the comorbidities 

associated to this animal model. Interestingly, ZSF1Ob showed a slight 

tendency to have lower levels of several inflammatory mediators. This 

phenomenon has recently been described as the obesity paradox. This theory 

believes that obesity can, under certain circumstances actually have a 

positive effect due to the capacity of lipoproteins to neutralize 
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lipopolysaccharide derived from intestinal bacterial translocation. The 

mortality of obese patients with HF is low. This theory has been described as 

“reverse epidemiology” [82, 83]. So, the obesity presented by ZSF1Ob 

animals could attenuate the inflammatory effect. Interestingly, WKY displayed 

the highest levels of the pro-inflammatory Il-6 and TNFα. A possible 

explanation for this finding is that, WKY being a genetic model of depression, 

have hyper-responses to stress and display depression-associated 

abnormalities, like inflammation [84]. In fact, and supporting our results, other 

studies have been reported similar inflammatory levels [85, 86]. Current 

studies are being carried out in laboratory to clarify this aspect.  

Regarding tissue inflammation, the increase expression of E-selectin 

and CD45 in ZSF1Ob animals denotes increased levels of inflammation 

specifically in endothelial cells. 

All the above evidences suggest that ZSF1 animals do not display 

pronounced systemic alterations but present cardiac-tissue and vascular 

inflammation. Comorbidities stimulated the expression of inflammatory 

markers in ZSF1Ob hearts, mainly in endothelium, leading to diastolic 

dysfunction. We can conclude that comorbidities-induced inflammation and 

oxidative stress seem to be the hallmark of diastolic dysfunction and 

progression towards HFpEF.  
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Conclusion and future perspectives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Somewhere, something incredible is waiting to be known.”  

Carl Sagan 



 
 

  



75 
 

Unfortunately and despite all advances in medicine, HFpEF still 

remains with no available therapeutic options. Endothelial dysfunction, a state 

present in HFpEF, seems to be involved in its pathogenesis. An appropriate 

animal model as ZSF1Ob will certainly help to better understand this 

syndrome as well as to test new potential therapeutic targets.  

Our data clearly show that ZSF1Ob rat presents diastolic dysfunction 

and HFpEF. Furthermore, both morphometric and metabolic studies already 

perform in our laboratory confirm the metabolic syndrome state of this animal 

model, corroborating its cardiometabolic risk, typically associated to HFpEF in 

the clinical scenario.  

 We fulfill our goal to evaluate endothelial dysfunction in the ZSF1Ob rat 

model. Our results evidently showed that ZSF1Ob aortas are predominantly 

under a rigid and vasoconstriction state. Thus, our data suggest that a 

dysfunctional endothelium induces an increased vascular stiffness and 

impaired relaxation, with obvious myocardial deleterious consequences. 

 We showed that cardiac endothelial cells from ZSF1Ob animals are 

under a state of endothelial inflammation, which suggests that comorbidities 

accumulated by these animals stimulate the expression of some important 

inflammatory markers, culminating in endothelial dysfunction. 

 There seems to be no doubt that endothelial dysfunction is related to 

HFpEF development. In this context, it is important to note that endothelium is 

no longer viewed as a physical barrier that basically separates blood from the 

vessel wall. In fact, over the years endothelial dysfunction has been 

associated with several diseases, including HFpEF. Important advances have 

been made to better understand this relationship but future studies will enable 

the development of new therapeutic targets with a possible cure. 

In the future we aim to complete our studies evaluating ROS 

systemically by measuring plasma levels of malondialdehyde (MDA) and 

urinary levels of 8-hydroxydeoxyguanosine (8-OHdG), both markers of 

oxidative DNA damage. We also want to detect ROS in cultured tissue with a 

dihydroethidium (DHE) oxidative fluorescent probe. Additionally we pretend to 
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measure NO levels in heart tissue as well as in vessels supernatant after 

functional studies.  
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