


 

 

 

 

Department of Informatics Engineering 

Faculty of Sciences and Technology 

University of Coimbra 

 

 

SECURITY BENCHMARKS 

FOR 

WEB SERVING SYSTEMS 
 

Naaliel Vicente Mendes 

 

PhD Thesis of the Doctoral Program of Science and Information Technology supervised 

by Professors Henrique Santos do Carmo Madeira  and João Antonio Pereira Almeida 

Durães and presented at the Department of Informatics and Engineering of the Faculty of 

Sciences and Technology of the University of Coimbra. 

 

September 2015 



2 

 



3 

FOREWORD 

This research was developed at the Software and Systems Engineering Group of 

the Center for Informatics and Systems of the University of Coimbra (CISUC).  

This work was partially funded by the Portuguese Research Agency, Fundação 

para a Ciência e a Tecnologia (FCT), through the scholarship SFRH / BD / 

61969 / 2009, and by the Portuguese Government/European Union through the 

R&D Unit 326/94 CISUC. 

This work was supervised by Professors Doctor Henrique Santos do Carmo 

Madeira, Full Professor of the Department of Informatics and Engineering of the 

Faculty of Sciences and Technology of the University of Coimbra, and Doctor 

João Antonio Pereira Almeida Durães, Adjunct Professor of the Polytechnic 

Institute of Coimbra.  

 

 

 

 

 



4 

 



5 

~ To my beloved wife and children ~ 



6 

 



7 

ABSTRACT 

The assessment of the security level of computer systems in a standardized and 

regular manner (security benchmarking) has become a very relevant subject, 

especially for those who use computer systems to support critical business 

missions or to store confidential information. The concern about computer-based 

system security is totally justified: systems have become increasingly complex, 

interconnected, and pervasive, and their security have been threatened by many 

types of attacks. These attacks are unavoidable, as the root causes for them are 

tied up to human aspects that cannot be removed (intention to cause harm, 

intention to steal information, etc.), and the losses attacks can cause to their 

targets (when successful) can be very significant. This scenario of attack 

inevitability has led companies and governments to invest massively in the 

development of regulations and mechanisms aimed at the improvement of the 

security of computer systems (e.g., training developer teams, rapidly solving 

discovered vulnerabilities, using tools to detect and prevent attacks). Despite these 

efforts, successful attacks continue to happen, showing that computer systems 

remain insecure. This is why end-users, system administrators, and systems 

integrators (to mention just a few classes of users) consider security as an 

important decision factor when choosing which system to buy and use. These 

individuals are looking for the means to assess and compare the security of 

functionally-similar systems/components that will enable them to make a decision 

taking into account the assessment of security risk.  

This thesis presents a novel, reproducible, risk-based methodology to 

benchmark the security of software-based systems. This is a generic 

methodology that can be instantiated to any class of software-based system. Our 

benchmark methodology uses the notion of risk in a quantifiable way to measure 

the security of systems, with a single security metric (SBench) to simplify the 

comparison of different systems (or different configurations of the same system), 

enabling users and system integrators to identify and select the most secure one, 

allowing as well the breakdown of this single metric for more detailed analysis. 

Our methodology follows the approach of benchmarks proposed in the field of 

performance and dependability, containing elements such as metrics, workload, 

and experimental setup, and defining a comprehensive set of procedures and rules 

to ensure the compliance with key properties such as repeatability.  

Our security benchmark methodology cover the two complementary views of a 
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given system concerning security: the first takes into account concrete 

vulnerabilities effectively existing for that system (measures what is already 

known), and the second estimates the effects of possible yet-to-discover 

vulnerabilities (and, in fact, many attacks are based on previously unknown 

vulnerabilities). In fact, these views correspond to the two parts of our benchmark 

methodology: the static and the dynamic.  The static part corresponds to a static 

analysis of the target system and uses the knowledge about the impact and 

exploitability of known vulnerabilities discovered for that component or system. 

The dynamic part corresponds to an experimental analysis of the system in 

runtime operation when subjected to attacks, while observing the behavior of the 

system in the presence of these attacks. The combination of the results of these 

two parts forms the security benchmark measure that enables users, 

administrators, integrators, and security specialists to identify the most secure 

among functionally equivalent software systems. 

This thesis also exemplifies how to apply our security benchmark 

methodology for a particular and widely used system class (web serving 

systems), also describing the tools implemented to speed up the execution of 

the security benchmark. Due to their role in society and exposure to public at 

general, web serving systems are constantly targeted by attacks, making the 

implementation of a security benchmark for web serving system a very pertinent 

contribution. 

This thesis presents case studies that demonstrate the feasibility, the 

usefulness and the validity of our security benchmark. Following our 

methodology, end-users will be able to estimate the security risk of given systems 

and, if needed, use the results to select the most secure one. The fact that our 

security benchmark methodology is designed to address any class of software-

based systems, uses the notion of risk in the benchmark metric, applies an 

experimental approach to stress the security of systems, and provides procedures 

and rules that can guide the further development of representative security 

benchmark standards, make us sure that this is an effective and important 

contribution to both the industry and the academia.  

Keywords: 

Security; metrics; benchmarking; risk; security risk; software systems; web 

serving systems 
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RESUMO 

A avaliação padronizada de segurança de sistemas computacionais (benchmarking 

de segurança) é um assunto bastante relevante especialmente para aqueles que 

usam sistemas computacionais para suportar negócios, missões críticas e 

armazenar informações confidenciais. A preocupação quanto a segurança de 

sistemas computacionais é totalmente justificada: sistemas computacionais têm-se 

tornado mais complexos, interconectados e ubíquos e a segurança destes sistemas 

tem sido ameaçada por diferentes tipos de ataques. Os ataques são inevitáveis, 

uma vez que suas causas estão ligadas a aspectos humanos que não podem ser 

eliminados (intenção de causar dano, intenção de roubar informações, etc.) e os 

danos que podem causar nos sistemas (quando bem sucedidos) podem ser muito 

significantes. O facto dos ataques serem inevitáveis tem feito com que empresas e 

governos invistam massivamente no desenvolvimento de regulamentos e 

mecanismos para melhorar a segurança de sistemas computacionais (e.g., 

treinamento de equipas de programadores de computador, resolução rápida de 

vulnerabilidades recém-descobertas, uso de ferramentas para detetar e prever 

ataques). Apesar destes esforços, ataques bem sucedidos continuam a acontecer, 

mostrando que os sistemas computacionais permanecem inseguros. Este é o 

motivo pelo qual utilizadores, administradores e integradores de sistemas (para 

mencionar apenas algumas classes de utilizadores) consideram segurança como 

um importante fator de decisão ao escolher qual sistema comprar e usar. Estes 

indivíduos estão a procura de meios que lhes permitam escolher sistemas baseado 

na avaliação do risco de segurança. 

Esta tese apresenta uma metodologia inovadora, reproduzível e baseada na 

noção de risco para medir e comparar a segurança de sistemas 

computacionais (benchmarking de segurança). Esta metodologia é genérica, 

podendo ser aplicada em qualquer classe de sistema. Nossa metodologia de 

benchmarking de segurança usa uma abordagem quantitativa de risco para medir  

segurança, com uma métrica única de segurança (SBench) que simplifica a 

comparação de sistemas (ou diferentes configurações do mesmo sistema), 

ajudando utilizadores e integradores a identificar e escolher o sistema mais 

seguro, bem como permitindo o desdobrar desta métrica em indicadores que 

permitam análises mais detalhadas. Nossa metodologia segue a abordagem de 
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benchmarks propostas no campo do desempenho e da fiabilidade de sistemas, 

incluindo elementos como medidas, carga de trabalho e setup experimental, e 

definindo um conjunto detalhado de procedimentos e regras com o objetivo de 

tornar a metodologia repetível, uma importante propriedade de uma benchmark.   

A nossa metodologia de benchmarking de segurança cobre as duas visões, que são 

complementares, de segurança de sistemas: a primeira leva em consideração as 

vulnerabilidades que efetivamente existem no sistema (mede o que já é 

conhecido), enquanto a segunda estima os efeitos de vulnerabilidades ainda a 

descobrir (de facto, muitos ataques são construídos sobre vulnerabilidades 

previamente desconhecidas). Na verdade, estas duas visões correspondem às duas 

partes da nossa metodologia: uma estática e uma dinâmica. A parte estática 

corresponde a uma análise estática do sistema alvo e usa informação do impacto e 

explorabilidade das vulnerabilidades que já foram descobertas naquele 

componente ou sistema. A parte dinâmica corresponde a uma análise 

experimental do sistema em tempo de execução, sujeitando-o a ataques e 

observando-o do ponto de vista de segurança. A combinação dos resultados destas 

duas partes forma a medida da benchmark de segurança que permite aos 

utilizadores, administradores, integradores e especialistas de segurança identificar 

o sistema mais seguro dentre aqueles que executam funções equivalentes. 

Esta tese também exemplifica como aplicar a nossa metodologia de 

benchmark de segurança numa classe de sistemas utilizada amplamente (os 

web serving systems), descrevendo também as ferramentas implementadas 

para acelerar a execução da benchmark de segurança. Devido à sua função na 

sociedade e exposição ao público em geral, web serving systems estão 

constantemente sob ataques, o que faz da implementação de uma benchmark de 

segurança para web serving systems uma contribuição muito pertinente. 

Os casos de estudo apresentados demonstram a viabilidade, a utilidade e 

validade da nossa metodologia de benchmark de segurança. Ao seguir nossa 

metodologia, utilizadores poderão estimar o risco de segurança de sistemas e, se 

necessário, utilizar os resultados para escolher o sistema mais seguro. O facto da 

nossa metodologia ser projetada para qualquer classe de sistema, usar a noção do 

risco na medida da benchmark, aplicar uma abordagem experimental para testar a 

segurança de sistemas e prover procedimentos e regras que podem ajudar no 

desenvolvimento de um padrão de benchmark de segurança, faz-nos acreditar de 

que este trabalho é uma contribuição relevante, tanto para a indústria quanto para 

a investigação científica de âmbito académico. 
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CHAPTER 1  

1. INTRODUCTION 

This PhD Thesis presents a novel, risk-based methodology to measure and 

compare the security of software-based systems (termed here as security 

benchmark). This methodology uses the notion of risk to compute the benchmark 

metric (security risk) by taking into account the impact and occurrence probability 

of attacks targeting vulnerabilities present in the system under benchmarking. Our 

methodology allows users to build security benchmarks to assess and compare the 

security risk of functionally equivalent systems, and includes a well-defined set of 

rules to guide users to define and validate security benchmarks. In this thesis, we 

also provide an example of security benchmark for web serving systems and a 

case study with real web serving system components that demonstrates the 

applicability and usefulness of our benchmark approach. This chapter addresses 

the context and motivation of our research work, and includes a description of its 

research goals. This chapter comprises an overview of the thesis contributions and 

concludes with a brief description of the remaining chapters of this thesis. 

1.1 CONTEXT AND MOTIVATION 

Computer-based systems are becoming increasingly important and critical in our 

society. These systems have transformed the way people interact and make 

businesses, providing a place to store, share and disseminate all sort of 

information, a real-time communication mechanism to interact with one another 

and with institutions, and a platform to conduct business. In the last decade, the 

use of computer-based systems has grown globally, especially after the explosive 

growth of the World Wide Web in the last decade of the twentieth century. 

Statistics indicate that nearly one third of the world population already access the 

World Wide Web (Group 2011; U.S. Census Bureau 2009) in 2009. Certainly, 

this percentage is higher today. The World Wide Web (www) is currently the 
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basis for many public systems (e.g., access to governance services, public utility 

requisitions, e-commerce, banking transactions, stock market operations, social 

networks, enterprise and government management and so on), forming in fact a 

critical support of modern society where security and reliability are important for 

the general public. This clearly means that if a weak point (termed in the security 

field as a vulnerability) existing in a critical computer-based system is 

successfully exploited, it could lead to credibility and financial losses of 

institutions (e.g., due to credit card theft), and even exposure of critical 

infrastructure to risk of disruption. 

Examples of successful vulnerability exploitations targeting computer systems are 

quite abundant in the real world. In October 2014, JP Morgan Chase, the US 

largest bank by assets, reported that its systems were compromised in mid-

August, with customer contact information stolen from 76 million households and 

7 million small business data (Goldstein, Perlroth, and Corkery 2014). This 

security breach was apparently the result of a weak authentication mechanism in 

an unpatched server that was used as the entry point, as a stolen password allowed 

hackers to get access to restricted system areas and gain high-level access to  

more than 90 bank servers. In March 2013, a known vulnerability in open Domain 

Server Name resolvers (US-CERT 2006) led to what security specialists called 

the biggest cyber attack of its kind in history (D. Lee 2013): a Denial of Service 

attack against Spamhaus's Domain Name System servers (an Internet company 

that tracks spam providers). These servers were flooded with 300 gigabits of data 

per second, effectively rendering it unavailable. These attacks were so intense that 

they brought down the Internet performance in some parts of Europe. In January 

2011, The Canada Government disconnected three government agencies from the 

Internet, as attackers exploited vulnerabilities in their systems by installing 

malware (malicious software) that sent classified information back to the attackers 

(Weston 2011). Also in 2011, 24.6 million accounts of Sony Online Enterprise 

were stolen (including 12,700 non-U.S. credit or debit card numbers) due to 

exploited vulnerabilities in Sony on-line game services (SOE 2011). The cost of 

these attacks against Sony was initially estimated to more than 155 million of 

USD dollars, and recently Sony UK was fined 394,500 dollars by the UK privacy 

regulator (Bodoni 2013) as Sony could have prevented the breach by keeping 

software up-to-date and ensuring that passwords were secure. In the United 

Kingdom alone, the Ponemon Institute found out that the most expensive incident 

in 2009 cost £3.9 million, whereas in the United States it cost $31 million 

(Titterington 2010). In 2012, the average cost of cyber crimes for 56 organizations 

in the United Stated (that resulted from 102 successful attacks per week) was $8.9 

million, with a range of US$ 1.4 to 46 million (Ponemon 2012). In May 2015, 
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IBM and Ponemon Institute released a new data breach cost study covering 350 

companies spanning 11 countries. In this study, the average total data breach cost 

is $3.79 million (Ponemon 2015), with cyber-attacks representing 47% of the root 

cause of a data breach and an average cost per record of US$ 170.  To counter 

these attacks and avoid even greater financial and credibility losses, 

vulnerabilities in computer-based systems should be avoided or countered at any 

cost and security should be treated as a top priority. 

Despite the investment on security by governments and enterprises (e.g., (CNCI 

2008)), attacks against IT systems have increased in the last years (IBM X-Force 

2012) and have reached mission-critical systems that could affect humans lives 

(Sanger 2012; Arthur 2012). According to (Titterington 2010), several security 

firms have reported an increase in security incidents. The Computer Security 

Institute (CSI 2012), for example, reported that the number of organizations 

infected by malware during 2013 was 64%. A report released by IBM X-Force 

team indicates that 2011 was the year of security breaches (IBM X-Force 2012), 

with 7,000 vulnerabilities being disclosed during that year. This is mainly due to 

the increasing complexity of systems, leaving room for more vulnerabilities that 

can be exploited by attackers. 

Many techniques and methods have been proposed to increase the security of 

software-based systems, i.e., to achieve a level of protection to deter attacks (from 

tools such as anti-virus, firewalls, intrusion detection systems to security 

recommendations in the form of security practices, checklists and security 

standards). However, the only assured way of knowing if the security of a given 

system was indeed increased is by evaluating it. In other words, security 

evaluation is always required even when other security practices and mechanisms 

are employed. This adds to the relevance of having a methodology for security 

evaluation.  

Security evaluation methods and tools are important to identify vulnerabilities in 

computer-based systems, helping software vendors, buyers, users, and 

administrators, among others, to identify which components of the system are 

more prone to be attacked, to prioritize which part of the system should be 

secured first. Also, one common practice among software buyers and end-users is 

to rely on a set of security evaluation methods (e.g., ISO 17799 2005; NIST-

SP800-12 1995; CC Protection Profiles 2012; M. Vieira and Madeira 2005; 

Mendes et al. 2008) and tools (Acunetix 2012; IBM Appscan 2012; Nikto2 2015; 

Curphey and Arawo 2006; SecTools 2014) to help them to get an estimation of 

the security level of a given system based on a set of security requirements, tests, 

or software maturity (e.g.: is the system free from known vulnerabilities? Are the 
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common attacked ports properly closed?). However, current security evaluation 

methods and tools have well-known limitations. For example, they provide a 

fragmented view of the security level of the system and there are few methods to 

evaluate the security of software-based systems in a systematized and 

standardized way that can be used by end-users to measure their security for 

comparative purposes (security benchmark). 

The development of comprehensive and easy-to-use approach to benchmark the 

security of competing systems/component is then a real need in modern society. 

To help in this effort, this thesis presents a new contribution to the field of 

security evaluation and benchmarking of software based systems, helping to 

reduce the lack of security methods to measure and compare software security. 

1.2 THESIS OBJECTIVE 

This thesis proposes a novel methodology to support the development of 

functional and effective security benchmarks that can be applied over any class of 

software-based system. This methodology uses security risk as the benchmark 

metric, with a single metric (SBench) that enables users to compare system 

security. To the best of our knowledge, the notion of security risk has not been 

used for the definition of security benchmark metrics (although the notion of risk 

has been widely used in security evaluation, outside the benchmarking scope) and 

our decision to use it is based on the fact that this metric is able to translate into a 

single number the risk of vulnerabilities present in a software system. The 

purpose of this number (metric) is to indicate the security level of the system 

under benchmark, helping users to identify which system to use when faced with 

the need to select one system among functionally equivalent ones.  

This thesis exemplifies the proposed security benchmark methodology by 

providing a security benchmark for web serving systems, also describing the tools 

implemented to speed up the benchmark execution. Web serving systems form the 

basis of many services, such as e-commerce and banking systems. These systems 

are heterogeneous and complex, based on several discrete components. This 

internal complexity potentiates the existence of vulnerabilities that might be 

exploited by attackers. Because these systems are naturally connected to the 

Internet, and thus exposed to many users and attackers, any internal vulnerability 

becomes a real threat to security (e.g., (OWASP 2013; B. Martin et al. 2010)). 

Therefore, the web-serving scenario as case study of our benchmark methodology 

is relevant. In fact, in this thesis we have the purpose of demonstrating the 

applicability of the benchmark prototype by conducting case studies to measure 

and compare the security of real web serving systems. Additionally, this thesis 
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and the research work supporting it provide to the community results, tools and an 

increase in knowledge concerning security at general, and in web serving systems 

in particular. 

As mentioned, our benchmark metric (SBench) is estimated based on the security 

risk of vulnerabilities present in the system under benchmark. This is done by 

computing the risk related to vulnerabilities that are already discovered (known 

vulnerabilities) and by estimating the effect of not-yet discovered vulnerabilities 

(unknown vulnerabilities) on the system. This in fact corresponds to the two parts 

of our security benchmark methodology: static and dynamic parts. The 

assessment of the risk of known vulnerabilities (static part) corresponds to a static 

analysis of the target system and uses the knowledge about the impact and 

exploitability of vulnerabilities discovered in the field for that system to measure 

the security risk. These known vulnerabilities are obtained from two sources: (i) 

public repositories such as vulnerabilities databases and specialized web sites 

(e.g., (NVD 2014; OSVDB 2014; US-CERT 2014)); and (ii) results from security 

tests usually proposed by security experts. One important aspect is that 

vulnerability impact and exploitability are estimated considering the criteria 

defined by the Common Vulnerability Scoring System (CVSS) (Mell, Scarfone, 

and Romanosky 2007): this vulnerability framework has been widely used by 

large enterprises to characterize the risk of software vulnerabilities. 

The assessment of the effects of unknown vulnerabilities (dynamic part) 

corresponds to an experimental approach where robustness attacks are conducted 

to observe the behavior of the system. This approach is properly detailed in 

Chapter 3, but it is worth pointing out that we do not propose a way to identify 

unknown vulnerabilities. Our experimental approach (already applied in 

dependability benchmarks to test the tolerance of system to software faults) stress 

the system with attacks, observe the impact of these attacks, and then estimate the 

security risk in case if these attacks were successful (i.e., the attack compromised 

at least one of the security attributes of confidentiality, integrity, and availability). 

In practice, this is done using two complementary steps: (1) stressing the system 

with malicious input parameters and multiples attacks (e.g., Denial of Services 

attacks, Buffer Overflow) directed against components that interact with end-

users; and (2) mounting attacks against representative vulnerabilities that are 

injected in a component that is not included in the benchmark target (but interacts 

with it). By representative we mean the injection of vulnerabilities that are usually 

found (and consequently more exploited) in the target system. 

The purpose of injecting vulnerabilities and attacking them is to anticipate if a 

security breach (a successful attack that leads to a security compromise) in a 
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component may affect the security of the whole system under benchmark. For 

example, by injecting vulnerabilities in the web application (it is plausible to 

assume that applications may have vulnerabilities) we can assess if the attacks 

launched over such vulnerabilities can compromise the system. One important 

aspect here is that the vulnerability and attack injection approach is actually the 

technique that allow us to assess the effects of unknown vulnerabilities to the 

system. As attacks exploit vulnerabilities injected in a component that is different 

from the benchmark target (i.e., the component is outside the perimeter of the 

benchmark target), any security compromise of the benchmark target during the 

execution of such attacks was caused by the presence of one or more unknown 

vulnerabilities (weak points). This idea was already applied in fault injection field 

to assess the behavior of fault tolerant system in the presence of erroneous 

software components and the goal here is to apply this concept to the security 

field, using the attack injection technique proposed in (J. Fonseca, Vieira, and 

Madeira 2009) as detailed later on.  

1.3 THESIS CONTRIBUTIONS 

Although we recognize the existence of security benchmarking initiatives in 

literature as important contributions to the definition of security benchmarks (in 

Chapter 2, we present these works and discuss their intent and characteristics), we 

believe that our security benchmark methodology is unique in the sense that it 

incorporates the notion of security risk into the benchmark metric, takes 

advantage of an experimental approach to stress the security of the system with 

representative vulnerabilities and attacks and to assess the effect of unknown 

vulnerabilities, and uses the elements and approach of performance and 

dependability benchmarks applied to the security field. These elements and 

approach are relevant because they have been successfully applied to build 

realistic and repeatable benchmarks in other fields and guided us to build a 

realistic security benchmark for web serving systems.  

The fact that our benchmark uses the notion of risk, applies an experimental 

approach and do so in a repeatable and reproducible way, make us to believe that 

our security benchmark methodology is the best option considering the most 

recent security evaluation initiatives that ultimately seeks to help users to select 

the most secure among functionally equivalent software. In fact, there are security 

assessment methodologies for web servers (e.g. (CIS 2008)), but they are very far 

from what can be considered a benchmarking, especially to what concerns the 

fulfillment of benchmark properties such as representativeness, portability, 

scalability and the translation of the security level of systems in a single metric. 

Also, the software product evaluation method proposed in (Das, Sarkani, and 
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Mazzuchi 2012) is focused only on known vulnerabilities present in the system, 

with no experimental approach to test the security behavior of the target system 

and limited to certain application domains. The security-benchmarking 

framework described in (Neto 2012) uses a security qualification to target known 

vulnerabilities that do not consider the individual risk of known vulnerabilities to 

the whole system. Also, the benchmarking approach they use to target hidden 

vulnerabilities is not based on an experimental approach, but on the identification 

of the characteristics that the system has to avoid the effect of system threats. 

One of the novelties of our methodology is the extension of the benchmarking 

concept that has been successfully applied to the performance and dependability 

fields to the comparison of security features of web serving systems/components. 

This involves the research of new benchmark components, such as the 

vulnerability repository, the security test repository, the attackload (adapting the 

vulnerability and attack injection technique proposed in (J. Fonseca, Vieira, and 

Madeira 2009)),  and the security risk metric. 

The main contributions of this PhD Thesis are as follows:  

- The proposal of an innovative and easy-to-follow methodology for 

defining and implementing security benchmarks, based on both static and 

dynamic aspects of the target systems, including known vulnerabilities 

and an estimation of potential damage from unknown vulnerabilities. This 

methodology can be adapted to any class of software-based system.  

- A single security metric (SBench) to simplify the comparison of different 

systems (or different configuration of the same system), allowing as well 

the breakdown of this single metric for more detailed analysis. 

- A practical approach to inject vulnerabilities and execute attacks to 

observe the behavior of the systems regarding yet to be discovered 

vulnerabilities. 

- A prototype security benchmark for web serving systems implemented 

following the proposed benchmark methodology. This benchmark 

implementation enables users and system integrators to identify the most 

secure from a set of functionally equivalent web serving systems, and is 

also aimed at helping benchmark implementers to build security 

benchmarks. 

- The proposal of supporting tools to speed up the extraction of information 

and analysis of vulnerabilities, to inject vulnerabilities and attacks against 

web serving systems components in order to assess their behavior 
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concerning security, to monitor and assess the impact of attacks and 

vulnerability injection against web serving systems.  

- A comprehensive case study benchmarking the security of widely used 

web-serving systems providing useful data to the community on web 

serving systems actually used in the field. This case study was used to 

validate our security benchmark methodology and to demonstrate that it 

can effectively be used to benchmark the security of these systems, 

providing results that allowed us to clearly identify the most secure 

among the evaluated systems. We believe that providing the computer 

industry and user communities with examples of risk-based security 

benchmarks, in addition to the validation of those benchmark proposals, 

is a significant step to the definition of a general security benchmark 

standard accepted by companies and governments. 

In conclusion, this thesis is a contribution on how to build realistic security 

benchmarks, on how to define and use security risk as a benchmark metric, 

and on how benchmark the security of real web serving systems. Another 

natural contribution is the advance of security benchmarking state-of-the-art.  

1.4 THESIS STRUCTURE 

The structure of this thesis is organized as follows: 

Chapter 2 presents the theoretical foundations for this research work and existing 

work related with this thesis, focusing on the state of the art on security 

measurement and benchmarking.  

Chapter 3 provides a detailed overview of the benchmark definition methodology. 

This also includes the description of security benchmark elements, with special 

emphasis on the description of our security metric composition. 

Chapter 4 details the benchmark procedures and rules that should be taken in 

account to implement and deploy our security benchmark. 

Chapter 5 describes the implementation of our benchmark methodology for web 

serving systems, covering the entire development process of the supporting tools. 

This includes the extraction and analysis of real vulnerabilities, the injection of 

vulnerabilities and attacks, the management of security benchmark experiments, 

and the measurement of the benchmark metric.  

Chapter 6 exemplifies the use of the benchmark implementation with a case study 

and shows the benchmark results and its validation. The case study uses real web 

serving systems, and the validation targets the benchmark properties of 
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representativeness, repeatability, and portability, among others.  

Chapter 7 concludes this thesis and presents directions for future work to advance 

the security benchmark approach proposed in this thesis. 
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CHAPTER 2  

2. BACKGROUND & RELATED 

WORK 

 “Research is the search for knowledge through objective and systematic method 

of finding solutions to a problem” (Kothari 2008) 

 

This chapter presents background and research work related to our own and 

relevant to the definition, development and validation of security benchmarks for 

web serving systems. This chapter also includes the descriptions of key concepts 

regarding security following the organization described below: 

Section 2.1 describes the concepts of computer system security, briefly describing 

early works on computer security, and then it presents the primary and secondary 

attributes used to verify whether or not a system is in a secure state. It also 

describes the concepts of vulnerability and attack, including the notions of 

vulnerability life-cycle and vulnerability risk. 

Section 2.2 presents works concerning the characterization and representativeness 

of vulnerabilities and attacks, including an overview about vulnerability causes 

and classification schemes. We also describe existing repositories containing 

information and statistics on vulnerabilities, and then we provide examples of 

vulnerability scoring methods. Some of these works form the conceptual 

background of our security benchmark methodology. 

Section 2.3 details works on performance, robustness and dependability 

benchmarking. These research topics are relevant to our work as we use them in 

the definition of the main elements of our security benchmark methodology 

(metrics, procedures and rules, experimental setup, workload, and so on). 
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Section 2.4 focuses on security assessment, which includes security metrics, and 

assessment techniques and methods. In this context, we also present security 

benchmarks initiatives that have been proposed in recent years. 

Section 2.5 concludes this chapter. 

2.1 BASIC CONCEPTS ON COMPUTER SYSTEM SECURITY  

Computer system security is the idea of engineering systems so that it continues 

to function correctly under malicious attacks (definition adapted from (McGraw 

2004)). The goal of computer system security mechanisms is to prevent, detect, 

and recover from attacks (Bishop 2003). A computer system attack is any action 

aimed at compromising the security of a system (Stallings 1999). In this sense, 

attack prevention refers to the measures set in place to counter attacks. 

Successful prevention means that an attack will fail. Attack detection refers to 

the measures aimed at detecting an attack attempt. Attack recovery aims to bring 

the system back to a secure state after a successful attack. Recovery has two 

forms: (1) to recover the missing or modified resources and (2) to fix the 

vulnerability that enabled a given attack. The attack prevention and detection 

capabilities are more important to our work as they directly affect the security 

level of a system. The deployment of firewalls and intrusion detection systems are 

examples of measures that have been employed to make attack attempts 

unsuccessful. The use of backup tools is very important to minimize the impact of 

attacks over the business, but these tools do not play the role of countering attacks 

and making systems more secure. This distinction is important as the focus of our 

work is on the assessment of the security level of software-based systems. 

The object of protection in a computer system is the asset. An asset is anything 

that has value to an organization (software, hardware, people, data, etc.) and 

which therefore requires protection. In what regards computer systems, an asset 

can be one of several software and hardware components along with the data that 

is kept, manipulated, or transmitted (depending on the type of the system and its 

mission). In the context of information security, the data is an important asset that 

is stored, locally, or distributed across several computers (Kaufman 2009). If we 

consider that these data can be highly sensitive and confidential (such as credit 

card and social security numbers, or financial data of companies and 

governments, etc.), it is very clear that the consequences of data theft can be very 

negative. This notion is important because our security benchmark methodology 

focus on the security deficiencies that affect the logical part of a software-based 

system. The security of the areas where a computer infrastructure is located 

(physical part) and procedures to reduce the risk of theft, fraud, or misuse of 
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facility (human part), which are described in (ISO 17799 2005), are not the object 

of study of the present thesis. 

2.1.1 Early works on computer security 

The topic of computer security is not new. In 1976, papers regarding security, 

design of software protection, operational practices, and auditing were already 

numbered by the thousands. (Browne 1976) provided an overall perspective of 

134 papers and clearly demonstrated that security was a major concern since the 

creation of the first mainframe computers. As a point of clarification, it is worth 

noting that the first computer generation was primarily designed for military 

purposes, and its data was classified and should be protected against the enemy at 

any cost. The ENIAC (Eletronic Numeric Integrator and Computer), announced in 

1946, was one of the first all–purpose electronic computers and was designed to 

compute artillery firing tables for the Ballistic Research Laboratory of the United 

States Army (Eckert 1964; Weik 1961; McCartney 1999).  

The Computer Security Laboratory of the Computer Science Department at the 

University of California, Davis made available a list of works produced on the 

early 70s and 80s in the computer security field. This list was then made available 

by the Computer Security Resource Center of the National Institute of Standards 

and Technology at (NIST 1998). It is very clear from these works that the design 

of a secure system (Schiller 1975), the development of security controls for 

computer systems (Ware 1970; Nibaldi 1979), and the analysis of vulnerabilities 

(Karger and Schell 1974) were among the concerns of former computer security 

researches. In summary, 66 years after the creation of the first electronic computer 

and a huge technology progress, security continues to be a topic of concern for 

governments, military, enterprises, and academia.  

2.1.2 Security attributes 

The security of a computer system can be described in terms of primary and 

secondary attributes. The difference between these two categories is that the 

former refers to the key attributes a system must have to be secure, while the 

secondary security attributes are the instantiation of these primary attributes to a 

given area and are generally associated with human users (or with components 

that act as users such as proxy agents, or web services). 

The primary are confidentiality, integrity, and availability. According to 

(Avizienis et al. 2001), security is the concurrent existence of these primary 

attributes. A system is not secure if attackers are able to obtain restricted content, 

or to modify it, or make it unavailable. The partial loss of at least one of these 
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attributes is enough for the system enter an unsecure state.  

The primary security attributes are described as follows: 

 Confidentiality refers to the protection of functionality and data against 

unauthorized access (Bishop 2003). Confidential data access or 

confidential data transmission requires that unauthorized disclosure of 

one or more specific items will not occur (Walton, Longstaff, and Linger 

2009).  Access control mechanisms support confidentiality. One access 

control mechanism for preserving confidentiality is cryptography, which 

scrambles data to make it incomprehensible to unintended viewers 

(Bishop 2003). 

 Integrity refers to the trustworthiness of data or resources, assuring that 

the actions and data are correct (Bishop 2003).  Integrity requires that 

authorized changes are allowed, all changes must be detected and tracked, 

and changes must be limited to specific scopes (Walton, Longstaff, and 

Linger 2009). Integrity is defined as a property of the object, not of the 

mission. Integrity includes data integrity (the content of the information) 

and origin integrity (the source of data, often called authentication). 

Integrity mechanisms fall into two classes: prevention and detection. 

Prevention is aimed at maintaining the integrity of the data by blocking 

any attempts to change data in unauthorized ways. Detection is aimed at 

information that data integrity is no longer trustworthy (Bishop 2003). 

 Availability refers to the readiness of the system to provide the expected 

service, i.e., to the ability to use the information or resource desired 

(Avizienis et al. 2001). Availability requires that a resource is usable 

despite attacks. In terms of security, a malicious user may arrange to deny 

access to data or to a service by making it not available. One avenue that 

availability mechanisms can use is to seek atypical events that might lead 

the system to become unavailable or unresponsive (Bishop 2003). 

The secondary security attributes are described as follows: 

 Accountability refers to the record of any security-related action that 

should also be available even if the user is no longer connected (Goertzel 

et al. 2006). In other words, this refers to the availability and integrity of 

the identity of the person who performed an operation (Avizienis et al. 

2001). 

 Authenticity refers to the integrity of a message contents and origin, 

possibly of some other information as well, such as time of emission 



39 

(Avizienis et al. 2001). 

 Authentication is the process of establishing the user´s identities before 

they can access an application.  As an example of action of authentication 

mechanisms, the system should allow a requested program to be executed 

only if the user has previously been identified as a trusted user 

(Stoneburner, Hayden, and Feringa 2004). 

 Authorization refers to the access control to specific contents or 

components based on user privileges. Although several users may have 

access to a given system (i.e., they have personal credentials to access the 

system), authorization ensures that only the right users will get the 

information for the requested process (Walton, Longstaff, and Linger 

2009). 

 Privacy refers to the ability to define control over how his/her 

information will be disclosed (visualized or accessed by others) (Walton, 

Longstaff, and Linger 2009). One example is the social network sites that 

allow users to define who will access their personal content. 

 Non-repudiation refers to data transmission that cannot be refuted by 

either part after an agreement has been established.  (Avizienis et al. 

2001) considers non-repudiability as the availability and integrity of the 

identity of the message sender (non-repudiation of the origin), or of the 

receiver (non-repudiation of reception). For example, an e-mail system 

with non-repudiation is the one that ensures that the recipient of a 

message cannot deny receiving it and that the sender cannot deny sending 

it. 

Computer security has also been defined or specified in other terms. One possible 

definition is based on guidelines and checklists instead of attributes. These 

guidelines can later be checked in a similar way as quality procedures control. 

Security can also be equated in terms of techniques in place to help system 

administrators to observe and protect the target system against security incidents 

(e.g., firewalls, intrusion detection systems, and similar). 

An example of computer security specified in the form of guidelines was written 

by Matt Bishop. (Bishop 2004) argues that computer security relies on three 

fundamental components: 

- Requirements. These describe the needs of the user or institution in 

terms of security. Each organization may have its security goals and this 

should be clarified through the collection of security requirements. An 
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example of security goals is data protection against unauthorized access.   

- Policy. This specifies the measures and steps to be taken to achieve the 

intended security goals. The policy consists then on a set of statements 

that specifies what is allowed and what is not. If the system is always in 

allowed states, and users can only perform actions that are allowed, then 

the system is secure. On the contrary, if the system can enter a disallowed 

state, or if user can execute a disallowed action, then the system is 

nonsecure.  

- Mechanisms. These identify the tools, procedures, and other ways used 

to ensure that the policy is enforced. Security mechanisms can be 

technical (e.g., vulnerability scanners that identify known vulnerabilities) 

or operational (e.g., procedures aimed at protecting classified 

information). 

2.1.3 Vulnerability and attack definition and characterization 

In the context of software, a vulnerability is an instance of a mistake in the 

specification, development, or configuration of software such that its execution 

can violate the explicit or implicit security policies (Krsul 1998). (Andy Ozment 

2007) proposed two changes in this definition. The term “mistake” is aimed to 

mean an incorrect result (Radatz, Geraci, and Katki 1990), and not an “error” as 

proposed originally. The terms “explicit” and “implicit” highlight the fact that 

every system has a security policy, even if it was not written. The definition 

proposed by (Krsul 1998) with the changes presented in (Andy Ozment 2007) is 

the one we take into account in the context of this thesis. 

Other definitions for vulnerability can be found in literature. (Bishop 1999) 

defines vulnerability as a bug that enables users to violate the security policy. In 

(D. D. Clark et al. 1991), vulnerability is defined as a weakness in a system that 

can be exploited to violate the system intended behavior. (Arbaugh, Fithen, and 

McHugh 2000) sees vulnerability as a flaw or defect in a technology or its 

deployment that produces an exploitable weakness in a system, results in behavior 

that has security or survivability implications. Despite the fact that these 

definitions are not uniform, all of them treat vulnerability as a weakness that 

affects system security. 

An attack is any action aimed at compromising the security of a system (adapted 

from (Stallings 1999)). An attack (also termed in this thesis as vulnerability 

exploitation) usually targets one or more vulnerabilities present in a system. If 

the vulnerability being exploited is in a network environment (Internet, intranet, 
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etc.), then an attack can also be named as cyberattack (adapted from (Liu and 

Cheng 2009)). A threat is an attacker that is motivated and capable of exploiting 

a vulnerability (Schneider 1999). If an attack exploits a vulnerability and executes 

a set of commands (like the cross-site scripting and SQL Injection attacks that use 

an input parameters to inject malicious code) or penetrate the system with a 

malicious program, then, the commands are referred to as the payload. The 

difference between payload and exploits is that the later refer to the tools used to 

conduct an attack. 

One important distinction to be made is that between attempted attacks and 

successful attacks. The former refers to attacks that are unable to penetrate the 

system and cause harm. The latter refers to attacks that successfully compromise 

the security of the system. When an attack is successful, the consequence is a 

security breach, i.e., at least one of the security attributes of confidentiality, 

integrity, and availability were compromised. 

The notion of successful attacks is a key aspect of our security benchmark 

methodology, as security measurements are taken into account only when attacks 

compromise the security attributes of the system. In this sense, it is quite 

important to emphasize the aspects that, in our view, contribute to the occurrence 

of successful attacks, which are as follows: 

- Attacks can be executed remotely. An attacker can be an inside agent, 

being able to attack the system locally, accessing protected files and 

executing tools using higher privileges. However, the advent of Internet 

not only allowed the intercommunication and access of system, but also 

allowed attacks to be executed from a remote location, where laws may 

not effectively restrict attacks. Examples of physical and remote attacks 

can be found at (Easttom and Taylor 2010). 

- Attacks can be executed in different forms. The diversity of attacks is 

related to the diverse nature of vulnerabilities, which can be located in 

any part of the design, specification, implementation, configuration and 

deployment of systems. Although one can learn from attacks that were 

executed and properly detected by detection tools, it is very hard to 

predict new forms of attacks. For example, if an attacker is skilled enough 

to change the way a known exploit is normally launched, this new form of 

attack may bypass intrusion detection systems in place. Descriptions of 

common methods for attacking systems are available in Common Attack 

Pattern Enumeration and Classification (CAPEC 2014) and (Hoglund and 

McGraw 2004). Examples of attack methods introduced in (Barnum and 

Sethi 2007) are HTTP response splitting, Structure Query Language 
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injection, Cross-site Scripting in HTTP query string. 

- Attackers have the advantage. There are four reasons why attackers 

have the advantage over defenders (M. Howard et al. 2003): (1) the 

defender must defend all points; the attacker can choose the weakest 

point; (2) the defender can defend only against known attacks; the 

attacker can probe for unknown vulnerabilities; (3) the defender must be 

constantly vigilant; the attacker can strike at will; (4) the defender must 

play by the rules; the attacker can play dirty. 

- It is hard to prosecute attackers. Maybe the most effective way to 

defend against criminal attacks is to put the attacker in jail (without a 

computer and Internet connection). A report about the crimes committed 

by attackers is available at (Easttom and Taylor 2010). However, cyber 

security laws may not be enforced and different countries may be used to 

launch attacks and avoid prosecution.    

At this stage, it is quite clear that the existence of vulnerabilities is the most 

important enabling factor to the occurrence of successful attacks, allowing 

attackers to penetrate the system and execute malicious actions. These 

vulnerabilities can be present in a system in a variety of forms, as detailed in 

section 2.2.1, including software faults (code defects), missing configuration, and 

improper components integration. For example, a software fault that, once 

activated, allows the leak of confidential information is, in fact, a vulnerability, as 

this compromises the security attribute of confidentiality. This notion is important 

to us as in our methodology we inject software faults that lead to vulnerabilities 

and attack them while observing the security behavior of the system under 

benchmark. The remainder of this subsection focuses on the relation of software 

faults and vulnerabilities. Then, we describe the several conditions of a 

vulnerability from its creation to its elimination and we finish by describing the 

important concept of vulnerability risk. 

2.1.3.1 Faults, vulnerabilities and security breaches 

A vulnerability is the security equivalent to a fault in the dependability field 

(Brocklehurst et al. 1994). A fault is the adjudged or hypothesized cause of an 

error (Avizienis et al. 2001). An error is that part of the system state that may 

cause a subsequent failure: a failure occurs when an error reaches the service 

interface and alters the service (Avizienis et al. 2001). In the security context, the 

obvious analogy to system failure is a security breach (an event where the 

behavior of the system deviates from the security requirements) (Brocklehurst et 

al. 1994). Security breaches are made possible by vulnerabilities, such as the 
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improper validation of an input parameter in the system and these are clearly 

special types of faults. (Avizienis et al. 2004) terms vulnerability as an internal 

fault that enables an external fault to harm the system, a definition more tied to 

the dependability field. 

A possible alternative to successful attack would be intrusion. An intrusion is a 

malicious operation fault that originates externally to the system boundaries 

(Powell, Stroud, and others 2003). Even a malicious faulty interaction executed 

by an insider can thus be classified as an intrusion since the goal is to conduct an 

operation that is unwanted by the owner of that resource. In fact, an intrusion can 

be considered as an attack that compromised the security of the system. Figure 2-

1 presents an intrusion (successful attack) as a combination of two factors: (1) an 

attack that attempts to exploit a vulnerability in the system and (2) the existence 

of at least one vulnerability. 

 

Figure 2-1. Intrusion composite fault (Powell, Stroud, and others 2003) 

A system free of requirements, design, implementation, and deployment faults is 

obviously free of vulnerabilities. This does not mean that this system is not 

attackable. This simply means that attacks will not be successful against this 

system, i.e., that the security attributes of confidentiality, integrity, and 

availability will remain intact even in the presence of the worst attack attempt. 

However, the inherent complexity of systems and development processes makes it 

very hard to deploy systems completely free of vulnerabilities (Hatton 2007). 

2.1.3.2 Vulnerability life-cycle 

The vulnerability life-cycle is the time period between the moment a 

vulnerability is created (born) and the moment that the vulnerability is removed 

(dies). During its lifecycle, a vulnerability can be in one of the following states 

(Andy Ozment 2007): 

- Unknown vulnerability. The vulnerability exists in the software/system 
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but has not yet been detected. 

- Secret Vulnerability. The vulnerability has been detected, but it has not 

been informed to the vendor, the public, etc. If the person that discovered 

the vulnerability is an attacker, he or she may be exploiting the 

vulnerability. 

- Disclosed Vulnerability. The vulnerability has been discovered, and the 

person who discovered it, informed the vendor or a disclosure institution. 

One important distinction here is that existing between vulnerability 

discovery and vulnerability disclosure. The former refers to the 

detection of a vulnerability by a party that keeps this information from 

developers and users. This party may use the knowledge about the 

vulnerability as an advantage to attack and compromise the security of the 

system involved. The latter refers to vulnerabilities that were discovered 

and reported to software developers or vendors/fabricants. The vendor 

may or may not decide to fix the vulnerability based on the risk that it 

poses to the system, however the vendor knows about the existence of the 

vulnerability. To help fabricants get notified about discovered 

vulnerabilities, CERT and popular vulnerability databases usually offer a 

platform to users to report vulnerabilities. The idea is to help the vendor 

to release a vulnerability patch before the vulnerability is made public. 

- Public Vulnerability. The vulnerability has been detected and made public 

through a patch, a public forum, or the media. 

- Scripted Vulnerability. There is an automation tool/script to exploit the 

vulnerability. As mentioned before, these tools are also termed as exploits 

in literature. 

In this thesis, we use the notion of known and unknown vulnerabilities. However, 

we consider known vulnerabilities those that are either disclosed or in public 

domain. Also, we consider secret vulnerability as an unknown vulnerability, since 

the fabricant is not aware of the existence of such vulnerability. This distinction is 

important because they correspond to the view of security that we address in our 

security benchmark methodology. 

2.1.3.3 Vulnerability risk 

In order to understand the definition of vulnerability risk, it is necessary to firstly 

describe risk in a more general way. W. Lowrance  considers risk as the measure 

of the probability and severity of adverse effects (Lowrance 1976) while (Rowe 

1977) defines risk as the potential for realization of unwanted negative 
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consequences of an event. From these definitions, it is clear that there are two key 

characteristics associated with risk (Kirkpatrick, Walker, and Firth 1992): 

uncertainty (an event may or may not happen) and loss (an event may have 

unwanted consequences or losses).   

The notion of risk is extensively applied in the security field. Typical security risk 

equations found in literature indicate that the risk posed by a particular threat is 

equal to the probability of the threat occurring multiplied by the damage potential 

(Meier et al. 2003). This damage potential refers to the consequence to a 

computer-based system if an attack were to occur. A typical security risk equation 

is as follows: 

Risk = Probability * Damage Potential 

For the two terms of the risk equation stated above, it is generally employed a 

scale that determines the value of each one of the factors. This scale is generally 

divided in bands to generate a High, Medium, or Low risk rating. An example of 

scale is as follows: 

- Probability: 0-10 scale, where 0 represents a threat that will not occur 

and 10 represents the certainty of occurrence. 

- Damage Potential: 0-10 scale, where 0 indicates minimal damage and 10 

represents a catastrophic damage. 

An important aspect is the risk posed by the vulnerabilities present in the system. 

The notion of vulnerability risk is based on the fact that each vulnerability has a 

likelihood of being exploited and, if successfully exploited, will compromise the 

system security at a certain degree (vulnerability impact). The existence of 

countermeasures or constraints to make the vulnerability exploitation more 

difficult is directly related to the probability of successful exploitation (Meier et 

al. 2003). The more difficult to exploit a given vulnerability, the lower is the 

probability of successful exploitation.  The risk that a known or unknown 

vulnerability poses to a system can be very dangerous. According to (Goertzel et 

al. 2006), vulnerabilities jeopardize intellectual property, consumer trust, business 

operations and services, and a broad spectrum of critical applications and 

infrastructures, including everything from process control systems to commercial 

application products. 

We define vulnerability risk as a measure of the probability and impact of 

vulnerability exploitation. This is an important topic as our benchmark 

methodology uses the notion of vulnerability risk to estimate the benchmark 

metric. Vulnerability impact refers to the perceived impact of the successful 
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attack and is related to the loss of confidentiality, integrity, and availability 

(security attributes). If an attack completely compromises the security attributes, 

then the vulnerability impact should be scored with the highest degree. It is 

important to note that the impact of any vulnerability refers to the effects in the 

system of the vulnerability exploitation. 

2.2 COMPUTER SYSTEM VULNERABILITIES & ATTACKS 

In this section, we present several works focused on the characterization and the 

representativeness of vulnerabilities and attacks. We start by describing the 

vulnerability root-causes, an important step in the elimination of the security 

deficiencies of a system security. Then, we provide relevant examples of 

vulnerability and attack classifications and repositories. After that, we present 

statistics about vulnerabilities and attacks, with the intent of demonstrating their 

prevalence and providing the evidence that supports the development of security 

benchmarking methods. We conclude this section by approaching the topic of 

vulnerability risk as this notion is used to compute the benchmark metric of our 

security benchmark methodology. 

2.2.1 Vulnerability root-causes and mitigation 

The subject of vulnerability root-causes is important to help designers, 

developers, and administrators to avoid faults that can lead to vulnerabilities. 

Vulnerability mitigation refers to the actions in place to identify and correct 

vulnerabilities in the system in order to increase its security. These notions are 

important to our thesis as this helps users to improve system security and obtain a 

better security measurement in our security benchmark methodology. 

According to (Neves et al. 2006), vulnerabilities are usually created during the 

development phase of the system, or during operation. These vulnerabilities can 

be introduced accidentally or deliberately, with or without malicious intent. 

However, vulnerability can also be caused by an improper system design. For 

example, if a proper authorization requirement is not defined and designed, 

developers may develop code that correctly implements a flawed design, leading 

to a system that allows unauthorized access in restricted areas. The integration of 

third-party off-the-shelf components is another cause for vulnerabilities. 

Component integration may also introduce vulnerabilities in the larger system due 

to interface mismatches that may be exploited by attacks (Weyuker 1998). This is 

usually the result of components designed or developed with no security concerns 

in mind, as well as the lack of proper security testing prior to the component 

integration into the software product.  
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Several vulnerability root-causes models have been proposed in the last years 

(e.g., (Piessens 2002)). (Tsipenyuk, Chess, and McGraw 2005) proposed a 

taxonomy of security errors named as the seven pernicious kingdoms. In this 

context, “security errors” refer to programming errors that lead to vulnerabilities. 

The seven-kingdom taxonomy focuses on collecting common errors and 

explaining them in a way that makes sense to software developers. The main 

benefit of this approach is to make developers aware of these errors so that they 

can develop software free of vulnerabilities. The seven kingdoms are as follows: 

input validation and representation (metacharacters, alternate encodings, and 

numeric representations), API abuse (the caller fails to honor its end of the 

contract), security features (authentication, access control, confidentiality, 

cryptography, and privilege management), time and state (deadlock, insecure 

temporary file), errors, code quality (memory leak, null deference), encapsulation 

(drawing strong boundaries around things to avoid, for example, system 

information leak), environment. To demonstrate how to classify security errors 

into the proposed kingdoms, the authors used information from the 19 Deadly 

Sins of Software Security (M. Howard, LeBlanc, and Viega 2005) and the 

OWASP (The Open Web Application Security Project) Top 10 Most Critical Web 

Application Vulnerabilities (OWASP 2012), as can be seen in Table 2-1.  

Although security awareness has increased over the years, it is still very difficult 

to prevent vulnerabilities in the system originated from code defects/software 

errors. More specifically, studies have been conducted to estimate the number of 

average defects per thousand lines of code. (Hatton 2007) estimated one defect 

per 10 thousand executable code lines for mission and business critical software. 

The 2009 Coverty report uncovered one defect in every four thousand lines of 

Open source code (Coverity 2009). In 2011, Coverity analyzed over 37 million 

lines of code from 45 of the most active projects in Coverity Scan (Coverity 

2011). The average defect density, or the number of defects per thousand lines of 

code, across the top 45 active open source projects in Coverity Scan is 0.45. This 

considerable reduction over the last two years in the defect density is due to the 

fact that open source software developers are more aware of the common defects 

that they made in their codes.  

In the context of software security, (A. Ozment and Schechter 2006) found out 

that, for OpenBSD operating system, software defects that could compromise 

system security and that were introduced prior to the release of the initial version 

have an average lifetime of 2.6 years. In this study, the density of vulnerabilities 

per thousand lines of code ranged from 0 to 0.033. Although this seems to be a 

very low number for an open-source operating system, it is important to remark 
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that a single risky vulnerability, if successfully exploited, can totally compromise 

the security of the whole system. 

In order to help developers to avoid software errors that can lead to serious 

vulnerabilities in software, (SANS Institute 2012), (MITRE Corp. 2012), and 

many top software security experts in the US and Europe proposed a list of the 

Top 25 Most Dangerous Software Errors (B. Martin et al. 2010). Some of these 

vulnerabilities (e.g., improper neutralization of special elements used in a SQL 

Command), if successfully exploited, allow attackers to completely take over the 

software, steal data, or prevent the software from working at all. 

Initiatives to eliminate or reduce the number of software vulnerabilities present in 

a system are shown in literature in a variety of forms, which are: 

- Security training. Designers and developers should have a security 

mindset (Schneier 2009). A developer that ignores the common software 

bugs that could lead to vulnerabilities will certainly write a vulnerable 

Table 2-1. Mapping Security Errors to the Seven Pernicious Kingdoms and to 

the OWASP Top 10 Vulnerabilities (Tsipenyuk, Chess, and McGraw 2005) 

KINGDOMNS 19 SINS OWASP TOP 10 

Input Validation 

and 

Representation 

Buffer overflows, command injection, 

cross-site scripting, format string 

problems, integer range errors, SQL 

Injection 

 Buffer overflow, cross-

site scripting flaws, 

injection flaws, 

unvalidated input 

API Abuse Trusting network address information - 

Security Features 

Failing to protect network traffic, failing 

to protect and store network data, failing 

to use cryptographically strong random 

numbers, improper file access, improper 

use of SQL, use of weak  password-based 

systems, unauthenticated key exchange  

Broken access control, 

insecure storage 

Time and State 
Signal race conditions, use of “magic” 

URLS and hidden forms 

Broken authentication 

and session management 

Errors Failure to handle errors Improper error handling 

Code Quality Poor usability Denial of service 

Encapsulation Information leakage - 

Environment - 
Insecure configuration 

management 
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code. Guidance on how to design a secure computer system, or how to 

write a secure code can be found at (Venkat Pothamsetty 2005) and 

(Thompson and Chase 2007). 

- Vulnerability scanners are tools aimed at detecting vulnerabilities 

present in the system code. If the source code is available, there are tools 

that can search for common vulnerabilities patterns in the code. A review 

of automated tools for security is described in (McGraw 2008). Examples 

of code vulnerability finder tools are (HP Fortify 2012), (Ounce Labs 

2012) and (Pixy 2012). If the source code is unavailable, there are tools 

such as penetration testing that look for vulnerabilities by analyzing the 

result of attacks. If an attack compromises system security, then 

vulnerability should exist. 

- System security patches and security configuration are usually 

provided by vendors to fix known vulnerabilities of widely used software. 

It is an elementary precaution to keep a system patched and properly 

configured to avoid attacks exploiting known vulnerabilities. In general, 

default configuration is not the best approach to keep a server protected. 

Web servers with default configuration, for example, may have template 

web sites with Cross-site scripting vulnerabilities. More specifically, 

Apache Tomcat 4.1.0 through 4.1.39 contains an example of calendar 

application that contains XSS vulnerabilities (CVE-2009-0781). To help 

end-users with system security configuration, the US government created 

the National Checklist Program (NCP 2012), which provides detailed low 

level guidance on setting the security configuration of operating systems 

and applications. 

2.2.2 Vulnerability and attack classification 

There are many works published addressing specific domains and root causes of 

vulnerabilities, and there is a considerable diversity of vulnerability 

classifications. These classifications allow specialists to collect statistics, to 

perform trend analysis, to check the correlation with exploits, and to evaluate the 

effectiveness of countermeasures. In the context of our work, these classifications 

allows us to organize vulnerability information collected from the field and study 

the impact and exploitability of vulnerabilities under the same group. 

An overview of vulnerability classifications can be found in (Meunier 2008) and 

they are summarized as follows:   

 Classification by software development lifecycle. This aims to 
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categorize vulnerabilities according to the moment when they were 

introduced in the software lifecycle (feasibility study, requirements 

definition, design, implementation, integration and testing, and operations 

and maintenance). The downside of this approach is that a vulnerability 

can be introduced in multiple points of the development cycle and this 

classification is not always applicable. Examples of software 

development lifecycle classifications are found at (Dowd, McDonald, and 

Schuh 2006), (J. D. Howard and Meunier 2002), and (Piessens 2002). 

 Classification by genesis. This approach aims to categorize 

vulnerabilities according to security flaws (the conditions or 

circumstances that lead to, for instance, denial of service, unauthorized 

disclosure, unauthorized modification of data, etc.). According to this 

approach the parts of software code or configuration that can cause a 

security compromise are used to classify the vulnerabilities. Examples of 

these classifications can be found at (S. Weber, Karger, and Paradkar 

2005) and (Landwehr et al. 1994). 

 Classification by errors or mistakes. This aims to categorize 

vulnerabilities according to human errors or mistakes, considering error 

cause (e.g., validation error, domain error), impact (e.g., execution of 

code, access target resource), and fix (missing entity). The limitation here 

resides in the fact that it not always possible to determine the exact point 

of a vulnerability. An example of this classification is found at (Du and 

Mathur 1998). 

 Classification by enabling attack scenario. This approach aims to 

categorize vulnerabilities according to the attacks mounted to exploit 

vulnerabilities. For example, “cross-site scripting” (“XSS”) is an attack 

scenario, and “XSS vulnerabilities” are vulnerabilities enabling the 

injection of scripting code into web-based content. One concern here is 

that in certain cases a category is more directed to the consequence of the 

attack (e.g., denial of service) and is not helpful to guide users to identify 

the cause of the vulnerability. An example of this classification in the 

field of network protocol is present in (V. Pothamsetty and Akyol 2004). 

As exemplified, there are several approaches to classify vulnerabilities and each 

one of them has inherent limitations. In our view, the most important factor of a 

vulnerability classification is the ability it provides to users and developers to 

quickly identify system weaknesses (errors, mistakes, etc.) that might result in a 

vulnerability. Using the knowledge about the origin of a vulnerability (e.g., an 

improper input validation, etc.), developers can make their code more secure and 
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avoid the causes leading to vulnerabilities in the future. This means that, in our 

opinion, the most useful and relevant classifications are those that classify 

vulnerabilities by genesis and by errors and mistakes. One important contribution 

in this direction (and that we apply in the present thesis to classify vulnerabilities) 

is the Common Weakness Enumeration (CWE), which is maintained by MITRE 

sponsored by the U.S. Department of Homeland Security (CWE 2012). CWE is a 

dictionary of software weakness type that has become widely used to classify the 

causes of software vulnerabilities. Each weakness has an identifier (CWE- ID), 

where ID is the identification of the weakness in the CWE platform. For each 

weakness, there is a web page containing several details about the software 

weakness, including the common consequences, the likelihood of exploit, 

detection methods, examples, and etc. Taking CWE-89 as example, it is possible 

to obtain the full description of the weakness, along with time of introduction 

(architecture and design, implementation, operation), applicable platforms, modes 

of introduction, common consequences to the security attributes (confidentiality, 

integrity, and availability), likelihood of exploit, enabling factors for exploitation, 

detection methods, and demonstrative examples. It is worth noting that there are 

other efforts to enumerate and classify vulnerabilities, such as the PLOVER 

(Preliminary List of Vulnerability examples of Researchers), (Christey 2005), (R. 

A. Martin and Barnum 2008), and (R. A. Martin, Christey, and Jarzombek 2005). 

However, none of them has the details and the community acceptance of CWE. 

We can also find a diversity of attacks classifications in the literature. The 

following are some examples: 

 Network and computer attacks taxonomy. (Hansman and Hunt 2005) 

proposed a taxonomy for network and computer attacks. The proposed 

taxonomy consists of four dimensions. The first dimension covers the 

attack vector (means by which the attack reaches the target) such as 

viruses, worms, network attacks, physical attacks. The second dimension 

classifies the target of the attacks such as computer, operating system, 

application, network, and so on. The vulnerabilities and the exploits 

attacks uses are classified in the third dimension. Any additional effect of 

the attack or malicious component that is installed in the attack (e.g., 

Trojan horse termed by the authors as payload) is addressed in the fourth 

dimension.  

 Attack-centric and defense-centric taxonomy. Attack-centric 

taxonomies based on the objective of the attackers (e.g., steal information, 

bring the target down), while those based on defender goals (e.g., avoid 

information disclosure, keep the target available in the presence of 

http://cwe.mitre.org/top25/index.html#CWE-89
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attacks) are defense-centric. (Killourhy, Maxion, and Tan 2004) proposed 

a defense-centric taxonomy based on attacks manifestations. This consists 

of building an experimental setup to emulate realistic attacks, observe the 

effects of these attacks, and then categorize the possible ways to defend 

the system against the attacks. 

 Signature classification. This refers to taxonomies based on the pattern 

by which an attack is detected. The evidence category refers to the 

patterns that are left behind by an attacker (presence of certain files, 

permission on certain files) that can be evaluated by inspecting the state 

of the attacked system. The interval and duration of an attack may also be 

evaluated and are covered in the sequence signature category.  An 

example of this classification is found at (Kumar 1995). 

 Attack-effect classification. This refers to taxonomies that classify 

attacks based on the intended effect of the act (e.g., elevation of attack 

privileges). Examples of this classification are found at (J. D. Howard and 

Longstaff 1998; Lindqvist and Jonsson 1997; Ranum 1997; D. J. Weber 

1998). 

 Attack threat classification. This refers to classifications that categorize 

the potential attacks that a system may be targeted by. (M. Howard and 

LeBlanc 2002) proposed a classification scheme named as STRIDE that 

characterizes known threats in accordance with the motivation of the 

attacker, for example: spoofing (e.g., stealing of user identity on systems), 

tampering (modification of system data without authorization), 

repudiation (e.g., denial of access of authorized users to a given system), 

information disclosure (reading of private content without proper 

authorization), denial of service, and elevation of privileges. Note that 

this kind of classification may be part of a treat modeling effort aimed at 

mapping possible threats against a system, such as the Trike methodology 

described at (Saitta, Larcom, and Eddington 2005). Although useful, 

these approaches do not guarantee that all possible threats are identified 

and categorized, since the threat analysis relies on the experience of the 

security specialist to map potential attacks and threat categories.  

In the context of our work, a useful attack classification is the one that allows 

users to understand the effect of an attack to the system, as in the case of 

attack-effect classification. Although the knowledge of the attack vector or 

signature of an attack may be useful, our main concern resides in identifying 

the most harmful attacks. An important contribution in this regard is the 

Common Attack Pattern Enumeration and Classification (CAPEC 2014), also 
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maintained by MITRE and sponsored by the U.S. Department of Homeland 

Security. CAPEC is an attack dictionary that contains comprehensive 

information about the nature, characteristic and effects of attacks. Examples 

of attack information provided by CAPEC are attack description and 

category, execution flow, exploit techniques, solutions and mitigations, and 

also typical severity and likelihood of exploit. In our work, we take advantage 

of attack implementation techniques provided by CAPEC to guide users to 

build the experimental part of our security benchmark methodology. 

2.2.3 Vulnerability and attack repositories  

The MITRE Corporation (MITRE Corp. 2012) along with the National Cyber 

Security Division of the U.S. Department of Homeland Security (NCSD 2012) 

has conducted an important initiative to identify and enumerate computer system 

vulnerabilities: the Common Vulnerability and Exposures (CVE 2014). The goal 

is to provide a unique way to identify and characterize vulnerabilities and 

information regarding the steps that should be followed by software owners to fix 

and patch the affected system version and or configuration. 

CVE has become a standard on information security concerning the vulnerability 

names. For each vulnerability reported to CVE, it is generated a CVE Identifier 

(CVE-YEAR-ID), where YEAR is the year of vulnerability report and ID is the 

identification of the vulnerability for a given year. CVE Identifiers enable security 

practitioners and researchers to access the full characterization of vulnerabilities, 

including its description, affected system, versions, and configuration, and the 

solutions or available workarounds. The creation of a CVE Identifier involves the 

CVE Numbering Authority (CNA), represented by the MITRE Corporation along 

with software vendors (e.g., Apple Inc., Oracle, Microsoft, IBM Corporation, 

Google), third-party contributors (CERT/CCCC, JPCERT/CC), and security 

researchers. 

CVE-2012-0671 is a CVE vulnerability reported in 2012 with the ID 0671 and 

refers to an Apple QuickTime vulnerability (affecting versions before 7.7.2) that 

allows remote attackers to execute arbitrary code and to cause a denial of service. 

The National Vulnerability Database (NVD) makes available the full description 

of each CVE Identifier at http://web.nvd.nist.gov. One of the first recorded 

vulnerabilities is identified as CVE-1999-0095. That particular vulnerability 

consists on having the debug command in Sendmail enabled, allowing attackers 

to execute commands as root. To date, more than 65000 vulnerabilities were 

already recorded. 

The Open Source Vulnerability Database (OSVDB) is another example of 

http://web.nvd.nist.gov/
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vulnerability repository that identifies vulnerabilities using CVE naming system. 

The difference between OSVDB and CVE is that OSVDB is open to anyone that 

wants to report vulnerabilities and CVE is not.  For the sake of comparison, 

OSVDB currently covers 120,980 vulnerabilities, spanning 198,976 products and 

submitted by 4735 users (measurement collected in September, 2015). 

One important platform that has been used to keep and share vulnerabilities 

information is vulnerability databases. They contain detailed information 

regarding vulnerability reported by users or fabricants, including vulnerability 

description, the list of affected systems and versions, available patch and methods, 

and the level of impact and exploitability. Vulnerability databases initiatives have 

been sponsored by governments (such as the National Vulnerability Database), 

enterprises (such as Secunia) and specialists interested in studying the trend of 

reported vulnerabilities in systems (such as the Open Source Vulnerability 

Database). Some examples of vulnerabilities databases are presented in Table 2-2. 

Exploit databases and tools are also available on the web. (MilW0rm 2010), 

which was shutdown in 2010 due to the lack of resources to maintain the 

initiative, was a very popular repository of exploits, providing examples of attacks 

and making them available for anyone willing to use them. Milw0rm can still be 

reached at web.arquive.org. (Metasploit 2015) hosts one of the largest databases 

on exploits, including hundreds of remote exploits, auxiliary modules, and 

payloads (“Metasploit Auxiliary Module & Exploit Database”) and it also 

provides a penetration testing tool that helps users to better understand how 

attacks are executed. 

2.2.4 Vulnerabilities and attack statistics  

Vulnerability and attack trends have gained ground in recent years. The main 

benefit of the analysis vulnerability and attack trends is that it enables designers 

and developers to focus on the most representative vulnerability types and helps 

security firms to develop more effective measures to counter these attacks.  

CVE has been tracking the software errors that lead to publicly reported 

vulnerabilities, and it periodically reports on the trends on a limited scale 

(Christey and Martin 2007). In 2007, CVE published a report indicating that 

vulnerabilities found in web application rose sharply; buffer overflow 

vulnerabilities was the number one issue reported by operating system (OS) 

vendor advisors, followed by integer overflow.  

IBM Corporation issues in a regular basis a security report about the trend of 

security incidents: the IBM X-Force Trend and Risk Report (IBM 2014).  The 
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IBM X-Force Research and Development team has the role of analyzing trends in 

attacks behaviors and they claim that 2011 was the year of the security breaches 

(IBM X-Force 2012). Law enforcements, governments, social network 

communities, retail, entertainment, banks, non-profits, the Fortune 500, and even 

security companies were attacked. IBM-XForce team obtains security information 

from IBM Managed Security Services (MSS). MSS monitors tens of billions of 

events per day in more than 130 countries, working continuously 24 hour a day, 

providing a unique understanding of the cyber threat landscape. The top 

high-volume of signatures (vulnerabilities) collected in 2011 by MSS tool is as 

follows: 1) SQL Injection, 2) HTTP Suspicious Unknown content, 3) SQL SSRP 

Slammer Worm, 4) SNMP Crack, 5) HTTP Get Dot Dot Data, 6) Cross-site 

Scripting, 7) SSH Brute Force, 8) HTTP Unix Passwords, 9) Shell Command 

Injection, and 10) Proxy Bounce Deep. A detailed analysis of this result is 

available in (IBM X-Force 2012). The groups Anonymous and Lulzsec were 

major players in SQL injection tactics and continue to improve their skills with 

new injection attack vectors. Additionally, there are automated SQL injection 

attacks like LizaMoon that scan the Internet for vulnerable hosts.  

Table 2-2. Examples of Vulnerabilities Databases 

Type Vulnerability Database URL 

Government 

US CERT Vulnerability Notes 

Database 
http://www.kb.cert.org/vuls 

Common Vulnerability and 

Exposures (CVE) 
http://cve.mitre.org/ 

Vendors 

BugTraq http://www.securityfocus.com 

SANS http://www.sans.orgv 

X-Force http://xforce.iss.net/ 

Security tracker http://securitytracker.com/ 

Symantec’s Security Response 

Database 

http://www.symantec.com/avcente

r/ 

AtStake http://www.atstake.com 

Secunia http://secunia.com/ 

Open-Source 

OWSAP www.owasp.org/ 

Cassandra 
https://cassandra.cerias.purdue.edu

/ 

The Open Source Vulnerability 

Database (OSVDB) 
http://osvdb.org/ 
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There has also been a significant increase in vulnerability disclosures in recent 

years. Error! Not a valid bookmark self-reference. shows the evolution of 

vulnerability disclosures from 1996 to 2011 as reported by IBM X-Force Team, 

with nearly 9000 vulnerability disclosures in 2010 and 7000 in 2011. According 

to the data provided by the IBM X-Force 2011 Report, The web applications is a 

type of application where vulnerabilities are prone to exist: 41% of all 

vulnerabilities disclosed in 2011 were found in web applications, and in 2010, 

49% of all vulnerabilities disclosures were found in web applications. SAN Top 

Cyber Security Risk Reports also confirms this result (SANS Trends 2009). 

According to SAN report, the number of vulnerabilities being discovered in 

application-level software is far greater than the number of vulnerabilities 

discovered in operating systems. 

In 2011, of all the vulnerabilities for which patches that were issued to remove 

vulnerabilities, 91% were patched on the very same day of the public it 

disclosures (IBM X-Force 2012). This demonstrates that software vendors are 

treating security as a top priority, taking immediate action to provide users the 

proper means to defend their systems against vulnerabilities.  However, and still 

according to X-Force, there were 29 cases during 2011 where it took more than a 

week for a major software vendor to fix a publicly disclosed vulnerability that had 

an exploit. This particular case is the worst scenario possible for users, since an 

attacker is aware of the vulnerability, has the means to mount the attack and there 

 

Figure 2-2. IBM X-Force Report – Vulnerability Disclosure Growth by Year 
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is no fix available to make a potential attack ineffective. 

A report on security attacks and incidents in 2009 (Titterington 2010) described 

the following findings from major security research firms: 

- The Security Intelligence Operations Team of Cisco Company (a global 

company in the business of network equipment) reported that security 

incidents rose 57% in 2009. 

- RSA (the Security Division of EMC, a global technology company) 

reported a 50% increase in phishing attacks. 

- The Computer Security Institute reported that during 2008 50% of 

organizations that responded to the CSI survey were infected by malware. 

There were similar increase rates in other types of attack: for example, in 

2012, 19.5% institutions suffered financial fraud, compared to 12% in 

2008. This suggests that there is an increase in the attacks and security 

concerns are increasingly pertinent. 

- (Verizon 2012) reported that the number of data records breached in 

incidents it investigated in 2009 exceeded the total for the four previous 

years. 

As shown above, security incidents have increased in recent years. As the number 

of successful attacks rises, it is necessary to develop and deploy better methods to 

augment the security of systems and counter these attacks. To this end, an 

important step is the development of means to measure the security level of 

systems, an important contribution of the security benchmark methodology 

proposed in this thesis. 

2.2.5 Vulnerability risk assessment 

Several initiatives have emerged with the purpose of assessing the risk of 

vulnerabilities. Microsoft defined a proprietary scoring system reflecting the 

difficulty of exploitation and the overall impact of vulnerabilities (Microsoft 

SecBulletin 2012). This scoring system consists in rating the vulnerability 

severity (Critical, Important, Moderate, and Low), and on the Microsoft 

Exploitability Index, which indicates the likelihood of a vulnerability to be 

exploited in the future. A similar approach is proposed by the SANS Institute (an 

organization that provides information security training and security certification) 

with the @RISK method (SANS @Risk 2012), which consists in ranking 

vulnerabilities by their criticality level (Critical, High, Moderate, Low). The 

problem of these approaches is that they lack a clear and detailed method on how 

the impact and exploitability of each discovered vulnerability is assigned. 
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The CVSS is an open framework aimed at standardizing the evaluation of 

vulnerability risk, mitigating the problem of having different impact scores for the 

same vulnerability (Mell, Scarfone, and Romanosky 2007). It is a vulnerability 

risk assessment approach that has been widely adopted by enterprises and that we 

use in the benchmark metric portion of our security benchmark methodology. 

CVSS is sponsored by the Forum of Incident Response and Security Teams 

(FIRST) and its popularity can easily be confirmed by browsing popular 

vulnerabilities databases. The importance of CVSS to our security benchmark 

methodology is that we use CVSS approach to estimate the risk of vulnerabilities 

in our security benchmark metric. 

CVSS is composed of three metrics groups aimed at providing the definition and 

communication of the fundamental characteristics of vulnerabilities: base, 

temporal, and environmental. Each group of metrics (CVSS sub-equations) can 

vary from 0 (minimum) to 10 (maximum criticality of the reported vulnerability). 

A more specific group definition is as follows: 

- Base. This refers to the vulnerability characteristics that are constant over 

time and across user environments. For example, the impact of a 

vulnerability to the security attributes of confidentiality, integrity and 

availability. 

- Temporal. This refers to the vulnerability characteristics that change over 

time but not among user’s environments - such as remediation level and 

report confidence. 

- Environmental. This refers to the vulnerability characteristics that are 

relevant and unique to a particular user’s environment. For example, the 

potential for loss of life or physical assets or the importance of the 

vulnerable component to the business. 

CVSS framework has been improved over the time and there is a board 

responsible for receiving feedbacks from security community and adjusting and 

calibrating framework requirements, metric attributes and equations. From 2007 

to 2015, CVSS version 2 was the official version and has been widely adopted by 

industry and academia. Most of the vulnerability scores provided in the US 

National Vulnerability Database, for example, have been reported in accordance 

with Version 2. However, in June 2015, CVSS Version 3 was announced, as a 

result of the work performed by the CVSS Special Group that started in 2012. 

This new version contains score adjustment, better description of framework 

criteria, updated vulnerability vector string, and etc. According to the authors, 

CVSS Version 3 explicitly states at which point of an attack the score should be 
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computed, reducing the variations in impact metrics between scorers. The fact 

that Version 3 is a very recent proposal, and also considering that the new version 

is in the process of being adopted by industry and academia, led us to keep our 

security measurements based on CVSS Version 2. We do recognize the 

improvements that were made on Version 3 and we do expect to provide in the 

future a new version of our security benchmark reflecting the changes that were 

recently proposed. 

Within the base metric group of CVSS Version 2 there are 6 metrics covering two 

aspects: access and impact. The first includes the access vector (which indicates 

how the vulnerability is exploited), access complexity, and the authentication 

metrics that capture how the vulnerability is accessed and whether or not extra 

conditions are required to exploit it. The impact is measured by the three impact 

metrics (confidentiality impact, integrity impact and availability impact) measure 

how a vulnerability, if exploited, will directly affect the system. The impact is 

defined as the degree of loss of confidentiality, integrity, and availability 

independently from each other (e.g., a vulnerability exploit may cause a partial 

loss of integrity and availability, but no loss of confidentiality). These metrics and 

the equation to measure them are fully described in (Mell, Scarfone, and 

Romanosky 2007). The details on the attributes of the base metric group of CVSS 

are important as we use them to compute the benchmark metric of our security 

benchmark methodology. The attributes are: 

- Access Vector (AV). This metric reflects how the vulnerability is 

exploited. The possible values for this metric are Local, meaning that the 

attacker needs either physical access to the vulnerable system or a local 

(shell) account, Adjacent Network, which means that the attacker needs 

access to either the broadcast or to the collision domain of the vulnerable 

software, and Network, meaning that the vulnerable software is bound to 

the network stack and the attacker does not require local network access 

or local access. Each one of these values has an associated CVSS score, 

defined as 0.395 (Local), 0.646 (Adjacent Network), and 1 (Network). 

The more remote an attacker can be from the target and still be able to 

attack it, the greater the vulnerability score: a vulnerability that is 

exploitable remotely (Network) will obtain the highest score in the access 

vector metric. 

- Access Complexity (AC). This metric captures the complexity of the 

attack required to exploit the vulnerability once an attacker has gained 

access to the target system. The possible values for this metric are High: 

special conditions (such as a vulnerable configuration) are required but 
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they can hardly occur in practice, Medium: the required access conditions 

are somewhat specialized but are not commonly configured, (e.g., a non-

default configuration), and Low: specialized access conditions do not 

exist, or if they exist they are ubiquitous (e.g., a default configuration). 

Each one of these values has an associated CVSS score, defined as 0.35 

(High), 0.61 (Medium), and 0.71 (Low). The lower the required 

complexity, the higher the vulnerability score. 

- Authentication (Au). This metric focus on the number of times an 

attacker must authenticate to a target in order to exploit a vulnerability. 

The possible values for this metric are Multiple, meaning that the attacker 

needs to authenticate two or more times, even if the same credentials are 

used each time), Single, meaning that only one instance of authentication 

is required to access and exploit the vulnerability), and None, which 

means that authentication is not required at all for the attacker to access 

and exploit the vulnerability). Each one of these values has an associated 

CVSS score, defined as 0.45 (Multiple), 0.56 (Single), and 0.704 (None). 

The fewer authentication instances that are required, the higher the 

vulnerability score. 

- Confidentiality Impact (C). This metric reflects the impact on 

confidentiality of an exploited vulnerability. Confidentiality refers to 

limiting access and disclosure of information to authorized users, which 

means preventing access and disclosure to unauthorized users. The 

possible values for this metric are None: there is no impact on 

confidentiality, Partial: there is considerable information disclosure, and 

Complete: there is total information disclosure. The associated scores are 

0 (None), 0.275 (Partial), and 0.66 (Complete) - the higher the 

confidentiality impact, the higher the vulnerability score.  

- Integrity Impact (I). This metric focus on the impact an exploited 

vulnerability to integrity defined as the trustworthiness and guaranteed 

veracity of information. The possible values and score for this metric are 

None (0): there is no impact to the integrity of the system, Partial (0.275): 

it is possible to modify some information (e.g., files), but the attacker 

does not have control over what can be modified, or the scope of what the 

attacker can affect is limited, and Complete (0.66): there is a total 

compromise of system integrity - the attacker can modify any information 

on the target system). The higher the integrity impact, the higher the 

vulnerability score. 

- Availability Impact (A). This metric captures the impact to availability 
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(accessibility of information resources) of an exploited vulnerability. The 

possible values and scores for this metric are None (0): there is no impact 

to the availability of the system, Partial (0.275): the availability of the 

system or its resources is reduced, but not completely, and Complete 

(0.66): there is a total unavailability of the affected resource - the attacker 

can render the resource completely unavailable). The higher the 

availability impact, the higher the vulnerability score. 

The CVSS metrics can be used to assess the risk of software vulnerabilities. 

Because these metrics have clear and well-defined meanings and values, they can 

be helpful to obtain a method approaching a standard. For example, the IBM X-

Force team has used CVSS to report the risk level of vulnerabilities, using the 

following scale: Critical (CVSS score is equal 10), High (CVSS score ranges 

from 7 to 9.9), Medium (4.0-6.9), and Low (0.0-3.9). Figure 2-3 presents the 

result of risk analysis for the vulnerabilities covered by X-Force Team during the 

year of 2011. It is worth noting that 2% of the disclosed vulnerabilities during 

2011 were critical, while the major part had a medium risk (69%). This is a very 

important finding since it helps users and developers to concentrate their security 

efforts on the most critical vulnerabilities. 

2.3 SYSTEM BENCHMARING 

In general terms, the goal of benchmarking is to measure system attributes for 

 

Figure 2-3. CVSS categorization of vulnerabilities captured by X-Force Team 

during the year of 2011 

 

 



62 

comparative purposes. Computer users adopt benchmarks to identify the best 

system to select considering a given system attribute. This means that users can 

take advantage of benchmarks either to select the fastest, the most robust, the 

most dependable, or the most secure among alternative systems.   

Benchmarks have been proposed in the fields of performance, robustness, 

dependability, and, more recently, security. Regardless of the application domain, 

most of the existing benchmarks share common elements and have to comply 

with certain properties to be accepted by the community and users. In this section, 

we describe these elements, with a particular focus on dependability 

benchmarking, as those benchmarks have several relevant aspects in common 

with our methodology. 

The benchmark metric is a key element of system benchmarks, indicating the 

level of a given attribute – which is collected and measured during the benchmark 

execution. Performance benchmark metrics, for example, indicate the level of 

speed that a system performs a set of tasks, while dependability benchmark 

metrics indicate the ability of a system to avoid services failures that are more 

frequent and more severe than acceptable. Benchmark users can take better 

decisions based on the measurements provided by benchmarks, such as increasing 

the capacity of the system to have better performance scores, or deploying more 

fault tolerant mechanisms to make the system more dependable. 

There are certain characteristics that are inherent to system benchmarks, without 

which they cannot be considered a benchmark. These characteristics are important 

to our work, as we aim to propose a methodology that can be used to define 

benchmarks, as such, should comply with those characteristics. These 

characteristics are described as follows: 

- Standard nature. A benchmark should be repeatable, which means that 

it should be defined as a standard procedure that will ensure the design, 

implementation, and execution of the benchmark in a uniform and 

standardized way (Koopman et al. 1997). 

- Open standard. All rules and procedures to execute the benchmark 

should be independent from proprietary methods and tools. This is an 

important characteristic to facilitate the acceptance and popularity of a 

benchmark among users. 

- Comparison-oriented. A benchmark must enable the comparison of 

functionally equivalent systems (Koopman and Madeira 1999), evaluating 

the relative strengths and weaknesses of systems 
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- User-centric-view. As a benchmark usually has different kinds of users, 

benchmark metrics should reflect the different needs of these users. For 

example, end-users of dependability benchmarks can be interested in 

system availability measurements, while developers may be interested in 

errors propagation measurements (Madeira and Koopman 2001). 

- Integrated nature. The benchmark should provide a consolidated view 

of the attribute that is being benchmarked. In the security context, all 

relevant classes of vulnerabilities should be covered. 

- Representativeness. The elements and components that integrate the 

benchmark must reflect what is represented in the real world. The 

benchmark must represent the operational profiles of a class of 

applications and/or a community of users. 

- Agreement. A benchmark should be defined based on the agreement 

between the computer industry and user communities regarding the 

system under benchmark, the metrics, the procedures and rules to obtain 

these metrics and so on (DBench 2004). 

A noteworthy question is how to provide a benchmark. Benchmarks can be 

provided in the form of executable programs (e.g., SPEC benchmarks (SPEC 

1988)), or they can be provided through documents that specify what must be 

implemented (e.g., TPC benchmarks (TPC 1988)). The advantage of the first is 

that it is readily available to the user. The advantage of the second approach is 

that it is more transparent to the benchmark user and it does not require a specific 

support from the benchmark proposers. 

This section provides examples of classical benchmarks in robustness, 

performance, dependability, and security fields. Note that dependability 

benchmarks are presented in more detail than robustness and performance 

benchmarks due to their relevance to the work presented in this thesis. 

2.3.1 Performance Benchmarks 

The goal of performance benchmarks is to measure and compare the performance 

of the targets using well-defined workload and measures. Organizations of 

different domains have been involved in benchmark consortiums with the intent 

of reaching an agreement towards measures, procedures, and rules, to benchmark 

the performance of systems in a standardized way (TPC 1988; SPEC 1988; 

Cybenko et al. 1990; Berry et al. 1989; Van Der Steen 1991). In this section, we 

focus on two relevant examples of these consortiums. 

The Standard Performance Evaluation Corporation (SPEC) is a non-profit 
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corporation formed to establish, maintain, and endorse a standardized set of 

relevant benchmarks that can be applied to the newest generation of high-

performance computers (SPEC 1988). SPEC benchmarks are organized in several 

groups, which are: CPU, Graphics and Workstation Performance, High 

Performance Computing, Java Client/Server, Mail Servers, Network File System, 

Power, Session Initiation Protocol (SIP), Virtualization, and Web Servers. One 

characteristic of these benchmarks is that they are provided in the form of tools or 

source codes. SPEC CPU2006 stresses system’s process, memory, and subsystem 

and is provided as source code, which means that users need to compile the 

source code in order to have the executable binaries that will allow them to run 

the benchmark. SPECWeb evaluates web server performance using a workload 

that simulates the execution of an e-commerce system. Another important aspect 

is that each one of these SPEC benchmarks has its own set of benchmark 

measures. To benchmark the performance of web servers, SPEC Web, for 

example, measures the number of simultaneous confirming connections (SPEC 

metric), the number of operations per second (THR metric), and the average time 

in milliseconds that the operations requested by the client take to complete (RTM 

metric). The notion of workload, measures and tools is used in this thesis in the 

application of our benchmark methodology for web serving system. 

The Transaction Processing Performance Council (TPC) defines transaction 

processing and database benchmarks and delivers trusted results to industry (TPC 

1988). The benchmarks proposed by TPC are supported by large, competing 

computer companies such as Oracle, Sun Microsystems, IBM, and Microsoft 

(TPC members). The results of TPC are used worldwide, especially as it can 

indicate which product is the best for a given application environment. Examples 

of TPC benchmarks are: 

 TPC-C is an on-line transaction processing benchmark that simulates 

users executing transactions against a database. The benchmark measure 

is the number of transactions per minute (tpmC). 

 TPC-E simulates the on-line transaction processing workload of a 

brokerage firm. The TPC-E metric is given in transactions per second 

(tps). It refers to the number of Trade-Result transactions the server can 

sustain over a period of time. 

 TPC-H is a decision support benchmark. This benchmark illustrates 

decision support systems that examine large volumes of data, run 

complex queries, and give answers to critical business questions. The 

TPC-H metric reflects multiple aspects of the capability of the system to 

process queries.  
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 TPC-App benchmarks the performance capabilities of application server 

systems and web services. The main TPC-App metric is the throughput of 

the application server measured in Web Services Interactions per Second 

(SIPS). 

 TPC-W (which became obsolete in 2005) is a transactional web 

benchmark. The performance metric reported by TPC-W is the number of 

web interactions processed per second. Multiple web interactions are used 

to simulate a retail store activity, and each interaction is subject to a 

response time constraint. 

SPEC and TPC performance benchmarks have key elements that we adapt to the 

benchmark methodology proposed in this thesis: a workload that consists in a set 

of tasks that stress the performance capabilities of targeted systems, a set of non-

overlapping metrics collected during the execution of the workload that indicates 

the performance level of the system, and procedure and rules that guide users on 

how to execute the benchmark and ensure the repeatability of the benchmark 

execution. 

2.3.2 Robustness Assessment and Benchmarks 

The goal of robustness benchmarks is to characterize the behavior of the system 

under benchmarking in the presence of unexpected conditions (such as erroneous 

inputs at the system interface). Several works were proposed to evaluate the 

robustness of software systems such as Linux and Windows utilities (Koopman et 

al. 1997; Siewiorek et al. 1993). Additionally, robustness tools have been widely 

used both by academia and computer industry and have been applied in diverse 

classes of systems. 

Ballista (Koopman et al. 1997) is a tool to test the robustness of software 

components through the combination of software testing and fault injection 

approaches. It uses diverse combinations of input values as parameters of system 

calls to assess and compare the robustness of different operating systems (Linux 

and Windows versions). The robustness of the target system is evaluated in 

accordance with five failure modes: catastrophic (the application causes a 

complete system crash that requires the reboot of the operating system), restart 

(the application hangs and needs to be restarted), abort (abnormal termination of a 

task or a process as the result of, for example, a segmentation fault), silent (no 

error code is returned, but one should have been returned), and hindering (error 

code returned is not correct). 

MAFALDA (Fabre et al. 1999) is a tool that allows the characterization of the 
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behavior of microkernels using two forms of fault injection: (i) injection on the 

input parameters and (ii) injection on the state of the microkernel. This is a fault 

injection tool that tests the interface robustness of the system, allowing the 

assessment of the error handling behavior of the system, as well as the 

identification of microkernel deficiencies to be fixed. 

One class of system that has been targeted in robustness testing research is web 

services.  (M. Vieira, Laranjeiro, and Madeira 2007) proposed a robustness 

benchmarking for web services based on fault injection technique. The approach 

consists of injecting invalid web services call parameters aimed at disclosing both 

programming and design program. (Laranjeiro, Canelas, and Vieira 2008) also 

presented a user-friendly web-tool to test the robustness of web services in the 

presence of unexpected inputs. Their results have been widely accepted by the 

community and have been used in more recent works to evaluate the robustness of 

different services oriented applications such as Java Message Services systems 

(Laranjeiro, Vieira, and Madeira 2008). 

2.3.3 Dependability Benchmarks 

The Dependability Benchmarking Project (DBench) was established in 2001 by 

the European Commission as a consortium of several universities and 

organizations to the definition of a dependability-benchmarking framework 

targeting Off-the-Shelf components (OTS).  The goal was to provide means to 

assess the dependability attributes of systems for comparative purposes. This 

section addresses dependability benchmarking following the approach found in 

classical dependability benchmarks proposed in DBench: benchmark dimensions, 

benchmark components, techniques, benchmark validation, and examples. 

The main contribution of dependability benchmarks over performance 

benchmarks is that the former is focused on reliability aspects. The focus is not 

only on the system speed to perform a set of tasks, but also on the characterization 

of the system behavior in the presence of faults. Figure 2-4 shows the relationship 

between performance and dependability benchmark, where it is clear the presence 

of the faultload component, used to inject faults in the system under benchmark 

while dependability measurements are collected. This fault injection notion and 

its importance to dependability benchmarks are properly discussed in subsection 

2.3.3.3. 

2.3.3.1 Dependability Benchmark Dimensions 

In the final report provided by the DBench project, we can find the three 

dimensions that are needed to define a dependability benchmark.  
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These dimensions were firstly discussed in (Madeira et al. 2002) and are 

described as follows: 

 The categorization dimension allows us to organize the dependability 

benchmark space into well-defined categories, describing benchmark 

target and the benchmarking context (the application area of the 

benchmark). 

 The measure dimension specifies the dependability benchmarking 

measures, defined in accordance with the benchmark target and the 

benchmark context.  

 The experimentation dimension includes all aspects related to the 

experimentation of the benchmark target to obtain the measurements 

needed to compute the benchmark metric. The benchmark components 

related with experimentation are described in the next subsection and the 

elements needed to support the benchmark target and benchmark 

execution are described as follows: 

- System under benchmark (SUB). This system hosts the components 

that interact with the Benchmark Target (BT) (e.g., operating system, 

hardware platform) and with the workload. Figure 2-5 shows a 

representation of the system under benchmark taken from (Durães, 

Vieira, and Madeira 2004). 

- Benchmark Management System. Refers to the set of components 

needed to orchestrate the benchmark run and to collect dependability 

measurements. 

 

Figure 2-4. Main components of a dependability benchmark (Figure taken 

from (Marco Vieira 2005)) 
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Figure 2-5. System Under Benchmark and Benchmark Management System 

Interaction  (Durães, Vieira, and Madeira 2004). 

2.3.3.2 Dependability Benchmark Components 

The components of a dependability benchmark are described as follows: 

 Measures. These characterize the performance and dependability of the 

system under benchmark during the execution of the workload and of the 

faultoad. The dependability measures are defined in accordance with the 

benchmark target and context and examples are provided later on. Once 

collected and properly measured, these are used to indicate the 

dependability level of the system and to help users to identify the most 

dependable among the benchmarked systems. 

 Workload. The workload represents a set of tasks that are submitted to 

the target system during the benchmarking execution, representing the 

typical work that the system executes. In the DBench project, authors 

make a distinction between two categories of workloads: background 

(aimed at simulating a system activity profile) and foreground (aimed at 

analyzing the impact of fault on the service). An important aspect of 

workloads is that they should be representative. To be realistic, a 

workload must simulate the tasks that the system actually executes. If the 

system under benchmark is an OLTP system, this means that database 

transactions in a client-server environment is expected, as illustrated in 

(Marco Vieira 2005). If it is a web server workload, it should simulate 

multiple users requesting data to the web server and its hosted 

applications, as detailed in (Durães, Vieira, and Madeira 2004). In the 

dependability field, a common practice is the adoption of existing 

workloads from performance benchmarks such as TCP-C for OLTP 

dependability benchmarks and SPECWeb. This is done as performance 

benchmarks are well established, widely adopted and simulate in a 

realistic way the work executed by the system under benchmark.  
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 Faultload. This component is aimed at injecting faults in the target 

system, being an important tool to collect dependability measures 

(Durães, Vieira, and Madeira 2004; Vieira and Madeira 2003). This is the 

most critical component of a dependability benchmark, since the set of 

faults should be repeatable, portable and representative. It is worth 

pointing out that the deliberate activation of faults is essential in a 

dependability benchmark as it allows us to observe the tolerance of the 

system to survive to a faulty scenario. The injection of faults is necessary 

to speed up their activation in the system, as it would be very time-

consuming to wait for the natural activation of faults in a system. The 

faultload thus represents a key component that injects faults that are 

activated by the execution of the workload component.  

 Procedures and rules. These refers to the formal specification of all 

procedures and rules to conduct the benchmark, including the description 

of the means necessary to build and use the tools involved, ho to collect 

the measures. 

2.3.3.3 Dependability Benchmarking Techniques 

One of the most common techniques that has been used in the context of 

dependability benchmarking is fault injection. Fault injection is the deliberate 

insertion of faults into a software  or hardware to determine its response 

(definition adapted from (J. A. Clark and Pradhan 1995)). In the dependability 

benchmarking context, fault injection is mostly applied to accelarate the 

occurrence of failures and is a key part of the faultload component. In this case, 

the benchmark management system can assess if the injection of faults 

compromises system availability or reliability.  

 

Figure 2-6. Software fault injection and system observation (Duraes and 

Madeira 2006) 
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As software faults are a common cause of computer failures (as investigated by 

(Gray 1990),(Sullivan and Chillarege 1992),(I. Lee and Iyer 1995), and 

(Kalyanakrishnam, Kalbarczyk, and Iyer 1999)) software fault injection is 

extremelly useful to study the behaviour of the system in the presence of faults, to 

evaluate the mechanisms of error handling, or to evaluate fault tolerance tools. A 

high-level representation of software fault injection in a dependability context is 

presented in Figure 2-6. In this case, while the faults are injected the benchmarkig 

management system collects the measurements that are needed to determine the 

effects of the fault injection to the target system. One important notion here in this 

representation is that the benchmark target should be different from the 

component under fault (Durães, Vieira, and Madeira 2004). This is justified by 

the fact that it is not realistic to inject software faults in the same component that 

is being evaluated as the faults would change the component and the conclusions 

would be unfair. What is realistic is to inject faults in a system/component closely 

related to the System Under Evaluation and observe the behavior of the 

component under observation when dealing with a faulty behavior of another 

system or component with which it interacts. 

In the context of our work, software faul injection is used to inject faults in the 

source code (vulnerabilities) of software-based systems components that will lead 

to a security breach. This is needed to analyze the behaviour of the benchmark 

target system while attacks are exploiting the vulnerabilities injected in a 

component outside the  benchmark target. In this sense, there are two ways of 

injecting software faults that are important to highlight in the context of our work: 

compile-time injection and runtime injection. In the former type, the program 

instructions must be modified before the program image is loaded and executed. 

In this case, faults are injected into the source code or assembly code of the target 

component to emulate the effect of hardware, software, and transient faults. In the 

later type, a mechanism (such as time-out, expection, or code insertion during 

runtime) is needed to trigger fault injection. One of the observations of (Hsueh, 

Tsai, and Iyer 1997) about software fault injection is that the software may disturb 

the workload running on the target system, which means that a careful design is 

needed when using this technique. 

A technique for the injection of software faults that has been used in 

dependability benchmark works is the G-SWIFT (Generic Software Fault 

Injection Technique), which consists of finding key programming structures at the 

machine-code level where high-level software faults can be emulated (J. Durães 

and Madeira 2004). The benefit of this approach is the injection of the software 

fault even if the source-code of the target system is not available. This advantage 
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is important when the source code is not available, as is the case when using 

third-party components or simply off-the-shelf components. 

One important step prior to the injection of software faults is the conduction of 

field studies to identify the most representative ones. This is important to assure 

the realism of the approach as the faults to be injected are the ones commonly 

found in real systems.  (J. A. Durães and Madeira 2006) collected a large set of 

real software faults and analyzed the exact nature of these faults and their 

occurrence distribution. The authors used a three-step approach to classify and 

analyze 668 software faults from open-source programs. Since we take advantage 

of this approach in the experimental part of our security benchmark methodology 

(to inject software faults that lead to vulnerabilities in a system component), it is 

important to describe it in details, which is as follows: 

1. Classification of the faults according to Orthogonal Defect Classification  

(Chillarege et al. 1992). In ODC, a software fault is characterized by the 

change in the code that is necessary to correct it (assignment, checking, 

interface, algorithm, and function).  

2. Characterization of each software fault by one (or more) programming 

language constructs, which can be a statement, an expression, or a 

function. The three possible categories in this characterization are: 

missing construct, wrong construct, and superfluous construct. 

3. Classsification of faults in specific construct-related fault types, for 

example: MVIV (Missing variable initialization using a value), WLEC 

(Wrong logical expression used as branch condition), EVAV (Extraneous 

variable assignment using another variable). In (J. A. Durães and Madeira 

2006), the three most representative software fault types are MIFS 

(Missing if construct plus statements), MLAC (Missing AND sub-expr in 

expression used as branch condition), and MFC (Missing Function Call). 

There are several works in literature that approach the topic of fault injection. 

Examples of fault injection techniques are presented in (Hsueh, Tsai, and Iyer 

1997). Examples of fault injection tools are Ferrari (which uses software traps to 

inject CPU, memory, and bus faults) (Kanawati, Kanawati, and Abraham 1992), 

FTAPE (which injects faults into user-accessible registers in CPU modules, 

memory locations, and disk subsystem)(Tsai, Iyer, and Jewitt 1996), Doctor 

(which inject CPU, memory, and network communication faults)(Han, Shin, and 

Rosenberg 1995), and Xception (which uses a processor built-in hardware 

exception triggers to trigger fault injection)(Carreira, Madeira, and Silva 1998), 

and Jaca (which injects faults in Java byte code during runtime by corrupting 
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attribute values, methods parameters, or return values)(Martins, Rubira, and Leme 

2002).  

2.3.3.4 Dependability Benchmarking Validation 

The validation of the benchmark is an important step when defining a new 

benchmark. A typical validation approach is experimental, during which the 

benchmark is applied in several case studies and the following properties are 

evaluated: 

- Representativeness. The benchmark elements (measures, workload, etc.) 

should provide a representative contribution to the overall benchmark 

representativeness. This means that measures should be realistic, actually 

representing the benchmark context. The workload should correspond to 

the actual workload of the operational scenarios. The faultload should 

contain a set of the most common faults found in the system under 

benchmarking.  

- Repeatability and reproducibility. To be repeatable, a benchmark 

should provide equivalent results when the benchmark is run in the same 

environment. Also, other users should be able to implement the 

benchmark following benchmark procedures and rules and to reach 

equivalent results. In other words, independent teams executing the same 

benchmark over the same systems should arrive at similar results. 

- Portability. In the context of benchmarks, portability applies to all 

components of the benchmark. This means that all specifications (e.g., 

workload, measures, etc.) must be portable to any system within the 

application domain. This also means that for a benchmark based on 

documentation, at most, only the tools must be re-implemented 

(benchmarks that provide tools might not provide the necessary 

information to re-implement them for different platforms). 

- Non-intrusiveness. Benchmarks should not introduce any changes in the 

behavior of the target system, and if they do, the changes should be 

minimal. In practice, the instrumentation related to the execution of the 

benchmarks means that the target will experience some change (usually 

performance). This intrusion should be kept at a minimum, and its effects 

must be taken into consideration when producing the benchmark results. 

- Scalability. This concerns the ability of the benchmark to keep its ability 

to evaluate systems of increasingly larger sizes. A careful analysis must 

be conducted to understand the growth in complexity, effort (cost and 
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execution time) when compared to the growth of the target system. Case 

studies involving large target systems help validating the results of this 

analysis. 

- Feasibility. This relates to the effort of deploying (executing) the 

benchmark. If the execution of the benchmark is too complex or requires 

a great effort (time, money, or operator effort), the benchmark will 

probably not be accepted as a standard. The feasibility property can be 

evaluated in a similar way as the scalability property.  

2.3.3.5 Dependability Benchmark Examples 

The book (Spainhower and Kanoun 2007) compiles most of the works on 

dependability benchmark in recent years, including dependability benchmarks for 

on-line transaction process systems, web-servers, and operating systems. In fact, 

this book includes several examples that were developed in the context of the 

Dependability Benchmark Project (DBench 2004).  

One of the key contributions of DBench project was the dependability 

benchmarks for on-line transaction processing (OLTP) systems, web servers, and 

operating systems. These works were documented and published in the form of  

peer-reviewed papers. In (M. Vieira and Madeira 2003a), it is proposed a 

dependability benchmark for on-line transaction processing (OLTP) systems. This 

dependability benchmark uses the workload of the TPC-C performance 

benchmark and specifies the measures and all the steps required to evaluate both 

the performance and key dependability features of OLTP systems, with emphasis 

on availability.  

A dependability benchmark for web-servers is presented in (Durães, Vieira, and 

Madeira 2004). SPECWeb99 benchmark, the faultload component and new 

measures to dependability are used. The measurements address both user and 

system-administrator viewpoints and target the key properties of the service 

expected from web servers.  

In (Kalakech et al. 2004), it is described a dependability benchmark for operating 

systems. The goal of this benchmark is to characterize qualitatively and 

quantitatively the OS behavior in the presence of faults and to evaluate 

performance-related measures in the presence of faults. 

Based on dependability benchmark approach, (Véras et al. 2010) proposed a 

systematic approach for benchmarking software requirements for space systems 

that adopt the European Cooperation for Space Standardization (ECSS) standards. 

The goal is to ensure that requirements specifications comply with the ECSS 
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standards, as well as they do not have any of the most frequent errors on this kind 

of document. In this benchmark approach, the workload is replaced by a checklist 

document aimed at obtaining measures that portray specific characteristics of the 

software requirements specification document. This checklist originated from an 

extensive field study that mapped the most frequent errors found in software 

requirements documents of space systems. A case study comparing the 

requirement of real space systems is also provided.  

2.4 TOWARDS RISK-BASED SECURITY BENCHMARKS 

The goal of security benchmarks is to measure security of systems for 

comparative purposes. Although to date there are no security benchmark 

standards proposed by academia or industry according to the notion of benchmark 

and its properties as stated previously, there are many security metrics, techniques 

and benchmark initiatives that have been proposed. 

This section aims to describe relevant works in the field of security 

benchmarking. It starts by defining and presenting examples of security metrics. 

Then, examples of security assessment techniques and methods, focusing on 

vulnerability and attack injection are highlighted. Finally, we present approaches 

that have been used to compare the security of systems. 

2.4.1 Security metrics 

A security metric is an essential component of a security benchmark or of any 

useful security evaluation approach. It enables users to know the level of security 

of a system, to compare a system with others, and identify the most secure. The 

problem is that security is far more difficult to measure than other system 

attributes such as performance (where what matters is the speed of a system or 

component to execute a given task). A security metric should encompass different 

characteristics that affect the level of a system security such as the impact of 

system vulnerabilities, the probability of the occurrence of successful attacks, and 

the presence of security mechanisms. In other words, a security metric should 

capture quantitatively the intuitive notion of “the ability of the system to resist 

attack” (Brocklehurst et al. 1994).  

(Wang et al. 2009) presents an approach to define software security metrics based 

on the representative weaknesses present in a system, where “representative” 

refers to vulnerabilities that can be exploited by attackers. The assumption here is 

that the number of vulnerabilities and the impact of these vulnerabilities (when 

successfully exploited by attacks) is an important security indicator. Another 

similar initiative that uses the notion of vulnerability impact to estimate the 
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security of software can be found at (Houmb, Franqueira, and Engum 2010). 

However, these initiatives rely on vulnerability information that is reported in the 

field, not considering the effects of hidden vulnerabilities to the security of the 

system.   

Although it is possible to estimate system security using an integrated view (i.e., 

one single metric that indicates the security level of the whole system), in many 

cases security is expressed in the form of several complementary metrics. The 

Center for Internet Security (CIS 2012) has coordinated the Consensus Security 

Metrics (CSM) initiative to help companies make cost-effective security 

decisions. This initiative brought together a team of one hundred industry experts 

to investigate and define comprehensive security metrics and to define how to 

collect and analyze data on security process performance and outcomes. CMS 

proposed 28 metrics definitions organized in three categories: 

 Management metrics provide information on the performance and 

business functions, and on the impact on the organization (e.g., Cost of 

Incidents, Percent of Systems with No Known Severe Vulnerabilities, 

Patch Policy Compliance, IT Security Spending as % of IT Budget) 

 Operational metrics are used to understand and optimize the activities of 

business functions (e.g., Mean-Time to Incident Discovery, Mean-Time 

Between Security Incidents, Mean Cost to Mitigate Vulnerabilities, Mean 

Cost to Patch, IT Security Budget Allocation). 

 Technical metrics provide technical details as well as foundations for 

other metrics (e.g., Number of Incidents, Number of Known Vulnerability 

Instances, Percentage of Critical Applications, Risk Assessment 

Coverage, Security Testing Coverage). 

Security metrics related to financial aspects are also found in literature. In 

(Schechter 2002)  was proposed the security of a system based on the estimation 

of the cost to exploit vulnerabilities to breach security (the lowest expected cost 

for anyone to discover and exploit a vulnerability in that system). A method to put 

a price on vulnerabilities is presented by the same authors in (Schechter 2004). 

Metrics Center is a cloud-based service for designing, deriving, and delivering 

metrics (MetricsCenter 2012). In this initiative, metrics are unambiguously 

defined and mapped to business context in an on-line catalog. This catalog 

congregates data from different security metrics work, including those present in 

NIST standards, ISO/IEC 27002, and PCI DSS (Payment Card Industry Data 

Security Standard), among others. Each metric is characterized in terms of 

objective, unit of measure, frequency, source, and instructions to calculate each 
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metric are provided. 

To be useful, security metrics should be defined and measured according to a set 

of requirements (named in the benchmarking field as properties) that, in our view, 

represents characteristics that should be taken in to account in the definition of 

security benchmark metrics. These requirements can be summarized in the 

following terms (Jaquith 2007): 

 Consistently measured. Metrics that rely on subjective judgment are not 

metrics, but ratings. This means that different people should be able to 

apply the measurement to the same dataset and come up with equivalent 

answers. This refers to the important property of repeatability. 

 Cheap to gather. Methods of gathering data should not be time-

consuming and costly.  

 Expressed as a cardinal number or percentage. Good metrics are given 

in cardinal number or percentage (counts how many of security there are) 

rather than ordinal number (denotes which position of security is in). 

 Expressed using at least one unit of measure. Good metrics should 

contain at least one associated unit of measure that characterizes what is 

being counted (e.g., defects, security). 

The above requirements are conceived to help security specialists to define useful 

and meaningful security metrics. From a benchmarking perspective, a security 

metric value is an indication of what happens in the real world. If the number 

indicates that the system is secure, then the system should tolerate attacks, 

otherwise users will not trust the metric and the benchmark will not be accepted. 

2.4.2 Security assessment 

This section presents examples of assessment techniques and methodologies that 

have been proposed, starting by initiatives that treated security as a process.  

2.4.2.1 Security Assessment by Design 

Security by design means that the security of a product (system, component) is 

evaluated since the beginning of the development cycle and are dealt in a 

systematic manner during the development. This approach is the answer to the 

realization that security needs to be built into the software from the very 

beginning and security activities need to take place throughout the software life-

cycle (Ardi, Byers, and Shahmehri 2006). IBM Secure Engineering Framework 

(Buecker et al. 2010), Microsoft Trustworthy Computing Initiative (Gates 2002), 
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and Comprehensive, Lightweight Application Security Process (OWASP-CLASP 

2012) are examples of initiatives that have considered security not as a product, 

but as a process. In (Futcher and von Solms 2008), a set of guidelines is provided 

for secure software development based on a number of internationally recognized 

standards and best practices. 

Large software developers have realized the importance of focusing on security as 

a process and dealing with it in an integrated manner with the development 

process. Microsoft (Gates 2002) brought this issue to the attention of all its 

developers, which motivated a clear shift from focusing on features to 

spotlighting security and privacy in a large software company. One year later 

(2003), members of the Secure Windows Initiative and the Trustworthy 

Computing Security Team at Microsoft announced the book “Writing secure 

code” (M. Howard et al. 2003), with the best practices for writing secure code and 

stopping malicious hackers, also focusing on .NET platform. More specifically, 

this book offers practical insights into secure design, secure coding, and testing 

techniques, many of which are not documented in previous security works. 

The Open Web Application Security Project (OWASP 2012) proposed a method 

to apply security to an organization's application development process: the 

CLASP ((Comprehensive, Lightweight Application Security Process)). CLASP 

(OWASP-CLASP 2012) consists of a set of processes that contains formalized 

best practices to build security into software development life cycles. CLASP 

security practices perform application assessments, capture security requirements, 

build vulnerability remediation procedures, define and monitor metrics, and so on. 

2.4.2.2 Security Assessment Techniques 

One technique that has been used in recent years to evaluate the security of 

system is the injection of vulnerability and attacks. Here “injection” refers to an 

intentional action of seeding and exploiting a vulnerability in a system. In fact, 

vulnerability injection is the deliberate insertion of vulnerabilities into software 

code to accelerate the occurrence of successful attacks. From a software code 

perspective, a vulnerability injection is as a fault that, once activated by an attack, 

will compromise the security attributes of a system. To inject the vulnerability, it 

is necessary to characterize the fault type that originates the vulnerability, named 

in (J. Fonseca, Vieira, and Madeira 2009) as vulnerability operator. The 

vulnerability operator is then a set of pairs of location patterns and vulnerability 

code change. The location pattern characterizes the place in the source code 

where the vulnerability is likely to be found. The vulnerability code change 

defines what has to be done to the piece of code targeted by the location pattern in 
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order to make it vulnerable, without affecting the functional behavior of the web 

application. 

Fonseca proposed a vulnerability injection methodology for web application that 

is organized in three main steps (Jose Fonseca 2011):  

1. Static analysis of the source code of the web application. This is done 

by analyzing the source code dependencies, input and output variables. 

2. Search for the location where a vulnerability may exist. This is done 

by examining the code of the web application in order to identify all the 

points where each type of fault can be injected, resulting in a list of 

possible fault locations and their respective vulnerability types. 

3. Mutation of the code to inject a vulnerability. This is done by 

applying, to the web application source code, the vulnerability code 

change defined by a vulnerability operator. 

The importance of vulnerability injection to our work is that we take advantage of 

this approach to test the effect of hidden/unknown vulnerabilities in the system, 

by injecting vulnerabilities in one of the components of the system under 

benchmark and exploiting these vulnerabilities using attack injection.  

Attack injection refers to the exploitation of vulnerabilities that are injected in 

the system. The goal of attack injection is to simulate real attacks to test how the 

target system behaves in the presence of attacks. This can be useful in several 

security assessment scenarios, for example, to test Intrusion Detection Systems. 

An example of attack injector aimed at discovering unknown vulnerabilities was 

proposed in (Neves et al. 2006). He proposed an attack injector tool (AJECT) 

aimed at discovering new vulnerabilities on network-connected servers. The 

AJECT tool uses a specification of the server’s communication protocol to 

automatically generate a large number of attacks according to predefined test 

classes. While these attacks are performed, the tool monitors the behavior of the 

server looking for an incorrect system behavior. In this case, an incorrect behavior 

indicates a successful attack and the existence of a vulnerability. 

A methodology that uses vulnerability injection to mount attacks against web 

applications was proposed in (J. Fonseca, Vieira, and Madeira 2009). The idea 

behind the methodology is that by injecting realistic vulnerabilities in a web 

application and attacking them automatically security mechanisms can be 

assessed. 

The purpose of vulnerability assessment is to answer how vulnerable a system is. 

According to (Jaquith 2007), there are at least three potential ways that have been 
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applied to assess vulnerabilities in industry: 

 Black-box measures. This technique seeks to identify or predict known, 

exploitable vulnerabilities and conduct security tests without knowledge 

about the code. In the context of web applications and web services, this 

is also termed as black box testing or penetration testing. Examples of 

black-box measures are vulnerability scanners tools (e.g., Acunetix  Web, 

Vulnerability Scanner (Acunetix 2012), IBM Rational AppScan (IBM 

Appscan 2012), HP WebInspect (HP WebInspect 2012), Foundstone 

WSDigger (WSDigger 2012) and wsfuzzer (neuroFuzz 2012), and 

(Nikto2 2015)). 

 Code security measures. This technique seeks to identify design and 

implementation vulnerabilities in the software code and is termed as 

white box testing. Examples of code analysis tools are (HP Fortify 2012), 

(Ounce Labs 2012) and (Pixy 2012). 

 Qualitative process measures and indices. This technique seeks to create 

qualitative risk indices based on the business impact and criticality of 

vulnerabilities identified in security assessments. The Common Weakness 

Scoring System (CWSS 2011) is an example of method that provides a 

quantitative measurement of the unfixed weaknesses that are present 

within a software application. 

One method that has been used to the prediction of the number of vulnerabilities 

in systems is the Vulnerability Discovery Model (VDM). VDMs are probabilistic 

methods for modeling the discovery of software vulnerabilities and are based on 

statistical methods.  VDMs can be applied to evaluate the security risk of systems 

(Omar H. Alhazmi and Yashwant K. Malaiya 2006) and can be used to estimate 

characteristics of the vulnerability discovery process. In (Woo, Alhazmi, and 

Malaiya 2006), it is showed the applicability of VDMs models to predict the 

number of vulnerabilities that may potentially be present in a web server but may 

not yet have been found. A more detailed discussion on the effectiveness of VDM 

methods can be found at (Andy Ozment 2007), (Cavusoglu and Raghunathan 

2007), and (Alhazmi and Malaiya 2006). 

One important project in the field of security assessment is The Making Security 

Measurable, which is led by MITRE Corporation (MITRE Corp. 2012) and has 

brought together existing activities and initiatives related to security evaluation 

(R. A. Martin 2008). This project brings together dictionaries of vulnerabilities 

and attacks, assessment methods to evaluate the risk of vulnerabilities and 

configuration issues, and repositories of vulnerabilities, security checklists, and 
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security configuration. Vulnerability information one can find in on-line 

repositories such as the National Vulnerability Database (NVD 2014) and the 

Open Source Vulnerability Database (OSVDB 2014) are usually identified and 

categorized to the dictionaries maintained by MITRE (e.g., Common 

Vulnerability Enumeration, Common Weakness Enumeration) and have 

vulnerability risk scores estimated according to third-party organizations (e.g., 

Forum of Incident Response and Security Teams). 

It is worth pointing out that the security techniques discussed above do not 

provide an integrated view of system security. In our view, these techniques could 

be used as supporting tools of a security measurement approach to speed up the 

detection of known vulnerabilities and to assess the effects of vulnerabilities in an 

automated way. 

2.4.2.3  Security Assessment Methodologies 

Security evaluation is also termed in literature as risk assessment analysis, since 

the goal is also to identify the sources of threats that would lead to a successful 

attack. Security risk assessment methods can be organized in two groups: 

quantitative (with the purpose of translating the security risk of an organization in 

a single set of metrics) and qualitative (estimate the potential impact of a security 

breach as high, medium, low). This subsection presents relevant examples of 

these approaches and then we describe their limitation from a security evaluation 

point of view. A detailed survey of information security risk analysis methods can 

be found at (Behnia, Rashid, and Chaudhry 2012). 

The OCTAVE (Operationally Critical Threat, Asset, and Vulnerability 

Evaluation) is a qualitative risk assessment approach proposed by CERT-SEI 

(Alberts et al. 1999) to manage information security risks, helping organizations 

to map threats and protect organization assets. One characteristic that makes 

OCTAVE unique is that it is based on operational risk and security practices that 

are identified by the organization, not relying on outside requirements. OCTAVE 

is based on a three risk assessment phases: (a) building of a profile of threats, (b) 

identification of infrastructure vulnerabilities, and (c) development of a security 

strategy and plans considering the most critical assets to the organization. To 

support this methodology, an OCTAVE implementation guide is also provided, 

containing the tools and techniques that can assist users in the risk assessment 

conduction. Without any doubt, OCTAVE is a bold approach to help users to map 

the most critical assets to an organization and develop security plans to fix 

vulnerabilities and avoid the possible threats to the information technology 

environment. However, this approach lack of concrete details on how to measure 
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the security level of functionally equivalent systems and is not aimed at 

benchmarking the security of system components. 

(Karabacak and Sogukpinar 2005) proposed the Information Security Risk 

Analysis Method (ISRAM) aimed at assessing the security risk of organizations 

with the participation of managers and staff in a quantitative manner. This 

consists in the conduction of a survey that is previously built based on the security 

needs of the target organization. This survey contains questions that help to 

estimate the probability of occurrence and consequences of security breaches, 

which are then used to estimate the security risk. As can been seen, ISRAM is a 

quantitative risk analysis approach with the advantage of translating the security 

needs of an organization in one single measure. However, since the security needs 

of different organization may vary, this approach cannot be used to compare the 

security risk of organizations using the risk measure. 

The U.S. National Institute of Standards and Technologies (NIST) proposed the 

Risk Management Guide for Information Technology Systems (NIST SP 800-30) 

as a recommendation for US agencies and organizations (Stoneburner, Goguen, 

and Feringa 2002). NIST risk analysis starts by characterizing the organization 

systems and identifying system vulnerabilities and potential threats. Then, the 

likelihood and impact of security breaches are evaluated and a risk matrix is used 

to determine the security risk that the systems pose to the organization. NIST also 

has two additional steps aimed at eliminating the identified risks and documenting 

the results in the form of a risk assessment report to help upper management to 

make decisions. 

The benefit of these risk assessment approaches to users is that they address 

security with a more holistic approach, not limited to a particular class of system 

or vulnerabilities. However, they do not provide a way to translate operational 

risks and security best practices in a single set of metrics applicable to a particular 

system that could be used to benchmark their security, which is the intent of our 

security benchmark methodology. 

2.4.3 Security Benchmarking Initiatives 

Several approaches aimed at assessing and comparing the security features of 

systems have been proposed in the past. The idea behind these approaches is to 

either classify a system according to a security level/class or provide a security 

score that will help end-users to select the most secure system - the highest the 

security level/class/score of a system, the more secure (the more protected against 

attacks) a system is. None of these approaches has targeted software-based 

systems as a whole according to the philosophy of classical performance and 
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dependability benchmarks. However, they provide a clear idea of the benefits of 

security benchmarks. 

(Nibaldi 1979) proposed 6 security levels (and requirements for each level in the 

form of security policy, accountability, assurance, and documentation measures) 

to characterize the internal protection mechanisms of computer systems using 

aspects such as access control, protection policy, and design implementation.  

The (Common Criteria (CC) 2009) is a security evaluation framework that is 

widely accepted in industry. CC evaluation focuses on the software development 

process rather than the software itself (Shapiro 2003). CC defines a set of IT 

requirements of known validity to help customers to establish security 

requirements to protect products and systems. CC also defines the Protection 

Profile which is a set of security requirements and objectives for a category of 

products or systems which meet similar consumer needs for IT security (examples 

of protection profiles are available at Common Criteria Portal (CC Protection 

Profiles 2012)). The Common Criteria Agreement provides a comprehensive 

methodology to help evaluators to apply Common Criteria audit: the Common 

Methodology for Information Technology Security Evaluation (Common 

Methodology (CEM) 2009). More specifically, CEM defines the minimum 

actions to be performed by an evaluator in order to conduct a CC evaluation, 

using the criteria and evaluation evidence defined in CC: Common Criteria is 

composed by seven assurance levels (EALs – Evaluation Assurance Levels) that 

cover many features of a given target system, such as documentation, security 

features, and development process. Every assurance family contributes to the 

assurance that the Target of Evaluation (TOE) meets its security claims. EALs 

provide a uniformly increasing scale which balances the level of assurance 

obtained with the cost and feasibility of acquiring that degree of assurance.  

(M. Vieira and Madeira 2005) proposed a security characterization for Database 

Management Systems (DBMS) based on a set of security classes. That 

characterization analyzes DBMS security-related mechanisms (such as user 

authentication, user privileges, encryption, etc.) enabling users to select the 

DBMS best suited to his particular security requirements. In this approach, 

systems are classified using the following metrics: 

 Security class (SCL): DBMS are categorized using a set of security 

classes varying from Class 0 to Class 5. For each class a set of security 

requirements is identified. A system is classified in a given class if it 

fulfills the requirements for that class.  

 Security requirements fulfillment (SRF): to complement the security class 
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it is proposed the use of an additional metric that  characterizes  how  well  

a given  system  fulfills  the  set  of  security  requirements (in a scale 

from 0 to 100). This metric is useful to differentiate systems in the same 

security class. 

(Neto and Vieira 2008) proposed a generic methodology to assess the security 

configuration of systems (i.e., servers in general). The merit of this approach is 

the proposal of steps ranging from the collection of security recommendations 

from different sources to the proposal of tests to assess and compare the security 

configuration of systems. An approach proposed by (Mendes et al. 2008) has 

applied and extended this methodology through a characterization of security 

practices according to the ISO 17799:2005 international standard for web servers. 

Additionally, (Mendes et al. 2008) was not only concerned with the configuration 

aspects of web servers, but also with the design of a secure network and the 

implementation of a strong security policy. All these aspects are important to 

reduce the possibility of successful attacks over web servers.  

In 2010, (Neto and Vieira 2010) evolved (Neto and Vieira 2008) approach and 

proposed an alternative to assess security. Instead of assessing the security of a 

system by focusing on vulnerabilities and attacks, the idea is to assess the trust 

that administrators put on the system by implementing security practices. Their 

definition on security metric is as follows: “the degree to which security goals are 

met in a given system allowing an administrator to make informed decisions”. By 

proposing a trust-based metric, the authors are interested in quantifying the 

trustworthiness relationship between an administrator and the system he manages. 

To compute this metric, a set of steps is defined in the context of database 

management system: 1) Database administrator analyzes all recommendations on 

the list; 2) For each recommendation, he evaluates if the configuration being 

assessed implements the recommendation or not; 3) The result of the evaluation is 

an answer of Yes or No for each security recommendation; 4) Use the equation 

available to weigh the recommendation in terms of threats that it exposes (in the 

case of not being implemented); 5) Compute the overall untrustworthiness value. 

This method is then applied to benchmark the untrustworthiness of real database 

management systems. 

In (Antunes and Vieira 2010) it was proposed a methodology to benchmark web 

services security scanner tools (in previous research works the same authors 

found out that the most used vulnerability scanners have different vulnerability 

coverage, meaning that they uncover different sets of vulnerabilities (M. Vieira, 

Antunes, and Madeira 2009)). They proposed a method to analyze the flaws and 

limitations of web application scanners by using one secure version and one 
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insecure version of a custom-built web application. Another benchmarking 

approach comparing the security effectiveness of web application scanners is 

provided in (SecToolMarket 2012), where the authors assess not only their 

coverage features, but also audit and authentication features, among others. 

Inspired by these approaches, one could use our benchmark methodology to 

gather information in the presence and absence of security mechanisms to verify 

the security level improvement when the security mechanism is used or not.  

The Center for Internet Security (CIS 2012) has proposed a set of security 

benchmarks for several classes of systems. CIS also provides auditing tools that 

compare the configuration of systems and reports conformance scores on a scale 

from 0 to 100. The security benchmark targeting Apache Web Servers, for 

example, has two configuration levels: the first level covers settings such as 

access control, authentication mechanisms, patches updating, and request 

limitation; the second level covers settings such as cryptography, logging, and 

blocking operating system commands. In addition to the fact that CIS benchmarks 

focus on configuration security issues, the tests performed are limited to a fail-

pass approach and do not assess the effects of one insecure component to the 

whole system (e.g., the risk that a missing configuration poses to the whole 

system). Additionally, this cannot be formally considered a benchmark as CIS 

benchmarks are platform dependent and are not based on a well-defined 

specification and in conformity with a strict set of properties. 

A model and framework to help in the definition and improvement of security 

benchmarks for e-business systems is proposed in (Pye and Warren 2007).  The 

goal is to address the relevance of benchmark development over time and the 

changes in threat focus. For such purpose, a continuous improvement approach is 

described focusing on five broad areas: organizational security, infrastructure 

security, application security, network/system security and user management 

security. The framework consists of a four-stage process (initial security 

benchmark, online security assessment, current benchmark analysis, and 

continuous improvement analysis) to initially create a security benchmark and 

then continue to improve upon such benchmark developments. The minimum 

security requirements that a system should have, which belong to the first stage, 

are those specified in Australia and New Zealand information security standards 

(AS/NZS 4360 1999). Although the idea of continuous improvements of a 

security benchmark is quite useful, no details are provided about the metrics and 

the way to implement the benchmark in the field. For example, the security 

assessment just informs that it should be a “pass/fail” approach. Additionally, a 

standardized way to implement the benchmark is also lacking. 
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Initiatives to measure the security of systems in a more standardized way have 

been proposed in recent years. (Das, Sarkani, and Mazzuchi 2012) proposed a 

software product evaluation method based on a quantitative security risk model. 

This method consists of collecting vulnerability data from public databases, 

categorizing the collected vulnerabilities in topics, and calculates the probability 

distribution and a score for each vulnerability.  This probability, score and number 

of vulnerabilities are used to estimate the security risk of a system based on 

vulnerabilities that are discovered. To identify these vulnerabilities, two 

approaches are used: a static analysis of the source code and the execution of 

vulnerability scanners. Although it represents an important attempt to use security 

risk as a benchmark metric, the assumptions to consolidate the metric is not 

totally clear and easy to understand (e.g., the topic modeling approach and the 

weights considered to compute the final metrics) affecting the repeatability and 

reproducibility of this approach. Additionally, this approach is source-code 

dependent and considers only known vulnerabilities to estimate the security risk 

score, leaving unaddressed the important threat of hidden vulnerabilities. Another 

important aspect is that the result of the approach is consolidated in three different 

metrics representing three different aspects of the system (system requirement 

risk, static analysis risk, and dynamic analysis risk), making it hard the task of 

identifying the most secure among the evaluated systems. 

A more comprehensive framework to benchmark the security of systems is 

proposed in (Neto 2012). The purpose of this framework is to evaluate the 

tendency of a system to have unknown or hard to detect vulnerabilities or security 

problems (termed by the authors as trustworthiness benchmarking) and it is 

organized in two parts: the security qualification and the trustworthiness 

benchmarking. The security qualification is designed to target the vulnerabilities 

and security mechanisms that are obvious to exist in the system. This framework 

assigns a security level equal to zero to any system that has obvious 

vulnerabilities and disqualifies it (with a zero score) from the benchmarking 

process. For these authors, security deficiencies or publicly known flaws present 

in a system should never be used in a benchmarking approach since in a real 

situation the system will be patched when put into production. The 

trustworthiness benchmarking part consists of identifying threats that could result 

in a successful system attack (e.g., denial of service attacks, elevation of 

privileges, information disclosure) and then assessing the characteristics (in the 

form of security practices) that are in place to avoid these threats. A system that 

covers a large portion of these characteristics (with the implementation of security 

practices, for example) is a trustable system according to this benchmarking 

approach. Although this approach represents a very important contribution to the 
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field of benchmarking and security, the fact that it considers any obvious 

vulnerability with the same level of importance (security level is zero) is not 

realistic. Two functionally equivalent systems with vulnerabilities with different 

risks have obviously a different risk level that should be considered by a 

benchmark. Also, this approach does not consider the execution of real attacks to 

stress the security of systems. Another important point is that the identification of 

system threats and security characteristics is done by a time-consuming step of 

field study over documents from different sources, which makes the benchmark 

hard to reproduce and execute and makes the validation part, as recognized by the 

authors, a complex task. 

The need of security benchmarks was also identified and reported by the Amber 

project (Assessing, Measuring and Benchmarking Resilience)(Bondavalli et al. 

2009). This project, which was funded by European Commission under the FP7 

program, brought together senior researches to define a research roadmap in the 

field of resilience and benchmarking.  In the final roadmap report, authors suggest 

attackloads and injection tools to the development of security benchmarks. The 

reasoning behind this recommendation is that security benchmarks could adapt 

the techniques applied in the dependability field, where the faultload component 

is used to evaluate the tolerance of the target system against faults while 

performance and dependability measurements are collected. Applying this notion 

to the security field, an attackload could be built to stress the system with real 

attacks while observing the security behavior of the system. (Neto 2012) strongly 

disagrees with the use of attackload notion in the security benchmark field 

pointing out that the definition of an attackload is a complex problem and that it 

makes no sense to attribute a level to a system that is not able to resist attacks. 

Despite these objections, in this thesis we demonstrate that we were able to 

successfully build a security benchmark methodology incorporating attackload 

and vulnerability injection components to evaluate the security of systems in an 

experimental way. Although we agree that the identification of potential threats 

and the evaluation of security characteristics are important steps to increase the 

security of systems, we also believe that the only effective way to measure 

security must include subjecting systems to real attacks. 

2.5 CONCLUSION 

This chapter presented and discussed the state of the art on security benchmarking 

and. In order to help users to better understand the challenges in the design, 

development and deployment of security benchmarks, this chapter covered 

several foundational concepts ranging from vulnerabilities, attacks, and security 

assurance to security metrics and previous benchmarks initiatives. 
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We showed that benchmarking the security of computer-based systems is an 

emerging and pertinent research topic, as society is becoming increasingly more 

dependent on secure computer-based systems. We maintained that benchmarking 

the security of software-based systems is a research topic even more challenging 

than simply assessing security attributes as benchmarking presents specific issues 

such as representativeness and acceptance which are very hard to solve.  

The key works that either guided or inspired the development of this PhD Thesis 

were also presented and are shortly described as follows: 

 Database Management System and Web Servers Dependability 

Benchmarks developed in the context of the Dependability Benchmark 

Project (DBench 2004). These works used and applied the concept of 

workload and measures from classical performance benchmarks, and 

included new measures, a faultload element, and benchmark management 

systems, being undoubtedly the most important source of information to 

the definition and development of realist benchmarks to the security field. 

 The Vulnerability and Attack Injection approach proposed in (Jose 

Fonseca 2011). This work helped us to adapt the faultload benchmark 

element to the field of security. Basically, in the experimental part of our 

methodology, vulnerabilities are injected, attacks targeting these 

vulnerabilities are executed, and the behavior of the systems are assessed 

to check in which degree the system security was impacted.  

 The works developed in the context of Making Security Measurable led 

by MITRE Corporation (MITRE Corp. 2012).  For example, the Common 

Weakness Enumeration (CWE 2012) and several NIST security standards 

helped us to properly understand the challenges involved when measuring 

security for comparative purposes. 

 The Common Vulnerability Scoring System proposed by FIRST. The 

importance of this work is given by the fact that they provide an open 

framework and easy-to-use approach to estimate the individual risk of 

vulnerabilities. In fact, CVSS equation was included in our security tools 

to estimate our final security risk benchmark metric. 

 The Vulnerabilities Repositories created and maintained by the National 

Vulnerability Database (NVD 2014) and the Open Source 

Vulnerability Database (OSVDB 2014). We collected vulnerability 

information from these platforms in the static (analytic) part of our 

security benchmark methodology. 
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As shown in this chapter, methods to evaluate the security of systems have been 

used mostly to identify typical security problems, and in recent years the focus 

has shifted to a better description of security metrics and to the assessment of the 

security characteristics. As these proposals do not follow a systematized, 

experimental approach to benchmark security (as seen in the field of performance 

and dependability), the development of security benchmarks remains an urgent 

need and a research topic of utmost importance. To contribute to this topic, we 

describe in the next chapter our security benchmark methodology, which can be 

applied to any class of software-based system. 

We are absolutely convinced that the security methodology benchmark proposed 

in this thesis is a novel and important contribution to the security and 

benchmarking fields. We brought to the security field the elements used in 

dependability and performance benchmarks (metrics, workload, experimental 

setup, procedures and rules), complying with key benchmark properties  

(representativeness, repeatability and so on) that are important to the validation of 

our benchmark approach. We also use an analytical approach to identify known 

vulnerabilities and an experimental approach to stress the system with real attacks 

and observe the effect of unknown vulnerabilities. In addition to that, we apply 

the notion of risk to differentiate the impact and exploitability of vulnerabilities 

and consider these risk levels in the estimation of the benchmark metric. More 

importantly, our methodology enables users to identify the most secure among 

equivalent systems in an effective way, as we demonstrate in the case study 

presented in this thesis. 
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CHAPTER 3  

 

   3. BENCHMARKING THE 

SECURITY OF SOFTWARE-

BASED SYSTEMS 

This chapter describes our security benchmark methodology. The methodology is 

generic and suitable for any class of software-based system, and the description 

given in this chapter is independent from any specific software target. The goal of 

this methodology is to enable users to identify the most secure among 

functionally equivalent systems. This is achieved through the measurement of 

system security in a standardized way, using the notion of risk to estimate the 

security level of the evaluated systems.  

Our benchmark methodology is structured in a similar way as a benchmark 

specification document (as opposed to simply providing tools ready to run), 

following the logic of established benchmarks from other fields to better allow 

developers to instantiate the methodology and implement security benchmarks to 

specific software system classes using any technology and tools available 

following the guidelines presented here. Note that an example of implementation 

of our security benchmark methodology for web-serving systems is provided in 

the Chapter 5.  

The remainder of this chapter is as follows: Section 3.1 presents the benchmark 

concepts. Section 3.2 describes our strategy to benchmark the security of. Section 

3.3 and 3.4 provide a detailed overview of the static and dynamic part of the 

benchmark. Section 3.5 introduces the benchmark components, whose 

implementation is specified in section 3.6. Section 3.7 concludes this chapter. 
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3.1 BASIC CONCEPTS 

The characterization of the systems involved in a benchmark execution is a 

particularly relevant topic, as benchmark users need to properly distinguish the 

systems designed to support the benchmark from those under evaluation. In fact, 

our methodology is built around systems derived from classical works on 

performance and dependability benchmarks  (SPEC 1988; TPC 1988; DBench 

2004) and, henceforth, we adopted the same terminology used in these previous 

works. The definition of the main benchmark systems are provided next and their 

relationship in a benchmarking scenario is illustrated in Figure 3-1.    

 Benchmark Management System (BMS) refers to the components that 

manage the benchmark experiments. These components are installed and 

deployed during the preparation of the analytical and experimental setup 

of the static and dynamic part and take part of the benchmark 

instrumentation. These components are properly described in the next 

sections. 

 Benchmark Target (BT) refers to the system or component that is 

characterized during a benchmark run. Considering, as an example, the 

context of web serving systems, the benchmark target can be the web 

server, the web application, the database, or the operating system (or even 

subsets of these components). 

 System Under Benchmark (SUB) refers to the system that provides the 

operational environment for the execution of the benchmark target. This 

may include components such as operating system, libraries, and interface 

components, to name a few examples. It also includes benchmark 

components directly related to the execution of the benchmark, such as 

the workload. As our security benchmark methodology is generic there 

are no specific restrictions concerning classes of software-based system 

for the system under benchmark role. As an example, in the methodology 

implementation we provide in Chapter 5, a web serving system is used as 

the system under benchmark, with the web server component as the 

benchmark target, and the remaining components of the SUB include the 

operating system, the database, and a web application. 

The goal of measuring security for comparative purposes makes security the most 

important concept to be defined. According to (Avizienis et al. 2001), security is 

the concurrent existence of the attributes confidentiality, integrity, and 

availability. Confidentiality refers to the protection of functionality and data 

against unauthorized access (Bishop 2003). Integrity refers to the trustworthiness 
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of data or resources, assuring that the actions and data are correct (Bishop 2003). 

Availability refers to the readiness of the system to provide the expected service, 

i.e., to the ability to use the information or resource desired (Avizienis et al. 

2001). It is important to make clear that a system is not secure if attackers are able 

to obtain restricted content (confidentiality), or to modify it (integrity), or make it 

unavailable (availability). 

The security of a system is compromised when one or more vulnerabilities are 

successfully exploited by attacks. A software vulnerability - as already described 

in Chapter 2 - is an instance of a mistake in the specification, development, or 

configuration of software such that its execution can violate the explicit or 

implicit security policies (Krsul 1998). An attack (also termed in this thesis as 

vulnerability exploitation) is any action aimed at compromising the security of a 

system (adapted from (Stallings 1999)). A successful attack is the one that 

exploits a vulnerability and compromises, at least in part, one of the security 

attributes already described. 

The need of quantifying the loss caused by attacks and taking into account the 

probability of their occurrence led us to use the notion of risk. The definition of 

risk used in this thesis was adapted from (Lowrance 1976) and refers to the 

measure of the impact and probability of adverse effects. This notion brings two 

important characteristics (Kirkpatrick, Walker, and Firth 1992): loss (a 

 

Figure 3-1. Relationship between Benchmark Management System (BMS) and 

System Under Benchmark (SUB) in a Security Benchmark Execution 
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vulnerability exploitation that has unwanted consequences or losses) and 

uncertainty (a vulnerability that may or may not be exploited). In the context of 

our work, the loss factor refers to the impact of an attack to the security attributes 

of a system. To measure the extent of such impact, we take advantage of the 

criteria defined by the Common Vulnerability Scoring System - CVSS (Mell, 

Scarfone, and Romanosky 2007). The impact assessment over system 

confidentiality is done by evaluating the system ability to keep confidential 

restricted areas, among other verifications. The verification if system responses 

are as expected is necessary to assess the impact over system integrity (i.e., 

attacks were unable to alter system content). The impact evaluation over system 

availability is performed by checking if the system becomes unresponsive for any 

period of time during the execution of attacks. The highest impact level is the one 

that cause a complete compromise of system confidentiality, integrity, and 

availability. 

The probability of an attack occurrence is given by the level of easiness to exploit 

a vulnerability. This easiness is termed by the Common Vulnerability Scoring 

System 2.0 as exploitability and is given considering three independent factors: 

the network location from where the attack is executed (local network, adjacent 

network, or remote network); the need of system authentication (none, single, 

multiple); and the complexity to mount the attack over the target vulnerability 

(low, medium, high). In other words, an attack with the highest probability level 

is the one that can be executed remotely, with little skill needed to mount and 

execute, and with no need of authenticating into the system. 

3.2 SECURITY BENCHMARKING STRATEGY 

Our strategy to benchmark the security of software-based systems consists of 

estimating the risk of individual vulnerabilities identified in each system 

component following an experimental approach and a specific set of procedures 

and rules. This means that the cornerstone of our methodology is the benchmark 

metric along with the approach we follow to evaluate system security and produce 

comparable and repeatable benchmark results. 

The metric of our security benchmark methodology is security risk, termed here 

as SBench. This metric is computed by the weighted sum of the security risk of 

each component of the system under benchmark. This Vulnerability Risk (VR) is 

estimated considering the product of the impact of vulnerability exploitation (I) 

with the probability of a successful vulnerability exploitation (P), as detailed in 

Equation (1).  
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PiIiVRi *  (1) 

The impact factor refers to the effects of a successful vulnerability exploitation on 

the security attributes. The impact can vary from no impact to complete impact, 

and the meaning of complete depends on the system attribute being observed 

(examples of complete impact are: to the availability attribute - the attack brings 

the system down for a long period of time; to confidentiality - the attack renders 

the sensitive information available; integrity – the attacker is able to modify the 

files). The impact is expressed in term of numerical values (no impact: 0, 

complete impact: 10) according to the approach proposed by CVSS Version 2.0. 

The probability factor refers to the easiness of exploiting a vulnerability, which is 

translated by CVSS as the exploitability factor and is given by vulnerability 

access vector (e.g., local access required vs. remote network), complexity/skill 

requirements (low, medium, high) and authentication requirement (none, single, 

multiple). We use the CVSS scoring system, and impact and exploitability score 

fall in the range of 0 to 10. The higher the values, the higher the risk of the 

assessed vulnerability. Because our methodology uses probabilities expressed in 

the range of 0-1, we transform the CVSS range from 0-10 into the range 0-1.   

The vulnerability risks of our benchmark metric goes through a categorization 

process. This categorization is needed because low-risk vulnerabilities do not 

harm the system in the same way as high-risk vulnerabilities (when successfully 

exploited). For example, if an attacker is able to compromise several low-risk 

vulnerabilities in the same system, he or she may not succeed in causing a 

complete loss of confidentiality, integrity, or availability to the system.  However, 

a successful exploitation of a single high-risk vulnerability will result in a total 

security compromise of one of the security attributes. In a security benchmarking 

perspective, this means that the most secure system is the one with the lowest 

level of high-risk vulnerabilities. To bring this key notion to the benchmark 

metric, our security benchmark methodology uses the same criterion applied by 

the National Vulnerability Database to define the risk ranges of each one of these 

risk categories: Low Risk (VRL - if the risk score ranges from 0 to 3.9 as 

illustrated in Equation 2), Medium Risk (VRM - if the score ranges from 4.0 to 

6.9 - Equation 3), and High Risk (VHR - if the score ranges from 7 to 10 - 

Equation 4). These ranges are defined based on the Risk Score Categorization of 

the National Vulnerability Database (NVD 2014). Also, each one of these 

categories is reflected in the benchmark metric in the form of a weight. Naturally, 

we defined a much higher weight to the high-risk category, since vulnerabilities 

under this category are more prone to be attacked and, when successfully 

attacked, the security compromise is complete. 
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The vulnerability risks are also grouped according to the component to which they 

belong. This is done to enable users to associate weights to each component to 

reflect the relative importance of each component to the system (the impact scale 

of that component). In this step, vulnerabilities are still grouped into risk 

categories described previously, and this measure is estimated by adding the 

weighted vulnerability risk (VRL, VRM, VRH) from each component resulting 

into one CR-Low (CRL), one CR-Medium (CRM), and one CR-High (CRH) for 

each component. 

Our benchmark methodology is organized in two major parts: one static part, and 

one dynamic part. The static part is aimed at measuring security risk posed by 

existing and already discovered vulnerabilities. These vulnerabilities, if still 

present in a given system (e.g., the administrator has not yet patched the system), 

can be exploited and pose a security risk. The dynamic part of the benchmark 

addresses the unknown vulnerabilities. It is focused on the analysis of the 

behavior of the system when facing realistic attacks that may exploit unknown 

vulnerabilities. A detailed description of each benchmark part is provided later in 

the remainder of this section. The security risk resulting from both the static and 

dynamic parts is the main output of a security benchmark run. This is expressed in 

a value and is what we believe will enable benchmark users to compare 

functionally equivalent components and systems according to security. 

3.3 STATIC PART 

The static part is aimed at measuring security risk posed by known vulnerabilities. 

The main element of the static part is the information obtained throughout its 

execution that will allow us to confirm which vulnerabilities are present in the 

system under benchmark. The strategy we follow in this part is to collect 

vulnerabilities reported in the field matching with the brands and versions of the 

system under benchmark and use impact and exploitability information to 

estimate their vulnerability risk. Two data sources are used for retrieving 

information on vulnerabilities: (1) public databases listing known vulnerabilities 

(e.g., The Open Source Vulnerability Database, the National Vulnerability 

Database), and (2) results from security-testing tools containing large sets of 

known vulnerabilities. This strategy is designed to collect known vulnerabilities 

to the most possible extent and provide to the security benchmark the information 

needed to detect the presence of previously discovered vulnerabilities and 

estimate their risk. These components are complementary: the vulnerability 

repository collects information from public databases that were reported by 

anyone interested in disclosing a vulnerability; the security test repository obtains 

information from more restricted sources (these tools usually need a higher 
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technical expertise to understand the security tests and to identify the known 

vulnerability associated to each test). For each one of these components, it is 

necessary to have a specification of the repository data model and of the rules 

needed to build them. These items are covered later on – in the specification of 

our benchmark methodology. 

As we execute security tests in the static part, it is important to provide the 

definition we use and discuss about the tests that are allowed. A security test is 

the verification of a security practice or the exploit of a known vulnerability. An 

example is the following security practice for web servers (Mendes et al. 2008): 

"Disable direct file system access (directory browsing, directory traversal, etc.)". 

The security test of this practice refers to the verification of the web server 

configuration or contents to confirm if directory listing is enabled or not (this 

particular test is related to the CVE-2006-3835 directory listing vulnerability, 

which affects Apache Tomcat 5). A positive security test is the one that confirms 

the existence of a vulnerability.  

The security tests allowed in the static part are the passive ones, meaning that 

these tests do not attempt to damage the system, nor execute any action that could 

change the security behavior of the target system. For example, checking if a 

given port is opened is a non-intrusive testing in the sense it does not execute any 

action that could alter system availability, integrity or confidentiality. The 

assessment of the effects of intrusive security tests (e.g., a Denial of Service 

attack, which can affect availability, and therefore is an intrusive test) and of 

unknown vulnerabilities is covered in the dynamic part. 

Another important aspect is to clarify how we measure the risk of the 

vulnerabilities detected during the execution of the static part. Public platforms 

such as vulnerability databases (e.g., (OSVDB 2014; NVD 2014)) already contain 

the CVSS impact and exploitability scores that we use to calculate the 

vulnerability risk of known vulnerabilities (with the proper adjustments detailed 

in sub-section C). If these scores are unavailable, then CVSS criteria should be 

followed to obtain the risk of the detected vulnerability. The risk resulting from 

the collection and analysis of known vulnerabilities reported in public databases 

and from the execution of security tests are added to the accumulated security risk 

of the static part. 

Equations 2 to 4 present the formula to estimate the System Security Risk of the 

Static Part (SSR) for each risk category (SSRL – Low Security Risk; SSRM – 

Medium Security Risk; SSRH – High Security Risk). This estimation consists in 

the weighted sum of the component security risk (CRs – Component security risk 

of the static part). The weight of each component (Wc) reflects the relevance of 
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that component to the system. As different benchmarks users may have different 

views on the relative weight of the different components, the final assignment 

weights to components is left to the benchmark users. The “i” index means that 

this estimation should be done for each vulnerability detected.  
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3.4 DYNAMIC PART 

The dynamic part of our approach addresses the measurement of the risk related 

to unknown vulnerabilities. This is done by executing attacks against the system 

under benchmark while observing the impact of vulnerability exploitation in the 

system. In other words, we observe the capacity of the system to resist those 

attacks (and the impact when it does not). A two-fold attack approach is followed:  

Attacks against the system interface. These attacks target the components that 

interact with the end-users (the system interface). We use these attacks to observe 

the behavior of the system when dealing with input data overflow and malicious 

manipulation of system input parameters. The interface-related attacks use 

relevant vulnerability field studies (published by trustable sources of security 

community, e.g., (IBM X-Force 2012; Symantec 2014)) to identify common 

interface security issues.  Table 3-1 presents the top 10 vulnerabilities found 

unpatched on web-based systems present in the 2015 Internet Security Threat 

Report published by Symantec (Symantec 2015). Vulnerabilities related to Secure 

Sockets Layer (SSL) are one of the top vulnerabilities that could be exploited by 

interface-related attacks.  

Once the interface target is identified, it is necessary to implement and execute 

each attack. To this end, the attack patterns provided in Common Attack Pattern 

Enumeration and Classification shall be used (CAPEC-100 2014; CAPEC-152 

2014). The CAPEC-217, for example, details how to exploit Incorrectly 

Configured SSL security levels, with examples of attacks and skills and 

knowledge required to conduct the attack. To automate this step, our methodology 

allows the use of tools such as penetration testing and exploit kits (e.g. 
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(Metasploit 2015) and others listed in (SecTools 2014)). The rules to select these 

tools are provided later on in section 3.6.3. 

Attacks against a component outside the benchmark target. The system under 

benchmark is formed by interconnected subsystems or components with different 

security issues (e.g., operating systems, web server, database management system, 

etc.). A security issue is a problem with a direct, negative impact on system 

security (loss of data, system outage, elevation of privileges, and so on). In this 

sense, it is important to observe the behavior of the benchmark target when 

attacks are conducted against other elements of the system (e.g., the web 

application) that are not part of the benchmark target but interacts with such 

system. 

Our approach includes the injection of realistic vulnerabilities in the external 

component and launching attacks that exploit such vulnerabilities. Vulnerability 

injection is the artificial injection of software faults that, when activated (i.e., 

successful attack), compromise either partially or completely at least one of the 

security attributes of the system. The injection of vulnerabilities is justified by the 

need to accelerate the occurrence of vulnerability exploitation by attacks in a 

controlled environment: because the natural occurrence of attacks and 

vulnerability exploitation occurs at a slower rate than what needed for the 

benchmark experiments, we inject representative vulnerabilities and latter direct 

attacks to these vulnerabilities to observe the reaction of the system or specific 

components (not the one where vulnerabilities were injected). This idea is similar 

Table 3-1. Top 10 Vulnerability Found unpatched in Web-based Systems 

(Symantec 2015). 

Rank Vulnerability Name 

1 SSL/TLS Poodle Vulnerability 

2 Cross-Site Scripting 

3 SSL v2 support detected 

4 SSL Weak Cipher Suites Supported 

5 Invalid SSL certificate chain 

6 Missing Secure Attribute in an Encrypted Session (SSL) Cookie 

7 SSL and TLS protocols renegotiation vulnerability 

8 PHP 'strrchr()' Function Information Disclosure vulnerability 

9 http TRACE XSS attack 

10 OpenSSL 'bn_wexpend()' Error Handling Unspecified Vulnerability 

 



98 

to the use of fault injection in dependability benchmarks, although adapted to the 

security field: inject root causes (fault  vulnerabilities) to accelerate the 

occurrence of problems (failures  security violations) when exercising the 

system (workload workload with attacks) to assess the impact to other 

components in the system and evaluate the how the system reacts.   

It is expected that the component with injected vulnerabilities become 

compromised during the execution of attacks. That, however, does not (or should 

not) automatically translate into a compromised benchmark target (the whole 

system or another component), and that is what the benchmark evaluates in this 

step. Figure 3-2 illustrates the notion of injecting and exploiting the 

vulnerabilities of a component outside the benchmark target. In this picture, it is 

possible to see that while attacks are conducted against the vulnerable component, 

security measurements are collected from the benchmark target, which is not 

expected to have vulnerabilities.  

The idea of conducting attacks in a component that is outside the benchmark 

target is inspired in classical works of dependability benchmarking. In (J. Duraes 

and Madeira 2004), the authors injected faults in one component (termed as fault 

injection target) to evaluate the impact on another component  (the benchmark 

target) or in the overall system, benchmarking the tolerance of widely known web 

servers using the fault injection technique. The authors also emphasize that in a 

scenario of Component Off The Shelf system integrators may want to know the 

impact to a component when hidden faults are activated on another component. 

As can be seen, this is exactly the approach that we are adopting in our security 

benchmark methodology. However, we also take advantage of the attack injection 

technique proposed in (J. Fonseca, Vieira, and Madeira 2009) as a guideline to 

Benchmark Target

Vulnerable 

Component

System Under 

Benchmark

Attackload 

Security Metric 

Collector

Benchmark 

Management System

 

Figure 3-2. Attacks executed against a Vulnerable Component 
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mount the attacks of our security benchmark methodology. Attack injection 

consists in injecting vulnerabilities into a particular system component that are 

later exploited during the benchmark run. 

One important aspect of the attack injection approach is the representativeness of 

the vulnerabilities that are injected. These vulnerabilities should reflect the 

common security issues that happen in the real world. It makes no sense to inject 

vulnerabilities that are rarely seen in real component, unless they represent a 

major security threat to the system (for example, a vulnerability classified with 

the highest risk score per the Common Vulnerability Scoring System). 

Additionally, this is particularly relevant to define where a vulnerability is located 

and what is the piece of code/configuration that corresponds to a vulnerability. In 

this sense, our methodology relies on vulnerability field studies to identify and 

characterize real security issues present in the system under benchmark. The 

benchmark implementer is allowed to take advantage of existing vulnerability 

field studies targeting the components of the system under benchmark. This is 

important to reduce the time needed to build a representative set of attacks, as the 

conduction of comprehensive filed studies is a very time consuming task, as it 

may require the analysis and comparison of vulnerable and patched 

code/configuration to exactly map the piece of software that needs to be injected. 

An example of field study that targets web application vulnerabilities is presented 

in (J. Fonseca, Vieira, and Madeira 2009), where the authors classified 655 cross-

site scripting and SQL injection vulnerabilities present in different web 

applications. 

The approach to measure the security risk is a key aspect of the dynamic part.  We 

firstly run the system without executing attacks to observe its normal behavior, 

collecting measurements about the expected system response and response time. 

This execution is termed here as baseline run, as the purpose is to use these 

measurements as a comparison point to determine the extent of the impact of 

attacks. Then, we run the benchmark executing attacks against a component 

different from the benchmark target. For each vulnerability targeted by these 

attacks, we take into account the impact caused by the exploitation of 

vulnerabilities over the benchmark target and the easiness of exploiting them. 

The attack impact over the benchmark target is evaluated by checking the system 

response to a set of tests. The purpose of these tests is to verify if there was any 

compromise of the security attributes (confidentiality, integrity, availability) 

during the execution of attacks. In fact, the implementation of these tests should 

comply with the criteria defined by the CVSS to the assessment of the impact of 

vulnerability exploitation. Here we provide some examples of these criteria, 
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which are detailed later on in the specification in Section 3.6.7. If the benchmark 

target becomes unresponsive for a limited period of time, then there is a partial 

impact on system availability. It is a complete availability impact if the 

benchmark target becomes totally unresponsive. The same approach is taken to 

test the ability of the system to keep restricted content protected (confidentiality) 

and to deliver the expected response during the attack run (integrity). 

The probability of the occurrence of the attack is measured based on the easiness 

of attacking a vulnerability, following the criteria of CVSS as reference. In the 

dynamic part, the probability of vulnerability exploitation can be manually 

estimated prior to the execution attacks, while mounting the attacks to be 

executed against the target system. The highest probability (100%), and according 

to CVSS, should be assigned for attacks of low complexity, which require no 

authentication and can be executed remotely. 

In the dynamic part of the benchmark, each benchmark run concerning one given 

system and one type of attack is executed at least three times to accommodate 

slight variations of the values measured and obtain a stable metric value. The 

resulting value is the average of the values. Equation 5 shows this computation 

(VRi is the risk measured during run i, and Nbr is the number of runs for that 

system and attack type). 

Nbr
VRi  (5) 

 

Equations 6 to 8 present the formula to estimate the System Security Risk of the 

Dynamic Part (DSR) for each risk category (DSRL – Low Security Risk; DSRM 

– Medium Security Risk; DSRH – High Security Risk). This consolidation is very 

similar to the one already explained in the static part, summing the security risk 

obtained for each component (CRd – Component security risk of the dynamic 

part). It also has a weight for each component (Wc) to reflect its relevance to the 

whole system. The “i” index also means that the security risk shall consider each 

vulnerability detected during the dynamic part run.  
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3.5 BENCHMARK COMPONENTS 

The security benchmark methodology is formed by components that together will 

measure the security risk of the system under benchmark. The components that 

are common to both benchmark parts (static and dynamic) are described next. The 

guidelines to build each one of these components are described in the next 

section. 

Metric: characterizes the security of the system considering the risk posed by 

known vulnerabilities and the effects of unknown vulnerabilities. As described in 

Section 3.2, this metric (termed here as SBench) is estimated by the weighted sum 

of the security risk resulting from the static and the dynamic parts of the 

benchmark, considering four elements: vulnerability risk (VR), risk category, 

component risk (CR) per category, and weighted system risk (SR) per category 

(Low, medium, and high). This categorization is needed to enable the benchmark 

user a more complete understanding of the contributions to risk from 

vulnerabilities in each risk category (SRL, SRM and SRH, Equations 9 to 11). 

Finally, the benchmark metric value SBench, representing the system security risk 

is obtained by the weighted sum of the security risk of each risk category 

(Equation 11). This value represents the overall system security risk, including the 

contributions from vulnerabilities from all the risk categories, both from the static 

(SSR) and dynamic parts (DSR), and all the components of the system analyzed. 

The higher is the security risk of the system, the higher the benchmark metric is, 

with no upper limit. The weight of each risk category was defined to help remove 

ambiguity in the comparison of systems having similar overall benchmark results 

in scenarios of one high-risk vulnerability versus many low-risk vulnerabilities: 

the high-risk category weight is nearly three times larger than the medium 

category and fifteen times larger than the low category, increasing the influence 

of high security risks in the benchmark metric. It is worth noting that, in a future 

proposal of a security benchmark standard based on our methodology, the 

decision on the weights should be part of a technical agreement among industry 

and stakeholders. Technical agreements are quite common in performance 

benchmarks such as TPC and SPEC and our metric estimation approach should be 

seen as a contribution in this direction. 

SRL = SSRL+DSRL  (9) 
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SRM = SSRM +DSRM  (10) 

SRH = SSRH +DSRH
 (11) 

05.0*25.0*70.0* SRLSRMSRHSBench   (12) 

Procedures and Rules: guide users to run the benchmark and ensure that it is not 

twisted to favor a particular brand or vendor. Rules determine what is allowed and 

not allowed in the security benchmark. They are comprised in directives that 

show to users the conditions to collect security metric results, to build analytical 

and experimental setup, to enforce that the proper system characteristics will be 

disclosed to community, among others. Section 3.6 presents the guidelines to 

build the benchmark components (also termed here as component specification). 

In the next chapter, we approach the procedures and rules to execute the 

benchmark. 

Instrumentation: include all the mechanisms and tools used in the context of the 

benchmark, from the benchmark execution to the estimation of benchmark metric. 

In the next Chapter, we present more details about our case study instrumentation 

that can be adapted for other domains. 

The benchmark components of the static part are described below. 

Vulnerability Information: refers to the whole set of data used to report and 

characterize a vulnerability including CVE-ID, vulnerability description, impact, 

affected systems and versions. These are collected from sources such as public 

vulnerability databases that are later used to identify known vulnerabilities in the 

system under benchmark. Public vulnerability databases (e.g., (US-CERT 2014; 

NVD 2014; OSVDB 2014)) usually contain most of these vulnerability 

characterization and, more importantly, the CVSS impact and exploitability 

information that we use to calculate the vulnerability risk of known vulnerabilities 

(with the proper adjustments detailed in section 3.3). The instrumentation 

components that work with the Vulnerability Repository: 

Security Test Information: refers to the set of data to characterize security tests 

that can be used by a tool to confirm the existence of a given known vulnerability 

in the system under benchmark. These set of data include the following 

information: test description, affected system, affected component, affected 

versions, affected platform, CVE-ID, security practice, technical command, 

CVSS impact and CVSS exploitability. This information should be collected from 

security testing tools (e.g., vulnerability scanners) targeting the system under 
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benchmark. The purpose is to cover vulnerabilities that eventually were not 

reported in public vulnerability databases and, henceforth, are not present in the 

Vulnerability Repository. One justification to add information form security test 

is given in (Attrition 2008), where the author describes the difficulty in keeping 

vulnerability databases up to date due to the high amount of disclosures and staff 

restrictions.  

The benchmark components that are used in the dynamic part are described next.  

Workload: represents the load submitted to the system under benchmark and is 

composed by representative tasks for the class of that system. The workload is an 

essential component of benchmarks in general. In the context of pure performance 

benchmark, it is directly used to derive the metric values. In dependability 

benchmarks, it is required to exercise the system and to observe its behavior when 

specific areas of the system are activated (e.g., those that may contain faults). In 

our work, the need for a workload shares similarities with dependability 

benchmarks: we require that specific areas of the system be activated to expose 

(and make available to attacks) possible vulnerabilities existing in those areas.  

Vulnerabilityload: refers to the set of vulnerabilities identified and coded to 

enable successful attacks during the benchmark execution. More specifically, 

represents changes in  a component code/configuration to a vulnerable state for 

the same class of system components (for example, web applications written in 

PHP language). This is particularly useful to speed up the injection of 

vulnerabilities for components written using the same programming language. 

The approach to identify and inject these vulnerabilities are adapted from (Jose 

Fonseca 2011) and is comprised in the following steps: 1) select the field study 

containing the representative vulnerabilities to be injected; 2) identify the code 

changes that are necessary to make the code vulnerable (this may include 

comparing the vulnerable code with the patch applied to fix the vulnerability); 3) 

mount the set of pairs (termed in (Jose Fonseca 2011) as vulnerability operator) 

with the place in the source code where the vulnerability is likely to be found 

(location pattern) and the code change; 4) perform a static analysis in the source 

code of the component; 5) find the location where the vulnerability may exist; 6) 

mutate the code to inject the vulnerability 7) compile the code with the injected 

vulnerability and deploy it inside the system. In the implementation of the 

benchmark provided in Chapter 5, we present a concrete example to guide 

benchmark users on how to build a representative vulnerability injector. In the 

specification of the vulnerability injector provided later on, we detail each 

element of this component that should be taken into account. The implementation 

of the vulnerabilityload may vary according to the nature of the system domain. 
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For software written in C language, this refers to the change made in the source 

code to allow, for example, the execution of buffer overflows attacks. For 

software written in PHP language, the validation of input parameters should be 

weakened to allow the execution of Cross-site scripting and or SQL Injection 

attacks (we provide an example using this system domain in our benchmark 

implementation, Chapter 5). The same rationale applies to the configuration of a 

component. For software written in Java, the vulnerability injector can alter the 

structure of XMLs configuration files to force an unsecure state inside a given 

component. 

Attackload: includes a representative set of attacks that are executed against the 

system under benchmark to measure their security risk in an experimental way. 

The attackload is built based on the vulnerabilities present in the vulnerabilityload 

meaning that the attacks are directed at those vulnerabilities. For example, if a 

vulnerability weakens the validation of input parameters of the target component, 

then the attacks must exploit this vulnerability, by sending data tailored to exploit 

that lack of validation and attempt to break some security property, depending on 

the context of the location of the vulnerability. In this sense, each attack 

represents an exploit of the vulnerability to be injected in the vulnerable 

component. The rules about the diversity and number of attacks are detailed later 

on. At this point in time, it is important to clarify that each attack implementation 

shall be done following the same approach of the attacks against the system 

interface. In other words, the attackload shall be built according to the attack 

patterns provided in the Common Attack Pattern Enumeration and Classification, 

which provide implementation examples and guidelines of a variety of attacks 

targeting different software classes.   

3.6 BENCHMARK IMPLEMENTATION SPECIFICATION 

This section presents the requirements to build our benchmark components. This 

is aimed at guiding benchmark users to properly implement our security 

benchmark methodology to any class of software systems. 

One important aspect of this specification is the effort needed to implement the 

benchmark, especially to give to benchmark community an idea of the time and 

resources needed to define, develop, and deploy the benchmark. The 

implementation effort is independent from the benchmark execution and it is an 

one-time task. In the benchmark implementation we provide in Chapter 5, it was 

possible to build the components of the static part and dynamic part in 1 month, 

with one developer working full time. This topic will be better detailed later on 

and the purpose here is to point out our concern of defining requirements that 
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makes our methodology feasible from an implementation standpoint. 

Another matter worth discussing is the effort regarding the benchmark execution. 

The time needed to execute the benchmark and get the results should be as short 

as possible, being crucial to the acceptance of the benchmark by the community. 

The background here is that, in general, benchmark users are not willing to wait 

for weeks to have benchmark results, especially in a scenario where they may 

have been pressured to make fast decisions to buy a secure software, to patch a 

system, to develop and deploy additional countermeasures, to increase the 

security team, among others. In the case study we present in Chapter 6, we 

discuss in more details the effort needed to execute the security benchmark we 

built targeting widely used web serving systems.  

3.6.1 Metric Calculator 

The component that measures the benchmark metric is a calculator present both in 

the static and dynamic parts. Figure 3-3 depicts the main elements of this 

calculator (vulnerability risk, component risk, and system risk calculators). The 

central point here is that security risk shall be estimated based on the risk of 

individual vulnerabilities detected during the benchmark run, considering the 

importance of each component and the three categories of risks. In Figure 3-3, 

vulnerabilities are represented by the blank circles present in the different 

components of the system under benchmark (left side). Then, the benchmark risk 

calculator, and based on the vulnerabilities detected during the benchmark run, 

estimates the risk of vulnerabilities of each component and then provide an 

overall estimation of system security risk, which is in fact the benchmark metric. 

The general requirements to build the Benchmark Metric calculator is as follows: 

 It shall have three components: the Vulnerability, the Component, and the 

Security risk Calculator.  

 The equation to estimate the benchmark metric is the one provided in 

section 3.5. 

 There is no restriction regarding the time needed to execute the metric 

calculator. However, it is expected to have this completed in a short time 

so that this does not impact the overall execution of the benchmark run. In 

the case study we provide in Chapter 6, this step, and for each benchmark 

run, was completed in 10 seconds. 

The requirements for each one of the Benchmark Metric Calculator components 

are as follows: 

 The component weight provided by the benchmark users shall be taken 

into account. If the benchmark user provides no weight information, all 
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components shall be considered as having the same level of importance. 

 The component risk estimation shall reflect the categorization provided 

by the Vulnerability Risk Calculator. In Figure 3-3, components are 

represented by the CR boxes and provide the input for the system risk 

estimation of each benchmark part. 

 The Security Risk Calculator shall estimate the security risk of the system 

by adding the security risk of the static and dynamic parts. This sum shall 

be done separately for each category of risk. 

 The Security Risk Calculator shall assign a different weight factor for 

each category prior to the final security risk sum. The highest factor 

should be given for the high-risk category, followed by the medium and 

low-risk categories. The values we recommend were already provided in 

Section 3.5 and are respectively 0.70, 0.25, and 0.05. 

 The Security Risk Calculator shall calculate the system security risk as a 

numeric value, with no upper limit. Given that this refers to security risk, 

the higher the numeric value, the most insecure the system is.   

3.6.2 Vulnerability Repository 

The Vulnerability Repository stores and maintains information about known 

vulnerabilities targeting software-based systems.  This repository shall be built in 

the form of a relational database. This is justified by the fact that several 

vulnerability databases are already built using this format and relational databases 

allows the execution of SQL queries, widely used by the developer’s community 

across the world.  

The data required to support the vulnerability repository involves the following 

 

Figure 3-3. Security Risk Calculator 
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entities: Vulnerability, Vulnerability Risk, Category, System, Version. The 

Vulnerability entity represents the characterization of each vulnerability, which is 

described by the following properties: vulnerability ID, description, solution, and 

dates (e.g., disclosure, discovery, exploit, and solution date). The Vulnerability 

Risk represents information about the impact and exploitability of each reported 

vulnerability. The Category entity represents the classifications of each 

vulnerability. The System and Versions entities represent respectively the system 

and version where the vulnerability has been identified. Each occurrence of 

Vulnerability is related to one Vulnerability Risk, one Vulnerability Category, 

one System and one Version.  

The resulting relational schema of the vulnerability repository is depicted in 

Figure 3-4. This model is a simplified version of the one developed by the Open 

Source Vulnerability Database, which currently hosts more than 120 thousands 

vulnerabilities (data collected in September, 2015).  A brief description of each 

one of these entities is as follows: 

 The “Vulnerability” table is the main entity in this data model and is 

mandatory, hosting vulnerability ID, description, solution, and dates (e.g., 

disclosure, discovery, exploit, and solution date). 

 The “CVSS_Vulnerability_Risk” table stores information about the 

impact and exploitability of each reported vulnerability, following the 

criteria defined in the Common Vulnerability Score System. 

 The “Category” table describes the classifications considered inside the 

database model. As not all vulnerabilities are classified by vulnerability 

databases, this is an important entity. 

 The “Vulnerability_System” table links system, version and vulnerability 

together. 

 The “System” table hosts product names targeted by the vulnerability 

report (e.g., Windows, Exchange, Apache, and MySQL). 

 The “System Version” table stores the version names of the products 

where the vulnerability was discovered (e.g., 1.0, 2.0, 0.1, XP, 2000, and 

95). 

The requirements to build the benchmark Vulnerability Repository are as follows: 

 The Vulnerability Repository shall be created preferably using a database 

management system. Using an external RDBMS allow better 

interoperability with other data repositories, and alleviates the effort 



108 

needed to implement tools (in fact, it would make no sense to implement 

a custom data manager because common available RDBMS provide an 

optimized and standardized data management. The selection of the 

DBMS is left to the benchmark user. 

 The main entity of this database is the one that hosts information about 

each vulnerability reported in the field (vulnerability table).  

 The minimum information (for each vulnerability) required to build the 

vulnerability repository is as follows: id (e.g., CVE ID), release date, 

description, affected system, affected components, affected versions, 

affected platforms, CVSS impact, CVSS exploitability.  

 The vulnerability data shall be stored in a database repository using the 

Entity-Relationship data model (Chen 1976), where Vulnerability 

represents the main entity and each vulnerability ID represents a unique 

record. A comprehensive example of vulnerability data model was 

proposed by (OSVDB 2014). We used that data model in the instantiation 

of this methodology for web serving systems, which is described in 

Chapter 5. 

 Once the vulnerability repository is implemented, we estimate the 

 

Figure 3-4. Vulnerability Repository Data Model 
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maximum time needed to the automated collection of vulnerabilities from 

a typical web serving system is about 2 hours. This time was defined 

based on the case study we describe in Chapter 6, already considering 

additional time for  the case of more complex target systems or for the 

systems to which more vulnerabilities are available in the field. In fact, 

with the automation tools we built in our methodology implementation 

(described in Chapter 5), this was done in less than 15 minutes targeting 

304 vulnerabilities across 6 benchmarked systems.  

The following are important characteristics that should be taken into account 

during the definition and development of a vulnerability repository: 

 Each record in the vulnerability entity corresponds to a vulnerability 

report. 

 Each vulnerability report describes one and only one vulnerability. 

 A vulnerability report containing multiple vulnerability occurrences 

should be either separated (one vulnerability per report) or ignored in the 

benchmark run. 

 The impact and exploitability of each known vulnerability shall be 

obtained from public vulnerability databases (CVE 2014; NVD 2014; 

OSVDB 2014). This is important to estimate the individual risk of 

discovered vulnerabilities.  

3.6.3 Security Test Repository 

The Security Test Repository contains – in the form of technical commands ready 

to be executed – the security tests that shall be run by a testing tool to confirm the 

presence of known vulnerabilities in the system under benchmark. In Chapter 5, 

we provide examples of tests conducted against web servers consisting in a HTTP 

command that seeks for a given file in a given web server directory. 

The data required to support the security test repository involves the following 

entities: Security Test, Vulnerability, Vulnerability Risk, System, Version. The 

Security Test entity represents the characterization of each test to be executed and 

is described by the following properties security test ID, programming language, 

command, creation date, operating system, operating system version. The 

Vulnerability and Vulnerability Risk entities are similar to the ones described in 

the previous section. The System and Versions entities represent respectively the 

system and version where the vulnerability has been identified. Each occurrence 

of a Security Test is related to one Vulnerability, one Vulnerability Risk, one 

System, and one Version.  
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The resulting relational schema of the Security Test Repository is depicted in 

Figure 3-5 and has some similarities with the Vulnerability Repository data model 

in what regard the vulnerability entity. This is needed to associate each security 

test command with a vulnerability ID, which has the values of impact and 

exploitability that will be used to estimate the vulnerability risk for each positive 

test (i.e., the vulnerability was found in the target system). The entities of this data 

model are described as follows: 

 The “Security Test” table is the main entity in this data model, hosting 

security test ID, description, commands and links to test installer (if 

applicable), or binaries (if needed).   

 The “Vulnerability” table stores the vulnerability ID, description, 

solution, and dates (e.g., disclosure, discovery, exploit, and solution 

date). This is needed in the data model as each security ID has to be an 

associated vulnerability ID. 

 The “CVSS_Vulnerability_Risk” table has the same specification already 

described in the previous section, holding data about the impact and 

exploitability of each reported vulnerability, according to the Common 

Vulnerability Score System. 

 The “Test_System” table links test, system, and version. 

 The “System” and “System Version” tables have the same specification 

already presented in the Vulnerability Repository. 

The requirements to build the benchmark Security Test Repository are described 

as follows: 

 It shall be created using a database management system and the selection 

of the DBMS is also left to the benchmark user. 

 The main entity of this database is the one that hosts information about 

each security tests and associated vulnerabilities.  

 The minimum information required to build a security test repository is as 

follows: test ID, description, affected system, affected component, 

affected versions, affected platform, CVE-ID, security practice, technical 

command, CVSS impact and CVSS exploitability. Please note that the 

repository shall contain not only the description, but also the commands 

that test the presence or absence of a known vulnerability. This is needed 

to speed up the implementation of these tests. 
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 It shall contain security tests covering the systems and components under 

benchmark. 

 It shall contain tests that do not change the behavior of the target systems 

(termed here as non-intrusive security tests). For example, if for a certain 

system a known vulnerability is given by the presence of a certain file, 

then the security test consists in simply identifying the presence of this 

file.  

 If the vulnerability risk of a given security testing is available in a public 

vulnerability database, the impact and exploitability factors shall be taken 

from these databases. Otherwise, CVSS criteria shall be followed to 

estimate the impact and exploitability of the vulnerability associated to 

the implemented security test.  

Our methodology allows the use of existing tools as an implementation of the 

security test repository. The rules to select a representative security tool is as 

follows: 

 It shall have a comprehensive set of tests to identify known vulnerabilities 

- additional tests from other tools can be incorporated in order to reach a 

 

Figure 3-5. Security Repository Data Model 
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representative range of tests and cover a large amount of known 

vulnerabilities; 

 It shall execute non-intrusive tests against the system. The goal is just to 

check if a given vulnerability exist, and not to execute attacks that are 

covered in the dynamic part 

 It shall allow the development of new features to automate the estimation 

of the benchmark metrics described in section 3.5. 

 The maximum time recommended to the automated verification of 

vulnerabilities by the security testing tool is 2 hours1 per target system 

systems. In the case study we present in Chapter 6, this stage was done in 

less than 30 minutes considering 4 systems under benchmark and 6456 

security tests. 

3.6.4 Workload 

The workload represents the typical work that the system under benchmark 

executes. This means that a workload should be considered based on its abilities 

to simulate in a real way the set of tasks that are submitted and executed by the 

target system. 

The development of a workload from the scratch is a complex task. If the system 

to be benchmarked is a database management system, this means that benchmark 

implementers should code a program that simulates the typical DBMS operations. 

This is strictly required only if there is no representative workload available in the 

field for the software-based system that one wants to benchmark. In fact, if there 

is already a benchmark for the class of system to benchmark (e.g., a performance 

benchmark) having a workload already accepted by the industry, then it is 

desirable to adapt and use that workload (if possible and if it is representative) as 

it avoids effort and gains the acceptance already given to that workload. From the 

perspective of our security benchmark methodology, and given the myriad of 

workload available that could be adapted for different benchmarking purposes, 

the most important aspect resides in the rules to select a representative workload. 

These rules, that are inspired in classical performance benchmarks such as TPC 

and SPEC, are as follows: 

 It shall simulate a realistic execution of the system under benchmark 

(including user interaction); 

                                                      
1 This time of 2 hours is obviously postulated. However, based on the experiments done for the 

present work this time is enough to accommodate typical systems. At the same time, 2 hours 

represents an acceptable effort for most benchmarking scenarios. 
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 If the system runs in a client-server environment, it shall simulate client 

request using loads of different sizes and using different frequencies. 

 It shall allow the development of new features (to collect benchmark 

measurements and to incorporate the attackload components);  

 It shall be executed in a short period of time, having a maximum time to 

complete its operations (execution time), with upper limit of 30 minutes 

per benchmark run. The logic behind this decision is the result obtained in 

the case study we conducted, where each benchmark run took less than 5 

minutes to complete, allowing us to execute 25000 attacks on 6 systems 

in 24 hours. Without this execution time restriction, benchmark usability 

will be compromised, since end-users want to get fast results when 

benchmarking systems.   

 It shall have a ramp-up and ramp-down time. The maximum time 

recommended for each one of the ramp-up and ramp-down phases is 5 

minutes, also based on the experience we had with our case study. This is 

the time needed to the execution of the benchmark without the conduction 

of attacks and collection of security measurements. Without this time 

defined, the system under benchmark will not be working in a stabilized 

way (e.g., stable memory and process consumption) and the benchmark 

results will be either biased or compromised. In other words, benchmark 

measurements shall be only collected once the system reach a stable state, 

avoiding the performance peaks during its startup and shutdown. 

3.6.5 Vulnerability Injector 

The vulnerability injector of our security benchmark methodology is based on the 

vulnerability injection methodology proposed in (J. Fonseca, Vieira, and Madeira 

2009). The prerequisite here is that the source code and configuration files of the 

target component shall be available.  In case source code is unavailable, the 

benchmark remains useful, as the attackload will target only vulnerabilities 

present in the system interface, with no need of injecting malicious code inside 

the system component. These are the rules to build the vulnerability injector: 

 It shall provide the following functionality: (1) get the source code and or 

configuration files of the system component where vulnerabilities will be 

injected, (2) change the code and or the configuration of the component to 

an unsecure state (this is when vulnerability injection happens), and (3) 

turn the vulnerable component back to the system. 

 It shall inject only representative vulnerabilities for the system under 



114 

benchmark. To obtain a representative set of vulnerabilities two 

approaches can be adopted: 

Field study on the vulnerability field. Benchmark implementers shall take 

advantage of studies that already collected, analyzed, and characterized 

real vulnerability codes from several versions and brands of the targeted 

components. An extensive field study mapping software faults to security 

vulnerabilities is described in (J. Fonseca and Vieira 2008), analyzing 655 

security patches of widely used web applications. 

Analysis of known vulnerabilities. Vulnerability information collected 

from vulnerabilities databases can be used to identify the most 

representative vulnerabilities reported in a given system component. The 

challenge here is to obtain access to the system source code when it is 

unavailable in the vulnerability report. What one can do is to take note of 

the affected version and configuration, download and analyze the source 

code. Obviously, this is just possible when benchmark users have full 

access to the source code of the component or systems under benchmark. 

 To work in accordance with the expected functionality, it shall be formed 

by the following components (adapted from (J. Fonseca, Vieira, and 

Madeira 2009)): 

Vulnerability Operator. This component shall store the location pattern 

and vulnerability code/configuration change. The location pattern 

characterizes the place in the source code where the vulnerability is likely 

to be found. The vulnerability code change defines what has to be done to 

the piece of code targeted by the location pattern in order to make it 

vulnerable, without affecting the functional behavior of targeted 

component. Both the location pattern and the vulnerability code are 

identified as a result of the field study conduction described earlier. 

Content Collector. This component shall collect the configuration and 

code files of the system component to be targeted by vulnerabilities 

(vulnerable content) and deploy it into the vulnerability injector 

workspace (a place in the benchmark management system to the 

manipulation of the component contents). Examples of contents are the 

source code of web applications (Java file, PHP files, etc.) and 

configuration files of application servers (e.g., .xml, .properties files). 

Injection point locator. This component shall localize where 

configuration and software fault vulnerabilities can be injected in the 

collected contents based on the information provided by the Vulnerability 
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Operator. Examples of injections points are described below. 

Content mutator. This component shall change a configuration or a piece 

of code to a vulnerable state defined by the vulnerability operator. For 

example, an input variable that is correctly escaped could be mutated to 

allow Cross-site script or SQL injection attacks. An important aspect is 

that these code changes should not prevent the component from running 

properly.  In other words, even after injecting the vulnerability, the end 

user  shall  be  able  to  execute  all  the  component  features. 

 The injection shall be done in a component different from the benchmark 

target (for the reasons described earlier). 

 There is no restriction regarding the time needed to the injection of 

vulnerabilities since it is expected to be conducted prior to the benchmark 

execution. 

Table 3-2. Missing Function Call Extended (Jose Fonseca 2011) presents one of 

the vulnerability operators described in (Jose Fonseca 2011). This vulnerability 

operator can be used to locate Cross-site scripting vulnerabilities in web 

application code written in PHP language. This vulnerability operator was 

proposed after a field study mapping software faults and security vulnerabilities 

(J. Fonseca and Vieira 2008). An extension of this study to Java-based web 

application is presented in (Seixas et al. 2009). In these fields studies, the authors 

analyzed the software faults reported as a vulnerability (by comparing the 

vulnerable code with the fix pack) following the procedures and fault 

categorization proposed by (J. A. Duraes and Madeira 2006). The list of software 

fault categorization used in these works is presented in Table 3-3. This list is not a 

compilation of faults that will necessarily lead to vulnerabilities. The intent here is 

to present the faults types that are representative of open-source software faults 

and that could be injected if they make the system behaves in an insecure way.  

3.6.6 Attackload 

The attackload is used during the workload execution by attacking the system 

while it performs a set of common operations. This is done by emulating 

malicious users attempting to exploit vulnerabilities present in the system 

interface and in a component outside the benchmark target (those injected by the 

vulnerability injector). While attacks are conducted, the security checker (which is 

described in the next section) observes any alteration in the behavior of the 

system (system response correctness, system availability, restricted areas access) 

and provides the input needed to the estimation of the security risk of the 
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benchmarked system.  

The attackload applied in the context of security benchmarking is one of the key 

contributions of our methodology. This allows the assessment of security in an 

experimental way by stressing the systems with real attacks. There are two 

important aspects that are worth describing prior to getting into the attackload 

requirements: the representativeness of the attacks and their implementation. The 

Table 3-2. Missing Function Call Extended (Jose Fonseca 2011) 

Vulnerability Operator 

Attribute 
Attribute restrictions and actions 

Location Code Pattern 

Locate a function with the following characteristics:  

- The function must be the (int) type cast or it is the intval PHP 
function.  

- The argument  of  the  function  is directly  or  indirectly  related  to  

an input  value  from  the  outside:  POST,  GET,  the  return  of  a  
SQL query.  

-  The output of the function is going to be displayed on the screen or 

is  going  to  be  used  in  a  POST,  a  GET  variable  or  is  going  to  
be used in a SQL query string.  

- The  function  can  be  an  argument  of  another  function  or  have 
another function as the argument.  

- In the argument of the function, the vulnerable variable may also be  

present     inside     a     $_GET,     $HTTP_GET_VARS,     $_POST,  

$HTTP_POST_VARS PHP variable arrays. 

Code Change 

If the function is used in an assignment as the only line of code and  

the  variable  is  not  inside  $_GET,  $HTTP_GET_VARS,  
$_POST  or  

$HTTP_POST_VARS PHP variable arrays the whole line of code is  

removed. For example, remove the line:  

$vuln_var = intval($vuln_var);  

- If the function is used in an assignment as the only line of code and  

the  variable  is  inside  $_GET,  $HTTP_GET_VARS,  $_POST  or  

$HTTP_POST_VARS  PHP  variable  arrays  only  the  function  is 

removed from the code, leaving the argument intact. For example,  
replace:  

$vuln_var = intval($_GET['vuln_var']); with  

$vuln_var = $_GET['vuln_var'];  

- In the other cases only the function is removed leaving in the code  

only  the  variable,  or  the  $_GET,  $HTTP_GET_VARS,  $_POST, 

$HTTP_POST_VARS PHP variable array if the variable is inside. 

For example, replace:  

…“'str1'.intval($vuln_var).'str2'”; with  

…“'str1'.$vuln_var.'str2'”; 
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rules for executing the attacks are described in the next chapter; and the 

assessment of attack impact that are used as input for the security risk estimation 

is presented in the next section. 

To provide useful results, the attackload should focus on attacks that are 

commonly found in the real world. To build a set of representative attacks, 

benchmark implementers should look at the representative vulnerabilities 

targeting the systems under benchmark. The logic behind this reasoning is that a 

successful attack necessarily exploits a vulnerability that exists on the system. By 

mapping the common vulnerability first, it becomes easier to decide which attacks 

should be addressed by the attackload. Taking web applications written in PHP as 

example, the improper validation of input parameters is the top vulnerability 

found in the field (J. Fonseca and Vieira 2008), having the SQL Injection and 

Cross-site Scripting as representative attacks. 

The implementation of the attacks is a real challenge. Not all benchmark 

implementers may have the technical skills to code and deploy the attacks needed 

to stress system security. Although we recognize the need of having programming 

expertise to complete this part of the attackload process, we do believe that there 

is sufficient information in the field to guide developers on how to code a 

successful attack. The first source of information, as already mentioned before, is 

the Common Attack Pattern Enumeration and Classification, which contains the 

attack execution flow, exploit examples, and methods for a myriad of attacks. For 

example, if the vulnerability (CWE-79 2014) is one of the most representative for 

a web-based system, then (CAPEC-18 2014)(embedding scripts in non-scripts 

Table 3-3. Software faults types 

Type Description 

MFC Missing Function Call 

MFC Extended Missing Function Call returning the same data type as argument 

MVIV Missing Variable Initialization Using a Value 

MIA Missing If Construct Around Statements 

MIFS Missing If Construct Plus Statements 

MIEB Missing If Construct Plus Statements Plus Else Before Statements 

MLPA Missing small and localized part of the algorithm 

WPFV Wrong variable used in parameter in function call 

WLEC Wrong logical expression used as branch condition 

EFC Extraneous function call 
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elements) shall be used as a guideline for implementing the attacks. The second 

source of information is the exploits already available in the field. There are 

several open-source tools that could be used as source of information to build the 

needed attacks (Metasploit is one of the exploit tools widely used in the field 

(Metasploit 2015)). It is also possible to adapt penetration testing tools to fit in 

our benchmark process and take advantage of already developed tools to stress the 

security of our systems. In the case study we present in Chapter 6, we coded our 

own attacks, but it is worth remarking that our methodology has a high degree of 

flexibility, allowing implementers to reuse attacks originated from other tools. 

The rules to define the attackload are described as follows: 

 It shall be organized in a set of vulnerability-attack pairs. The pairs 

vulnerabilities-attack shall be chosen in accordance with a vulnerability 

field study (e.g., for web applications there is a field study available in (J. 

Fonseca and Vieira 2008) on the most representative vulnerabilities) as 

already described in the previous section. 

 It shall be built with the components exemplified in Figure 3-6. These 

components were adapted from (J. Fonseca, Vieira, and Madeira 2009) 

and here they are used with the purpose of stressing the security of the 

system and collect metrics that will allow security comparison: 

Vulnerability Injector. This corresponds to the vulnerability injector 

described early. This component injects real vulnerabilities in a 

component outside of the benchmark target. 

Attackload Generator. This component generates the exploit (malicious 
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Figure 3-6. Attack injector components 
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interaction patterns and code) for each vulnerability injected. 

Attack Executor. This component runs the exploit against the Vulnerable 

Component during the benchmark run. 

 The attacks built by the Attackload Generator shall be implemented in 

accordance with the guidelines of the Common Attack Pattern 

Enumeration and Classification. 

 It shall conduct attack against the component outside the benchmark 

target. As already described earlier in this section, the goal is to observe 

the behavior of the benchmark attacks when attacks are conducted in 

another component. 

 It shall exploit only one vulnerability per each benchmark run. If more 

than one vulnerability is exploited, it will not be possible to determine 

which one compromised the security of the system and the vulnerability 

risk estimation will not be possible to compute. 

 It shall execute multiple and concurrent attacks (targeting the same 

vulnerability). The purpose here is to verify how the system behaves 

when one vulnerability is exploited simultaneously by different attackers 

(simultaneous attacks may stress the system more than just one attack at a 

time, and the observation of this scenario may be relevant). At least 20 

attackers shall be simulated, simultaneously executing 10 attacks per 

benchmark run. This number was defined based on the case study we 

conducted with a workload execution duration of 3 minutes. This is the 

base measurement that shall be considered. If the workload measurement 

interval is 10 minutes, for instance, then at least 40 attackers shall be 

simulated and so on. 

 It shall support all attacks types identified during the vulnerability field 

study. A diversity of attacks shall be conducted in order to properly check 

the behavior of the system. 

 The number of attacks for a given attack type shall be the same across all 

benchmark runs and target systems (note that the attackload is used 

during the dynamic part and it is not directly related to the number of 

discovered vulnerabilities for each system, which will be diverse). 

 The attackload shall be conducted during the measurement interval of the 

workload, which means that it shall have a maximum time of 30 minutes 
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of execution per benchmark run2, without considering the ramp-up and 

ramp down time (5 minutes each). This is done to observe the behavior of 

the system while attacks are executed and to set up a system state similar 

to those of real attacks in the operational scenario 

3.6.7 Security checker 

The Security Checker is aimed at verifying if the benchmark attacks were 

successful and at assessing the extent of the attack impact to the whole system. 

This is basically done by observing the behavior of the system considering the 

security attributes of confidentiality, integrity, and availability.  

To properly evaluate the impact of attacks, the Security Checker compares system 

information collected during two independent benchmark execution stages. In the 

first stage, the benchmark is executed without attacks (termed here as baseline 

execution). From a benchmark standpoint, this means that the Benchmark 

Management System will start the system along with the benchmark workload 

(with no attack execution). This is a crucial step, as it enables to collect system 

metrics and output within a normal circumstance (when there is no actions to 

stress its security). More specifically, and for this scenario, the security check is 

executed to collect the following: the expected response of the system for each 

request made by the workload; the expected response time for each request and 

the average response time during the workload execution; the expected results 

when accessing restricted contents; the expected response when accessing 

restricted contents and so on.  

The second stage is the execution of the system and of the benchmark by 

activating the attackload component. This means that the security checker collects 

information while attacks are being conducted the vulnerable target. Once each 

piece of information is extracted, the security checker performs a comparison with 

the information gathered in the first scenario, in order to measure the extent of the 

impact of attacks on the security attributed we already described. If there were 

limited to certain areas or data of the system, then it shall be considered a partial 

impact for a given security attribute; otherwise; it shall be considered a complete 

impact.  

The impact assessment on system confidentiality shall be performed considering 

the capability of the system to keep information undisclosed (when and where 

needed) during the execution of attacks. One example of checking here is to 

                                                      
2 Execution time recommended based on the on the case study presented in Chapter 6. It may vary 

depending on the characteristics of the system under benchmark. 
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monitor the access to restricted areas. If for some reason the system allows the 

access to restricted areas, then there was an impact on confidentiality. Another 

important example is to monitor the content of restricted areas. If there is more 

information than the one provided without the execution of attacks, then this 

means that there was an impact on confidentiality. This shall be done comparing 

the response to access restricted areas during the baseline execution (no attacks) 

with the attack execution.  

The impact assessment on system integrity shall be performed considering the 

capability of the system to keep information protected against unauthorized 

modification (when and where needed). During the baseline execution of the 

system, the security checker shall get all response and output provided by the 

benchmark target. Then, this output shall be compared with the one generated 

during the execution of attacks. If there was any change to a limited number of 

information, then the impact on integrity was partial; otherwise, there was a 

complete impact.   

The impact assessment on system availability takes into account the response time 

of the system by comparing the results of the baseline execution against the 

execution with attacks. The goal here is to monitor not only the impact on 

response time, but also the capability of the system and the benchmark target to 

handle the requests sent by the workload client. If the response time was not 

affected, but the benchmark target was unable to process the expected number of 

requests when compared with the baseline execution, there was a performance 

degradation from a client perspective in the sense that he or she did not receive 

the expected the response within the time expected. If the availability was 

impacted in a limited number of requests, then the impact was partial; otherwise, 

it was a complete impact. 

The rules to build the Security Checker is described as follows: 

 It shall have the following components (as depicted in Figure 3-7): the 

confidentiality checker, the integrity checker, the availability checker, the 

exploitability checker, and the data collector. These components are 

described later on in section 3.6.7. 

 Each one of these components shall assess the impact extent of a 

vulnerability exploitation for each one of the security attributes according 

to the criteria provided in the Common Vulnerability Scoring System, 

already explained in Chapter 2 and specified in (Mell, Scarfone, and 

Romanosky 2007). 

 The Confidentiality Checker verifies if there was partial or complete 
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impact to system confidentiality. A partial confidentiality impact occurs if 

there is considerable information disclosure (partial loss of 

confidentiality). A complete confidentiality impact occurs if there is total 

information disclosure (complete loss of confidentiality). Table 3-4 

presents the rules to assess the impact on confidentiality attribute 

according to the criteria of Common Vulnerability Scoring System. If at 

least one of these rules are meet (and this verification shall be 

implemented by the security checker), then there was either a partial or 

complete confidentiality compromise. 

 The Integrity Checker verifies if there was partial or total impact on 

system data integrity. A partial integrity impact occurs if users are 

allowed to partially modify system component. A complete integrity 

impact occurs if users are allowed to completely modify system content. 

Table 3-5 presents the specific rules that shall be implemented in the 

security checker to verify if the integrity was compromised. 

 The Availability Checker verifies if there was partial or total availability 

compromise during attack execution. Table 3-6 specifies the rules to 

verify if there was a partial or complete availability compromise, also 

following the CVSS specification. 

 The Data Collector shall monitor and collect the following metrics from 

the benchmark target: response time, response correctness, access to 

restricted areas, and modification of restricted contents. These are the 

 

Figure 3-7. Security checker components 



123 

metrics that will allow the security checker to observe the impact on the 

security attributes.  

 The Report Generator shall provide the result of an attack execution in 

terms of vulnerability risk. If the attack was successful, it is necessary to 

check the level of impact and exploitability to the exploited vulnerability. 

 Benchmark users are free to add other tests to check the impact on 

security attributes, with the condition of executing again the benchmark 

against the system under benchmark, and not changing the security tests 

across the entire benchmark run. This is needed to make sure that the tests 

will be the same and the results of the benchmark will not be biased. 

 The time needed to execute the security checker, considering that this is 

fully automated, is the same of the attackload execution, which means 

that it will be executed in a maximum time of 30 minutes. The rationale 

of this number was already mentioned and is based on our experience 

with the case study presented in Chapter 6. 

3.6.8 Exploitability checker 

The Exploitability Checker assesses the easiness of exploiting a vulnerability 

considering the complexity of the attacks (low, high, medium), the layers of 

authentication needed (none, single, multiple), and the location from where the 

attack is executed (local, remote). The result of this analysis is used by the Metric 

Calculator to estimate the probability factor of the vulnerability risk equation. 

This calculator also translates the CVSS metric values that shall be used for each 

exploitability category.  

The Exploitability Checker shall allow the manual input of exploitability factors 

Table 3-4. Confidentiality Impact Assessment Rules 

Category Partial Impact Complete Impact 

Disclosure 
Access to some restricted 

contents is possible 

All restricted and confidential contents were 

revealed after the vulnerability exploitation 

System Data 
The attacker is able to read a 

portion of system’s data 

The attacker is able to read all of the system´s 

data (memory, files, database records, etc.). 

Restricted 

content 

An unauthenticated user is able 

to access restricted content on 

the Benchmark Target 

Any user is able to access restricted content 

on the Benchmark Target 

Privilege 

elevation 

An unauthorized user is able to 

execute authorized actions in 
the Benchmark Target 

Any user is able to execute authorized actions 

in the Benchmark Target 
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by benchmark implementers. For example, if all representative attacks are 

executed from a remote network, with no need of authentication, and with a low 

level of complexity, then these parameters can be manually set by the benchmark 

implementer and the exploitability checker has no need to perform any 

verification. 

The exploitability requirements were described in Chapter 2 and are summarized 

as follows: 

 The access vector shall be checked considering the network source of an 

attack (local, adjacent network, network). If a vulnerability can be 

exploited from a remote network, then it is easier to exploit than a 

vulnerability that can only be exploited with a local access into the 

system.  If the vulnerability is easier to be exploited, then this means that 

the probability of exploitation is higher, which in turn will result in a 

higher probability value in the risk equation of the benchmark metric.  

 The authentication shall be assessed considering the number of layers of 

authentication needed to conduct an attack (none, single, and multiple). 

Table 3-5. Integrity Impact Assessment Rules 

Category Partial Impact Complete Impact 

Data 

modification 

The attacker does not have control over 

what can be modified, or the scope of 
what the attacker can affect is limited. 

The attacker is able to modify any 

files on the target system 

Content 

overwritten 

Content may be overwritten or modified 

in a limited way. 

Any content may be overwritten or 

modified 

Expected 

Response 

The BT target is not providing the 

expected response for some requests. 

The benchmark target is not 

providing the expected response for 
the system clients. 

 

Table 3-6. Availability Impact Assessment Rules 

Category Partial Impact Complete Impact 

Response 

The system or any resource 

provided by the system to the 

client became unavailable for a 
short period of time. 

The system or any resource provided by the 

system became unavailable longer than the 

workload timeout. If this happened, then 
there was a complete loss of availability. 

Trustable Host 

A trustable host had its 

connection denied by the 
benchmark target. 

All trustable hosts had their connection 
denied with the Benchmark Target. 
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The more authentication layers are needed, the more difficult is to exploit 

a vulnerability.  

 The access complexity shall assess the difficulty that an attacker has to 

exploit a vulnerability, according to the CVSS categories that are 

exemplified as follows: 

- Low complexity: The attack can be performed with no 

automation, and little skill is needed to deploy the attack. The 

vulnerable configuration is default. 

- Medium complexity: Attacker shall gather some information 

before conducting a successful attack (e.g., social engineering 

may be needed). The vulnerable configuration is non-default. 

- High complexity: To exploit the vulnerability, high level of 

privileges on the vulnerable component is required. The 

vulnerable configuration is very rare. 

3.7 CONCLUSION 

This chapter presented our risk-based methodology to benchmark the security of 

any class of software-based systems. This general methodology is based on 

classical benchmark proposals in the field of performance and dependability, 

using components such as metrics, workload, procedures and rules, and 

experimental setup. This methodology uses the notion of risk in a quantifiable 

way and allows the comparison of functionally equivalent systems (or different 

configurations of the same system) to enable users and system integrators to 

identify and select the most secure one. Our benchmark metric is SBench, which 

is estimated independently for each benchmark part and is calculated by the 

weighted sum of the security risk of these parts.  

Our security methodology takes into consideration both known vulnerabilities 

(i.e., those that were previously discovered for the target system and are known to 

the public) and unknown vulnerabilities (i.e., those that are not yet discovered). 

The risk posed by known vulnerabilities is estimated using a different process 

than the risk of unknown vulnerabilities. Consequently, our benchmark 

methodology is organized in two parts: one static part, and one dynamic part. 

The static part measures the security risk based on the knowledge of known 

vulnerabilities. These vulnerabilities are identified considering two different 

sources. The first source refers to the vulnerabilities that are reported in the field 

(e.g. vulnerabilities databases). The second source refers to the execution of 

security tests aimed at confirming the presence of known vulnerabilities.  
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The dynamic part measures the security risk based on the behavior of the system 

under benchmark when facing realistic attacks. This is done by injecting 

vulnerabilities in a component different from the benchmark target (the vulnerable 

component) and attacking them, while collecting security measurements. The 

purpose of this vulnerability injection is to anticipate security breaches that may 

occur in another component and, from a security comparison perspective, evaluate 

the robustness of the benchmark target when attacks are directed against other 

components of the system. 

The specification of benchmark components was also provided. The objective 

was to provide the rules to be followed when building each component of the 

security benchmark. The vulnerability repository and the security test repository 

of the static part should be built in accordance with the data model we described. 

The vulnerabilityload and the attackload should target the most representative 

security issues that happen in the real world. This is particularly important to 

make the results of the benchmark useful to the community. Furthermore, the 

purpose of this specification is to ensure that different teams following the same 

set of criteria will reach to a similar implementation. The effort involved in the 

building of the benchmark components will be subject of discussion in the case 

study we present in Chapter 6. 

The security benchmark metric, the combination of the static and dynamic parts, 

and the specification we provided form the basis of our security benchmark 

methodology (the procedure on how to execute the benchmark are provided in the 

next chapter). To the best of our knowledge, this is a completely novel 

contribution to the security field, as our methodology proposes a risk-based 

metric to quantify the security level of systems (also allowing the breakdown of 

this metric for more detailed analysis) and has a complementary approach to 

cover known and unknown vulnerabilities (the static and the dynamic part) in a 

analytical and experimental way.   
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CHAPTER 4  
  

   4. BENCHMARK 

PROCEDURES AND RULES 

This chapter presents the procedures and rules to run our security benchmark 

methodology. The purpose is to present the procedures to be used by benchmark 

implementers to prepare and execute the benchmark components described in the 

previous chapter. These procedures are essential to ensure that different users will 

use the security benchmark in a consistent and uniform way and produce results 

that are repeatable and comparable.  

The reminder of this chapter is as follows. Section 4.1 provides a general 

description of the execution rules of the benchmark. Section 4.2 describes the 

instrumentation components of our security benchmark. Section 4.3 details the 

deployment procedure to install and configure the target system and the 

benchmark. Section 4.4 presents the procedures of the static part. Section 4.5 

describes the procedures of the dynamic part. Section 4.6 details the procedures 

related to the benchmark metric. Section 4.7 presents the rules for the disclosure 

of the benchmark report. Section 4.8 concludes this chapter.   

4.1 BENCHMARK GENERAL PROCEDURE 

The general steps that are needed to build and execute our benchmark (execution 

profile) are described as follows: 

1. Benchmark implementation. This consists in the implementation of the 

benchmark components, including the workload, the vulnerability 

repository, the security tester, the vulnerability injector, and the 

attackload that are described later on. The particularities to instantiate the 
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benchmark components to target the system of our case study are 

discussed in the next chapter. 

2. Setting the analytical and experimental environment. This consists in 

the installation and configuration of software and network that will enable 

the benchmark run of the static and dynamic parts. 

3. Execution of the static and dynamic parts. This consists of performing 

tasks that include the analysis of information from the target system, the 

extraction of vulnerability information and the execution of attacks. The 

final step of the benchmark run is the estimation of the benchmark metric. 

In Chapter 5, we show that most of these tasks can be automatized. 

The execution of our security benchmark methodology is guided by the following 

rules: 

 A benchmark run is organized in two parts: the static part and the 

dynamic part. 

 The benchmark executer is free to decide which benchmark part will be 

executed first. 

 The configuration of the SUB must be exactly the same in each phase of 

the static and dynamic part. The use of a configuration optimized for 

security in any one of the phases is not allowed. 

 At the end of the execution of both parts, the Benchmark Management 

System (BMS) shall3 calculate the final security risk based on the 

preliminary security risks of the static and dynamic part. 

 The Static and dynamic parts shall be executed in an automated way. 

However, human interventions that do not affect the execution and results 

of the benchmark are accepted. An example of human intervention is the 

identification of the brands, versions, and configuration of the 

components running in the system under benchmarking. Another example 

is the manual injection of vulnerabilities in a component outside the 

benchmark target as the automated injections of vulnerabilities rely on 

tools that are usually hard to find and to develop. 

It is worth noting that the duration of the static and dynamic parts depend on the 

assessment of the individual risk of the known and unknown vulnerabilities (those 

that were found by the execution of attacks) present in each System Under 

                                                      
3 When stating the rules, we adopted a typical construction (shall) used in standard requirements of 

Software Engineering 



129 

Benchmark (SUB) component. 

The rules specific to each benchmark part are described in the next sections. 

4.2 BENCHMARK INSTRUMENTATION RULES 

This section details the rules to implement the instrumentation that support the 

benchmark components described in Chapter 3. The benchmark and 

instrumentation components of our security benchmark methodology are depicted 

in Figure 4-1. The instrumentation components are described as follows: 

Experiment Controller: This component is responsible for orchestrating the 

benchmark execution and shall be implemented according to the following rules: 

 It shall manage the execution of the entire benchmark, starting and 

stopping the target system and benchmarked components in the proper 

time and order. 

 It shall have the proper permissions to handle the system processes and 

benchmark components. 

 It shall ensure that no process or services from the previous benchmark 

execution are being executed prior to the initiation of a new benchmark 

run. 

 

Figure 4-1. Security Benchmark and Instrumentation Components 
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 It shall run the two benchmark parts in different times.  

 It shall collect and keep information that will be used later to estimate the 

benchmark metric. 

Vulnerability Extractor and Analyzer: This instrumentation component 

conducts the load of known vulnerabilities into the repository and shall comply 

with the following rules:  

 It shall extract vulnerability information from vulnerability databases, 

transform the data when needed, and load it into the repository. 

 It shall categorize vulnerabilities either by using information that are 

available on vulnerability databases or by parsing information available in 

the vulnerability description. 

 It shall keep the extracted information locally to avoid unnecessary 

queries to external databases.  

 It shall be executed in a regular basis to keep the repository up to date (at 

least every week), ensuring that the most recent known vulnerabilities are 

taken into account during the benchmark execution.  

 It shall consolidate benchmark results in an open format (e.g., CSV) to 

make risk estimation easier. 

Version and Configuration Detector: This instrumentation component is 

responsible for gathering the brand name and versions of each software to be 

benchmarked, with the following rules: 

 It shall detect the version and brand of the components of the system 

under benchmark. 

 It shall keep this information in an open format (e.g., CSV). 

 It shall provide the version and brand parameters to the experiment 

controller, which will be used to query the vulnerability repository and 

filter only the known vulnerabilities affecting the system under 

benchmark. 

Test Collector. This instrumentation component is responsible for collecting 

security tests from representative security tools (e.g., widely used security 

scanners) and shall comply with the following rules.  

 It shall collect tests from representative tools and load them into the 

Security Test Repository. The rules to select a representative tool were 

already described in Chapter 3. 
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 For each vulnerability associated to each test, it shall estimate the impact 

and probability of vulnerability exploitation following the criteria defined 

by the Common Vulnerability Scoring framework described in Chapter 2. 

The benchmark allows the manual estimation of these risk factors prior to 

the execution of the benchmark. 

Test Executor. This is the tool responsible for executing the security tests against 

the target system and shall be implemented according to the following rules: 

 It shall execute the tests available in the Security Test Repository, but 

only those applicable to the system under benchmark.  

 It shall provide to the metric calculator the test results to the estimation of 

the vulnerability risk (in case a test is positive).  

Metric Calculator: This component estimates the risk of the vulnerabilities 

identified during the benchmark run and shall be instantiated within the two 

benchmark parts and also should comply with the following rules: 

 It shall have a Static Risk Calculator instance to estimate the risk of 

known vulnerabilities, consolidate them with the results of the security 

tests and compute the security risk of the static part.  

 It shall have a Dynamic Risk Calculator that will measure risk to the 

benchmark target of successfully exploited vulnerabilities, also 

consolidating the results to form the security risk of the dynamic part.  

 It shall have a Metric calculator to add up the security risk of the static 

and dynamic parts and compute the benchmark metric (SBench), 

following the criteria provided in Chapter 3.  

4.3 BENCHMARK DEPLOYMENT PROCEDURE 

The deployment of the benchmark consists in preparing the analytical and 

experimental setup that will enable the benchmark execution. This preparation 

addresses the installation and configuration of the hardware and systems aimed at 

supporting the benchmark execution, as well as the deployment of the benchmark 

supporting tools. We assume here that these tools are already developed, tested 

and ready for deployment. The deployment procedure is organized in five steps 

that shall be executed only once. These steps are described as follows: 

 Step 1. Installation and configuration of the hardware needed to the 

execution of the system and benchmark. This starts with the installation 

of the computer equipment and network that will form the experiment 

infrastructure.  
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 Step 2. Installation and configuration of the software that runs on the top 

of the hardware infrastructure, the operating system. 

 Step 3. Installation and configuration of the system to be benchmarked, 

including all component of the system (e.g., the benchmark target, and the 

vulnerable component). 

 Step 4. Installation and configuration of the instrumentation components, 

ranging from the experiment controller to the metric calculator. 

 Step 3. Installation and configuration of the benchmark components of 

the static part, including the Vulnerability Repository, the Version and 

Configuration Detector, the Vulnerability Extractor and Analyzer, 

Security Test Tool, and Static Risk calculator.  

 Step 4. Installation and configuration of the benchmark components of 

the dynamic part, including the Workload, the Attackload, Security 

Checker, and the Dynamic Risk Calculator. 

 Step 5. At the end of each phase, the installation and configuration must 

be verified. This basically consists in checking if all systems were 

properly installed, configured and will run as expected.  

The execution of this preparation procedure must comply with one single rule: 

The hardware and software configuration shall remain the same across all 

benchmark runs. The only exception to this rule refers to the Benchmark Target, 

which is the component in which security metrics are collected for comparative 

purposes. For example, in our case study we benchmarked the security of 

functionally equivalent web servers. Different web servers are tested, but the 

remaining components and hardware configuration remain the same 

4.4 STATIC PART PROCEDURE 

The static part shall start with the detection of the version and current 

configuration of the components of the targeted system. Then, the benchmark 

searches in the vulnerability repository component for known vulnerabilities 

matching the version and configuration provided as input. Once this step is 

concluded, the benchmark runs the security test component to identify additional 

known vulnerabilities. Here the user is allowed to run vulnerability scanners tools 

to make sure that a large extent of known vulnerabilities are addressed. This 

simply consists in executing tests to verify whether given known vulnerability are 

present in the system under benchmark. At the end of this part, and considering 

the vulnerabilities identified (i.e., present), the benchmark calculates their risk and 

measures the security risk of the static part following the rules detailed in section 
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3.3. 

The static part shall be run in four stages in the following order: Preparation, 

Vulnerability Extraction and Analysis, Security Test Execution, and Measurement 

Stage. 

4.4.1 Preparation Stage 

The purpose of this stage is to select the tools that will be used during the static 

part execution. This is applicable to the execution of security tests, as the 

extraction of known vulnerabilities may require the development of customized 

tools.   

The rules to select a representative security tool that will run security tests to 

confirm the presence of known vulnerabilities were already discussed in Chapter 

3. The purpose here is to remark that this shall be done prior to the execution of 

the remaining stages. 

4.4.2 Vulnerability Extraction and Analysis Stage 

This stage addresses the measurement of the security risk based on the knowledge 

of individual vulnerabilities collected from the field. This must be done in three 

steps: 

 Step 1. Refers to the detection of the brand, version, and configuration of 

the SUB components. 

 Step 2. Consists in selecting from the Vulnerabilities Repository known 

vulnerabilities matching the criteria provided in step 1, i.e., matching the 

specific SUB. 

 Step 3. Includes the measurement of vulnerability risk as the last step of 

this stage. The criterion to compute this vulnerability risk is the one 

presented in Chapter 3. 

4.4.3 Security Test Stage 

This stage consists in the execution of the security testing tool to discover known 

vulnerabilities present in SUB and should include two steps: 

 Step 1. Run the security test tool against each component of the SUB, or 

under the component under benchmark. The security tests must be 

executed one at a time. The results of each security test should be made 

available to benchmark users in an open format (e.g., (Shafranovich 

2005)). 
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 Step 2. For each positive test (a test is positive if it reveals that a known 

vulnerability is present), the impact and the exploitability of the 

discovered vulnerability are computed to obtain the vulnerability risk. 

The criteria to estimate the impact and the exploitability risk are those 

defined in the Common Vulnerability Scoring System (Version 2), as 

seen in Chapter 3. 

4.4.4 Measurement Stage 

This stage consists of the measurement of the security risk of the static part. The 

procedure is as follows: 

 Step 1. The security risk of each component must consider the relative 

importance of each component to the whole system. This relative 

importance shall be provided by the benchmark user. 

 Step 2. At the end of the extraction and analysis of known vulnerabilities 

and of the execution of security tests, the security risk of the static part is 

computed. This security risk takes into account the risk of individual 

vulnerabilities detected in each component, as well as the component 

weight provided in step 1. 

 Step 3. The security risk of the static part is computed by adding the 

results of Step 2. In fact, the security risk of the static part is given by the 

sum of the security risk of the Vulnerability and Analysis and Security 

Test Stage. 

The execution of this stage shall comply with the following rules: 

 This stage shall only be executed after the successful completion of all 

previous stages of the static part. 

 The security risk of each component shall be computed based on the 

individual risk of vulnerabilities that were discovered in the Benchmark 

Target (BT) after the vulnerability extraction and test execution. 

 The security risk of the static part shall be computed based on the security 

risk of each component. 

 The security risk of each component shall consider the relative 

importance of each component to the whole system. 

 The formula that should be used to calculate component and static part 

security risk were described in Chapter 3. 
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4.5 DYNAMIC PART PROCEDURE 

The execution of the dynamic part is aimed at assessing the effects of unknown 

vulnerabilities to the benchmark target. The idea here is to execute attacks against 

system components while observing the security behavior of the benchmark 

target. This means that an experimental approach must be used to achieve this 

goal, and there is no certainty that the effects of all unknown vulnerabilities will 

be assessed.  

The dynamic part begins by running the system under benchmark in a normal 

operation with the workload component.  The purpose is to observe the system 

baseline behavior and collect measurements that will be used later to help 

evaluating whether the system security was compromised.  Once the baseline 

execution is completed, attacks are executed against the system interface and 

against the system components through the attackload component (vulnerabilities 

are injected in system components by the vulnerability injector, prior to the 

benchmark execution). While attacks are being executed, the security checker 

keeps verifying if any of the security attributes of the benchmark target has been 

partially or completely compromised. This security checking is done by 

monitoring system responses. By the end of attack execution, and considering the 

risk of each successfully exploited vulnerability, the benchmark estimate the 

security risk of the dynamic part that, together with the security risk of the static 

part, will form the benchmark metric. Figure 4-2 shows the components of the 

benchmark dynamic part and illustrates how they work together to produce the 

security metric of the dynamic part. 

Attacks are organized in execution slots. One attack execution slot corresponds to 

a measurement interval during which the benchmark workload is run and one or 

more attacks from the attackload are executed in order to evaluate the system 

behavior. This definition is adapted from the fault injection slot definition present 

in DBench-OLTP Clause 2.3.1 (Marco Vieira 2005).  

Note that each run corresponds to the execution of attacks against only one 

vulnerability. This is necessary to determine which part of the system was 

actually compromised due to the exploitation of a particular vulnerability and to 

identify the value for the exploitability to use in the risk computation. This means 

that the number of benchmark runs corresponds to the number of vulnerabilities 

injected in the vulnerable component and also the number of vulnerabilities that 

are exploited in the system interface. If the attackload is set up to exploit 100 

vulnerabilities, then the total number of benchmark runs will also be 100. 

Another important aspect is the time needed to start and run the benchmark and 
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the system under benchmark. The maximum time to the execution of each 

benchmark run relies on the characteristics of the System Under benchmark. 

Considering the case study we conducted in Chapter 6 with web server systems, 

we recommend 40 minutes, with 30 minutes of measurement interval and 10 

minutes to start/stop system components. This 30-minute value was defined 

considering two premises:  

 The whole benchmark execution must not take a long time to complete as 

this would affect the benchmark acceptance. Ideally, results should be 

ready within 1 week, but 2 weeks would be acceptable if the system is 

complex and the volume of attacks is large. This execution time rule was 

defined based on the experience of previous dependability benchmark 

initiatives and on the experience we acquired with our case study (see 

chapter 6). In DBench project, the maximum time acceptable to 

benchmark a system is one week    (DBench 2004). In (Kalakech et al. 

2004), the benchmark execution time for measuring the dependability of 

each operating system was 46 hours – 6 days were necessary to 

benchmark 3 different operating systems. In (M. Vieira and Madeira 

2003b), the authors took 12 days to benchmark the dependability of each 

OLTP system. In (Durães, Vieira, and Madeira 2004), the authors were 

able to compare the dependability of two web servers in 1,3 day. The time 

 

Figure 4-2. Benchmark Dynamic Part Components 
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needed to execute the security benchmark we built for our case study was 

24 hours covering 6 different web servers.  

 A small system with few applications and a small set of users and 

transactions will take few minutes to complete. In the case study 

presented in Chapter 6, we were able to execute thousands of attacks 

simulating multiple users and the measurement interval (dynamic part 

run) was 3 minutes. By recommending 30 minutes as the upper limit of 

workload execution, we believe that our security benchmark methodology 

is prepared to cover large systems, without putting the benchmark 

usability in jeopardy. 

The dynamic part shall include the following stages: Preparation, Vulnerability 

Injection, Attackload Generation, Baseline & Attack Execution, Security 

Checking and Measurement Stage. These stages are described in the remainder of 

this section. 

4.5.1 Preparation Stage 

The preparation stage of the dynamic part is aimed at selecting representative 

components, vulnerabilities and attacks. This should be done during the 

benchmark deployment procedure. 

To select a representative Vulnerable Component (the one that will be subject to 

vulnerability injection), the following rules shall be taken into account:  

 The Vulnerable Component shall be different from the Benchmark 

Target. The reason for that is that it is not fair to inject vulnerabilities in 

the same component where security measurements are performed, as the 

results would be biased. For this reason, our specification remarks the 

importance of injecting the vulnerabilities in another elements of the SUB 

(Vulnerable Component) in order to emulate the impact of attacks 

launched by exploiting unknown vulnerabilities. 

 The Vulnerability Component shall be in a reachable location from an 

attacker standpoint, allowing the successful execution of attacks. It makes 

no sense to select a component that will be out of attack range, making 

the attackload always unsuccessful. 

 The Vulnerable Component shall interact with the Benchmark Target or 

at least with other system components that interact with the Benchmark 

Target. This is aimed at observing the impact of attacks over the 

benchmark target. If the Vulnerable Component does not send or receive 

any command or data that will reach the Benchmark Target, it is clear that 
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attacks will have no effect to the purpose of our benchmark.  

The vulnerabilities and attacks types to be injected must be representative. This 

means existing field studies on vulnerabilities must be used to support this part of 

the injection process. The important aspect here is to choose vulnerabilities that 

are representative in the field. These rules were detailed in Chapter 3 and the 

purpose here is to clarify that this shall be executed prior to the vulnerability 

injection stage. 

4.5.2 Vulnerability Injection Stage 

This stage injects vulnerabilities into the Vulnerable Component using the 

Vulnerability Injector component. This stage must be executed in the following 

phases: 

 Step 1. In this step, the identification of the vulnerability injection points 

is performed. These points are located in the source code and 

configuration files of the Vulnerable Component. For example, a web site 

crawler could be used to collect information about a web application 

(Vulnerable Component) and map the input and output variables in an 

automated way (J. Fonseca, Vieira, and Madeira 2009). Also, 

communications with the database could also be intercepted by installing 

a probe mechanism between the web application and the back-end 

database (J. Fonseca, Vieira, and Madeira 2009).  

 Step 2. This consists in changing the source code or configuration to a 

vulnerable state. This should be done for each injection point located in 

the previous step.  

 Step 3. If changes are made in the source code, it is necessary to compile 

the changed code and generate the binary to be deployed in the system. 

 Step 4. The vulnerability component is deployed along with the system, 

to be executed during the benchmark run.  

The execution of this stage should comply with the following rules: 

 The Vulnerable Component where vulnerabilities will be injected must 

interact with the benchmark workload. Otherwise, attacks will not be 

successful since they will not reach the vulnerable component and the 

effects of these attacks to the BT will be impossible to determine. 

 Vulnerabilities are injected prior to the benchmark run.  

 Vulnerabilities shall be injected in places of the code and/or configuration 
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of the Vulnerability Component that will allow the attackload to conduct 

a successful vulnerability exploitation. Although this certainly limits the 

number of vulnerabilities injected, this does not reduce the effectiveness 

of the approach. The main purpose of injecting vulnerabilities will be 

achieved.  

 Vulnerability injection procedure must be repeated until all vulnerabilities 

points were covered. In case of software fault vulnerabilities, the result 

will be a set of files containing one or more vulnerabilities. 

4.5.3 Attackload Generation Stage 

The goal of this stage is to generate the malicious codes that will exploit the 

vulnerabilities that were injected in the previous stage. The phases to execute this 

stage are as follows: 

 Step 1. Based on the analysis of the location, code pattern, and data type 

of the vulnerabilities that were injected, it is necessary to generate 

possible (malicious) values and exploits that could be used to exploit each 

vulnerability.  

 Step 2. Creation of the actual exploits with malicious values attached into 

it. For example, in the case of a web application, this corresponds to the 

construction of an HTTP request with the malicious content in a GET or 

POST function. 

The execution of this stage must comply with the following rules: 

 For each vulnerability injected in the previous stage, a set of malicious 

interactions (attacks) and their expected outcome (result of the attack) 

shall be generated. This will be used later one to identify if the attack was 

successful. 

 Each attack shall not have only one instance. For example, a Cross-site 

scripting vulnerability should be exploited using different values and 

attack patterns. The guidelines to mount these attacks were provided in 

Chapter 3. 

4.5.4 Baseline and Attack Execution Stage 

This stage collects security measurements when no attacks are executed during 

the benchmark run (Phase 1) and when attacks are executed (Phase 2). As 

described in Chapter 3, the maximum time recommended to the execution of each 

benchmark run is 40 minutes. 
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The steps to execute this stage are as follows and are illustrated in Figure 4-3: 

 Step 1. The workload is submitted without the presence of attacks. This 

corresponds to the workload measurement interval and are used to collect 

baseline security measures through security checks that represent the 

security of the system with normal optimization settings. 

 Step 2. Execution of the workload in the presence of attacks, which are 

organized in execution slots. Each slot corresponds to a measurement 

interval during which the workload is run and one or more attacks are 

executed to evaluate the system behavior. As mentioned in Chapter 3, this 

notion is adapted from the fault injection slot definition present in 

DBench-OLTP Clause 2.3.1 (Marco Vieira 2005).  

The evaluation of the system behavior involves security checks, which 

are conducted in two steps: 

- Collection of the measurements of the System monitor and Data 

Collector after the execution of each attack.  

- Based on the impact and exploitability rules defined in Chapter 3, it 

determines the level of security impact and exploitability of a 

successfully exploited vulnerability. 

The execution of the first phase of this stage must comply with the following 

rules: 

 Benchmark tools and the workload shall be run without the execution of 

attacks (baseline execution stage). 

 Baseline execution shall be organized in three periods: 

Ramp-up time. This is the period that workload applications are starting 

and performing the first transactions. During this time, no SUB responses 

and security measurements should be collected. The duration of the ramp-

up time should not last more than the start-up time. We acknowledge that 

this duration can vary from system to system, but a small system with few 

applications and transactions will not take more than a few seconds of 

ramp-up time (e.g., 30 seconds), while a large system could take minutes 

of ramp-up time (e.g., 5 minutes). The same notion is applied to the ramp-

down time described later on. The maximum recommended time for 

ramp-up is 5 minutes. 

Measurement time. This period immediately follows the ramp-up. At this 

time, all applications of the workload and BMS tools were fully started 
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and are responding to workload client requests, and measurements can 

commence. Security measurements from the BT should be collected 

during this period. The duration of the measurement time should not last 

more than the time needed to completely exercise the different parts of 

the systems, with requests of different formats and sizes and with 

different users. This should last a few minutes for a small system (e.g., 5 

minutes) and several minutes for a large one. The maximum 

recommended time for the measurement interval is 30 minutes. 

Ramp-down time. This period corresponds to the closing of the operations 

of the system related to the workload (i.e., the workload has ended). 

Depending on the system, it may require explicit commands from the 

BMS. No security measurements should be collected during this period. 

The maximum recommended time for ramp-down time is 5 minutes. 

 Baseline measurements (e.g., response time) and data to be used by the 

security checker shall be collected during this stage.  

The execution of the second phase of this stage should comply with the following 

rules: 

 Attacks should target the vulnerabilities injected into the Vulnerable 

Component (source code, configuration, interface, etc.). 
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Figure 4-3. Inspection and Attack Execution Stage 
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 The attack execution should be organized in four periods, which are very 

similar to the baseline execution. Here we focus on the items that are 

particular to the attack execution, which are: 

Ramp-up time. During this time, no attacks should be executed. The 

ramp-up duration is the same one set for the baseline phase, with an upper 

limit of 5 minutes. 

Measurement time. Attacks should last until the measurement time of the 

workload reach the timeout period, with an upper limit of 30 minutes. 

Ramp-down time. No attacks should be executed during this period. The 

ramp-up duration is the same one set for the baseline phase, with an upper 

limit of 5 minutes. 

Recovery time. This is the time needed to recover the vulnerable 

component to the state prior the attack execution. This is aimed at avoid 

that the impact of an attack can affect the result of the next attack, with an 

execution limit of 5 minutes. 

 Each attack execution slot should exploit exactly one vulnerability. This 

is required to be able to assign the impact to each vulnerability. 

 Attacks should be executed within the maximum measurement time.  

The execution of security checks should comply with the following rules: 

 The Security Checker component must monitor and assess any impact in 

the security attributes of the Benchmark Target during and after the 

execution of each attack. 

 The Security Checker must also consider the exploitability level of each 

attack following the rules specified by CVSS. 

 At the end of attack execution, the security checker must determine how 

many attacks were successful. 

 As the vulnerability exploited will be always the same during an attack 

injection slot, just one impact and exploitability metric must be produced. 

 The attackload component must be configured and prepared to exploit 

each vulnerability at a time during the workload execution. 

 The Security Checker component must be prepared to analyze the 

expected result of the attack of the vulnerable BT and verify if the typical 

response of non-vulnerable BT was changed (and in which degree was 

changed) during the attack execution. 
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 At the end of each successful attack execution, the individual risk of 

discovered vulnerabilities must be measured. The criteria defined in the 

Common Vulnerability Scoring System to compute individual 

vulnerability risk must be used. 

4.6 BENCHMARK METRIC COMPOSITION PROCEDURE  

The final stage of the benchmark execution is the estimation of the benchmark 

metric based on the results provided by the static and dynamic parts. The 

execution of this stage should comply with a single rule: The formula that shall be 

used to compute the vulnerability, component, and system security risk is the one 

described in the section 3.5. This shall be done in four steps, which are: 

 Step 1. This consists in collecting the vulnerability estimation reports 

produced during the execution of the static and dynamic parts. These 

reports already have the list of identified vulnerabilities (static part) and 

successfully exploited vulnerabilities (dynamic part). 

 Step 2. It is necessary to estimate the vulnerability risk considering the 

impact of vulnerability exploitation and its probability. Once this is 

concluded, these risk are added up by category and compose the 

component security risk. 

 Step 3. In this step, it is necessary to estimate the security risk of each 

benchmark part by multiplying the component security risk and the 

component weight assigned by the benchmark user4 (which represents the 

importance of the component to the whole system), also considering the 

categories of each risk. 

 Step 4. This refers to the estimation of the benchmark metric (SBench), 

by adding up the security risk of each benchmark part and taking into 

account the weights of each risk category.  

4.7 BENCHMARK DISCLOSURE REPORT 

A Disclosure Report is required for the results to be considered compliant with 

our security benchmark methodology. The objective of this report is to allow 

benchmark implementers to reproduce the experiments in functionally equivalent 

systems. Here are the requirements to build such report: 

 The benchmark metrics should be included in the Disclosure Report. In 

Chapter 6, we provide the metrics (SBench) and benchmark results that 

                                                      
4 Benchmark user’s decisions shall be equally applied across all the systems under benchmark. 
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should be taken into account to meet this requirement.  

 All information collected for the estimation of the security benchmark 

metric must be disclosed in the Disclosure Report. This shall include at 

least the list of identified or attacked vulnerabilities during the benchmark 

run with the respective vulnerability risk score. 

 All the information considering the benchmark components specification 

have to be disclosed. This basically consists in the specification we 

provided in Chapter 3. More specifically, the details we provided in 

regarding the rules supporting each component. 

 All implementation details must be disclosed, including the technical 

characteristics of the components that form the BMS. This refers to a 

summarized version of the implementation details we provide in the next 

chapter. 

4.8 CONCLUSION 

This chapter presented the procedures and rules to deploy and execute our 

security benchmark methodology, following the traditional prescriptive (rule or 

clause oriented) approach that is used in most of the benchmarks, especially 

performance and dependability benchmarks. We first described the benchmark 

general procedures, specifying that the benchmark user is free to choose which 

benchmark part will be executed first and that the benchmark duration depends on 

the assessment of system’s vulnerabilities. We then described the rules to build 

the instrumentation components and the procedure that shall be followed to install 

and configure the benchmark components and the system under benchmark. 

The procedures of the benchmark static part were presented and organized in four 

execution stages: preparation, vulnerability extraction and analysis, security test 

execution, measurement stage. The purpose of the first stage (preparation) is to 

build the analytical setup of the benchmark. The second stage seeks to extract and 

analysis known vulnerabilities from the benchmark vulnerability repository. The 

third stage is aimed at executing security tests against the system under 

benchmark to confirm the existence of a given vulnerability, executing only one 

test at a time and consolidating the results in an open format (CSV). Finally, the 

measurement stage consists in computing the security risk of the static part. 

The benchmark dynamic part procedures were also described. These procedures 

were organized in five execution stages: preparation, vulnerability injection, 

attackload generation, baseline & attack execution, security checking, and 

measurement stage. The preparation stage is aimed at building the experimental 
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setup of the benchmark. The attackload generation is aimed at building an attack 

for each vulnerability injected in the vulnerability injection stage. The baseline 

and attack stage starts by executing the benchmark with no attack execution (to 

observe the behavior of the system in a normal scenario, without attacks) and then 

it executes attacks against the vulnerable target (exploiting the vulnerabilities that 

were injected). The security checking verifies the system response after each 

attack execution and assesses the attack impact to the whole system, collecting 

security measurements from the benchmark target. The security risk of the 

successful attacks of the dynamic part is estimated in the measurement stage. 

It is worth noting that the purpose of the procedures and rules presented in this 

chapter is to ensure that our methodology will be implemented in a similar way 

by different teams. We do believe that the guidelines we provided will allow 

benchmark users to implement and execute a security benchmark in a 

standardized fashion, producing repeatable and comparable results. This is 

especially important to make the benchmark useful and to facilitate its acceptance 

by the security community. 
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CHAPTER 5  

5. BENCHMARK 

IMPLEMENTATION 

This chapter presents the implementation of the security benchmark methodology 

for a widely used system class: the web serving systems. These systems form the 

basis of many important private and public-related services, such as e-commerce 

and banking systems, and are, in fact, essential to the current society way of life. 

Web serving systems are typically built by several heterogeneous components, 

resulting in complex systems. This complexity potentiates the existence of 

internal vulnerabilities that might be exploited by attackers. Because these 

systems are naturally connected to the Internet, and thus exposed to many users 

and attackers, any internal vulnerability becomes a real threat to security (e.g., 

(OWASP 2013; B. Martin et al. 2010)). Therefore, the use of a web-serving 

scenario as case study of our security benchmark is both useful and pertinent.  

Our security benchmark methodology implementation serves two purposes. The 

first purpose is to support the case study of benchmarking the security of real web 

serving systems (Chapter 6) and show that it is a feasible methodology to evaluate 

and compare security of software systems. The second purpose is to provide to 

benchmark implementers an example (and a guideline) on how to overcome the 

technical difficulties to implement a security benchmark. It is not our goal to 

provide a final and standard benchmark implementation, especially because a 

benchmark implementer could find a different technical solution that would better 

fit on his or her environment. The idea here is mostly to demonstrate the 

practicality of our benchmark definition and to provide the key tools that could 

sensibly speed up the implementation of a security benchmark targeting web 

serving systems, with a particular focus on the web server component. 

The reason to target the web server over the remaining components is due to its 
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central role handling the user requests and connecting the outside environment to 

the internal resources of the web serving system, making it a key component 

regarding security aspects. We provide a set of tools to benchmark the security of 

web servers following the static and dynamic approach of the security benchmark 

methodology described in Chapter 3, which include tools to discover known 

vulnerabilities on web servers, and tools to attack web servers and their contents 

(in our case, web applications) to assess the effects of unknown vulnerabilities. 

The following tools were used in the static part: the Vulnerability Extractor 

Analyzer (VEXA) and the Nikto Security Testing Tool (Nikto2 2015).  VEXA 

collects and analyzes known vulnerabilities from vulnerabilities reported in the 

on-line public databases such as Open Source Vulnerability Database and the 

National Vulnerability Database.  Nikto is a widely used security tool with a large 

set of tests aimed at checking the presence of vulnerabilities in a wide range of 

web server’s brands. 

It is worth noting that the tools developed to enable and support our security 

benchmark are built for Microsoft Windows Platform. This means that benchmark 

users interested in building a security benchmark for other platforms (e.g., Linux, 

Solaris, AIX) shall adapt our tools accordingly - or develop new ones - based on 

the procedures and rules defined in Chapter 3.  

The remainder of this section is described as follows. Section 5.1 provides the 

definition of the target system. Section 5.2 presents the benchmark rules specific 

to web serving systems. Section 5.3 describes the implementation of the static 

part of our security benchmark methodology. Section 5.4 presents the 

implementation of the dynamic part. Section 5.5 shows how to consolidate static 

and dynamic part results to obtain the benchmark metric. Section 5.6 concludes 

this chapter. 

5.1 BENCHMARK TARGET DEFINITION 

Web Serving Systems are the system under benchmark of our case study, 

providing the operational environment for the execution of our benchmark target. 

These systems are composed by a set of components that when put together 

provide web-based services ranged from simple static information repositories to 

web-applications such as e-banking. The typical main components of a web 

serving system are the operating system, the web server and its hosted web 

applications, including a database engine. The use of this particular type of system 

in our study is relevant as web-based services are currently critical to many 

society aspects, and because its components can be obtained from several 

alternatives sources, using security as selection criteria is pertinent. 
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Web servers, an important component of any web serving system, are our 

benchmark target. The remainder of this section describes the main characteristics 

of web servers and provides the definition of web applications, a key component 

that run on the top of web servers. In fact, the web application is the component 

chosen to inject vulnerabilities that will be later exploited by attacks during our 

experimental setup. 

5.1.1 Web Servers 

The web server is a component that serves data (e.g., web pages, files, etc.) to 

web clients (e.g., (Pettit 2001; Vass et al. 1998)) using a communication protocol 

such as HTTP protocol (Fielding et al. 1999). Web server is responsible for 

accepting HTTP requests and sending the requested data to the user’s browser 

through a markup language (HTML). Examples of widely used web servers are 

the Apache Web Server (Apache HTTPD 2015) and the Internet Information 

Services web server (Microsoft IIS 2015). 

5.1.2 Web Application 

A web application is a computer program that executes in a client-server 

environment. The typical web application architecture contains three components: 

web browser, web server, and application server (Hassan and Holt 2002). 

Figure 5-1 depicts an example of a web application architecture including the web 

browser component that runs in the user machine and the web server and the 

application server components that reside in the server machine. The application 

server component is composed of sub-components (e.g., database, web services, 

and multimedia objects). 

Web application units (components and sub-components) are typically 

components off-the-shelf (COTS), which typically means that the components 

were not developed by the same software company. This means that different 

components may have been written in different languages and according to 

 

Figure 5-1. Web Application Architecture Example 
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different development methodologies, resulting in a higher risk of mismatches at 

the interface level. The web application complexity, the technological mismatches 

across its components, and the back-box nature of COTS components contribute 

to the high risk of vulnerabilities in these applications. For that reason, 

requirements, policies and mechanisms of a web application are fundamental to 

guarantee the availability, integrity and confidentiality for the whole web 

application architecture, including our target component (web servers). 

5.2 INSTANTIATION OF THE BENCHMARK RULES FOR WEB 

SERVING SYSTEMS 

In Chapter 3 and 4, we presented the rules and procedures of our security 

benchmark methodology that are applicable to any software-based system. In this 

section, we discuss the concrete application of the rules to the case study and 

provide examples of technical decisions related to the implementation of the 

benchmark. 

5.2.1 Vulnerability Repository 

The vulnerability repository shall be formed by vulnerability information 

targeting web serving systems components. This means that this repository should 

contain known vulnerabilities from web application, web servers, operating 

systems, and databases, covering the most extent possible of vulnerabilities from 

different system brands and versions. Obviously, it is important to extract 

information from representative vulnerability databases available in the field.  

We use the Open Source Vulnerability Database, as it already collects information 

from other databases and has an on-line platform that allow users to report known 

vulnerabilities. We also use the National Vulnerability Database to complement 

vulnerability information (e.g., vulnerability categorization, CVSS metrics), as 

this database uses the Common Vulnerability Scoring System to score the risk of 

each vulnerability. 

There is no restriction regarding the number of vulnerabilities to be stored in the 

repository. The more information we have about known vulnerabilities, the more 

precise the benchmark metric estimation will be for the static part.   

5.2.2 Security Test Repository 

The Security Test Repository shall be built with information from realistic tests 

targeting web serving systems components. As in our case study we focus on the 

web server component, this means that the security tests shall be addressing the 

weaknesses of different brands and versions of web servers.  
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As the methodology allows the use of existing security testing tools, we use the 

Nikto Security Testing tool (Nikto2 2015). Nikto totally complies with the 

requirements present in our benchmark specification, for example: 

 It has a database of security tests with the entities and attributes needed 

by the Security Test Repository. 

 It contains non-intrusive security tests. These tests essentially check the 

presence or absence of a file, or check of the web server response has 

unexpected values.   

 It allows the development of new, additional features. The fact that Nikto 

is open source allowed us to incorporate our own benchmark features to 

estimate the vulnerability risk of each of the tests executed by Nikto.   

There is also no restriction regarding the number of security tests to be hosted by 

the security test repository and execute against the target system. However, during 

the benchmark execution, it is important to make sure that the number of tests will 

not impact the total time allowed for the benchmark execution. If that is the case, 

the security tests targeting high-risk vulnerabilities shall be prioritized. 

5.2.3 Workload 

The workload shall simulate a web serving system environment. This means that 

benchmark implementers shall built an experimental setup with an operating 

system running a web server, a web application, and a database. The workload 

runs in a client-server environment (as the one illustrated in Figure 5-1), with 

emulated users sending and receiving requests to the web server and web 

application from a remote network. 

We use existing workloads (e.g., such as the ones specified in TPC) from the 

performance field to simulate a web serving system environment. More 

specifically, we use the TPC-W workload, which simulates the activities of an 

ecommerce web site, with emulated users browsing and ordering products.   

There is no restriction regarding the number of requests per emulated users that 

can be done during the execution of the workload, which should be implemented 

in accordance with TPC-W specification (TPC 1988). However, there is a very 

important distinction to be made. In the TPC-W benchmark, the client workload 

requests stop when the benchmark execution timeout is reached. In our 

methodology, the client workload will stop sending requests when the total 

number of attacks are reached. There is no timeout associated to the execution of 

the client workload as we need to have the same amount of attacks executed 

across all benchmark runs. This is better detailed in section 5.2.5.  
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5.2.4 Vulnerabilityload 

The vulnerabilityload shall be formed by representative vulnerabilities targeting 

the web serving system component chosen to be subject of vulnerability injection. 

To this end, a field study shall be conducted to find the common vulnerabilities 

targeting the Vulnerable Component, which is necessarily different from the 

benchmark target.  In our case, as we use the web application as the vulnerable 

component, we adopted the results of the field study published by (J. Fonseca and 

Vieira 2008), which identified Cross-Site Scripting and SQL Injection 

vulnerabilities as the most representatives for this system class. 

There is no restriction regarding the number of vulnerabilities to be injected, 

except if the exploitation of these vulnerabilities will last longer than the 

maximum duration allowed.  If the vulnerable component has a large set of 

injection points, then the number of vulnerabilities should be limited to the ones 

that poses a major risk to the vulnerable component, which can be verified 

through the vulnerability risk score of the vulnerability to be injected.  

5.2.5 Attackload 

The attackload structure is conditioned to the type of vulnerabilities that are 

injected by the vulnerabilityload. However, only attacks targeting web serving 

systems components shall be implemented. For vulnerabilities that weaken the 

input parameters of a web application (improper input parameter sanitization), 

Cross-site and SQL injection attacks shall be mounted, for example. 

The number of attacks to exploit each vulnerability shall not impact the maximum 

duration allowed per benchmark run (30 minutes according to our methodology). 

Although there is no specific rule to limit the amount of attacks against each 

vulnerability, the same number of attacks shall be executed in each benchmark 

run. This is to ensure a fair comparison among functionally equivalent systems, as 

a more attacked system could have a lower security measure than the ones with a 

reduced number of vulnerability exploitation. We adopted the following attack 

parameters to have the dynamic part completed in 24 hours (considering the 5 

vulnerabilities types covered in the case study described in Chapter 6): 

 Each vulnerability is exploited by 1 attacker executing 20 attacks per 

benchmark run. This is intended to observe the system security behavior 

without stressing its capacity. 

 Each vulnerability is exploited by 20 attackers, each one of them 

executing concurrently 10 attacks per benchmark run (a total of 200 

attacks). The goal here is to stress the capacity of the system to deal with 
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concurrent attacks. 

The values and parameters implemented are also chosen in accordance with the 

vulnerability to be exploited. For Cross-site script attacks, it is necessary to send 

malicious characters using Java script code. The characters to be implemented 

shall be taken from the attack pattern recommended by the Common Attack 

Pattern Enumeration and Classification (CAPEC) and shall vary for each attack 

implemented, with the purpose of having different attacks of the same class inside 

the attackload. 

5.3 STATIC PART IMPLEMENTATION 

This section presents our implementation for the components of the static part that 

seek to identify known vulnerabilities on web servers and estimate their security 

risk. The components of the static part covered by our implementation are 

depicted in Figure 5-2 and described in the remainder of this section. 

5.3.1 Experiment Controller 

The Experiment Controller orchestrates the execution of all components of the 

static part. This component is implemented through two batch scripts. The first 

script is written in Microsoft DOS batch and starts the VEXA tool, which collects 

and analyzes known vulnerabilities for the components listed in its configuration 

file. The second script is a Microsoft DOS batch file that runs the Nikto Security 

Testing tools. It starts by stopping all web servers’ services. Then it runs one web 

server at a time and then executes a Perl program (Perl 2013) to trigger Nikto tool.    

5.3.2 Vulnerability Repository Implementation 

The Vulnerability Repository is a database to keep vulnerability information that 

are used to identify known vulnerabilities in the system benchmark. The first 

requirement presented in Chapter 3 to build the Vulnerability Repository is to use 

an external DBMS. In our implementation, the repository is formed by a local 

instance of two popular vulnerability DBMS: the Open Source Vulnerability 

Database (osvdb_repository) and the National Vulnerability Database 

(nvd_repository). These instances are installed in the Benchmark Management 

System server. These databases, once installed, were deployed using MySQL 

Database commands according to the instructions available at (MySQL 2012). 

MySQL database was selected because OSVDB is also provided in the form of a 

MySQL dump file. 

As specified in our benchmark methodology, and for each vulnerability, the 

minimum required information is the following: id (e.g., CVE ID), release date, 
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description, affected system, affected components, affected versions, affected 

platforms, CVSS impact, CVSS exploitability. The Open Source Vulnerability 

database is formed by a set of entities that contains more information than those 

specified in the requirements. The most central entities are vulnerabilities, 

cvss_metrics, and objects. The vulnerabilities entity stores information about each 

vulnerability reported in the database, hosting the dates, description, solution, and 

etc. The cvss_metrics entity hosts information about the impact and exploitability 

of each vulnerability. The objects entity relates each vulnerability to its name, 

version, and vendors.  

The local instance of the National Vulnerability Database (nvd_repository) is 

formed by only one table, the nvd_local_repository. This table stores data that 

complements the vulnerability information stored in the osvdb_repository 

database (e.g., vulnerability categorization, CVSS metrics). The Vulnerability 

Extractor collects information from NVD vulnerability reports and then loads 

them into nvd_local_repository table. An example of vulnerability report from 

NVD can be found at (CVE-2013-2205 2013). This is a web page that contains 

the information that we collect and store in the nvd_repository database.  

 

Figure 5-2. Experiment Controller of the Static Part 
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5.3.3 Vulnerability Extractor and Analyzer (VEXA) 

The Vulnerability Extractor and Analyzer collects vulnerability information from 

public vulnerability databases and loads them into the Vulnerability Repository. 

The components of the vulnerability extractor and analyzer are: the Vulnerability 

Extractor, the Vulnerability Parser, the Vulnerability Analyzer, the Vulnerability 

Report Generator, and the Database Synchronizer. These components are 

implemented in a single tool (the VEXA tool) that extracts vulnerability 

information and provides a set of reports in the form of spreadsheet files that we 

use to estimate the security risk of each web serving system component. 

VEXA is available in a web-based and in a command-line format. The web-based 

format collects and extracts vulnerability information and provides the results in a 

CSV format that can be downloaded by VEXA users (as illustrated in Figure 5-3). 

The command-line format is aimed at skipping the downloading phase and 

provides summarized results in a CSV output. This output contains the static part 

vulnerability risk estimated based on extracted vulnerability information from the 

component under analysis. 

The technology supporting VEXA tool is as follows: the programming 

environment is Java Enterprise Edition; the architectural pattern is the model-

view-controller (MVC) implemented using Spring; the database used is MySQL 5 

Community Server; and the web server is the Apache Tomcat 6. The advantage of 

using MVC design pattern is to separate the information representation from the 

view layer.  

5.3.3.1 VEXA Database Synchronizer 

Another relevant aspect is to keep the local instances of the vulnerability 

databases up to date, with the most recent vulnerabilities. We implemented a 

database synchronizer that downloads a dump file from OSVDB database and 

imports the data in our local database instances.  

The database synchronizer is executed in a regular basis in the Benchmark 

Management System server. This execution is configured as an event of the 

Microsoft Windows Batch Scheduler, which runs a batch file that calls the 

DumpLoader Java class. At the end of the execution, the DumpLoader sends an e-

mail to the benchmark user informing the synchronization status. 

5.3.3.2 VEXA Vulnerability Parser 

The idea of the Vulnerability Parser is to put in the Vulnerability Repository 

additional vulnerability information using as source the National Vulnerability 

database. This is done by collecting information from vulnerability reports 
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available at NVD web site. More specifically, it connects to a NVD vulnerability 

report web page, using the CVE-ID as a URL filter (on NVD, each vulnerability 

report is identified uniquely by a CVE-ID). After the connection is established, 

the parser downloads the entire page to a local file. Then, it searches specific 

information (e.g., vulnerability type, vulnerability impact, CVSS score) in the 

downloaded web page using Regular Expression. At the end, the local repository 

is updated with the collected information.  

5.3.3.3 VEXA Vulnerability Extractor 

The Vulnerability Extractor executes queries against the Vulnerability Repository 

(OSVDB and NVD local database instances) and brings the list of known 

vulnerabilities of a given component. After obtaining the system brand and 

version, VEXA creates a temporary repository table and loads it with the known 

vulnerabilities collected from the OSVDB database. Then, it completes 

vulnerability information with data collected by the Vulnerability Parser. This is 

done by querying NVD local instance and storing the result into a temporary 

table. To avoid any duplicity of temporary tables, each one of them is created with 

a different identification. At the end of the vulnerability analysis and report 

generation, these temporary tables are removed. 

5.3.3.4 VEXA Vulnerability Analyzer 

The Vulnerability Analyzer was implemented to remove unnecessary information 

from the repository, classify vulnerabilities that were not classified in public 

 

Figure 5-3. VEXA Information flow 
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databases (using an internal dictionary based on the vulnerability description), and 

estimate the vulnerability risk using the CVSS impact and exploitability scores 

collected from the public databases.   It avoids unnecessary queries to the external 

NVD web page, by checking if the vulnerability information that will be enriched 

was already collected in previous executions. More specifically, each information 

collected from NVD web page is kept into the nvd_local_repository and the web 

page is only parsed in the first time a given vulnerability is queried. 

The categorization of vulnerabilities that were not categorized by OSVDB or 

NVD is done by analyzing the keywords typically found in a vulnerability 

description and assigns a vulnerability category following NVD classification 

criteria (NVD-CWE 2013).  

5.3.3.5 VEXA Report Generator 

The Report Generator was implemented to consolidate the information of known 

vulnerabilities in a set of files that will make easier the estimation of the security 

risk of the static part. Reports are available both from the web and from the 

command-line interface. These reports are described as follows.    

 Raw Data. This report lists all known vulnerabilities collected for a given 

component and is used as data source by the remaining Excel files. 

 CVSS Risk Results. This presents the graphs and summarizes data about 

the risk of known vulnerabilities. 

 Exploitability Results. This presents the graphs and summarizes data 

about the exploitability of known vulnerabilities (the probability factor of 

our vulnerability risk equation). 

 Impact Results. This presents the graphs and summarizes data about the 

impact of known vulnerabilities. 

 Vulnerability Frequency Results. This presents the graphs and 

summarizes data about the frequency of known vulnerabilities.  

5.3.4 Version and Configuration Detector Implementation 

The purpose of the Version and Configuration detector is to identify the brand and 

version of the system under benchmark when using the command-line version of 

the tool. The Version and Configuration detector is formed by two components:  

the Brand and Version Checker and the Configuration Checker. However, no 

integrated tool to check component brand and version was implemented. We 

simply run existing component commands or access control panel tools to get the 
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information we need.  

5.3.5 Security Tester Implementation  

One of the key components of the static part is the Security Test Repository, a 

database that contains tests that can be used by a tool to confirm the existence of 

known vulnerabilities in the system under benchmark. To implement this 

component, we decided to adapt a widely used security testing tools that checks 

the existence of known vulnerabilities on web servers. Nikto is developed in 

PERL and is simple to execute. The user needs to specify the IP address and port 

of the web server target using Perl commands.  

Figure 5-4 shows the components of the modified version of Nikto, which are 

described as follows: 

 Test Database. This represents the implementation of the Security Test 

Repository of our benchmark methodology and contains the tests to be 

run against the web server. In the security test entity of this database, we 

included an extra field containing the CVSS2 scores (impact and 

exploitability factors) that is used to estimate the security risk of a 

positive test. 

 Nikto Controller. It is responsible for executing the tool, loading 

configuration files and calling additional plugins. 

 Nikto Plugins (Test Executor). It is composed by a set of plugins that 

executes many security tests against the web server under benchmark. 

 SBENCH Plugin. This is the component we developed to assess the 

vulnerability risk of each positive security test. 

 Benchmark Reports. It is the component responsible for keeping the 

tool execution log and providing results in an open format (CSV, HTML, 

XML). We also added in this report the security risk after a test execution 

(when successful). 

The remainder of this section provides more details about the components that we 

have implemented to enable the execution of security tests. 

5.3.5.1 Security Test Database 

The Security Test Database is the implementation of the Security Test Repository 

of our benchmark methodology, currently hosting 6495 security tests for different 

brands and versions of web servers.  

The name of this database in Nikto is db_tests. Figure 5-5 shows the last lines of 
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the db_tests database. The fields of this db_test file are described as follows: 

 TEST ID. This is the numerical identification of each test run by Nikto. 

 OSVDB ID. This is the vulnerability entry reported on the OSVDB on-

line database. If no OSVDB ID is reported, this refers to a security test 

that targets a vulnerability that is probably not reported in public 

vulnerability databases.  

 Server type. This refers to the security test type. This field can have has 

one of the following values: 0 (File Upload), 1 (Interesting File / Seen in 

logs), 2 (Misconfiguration / Default File), 3 (Information Disclosure), 4 

(Injection (XSS/Script/HTML)), 5 (Remote File Retrieval (Inside Web 

Root), 6 (Denial of Service), 7 (Remote File Retrieval (Server Wide)), 8 

(Command Execution / Remote Shell), 9 (SQL Injection), a 

(Authentication Bypass), b (Software Identification), c (Remote source 

inclusion). 

 URI. This field presents the URL that will point to the target of the tests. 

 HTTP Method. This is the HTTP method that is used during the security 

test. 

 Match 1. String or code used to match for a positive test. 

 Summary. Summary message to report if a vulnerability was discovered. 

Nikto Plugins

SBENCH OUTPUT 

FOLDER

Nikto Controller 

(.pl)

Nikto

Benchmark 

Reports

Security Test Database

SBENCH Plugin

System Under 

BenchmarkWeb server info

 

Figure 5-4. Nikto web server scanner components 
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 HTTP Data. HTTP Data to be sent during POSTs tests. 

 Headers. Additional headers to send during tests. 

 CVSS Base Vector. Show the exploitability and impact values to be 

considered by the SBENCH Plugin for each positive test. Each Base 

Vector was manually assigned following the CVSS criteria described in 

Chapter 2. 

5.3.5.2 Test Executor 

The Test Executor is the component that actually runs security tests against the 

benchmark target (web servers), and it is implemented by the Nikto Plugin 

Component. This is a Nikto plugin that is called by the Benchmark Controller of 

the static part. This Nikto plugin gets one test at a time from Nikto test database 

and executes it against the web server under benchmark. The test is done by 

executing a HTTP request with the URL page defined as a test database. Then, it 

calls the Data Collector and Analyzer to check if the test was successful or not. If 

a known vulnerability was found (i.e., the test was successful), it calls the 

component that measures the vulnerability risk based on CVSS values we 

assigned. Examples of plugins available in Nikto are the CGI plugin (Enumerates 

possible CGI directories), the Cookies plugin (Looks for internal IP addresses in 

cookies returned from an HTTP request), and Tests plugin (uses standard Nikto 

tests).  

5.3.5.3 Data Collector and Analyzer 

An important aspect to verify if a known vulnerability actually exists is the 

evaluation of each security test executed. Nikto already has a plugin to collect the 

response of the web server and to compare the result with the expected value 

registered in the test database. More specifically, there is a variable that stores the 

response of the web server that is latter used to check if the test was successful (a 

 

Figure 5-5. Security tester – Example of Nikto security tests 
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known vulnerability was found) or not. The analysis of the web server response is 

organized in two parts: test verification and the estimation of the vulnerability 

risk.  

To verify if a test was successful, the web server response is compared with the 

expected output (match1) of each test. If the result matches, this means that the 

test was successful and that a known vulnerability is present in the targeted web 

server.   

To estimate the vulnerability risk, we developed a Security Benchmark Plugin 

(SBENCH Plugin) and added it into the Nikto tool. For each positive test, it 

estimates the vulnerability risk (in decimal format) based on the impact and 

exploitability factors. 

5.3.5.4 Report Generator 

The purpose of the Report Generator is to provide the output needed to confirm 

the existence of a known vulnerability and the input needed to estimate the 

security risk of the static part. The Report Generator is implemented in Nikto by 

the SBENCH and Core plugins. The SBENCH plugin generates a summarized 

version of Nikto results in CSV format. The core plugin provides the standard 

Nikto output. Both of them are described as follows: 

 CSV output. This report was added in Nikto to provide a consolidated 

view of the final results. This function is called at the end of tests 

execution, gets the data sent through input parameters and writes the data 

into a text file. The fields covered in this report are as follows: date, web 

server brand, total tests, total errors, total vulnerabilities, number of failed 

test, percentage of failed tests, and security risk. 

 Standard output. This consists of a log file registering each step of a test 

execution and also providing debugging information that could be used 

for getting more details about the system target and test execution. 

5.3.6 Static Risk Calculator 

The risk calculator is a very important element in the implementation of the static 

part as it consolidates the results from the Vulnerability Extractor and Analyzer 

and from the Nikto Testing tool. This component is implemented as a Java class 

that, once executed, gets the information from CVSS reports and estimate the 

vulnerability risk, which are added up to form the security risk of the static part. 
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5.4 DYNAMIC PART IMPLEMENTATION 

This section presents our implementation for the components of the dynamic part, 

aimed at assessing the effects of unknown vulnerabilities in web applications over 

web servers. The components of the dynamic part of our security benchmark 

methodology are the Experiment Controller, the Workload, the Vulnerability 

Injector, the Attackload, the Security Checker, and the Dynamic Risk Calculator. 

This section describes the implementation of each one of these components. 

5.4.1 Experiment controller 

The experiment controller orchestrates the execution of all modules necessary to 

run the dynamic part of the security benchmark. This controller is based on 

Powershell scripts (Powershell 2013) and command-line scripts that can be 

executed either by the benchmark user or by the startup script of the operating 

system. Also, it is deployed inside the system under benchmark and keeps the 

benchmark output and configuration files in the security benchmark workspace.  

The Powershell modules that are triggered by the experiment controller are 

illustrated in Figure 5-6 and described next. These modules start and stop web 

serving system components and collect information that is used to compute the 

security benchmark metric.  

 The Precondition module makes sure that all web servers, database and 

resource monitors are properly stopped before each benchmark run. This 

is aimed at avoiding any influence of previous benchmark runs into the 

current run. 

 The Diagnose module starts the resource monitors to collect information 

about CPU, Memory, Disk Usage during the benchmark run. This 

information are collected by Microsoft Windows Perfmon counters. Each 

web server has its own collectors defined in a counter configuration file. 

This counter file is used by the Logman Windows Monitoring application 

(Logman 2013), which is started by the diagnose module on server side. 

 The database module starts and stops (when needed) the database used by 

the benchmark target application. 

 The web server module starts and stops in the proper time the Windows 

service related with the web servers under benchmark.  

 The Client application module starts in the client machine (using psexec 

command (PsExec 2013)) the workload and attackload client applications 

according to the parameters defined in the configuration file. These 
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applications are started only when the web server component is up and 

running.  

 When the total number of attacks per benchmark run is reached (this 

number is also defined in the configuration file), the Main.ps1 script calls 

the stop functions of web server, database, and diagnose module. 

 Once all applications are stopped, the Postcondition module is run to 

collect and consolidate benchmark reports in CSV format and store 

summarized reports at the benchmark output folder. 

 The reboot module is a feature we developed to restart the operating 

system after a benchmark run. However, we decided to keep this feature 

disabled, since we used the precondition module to make sure that all 

processes started during the benchmark were killed and that resource 

monitors were stopped. 

The experiment controller is also supported by a configuration file where it is 

necessary to set the number of benchmark runs and the parameters of the 

 

Figure 5-6. Experiment Controller Dynamic Part 



163 

workload and attackload application for each web server under benchmark. This 

configuration file is used by the workload and attackload components during the 

benchmark run. It contains the identification of the benchmark run, the 

benchmark execution type (baseline run, or attackload run), the number of 

emulated users, and the number of emulated attacks.    

5.4.2 Workload Implementation 

The workload of our security benchmark simulates the activities of a content 

management application and is formed by the Benchmark Target, the Web 

Application, the Vulnerable Component, and the Client Workload. The 

Benchmark Target corresponds to the web servers we benchmarked in the case 

study described in Chapter 6 (e.g., Apache 1.3, Apache 2.2, Lighttpd 1.4). The 

Web Application was implemented using the Wordpress Content Management 

Software (Wordpress 2015b). The Vulnerable Component is a vulnerable instance 

of the Wordpress web application. The implementation of the Client Workload 

was done by adapting a Java implementation of the TPC-W Benchmark 

developed at the University of Wisconsin in 1999 (Java TPC-W 2013). 

5.4.2.1 Web Application Implementation 

We used an existing application to implement this part of the workload: the 

Wordpress web application, a full content management system with millions of 

users and thousands of plugins, widgets and themes. The reason to choose 

Wordpress is supported by two factors: 

 There are more than 70 millions Wordpress Sites in the World. In fact, 

Wordpress is one of the most popular blogging web applications, with 

over 409 million people visualizing more than 19.6 billion Wordpress 

pages on the Internet per month. These statistics was extracted directly 

from Wordpress Official web page (Wordpress 2015a) and demonstrate 

the huge popularity of this web application. 

 A severe vulnerability in production Wordpress pages will necessarily 

affect millions of pages. Examples of recent Cross-site scripting and 

others vulnerabilities reported in (NVD 2014)  are CVE-2013-2205, 

CVE-2013-3253, CVE-2013-0305, CVE-2013-2201, CVE-2013-0236.  

After installing the Wordpress application, we configured each one of the web 

servers under benchmark to point to this directory. Once properly configured, 

Wordpress application allows users to add, remove, update, and search for posts 

and comments. There is also a setting web page where the administrator can 

change Wordpress template, approve comments, and manage the entire page. 
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The database management system used by Wordpress is the MySQL Database. 

This database is automatically configured by an automated script incorporated in 

the Wordpress Application. In fact, when we access Wordpress site for the first 

time, the application guides us through the database configuration. The database’s 

tables include comments, posts and user data.  

5.4.2.2 Vulnerable Component Implementation 

The Vulnerable Component is an instance of the Web Application (Wordpress) 

with vulnerabilities that we injected. The way we implemented these 

vulnerabilities is described in Section 5.4.3. 

We also created an independent database instance for Wordpress application 

subject to vulnerability injection. This means that the attacks conducted against 

the hacked application does not affect the database instance of the Benchmark 

Target. 

Note that both our Web Application and the Vulnerable Component are hosted in 

the same web server, responding simultaneously to users requests. Both 

applications remain the same across all benchmark run. The client workload 

makes requests to the Benchmark Target that forwards it to the Web Application, 

while the attackload makes malicious requests to the Vulnerable Component. As 

specified in our security benchmark methodology, security measurements that are 

used in the security benchmark are only collected from the Benchmark Target 

responses. 

5.4.2.3 Client Workload Implementation 

Our client workload is an adaptation of the Remote Business Emulator (RBE) of 

the TPC-W Benchmark Implementation developed at the Department of Electrical 

and Computer Engineering and Computer Sciences Department of the University 

of Wisconsin – Madison (Java TPC-W 2013). RBE is the main component of the 

TPC-W Benchmark and is a specification for a set of Emulated Browsers (EBs), 

which simulate multiple concurrent web browsing users, each of them making 

autonomous requests to a web server for web pages and images. During its 

execution, an EB works in the same way a user navigates a web page, clicking 

one hypertext link after another in a web browser. 

The RBE implementation we use is available at (Java TPC-W 2013). It is coded 

in Java programming Language and its architecture is described in (Cain et al. 

2001). This implementation is conceived to make requests to the BookStore 

Application specified in TPC-W Benchmark. The implementation of this web 

application is also provided in (Java TPC-W 2013) in the form of Java Servlets. 
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However, we changed RBE Java code to make requests to our benchmark target - 

the Wordpress Content Management application.  

At this point, it is clear that our benchmark workload does not follow the TPC-W 

specification in what regards the web application implementation (e.g., we do not 

simulate the activities of a retail store web site, we do not take into account 

performance metrics such as the number of web interactions per second). 

However, we believe this does not represent an issue at all, since TPC-W 

benchmark is designed to benchmark performance, and not security, and the 

purpose here is to use the elements of TPC-W that would be useful to emulate our 

client workload. Even so, the requirements of TPC-W for RBE that were 

implemented in (Java TPC-W 2013) are also covered in our work (for example, 

ramp up and down periods, communication using TPC/IP protocol, and so on).  

5.4.3 Vulnerability Injector Implementation 

The components of the Vulnerability Injector are: Content Collector, Injection 

point locator, Content Mutator, Vulnerable Content Generator, Content Deployer. 

Due to the complexity of developing an automated solution to inject 

vulnerabilities in Wordpress code and automatically mounting the respective 

attack, we decided to inject the vulnerabilities manually, as the effort of 

developing the tool would be much higher than injecting the vulnerabilities 

manually for the purpose of the research work of this thesis. This means that our 

vulnerability injector is not implemented in the form of a tool. We selected the 

injection points and injected the most representative vulnerabilities targeting PHP 

web applications. For this reason, it was not necessary to implement the 

Vulnerability Operator component, which stores the set of pairs of location 

pattern and vulnerability code change.  

5.4.3.1 Content Collector Implementation 

The content collector is represented by the actions we took to get Wordpress 

source file. Since this application is written in PHP language, and given that this 

language does not require compilation of the source code, what we had to do was 

to download the Wordpress application from the Official Web Application Web 

Site (Wordpress 2015b). Source code files were downloaded and put in the web 

server folder that hosts web applications. Then, we started looking for injection 

points. 

5.4.3.2 Injection Point Locator Implementation 

The technique we used to find injection points in Wordpress application was to 
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search for input parameters that could be manipulated by attacker and verify if the 

code could be changed to a vulnerable state. For example, Wordpress Search page 

(Search.php) allows users to query specific information in the entire site by 

providing a search entry. We noticed that once we clicked on the Search button 

the search entry appeared in the browser URL filed as a value of the ‘s’ input 

parameter: 

http://192.168.56.101/wordpress-hacked/?s=hello 

After observing this input parameter, we went to the Search page code and 

verified that there was a ‘s’ input parameter that was being handled internally and 

could be mutated to a vulnerable state. Following this approach, we identified 10 

injection points in five different web pages (Header.php, Search.php, 

Archive.php, Category.php, and Wp-login.php). 

5.4.3.3 Content Mutator Implementation 

The purpose of the content mutator was to inject into the Wordpress PHP code 

Cross-site scripting and SQL Injection vulnerabilities. These are the most 

representative vulnerabilities for the PHP application class (J. Fonseca and Vieira 

2008). We did not require mutation operator for the web interface because these 

attacks exploit vulnerabilities existing in the http protocol. In the Attackload 

Implementation section 5.4.4, we provide more details about these attacks. 

We changed the code of Wordpress to remove sanitation of input parameters in 

order to inject cross-site scripting vulnerabilities (note that we are changing the 

vulnerable component, not the system directly under evaluation). By default, 

Wordpress has several functions to test if the input parameters contain characters 

that could be used as attacks. The code change consisted in calling the input 

parameter without these functions. More specifically, we simply print a message 

in the web page containing each parameter, to make sure that this will appear on 

client front-end. For example: 

<?php echo "Missing Function Call: ".$_GET['s']; ?> 

As ‘s’ parameter are printed without any validation, this portion of the PHP code 

is vulnerable to Cross-site scripting attacks.  

To inject SQL injection vulnerabilities, we realized that no action was necessary, 

since the input parameters were already being used in SQL queries without the 

proper sanitization.  An example of query for the search parameter is as follows: 

 <?php $var2 = $_GET['s_id']; 

$results = $wpdb->get_col("SELECT link_url FROM wp_links WHERE 
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link_id = $var2");?> 

5.4.3.4 Content Deployer Implementation 

The implementation of the content deployer was simple. We moved the 

vulnerable application to the place where the web servers were hosting the web 

applications. The goal was to make sure that the vulnerable component would run 

along with the web application during the execution of the workload. 

5.4.4 Attackload Implementation 

The components of the attackload are the Vulnerablity Injector, the Attackload 

Generator, and the Attackload executor. Given that the vulnerability injector 

implementation was already described, this section describes the attackload 

generator and executor. These components are also implemented with Java 

technology. 

5.4.4.1 Attackload Generator Implementation 

Five attack types are implemented in the attackload. With the exception of denial 

of services attacks, we emulated 1 attacker executing 20 attacks per benchmark 

run.  

Two attack types were implemented to exploit the vulnerabilities we injected and 

are described as follows: 

 Cross-site Scripting Attack. This attack is generated by using a set of 

malicious characters (“<script>alert(/XSS 001/)</script>”) against the 

vulnerable input parameters. 15 attacks of this type (three for each input 

parameter) were implemented. 

 SQL Injection Attack. This attack was implemented by sending 

malicious SQL content to get more data from the database (parameter=’1 

OR 1=1’) than expected. 15 attacks of this type (three for each input 

parameter) were implemented. 

Three attacks types were implemented against the web server interface through 

the HTTP protocol: Code Injection Attack, Buffer Overflow, and Denial of 

Service Attack. These attacks were chosen since the exploited vulnerabilities are 

among the most representative considering the web server interface. 

 Code Injection Attack. This attack sends malicious code to HTTP code 

fields. For each field, the attack strings presented in Table 5-1 were 

implemented. These strings were chosen based on the Path Traversal 

cases we found in known vulnerabilities reports of web servers. Another 



168 

important aspect is that, for each of the five HTTP fields, only one HTTP 

method was attacked: GET. This means that we implemented 15 code 

injection attacks (5 fields x 3 strings x 1 method). 

 Buffer Overflow Attack. This attack sends large amount of HTTP data 

to the web server under benchmark. We attacked the same HTTP fields 

listed in the Code Injection description using the same set of attack string. 

The difference, however, was that each attack string was increased 10 

times in order to test the behavior of the web server in the presence of 

large amount of data in HTTP protocol. Attacks using GET and POST 

HTTP methods were implemented, which means that another 15 attacks 

constitute the Buffer Overflow attackload. 

 Denial of service attack. This emulates 20 simultaneous attackers, 

sending 200 Code Injection or Buffer Overflow attacks to web server 

interface. The purpose here is to flood web servers with dozens of 

malicious requests. This is done by setting the RBE parameter responsible 

for determining the number of users that are emulated during a 

benchmark run. 

5.4.4.2 Attackload Executor 

The attackload executor is implemented using an instance of the Remote Browser 

Emulator of the Java Implementation of TPC-W. The difference is that the RBE 

of our attackload sends malicious content to the vulnerable component and the 

web server interface. 

The Benchmark Manager of the Client Workload also contains a feature to call 

the RBE with attacks (attackload) to execute the client workload and the 

attackload at the same time. However, the attackload starts only after the ramp up 

Table 5-1. HTTP Protocol Attacks 

HTTP Code 

Field 
String 1 String 2 String 3 

Accept 

“../../../../..///” 
“../../#$%&#$

%&” 

“99999999999

9999999” 

Keep-Alive 

Connection 

Content-Type 

Content-Length 
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period of the workload, and it is not executed if the benchmark is running in 

baseline/inspection mode. 

It is worth noting that the malicious requests are sent to the vulnerable component 

one at a time. More specifically, attacks targeting a particular input parameter are 

done several times in the same benchmark run. However, no other input 

parameters are exploited and no other attack types are executed. For example, 

while Cross-site scripting attacks are done against the search input parameter, no 

SQL injection, Buffer Overflow, and Code Injection attacks are executed. This is 

done to make sure that benchmark security measurements for a given benchmark 

run reflects the behavior of web server in the presence of a single attack type 

against a single injection point.  

5.4.5 Security Checker Implementation 

The components of the security checker are the data collector, the confidentiality 

checker, the integrity checker, the availability checker, the exploitability checker, 

and the security report generator. After each request to the client workload, this 

Security Checker is executed to test if there was a partial or complete violation of 

security. 

5.4.5.1 Data Collector 

The data collector is implemented inside the Java client workload and as a 

monitor that run on server-side to collect CPU, Memory, and Disk Usage. The 

following data is captured after each web server request: 

 Response Time. This is the duration the web server takes to respond a 

request. 

 Resource counters (CPU, Memory, Disk Usage). This is captured during 

the execution of the benchmark. 

 HTTP Response Code. HTTP Protocol provides a response code for each 

request. If the request has been accepted for processing, for example, the 

code is 202. If the web content is not found, the code is 404.  

 HTML page. The entire HTML page of each request is also collected. 

5.4.5.2 Confidentiality Checker 

The confidentiality checker is a Java method that receives the following input 

parameters: 

 A URL that requires user’s authentication. This refers to the administrator 
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page of Wordpress web application. 

 A URL that lists the files inside the web application. If directory listing is 

allowed by the web server, attackers may access confidential information 

that could enable them to mount attacks. Obviously, all web servers 

covered in our case study have ‘directory listing’ turned off. 

Two tests are implemented to check confidentiality violations: 

 After each client workload request, the security checker tries to access the 

URL that needs authentication. If the HTTP code is different than 

forbidden, then there was a confidentiality violation.  

 Check if the URL is protected against directory listing. Basically, the 

expected content of baseline run is compared with the URL content 

during the execution of attacks. 

5.4.5.3 Integrity Checker 

The integrity checker is implemented in the form of a Java method and has two 

input parameters: the HTTP code and the content of each web page that is 

requested by the client workload.  

Two tests are implemented to check integrity violations: 

 It checks if the HTTP code of a Wordpress web page, which is expected 

to be properly working, returns an error.  

 It checks if the content of each requested Wordpress web page is different 

from the one collected during the benchmark baseline run. If a response 

from the web server changed to the client workload (where no 

vulnerabilities were injected), then there was an impact on the integrity 

attribute. 

5.4.5.4 Availability Checker 

The availability checker uses the response time of the web server to check if the 

web server is responsive or not. This works as follows: 

 For each request sent to the client workload, a response time is estimated.  

 If the response timeout is reached, then the availability checker concludes 

that the web server is unresponsive. 

 If the web content returned is null, then the security checker concludes 

that the web server is also unresponsive. 
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5.4.5.5 Exploitability Checker 

The exploitability checker provides the input to the estimation of the probability 

of a vulnerability exploitation, considering the attack vector, the attack 

complexity, and the needed authentication. However, from an implementation 

point of view, it was not necessary to execute tests to check vulnerability 

exploitability. In other words, exploitability values were manually setup in the 

equation of the exploitability checker and no automated verification was needed 

during the conduction of attacks. 

Considering the attacks we executed, the attacks conducted are mounted over 

vulnerabilities with the highest level of exploitability, i.e., they can be exploited 

from a remote network, with no need of authentication, and require elementary 

computer expertise to be exploited. 

5.4.5.6 Security Report Generator 

This component is implemented as a method of the Security Checker Java class. It 

receives the impact status (None, Partial, or Complete) provided by the security 

checker components and provides a report at the end of the benchmark run. 

5.4.6 Dynamic Risk Calculator 

The risk calculator of the dynamic part was implemented as a Java class 

integrated in the client workload. For each request done by the client workload, 

the dynamic risk calculator estimates the vulnerability risk. More specifically, the 

security checker verifies if there was any compromise in one of the security 

attributes of confidentiality, integrity, and availability and then calls the risk 

calculator class to estimate the impact factor. Then, the risk calculator uses the 

input provided by the exploitability checker to estimate the probability factor of 

the risk equation. Finally, the vulnerability risk is estimated, which simply 

consists in the product of the impact and probability factors. This risk is estimated 

and logged in benchmark CSV reports. 

5.5 BENCHMARK RESULT CONSOLIDATION 

Once the static and dynamic parts of the security benchmark are executed, two 

independent CSV files containing the risk of vulnerabilities discovered in the 

static part and successfully exploited in the dynamic part. At this stage, it is 

necessary to use the equation of our security benchmark and follow the steps 

defined in Chapter 3 to obtain the security benchmark metric. We did not 

implement any tool to automate this result consolidation because benchmark users 

are free to define the weight of the components to estimate the security risk. This 
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requires low computer expertise, as what needs to be done is to consolidate 

vulnerability risk values and follow metric composition procedures to obtain the 

security benchmark measure. 

5.6 CONCLUSION 

This chapter presented the implementation of our security benchmark 

methodology for web serving systems focusing on the web server component. 

This implementation complies with the benchmark component rules specified in 

Chapter 3 and 4, detailing the tools of the static (known vulnerabilities) and 

dynamic parts (effects of unknown vulnerabilities).  

The implementation of the static part is formed by the Vulnerability Extractor 

Analyzer (VEXA) and Nikto Security Testing Tools, respectively targeting the 

two main components of the static part: the Vulnerability Repository and the 

Security Test Repository. The VEXA tool was implemented in Java programming 

language and is aimed at collecting and analyzing known vulnerabilities from 

vulnerabilities reported in the Open Source Vulnerability Database and the 

National Vulnerability Database. VEXA connects into a MySQL local instance of 

these public databases to get vulnerability information. These local instances are 

updated in a regular basis to make sure that the benchmark covers the most recent 

known vulnerabilities reported in the field.  

Nikto is a widely used Web Server Security Tool that was incorporated in our tool 

suite. Nikto is open-source and written and Perl language and has a large set of 

security tests that represents our security test repository. It was improved to 

estimate the risk of vulnerabilities based on the result of each security test. Both 

VEXA and Nikto tools are started by the static part experiment controller, which 

is composed by Microsoft DOS scripts run by the benchmark user. 

The implementation of the dynamic part was also provided, focusing on the 

description of the workload and attackload components. The workload was 

implemented to emulate a realistic web serving system scenario, with web servers 

handling the requests of a client workload and forwarding them to a PHP-based 

web application that connects to a MySQL database. The client workload is a Java 

implementation of the TPC-W Remote Browser Emulator, which makes requests 

to the web application following the criteria of the TPC-W specification. The web 

application is a widely used content management system, the Wordpress. The 

attackload was implemented to stress web servers and its contents (in our case, the 

web application) with realistic attacks, built upon an instance of the TPC-W Java 

application. This instance targets the web application and web server interface 

with attacks. Five attack types were implemented: SQL Injection; Cross-site 
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scripting; Buffer Overflow, Code Injection, and Denial of Service targeting the 

HTTP Header of web servers. The content-related attacks (SQL Injection and 

Cross-site script) target vulnerabilities that were injected manually in an instance 

of the Wordpress application. We basically weakened the code to accept requests 

from the client application without a proper validation and deployed it along with 

the applications hosted by the web servers used in our case study (Chapter 6). To 

coordinate the execution of these tools, we developed a set of Powershell scripts 

that are organized in modules to start and stop monitoring resources, databases, 

web servers, web applications, and client applications. 

We believe that the technical details we provided in this chapter will reduce the 

time needed to develop new security benchmarks not only for web serving 

systems, but also for other domains. The reason for that is that we demonstrated 

how to build a vulnerability repository, to adapt a widely used security testing 

tool, to inject vulnerabilities into a widely used web application and mount a 

realistic set of attacks, also taking advantage of technologies that are largely 

adopted by the software development community (Java, PHP, MySQL, and etc.). 

We also believe that our implementation will decrease the effort to build future 

security benchmarks targeting web servers, as we developed tools to extract and 

analyze known vulnerabilities and stress their security using realistic attacks. 

Although our implementation was built for the Windows Platform, the fact that 

we presented our implementation components along with the several code 

examples and implementation steps make us confident that we achieved the 

purpose of demonstrating the feasibility of our security benchmark methodology 

from a technical standpoint. 
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CHAPTER 6  

 6. CASE STUDIES 

This chapter presents two case studies that demonstrate the effectiveness and 

practicability of our security benchmark methodology (Chapter 3 and 4) and 

implementation (Chapter 5) in real world experiments. These case studies are 

complementary, showing the applicability of our methodology over components 

and systems of different sizes and configurations, also enabling users to take 

advantage of benchmark parts in an independent way if needed. Case study 

supporting material is available at (Mendes 2015). This was done to increase the 

confidence on our case studies, enabling users to access the data used to estimate 

the benchmark results provided in this chapter.    

The first case study shows our security benchmark targeting real web servers. 

Both static and dynamic parts of our methodology were applied to obtain the 

security benchmark metric, which enabled us to identify the most secure among 

the web servers under benchmark. The particularity of this case study is that it 

targets a specific web serving system component (web servers) and uses both 

benchmark parts to estimate the security level of web servers. Although we 

believe that this case study would be sufficient to support our claim that our 

methodology can be applied to measure the security of systems for comparative 

purposes, it is important to provide examples targeting other systems. 

The second case study, which is also a benchmark illustration, covers more web 

serving system components (databases, web applications, web servers, and 

operating system), organized in two groups: components with the same 

technologies but with different versions and configuration (Wordpress, Apache, 

MySQL, Suse Linux) and systems with different technologies (Wordpress/Dot 

Net Nuke/Open Java, Apache/IIS/Tomcat, MysQL/Oracle/PostGreeSQL, 

Linux/Windows). Given the complexity and labor needed to build the 

experimental setup of the dynamic part covering the vulnerabilities and attacks of 

all systems targeted in this case study, only the benchmark static part (known 

vulnerabilities) is used to obtain the security benchmark metric. No attacks were 
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conducted against the components under benchmark. This is particularly useful to 

those interested in measuring system security just considering vulnerabilities that 

were discovered in a specific system brand and version. 

The remainder of this section is described as follows. Section 6.1 presents the 

case study of our security benchmark for web servers, including both static and 

dynamic part results. Section 6.2 shows the case study of our security benchmark 

for web serving systems, covering only the results of the static part. Section 6.3 

presents the validation of our security benchmark in what regards properties such 

as representativeness and portability. Section 6.4 concludes this chapter. 

6.1 BENCHMARKING THE SECURITY OF WEB SERVERS 

This section presents the results of our security benchmark targeting widely used 

web servers. The security tests of the static part and the attacks and supporting-

tools of the dynamic part address vulnerabilities present in HTTP web servers.  

6.1.1 EXPERIMENTAL SETUP 

The experiments were conducted in a client-server Oracle Virtual Box 

(VirtualBox 2014) machine environment, using two distinct virtual machines, 

running two independent operating systems (one to host the web server with its 

hosted application and another one to host the workload client applications). It is 

worth noting that virtual machines are a central piece of cloud computing 

infrastructure (Armbrust et al. 2010), which has been increasingly adopted by 

enterprise to reduce infrastructure and license costs and, among other aspects, 

reduce data recovery time (Amazon has over a million customer using its cloud 

system in 190 countries, (AWS Amazon 2015)). Also, another reason that led us 

to use virtual machine was to be prepared to rapidly rebuild our experimental 

setup in the advent of any unexpected system disruption. The system 

configuration is the same on both virtual machines: Intel Quad Core 2.40 GHz, 

1024 MB, 20 Gb IDE Hard Disk, and 100Mbit/s PCnet FAST III Network 

Adapter. The system configuration of the server that hosted the virtual machines 

is as follows: Intel Quad Core 2.5 GHz, 8 GB RAM, 465 GB of Hard Driver, 

running over Windows 7 64-bit operating system. On client side, Java technology 

is installed in order to enable the execution of workload tools (Java SE Runtime 

Environment 1.6). On server side, web servers are installed according to the 

version and configuration described next.  

6.1.2 SYSTEMS UNDER BENCHMARK 

Table 6-1 presents the systems that were benchmarked. We choose these six web 
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servers as the benchmark target since they are representative of the market share 

(namely Apache with 36% of market shared in December 2015 and Microsoft IIS 

with 27% of market shared in the same period) (Netcraft 2015), can be easily 

acquired (Apache and Lighttpd are in fact free), and were built by different teams 

(which means that probably we can find different security issues on them). On IIS 

and Ligtthtpd web servers, a CGI plugin was used to enable the execution of PHP 

pages. All web servers configured with the typical security settings, (e.g., 

configured to disallow directory listing). Oracle and IBM HTTP servers are 

Apache-based web servers, with a customized version of apache code. These 

servers were included in the case study to allow us to evaluate the security level 

of open-source code that is customized by vendors to enable the deployment of 

web application of large companies such as Oracle and IBM. The former is 

delivered inside the Oracle Web Tier portfolio, and the latter is within the IBM 

WebSphere application server. It is important to clarify that the Web Application, 

the Wordpress content management system, is the same for all the web servers. 

The emulation of users making request to this application was done using a Java 

implementation of TPCW. The fact that we use different technologies does not 

affect the benchmark results, as the Java TPCW application was applied to 

emulate the requests made to the web servers, being deployed in the client side, 

and only the PHP application has the vulnerabilities that are exploited by the 

benchmark attackload.  

In each benchmark run only one out of six web servers is started at a time. If the 

user types a URL and no HTML page is found, instead of listing the content of 

the folder, a forbidden page is shown. This was done to enable our security 

checker component to verify confidentiality violations.      

Table 6-1. System Under Benchmarking 

ID 

Benchmark Target Workload 
Operating System 

Web Server Web App DBMS 

IIS51 
Internet Inf. Service 

5.1 

Java TPCW 

 + 

Wordpress Content 

Management 3.0.1 

MySQL 5.1.43 

Windows XP 

Service Pack 3 + 

Benchmark 

Controllers (scripts) 

AP13 
Apache HTTP Server 

1.3 

AP22 
Apache HTTP Server 

2.2 

LT14 Lighttpd 1.4 

IBM7 IBM HTTP Server  7.0 

OR11 Oracle HTTP server 11 

 



177 

6.1.3 BENCHMARK RESULTS & ANALYSIS 

The results of the security benchmark are presented in several tables. At the end 

of this section, we present consolidated results indicating the ranking of the most 

secure web servers according to our benchmark. 

6.1.4 STATIC PART RESULTS 

Table 6-2 presents the results of the static part benchmark. Our observations about 

the data gathered in the static part are as follows: 

 304 web servers vulnerabilities were collected from the field and 

analyzed by our vulnerability extractor tool.  

 65% of the collected vulnerabilities can be categorized in terms of their 

representativeness: Information Disclosure (17%), Cross-Site Scripting 

(14%), Input Validation (13%), Resource Management Errors (10%), 

Directory Traversal (8%). One example of input validation vulnerability 

we found was the lack of scape methods on HTTP Header fields. XSS 

was found in contents present in a default web server installation. 

 26% of the vulnerabilities are from IIS51, 21% are from AP13, 15% are 

from AP22, IBM7 and OR11, and 8% are from LT14. 

Table 6-2. Static Part Benchmark Results 

Vulnerabilities IIS51 AP22 AP13 LT14 IBM7 OR11 All 

 #Unique Vulnerabilities (VEXA) 

Dir. Traversal 16% 0% 16% 4% 0% 0% 8% 

Inf. Disclosure 18% 15% 17% 26% 15% 15% 17% 

Input Validation 24% 11% 8% 9% 11% 11% 13% 

Res. Errors 4% 17% 6% 30% 17% 17% 13% 

XSS 9% 17% 17% 0% 17% 17% 14% 

Others 29% 39% 36% 30% 39% 39% 35% 

Total Vul. 79 46 64 23 46 46 304 

 # Security Tests (Nikto) 

Negative % 99.94 99.97 99.92 99.95 99.95 99.95 99.69 

Positive # 4 2 5 3 3 3 20 

Total Tests 6456 against each web sever 

SSRLSP 126.3 91.9 115.1 42.9 94,8 94,8  

SSRMSP 182.6 50.8 123.8 49.5 50,8 50,8  

SSRHSP 63.8 10.0 30.0 7.3 10 10  

SBenchSP 96.6 24.3 57.7 19.6 24,4 24,4  
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The results of the static part are as follows: 

 0.3% of 6456 security tests were positive (positive here meaning that a 

known vulnerability was found, in this case, by using Nikto), and 

different vulnerabilities were found across the evaluated web servers. 

This low number is due to the fact that hundreds of Nikto tests are 

mounted for servers that were not targeted in our case study. Table 6-3 

details the vulnerabilities that were found on each web server. As can be 

seen, only vulnerabilities with low risk level were detected. The reason 

for this is justified by presence of web server content that leads to 

information disclosure (e.g., a PHP file that contains information on 

server configuration). 

Another important finding is that, even with directory listing disabled, 

Nikto tests were able to bypass this and discover folders under Apache 

1.3 web server. This suggests that, even by applying security measures 

such as disabling directory listing, it is necessary to test if a security 

configuration or code patching actually avoid a given vulnerability. From 

a security benchmarking standpoint, this strengthens our approach of 

executing security tests in the static part. Additionally, Wordpress 

application hosted by web servers is also a point of concern for Nikto, 

Table 6-3. Vulnerabilities discovered by Nikto 

Discovered Vulnerability 
VR IIS 

5.1 

APA 

2.2 

APA 

1.3 

LT 

1.4 

IBM 

7 

OR 

11 

OSVDB-3233: /phpinfo.php: Contains PHP 

configuration information 
2.9 X X X X X X 

OSVDB-3092: /manual/: Web server 

manual found. 
2.9 - - X - - X 

OSVDB-3268: /icons/: Directory indexing 

found. 
2.9 - - X - X - 

/icons/README: Apache default file found 2.9 - - - - X X 

OSVDB-3268: /manual/images/: Directory 

indexing found. 
2.9 - - X - - - 

OSVDB-561: /server-status: This reveals 

web server information. 
2.9 - - - X - - 

OSVDB-3092: /iishelp/iis/misc/default.asp: 

Default IIS page found. 
2.9 X - - - - - 

/wordpress/: A Wordpress installation was 

found. 
2.9 X X X X - - 

/webresource.axd?d=junk: ASP.NET 

reveals its version in error messages when 

verbose debugging is enabled.  

2.9 X - - - - - 
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since this application is a potential target of attack. Overall, since the 

discovered vulnerabilities have low risk, they do not contribute to change 

the benchmark result of the static part. 

 Considering the estimated component security risk of the static part only, 

we can rank the evaluated web servers just using the SBench-sp metric: 

LT14 (19.6), AP22 (24.3), IBM7 and OR11 (24.4), AP13 (57.7), IIS51 

(96.6). LT14 is the most secure since it has the lowest SBench-sp 

measure. 

The following analyses are pertinent considering the results of the static part: 

 LT14 is the most secure among the evaluated web servers, having lowest 

security risk measure. 

 AP22, IBM7, and OR11 results were very close to LT14 on SBench-sp 

metric: 24 SBench-sp against 19.6. However, if we take into the account 

only the low security risk metric (SSRL) then LT14 remains the most 

secure, since it has the lowest score by far: 42.9 SSRL against 91.9 of 

AP22.  

 Security Risk results are not related only to the number of known 

vulnerabilities present in the system. For example, AP22 has nearly the 

double of vulnerabilities of LT14, but SBench-sp metric is very similar 

for both systems. This is because both servers have nearly the same 

amount of vulnerabilities of high-risk category. If we compare the results 

of ISS51 and AP13, which have a similar number of detected known 

vulnerabilities, the difference is more visible. Considering only these two 

servers, AP13 is by far the most secure, since it has fewer vulnerabilities 

with high security risk. 

6.1.5 DYNAMIC PART RESULTS 

The purpose of the dynamic part is to assess the behavior of each targeted web 

server when attacks are executed against its interface (HTTP protocol) and its 

content (web application). Two classes of vulnerabilities were manually injected 

in the hosted Wordpress web application: Cross Site Scripting (XSS) & SQL 

Injection (SQL). The vulnerabilities exploited in the web server HTTP protocol 

are those related with Code Injection (CI), Buffer Overflow (BO). Also, in order 

to test the capacity of our web servers to handle a large number of requests we 

also executed Denial of Service (DoS) attacks. 

Table 6-4 summarizes the operational aspects of the dynamic part execution. The 

number of vulnerabilities (VL) and the number of attacks (AT) for each server 
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during the dynamic part is given. Each simulated attacker (ATK) executes 20 

attacks per benchmark run, and we executed three benchmark runs for each 

server. The workload is executed via a simulated user (USR) making non-

malicious requests to the targeted web servers. In the case of DoS attacks, 

multiples requests are sent from the attackload client, simulating 20 attackers 

(each one of them simultaneously executing 10 attacks per benchmark run), while 

the workload client emulate 5 users sending non-malicious requests to the 

workload application hosted in the web server. A total of 1400 attacks were 

executed against each web server having 5 attack categories, with an average 

duration of 80 minutes per benchmark run (covering all attacks categories). For 

each server and vulnerability, three benchmark runs were executed, and the result 

is the average of the measurements collected during each run. This means that for 

each web server, 4200 attacks were executed within 4 hours. If we consider the 6 

benchmarked web servers, we have 25200 attacks executed in 24 hours, which is 

the total time spent to execute the dynamic part of our security benchmark. 

In this case study, the attacks were not able to compromise the confidentiality of 

web servers (e.g., disclose unauthorized areas of the web site). Therefore, we 

focus on the analysis of the attributes of availability and integrity only: from a 

benchmark/comparison perspective, confidentiality is the same for all the systems 

observed. Table 6-5 presents the loss of availability (percentage of loss relative to 

baseline) for each of the 6 benchmarked systems. The availability is computed 

based on the number of requests that the workload client was able to conclude 

while the attacks were executed. It is possible to observe the following:  

 IS51 and LT14 were the only web servers that had loss of availability. It 

is worth noting that the other servers – including ORA11 and IBM7 – are 

apache-based web servers, built upon the same technology, but with some 

customization. We believe that this is the reason why no availability loss 

Table 6-4. Total Attacks & Vulnerability & Benchmark Duration 

 
Per Vulnerability Per Web Server After 3 Runs 

3 runs for 6 

servers 

  #VL #AT #USR #ATK 
Dur 

(min) 
#VL #AT 

Dur 

(min) 
#AT 

Dur 

(min) 
#AT Dur (h) 

XSS 1 20 1 1 3 5 100 15 300 45 1800 4.5 

SQL 1 20 1 1 3 5 100 15 300 45 1800 4.5 

CI 1 20 1 1 3 5 100 15 300 45 1800 4.5 

BO 1 20 1 1 3 5 100 15 300 45 1800 4,5 

DoS 1 200 5 20 4 5 1000 20 3000 60 18000 6.0 

 
5 280 

   
25 1400 80 4200 240 25200 24 
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was observed for those web servers. 

 Concerning availability, LT14 appears to be more robust to attacks than 

IS51, since the average loss of availability is lower in LT14 (average of 

0.4% for non-DoS attacks against 5% for IS51 for DoS attacks). 

However, LT14 was affected only by non-DoS attacks, while IS51 was 

affected during DoS attacks. 

Table 6-5.  Loss of Availability Results 

 
AVG  Loss of Availability (%) in 3 Benchmark Runs 

 

AP22 AP13 IS51 LT14 IBM7 OR11 

XSS03 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

XSS04 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,5% 0% 0% 

XSS05 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

SQL02 
0,00 0,00 0,00 0,67 0,00 0,00 

0% 0% 0% 1% 0% 0% 

SQL03 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

SQL04 
0,00 0,00 0,00 0,67 0,00 0,00 

0% 0% 0% 1% 0% 0% 

SQL05 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,7% 0% 0% 

CIG01 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 1% 0% 0% 

CIG02 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,5% 0% 0% 

CIG03 
0,00 0,00 0,00 0,67 0,00 0,00 

0% 0% 0% 0,9% 0% 0% 

CIG04 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

CIG05 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

BOG02 0,00 0,00 0,00 1,00 0,00 0,00 

0% 0% 0% 1% 0% 0% 

BOG04 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

BOG05 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

DoS01 
0,00 0,00 8,33 0,00 0,00 0,00 

0% 0% 2% 0% 0% 0% 

DoS02 
0,00 0,00 175,33 0,00 0,00 0,00 

0% 0% 9% 0% 0% 0% 

DoS03 
0,00 0,00 9,33 0,00 0,00 0,00 

0% 0% 3% 0% 0% 0% 

DoS04 
0,00 0,00 64,33 0,00 0,00 0,00 

0% 0% 5% 0% 0% 0% 

DoS05 
0,00 0,00 96,33 0,00 0,00 0,00 

0% 0% 7% 0% 0% 0% 
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 The LT14 availability issues were not repeatable across the 3 benchmark 

runs. In fact, availability compromise happened only one time in a 

particular run. It is possible to see that 2 out of 5 XSS Injection attacks 

caused no harm to the web server. 

 IS51 has its availability impacted during DoS attacks, with an 

unavailability rate ranging from 2% to 9% of the total requests performed 

by the workload client. IS51 also had consistent, repeatable availability 

compromise, since this happened during the 3 benchmark runs and for all 

DoS attacks conducted. 

Table 6-6 presents the results for the loss of integrity (shown in percentage). This 

was estimated based on the correctness of the replies received back by the 

workload client. We can observe that: 

 Only IS51 and LT14 had loss of integrity to some extent. 

 For XSS attacks, both web servers were impacted, having at least 3 out of 

5 attacks compromising at least one request during all benchmark runs. 

 For SQL attacks, the major impact was on LT14, with 4 out 5 attacks 

results in at least 1 request with integrity compromise.  

 FOR CI attacks, LT14 was the only web server impacted, having from 

0.4% to 1% of loss of integrity during the execution of attacks. Also, it 

was the only one impacted during the BO attacks. 

 For DoS attacks, IS51 was the only one with integrity issues. The loss of 

integrity rate ranges from 21% to 62% in a particular DoS benchmark 

run. In this former case, most of the requests were either incorrect or 

missing for the workload client during the execution of DoS attacks. 

 22 out of 25 benchmark runs resulted in impact to at least one of the web 

servers. Considering that each benchmark run exploit one vulnerability, 

we have the following result about attack successfulness: LT14 was 

compromised at least once in 15 runs; IS51 was compromised in 12 of the 

runs. 

 The attack tolerance of the benchmarked web servers is not uniform 

(results are quite different). This strengthens our belief in using these 

differences in a security benchmark to rank those systems. 

Considering the estimated component security risk of the dynamic part (Table 6-

7), we can rank the evaluated web servers as follows: AP2, AP13, IBM7, and 

OR11 (0 SBench-dp, no security compromise across all benchmark run), LT14 
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(0.06), IIS51 (2.38). Apache-based web servers are the most secure web servers 

since they suffered no harm during attack execution and ISS51 is the most 

insecure. 

Not all attacks are equally harmful and results about the effects of each attack are 

Table 6-6.  Loss of Integrity Results 

 
AVG Loss of Integrity (%) in 3 Benchmark Runs 

 

AP22 AP13 IS51 LT14 IBM7 OR11 

XSS02 
0,00 0,00 0,33 0,00 0,00 0,00 

0% 0% 0.2% 0,0% 0% 0% 

XSS03 
0,00 0,00 0,33 0,33 0,00 0,00 

0% 0% 0.2% 0.4% 0% 0% 

XSS04 
0,00 0,00 0,33 0,33 0,00 0,00 

0% 0% 0.2% 0,5% 0% 0% 

XSS05 
0,00 0,00 0,33 0,33 0,00 0,00 

0% 0% 0.2% 0,4% 0% 0% 

SQL01 
0,00 0,00 0,33 0,00 0,00 0,00 

0% 0% 0.2% 0% 0% 0% 

SQL02 
0,00 0,00 0,33 0,67 0,00 0,00 

0% 0% 0.1% 1% 0% 0% 

SQL03 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

SQL04 
0,00 0,00 0,00 0,67 0,00 0,00 

0% 0% 0% 1% 0% 0% 

SQL05 
0,00 0,00 0,33 0,33 0,00 0,00 

0% 0% 0.2% 0,7% 0% 0% 

CIG01 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 1% 0% 0% 

CIG02 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,5% 0% 0% 

CIG03 
0,00 0,00 0,00 0,67 0,00 0,00 

0% 0% 0% 0,9% 0% 0% 

CIG04 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0.4% 0% 0% 

CIG05 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

BOG02 
0,00 0,00 0,00 1,00 0,00 0,00 

0% 0% 0% 1% 0% 0% 

BOG04 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

BOG05 
0,00 0,00 0,00 0,33 0,00 0,00 

0% 0% 0% 0,4% 0% 0% 

DoS01 
0,00 0,00 66,33 0,00 0,00 0,00 

0% 0% 21% 0% 0% 0% 

DoS02 
0,00 0,00 1222,00 0,00 0,00 0,00 

0% 0% 62% 0% 0% 0% 

DoS03 
0,00 0,00 93,67 0,00 0,00 0,00 

0% 0% 31% 0% 0% 0% 

DoS04 
0,00 0,00 486,00 0,00 0,00 0,00 

0% 0% 39% 0% 0% 0% 

DoS05 
0,00 0,00 682,33 0,00 0,00 0,00 

0% 0% 48% 0% 0% 0% 
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pertinent to security practitioners and academia. Considering our experiments, we 

can extract the following considerations relative to the attacks: 

 DoS was the most harmful attack. It was especially harmful to IIS51, 

since several attacks impact the integrity and availability of this web 

server. The reason behind DoS attacks being the most harmful is that they 

extenuated the capacity of web server resources. 

 Command Injection and Buffer Overflow attacks against HTTP protocol 

caused few harm to the web server. 

 XSS attacks and SQL Injection attacks caused virtually no harm to the 

benchmark target across the benchmark runs. On IIS51 and LT14 we 

observed an integrity impact due to the inability of the web server to 

provide the expected response collected during the baseline runs. 

 Robustness attacks against the system interface are more dangerous over 

attacks conducted against the web application. This suggests that the 

weakness propagation between web application and web servers does not 

represent a threat to the evaluated servers. 

6.1.6 BENCHMARK RESULTS 

Table 6-8 presents the consolidated results of each part of our security benchmark 

runs over the web servers we evaluated. According to the results, the most secure 

web-server is LT14 web server (19.7 SBench), which is immediately followed by 

AP22 (24.3), IBM7 and OR11 (24.4), AP13 (57.7 SBench) and ISS51 (99 

SBench).  

Although Apache-based web servers (including IBM7 and OR11) resisted to most 

of the attacks executed in the dynamic part (lowest rate of unsuccessful requests), 

they did not obtain the highest security score since its results of the static part 

affected the benchmark metric. IIS web server was the one with highest 

percentage of known vulnerability and was not able to cope with multiple attacks, 

being the most unsecure of the evaluated web serving system components. 

Table 6-7. Dynamic Part Results: Security Risk 

 

AVG Security (SBench) Risk in 3 Runs 

RUNS APA22 AP13 IS51 LT14 IBM7 OR11 

DSRLDP 0.00 0.00 6.77 1.24 0.00 0.00 

DSRMDP 0.00 0.00 8.14 0.00 0.00 0.00 

DSRHDP 0.00 0.00 0.00 0.00 0.00 0.00 

SBenchDP 0.00 0.00 2.38 0.06 0.00 0.00 
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It is worth noting that our benchmark results allow a clear comparison among the 

benchmark we evaluated, both in the static and dynamic parts, helping users to 

select the most secure web server. These results are consistent, since the 

benchmark measures were not biased by the number of vulnerabilities in the static 

part and reflected the different behavior of the web servers when facing real 

attacks. This suggests that our methodology is valid and provides meaningful 

results and it can help to the definition of widely accepted security benchmark 

standards. 

6.2 BENCHMARKING THE SECURITY OF WEB SERVING SYSTEMS 

BASED ON KNOWN VULNERABILITIES 

This section presents the results of our security benchmark targeting different 

configuration and technologies of web serving systems. Vulnerabilities numbers 

regarding Apache and Wordpress are slightly different than the ones presented 

previously since data gathering was performed earlier (Mendes, Duraes, and 

Madeira 2011).  Note that some of the components targeted in the previous case 

study (Apache and IIS) were also covered in this one.  

The results presented in this section were obtained considering the static part 

execution of our security benchmark. More specifically, we used the Vulnerability 

Extractor and Analyzer tool to collect known vulnerability from the components 

brand and versions under benchmark. Then, we estimated the security benchmark 

metric adding up the risk of the collected vulnerabilities, without the execution of 

security tests to identify additional vulnerability and without stressing the systems 

with attacks. It is worth noting that the dynamic part was not applied due to the 

complexity and labor necessary to build the experimental setup covering all 

systems targeted by this second case study. In other words, it is possible to 

execute only one of the benchmark parts to measure the security of systems, 

taking into account the impact over the accuracy of benchmark results, as our 

methodology recommends the execution of both parts to have accurate results.     

Table 6-8. Web Server Ranking 

Rank System SRH SRM SRL SBench 

1st  LT14 7,3 49,5 44,1 19,7 

2nd AP22 10 50,8 91,9 24,3 

3rd  
IBM7 10 50,8 94,8 24,4 

ORA11 10 50,8 94,8 24,4 

4th  AP13 30 123,8 115,1 57,7 

5th  IIS51 63,8 190,7 133,1 99,0 
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One important aspect in this case study is that two groups of systems are targeted: 

(1) systems with the same technology but with different configuration and 

versions and (2) systems with different technologies. Our intent is to demonstrate 

how our methodology can help users to measure the impact of configuration 

settings to the security of the system, as a misconfiguration can lead to the 

successful exploitation of system vulnerabilities. In the same way, administrators 

can be subjected to different set of vulnerabilities depending on the system 

technology deployed on their environment and our methodology can be used to 

help them to identify the most secure.  

6.2.1 SYSTEMS UNDER BENCHMARK 

Table 6-9 presents the web serving system components under benchmark, the 

number of component vulnerabilities extracted by VEXA, and the vulnerability 

sum grouped by web applications (APP), by web servers (WS), by database (DB), 

and by operating systems (OS). The percentages presented are based on the 

number of vulnerabilities collected for a given component. This information is 

characterized according to the following attributes: 

 Component identification (CID), brand (Name), version (Ver), and 

configuration (Conf). This former attribute can be Def (default 

configuration), Module (referring to the module activated by a 

configuration directive), and All (full configuration).  

 Number of collected vulnerabilities (#CV). This corresponds to the actual 

number of vulnerabilities extracted by the tool. Users trying to repeat our 

case study probably will see a similar number from tool reports (these 

numbers may be somewhat different due to the fact that new 

vulnerabilities are reported in a daily basis).  

 Number of vulnerabilities automatically classified by VEXA (#AC) and 

which classification remains undefined (#UC). 

 Number of multiple vulnerabilities (#ML). This refers to vulnerability 

reports that include two or more vulnerabilities. 

 Number of false-positives (#FP). This includes multiple vulnerabilities 

and those that, although collected, are not related to the target component 

(termed as false-positives). 

 Number of unique vulnerabilities (#UV). This corresponds to the 

subtraction of collected vulnerabilities (#CV) with false-positives (#FP). 

These vulnerabilities are the one considered in the remainder of this 

section. 
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We formed two groups of web serving systems (Table 6-10). The first one is 

composed by components with the same technologies but with different versions 

and configuration (each line of the first column of the table represents a system 

under this group). For example, SUB1.A contains the components described in 

Table 6-9, such as APP1a (Wordpress PHP CMS), WS1a (Apache HTTP Server 

1.3), DB1a (MySQL Database), and OS1a (Suse Linux). The second group is 

Table 6-9. Vulnerability Distribution By System Component 

CID Name Ver Conf #CV #AC #UC #ML #FP #UV 

Web Applications (APP) 

APP1 Wordpress PHP CMS All All 266 92 (35%) 17 (6%) 
42 

(16%) 
43 (16%) 223 (84%) 

APP1a Wordpress PHP CMS 2.0.1 All 42 17 (40%) 0   9  (11%) 7 (17%) 35 (83%) 

APP2 Dot Net Nuke CMS All All 22 9 (41%) 3 (13%) 1 (5%) 1 (5%) 21 (95%) 

APP2a Dot Net Nuke CMS 4.0 All 10 1 (10%) 2 (20%) 0 0 10 (100%) 

APP3 Open Java CMS All All 15 6 (40%) 0 1  (7%) 3 (20%) 12 (80%) 

APP3a Open Java CMS 6.0.2 All 7 6 (86%) 0 0 54 (15%) 7 (100%) 

 APP1 + APP2 + APP3 All All 303 
107 

(35%) 
20 (7%) 44 (15%) 47 (16%) 256 (84%) 

Web Servers (WS) 

WS1 Apache HTTP Server All All 170 
122 

(72%) 
2  (1%) 14 (8%) 14 (8%) 156 (92%) 

WS1a Apache HTTP Server 1.3 All 28 14 (50%) 0 0 9 (32%) 19 (68%) 

WS1b Apache HTTP Server 1.3 Def 10 8 (80%) 0 0 2 (20%) 8 (80%)  

WS1c Apache HTTP Server 1.3 Proxy 13 8 (62%) 0 0 2 (15%) 11 (85%) 

WS1d Apache HTTP Server 2.0 All 70 43 (61%) 1  (1%) 3  (4%) 27 (39%) 43 (61%) 

WS1e Apache HTTP Server 2.0 Def 35 27 (77%) 0  2  (6%) 17 (49%) 18 (51%) 

WS1f Apache HTTP Server 2.0 Proxy 42 27 (64%) 1 (2%) 2  (5%) 20 (48%) 22 (52%) 

WS1g Apache HTTP Server 2.0 SSL 46 36 (78%) 0 2  (4%) 19 (41%) 27 (59%) 

WS2 Microsoft IIS All All 143 
107 

(75%) 
6  (4%) 4  (3%) 4   (3%) 139 (97%) 

WS2a Microsoft IIS 5.0 All 70 54 (77%) 4  (6%) 2 (3%) 2 (3%) 68 (97%) 

WS3 Apache Tomcat All All 85 38 (45%) 8  (9%) 5  (6%) 8  (9%) 77 (91%) 

WS3a Apache Tomcat 
6.0.1

1 
All 22 1  (5%) 0 0 0 22 (100%) 

WS1 + WS2 + WS3 All All 398 
267 

(67%) 
16 (4%) 23 (6%) 26 (7%) 372 (93%) 

Databases (DB) 
DB1 MySQL Database All All 240 98 (41%) 50 (21%) 15 (6%) 122 (51%) 118 (49%) 

DB1a MySQL Database 5.0.0 All 27 10 (37%) 5 (19%) 0 0 27 (100%) 

DB2 Oracle Database All All 386 67 (17%) 279 (72%) 28 (7%) 120 (31%) 266 (69%) 

DB2a Oracle Database 
10.1.

0.5 
All 169 26 (15%) 125 (74%) 16 (9%) 16 (9%) 153 (91%) 

DB3 PostgreSQL All All 75 23 (31%) 20 (27%) 7 (9%) 12 (16%) 63 (84%) 

DB3a PostgreSQL 7.2.1 All 24 8 (33%) 5 (21%) 3 (13%) 3 (13%) 21 (88%) 

DB1 + DB2 + DB3 All All 701 
188 

(27%) 
349 (50%) 50 (7%) 254 (36%) 447 (64%) 

Operating Systems (OS) 
OS1 Suse Linux All All 53 28 (53%) 13 (25%) 0 13 (25%) 40 (75%) 

OS1a Suse Linux 10.0 All 19 8 (42%) 5 (26%) 0 4 (21%) 15 (79%) 

OS2a Windows XP XP All 41 21 (51%) 18 (44%) 0 7 (17%) 34 (83%) 

OS1 + OS2 All All 94 
49 

(52%) 
31 (33%) 0 20 (21%) 74 (79%) 

Total: APP + WS + DB + OS All All 1496 
611 

(41%) 
416 (28%) 117 (8%) 347 (23%) 1149 (77%) 
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composed by systems with different technologies (each line of the second 

column). The idea is to evaluate how much the security risk of these systems 

varies when different components or technologies are used, and when different 

configurations are used. Table 6-10 lists the systems under benchmark (SUB) that 

were built from the several components/configurations listed in Table 6-9 

(identified by the CID attributes). 

6.2.2 VULNERABILITY REPORT RESULTS 

The total number of collected vulnerabilities is 1496. 41% of these vulnerabilities 

were automatically classified by VEXA and 23% were discarded during the 

validation process as they contained multiple vulnerabilities in a single report. 

The top 5 components with the most unique vulnerabilities reported were the 

Oracle Database (266), the WordPress Content Management System (223), the 

Apache HTTP Server (156), the Microsoft IIS (139), and the Apache Tomcat 

(77).  

6.2.3 COMPONENT BENCHMARK RESULTS 

Table 6-11 presents the benchmark results grouped by system components. The 

Component Risk Measure (CR) was estimated by adding the security risk of 

vulnerabilities present in a given version and configuration of the targeted 

component according to the rules of the SBench-sp Metric equation (a full 

description of the measure equation can be found at Chapter 3). The comparison 

of Vulnerability Total with SBench-sp shows us that that the number of 

vulnerabilities is not directly related with the system security risk. The system 

with the least number of vulnerabilities (WS1b) was scored in the 4th position in 

our security benchmark rank, since it has several vulnerabilities with medium 

risk. 

The most evident aspect from the component benchmark results is the high 

SBench-sp obtained by the DB2a component, which is the most risky component 

by a very large margin (351.8 SBench-sp against 62.9 SBench-sp of WS2a). This 

Table 6-10. Web Serving Systems Groups 

SUB group 1 SUB group 2 

SUB1.A: APP1a WS1a DB1a OS1a 

SUB1.B: APP1a WS1b DB1a OS1a 

SUB1.C: APP1a WS1c DB1a OS1a 

SUB1.D: APP1a WS1d DB1a OS1a 

SUB1.E: APP1a WS1e DB1a OS1a 
SUB1.F: APP1a WS1f DB1a OS1a 

SUB1.G: APP1a WS1g DB1a OS1a 

SUB1.D:  APP1a WS1d DB1a OS1a 

SUB2.A:  APP2a WS2a DB2a OS2a 
SUB2.B:  APP2a WS2a DB1a OS2a 

SUB3.A:  APP3a WS3a DB3a OS2a 

SUB3.B:  APP3a WS3a DB1a OS1a 
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is mainly due to the high number of risky vulnerabilities reported to Oracle 

Database 10.1.5.0. Additionally, DB1a is the less risky database, even though it 

has more reported vulnerabilities than DB3a (which shows that the number of 

vulnerabilities alone is not enough to compare components and systems). This 

means that vulnerabilities reported to DB3a may cause more security violations 

than those present in DB1a (because they are more exploitable, have more impact, 

or both). 

Considering web applications and operating systems components, our benchmark 

showed that APP1a and OS2 are the most risky components. The first one is a 

widely used PHP Content management system with 35 vulnerabilities reported to 

version 2.0.1. OS2a security risk (33.7 SBench-sp) is much higher than OS1a (4.5 

SBench-sp). 

Web servers WS1a, WS1b, and WS1c belong to the same brand and version 

(Apache HTTP Server 1.3) but have different configurations. The benchmark 

results of these components indicate that the more modules are activated, the 

higher is their security risk (as expected). It also shows how much the security 

risk metric decreases by turning off (unnecessary) modules. WS1b security risk is 

more than two times lower (6.7 SBench-sp) than that of WS1a (14.0 SBench-sp), 

which have all modules turned on.  

An interesting conclusion is that, for this combination of components, a default 

configuration is less risky (WS1e, 8.1 SBench-sp) than those with all vulnerable 

modules active (WS1d, 25.4 SBench-sp). Additionally, our results also show that 

web servers with the same number of activated modules have different risk values 

(WS1f and WS1g).  

These results show the effectiveness of our method and tool to evaluate the 

security risk of functionally equivalent components, even taking into account 

factors as the versions and different types of component configurations.  

6.2.4 SYSTEM BENCHMARK RESULTS 

Figure 6-1 shows the benchmark results for web serving systems with the same 

technologies but with different versions and configuration (the components 

integrating these systems are listed in Table 6-10). The bar sections indicate the 

security risk of each risk category. 

In this case study, we consider that all components have the same security 

relevance level, which means that we assigned the value 1 to the weight factor 

presented in the benchmark metric proposed in Chapter 3. 

Our benchmark results indicate that the system with the less risky web server 
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obtained the best security risk score (SUB1.B, 50.2 SBench-sp - Apache Version 

1.3 in a default configuration).  

The top 3 most secure systems can then be ranked as follows: 1st SUB1.B, 2nd 

SUB1.E, and 3rd SUB1.C. They are immediately followed by SUB1.F, SUB1.A, 

SUB1.G, and SUB1.D, which is the most risky system due to the high number of 

risky vulnerabilities reported for Apache 2.0 (all modules activated). 

Figure 6-2 shows the benchmark results for web serving system with different 

technologies (e.g., Linux-MySQL-Apache-PHP against Windows-Oracle-IIS-

.Net). 

The difference shown in the security measure among the five benchmarked 

systems is quite evident. The security risk rank of these systems is as follows: 1st 

– SUB3.B (29.8 SBench-sp), 2nd – SUB3.A (64.2 SBench-sp), 3rd SUB1.D (68.9 

SBench-sp), 4th SUB2.B (114.4 SBench-sp), and 5th SUB2.A (452.4 SBench-sp).  

Although the winning system was built on a Linux-MySQL-Tomcat-Java-based 

technology, this does not mean that it is the most secure in all aspects. This means 

Table 6-11. Security Risk By System Component 

# Comp Description VUL CRL CRM CRH 
SBench-

sp 

1 APP3a Open Java 6.0.2 All 12 10,5 10,6 0,0 3,2 

2 APP2a Dot Net Nuke 4.0 All 21 21,4 11,9 0,0 4,0 

3 OS1a Suse Linus 10.0 All 15 33,7 11,3 0,0 4,5 

4 WS1b Apache HTTP 1.3 Def 8 11,2 24,7 0,0 6,7 

5 WS1e Apache HTTP 2.0 Def 18 38,4 24,7 0,0 8,1 

6 WS3a Apache Tomcat 6.0.11 All 22 42,9 24,6 0,0 8,3 

7 WS1c 
Apache HTTP 1.3 Def + 

Proxy 
11 16,6 30,2 0,0 8,4 

8 WS1f Apache HTTP 2.0 Proxy 22 48,7 24,7 0,0 8,6 

9 DB1a MySQL 5.0.0 All 27 43,1 46,5 0,0 13,8 

10 WS1a Apache HTTP 1.3 All 19 32,8 49,4 0,0 14,0 

11 DB3a PostGreSQL 7.2.1 21 21,2 71,7 0,0 19,0 

12 WS1g Apache HTTP 2.0 SSL 27 50,4 44,4 10,0 20.6 

13 APP1a WordPress 2.0.1 - All 35 64,0 63,7 8,6 25.1 

14 WS1d Apache HTTP 2.0 All 43 87,1 56,3 10,0 25.4 

15 OS2a Windows XP All 34 64,5 37,9 30,0 33.7 

16 WS2a Microsoft IIS 5.0 All 68 108,9 156,9 26,0 62.9 

17 DB2a Oracle 10.1.0.5 All 153 192,6 237,3 404,0 351.8 
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that considering the benchmarked components versions and under certain 

configuration, it obtained the best security risk score. These results cannot be 

generalized to other scenarios or environments. A simple configuration or 

component change in this system (e.g., database replacement to DB2a) would 

drastically alter this benchmark result. The score of the worst ranked system is 

mainly due to the risky vulnerabilities reported to the Oracle Database.  

An important point here is that our method and tool do enable its users to evaluate 

and compare the security risk of different types of components and web serving 

systems and observe the security risk variance after changing the version or 

configuration of a system. This was only possible due to the extraction and 

analysis of real vulnerabilities from the field by using the VEXA tool.  

6.3 BENCHMARK PROPERTIES VALIDATION 

This section presents our work to validate our security benchmark against 

classical benchmark properties (representativeness, repeatability, portability, non-

intrusiveness, feasibility). This is done to increase the confidence of benchmark 

users on our security benchmark methodology and to provide means to the 

 

Figure 6-1. Security Benchmark Results for Web Serving Systems using 

different configuration 
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acceptance of our proposal to fundament a future standard security benchmark 

research.  

6.3.1 Representativeness 

To be representative, a benchmark should reflect how well the benchmark 

components characterize the actual context of real systems. As introduced in 

Chapter 3, our security benchmark is formed by key elements such as metric, 

workload, attackload, vulnerability and security tests repositories and so on. In 

this sense, the representativeness of our security benchmark is given by the 

representativeness of its main components. We believe that the components we 

chose to form our security benchmark are representative due to the following 

factors: 

 The benchmark metric uses the notion of risk, which is strongly related 

to the benchmark security context and takes into account the vulnerability 

risk estimation of the Common Vulnerability Scoring System (Mell, 

Scarfone, and Romanosky 2007).  

 The benchmark workload is formed by a web content management 

application used by millions of users (the Wordpress web application) and 

by a TPC-W component to emulate dozens of clients making requests 

 

Figure 6-2. Benchmark Results for Web Serving Systems with different 

technologies 
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according to the requirements of TPC-W Benchmark specification.  

 The vulnerability injector and the attackload target the most 

representative vulnerabilities for PHP web applications (Cross-site 

scripting and SQL Injection) and common attacks against web server 

interface (Denial of Service, Buffer Overflow and Code Injection).   

 The vulnerability repository was built by replicating local instances of 

widely used on-line vulnerabilities repositories, such as the Open Source 

Vulnerability Database and the National Vulnerability Database.  

 The security repository uses a popular web server-scanning tool (Nikto) 

that contains thousands of tests covering different web server brands and 

configuration.  

6.3.2 Repeatability 

The purpose of repeatability is to verify if our security benchmark provides 

similar results at different runs. To this end, we decided to repeat the first case 

study for three times, since it covers both benchmark parts. It is clear that more 

runs of the benchmark could be executed in order to get more data about 

benchmark results variation. However, in our opinion, and specially considering 

the dynamic part of the benchmark, three executions were enough to observe any 

significant change on results variation. Also, this was the number of times that the 

DBench-OLTP (Marco Vieira 2005) was validated for the repeatability attribute. 

Table 6-12 presents the comparison of the benchmark metric for each one of the 

benchmark runs (Apache-based web servers, IBM7 and OR11, are represented by 

AP22). It is clear here that there was no change regarding the benchmark results 

of the static part. This is due to the fact that the analysis of known vulnerabilities 

is done from the same source and the benchmark tools simply repeat the same 

operation to collect vulnerability information. However, we can observe a 

variation in the results of the dynamic part. This is justified by the fact that the 

web servers responded differently for the attacks conducted in the benchmark 

runs. This behavior of the benchmark is expected since the attacks are done in a 

dynamic way. Even so, it is possible to observe that the benchmark ranking of the 

web servers remained the same across all benchmark runs. This led us to the 

conclusion that our security benchmark provides repeatable results. 

6.3.3 Portability 

To be portable, a security benchmark must fit for any component of software-

based system. The case studies we have conducted show that our security 
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benchmark may be applied in systems of different brands, versions, configuration 

and sizes. In the first case study, we addressed widely used web servers (Apache, 

IIS, Lighttpd) running over Windows XP and we used an analytical and 

experimental approach to obtain the benchmark metric.  

In the second case study, we formed different set of web serving systems, 

covering different operating systems (Suse Linux and Windows XP), databases, 

(MySQL, Oracle), web applications and web servers. Although we focus only on 

the static part to obtain the benchmark metric, this demonstrated that our 

benchmark is portable to different components and systems.  

6.3.4 Non-intrusiveness 

To be non-intrusive, a security benchmark should require minimum changes in 

the system environment to be executed, and its components should not affect the 

expected output of the workload. 

The static part of the benchmark requires no change in the system environment. 

To extract known vulnerabilities, what is needed is the list of component brands 

and versions that can be provided by the benchmark user. To run security tests, 

the web server scanning tools just requires the IP address and port of the 

Table 6-12. Security Benchmark Results for Repeatability validation 

Metrics 1st RUN 2nd RUN 3rd RUN 

Static Part IIS51 AP22 AP13 LT14 IIS51 AP22 AP13 LT14 IIS51 AP22 AP13 LT14 

CRLVEXA 114.7 86.1 100.6 34.2 114.7 86.1 100.6 34.2 114.7 86.1 100.6 34.2 

CRMVEXA 182.6 50.8 123.8 49.5 182.6 50.8 123.8 49.5 182.6 50.8 123.8 49.5 

CRHVEXA 63.8 10.0 30.0 7.3 63.8 10.0 30.0 7.3 63.8 10.0 30.0 7.3 

CRLNIKTO 11.6 5.8 14.5 8.7 11.6 5.8 14.5 8.7 11.6 5.8 14.5 8.7 

CRLSP 126.3 91.9 115.1 42.9 126.3 91.9 115.1 42.9 126.3 91.9 115.1 42.9 

CRMSP 182.6 50.8 123.8 49.5 182.6 50.8 123.8 49.5 182.6 50.8 123.8 49.5 

CRHSP 63.8 10.0 30.0 7.3 63.8 10.0 30.0 7.3 63.8 10.0 30.0 7.3 

Dynamic 

Part 
IIS51 AP22 AP13 LT14 IIS51 AP22 AP13 LT14 IIS51 AP22 AP13 LT14 

CRLDP 6.77 0.0 0.0 1.24 5.88 0.0 0.0 1.28 5.62 0.0 0.0 1.41 

CRMDP 8.14 0.0 0.0 0 6.61 0.0 0.0 0 10.67 0.0 0.0 0 

CRHDP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Security 

Risks 
IIS51 AP22 AP13 LT14 IIS51 AP22 AP13 LT14 IIS51 AP22 AP13 LT14 

SRLSP+DP 133.1 91.9 115.1 44.1 132.2 91.9 115.1 44.2 131.9 91.9 115.1 44.3 

SRMSP+DP 190.7 50.8 123.8 49.5 189.2 50.8 123.8 49.5 193.3 50.8 123.8 49.5 

SRHSP+DP 63.8 10 30 7.3 63.8 10 30 7.3 63.8 10 30 7.3 

SBench 99 24.3 57.7 19.7 98.6 24.3 57.7 19.7 99.6 24.3 57.7 19.7 
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components under benchmark.  

The dynamic part of the benchmark has a small degree of intrusiveness, since the 

Benchmark Management System is deployed in the same box that hosts the 

system under benchmark. However, these tools run common tasks (stopping 

starting services, monitors collectors) that are commonly executed by operating 

systems. Also, the injection of vulnerabilities and mounting of attacks are done in 

a preparation benchmark phase and there is no need to change any configuration 

in the system during the benchmark execution. 

6.3.5 Feasibility 

The feasibility of our security benchmark is given by the simplicity to build, run, 

and consolidate the results of our security benchmark. In other words, the 

feasibility is directly related to the cost of the benchmark. Considering that we 

adapted several existing tools, we were able to build the full set of scripts and 

tools that compose our security benchmark in 1 month (this corresponds to the 

allocation of one developer during the entire building process). If more resources 

were available, we would be able to reduce the development and test time, and 

consequently the cost. Even so, we believe that future proposals can reuse several 

parts of our benchmark, since key components were developed in Perl and Java 

technology that runs in a multi-platform environment. 

Another important aspect we analyzed was the cost in terms of required disk 

space and execution time. Table 6-13 presents the execution time to the 

completion of each part of our security benchmark. Measurements presented in 

this table were collected directly from our experiments.  

The total time to the execution of the static part in all evaluated web servers was 

15 min, while the dynamic part took 24 hours to be completed. This difference 

resides in the complexity of injecting dynamic attacks and collecting all 

measurements in a real web serving system environment.  

The disk space usage for all output generated in the static part was 4.5 MB. The 

dynamic phase generated 164 MB in output files per benchmark run (web server 

log files, workload outputs, resource consumption metrics, benchmark 

summarization files, etc.). Since this case study was repeated three times to 

confirm benchmark repeatability, the total disk usage consumption was 505.5 MB 

(4.5 x 3+164 x 3). 

Finally, the effort needed to consolidate the benchmark results is very low, as few 

computer expertise is needed to put together benchmark CSV reports and use the 

equation of chapter 3 to define the proper weight of benchmark components and 
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estimate the security risk based on the vulnerabilities risk listed in these reports. 

6.4 CONCLUSION 

This chapter presented two case studies benchmarking the security of real-world 

web serving system components. In the first case study, we benchmarked the 

security of widely used web servers (Microsoft Internet Information Service 5.1, 

Apache HTTP Server 1.3, Apache HTTP Server 2.2, and Lighttpd Web Server 

1.4, IBM HTTP Server 11, Oracle HTTP Server 7) and used the full set of 

benchmark tools (covering both static and dynamic part) to obtain the benchmark 

metric. The results of this first case study showed that the combination of the 

static and dynamic analysis is a useful way to select the most secure of 

functionally equivalent systems. For example, Apache web servers resisted very 

well to attacks executed in the dynamic part, but did not obtain the highest 

security score as the evaluated versions contain many known vulnerabilities 

(static part). The most secure in our case study was Lighttpd 1.4 web server, 

which received the lowest risk in the benchmark metric. The total execution 

duration of the security benchmark in this case study was 24 hours (0.5 hour for 

the static part and 24 hours for the dynamic part).  

In the second case study, different web serving systems components brands and 

versions were targeted (PHP, Java, and .Net Content Management Systems; 

Apache HTTP Server, Tomcat, and Microsoft IIS Web servers; MySQL, 

PostgreSQL, and Oracle Databases; Linux and Windows operating systems). 

However, we used a partial set of benchmark tools (more specifically, the VEXA 

Table 6-13. Benchmark Execution Time 

Dur Description 

Static Security Benchmark 
15 

min 
Average time to the automated collection and analysis of 304 vulnerabilities 

(VEXA tool) from six different web servers on Case Study 1. 
3.8 

min 
Average time to the execution of 6456 non-intrusive security tests (Nikto 

tool) and vulnerability risk estimation in each web server. The total time was 

1368 seconds (~23 minutes). 

Dynamic Security Benchmark 
3 

min 
Average time to the execution of each benchmark run. The first 30 seconds 

were devoted to the ramp up of the web server. 
1,3 H Average time to the execution of a whole benchmark campaign in each 

server (8 Hours in six servers). This includes the execution of 31 execution 

runs (6 inspection runs and 25 attacks runs). Each attack run exploited a 

different vulnerability in the faulty web application.  
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- Vulnerability Extractor and Analyzer of the static part) to benchmark the 

security of the targeted components due to the complexity of mounting attacks to 

exploit representative vulnerabilities of each component targeted in the second 

case study. VEXA extracted nearly 1500 software vulnerabilities reported in more 

than 10 years and provided statistical results that allowed us to reach very 

important observations, for example: the degree in which the configuration of the 

web server component affects the security risk of the whole web serving system. 

The results obtained in this case study represent a advantage to those interested in 

comparing the security of functionally equivalent systems and choosing the less 

risky based on known vulnerabilities. 

We expect that the results presented in this chapter help users and system 

integrators to compare and choose among web serving system components, and 

also to determine how vulnerable and exposed these components are. Also, we 

expect that the benchmark analysis we provided serve to increase the acceptance 

of this work and helps the security community in the definition of a standard 

security benchmark.  
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CONCLUSION 

7. CONCLUSION 

This thesis presented a novel methodology to benchmark the security of software-

based systems. The main goal of this research work was to propose and exemplify 

a methodology to benchmark the security of computer-based systems in a feasibly 

and useful way. The benchmark methodology should allow the comparison of 

functionally equivalent systems, helping users, developers and integrators in 

making use or purchasing decisions. 

Our contribution is two-fold. First, we propose a methodology for security 

benchmarking in a generic way, not tied up to any particular class of systems. 

Then, following the methodology proposed, we present and demonstrate a 

security benchmark for the specific class of web-serving systems. While the first 

can be used by anyone to define a benchmark for any class of systems, the second 

serves as an example case-study to demonstrate the usefulness of the 

methodology, and also as a practical and ready to use benchmark for the 

important class of web serving systems. 

The contributions of our work are organized in this thesis as follows: 

State-of-the-art on the field of security benchmarking. In Chapter 2, we 

described concepts related with computer security, presented previous works 

about the characterization and representativeness of vulnerabilities and attacks, 

and covered the topics of security assessment, security metrics, and security 

benchmarking and, where relevant, contextualizing our work with other types of 

benchmark such as performance and dependability benchmarks. This survey not 

only provides a comprehensive background in benchmarking and security, but it 

also contributes to substantiate the options taken in the definition of security 

benchmarking methodology proposed in this work.   

Generic methodology to benchmark the security of software-based systems. 
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In Chapter 3, we presented the specification of our security benchmark 

methodology for software-based systems, which is organized in two parts: one 

static and one dynamic. The static part was designed to measure the security risk 

posed by existing and already discovered vulnerabilities (known vulnerabilities). 

This is done by using two complementary approaches. First, known 

vulnerabilities are extracted from public vulnerabilities databases and analyzed. 

Second, a comprehensive set of security tests is executed to verify the presence of 

existing vulnerabilities. The result of the static part is an assessment of the risk 

caused by vulnerabilities previously know that may still be present in the system.  

The dynamic part of our security benchmark methodology addresses the risk 

related to vulnerabilities not yet discovered (unknown vulnerabilities). To assess 

the risk related to vulnerabilities that are not known, a part of the system is seeded 

with vulnerabilities that are representative for that type of system, and then 

attacks are directed to the system. The part of the system that is seeded with 

vulnerabilities is not evaluated in itself: instead, the remaining parts of the system 

are observed to understand and measure how the exploitation of vulnerabilities in 

a component can affect the larger system. The vulnerabilities and the attacks used 

in this part of the methodology are defined based on field studies and information 

existing. The attacks are of several types to mimic real attacks.   

One important clarification here is that the proposed approach is not intended to 

identify unknown vulnerabilities. Instead it is aimed at assessing the effects of 

these vulnerabilities to the whole system. To the best of our knowledge, this is a 

very original contribution to the security field, as our methodology is designed to 

cover any class of software-based system and has a complementary approach to 

cover vulnerabilities in an analytical and experimental way (the static and the 

dynamic part). 

Security risk as the single benchmark metric. The benchmark metric of our 

methodology is security risk, which is based on the risk of individual 

vulnerabilities detected during the benchmark run. More specifically, security risk 

is estimated by the weighted sum of the security risk resulting from the 

benchmark executions, providing a numeric value that indicates the level of 

security of the benchmarked system. To the best of our knowledge, it was the first 

time that security risk was used in a security benchmark methodology. 

Example of a concrete security benchmark for web serving systems. In 

Chapter 5, we described our security benchmark prototype for web serving 

systems. The goal was to provide to benchmark users with a clear example on 

how to implement benchmark components following the specifications that were 

defined in Chapter 3 and the procedures and rules defined in Chapter 4. For the 
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static part, we described our vulnerability analyzer and extractor (VEXA), which 

speeds up the collection of vulnerability information by performing queries over 

popular vulnerability databases. We also showed how a widely used security 

scanner tool (Nikto) was adapted to confirm the existence of known 

vulnerabilities over web servers. For the dynamic part, we described how to 

define the set of vulnerabilities, the set of attacks, and the workload. We injected 

vulnerabilities in a Wordpress web application to enable Cross-site scripting and 

SQL injection attacks and adapted the TPC-W benchmark and used it as our 

workload. We also described how the attackload was implemented to 

automatically exploit these vulnerabilities. This attackload also included attacks to 

exploit vulnerabilities present in the web server interface, including Buffer 

OverFlow and Code Injection in the HTTP protocol. The result we expect from 

exemplifying our implementation is to help users to develop new security 

benchmarks in a faster and more effective way. 

Case studies to demonstrate the validity and applicability of our security 

benchmark methodology. In Chapter 6, we presented two case studies involving 

real and widely used web serving system components. These case studies enabled 

us to compare the security of popular software-based systems and demonstrated 

that the combination of the static and dynamic analysis is a useful way to select 

the most secure among functionally equivalent systems. 

Future work prospects are centered on the improvement of our methodology 

components and in the extension of the benchmark implementation and case 

studies to other domains. Our future work plan is summarized next. 

Develop a more effective vulnerability platform to support security 

benchmark executions. The vulnerability repository we presented in the static 

part of our methodology implementation used local instances of the Open Source 

Vulnerability Database and of the National Vulnerability Database. Although this 

was useful to demonstrate the effectiveness of our approach, it is necessary to 

reduce our dependency on such databases by proposing a platform to be 

maintained by benchmark users.  

Use other security testing tools to identify known vulnerabilities. The web 

server security scanner used in our case study, although effective, is not the sole 

one available in the market. In this sense, it is necessary to investigate the 

coverage of competing security testing tools within the context of our benchmark 

methodology. By using different security testing tools, and creating a repository 

to cover a large range of security test, we expect to discover additional 

vulnerabilities that were not detected by a particular scanner. 
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Develop an automated tool to inject web application vulnerabilities 

integrated with the attackload and security checker. The vulnerabilities 

injected in the Wordpress web application were done manually. Next steps will 

include the automation of this injection procedure by taking advantage of the tool 

implementation proposed in (J. Fonseca, Vieira, and Madeira 2009). This is aimed 

at speeding up the preparation stage of the security benchmark run and 

significantly increasing the number of vulnerabilities injected in a given 

component. The challenge here is that this tool must target injection points that 

are reachable by attackers and that somehow interacts with the benchmark target. 

Inject new vulnerability types. We injected Cross-site scripting, XSS 

vulnerabilities into the Wordpress web application as they are representative of 

the vulnerabilities that usually affect PHP web applications (J. Fonseca and Vieira 

2008). However, in order to check the impact of vulnerability exploitation in 

different scenarios, it is necessary to move forward and target other types of 

vulnerabilities. 

Select different components as the benchmark and vulnerable targets. In the 

case study we presented, web serving system was the system under benchmark, 

having the web server was benchmark target and the vulnerable component was 

the web application. Future work includes the selection of other web serving 

system components as the benchmark and vulnerable targets in order to provide to 

community more benchmark results.   

Add more tests in the security checker components. The security verifications 

performed to assess the impact of attacks were sufficient to support the security 

measurements. However, we expect to include a more extensive set of tests, 

which will make the benchmark methodology stronger and more useful to users. 

Implement our security benchmark methodology for other domains. More 

examples of security benchmarks are expected to be developed complying with 

the procedures and rules of our security benchmark methodology specification. 

This is an important step to demonstrate that our methodology can be applied for 

different classes of software-based systems, which will certainly contribute to 

increase the acceptance and adoption of our methodology by the security 

community.  

Devise effective ways to use our security methodology as the starting point of 

a potential security benchmark agreement. A possible path to achieve this goal 

is to take advantage of an European research framework to propose the definition 

of a standard security benchmark specification, using our security benchmark 

methodology as a start point. This proposal is particularly relevant to reach a 
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benchmark agreement regarding the benchmark parameters and requirements that 

are necessary for each software-based system domain. This agreement is an 

essential part of any widely used benchmark, as can be verified in the benchmarks 

proposed in the performance and dependability fields. 
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