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Abstract 

The hydraulic bulge test remains nowadays an important tool for characterizing the 

behaviour of sheet materials submitted to large plastic deformation. Data from this test, not 

only provides additional information to the tensile stress vs. strain curve, but also plays an 

important role as input information for identifying the parameters of the current most 

advanced yield criteria. 

The circular hydraulic bulge test is studied by means of finite element simulations, using 

the in-house code DD3IMP. This work aims to contribute to the easy and accurate evaluation 

of stress vs. strain curve of sheet metals in biaxial tension. Variables of the test, such as 

pressure evolution during the test, geometry of the cap, including radius of curvature and 

sheet thickness, strain and stress paths at the pole of the cap, were analysed. This allows to 

make recommendations in order to improve the traditional experimental procedure for 

determining the stress vs. strain curve, but also to develop new direct and inverse 

methodologies for simplifying its evaluation. 

The traditional procedure for obtaining the stress vs. strain curve from the circular bulge 

test does not takes into account the anisotropy of the material. The detailed analysis of issues 

such as the geometry of the spherical cap and the stress and strain paths at the pole, allowed 

to understand the relationships between such variables of the test, the sheet anisotropy and 

the different hardening behaviours of the material. The in-depth understanding of these 

relationships has repercussions on the experimental evaluation of the stress vs. strain curve 

of materials when using the bulge test, for which recommendations are made. 

Analytical models for the radius of curvature and the sheet thickness evolutions with the 

pole bulge height were proposed. These models are based in an extensive analysis of material 
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behaviours, i.e. different values of yield stress, hardening coefficient, anisotropy, and also 

different values of initial sheet thickness and geometry of the circular bulge test. The 

analysed geometric variables include the bulge die radius and the fillet radius of the die. The 

validation of the proposed analytical models is performed both by numerically generated 

results and experimental results; in the latter case, results were considered not only from 

literature, having various die geometries, but also from an experimental equipment in the 

framework of this thesis, having a specific die geometry. This formulation shows to be 

appropriate for simplifying the experimental assessment of the hardening curve from the 

hydraulic bulge test. Namely, it is possible to avoid the complex experimental procedure to 

determine the stress and strain values during the test, which requires specific devices for 

evaluating the radius of curvature and the sheet thickness at the pole of the cap. 

Finally, the current results also showed that it is possible to overlap the curves 

concerning the evolution of the pressure with the pole height, and this insight was explored 

in order to build an inverse strategy for identifying the parameters of the Swift hardening 

law, from the bulge test. The overlapping of these curves can be accomplished by using 

multiplying factors for the pressure and the pole height, which in case of materials with the 

same hardening coefficient it is independent of the remaining parameters of the Swift law, 

anisotropy and initial thickness of the sheet. Moreover, the analysis of the pressure evolution 

during the test has shown that corresponding values of these factors are sensitive to the 

parameters of Swift law and the initial sheet thickness, being only slightly dependent of the 

anisotropy of the material. The proposed methodology consisted on choosing the best 

overlap between the experimental and reference results, which were numerically obtained 

for isotropic materials with various values of the hardening coefficient. Validation was 

performed using numerical generated results and experimental results. The methodology 

allows simplifying the experimental procedure and in addition is not exposed to 

experimental errors related to the experimental evaluation of strain at the pole and the use of 

membrane theory approach, for assessment of the stress from the radius of curvature, which 

is usually the major source of error. 

 

 

Keywords: Hardening law, Hydraulic bulge test, Isotropic and anisotropic 
metal sheets, Modelling, Inverse analysis, Membrane theory, 
Numerical simulation. 
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Resumo 

O ensaio de expansão biaxial sob pressão hidráulica continua a ser hoje em dia uma 

ferramenta importante de caracterização do comportamento plástico de chapas metálicas 

quando sujeitas a grandes deformações plásticas. A informação retirada deste ensaio não só 

faculta dados adicionais aos da curva tensão-deformação em tração, mas também 

desempenha um papel importante como informação necessária para identificação de 

parâmetros dos critérios de plasticidade mais avançados. 

Este trabalho foi realizado recorrendo a simulações numéricas do ensaio de expansão 

biaxial em matriz circular, com recurso ao programa DD3IMP. Tem como objetivo 

contribuir para a determinação da curva tensão vs. deformação de chapas metálicas em tração 

biaxial, de modo simples e preciso. Durante o ensaio foram analisadas variáveis relacionadas 

com a geometria da chapa, tais como o raio de curvatura e a espessura da chapa, e outras 

como a evolução de pressão e as trajetórias de tensão e de deformação no pólo da calote. Isto 

permitiu delinear algumas recomendações, de modo a melhorar o procedimento tradicional 

experimental de determinação da curva tensão vs. deformação, e desenvolver novos métodos 

diretos e inversos com o intuito de simplificar a sua avaliação. 

O procedimento tradicional de obtenção da curva tensão vs. deformação do ensaio de 

expansão biaxial em matriz circular não toma em consideração a anisotropia do material. 

Neste estudo detalhado analisam-se em pormenor alguns aspetos, tais como a geometria da 

calote esférica e as trajetórias de tensão e de deformação no pólo, de modo a compreender 

as relações entre as diferentes variáveis do ensaio em função da anisotropia do material e 

para diferentes comportamentos de encruamento. Isto permitiu uma compreensão 
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aprofundada destas relações, com impacto na determinação experimental da curva tensão vs. 

deformação do material, para o que são feitas recomendações. 

Foram propostos modelos analíticos que descrevem a evolução do raio de curvatura e 

da espessura de chapa em função da altura de pólo. Estes modelos são baseados numa ampla 

análise de comportamentos de materiais, ou seja, para diferentes valores de tensão limite de 

elasticidade, coeficiente de encruamento, anisotropia, e também para diferentes valores de 

espessura inicial da chapa e geometrias circulares de matriz. As variáveis analisadas, 

respeitantes à geometria da matriz, são o raio da matriz e o raio de concordância da matriz. 

A validação dos modelos analíticos propostos foi realizada com resultados gerados 

numericamente e experimentalmente; neste último caso, foram utilizados os existentes na 

literatura, para várias geometrias de matriz, e os obtidos no âmbito da presente tese, com 

uma geometria de matriz específica. A formulação desenvolvida mostra-se adequada para 

simplificar a determinação experimental da curva de encruamento recorrendo ao ensaio de 

expansão biaxial sob pressão hidráulica. Nomeadamente, é possível evitar o procedimento 

experimental complexo para determinar os valores de tensão e de deformação durante o 

ensaio, o qual requer dispositivos específicos para a análise do raio de curvatura e da 

espessura da chapa no pólo da calote. 

Por fim, os resultados apresentados também indicaram a possibilidade de sobrepor as 

curvas da evolução da pressão em função da altura de pólo e este conhecimento foi 

fundamental para conceber uma estratégia de análise inversa para identificar os parâmetros 

da lei encruamento de Swift, baseada no ensaio de expansão biaxial. Foi possível obter a 

sobreposição das curvas de pressão em função da altura de pólo utilizando fatores de 

multiplicação para a pressão e para a altura de pólo, no caso de materiais com o mesmo 

coeficiente de encruamento, independentemente dos restantes parâmetros da lei de 

encruamento de Swift, da anisotropia do material e da espessura inicial da chapa. Além disso, 

a análise da evolução da pressão durante o ensaio mostrou que os valores desses fatores são 

sensíveis aos parâmetros da lei de Swift e à espessura inicial da chapa, sendo apenas 

ligeiramente dependentes da anisotropia do material. A metodologia proposta consiste em 

definir a melhor sobreposição entre os resultados experimentais e os de referência, obtidos 

numericamente para materiais isotrópicos com diferentes valores de coeficiente de 

encruamento. Esta metodologia foi validada utilizando resultados gerados numericamente e 

resultados experimentais. Desta forma, com os desenvolvimentos realizados é possível 



 

 

  Resumo 

 

 

  ix 

 

simplificar o procedimento experimental, sem se estar exposto a erros relacionados com a 

determinação experimental da deformação no pólo da calote e a utilização da teoria de 

membrana na avaliação da tensão a partir da análise do raio de curvatura, fatores que 

correspondem normalmente às principais fontes de erro. 
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General Introduction 

This chapter introduces the framework of the study in the current area of research, 

related to the characterization of the plastic behaviour of metal sheets and particularly by 

using the hydraulic bulge test. The objectives and achievements of the developed research 

under this thesis are presented, comprising the studies and proposed methodologies up to the 

direct and inverse analysis of circular bulge test. 

Also, a global overview of the document is presented by describing its structure and 

defining the covered topics in each chapter. 
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1.1. Background and Motivation 

Currently, products manufactured from metal sheets are used in many industrial 

applications, from general machinery to automobile and aircraft components and even 

consumer goods. The main reason for using these products from sheet metal is related to the 

high productivity rate, as well as the increased ease of manufacturing and automation. 

The analysis by the Finite Element Method (FEM) is currently unavoidable in the design 

of metal forming processes. On the other hand, the modelling of plastic behaviour of metal 

sheets, used in forming processes, is an important issue for the numerical simulation [1–3]. 

For this reason, the development of models with the objective to improving the description 

of the yield locus [4–8] and its evolution during deformation [9-13] is of fundamental 

importance, if accuracy of numerical results is to be improved. The introduction of new 

materials in this area of engineering has also encouraged the development of numerical 

modelling topics; as examples of these materials, one shall mention the high-strength steels, 

aluminium alloys or magnesium alloys, which are being increasingly used in the automotive 

industry. These materials present different and characteristic behaviours, such as higher 

springback and a lower formability, when compared with traditional materials (e.g. mild 

steels). The sheet metal processing of these non-traditional materials is thus a challenge, both 

experimentally and for the numerical simulation, because the existing models reveal not 

always the needed suppleness to adequately describe all aspects of their behaviour. 

Moreover, the results of numerical simulation of metal forming processes are influenced not 

only by the selected constitutive model but also by the values of corresponding parameters. 

In fact, the convenient description of mechanical behaviour of metal sheets depends largely 

on the parameter identification strategies [14,15]. 

Up to now, the strategies for identification of the constitutive parameters generally 

consist on an optimization problem, where an objective function is used to minimize the gap 

between the experimental and computed results [3,16–20]. When different types of 

experimental data are available to be used, each term in the objective function is multiplied 

by a weight coefficient, which states the relative importance for each type of data or 

mechanical test. Generally, the weight coefficients are chosen by the user, and there is no 



 

 

General Introduction   

 

 

4   

 

established procedure, being suitable to define the best values for these coefficients. These 

methodologies lead to results for the constitutive model parameters that depend on the type 

and number of mechanical tests and respective available data, the weight coefficients and 

even the optimization algorithm or objective function. 

Several tests, such as simple tension, at different angles with the rolling direction, shear 

and biaxial stress (cruciform tests or circular bulge test) are generally used for identification 

of the constitutive parameters [21,22]. However, only occasionally all these tests are 

simultaneously considered. Moreover, the strain paths associated with these tests do not 

entirely correspond to those observed in deep-drawing components: simple tension rarely 

occurs, and shear only occurs in the blank flange (volume within the blank holder). In fact, 

most of the strain paths in these components are in the range between simple tension and 

balanced biaxial tension. In case of biaxial stress paths (balanced or unbalanced), the bulge 

test allows to obtain relatively high strain values before necking, when compared to, e.g. 

cruciform tests, [23,24] and so the definition of the equivalent stress vs. strain curves can be 

performed up to large strain values, for several strain paths that mainly depend on the 

geometry of the die (circular or elliptical). 

At present, the access to computational methods enables the simulation of metal forming 

processes, in an increasingly sophisticated and realistic way and the use of these numerical 

codes allows fast resolution of plasticity problems. The numerical simulation results 

presented in this thesis were obtained using the finite element code DD3IMP, which was 

developed and continuously updated in Experimental Technology Group and 

Computational, in Mechanical Engineering Centre at the University of Coimbra – CEMUC. 

This code is particularly devoted to three-dimensional numerical simulation of metal 

forming processes, including sheet metal forming processes [25,26]. The available facilities 

in Institute of Science and Innovation in Mechanical and Industrial Engineering – INEGI 

were also used to carry experimental bulge tests. 
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1.2. Objectives and Achievements 

The purpose of this thesis is to analyse the circular bulge test, in order to establish 

methodologies that can improve the accuracy and simplification of the experimental 

procedures to obtaining the stress vs. strain curves in biaxial strain paths. This presumes 

analysing variables of bulge test, such as the principal strains and stresses in the sheet plane, 

curvature and sheet thickness at the pole of the cap, pressure and pole height evolutions, by 

resorting to numerical simulation capabilities. Based on this analysis, the objectives also 

include obtaining simplified and accurate procedures, which will give the assessment of 

sheet metal behaviour in biaxial strain and stress paths, those which can be found from bulge 

test. In fact, the current experimental procedures require the use of relatively complex 

devices that generate data with time consuming analysis, also revealing calibration and 

accuracy issues not always adequately solved. Moreover, in case of materials with planar 

anisotropy, the stress and strain paths are hardly experimentally defined, which prevents a 

proper analysis. 

In order to study particular features of this test, systematic numerical analyses on 

materials with isotropic and anisotropic behaviour was carried out, concerning the geometry 

of the cap and the stress and strain distributions at the pole, and also the evolutions of the 

radius of curvature and sheet thickness during the test. 

This analysis will take advantage in the development of methods to explore the 

experimental results, according to its procedures, as well as defining equations for the 

evolutions of the sheet thickness and the curvature radius during the test, which allows the 

assessment of the biaxial flow stress curve. The main target is to simplify the experimental 

procedure, thus avoiding the experimental complexity for determining the stress and strain 

values at different moments of the test, which requires specific devices for assessing the 

curvature radius and the sheet thickness at the pole of the cap. The proposed equations were 

tested using numerical generated results of the bulge test as well as experimental data. 

In addition, the possibility to achieve a unified description of the pressure evolution with 

the pole height, was explored. This gives the understanding that it is possible the overlapping 

of the curves pressure vs. pole height of different metal sheets, provided that the hardening 
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parameter of the Swift law has the same value, whatever the values of the remaining 

hardening and anisotropy parameters of the material, and sheet thickness. To succeed 

obtaining the overlapping of the curves, one needs that the values of the pressure and the 

pole height shall be multiplied by factors which depend on the ratio between the yield 

stresses of the materials, and the anisotropy and thicknesses ratio of the sheets. This strategy 

allowed the development of a simplified inverse analysis strategy for determining all 

parameters of the Swift law, from the results of pressure vs. pole height. This methodology 

provides an efficient and easy to implement alternative, which was also tested using 

numerical generated bulge test results as well as the experimental data. 

 

1.3. Thesis Outline 

In order to facilitate the reading and understanding of this thesis, the current section 

presents the structure as well as a brief summary of the topics covered in each chapter. The 

content of the thesis is organized into four chapters; this first chapter defines the framework 

of the work in the area to which it belongs, i.e. the characterization of the plastic behaviour 

of metal sheet, and sets the objectives and achievements of this work. 

Chapter 2 presents the literature review of the bulge test, by referring to the membrane 

theory and methodologies for assessing the hydraulic pressure and radius of curvature, stress, 

strain, and sheet thickness at the pole. Direct and inverse methodologies for assessing the 

hardening law are described. Reference is made to the standard ISO 16808:2014 for the 

bulge test. 

Chapter 3 is composed of three papers that consist on the innovative research conducted 

within the framework of this thesis; the first paper concerns “Anisotropy and plastic flow in 

circular bulge test”; the second paper discusses “On the determination of the work hardening 

curve using the bulge test”; and the last paper is related to “Inverse Identification of Swift 

law parameters using the bulge test”. 

Chapter 4 summarizes the main issues addressed in the thesis, emphasising the main 

contributions of the present work. At the end of this chapter, some recommendations for 

future work are provided. 



 

 

  References 

 

 

  7 

 

 

References 

[1] Choi Y, Han C-S, Lee JK, Wagoner RH. Modeling multi-axial deformation of planar 
anisotropic elasto-plastic materials, part I: Theory. Int J Plast 2006; 22: 1745–64. 
Doi:10.1016/j.ijplas.2006.02.002. 

[2] Choi Y, Han C-S, Lee JK, Wagoner RH. Modeling multi-axial deformation of planar 
anisotropic elasto-plastic materials, part II: Applications. Int J Plast 2006; 22: 1765–
83. Doi:10.1016/j.ijplas.2006.02.003. 

[3] Flores P, Duchene L, Bouffioux C, Lelotte T, Henrard C, Pernin N, et al. Model 
identification and FE simulations: Effect of different yield loci and hardening laws in 
sheet forming. Int J Plast 2007; 23: 420–49. Doi:10.1016/j.ijplas.2006.05.006. 

[4] Barlat F, Lege DJ, Brem JC. A six-component yield function for anisotropic materials. 
Int J Plast 1991; 7: 693–712. Doi:10.1016/0749-6419(91)90052-Z. 

[5] Cazacu O, Barlat F. Generalization of Drucker’s Yield Criterion to Orthotropy. Math 
Mech Solids 2001; 6: 613–30. Doi:10.1177/108128650100600603. 

[6] Bron F, Besson J. A yield function for anisotropic materials Application to aluminum 
alloys. Int J Plast 2004; 20: 937–63. Doi:10.1016/j.ijplas.2003.06.001. 

[7] Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE. Linear 7ransformation-
based anisotropic yield functions. Int J Plast 2005; 21: 1009–39. 
Doi:10.1016/j.ijplas.2004.06.004. 

[8] Hu W. An orthotropic yield criterion in a 3-D general stress state. Int J Plast 2005; 
21: 1771–96. Doi:10.1016/j.ijplas.2004.11.004. 

[9] Chaboche JL. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. 
Int J Plast 1989; 5: 247–302. Doi:10.1016/0749-6419(89)90015-6. 

[10] Chun BK, Jinn JT, Lee JK. Modeling the Bauschinger effect for sheet metals, part I: 
theory. Int J Plast 2002; 18: 571–95. Doi:10.1016/S0749-6419(01)00046-8. 



 

 

References   

 

 

8   

 

 

[11] Chun BK, Kim HY, Lee JK. Modeling the Bauschinger effect for sheet metals, part 
II: applications. Int J Plast 2002; 18: 597–616. Doi:10.1016/S0749-6419(01)00047-
X. 

[12] Lee M-G, Kim D, Kim C, Wenner ML, Wagoner RH, Chung K. Spring-back 
evaluation of automotive sheets based on isotropic-kinematic hardening laws and 
non-quadratic anisotropic yield functions. Int J Plast 2005; 21: 883–914. 
Doi:10.1016/j.ijplas.2004.05.015. 

[13] Lee M-G, Kim D, Kim C, Wenner ML, Chung K. Spring-back evaluation of 
automotive sheets based on isotropic–kinematic hardening laws and non-quadratic 
anisotropic yield functions, part III: applications. Int J Plast 2005; 21: 915–53. 
Doi:10.1016/j.ijplas.2004.05.014. 

[14] Alves JL. Simulação numérica do processo de estampagem de chapas metálicas: 
Modelação mecânica e métodos numéricos. PhD Thesis. University of Minho, 2003. 

[15] Chaparro BM. Comportamento plástico de materiais metálicos: identificação e 
optimização de parâmetros. PhD Thesis. University of Coimbra, 2006. 

[16] Rabahallah M, Balan T, Bouvier S, Bacroix B, Barlat F, Chung K, et al. Parameter 
identification of advanced plastic strain rate potentials and impact on plastic 
anisotropy prediction. Int J Plast 2009; 25: 491–512. 
Doi:10.1016/j.ijplas.2008.03.006. 

[17] Stoughton TB, Yoon JW. Anisotropic hardening and non-associated flow in 
proportional loading of sheet metals. Int J Plast 2009; 25: 1777–817. 
Doi:10.1016/j.ijplas.2009.02.003. 

[18] Chaparro BM, Alves JL, Menezes LF, Fernandes J V. Optimization of the 
Phenomenological Constitutive Models Parameters Using Genetic Algorithms. Adv. 
Methods Mater. Form. SE – 3, Springer Berlin Heidelberg; 2007, p. 35–54. 
Doi:10.1007/3-540-69845-0_3. 

[19] Chaparro BM, Thuillier S, Menezes LF, Manach PY, Fernandes J V. Material 
parameters identification: Gradient-based, genetic and hybrid optimization 
algorithms. Comput Mater Sci 2008; 44: 339–46. 
Doi:10.1016/j.commatsci.2008.03.028. 

[20] Bouvier S, Gardey B, Haddadi H, Teodosiu C. Characterization of the strain-induced 
plastic anisotropy of rolled sheets by using sequences of simple shear and uniaxial 
tensile tests. J Mater Process Technol 2006; 174: 115–26. 
Doi:10.1016/j.jmatprotec.2005.04.086. 

 



 

 

  References 

 

 

  9 

 

 

[21] Koç M, Billur E, Cora ÖN. An experimental study on the comparative assessment of 
hydraulic bulge test analysis methods. Mater Des 2011; 32: 272–81. 
Doi:10.1016/j.matdes.2010.05.057. 

[22] Zang SL, Thuillier S, Le Port A, Manach PY. Prediction of anisotropy and hardening 
for metallic sheets in tension, simple shear and biaxial tension. Int J Mech Sci 2011; 
53: 338–47. Doi:10.1016/j.ijmecsci.2011.02.003. 

[23] Santos AD, Teixeira P, Barata da Rocha A, Barlat F, On the Determination of Flow 
Stress Using Bulge Test and Mechanical Measurement. In: Barlat F, Moon YH, Lee 
MG, editors. 10th Int. Conf. NUMIFORM, Pohang, Republic of Korea: American 
Institute of Physics; 2010, p. 845–52. Doi:10.1063/1.3457644. 

[24] Santos AD, Teixeira P, Barlat F. Flow stress determination using hydraulic bulge test 
and a mechanical measurement system. Int. Deep Draw. Res. Gr. Conf. IDDRG, 
Bilbao, Spain: IDDRG; 2011, p. 91–100. 

[25] Menezes LF, Teodosiu C. Three-dimensional numerical simulation of the deep-
drawing process using solid finite elements. J Mater Process Technol 2000; 97: 100–
6. Doi:10.1016/S0924-0136(99)00345-3. 

[26] Oliveira MC, Alves JL, Menezes LF. Algorithms and Strategies for Treatment of 
Large Deformation Frictional Contact in the Numerical Simulation of Deep Drawing 
Process. Arch Comput Methods Eng 2008; 15: 113–62. Doi:10.1007/s11831-008-
9018-x. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

References   

 

 

10   

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Page intentionally left blank] 

 

 



 

 

  Literature Review 

 

 

  11 

 

 

  

 
 

Literature Review 

This chapter provides a literature review on the bulge test, which includes the definition 

of the membrane theory and the existing methodologies to evaluate the hydraulic pressure, 

the radius of curvature, the sheet thickness, the strain and the stress at the pole of the cap. 

Direct approaches and inverse analysis methodologies for determining the hardening curve 

are also described. A brief reference and description of the International Standard ISO 

16808:2014, for determination of the biaxial stress vs. strain curve of metallic sheet by the 

bulge test, is additionally presented. 
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2.1.  Hydraulic Bulge Test 

The hydraulic bulge test has started to be studied since the mid-twentieth century and 

has become an increasingly common test to examine the plastic behaviour of metal sheets 

under biaxial tension. In the 1980s and 1990s, further developments and confirmations have 

been carried out, for example evolving comparison of analytical with experimental solutions, 

as by Shang et al. [1]. This test has stimulated the interest of researchers for determining the 

stress vs. strain curves up to significantly high levels of deformation (up to about 70%, 

depending on the hardening coefficient of the material), as compared to those achieved in 

uniaxial tensile tests, where the uniform deformation is limited by the necking. Therefore, 

the bulge test can give supplementary description of the plastic behaviour of metal sheets 

during the forming processes [2], when compared to other tests. Additionally, when 

combined with other tests, the biaxial test gains importance, since it allows the analysis of 

the anisotropy of the material by comparing the respective biaxial stress vs. strain curves 

with those obtained from uniaxial tensile tests and other tests under different strain paths [3]. 

In this test, the periphery of a metal sheet is immobilized using, for example, a circular 

drawbead, which prevents this region of the sheet to move in the radial direction. Then a 

pumping hydraulic fluid (mostly used) [4], a viscous material (to prevent leakage) [5,6] or a 

pneumatic gas (most utilized at elevated temperature levels) [7], is used as a pressure 

medium and applied in the central area on one side of the sheet, deforming it into 

approximately spherical or ellipsoidal shape, depending on the geometry of the die, being 

circular or elliptical. The deformation of the sheet is promoted by the applied hydraulic 

pressure, which minimizes the problems associated with the characterization of frictional 

contact. The test conditions promote the biaxial strain path at the pole of the cap, which in 

the case of a circular die, is approximately spherical in the region of the pole and along a 

circle of constant latitude [8,9]. 

The circular bulge test has been the subject of growing interest in the characterization 

of the hardening law and the determination of the yield surface at room [10] and warm [11] 

temperatures. However, the analysis of the test shows some complexities, since the 

evaluation of the hardening law is performed using the membrane theory [12], which 
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requires the evaluation of the radius of curvature, the sheet thickness at the pole and the 

hydraulic pressure during the test. Alternatively, the determination of the sheet thickness at 

a given moment of the test can be performed based on various mathematical models, which 

take into account the geometry of the test [2,13] or the strain value at the pole. Moreover, 

the analysis of the test generally assumes isotropy and equibiaxial stress and strain [14], 

although the metal sheets are usually anisotropic [15]. The results of Yoshida [16] show that 

for orthotropic sheet metals, the stress state at the top of the cap deviate by 1-5% from the 

equibiaxial stress state, although his results only concern materials with relatively low 

anisotropy in the sheet plane. 

This test can also be used to obtain the strain limits defining the points of the Forming 

Limit Curve (FLC), with a typical example represented in Figure 2.1. Usually, the FLC is 

determined using experimental tests, between uniaxial tension and biaxial stretching (such 

as bulge test with circular and elliptical dies geometries to obtain various strain paths), with 

monotonic loading paths, meaning that it is only valid for processes in which the loading 

path is linear. However, non-linear strain paths play an important role in forming of complex 

shapes, when changes of direction occur for metal flow. 

 

 

Figure 2.1. Schematic representation of Forming Limit Curve [17]. 

 

Measurement devices used in experimental tests have been developed over the last 

years. They can be grouped into mechanical and optical systems. 
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Young et al. [18] describes mechanical systems for direct measurement of the radius of 

curvature and strain at the pole of the cap using a three point spherometer and an 

extensometer, respectively. These measurement systems, similar to those used in INEGI (see 

Figure 2.2), involve mechanical contact with the sheet to be tested. The spherometer 

evaluates, during the test, the height difference between the pole and three positions at a 

fixed radius. The radius of curvature of the sphere at the pole of the cap follows a simple 

geometrical equation that is presented later in the respective subchapter. The extensometer 

allows determining the strain value in the sheet plane, in a region near the pole of the cap, 

during the test in one material orientation. The data recorded during the test are the pressure, 

the height between the pole and the three points spherometer, as well as the distance between 

the extensometer tips. The positions of the three points for the spherometers and the initial 

diameter for the extensometer was optimized by Santos [19], through the use of numerical 

simulations. 

 

 

Figure 2.2. Experimental bulge test device used in INEGI [20]. 

 

The use of mechanical measurement systems requires the assumption that an equibiaxial 

strain state exists at the pole of the cap (which is not the general case of anisotropic materials 

[21]), since they only allow determining the strain along in one direction. 

Optical measuring systems are alternative to determine the strain state in anisotropic 

materials [22]. Mutrux et al. [23] and Keller et al. [24] describe 3D optical systems that 

consist of two cameras and a laser. The lasers sensors can measure the shape of the cap based 

on the spatial coordinates of points previously marked on the surface of the sheet. The 
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camera system uses a previously filed grid on the surface blank to evaluate the principal 

strains, 1 and 2, in the sheet plane. The sheet thickness is determined based on the principal 

strains in the sheet plane, while the radius of curvature is usually obtained by fitting a 

spherical function to points near the pole of the cap. Mulder et al. [25] evaluated the profile 

of the bulge by fitting spherical, paraboloid and ellipsoid shapes functions using the least 

squares method. These authors [25] reach the same conclusion as Güner et al. [26], that is 

the radius of curvature can be accurately derived by any of those shape functions, but the 

ellipsoidal function allows a wider range of data points to be considered without loss of 

accuracy. 

In the next subsections it is presented an overview of the methodologies for determining 

the radius of curvature, the sheet thickness and the strains and stress, at the pole of the cap 

during the bulge test. These variables are used for determining the biaxial stress vs. strain 

curve. Inverse analysis methodologies for identifying the parameters of the hardening law 

from the bulge test results are also described. In order to standardize determination of the 

biaxial stress vs. strain curve from this test, the German group’s IDDRG (International Deep 

Drawing Research Group) made a proposal to ISO standards in July 2007 for the bulge test 

under hydraulic pressure [24,27]. Recently, this International Standard has been published 

as an ISO 16808:2014 [28] and at the end of this chapter, a brief summary of the ISO standard 

is presented. 

 

2.2.  Membrane Theory 

During the bulge test, the inner surface of the sheet is submitted to pressure, so that its 

shape at the top of the cap is approximately spherical or ellipsoidal (depending on the die 

geometry used). Thus, the surface geometry at the pole can display one or two radii of 

curvature, respectively. 

The analysis of the installed stresses in the sheet during the bulge test is performed using 

the membrane theory [12], which is valid for a small ratio between the sheet thickness and 

the bulge die diameter, typically values lower than 1/50 are recommended for circular die 

[29,30]. Under these conditions, the bending stresses can be neglected and it can be assumed 

that the thickness stress is zero. 
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Let us consider a small surface element at the pole of the cap, to which is associated the 

Oxyz axis system, coincident with the axes of anisotropy of the sheet, as shown in Figure 

2.3. The main geometrical characteristics of the element are also presented in the figure. 

 

 

Figure 2.3. Small element at the pole of the cap (adapted from [31]). 

 

Figure 2.4 shows the forces acting on the element, showing details of its geometry, 

where t is the sheet thickness, x and y are the radii of curvature in the Oxz and Oyz planes, 

a and b are respectively the element dimensions according to Ox and Oy directions, and x 

and y are the stresses in the sheet plane. 

 

 

Figure 2.4. Geometry of the pole of the cap in the Oxz (left) and Oyz (right) plans. The stresses promoting 
the balance of forces, at each moment of the test, are also shown (adapted from [31]). 
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The balance of forces in the Oz direction allows obtaining the following equation: 

 x y2 sin 2 sin
2 2

bt at pab
         
   

, (2.1) 

Considering that the size of the element tends to zero and so the angles  and  are also 

small, one can write: 

 
x

sin
a 


   and 

y

sin
b 


  . 

(2.2) 

and replacing into equation (2.1), the following can be obtained: 

 
yx

x y

p

t


 

  . (2.3) 

This equation is called membrane theory equation or Laplace’s Equation. For the case 

of in-plane isotropic materials, using a circular die, it can be simplified as examined in the 

following section. 

 

2.3.  Analysis of the test 

To perform the analysis of the bulge test, i.e. to determine x and y in order to establish 

the stress vs. strain curve of the material, it is necessary to know the value of each variable 

of the membrane theory (equation (2.3)) at various test steps. That is, to experimentally 

determine the stress vs. strain curve it is required the determination of the evolution of 

pressure, p, the radii of curvature, x and y, and the sheet thickness at the pole, t, during the 

test. The radius of curvature and sheet thickness at the pole of the cap can be determined 

using different procedures, referred in the literature, which are described and analysed in the 

following subsections. 
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2.3.1.  Hydraulic pressure 

During the bulge test, the pressure is imposed by a hydraulic pump and is uniformly 

distributed on one side of the sheet, which deforms with the approximate shape of a spherical 

or ellipsoidal surface, depending on the die used and the sheet properties. The pressure is 

recorded during the test. 

 

2.3.2. Radius of curvature 

The determination of the stress vs. strain curve with the membrane theory requires the 

knowledge of the radius of curvature of half thickness at pole of the cap, which can be 

obtained by different procedures. Some of these procedures are now described. 

Some authors [16,25,30] consider that the radius of curvature shall be measured in the 

two principal directions of the circular bulge specimen. However, the analysis performed by 

other authors, using computer generated results, indicates that the radii of curvature are equal 

in principal directions, even in anisotropic materials [32]. The radius of curvature is 

experimentally determined during the test on the outer surface of the cap, ext, using either 

contact or contactless equipment. The radius of curvature at half thickness, , of the sheet to 

be considered in equation (2.3) can be determined based on the following equations [33,34], 

respectively: 

 ext 2

t    (2.4) 

 ext 0.6t    (2.5) 

where t is the actual sheet thickness at the pole of the cap. 

Equation (2.4) is generally the most used experimentally. Equation (2.5) tries to balance 

the fact that the centres of curvature do not coincide, for the outer surface and at half 

thickness, because the sheet thickness increases from the pole towards the periphery (see 

Figure 2.5). Figure 2.5 shows the difference between the radius of curvature at half thickness 

of the sheet considering non-homogeneous thinning   and homogeneous thinning   . 

In case of non-homogeneous thinning at the top of the cap it is shown that   is smaller 

than   . 
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Figure 2.5. Difference between homogeneous and non-homogeneous thinning (adapted from [33]). 

 

In the experimental test, the determination of the radius of curvature can be evaluated 

using optical systems [26], by fitting a suitable function to the measured points, or using 

three points spherometers [35], as shown in Figure 2.6. In case of spherometers, the 

experimental evaluation of the radius of curvature can be performed based on the diameter 

between the spherometers, DCV, and the height difference, hCV, between the pole and the 

three positions of the spherometers, based on the following equation [34,36]: 

 
 2 2

CV CV
ext

CV

2
.

2

D h

h



  (2.6) 

Another procedure for determining the radius of curvature at the pole of the cap is the 

use of models [29,37,38] involving some geometric parameters of the cap, at each moment 

of the test, as shown in Figure 2.7. The initial thickness of the sheet is t0, ext is the radius of 

curvature of the outer surface of the sheet at the pole, RM is the die radius, R1 is the die profile 

radius, h is the pole height at each moment of the test, C0 is the initial length of the region 

used for determining the radius, ext, and  is the angle subtended by the centre of the test 

(O), the centre of curvature of the concordance zone of the die (Q) and the pole of the cap 

(P). Table 2.1 shows examples of models proposed for determining the radius of curvature 

at the pole of the cap, which avoid the use of spherometer or optical systems. 
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Figure 2.6. Variables used in the analysis of the experimental bulge test (adapted from [20]). 

 

 

Figure 2.7. Geometrical parameters of the bulge test (adapted from [39]). 
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Table 2.1. Equations proposed for determining the radius of curvature at the pole of the cap. 

References 
Radius of Curvature 

Models 

Hill [40] [see: [37]] 
2 2

M
ext 2

R h

h
 

  

Panknin [41] [see: [37]]  2 2
M 1 1

ext

2

2

R R h R h

h


  
  

 

In the last model (Smith et al. [42]), the radius of curvature of the outer surface, ext, 

depends on of the die radius, RM, and on the total volume of fluid accumulated inside the 

cap, V. 

The experimental results presented in the literature [29,43] show that the Panknin model 

describes the evolution of the radius of curvature of the cap during the test, better than the 

others. 
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Model of Smith et al. [42] 
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2.3.3. Sheet thickness 

The determination of the stress vs. strain curve with the aid of the membrane theory 

needs the knowledge of the evolution of the sheet thickness at the pole of the cap, during the 

bulge test. The procedure for determining the sheet thickness at the pole of the cap [33,34] 

is based on the knowledge of the initial thickness of the sheet, t0, and the thickness strain, 3, 

through the following equation: 

  0 3exp .t t    (2.7) 

The thickness strain, 3, can be obtained from the measure of the principal strains in the sheet 

plane, 1 and 2, based on the condition of volume constancy during plastic deformation: 

 1 2 3 0.      (2.8) 

In the general case with anisotropic materials, 1 ≠ 2, which allows to write: 

  3 1 2     . (2.9) 

Assuming isotropy, (1 = 2 = ), as commonly used, the thickness strain can be determined 

as follows: 

  3 1 2 2 .         (2.10) 

Some authors [2,13,29,37,39,44] reported that the small size of the region near the pole 

of the cap with uniform strain makes it difficult to experimentally determine the adequate 

value of the sheet thickness. Consequently, these and other authors have proposed models to 

obtain the sheet thickness at the pole during the test, based on the geometry parameters of 

the bulge test shown in Figure 2.7. 

Table 2.2 summarizes the proposed models for determining the sheet thickness at the 

pole, based on the parameters defined in Figure 2.7. In this table, r  is the normal anisotropy 

coefficient and, K and n (hardening coefficient) are the parameters of the Swift hardening 

law [45]: 

 0 45 902

4

r r r
r

 
 . (2.11) 
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  0

n
Y K    . (2.12) 

The purpose of the next paragraph is to briefly analyse and comment some details of the 

models of Table 2.2. 

 

Table 2.2. Equations to determine the sheet thickness at the pole. 

References Thickness Models 

Hill [40] [see: [2]] 
 

2

0 2

M

1

1
t t

h R

 
  

  
 

Chakrabarty and 
Alexander [46]  

2

0 2

M

1

1

n

t t
h R


 

  
  

 

Atikson [44] 
 2

2 0 0
ext ext

CV2

2

t C

h
t

  
  

Enikeev-Kruglov [47] 
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 

2

M2
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1 M

sin
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R

t t t
R







 
         
 

 

Kruglov modified [47] 
2(1 )

0 sin

c

t t




 
   
 

 

Isachenkov [48]   
0

1 11 1

t
t

K 


   

Constancy volume law 
[48] 
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M
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
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Jovane [48] 
 

2
2

M
0 21
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R
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Liu et al. [49] 
 
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The model proposed by Hill (see reference [2] of [40]) was improved in order to 

consider the effect of hardening coefficient of the material. This parameter influences the 

evolution of the strain values at the pole of the cap during the test and therefore, the sheet 

thickness, as considered in the model by Chakrabarty and Alexander [46]. 

Kruglov [47] proposed an analytical model assuming that the strains are homogeneous 

in the pole region, but the evolution of the sheet thickness depends on the die geometry of 

the bulge [13]. 

In the modified Kruglov model, c is a constant coefficient, always positive, that takes in 

account the non-uniformity of the strain distribution on the surface of the cap. This 

coefficient can be calculated using the following equation: 

 0 max max
max

min max max

ln ln ln ,
sin sin

t
c

t

 
 

   
    

  
 (2.13) 

where tmin is the minimum value of the thickness, that occurs for the maximum pressure and 

max is the maximum value of  (see Figure 2.7); the value of max can be obtained using the 

following equation: 

 
2

M M max
max 1 1

max

1
arcsin ,

2 2 2 2

d d h
R R

h


                    
 (2.14) 

where hmax is the pole height for the maximum pressure. 

The recently model proposed by Liu et al. [49] considers a finite element bounded by 

section  and  d  , as shown in Figure 2.8. This element as an initial thickness t0. As 

the pressure in the chamber increases the sheet will bulge to a cap with a height of pole h 

and a radius of curvature . Thus, the point M which indicates the original location of the 

element moves to point M’, whose position is defined by angle  (see Figure 2.8), on the 

deformed element with thickness t. The distance from M’ to the symmetry axes is the 

denoted as R while the original distance is . The mechanical analysis of this element allows 

to define the differential equation that defines the evolution of R, such as: 

 

 
   

1
2

1 1dR
1 ,

d

r r

r rR R


 

  

 


      
    
   

 (2.15) 
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where the stress path, , is determined based on the equation: 

  
0.5 1.94

M 1

1 0.5 0.3143 ,

n

n
R R




 
     

 (2.16) 

where n is hardening coefficient (Swift law) of the material. The authors show that the 

differential equation (2.15) can be numerically solved, using for instance the third-order 

Runge-Kutta method, enabling the prediction of the thickness distribution for a certain pole 

height as a function of the distance from the centre, using the equation presented in Table 

2.2. It is also shown that at the pole of the cap the solution presents a numerical instability. 

Nevertheless, the calculated thickness evaluated at a distance of about 2 mm from the centre 

corresponds to an accurate estimate of the experimental results. 

 

 

Figure 2.8. Schematic variables with small elements of the bulge test (adapted from [49]). 

 

According to the experimental results available in the literature [29,43], the most 

recommended model for describing the evolution of sheet thickness at the pole of the cap 

during the test is the modified Kruglov model (this assessment does not include the recent 

model by Liu et al. [49]). 
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2.3.4. Strains and stresses 

The principal strains in the sheet plane can be directly acquired during the test, using 

suitable Digital Image Correlation (DIC) equipment [25] or a mechanical extensometer [20]. 

In this last case, only one principal strain is measured (see Figure 2.6), and the determination 

of its value, , is performed by measuring the expansion of the initial distance between the 

extensometer, Dst0, which turns into Dst, during the bulge test, using the following equation: 

 st0

st

ln .
D

D


 
   

 
 (2.17) 

Smith et al. [42] established an equation for determining the strain at the pole of the cap, 

without using traditional mechanical devices according to the pole height, h, at each moment 

of the test, and the diameter of the die, dM, as follows: 

 

2

M

ln 1 .
h

d


  
   

   
 (2.18) 

Since the measured strain values comprise two components, elastic and plastic, the 

elastic strain components, e
1 , e

2  and e
3 , must be removed from the measured strains 

values, 1 and 2 (before determining the equivalent strain,  ) according to the equations of 

the generalized Hooke law, for isotropic elastic behaviour [28] (assuming null value for 

principal thickness stress, 3): 
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  
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  

     

 (2.19) 

The conventional analysis of this test considers that the bending effect is negligible for 

a low ratio between the sheet thickness and the diameter of the die, but it was pointed out 

[50,51] that must be taken into consideration. In case of assuming the Kirchhoff bending 

theory [50], with small strain gradients in the sheet plane, and for insignificant differences 
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between the principal radius of curvature, the bending strain influence, b, is given by (and 

also assuming equation (2.4)): 

 ext
b

ext

0.5
=ln ln 1  .

t
 

  
    

   
 (2.20) 

Figure 2.9 shows the geometry near the pole of the cap with the definitions of the 

principal strains in the sheet plane, 1 and 2, and the bending strain, b. 

 

 

Figure 2.9. Strains definition at the pole of the cap, highlighting b (adapted from [50]). 

 

Using the volume constancy condition and correcting the principal strains with the 

bending strain, a relationship for the thickness strain at the middle plane, 3mid , can be used: 

 3mid 1mid 2mid 1 2 b2             (2.21) 

where 1mid  and 2mid  are the principal strains at the middle plane. Leppin et al. [50] 

concluded that removing only the bending strain components to the principal strains leads to 

a better and more straightforward approach than removing the elastic strain and including 

the bending components. 

In general, the determination of the stresses at the pole of the cap is performed 

considering that the materials have isotropic behaviour [8,13–15,20,29,33,34,37,39,42,44], 

which generally does not occurs. Accordingly, assuming that the principal stress axes O123 

b

ext
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coincide with the coordinate system axes Oxyz, when the principal stresses are equal (1 = 

2 = ), as well as the radii of curvature (1 = 2 = ), the equation (2.3) can be simplified: 

 .
2

p

t

   (2.22) 

Also, in the case of planar anisotropy, Lemoine et al. [30] regards that the principal 

stresses in the sheet plane can be assumed equal (1 = 2 = ), although the radii of curvature 

should be considered different, (1 ≠ 2), allowing to simplify the equation (2.3), as follows: 

  1 2

.
1 1

p

t


 



 (2.23) 

Using equations (2.22) and (2.23), the evaluation of the stress vs. strain curve of the 

materials may not be appropriate for materials with anisotropic behaviour, although Mulder 

et al. [25] describe that for materials with in plane anisotropic behaviour (r0 = 0.5, r45 = r90 

= 1) the error in stress is relatively small (less than 3%). Furthermore, the circular bulge test 

has equal radii of curvature [14]. 

Knowing the values of stresses and strains at the pole of the cap, the equivalent stress 

vs. strain curve can be determined using the von Mises equations [52]: 

    2 2

1 2 1 2       , 
(2.24) 

 
2 2
1 2 1 2

2

3
        

 
. (2.25) 

The equivalent stress and strain under equibiaxial stress and strain paths, according to 

von Mises, are given by: 

  and 2 .      (2.26) 

Due to the rolling condition, sheet metal properties varies from each direction with 

respect to rolling to transverse direction, equivalent stress and strain components should be 

corrected for anisotropy. This is not considered, in equations (2.22) and (2.23), where no 

anisotropy correction has been carried out. Assuming Hill’48 criterion, Smith et al. [53] 

proposed equations (2.27) and (2.28) for determination of equivalent stress, aniso , and strain, 

aniso , under anisotropy conditions, taking into account the normal anisotropy coefficient ( r

): 
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 (2.27) 
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(2.28) 

where   and   is equivalent stress and strain, determined in isotropic conditions. This 

correction is only valid for materials whose mechanical behaviour obeys the Hill’48 yield 

criterion, but the behaviour of real materials can be better described by another yield 

criterion. In fact, the analysis of the test for anisotropic materials needs to consider that the 

stresses and strains in two perpendicular directions are different; this actually has not been 

analysed up to now. In order to more accurately determine the stress vs. strain curve, it is 

essential to take this into account, since the results available in the literature, determined 

from equations (2.22) and (2.23), show non-negligible errors. 

Summarizing, for determining the stress vs. strain curve from the bulge test, the 

membrane theory needs to be used (subchapter 2.2). The evolution of the principal strains, 

1 and 2, in the sheet plane can be obtained with the aid of DIC equipment or mechanical 

extensometer (that only allows determining one of the principal strains). The radius of 

curvature, ext, can also be evaluated using DIC equipment or by spherometer, the pressure, 

p, is acquired during the test and the sheet thickness, t, is obtained based on the thickness 

strain, 3, or using models. 

 

2.4. Inverse analysis methodologies 

In addition to traditional strategies making use of measured variables and analysis of the 

bulge test as stated above, other strategies have also been experienced, generally referred to 

as inverse methodologies, for determining the hardening curve. However, few literature is 

available on inverse procedures only using the bulge test. Still, it is possible to notice two 

works [54,55] that describe inverse approaches for identifying the hardening law parameters. 

This subchapter presents and analyses these two cases of inverse analysis, which are based 

on numerical simulations. 
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The first case [55] uses the circular die to estimate the parameters of the Ludwick 

hardening law [56] for the case of a stainless steel (AISI 304) and complementarily it uses 

an elliptical die to re-identify the anisotropy coefficients in the sheet plane. The second case 

studied [54] uses computer generated results of the circular bulge test to improve the estimate 

of the parameters of the Voce hardening law, considering an isotropic material [57]. 

 

2.4.1. Chamekh et al. [55] 

Chamekh et al. [55] describe an inverse approach, based on Artificial Neural Networks 

(ANN), to identify the material parameters of a stainless steel (AISI 304). They use the 

results of the evolutions of pressure with the pole height, which are transferred to a neural 

network. The ANN is trained using curves generated by finite element simulations of the 

circular bulge test, using systematically various sets of material parameters, in a total of 27 

simulated curves of pressure vs. displacement of the central point of the cap. During the 

training process, the network computes the weight connections, minimizing the total mean 

squared error between the actual output and the desired output; the obtained square error is 

less than 0.001, for the case of circular die, and 0.005, for the elliptical die. The neural 

network generates an approximated function for the material parameters depending on the 

profile of the evolution of pressure with the pole height curve. Then, it was exploited for the 

identification of material parameters from experimental results. The Ludwick hardening law 

was selected: 

 0
n

Y K    (2.29) 

where 0 is the initial yield stress and K and n are material parameters, and the Hill’48 yield 

criterion to describe the orthotropic behaviour. Thus, the set of parameters to be identified 

also comprise the Lankford coefficients, r0, r45 and r90. These material parameters are 

identified according to the two following steps: (i) the first step, using the circular bulge test, 

is to find the parameters of the Ludwick law (assumes the knowledge of Lankford’s 

coefficients determined from the tensile tests) (ii) the second step, using the elliptical bulge 

test for an off axis angle of 0º, is to identify (recalculate) the Lankford’s coefficients. An 

elliptical die for an off axis angle of 45º is used for the validation of the parameters 

identification. The flowchart of methodology is shown in Figure 2.10. 
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Figure 2.10. Idealized flowchart based on the ANN methodology, as proposed by Chamekh et al. [55], 
including the validation step. 
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Table 2.3 compares the set of hardening law parameters identified based on 

experimental tensile test results with those identified from the methodology based on ANN. 

The authors conclude: (i) the ANN methodology can predict acceptable combination of 

material parameters; (ii) once the ANN was trained, output results for a given set of input 

data are available almost instantaneously. Despite these conclusions, it should be noted that 

the value of the experimental and identified hardening coefficients, n, are far away (the 

experimental and identified values of n are 0.67 and 0.4, respectively), which at least in part 

explains the difference values in stress. The parameters K of the Ludwick law and the 

Lankford’s coefficients also show high difference level (Table 2.3). 

 

Table 2.3. Experimental and identified parameters for the stainless steel (AISI 304) and the respective 
difference [55]. 

Variable Identified Value 
Experimental Values 

of Tensile Test 
Difference 

[%] 

0 [MPa] 241.6 238.2 1.4 

K [MPa] 1422 1172 21.3 

n 0.40 0.67 40.3 

r0 1.19 0.93 28.0 

r45 0.80 1.07 25.2 

r90 0.70 0.87 19.5 

 

 

2.4.2. Bambach [54] 

Bambach [54] explored the usability of the circular bulge test to identify the material 

parameters of a fictitious material. This is considered isotropic with hardening behaviour 

described by Voce hardening law: 

  0 sat y1 expY R c        (2.30) 
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where 0 is the initial yield stress and Rsat and cy are material parameters. Initially, the 

membrane theory is applied to the results as in experimental cases, in order to obtain a set of 

parameters of the Voce, by fitting the stress vs. strain results. The inverse analysis strategy 

proposed resorts to a gradient-based optimization algorithm, which is known for being 

sensitive to the initial solution. Thus, by using as initial solution the one previously obtained 

with the membrane theory, it is expected to avoid convergence problems. 

The paper gives special focus to the choice of objective function to be minimized. The 

re-identification of the constitutive parameters is based on finite element analysis performed 

with a set of parameters, defined by vector a , that yields a set of measurements  ap h , 

 a h  or  at h , which are used to define the following objective functions, for the pressure, 

strain and thickness with pole height: 
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





 (2.31) 

A sensitivity analysis of these objective functions was performed and the results obtained at 

the true value of cy (input value of the fictitious material) are shown on Figure 2.11. The red 

mark present in each surface corresponds to the optimum set of parameters. The author 

concludes from this analysis that the combination of first two types of results of equation 

(2.31) will significantly improve the re-identification, since it will contribute to reduce the 

search area were the minimum value of the objective function is located. Table 2.4 present 

the results of re-identification by inverse analysis for the Voce model. 

 

 

 

 

 

 

 



 

 

  Literature Review 

 

 

  35 

 

 

 

Figure 2.11. Objective function for the Voce model at the true value of cy [54]. 

 

Table 2.4. Results of re-identification by inverse analysis for the Voce model [54]. 

Objective 
function 

Function 
calls 

Y0 Rsat cy 
2  

max(|y,true-
y(0,Rsat,cy)|) 

2
p  235 297.50 432.68 2.500 0.082 3.85 

2
ε  243 301.42 426.42 2.500 7.14E-06 2.59 

2
t  126 293.79 431.66 2.500 1.82E-05 6.21 

2 4 2
p ε10   215 299.92 425.02 2.500 0.022 0.078 

Starting guess: 293.79 431.66 2.535   

True values: 300.00 425.00 2.500   
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In summary, the author concluded that the results of inverse analysis is sensitive to the 

choice of the objective function. The results of the re-identification analysis is more accurate 

than the results obtained from the test using the membrane theory, if a suitable objective 

function is chosen, since the last analysis assumes simplifications that influence the accuracy 

with which the hardening curve can be determined. 

Although re-identification present small differences between hardening laws, computed 

generated and identified, it should be noted that this proposal for re-identification needs to 

resort to strain results in the pole of the cap during the test, which does not greatly simplify 

the experimental procedure, relatively to that when using the membrane theory. Moreover, 

the values of the re-identified parameters are very close to those of the starting parameters 

(Table 2.4), which were obtain by traditional methodology for analysing the bulge test, i.e. 

this inverse analysis works like a re-identification procedure (so called by the author), in 

order to improve the results of the direct identification. 

 

2.5. ISO standardisation 

The German DDRG (Deep Drawing Research Group), in the area of deep-drawing of 

metal sheets, proposes an ISO standard for determining the stress vs. strain curve from the 

bulge test under hydraulic pressure, using optical measuring systems. This standardisation 

was published as ISO 16808:2014 and contains ten essential topics. 

The first topic describes the scope and field of application, which is limited to sheet 

thickness less than 3mm (due to the unavoidability of using the membrane theory approach 

for analysing the results), in pure stretch forming without significant friction influence. The 

second topic displays the symbology, designation and the units of the parameters and 

variables of the test. The third one deals with the principle of the test and refers, in general 

terms, the quantities required for the calculation of the stress vs. strain curve of the materials: 

the pressure and, near the centre of the blank, the local curvature and the strains at the 

surface, which must be evaluated with an optical measurement system. The sheet thickness 

is determined assuming incompressible deformation of the material. The fourth topic regards 

the requirements to be fulfilled by the optical measuring equipment, which should determine 

the spatial coordinates of a grid of points on the surface of the sheet, in order to calculate the 
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shape and the principal strains in the central area of interest, contactless with the sheet. The 

recommended measurement precision for the pressure imposed is indicated. The die and 

blank holder must be rigid enough to prevent deformation during testing. The equipment 

should contain a drawbead to avoid slipping of the sheet and its clamping should be sufficient 

for do not lose fluid. The optical measuring system can use a glass for protecting the optical 

measuring system, which should be as thin as possible. The smallest ratio between the die 

diameter, dM, and the sheet thickness, t, must satisfy the condition: 

 M 33,
d

t
  (2.32) 

and it is recommended that the die profile radius, R1, should be 5 to 10 times greater than 

the sheet thickness, up to the maximum value of 15mm, to avoid cracks in the blank during 

the test. 

The fifth topic is about the optical measurement system for determining the radius of 

curvature and principal strains in the sheet plane, recommending an optical field 

measurement system. This topic refers to the local resolution of the system (distance between 

grid points of measurement), accuracy required for determining the coordinate normal to the 

sheet (related with the evaluation of the curvature) and the size of measurement area. In the 

sixth topic concerns the samples, i.e. the blank to be used for testing. It is namely mentioned 

that the blank must be oriented with the rolling direction parallel to one of the axes of the 

coordinate measuring system, and recommendations are made about the grid application. 

The seventh topic is about the testing procedure. This is carried out at room temperature, 

after previous measurement of the initial sheet thickness. The growth rate of applied 

pressure, as well as the number of outputs results and images to be collect during the test, 

are also reported. 

The eighth topic describes the procedure for the determination of the radius of curvature 

and the strains at the pole, assuming the spherical shape of the sheet surface near the pole of 

the cap. The size of central regions for obtaining the radius of curvature and strains is 

recommended; the size of the regions is different for the radius of curvature and for the 

strains. 

The ninth topic displays the equations for the biaxial stress vs. strain curve determination 

and the assumed simplifications: 
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- The equibiaxial stress state is assumed: 

 1 2 B     (2.33) 

- The curvature is represented by means of the radius of curvature: 

 

1

1 2

1 1 1

2


 


  

   
  

 (2.34) 

- Then the biaxial true stress can be calculated by: 

 B 2

p

t

   (2.35) 

- Using the fluid pressure, p, the radius of curvature, , and the actual thickness, t, 

with: 

 0 3exp( )t t   (2.36) 

- Assuming plastic incompressible deformation of the material, the total thickness 

strain for the calculation of the actual thickness (equation (2.36)) can be 

approximated by the total major and minor true strains: 

 3 1 2      (2.37) 

- Assuming an isotropic linear elastic material behaviour and plastic 

incompressibility, the plastic thickness strain is then given by: 

 pl
3 1 2 B

1
2

E

   
     (2.38) 

- Finally, the biaxial stress vs. strain curve is obtained plotting the stress, B (equation 

(2.35)) as function of the plastic thickness strain (equation (2.38)). Under these 

conditions, the standard states that “the biaxial stress-strain curve is obtained 

without any assumption on the type of yield criterion”. 

Lastly, the tenth and last topic, states all information that shall be indicated on the test 

report concerning the test conditions and analyse, besides the biaxial stress vs. strain curves 

as a table of values and as a plot. 

The International Standard ISO 16808:2014 still contains four annexes of which is to 

highlighting the final (Annex D), concerning the determination of the equibiaxial stress point 

of the yield criterion and the hardening curve. This annex describes a methodology for 

transforming the biaxial stress vs. strain curve into the stress vs. strain curve determined from 
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uniaxial tensile test data in rolling direction, in order to provide hardening data at strains 

higher than the uniform strain of tensile test. 

In conclusion, it should be noted that this International Standard emphasizes the use of 

optical measuring systems for the determination of the biaxial stress vs. strain curve by mean 

of bulge test. Moreover, assumes the stress state as equibiaxial and isotropy of the materials. 
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Innovative Development 

This chapter presents the innovative work of this research on the circular bulge test, in 

the form of three articles. Firstly, the research is summarised. The remaining subchapters 

consist of the papers entitled: “Anisotropy and plastic flow in circular bulge test”; “On the 

determination of the work hardening curve using the bulge test”; and “Inverse Identification 

of Swift law parameters using the bulge test”. 
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3.1. Overview of the research papers 

In this subchapter it is carried out a brief overview of the innovative research conducted 

within the framework of this thesis, which consist of following three research papers. 

The first paper analyses the geometry of the sheet, the principal strains and stresses, and 

the respective paths near the pole of circular bulge test, at different moments of the test for 

materials with anisotropic plastic behaviour. This analysis highlights that, in case of in-plane 

anisotropic materials, the stress and strain paths can be considerably different from 

equibiaxial, despite the spherical geometry of the cap near the pole (radius of curvature equal 

in for both orthotropic directions in the sheet plane). The error in equivalent stress involved 

in conventional analysis, i.e. assuming equibiaxial stress state and isotropy is compared with 

that obtained under real conditions. Finally, a methodology is suggested for improving the 

determination of the biaxial stress vs. strain curve. 

The second paper analyses the evolution of the radius of curvature and sheet thickness 

with the pole height, during the circular bulge test with the various die geometries. It was 

observed that the radius of curvature and sheet thickness depend on the die geometry and 

hardening coefficient of the material. The sheet thickness also depends on these geometrical 

and material parameters, but depends as well on the normal anisotropy coefficient. 

Analytical models are developed for describing the evolutions of the radius of curvature and 

sheet thickness, which are target of numerical and experimental validation and compared 

with results and models in literature. This approach enables properly assessing of the 

hardening curve and allows simplifying the experimental procedure. 

Lastly, the third paper develops an inverse analysis methodology for determining the 

parameters of Swift hardening law, which consists on the search for the best coincidence 

between evolutions of pressure with pole height of experimental and numerical reference 

curves, the latter being obtained by numerical simulation assuming isotropic material 

behaviour with various values of the Swift hardening coefficient in the range of the material 

under study. The overlapping of the curves is performed using appropriate factors for the 

pressure and the pole height, which is based on two key points: (i) for materials with the 

same value of the hardening coefficient, the overlapping of the pressure with pole height 
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curves depends factors which values are correlated with the thickness and yield stress ratios, 

between the experimental and the reference numerical curve of isotropic material (ii) the 

influence of the anisotropy on the overlapping of the pressure with pole height curves can 

be adequately taken into account, acting on the multiplying factors, what allows using 

isotropic reference curves in inverse analyses, avoiding the knowledge of the parameters of 

the yield criterion to be used as input in numerical reference curves. This identification 

enables proper evaluation of the Swift hardening law, simplifies the experimental procedure 

and is not exposed to various experimental errors. 
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3.2. Anisotropy and plastic flow in circular bulge test 

This subchapter consists of the paper “Anisotropy and plastic flow in circular bulge 

test”, submitted for publication. It analyses the geometry of the spherical cap, the strains and 

stresses distributions and respective paths near the pole of the cap, in order to understand the 

role of the anisotropy on the determination of the biaxial stress vs. strain curve. This study 

clarifies constraints of the currently used procedure and outlines recommendations for the 

proper experimental evaluation of that curve. 
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ANISOTROPY AND PLASTIC FLOW IN THE CIRCULAR 

BULGE TEST 
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Abstract 

The procedures for obtaining the stress vs. strain curve from the bulge test are 

analysed in detail resorting to numerical simulations. Particular attention is given to in-plane 

anisotropic materials for which remains a lack of knowledge about issues such as the 

distributions, near the pole of the bulge specimen, of variables such as the radius of 

curvature, sheet thickness, principal stresses and strains as well as stress and strain paths. 

This study seeks to understand and evaluate the errors inherent to the commonly used 

experimental procedures for determining the hardening curve from the bulge test. The usual 

procedure assumes that the material is isotropic and the stress path at the pole is equibiaxial. 

An empirical equation relating the stress path with the strain path at the pole of the cap is 

suggested to improve the determination of the hardening curve, which holds particular 

prominence in cases of strongly anisotropic sheets. 

 

Keywords: Hydraulic bulge test, Hardening law; Anisotropic metal sheets, Membrane 

theory, Numerical simulation.  
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1. INTRODUCTION 

Sheet metal forming processes are demanded to manufacture components for the 

automotive, aeronautics and other industries. The finite element method (FEM) is commonly 

used nowadays for simulating and optimizing sheet metal forming processes. However, the 

numerical simulation results are dependent on the convenient characterization and modelling 

of the mechanical behaviour of metal sheets. Whatever the constitutive model used in the 

simulations (i.e. hardening law and anisotropic yield criterion), the strategies for identifying 

its parameters as well as the experimental tests and procedures used in the analysis play an 

important role in the characterization of the metal sheets mechanical behaviour [1–5]. The 

parameters of the models are generally determined with recourse to tensile and other tests, 

such as shear, cruciform and bulge [6]. 

The biaxial bulge test under hydraulic pressure allows achieving relatively high 

strain values before necking and enables the definition of the hardening law for a wide range 

of plastic deformation [7]. In circular bulge test, the periphery of the metal sheet is 

immobilized through a drawbead, which prevents the peripheral region of the sheet from 

moving into the radial direction [8–10]. Then, a hydraulic pressure is applied on one side of 

the sheet, promoting an approximately spherical shape in the region near the pole of the cap 

and inside a circle of constant latitude [11,12]. Under these conditions, a biaxial stress path 

occurs at the pole of the cap. 

The bulge test is used for determining the hardening curve [13] and the forming 

limit diagram [14], not only with circular but also with elliptic dies, which enables a wide 

range of biaxial stress paths [13,15]. For evaluating the stress vs. strain curve, the evolutions 

of pressure, radius of curvature and strain at the pole of the cap should be recorded during 

the test. The measurement of the radius of curvature and strain can be performed by a 

spherometer and an extensometer, respectively [16,17]. An optical system can replace these 

mechanical systems with advantages, since it enables the description of the geometry and 

strain distributions on the sheet surface during the bulge test [18,19]. In both cases, the 

membrane theory that relates the stresses at the pole with the pressure, radius of curvature 

and sheet thickness must be used [20]. 

The analysis of the bulge test results, including the application of the membrane 

theory, still presents uncertainties, despite of the recent recommended procedure by ISO 

16808 (2014) [21]. In fact, the accurate evaluation of the stress vs. strain curves depends on 

assumptions and simplifications, whose assessment are still under study. For example, in a 
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recent study Mulder et al. [22] examine the validity and the conditions for using the 

membrane theory, which includes issues related to: the evaluations of the radii of curvature 

and stresses at the middle plane of the sheet, the coordinate system for strain measuring to 

be used, the equibiaxial stress state assumption in case of in-plane anisotropic materials and 

the existence of stresses across the sheet thickness. An issue that has received little attention 

concerns the effect of the anisotropy of the material in the bulge test results, including its 

influence on the accuracy of the hardening curve determination [23]. Yoshida [24] estimated 

the stress and strain paths during the bulge test, in case of in-plane anisotropic materials by 

using finite element analysis. He concludes that the stress path at the pole of the cap deviates 

from equibiaxial between 1-5%, depending on the degree of anisotropy of the materials. 

However, this result only concern materials with relatively low anisotropy in the sheet plane. 

The current work presents a numerical study on the circular bulge test of metal 

sheets, performed with the DD3IMP in-house code [25,26]. It examines the geometry and 

the stress and strain distributions near the pole of the cap. This analysis also concerns the 

relationship between stress and strain paths. Materials with anisotropy in the sheet plane are 

particularly considered. The methodology for the experimental determination of the 

hardening law of metal sheets and associated errors is also analysed. The Hill’48 criterion 

[27] and the Swift law [28] are used due to their simplicity, but other constitutive model is 

also tested. 

 

2. THEORETICAL BACKGROUND 

The analysis of the stress state near the pole of the metal sheet during the bulge 

test, using either circular or elliptical dies, can be performed with the aid of the membrane 

theory [29], as long as a small ratio between the sheet thickness and the die diameters is 

fulfilled. The typical values suggested for this ratio are lower than 1/50, for the circular test 

[6,30]. Standard ISO 16808:2014 [21] recommends this ratio equal to or lower than 1/33. 

Under these conditions the bending stress can be neglected, and assuming that the thickness 

stress 3 (= Z) is equal to zero, a relationship between the principal stresses at the pole, the 

pressure and the geometry of the cap is given by: 

1 2

1 2

p

t

 
 

  , (1) 
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where 1 and 2 are the principal stresses in the sheet surface (assuming that the principal 

stress axes (O123) and anisotropy axes (Oxyz) coincide), 1 and 2 are the radii of curvature, 

at half thickness, in the Oxz and Oyz planes, respectively, p is the hydraulic pressure and t is 

the sheet thickness. 

In order to experimentally determine the strain hardening curve, the evolution of 

the following variables needs to be obtained during the test: pressure, p, the radii of 

curvature, 1 and 2, and the sheet thickness at the pole, t. The thickness can be determined 

based on the knowledge of the initial thickness of the sheet, t0, and the thickness strain, 3, 

through the following equation: 

  0 3expt t   . (2) 

where the principal strain, 3, is obtained from the measurement of the principal strains in 

the sheet plane, 1 and 2, based on the condition of volume constancy during the plastic 

deformation: 

  3 1 2     . (3) 

Since the radius of curvature is experimentally evaluated on the external surface 

of the cap, its correction can be done based on the following equation [31]: 

 
2ext

t   , (4) 

where  is the radius of curvature at the half thickness of the cap, and ext is the radius of 

curvature of the external surface of the cap. 

In the general case, i.e. anisotropic metal sheet, the membrane theory equation 

(equation (1)) contains two unknown variables, 1 and 2, which requires an additional 

equation for its determination. This additional equation can be obtained from the plastic 

stress-strain relationships arising from the associated flow rule. For metal sheets following 

the Hill'48 criterion [27], assuming coincidence of the coordinate systems of principal stress 

(O123) and anisotropy (Oxyz), it is possible to write: 

 
   
   

1 1 2 1 3

2 2 3 2 1

d d H G

d d F H

     

     

       


      
, (5) 

where F, G and H are the anisotropy parameters, d1 and d2 are the increments of plastic 

deformation in the sheet plane, parallel to the Ox and Oy axes, respectively, and d is an 

incremental scalar factor of proportionality. In the bulge test, it can be assumed that 3 = 0 
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and, based on the equations (5), the incremental strain path can be related with the stress 

path as follows (Hill’48 criterion): 

 

 

 

2

2 1

21

1

H F H

 .
G H H

d

d


 




  


 
 (6) 

This equation can also be written as a function of the anisotropy coefficients, r0 and r90, 

respectively in the rolling (Ox  O1) and transverse (Oy  O2) directions of the sheet, as 

follows: 

 

2

1 902

1 2

0 1

1
1 1

 .
1

1

rd

d

r




 


 
   
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 

  
 

 (7) 

Consequently, the equations (1) and (6) or (7) allow determining the principal stresses, 1 

and 2, in case of circular and elliptical dies, assuming that the Hill'48 criterion describes 

the anisotropic behaviour of the material. 

To calculate the equivalent stress,  , and the equivalent strain,  , values that 

characterize the hardening behaviour, the following equations can be used [15,27]: 

    2 2
1 2 1 2G H F H 2H         , 

(8) 

 
2 2 2

2 3 1 3 1 2G H F H F G
F G H

FG GH HF FG GH HF FG GH HF

                              
. 

(9) 

In case of isotropic materials, obeying the von Mises yield criterion, the principal 

stresses, 1 and 2, in bulge tests performed either with circular or elliptical dies, can be 

calculated using the equation (1) and the following equation, deduced by simplifying 

equation (6) (or (7)): 
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2 1
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0.5

 .
1 0.5

d

d


 




 



 (10) 

Similarly, the equivalent stress and strain can be calculated using the following simplified 

equations (von Mises): 
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    2 2

1 2 1 2       , 
(11) 

 
2 2
1 2 1 2

2

3
        

 
. (12) 

Finally, in cases of circular die and isotropic or anisotropic materials such that, 

the anisotropy coefficients at 0º and 90º degrees are equal (r0 = r90), the principal stresses 

are also equal (1 = 2 = ), as well as the principal strains (1 = 2 = ) and radii of curvature 

(1 = 2 = ), which simplifies equation (1) as follow: 

 
2

p

t

  . (13) 

In these cases, equation (13) is sufficient to determine the principal stresses in the sheet plane 

(1 = 2 = ), without requiring any additional equation. 

Also, for materials with fully isotropic behaviour, equations (11) and (12) can 

be simplified for equibiaxial stress and strain paths (von Mises criterion): 

Since the total strain presents two additive components, elastic and plastic, the 

elastic strain components, 1
e  and 2

e , can be removed from the measured strains, 1 and 2. 

Assuming isotropic elastic behaviour, the generalized Hooke's law, gives the elastic strain 

components as: 

Since in the bulge test it can be assumed that 3 = 0, this equation can be written: 

    and 2  . (14) 
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(16)
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3. NUMERICAL MODELLING AND ANALYSIS 

In order to perform the study concerning the methodology for the evaluation of 

the work hardening law using the circular bulge test, a numerical model of the test was built, 

which is defined in this section. The geometry of the tools considered in the test is 

schematically shown in Figure 1, where RM = 75 mm is the die radius, R1 = 13 mm is the die 

profile radius, RD =95 mm is the radius of the central part of the drawbead and RS = 100 mm 

is the radius of the circular sheet. This geometry was built based on the experimental bulge 

test used by Santos et al. [32]. 

The tools were described using Bézier surfaces, considering only one quarter of 

the geometry due to the material and geometrical symmetry conditions. However, in order 

to simplify the analysis, the drawbead geometry was neglected and its effect was replaced 

by a boundary condition imposing radial displacement restrictions on the nodes placed at a 

distance equal to RD from the centre of the circular sheet, which has an initial blank radius 

of RS [10]. The contact with friction was described by the Coulomb law with a friction 

coefficient of 0.02 [33]. The numerical simulations were carried out with the DD3IMP in-

house code [25,26] assuming an incremental increase of the pressure applied to the sheet 

inner surface. The blank sheet was discretized with solid 8 node elements, using two layers 

of elements through the thickness, as previously described [34]. 

 

 

Figure 1. Bulge test, with the identification of the principal dimensions of the tool according to Santos et al. 

[32]. 

 

Die

Blank Holder

Hydraulic Fluid

Deformed sheet metal

Drawbead

1 13 mmR 

75 mm
M

R 

95 mm
D

R 

100 mm
S

R 



60 

 

The constitutive model adopted for the finite element analysis assumes that: (1) 

the isotropic elastic behaviour is defined by the generalized Hooke’s law; (2) the plastic 

behaviour is described by the orthotropic Hill’48 yield criterion and the hardening model by 

the Swift isotropic law. 

The Hill’48 yield surface is described by the equation [27]: 

2 2 2 2 2 2 2
yy zz zz xx xx yy yz xz xyF( ) G( ) H( ) 2L 2M 2N Y                 , (17) 

where xx, yy, zz, xy, xz and yz are the components of the Cauchy stress tensor, in the 

principal axes of orthotropy, and F, G, H, L, M and N are the anisotropy parameters of the 

material. Y represents the yield stress and its evolution during deformation ( )Y f  , which 

is described by the Swift isotropic hardening law [28]: 

0( )n
Y K    , (18) 

where   is the equivalent plastic strain and K, 0 and n are the material parameters to be 

identified. The initial yield stress, 0, can be written as a function of K, 0 and n, as follows: 

0 0
n

K  . The elastic behaviour is considered isotropic and described by the generalised 

Hooke’s law, with a Young’s modulus, E = 210 GPa, and a Poisson’s ratio, ν = 0.30. The 

initial thickness of the sheet is 1 mm. 

In few cases, duly identified in the text, the Drucker+L criterion and the Voce 

law [35] are also used. The Drucker+L yield criterion [36] is an extension of the Drucker 

isotropic criterion [37] and is described by the equation: 

3 2 6

2 31 1
tr( ) tr( ) 27

2 3 3

Y
c

                
s s , (19) 

where tr(s) is the trace of the stress tensor s, resulting from the linear transformation of the 

Cauchy stress tensor, σ, and c is a weighting isotropy parameter, ranging between −27/8 and 

9/4, to ensure the convexity of the yield surface. When c equals zero, this criterion coincides 

with the Hill’48 yield criterion. The s stress tensor is given by: 

σ:Ls  , (20) 

where L is the linear transformation operator proposed by Barlat et al. [38]: 
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in which Ci, with i = 1, …, 6, are the anisotropy parameters; C1 = C2 = C3 = C4 = C5 = C6 for 

the full isotropy condition. This yield criterion includes one more parameter, the parameter 

c, when compared to Hill’48 yield criterion, thus being more flexible. So, when the 

parameter c is not zero, Hill’48 criterion cannot fully describe the behaviour of a material 

that follows Drucker + L criterion. 

The Voce law can be written as: 

  expsat sat yY R c      (22) 

where sat, Rsat and cy are materials parameters; the yield stress is 0 = sat - Rsat. 

In order to determine the hardening curves, the analysis of the numerical 

simulation results was performed in the same way that is usually done experimentally, i.e. 

using step-wise measurements. The evaluation of the surface radius of curvature, ext, at the 

pole of the cap at various stages during the test, is performed by NXT Defect Evaluator code 

[39]. This software allows the evaluation of surface curvature, based on the coordinates of 

points located on the same meridian plane. The surface radius of curvature, ext, was analysed 

for both axes. The radius of curvature at half thickness, , is determined using equation (4). 

At each stage, the principal strains in the sheet plane were determined by the direct 

measurement at the pole of the cap, as experimentally performed using digital image 

correlation technique (DIC). 

 

4. CASES UNDER ANALYSIS 

Numerical bulge tests were performed in metal sheets with in-plane isotropy and 

anisotropy. This section describes and characterizes the materials under study, and also 

illustrates their mechanical behaviour during the bulge test, by relating the pressure with 

pole height. 
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4.1. Sheet materials and analysis procedure 

Table 1 shows the parameters of the Hill’48 criterion of the materials under study 

and the respective designation. It is assumed that the hardening curve corresponds to the 

stress vs. plastic strain curve under uniaxial tensile test along the Ox axis, i.e. the condition 

G + H = 1 was used, for the parameters of the Hill’48 criterion [40]. The designation A_B_C 

corresponds to a material with the anisotropy coefficient, r, in the sheet plane such that: r 

= A, r = B and r = C. The selected materials for this study display three different types 

of anisotropy in the sheet plane: (i) isotropy: r = r = r; (ii) anisotropy with: r = r ≠ r; 

(iii) full anisotropy: r ≠ r. Figure 2 shows the evolution of the anisotropy coefficient, r, 

in the sheet plane for the materials with in-plane anisotropy. 

 

Table 1. DesigŶatioŶ of the ŵateƌials aŶd the ƌespeĐtiǀe paƌaŵeteƌs of Hill’48 ĐƌiteƌioŶ. 

Designation
Parameters of the Hill’48 Criterion 

F G H L M N 

Materials with r0 = r45 = r90 

0.7_0.7_0.7 0.588 0.588 0.412 1.500 1.500 1.412 

1_1_1 0.500 0.500 0.500 1.500 1.500 1.500 

2_2_2 0.333 0.333 0.667 1.500 1.500 1.667 

3_3_3 0.250 0.250 0.750 1.500 1.500 1.750 

Materials with r0 = r90 ≠ r45 

0.6_3_0.6 0.625 0.625 0.375 1.500 1.500 4.375 

3_0.6_3 0.250 0.250 0.750 1.500 1.500 0.550 

1.5_3_1.5 0.400 0.400 0.600 1.500 1.500 2.800 

3_1.5_3 0.250 0.250 0.750 1.500 1.500 1.000 
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Materials with r0 ≠ r90 

0.6_0.7_0.8 0.469 0.625 0.375 1.500 1.500 1.313 

0.6_1.8_3 0.125 0.625 0.375 1.500 1.500 1.725 

1.5_2.25_3 0.200 0.400 0.600 1.500 1.500 1.650 

1.5_2.75_4 0.150 0.400 0.600 1.500 1.500 1.788 

0.5_2.25_4 0.083 0.667 0.333 1.500 1.500 2.063 

1.5_3_3 0.200 0.400 0.600 1.500 1.500 2.100 

1_2.25_3.5 0.143 0.500 0.500 1.500 1.500 1.768 

 

(a) (b) 

Figure 2. Distribution of r in the sheet plane, for materials with anisotropy in this plane: (a) r = r ≠ r; (b) 
r ≠ r. 

 

In order to better describe the anisotropic state of the materials, Figure 3 shows 

the evolution of the ratio 0 0
0   between the yield stress in tension, 0, for an angle, , 

in the sheet plane, and the yield stress in tension along Ox,  0
, as a function of  angle, for 

the materials with r0 = r90 ≠ r45 and for materials with r0 ≠ r90. 
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(a) (b) 

Figure 3. Distribution of 
0 0

0   in the sheet plane, for materials with anisotropy in this plane: (a) r0 = r90 ≠ 
r45; (b) r0 ≠ r90. 

 

Figure 4 and 5 shows the normalized initial yield surfaces in the 

 0 0
0 0;

xx yy
     space of the materials with r0 = r90 (Figure 4) and with r0 ≠ r90 (Figure 

5). The dashed-dotted grey straight lines correspond to the condition 2 = 1. The solid, 

dashed and dotted grey and black straight lines in Figure 5 indicate the axes of the ellipses. 

The yield surface of the materials 3_3_3, 3_1.5_3 and 3_0.6_3 are coincident (see Figure 4), 

as well as those of the materials 1.5_2.25_3 and 1.5_3_3, by one side, and the materials 

1_2.25_3 and 1_3_3, by other side (Figure 5). The axes of the materials 0.6_0.7_0.8 and 

1.5_2.75_4 are collinear. The yield surfaces of the materials 0.6_1.8_3 and 0.5_2.25_4, for 

which r0 < 1 and r90 > 1, have their axes with higher slope than those of the other materials. 

The size of the yield surface is clearly smaller in case of the material 0.6_0.7_0.8 than others. 
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Figure 4. Normalized initial yield surfaces in the plane  0 0
0 0;

xx yy
     of the materials with r0 = r90. 0

0 

is the initial tensile yield stress along the Ox axis. 
 

 

Figure 5. Normalized initial yield surfaces in the plane  0 0
0 0;

xx yy
     of the materials with r0 ≠ r90. 0

0 

is the initial tensile yield stress along the Ox axis. 

 

The parameters of the Swift hardening law, for the materials studied in the next 

sections, are shown in Table 2. Simulations were performed for all the materials in Table 1 

with the work hardening coefficient, n, equal to 0.20 (see Table 2). The hardening laws with 

work hardening coefficients, n, equal to 0.10 and 0.35 were only used for simulations of the 

materials 0.6_0.7_0.8, 1.5_2.75_4 and 0.5_2.25_4 (see Table 1). 
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Table 2. Parameters of the Swift hardening law. 

Materials
Parameters of the Swift law 

0 [MPa] K [MPa] 0 n 

200_0.10 200 339.73 0.005 0.10 

200_0.20 200 577.08 0.005 0.20 

200_0.35 200 1277.59 0.005 0.35 

4.2. Curves p vs. h 

This section shows examples of numerical results of pressure vs. pole height 

curves, relating to the materials of Table 1 with hardening coefficient, n, equal to 0.20. Figure 

6 (a) concerns the cases of the materials with r0 = r90, indicating that the behaviour depends 

on the value of these anisotropy coefficients, which define the size of the major axis of the 

ellipse (for a given hardening curve). The higher the anisotropy coefficients, r0 and r90 (i.e. 

the longer is the major axis of the ellipse), the higher is the pressure level of the curves. The 

materials 3_3_3, 3_1.5_3 and 3_0.6_3, which show coincidence of the yield surfaces in the 

 0 0
0 0;

xx yy
     space, have the pressure vs. pole height curves almost coincident. Also 

the materials 0.7_0.7_0.7 and 0.6_3_0.6 have very close pressure vs. pole height curves. 

 

(a) (b) 

Figure 6. Evolution of the pressure, p, with the pole height, h, for Hill’48 materials: (a) r0 = r90; (b) r0 ≠ r90. 

The hardening coefficient of the material is n = 0.20. 
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Figure 6 (b) shows the evolution of the pressure with the pole height, for the 

cases of the materials with in-plane anisotropic behaviour (r0 ≠ r90). The values of the 

anisotropic coefficient influences the level of the curves, in a similar way to the cases of 

materials with r0 = r90, (the average values of r0 and r90 are related with the magnitude of the 

major axis of the ellipse). However, for these materials, the level of the pressure vs. pole 

height curves depends on the stress path that does not coincide with the axis of the ellipse, 

as will be seen later. The material 1.5_2.75_4, with the longest major axis of the ellipse but 

close to the material 0.5_2.25_4 (Figure 5), presents the curve with the highest level and the 

material 0.6_0.7_0.8, with the shortest major axis of the ellipse (Figure 5), shows the curve 

with the lowest level. The other curves have relatively close levels. Moreover, the materials 

with the same value of r0 and r90, even with different r45 (1.5_2.25_3 and 1.5_3_3 materials), 

show evolutions of the pressure with the pole height quite coincident. Finally, the materials 

1_2.25_3.5 and 0.5_2.25_4 (Figure 4 (b)) show curves very close to the materials 3_1.5_3 

and 3_0.6_3 (Figure 4 (a)), with a small difference at the end of the test, which seems to 

indicate that also the value of the normal anisotropic coefficient influences this evolution. 

 

5. GEOMETRY OF THE CAP AND STRESS AND 

STRAIN DISTRIBUTIONS 

This section analyses the distributions, near the pole of the cap of the bulge test, 

of variables such as the radius of curvature, the sheet thickness, the principal and equivalent 

stresses and strains as well as the stress and strain paths. The analysis mainly focuses on the 

in-plane anisotropic materials with r0 ≠ r90, for which there remains a lack of knowledge 

about these aspects. In fact, in case of in-plane isotropic materials, most of these issues have 

already been analysed (see for example [22]), in view of their relative simplicity related to 

the geometrical and material symmetry. Also the materials of the current study with r0 = r90 

≠ r45 show identical behaviour along the axes Ox and Oy, due to the symmetry of the yield 

surface in the (xx; yy) space and the geometrical symmetry of the circular bulge test. That 

is why the analysis in this section deals primarily with materials such that r0 ≠ r90. 

Concerning the analysis of the surface shape of the specimen, the results showed 

that, also for in-plane anisotropic materials, the geometry of the cap has symmetry such that 
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the radii of curvature at the pole of the cap are equal along the axes Ox and Oy (1 = 2 = ), 

at each moment of the test, the same occurring for the sheet thickness. On the contrary, the 

principal stress and strain distributions are different along these axis, i.e. the stress and strain 

paths at the pole of the cap are always different from 1 (1 ≠ 2 and 1 ≠ 2). 

The materials with strong anisotropy in the sheet plane, 1.5_2.75_4 and 

0.5_2.25_4, and with hardening coefficient, n = 0.20, were chosen to illustrate the general 

detailed behaviour, that is, not only at the pole cap, but also in distant points. Figure 7 shows 

the evolution of pressure with the pole height for these materials (see also Figure 6) and the 

moments of the bulge test under analysis. These correspond to four pressure values during 

the tests, marked in the figure with points, which corresponds to: (i) material 1.5_2.75_4 

with pressure values of 4.5, 8.5, 9.5 and 10 MPa (corresponding to the Hill’48 equivalent 

strains equal to 0.066, 0.231, 0.329 and 0.421 at the pole of the cap, respectively); and (ii) 

material 0.5_2.25_4 with pressure values of 4, 8, 9 and 9.4 MPa (corresponding to the Hill’48 

equivalent strains equal to 0.059, 0.229, 0.336 and 0.421 at the pole of the cap, respectively). 

 

 
Figure 7. Evolution of the pressure, p, with the pole height, h, for materials 1.5_2.75_4 and 0.5_2.25_4. The 

dots concern the pressure values on which the analysis is focused: 4.5, 8.5, 9.5 and 10 MPa, for the material 

1.5_2.75_4, and 4, 8, 9 and 9.4 MPa, for the material 0.5_2.25_4. The hardening coefficient of both material 

is n = 0.20. 

 

Figure 8 shows the contours of the cap, i.e. the vertical position of each point, z, 

as a function of the distance to the centre, d, along the Ox and Oy axes, for the materials 

1.5_2.75_4 (Figure 8 (a)) and 0.5_2.25_4 (Figure 8 (b)) and the pressure values above 

mentioned (see Figure 7). Whatever the pressure value, the Ox and Oy profiles coincide, 

from the centre to the edge of the cap (Figure 8). This means that the radii of curvature at 
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the pole of the cap does not depend on the measuring axis, Ox or Oy, which was also 

separately tested. 

 

  

(a) (b) 

Figure 8. Contours of the cap at the four pressure values indicated in the Figure 7, i.e. vertical position, z, 

with the distance to the centre, d, along the Ox and Oy axes, for the materials: (a) 1.5_2.75_4; (b) 

0.5_2.25_4. The hardening coefficient of both material is n = 0.20. 

 

Figure 9 shows the evolution of the thickness as a function of the distance to the 

centre, d, along the Ox and Oy axes, for the materials 1.5_2.75_4 (Figure 9 (a)) and 

0.5_2.25_4 (Figure 9 (b)) and the pressure values above mentioned (see Figure 7). As for 

the profiles, the thickness distributions are almost coincident for the axes Ox and Oy at the 

two first steps analysed, although some differences are noticeable for the two higher pressure 

values, mainly in case of the material 0.5_2.25_4. These differences in thicknesses occurs in 

this material for distances from the centre higher than about 20 mm, at a pressure equal to 9 

MPa, and higher than at about 15 mm, at a pressure equal to 9.4 MPa. 
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(a) (b) 

Figure 9. Evolution of sheet thickness, t, with the distance to the centre, d, along the Ox and Oy axes, at the 

four pressure values indicated in the Figure 7, for the materials: (a) 1.5_2.75_4; (b) 0.5_2.25_4. The 

hardening coefficient of both material is n = 0.20. 

 

The analyses of the evolution during the bulge test of the radius of curvature and 

the sheet thickness at the pole of the cap was performed for all materials of Table 1 with 

hardening coefficient, n, equal to 0.20. Figure 10 shows the evolution of the radius of 

curvature, , with the pole height, h. At the beginning of the test, the radius of curvature 

quickly decreases, but its rate of decrease declines as the pole height increases, so that when 

the pressure approaches the maximum value, the radius of curvature come close to the radius 

of the die (RM = 75 mm in Figure 1). Moreover, the anisotropy does not influences the 

evolution of the radius of curvature. The coincidence observed, whatever the anisotropy of 

the material, is in agreement with the results previously reported only for in-plane isotropic 

materials with different r values in the sheet plane [34]. This work reported that only the 

hardening coefficient influences the evolution of the radius of curvature during the test, 

being independent of the value of the yield stress, initial sheet thickness and in-plane 

isotropy. Identical feature was observed for the three materials analysed with n = 0.10 and 

0.35 – see Table 2). 
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Figure 10. Evolution of the radius of curvature, , with the pole height, h, for all materials with hardening 

coefficient n = 0.20. 

 

The evolution of the sheet thickness at the pole of the cap during the test is shown 

in Figure 11, for the materials with hardening coefficient n = 0.20. The values of the 

thickness at different moments of the test were determined based on the values of the strains 

measured at the top of the cap and using equations (2) and (3). Figure 11 (a) shows the 

evolution of the sheet thickness at the pole, t, with the pole height, h, for the materials with 

r0 = r90 and the results in Figure 11 (b) concern the materials with r0 ≠ r90 (the isotropic 

material, 1_1_1, is also shown for comparative purposes). The evolution of the sheet 

thickness is sensitive to the anisotropy of the material, as previously observed for in-plane 

isotropic materials [34]. This work reports that, besides the hardening coefficient, also the 

anisotropic coefficient influences the evolution of the thickness at the pole during the test, 

which is independent of the value of the yield stress and the initial sheet thickness. The 

current results show that the value of the normal anisotropy coefficient in the sheet plane has 

identical influence on the evolution of the sheet thickness during the test, whether or not the 

sheet shows in-plane anisotropy (compare Figure 11 (a) with Figure 11 (b)). 
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(a) (b) 

Figure 11. Evolution of the sheet thickness, t, with the pole height, h, for materials with hardening 

coefficient n = 0.20: (a) materials with r0 = r90; (b) materials with r0 ≠ r90. These evolutions concern materials 

with hardening coefficient equal to 0.20. 

 

Figure 12 and 13 show the distributions of the principal strains and stresses, 

parallel to the Ox and Oy directions, for the materials and pressure values as in Figure 8 and 

9 (see also Figure 7). For a region around the pole of the cap, whose size decreases as the 

test progresses, the strains and stresses components parallel (normal) to the Ox axis, at a 

given point on this axis, are equal to the corresponding normal (parallel) components to the 

Oy axis, for a point on this axis at the same distance from the centre of the cap. At a given 

pole height, the size of this region is smaller the greater the planar anisotropy of the material, 

measured by the angle between the major axis of the yield surface and the biaxial stress axis 

(1 = 2), as it can be concluded by comparing the results of materials 1.5_2.75_4 (Figure 

12) and 0.5_2.25_4 (Figure 13). 
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(a) (b) 

Figure 12. Evolution of the (a) principal strains and (b) principal stresses, with the distance to the centre 

along the axes Ox and Oy of the sheet, for material 1.5_2.75_4 at the four pressure values indicated in the 

Figure 7. The hardening coefficient of the material is n = 0.20. The designation in figures can be read as for 

the example(s): Ox_e1_10 (Oy_s2_4.5), in which Ox (Oy) indicates the axis for measuring the distance d; e1 

(s2) is the strain (stress) value parallel to the Ox (Oy) axis; and 10 (4.5) is the pressure value [MPa]. 

 

(a) (b) 

Figure 13. Evolution of the (a) principal strains and (b) principal stresses, with the distance to the centre of 

the sheet, for material 0.5_2.25_4 at the four pressure values indicated in the Figure 7. The hardening 

coefficient of the material is n = 0.20. The designation are as indicated in Figure 12. 

 

Figure 14 and 15 show the distributions of the Hill’48 equivalent strains and 

stresses, along the Ox and Oy directions, for the same materials and pressure values as in 

Figures 8, 9, 12 and 13 (see also Figure 7). Following the trends in Figures 12 and 13, the 

equivalent strains and stresses are equal along both orthotropic axes, in a region around the 
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pole. This region becomes smaller with the increase of the pole height but, even near the end 

of the test, its size is about 10 mm, for the material 0.5_2.25_4, and higher for the material 

1.5_2.75_4, in case of equivalent strain, and covers almost the entire diameter of the die, for 

both materials in the case of equivalent stress. 

 

(a) (b) 

Figure 14. Evolution of the (a) equivalent strain and (b) equivalent stress with the distance to the centre 

along the Ox and Oy axes, for the material 1.5_2.75_4 at the four pressure values indicated in the Figure 7. 

The hardening coefficient of the material is n = 0.20. 

 

(a) (b) 

Figure 15. Evolution of (a) equivalent strain and (b) equivalent stress with the distance to the centre along 

the Ox and Oy axes, for the material 0.5_2.25_4 at the four pressure values indicated in the Figure 7. The 

hardening coefficient of the material is n = 0.20. 
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Based on results such as in Figures 12 and 13, Figure 16 present respectively the 

stress (Figure 16 (a)) and strain (Figure 16 (b)) paths observed at the pole of the cap, for in-

plane anisotropic materials with hardening coefficient, n = 0.20, showing that the stress paths 

are nearly unchanged during the bulge test, although with minor variations. However, 

noticeable decreasing of the strain path occurs during the test, in some cases. In fact, small 

variations in stress paths involve larger variation of amplitude in the strain path that is 

represented by the normal to the yield surface. The difference between the strain paths during 

the test is always inferior to 5%, whatever the material (the maximum difference occurs for 

the material 0.5_2.25_4). 

 

 
 

Figure 16. Evolution of the: (a) stress paths and (b) strain paths during the test. These evolutions concern 

materials with hardening coefficient equal to 0.20. 

 

The stress and strain paths are also influenced by the hardening coefficient of the 

material, as can be deduced from the results of materials with hardening coefficients, n = 

0.10 and 0.35. Figure 17 allow comparing the materials 0.6_0.7_0.8, 1.5_2.75_4 and 

0.5_2.25_4, with n = 0.10, 0.20 and 0.35 concerning the stress (Figure 17 (a)) and strain 

(Figure 17 (b)) paths. The stress paths are almost unchanged during the test, and nearly close 

to each other for a given value of the hardening coefficient. Nevertheless, the small variations 

that occurs in the stress path are enough to cause larger variations in the strain path (in 

agreement with the associated flow rule), which decreases during the test (except for the 

material 0.5_2.25_4, with n = 0.10), as for results in Figure 16. Finally, it can be observed 

that in general the strain path is lower for higher values of hardening coefficient. 
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Figure 17. Evolution of the (a) stress paths and (b) strain paths during the test. These evolutions concern the 

materials 0.6_0.7_0.8, 1.5_2.75_4 and 0.5_2.25_4, with hardening coefficients equal to 0.10, 0.20 and 0.35. 

 

As partial conclusions, it can be stated that for the materials with r0 ≠ r90, the 

geometry of the cap is similar along both orthotropic axes in the sheet plane, with respect to 

the profile and the thickness of the sheet, which is imposed by the geometrical constrains of 

the bulge test with circular die. The results show that this type of symmetry can be achieved 

even though the stress and strain paths in the pole region are away from the biaxial 

symmetry. The inability to impose equibiaxial stress and strain paths simultaneously, in case 

of materials with r0 ≠ r90, arises from the normality condition (equation (6) or (7), in case of 

Hill’48 criterion), i.e. the associated flow rule with the yield surface as plastic potential. This 

is illustrated in Figure 18 showing that, for materials with r0 < r90 as those studied in this 

work, when the stress path is equal to 1, the strain path is lower than 1, and when the strain 

path is equal to 1, the stress path is higher than 1 (the opposite occurs when r0 > r90). In fact, 

the observed stress and strain paths are between these two cases, as schematized in Figure 

18. 
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Figure 18. Illustrative example, corresponding to the material 0.5_2.25_4, showing the yield surface and the 

observed stress and strain paths (solid lines), the stress and strain paths corresponding to equibiaxial stress 

path (dashed lines) and equibiaxial strain path (dotted lines). 

 

6. Hardening curves 

The determination of the biaxial stress vs. strain curve from the bulge test is 

analysed under the experimental procedure generally performed, assuming equibiaxial stress 

and the von Mises definition of equivalent stress and strain [21]. First of all, the in-plane 

isotropic materials and anisotropic materials with r0 = r90 are considered. Afterwards, it deals 

with the in-plane anisotropic materials such that r0 ≠ r90. 

The assumption of isotropy for determining the equivalent stress consists of 

considering the equivalence between the real yield surface of the anisotropic material and an 

isotropic yield surface (von Mises surface), such that these surfaces intercept each other (or 

are tangent) at the point corresponding to the stress path followed during the bulge test by 

the real anisotropic material. This implies that the equivalent stress value is the same for both 

surfaces, namely at the point of coincidence of the curves. Examples are shown in the Figure 

19, for materials with in-plane isotropy, 3_3_3 (Figure 19 (a)), and in-plane anisotropy, 

0.5_2.25_4 (Figure 19 (b)). 

 

 

 

-400

-300

-200

-100

0

100

200

300

400

-400 -300 -200 -100 0 100 200 300 400


yy

 xx

0.5_2.25_4
d

d

d



78 

 

 

 

 

 

 

(a) (b) 

Figure 19. Initial yield surfaces and observed stress paths (black solid line) of the materials: (a) 3_3_3; (b) 

0.5_2.25_4. The isotropic materials with equal equivalent stress are also indicated in each figure (grey solid 

lines). The bulge stress path is equibiaxial in case of (a) and is 2/1 = 1.678 (black solid line) in case of (b). 

The dashed and the grey solid lines in (b) represent the axis of the Hill’48 and von Mises ellipses, 

respectively. The hardening coefficient of the materials is n = 0.20. 

 

At the tangent and intercepting points of the ellipses, respectively in Figures 19 

(a) and (b), the equivalent stresses are equal, whether they are calculated using the Hill’48 

(equation (8)) or von Mises yield criteria (equation (11)). Consequently, the use of the von 

Mises criterion for determining the equivalent stress is appropriated, providing that the stress 

path at the pole of the cap is known. In case of in-plane isotropic materials and materials 

with r0 = r90 ≠ r45, this does not involve any difficulty, given that 2 = 1, at the pole of the 

cap. In case of materials with r0 ≠ r90, the equivalent stress depends on the stress path and 

the parameters of the anisotropic yield criterion (see equation (8)). 

The Hill’48 material parameters in Table 1 follows the condition G + H = 1, 

which means that the hardening curve is equal to the stress vs. strain curve in tension along 

the Ox axis. In order to allow the appropriate comparison of results obtained by the 

membrane theory with the biaxial hardening curves of the studied materials, Tables 3 and 4 

show constitutive parameters, equivalent to those in Tables 1 and 2. The constitutive 

parameters in Tables 3 and 4, were determined such that the Hill’48 equivalent stress is equal 

to the determined by the von Mises criterion that crosses (or is tangent to) the Hill’48 surface 
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(see Figure 19), for the observed stress path (average during the test) at the pole of the cap, 

as shown in Figures 16 (a) and 17 (a). The relationships that allows the equivalence between 

sets of parameters were previously discussed in [40] and are, for the Hill’48 criterion and 

the Swift law, respectively: 

F* = kF; G* = kG; H* = kH; L* = kL; M* = kM; N* = kN (23) 

n* = n; K* =   1n

K k


; 0* = 0 k ; 0* = 0 k  (24) 

where k is a factor which forces the yield surfaces (Hill’48 and von Mises) to coincide at the 

point corresponding to the observed stress path during the bulge test. The parameters without 

asterisk are those in Tables 1 and 2 and with asterisk are shown in Tables 3 and 4 (for 

convenience of the presentation, the asterisks are not indicated in Table 3). Table 3 shows 

the hardening law and Hill’48 criterion equivalent parameters of all materials in Table 1 and 

hardening coefficient n = 0.20 (Table 2), and Table 4 the equivalent parameters of the three 

materials in Table 1 with r0 ≠ r90 and hardening coefficients 0.10 and 0.35 (Table 2). 

In Tables 3 and 4, the condition the condition F + G = 1 is observed for the 

materials with r0 = r90, which means that the hardening curve corresponds to the determined 

for the equibiaxial stress path. For materials with r0 ≠ r90 the sum (F + G) can deviate 

significantly from one, depending on the stress path observed during the bulge test, and the 

hardening curve corresponds to the determined for this stress path. 

 

Table 3. Designation of the materials with n = 0.20 and the respective parameters of the Swift law and 

Hill’48 criterion. The stress path observed during the bulge test is also indicated. The constitutive 

parameters are equivalent to those in Tables 1 and 2. 

Designation

Parameters of the Swift 

law 

Parameters of the Hill’48 criterion  

0 K n F G H L=M N 2/1 

Materials with r0 = r45 = r90 

0.7_0.7_0.7 184.43 523.59 0.20 0.500 0.500 0.350 1.201 1.200 1.000 

1_1_1 200.00 577.08 0.20 0.500 0.500 0.500 1.500 1.500 1.000 

2_2_2 173.23 485.67 0.20 0.500 0.500 1.000 1.125 2.500 1.000 

3_3_3 282.84 874.69 0.20 0.500 0.500 1.500 3.000 3.500 1.000 
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Materials with r0 = r90 ≠ r45 

3_1.5_3 282.84 874.69 0.20 0.500 0.500 1.500 3.000 2.000 1.000 

1.5_3_1.5 223.84 659.75 0.20 0.500 0.500 0.750 1.875 3.500 1.000 

0.6_3_0.6 178.89 504.77 0.20 0.500 0.500 0.300 1.200 3.500 1.000 

3_0.6_3 282.84 874.69 0.20 0.500 0.500 1.500 3.000 1.100 1.000 

Materials with r0 ≠ r90 

0.6_0.7_0.8 191.77 548.72 0.20 0.431 0.575 0.345 1.379 1.207 1.114 

0.6_1.8_3 260.59 792.79 0.20 0.212 1.061 0.637 2.547 2.929 1.505 

1.5_2.25_3 262.53 799.87 0.20 0.344 0.689 1.033 2.585 2.843 1.131 

1.5_2.75_4 277.49 854.85 0.20 0.289 0.770 1.155 2.887 3.442 1.171 

0.5_2.25_4 282.47 873.30 0.20 0.166 1.330 0.664 2.992 4.115 1.678 

1.5_3_3 262.53 799.87 0.20 0.344 0.689 1.033 2.585 3.618 1.130 

1_2.25_3.5 264.11 805.65 0.20 0.249 0.872 0.872 2.616 3.083 1.275 

 

Table 4. Designation of the materials with r0 ≠ r90 with n = 0.10 and 0.35 and the respective parameters of 

the Sǁift laǁ aŶd Hill’48 ĐƌiteƌioŶ. The stƌess path observed during the bulge test is also indicated. The 

constitutive parameters are equivalent to those in Tables 1 and 2. 

Material

Parameters of the 

Swift law 

Parameters of the Hill’48 criterion  

0 K n F G H L=M N 2/1 

0.6_0.7_0.8 
192.73 326.17 0.10 0.436 0.580 0.348 1.393 1.219 1.117 

194.65 1215.3 0.35 0.444 0.592 .355 1.421 1.244 1.108 

1.5_2.75_4 
278.93 489.83 0.10 0.292 0.778 0.666 2.918 4.128 1.173 

279.93 2001.81 0.35 0.292 0.778 1.167 2.918 3.478 1.171 

0.5_2.25_4 
275.69 483.56 0.10 0.158 1.267 0.633 2.850 3.9197 1.712 

281.42 2026.00 0.35 0.164 1.321 0.659 2.970 4.085 1.680 
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In summary, when both principal stress, 1 and 2, are known (i.e. when the 

stress path is known), the equivalent stresses determined by the Hill’48 criterion (equation 

(8)), using the parameters in Tables 3 and 4, and by the von Mises criterion (equation (11)) 

are equal. In case of the bulge tests of the materials with r0 = r90, the stress path is known a 

priori (equal to 1), which allows using equation (13) for determining the equivalent stress (

  = 1 = 2). For materials with r0 ≠ r90, the stress path is unknown a priori and the usual 

alternative to determine the equivalent stress, assuming equibiaxial stress path [21], leads to 

inevitable errors. In the next sections, these issues are analysed and the errors due to this 

assumption are quantified for the materials under study with r0 ≠ r90. 

6.1. In-plane isotropic materials and materials with r0 = 

r90 

In case of in-plane isotropic materials and materials with r0 = r90, the strain and 

stress paths are known a priori , and equal to 1, and the equivalent yield surfaces are tangent 

(see example of Figure 19 (a)). Under these context, a full equivalence is obtained between 

the Hill’48 and von Mises criteria, for determining the hardening curve. In fact, for both 

cases the principal stresses at the pole of the cap are equal and they can be calculated by 

using the simplified equation of the membrane theory (equation (13)). Moreover, the 

equivalent strain values are equal for both criteria, for the equibiaxial strain path. This is 

illustrated in Figure 20 for the case of the material 3_3_3, which represents in the (1; 2) 

space the lines with equal equivalent strain ( 1  ), for the Hill’48 and von Mises criteria, 

showing that the curves are tangent for the equibiaxial strain path (1 = 2). 
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Figure 20. Curves of equivalent strain equal to 1, for the material 3_3_3 and the equivalent isotropic von 

Mises material (see Figure 19 (a)). The dashed-dotted line represents the equibiaxial strain path. 

 

Under these conditions, the biaxial curves, equivalent stress vs. equivalent strain, 

are equal, whatever the criteria used, Hill’48 or von Mises, since the bulge test imposes   

= 21 = 22 and   = 1 = 2 (equation (14)). From the experimental point of view, 

mechanical or optical devices can be used for measuring the principal strain values in the 

sheet plane, which are equal for both axes (Ox and Oy). 

Figure 21 shows the hardening curves of the materials in Table 3 with r0 = r90 

and the points obtained using the membrane theory under isotropy conditions, as 

experimentally. The respective error in equivalent stress is shown in Figure 22. This error is 

defined as:  Error 
HL MT HL

     (where HL
  and MT  are the equivalent stresses 

estimated by the input hardening law and from the membrane theory, respectively). The 

results are equal when using the Hill’48 for calculating the equivalent stress and strain values 

(equations (8) and (9), respectively). That is, the use of the isotropic von Mises criterion for 

determining the hardening curve is fully justified for materials with r0 = r90. The observed 

errors arise from the determination of the radius of curvature and the use of the membrane 

theory approach under bulge test conditions. 
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(a) (b) 

Figure 21. Comparison between the hardening laws in Table 3 (lines) and the results with the membrane 

theory (symbols), whatever the criterion used for determining the equivalent stress and strain (von Mises or 

Hill’48Ϳ for: (a) in-plane isotropic materials (r0 = r45 = r90); (b) materials with r0 = r90 ≠ r45. The hardening 

coefficient of the materials is n = 0.20. 

 

(a) (b) 

Figure 22. Evolution of the error in stress for the cases in Figure 21 for: (a) in-plane isotropic materials (r0 = 

r45 = r90); (b) materials with r0 = r90 ≠ r45. The hardening coefficient of the materials is n = 0.20. 

6.2. In-plane anisotropic materials with r0 ≠ r90 

The materials with planar anisotropy such that r0 ≠ r90 are now analysed. In these 

cases the stress and strain paths are different from 1 (see Figures 16 and 17) and the 

simplified equation of membrane theory (equation (13)) does not allow calculating the 

stresses 1 and 2. Alternatively, the use of the equation (1) requires the knowledge of the 
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stress path, in order to obtain the stresses 1 and 2. Besides, equation (1) assumes a linear 

relationship between 2 and 1 with slope equal to -1 (1 = 2 = ), and its interception with 

the equibiaxial stress line corresponds to the stress determined by using the simplified 

equation of the membrane theory (equation (13)). This is illustrated in Figure 23 for the case 

of the material 0.5_2.25_4, which shows the initial yield surface of the Hill’48 anisotropic 

material, the equivalent von Mises surface that crosses Hill’48 surface at the point 

corresponding to the observed stress path, and the von Mises surface corresponding to an 

equivalent stress equal to the determined using the simplified equation of the membrane 

theory (equation (13)), i.e. when considering   = 1 = 2. The equivalent stresses 

corresponding to both von Mises surfaces can be significantly different, depending on the 

anisotropy of the material. 

 

 

Figure 23. Initial yield surfaces of the material 0.5_2.25_4 (black solid line) and two isotropic materials with: 

(i) equivalent stress equal to that of the anisotropic Hill’48 material (dashed line) and (ii) equivalent stress 

equal to the one determined using the simplified equation of the membrane theory (equation (13) – 

dashed-dotted line). The biaxial stress path observed during the bulge test (black solid line) and the 

equibiaxial stress path (grey solid line) are also indicated. The line with negative slope corresponds to the 

equation (2 + 1 = constant, i.e. equation (1) at a given moment of the test). 

 

Moreover, the results show that the equivalent strains obtained using Hill’48 or 

von Mises yield criterion (equations (9) and (12) (or (14)), respectively) are different for 

materials with r0 ≠ r90. This is illustrated in Figure 24 for the case of the material 0.5_2.25_4, 

which shows, in the (1; 2) space, the lines with equal value of equivalent strain ( 1  ), for 

the Hill’48 and equivalent von Mises criteria. The lines with equal equivalent strain intersect 

each other at a point other than that corresponding to the observed strain path. The difference 
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in equivalent strains can be higher that 10% for the extreme case of the studied materials 

(11.6% in case of the material 0.5_2.25_4). 

 

 

Figure 24. Curves of equivalent strain equal to 1, for the material 0.5_2.25_4 (black solid line) and the 

equivalent isotropic material (grey solid line). The observed strain path (solid straight line) is also indicated 

as well as the equibiaxial strain path (dashed-dotted straight line). 

 

Figure 25 shows the ratio between the von Mises and Hill’48 equivalent strains 

as a function of the strain (Figure 25 (a)) and stress (Figure 25 (b)) paths, observed for all 

materials with r0 ≠ r90 and hardening coefficients studied. This ratio follows a quasi-linear 

relationship with the stress path, but this does not occur with the strain path. For materials 

with strain and stress paths close to 1, both equivalent strains are nearly equal. Differences 

between von Mises and Hill’48 equivalent strains are clearly noticeable only for the stress 

paths higher than about 1.1 (or strain paths lower than about 0.95). In summary, the von 

Mises equivalent strain is always higher than the Hill’48 equivalent strain. Thus, the 

hardening curves determined can be significantly inaccurate, when resorting to the von 

Mises definition of equivalent strain, as will be seen below. 
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Figure 25. Ratio ďetǁeeŶ the eƋuiǀaleŶt stƌaiŶs deteƌŵiŶed ďy ǀoŶ Mises aŶd Hill’48 foƌ all aŶisotƌopiĐ 
Hill’48 materials studied, as a function of: (a) strain path; (b) stress path. The dashed lines highlight the 

trend of the evolutions. 

 

In order to test the commonly used methodologies for determining the hardening 

curve in experimental tests, which use the von Mises criterion and assumes that 2 = 1, 

different approaches are analysed, according to the measuring system available: 

i) The measurement of the strain and radius of curvature are performed using 

mechanical devices, i.e. an extensometer and a spherometer. In this case, only one strain 

value is measured, generally in the rolling direction, 1, and the equivalent strain is 

determined by equation (14) (where  = 21). The equivalent stress is calculated from the 

membrane theory (equation (13)) considering  = 1 = 2 

ii) The measurement of the strain and radius of curvature are performed using an 

optical device, as recommended by ISO 16808:2014 [21]. In this case it is possible to assess 

both principal strains 1 and 2, in order to calculate the equivalent strain using equation (12). 

However, the evaluation of the corresponding principal stresses using the membrane theory 

(equation (1)) needs the knowledge of the yield criterion and respective parameters (under 

the observed condition  = 1 = 2), in order determine the stress ratio from the measured 

strain ratio (equations (6) or (7) for the Hill’48 criterion). This is not generally the case under 

experimental conditions, and so the membrane theory is used considering  = 1 = 2 

(equation (13)). This case becomes quite similar to case (i), unless both principal strains in 

the sheet plane are known, and so equation (12) is used instead of equation (14) for 

determining the equivalent strain; the equivalent stress has the same value as in case (i). 

In this context, the hardening curves of the in-plane anisotropic materials are 

now determined using the two previously mentioned approaches. The points of the hardening 
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curve obtained during the test are compared with the hardening curve of the materials (Tables 

3 and 4). Figures 26 (a) and 27 (a) compares the hardening curves of the materials in Table 

3 (with the hardening coefficient n = 0.20), with results obtained from the membrane theory 

(equations (13)) and von Mises criterion, considering (as above mentioned): (i)   = 21 with 

the principal strain 1 measured along Ox (Figure 26 (a)); (ii)   determined by the equation 

(12) from the measured values of the principal strains (1 ≠ 2) (Figure 27 (b)). Figures 26 

(b) and 27 (b) show the evolution of the error in equivalent stress with the equivalent strain, 

corresponding to Figures 26 (a) and 27 (a). The errors in equivalent stress are relatively high 

in both approaches for the materials with r0 < 1 and r90 > 1, simultaneously. For the material 

0.5_2.25_4, the errors attain about 12 % in Figure 26 (b) and 10% in Figure 28 (b). 

 

 

(a) (b) 

Figure 26. (a) Comparison between the hardening laws in Table 3 (lines) and the results with the membrane 

theory (symbols) with 1 = 2 =  (equation (13)) considering, for the equivalent strain determination, the 

value of  in equation (14) equal to the measured value of 1; (b) Evolution of the error in equivalent stress 

with the equivalent strain. The hardening coefficient of the materials is n = 0.20. 
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(a) (b) 

Figure 27. (a) Comparison between the hardening laws in Table 3 (lines) and the results with the membrane 

theory (symbols) with 1 = 2 =  (equation (13)) considering, for equivalent strain determination, the 

measured values of 1 and 2 in equation (12); (b) Evolution of the error in equivalent stress with the 

equivalent strain. The hardening coefficient of the materials is n = 0.20. 

 

It is important to understand the meaning of the errors shown in Figures 26 (b) 

and 27 (b), i.e. the manner in which the isotropy assumption commonly used in the 

experimental analysis, with 1 = 2 and the von Mises criterion, contributes to these errors 

in equivalent stress. In this context, Figure 28 (a) compares the hardening laws in Table 3 

with the results obtained taking into account the Hill’48 criterion, the observed stress and 

strain paths at the pole of the bulge test and the general equation of the membrane theory 

(equation (1)). Figure 28 (b) shows the respective errors in equivalent stress. It should be 

highlighted again that, in general, this is not the experimental case, i.e. the anisotropic 

Hill’48 criterion and respective parameters that describe the anisotropy of the material are 

usually unknown. 
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(a) (b) 

Figure 28. (a) Comparison between the hardening laws in Table 3 (lines) and the results obtained with the 

ŵeŵďƌaŶe theoƌy ;syŵďolsͿ usiŶg the Hill’48 stress and strain definitions; (b) Evolution of the error in 

equivalent stress with the equivalent strain. The hardening coefficient of the materials is n = 0.20. 

 

As for materials with r0 = r90, the errors in stress in Figure 28 (b) arise from the 

determination of the radius of curvature and the use of the membrane theory approach under 

bulge test conditions. Thus, it is appropriate to state that the differences of error in stress 

between Figure 28 (b) and Figure 27 (b) are due to the approaches used for the equivalent 

stress and strain determination, using respectively von Mises (combined with equation (13)) 

and Hill’48 (combined with equation (1)) definitions. In this context, it can be concluded 

that the errors obtained with the approaches used in Figures 26 and 27 (b) are not negligible, 

particularly in the case of materials 0.6_1.8_3 and 0.5_2.25_4. 

Figures 29 to 34 show the same kind of results, as for materials with hardening 

coefficient n = 0.20 (Figures 26 to 28), but for the three anisotropic materials studied, with 

n = 0.10 and 0.35 (see Table 4). The errors in stress follow the same trend although showing 

slight differences from those of materials with n = 0.20. Also, the comparison of the results 

obtained with von Mises criterion with those from Hill’48 criterion leads to similar 

conclusions that for materials with n = 20. 
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(a) (b) 

Figure 29. Comparison between the hardening laws in Table 4 (lines) and the results with the membrane 

theory (symbols) with 1 = 2 =  (equation (13)) considering, for the equivalent strain determination: (a) 

the value of  in equation (14) equal to the measured value of 1; (b) the measured values of 1 and 2 in 

equation (12). The hardening coefficient of the materials is n = 0.10. 

 

(a) (b) 

Figure 30. Evolution of the error in equivalent stress corresponding to Figure 29, considering for the 

equivalent strain determination: (a) the value of  in equation (14) equal to the measured value of 1 – see 

Figure 29 (a); (b) the measured values of 1 and 2 in equation (12) – see Figure 29 (b). The hardening 

coefficient of the materials is n = 0.10. 
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(a) (b) 

Figure 31. (a) Comparison between the hardening laws in Table 4 (lines) and the results obtained with the 

ŵeŵďƌaŶe theoƌy ;syŵďolsͿ usiŶg the Hill’48 stƌess aŶd stƌaiŶ defiŶitioŶs; ;ďͿ EǀolutioŶ of the eƌƌoƌs iŶ 
equivalent stress with the equivalent strain. The hardening coefficient of the materials is n = 0.10. 

 

(a) (b) 

Figure 32. Comparison between the hardening laws in Table 4 (lines) and the results with the membrane 

theory (symbols) with 1 = 2 =  (equation (13)) considering for equivalent strain determination: (a) the 

value of  in equation (14) equal to the measured value of 1; (b) the measured values of 1 and 2 in 

equation (12). The hardening coefficient of the materials is n = 0.35. 
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(a) (b) 

Figure 33. Evolution of the error in equivalent stress corresponding to Figure 32, considering for equivalent 

strain determination: (a) the value of  in equation (14) equal to the measured value of 1 – see Figure 32 

(a); (ii) the measured values of 1 and 2 in the equation (12) – see Figure 32 (b). The hardening coefficient 

of the materials is n = 0.35. 

 

(a) (b) 

Figure 34. (a) Comparison between the hardening laws in Table 4 (lines) and the results obtained with the 

ŵeŵďƌaŶe theoƌy ;syŵďolsͿ usiŶg the Hill’48 stƌess aŶd stƌaiŶ defiŶitioŶs; ;ďͿ EǀolutioŶ of the eƌƌoƌs iŶ 
equivalent stress with the equivalent strain. The hardening coefficient of the materials is n = 0.35. 

 

In summary the commonly experimentally used approaches to determine the 

hardening curve from the bulge test, using the von Mises criterion and the assumption of 

equibiaxial stress (and also often equibiaxial strain), can lead to relatively high errors, in 

case of in-plane anisotropic materials with r0 ≠ r90, especially when the axis of the Hill’48 

ellipse in space (xx; yy) is relatively far away from 45º. 
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6.3. Is it possible to improve the determination of 
the hardening curve? 

In order to answer to this question, the materials studied in the previous sections, 

with anisotropy described by Hill’48 materials with hardening coefficient equal to 0.20, 0.10 

and 0.35, are firstly analysed. Figure 35 plots the stress path vs. strain path of these materials, 

from the average values of the results previously shown in Figures 16 and 17. Figure 35 

shows that it is possible to fit a power law to stablish a correlation between the observed 

stress and strain paths, which allows a relatively accurate determination of the stress path 

from the strain path. This can consist of a good enough procedure to determine the stress 

path from the experimental measured strain path, as an alternative to the associated flow rule 

that needs the knowledge of the anisotropic yield criterion and the respective parameters of 

the material. Figure 35 also shows a power law (solid line) with exponent equal to -2: 

This equation, with exponent -2, is chosen (instead of the exponent -2.30 which corresponds 

to the fitted power law) for determining the stress path from the measured strain path. In 

fact, equation (25) ensures that all points in Figure 35 are very close or above the line defined 

by this equation, which is not the case of the fitted equation with exponent equal to -2.30. 

Therefore, equation (25) safeguards excesses in determining the stress path, i.e. seeks that 

the evaluated hardening curve is between the determined, as in Figures 28, 31 and 34, and 

as in Figures 27, 29 (b) and 32 (b). Moreover, it safeguards the cases of materials with 

anisotropic behaviour described by other criteria than Hill’48, for which the fitted power law 

may also overestimate the stress path. In summary, to ensure that this rarely occur, equation 

(25) is suggested to be used instead of the fitted power law. Further ahead, in this section, 

equation (25) will be tested for a non-quadratic yield criterion, the Drucker+L criterion [36]. 
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Figure 35. Stress path vs. stƌaiŶ path foƌ Hill’48 ŵateƌials, ǁith n = 0.10, 0.20 and 0.35. The fitted curve 

(dashed line) and respective parameters is also shown. The lower curve (solid line) corresponds to equation 

(25). 

 

In the following, the use of equation (25) is tested in case of Hill’48 materials 

with r0 ≠ r90, in order to examine its performance in the prediction of the stress path from the 

known strain path. For such purpose, equation (25) is combined with equation (6) (or (7)). 

Figures 36 (a) show the predicted stress paths (lines), as a function of r0/r90, for the various 

values of r0 (r0 = 0.5, 0.6 1.0, and 1.5) studied in this work. This figure, also shows the 

observed stress paths for the materials considered in this work (points), which agree with the 

predicting curves. The stress paths (points) determined by equation (25), directly from the 

measured strain path, are shown in the Figure 36 (b) and compared with the predicting 

(lines), as in Figure 37 (a). For most cases, equation (25) allows determining with enough 

accuracy the stress path at the pole, from the measured strain path. Moreover, the points in 

Figure 36 (b) are very close or below the corresponding line. It should be mentioned the case 

of material 0.5_2.25_4 with n = 0.10 (black filled triangle in the Figure 36 (b)), for which 

the strain path is poorly estimated (this case corresponds to the point in Figure 35, further 

away from the trend defined by the fitted power law). In all other cases, the stress path is in 

general well estimated, and never is significantly overestimated. 

In summary, it turns out that in experimental cases of the bulge test, the yield 

criterion and respective parameters of the material under study are not known. But it is 

possible to assess the principal strains in the sheet plane by using an optical measurement 

system and, consequently, the stress path at the pole by using equation (25). 
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(a) (b) 

Figure 36. Stress path as a function of the ratio r0/r90, for different values of r0 (r0 = 0.5: black solid lines and 

black filled symbols; r0 = 0.6: dark grey solid lines and dark grey filled symbols; r0 = 1.0: light grey solid lines 

and light grey filled symbols; r0 = 1.5: black dashed lines and open symbols). The lines in both figures 

represent the stress paths predicted from equations (7) and (25), and the symbols represent the stress 

paths: (a) numerically measured; (b) determined by equation (25), from the measured strain paths. The 

circles, triangles and squares correspond to materials with n = 0.20, 0.10 and 0.35, respectively. 

 

Now, the use of the equation (25) to improve the determination of the work 

hardening curve, presuming that the strain path is measured by digital correlation image 

technique [21], is analysed. Since the stress path is known, the equivalent stress can be 

determined using equations (1) for determining 1 and 2 and then equation (11). The 

remaining question is the determination of the equivalent strain. This is generally done using 

the von Mises criterion. However, as can be seen by comparing, for example, the strain gap 

between the corresponding points in Figures 27 (b) and 28 (b), the value of equivalent strain 

depends on the yield criteria (see also Figures 24 and 25). In this context, there exists a 

simple way to determine the equivalent strain regardless of the yield criterion. In fact, it can 

be shown that for linear stress and strain paths, which is approximately the case for the bulge 

test (see Figures 16 and 17), the definition of plastic work leads to the following relationship: 

The difference in the equivalent strain obtained by using the equation (26) when compared 

with equation (9) is negligible (less than 0.3%) for the Hill’48 materials of Tables 3 and 4, 

which shows that the slight change of the strain path observed during the test does not 

significantly affects this calculation. 

In summary, the measurement of the strain path during the bulge test, which can 

be performed by means of an optical device, allows to determine the stress path by using 
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equation (25), that combined with equation (1) gives the principal stresses and, consequently, 

the von Mises equivalent stress (equal to the equivalent stress of the anisotropic yield 

criterion; see Figure 19 for von Mises and Hill’48 criteria). Finally, equation (26) allows 

determining the equivalent strain. This allows for a very accurate determination of the 

hardening curve whatever the anisotropic yield criterion that describes the anisotropy of the 

material, as shown below. 

Figure 37 (a) shows the hardening curves of materials in Table 3 with r0 ≠ r90 

and n = 0.20, and the obtained points using the suggested strategy, i.e. using equations (25) 

and (26). The respective errors in stress are show in Figure 37 (b). These errors are less than 

those in Figures 26 and 27, and quite similar to those in Figure 28, in which they arise almost 

entirely from the radius of curvature determination and the use of the membrane theory 

approach under bulge test conditions. 

In order to better quantify the error in equivalent stress due to the procedure now 

proposed, i.e. isolate this error from other sources, the difference in equivalent stress error 

between those in the Figure 37 (b) and in the Figure 28 (b) are shown in the Figure 38. This 

difference of error, lower than 1.5%, for the materials 0.6_0.7_0.8, 0.6_1.8_3 and 

0.5_2.25_4, and lower than 0.5%, for all the other materials, shows the capability of the 

proposed methodology for determining the hardening curve. 

 

 

Figure 37. (a) Comparison between the hardening laws in Table 3 (lines) and the results obtained with 

membrane theory (symbols) using the equations (25) and (26) for the materials with n = 0.20; (b) Evolution 

of the corresponding errors in equivalent stress with the equivalent strain. 
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Figure 38. Difference of error between Figure 37 and Figure 28, for the materials with n = 0.20 (Table 3). 

 

Similarly to Figure 37 (a), Figure 39 (a) and 40 (a) show the hardening curves 

of the materials with n = 0.10 and 0.35 (Table 4), having r0 ≠ r90 and the obtained points 

using the suggested strategy, using equation (25) and (26). The respective errors in 

equivalent stress are shown in Figures 39 (b) and 40 (b). For the case of the material 

0.5_2.25_4, the level of error is still relatively high, but lower than that obtained using the 

procedure proposed by ISO standard (Figure 33 (b)). The difference in equivalent stress error 

between those in Figures 39 (b) and 40 (b), and those in Figure 31 (b) and Figure 34 (b), 

respectively, are shown in Figure 41 (identical to Figure 38 but for n values equal to 0.10, 

Figure 41 (a), and 0.35, Figure 41 (b)). 
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(a) (b) 

Figure 39. (a) Comparison between the hardening laws in Table 4 (lines) and the results obtained with 

membrane theory (symbols) using equation (25) and (26) for the materials with n = 0.10; (b) Evolution of 

the corresponding errors in equivalent stress with the equivalent strain. 

 

  

(a) (b) 

Figure 40. (a) Comparison between the hardening laws in Table 4 (lines) and the results obtained with 

membrane theory (symbols) using equation (25) and (26) for the materials with n = 0.35; (b) Evolution of 

the corresponding errors in equivalent stress with the equivalent strain. 
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(a) (b) 

Figure 41. Difference of error between: (a) Figure 39 (b) and Figure 31 (b), for the materials with n 

= 0.10 (Table 4); (b) Figure 40 (b) and Figure 34 (b), for materials with n = 0.35 (Table 4). 

 

Other materials with the anisotropic behaviour described by a non-quadratic 

yield criterion, the Drucker+L criterion (equations (19), (20) and (21)), and the hardening 

behaviour described by the Voce law (equation (22)) are now analysed. Two examples are 

selected with flattened and sharp yield surfaces in the region around the equibiaxial stress 

path, and so significantly different from the Hill'48 yield surface. The constitutive 

parameters of the Drucker+L criterion and the Voce law of these materials are given in 

Tables 5 and 6, respectively. The hardening curve corresponds to the determined for the 

observed stress path. Figure 42 shows the evolution of the anisotropic coefficient in the sheet 

plane and Figure 43 displays the yield surfaces in the space  0 0
0 0;

xx yy
    . 

 

Table 5. Designation of the materials and the respective parameters of Drucker+L criterion. 

Designation
Parameters of the Drucker+L criterion 

C1 C2 C3 C4 = C5 C6 

c=2 0.750 1.547 1.149 1.281 1.450 

c=-2 0.737 1.518 1.127 1.383 1.423 
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Table 6. Parameters of Voce law and average values of the observed stress and strain paths for the 

Drucker+L materials in Table 5. 

Designation

Parameters of the Voce law Stress and 

strain paths 

sat Rsat cy 2/1 2/1 

c=2 657.47 348.59 7.01 1.367 0.908 

c=-2 709.73 376.30 7.565 1.665 0.773 

 

 

Figure 42. Distribution of r in the sheet plane, for the Drucker+L materials in Table 5: c = 2 and c = -2. 

 

 

Figure 43. Normalized initial yield surfaces in the plane  0 0
0 0;

xx yy
     of the Drucker+L 

materials with c = 2 and c = -2. The observed stress paths are also shown. 
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Figure 44 (a) shows the hardening curves of the materials with behaviour 

described by the parameters shown in Tables 5 and 6 and the points obtained by the 

suggested strategy. The respective errors in equivalent stress are show in Figure 44 (b). 

Figure 45 show the results obtained from the membrane theory (equations (13)) and von 

Mises criterion, considering   determined by equation (12) from the measured values of the 

principal strains (1 ≠ 2), as recommended by ISO 16808:2014. In this case the errors are 

higher than the obtained with the suggested strategy, for both materials. In particular, the 

error can attain about 9%, for the material with c = -2. Figure 46 shows the results obtained 

with the membrane theory (equation (1)), taking into account the observed stress and strain 

paths; the equivalent stress was determined using the Drucker+L definition and the 

equivalent strain using the equation (26). The errors of the suggested strategy (Figure 44 (b)) 

are quite similar to those in Figure 46 (b) and smaller than 2%, for both cases. 

 

  

(a) (b) 

Figure 44. (a) Comparison between the hardening laws of materials in Table 6 (lines) and the results 

obtained with the membrane theory (symbols) using the equations (25) and (26) for Drucker+L materials; 

(b) Evolution of the corresponding errors in equivalent stress with the equivalent strain. 
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(a) (b) 

Figure 45. (a) (a) Comparison between the hardening laws of materials in Table 6 (lines) and the results with 

the membrane theory (symbols) with 1 = 2 =  (equation (13)) considering for equivalent strain 

determination the measured values of 1 and 2 in equation (12); (b) Evolution of the error in equivalent 

stress with the equivalent strain. 

 

(a) (b) 

Figure 46. (a) Comparison between the hardening laws of materials in Table 6 (lines) and the results 

obtained with membrane theory (symbols) using the Drucker+L equivalent stress definition and equation 

(26); (b) Evolution of the error in equivalent stress with the equivalent strain. 
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the hardening curve, as in case of materials described by the Hill’48 criterion and the Swift 

law. 

 

 

Figure 47. Difference of errors between Figure 44 and Figure 46, for the Drucker+L materials whose 

behaviour is described in Tables 5 and 6. 

7. CONCLUSIONS 

An extensive numerical study involving materials with various isotropic and 

anisotropic behaviours in the sheet plane, described by the Hill’48 criterion, and hardening 

behaviour described by the Swift law, with three hardening coefficients, n = 0.10, 0.20 and 

0.35, was performed in order to determine the hardening curve and respective errors in stress, 

when using the traditional procedures for analysing the bulge test results. These anisotropic 

behaviours comprise isotropy in the sheet plane, with r0 = r45 = r90, and anisotropy in the 

sheet plane, with r0 = r90 ≠ r45 and with r0 ≠ r90. Two anisotropic materials, described by the 

Drucker+L criterion, and the hardening behaviour described by Voce law are also analysed. 

The analyses of the geometry of the cap shows that, at each moment of the test, 

the geometry is identical for both orthotropic directions in the sheet plane, whatever the 

material anisotropy. This allows simplifying the use of the membrane theory (1 = 2, in 

equation (1)), since the radius of curvature is equal for both principal axis, O1 and O2, parallel 

to the orthotropic axes, Ox and Oy. Also, the sheet thickness as well as the equivalent stress 

and strain are equal, along both orthotropic axes, up to a relatively large distance from the 

centre of the cap. 
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The principal stresses and strains along both orthotropic axes, and particularly at 

the pole of the cap, are equal in the case of materials with r0 = r90, as would be expected, but 

different in case of materials with r0 ≠ r90. In this latter case, the inability of occurrence of 

biaxial stress and strain paths is a natural consequence of the normality condition between 

the stress and the increment of strain. 

The errors associated with the approach traditionally used, which considers 

equibiaxial stress (and eventually strains) paths at the pole of the cap, isotropy and the 

simplify equation of the membrane theory, were quantified according to the anisotropy of 

the sheet. Moreover, an empirical equation for the circular bulge test relating the stress path 

with the strain path at the pole of the cap (2/1 = (2/1)-2) is suggested to be used, regardless 

of the yield criterion that better describes the anisotropic behaviour of the material. This 

equation is based on Hill’48 results, but it was tested for a non-quadratic criterion, the 

Drucker+L criterion. It allows determining the stress path based on the knowledge of the 

strain path, which can be assessed by digital image correlation. In this context, the use of the 

simplified equation of the membrane theory (equation (13)) can be overcome by using 

equations (1) and (25), which greatly improves the accuracy of the estimate hardening curve, 

mainly in case of materials with strong anisotropy. It is also suggested an alternative to 

determine the equivalent strain based on the plastic work definition, to be used under the 

condition that both stress and strain paths are known. 
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3.3. On the determination of the work hardening curve using 

the bulge test 

This subchapter contains the paper "On the determination of the work hardening curve 

using the bulge test", published in International Journal of Mechanical Sciences. In this 

study, various material behaviours and die geometries were used in order to develop 

analytical models for relating the radius of curvature and sheet thickness with the pole height 

during the bulge test. Numerical and experimental validation of the models was performed 

using the own and literature results. This approach enables the properly assess the hardening 

curve and allows simplifying the experimental procedure. 
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a b s t r a c t

Hydraulic bulge test represents nowadays an important means to obtain higher accuracy on material
characterization. One reason is the possibility of using the obtained biaxial stress–strain data to largely
extend the hardening information extracted from the tensile test. The other reason is the use of biaxial
data as input information when determining parameters for current most advanced yield criteria.

This contribution aims to obtain the material stress–strain hardening curve from the bulge test using
a simpler experimental equipment, in which the output data is the hydraulic bulge pressure and the pole
bulge height. This information is used to determine the sheet thickness and corresponding radius of
curvature at the pole of the cap, which is the needed data to calculate the biaxial stress–strain curve, the
stress being determined based on Laplace's equation from the membrane theory, a standard approach for
this kind of analysis.

Analytical models are proposed relating the radius of curvature and the sheet thickness with the pole
bulge height. These models are based in an extensive analysis of different material behaviors, which in
turn are related to characteristic properties of sheet metals, as well as different geometries of bulge test.
Geometric variables include bulge die diameter and the fillet radii located at the entrance of the die. The
analytical formulas also include the material variables associated with the hardening behavior and the
sheet anisotropy, with different interaction and weighting impact.

The extensive study also permits a deeper theoretical understanding of relations among the inter-
connecting variables and their influence on the accuracy of sheet thickness and radius of curvature
determination, which directly influences the obtained biaxial stress–strain curve. This means, for
example, the understanding between sheet thinning evolution or bulge curvature evolution during
bulging and the corresponding relation with material plastic properties, hardening and anisotropy.

The validation of the methodology and the proposed analytical models is performed with experi-
ments, both from developed experimental system and also from literature with different bulge geometric
relations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element analysis is currently essential in the design stage
of sheet metal forming components. Its implementation, wide use

and contribution to better predictability in the design of sheet
metal forming processes depends on the accurate characterization
of the material properties [1]. Sheet metal mechanical behavior is

usually described using mathematical models, i.e. constitutive
laws, and for each material, the parameters of such models are
generally determined with resource to tensile and other mono-

tonous strain path tests, such as shear test and biaxial tension.

The biaxial bulge test, under hydraulic pressure [2], can achieve
relatively high strain values before necking, allowing the definition
of the hardening law up to large plastic deformations. In the bulge
test, the periphery of the metal sheet is restrained by a drawbead,
which prevents its radial displacement. Hydraulic pressure is then
applied to the metal blank, forming the sheet into a hemispherical
geometry without using a punch, thus, minimizing any influence
of contact with friction. The test conditions promote biaxial strain
paths at the pole of the cap, which is perfectly spherical in a region
close to the pole and inside a circle of constant latitude [3,4]. This
test can be used to obtain the strain limits defining the points of
Forming Limit Curves (FLC's) and to characterize the material
hardening behavior. Normally the region under study is limited to
the area around the pole of the cap, which using circular or
elliptical dies will allow a wide variety of the principal strain ratios
at the pole of the cap [5,6].
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The bulge test has been the subject of growing interest with a
great relevance on the characterization of strain hardening laws of
metal sheets. However, the identification of the parameters of the
hardening law presents some difficulties [7]. Various methodolo-
gies can be considered and several approaches have been devel-
oped and adopted over the years [8]. When determining the strain
hardening law of the material, using the membrane theory, it is
necessary to record the hydraulic pressure and evaluate the radius
of curvature and the sheet thickness at the pole, during the test. As
example of using different methodologies, the determination of
the sheet thickness can be performed based on strain measure-
ments at the pole or using mathematical models, which take into
account the geometry of the test [9,10]. Similarly, the radius of
curvature at the pole of the cap can be determined using direct
evaluation with different points at the pole or indirect evaluation
with mathematical models using total height at the pole [8,10,11].

Regarding the direct evaluation, the use of optical measuring
systems allows the description of the geometry and strain dis-
tributions on sheet surface during the bulge test. However, the
evaluation of the stress vs. strain curves depends on assumptions
and simplifications, whose assessment are still under study. For
example, in a recent study Mulder et al. [12] examine the validity
and the conditions for applying the membrane theory, which
includes issues such as: radii of curvature evaluation, coordinated
system for strain measuring to be used, equibiaxial stress state
assumption in case of in-plane anisotropic materials, existence of
bending stresses and through thickness stress due to the hydraulic
pressure.

This paper presents a numerical study of the hydraulic bulge
test with circular die, using the in-house finite element program
DD3IMP [13,14]. It is assumed that the radii of curvature are
evaluated at the mid-plane of the cap, the coordinated system for
strain measuring is aligned with the orthogonal axes of symmetry
of the sheet and the non-balanced biaxial stress state is deter-
mined with the corresponding strain ratio, which needs prior
knowledge of the shape of the yield surface [12]. In this context,
in-plane isotropic and anisotropic materials were described by
Hill'48 criterion. The aim of the work is to propose an approach for
analysing the results of the circular bulge test, in order to obtain
the stress at the pole of the cap with simple equipment and not
requiring further specific devices to determine the radius of cur-
vature and thickness at the pole. The influence of the mechanical
properties of the material as well as the geometry of the die on the
evolution of the radius of curvature and the sheet thickness with
the pole height is considered in this analysis.

2. Theoretical background

The analysis of the stress state near the pole of the metal sheet
during the bulge test, using either circular or elliptical dies, can be
performed with the aid of the membrane theory [15], as long as it
is satisfied a small ratio between the sheet thickness and the bulge
die, typically values lower than 1/50 [8,16]. Under these condi-
tions, the bending stress can be neglected and assuming that the
thickness stress σ3 (¼σZ) is zero, a relationship between principal
stresses at the pole, the pressure and the geometry of the cap is
given by:

σ1

ρ1
þσ2

ρ2
¼ p

t
: ð1Þ

where σ1 and σ2 are the principal stresses in the sheet surface
(assuming that the principal stress axes (O123) and anisotropy
axes (Oxyz) coincide), ρ1 and ρ2 are the radii of curvature, at half
thickness, in the Oxz and Oyz planes, respectively, p is the
hydraulic pressure and t is the sheet thickness.

In order to experimentally determine the strain hardening
curve, the evolution of the following variables need to be obtained
during the test: pressure, p, the radii of curvature, ρ1 and ρ2, and
the sheet thickness at the pole, t. The thickness can be determined
based on the knowledge of the initial thickness of the sheet, t0,
and the thickness strain, ε3, through the following equation:

t ¼ t0exp �ε3ð Þ: ð2Þ

The strain, ε3, can be obtained from the measurement of the
principal strains in the sheet plane, ε1 and ε2, based on the con-
dition of volume constancy during plastic deformation:

ε3 ¼ � ε1þε2ð Þ: ð3Þ

Since the radii of curvature are experimentally evaluated on the
external surface of the cap, their correction should be done based
on the following equation [17]:

ρ¼ ρext�
t

2
; ð4Þ

where ρ is the radius of curvature at the half thickness of the cap,
and ρext is the radius of curvature of the external surface of
the cap.

In the general case, i.e. anisotropic metal sheet, the membrane
theory equation (Eq. (1)), contains two unknown variables, σ1 and
σ2, which requires an additional equation for its determination.
For metal sheets obeying to the Hill'48 criterion [18], this addi-
tional equation can be obtained by the plastic stress-strain rela-
tionships, assuming coincidence of the coordinate systems of
principal stress (O123) and anisotropy (Oxyz):

dε1 ¼ dλ H σ1�σ2ð ÞþG σ1�σ3ð Þ½ �
dε2 ¼ dλ F σ2�σ3ð ÞþH σ2�σ1ð Þ½ � ;

(

ð5Þ

where F, G and H are the anisotropy parameters, dε1 and dε2 are
increments of plastic deformation in the sheet plane, parallel to
the Ox and Oy axes, respectively, and dλ is a scalar factor of
proportionality.

In the bulge test, it can be assumed that σ3¼0 and, based on Eq.
(5), one can be written:

dε1
dε2

¼ σ1 GþHð Þ�σ2H

�σ1Hþσ2 FþHð Þ: ð6Þ

Consequently, Eqs. (1) and (6) allow determining the principal
stresses, σ1 and σ2, in case of circular and elliptical dies, assuming
that the parameters, F, G and H of the Hill'48 criterion are known.

To calculate the equivalent stress, σ, and the equivalent strain,
ε, values that characterize the hardening behavior, the following
equations can be used [6,18]:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GþHð Þσ2
1þ FþHð Þσ2

2�2Hσ1σ2

q

; ð7Þ

ε¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F
Gε2�Hε3

FGþGHþHF

� �2

þG
Fε1�Hε3

FGþGHþHF

� �2

þH
Fε1�Gε2

FGþGHþHF

� �2
s

:

ð8Þ

In case of isotropic materials, obeying the von Mises yield cri-
terion, the principal stresses, σ1 and σ2, in bulge tests performed
either with circular or elliptical dies, can be calculated using Eq. (1)
and simplifying the Eq. (6), as follow:

dε1
dε2

¼ σ1�0:5σ2

�0:5σ1þσ2
: ð9Þ

Similarly, the equivalent stress and strain can be calculated
using the following simplified equations (von Mises):

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ1ð Þ2þ σ2ð Þ2�σ1σ2

q

; ð10Þ
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ε¼ 2
ffiffiffi

3
p

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε21þε22þε1ε2

q

: ð11Þ

Finally, in cases of circular die and isotropic materials or ani-
sotropic materials such that, the anisotropy coefficients at 0º and
90º degrees are equal (r0¼r90), the principal stresses are also equal
(σ1¼σ2¼ σ), as well as the principal strains (ε1¼ε2¼ ε) and
curvature radii (ρ1¼ρ2¼ ρ), which simplifies Eq. (1) as follow:

σ ¼ pρ

2t
: ð12Þ

In these cases, Eq. (12) is sufficient to determine the principal
stresses in the sheet plane (σ1¼σ2¼σ), without requiring any
additional equation.

Also, for materials with fully isotropic behavior, Eqs. (10) and
(11) can be simplified (von Mises criterion):

σ ¼ σ and ε¼ 2ε: ð13Þ

Since the total strain present two additive components, elastic
and plastic, the elastic strain components, εe1 and εe2, can be
removed from the measured strains, ε1 and ε2. Assuming isotropic
elastic behavior, the generalized Hooke's law, gives the elastic
strain components as:

εe1 ¼
1
E
σ1�ν σ2þσ3ð Þ½ �

εe2 ¼
1
E
σ2�ν σ1þσ3ð Þ½ �

:

8

>

>

<

>

>

:

ð14Þ

Since in the bulge test it can be assumed that σ3¼0, this
equation can be written:

εe1 ¼
1
E
ðσ1�νσ2Þ

εe2 ¼
1
E
ðσ2�νσ1Þ

:

8

>

>

<

>

>

:

ð15Þ

3. Numerical modelling

In order to perform the study concerning the methodology for
the evaluation of the strain hardening law using the circular bulge
test, numerical models of the test were built, which are defined in
this section. The geometry of the tools considered in the test is
schematically shown in Fig. 1, where RM is the die radius, R1 the
die profile radius, RD is the radius of the central part of the
drawbead and RS the radius of the circular sheet. In fact, the

geometry and the dimension of the die to perform the bulge test is
not standardized and different laboratories may use different
dimensions. In this context, various die geometries were chosen.
For example, one of the geometries was built based on experi-
mental bulge test used by [19] which a die radius of RM¼75 mm
and die profile radius of R1¼13 mm, the radius of the central part
of the drawbead is RD¼95 mm and uses sheets with radius
RS¼100 mm.

Table 1 shows the dimensions of the die profile radius, R1, and
the die radius, RM, for each studied geometry. Besides of the above
mentioned geometry, referred to as 75.0_13.00, two homothetic
geometries were selected, i.e. with the same relations between R1
and RM, but different dimensions, a lower dimension being
50.0_8.6(6), and a higher dimension being 100.0_17.3(3). The
additional selected geometries were the die used by Chamekh
et al. [20], designated as 45.5_6.00, and two other geometries
designated as 75.0_6.25 and 105.7_6.35.

In all numerical models the tools were described using Bézier
surfaces, considering only one quarter of the geometry due to
material and geometrical symmetry conditions. However, in order
to simplify the analysis, the drawbead geometry was neglected
and its effect was replaced by a boundary condition imposing
radial displacement restrictions on nodes placed at a distance
equal to RD from the center of the circular sheet, which has an
initial blank radius of RS [21]. The contact with friction was
described by the Coulomb law with a constant friction coefficient
of 0.02 [22]. All numerical simulations were carried out with
DD3IMP in-house code [13,14] assuming an incremental increase
of the pressure applied to the sheet inner surface.

The blank sheet discretization was previously optimized [23]
considering the geometry with the die radius of RM¼75 mm and
the die profile radius of R1¼13 mm. The in-plane finite element
mesh geometry is shown in Fig. 2. The sheet geometry was divided
into four main zones, in order to describe the central region of the

Die

Blank Holder

Hydraulic Fluid

Deformed sheet metal

Drawbead

1 13 mmR =

75 mm
M
R =

95 mm
D
R =

100 mm
S
R =

Fig. 1. Bulge test, with the identification of the principal dimensions of the tool according to Santos et al. [7].

Table 1

Designation of the studied die geometries.

Designation: RM_R1 RM mm½ � R1 mm½ � R1=RM RS[mm] RD[mm]

50.0_8.6(6) 50.0 8.6(6) 0.17 66.7 63.3
75.0_13.00 75.0 13.00 0.17 100.0 95.0
100.0_17.3(3) 100.0 17.3(3) 0.17 133.3 126.7
45.5_6.00 45.5 6.00 0.13 60.7 57.6
75.0_6.25 75.0 6.25 0.08 100.0 95.0
105.7_6.35 105.7 6.35 0.06 140.9 133.9
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specimen with a regular and uniform grid discretization in the
sheet plane, using quadrangular elements. For the 75.0_13.00
geometry, this corresponds to a total of 5292 3D solid 8 node
elements, using two layers of elements through thickness. The
blank discretizations for other die dimensions were obtained using
a scaling factor for the in-plane finite element size, based on the RS

values.

4. Results

Numerical simulations of the bulge test were performed for
materials with several plastic behaviors, using the die geometries
described in the previous chapter. The two next sections concern
the circular die designated as 75.0_13.00 geometry, for full iso-
tropic materials (Section 4.1) and materials with transverse ani-
sotropy (Section 4.2). The last section (Section 4.3) is related with
the study of every different geometry of Table 1, for isotropic
materials.

The materials under study have plastic behavior described by
Hill'48 yield criterion and hardening defined by Swift law [24]:

σ ¼ K εþε0ð Þn; ð16Þ

where K, ε0 and n are the parameters of this law, being n the work
hardening coefficient. The value of the parameter ε0 is assumed to
be 0.005. The elastic behavior is considered isotropic with a
Young's modulus, E¼210 GPa, and a Poisson's ratio, ν¼0.30.

The analysis of the numerical simulation results was performed
in the same way that is usually done experimentally, i.e. using
step-wise measurements, namely, the radius of curvature at the
pole, ρext, is evaluated at several stages during the test, with the
aid of the NXT Defect Evaluator commercial code [25]. This soft-
ware allows the evaluation of surface curvature, based on the
coordinates of points located on the meridian plane. The surface
radius of curvature, ρext, was analysed only along the Ox axis. In
case of transverse anisotropy, the geometrical and material sym-
metries make equal the evolutions of ρext along the Ox and Oy
axes. In case of transverse anisotropy, the results show that the
curvature radius is also equal along both axes, Ox and Oy, and
therefore it is not influenced by material anisotropy, as it was
already reported in [26,27]. The radius of curvature at half thick-
ness, ρ, is determined using Eq. (4). During the test, the principal
strains in the sheet plane were determined by direct measurement
at the pole of the cap, as it can be experimentally performed using
digital image correlation technique (DIC), for example. This allows
the determination of sheet thicknesses based on the values of the
principal strains at the top of the cap, using Eqs. (2) and (3).

4.1. Isotropic materials in 75/13 die ratio geometry

The numerical simulation study of the bulge test is carried out
in this section with the circular die designated as 75.0_13.00
geometry. It is concerned with isotropic plastic materials having
different hardening law parameters. In this way, materials with
different values of yield stress and work hardening coefficient
were analysed, in order to study the influence of these parameters
on the results of the bulge test, particularly the evolutions of the
pressure, radius of curvature and thickness at the pole of the cap,
during the test.

Table 2 shows the parameters of the Swift law for the materials
under study. Three values of yield stress, σ0, were chosen, namely
100, 200 and 300 MPa as well as three values of work hardening
coefficient, n, namely 0.05, 0.20 and 0.35. In order to simplify the
analysis of the results in this section, the following designation is
adopted for the material in each test: "XXX_0.YY_Z.Z", where
“XXX” is the yield stress value, σ0, “0.YY” is the work hardening
coefficient of the material, n, and “Z.Z” is the initial sheet thick-
ness, t0. For each material, three different values of thickness were
studied: 0.5, 1.0 and 2.0 mm.

In the following, examples of numerical results are presented
concerning the materials in Table 2. Fig. 3 shows the evolution of
the pressure, p, with the pole height, h, for 1.0 mm thick sheets.
Both parameters of the Swift law, σ0, and, n, influence the pressure
evolution during the bulge test. At the beginning of the test, higher
pressure evolution is related to higher yield stresses. Subsequently,
the level of the curves depends mainly of the work hardening
coefficient, for a given n value.

Fig. 4 shows examples of the evolution of the radius of curva-
ture, ρ, with the pole height, h, for 1.0 mm sheet thicknesses. At
the beginning of the test, the radius of curvature quickly decreases,
but its rate declines as the pole height increases, such that when

Fig. 2. Geometry of the finite element mesh in the sheet plane showing: (a) the
four main zones (the dimensions are in mm) and (b) a general view of the mesh.

Table 2

Materials and corresponding parameters of the Swift hardening law.

Designation σ0 ½MPa� n

100_0.05_Z.Z 100 0.05
100_0.20_Z.Z 0.20
100_0.35_Z.Z 0.35
200_0.05_Z.Z 200 0.05
200_0.20_Z.Z 0.20
200_0.35_Z.Z 0.35
300_0.05_Z.Z 300 0.05
300_0.20_Z.Z 0.20
300_0.35_Z.Z 0.35
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Fig. 3. Evolution of pressure, p, with pole height, h, for sheets of fully isotropic
materials with t0¼1.0 mm.
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the pressure approaches the maximum value, the radius of cur-
vature approaches to the radius of the die (RM¼75 mm in Fig. 1).
Whatever the values of the yield stress and the work hardening
coefficient, the curves tend to be superposed at the beginning
of the test. But as the pole height increases, the curves tend to
separate from each another, depending on the work hardening
coefficient: materials with higher work hardening coefficient
present a higher radius of curvature for the same value of pole
height. These results indicate that it is possible to define a unique
curve for each value of work hardening coefficient, whatever the
yield stress of the materials. In other words, the successive geo-
metries of the cap, during the test, are identical for materials with
the same value of the work hardening coefficient.

The almost coincidence of the curves at the beginning of the
test is certainly associated with the fact that, at this stage of the
test, the magnitude of the plastic component of the strain is not
significant (relatively to the elastic component), i.e. the geometry
of the cap is still widely influenced by the elastic properties of the
material. For example, prior to the yield stress is attained, only the
elastic properties can influence such geometry. Nevertheless,
the beginning of the test is not an interesting stage regarding the
determination of the work hardening curve, since in experimental
bulge tests the value of radius of curvature at the pole of the cap, ρ,
is usually not enough accurate.

The results for the sheets with initial thicknesses of 0.5 and
2.0 mm (not represented in Fig. 4 for clarity) are entirely coin-
cident with those of the sheet thickness of 1.0 mm for the same
value of the work hardening coefficient, and so it is also possible to
define a unique evolution of ρ vs. h, for each value of work hard-
ening coefficient, whatever the initial sheet thickness (and the
yield stress as already mentioned). This is shown in Fig. 5, where ρ
and h are normalized by the die radius RM.

The evolution of the sheet thickness at the pole of the cap
during the test was also analysed. Fig. 6 shows the evolution of the
thickness of the sheet at the pole, t, with the pole height, h, for all
materials under analysis and initial sheet thickness of 1.0 mm.
Also, these evolutions can be grouped by the value of the work
hardening coefficient, as for the radius of curvature. The materials
with higher work hardening coefficient present lower sheet
thickness variation, for the same pole height, whatever the yield
stress of the materials.

The same kind of behavior is observed for the other initial sheet
thicknesses (t0¼0.5 mm and 2.0 mm), providing that the thick-
ness, t, is normalized by the initial thickness of the sheet, t0.
Having previous results in mind, it is possible to define a unique
evolution of t/t0 vs. h/RM, for each value of work hardening coef-
ficient, whatever the value of the initial sheet thickness (and the
yield stress, as already mentioned). The results are shown in Fig. 7.

Fig. 4. Evolution of radius of curvature, ρ, with pole height, h, for sheets with fully isotropic materials with t0¼1.0 mm: (a) general view and (b) detail for values of pole
height greater than 20 mm.
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In summary, for isotropic materials, the evolution of the nor-
malized sheet thickness and the normalized radius of curvature
with the normalized pole height are only influenced by the value
of the work hardening coefficient and are independent of the yield
stress and the initial thickness of the sheet.

4.2. Materials with transverse anisotropy in 75/13 die ratio geometry

The numerical simulation of the bulge test was also carried out
on metal sheets with transverse anisotropy. Therefore, the aniso-
tropy coefficient rα is constant (equal to and different from 1) in
the plane of the sheet (α the angle between the tensile direction
and the rolling direction). Concerning the die geometry, it is used a
circular die designated as 75.0_13.00. The study on the hardening
behavior includes materials presented in Table 2 and the initial
thickness of the sheet is 1 mm. Table 3 shows the designation
adopted for each material, the corresponding parameters of the

Hill'48 criterion and the ratio σb/σ0 (where σb and σ0 are the yield
stress in biaxial and uniaxial tension). The designation A_A_A_n
corresponds to a material with the anisotropy coefficient, rα, in the
sheet plane such that: r0¼r45¼r90, and so the parameters of the
Hill'48 criterion obey to the condition F¼G. The parameter n is the
work hardening coefficient. The condition F¼G together with the
condition G þ H¼1, which is assumed for the materials in Table 3,
means that the tensile curves along any direction in the sheet
plane are coincident [28], whatever the value of the anisotropy
coefficient, rα, provided that the parameters of the work hardening
law σ0 and n are the same.

Fig. 8 shows examples of the evolution of the pressure with the
pole height, for the cases of transverse anisotropy, with yield
stress, σ0¼200 MPa and work hardening coefficients, n¼0.05,
0.20 and 0.35. The higher the anisotropy coefficient, the higher is
the pressure required to achieve the maximum pole height, for a
given value of the work hardening coefficient.

Fig. 9 shows examples of the evolution of the normalized radius
of curvature, ρ/RM, with the normalized pole height, h/RM, for
materials with yield stress, σ0¼200 MPa, and work hardening
coefficients, n¼0.05, 0.20 and 0.35. These results are similar to
those of Fig. 5, for the materials with the same hardening coeffi-
cient, n, and so the evolution of ρ does not depend of the aniso-
tropy parameters. This means that the geometry evolution of the
cap during the bulge test does not depend on the anisotropy
coefficient of the material, and consequently, the evolutions of ρ/
RM vs. h/RM can be superposed regardless of the rα value.
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Table 3

Designation of the materials with transverse anisotropy, the corresponding para-
meters of Hill'48 criterion and the ratio σb/σ0.

Designation Parameters of the Hill’48 Criterion

F G H L M N σb/σ0

0.7_0.7_0.7_n 0.588 0.588 0.412 1.500 1.500 1.412 0.922
1_1_1_n 0.500 0.500 0.500 1.500 1.500 1.500 1.000
2_2_2_n 0.333 0.333 0.667 1.500 1.500 1.667 1.225
3_3_3_n 0.250 0.250 0.750 1.500 1.500 1.750 1.414
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Fig. 8. Evolution of pressure, p, with pole height, h, for materials with transverse
anisotropy and n¼0.05, 0.20 and 0.35 (σ0¼200 MPa and t0¼1 mm).
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The evolution of the sheet thickness at the pole of the cap
during the test was also analysed. The values of the thickness at
different moments of the test were determined based on the
values of the principal strains (ε1¼ε2) at the top of the cap. Fig. 10
shows the evolution of the normalized thickness of the sheet at
the pole, t/t0, with the normalized pole height, h/RM, for the
transverse anisotropic materials with three values of work hard-
ening coefficient: n¼0.05, 0.20 and 0.35. The results show that the
evolution of the normalized sheet thickness with the normalized
pole height depends, not only on the work hardening coefficient
(see also Section 4.1), but also on the anisotropy coefficient, rα.

The current results show that, unlike the work hardening
coefficient whose value influences the evolutions of the normal-
ized radius of curvature and the normalized sheet thickness during
the test, the anisotropy coefficient only influences the evolution of
the normalized sheet thickness with the normalized pole height.

4.3. Isotropic materials with different die ratio geometries

In this section, numerical simulations of the bulge test are
performed with several die geometries, corresponding to those
presented in Table 1. The material used in these simulations is an
isotropic metal sheet with yield stress, σ0¼200 MPa, work hard-
ening coefficient, n¼0.20 and the initial thickness is 1 mm.

In the next figures, the designation A_B_C_RM_R1 corresponds
to a material with the anisotropy coefficient, rα, in the sheet plane

such that: r0¼A, r45¼B, r90¼C and A¼B¼C¼1; RM is the measure
of the die radius and R1 is the die profile radius.

Fig. 11 shows the evolution of the pressure with the pole
height, for different die geometries. For a given ratio R1/ RM, the
level of the curves decrease and reach higher values of bulge
height, when the R1 (or RM) value increases (Fig. 11(a)). Moreover,
for a given value of RM, the level of the curves pressure vs. pole
height decreases and higher values of bulge height are attained,
when the value of R1 increases (compare curves for dies
75.0_13.00 and 75.0_6.25 in Fig. 11(b)), and for a given value of R1,
the level of the curves decreases and higher values of bulge height
are attained, when the value of RM increases (compare curves for
dies 45.5_6.00, 75.0_6.25 and 105.7_6.35, with close values of R1,
in Fig. 11 (b)).

Fig. 12 shows the evolutions of the normalized radius of cur-
vature during the test that slightly depends on the ratio R1/RM. In
fact, in cases of dies in which the ratio is equal, the results show a
unique trend, whatever the values of RM and R1. For the dies with
different ratios of R1/RM, the results are very close at the beginning
of the test; then, depending on the ratio R1/RM, they tend to move
away from each other; finally, they tend to overlap each other at
the end of the test, for high values of the normalized pole height.
The trend shows that the lower the R1/RM ratio, the lower is the
level of the curves.

Fig. 13 shows the evolution of the normalized thickness during
the test. As for the evolution of the normalized radius of curvature,
the normalized thickness evolution shows the same trend in case
of dies with equal ratio R1/RM, whatever the values of RM and R1.
Otherwise, when the ratio R1/RM is the lower the curves have
tendency to move down, particularly for high values of h/RM.

In summary, the evolutions of the normalized sheet thickness
and the normalized radius of curvature with the normalized pole
height are influenced by the value of the ratio R1/RM, and not by
the individual values of RM or R1.

5. Equations for the evolution of ρ/RM vs. h/RM and t/t0 vs. h/RM

The determination of the principal stress, using the membrane
theory (Eq. (12)), needs the evaluation of the radius of curvature
and the thickness at the top of the cap, which requires the use of
appropriate equipment and corresponding data acquisition soft-
ware, which are not always fully available. As alternative, simpli-
fied equipment may be used to obtain only the evolution of the
pressure and total bulge height variables, but in this case the
radius of curvature and the pole thickness evolutions need to be
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evaluated based on these variables. In this section some funda-
mental analytical equations are developed and proposed, relating
curvature and thickness with pressure and bulge height. They will
provide not only the possibility of using a simpler equipment for
hardening curve determination, but specially a better theoretical
understanding of the hydraulic bulge test and the relation among
its main variables and material parameters.

As seen in the previous sections, the evolution of the normal-
ized radius of curvature, ρ/RM, with the normalized pole height,
h/RM, only depends of the work hardening coefficient, n, being
independent of the yield stress of the material, σ0, the anisotropy
coefficient, rα, and the initial sheet thickness, t0. But, the evolution
of the normalized thickness of the sheet at the pole, t/t0, with the

normalized pole height, h/RM, depends on the work hardening
coefficient, n, and on the anisotropic coefficient, rα. In this context,

an approach able to avoid the experimental measurements, and
subsequent treatment, in order to determine the radius of curva-
ture at the pole of the cap during the bulge test, must take into
account the work hardening coefficient of the material, although it

can be independent of the material yield stress, the anisotropy
coefficient and the initial sheet thickness. At our knowledge, in the
literature, the work hardening coefficient is not considered in

equations relating the radius of curvature with the pole height.
Therefore, none of the previously proposed equations adequately
describe the current results. In this context, various types of
equations for radius of curvature determination were fitted to the

results of each group of materials in Fig. 5 (i.e. each n value).
Among the best fits, the following type of power law was chosen,
for its simplicity:

ρ

RM
¼ a1

h

RM

� �a2

; ð17Þ

where a1 and a2 are fitting parameters. The results show that the
parameters a1 and a2 of these equations exhibit a quasi linear

evolution with the work hardening coefficient, n. This knowledge
leads to the choice of the equation, developed from Eq. (17), where
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value of the ratio R1/RME0.17; (b) all cases of die ratios under this study.

Table 4

Parameters obtained for the Eqs. (18), (20) and (21).

Eq. (18) Eq. (20) Eq. (21)

a1 0.411050 b1 1.948236 c1 1.750625
a2 0.641438 b2 2.419649 c2 2.196396
a3 0.226993 b3 1.272563 c3 2.472235
a4 �1.017913 b4 0.230658 c4 5.829536

b5 0.774585 c5 1.125865
c6 0.230658
c7 0.774585

R2 0.9991 R2 0.9980 R2 0.9997
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the work hardening coefficient is included in the fitting:

ρ

RM
¼ a1nþa2ð Þ h

RM

� �a3nþa4

; ð18Þ

where a1, a2, a3 and a4 are the fitting parameters of the curve, and
n is the work hardening coefficient of the material. Fitting this
equation simultaneously to the three sets of results of Fig. 5
(n¼0.05, 0.20 and 0.35), the following parameters were obtained,
as it can see in Table 4.

In case of the sheet thickness at the pole, its evolution with the
pole height shows a behavior dependent not only on the work
hardening coefficient, as shown in Fig. 7, but also dependent on
the anisotropy coefficient of the sheet, as shown in Fig. 10. At our
knowledge, only the equation by Chakrabarty and Alexander [29]
takes into account the work hardening coefficient when relating
the sheet thickness with the pole height, although the influence of
the anisotropy coefficient, rα, is never considered. The equation by
Chakrabarty and Alexander is written:

t

t0
¼ 1

1þ h
RM

� �2

2

6

4

3

7

5

2�n

: ð19Þ

Since this equation does not adequately describe the results of
the current study, two types of equations, based on the proposed
by Chakrabarty and Alexander but with a higher number of
parameters, were fitted to results of materials with different
values of work hardening coefficient (see Fig. 7) and anisotropy
coefficient (see Fig. 10):

t

t0
¼ 1

1þb1
h
RM

� �b2

2

6

4

3

7

5

b3 � x

; ð20Þ

and

t

t0
¼ 1

1þc1
h
RM

� �c2
þc3

h
RM

� �c4

2

6

4

3

7

5

c5 �y

; ð21Þ

where x and y are function not only of the work hardening coef-
ficient, n, but also on the anisotropy coefficient, rα ¼ r, such that:

x¼ b4nrþb5n ð22Þ

and

y¼ c6nrþc7n: ð23Þ

In fact, the results in Figs. 7 and 10 show that the influence of
the work hardening and anisotropy coefficients on the evolution of
the normalized sheet thickness, t/t0, with the normalized pole
height, h/RM, is similar (i.e. decreasing of n and rα lowers the level
of the curves t/t0 vs. h/RM), although having different magnitudes.
Moreover, the influence of the anisotropy coefficient on this evo-
lution decreases and seems to disappear when the value of the
work hardening coefficient approaches to zero (see Fig. 10). The
appropriateness of the Eqs. (20) and (21) for describing the evo-
lution of t/t0, during the bulge test, was analysed with resource to
the results of tests with different values of work hardening and
anisotropy coefficients, which showed that the fitted exponents
(b3 - x) and (c5 - y) have a quasi-linear evolution with n and rα;
moreover, as the value of n decreases, the influence of rα value on
the value of the fitted exponents (b3 - x) and (c5 - y) decreases,
approaching zero. Moreover, the values of the parameters b1 and
b2, of Eq. (20), and c1, c2, c3 and c4, of Eq. (21), are stable regardless
of the values of n and rα. Fitting Eqs. (20) and (21) to the results
of Figs. 7 and 10, the corresponding parameters are presented in
Table 4.

Although Eq. (21) has a better correlation coefficient than
Eq. (20), the latter is simpler and shows enough accuracy when
applied to the determination of the work hardening curve, as it
will be discussed below.

Finally, the evolution equations for the normalized radius of
curvature and the thickness should take into account the value of
the ratio R1/RM. Accordingly, the results in Figs. 12 and 13 were
used. The appropriateness of the Eqs. (18), (20) and (21) for
describing the evolutions of ρ/RM and t/t0, during the bulge test,
was analysed for all cases of Figs. 12 and 13, which showed that
the fitted parameters a1 and a3, in Eq. (18) are stable regardless of
the values of R1/RM; the same occurs for the parameters b1 in
Eq. (20) and c1 in Eq. (21). Moreover, the parameters a1 and a3,
shows a quasi-linear evolution with R1/RM. This knowledge guide
us to modify the Eqs. (18), (20) and (21) in order to include the
ratio R1/RM. Therefore, Eq. (18) is now written:

ρ

RM
¼ a1nþa2

R1

RM
þa3

� �

h

RM

� �a4nþa5
R1
RM

þa6

; ð24Þ

where a1, a2, a3, a4, a5 and a6 are the fitting parameters. Fitting this
equation simultaneously to the results of Fig. 12, the following
parameters are obtained, as it can see in Table 5.

Eq. (20) now takes the following form:

t

t0
¼ 1

1þ b1
R1
RM

þb2
� �

h
RM

� �b3

2

6

4

3

7

5

b4 �n b5rþb6ð Þ

; ð25Þ

where b1, b2, b3, b4, b5 and b6 are the fitting parameters. Fitting this
equation simultaneously to the results of Fig. 13, the following
parameters are obtained, as it can see in Table 5.

Eq. (21) now takes the following form:

t

t0
¼ 1

1þ c1
R1
RM

þc2
� �

h
RM

� �c3
þc4

h
RM

� �c5

2

6

4

3

7

5

c6 �n c7rþ c8ð Þ

; ð26Þ

where c1, c2, c3, c4, c5, c6, c7 and c8 are the fitting parameters.
Fitting this equation simultaneously to the results of Fig. 13, the
following parameters are obtained, as it can see in Table 5.

In the next section, the performance of these equations is
analysed and validated with resource to numerical results and
multiple testing situations.

6. Analysis of the performance of the equations

In this chapter, the membrane theory (Eqs. (1) and (12)) is used
to determine the stresses at the pole of the cap, at several
moments of the numerical bulge test. In order to test the perfor-
mance of the two sets of fitting equations for ρ/RM and t/t0,
equivalent stress (determined using Eqs. (7), (10) or (13)) versus

equivalent plastic strain (determined using Eqs. (8), (11) or (13))

Table 5

Parameters obtained for the Eqs. (24), (25) and (26).

Eq. (24) Eq. (25) Eq. (26)

a1 0.411050 b1 �3.460113 c1 �3.665349
a2 0.551581 b2 2.547989 c2 2.385952
a3 0.545831 b3 2.419649 c3 2.196396
a4 0.226993 b4 1.272563 c4 2.472235
a5 �0.356414 b5 0.230658 c5 5.829536
a6 �0.956135 b6 0.774585 c6 1.125865

c7 0.230658
c8 0.774585

R2 0.9996 R2 0.9978 R2 0.9992
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curves are plotted. As a reference, the usual experimental proce-
dure to obtain these curves, which consists on the direct mea-
surement of ρ and t values during the test, is also analysed.
For both cases, the equivalent strain values are obtained from
the values of ε1 and ε2 directly measured at the top of the cap; the
elastic part of the strain tensor was removed, using Eq. (15).
The corresponding work hardening curves are compared with the
hardening curve used as input (H.L. – Hardening Law) in the
numerical simulations. The label "_1a" in the figures corresponds
to the use of Eq. (24), for the radius of curvature, together with Eq.
(25) of sheet thickness, and "_2a" to Eq. (24), for the radius of
curvature, with Eq. (26), for the sheet thickness.

6.1. Isotropic materials

At first, the results of ρ and t obtained by direct measurement
and presented in Figs. 4, 6, 9 and 10 (corresponding to materials in
Table 2) were used for determining of the stress at the pole of the
cap, at different moments of the test. Fig. 14 compares these
results with the equivalent stress versus equivalent plastic strain
curves with those used as input (H.L.) in the numerical simula-
tions, for the case of 1.0 mm thick sheets. A good correspondence
is observed, for all materials.

Fig. 15 shows the error in equivalent stress obtained from the
results in Fig. 14, defined as Error¼ ðσHL�σMT Þ=σHL (where σHL

and σMT are the equivalent stresses of the input hardening curve
and the one determined by the membrane theory, respectively).
For lower equivalent plastic strain values, the error in the esti-
mated equivalent stress can be relatively high (mainly in cases of
materials with work hardening coefficient equal to 0.35). In fact,

for stress values close to the yield stress, the cap has a high value
of the radius of curvature at the pole (see Fig. 4), and so the
associated errors can induce relatively high errors in stress.
Nevertheless, the error in equivalent stress does not exceed 4%,
and for strain values higher than 0.015, the error is always lower
than about 2.5%.

For all cases of isotropic materials and sheet thickness, the
evolution of the error in equivalent stress shows the same trend:
positive for lower equivalent strain values and changing to nega-
tive values for higher values of strain, as shown in Figs. 16 and 17
for the cases of sheet thickness equal to 2.0 and 0.5 mm, respec-
tively. The maximum error in stress, of about 7.2%, was obtained at

[M
P

a
]

Fig. 14. Comparison between the hardening laws obtained by means of the
membrane theory and direct measurements of ρ and t (symbols) and those used as
input in the FE code (line), for the case of 1.0 mm thick sheets.
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r
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Fig. 15. Evolution of the error in equivalent stress obtained by means of the
membrane theory and direct measurements of ρ and t, as a function of the
equivalent strain in the pole, ε, for the case of 1.0 mm thick sheets.

Fig. 16. Evolution of the error in equivalent stress obtained by means of the
membrane theory and direct measurements of ρ and t, as a function of the
equivalent strain in the pole, ε, for the case of 2.0 mm thick sheets.
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Fig. 17. Evolution of the error in equivalent stress obtained by means of the
membrane theory and direct measurements of ρ and t, as a function of the
equivalent strain in the pole, ε, for the case of 0.5 mm thick sheets.

Fig. 18. Comparison between the hardening laws obtained by means of the
membrane theory and using Eqs. (24) and (25) (symbols) with those used as input
in the FE code (line), for the case of 2.0 mm thick sheets.

L.C. Reis et al. / International Journal of Mechanical Sciences 105 (2016) 158–181 167



the beginning of the test for the case of the initial sheet thickness
of 2.0 mm (Fig. 16). At the end of the test, the error in stress never
exceeds 1.2%, whatever the material and the sheet thickness
(Fig. 16). For the initial sheet thickness of 0.5 mm, the error in
stress is always less than 1.5%, and after 0.10 of equivalent strain is
even inferior to 0.5%, at the end of the test. The lowest error for the
smallest thickness (0.5 mm) is justified by the fact that very thin
sheet are closer to membrane behavior and membrane theory.

The equations for ρ/RM (Eq. (24)) and t/t0 (Eqs. (25) and (26)),
proposed in the last chapter, were also used for determining the
equivalent stress at different moments of the test. The following
examples only concern the 2 mm thick sheets that exhibited the
lowest accuracy of results, as in previous cases (see Figs. 15, 16 and

17). Figs. 18 and 19 show the comparison between the hardening
laws (H.L.), used as input in numerical simulation of the bulge test,
and the results obtained using the membrane theory together
with the Eqs. (24) and (25) (Fig. 18), and with the Eqs. (24) and
(26) (Fig. 19) for calculation of the equivalent stress, σ. Figs. 20 and
21 show the evolution of the error, in equivalent stress
with equivalent strain, which corresponds to Figs. 18 and 19,
respectively.

The comparison of Figs. 20 and 21 shows that, in this last case,
the errors are slightly smaller than the former case. Moreover, the
comparison of these figures with Fig. 16 shows that the maximum
errors obtained using both sets of the fitted equations are lower
than those obtained from direct measurement (Figs. 20 and 21). In
cases of thicknesses of 0.5 and 1.0 mm, the errors obtained using
both sets of equations, although not shown here, lead to the same
conclusion, i.e. the errors are of the same magnitude or slightly
lower (at the beginning of the test) when compared to direct
measurement.

6.2. Materials with transverse anisotropy

The materials with transverse anisotropy in the sheet plane, i.e.
with r0¼r45¼r90, which parameters of the Hill'48 criterion are
shown in Table 3, were also analysed. The hardening behavior of

Fig. 19. Comparison between the hardening laws obtained by means of the
membrane theory and using Eqs. (24) and (26) (symbols) with those used as input
in the FE code (line), for the case of 2.0 mm thick sheets.

Fig. 20. Evolution of the error in equivalent stress obtained by means of the
membrane theory and using Eqs. (24) and (25) as a function of the equivalent strain
in the pole, ε, for the case of 2.0 mm thick sheets.

Fig. 21. Evolution of the error in equivalent stress obtained by means of the
membrane theory and using Eqs. (24) and (26) as a function of the equivalent strain
in the pole, ε, for the case of 2.0 mm thick sheets.

Fig. 22. Work hardening law used as input in the numerical simulation (line) and
results obtained by membrane theory using direct measurement of ρ and t (sym-
bols), and using Eqs. (24) and (25) (symbols “_1a”), for transverse anisotropic
materials (σ0¼200 MPa, n¼0.20 and t0¼1 mm).

Fig. 23. Work hardening law used as input in the numerical simulation (line) and
results obtained by membrane theory using direct measurement of ρ and t (sym-
bols), and using Eqs. (24) and (26) (symbols “_2a”), for transverse anisotropic
materials (σ0¼200 MPa, n¼0.20 and t0¼1 mm).
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the materials is described by the Swift law (Eq. (16)), and includes
materials with mechanical properties defined in Table 2 having the

initial sheet thickness of 1 mm.
Figs. 22 and 23 show example of the results of the equivalent

stress versus equivalent strain curves: (i) used as input in the

numerical test; (ii) in which the equivalent stress was obtained
from Eq. (7), using the membrane theory (Eq. (12) and direct
measurement of ρ and t (iii) in which the equivalent stress was

obtained from Eq. (7), using the membrane theory together with
Eqs. (24) and (25) (Fig. 22) or Eqs. (24) and (26) (Fig. 23). The strain
values, to enter into the Eq. (8), were obtained from the numerical

simulations, at the pole of the cap. This procedure will be also
applied in the following sub-sections. Figs. 24 and 25 show the
evolution of the error in equivalent stress with the equivalent

strain, corresponding to the Figs. 22 and 23.
The analysis of Figs. 24 and 25 show that the errors in

equivalent stress when using both sets of equations are similar to
those obtained from the direct measurement of the radius of
curvature and the sheet thickness, except for the case of material

with the isotropy parameter equal to 3. In this case, the direct
measurement of the radius of curvature and the sheet thickness
leads to a slightly lower error until values of equivalent strain of
about 10%. Both set of equations lead to identical results.

6.3. Planar anisotropic materials

The equations that describe the evolutions of radius of curvature
and the sheet thickness during the test were also tested in case of
sheets with planar anisotropy. The parameters of the Swift hard-
ening law, for the materials studied in this section, are: yield stress,
σ0¼200 MPa, work hardening coefficient, n¼0.20. The elastic
properties of the material are: Young's modulus E ¼210 GPa and
Poisson's ratio ν¼0.30. The initial thickness of the sheet is 1 mm.

Table 6 shows the designation adopted for each material, the
parameters of the Hill’48 criterion and the ratio σb/σ0 (where σb
and σ0 are the yield stress in biaxial and uniaxial tension). The
designation A_B_C corresponds to a material with the anisotropy
coefficient, rα, in the sheet plane such that: r0¼A, r45¼B and
r90¼C. The selected materials for this study display two different
types of anisotropy such that: (i) r0¼r90 a r45, corresponding to
the first four materials in Table 6; (ii): r0 a r45 a r90, corre-
sponding to the last four materials in Table 6. The condition G

þH¼1 is assumed for the parameters of the Hill'48 criterion,
which means that the work hardening law is equal to the tensile
curve along the rolling direction [28], providing that σ0, n and ε0
are the same.

In order to better describe the anisotropic state of the materials
in Table 6, Figs. 26 and 27 show the evolution of the anisotropy
coefficient, rα, and of the ratio σ0

α=σ
0
0 between the yield stress, σ0

α ,
for an angle, α, in the sheet plane, and the yield stress along Ox, σ0

0,
as a function of α angle, for materials with r0¼r90ar45 and for
materials with r0ar45ar90, respectively.

In case of metal sheets with planar anisotropy, the value of r in
Eqs. (25) and (26) is assumed as the normal anisotropy coefficient:

r¼ r0þ2r45þr90
4

: ð27Þ

6.3.1. Materials with r0¼r90ar45
The analysis of the materials with anisotropy behavior having

r0¼r90ar45, is presented in this section. Figs. 28 and 29 show
examples of the results of the equivalent stress versus equivalent
strain curves: (i) used as input in the numerical test; (ii) in which
the equivalent stress was obtained using the membrane together
with Eqs. (24) and (25) as in Fig. 28; (iii) and in which the
equivalent stress were obtained using the membrane together
with Eqs. (24) and (26) as in Fig. 29. Figs. 30 and 31 show the
evolution of the error in equivalent stress with the equivalent
strain, corresponding to the Figs. 28 and 29.

Figs. 30 and 31 show that the errors in equivalent stress when
using both sets of equations are similar to those obtained from the
direct measuring of the radius of curvature and the sheet thickness
determination, except at the beginning of the deformation, where
the direct measuring of the radius of curvature and the sheet

Fig. 24. Comparison of the evolution of the error in equivalent stress obtained by
membrane theory using direct measurement of ρ and t (symbols), and using Eqs.
(24) and (25) (symbols “_1a”), for transverse anisotropic materials (σ0¼200 MPa,
n¼0.20 and t0¼1 mm).

Fig. 25. Comparison of the evolution of the error in equivalent stress obtained by
membrane theory using direct measurement of ρ and t (symbols), and using Eqs.
(24) and (26) (symbols “_2a”), for transverse anisotropic materials (σ0¼200 MPa,
n¼0.20 and t0¼1 mm).

Table 6

Designation of the materials, their respective parameters of Hill'48 criterion and
ratio σb/σ0.

Designation Parameters of the Hill’48 Criterion

F G H L M N σb/σ0

0.6_3_0.6 0.625 0.625 0.375 1.500 1.500 4.375 0.894
3_0.6_3 0.250 0.250 0.750 1.500 1.500 0.550 1.414
1.5_3_1.5 0.400 0.400 0.600 1.500 1.500 2.800 1.118
3_1.5_3 0.250 0.250 0.750 1.500 1.500 1.000 1.414
0.6_0.7_0.8 0.469 0.625 0.375 1.500 1.500 1.313 0.956
0.6_1.8_3 0.125 0.625 0.375 1.500 1.500 1.725 1.155
1.5_2.25_3 0.200 0.400 0.600 1.500 1.500 1.650 1.291
1.5_2.75_4 0.150 0.400 0.600 1.500 1.500 1.788 1.349
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thickness allows obtaining a slightly lower error in stress (up to
values of equivalent strain of about 0.10). Also it is seen that both
set of equations give identical results.

The errors obtained with the fitting equations and by direct
measurement of the radius of curvature and sheet thickness are
identical during the test for the materials 1.5_3_1.5 and 3_1.5_3; in
the case of the remaining two anisotropic behaviors the error

tends to increase after 0.20 of equivalent plastic strain but
nevertheless, this error does not exceed 3.5%.

6.3.2. Materials with r0ar45ar90
The results of materials with anisotropy behavior having r0 a

r45 a r90, is presented in this section. Figs. 32 and 33 show
examples of equivalent stress versus equivalent strain curves,
comparing the results obtained using the direct measurement
with the ones: (i) used as input in the numerical test; (ii) obtained
by the membrane theory together with Eqs. (24) and (25) as in
Fig. 32; and (iii) obtained by the membrane theory together with
Eqs. (24) and (26) as in Fig. 33. Figs. 34 and 35 show the evolution
of the error in equivalent stress with the equivalent strain, corre-
sponding to results of Figs. 32 and 33.

Figs. 34 and 35 show that the errors in equivalent stress when
using both sets of equations are similar to those obtained from the
direct measuring of the radius of curvature and the sheet thickness
determination, except at the beginning of the deformation, where
the direct measuring of the radius of curvature and the sheet
thickness gives a slightly lower error (up to values of equivalent
strain of about 0.10). Again it is seen that both set of equations lead
to identical results.

The errors obtained with the fitting equations and the direct
measurement of the radius of curvature and sheet thickness are
identical during the test for the materials 0.6_0.7_0.8 and
0.6_1.8_3; in the case of the remaining two anisotropic behaviors
the error tends to increase after 0.20 of equivalent plastic strain
but nevertheless, this error does not exceed 2.5%.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 15 30 45 60 75 90

r α

α(°)

3_1.5_3 1.5_3_1.5
0.6_3_0.6 3_0.6_3

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0 15 30 45 60 75 90

( σ
0
α
)/

( σ
0
0
)

α(°)

3_1.5_3 1.5_3_1.5
0.6_3_0.6 3_0.6_3

Fig. 26. Distribution of rα and σ0α=σ
0
0 in the sheet plane, for materials with anisotropy such that r0¼r90ar45.
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Fig. 27. Distribution of rα and σ0α=σ
0
0 in the sheet plane, for materials with anisotropy such that r0ar45ar90.

Fig. 28. Work hardening law used as input in the numerical simulation (line) and
results obtained by membrane theory using direct measurement of ρ and t (sym-
bols), and using Eqs. (24) and (25) (symbols with “_1a”), for sheet metals with
r0¼r90ar45 (σ0¼200 MPa, n¼0.20 and t0¼1 mm).
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6.4. Different die ratio geometries

The analysis in this section is performed for two materials, an
isotropic material with designation ”1_1_1_RM_R1” and an

anisotropic material with designation “1.5_2.75_4 _RM_R1”, where
RM is the die radius and R1 is the die profile radius. The following
examples use 1 mm thick sheets for the both materials.

Fig. 29. Work hardening law used as input in the numerical simulation (line) and
results obtained by membrane theory using direct measurement of ρ and t (sym-
bols), and using Eqs. (24) and (26) (symbols with “_2a”), for sheet metals with
r0¼r90 a r45 (σ0¼200 MPa, n¼0.20 and t0¼1 mm).

Fig. 30. Comparison of the evolution of the error in equivalent stress obtained by
membrane theory using direct measurement of ρ and t (symbols), and using Eqs.
(24) and (25) (symbols with “_1a”), for sheet metals with r0¼r90ar45
(σ0¼200 MPa, n¼0.20 and t0¼1 mm).

Fig. 31. Comparison of the evolution of the error in equivalent stress obtained by
membrane theory using direct measurement of ρ and t (symbols), and using
Eqs. (24) and (26) (symbols with “_2a”), for sheet metals with r0¼r90 a r45
(σ0¼200 MPa, n¼0.20 and t0¼1 mm).

Fig. 32. Work hardening law used as input in the numerical simulation (line) and
results obtained by membrane theory using direct measurement of ρ and t (sym-
bols), and using Eqs. (24) and (25) (symbols with “_1a”), for sheet metals with r0 a

r45 a r90 (σ0¼200 MPa, n¼0.20 and t0¼1 mm).

Fig. 33. Work hardening law used as input in the numerical simulation (line) and
results obtained by membrane theory using direct measurement of ρ and t (sym-
bols), and using Eqs. (24) and (26) (symbols with “_2a”), for sheet metals with r0 a

r45 a r90 (σ0¼200 MPa, n¼0.20 and t0¼1 mm).

Fig. 34. Comparison of the evolution of the error in equivalent stress obtained by
membrane theory using direct measurement of ρ and t (symbols), and using
Eqs. (24) and (25) (symbols with “_1a”), for sheet metals with r0 a r45 a r90
(σ0¼200 MPa, n¼0.20 and t0¼1 mm).
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In this section, it is only analysed the performance of the
Eq. (24), for the radius of curvature, with Eq. (25), for the sheet
thickness, since this last equation is simpler than Eq. (26) and the
results presented in the previous sections show no significant
differences.

Figs. 36 and 37 show examples of the equivalent stress versus

equivalent strain for the isotropic material and for the anisotropic
material with comparison between: (i) as used in input for numerical
test, the hardening law (H.L.); (ii) with the equivalent stress were
obtained using the membrane theory together with Eqs. (24) and (25).

Figs. 38 and 39 show the evolution of the error in equivalent
stress with the equivalent strain, corresponding to Figs. 36 and 37,
respectively.

Figs. 38 and 39 show that, for each material, the error has
almost identical behavior for every different die, whatever the
geometry. Only for the geometry (75.0_13.00), the error evolution
is different from the other die geometry. In case of Fig. 39, the
error for the geometry (75.0_13.00) is slightly higher than the
others at the beginning of the test.

The errors obtained with the fitting equations for the case of
isotropic material is relatively high at the beginning of the test, of
the order of 4.5%, but tends to decrease as the deformation of the
test increase. In case of the anisotropic material, the error at the
beginning is 4.5%, but decreases quickly to 2.5% for a strain of
about 0.05. As the test continues the error tends to increase up to a
maximum of 2.2% in stress. The maximum error in stress for these
materials is about 4.5%, being obtained at the beginning of the test.
At the end of the test, the error in stress never exceeds 3%,
whatever the material and die configuration. Based on this ana-
lysis it seems possible to conclude that it is viable to determine the

Fig. 35. Comparison of the evolution of the error in equivalent stress obtained
by membrane theory using direct measurement of ρ and t (symbols), and using
Eqs. (24) and (26) (symbols with “_2a”), for sheet metals with r0 a r45 a r90
(σ0¼200 MPa, n¼0.20 and t0¼1 mm).

Fig. 36. Work hardening law used as input in the numerical simulation (line) and
results obtained by membrane theory using Eqs. (24) and (25) (symbols), for iso-
tropic material with different die geometries (σ0¼200 MPa, n¼0.20 and t0¼1 mm).

Fig. 37. Work hardening law used as input in the numerical simulation (line)
and results obtained by membrane theory using Eqs. (24) and (25) (symbols), for
anisotropic material with different die geometries (σ0¼200 MPa, n¼0.20 and
t0¼1 mm).

Fig. 38. Evolution of the error in equivalent stress obtained by membrane theory
using Eqs. (24) and (25), as a function of the equivalent strain in the pole, ε, for
isotropic material with different die geometries (σ0¼200 MPa, n¼0.20 and
t0¼1 mm).

Fig. 39. Evolution of the error in equivalent stress obtained by membrane theory
using Eqs. (24) and (25), as a function of the equivalent strain in the pole, ε, for
anisotropic material with different die geometries (σ0¼200 MPa, n¼0.20
and t0¼1 mm).
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work hardening curve using the proposed equations for different
configuration of dies, whatever the material being considered.

6.5. Other yield criterion and hardening law

In this section, the performance of the equations is tested for
materials whose behavior is described by constitutive models, not
including the Swift law and/or the Hill’48 criterion, in order to test
under which conditions the Eqs. (24), (25) (or (26)) can be applied
to these materials. In fact, the behavior of materials such as alu-
minium alloys can be better described by a saturation hardening
law and a non-quadratic yield criterion. The selected constitutive
model includes the Voce law [30] and the Drucker’s yield criterion
[31].

The Voce law does not contain a hardening parameter with
the same meaning as the Swift law, as required for using Eqs.
(24) and (25) (or (26)). To overcome this difficulty the Swift law
can be fitted to the experimental results, even though they are
best fitted by the Voce law. In the current example, a Swift law is
fitted to the Voce law, in order to obtain an approximated
hardening parameter, n, to be used in the equations. The Voce

law can be written as:

σ ¼ σsat�Rsatexp �cyε
	 


ð28Þ

where σsat, Rsat and cy are materials parameters; the yield stress is
σ0¼σsat - Rsat. In the current illustrative example the values of these
parameters are: σsat¼513.17 MPa, Rsat¼272.08 and cy¼5.47. The
parameters of the fitted Swift law are: σ0¼200.00 MPa; K¼577.08
and n¼0.20. Fig. 40 compare both laws.

The purpose of testing the use of Eqs. (25) (or (26)), in case the
material behavior is not well described by the criterion Hill'48,
relates to the change of the yield surface shape in the region
around biaxial stress (corresponding to the stress paths observed
in circular bulge tests), for a given value of the anisotropic coef-
ficient. To clarify this issue, the Drucker’s isotropic yield criterion is
used with c values equal to 2 and �2, which severely change the
shape of the yield surface in the biaxial region, relative to the
material 1_1_1, (see Table 3) as shown in Fig. 41 for the yield
surface plotted in plane (σxx ; σyy). In this figure the 0.7_0.7_0.7
and 2_2_2 materials are also shown. For c¼2, the shape of the
yield surface in this region approximates (from the outside) to the
Hill'48 criterion with r41 (2_2_2 material), and for c¼�2,
approximates (from the inside) to Hill'48 with ro1 (0.7_0.7_0.7
material). This is in agreement with the pressure vs. pole height
evolutions shown in Fig. 42 for these materials, whose hardening
behavior is described by the Swift law (σ0¼200.00 MPa;
K¼577.08 MPa and n¼0.20). Fig. 42(a) shows that the curves are
close to each other, whatever the material. However, the detail of
the middle region of the curves (Fig. 42 (b)) shows that there are
differences between them. In cases of Hill'48 material with r¼2.0
(2_2_2 material) and Drucker material with c¼2, the curves are
close to each other and their level is lower than 1_1_1 curve. In
cases of Drucker material with c¼�2 and Hill'48 material with
r¼0.7 (0.7_0.7_0.7 material), the level of the curves is higher than
1_1_1 curve; the curve for c¼�2 has the highest level.

The next figures show the stress vs. strain results and the cor-
responding error in stress, obtained by using Eqs. (24) and (25) for
different configurations of the constitutive model (hardening law -
yield criteria): (i) Voce – Hill'48, in Fig. 43; (ii) Swift - Drucker
(with c¼2 and �2), in Fig. 44; (iii) Voce – Drucker (with c¼2 and
�2), in Fig. 45. For comparison, the error obtained for the tradi-
tional procedure, by direct measurement of the radius of curvature
and strain values are also shown in each figure.

In all cases (Voce – Hill’48, Swift - Drucker and Voce – Drucker)
the maximum absolute value of the error in stress is less than 4%,
which is of the same order as in case of Swift - Hill’48 materials
(see previous sections), although the use of the proposed equa-
tions leads to errors in stress slightly higher than by direct mea-
surement of the curvature radius and strains. Nevertheless, the
results show that small variations in the values of the hardening
and anisotropy coefficients, as those arising from the fact that the
material behavior is not well described by the Swift law and
Hill’48 criteria, does not significantly alter the results of Eqs. (24)
and (25). That is, these equations can be used for these materials,
within an acceptable accuracy.

7. Experimental validation

Examples of experimental results available in the literature
concerning the evolutions of radius of curvature and sheet thick-
ness during the bulge test are compared to the equations pre-
viously defined and others from literature (Section 7.1). Moreover,
the bulge test was performed using two materials with the die
geometry 75.0_13.00. This allows the performance analysis of the
proposed equations when determining the hardening curve of
materials (Section 7.2).

Fig. 40. Swift and Voce laws used in this section that fit to one another.

Fig. 41. Yield surfaces in plane (σxx; σyy), for the Hill’48 criterion, with r¼0.7, 1
and 2, and for the Drucker criterion, with c¼2 and �2.
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7.1. Results in literature of ρ and t

The equations for the evolution of the normalized radius of
curvature (ρ/RM) and the normalized sheet thickness (t/t0) with the

normalized pole height (h/RM), are now compared with some
examples of experimental results available in the literature. In this
context, some existing results for bulge test involving five die
geometries and nine materials are analysed, as shown in Table 7.
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Fig. 42. (a) Evolution of pressure with the pole height for the materials with yield surfaces described in Fig. 41 and hardening behavior described by Swift law
(σ0¼200.00 MPa; K¼577.08 MPa and n¼0.20); (b) detail of middle region.

Fig. 43. (a) Stress vs. strain curves and (b) error in stress, for the Voce – Hill'48 material, by using Eqs. (24) and (25) (symbols “_1a”). The results obtained by direct
measurement of the radius of curvature and strain values are also shown, for comparison (symbols).
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Fig. 44. (a) Stress vs. strain curves and (b) error in stress, for the Swift – Drucker materials, by using Eqs. (24) and (25) (symbols “_1a”). The results obtained by direct
measurement of the radius of curvature and strain values are also shown, for comparison (symbols).
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Seven materials were tested at room temperature and two (AISI
201 Steel and AA5754 Aluminium Alloy) were also tested at higher
temperatures.

Equations previously defined by other researchers for evolution
of the radius of curvature and the sheet thickness are also used for
comparison. These equations are shown in Tables 8 and 9, which
are the most commonly used for bulge test. The sheet thickness
using Kruglov equation is determined based on the radius of cur-
vature determined by Panknin equation.

In the next figures, the designation “Eq_RM_R1 “corresponds to
the results of the Eqs. (24) and (25), for the die with die radius, RM,
and die profile radius, R1; the materials designation to which
concern the experimental results are also indicated in Table 7.

Fig. 46–54 show, for different die geometries and materials, the
comparison between experimental and calculated evolution of
the: (a) radius of curvature and (b) normalized sheet thickness.
Regarding the radius of curvature, the Hill's equation deviates
from the experimental results, in all cases. When comparing the
herein proposed Eq. (24) with the one suggested by Panknin it is
not completely evident which one fits better all experimental

results. Anyhow, globally the proposed Eq. (24) is well adjusted to
majority of situations. However, for the thickness evolution at the

pole bulge it is evident the better prediction of proposed Eq. (25),
when compared to other currently available equations. Examples
of good correlation is seen for experimental results of Figs. 48, 49

and 50. The remaining results, although show higher deviation,
express a correct tendency for such experimental evolution.

In summary it is seen that experimental results validate the

herein proposed equations for determination of radius of curva-
ture as well as thickness evolution. To be highlighted is that pro-
posed equation for thickness evaluation is shown to represent a

significant added value, thus contributing to a better accuracy on
material hardening curve determination using bulge test with
simpler equipment.

Fig. 45. (a) Stress vs. strain curves and (b) error in stress, for the Voce – Drucker materials, by using Eqs. (24) and (25) (symbols “_1a”). The results obtained by direct
measurement of the radius of curvature and strain values are also shown, for comparison (symbols).

Table 7

Designation of the dies geometries and materials for experimental validation.

Die designation RM mm½ � R1 mm½ � R1=RM Material (Designation) t0 mm½ � na r

75.0_1.00 [32] 75.0 1.00 0.01 Mild Steel (MS) 1.00 0.24 1.57
50.0_6.50 [8] 50.0 6.50 0.13 AA5754 Aluminium alloy (AA5754) 1.00 0.35 0.67
50.0_6.50 [8] 50.0 6.50 0.13 AISI 201 Steel (AISI 201) 0.55 0.49 1.10
50.0_6.50 [8] 50.0 6.50 0.13 AA5754 Aluminium alloy at 260 ºC (AA5754_260) 1.00 0.31 0.67
50.0_6.50 [8] 50.0 6.50 0.13 AISI 201 Steel at 150 ºC (AISI 201_150) 0.55 0.39 1.10
35.0_4.50 [33] 35.0 4.50 0.13 AA2024-T3 Aluminium alloy (AA2024-T3) 0.30 0.15 0.88
45.0_6.00 [33] 45.0 6.00 0.13 Ti-6Al-4V Titanium alloy (Ti-6Al-4V) 1.08 0.15 3.63
35.0_4.50 [33] 35.0 4.50 0.13 AA5083-H111 Aluminium alloy (AA5083-H111) 1.00 0.22 0.84
40.0_7.00 [1] 40.0 7.00 0.18 DC04 Steel (DC04) 0.85 0.23 1.68

a Determined from the fit of the Hollomon law to experimental tensile test results.

Table 8

Equations from different authors for the evolution of the bulge radius.

Designation Approach Bulge radius

Hill_RM_R1 Hill (1950) [4]
ρext ¼

R2
M þh2

2h

Panknin_RM_R1 Panknin (1959) [34] ρext ¼ RM þR1ð Þ2 þh2 �2R1h
2h

Table 9

Equations from different authors for the evolution of the sheet thickness at the top
of the cap.

Designation Approach Thickness at the top of the

cap

Hill_RM_R1 Hill (1950) [4]
t ¼ t0

1
1þ h=RMð Þ2

� �2

Chakrabarty_RM_R1 Chakrabarty and
Alexander (1970)
[29]

t ¼ t0
1

1þ h=RMð Þ2
� �2�n

Kruglov - Panknin_RM_R1 Kruglov et al. (2002)
[35] t ¼ t0

RM=ρextð Þ
sin � 1 RM=ρextð Þ

� �2
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7.2. Results of die 75.0_13.00

In this section, the experimental results of the bulge test for
two metal sheets are analysed, one is DP600 steel and the other is
AA6061 aluminium alloy, with initial sheet thickness equal to 0.80
and 1.04 mm, respectively. The die geometry used is 75.0_13.00
(Fig. 1). Table 10 shows the parameters of the Swift law obtained
by fitting the tensile curves and the anisotropy coefficients, at 0, 45
and 90º with the rolling direction (RD). The average values of the
hardening and anisotropy coefficients are n¼0.19 and r¼0.87, for
DP600 steel, and n¼0.13 and r¼0.65, for AA6061 aluminium alloy.

The above proposed equations for the evolution of the nor-
malized radius of curvature and the normalized sheet thickness
with the normalized pole height are compared with the experi-
mental results. Also, equations previously proposed by other
researchers (see Tables 8 and 9), are used for comparison.

Figs. 55 and 56 show the comparison between experimental
and calculated evolution of the radius of curvature (Figs. 55 and 56
(a)) and normalized sheet thickness (Figs. 55 and 56 (b)), during
the bulge test.

As seen in the previous section, the Hill's equation is always
giving higher difference to experimental results. Concerning the
radius of curvature, the Eq. (24) and that suggested by Panknin
give results similar to the experimental ones, at the initial stage of
the test. At the final stage, Eq. (24) gives a more accurate

prediction to experimental results. For the evolution of sheet
thickness at the pole, the accurate prediction of Eq. (25) is in
contrast with the available equations from literature (Table 9).

Figs. 57 and 58 (a) show the results of the equivalent stress
versus equivalent strain curves. The equivalent strain values are
obtained from the direct measurement at the top of the cap. The
equivalent stress is determined by the von Mises criterion
(Eq. (10)) assuming balanced biaxial stress state (σ1¼σ2¼σ),
where σ is evaluated by membrane theory (Eq. (12)) using:
(i) experimental measurement of ρ and t, during the bulge test and
(ii) the values of ρ and t are obtained by Eqs. (24) and (25).

Figs. 57 and 58(b) show the error in equivalent stress with the
equivalent strain, when comparing the results obtained using
Eqs. (24) and (25) with those from experimental measurement.
The errors in equivalent stress when using the proposed equations
is quite small, except at the initial stage of deformation, where the
determination of the radius of curvature and the sheet thickness
can be less accurate.

8. Conclusions

A comprehensive numerical study concerning the bulge test of
metal sheets was performed with materials presenting various
plastic behaviors, namely different values of the yield stress, strain

Fig. 46. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the Mild Steel (MS) material [32]: (a) radius of curvature
and (b) sheet thickness.

Fig. 47. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the AA5754 Aluminium Alloy material [8]: (a) radius of
curvature and (b) sheet thickness.
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hardening, anisotropy coefficients and sheet thickness. Different
die geometries were also used.

This systematic study shows that the evolution of the
radius of curvature at the pole of the cap during the test only
depends on the work hardening coefficient of the material.

The evolution of the sheet thickness depends on both, the work
hardening coefficient and the anisotropy. Both evolutions
are independent of the value of the yield stress and the
initial sheet thickness. The geometry of the die influences both
evolutions.

Fig. 48. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the AISI 201 Steel material [8]: (a) radius of curvature
and (b) sheet thickness.

Fig. 49. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the AA5754 Aluminium Alloy material at high temperature
[8]: (a) radius of curvature and (b) sheet thickness.

Fig. 50. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the AISI 201 Steel material at high temperature [8]: (a) radius
of curvature and (b) sheet thickness.
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These results allowed the development of equations to define
the evolution of the curvature radius and the sheet thickness at
the pole with the pole height, which take into account the material
parameters (hardening coefficient in case of curvature radius, and
also the sheet anisotropy in case of sheet thickness) and the die
geometry. Numerical stress versus strain curves were plotted for

comparing stress obtained by direct measurement of the curvature
radius and the sheet thickness at the pole, as well as the stress
obtained by the proposed equations. In the last case, the errors in
stress rarely exceeded 4%, which is comparable to the ones
obtained with the direct measurement of the curvature radius and
sheet thickness.

Fig. 51. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the AA2024-T3 Aluminium Alloy material [33]: (a) radius of
curvature and (b) sheet thickness.

Fig. 52. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the Ti–6Al–4V Titanium Alloy material [33]: (a) radius of
curvature and (b) sheet thickness.

Fig. 53. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the AA5083-H111 Aluminium Alloy material [33]: (a) radius
of curvature and (b) sheet thickness.
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Fig. 54. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the DC04 Steel material [1]: (a) radius of curvature
and (b) sheet thickness.

Table 10

Swift law parameters obtained by fitting the stress–strain curves in tension and the anisotropy coefficient, at 0, 45 and 90º with the rolling direction (RD), of the materials.

Designation Swift law parameters

0º with RD 45º with RD 90º with RD

σ0 [MPa] K n r σ0 [MPa] K n r σ0 [MPa] K n r

DP600 Steel 392.22 1045.77 0.19 0.62 406.49 1040.11 0.19 1.03 433.02 1066.24 0.18 0.87
AA6061 Aluminium alloy 275.10 489.43 0.13 0.66 270.58 484.95 0.13 0.69 272.22 483.19 0.12 0.65

Fig. 55. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the DP600 Steel material: (a) radius of curvature
and (b) sheet thickness.

Fig. 56. Comparison between the evolution of the experimental results (symbols) and the equations (lines), for the AA6061 Aluminium alloy material: (a) radius of curvature
and (b) sheet thickness.
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Also, the evolutions described by the herein proposed equa-
tions for the curvature radius and the sheet thickness at the pole
were compared with experimental results obtained in the frame-
work of the current work, for a defined die geometry (75.0_13.00),
as well as results from literature, for various die geometries. In the
former case, the stress versus strain curves are also compared with
those, where the stress were obtained by direct experimental
measurement of the curvature radius and the sheet thickness at
the pole. When the proposed equations are used, the maximum
error in stress is close to 3%, excluding a region at the initial stage
of the test.

These findings indicate the appropriateness of a simplified
experimental methodology for determining the hardening curve
from the biaxial tensile test under hydraulic pressure. Namely, it is
possible to avoid the complex experimental procedure for deter-
mining the stress values at different moments of the test, which
requires a specific device for measuring the curvature radius at the
pole of the cap and the determination of the sheet thickness.

Acknowledgments

This research work is sponsored by National Funds from the
Portuguese Foundation for Science and Technology (FCT) via the

projects PTDC/EMS-TEC/1805/2012, PEst-C/EME/UI0285/2013 and
CENTRO-07-0224-FEDER-002001 (MT4MOBI), and by FEDER funds
through the program COMPETE – “Programa Operacional Factores

de Competitividade”.

References

[1] Lăzărescu L, Comşa D-S, Banabic D. Analytical and experimental evaluation of
the stress–strain curves of sheet metals by hydraulic bulge tests. Key Eng
Mater 2011;473:352–9. http://dx.doi.org/10.4028/www.scientific.net/
KEM.473.352.

[2] Santos AD, Teixeira P, Barlat F. Flow stress determination using hydraulic bulge
test and a mechanical measurement system. International Deep Drawing
Research Group Conference IDDRG, Bilbao, Spain: IDDRG; 2011. p. 91–100.

[3] Hsu TC, Shang HM. Mechanics of sheet metal formed by hydraulic pressure
into axisymmetrical shells. Exp Mech 1976;16:337–42. http://dx.doi.org/
10.1007/BF02330250.

[4] Hill RC. A theory of the plastic bulging of a metal diaphragm by lateral pres-
sure. Lond Edinb Dublin Philos Mag J Sci 1950;41:1133–42. http://dx.doi.org/
10.1080/14786445008561154.

[5] Gagov V, Feschiev N, Comşa D-S, Minev E. Strain hardening evalution by bulge
testing of sheet metals. In: Travis FW, Hashmi SMSJ, editors. Proceedings of the
12th International Scientific Conference Achievements in Mechanical and
Materials Engineering. Gliwice, Poland; 2003. p. 331–334.

[6] Rees DWA. Plastic flow in the elliptical bulge test. Int J Mech Sci 1995;37:373–
89. http://dx.doi.org/10.1016/0020-7403(94)00071-Q.

[7] Santos AD, Teixeira P, Barata da Rocha A, Barlat F, Moon YH, Lee M-G. On the
determination of flow stress using bulge test and mechanical measurement.

Fig. 57. Results for DP600 steel: (a) work hardening law obtained using Eq. (12), by using experimental results (symbols) and by using Eqs. (24) and (25) (line); (b) Evolution
of the error in equivalent stress obtained by membrane theory using Eqs. (24) and (25).

Fig. 58. Results for AA6061 aluminium alloy (a) work hardening law obtained using Eq. (12), by using experimental results (symbols) and by using Eqs. (24) and (25) (line);
(b) Evolution of the error in equivalent stress obtained by membrane theory using Eqs. (24) and (25).

L.C. Reis et al. / International Journal of Mechanical Sciences 105 (2016) 158–181180

http://dx.doi.org/10.4028/www.scientific.net/KEM.473.352
http://dx.doi.org/10.4028/www.scientific.net/KEM.473.352
http://dx.doi.org/10.4028/www.scientific.net/KEM.473.352
http://dx.doi.org/10.4028/www.scientific.net/KEM.473.352
http://dx.doi.org/10.1007/BF02330250
http://dx.doi.org/10.1007/BF02330250
http://dx.doi.org/10.1007/BF02330250
http://dx.doi.org/10.1007/BF02330250
http://dx.doi.org/10.1080/14786445008561154
http://dx.doi.org/10.1080/14786445008561154
http://dx.doi.org/10.1080/14786445008561154
http://dx.doi.org/10.1080/14786445008561154
http://dx.doi.org/10.1016/0020-7403(94)00071-Q
http://dx.doi.org/10.1016/0020-7403(94)00071-Q
http://dx.doi.org/10.1016/0020-7403(94)00071-Q


In: Barlat F, Moon YH, Lee MG, editors. Proceedings of the 10th International
Conference on NUMIFORM. American Institute of Physics Pohang, Republic of
Korea; 2010. p. 845–852. http://dx.doi.org/10.1063/1.3457644.

[8] Koç M, Billur E, Cora ÖN. An experimental study on the comparative assess-
ment of hydraulic bulge test analysis methods. Mater Des 2011;32:272–81.
http://dx.doi.org/10.1016/j.matdes.2010.05.057.

[9] Slota J, Spišák E. Determination of flow stress by the hydraulic bulge test.
Metalurgija 2008;47:13–7.

[10] Lăzărescu L, Comşa D-S, Banabic D. Determination of stress–strain curves of
sheet metals by hydraulic bulge test. AIP Conference Proceedings; 2011. Vol.
1353. p. 1429–1434. http://dx.doi.org/10.1063/1.3589717.

[11] Liu K, Lang L, Cai G, Yang X, Guo C, Liu B. A novel approach to determine plastic
hardening curves of AA7075 sheet utilizing hydraulic bulging test at elevated
temperature. Int J Mech Sci 2015;100:328–38. http://dx.doi.org/10.1016/j.
ijmecsci.2015.07.002.

[12] Mulder J, Vegter H, Aretz H, Keller S, van den Boogaard AH. Accurate deter-
mination of flow curves using the bulge test with optical measuring systems.
J Mater Process Technol 2015;226:169–87. http://dx.doi.org/10.1016/j.
jmatprotec.2015.06.034.

[13] Menezes LF, Teodosiu C. Three-dimensional numerical simulation of the deep-
drawing process using solid finite elements. J Mater Process Technol
2000;97:100–6. http://dx.doi.org/10.1016/S0924-0136(99)00345-3.

[14] Oliveira MC, Alves JL, Menezes LF. Algorithms and strategies for treatment of
large deformation frictional contact in the numerical simulation of deep
drawing. Process. Arch Comput Methods Eng 2008;15:113–62. http://dx.doi.
org/10.1007/s11831-008-9018-x.

[15] Dowling NE. Mechanical behavior of materials: engineering methods for
deformation, fracture, and fatigue. 2nd ed. Upper Saddle River, NJ: Prentice
Hall; 1999.

[16] Lemoine X, Iancu A, Ferron G. Flow curve determination at large plastic strain
levels: limitations of the membrane theory in the analysis of the hydraulic
bulge test. In: Proceedings of the 14th International ESAFORM Conference on
Material Forming; 2011. p. 1411–1416. http://dx.doi.org/10.1063/1.3589714.

[17] Ranta-Eskola AJ. Use of the hydraulic bulge test in biaxial tensile testing. Int
J Mech Sci 1979;21:457–65. http://dx.doi.org/10.1016/0020-7403(79)90008-0.

[18] Hill R. A theory of the yielding and plastic flow of anisotropic. metals. Proc R
Soc A Math Phys Eng Sci 1948;193:281–97. http://dx.doi.org/10.1098/
rspa.1948.0045.

[19] Martins B, Teixeira P, Santos AD. Study on the flow stress determination using
hydraulic bulge test. In: Andrade-Campos A, Lopes N, Valente RAF, Varum H,
editors. First ECCOMAS Young Investigators Conference on Computational
Methods in Applied Science. Aveiro, Portugal; 2012.

[20] Chamekh A, BelHadjSalah H, Hambli R, Gahbiche A. Inverse identification
using the bulge test and artificial neural networks. J Mater Process Technol
2006;177:307–10. http://dx.doi.org/10.1016/j.jmatprotec.2006.03.214.

[21] Alves JL, Bouvier S, Oliveira MC, Menezes LF. Drawbeads: to be or not to be, AIP
Conference Proceedings; 2005. Vol. 778, p. 655–660 http://dx.doi.org/10.1063/
1.2011297.AIP.

[22] Alves JL. Simulação numérica do processo de estampagem de chapas metáli-
cas: modelação mecânica e métodos numéricos (PhD Thesis). Guimarães,
Portugal: Universidade do Minho; 2003.

[23] Reis LC, Prates PA, Oliveira MC, Sakharova NA, Fernandes JV. Caracterização do
comportamento plástico de chapas metálicas com recurso ao ensaio de
expansão biaxial simétrica. In: Tadeu A, Figueiredo IN, Menezes LF, Mendes
PA, Rodríguez-Ferran A, Arias I, et al., editors. Congresso de Métodos
Numéricos em Engenharia. Coimbra, Portugal: APMTAC; 2011. p. 54.

[24] Swift HW. Plastic instability under plane stress. J Mech Phys Solids 1952;1:
1–18. http://dx.doi.org/10.1016/0022-5096(52)90002-1.

[25] M & M Research Inc. NXT Defect Evaluator; 2007.
[26] Rodrigues CA, Reis LC, Sakharova NA, Oliveira MC, Fernandes JV. On the

characterization of the plastic behaviour of sheet metals with bulge tests:
numerical simulation study. In: Eberhardsteiner J et al., editors. Proceedings of
the 6th European Congress on Computational Methods in Applied Sciences
and Engineering ECCOMAS. Vienna, Austria; 2012. p. 4575–4589.

[27] Reis LC, Rodrigues CA, Oliveira MC, Sakharova NA, Fernandes JV. Character-
ization of the plastic behaviour of sheet metal using the hydraulic bulge test.
In: Andrade-Campos A, Lopes N, Valente RAF, Varum H, editors, First ECCO-
MAS Young Investigators Conference on Computational Methods in Applied
Science. Aveiro, Portugal; 2012. p. 67.

[28] Prates PA, Oliveira MC, Fernandes JV. On the equivalence between sets of
parameters of the yield criterion and the isotropic and kinematic hardening
laws. Int J Mater Form 2015;8:505–15. http://dx.doi.org/10.1007/
s12289-014-1173-z.

[29] Chakrabarty J, Alexander JM. Hydrostatic bulging of circular diaphragms.
J Strain Anal Eng Des 1970;5:155–61. http://dx.doi.org/10.1243/
03093247V053155.

[30] Voce E. The relationship between stress and strain for homogeneous defor-
mations. J Inst Met 1948;74:537–62.

[31] Drucker DC. Relation of experiments to mathematical theories of plasticity.
J Appl Mech ASME 1949;16:349–57.

[32] Fernandes JV. Dislocation microstructures in steel during deep drawing (PhD
Thesis). Coimbra, Portugal: University of Coimbra; 1984.

[33] Janbakhsh M, Djavanroodi F, Riahi M. Utilization of bulge and uniaxial tensile
tests for determination of flow stress curves of selected anisotropic alloys.
J Mater Des Appl 2012;227:38–51. http://dx.doi.org/10.1177/
1464420712451963.

[34] Gutscher G, Wu H-C, Ngaile G, Altan T. Determination of flow stress for sheet
metal forming using the viscous pressure bulge (VPB) test. J Mater Process
Technol 2004;146:1–7. http://dx.doi.org/10.1016/S0924-0136(03)00838-0.

[35] Kruglov AA, Enikeev FU, Lutfullin RY. Superplastic forming of a spherical shell
out a welded envelope. Mater Sci Eng A 2002;323:416–26. http://dx.doi.org/
10.1016/S0921-5093(01)01376-4.

L.C. Reis et al. / International Journal of Mechanical Sciences 105 (2016) 158–181 181

http://dx.doi.org/10.1063/1.3457644
http://dx.doi.org/10.1016/j.matdes.2010.05.057
http://dx.doi.org/10.1016/j.matdes.2010.05.057
http://dx.doi.org/10.1016/j.matdes.2010.05.057
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref6
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref6
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref6
http://dx.doi.org/10.1063/1.3589717
http://dx.doi.org/10.1016/j.ijmecsci.2015.07.002
http://dx.doi.org/10.1016/j.ijmecsci.2015.07.002
http://dx.doi.org/10.1016/j.ijmecsci.2015.07.002
http://dx.doi.org/10.1016/j.ijmecsci.2015.07.002
http://dx.doi.org/10.1016/j.jmatprotec.2015.06.034
http://dx.doi.org/10.1016/j.jmatprotec.2015.06.034
http://dx.doi.org/10.1016/j.jmatprotec.2015.06.034
http://dx.doi.org/10.1016/j.jmatprotec.2015.06.034
http://dx.doi.org/10.1016/S0924-0136(99)00345-3
http://dx.doi.org/10.1016/S0924-0136(99)00345-3
http://dx.doi.org/10.1016/S0924-0136(99)00345-3
http://dx.doi.org/10.1007/s11831-008-9018-x
http://dx.doi.org/10.1007/s11831-008-9018-x
http://dx.doi.org/10.1007/s11831-008-9018-x
http://dx.doi.org/10.1007/s11831-008-9018-x
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref11
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref11
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref11
http://dx.doi.org/10.1063/1.3589714
http://dx.doi.org/10.1016/0020-7403(79)90008-0
http://dx.doi.org/10.1016/0020-7403(79)90008-0
http://dx.doi.org/10.1016/0020-7403(79)90008-0
http://dx.doi.org/10.1098/rspa.1948.0045
http://dx.doi.org/10.1098/rspa.1948.0045
http://dx.doi.org/10.1098/rspa.1948.0045
http://dx.doi.org/10.1098/rspa.1948.0045
http://dx.doi.org/10.1016/j.jmatprotec.2006.03.214
http://dx.doi.org/10.1016/j.jmatprotec.2006.03.214
http://dx.doi.org/10.1016/j.jmatprotec.2006.03.214
http://dx.doi.org/10.1063/1.2011297.AIP
http://dx.doi.org/10.1063/1.2011297.AIP
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref15
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref15
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref15
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref16
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref16
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref16
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref16
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref16
http://dx.doi.org/10.1016/0022-5096(52)90002-1
http://dx.doi.org/10.1016/0022-5096(52)90002-1
http://dx.doi.org/10.1016/0022-5096(52)90002-1
http://dx.doi.org/10.1007/s12289-014-1173-z
http://dx.doi.org/10.1007/s12289-014-1173-z
http://dx.doi.org/10.1007/s12289-014-1173-z
http://dx.doi.org/10.1007/s12289-014-1173-z
http://dx.doi.org/10.1243/03093247V053155
http://dx.doi.org/10.1243/03093247V053155
http://dx.doi.org/10.1243/03093247V053155
http://dx.doi.org/10.1243/03093247V053155
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref20
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref20
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref20
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref21
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref21
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref21
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref22
http://refhub.elsevier.com/S0020-7403(15)00386-0/sbref22
http://dx.doi.org/10.1177/1464420712451963
http://dx.doi.org/10.1177/1464420712451963
http://dx.doi.org/10.1177/1464420712451963
http://dx.doi.org/10.1177/1464420712451963
http://dx.doi.org/10.1016/S0924-0136(03)00838-0
http://dx.doi.org/10.1016/S0924-0136(03)00838-0
http://dx.doi.org/10.1016/S0924-0136(03)00838-0
http://dx.doi.org/10.1016/S0921-5093(01)01376-4
http://dx.doi.org/10.1016/S0921-5093(01)01376-4
http://dx.doi.org/10.1016/S0921-5093(01)01376-4
http://dx.doi.org/10.1016/S0921-5093(01)01376-4


 

 

  Innovative Development 

 

 

  135 

 

 

3.4. Inverse identification of Swift law parameters using the 

bulge test 

This subchapter refers to the paper “Inverse Identification of Swift law parameters using 

the bulge test”, published in International Journal of Material Forming. It explores the 

opportunity to develop an inverse analysis methodology for determining the Swift law 

parameters, based on the capability of overlapping the curves of evolution of pressure with 

the pole height for materials with the same value of hardening coefficient, regardless of the 

values of the others parameters of the Swift law and the anisotropy of the material. This is 

achieved by multiplying the pressure and the pole height by factors to be determined. The 

inverse identification enables the proper evaluation of the Swift hardening law, simplifies 

the experimental procedure and is not exposed to various experimental errors, in particular 

those related to the use of the membrane theory. 
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Abstract An inverse methodology is proposed for determin-

ing the work hardening law of metal sheets, from the results of

pressure vs. pole height, obtained from the bulge test. This

involves the identification of the parameters of the Swift

law. The influence of these parameters as well as the sheet

anisotropy and the sheet thickness on the results of pressure

with pole height is studied following a forward analysis, based

on finite element simulation. This allows understanding that

the overlapping of the pressure vs. pole height curves of dif-

ferent metal sheets is possible, provided that the hardening

coefficient has the same value, whatever the values of the

remaining parameters of the Swift law, the sheet anisotropy

and the initial sheet thickness. The overlapping of the curves is

performed by multiplying the values of the pressure and the

pole height using appropriate factors, which depend on the

ratios between the yield stresses and the thicknesses of the

sheets, and also on their anisotropy. Afterwards, an inverse

methodology is established, consisting of the search for the

best coincidence between pressure vs. pole height of experi-

mental and reference curves, the latter being obtained by nu-

merical simulation assuming isotropic behaviour with various

values of the Swift hardening coefficient in the range of the

material under study. This methodology is compared with a

classical strategy and proves to be an efficient alternative for

determining the parameters of the Swift law. It aims to be

simple from an experimental point of view and, for that pur-

pose, only uses results of the load evolution during the test.

The methodology is limited to materials with the hardening

behaviour adequately described by the Swift law.

Keywords Bulge test . Inverse analysis . Swift hardening

law . Numerical simulation

Introduction

The manufacturing of sheet metal forming components, with

complex geometries and tight requirements, obliges the accu-

rate characterization of the sheet metals behaviour. Very often,

high values of strain are imposed in the components by the

forming conditions. Therefore, the adequate characterization

of the hardening law up to large plastic deformation is re-

quired. This is generally accomplished using the bulge test

that achieves strain values not possible in the tensile test, for

example. The traditional methodology, for performing the

bulge test and analysing the results, requires the use of specific

devices, one for assessing the radius of curvature and another

for measuring the strain at the pole of the cap during the test, in

case of mechanical measuring systems [1]. Simultaneously, it

is also necessary to follow the pressure evolution during the

test. The use of optical measuring systems makes it easier the

description of the geometry and strain distributions on the

sheet surface during the bulge test [2, 3]. However, the eval-

uation of the stress vs. strain curves depends on assumptions

and simplifications, whose assessment are still under study.

For example, in a recent study Mulder et al. [4] examine the

validity and the conditions for using the membrane theory,

which includes issues such as the existence of bending stresses

and a through thickness stress due to the hydraulic pressure.
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Some equations have been proposed [5–8] in order to avoid

the use of the above mentioned devices, just exploiting the

data concerning pressure vs. pole height and thereby simpli-

fying the implementation and analysis of the bulge test results.

These equations allow determining the equivalent stress and

strain under isotropic condition, relating the radius of curva-

ture and sheet thickness with the pole height. However, this

procedure presents some disadvantages. First of all, there ex-

ists in the literature a multitude of equations to describe the

evolutions of the radius of curvature and sheet thickness at the

pole of the cap with the pole height [9–11], which makes it

difficult to select the most appropriate. The use of some of

them, in general the most accurate, requires the knowledge a

priori of the hardening coefficient of the Swift law, which is

intended to be identified. Although tensile tests can be previ-

ously performed to assess the value of the hardening coeffi-

cient, its value in tension can be different from that in biaxial

stretching. Also, other constitutive parameters such as those of

the anisotropic yield criterion, related with the in-plane de-

scription of the anisotropy, can influence the evolutions of

the radius of curvature and sheet thickness at the pole during

the test, as mentioned in recent works [4, 5]. Not always the

equations for the evolutions of the radius of curvature and

sheet thickness with the pole height properly consider the

geometry of the bulge test device, i.e. the die radius and the

die profile radius. In fact, only in rare cases the die profile

radius is considered, as in Panknin model for the curvature

radius evolution, which in turn takes no account for the hard-

ening coefficient [11]. In a recent work, a numerical iterative

method was proposed to determine the stress–strain curve of

the AA7075 metal sheet using pressure vs. pole height results

of circular bulge tests performed at elevated temperatures [5].

This iterative scheme is coupled with the Panknin model for

the curvature radius and explicit integral formulas proposed

by the authors to evaluate the thickness at the pole of the

bulge, taking into account the Lankford’s anisotropy

coefficient.

Few literature is available on inverse analysis procedures

for identifying the hardening law parameters from the bulge

test. Still, it is possible to notice that Chamekh et al. [12]

Die

B

Deformed sheet metal

Hydraulic Fluid

75
M
R =

D
R =

S
R =

Drawbead

 mm

95 mm

100 mm=

1 13 mmR =Blank Holder

Fig. 1 Bulge test, with the

identification of the principal

dimensions of the tool [17]

(a) (b) 

(a) (b)Fig. 2 (a) Four main zones

adopted to define the finite

element mesh in the sheet plane

(the dimensions are in mm) and

(b) general view of the mesh with

illustration of the thickness strain

distribution predicted for an

isotropic material with the yield

stress of 100 MPa, the hardening

coefficient of the Swift law

n = 0.20 and the initial sheet

thickness of 1.0 mm, for the

pressure of 3.29 MPa (pole

height: h = 41.65 mm)
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describe an inverse approach for identifying the constitutive

parameters of a stainless steel, based on artificial neural net-

works. They use the results of pressure vs. pole height, which

are transferred to a neural network. This is trained using

curves generated by finite element simulations of the bulge

test. During the training process, the neural network generates

an approximate function for the inverse problem relating the

material parameters to the shape of the pressure vs. pole height

curve of the bulge test. A circular die geometry is used for

identifying the Ludwick hardening law [13], assuming the

knowledge of the Lankford’s parameters values evaluated

from tensile tests. Afterwards, an elliptical die for an off axis

angle of 0° is used to recalculate the Lankford’s coefficients,

which are validated using an elliptical die with an off axis

angle of 45°. They claim that artificial neural networks can

predict a combination of the material parameters with accept-

able accuracy for most design considerations, although with a

strong exception that is the value of the parameter n of the

hardening law (the experimental and identified values of n are

0.67 and 0.4, respectively). Also, Bambach [14] tried to

implement an identification procedure for the parameters of

the Voce law [15] resorting to objective functions making use,

separately or simultaneously, of results of pressure vs. pole

height, pole strain vs. pole height and pole thickness vs. pole

height. In the studied cases, using virtual computer generated

data, the author concluded that the combination of the first two

types of results significantly improves the identification.

Furthermore, the influence of the values of the constitutive

parameters, i.e. of the hardening law and the anisotropic yield

criterion, on the evolution of pressure with the pole height has

never been explored under inverse identification strategies, to

our knowledge. The current results show that it is possible to

overlap the curves concerning the evolution of the pressure

with pole height and exploit this insight in order to build an

inverse strategy for identifying the parameters of the harden-

ing law. The main aim of this work is to develop and evaluate

the performance of an inverse analysis methodology for the

identification of the parameters of the Swift law [16], just

Table 1 Materials designation and their parameters of Swift hardening

law

Designation Y0 [MPa] K [MPa] n

100_0.05_Z.Z 100 130.3 0.05

100_0.20_Z.Z 288.5 0.20

100_0.35_Z.Z 638.8 0.35

200_0.05_Z.Z 200 260.7 0.05

200_0.20_Z.Z 577.1 0.20

200_0.35_Z.Z 1277.6 0.35

300_0.05_Z.Z 300 391.0 0.05

300_0.20_Z.Z 865.6 0.20

300_0.35_Z.Z 1916.4 0.35
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Fig. 3 Evolution of pressure, p, with pole height, h, for sheets of fully

isotropic materials with t0 = 1.0 mm
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Fig. 4 Evolution of normalized pressure, p/pmax, with pole height, h, for

sheets of fully isotropic materials with t0 = 1.0 mm (from the results of

Fig. 3)
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using the results of the evolution of the pressure with the pole

height. This methodology is limited to materials with harden-

ing behaviour adequately described by the Swift law and aims

to be simple and accurate. Numerical and experimental results

are used for validation.

Numerical modelling

In order to perform the study concerning the methodology for

the evaluation of the Swift hardening law using the circular

bulge test, numerical models of the test were built. The geom-

etry of the tools considered in the test is schematically shown

in Fig. 1, where RM = 75 mm is the die radius, R1 = 13 mm is

the die profile radius, RD = 95 mm is the radius of the central

part of the drawbead and RS = 100 mm the radius of the cir-

cular sheet. This geometry was built based on the experimen-

tal bulge test used by Santos et al. [17].

The tools were described using Bézier surfaces, consider-

ing only one quarter of the geometry due to material and

geometrical symmetry conditions. However, in order to sim-

plify the analysis, the drawbead geometry was neglected and

its effect was replaced by a boundary condition imposing

radial displacement restrictions on nodes placed at a distance

equal to RD from the centre of the circular sheet, which has an

initial blank radius of RS [18]. The contact with friction was

described by the Coulomb law with a constant friction coeffi-

cient of 0.02 [19]. All numerical simulations were carried out

with DD3IMP in-house code [20, 21] assuming an incremen-

tal increase of the pressure applied to the sheet inner surface.

The blank sheet discretization was previously optimized

[22] such that the sheet geometry was divided into four main

zones, as shown in Fig. 2(a). This enables to describe the

central region of the specimen with a regular and uniform grid

discretization in the sheet plane, using quadrangular elements,

as shown in Fig. 2(b). A total of 5292 3D solid 8 node elements

with two layers of elements through thickness were used.

Figure 2(b) also shows the thickness strain distribution predict-

ed for an isotropic material, at an instant preceding the maxi-

mum pressure, highlighting its axisymmetric distribution.

The constitutive model adopted for the finite element anal-

ysis assumes [23, 24]: (1) the isotropic elastic behaviour

Table 2 Designation of the materials with transverse anisotropy and

their parameters of Hill’48 criterion; a fully isotropic material is also

considered

Designation Parameters of the Hill’48 Criterion (G +H = 1)

F G H L M N

0.7_0.7_0.7_n 0.588 0.588 0.412 1.500 1.500 1.412

1_1_1_n 0.500 0.500 0.500 1.500 1.500 1.500

2_2_2_n 0.333 0.333 0.667 1.500 1.500 1.667

3_3_3_n 0.250 0.250 0.750 1.500 1.500 1.750
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Fig. 6 Evolution of pressure, p, with pole height, h, for materials with

planar isotropy and n = 0.05, 0.20 and 0.35 (Y0 = 200 MPa and

t0 = 1.0 mm)
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Fig. 7 Evolution of normalized pressure, p/pmax, with pole height, h, for

materials with planar isotropy and n = 0.05, 0.20 and 0.35 (Y0 = 200MPa

and t0 = 1.0 mm)
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Fig. 8 As Fig. 7, but the values of the pole height, h, are multiplied by an

appropriated factor, allowing the overlapping of curves for each value of n
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defined by the generalized Hooke’s law; (2) the plastic behav-

iour described by the orthotropic Hill’48 yield criterion and

the hardening model by the Swift isotropic law.

The Hill’48 yield surface is described by the equation [25]:

F σyy−σzz

� �2
þ G σzz−σxxð Þ2 þ H σxx−σyy

� �2
þ 2Lτ2yz

þ 2Mτ
2
xz þ 2Nτ

2
xy

¼ Y 2 ð1Þ

where σxx, σyy, σzz, τxy, τxz and τyz are the components of the

Cauchy stress tensor, in the principal axes of orthotropy, and

F, G, H, L, M and N are the anisotropy parameters of the

material. Y represents the yield stress and its evolution during

deformation Y ¼ f εð Þ; which is described by the Swift iso-

tropic hardening law [16]:

Y ¼ K ε0 þ ε

� �n

ð2Þ

where ε is the equivalent plastic strain and K, ε0 and n are

material parameters to be identified. The initial yield stress, Y0,

can be written as a function of K, ε0 and n, as follows:

Y0 =Kε0
n. The value of the parameter ε0 is assumed equal to

0.005 unless other is indicated. The elastic behaviour is

considered isotropic and is described by the generalised

Hooke’s law, with a Young’s modulus, E = 210 GPa, and a

Poisson’s ratio, ν = 0.30.

Results

Numerical bulge tests were performed for two types of metal

sheets: isotropic (section: Isotropic metal sheets) and transverse

anisotropic (section: Transverse anisotropic metal sheets). The

influence of the hardening parameters of the Swift law, the

anisotropy of the material and the sheet thickness on the results

of pressure vs. pole height is analysed. The aim is the search for

features that describe the sheet metal behaviour during bulge

test in a unified way, as much as possible.

Isotropic metal sheets

Bulge tests of metal sheets with various values of initial sheet

thickness, yield stress and hardening parameter were analysed,

in order to study the influence of these parameters on the evo-

lutions of the pressure with the pole height. The plastic behav-

iour of the materials studied in this section is fully isotropic.
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with pole height, h, for three
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Table 1 shows the parameters of the Swift law for the ma-

terials under study. Three values of initial yield stress, Y0, were

chosen (Y0 = 100, 200 and 300 MPa) and also three values of

hardening coefficient, n, were selected (n = 0.05, 0.20 and

0.35). In order to simplify the analysis of the results in this

section, the following designation is adopted for the material

in each test: BXXX_0.YY_Z.Z^, where BXXX^ is the initial

yield stress value, Y0, B0.YY^ is the hardening coefficient, n,

and BZ.Z^ is the initial sheet thickness, t0. For each material,

three values of initial sheet thickness were studied: 0.5, 1.0

and 2.0 mm.

In the following, examples of numerical results are present-

ed concerning the materials in Table 1. Figure 3 shows the

evolution of the pressure, p, with the pole height, h, for

1.0 mm thick sheets. The parameters of the Swift law, Y0
and n, influence the evolution of pressure during the bulge

test. At the beginning of the test, the pressure increases faster

for materials with higher yield stresses. Subsequently, the lev-

el of the curves depends mainly of the hardening coefficient.

The results also show that the materials with higher values of

the hardening coefficient have greater pole heights when the

pressure approaches the maximum value.

The analysis of pressure evolution during the test shows

that, for a given n value of the material, the curves p vs. h

overlap each other when the pressure, p, is normalized by the

yield stress of the material, p/Y0. Consequently, the value of

the pressure at a given value of the pole height, and therefore

also for the maximum pressure, is proportional to the value of

the yield stress of the material, and so it is possible to normal-

ize the curves by the maximum pressure value for each yield

stress, i.e. using p/pmax instead of p, as shown in Fig. 4 for the

cases of Fig. 3.

The same kind of behaviour is observed for the other initial

sheet thicknesses (t0 = 0.5 mm, 1.0 mm and 2.0 mm).

Moreover, the analysis of pressure evolution during the test

shows that, for a given n value of the material, the curves p vs.

h overlap each other when the pressure, p, is normalized by

the initial thickness value, p/t0. Consequently, since the max-

imum pressure is proportional to the initial thickness value, it

is possible to normalize the curves by the maximum pressure

value for each initial thickness, i.e. using p/pmax instead of p,

as shown in the examples of Fig. 5.

In summary, for isotropic materials with strain hardening

described by the Swift law, the evolutions of the normalized

pressure vs. pole height are only influenced by the value of the

hardening coefficient, i.e. are independent of the yield stress

and the initial thickness of the sheet.

Transverse anisotropic metal sheets

The numerical simulation of the bulge test was also carried out

on metal sheets with transverse anisotropy (also known as

planar isotropy), i.e. with the anisotropy coefficient r(α) con-

stant in the plane of the sheet (α is the angle between the

tensile direction, TD, and the rolling direction, RD): r(α) = r

and different from 1. The hardening behaviour study includes

materials as in Table 1 (an isotropic material is also consid-

ered). The initial sheet thickness is 1.0 mm. Table 2 shows the

designation adopted for the material and their parameters of

the Hill’48 criterion. The designation A_A_A_n corresponds

to a material with the hardening coefficient equal to n and the

anisotropy coefficient, r = r(α), in the sheet plane equal to A.

Table 3 Designation of the anisotropy of the tested materials and

respective parameters for Hill’48 criterion; the fully isotropic material

(1_1_1) is also shown

Tested materials anisotropy (F +G = 1) Hill’48 criterion parameters

F G H N

0.5_0.5_0.5 0.500 0.500 0.250 1.000

0.7_0.7_0.7 0.500 0.500 0.350 1.200

1_1_1 0.500 0.500 0.500 1.500

2_2_2 0.500 0.500 1.000 2.500

3_3_3 0.500 0.500 1.500 3.500

4_4_4 0.500 0.500 2.000 4.500
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Fig. 11 Initial yield surfaces in plane (σxx; σyy) of the materials of

Table 3

Table 4 Parameters of

the Swift hardening law Y0 [MPa] K [MPa] n

200 260.7 0.05

577.1 0.20

1277.6 0.35

2828.4 0.50
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The parameters of the Hill’48 criterion obey to the conditions

F =G and N = F + 2H. These conditions together with the

condition G +H = 1, which is also assumed for the materials

in Table 2, means that the tensile curves along any direction in

the sheet plane are coincident, whatever the value of the an-

isotropy coefficient, r = r(α), for a given set of parameters of

the Swift hardening law.

Figure 6 shows examples of the evolution of the pressure

with the pole height, for the cases of planar isotropic materials

(Table 2), with yield stress, Y0 = 200 MPa and hardening co-

efficients, n = 0.05, 0.20 and 0.35 (see Table 1). The higher is

the anisotropy coefficient the higher is the pressure required to

achieve the maximum pole height, for a given value of the

hardening coefficient.

As in the previous section, the curves in Fig. 6 were nor-

malized using p/pmax, as shown in Fig. 7. It can be seen that for

a given hardening coefficient, there is no full coincidence

between curves. The influence of the anisotropy coefficient

on the normalized curves increases when the value of n

increases.

Moreover, for each value of n, the curves in Fig. 7 can be

superimposed using a multiplying factor for the value of h, the

results of which are shown in Fig. 8. The issues related with

this multiplying factor will be analysed in the next section.

In summary, it is always possible the overlap the curves

pressure vs. pole height, by multiplying the pressure and/or

the pole height by conveniently chosen factors, for materials

with equal values of the hardening coefficient of the Swift law.

Conversely, the overlapping is not possible for different values

of the hardening coefficient.

Identification strategy

The results described in the previous section suggested the

development of an inverse strategy for the identification of

the Swift law parameters, using the bulge test. The first step

consists on a forward analysis, in order to study in detail how

the pressure vs. pole height curves can be overlapped, for a

given value of the hardening coefficient. The sensitivity of the
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results of the pressure evolution during the test to variations of

the hardening law parameters is studied. Also, the sensitivity

of these results to the variations of the yield stress, anisotropy

and sheet thickness, for a given value of the hardening coef-

ficient is analysed. This forward study allowed the develop-

ment of an inverse analysis methodology, applied to the iden-

tification of the Swift hardening law parameters, namely Y0, K

and n of Eq. (2).

Forward analysis

In this forward study, the analysis is focused on the coinci-

dence between pressure vs. pole height curves of:

(i) Isotropic metal sheets with different yield stresses and

thicknesses;

(ii) Isotropic and transverse anisotropic metal sheets.

Isotropic metal sheets

The results in Figs. 4 and 5 show that, in case of full isotropic

materials, (i.e. the behaviour can be described by von Mises

yield criterion) with equal values of the hardening coefficient,

the pressure vs. pole height curves can be superposed what-

ever the yield stress and the sheet thickness. In order to super-

pose the curves, a multiplicative factor should be applied to

the pressure, which depends on and is proportional to the

ratios between yield stresses and sheet thicknesses of the ma-

terials. Figures 9 and 10 give examples of such behaviour, for

the yield stress and the thickness, respectively. In these fig-

ures, the cases of metal sheets with Y0 = 300 MPa (Fig. 9(a))

and t0 = 2.0 mm (Fig. 10(a)), are taken as reference, respec-

tively. It should be noted the perfect overlapping of the curves

when the multiplicative factor is applied (Figs. 9(b) and

10(b)). This factor is equal to the yield stresses ratio and thick-

nesses ratio, in Figs. 9 and 10, respectively.

Transverse anisotropic metal sheets

The results in Fig. 7 show that, in case of anisotropic metal

sheets, the use of a pressure factor is not enough to superpose

the pressure vs. pole height curves. Nevertheless, Fig. 8 shows

that the simultaneous use of a multiplying factor for the pole

height allows the overlapping. In this section a detailed study

concerning this aspect is performed.
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Fig. 14 Fp vs. Fh, for n = 0.05, 0.20, 0.35 and 0.50. The overlapping was

performed such that the isotropic curve is superimposed on the

anisotropic curves, which remain unchanged. For each n value, the

following r values were used: r = 0.5, 0.7, 1, 2, 3 and 4
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Fig. 15 Schematic representation for generating the pressure vs. pole

height curve of any anisotropic metal sheet (General Case - GC) from

the knowledge of the curve concerning an Isotropic Metal sheet with

different yield stress and thickness, in case of equal hardening coefficients

Table 5 Designation of isotropic materials used for identification and

respective parameters of the Swift hardening law

Isotropic materials Swift hardening law parameters

Y0 [MPa] K [MPa] n

100_0.12_1_1_1 100 188.85 0.12

100_0.13_1_1_1 100 199.13 0.13

100_0.14_1_1_1 100 209.96 0.14

100_0.15_1_1_1 100 221.39 0.15

100_0.16_1_1_1 100 233.43 0.16

100_0.17_1_1_1 100 246.14 0.17

100_0.18_1_1_1 100 259.53 0.18

100_0.19_1_1_1 100 273.65 0.19

100_0.20_1_1_1 100 288.54 0.20

100_0.21_1_1_1 100 304.24 0.21

100_0.22_1_1_1 100 320.79 0.22

100_0.23_1_1_1 100 338.25 0.23
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The study is focused on the comparison between numerical

curves of pressure vs. pole height, obtained for the full isotro-

py and planar isotropy conditions. Table 3 summarizes the

parameters of the Hill’48 criterion of illustrative cases. The

Hill’48 criterion parameters obey to the condition (F +G = 1),

as is noticeable from Table 3, which means that the yield

surfaces for all materials go through the same point, which

corresponds to equibiaxial stretching (σxx = σyy), as shown

in Fig. 11. Consequently, the biaxial stress vs. strain curve is

the same for all materials and coincident with the Swift hard-

ening law used as input [26]. For each case of Table 3, the

hardening coefficients are n = 0.05, 0.20, 0.35 and 0.50, and

the parameters Y0 and ε0 of the Swift law are Y0 = 200 MPa

and ε0 = 0.005. The full set of parameters of the Swift law are

shown in Table 4. The initial sheet thickness is 1.0 mm.

Figures 12 and 13 show examples of the pressure vs. pole

height curves, for metal sheets with transverse anisotropy (see

Table 3), in cases of hardening coefficient n = 0.05 and 0.35

(see Table 4), respectively. Figures 12(a) and 13(a) show the

curves just as were obtained. In case of n = 0.05, these curves

are almost indistinguishable. In case of n = 0.35, although still

close to each other, the curves are distinguishable. However, the

curves entirely overlap to each other when the values of pres-

sure and pole height are multiplied by appropriate factors, re-

spectively Fp and Fh, as shown in Figs. 12(b) and 13(b), where

the curve for the full isotropic material (1_1_1, i.e. with r = 1)

was kept unchanged. Both factors are close to 1, particularly in

case of n = 0.05. Their importance within the framework of the

forward and reverse analyses will be discussed below.

A typical procedure for finding the Fh and Fp factors that

applied to the isotropic numerical pressure vs. pole height

curve minimises the difference between this curve and those

of transverse anisotropic materials, which remain unchanged,

consists on using the following least squares cost function:

F Að Þ ¼ 1=qð Þ
X

q

i¼1

panisi −pisoi Að Þ
� �2

" #

1
2

ð3Þ

where pi
anis and pi

iso(A) are the values of pressure for aniso-

tropic and isotropic sheet metals, respectively; A is the set of

factors Fh and Fp to be optimised, i is the measuring point of

Table 6 Designation of tested

materials used as numerical case

studies and respective parameters

of Hill’48 criterion and Swift

hardening law

Tested materials Hill’48 criterion parameters Swift hardening law parameters

F G H N Y0 [MPa] K [MPa] n

200_0.20_3_3_3 0.5000 0.5000 1.5000 3.5000 200 577.08 0.20

200_0.20_1.5_3_3 0.3446 0.6892 1.0338 3.6185

The sheet thickness is equal to 2.0 mm

Fig. 16 Initial yield surfaces in the plane (σxx; σyy) of the materials of

Table 6 and equivalent vonMises material. The stress and strain paths are

also shown as well as the axis (dotted line) of the yield surface of the

material 1.5_3_3. The two open circles denote the coincidence between

the isotropic and the two anisotropic materials

Table 7 Fh and Fp* values that

minimize F(A) and

corresponding estimated Swift

law parameters for the material

200_0.20_3_3_3 (see Table 6)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.073 4.382 2.62 × 10−4 210.52 576.08 0.19

100_0.20_1_1_1 1.047 4.144 1.42 × 10−4 202.00 582.85 0.20

100_0.21_1_1_1 1.021 3.917 4.19 × 10−5 193.56 588.88 0.21

100_0.22_1_1_1 0.994 3.694 1.73 × 10−4 185.50 595.07 0.22

100_0.23_1_1_1 0.966 3.476 3.45 × 10−4 177.39 600.00 0.23
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pressure (which corresponds to a certain value of the pole

height, h) and q is the total number of pressure measuring

points. The evaluation of the pressure for equal values of pole

height can be carried out expeditiously using a polynomial

approximation for each curve. In this study all evolutions of

pressure with pole height were fitted using a sixth degree

polynomial to achieve a proper fit of the results (with a min-

imum correlation factor R2 = 0.9999) within a range of pole

height values that excludes the initial part of the curve, more

prone to higher experimental errors, and the final part, which

may be sensitive to numerical parameters such as the mesh

refinement.

Figure 14 plots the results of Fp as a function of Fh, for the

values of the hardening coefficients (n = 0.05, 0.20, 0.35 and

0.50) and anisotropy coefficients (r = 0.5, 0.7, 1.0, 2.0, 3.0 and

4.0) under study. The results in this figure are grouped by the

hardening coefficient and show that this parameter slightly

influences their evolution. In case of n = 0.05, the values of

Fp and Fh are slightly higher than 1 and increasing with de-

creasing of the r value, for r < 1, and are slightly lower than 1

and decreasing with increasing of the r value, when r > 1. On

the contrary, in cases of n = 0.20, 0.35 and 0.50, the values of

Fp and Fh are slightly lower than 1 and decreasing with de-

creasing of the r value, when r < 1, and are slightly higher than

1 and increasing with the increasing of r value, when r > 1. In

other words, the results in Fig. 14 shows that the values of Fh

and Fp are related with the shape of the yield surface near the

equibiaxial region (see Fig. 11): for sharp yield surfaces, as for

example the material 4_4_4, relatively high values of Fh and

Fp are observed, and for flattened yield surfaces, as for exam-

ple the material 0.5_0.5_0.5, relatively low values of Fh and

Fp occur (close to 1), in cases of the values of the hardening

coefficient are n = 0.20, 0.35 and 0.50; the opposite is ob-

served for n = 0.05, with the values of Fh and Fp close to 1

whatever the yield surface shape near the equibiaxial region.

The results in Fig. 14 are enoughwell described by a linear fit:

Fp ¼ 0:566 Fhþ 0:434 ð4Þ

In fact, this equation allows determining with acceptable

accuracy the value of the parameter Fp knowing the value of

Fh. In Fig. 14, the relative distance between the Fp values at

each point (i.e. at a given Fh value) and the corresponding

value on the trend line is always less than 1 %, whatever the

value of the hardening coefficient and the anisotropy.

Final remarks

In summary, it can be concluded that the evolution of the

pressure with the pole height during the bulge test, depends

Table 8 Fh and Fp* values that

minimize F(A) and

corresponding estimated Swift

law parameters for the material

200_0.20_1.5_3_3 (see Table 6)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.064 4.321 2.17 × 10−4 208.68 571.06 0.19

100_0.20_1_1_1 1.037 4.084 1.25 × 10−4 200.20 577.65 0.20

100_0.21_1_1_1 1.011 3.860 4.29 × 10
−5

191.96 584.02 0.21

100_0.22_1_1_1 0.984 3.639 1.84 × 10−4 183.77 589.51 0.22

100_0.23_1_1_1 0.955 3.422 3.54 × 10−4 175.63 594.08 0.23
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on the parameters of the Swift law, the anisotropy of the ma-

terial, and the sheet thickness. It is always possible to overlap

the curve of the pressure vs. pole height for materials with the

same value of the hardening coefficient of the Swift law, by

multiplying the values of the pressure and the pole height by

factors, Fp and Fh, respectively, appropriately chosen; the

overlapping does not occur for materials with different values

of the hardening coefficient.

In case of isotropic materials (vonMises) with equal values

of the hardening coefficient, the coincidence between pressure

vs. pole height curves can be obtained by using a multiplying

factor for the pressure, Fp, which is equal to the yield stresses

ratio of the material (at equal thicknesses) and to the sheet

thicknesses ratio (at equal yield stresses); in both cases, the

multiplying factor for the pole height, Fh, is equal to 1.

The curves of pressure vs. pole height of anisotropic mate-

rials can also be overlapped to those of isotropic materials,

providing that the hardening coefficient is equal. In this case,

the Fp and Fh are in general different from 1. For equal values

of the biaxial yield stress and the sheet thickness, the relation-

ship between Fp and Fh is almost independent of the harden-

ing coefficient and suitably described by a linear equation (see

Fig. 14).

The key finding of the forward analysis is summarized

schematically in Fig. 15. This figure describes how to generate

the pressure vs. pole height curve of any sheet metal with a

given yield stress, anisotropy and thickness (General Case -

GC), from the results of an isotropic sheet metal (Isotropic

Metal Sheet) with different thickness and yield stress, for a

given hardening coefficient. The curve of the general case is

obtained bymultiplying the pressure values of the curve of the

isotropic sheet metal by the following factors: (tGC/tIso) and

(Y0GC/Y0Iso) ratios and Fp (where tGC and Y0GC are the thick-

ness and the yield stress of the general case and tIso and Y0Iso
are the thickness and the yield stress of the isotropic sheet

metal, respectively); and the pole height values of the same

curve must be multiplied by Fh. Under these conditions, the

overall factor, Fp*, to be applied to the pressure is:

Fp* ¼ tGC=tIsoð Þ � Y 0GC=Y 0Isoð Þ � Fp ð5Þ

Inverse analysis

Following the previous forward analysis, an approach for

solving the problem of identification of the parameters of the

Swift law consists in using numerical pressure vs. pole height

curves obtained for isotropic materials with various values of

hardening coefficient, in the range of the material under study.

Then, using multiplying factors for the pressure and the pole

height, the best overlapping between the experimental curve

and those numerically obtained, allows assessing the harden-

ing and the yield stress parameters of the material.
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Fig. 19 Evolution of the error in

stress obtained by the inverse

analysis and the membrane theory

for the cases: (a) 200_0.20_3_3_3;

(b) 200_0.20_1.5_3_3

Table 9 Fh and Fp* values that

minimize F(A) and

corresponding estimated Swift

law parameters for the material

344.6_0.20_1_1_1

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n ε0

100_0.16_1_1_1 1.096 1.872 1.75 × 10−3 355.43 829.70 0.16 0.005

100_0.17_1_1_1 1.062 1.762 9.24 × 10−4 340.74 838.68 0.17 0.005

100_0.18_1_1_1 1.031 1.661 3.43 × 10−4 326.67 847.79 0.18 0.005

100_0.19_1_1_1 1.002 1.567 9.74 × 10−4 313.16 856.96 0.19 0.005

100_0.20_1_1_1 0.973 1.474 2.01 × 10−3 299.61 864.48 0.20 0.005
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The proposed inverse methodology can be detached in four

steps:

(i) Plot the experimental pressure vs. pole height curve for

the material under test.

(ii) Plot the same type of numerical curves of isotropic ma-

terials with selected values of the yield stress and the

sheet thickness, for various values of hardening coeffi-

cient in the range expected for the material under test; the

ε0 value of the Swift law must be kept constant (ε0 equal

to 0.005 is recommended); the elastic properties of the

material tested, Young’s modulus and Poisson ratio, are

assumed to be known (the typical values for each class of

materials - e.g. steel, aluminium alloys - can be used); a

unique set of numerical curves can be used for a given

class of materials, within a relatively wide range of hard-

ening coefficients, i.e. covering the values usually found

within each class, without having to remake the simula-

tions every time an identification is performed; the

values of the hardening coefficient should be away from

each other 0.01, but if the cost function (see Eq. (6) of the

next step) presents two similar minima values, it is rec-

ommended to test an intermediate value of the hardening

coefficient; the range of pole height of the numerical

curves of isotropic materials used for the inverse analysis

should go up to a strain value higher than twice the value

of the hardening coefficient of the Swift law.

(iii) Estimation of the hardening coefficient of the experi-

mental material under study. This consists on finding

the factors Fh and Fp* that applied to the numerical

curves, with the various hardening coefficient, minimise

the difference between these curves and the experimen-

tal curve of pressure vs. pole height; the following least

squares cost function, similar to Eq. (3), was used:

F Að Þ ¼ 1=qð Þ
X

q

i¼1

p
exp
i −pnumi Að Þ

� �2

" #

1
2

ð6Þ

where pi
exp and pi

num(A) are the experimental and nu-

merical values of pressure, respectively; A is the set of

factors Fh and Fp* to be optimised, i is the measuring

point of pressure (which corresponds to a certain value

of the pole height, h) and q is the total number of pres-

sure measuring points.
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Fig. 20 Hardening curves obtained by the inverse analysis and the

membrane theory and the input numerical curve for the material 344.6_

0.20_1_1_1

-3

-2

-1

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6

E
rr

o
r

[%
]

1_1_1_Inverse_Analysis

1_1_1_Membrane_Theory

Fig. 21 Evolution of the error in stress obtained by the inverse analysis

and the membrane theory for the case 344.6_0.20_1_1_1

Table 10 Designation of tested

materials used as numerical case

studies and respective parameters

of Drucker + L criterion and Swift

hardening law

Tested materials Drucker + L criterion parameters Swift hardening law parameters

C1 C2 C3 C6 c Y0 [MPa] K [MPa] n

Isot_c = −2 0.9577 0.9577 0.9577 0.9577 −2 200 577.08 0.20

Isot_c = 2 1.0603 1.0603 1.0603 1.0603 2

Anisot_c = −2 0.8294 1.1139 1.3985 1.4896 −2

Anisot_c = 2 0.9145 1.2283 1.5421 1.6425 2

The sheet thickness is equal to 2.0 mm

The values of the Lankford’ coefficients of the in-plane anisotropic materials are: (i) Anisot_c = 2→ r0 = 1.33,

r45 = 2.17 and r90 = 2.07; (ii) Anisot_c = 2→ r0 = 1.88, r45 = 5.92 and r90 = 6.99.
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The lowest value of the cost functionF(A), among all

numerical curves used, defines the numerical curve that

can be used as reference, i.e. allows to generate the

experimental curve, following the procedure shown in

Fig. 15. The hardening coefficient of this reference

curve is the identified parameter of the experimental

material.

(iv) Estimation of the yield stress of the experimental mate-

rial under study. The Fh value allows determining the

value of Fp (Eq. (4) and Fig. 14), which correspond to

the anisotropy effect on the pressure vs. pole height

curves. Under these assumptions, the yield stress of the

experimental material can be identified as follows:

Y
exp
0 ¼ Y num

0 � tnum=texpð Þ � Fp*=Fp
� �

ð7Þ

where Y0
exp and Y0

num are the yield stresses and texp

and tnum are the thicknesses, of the experimental and

the numerical reference sheet, respectively. The Fp*

value used in Eq. (7) must be obtained such that the

numerical curve is superimposed on the experimen-

tal curve, which remains unchanged. Finally, as the

value of the Swift law parameter, ε0, is considered

fixed (equal to 0.005 in the current work), the esti-

mated value of Kexp in this law (Eq. (2)) can also be

obtained by multiplying Knum by the same value as

for Y0
num (Eq. (7)):
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Fig. 22 Initial yield surfaces in

the plane (σxx; σyy) of the

Drucker + L materials of

Table 10: (a) isotropic materials

(the Bequivalent^ von Mises

material is also shown); (b)

anisotropic materials (the stress

and strain paths are also shown)

Table 11 Fh and Fp* values that

minimize F(A) and

corresponding estimated Swift

law parameters for the material

Isot_c = −2 (see Table 10)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.018 4.199 1.88 × 10−4 207.97 569.12 0.19

100_0.20_1_1_1 0.990 3.960 8.53 × 10−5 199.31 575.09 0.20

100_0.205_1_1_1 0.974 3.839 5.14 × 10−5 194.92 577.53 0.205

100_0.21_1_1_1 0.962 3.734 9.89 × 10−5 190.90 580.78 0.21

100_0.22_1_1_1 0.934 3.512 2.41 × 10−4 182.55 585.62 0.22

Note: the parameters of the Swift hardening law used as input in numerical simulation 100_0.205_1_1_1 (not

included in Table 5) are: Y0 = 100 MPa, K = 296.29 MPa, and n = 0.205.

Table 12 Fh and Fp* values that

minimize F(A) and

corresponding estimated Swift

law parameters for the material

Isot_c = 2 (see Table 10)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.065 4.362 2.62 × 10−4 210.46 575.93 0.19

100_0.20_1_1_1 1.035 4.112 1.28 × 10−4 201.73 582.08 0.20

100_0.21_1_1_1 1.007 3.877 5.08 × 10−5 193.27 588.00 0.21

100_0.22_1_1_1 0.978 3.651 2.05 × 10−4 184.97 593.37 0.22

100_0.23_1_1_1 0.947 3.421 3.90 × 10−4 176.50 597.02 0.23
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Kexp ¼ Knum � tnum=texpð Þ � Fp*=Fp
� �

ð8Þ

In order to exemplify this inverse methodology, computer-

generated results are firstly used. The use of computer-

generated results is a simple and efficient way to test inverse

analysis methodologies, since the behaviour of the tested ma-

terial is properly defined, without the errors commonly asso-

ciated with experimental measurements. Subsequently, the

same methodology is applied to experimental cases.

Numerical cases

Table 5 shows the selected Swift law parameters for generat-

ing numerical pressure vs. pole height curves (under isotropy

condition - see step (ii) of the proposed inverse methodology)

used to identify the parameters of the computer-generated re-

sults. The selected yield stress value of all materials in this

table is equal to 100 MPa and the hardening coefficient is

within n = 0.12 and n = 0.23. The numerical simulations were

performed with an initial sheet thickness equal to 1.0 mm.

Hill’48 criterion Table 6 shows the parameters of the Hill’s

criterion and the Swift law for the two tested materials, one

with transverse anisotropy (200_0.20_3_3_3) and the other

with planar anisotropy (200_0.20_1.5_3_3). The parameters

of the Hill criterion of these materials follow a condition en-

suring that the equivalent stress–strain curve for the stress path

obtained in the bulge test is equal to that for an equivalent von

Mises material, i.e. with the same values of the Swift law

parameters. Figure 16 shows the initial yield surface of both

materials in the (σxx; σyy) plane as well as the equivalent von

Mises material. In case of the material 200_0.20_3_3_3, the

stress and strain paths observed during the bulge test are σyy/

σxx = dεyy/dεxx = 1; in case of material 200_0.20_1.5_3_3,

these paths are respectively: σyy /σxx = 1.129 and

dεyy/dεxx = 0.941. Table 5 shows the parameters of the Swift

law of the selected isotropic materials (with n = 0.19, 0.20,

0.21, 0.22 and 0.23) used for numerical simulation and iden-

tification of the Hill’48 materials in Table 6.

Tables 7 and 8 show the values of the factors Fh and Fp*

that were applied to the numerical pressure vs. pole height

curves of the materials in Table 5, in order to minimise the

difference between these curves and that of each material in

Table 6. The corresponding values of the objective function

F(A) and the estimated parameters of the Swift hardening law

are also shown in the Tables 7 and 8. The parameters of the

Swift law that minimise F(A) correspond to the material with

n = 0.21, for both case studies. Also, the minimum values of

F(A) are similar for both identifications.

In order to visualise the results of the identifications,

Figs. 17 and 18 show the hardening curves as obtained by

the inverse analysis and by the membrane theory [27]. The

analysis by the membrane theory follows the procedure rec-

ommended by ISO 16808:2014 [1]. Therefore, the equivalent

stress is calculated assuming an equibiaxial stress state at the

pole of the cap and using the average value of the curvature

radii in the Oxz and Oyz planes as input in the membrane

theory equation. The equivalent strain is considered equal to

the absolute value of the plastic thickness strain, which is

Table 13 Fh and Fp* values that

minimize F(A) and

corresponding estimated Swift

law parameters for the material

Anisot_c = −2 (see Table 10)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.035 4.232 4.85 × 10−4 207.50 567.82 0.19

100_0.20_1_1_1 1.012 4.011 1.83 × 10−4 199.21 574.81 0.20

100_0.205_1_1_1 1.001 3.904 6.67 × 10
−5

195.17 578.25 0.205

100_0.21_1_1_1 0.990 3.802 1.56 × 10−4 191.21 581.73 0.21

100_0.22_1_1_1 0.969 3.606 4.58 × 10−4 183.51 588.67 0.22

Note: the parameters of the Swift hardening law used as input in numerical simulation 100_0.205_1_1_1 (not

included in Table 5) are: Y0 = 100 MPa, K = 296.29 MPa, and n = 0.205

Table 14 Fh and Fp* values that

minimize F(A) and

corresponding estimated Swift

law parameters for the material

Anisot_c = 2 (see Table 10)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.19_1_1_1 1.100 4.445 7.21 × 10−4 210.31 575.50 0.19

100_0.20_1_1_1 1.073 4.203 4.52 × 10−4 201.79 582.25 0.20

100_0.21_1_1_1 1.048 3.976 2.81 × 10−4 193.58 588.94 0.21

100_0.22_1_1_1 1.024 3.763 3.86 × 10−4 185.67 595.63 0.22

100_0.23_1_1_1 1.001 3.563 6.32 × 10−4 178.05 602.25 0.23
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determined from the numerical measured values of surface

strains at the pole of the cap, ε1 and ε2, and corrected for the

elastic components, assuming an isotropic linear elastic mate-

rial behaviour. In summary, this corresponds to the use of the

von Mises definitions of equivalent stress and strain under the

assumption of equibiaxial stress state. The corresponding in-

put curves, used in the numerical simulations, of the studied

materials (see Table 6) are also shown in these figures.

Figure 19 compares the errors in stress obtained by the inverse

analysis and using the membrane theory, referred to the input

curves. The errors are similar for both materials when using

the inverse analysis, which is consistent with the fact that the

objective function is equal for the best fitting (see Tables 7 and

8, for n = 0.21). The n value obtained by the inverse analysis

(n = 0.21 for both materials) are not entirely in accordance, but

are very close to the input value (n = 0.20). Moreover, this

does not lead to significant error in the estimate of the hard-

ening curve. For both materials, 200_0.20_3_3_3 (Fig. 19(a))

and 200_0.20_1.5_3_3 (Fig. 19(b)), the inverse analysis gives

comparable accuracy than the methodology using the mem-

brane theory.

So far, the value of the parameter ε0 has been considered

fixed and equal to 0.005. In fact, this value is close to the

values found for most cases of identification of sheet metals

able to achieve large deformations, such as those used in deep

drawing. Moreover, the experimental values of the parameter

ε0 are lower than 0.01, with extremely rare exceptions [28]. In

order to understand the extent to which the value of this pa-

rameter can affect the inverse analysis results, identification

cases with the value of the parameter ε0 lower than 0.01 (and

different from 0.005) were performed. The following illustra-

tive example consists of an isotropic material with 0.5 mm

thick sheet and the following Swift law parameters:

Y0 = 344.61 MPa, K = 865.62 MPa, n = 0.20 and ε0 = 0.01

(hereafter referred to as: 344.6_0.20_1_1_1). As this is an

isotropic material, the anisotropy will not affect the identifica-

tion (anisotropic cases were addressed in the previous exam-

ples). Table 5 shows the parameters of the Swift law of the
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membrane theory and the input numerical curve for the material Isot_
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selected isotropic materials (with n = 0.16, 0.17, 0.18, 0.19

and 0.20) used for numerical simulation and identification of

this material.

Table 9 shows the values of the objective functionF(A) and

the estimated parameters of the Swift hardening law. The pa-

rameters of the Swift law that minimise F(A) correspond to

the material with n = 0.18. The smallest value of F(A) occurs

for the case 100_0.18_1_1_1, and is equal to 3.43 × 10−4. This

value is higher than the obtained for the previous cases of

identification (slightly higher than 4 × 10−5 – see Tables 7

and 8), in which the material to be identified has the ε0 value

equal to that of the materials used in identification

(ε0 = 0.005). However, the input hardening curve is well de-

scribed by the inverse analysis results, as can be concluded

from Figs. 20 and 21. Figure 20 shows the input hardening

curve and those obtained by the inverse analysis and the mem-

brane theory and Fig. 21 compares the errors in stress obtained

by the inverse analysis and the membrane theory, referred to

the input curve. Table 9 also shows the values of the factors Fh

and Fp* that were applied to the numerical curves pressure vs.

pole height of the materials in Table 5, in order tominimise the

difference between these curves and that of the material under

study. This leads to an identification value for the Fh factor

equal to 1.031, which is not so close to 1, as expected for the

von Mises identified material. This is due in part (besides

the error inherent to identification strategy) to the difference

in the values of the parameter ε0 of the material to be iden-

tified and the materials whose numerical curves are used for

identification. It turns out that, in general case of identifica-

tion, the ε0 value of the material to be identified is unknown.

Despite this, the input hardening curve is well described for

values of ε0 lower than that of the experimental material,

0.01, i.e. using ε0 = 0.005 to generate the numerical curves

for identification, as in this illustrative case. Finally, it

should be mentioned that the identification can be improved

by using, in a second stage of the identification, values of ε0
greater and lower than 0.005 (separated from 0.0025, for

example) for the materials used in the identification. That

is, the above procedure can be repeated for different values

of ε0, and the values of F(A) must be used as guidance for

the final choice of parameters.

Other yield criterion The proposed inverse methodology

makes use of reference numerical tests of isotropic
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materials and the influence of the anisotropy of the material

on the procedure is taken into account by means of the Fh

and Fp factors. In this context, the inverse parameters iden-

tification of materials with behaviour described by other

criterion than Hill’48 was also numerically performed.

The non-quadratic yield criterion Drucker + L [29] was

chosen to test the inverse analysis procedure and concom-

itantly to reinforce the conclusion that the value of the Fh

and Fp factors are related with the shape of the yield surface

near the equibiaxial region (see section: Transverse aniso-

tropic metal sheets) and so their relationship does not de-

pend on the yield criteria. In fact, the Drucker + L yield

criterion allows flexibility of the yield surface, particularly

in biaxial region, when compared with the Hill’48 criterion,

as shown in the following.

In this subsection, illustrative cases of identification of the

Swift law parameters of materials with isotropic and aniso-

tropic behaviour described by Drucker + L criterion [29] are

shown. The Drucker + L is an extension of the Drucker iso-

tropic criterion [30] to anisotropy:

1

2
tr s2
� �

� �3

−c
1

3
tr s3
� �

� �2

¼ 27
Y

3

� 	6

ð9Þ

where tr(s) is the trace of the stress tensor s, resulting from the

linear transformation of the Cauchy stress tensor, σ, and c is a

weighting isotropy parameter, ranging between −27/8 and 9/4,

to ensure the convexity of the yield surface. When c equals

zero, this criterion coincides with the Hill’48 yield criterion.

The s stress tensor is given by:

s ¼ L:σ ð10Þ

where L is the linear transformation operator proposed by

Barlat et al. [31]:

L ¼

C2 þ C3ð Þ=3 −C3=3 −C2=3 0 0 0

−C3=3 C3 þ C1ð Þ=3 −C1=3 0 0 0

−C2=3 −C1=3 C1 þ C2ð Þ=3 0 0 0

0 0 0 C4 0 0

0 0 0 0 C5 0

0 0 0 0 0 C6

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð11Þ

in which Ci, with i = 1, …, 6, are the anisotropy parameters;

C1 = C2 = C3 = C4 = C5 = C6 for the full isotropy condition.

This yield criterion includes one more parameter, the param-

eter c, than Hill’48 yield criterion, thus being more flexible. In

fact, the Hill’48 criterion cannot fully describe the behaviour

of a material that follows the Drucker + L criterion with the

parameter c different from zero.

Table 10 shows the parameters of the Drucker + L criterion

and the Swift law of the tested materials: (i) two with full

isotropy, one of which with c = −2 (Isot_c = −2) and the other

with c = 2 (Isot_c = 2) and also (ii) two anisotropic materials,

one of which with c = −2 (Anisot_c = −2) and the other with

c = 2 (Anisot_c = 2). Figure 22 shows the initial yield surface

of these materials in the (σxx; σyy) plane. For the isotropic

materials represented in Fig. 22(a), the stress and strain paths

observed during the bulge test are σyy/σxx = dεyy/dεxx = 1; for

the anisotropic materials, the stress and strain paths are repre-

sented in Fig. 22(b). Table 5 shows the parameters of the Swift

law of the selected isotropic materials (with n = 0.19, 0.20,

0.21, 0.22 and 0.23) used for numerical simulation and iden-

tification of the Drucker + L materials.

Tables 11, 12, 13 and 14 show the values of the factors Fh

and Fp* that were applied to the numerical pressure vs. pole

height curves of the materials in Table 10, in order to minimise

the difference between these curves and that of each material

in Table 5. The corresponding values of the objective function

F(A) and the estimated parameters of the Swift hardening law

are also shown in Tables 11, 12, 13 and 14. The parameters of

Table 15 Materials studied and anisotropy characterization (r = (r0 + 2r45 + r90)/4 where r are the anisotropy coefficients; the numbers in subscript

indicate the angle between the tensile axis and the rolling direction)

Material t0 [mm] r0 r45 r90 r

DP600 steel 0.80 0.62 1.03 0.80 0.87

AA6061 aluminium alloy 1.04 0.66 0.69 0.56 0.65

Table 16 Swift law parameters

obtained by fitting the stress–

strain curves in tension, at 0, 45

and 90° with the rolling direction

(RD), of the materials under study

Material Swift law parameters

0° with RD 45° with RD 90° with RD

Y0
[MPa]

K

[MPa]

n Y0
[MPa]

K

[MPa]

n Y0
[MPa]

K

[MPa]

n

DP600 steel 392.22 1045.77 0.19 406.49 1040.11 0.19 433.02 1066.24 0.18

AA6061

aluminium alloy

275.10 489.43 0.13 270.58 484.95 0.13 272.22 483.19 0.12
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the Swift law that minimise F(A) correspond to the materials

with n = 0.205 (for Isot_c = −2 and Anisot_c = −2) and with

n = 0.21 (for Isot_c = 2 and Anisot_c = 2).

It should be noted that, for example, in the case of the

isotropic Drucker + L material with c = −2, with flattened yield

surface, the best fit occurs for a value of the factor Fh less than

1 (Fh = 0.974) and in case of the anisotropic Drucker + L ma-

terial with c = 2, with sharp yield surface, the best fit corre-

sponds to a factor Fh higher than 1 (Fh = 1.048). This is in line

with the above mentioned at the end of section: Transverse

anisotropic metal sheets, about the influence of the shape the

yield surface near the equibiaxial region on the value of Fh.

Figures 23, 24, 25 and 26 show the hardening curves as

obtained by inverse analysis and by membrane theory, for

isotropic (Figs. 23 and 24) and anisotropic (Figs. 25 and 26)

Drucker + Lmaterials. The corresponding input curve, used in

the numerical simulations, of the studied materials (see

Table 10) is also shown in these figures. Figures 27 and 28

compare, respectively for the isotropic and anisotropic mate-

rials, the errors in stress obtained by the inverse analysis and

using the membrane theory, referred to the input curves. The

errors when using the inverse analysis are in general similar to

the obtained using the membrane theory.

In conclusion, the results of the inverse identification

performed on materials with isotropic and anisotropic

behaviours, described by the Drucker + L criterion, more

flexible than the Hill’48 criterion, lead to the conclusion

that it can be applied to other yield criteria without loss

of accuracy.

Experimental cases

This methodology is now tested for experimental cases. Two

metals sheets were tested, a DP600 steel and an AA6061

aluminium alloy, with the initial thicknesses t0 of 0.80 mm

and 1.04 mm, respectively. The anisotropy and the work hard-
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Fig. 29 Experimental evolution of the pressure, p, with pole the height,

h, for the two metal sheets under study

Table 17 Fh and Fp* values that

minimize F(A) and

corresponding estimated Swift

law parameters for the material

DP600 (see Table 16)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.18_1_1_1 1.003 3.130 1.62 × 10−3 390.51 1013.48 0.18

100_0.19_1_1_1 0.973 2.944 7.22 × 10−4 373.76 1022.80 0.19

100_0.195_1_1_1 0.958 2.855 4.41 × 10−4 365.54 1027.17 0.195

100_0.20_1_1_1 0.944 2.768 6.21 × 10−4 357.47 1031.43 0.20

100_0.21_1_1_1 0.905 2.570 1.16 × 10−3 339.40 1032.59 0.21

Note: the parameters of the Swift hardening law used as input in numerical simulation 100_0.195_1_1_1 (not

included in Table 5) are: Y0 = 100 MPa, K = 281.00 MPa and n = 0.195.

Table 18 Fh and Fp* values that

minimize F(A) and

corresponding estimated Swift

law parameters for the material

AA6061 (see Table 16)

Numerical simulation Fh Fp* F(A) Swift law - estimated

Y0 [MPa] K [MPa] n

100_0.12_1_1_1 1.001 2.432 9.61 × 10−4 235.24 444.26 0.12

100_0.13_1_1_1 0.965 2.282 5.50 × 10−4 225.34 448.71 0.13

100_0.135_1_1_1 0.944 2.220 4.85 × 10
−4

220.40 450.66 0.135

100_0.14_1_1_1 0.926 2.131 5.63 × 10−4 215.25 451.94 0.14

100_0.15_1_1_1 0.893 1.997 8.88 × 10−4 205.79 455.60 0.15

Note: the parameters of the Swift hardening law used as input in numerical simulation 100_0.135_1_1_1 (not

included in Table 5) are: Y0 = 100 MPa, K = 204.47 MPa and n = 0.135
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ening behaviours of the materials were characterised in ten-

sion, and the respective parameters are shown in Tables 15 and

16, respectively. Figure 29 shows the evolution of the pressure

with pole height, for both materials.

The parameters of the Swift law of the isotropic materials

used in the numerical simulations for identification are indi-

cated in Table 5, as for numerical cases in the previous section.

The numerical simulations were performed with an initial

sheet thickness equal to 1.0 mm. The elastic parameters values

are: Young’s modulus E = 200 GPa and Poisson ratio ν = 0.3,

in case of DP600 steel; and E = 70 GPa and Poisson ratio

ν = 0.3, in case of AA6061 aluminium alloy.

Tables 17 and 18 show the values of the factors Fh and Fp*

that were applied to the numerical pressure vs. pole height

curves of the materials in Table 5, in order to minimise the

difference between these curves and those for each material

(Fig. 29). The corresponding values of the objective function

F(A) and the estimated parameters of the Swift hardening law

are also shown in the Tables 17 and 18. The parameters of the

Swift law that minimise F(A) correspond to the materials with

n = 0.195, for the DP600 steel, and 0.135, for the AA6061

aluminium.

Figures 30 and 31 compare the identified stress–strain

curves by inverse analysis (solid black lines) with those deter-

mined using the membrane theory (symbols), for the DP600

steel and the AA6061 aluminium alloy, respectively. In these

cases, a measurement tactile system was used to estimate the

curvature radius and the strain at the pole [17], which is con-

sidered valid by ISO 16808:2014 [1] for bulge test investiga-

tion. A three point spherometer evaluates the height difference

between the pole and three positions at a fixed radius, in order

estimate the radius of curvature during the test. An extensom-

eter allows following the strain value in the rolling direction,

in a region near the pole of the cap, during the test. The equiv-

alent strain is considered twice the value of the strain along the

rolling direction. In summary, this corresponds to the use of

the vonMises definitions of equivalent stress and strain, under

the assumption of equibiaxial stress and strain states.

Figures 30 and 31 also show the stress–strain curves obtained
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by fitting the Swift law to the membrane theory results (solid

grey lines), leading to the following parameters:

Y0 = 397.79 MPa, K = 1051.48 MPa and n = 0.19

(ε0 = 0.006), for the steel DP600; and Y0 = 229.76 MPa,

K = 457.51 MPa and n = 0.13 (ε0 = 0.005), for the aluminium

AA6061. Figure 32 compares the difference in stress between

the hardening laws assessed by the inverse analysis and by

fitting the Swift law to the membrane theory results, taking the

experimental membrane theory results as reference, for the

DP600 steel (Fig. 32(a)) and the AA6061 aluminium alloy

(Fig. 32(b)). It must be mentioned that although the experi-

mental stress vs. strain results obtained by the membrane the-

ory only fairly obey to the Swift equation (see fitted Swift law

in Figs. 30 and 31), it can be concluded that the proposed

inverse analysis is sufficiently accurate for determining the

stress–strain curve from the bulge test. Finally, as mentioned

with regard to the last example of the numerical cases in sec-

tion : Hill’48 criterion, the identified parameters can certainly

be improved, by repeating the identification procedure using

values of ε0, different but close to 0.005, for the numerical

materials used in identification.

Conclusions

This work allows achieving a unified description of the evo-

lution of the pressure with pole height, during the bulge test,

for a given value of the hardening coefficient of the Swift law.

This allowed the development of an inverse analysis strategy

for determining the parameters of the Swift law, just using the

results of pressure vs. pole height. Moreover, it is easily im-

plemented, requiring a few numerical simulations of isotropic

reference materials with various values of the hardening coef-

ficient, in the expected range of the material under test. The

inverse procedure was tested for the cases of computer-

generated and experimental materials. In both cases, the strat-

egy is compared with the classical strategy of analysis of the

bulge test results using the membrane theory, based on deter-

mining the radius of curvature, and the direct measurement of

the strains at the pole. The proposed inverse strategy is easy to

implement and more efficient than classical, since it is not

exposed to experimental errors related to the experimental

evaluation of radius of curvature and strain at the pole of the

bulge and the assumptions and simplifications associated to

the use of membrane theory approach under bulge test condi-

tions, which is usually the major source of errors.

Finally, it should be mentioned that this inverse analysis

methodology to evaluate the parameters of the Swift law, al-

though accurate and easy to apply, does not fully answer to the

issue of determining the hardening law from the bulge test, if

the behaviour is better described by other laws than Swift. In

fact, the behaviour of a number of materials, as for example

certain aluminium alloys, is best described by the Voce’s law

and also other laws with increasing complexity are currently

being used.
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Conclusions and Perspectives 

This chapter highlights the main conclusions of the present research work on the 

hydraulic bulge test and outlines perspectives of further studies. 
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4.1. Conclusions 

Although available in the literature for over 50 years, the hydraulic bulge test, used for 

characterising the mechanical behaviour of metal sheets, still disclose unknown issues, some 

of which were analysed and discussed in this thesis. This was duly taken into account for 

this work, particularly given that the prevailing standards for this test are not satisfactory. 

The apparent lack of timeliness of the subject, given its so great longevity, is also 

contradicted by the recent effort provided for the proper identification of the constitutive 

laws parameters, in which the bulge test persists in playing a key role. 

This work aims to contribute for the understanding of the hydraulic bulge test, 

attempting to establish relationships between variables of the test, in order to improve the 

accuracy of the traditional experimental procedure for determining the stress vs. strain curve, 

but also to the development of new direct and inverse methodologies for simplifying its 

evaluation. It is supported by finite element simulations and experimental results were used 

for validation of methodologies. The main conclusions of this thesis are described next. 

Firstly, a comprehensive analysis of the geometry and variables of test, with particular 

emphasis on anisotropic materials, was performed. This study contemplates materials with 

different anisotropy and hardening coefficient. It was concluded that the geometry of the cap 

is identical for all directions on the sheet plane, whatever the material anisotropy. This allows 

simplifying the use of the general membrane theory equation, since the radius of curvature 

is equal for both orthotropic axis. In contrast, the principal stresses (and strains) at the pole 

of the cap, although equal for both axes in the case of planar isotropy, are different in case 

of planar anisotropy with r0 ≠ r90. The errors associated with the traditionally used approach, 

which considers the principal stresses (and strains) at the pole cap equal for both orthotropic 

axes, were quantified according to the anisotropy of the sheet. Moreover, an equation 

specific of the circular bulge test, that relates the stress path with the strain path at the pole, 

was proposed regardless of the yield criterion describing the anisotropic behaviour of the 

material: (2/1 = (2/1)
-2). This allows to determine the stress path since the strain path is 

known, which can be assessed by digital image correlation. In this context, the generally 

used simplified equation of membrane theory, which consists in assuming equibiaxial stress 
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and strain path, can be overcome and the accuracy of the stress vs. strain curve is greatly 

improved, mainly in case of materials with strong anisotropy. 

Secondly, analytical models are proposed relating the radius of curvature and the sheet 

thickness with the pole bulge height. These models are based in an extensive analysis of 

different material behaviours, as well as different geometries of the bulge test. The analysed 

geometric variables are the bulge die radius and the fillet radius located at the entrance of 

the die. The equations of the models include the geometrical and material variables 

associated with the hardening behaviour and the sheet anisotropy. The evolution of the radius 

of curvature normalised by the die radius depends on the hardening coefficient of the 

material and the die geometry, but it is independent of the yield stress, initial sheet thickness 

and anisotropy of the material. The evolution of the sheet thickness normalized by initial 

sheet thickness is also dependent on the hardening coefficient and the die geometry, but still 

depends on the material anisotropy, while remaining independent of the yield stress and 

initial sheet thickness. The validation of the equations was firstly performed using numerical 

generated results, which shows that the error in the stress vs. strain curves is similar to that 

obtained by traditional procedure by measuring the radius of curvature and principal strain 

values at the pole, which requires the use of specific devices and involve more complex 

analysis. Moreover, experimental validation was performed using results from literature, 

with different bulge geometries, and those obtained in the framework of this thesis, with a 

specific die geometry. 

Finally, an inverse methodology is proposed for determining the hardening law of metal 

sheets, from the results of pressure vs. pole height obtained in the bulge test. This involves 

the identification of the parameters of the Swift law, and complements the above mentioned 

work. The starting point of this analysis was to realize that it is possible to achieve a unified 

description of the evolution of the pressure with the pole height, for a given value of the 

hardening parameter of the Swift law, regardless of the yield stress and anisotropy of the 

material, and sheet thickness. To achieve this, i.e. the overlapping of such curves, appropriate 

multiplying factors must be used for the values of pressure and pole height, depending on 

the yield stresses and thicknesses ratios of the sheets, and also on their anisotropy. 

Thereafter, a forward analysis study on the influence and sensitivity of these parameters on 

the results of pressure with pole height allowed developing the inverse analysis 

methodology. This consists on the search for the best coincidence between pressure vs. pole 
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height experimental and reference curves, the latter being obtained by numerical simulation 

assuming isotropic material behaviour with various values of the hardening parameter in the 

range of the material under study. This methodology, when compared with the classical 

strategy, proves to be an efficient alternative avoiding the use of complex devices for 

measuring the radius of curvature and strain at the pole of the cap, during the bulge test. 

Moreover, it is easy to implement and it is more efficient than classical approach, since it is 

not exposed to experimental errors related to the evaluation of the strain at the pole of the 

bulge and the use of membrane theory approach for assessment of the stress from the radius 

of curvature, which is usually the major source of errors. 

 

4.2. Future Perspectives 

The work contributes to a better definition of issues of the hydraulic bulge test that 

deserve to be further studied, in view of experimental practices and understanding of this 

subject. Some few issues that deserve further research are now suggested. 

The first refers to identically oriented studies, but now relative to elliptical dies, which 

is worth being accomplished, since the low frequency use of these bulge tests is linked to its 

experimental complexity and corresponding analysis. The enhanced complexity of this test 

comes from the fact that radius of curvature differs according to the direction in the plane, 

and the strain and stress paths are not close to symmetrical biaxial, not even in case of 

isotropic materials. 

Secondly, the inverse analysis methodology herein proposed to evaluate the hardening 

law requires to be extended to other hardening laws, besides Swift. The current analysis is 

certainly an important step towards this objective. 

Lastly, the inverse analysis methodology proposed to evaluate the hardening law 

justifies to be assessed in the framework of the latest methodologies for simultaneous 

identification of parameters of constitutive laws, including isotropic and kinematic 

hardening and anisotropic yield criterion. 
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