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Resumo

Na indústria de processos, faz-se permanentemente um esforço considerável para

conseguir alcançar objectivos económicos e, simultaneamente, garantir o cumpri-

mento das especificações de qualidade, das restrições operacionais e da regula-

mentação de segurança e ambiental. O sistema de controlo industrial, composto

por centenas a milhares de anéis de controlo, tem à sua responsabilidade a satis-

fação destes objetivos independentemente do modo de operação da fábrica. Não

obstante, fatores como alterações na composição das matérias-primas e envelhec-

imento, desgaste e incrustações nos equipamentos podem conduzir à degradação

do desempenho dos anéis de controlo mesmo que o seu projeto e comissiona-

mento tenham sido feitos apropriadamente. Portanto, os anéis de controlo in-

dustriais devem ser permanentemente monitorizados e mantidos com recurso a

técnicas e ferramentas automáticas capazes de identificar a degradação do seu

desempenho e as causas-raiz para correção e/ou manutenção apropriadas. A

presente dissertação segue duas direções fundamentais: a monitorização e a mel-

horia de desempenho dos anéis de controlo industriais.

Uma vez que as técnicas em questão baseiam-se na identificação de sistemas,

esta área mereceu especial atenção, com ênfase em duas aplicações em sistemas

típicos no âmbito da Engenharia Química onde são explorados aspectos de im-

plementação. Estas aplicações consideraram um modelo SISO de um permuta-

dor de calor industrial e um modelo MIMO de um CSTR simulado. Os casos de

estudo apresentados cobrem a seleção da estrutura dos modelos, a estimativa de

parâmetros e a abordagem para ultrapassar dificuldades de implementação, num

compromisso entre a capacidade de previsão e a complexidade dos modelos.

A monitorização do desempenho dos anéis de controlo foi estudada com ên-

fase no fenómeno de stiction, a falha mais comum em válvulas de controlo. Foi

desenvolvida uma taxonomia das abordagens existentes, cobrindo mais de 150
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publicações científicas, de modelação, detecção /quantificação e compensação de

stiction. Como a maioria dos métodos de diagnóstico de stiction funcionam bem

apenas quando as oscilações induzidas pela falha são corretamente detetadas,

propõe-se um método de deteção e caracterização de oscilações que revela um de-

sempenho significativamente melhor do que as técnicas descritas na literatura. A

técnica, automática e computacionalmente mais leve, diagnosticou corretamente

conjuntos de dados exigentes contendo ruído e sobreposição de oscilações.

São também propostas nesta tese duas novas abordagens para o diagnóstico

de stiction. A primeira é baseada em otimização numérica e em modelos do pro-

cesso e de stiction. Dado que a modelação de stiction é caracterizada por descon-

tinuidades, é sugerida uma estratégia de suavização para permitir a utilização

de técnicas de otimização contínua. A segunda abordagem estende o trabalho

de Yamashita (2006a) permitindo lidar com processos integradores, como anéis

de controlo de nível. O método proposto transforma os dados de modo a obter

uma relação direta entre a variável controlada e a posição da válvula. O método

foi aplicado com sucesso a dados simulados e industriais. Apesar de ficar ofus-

cado pela presença de ruído, a correta deteção de stiction é possível através do

uso de um filtro.

No que respeita à melhoria do desempenho dos anéis de controlo, investiga-

ram-se duas soluções nesta tese: a sintonização de controladores PID e a utiliza-

ção de sensores inferenciais. Tipicamente, stiction não é considerado explicita-

mente na sintonização dos controladores e os métodos disponíveis geralmente

baseiam-se na adição de sinais específicos à variável manipulada ou de blocos es-

peciais ao algoritmo PID base. Contudo, estas tarefas não são triviais. O método

alternativo proposto requer apenas a ressintonização do controlador. Os parâ-

metros de sintonização são determinados a partir de um problema de otimização

que penaliza quer o desvio entre as variáveis controlada e de referência quer o

movimento da válvula. Novos critérios e restrições de desempenho podem ser

adicionados para definir a resposta desejada em anel fechado. O método foi apli-

cado com sucesso em casos contendo uma válvula saudável e com stiction. O

comportamento em anel fechado foi significativamente melhorado em ambos os

casos reduzindo o movimento de controlo e as oscilações na variável controlada.

Finalmente, a utilização de sensores inferenciais foi abordada como uma forma
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de gerar informação que não está prontamente disponível a partir da instrumen-

tação instalada ou de medições laboratoriais. Esta tese apresenta uma aplicação

considerando o processo de concentração de glicerina. Desenvolve-se um sensor

inferencial para prever a qualidade do produto por forma a minimizar atrasos

das medições e permitir ações de controlo mais atempadas. Procede-se, ainda, a

um estudo comparativo da capacidade de previsão dos vários modelos utilizados

usando dados de treino e de validação.

Palavras-chave: monitorização e melhoria do desempenho de processos industriais,

deteção e diagnóstico de falhas, stiction em válvulas de controlo, sintonização de contro-

ladores PID, tecnologia de sensores inferenciais, aplicações
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Abstract

In process industries, significant efforts are continuously made to achieve eco-

nomic objectives while complying with product quality specifications, constraints

of the operation, safety and environmental regulations. The industrial control

system composed by hundreds to thousands of control loops aims to satisfy these

objectives in all modes of operation of the plant. Nevertheless, some factors such

as raw materials composition changes, aging, wear, fouling, and other modifi-

cations in the equipment may lead to the degradation of the control loop per-

formance even if the initial design and commissioning was properly carried out.

Therefore, industrial control loops should be continuously monitored and main-

tained with automatic techniques and tools capable of identifying control loop

performance degradation and their root causes for proper correction and/or e-

quipment maintenance. The present dissertation follows two fundamental di-

rections: performance monitoring and performance improvement of industrial

control loops.

Since the concerned techniques are based on system identification, their im-

plementation aspects were addressed in two chemical engineering applications.

The applications considered a SISO model of an industrial heat exchanger and a

MIMO model of a simulated CSTR. The case studies present the model structure

selection, the parameter estimation, and the approach to overcome some imple-

mentation difficulties, taking into account a compromise between the prediction

capacity and the model complexity.

The performance monitoring of industrial control loops was studied with a

focus on the stiction phenomenon, the most common control valve fault. A tax-

onomy of existing approaches for the modeling, detection /quantification, and

compensation of stiction was developed covering more than 150 publications.

Most stiction diagnosis methods work well only when stiction induced oscilla-
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tions are clearly detected, making the latter a critical issue. In this context, a new

method of detection and characterization of multiple oscillations was proposed

that has a significantly better performance over existing approaches reported in

the literature. This automatic and computationally light approach successfully

diagnosed challenging datasets containing noise and multiple frequency oscilla-

tions.

Two new approaches for stiction diagnosis were proposed in this thesis. The

first is based on the numerical optimization and on process and stiction models.

Because stiction modeling is characterized by discontinuities, a smoothing ap-

proach was applied to enable the use of continuous optimization techniques. The

second extends the work of Yamashita (2006a) to handle integrating processes,

such as level control loops. The proposed method transforms the dataset in or-

der to obtain a direct relation between the controlled variable and the control

valve position. The method was applied with success to simulated and industrial

datasets. Although the stiction phenomenon gets obfuscated by the noise, correct

stiction detection is possible using proper data filtering.

Regarding control loop performance improvements, two solutions were in-

vestigated in this thesis: the PID controller tuning and the use of soft sensor

technology. Typically, stiction is not considered explicitly in controller tuning

and the available methods usually rely on specially crafted signals added to the

manipulated variable or on the addition of a special block to the nominal PID

algorithm. However, these are not trivial tasks. The proposed alternative method

requires the retuning of the controller only. It determines the tuning parameters

from the solution of an optimization problem whose objective function penalizes

the deviation of the controlled variable from the setpoint and the valve move-

ment. Besides, additional performance criteria and constraints may be added in

order to define the desired closed-loop response. The approach was successfully

applied to two cases with a healthy and a sticky control valve. Furthermore,

the closed-loop behaviour was significantly improved in both cases reducing the

control moves and oscillations in the controlled variable.

Finally, the use of soft sensor technology was also addressed in the present

thesis as a way to generate new information that is not readily available from

on-line instrumentation or laboratory measurements. This thesis provides a case
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study considering the glycerine concentration process. A soft sensor is developed

for the prediction of the final product quality to minimize measurement delays

and enable quick control actions. The prediction capability of several modeling

techniques is compared using training and validation datasets.

Keywords: industrial process performance monitoring and improvement, fault de-

tection and diagnosis, control valve stiction, PID controller tuning, soft sensor technol-

ogy, applications
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Chapter 1

Introduction

This chapter presents the scope, the motivations, and the goals of the research

work and outlines the structure of the thesis.

1.1 Scope and motivation

Industrial processes contain multiple variables such as temperatures, composi-

tions, flow rates, levels, and pressures that have multivariable and nonlinear de-

pendencies and are subject to disturbances. Thus, it is not trivial to operate an

industrial process so that the economic objectives are achieved while complying

with product quality specifications, constraints of the operation, safety and envi-

ronmental regulations in the presence of various variability factors.

The role of an industrial control system is to satisfy the described objectives

during the conversion of the raw materials into the final products. Industrial

control systems may be composed by hundreds to thousands of control loops. A

control loop is an interconnection of several components forming a configuration

that has the goal of influencing the behaviour of process variables in a desired

way. The block diagram in Figure 1.1 shows those components: the sensor, the

controller (usually of proportional-integral-derivative type), the actuator (usu-

ally a control valve), and the process. Being the process the central component

because it contains the characteristic variable that one wants to control (the con-

trolled variable), the remaining components are placed around. Hence, the flow

of the signal is the following: (1) the current controlled variable value is mea-
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∑
Controller Actuator Process

Sensor

�

reference +

-

controlled variable

Figure 1.1: Block diagram showing the components and the signal flow of a con-
trol loop.

sured by the sensor; (2) the control error is calculated as a difference between the

reference and measured signals; (3) the controller uses this error to calculate the

control order to the actuator; (4) the control order is implemented by the actuator

but, for several reasons, the actual position of the actuator may differ from the

order; (5) the process reacts to the actuator action generating a new value for the

controlled variable. These steps are repeated continuously.

In an initial phase, the industrial control system is designed, tuned and im-

plemented in order to guarantee a desirable control loop performance.

Even if these tasks are properly carried out, raw materials composition chan-

ges, aging, wear, fouling, and some other modifications in the equipment may

lead to the degradation of the control system performance after some time in

operation. Therefore, control systems must be monitored and maintained. Tra-

ditionally, the monitoring task is performed by the control and the maintenance

engineers. However, the numerous tasks that engineers are responsible for and

the continuous demand for better product quality, higher productivity, and com-

pliance require that the task of monitoring be accomplished routinely and auto-

matically. This context highlights the importance of techniques and tools capable

of identifying control loop problems and their root causes for proper correction

and/or equipment maintenance.

The most common control loop problems present in industry are intimately

related to the control loop components. Regarding the controller, its initial de-

sign and commissioning is usually performed in order to respond quickly and

appropriately to process load disturbances and setpoint changes. In the common

practice, a standardized design is used in all the controllers and only when the

poor performance is really noticeable, its parametrization is customized. Besides,

the control loop performance may decrease due to changes in process operating
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conditions.

The actuator, also called the final control element, is a critical component.

In the process industries, the most common final control element is the control

valve. Its functioning may deteriorate due to malfunctions such as stiction, back-

lash, and deadband phenomena. In fact, stiction is one of the long-standing prob-

lems causing persistent oscillations and undermining economic performance of

the production assets. Although the definitive solution for a faulty valve is to per-

form maintenance work on the equipment, it is seldom possible to service a crit-

ical valve between turnarounds because of operation and safety considerations.

Although it is rarely applied in practice, valve fault compensation may mitigate

the performance loss until the maintenance is possible. Besides, it may contribute

to the extension of control valves life time and to the reduction of maintenance

costs.

Another fact that does not allow to maintain the maximum economic perfor-

mance is the lack of reliable analyzers that measure key process variables beyond

simple sensors. This may happen either for economical reasons because of the

equipment or maintenance cost or because the measurement device or principle

is not available on the market. Besides, laboratory analysis approaches of de-

termination of key quality variables pose a problem for closed-loop control and

monitoring because of the typical large delays between the sampling instant and

the moment the lab result is ready. The inference of these variables via soft sens-

ing may potentially provide additional process knowledge at a moderate invest-

ment.

All these aspects are resumed in Figure 1.2 where a control loop is monitored

by using its data stored in a database and improvements are available to apply in

the control loop components performing with low performance. It is noteworthy

that although advanced process control is out of this thesis scope, it may be used

to improve the process performance by changing automatically the operational

conditions imposed by the reference value (and that are usually defined manually

by the control engineer).

In this context, this thesis in the area of control loop performance monitoring

and improvement aims to contribute to the optimization of the economic perfor-

mance of industrial plants worldwide.

3
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Figure 1.2: Process improvement based on control loop performance monitoring.

1.2 Goals

The overall goal of this thesis is to address a real need of the majority of pro-

cess companies in the field of Process Supervision. This work covers areas such

as real-time production monitoring, Proportional-Integral-Derivative type con-

troller tuning, and soft sensor technology.

Based on the motivating considerations described in Section 1.1, the following

goals were defined as targets to be accomplished in the present thesis:

• To review and develop system identification strategies fundamental in the

development of methods in areas of monitoring and improvement of con-

trol loops performance.

• To review and systematize the current status of methods for the monitoring

and improvement of control loops performance providing an insight into

the assumptions and limitations of the main methods.

• To improve existent approaches for the detection of poor performance and

the diagnosis of the underlying root causes;

• To improve existent PID controller tuning techniques to take into consid-

eration aspects of poor performance such as weak controllers tuning and
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problematic actuators;

• To contribute to broaden the use of soft sensors technology by identifying

possible industrial application scenarios.

1.3 Overview

This thesis deals with the monitoring and improvement of the control loop per-

formance in a context of large process plants. The present thesis structure is

shown in Figure 1.3.

Chapter 2 concerns key system identification aspects that are used in the re-

maining chapters. Particularly, the closed-loop identification is addressed and its

basic steps are outlined. In addition, techniques related to the model structure

selection, parameter estimation, and the model validation are explored. Based

on it, a comparison of commonly used model structures is performed and a hy-

brid modeling approach is presented as a means to obtain a compromise between

model quality and computational burden.

Chapter 3 presents a review of the existing control loop performance mon-

itoring methods, ranging from poor performance detection, disturbances type

and specific malfunctions diagnosis to the performance improvements. A new

method for the detection and characterization of multiple oscillations in indus-

trial signals is proposed. Additionally, poor performance in control valves caused

by stiction is addressed in two ways. First, a systematic taxonomy of the existing

contributions, covering modeling, detection/quantification, and compensation

of stiction is provided. Second, two new approaches for valve stiction detection

are proposed.

In Chapter 4, the tuning of PID controllers is addressed as a strategy for per-

formance optimization. Firstly, an introduction to PID control is given with a

focus on the basic algorithm, the digital computer implementation, the PID con-

troller parameters determination contemplating single and multiple loops, and

the tuning methods automation. Then, a new optimization based method is pro-

posed that considers the actuator problem explicitly in the tuning process.

In Chapter 5, the soft sensor technology is also addressed as a tool to improve

the performance of an industrial control loop. Here, an overview of the tech-
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Figure 1.3: Thesis organization and overview.
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niques used for soft sensor development and use is provided. In a case study, a

soft sensor is developed for an industrial process in order to avoid measurement

delays, to monitor the process in real-time, and to enable quick control actions.

Finally, Chapter 6 contains the main conclusions and contributions of the

present thesis and outlines future work directions.
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Chapter 2

System Identification

Various key factors associated with system identification are presented, partic-

ularly the closed-loop identification approaches as well as techniques related to

the model structure selection, the parameter estimation, and the model valida-

tion. Two case studies cover applications to both a SISO and a MIMO systems

and compare different model structures. Additionally, a hybrid strategy to cope

with computationally heavy iterative calculations in the context of biodiesel in-

dustry is also proposed.

2.1 Definition

A mathematical model is a representation of a real system that allows to predict

its behaviour in different scenarios. Model development should result in a com-

promise between realism and simplicity, i.e., the model should incorporate most

of the real system significant features yet should not be so complex, difficult or

even impossible to understand or experiment with (Maria, 1997). Besides, the

number of model parameters should be carefully chosen so that it is possible to

identify them with the existing measurements.

System identification is a term coined by Zadeh (1956) that deals with the

construction of mathematical models based on the experimental observation of

the system response to some stimuli. Its use is widespread across all engineering

fields, from aerospace, to civil or health industries (Klein and Morelli, 2006; Pan,

2007; Eren-Oruklu et al., 2012). In the manufacturing and process industries, it is
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G
u y

open-loop system

C G
r u y

closed-loop system

Figure 2.1: Block diagrams for open- and closed-loop systems, where u is the
system input, y is the system output, r is the setpoint signal, C is the controller
dynamics, and G is the system dynamics.

commonly used to obtain models for control purposes.

2.2 State-of-the-art

This section contains a general overview of the most important ideas and devel-

opments on system identification.

2.2.1 Closed-loop identification

The identification of systems may be performed using data from open- or closed-

loop systems (Figure 2.1). Closed-loop identification is defined as the identifica-

tion of the open-loop system dynamics while the controller tracks the reference

signal (Söderström and Stoica, 1989; Ljung, 1999; Bakke, 2009). The advantages

of closed-loop experiments are the fact that the control loop may remain in auto

during the identification experiment, the presence of controllers may possibly

linearise a non-linear plant behaviour around a relevant operating point help-

ing to achieve accurate linear modelling, and the possibility of performing the

identification while keeping the plant within safety and production limits. Some

systems, such as biological and economic systems, require closed-loop identifi-

cation because they contain feedback loops that may not be removed or opened.

And, in some industrial systems, the open-loop dynamics may be unstable or so

poorly damped that no identification experiment may be performed. However,

there are some problems with the closed-loop identification that are not present in

the open-loop case. For instance, the controller tuning may affect the information

content of the data, even with the excitation persistence of the controller output.

Also, the correlation between disturbances and input data as a consequence of

10
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the feedback mechanism may compromise the estimation of the open-loop char-

acteristics (Bakke, 2009).

When the control loop is closed, three common strategies are applied in or-

der to estimate the open-loop characteristics: the direct, the indirect, and the joint

input-output approaches (Forssell and Ljung, 1997, 1999; Forssell, 1999). Closed-

loop identification using the direct approach consists of ignoring the feedback

loop and performing the estimation using the inputs and output signals. The in-

direct approach assumes the controller model knowledge and uses the reference

and the output signals to estimate the plant model. Finally, the joint input-output

approach uses the three variables without other knowledge to perform the identi-

fication. It views the closed-loop system as a system with one input (the reference

signal, r) and two outputs (the input signal, u, and the output, y, signals) with the

following transfer functions

Gry(s) =
GC

1 +GC
, (2.1)

Gru(s) =
C

1 +GC
, (2.2)

obtaining G from

G =
Gry

Gru

. (2.3)

The direct approach is undoubtedly the simplest because it does not require

the knowledge of the controller type and mode (open-loop, feedback, or feed-

forward). The indirect approach requires a linear time-invariant controller and

is strongly affected by non-linearities such as constraints and anti-reset windup.

In addition, the estimates are often of higher order and some model reduction

procedure may be needed. The joint input-output approach contains practical

difficulty related to pole cancellation. In fact, although the denominators of Gry

and Gru are theoretically equal and should cancel out when performing the G

calculation, the presence of even small estimation errors ofGry andGru may result

in wrong system identification.

Several works assess the published system identification approaches using

explicit criteria, such as bias and variance (Hof and Schrama, 1995; Van den Hof,

1998).
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Figure 2.2: Amplitude modulated pseudo-random binary signal.

2.2.2 Fundamental steps

Identification is an iterative process that comprises the following four fundamen-

tal steps: data acquisition, selection of the model structure, parameter estimation,

and model validation (Ikonen and Najim, 2001).

The acquisition of experimental data is a very important step that determines

the information content in the data within the limits imposed by the process.

The interval between consecutive samples (commonly referred as sampling pe-

riod) must be small enough so that the significant process information is not lost.

The collected signals must result from a persistently excited system to guarantee

sufficient dynamical information (Ikonen and Najim, 2001). This is specially im-

portant in more complex high-order dynamic processes that usually are mildly

perturbed around a nominal operation point resulting in insufficient information

about the process non-linearity (Abonyi et al., 2000). The choice of the excitation

signal is important for the achieved model quality. For instance, the amplitude

modulated pseudo-random binary signal mentioned by (Deflorian and Zaglauer,

2011) is a periodic deterministic signal with amplitude values as free design pa-

rameters. It may be understood as a sequence of step functions defined by several

design points di ∈ [umin, umax] and the dwell times Th,i (Figure 2.2). In indus-

trial practice, this signal may be not feasible because input variables jumps may

lead to unsafe operating conditions (Ikonen and Najim, 2001). As an alternative,

Deflorian and Zaglauer (2011) suggest to use ramps with a defined maximum

allowable slope instead of jumps. In general, the acquired data needs some con-

ditioning such as scaling and normalization to uniformize the magnitudes of the

variables and filtering to remove noise. The data conditioning has very signifi-

cant effects for multivariable systems (Ikonen and Najim, 2001).
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The definition of the model structure starts with the selection of its inputs, out-

puts and internal components. This choice is a compromise between the accuracy

of the predictions and the model complexity. The first- or second-order linear

models are adequate in many cases and, consequently, are the first candidates.

After the model parameters are determined in the parameter estimation phase,

the goodness of the obtained model is assessed in the model validation phase.

The validation methods verify model properties such as the fit accuracy, the gen-

eralization capability, and the computational efficiency. The selected model struc-

ture and their parameters may be readjusted in the model validation phase if its

quality is not satisfactory (Ikonen and Najim, 2001).

2.2.3 Selection of the model structure

It should be noted that the model structure, complexity, and quality depend on

its intended use. In most cases, it is desirable to use the simplest possible model

form as long as it is capable of capturing the most important steady-state and

dynamic characteristics of the process (Liu and Gao, 2011).

Process models may have various applications such as process design, control,

optimization, or fault detection (Ikonen and Najim, 2001). For all these purposes,

it formalizes the knowledge about the chemical and physical phenomena taking

place in the process.

In process design, mathematical models may be a safe and inexpensive re-

placement for experiments on real processes. They may also help in the scale-up

and process intensification. In process control, process model are used to predict

the output variable to determine the optimal control moves. Besides, PID con-

troller tuning requires a mathematical model of the process (Åström and Häg-

glund, 2006). In process optimization, the model may be used for simulating the

process behaviour in different operating conditions. It may also be used within

a numerical optimizer in order to meet specific plant objectives. In this context,

the model may integrate the operator decision support system or be used to the

personnel training. In fault detection, anomalies of the plant may be continu-

ously monitored by comparing the model prediction with the measured vari-

ables. Other application is the monitoring of variables that are not directly avail-

able through existing measurements or are subject to long measurement delays.
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These models are also called soft sensors.

Several approaches and techniques are available for deriving mathematical

models. Standard approaches include first-principle modeling and black-box

modeling (Ikonen and Najim, 2001). The first-principle (or mechanistic) model-

ing involves the use of physical laws and relationships that determine the system

behaviour. The model structure incorporates all physical insight about the pro-

cess and its variables and parameters have physical interpretation. This direct

modelling may often be impossible because the knowledge of the system is in-

complete, or because the system properties may change in an unpredictable way.

Besides, this type of modelling may be very time consuming and may lead to

unnecessarily complex models (Ikonen and Najim, 2001). For these reasons, the

most common approach used in identification is the black-box (or experimental)

in which the models are obtained with no a priori information available. Instead,

the functional form of relations between the inputs and outputs and the values of

parameters are determined from the experimental data (Ikonen and Najim, 2001).

Finally, the grey-box approach utilizes physical insight into the observed system

but with lesser complexity than that of the first-principle approach (Ikonen and

Najim, 2001).

A typical modelling approach is the use of linear relationships among the

model variables. Such models are simple, flexible, robust, and efficient variables.

In what concerns linear systems, if they present an explicit dependence on time,

they are called linear time variant. A model that is linear and does not depend

explicitly on time is said a linear time invariant model, usually abbreviated as LTI

model (Ljung, 1999).

Although linear models are the most common way of describing a dynamical

system, it is often needed to employ more complex descriptions because most

industrial processes are non-linear (Ikonen and Najim, 2001).

Some of the modelling methodologies that fall into the aforementioned cate-

gories are depicted in Figure 2.3 and described in the following subsections.

� Finite impulse response models

In linear time-invariant stable processes, the dynamics is uniquely characterized

by the impulse response that will tend to zero along time. This is the base of finite
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Models

Linear

Finite impulse response

Linear time-series

Linear transfer-function

Linear state-space

Non-linear

Non-linear state-space

Non-linear time-series

Block-oriented

Artificial neural networks

Figure 2.3: Classification of models by their linearity.

impulse response (FIR) models (also designated by Markov parameter models).

The FIR model of a single input single-output process is given by

y(t/∆t) =

nθ∑

k=1

θ(k) u(t/∆t− k) + ε(t/∆t) + d(t/∆t) , (2.4)

where θ(k) are the model parameters, u(t/∆t−k) the input variable at time t/∆t−k,

ε(t/∆t) the model residual, d(t/∆t) the process disturbance, and nθ the truncation

number. In the matrix form for all the horizon, it is possible write that

y = Φ θ + ε+ d , (2.5)

where y ∈ RN×1 is the output variable prediction, Φ ∈ RN×nθ is a Hankel matrix

containing the input variable, θ ∈ Rnθ×1 is the parameter vector, ε ∈ RN×1 is the

model residual, d ∈ RN×1 is the process disturbance (white or coloured noise),

and N is the number of points to be predicted (Zhu, 2001; Ikonen and Najim,

2001; Dayal and MacGregor, 1996).

In cases where the noise is coloured, the process disturbance model may be si-

multaneously identified with the FIR model. The choice of the disturbance model

structure may be critical. However, Ljung (1999) proved that FIR models will
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converge to the correct solution even in the case of coloured open-loop data and

stationary disturbances (Dayal and MacGregor, 1996).

FIR models are advantageous because they require little prior knowledge of

the process (such as the model order and structure) and its estimates are statisti-

cally unbiased (the estimation expectation equals the true value) and consistent

(the estimate tends to the true value when the number of samples tends to in-

finity). However, they may not model unstable processes and they often require

a very high truncation number which increases the number of parameters to be

estimated (Zhu, 2001; Ikonen and Najim, 2001).

� Time series models

Although there are numerous time series model structures, the most commonly

used in practice are the linear black-box structures that are variants of a general-

ized model proposed by (Ljung, 1999, Equation 4.34) and given by

A(q) y(t) = q−τ
B(q)

F (q)
u(t) +

C(q)

D(q)
ξ(t) , (2.6)

where y(t) and u(t) are the process output and input, respectively, ξ(t) is the sys-

tem disturbance (usually assumed to be noise identically distributed with zero

mean and finite variance), and τ ≥ 1 is the time delay of the discretized process

expressed as an integer multiple of the sampling time ∆t added with the unity,

that is,

τ =
θ

∆t
+ 1 . (2.7)

The polynomial functionsA(q),B(q),C(q),D(q), andF (q) are polynomials1 defin-

ing deterministic and stochastic parts of the system and are given by

A(q) =
∞∑

i=1

ai q
−i (2.8)

B(q) = b0 +
∞∑

i=1

bi q
−i , (2.9)

1The backwards-shift (or unit delay) operator q is defined as q−nf(k) = f(k − n).
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C(q) = 1 +
∞∑

i=1

ci q
−i (2.10)

D(q) = 1 +
∞∑

i=1

di q
−i (2.11)

F (q) = 1 +
∞∑

i=1

fi q
−i , (2.12)

usually approximated by

A(q) =

NA∑

i=1

ai q
−i (2.13)

B(q) = b0 +

NB∑

i=1

bi q
−i (2.14)

C(q) = 1 +

NC∑

i=1

ci q
−i (2.15)

D(q) = 1 +

ND∑

i=1

di q
−i (2.16)

F (q) = 1 +

NF∑

i=1

fi q
−i , (2.17)

where NA, NB, NC , ND and NF are polynomial orders.

Different models may be obtained from this structure. The auto-regressive

(AR) and the moving-average (MA) models are the simplest forms of time series.

The AR model form is defined by

A(q) y(t) = ξ(t) . (2.18)

Figure 2.4 depicts the signal flow of the model.

In contrast, the moving-average (MA) model has the form

y(t) = C(q) ξ(t) . (2.19)
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A−1

+

ξ

y

Figure 2.4: AR model structure.

When AR and MA representations are combined, it results the auto-regressive

moving-average (ARMA) model that may be represented using the general form

A(q) y(t) = C(q) ξ(t) .

In a control context, the input variable influences the process behaviour. To

include these exogenous inputs to the system in a time series model the later

model may be extended to

A(q) y(t) = q−τ B(q) u(t) + C ξ(t) . (2.20)

This form is called as auto-regressive moving-average with exogenous input (AR-

MAX) model.

Sung et al. (2009) refer that the most used forms in process systems engineer-

ing are the auto-regressive exogenous (ARX) model and the output error (OE)

model. Derived from the generalized model (2.6), the ARX model is defined as

A(q) y(t) = q−τB(q) u(t) + ξ(t) . (2.21)

Using the ARX model, the output variable y(t) may be predicted only one step

ahead because its estimation depends on the past process outputs.

The OE model has the following structure:

y(t) = q−τ
B(q)

F (q)
u(t) + ξ(t) . (2.22)
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Figure 2.5: ARX model structure.

+BF−1

ξ

u y

Figure 2.6: OE model structure.

Figure 2.6 shows the signal flow of this model. Because the determination of y(t)

at the current time depends exclusively on the past model output, it is possible to

estimate the model output in the future if the process inputs are known.

Another form frequently mentioned in literature is the Box-Jenkins model that

is structured as

y(t) = q−τ
B(q)

F (q)
u(t) +

C(q)

D(q)
ξ(t) . (2.23)

Its signal flow is depicted in Figure 2.7.

� Transfer-function models

Dynamic models derived from physical principles typically consist of one or

more ordinary differential equations (ODE). Therefore, this kind of equations

are also good candidate models for system identification purposes. The first-

order (FO), first-order with time delay, and second-order (SO) models are very

useful to design and implement process controllers.
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CD−1

+BF−1
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u y

Figure 2.7: Box-Jenkins model structure.

The first-order (FO) model is defined as

τ ẏ∗(t) + y∗(t) = Kp u
∗(t) , (2.24)

where y∗ and u∗ are the output observed variable and the input variable, respec-

tively, both expressed via deviation variables, Kp is the static gain and τ is the

time constant. The deviation variables y∗ and u∗ are related to the original vari-

ables y and u through a simple translation of the initial steady-state ȳ and ū, re-

spectively, that is,

y∗ = y − ȳ (2.25)

and

u∗ = u− ū. (2.26)

The static gain, Kp, represents how much the process output changes, from one

steady-state to another for a unitary variation of the process input while the time

constant, τ , represents how fast the process responds to a change in the process

input.

The second-order (SO) model is mathematically described by

ÿ∗(t) + 2ξω ẏ∗(t) + ω2 y∗ = Kp ω
2u∗(t) , (2.27)

where ξ is the damping factor that determines the oscillatory behaviour of the

system, ω is the undamped natural frequency, and Kp is the gain of the system.

In simple processes, each output variable depends essentially on a single in-

put variable. They can be seen as single-input single-output (SISO) systems. How-
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ever, a large class of processes exhibits interaction among variables, i.e., each out-

put variable is dependent on a subset of the input variables. These latter pro-

cesses are regarded as multiple-input multiple-output (MIMO) systems. The com-

mon industrial practice is to assume that there is no interaction between different

control loops or to design controllers in a way that weakens the interaction. How-

ever, such approaches may result in suboptimal plant performance. Therefore,

multivariable controller tuning and, thus, the multivariable system identification

which is the subject of this work, have a big practical importance.

� State-space models

State-space models provide a compact and useful representation of a set of linear

ODEs and can be generally written as

ẋ(t) = A x(t) + B u(t)

y(t) = C x(t) + E u(t)
, (2.28)

where x(t) is the state vector, u(t) is the input variables vector, y(t) is the output

vector of observed variables, and parameters A, B, C, and E are constant ma-

trices of sizes nx × nx, nx × nu, ny × nx and ny × nu, respectively. Typically, the

observed variables are a subset of the state variables or a linear combination of

them (Seborg et al., 2010) and thus E is the null matrix in such a case.

System (2.28) may accommodate linear first-order ODEs directly and higher

order equations after a pre-treatment step in which higher order dynamics is rep-

resented by a set of first-order equations (Guillet et al., 2011; Salimbahrami and

Lohmann, 2006). In the particular case of a second-order MIMO system, given in

the form
M z̈(t) + D ż(t) + K z(t) = F u(t)

y(t) = H z(t)
, (2.29)

where z ∈ Rnz and M, D, K (∈ Rnz×nz ), F (∈ Rnz×nu), H (∈ Rny×nz ) are constant
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matrices, it is possible to write equivalently that

[
I 0

0 M

] [
ż(t)

z̈(t)

]
=

[
0 I

−K −D

] [
z(t)

ż(t)

]
+

[
0

F

]
u(t)

y(t) =
[
H 0

] [z(t)

ż(t)

] , (2.30)

where I and 0 represent the identity matrix and the zero matrix of appropriate

sizes, respectively. Therefore,

[
ż(t)

z̈(t)

]

︸ ︷︷ ︸
ẋ(t)

=

[
0 I

−M−1K −M−1D

]

︸ ︷︷ ︸
A

[
z(t)

ż(t)

]

︸ ︷︷ ︸
x(t)

+

[
0

M−1F

]

︸ ︷︷ ︸
B

u(t)

y(t) =
[
H 0

]

︸ ︷︷ ︸
C

[
z(t)

ż(t)

]

︸ ︷︷ ︸
x(t)

, (2.31)

as explained by Brásio et al. (2012).

� Non-linear state-space models

Non-linear state-space models are represented in the form

ẋ(t) = f(x(t), u(t), w(t), θ) (2.32)

y(t) = h(x(t), u(t), v(t), θ) , (2.33)

where w(t) and v(t) are disturbances assumed to be of known form (e.g., Gaus-

sian), θ is the vector of unknown parameters, and f(·) and h(·) are non-linear

functions (Ljung, 1999).

� Non-linear time series models

Non-linear time series models extend the linear time series models to the non-

linear case. Considering an ARX model, the respective non-linear ARX model

has the structure

y(t) = f(ϕ(t), θ) + ξ(t) , (2.34)
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N Lu y

L Nu y

L N Lu y

N L Nu y

Figure 2.8: Block-oriented non-linear models. First line: Hammerstein model,
second line: Wiener model, third line: Wiener-Hammerstein model, forth line:
Hammerstein-Wiener model.

where the function f(·) is a flexible non-linearity estimator with parameters that

do not need to have physical significance (Lyzell, 2009, Section 3.2.3).

� Block-oriented models

Simple structures may be constructed through the block-oriented models (Ljung,

1999), where each of them represent an individualized part of the whole sys-

tem. The block-oriented models are connections of static (memoryless) non-linear

function blocks to dynamical linear blocks. The simplest model consists in putting

a non-linear gain before a linear block. This scheme is commonly called as Ham-

merstein model or N − L model, where N stands for non-linear operator and

L linear operator. When reversing the order of the blocks, it results a structure

called Wiener model or L − N model. More complex block-oriented configura-

tions, as shown in Figure 2.8, may provided useful structures for modelling the

non-linearities present in a system.

� Artificial neural networks

Artificial neural networks are used in many engineering applications for pre-

dicting variables of complex systems (Haykin, 1998; Chaturvedi, 2008; Du et al.,
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2011). Their use allows the simulation of physical phenomena without explicit

mechanistic formulation to describe the relationships between the variables (Du

et al., 2011).

Feedforward back-propagation are the simplest and the most used type of

neural networks that are typically composed by three layer types of neurons or

nodes (one input layer, one or more intermediate layers and one output layer).

They are considered static because their outputs depend only on the current input

variables and constants. The absence of further information (feedback) ensures

the stability of the model (Chaturvedi, 2008).

The number of intermediate layers can vary increasing the prediction capacity

of the network, which proves particularly useful in problems with a large num-

ber of input variables. However, an increase in the number of these layers also

contributes to the over-training of the network due to the large number of param-

eters to determine, that is, it can lead to the over-fitting of the network (Bishop,

1995; Chaturvedi, 2008), apart from increasing exponentially its learning time.

Intermediate and output neurons are structured by an aggregate function and

an activation function. Commonly, the sum function is used as an aggregation

function in the neural networks structure. Regarding the activation function,

the most common are the linear, the sigmoid and the hyperbolic tangent func-

tions (Chaturvedi, 2008). Usually, the hyperbolic tangent and the linear function

are chosen for intermediate and output layers.

Each neuron is directly connected to the neurons of the adjacent layers. Each

link is assigned a weight that represents the degree of relationship between the

two neurons involved. Mathematically, one can write (Bishop, 1995; Chaturvedi,

2008)

Ij = fI

(
nX∑

i=1

wij ·Xi + θj

)
, j = 1, . . . , nI (2.35)

and

Yk = fY

(
nI∑

j=1

Wjk · Ij + Γk

)
, k = 1, . . . , nY , (2.36)

where nX is the number of input neurons, nI is the number of intermediate neu-

rons, nY is the number of output neurons, Xi is the input neuron i, Ij is the in-

termediate neuron j, Yk is the output neuron k, wij is the weight of the input
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neuron i relatively to the intermediate neuron j, Wjk is the weight of the interme-

diate neuron j relatively to the output neuron k, θj is the bias of the intermediate

neuron j, Γk is the bias of the output neuron k, fI(·) is the activation function of

the intermediate neurons and fY(·) is the activation function of the output neu-

rons.

The activation function fI(·) is usually defined through the hyperbolic tangent

since it allows a faster convergence of the training algorithm (Bishop, 1995). As

for the activation function to the output layer, fY(·), it is generally a linear func-

tion (Chaturvedi, 2008). Mathematically,

Hyperbolic tangent : fI(z) =
ez − e−z

ez + e−z
, −1 < fI < 1 (2.37)

Linear : fY(z) = z , −∞ < fY <∞ (2.38)

where z is a generic variable.

In a typical configuration, the continuous and differentiable function with pre-

dictive objectives which is generated by the neural network is defined in the vec-

torial form by

Y (P ,X) = W · tanh(w> ·X + θ) + Γ , (2.39)

where P represents the set of matrix parameters w ∈ RnX×nI , W ∈ RnY×nI , θ ∈
RnI×1 and Γ ∈ RnY×1; X ∈ RnX×1 represents the vector of input neurons and

Y ∈ RnY×1 the vector of output neurons.

Considering a dataset with m points {(X1, Y1), . . . , (Xi, Yi), . . . , (Xm, Ym)},

the neural network training is the process of determination of the parameters

so that, for the input Xi, the estimate of the output variables Ŷi should match as

close as possible the valuesYi (Yegnanarayana, 2004). Such optimization problem

corresponds to the minimization of the average square error (MSE), that is,

min
P

F (P ) =
1

m

m∑

i=1

e>i ei ,

where ei = Yi − Ŷi(P ,X). The Levenberg-Marquardt algorithm is commonly

used to solve this problem because of its high performance and robustness even

in cases of strong ill-conditioned problems (Sjöberg, 2005).
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2.2.4 Parameter estimation

Parameter estimation is the process of computing efficiently numerical values for

the parameters of a known mathematical model of observations with the appro-

priate tools (Beck and Arnold, 1977; Zhang, 1997). Usually, it is seen as an opti-

mization problem which minimizes a cost function consisting of a sum of squared

prediction errors (Ikonen and Najim, 2001).

Parameter estimation has a long history in deterministic methods in the sense

that no statistical assumptions are made with respect to the observations errors

in the measured parameters. For instance, the gradient-based methods are domi-

nant because they have shown to be efficient in practice. Their main disadvantage

is that they may get stuck in local minima of the cost function. These methods

consider that errors in the observations are absent what has motivated the de-

velopment of statistical parameter estimation methods (Beck and Arnold, 1977),

although the practical implementations are often inefficient (Ikonen and Najim,

2001) and complex.

� Least squares method

Developed by Karl Gauss when he was trying to characterize the motions of plan-

ets and comets using telescopic measurements, the least squares method is essen-

tial in systems and control engineering (Ikonen and Najim, 2001). Considering a

linear regression model with the form

y = Φθ + ξ , (2.40)

where θ is the column vector of parameters to be estimated, y is the column vec-

tor of observations, Φ is the matrix of plant measurements, and ξ is the column

vector of system noise. The method obtains the estimate θ̂ of the model parame-

ters θ that minimizes the sum of the squared residuals defined as

J(θ) =
1

N
(y −Φθ)>α(y −Φθ) , (2.41)

whereN is the number of observations andα is the weighting factors matrix. For

the ordinary least-squared method, the weighting factors matrix is the identity
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matrix, while for weighted least squares method the elements of the diagonal as-

sume values different of ones. In a more compact form, the least squares method

is represented by

θ̂ =
[
Φ>Φ

]−1
Φ>y , (2.42)

where the Hessian matrix, H = Φ>Φ, must be positive definite.

Hence, a linear regression model

ŷ = Φθ̂ , (2.43)

is identified.

� Numerical optimization

Numerical optimization is a very used tool to find the parameters of a given

model. Mathematically, optimization is the minimization or maximization of a

function subject to constraints on its variables. In the context of parameter esti-

mation, the optimization problem may be written as

minimize
θ

J(θ) (2.44a)

subject to

ci(θ) = 0, i ∈ E (2.44b)

ci(θ) ≥ 0, i ∈ I, (2.44c)

where J denotes the objective function, θ is the model parameter vector to be

estimated, and ci are the vector of constraints that the parameters must satisfy.

A good numerical optimization algorithm should be robust, efficient, and ac-

curate. The robustness of an algorithm is defined by its capacity to perform well

on a wide variety of problems for different and reasonable choices of the initial

values of the variables. An algorithm must also be efficient not requiring too

much computer time or storage. And an accurate algorithm identifies with preci-

sion the solution without being overly sensitive to errors in the data. These goals

may be very conflictive because, for instance, a rapidly convergent method may

require too much storage on large problems or a robust algorithm may be too

slow.
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Optimization algorithms begin with an initial guess of the optimal values of

the parameters θn and generate improved estimates θn+1 until a set of parameters

that allows a satisfactory representation of the system behaviour is found. The

strategy used to move from one iteration to the next distinguishes the different

algorithms. The two fundamental iterative strategies for moving the iterations are

the line search and the trust region. In both iterative strategies, the next iteration

is given by

θn+1 = θn + αn dn (2.45)

where αn is the step length and dn is the search direction. In the line search strat-

egy, the algorithm fixes a direction dn and then searches the appropriate distance

αn to move along solving the minimization problem

minimize
αn>0

J(θn + αndn). (2.46a)

Because the exact minimization is very expensive, the line search strategy gener-

ates a limited number of trial step lengths and finds one with the lower objective

function value. In opposition, in the trust region strategy, a region with radius

αn is firstly defined and a candidate for the direction dn is obtained solving the

problem

minimize
dn

J̃(θn + dn), (2.47a)

where J̃ is a linear approximation of the actual objective function J with similar

behaviour near the current point θn. The trust region is usually a ball defined by

the condition ||dn||2 ≤ ∆n, with ∆n > 0. The new θn+1 = θn+dn must lie inside this

trust region. When the candidate solution does not produce a sufficient decrease

in the objective function, it means that the trust region is too large and must be

shrunk reducing ∆n and the sub-problem is then re-solved.

Newton method

The Newton method, also called Newton-Raphson method, is a very known

approach used to find the roots of a function. As reviewed by Nocedal and

Wright (1999) and Stewart (2010), consider the tangent line to a given point

(θn, J(pn)). The idea behind the Newton method is that the x-axis intercept
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of the tangent θn+1 is close to the root and may be calculated through

θn+1 = θn −
J(θn)

∇J(θn)
, (2.48)

where ∇J(θn) is the gradient of the objective function. This equation may

be reformulated for the line search iterative strategy as

θn+1 = θn + αndn (2.49)

dn = −B−1
n · ∇J(θn) , (2.50)

where Bn = ∇2J(θn) is the exact Hessian. The Newton method is very sim-

ple to apply and has a good local quadratic convergence. However, it is not

guaranteed that it will converge when the initial estimate of the parameters

is too far from the exact root. Also, convergence problems may occur when

the tangent line becomes parallel to the x-axis.

Gauss-Newton algorithm

The Gauss-Newton method is an algorithm to minimize non-linear objec-

tive functions exploiting the structure of the Jacobian. Reviewed by Dennis

and Schnabel (1983); Nocedal and Wright (1999), the method consists in a

modification of the Newton method with line search that approximates the

exact Hessian usually calculated through

∇2J(θn) = Jac(θn)>Jac(θn) +
m∑

j=1

rj(pn)∇2rj(pn) , (2.51)

by

∇2y(pn) ≈ Jac(θn)>Jac(θn) , (2.52)

where Jac(θn) is the Jacobian and rj(pn) are the residuals.

This approximation is advantageous because the exact second derivatives

may sometimes be challenging to compute. Besides, this term is, in some

situations, much more significant. For zero-residual problems, the method

is local and quadratically convergent. And for problems that have reason-

ably small residuals, it is quick and locally convergent. On the contrary,
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the Gauss-Newton is slow, local and linearly convergent on problems that

are very non-linear or have reasonably large residuals. It also suffers from

occasional non-convergence if the Jacobian does not have full column rank.

Levenberg-Marquardt method

The Levenberg-Marquardt method, also known as the damped least squares

method, locates the minimum of a function expressed as the sum of squares

of non-linear real-valued functions as reviewed by Levenberg (1944); No-

cedal and Wright (1999). Consisting in a linear combination of the steepest

descent and the Gauss-Newton method, it has become a standard method

for non-linear least squares problems widely adopted in several subjects.

While the Gauss-Newton method is a modified Newton method using line

search, the Levenberg-Marquardt method is derived by replacing the line

search with the trust region iterative strategy. The usage of this strategy

avoids the disadvantage of the Gauss-Newton method related to the cases

which are rank-deficients or nearly so.

For a spherical trust region of radius ∆n and considering the linear function

J̃n that approximates the actual objective function J with similar behaviour

near the current point θn, the Levenberg-Marquardt method solves in each

iteration the following problem

minimize
dn

1

2
||Jac(θn) dn + rn||2 (2.53a)

subject to

||dn|| ≤ ∆n, (2.53b)

where || · || is the Euclidean norm.

The algorithm combines the advantage of the steepest descent method re-

lated to the operating stability with the accelerated convergence in the min-

imum vicinity of the Newton method. However, there are also two impor-

tant disadvantages. Firstly, the initial estimates of the model parameters

must be close (within one order of magnitude) to the true values in un-

favourable cases. Secondly, the method does not deal very well with physi-

cal bounds imposed on model parameters resulting in infeasibility.
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� Bayesian method

The classical approach to estimate parameters assumes an unknown but objec-

tively fixed parameter θ. Instead, the Bayesian approach (Box and Tiao, 1973;

Bolstad, 2004; Nielsen, 2009) to parameter estimation uses probabilities to rep-

resent the uncertainty fixing the data and assuming several values for θ. The

Bayesian method uses distribution models to estimate parameters.

Consider the dataset d from which the parameters θ will be estimated. The

Bayes rule used in the Bayesian method is fundamentally composed by four dis-

tributions:

• the posterior probability distribution: the probability distribution of a par-

ticular set of parameters is given by the observed data, P (θ|d);

• the likelihood function or sampling distribution: the probability distribu-

tion that a given set of parameters would have generated the observed data,

P (d|θ);

• the prior probability distribution over θ: the probability distribution that

contains the knowledge of the unknown parameters before any data have

been observed, P (θ); and

• the evidence distribution: being independent of parameters, it measures the

probability that a particular realization is observed, P (d).

In the Bayesian method, parameter estimation means seeking the posterior

distribution through the usage of the Bayes theorem

P (θ|d) =
P (d|θ) P (θ)

P (d)
, (2.54)

incorporating considerable statistical information in form of the likelihood, the

prior and the evidence distributions. Since the evidence is independent of the

parameters, the Bayes theorem is often written as

P (θ|d) ∝ P (d|θ) P (θ) . (2.55)

Then the posterior distribution may be employed in the context of various esti-

mation criteria, such as the minimum mean square error (MMSE) estimation or
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the maximum a posteriori (MAP) estimation. The Bayesian estimator under the

MMSE criterion is given by

θ̂MMSE = E(θ|d) (2.56)

=

∫

θ

θ · P (θ|d) dθ , (2.57)

while under the MAP criterion is given by

θ̂MAP = arg max
θ

P (θ|d) . (2.58)

For time-varying systems, the first-order recursive Markov chain

θ(k + 1) = a · θ(k) + ∆θ(k) , (2.59)

is a particular and convenient stochastic model to update the model parameters

values (Enzner, 2010). In (2.59), 0 < a < 1 represents the transition coefficient

and ∆θ(k) the independent process noise with zero mean and covariance σ2
∆θ =

E(∆θ(k) ·∆θ>(k)).

Bayesian estimation presents several advantages over the commonly used ap-

proach. Firstly, it combines the past information about the parameters with data

in a natural and principled way. Particularly, when new observations are avail-

able, the previous posterior distribution is used as prior distribution integrating

the past information in the new inference. Secondly, the Bayesian method han-

dles missing data, outlier, multi-rate, multi-mode, bias update and noise simul-

taneously and optimally (Huang, 2011). Thirdly, it provides realistic and inter-

pretable answers due to the ability to consider uncertainty in probability model.

There are also disadvantages to using the Bayesian method. The method does

not show how to select a prior distribution which requires skills to translate sub-

jective prior beliefs into a mathematical form. The prior distribution may also

heavily influence the posterior distribution generating misleading results. And,

finally, the Bayesian method is associated with a higher computational cost.
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� Kalman filter

The Kalman filter is a parameter state estimator that uses indirect, inaccurate and

uncertain observations. The term “filter” comes from the fact that the method

finds the best estimate from noisy data to filtering out the noise. Although the

Kalman filter is commonly used to estimate the values of the state vector of a

dynamic system that is excited by stochastic disturbances and presents stochastic

measurement noise, it may be applied to estimate model parameters. The state

vector is augmented with the model parameters which are now denoted the aug-

mentative states. The augmented state vector consisting of both the original state

variables and the augmentative state variables is estimated by the Kalman fil-

ter. To set up an augmentative state variable, the behaviour of the augmentative

states must be modelled (Halvorsen, 2014).

Consider a stationary stochastic vector signal x(t) described according to Iko-

nen and Najim (2001) by

x(t+ 1) = A(t) x(t) + B(t) u(t) + G(t) v(t) (2.60)

y(t) = C(t) x(t) + e(t) , (2.61)

where x(t) is the state vector, y(t) is the vector of measurements, u(t) is the vec-

tor of inputs, v(t) is the system noise, e(t) is the output noise, A(t) is a system

state transition matrix describing the internal dynamics of the system, B(t) is the

system input matrix, C(t) is the output matrix describing the relation between

states and measurements, and G(t) is the noise transition matrix. The objective

of the Kalman filter consists in the determination of the state vector x(t) based

on measurements y(t) contaminated by noise e(t). Matrices A, B, C and G are

assumed to be known and noises v(t) and e(t) are zero mean, independent Gaus-

sian processes with known covariances V(t) and Y(t).

In parameter estimation, it is supposed that the data is generated according to

y(t) = ϕ>(t) θ + e(t) , (2.62)

where ϕ(t) is the output matrix describing the relation between model param-

eters and measurements and θ are the model parameters. Supposing also that

the prior distribution of θ is Gaussian with mean θ0 and covariance P0, the state-
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space model defined by (2.60 and 2.61) may be rewritten as

θ(t+ 1) = θ(t) (2.63)

y(t) = ϕ>(t) θ(t) + e(t) . (2.64)

The Kalman filter algorithm is then applied by the following steps (Ikonen and

Najim, 2001):

1. Initialize x̂(t0|t0) and P (t0|t0) for t0.

2. Time update:

Estimate the state estimate at t+ 1 given data up to t by

x̂(t+ 1|t) = A(t) · x̂(t|t) + B(t) · u(t) . (2.65)

Update the covariance matrix of the error in x̂(k + 1|k) using

P(t+ 1|t) = A(k) ·P(k|k) ·A>(t) + G(t) ·V(t) ·G>(t) . (2.66)

3. Measurement update:

Observe the new measurements y(t + 1) at time tT (with T denoting the

sampling time).

Compute the Kalman filter gain matrix as

K(t+ 1) = P(t+ 1|t) ·C>(t+ 1) ·
[
Y(t+ 1) + C(t+ 1) ·P(t+ 1|t) ·C>

]−1

.

(2.67)

Correct the state estimate at t+ 1 given data up to t+ 1 with

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) + K(t+ 1) ·
[
y(t+ 1)−C(t+ 1) · x̂(t+ 1|t)

]
.

(2.68)

Update the new error covariance matrix

P(t+ 1|t+ 1) =
[
I−K(t+ 1) ·C(t+ 1)

]
·P(t+ 1|t) ·

[
I−K(t+ 1) ·C(t+ 1)

]>
+

+ K(t+ 1) ·Y(t+ 1) ·K>(t+ 1) . (2.69)
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� Other system identification approaches

Principal Component Analysis

Principal Component Analysis (PCA) is a simple and non-parametric method for

extracting important information (through principal components) from complex

datasets. This technique provides a roadmap that drives to the reduction of a

complex dataset to a lower dimension revealing simplified structures that often

underlie it (Shlens, 2009; Jolliffe, 2002).

In order to assure equal importance of each variable on the model, PCA re-

quires the normalization of the input data matrix X ∈ Rn×m. The normalization

transforms the data to be zero mean and of unit variance as

X ′ = (X − 1nb
>) Σ−1 , (2.70)

where 1n = [1 1 · · · 1]T ∈ Rn×1, Σ = diag(σ1, σ2, ..., σm) and b = 1
n
XT1n. The

variable σi is the standard deviation of each of the input variables. The normal-

ized data, X ′ ∈ Rn×m, is then transformed to the score matrix, T ∈ Rn×l, of lower

dimension using

X ′ = T P> + E, (2.71)

where P ∈ Rm×l is the loading matrix and E ∈ Rn×m is the residuals matrix.

There are several ways to find the loading matrix. One of them is through the

correlation matrix, C, which is calculated by

C =
1

n− 1
(X ′)>X ′. (2.72)

Using this information, the eigenvalues Λ and the eigenvector matrix V of matrix

C are derived from the decomposition

Λ = V −1 C V . (2.73)

The diagonal eigenvalues of Λ, λi, are sorted in descending order such that λ1 >

λ2 > . . . > λm. The columns of P are formed by the eigenvectors corresponding
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to the highest eigenvalues and

P = [V (λ1) V (λ2) . . . V (λl)], (2.74)

where V (λi) ∈ Rm×1 is the vector from the V matrix corresponding to the eigen-

value λi.

After the determination of P , the eigenvalue decomposition in (2.71) must be

performed to obtain T using approaches such as Singular Value Decomposition

and NIPALS algorithm (Jolliffe, 2002; Kadlec et al., 2011).

At that point, it is possible to build a regression model via the least squares

algorithm using the relation

ŷ = T θ. (2.75)

Considering the orthogonal property of T , the equation is simplified to

θ = (T> T )−1T>y = L−2T>y, (2.76)

where L ∈ Rl×l is a diagonal matrix with elements equal to
√

Λi (Jolliffe, 2002).

Because the number of significant principal components may vary, it may be

used an adaptive strategy to calculate these components may be used. There

are several methods to calculate the number of principal components such as

the cumulative percent variance, the scree test, the average eigenvalues, and the

variance of reconstruction error (Valle et al., 1999; Li et al., 2000; Jolliffe, 2002;

Jackson, 2003; Liu et al., 2009).

Dynamic Principal Component Analysis: For dynamic systems, the current val-

ues of the variables will depend on the past values. Thus, it is convenient to

identify the linear relations between X(t) and X(t − la), where la is the time-lag.

The implementation of DPCA method consists in transforming the data matrix

X(t) for a Hankel matrix (a set of repeated overlapping windows, XH(la)) and

use it in the standard PCA method. The Hankel matrix transform is given by

XH(la) = [X(t)X(t− 1) · · ·X(t− la)] . (2.77)

Kernel Principal Component Analysis: One of the main drawbacks of the PCA

approach is its inability to model non-linear relationships between variables. Non-
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linear PCA for the estimation of difficult-to-measure process variables may be

achieved by applying non-linear relationships. Kernel PCA embeds the data into

a high dimensional space (called feature space) performing a non-linear input

transformation by the application of a non-linear function (called kernel func-

tion). Then, the PCA technique solves an eigenvalue problem to this new space

without any non-linear optimization (Slišković et al., 2011).

Let Φ be a mapping from the original space Rm into a inner product space F

so that

Φ : Rm → F , (2.78)

where the space F is referred to as the feature space. Φ(Xi) represents the image

of the data vector Xi ∈ Rm in the feature space.

Let the kernel matrixK be a symmetric and positive semidefinitem×mmatrix

with its elements defined by the inner product of all pairs of points Φ(Xi) and

Φ(Xj) in the feature space so that

Kij = Φ(Xi) · Φ(Xj) , i, j = 1, . . . ,m . (2.79)

There are a variety of kernel functions that can be used for kernel PCA. To

introduce the kernel matrix K inside PCA algorithm, it has to be centered in the

feature space as

Φ(X) = Φ(X)− 1

m

m∑

k=1

Φ(Xk) (2.80)

and the centered kernel matrix defined as

K = Φ(X) · Φ(X)> . (2.81)

It is possible to derive the expression for centering the noncentered kernel matrix

K by

K = K − 1mK −K 1m + 1mK 1m , (2.82)

where 1m is an m×m matrix in which each element equals 1/m (Schölkopf et al.,

1998; Olsson, 2011). A simple algorithm for kernel PCA may be found in Fauvel

et al. (2006).
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Partial Least Squares

Partial least squares (PLS) method is a dimensionality reduction technique that

finds a reduced set of latent variables by maximizing the covariance between the

process and quality spaces as explained in the reviews of Zhang and Zhang (2010)

and Wold et al. (2001).

The method is able to deal with large dimensional collinear data as well as

with the fact that the resulting model takes into account the covariance between

input and output data. Because of this feature, prediction models of the difficult-

to-measure variables based on PLS are more accurate than those based on the

PCA method.

The aim of PLS is to project scaled and mean centered input data X ′ ∈ Rn× m

and output data Y ′ ∈ Rn× p to separate latent variables:

X ′ = T P> + E, (2.83)

and

Y ′ = U Q> + F, (2.84)

where Pm× l and Qp× l are the corresponding loading matrices, E and F are the

input and output data residuals, respectively, and T ∈ Rn× l and U ∈ Rn× l are

the score matrices or latent vectors

T = [t1 t2 ... tl] with ti ∈ Rn×1, (2.85)

and

U = [u1 u2 ... ul] with ui ∈ Rn×1. (2.86)

The latent vectors (orthogonal to each other: tiu
>
i = 0, ∀i 6= j) represent a

more compact description of the input data achieved by removing the collinearity

from the data. The columns pi ∈ Rm and qi ∈ Rp of the loading matrices P and Q

represent the contributions of the input and output variables to the latent vectors

t and u, respectively.

The PLS method produces a regression model between the latent scores de-

fined as

U = T B +R, (2.87)
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where B ∈ Rl× l is the diagonal matrix of the regression weights that is calculated

by minimizing the regression residuals R. The estimated variables Ŷ are given

by

Ŷ = T B QT . (2.88)

There are several forms to calculate the vectors t, p, u, q and b. For instance,

NIPALS algorithm defines these vectors as

ti =
Ei−1wi

||Ei−1wi||
, (2.89)

pi = ET
i−1ti , (2.90)

ui = Fi−1qi , (2.91)

qi =
F T
i−1ti

||F T
i−1ti||

, (2.92)

bi = uTi ti , (2.93)

where i is the index of the latent variable and

ui = Fi−1qi . (2.94)

After each iteration the residuals are deflated

Ei+1 = Ei − tip
T
i , (2.95)

Fi+1 = Fi − uiq
T
i , (2.96)

which is followed by the calculation of the next (i + 1)th vectors for PLS models

using the new data matrices Ei+1 and Fi+1. The number of calculated latent di-

mensions is usually established using cross-validation or some other parameter

optimization technique.
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Support Vector Machines

Support Vector Machines (SVM) is a machine learning method for learning linear

and non-linear rules. Joachims (2005) presents a method review explaining the

fundamentals and the aspects of its implementation.

The method is based on statistical learning theory and has gained more atten-

tion in the field of soft sensors.

Its first step is the construction of a linear function in a high-dimensional

space, mk, i.e., ϕ() := Rm → Rmk with the objective of optimizing the parame-

ters ω and b in order to fulfil the condition

|y − ωTϕ(x)− b| < ε, (2.97)

where ε is the precision parameter.

After some mathematical modifications, the representation of the model is

expressed by

ŷ =
∑

i

(αi − α∗i ) k(xi,x) + b, (2.98)

where xi are the support vectors, k() may be any function fulfilling the Mercer

condition2, and b is a constant that may be calculated by applying the Karush-

Kuhn-Tucker conditions.

In order to determine xi, αi, α∗i and b, the method uses quadratic program-

ming techniques. Although the complexity of the determination problem is in-

dependent of the dimensionality of the input space, it grows with the number of

training samples and can even become computationally infeasible.

Subspace identification

Subspace identification has received a lot of attention in the recent years (van

Overschee and de Moor, 1996; Qin, 2006; Doraiswami and Cheded, 2014). This

fact is essentially due to its numerical efficiency and robustness, as well as to the

minimal requirement of a priori information (such as the structure of the system).

The only design parameter is the threshold value for the singular values trun-

cation. The subspace identification does not require non-linear optimization to

2Mercer condition: k(xi,x) = ϕ(xi)
Tϕ(xj).
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calculate the model parameters, is based on tools computationally reliable (such

as the singular value decomposition), is non-recursive, and avoids problems as-

sociated with optimization and possible local minima (Doraiswami and Cheded,

2014; van Overschee and de Moor, 1996). Such advantages have made it an ap-

pealing technique.

The subspace identification may be categorized into two classes: the open-

and the closed-loop identification. The open-loop identification, where the in-

put data is assumed to be independent of the past noise, is the most popular

class and includes the N4SID (Numerical algorithms for Subspace State Space

System IDentification), the MOESP (Multivariable Output Error State Space) and

the CVA (Canonical Variate Analysis) methods.

Given a set of input and output measurements and the state-space model of

combined deterministic and stochastic system in an innovation form

xk+1 = Axk +Buk +Kek , (2.99)

yk = Cxk +Duk + ek , (2.100)

where k is an arbitrary time index, uk ∈ Rnu is the input, xk ∈ Rn is the state,

yk ∈ Rny is the output, K ∈ Rn×ny is the steady-state Kalman gain, and ek ∈ Rny is

an unknown innovation with covariance matrixR = E[eke
>
k ] (Trnka, 2005, Section

3.1). The subspace identification problem aims to estimate the system order n and

obtains system matrices A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu , the

gain matrix K ∈ Rn×ny , and the noise covariance matrix R ∈ Rn×ny , as explained

by Qin (2006).

Based on the innovation form, an extended model may be formulated as

Yf = ΓfXf +HfUf +GfEf , (2.101)

where the uppercase denotes Hankel matrices. Subscripts p and f are used to de-

note past and future values. The output Hankel matrices Yp and Yf are composed
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by

Yp =




y0 y1 · · · ynj−1

y1 y2 · · · ynj
...

... . . . ...

yni−1 yni · · · yni+nj−2



∈ Rniny×nj , (2.102)

and

Yf =




yni yni+1 · · · yni+nj−1

yni+1 yni+2 · · · yni+nj
...

... . . . ...

yni+nh−1 yni+nh · · · yni+nh+nj−2



∈ Rnhny×nj , (2.103)

where ni is the number of rows of the Hankel matrix composed by past values,

nh is the number of rows of the Hankel matrix composed by future values, and

nj is the number of columns of each of those matrices. Similar forms are applied

for U and E. The extended observability matrix Γf ∈ Rnhny×nhn and the Toeplitz

matrices Hf ∈ Rnhny×nhnu and Gf ∈ Rnhny×nhny are defined by

Γf =




C

CA1
K

...

CAnh−1
K



, Hf =




D 0 · · · 0

CB D · · · 0
...

... . . . ...

CAnh−2B CAnh−3B · · · D



, (2.104)

and

Gf =




I 0 · · · 0

CK I · · · 0
...

... . . . ...

CAnh−2K CAnh−3K · · · I



, (2.105)

where AK = [A−KC]. The Kalman state sequences Xk are estimated using

Xk = LpZp + ApKXk−ni , (2.106)

where Lp is the predictor controllability matrix, Zp = [Up, Yp]
> and Xk−ni =

[xk−ni , xk−ni+1, · · · , xk−ni+nj−1]. Matrix ApK is approximately zero matrix for a suf-
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ficiently large value of ni. Together, (2.101) and (2.106) become

Yf = HfpZp +HfUf +GfEf , (2.107)

where Hfp = ΓfLp. Under open-loop conditions, Ef is uncorrelated to Uf and to

Zp which means that

lim
N→∞

1

N
EfU

>
f → 0 ,

and

lim
N→∞

1

N
EfZ

>
p → 0 .

The open-loop subspace identification algorithms involve the following steps:

projection or regression, model reduction, and parameter estimation (Qin, 2006):

1. Projection or regression step:

In this step, the elimination of the input and noise terms in (2.107) is done.

To eliminate the input term, the equation is orthogonally projected onto the

row space orthogonal to Uf through

YfΠ
⊥
Uf

= HfpZpΠ
⊥
Uf

+HfUfΠ
⊥
Uf

+GfEfΠ
⊥
Uf

= HfpZpΠ
⊥
Uf

+GfEf , (2.108)

where Π⊥Uf is the projection matrix to the orthogonal complement of Uf .

Two properties of Π⊥Uf are used in this derivation: UfΠ⊥Uf = 0 and EfΠ
⊥
Uf

=

Ef (Qin, 2006). The noise term GfEf is left intact because it is uncorrelated

with the deterministic input Uf .

To estimate Hfp, a least squares step is performed such as

Ĥfp = arg min
Hfp

||YfΠ⊥Uf −HfpZpΠ
⊥
Uf
||2F . (2.109)

2. Model reduction step:

This step consists in the reduction of the model order to an appropriate

observable low dimensional subspace. Firstly, it is applied a singular value

decomposition on

W1ĤfpW2 = USV > , (2.110)
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where according to Qin (2006)

for regression approach: W1 = I W2 = I

for N4SID: W1 = I W2 = (ZpZ
>
p )1/2

for MOESP: W1 = I W2 = (ZpΠ
⊥
Uf
Z>p )1/2

for CVA: W1 = (YfΠ
⊥
Uf
Y >f )1/2 W2 = (ZpΠ

⊥
Uf
Z>p )1/2 .

The system order n is then determined by inspecting the singular values S

and matrices from the definition ofHfp are reduced to Γf = W−1
1 UnS

1/2
n (Qin,

2006, Section 3.1.4) and Lp = S
1/2
n V >n W

−1
2 (Qin, 2006, Section 4.2).

3. Parameter estimation: Matrices A and C are calculated from the extended

observability matrix Γf . Matrix C is directly read from the ny-dimension

first block row of Γf and matrix A is determined from the shift structure

defined as

Γ
(1)
f A = Γ

(2)
f , (2.111)

where Γ
(1)
f and Γ

(2)
f are the matrix Γf without the last block row and without

the first block row, respectively. This equation is linear and may be solved

by the least squares method to extract A.

Subsequently, matrices B and D are computed. Considering the purely de-

terministic case, GfEf = 0, multiplying (2.101) by the projection matrix to

the orthogonal complement of Γf (Π⊥Γf ) and by the transpose of Uf , in such

way that Π⊥ΓfΓf = 0 and UfU
>
f = I , one obtains

Π⊥ΓfYfU
>
f = Π⊥ΓfHf . (2.112)
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The equation is now rewritten as

(M1 M2 M3 · · · Mi) =

= (L1 L2 L3 · · · Li)




D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
... . . . ...

CAi−2B CAi−3B CAi−4B · · · D



.

(2.113)

where M is the left hand side of the equation and L the projection matrix

Π⊥Γf , for simplicity of notation. Because this equation is linear in B and D, it

is reformulated as




M1

M2

M3

...

Mi




=




L1 L2 · · · Li−1 Li

L2 L3 · · · Li 0

L3 L4 · · · 0 0
...

...
... . . . ...

Li 0 · · · 0 0




(
Il 0

0 Γ
(2)
i

)(
D

B

)
, (2.114)

which is typically overdetermined and may be solved using least squares (Trn-

ka, 2005; van Overschee and de Moor, 1996, Section 2.4.2).

Finally, stochastic matrices K and R are determined from the covariance

estimate of the residuals as
(

Σ11 Σ12

Σ21 Σ22

)
=

1

j − (n+m)
εε> , (2.115)

R = Σ22 , (2.116)

K = Σ12Σ−1
22 . (2.117)

� Time delay estimation

The time delay estimation is an important problem and, therefore, has received

much attention by the research community. Most of the proposed methods may

be classified into four major classes as schematized in Figure 2.9: the time-delay
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Time delay estimation methods

Time-delay approximation model

Time domain approximation

Frequency domain approximation

Laguerre domain approximation

Explicit time delay parameter

One-step explicit

Two-step explicit

Sampling

Area and moment

Higher-order statistics

Figure 2.9: Classification of time delay estimation methods.

approximation model methods, the explicit time delay parameter methods, the

area and moment methods, and the higher-order statistics methods (Björklund,

2003; Bjorklund and Ljung, 2003).

The distinction between the first two classes is the usage of the time delay pa-

rameter as an explicit parameter in the model: time delay approximation model

methods use a model relating the input and output signals not containing ex-

plicitly the time delay parameter while the class of explicit time delay parame-

ter methods does not. Essentially, the methods of the first considered class esti-

mate the model and only then estimate the time delay from the already estimated

model. These class contains three sub-classes: (1) the time domain approximation

methods where, from an impulse response, the time delay is seen as the delay ob-

served in the response to the impulse stimulus for the impulse to start and may

be calculated finding the peak of the cross-correlation between the input and out-

put signals; (2) the frequency domain approximation methods where the time

delay is estimated from the phase of the time delay e−iwθ; and (3) the Laguerre

domain approximation methods where the time delay is estimated from a rela-

tion between the input and the output signals expressed in basis functions such

as Laguerre or Kautz functions.

In what concerns the explicit time delay parameter methods, there are three
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main sub-classes: (1) the one-step explicit methods where the model parameters

and the time delay are calculated simultaneously; (2) the two-step explicit meth-

ods where the model parameters and the time delay are calculated sequencially;

and (3) the sampling methods where the sampling process is utilized to derive an

expression for the time delay.

The area and moment methods use relations between the time delay and cer-

tain areas over or below the step response, or certain moments of the impulse

response. Basically, the methods independently perform the estimation of the

step or impulse response and estimate the time delay from those responses.

Finally, the higher order statistics methods use, as the class name suggests,

higher order statistics, such as the bi-spectrum and 3rd order moments, to esti-

mate the time delay.

2.2.5 Model validation

As Ljung (1999) and Lyzell (2009) refer, model validation is the phase that ensures

the validity of the developed model through the evaluation of its performance.

Indeed, it is not recommended to compare only visually the profiles of the pre-

dicted and the measured outputs drawn side by side (Ye, 2003). Several com-

plementary methods have been developed to evaluate the model performance

determining, usually, its accuracy and reliability. Accuracy is associated to the

agreement level between predicted and the real outputs, while reliability is the

variation degree of the prediction errors (Khatibisepehr et al., 2013).

Most of the model validation methods are based on the residuals

ε(t, θ̂) = y(t)− y(t, θ̂) , (2.118)

where θ̂ is the parameter estimate. Cross-validation and cross-correlation meth-

ods are examples of these methods. Both validate the model using the output

predicted from a new dataset (different from the dataset used to estimate the

parameters) for comparing to the measured output. Different criteria were pro-

posed to quantify the closeness of the predicted and the measured outputs.
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Cross-validation method usually employs the model fit value given by

fit = 100

(
1− ||ε(t, θ̂)||2
||y(t)− y||2

)
(2.119)

as its criterion. The model fit value provides the relative performance increase

of using the developed model compared to using the output mean y as a predic-

tor. However, this criterion depends on the amount of noise in the data (more

noise lowers the model fit). The cross-validation method is important because it

prevents the over-fitting of the identification data (Lyzell, 2009).

As an alternative method is the cross-correlation method which is based on

the covariance between the residuals and the input variable u(t) described by

rεu =
1

N

N∑

t=1

ε(t) u(t− τ) , (2.120)

where τ is the time shift and N is the number of samples contained in the dataset.

If the developed model is capable of describing the dynamic system, the residuals

follows a Gaussian distribution and are independent of the input signal. There-

fore, if the residuals have these characteristics, the cross-correlation is zero for all

τ values. But, if they correlate with the input variable, the cross-correlation is non-

zero, suggesting that the model does not capture the system. Auto-correlation

method may also be informative to consider the correlation among the residuals

themselves. Large values indicate that the predicted output could have been pre-

dicted from past data and, consequently, better (Ye, 2003; National Instruments

Corporation, 2015).

Cross-validation and cross-correlation methods proved to be quite effective

in practice although they are very simple. However, they use different metrics

that focus on detecting one particular deficiency of the model under validation.

Therefore, it is important to use other criteria that help to overcome other defi-

ciencies.

Among them, the mean squared error (MSE) and the mean absolute deviation
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(MAD) are very well known in practice (Ye, 2003). These measures are defined as

MSE =
1

N

N∑

t=1

ε(t, θ̂)2 , (2.121)

MAD =
1

N

N∑

t=1

|ε(t, θ̂)|2 . (2.122)

While MSE amplifies larger errors, the MAD simply takes the absolute values of

the error.

Sotomayor et al. (2003) proposed two new measures for model validation:

the mean relative squared error (MRSE) and the mean variance-accounted-for

(MVAF) that are defined by

MRSE =
1

l

l∑

i=1

√∑N
t=1 εi(t, θ̂)

2

∑N
t=1 yi(t)

2
× 100 , (2.123)

MVAF =
1

l

l∑

i=1

√
1− σ2(εi(t, θ̂))

σ2(yi(t))
× 100 , (2.124)

where l is the number of output variables and σ2 is the variance. Similarly to

the MSE index, the MRSE index allows to measure a relative error with the zero

value indicating a perfect model. MVAF index evaluates the dynamic properties

of the developed models and, when the index is close to 1, it indicates a model

reproducing well the dynamic properties of the real system.

The goodness of the fit is a metric that takes advantage of the datasets used

for model development and validation. This metric, obtained through the ratio

G =

∑
t∈{validation} ε(t, θ̂)∑
t∈{development} ε(t, θ̂)

, (2.125)

is almost always larger than unity because the model development dataset was

used to estimate the parameters and, therefore, presents less error (Good, 2006,

Section 8.5.1).

In addition to the evaluation of the predictive capabilities of the model, the

model validation may also include the evaluation of the complexity of the model,

particularly the higher order structures, such as the Akaikes information crite-
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ria (AIC, Akaike (1969)) and the minimum description length (MDL, Rissanen

(1978)). Mathematically, they are defined by

AIC =

(
1 +

2 dim(θ̂)

N

)
· 1

N

N∑

t=1

ε(t, θ̂)2 , (2.126)

MDL =

(
1 +

2 dim(θ̂) log(N)

N

)
· 1

N

N∑

t=1

ε(t, θ̂)2 , (2.127)

where dim operator is the number of non-zero elements of a vector (Lyzell, 2009,

Section 2.4).

When dealing with categorical outputs (usually denominated as classifica-

tion), other specific measures are used to estimate the error. Some examples are

the average Kullback-Leibler distance, false positives and negatives, precision,

recall and F measure, sensitivity and specificity, receiver operating characteristic

and lift curves (Ye, 2003).

Usually, the training methods assume that the training data is representative.

However, this assumption may not fully hold and, consequently, it is important

to separate training from testing data to estimate independently the model error.

When the dataset is sufficiently large, the available data is decomposed into three

subsets: the training, the validation, and the test datasets. While the training data

is used to develop the model, the validation data is used to re-tune the developed

model, and the test set is used to evaluate the prediction performance. When the

dataset is relatively small, data usually is re-sampled (Khatibisepehr et al., 2013).

The k-fold cross-validation, the leave-one-out cross-validation, and the bootstrap

re-sampling are useful techniques that re-sample the data (Ye, 2003; Lahiri, 2003).

The k-fold cross-validation divides the data into k partitions (usually k = 10),

applies the identification method to k − 1 partitions (for k = 10, 90% of the data)

and uses the remaining partition for testing. If all the n points of the dataset are

used to estimate the performance, the leave-one-out cross-validation consisting

of a special case of the k-fold cross-validation for k = N is used. A more efficient

method is the bootstrap re-sampling that generates a dataset for the identifica-

tion by randomly sampling with replacement. This data point selection approach

does not use a fraction of the data in the identification phase, reserving those
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points for validation purposes.

2.3 Using first- and second-order state-space models

for system identification3

System identification plays an important role in the development of process sim-

ulators and controllers. The ability to determine correctly the model parameters

directly affects the model quality and, therefore, the model based controller per-

formance. This section presents a detailed case study of the development of a

system identification approach and its computational implementation based on

sequential quadratic programming (SQP) in which first and second-order linear

systems, represented in state-space, are identified from simulated and from real

industrial process data. Both single-input single-output and multivariable pro-

cesses are considered.

2.3.1 Parameter estimation based on numerical optimization

The first step of system identification consists of the so-called process activation.

During this procedure the process is subjected to a set of disturbances whose

magnitude should be carefully chosen. Indeed, if the process is activated too

aggressively, the disturbance may impact the product quality and even the pro-

cess safety. On the other hand, if the activation is not enough, an accurate pro-

cess model cannot be obtained because the information content of the activated

dataset is too low and the uncertainties (due for example to measurement noise

and other disturbances) may become dominant (Sung et al., 2009; Ljung, 1999).

Once process data with sufficient information is collected, the model parameters

are determined such that the model response reproduces the observed response

of the actual process.

The most frequently used curve fitting criterion is the least squares criterion

which penalises the standard deviation of the model predictions from the dataset.

3This section is a reproduction in part from Brásio, A. S., Romanenko, A., and Fernandes, N. C.
(2015c). Using sequential quadratic programming for system identification. Applied Mathematics
& Information Sciences, 9(1):19–26. URL http://www.naturalspublishing.com/Article.
asp?ArtcID=7413. Copyright 2015 Natural Sciences Publishing.
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Another common criterion is the sum of the absolute deviation. However, the

latter is not continuous and that poses additional challenges in the optimization

problem. The Chebyshev approximation criterion minimizes the largest absolute

deviation over the entire set. However, this criterion is often difficult to apply in

practice since the resulting optimization problem may require advanced mathe-

matical procedures (Leon, 2012).

The nonlinear constrained optimization problem is defined as

minimize
p

J(y,u,p) (2.128a)

subject to ẏ = f(y,u,p) (2.128b)

yL ≤ y ≤ yU (2.128c)

uL ≤ u ≤ uU (2.128d)

pL ≤ p ≤ pU (2.128e)

g(p) ≤ 0, (2.128f)

where J denotes the objective function, p is the model parameters vector to be

estimated, x and u are the vectors of state and input variables (respectively), and

the subscripts L and U stand for lower and upper bounds (respectively). The set of

equations (2.128b) defines a set of constraints arising from the model dynamics.

Inequalities (2.128f) may enforce additional identification criteria.

Given a model y = f(y,u,p) ∈ Rny and a set of m× ny data points (ti,yexp,i),

the objective function J is written, according to the minimum least squares crite-

rion, as

J =
m∑

i=1

[
yexp,i − yi

]>
Q
[
yexp,i − yi

]
, (2.129)

where Q is a diagonal matrix containing the weights given to each observed vari-

able. In this work, equal weight was given to all output variables and thus Q is

the ny × ny identity matrix.

It should be noted that generally (2.128) may become nonconvex causing nu-

merical difficulties and local minima. However, since in this work the parameters

belong to a linearized model the number of the decision variables is low, the Se-

quential Quadratic Programming (SQP) exhibited satisfactory performance. Fur-

ther solution refinement may be achieved via multistarting (György and Kocsis,
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Figure 2.10: SISO system identification using an FO model.

2011).

2.3.2 Discussion of results

� SISO systems identification

An industrial heat exchanger installed in a process plant, which may be regarded

as a SISO system, was stimulated with a sequence of input steps and the profiles

of the input and the output variables were registered. The obtained dataset con-

tains 1200 points covering an interval of 100 minutes with a sampling period of

5 seconds. For confidentiality reasons the data was later normalized.

Both the stimuli, u, and the system response, yexp, obtained during the pro-

cess activation stage may be seen in Figure 2.10 (as well as in Figure 2.11). The

success of system identification strongly depends on the quality of the data and,

therefore, on its signal to noise ratio (SNR). The collected industrial dataset is

characterized by an SNR of 11.0.

The optimization procedure described above was used to identify the system.

The implementation was made in GNU Octave 3.6.3 using its general nonlinear

minimization via sqp() sequential quadratic programming solver. Based on the

shape of the experimental response curve, both FO and SO models were tested

(see (2.24) and (2.27)). The set of optimization related conditions and the obtained
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Figure 2.11: SISO system identification using an SO model.

Table 2.1: Identification results for the SISO system using both FO and SO models.

p Initial LB UB Fit Indicators

FO model
Kp 0.100 0.0001 5 2.154
τ 100.000 1 1000 88.868 J = 0.286
x̄ 0.800 −10 10 1.004 R2 = 0.9727
ū 0.100 −10 10 1.005

SO model
Kp 0.100 0.0001 5 2.133
ω 0.010 0 1 0.022 J = 0.263
ξ 1.000 0.0001 10 0.919 R2 = 0.9749
x̄ 0.800 −10 10 1.002
ū 0.100 −10 10 1.004

Dataset has SNR=11.0

model parameters as well as some fitting quality indicators are presented in Ta-

ble 2.1.

The stopping criterion of the sqp() solver was set to 10−6 in both cases (FO

and SO). The dynamic responses of the mentioned models are drawn in Fig-

ures 2.10 and 2.11 (dashed line) for comparison with the real system response

(thin solid line).
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It is noteworthy that the SNR of the data is relatively significant and that the

initial guess for the parameters is poor (as it is shown by the dotted line repre-

senting the model prediction with the first iteration parameters). Although these

two factors make the identification process more difficult, both FO and SO result-

ing models are able to capture well the process dynamics, as proven by the high

correlation factors, R2.

Both models present a comparable performance, attested by similar values of

the objective function and also by similar values of R2 (see Table 2.1). By com-

parison of Figures 2.10 and 2.11, it is possible to conclude that the predictions of

both models are, in this case, quite similar.

Therefore, and in this specific situation, one should select the FO model since

it is able to achieve the same performance as the SO model but with a simpler

structure. The lower number of parameters of the FO model also reduces the

computational effort required in the fitting.

�MIMO systems identification

A continuous stirred tank reactor (CSTR) equipped with a heating coil is a good

example of a MIMO system commonly used in industry. This system has two in-

put variables (the inlet flow concentration of reactant A,CA,i, and the temperature

of the heating fluid in the coil, Tc) and two output variables (the concentration of

reactant in the reactor, CA, and the temperature in the reactor, T ).

In order to collect data for the identification of a CSTR subjected to external

heating, a simulation run was carried out using the first principles model (Ap-

pendix A). The timespan of the data is 1000 minutes with a sampling interval of

1 min. This dataset exhibits SNR of 8.6 and 3.8 for Texp and CA,exp, respectively.

The input used to stimulate the system and the generated experimental re-

sults are plotted in Figure 2.12. The interaction among the variables is clear: for

instance, a disturbance in input variable Tc results in a dynamic response not only

of T but also of the second output variable, CA. Similarly, by activating the input

variable CA,i both output variables are affected.

First-order model:

Using an FO model whose state variables vector coincide with the output

variables vector x(t) = y(t) =
[
T CA

]>
, all A, B, and C matrices have
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Figure 2.12: MIMO system identification using an FO model.

dimension 2 × 2 and matrix C is the identity matrix. Also, from a priori

physical/chemical analysis of the system, it is possible to conclude that the

first input variable (Tc) has a direct effect on T while it has an indirect effect

on CA through the variable T . Moreover, that the effect of the second input

variable (CA,i) is direct on CA but indirect on T . These facts may be used to

reduce to 10 the number of parameters to be estimated through optimiza-

tion for the FO model, since B12 = B21 = 0.

The parameter values of this system determined by the sqp() solver are

summarized in Table 2.2.

In spite of the high level of noise, especially in the second variable (SNR =[
8.6 3.8

]
), the obtained correlation factor was even higher than in the case

of the SISO system, revealing an excellent fit quality. The model response

with the optimized parameters is drawn (dashed line) in Figure 2.12 to-

gether with the experimental response of the system (thin solid line) for

easy comparison. The model is able to capture the peculiarities of the sys-

tem, namely the strong interactions among its variables.

Second-order model:

The identification of the MIMO system is also carried out via an SO ap-

proach. The state variables vector was defined as x(t) =
[
T CA Ṫ ĊA

]>
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Table 2.2: Identification results for the MIMO system using FO and SO models.

p Initial LB UB Fit Indicators

FO model
A11 −1·10−2 −1 1 −0.280·10−2

A12 −1·10−3 −1 1 −0.982·10−3

A21 −1·10−3 −1 1 −1.074·10−3

A22 −1·10−2 −1 1 −0.186·10−2

B11 1·10−3 −1 1 1.709·10−3 J = 99.215
B22 1·10−3 −1 1 0.341·10−3 R2 = 0.9971

x̄1 15 0 45 13.247
x̄2 1 0 45 5.353

ū1 20 1 100 14.714
ū2 25 1 100 28.416

SO model
A31 −5·10−5 −1 1 −5.248·10−5

A32 −2·10−6 −1 1 −18.47·10−6

A33 −2·10−2 −1 1 −2.041·10−2

A34 −2·10−3 −1 1 −2.034·10−3

A41 −2·10−6 −1 1 −19.51·10−6

A42 −1·10−5 −1 1 −3.369·10−5

A43 −2·10−3 −1 1 −1.683·10−3 J = 110.579
A44 −2·10−2 −1 1 −1.958·10−2 R2 = 0.9968

B31 −9·10−6 −1 1 31.60·10−6

B42 −9·10−6 −1 1 6.125·10−6

x̄3 15 0 45 13.314
x̄4 1 0 45 5.416

ū1 20 1 100 14.857
ū2 25 1 100 28.961

Dataset has SNR=
[
8.6 3.8

]

and thus the observed (measured) variables coincide with a subset of the

state variables, T and CA. In such situation: (i) the dimensions of matri-

ces A, B and C (see (2.28)) are 4 × 4, 4 × 2 and 2 × 4, respectively; (ii) C

is constituted exclusively by 0 and 1 elements: the H part of C (see (2.31))

is the 2 × 2 identity matrix; (iii) the two first rows of A as well as the two

first rows of B are 0 except the elements A13 and A24 which are 1. For the
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Figure 2.13: Difficulties in identifying the MIMO system via an SO model.

reasons also invoked when applying the FO model to this system, elements

B31 and B42 were set to 0. The initial steady-state value for the state vari-

ables Ṫ and ĊA was equally set to zero since both T and CA are constant at

steady-state. Therefore, the number of parameters needed to be estimated

for the SO model applied to the MIMO system is 14.

According to (2.128), simultaneous accounting of both output curves of the

MIMO system was considered during the optimization process (ie, the ob-

jective function was the sum of 2× 1000 square errors between original and

predicted values), both when using the FO model (see above) or the SO

model.

In the first attempt, the optimization algorithm encountered more difficul-

ties in finding the parameters of this model. Even when the tolerance was

decreased to 10−10, the resulting model presented bad prediction perfor-

mance (Figure 2.13) with R2 = 0.9323 and J = 2430.979, which is frankly

worse than that achieved with the FO model (R2 = 0.9971 and J = 99.215).

This unacceptable fit quality was caused by poor conditioning of the data.

Since the tolerance values were already relatively close to the machine pre-

cision, the parameters were equally scaled up by a 108 factor, with the nec-

essary changes in the model. This approach proved effective as the result-
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Figure 2.14: MIMO system identification using an SO model.

ing fit is as good as that obtained for the FO model. These parameters are

listed in Table 2.2 and the corresponding model response can be observed

in Figura 2.14. The SO model is now able to reproduce the system response

in a comparable way to the FO model (compare Figures 2.14 and 2.12 and

values of J and R2 in Table 2.2).

Since the performance of FO and SO models are comparable, the FO model is

preferable as it represents the best trade-off between performance and simplicity.

2.4 Hybrid modeling of a biodiesel decanter4

One of the most relevant units of a biodiesel production line is the reactor, where

the oil reacts with methanol under certain operating conditions to produce a mix-

ture of biodiesel and the by-product glycerol. After the reaction, the mixture is

cooled down and its components are separated. Figure 2.15 represents schemati-

cally the production line. It should be noted that the separation step in biodiesel

industry is commonly performed in a gravity settler. The gravitational settling

4This section is based on Brásio, A. S., Romanenko, A., and Fernandes, N. C. (2015a). Develop-
ment of a numerically efficient biodiesel decanter simulator. In Operational Research, CIM Series
in Mathematical Sciences 4. Springer International Publishing Switzerland 2015. URL http:
//www.springer.com/us/book/9783319203270, with kind permission from Springer Sci-
ence and Business Media B. V.
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Figure 2.15: Simplified representation of the batch biodiesel production process.

is a lengthy process and therefore this step represents a significant part of the to-

tal production time, exceeding several times the residence time required in the

reactor.

A decrease in the settling time would represent an economic process improve-

ment. Thus, it is appealing to use dynamic optimization tools (Biegler, 2007) in

order to reach a compromise between the objectives sought and the costs associ-

ated with them. These techniques are based on models that describe the dynam-

ics of the process. Also, the operation of a biodiesel production line can be greatly

improved by a system of non-linear predictive control based on first-principle

models as described in Brásio et al. (2013) and Brásio et al. (2015).

In the decanter, two liquid phases coexist (the light and the heavy phases)

that interact with each other. It is therefore necessary to model the liquid-liquid

equilibrium in order to quantify this interaction in the dynamic model of the de-

canter. The quantification of liquid-liquid equilibria may be carried out by the

flash calculation (Lobo and Ferreira, 2006), which is an iterative method.

However, a dynamic model which employs iterative methods cannot be inte-

grated efficiently in a predictive control computing platform. In fact, the model

is invoked dozens of times per iteration. Although the integrator has mecha-

nisms to accelerate the convergence, the iterative calculation of phase equilibrium

on each invocation of the model results in a significant computational burden

and makes it more difficult to use of automatic differentiation tools, as ADOL-

C (Walther and Griewank, 2012) or CppAD (Bell, 2012), because it significantly

increases the memory needed to perform the calculations.
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An alternative approach to the calculation of phase equilibrium in order to

avoid the iterative method without deteriorating the quality of predictions is pre-

sented here. The results obtained by flash calculations are approximated by a

model based on neural networks. Its type, composition and characteristics are

detailed and its performance evaluated. By incorporating this data-driven model

of the liquid-liquid equilibrium in the first-principle model of the decanter, a hy-

brid model is obtained. Such model describes accurately the underlying physical

phenomena while it also ensures a feasible real time execution in the context of

automatic differentiation.

2.4.1 Liquid-liquid equilibrium

The methodology most commonly used to quantify the liquid-liquid equilibrium

between two partially miscible liquids is the flash calculation described in detail

in Lobo and Ferreira (2006).

Considering a feed flow containing nc components with composition xi,in, the

equilibrium at pressure P and temperature T is reached forming two distinct

phases with composition xi,lt and xi,hv, respectively (where i = 1, . . . , nc). Thus,

the feed is separated into two phases: the molar fraction Llt constitutes the light

phase and the remaining fraction 1 − Llt, is the heavy phase. The equilibrium

of each component in the mixture is set by Ki which represents the ratio of the

molar fractions of chemical species i in the two liquid phases, i.e.

Ki =
xi,lt
xi,hv

=
γi,lt
γi,hv

, (2.130)

where γi,lt and γi,hv are the activity coefficients of component i in the light and

heavy phases, respectively.

Figure 2.16 represents schematically the mechanistic quantification of liquid-

liquid equilibrium and shows its iterative nature. After specification of the feed,

and already inside the iterative cycle, the UNIFAC method (or one of its varia-

tions) is used to determine the activity coefficients required to the calculation of

the equilibrium constants. The UNIFAC method (Fredenslund et al., 1975) esti-

mates the coefficients based on the sum of the contributions of functional groups

present in the mixture components: ester, methanol and glycerol.
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Figure 2.16: Flowchart of the flash method to determine the liquid-liquid equilib-
rium.

The oil that is the raw material for producing biodiesel is composed of glyc-

erides (mainly triglycerides) whose skeleton consists of a glycerol molecule bind-

ing fatty acids. The oil has a biological origin and is characterized by natural

variability. Typically, the lauric acid is the fatty acid in greater quantities in veg-

etable oils. For this reason and in the context of this study, it is considered that the

fatty acid present in the raw material is lauric acid only (i.e., the ester contained

in biodiesel is exclusively methyl laurate ester).

Once convergence for the flash calculation is reached, it is then possible to

quantify the degree of separation of component i by the light and the heavy

phases. From the amount initially present, the fraction of component i that goes

to the light phase is given by

ξi = Llt
xi,lt
xi,in

. (2.131)

2.4.2 Dynamic mathematical model of a decanter

Consider now an industrial continuous decanter unit with parallelopipedic for-

mat and lying horizontally, as depicted in Figure 2.17.

The decanter inlet stream is the mixture that leaves the reactor flowing at a

molar rate Nin and is characterized by composition xin and temperature T .

In the decanter, all the components of the feed get split into two phases but in
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Figure 2.17: Schematic representation of the decanter.

different proportions from component to component. The degree of separation of

a generic component i is quantified through the split fraction ξi which represents

the fraction of component i that goes into the light phase. The set of the split

fractions to the light phase for all the components is therefore the vector ξ =[
ξE ξM ξG

]
and to the heavy phase is its complementary 1 − ξ.

The decanter is equipped with an internal baffle. As the two phases separate,

the heavy phase leaves the unit through its bottom while the light phase leaves

the decanter by flowing over the baffle positioned close to its end. The dynamics

of the subsection after the baffle may be neglected since its volume is insignificant

compared to the total volume of the decanter. The output molar flow rate of the

heavy phase, Nhv, is manipulated by a level controller.

The first principle mathematical model of this system includes partial and

global mass balances and describes the evolution of the molar fractions of all the

components in each of the phases as well as the heights of these phases. For a

generic component i (i = E, M),

nhv
dxi,hv

dt
=

nc∑

k

((1− ξk)xk,in) Nin




1− ξi
nc∑
k

((1− ξk)xk,in)
xi,in − xi,hv


 (2.132)

and

nlt
dxi,lt

dt
=

nc∑

k

(ξk xk,in) Nin




ξi
nc∑
k

(ξk xk,in)
xi,in − xi,lt


 , (2.133)

where nhv and nlt represent the amount of molecules in the heavy and light
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phases, respectively. The composition of the remaining component (G) in phase j

(with j = hv, lt) is

xG,j = 1−
nc−1∑

i

xi,j . (2.134)

The global molar balance to the heavy phase is

dnhv

dt
=

nc∑

i

((1− ξi)xi,in)Nin − Nhv. (2.135)

The amount of molecules in the light phase is given by

nlt =
hlt A

nc∑
i

(Vi xi,lt)
(2.136)

and the heights of both phases by

hhv =
nhv

A

nc∑

i

(xi,hv Vi) (2.137)

and

hlt = H − hhv, (2.138)

where A is the area of the base of the decanter and Vi stands for the molar volume

of component i.

The split fractions ξ are calculated using the previously developed neural net-

work. Equations 2.136 and 2.137 assume that both phases are ideal. The physical

properties that constitute the model parameters are specified in Table 2.3.

Table 2.3: Molar volume of ester, methanol and glycerol.

Component V (10−5 m3 / mol)

E 34.51
M 4.23
G 6.87
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2.4.3 Neural network development and performance

Based on the composition and temperature of a mixture of ester, methanol and

glycerol entering the decanter, the neural network must indicate how the three

components are separated by the light and heavy phases, that is, must predict the

split fractions to the light phase for all the components. Thus, the neural network

has the temperature (T ) and the composition of the mixture as the input variables.

The mixture composition is expressed in terms of molar fractions of methanol

and of glycerol5, xM,in and xG,in. The output variables are the split fractions for

the three components ξE, ξM and ξG, indicating, for each component, the molar

or mass fraction of the initial amount that goes to the light phase. The calculated

split fractions are used to solve the mathematical model describing the decanter

in a computationally efficient way.

� Generation and treatment of data

The training dataset was generated by the flash calculation described in Section 2.4.1.

The characterization of the feed mixture that enters the separation unit is es-

pecially important, since the network must be trained with a set of relevant data

within the range usually observed in such systems. The authors of Bambase et al.

(2007) experimentally performed the transesterification reaction of sunflower oil

at 60°C using a molar ratio between methanol and oil of 6:1, 0.50 % (m/m) of

NaOH as catalyst and an agitation rate of 400 rpm. In that work, the component

concentration over time is shown. However, the information about methanol,

one of the components in largest quantity in the mixture, is omitted. For this

reason, it was necessary to simulate the transesterification reaction (reactor) in

order to obtain the dynamic profiles of the composition of all different chemical

species required to fully quantify the mixture at the end of the reaction. The equi-

librium and the speed of all the transesterification reactions are conditioned by

reaction medium stirring. The work Brásio et al. (2011) proposes a methodology

to explicitly include this variable in the model of the reactor. However, in the

present context, a more simplistic model is enough to generate the datasets. The

model and parameters described in the work Bambase et al. (2007) were used in

5Note that the molar fraction of the ester is linearly dependent of the molar fractions of the
two other components.
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Figure 2.18: Simulation of the transesterification reaction of sunflower oil with
model according to Bambase et al. (2007).

the simulation system and the corresponding results are shown in Figure 2.24.

The visual comparison between simulated and experimental points as well as the

obtained coefficient of determination (R2 = 0.99998) show a good match with the

data of the system studied in Bambase et al. (2007).

The reaction mixture that leaves the reactor is directed to the decanter with-

out undergoing any further change in its composition. Therefore, the simulation

values of the reactor for the final time (t = 120 min) correspond to the concentra-

tion values at the entrance of the decanter (mixture before separation). The molar

concentration of the mixture to be separated is

C =
[
CTG CDG CMG CM CG CE

]

=
[
0.0018 0.0188 0.0550 2.6181 0.7644 2.4219

]
mol/dm3 .

The fractions of tri-, di- and monoglycerides were considered to go to in the

phase of the ester component (light phase) since their amounts are reduced and

because the glycerides and the ester molecules have affinity. The corresponding

molar fraction is given by

x =
[
xE xM xG

]
≈
[
xE + xTG + xDG + xMG xM xG

]

=
[
0.42 0.45 0.13

]
.
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Input Data µ σ

xM,in, – (n/n) 0.44291 0.05769
xG,in, – (n/n) 0.14301 0.07483
T oC 42.340 10.39

Table 2.4: Average (µ) and standard deviation (σ) for the normalization of the
input data.

The experimental dataset of the liquid-liquid equilibrium was generated at

various temperatures of the inlet flow. For each temperature, a mesh was con-

structed by varying the molar fractions of the mixture. The following intervals

were considered: 25°C < T < 60°C, 0.32 < xE,in < 0.52 and 0.35 < xM,in < 0.55.

The molar fraction of glycerol at the entrance of the decanter, xG,in, was computed

by the relation
nc∑
i=1

xi,in = 1. The range for the temperature was selected taking into

account the typical reaction temperatures defined by Bambase et al. (2007). This

range was then covered with increments of 1°C. The range of compositions was

defined as ± 0.10 of the molar fractions xE,in and xM,in previously calculated. The

defined range for compositions was split into intervals of 0.01. In total, 36 meshes

of 405 points were generated.

The dataset normalization, of great importance in neural network (Chaturvedi,

2008), was performed using the values given in Table 2.4.

After the pre-treatment, the data were randomly divided into three sets: the

training set, the validation set and the test set. The training and validation sets

were used to estimate the parameters of the neural network. The test set was used

to simulate the network allowing further comparison between the data obtained

by the flash method and the prediction by the neural network.

� Neural network specification

The neural network contains three distinct layers. The input layer has three neu-

rons corresponding to the three input variables in the networkX = [xM,in xG,in T ]>.

An intermediate layer having five neurons and an output layer with three neu-

rons corresponding to the variables Y = [ξE ξM ξG]> are considered. Figure 2.19

graphically depicts the network structure.

The training algorithm from the software package octave-nnet 0.1.13-2
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Figure 2.19: Neural network used to substitute the flash calculation.

for GNU Octave (Schmid, 2009) was used in the neural network training. The

weights initialization is made using random elements uniformly distributed in

the interval [−1, 1]. The initial learning rate µ0 is set to 10−3 (Hagan et al., 1996).

Other parameters related to the training of the neural network were specified as

follows: the maximum number of iterations was 2×103, the tolerance was 5×10−7

and the maximum time for training was 103 s .

� Neural network training

The neural network with the described structure was trained. Figure 2.20 shows

(see points) the evolution of the mean squared error over the training iterations.

The Levenberg-Marquardt algorithm took 99 iterations to achieve the specified

tolerance of 5× 10−7 (indicated by the dashed line). The training process took

20 s. The network validation was done automatically by the software package.

Figure 2.20 compares the MSE of the validation along iterations (solid line) with

the MSE of the training dataset and shows a good fit between the two.

The resulting weighting matrices w andW are defined by

w =



−0.280399 −1.089354 −0.085569 0.139296 0.074241

−0.133304 −0.569687 −0.994122 0.322463 1.155133

−0.477709 0.281168 0.030668 −0.061436 −0.017357




and

W =




1.6266× 10−4 1.7624× 10−4 8.4364× 10−3 1.2702× 10−4 4.2978× 10−3

5.7984× 10−3 7.9335× 10−3 2.2665× 10−0 −2.9864× 10−1 7.3118× 10−1

−1.3643× 10−3 7.3683× 10−4 3.9128× 10−1 2.6466× 10−3 1.5635× 10−1
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Figure 2.20: Evolution of the average square error while applying the Levenberg-
Marquardt algorithm.

and the bias vectors θ and Γ correspond to

θ =




0.62280

1.15884

−2.46359

0.27300

2.24627




and Γ =




1.00373

1.89116

0.23502


 .

The comparison of the computational efforts reveals that the average time

required to generate a point by the flash calculation was about 0.018 129 s, while

using the neural network was approximately 0.000 129 s. Therefore, a speedup of

141 times was achieved by the neural network over the flash calculation.

� Predicting capability of the network

Figure 2.21 shows the prediction of the split fractions using the neural network. It

also includes the first 250 points of the test. Methanol is the component with the

biggest variation of its split fraction within the range of temperature and compo-

sition covered by the mesh. Regarding the ester, it is the component for which

the split fraction is less dependent on the initial conditions of the mixture (ie, its

composition and temperature). In fact, as it can be seen in Figure 2.21, more than

99.9% of the ester always goes to the light phase, regardless of the initial condi-

69



Chapter 2. System Identification

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

ξ i
,–

Data index

E

M

G

ξ E
,–

ξ G
,–

Flash calculation
Neural network

0.9990
0.9992
0.9994
0.9996
0.9998
1.0000

50 70 90 110 130 150

0.000

0.005

0.010

0.015

50 70 90 110 130 150

Figure 2.21: Prediction of the split fractions through the neural network model.

tions of the mixture to be separated. Finally, the variation of the split fraction of

glycerol as a function of composition and temperature of the decanter feed mix-

ture is also light and it migrates almost entirely to the heavy phase. In order to

allow for a better understanding of the data (Figure 2.21), two areas of the main

graph were zoomed in, one relative to the data for the glycerol component and

other to data concerning the ester component.

The determination coefficient values corresponding to the estimates of metha-

nol, ester and glycerol are R2(ξM) = 0.9999, R2(ξE) = 0.9137 and R2(ξG) = 0.9676,

respectively. The prediction is especially good in the case of methanol, since this

component is more sensitive to the initial conditions of the mixture. However,
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Figure 2.22: Absolute error between the predictions of the neural network and
the of the flash calculation.

although the determination coefficients for glycerol and for ester are somewhat

lower, the absolute errors between the predictions and the experimental values

are quite low (see Figure 2.22).

The effect of temperature on the liquid-liquid equilibrium is quite pronounced.

In order to show that the neural network is capable of predicting this effect, two

equilibria corresponding to two mixtures A and B with different compositions

under different temperatures were studied.

Mixture A is characterized by a molar fraction xin =
[
0.42 0.45 0.13

]
in ac-

cordance with the experimental values of Bambase et al. (2007). The second study

deals with mixture B resulting from a greater reaction yield than the one verified

for mixture A. Based on this assumption, mixture B was defined as having the

composition xin =
[
0.47 0.43 0.10

]
.

Figure 2.23 represents the split fractions predicted by the flash calculation and

by the neural network as functions of the temperature, showing a good match.

As discussed above, the split fraction of methanol varies significantly with

temperature, in opposition to the fractions of ester and glycerol that remain ap-

proximately constant. A considerable zoom in of the graphical representation

of these two fractions (see Figure 2.23) reveals what, at a first glance, could be

considered as a discrepancy, particularly in the case of the ester. However, this

difference is less than 0.006% (6 thousandths percent), and therefore negligible.

An increase in the temperature, the methanol and the glycerol split fractions
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Figure 2.23: Prediction of the split fractions as function of temperature for two
different mixtures A and B (A:

[
0.42 0.45 0.13

]
, B: xin =

[
0.47 0.43 0.10

]
).

increase in both mixtures, although with less intensity in the case of glycerol. In

mixture B (mixture richer in ester), methanol is more soluble in the light phase

and, therefore, the split fraction is greater than the one obtained in mixture A

(compare ξM for mixture A and B in the main plot of Figure 2.23). A similar effect

is observed for glycerol (see zoom in of ξG in Figure 2.23). Conversely, the ester

becomes more soluble in the heavy phase and, therefore, its split fraction to the

light phase decreases (see zoom in of ξE in Figure 2.23).
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2.4.4 Discussion of results

The developed neural network was used to quantify the interaction between the

two liquid phases by calculating the split fractions for all the components in the

context of the dynamic modeling of a decanter in a CPU time efficient way.

Suppose that, at initial time, the continuous decanter with dimensions 1 m ×
1 m × 3 m is filled with equal volumes of glycerol and ester. This combination

forms two immiscible liquid phases with glycerol at the lower layer due to its

higher density. Therefore, the initial height of the heavy phase is hhv = 0.5 m

and the initial height of the light phase is hlt = 0.5 m. In such conditions, the ini-

tial phase compositions are xlt =
[
1 0 0

]
and xhv =

[
0 0 1

]
. At the same

initial instant, the reaction mixture is fed to the decanter with a flow rate of

Nin = 9.67 mol s−1, composition xin =
[
0.42 0.45 0.13

]
(corresponding to the

aforementioned mixture A), and temperature T =60 oC.

The heavy phase level hhv is controlled through a PI controller using the molar

flow rateNhv as manipulated variable (initialized at 0 mol s−1). The controller was

tuned by the trial-and-error method withKC = −500 mol s−1 m−1, τI = 2000 s, and

τD = 0 s.

� Operation start-up

The decanter start-up operation is simulated along a time horizon of 20 h with a

time interval of 10 s. Figure 2.24 exhibits the dynamic response of the unit. As

soon as the feed is introduced, the compositions of the light and of the heavy

phases change due to the entrance of new components.

The split fractions computed by the neural network allow to define the affinity

that each component will have to each of the heavy and light phases. For the

feed conditions listed above, the split fractions are ξ =
[
0.9998 0.3481 0.0046

]
.

Remark the high split fraction to the light phase for ester and the low split fraction

for glycerol.

Methanol is attracted by both phases originating changes in their composi-

tion in what concerns this component. Glycerol does not have much affinity to

the light phase and, as result, its molar fraction remains near zero in this phase.

Conversely, the ester goes almost exclusively to the light phase and, therefore, the
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Figure 2.24: Profiles of the state variables and molar flow rate of the heavy phase
under the start-up of the decanter operation.

composition of ester in the heavy phase remains approximately zero.

After approximately 10 h, the decanter reaches a steady-state with a composi-

tion of the light phase xlt =
[
0.728 0.271 0.001

]
and a composition of the heavy

phase xhv =
[
0.000 0.694 0.306

]
.

From the graphs of Figure 2.24 it is also evident that the light phase has a

much faster dynamics than the heavy phase. In spite of the fact that the volumes

of both phases are the same throughout the experiment (0.5 m3), the light phase

is crossed by a volumetric flow 7 times bigger than the volumetric flow crossing

the heavy phase. As a consequence, the residence time in the light phase is much

smaller resulting in a faster dynamic response.

As it is clear from Figure 2.24, the level is kept by the controller at the setpoint

of 0.5 m during the whole test increasing the output molar flow rateNhv from zero

until it finally stabilizes at 4.08 mol s−1.
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Figure 2.25: Profiles of the state variables and molar flow rate of the heavy phase
under disturbances to the operation.

� Introduction of disturbances

The process dynamics of the decanter affected by disturbances is illustrated be-

low. The system, reinitialized at the steady-state encountered during the study

of the system start-up, is subjected to various disturbances at instants t = 6 h and

t = 18 h. Figure 2.25 depicts the evolution of key variable describing the system

behavior in such situations. The ester composition in the heavy phase and the

glycerol composition in the light phase were omitted from the graphs because

they remain very low (approximately zero) along the whole test.

At instant t = 6 h, the mixture that constitutes the feed is replaced by a mix-

ture richer in ester (that is, the feed is changed from mixture A to mixture B).

Therefore, the feed composition changes to xin =
[
0.47 0.43 0.10

]
. In view of

this new condition, the neural network foresees a new liquid-liquid equilibrium

and, in accordance, updates the split fractions to ξ =
[
0.9998 0.4283 0.0069

]
. It

is worth mentioning that the ester and glycerol split fractions for the light phase

do not suffer significant changes. However, the methanol split fraction increases
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substantially.

As Mixture B is poorer in methanol than mixture A, the amount of methanol

going to both phases inside the decanter is pushed down. However, the new

feed originates, in parallel, a bigger split fraction to the light phase for methanol.

This induces a bigger amount of methanol going to the light phase. This second

effect overlaps the first and, in consequence, the amount of methanol going to

the light phase increases as a result of the disturbance introduced at t = 6 h. The

total molar amount moving into the light phase also increases as a consequence

of this disturbance (because of methanol but, especially, because of ester). Al-

though this fact tends to reduce the molar fraction, the increase in the amount of

methanol is enough to impose an increase in methanol molar fraction, as shown

by Figure 2.25. The amount of methanol going to the heavy phase decreases as

a result of the introduced disturbance. However, since the total molar amount

going to the heavy phase decreases (because of smaller methanol and glycerol

contributions), the molar fraction of methanol increases as Figure 2.25 reveals.

The amount of ester flowing to the light phase increases, but its molar fraction

decreases due to the more significant effect of the overall amount increase in the

light phase (namely methanol and ester). In what concerns the molar fraction

of glycerol in the heavy phase, it diminishes (see Figure 2.25). On one hand the

amount of this component passing to the heavy phase is less and, on the other,

the total molar amount of the heavy phase is higher.

To keep the level at the setpoint, the flow rate Nhv is changed. Once the rates

of methanol and glycerol sent to the heavy phase are smaller, the controller has

to lower the flow Nhv in order to be able to keep the level at its setpoint.

After a steady-state is reached, at t = 18 h the feed temperature is reduced

from 60 oC to 30 oC. This disturbance changes again the component distribution

(the split fraction becomes ξ =
[
0.9999 0.3677 0.0041

]
). For these new operat-

ing conditions, the fraction of the inlet methanol that goes to the heavy phase is

higher, inducing an increase of the methanol molar fraction and a larger glycerol

dilution, that is, a decrease in glycerol molar fraction, in the heavy phase.

At the same time, the methanol molar fraction to the light phase decreases.

Consequently, a smaller rate of methanol is directed to this phase whilst the molar

rates of the other two components remain practically unchanged. Therefore, the
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molar fraction of methanol and ester in the light phase augments and diminishes,

respectively.

The level controller increases again the flow rate since the rate of methanol

sent to the heavy phase also increases as a result of this second disturbance.
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Chapter 3

Control Loop Performance

Assessment

This chapter addresses the issue of control loop performance assessment, start-

ing with a comprehensive and critical review on the subject. Because stiction

is a long-standing control valve problem, a systematic taxonomy of the existing

contributions is provided and techniques for its correction detection are devel-

oped: a method for the detection and characterization of oscillations (stiction

consequences), a method for stiction detection and quantification based on nu-

merical optimization and able to handle discontinuities of the model describing

stiction, and a method for stiction detection in integrating processes based on

pattern recognition.

3.1 Importance and characteristics

A control system is a set of interconnected components under certain configura-

tion as represented in Figure 3.1. The controller task is to maintain the measured

process variable at a specified setpoint value, in spite of disturbances acting on

the process, problems in the actuators, noise affecting the sensors and/or changes

in setpoint values. A satisfactory process control may only be achieved when the

components of the control loop are working properly. It is obvious, even for sin-

gle loop control systems, that the task of maintaining all components healthy is

not trivial in a plant that comprises hundreds to thousands control loops.
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Figure 3.1: Block diagram of a single loop system, where r(t) is the set-
point/reference variable (SP), e(t) is the control error, u(t) is the controller output
or manipulated variable (MV), λ(t) is the real position of the final control element
(OP), w(t) is the process disturbance, and y(t) is the controlled variable or process
variable (PV).

The primary objective of control systems is to conduct the production pro-

cesses in order to transform raw materials into products maximizing the profits

while satisfying a series of performance criteria, such as product quality speci-

fications, operational constraints, safety, and environmental regulations. In the

commissioning phase, the design and implementation of control strategies and

their tuning are carried out achieving a good level of performance. However,

after some time in operation, the production process is exposed to changes in

the raw material characteristics, modifications of the operation conditions and

changes in the state of equipments (such as aging, wear, fouling and physical

modifications) which may lead to performance degradation. Even well-designed

control loops may experience problems due to sensors and actuators difficulties

calling for the retuning of the controllers (Seborg et al., 2010; Jelali, 2010).

In order to detect performance deterioration, control loops should be super-

vised. Traditionally, this task was carried out manually by the plant personnel.

However, during the last decades, a drastic personnel downsizing has occurred

along with increasing demands on product quality, productivity and environ-

mental impact that force companies to operate at a top performance. Therefore,

control systems able to deliver high performance have been increasingly recog-

nized as capital assets that should be maintained, supervised and revised rou-

tinely and automatically with the aid of control performance monitoring and as-

sessment technologies (Jelali, 2010).

Although other types of supervisory control are increasingly used (such as
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advanced control approaches), they are organized hierarchically providing the

reference variables to low level regulatory controllers, typically PID controllers.

Thus, the performance of the overall process relies on the PID controllers perfor-

mance. For this reason, the development of tools that supervise/assess automat-

ically their performance and detect common issues affecting performance before

they become significant problems — the so-called loop performance monitoring

and assessment tools — is quite important.

While assessment refers to the evaluation of some metrics, monitoring con-

sists in following closely those metrics to detect eventual changes. In spite of

these more rigorous definitions, the two terms are used interchangeably in the

common jargon of industry and even in the technical literature. Independently

of the names adopted, these tools must provide an online automated procedure

that gathers large quantities of information to determine and evaluate the per-

formance of the control system, freeing control engineers for higher valued tasks.

This technology is characterized by the use of raw data, gathered in a non-invasive

way and implemented in a completely automatic mode, and allows the detec-

tion and diagnosis of problematic or under-performing control loops (Salahshoor

et al., 2011). Another important issue for monitoring/assessment tools is the ap-

propriateness of the human-machine interface which should warranty a conve-

nient presentation of results to the user. Still the same authors also emphasize

the possibility of faults (such as false and missed alarms) that tend to reduce the

user’s trust on the tool. These tools are supposed to provide information suc-

cinctly through single page summaries and time trends to assist the problem di-

agnosis (Desborough and Miller, 2002). Other typical elements of these tools are

a prioritized list of control loops with poor performance, with a special focus on

PID controllers, as well as on-demand analysis.

According to Jelali (2006), the monitoring and assessment tool should include

five main stages (see Figure 3.2). Once determined the capability of the run-

ning control system, the metrics/benchmarks for the performance monitoring

and assessment are selected/designed. At this point, the detection of the poor

performing control loops and the diagnosis of their underlying causes is carried

out. The assessment process closes suggesting actions in order to improve the

performance of the system.
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Determine the capability of
the running control system

Select metric or design a bench-
mark for the performance assessment

Detect the poor performing loops

Diagnose the underlying causes

Suggest actions for performance improvement

Figure 3.2: Control performance assessment stages.

3.2 State of the art

This section documents the current state of the art related to industrial controller

performance assessment from the poor performance identification/detection to

its diagnosis.

3.2.1 Poor performance detection

Performance assessment of regulatory control loops is widely documented be-

cause of their importance in a plant control hierarchy. In general terms, the

performance of a regulatory control loop is related with its ability to deal with

deviations between controlled variables and their setpoint values. The perfor-

mance index allows to express the degree of performance with a single value

and there is a range of techniques, based on different criteria, for its calculation.

For example, Qin (1998) classification distinguishes deterministic performance

criteria (traditional performance measures used in the case of deterministic dis-

turbances) from stochastic performance criteria (criteria directly related to prod-

uct quality and energy or material consumption). Shardt et al. (2012) system-
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Regulatory control performance assessment methods

Deterministic methods

Statistical methods

Control charts

PCA, PLS and SVM methods

MVC-based benchmarks

MVC benchmark

MVC benchmark extensions

Other indexes

Advanced approaches

GMV and LQG benchmarks

Data-driven approaches

HIS benchmark

Other approaches

Other methods

User-performance indexes

EHP index

Model-based benchmarks

Figure 3.3: Regulatory control performance assessment methods.

atized the different techniques into statistical methods, MVC benchmark, LQG

benchmark, and data-driven approach. The remainder methods, less significant,

were lumped together under the designations of “other performance methods”.

The review here performed merges these two classifications and slightly recasts

them to incorporate techniques not mentioned there. The proposed taxonomy

tree is shown in Figure 3.3. Table 3.1 condenses the information related to the

suggested groups, namely in what concerns most representative works and ad-

vantages/disadvantages of that approaches. A more detailed description of each

of these groups follows.
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Topic(s) Advantages Disadvantages

Deterministic methods
(Farenzena, 2008; Goodwin

et al., 2001)
Clear conclusions about
the performance and the
robustness

Expensive to calculate in
real time

Statistical methods
Control charts (Cinar and

Undey, 1999; Bersimis et al.,
2007)

Graphical tools, easy in-
terpretation

Not easily applicable to
multivariate systems

PCA (Smith, 2002; Bersimis
et al., 2007; Shlens, 2009)

Easily applicable to mul-
tivariate systems

Missing data and noise
are obstacles, problems in
scaling, uses linear rela-
tionships

PLS (Bersimis et al., 2007;
Zhang and Zhang, 2010)

Easily applicable to mul-
tivariate systems

Missing data and noise
are obstacles, problems in
scaling, uses linear rela-
tionships

SVM (Sun and Tsung, 2003;
Joachims, 2005; Lu et al., 2010)

Applicable to nonlinear
and multivariate systems

Problems in scaling, may
become computationally
intensive

MVC-based benchmarks
(Harris, 1989; Huang et al.,

2005)
Easy to calculate, mini-
mal information required

May generate different in-
terpretations

Advanced benchmarks
(Grimble, 2002; Huang, 2003;

Kozub, 2002; Danesh Pour et al.,
2009)

Gives an absolute bench-
mark for performance im-
provement

May become computa-
tionally intensive

Data-driven approach
(Huang et al., 2005, 2006;

Huang and Kadali, 2008)
No model is required,
easy to calculate

Selecting data for com-
parison may be problem-
atic

Other methods
(Hugo, 2006; Ingimundarson,

2003, 2006)
No model is required,
easy to calculate

Selecting data for com-
parison may be problem-
atic

Table 3.1: Overview of the regulatory control performance assessment methods.

� Deterministic methods

Deterministic metrics (also called classical performance metrics) provide clear

conclusions about the performance and the robustness of a control loop. How-

ever and in contrast to the others, these metrics are very expensive to calculate in

real time because they usually need information from intrusive tests.

For stable systems, the control loop performance can be measured by param-
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eters that describe the system dynamics such as the rise time, the settling time,

and the overshoot (Farenzena, 2008; Goodwin et al., 2001). Figure 3.4, which ex-

hibits the unitary step response of a system in closed-loop, helps to define these

concepts. The rise time is the elapsed time up to the instant at which 95% of

the steady-state value is reached for the first time. The settling time is the elapsed

time until the step response gets confined inside a specific deviation band around

the steady-state value. In Figure 3.4, the band represented in grey filled area cor-

responds to y∞ ± 5%. Finally, the overshoot is the maximum amount by which

the step response exceeds its final value (usually expressed as a percentage of the

steady-state value). Based on these metrics, ratios between rise times and settling

times obtained for open- and closed-loop responses may also be computed.

As for the measurement of the control loop robustness, metrics as the gain

margin, the phase margin and the maximal sensitivity may be used (Farenzena,

2008). These metrics provide information on how far from the stability the current

control loop is. The gain margin is defined as the maximal additional gain that

the closed-loop would take to reach the critical condition. Similarly, the phase

margin represents the pure phase delay that could be added to achieve the criti-

cal point. And the maximal sensitivity measures the largest amplification of the

closed-loop response to process uncertainties. A figure plotting the amplitude ra-

tio (in a logarithmic scale) and the phase of the frequency response of the system

on a logarithmic frequency scale (called Bode diagram) easily shows both phase

and gain margins (Figure 3.5a). A plot representing the imaginary versus the

real part of the system transfer function (called Nyquist plot) gives an indication

of the maximal sensitivity, as portrayed in Figure 3.5b. According to the Bode

stability criterion, the system is stable because the amplitude ratio at the critical

frequency is less than one.

� Statistical methods

Statistical process control is related to the monitoring of process statistics using

control charts to determine if the process is behaving properly, that is, if it is

“in control”. Among the most commonly used are the mean, the standard de-

viation (or variance) and the range of the control error e(t) and of the manipu-

lated variable u(t). In general, a control chart is composed by a center line (CL)
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Figure 3.5: Robustness metrics for performance evaluation in the feedback loop
defined by H(s) = G(s)/ (1 +G(s)) with G(s) = 1/ (s3 + 3s+ 2s). wc stands for
critical frequency and wg for gain-crossover frequency.
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representing the mean value for the in-control process and two other horizontal

lines showing the upper control limit (UCL) and the lower control limit (LCL).

Whether the represented variable in the control chart is normally distributed or

not, it is usually acceptable to set the control limits to a multiple of the standard

deviation. Figure 3.6 depicts the basic elements of a control chart with a generic

sample statistic w.

There are different control charts, classified into univariate and multivariate

depending on the number of process characteristics under supervision, as dis-

played in Figure 3.7. Shewhart control charts, cumulative sum control charts, and

exponentially weighted moving average control charts are specially indicated for

univariate process control.

Shewhart control charts They are charts based on the mean, the standard devia-

tion, or the range.

The first ones, called Shewhart X̄ control charts, consider the characteristics

UCL = w̄ + kσw (3.1a)

CL = w̄ (3.1b)

LCL = w̄ − kσw (3.1c)

where w̄ is the in control process variable mean and k is the distance be-

tween the control limits and the center line expressed in terms of standard

deviation σw (usually set to the value 3). The standard deviation, usually

unknown, can be estimated in two alternative ways:

• based on mean sample standard deviation s̄w as

σw =
s̄w
c4

, (3.2)

c4 =

√
2

n− 1

(n
2
− 1)!

(n−1
2
− 1)!

, (3.3)

where c4 is a group size dependent function and the mean sample stan-

dard deviation for each of the m preliminary groups of size n is given
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Figure 3.6: Control chart representation.

Statistical process control

Univariate control charts

Shewhart X̄, R and S control charts

Cumulative sum control charts

EWMA control charts

Multivariate control charts

Hotelling control charts

Multivariate EWMA control charts

Figure 3.7: Control charts used in statistical process control.
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by

s̄w =
1

m

m∑

i=1

swi , (3.4)

swi =

√√√√√
n∑
j=1

(wij − w̄i)2

n− 1
. (3.5)

where swi represents the sample standard deviation for group i. With

this information, it is possible to determine the Shewhart X̄ control

chart properties (3.1) by

UCL = w̄ + k
s̄w
c4

√
n

(3.6a)

CL = w̄ (3.6b)

LCL = w̄ − k s̄w
c4

√
n

(3.6c)

• based on mean range R̄w as

σw =
R̄w

d2

(3.7)

R̄w =
1

m

m∑

i=1

Rwi , (3.8)

Rwi = max(wi)−min(wi) , (3.9)

where d2 is a group size dependent parameter and Rwi is the sample

range of a given group i. This strategy allows to reset the properties

(3.1) of the Shewhart X̄ control chart to

UCL = w̄ + k
R̄w

d2

√
n

(3.10a)

CL = w̄ (3.10b)

LCL = w̄ − k R̄w

d2

√
n
. (3.10c)

Charts based on sample standard deviation are called Shewhart S control
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charts and consider

UCL = s̄w + k
s̄w
c4

√
1− c2

4 (3.11a)

CL = s̄w (3.11b)

LCL = s̄w − k
s̄w
c4

√
1− c2

4 (3.11c)

following the aforementioned sample standard deviation approximations.

Finally, charts based on range are called Shewhart R control charts and are

built considering

UCL = R̄w + k
R̄w

d2

d3 (3.12a)

CL = R̄w (3.12b)

LCL = R̄w − k
R̄w

d2

d3 (3.12c)

where d3 is a group size dependent parameter.

Cumulative sum control charts, CUSUM charts Although they are not as intu-

itive and simple as the previous charts, CUSUM charts are more efficient in

the detection of small shifts suffered by the process mean. Considering the

mean µwi of m samples of size n, the cumulative sum is calculated by

Sm =
m∑

i=1

(µwi − w̄) . (3.13)

A typical CUSUM control chart shows a variation in a random pattern cen-

tered around zero. By applying the V-mask procedure, it is possible to de-

termine whether a process is in of control as illustrated in Figure 3.8. A

V shape is superimposed on top of the latest point of the cumulative sum

control chart and, if the previous points lie between the V shape, the process

is considered to be in control. Otherwise, it is suspected to be out of control

and further analysis must be performed (NIST and SEMATECH, 2012).

Exponentially weighted moving average control charts, EWMA control charts

The EWMA statistics is the mean of all prior data weighted exponentially,
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Figure 3.8: CUSUM control chart demonstrating an out of control process above
the upper arm through the V-mask procedure (NIST and SEMATECH, 2012).

that is,

EWMAi = λ wi + (1− λ) EWMAi−1 , (3.14)

where wi is the process variable value for instant i. The weighting factor λ

determines the memory depth of the EWMA statistic according to the value

it is set to (usually between 0.2 and 0.3). In opposition to the Shewhart

control technique, the EWMA control procedure can sense a small drift de-

pending on the choice of λ.

The control limits and the center line are

UCL = EWMA + ksEWMA (3.15)

Center Line = EWMA (3.16)

LCL = EWMA− ksEWMA (3.17)

where EWMA is the target calculated based on historical data and sEWMA is

the standard deviation of the EWMA statistic obtained by

sEWMA =

√
λ

2− λ σw . (3.18)

Nevertheless, process variables are oftentimes correlated and these univari-

ate charts may produce false alarms. Multivariate statistical process control ap-

proaches are required in such situation.
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A useful method to describe relationships between variables is based on Hotelling

control charts. In these charts, the distance Hotelling’s T2 is used to measure the

covariance of a multivariate normal distribution defined by

T 2 = n (W − µ)>Σ−1 (W − µ) , (3.19)

where n is the sample size, W −µ is the deviation between observations and their

mean, and Σ is the covariance matrix.

Also, the univariate exponentially weighted moving average control charts

can be extended to the multivariate case (Yang and Sheu, 2006) in a model similar

to (3.14),

EWMAi = Λ Wi + (1− Λ) EWMAi−1 , (3.20)

where Λ is a diagonal matrix with weighting factors λi andWi is a vector contain-

ing the process variables values for instant i. The multivariate EWMA control

chart draws the Hotelling’s statistic for the data EWMAi by

T 2 = EWMA> Σ−1 EWMA . (3.21)

A detailed review of multivariate control charts and their interpretation may

be found in Cinar and Undey (1999) and Bersimis et al. (2007).

In spite of the usefulness of multivariate control charts, when the statistics

exceed the upper control limit it is difficult to identify which variable generated

the out of control signal and it is therefore advisable to run multivariate control

charts in parallel with univariate control charts. Moreover, those univariate con-

trol charts alone will possibly not explain the out of control signal when this is

caused by changes in variables covariance or correlation.

As referred to above, using multivariate control charts may be impractical

for high dimensional system with collinear variables. A common strategy for

tackling this problem is to apply projection methods such as principal component

analysis (PCA), partial least squares (PLS) and support vector machines (SVM).

The principal components control chart, used to determine if the process is in

control, is built based on the PCA method. It is worth emphasize that the usage of

the principal components is advantageous since a small number of uncorrelated

variables are able to capture most of the data variability.
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PLS can also be used, condensing the problem to a set of latent variables that

maximizes the covariance between the process and quality spaces.

Finally, SVM, a machine learning method for linear and non-linear rules, is

used in the present context to optimize large classes of multivariate non-linear

performance measures that are computationally tractable.

A description of these three methods may be found in Section 2.2.4.

�MVC-based benchmarks

The minimum variance control benchmark (MVC), often called Harris index, is

one of the most popular methods to determine controllers performance. For a

given stable single input single output (SISO) process with a time delay τ , the

closed-loop relationship between the unmeasured disturbances w(t) and the pro-

cess output y(t) can be expressed as an infinite order moving average process (Je-

lali, 2010), that is,

y(k) = w(k)
∞∑

i=0

fiz
−i , (3.22)

where fi are the Markov parameters, fiz−i = Z{f(t− i∆t)}, and ∆t is the sam-

pling time. Based on works of Åström (1970), Box et al. (1970) and DeVries and

Wu (1978), Harris (1989) proposed to use the minimum variance (MV) controller

as a lower bound to assess the performance of single loop controllers, which is

estimated taking into account the process time delay by

σ2
MV = σ2

w

b−1∑

i=0

f 2
i , (3.23)

where b is the integer number of sampling periods1 correspondent to the pro-

cess time delay τ and calculated by b = 1 + integer(τ/∆t), σ2
w is the unmeasured

disturbances variance, and σ2
MV represents the output variance obtained by the

application of the minimum variance controller to a time-series model estimated

from measured output data.

In spite of its simplicity, the minimum variance controller can generate large

input signals. Also, a closed-loop under MVC quite often has poor robustness

1For discrete systems with no time delay, the value of b is considered as 1 (one) because the
actual output depends on the previous input (Jelali, 2010, page 27).
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properties. These issues motivated the development of better performance in-

dices (Eriksson and Isaksson, 1994). Desborough and Harris (1992) have adopted

the closed-loop potential factor ηHarris defined by

ηHarris =
σ2

MV

σ2
y

=

∑b−1
i=0 f

2
i∑∞

i=0 f
2
i

. (3.24)

where σ2
y is the actual output variance extracted from measured data. This index

may be easily estimated by the algorithm developed in Huang and Shah (1999).

And the work of Desborough and Harris (1993) normalized the index resulting

in

ηnormalized
Harris = 1− σ2

MV

σ2
y

= 1−
∑b−1

i=0 f
2
i∑∞

i=0 f
2
i

. (3.25)

The estimation of Harris index is possible from routine operating data, with no

need for any additional experiments, which represents the main advantage of

the method (Jelali, 2006). The minimum variance concept was also adapted to

feedback/feedforward control loops (Desborough and Harris, 1993; Stanfelj et al.,

1993; Huang et al., 2000a), cascade control loops (Ko and Edgar, 2000) and non-

minimum phase systems (Tyler and Morari, 1995). Furthermore, the index was

extended to cases of varying setpoints, a branch followed by Perrier and Roche

(1992) and Ko and Edgar (2000).

Some authors modified the Harris index (originally devoted to SISO systems

only) to deal with multivariate systems (Huang and Shah, 1998; Huang et al.,

2005). Such extension involved the calculation of a time delay matrix (also known

as the interactor matrix). However, as referred byJelali (2006), the interactor ma-

trix is not easy neither to understand nor to calculate motivating the development

of methods that avoid its use (Ettaleb, 1999; Ko and Edgar, 2001b; McNabb and

Qin, 2003). For example, Ettaleb (1999) defined the performance index as

ηHarris =

∑p
i=1 σ

2
i,MV∑p

i=1 σ
2
i

, (3.26)

where p is the number of outputs of the MIMO process. Appendix B presents a

summary of the modifications and extensions of the Harris index.

In order to quantify and diagnose the process variability, Farenzena (2008)
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developed a new set of indexes that decompose the information contained in

the Harris index into several components easing the task of its interpretation.

Assuming a locally linear process, the controlled variable y(t) is decomposed into

three components

y(t) = f(t) + g(t) + w(t) , (3.27)

where f(t) is the signal portion that may not be reached due to the time delay,

g(t) the signal portion that may not be reached due to the feedback controller

performance, and w(t) the white noise inserted in the process, which means that

the total variance is given by

σ2
y(t) = σ2

f(t) + σ2
g(t) + σ2

w(t) . (3.28)

The researcher defined the three indexes

deli =
σ2
f(t)

σ2
y(t)

, tuni =
σ2
g(t)

σ2
y(t)

, nosi =
σ2
w(t)

σ2
y(t)

, (3.29)

that quantify the time delay influence in the process variability, the impact of the

feedback controller performance, and the white noise influence, respectively. If

the influence of the time delay over the process is detected as too high, Faren-

zena (2008) recommends the application of the Smith Predictor or a feedforward

technique to compensate the phenomenon. If the indexes analysis point that the

feedback controller performance affects the process variability, the controller pa-

rameters should be retuned or a controller of higher order should be chosen.

The calculation of the nosi index is performed by the decomposition of the

controlled variable: the signal ŷ(t) is fitted with an autoregressive model and the

white noise component is quantified by applying the difference between the real

signal and its prediction, that is,

w(t) = y(t)− ŷ(t) . (3.30)

Knowing the process time delay b, the component associated with the feed-

back controller is computed by a simple linear regression where dynamic data
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are included by

g(t) =




y(n− b) y(n− b− 1) · · · y(n− b−m+ 1)

y(n− b− 1) y(n− b− 2) · · · y(n− b−m)
...

... . . . ...

y(m) y(m− 1) · · · y(1)




︸ ︷︷ ︸
X




α1

α2

...

αm




︸ ︷︷ ︸
α

, (3.31)

where n is the number of samples, m is the autoregressive model order, and α are

the model parameters calculated by

α = (X>X)−1X> y′ , (3.32)

with

y′ =




y(n)

y(n− 1)
...

y(m+ b)



. (3.33)

The process variability contribution f(t) is now computed by subtracting the

previously calculated components

f(t) = ŷ(t)− g(t) . (3.34)

� Advanced benchmarks

Advanced benchmarks deal with extensions of the minimum variance concept

that need more information about the plant than just the time delay τ . Two well-

known approaches are the generalized minimum variance (GMV) and the linear-

quadratic Gaussian (LQG). In spite of being more realistic than other known

benchmarks, both need more information on controller performance (such as

how much the output variance may be reduced without significantly affecting

the controller output variance or if the actuator wear is a concern) (Jelali, 2010).

Proposed by Grimble (2002), GMV minimizes the weighted sum of the control

error e(t) and of the manipulated variable u(t). The GMV cost function to be
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minimized is defined by

JGMV = E{φ(t)2} , (3.35)

φ(t) = Pc e(t) + Fc u(t) , (3.36)

where φ(t) is the squared generalized output signal, E{·} is the expected value,

Pc and Fc are weighting functions. The dynamic weightings must ensure the sta-

bility of the closed-loop system and cannot be chosen arbitrarily, which represent

be a problem.

The benchmark LQG, proposed by Huang and Shah (1999), may be computed

after having detected poor performance with the Harris index. This benchmark

does not require a specific controller implementation running over the process

and provides the performance bound for any linear controller in terms of the

weighted input and output variances. It provides useful information about how

far the control performance is from the best achievable performance with the

same control effort. Mathematically, the objective function associated to this ap-

proach is defined as

JLQG = σ2
y + ρ σ2

u , (3.37)

where ρ is the move suppression weight.

Table 3.2 summarizes the advanced performance benchmark works.

� Data-driven approaches

Notwithstanding the attractiveness of the mentioned approaches, all of them re-

quire information that is often difficult to obtain. To circumvent this problem,

some benchmarks are specified based on historical data from to a time period

when the plant was perfectly tuned and optimized. In practice, the baseline per-

formance is defined by the engineer via visual inspection of the trend graphs in a

predefined time window. This approach is known by different denominations as

Jelali (2006) refers: historical data benchmark (HIS), reference dataset benchmark

or baselines.

Another simpler data-driven performance index was developed by Qin and

Yu (2007) using the covariance and eigenvalue functions.

In addition, a method based on the prediction error was developed by Huang
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Table 3.2: Advanced performance benchmark overview.

Work Observations

Grimble (2002) Extended the MVC to the more flexible GMV.

Majecki and Grimble (2004) Extended the GMV to multivariable systems.

Grimble (2004) Derived the GMV control law for nonlinear
multivariable systems.

Haibo and Maying (2010) Proposed a GMV for cascade control systems.

Grimble and Majecki (2004) Described a new method for the cost function
selection knowing the existing control struc-
ture. It is developed based on the GMV, but it
is also applicable to some cases of the LQG.

Kammer et al. (1996) Used non-parametric modelling in frequency
domain to ascertain the optimally of an LQG
controller based on the comparison of the opti-
mal and the achieved cost function.

Huang and Shah (1999) Proposed a LQG not requiring that a specific
controller be implemented for the given pro-
cess.

Kozub (2002) Discussed some critical issues related to LQG.

Dai and Yang (2004) Proposed a simpler method for obtaining the
LQG based on the subspace identification ap-
proach.

Danesh Pour et al. (2009) Improved the problem with the consistency of
the noise variance estimation in the original
model of LQG.
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and Kadali (2008). These authors suggested the fitting of the closed-loop data to

obtain the Markov coefficients which are useful in the determination of a scalar

measure of the covariance matrix. This measure is then used to define a dimen-

sionless index indicating the performance potential of the system.

� Other methods

Besides the described indices, specialized metrics have been developed to include

design specifications of the user leading to more realistic performance indices.

Referred by Jelali (2006) as user-specified performance indices, these are generally

defined as

ηuser =
Juser

Jact

, (3.38)

where Juser is the corresponding value of the user-specified performance mea-

sure.

Desborough and Harris (1992) and Thornhill et al. (1999) proposed the use

of the extended horizon performance index (EHPI) with the general expression

similar to ηHarris defined in (3.24) but calculated for a time interval larger than the

time delay τ . This extended horizon avoids the time consuming determination of

time delay and regarding the prediction horizon as an engineering criterion (Je-

lali, 2010).

Liu and Gao (2011) developed a multi-objective user-specified benchmark

problem. The linear matrix inequality region method is applied to solve the pole

placement constraint. Finally, a cone complementarity linearisation algorithm is

used to handle the resulting non-convex problem.

Benchmarks with a more restricted structure or model based for assessment of

controllers performance were also developed and applied (Jelali, 2006). Eriksson

and Isaksson (1994) and Ko and Edgar (1998) suggested the first approach with

the optimal PID benchmark (OPID), where a lower bound of the variance was

calculated by restricting the controller type to PID and allowing for more general

disturbance models. The index takes the form

ηOPID =
σ2

PID

σ2
y

, (3.39)
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where

σ2
PID = min

K
σ2
y (3.40)

and K are the PID controller constants.

Later, model-based approaches which could explicitly handle constraints and

longtime delays were suggested by Ko and Edgar (2001a); Schafer and Cinar

(2004); Julien et al. (2004). Fundamental questions related to these approaches

are addressed in works of Patwardhan (1999) and Dumont et al. (2002), specially

the issues of the source of poor control performance (as bad controller tuning or

inaccurate modelling).

Appendix B contains a summary of the modifications and extensions of the

indices here presented.

The described indices/techniques detect poor performances in processes in a

general way. Complementary indices were developed to determine, during the

detection of poor performance in a plant, the primary origin of the disturbances

responsible for that poor performance, mainly categorized into oscillating, non-

oscillating and non-stationary disturbances.

3.2.2 Poor performance diagnosis

Once the assessment of a given control loop ended up in the detection of its poor

performance, it is essential to find its root cause. Figure 3.9 shows the work flow

of this diagnosis stage, from the disturbances type to the underlying causes. As

reported by Thornhill and Horch (2007), the key tasks of the diagnosis are the

detection of one or more periodic oscillations, the detection of non-periodic dis-

turbances and plant upsets, and the determination of the locations in the plant

affected by those oscillations/disturbances together with their most likely root

causes.

� Disturbance type diagnosis

Firstly, it is important to identify the type of disturbances present in the control

loop: oscillating, non-oscillating or non-stationary.

Oscillating disturbances: Frequent in industrial processes, they are usually caused

by aggressive controller tuning, presence of non-linearities (stiction, hys-
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Poor performance
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Non-stationary
disturbances
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Non-oscillating
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Non-linear causes Linear causes

Valve problems

Limit cycles

Controller tuning

Controller interaction
and structural problems

Figure 3.9: Poor performance detection and diagnosis.

teresis, etc) in control valves and internal/external disturbances. Due to

the large percentage of systems with poor performance originated by prob-

lems/faults in control valves, the oscillating disturbances are the most stud-

ied ones (Desborough and Miller, 2002).

When oscillations are significant enough, they may be detected both in time

and frequency domain. Surveys on the available methods were performed

by Jelali (2006), Choudhury (2011) and Shardt et al. (2012). A classification

for the existing methods is proposed in Figure 3.10.

The most widely used and described methods of the first group (time do-

main) are the settling time method (O’Connor and O’Dwyer, 2004), the in-

tegral of absolute error method (Hägglund, 1995; Hagglund, 2005), the au-

tocorrelation and partial correlation functions method (Shumway and Stof-

fer, 2000), the poles of ARMA model method (Salsbury, 2006) and the zero

crossings method (Thornhill and Hagglund, 1997). In the second group (fre-

quency domain), the most popular methods are the Nyquist method, the

Bode and Nichols plots and phase margins method (O’Connor and O’Dwyer,

2004; Huang and Shah, 1999), the maximum closed-loop log modulus me-

thod (Chiang and Yu, 1993; Belanger and Luyben, 1996), the autocorrelation

method (Shumway and Stoffer, 2000) and the damping method (Miao and

Seborg, 1999).
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Detection of oscillating disturbances

Time-domain methods
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Phase and gain margins
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Damping

Figure 3.10: Methods for oscillating disturbances diagnosis.

Hägglund (1995) developed a method for detecting oscillations based on the

monitoring of the integral absolute error (IAE) between consecutive zero

crossings of the control error. In spite of its importance as it can determine

oscillations of significant amplitude, the method needs the controlled vari-

able to be centered on the reference variable and is very sensitive to noise,

which constitute strong limitations to the method performance. Some en-

hancements were proposed by Thornhill and Hagglund (1997) in order to

improve the real-time oscillation detection. The algorithm of the enhanced

method consists of:

1. Choose the amplitude of oscillation, Alim, and the admissible dis-
turbances number, nlim, to the considered supervision period.

2. Calculate the admissible integral absolute error of half-oscillation,
IAElim, through

IAElim =
2Alim

wu
, (3.41)

where wu is the ultimate frequency approximated by wu = 2π/TI.
If unavailable, the integral time TI is also approximated by TI =

2∆Ti, where ∆Ti is the time between consecutive zero crossings of
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the signal.

3. Monitor the IAE of half-oscillations using

IAEk =
k∑

i=k0

ei , (3.42)

since the time that the control error e changes its signal, k0, until
the latest sample, k.

4. Calculate ∆Ti when two consecutive zero crossings are detected.

5. Update the IAElim based on the new ∆Ti.

6. If IAEk exceeds the IAElim, conclude that a disturbance has oc-
curred and loadk = 1. Otherwise, loadk is held at 0.

7. Monitor the detected disturbances number, nk, using the relation-
ship

nk = γ nk−1 + loadk , (3.43)

where γ is a parameter related to the supervision period, Tsup, de-
fined as γ = 1−∆t/Tsup and ∆t is the sampling time.

8. If n exceeds nlim, conclude that the signal presents an oscillatory
behaviour.

Assuming that the oscillation period and the IAE between zeros crossings of

the signal might have little variability along the time, Forsman and Stattin

(1999) introduced an index that expresses the regularity between the two

quantities. The main strength of the method is its capacity of detecting

asymmetric oscillations. Nonetheless, the method has also some drawbacks

associated, namely the fact that the presence of noise affects significantly the

method’s performance, the method requires the controlled variable to be

centered on the setpoint variable, and it detects oscillations independently

of their significance. The correspondent algorithm is as follows:

1. Calculate the control error zero crossings ti, i = 0, · · · , N .

2. Calculate the time intervals between consecutive zero crossings δi
and εi by

δi = t2i+1 − t2i and εi = t2i+2 − t2i+1 , (3.44)

with i = 0, · · · , N/2. Figure 3.37 evidences the meaning of vari-
ables δi and εi (for i = 0).
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3. Calculate the IAE A e B by

Ai =

∫ t2i+1

t2i

|et|dt and Bi =

∫ t2i+2

t2i+1

|et|dt , (3.45)

with i = 0, · · · , N/2. Ai and Bi (for i = 0) are depicted in Fig-
ure 3.37.

4. Determine hA and hB so that

hA = #{i < N/2; α <
Ai+1

Ai
<

1

α
∧ γ <

δi+1

δi
<

1

γ
} (3.46)

hB = #{i < N/2; α <
Bi+1

Bi
<

1

α
∧ γ <

εi+1

εi
<

1

γ
} (3.47)

where #S defines the number of elements in S and α and γ are
tuning parameters (α, γ ∈ [0, 1]).

5. Calculate the index h as

h =
hA + hB

N
. (3.48)

6. Evaluate the index according to

• if h ≈ 0.1: signal just affected by noise.

• if h > 0.4: oscillatory signal, it demands for a detailed analysis.

• if h > 0.8: very distinctive oscillatory pattern.

Miao and Seborg (1999) developed a method based on the decay ration of

the auto-correlation function of the control error. The usage of this function

is appealing because it reduces, by itself, the signal noise. However, the

decay ratio of signals which contain multiple oscillations may lead to wrong

conclusions. The algorithm is the following:

1. Calculate the auto-correlation function of the control error e (or of
the controlled variable x) by

ρe,k =

∑N−k
i=1 (ei − e)(ei+k − e)∑N

i=1(ei − e)2
, (3.49)

where N is the number of points of the time series, e is the control
error mean of the sample of sizeN and k is the number of intervals
corresponding to the time series delay, k = 1, · · · , N − k.

2. Determine the first two maxima and the first two minima values
of ρe.
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Figure 3.11: Variables meaning of Miao and Seborg (1999) method.

3. Calculate the line equation passing through the two maxima.

4. Calculate the line equation passing through the two minima.

5. Calculate the index R by

R =
a

b
. (3.50)

The meanings of a and b are depicted in Figure 3.11.

6. Evaluate the index according to

• if R ≤ 0.5: control loop with acceptable performance.

• if R > 0.5: control loop with severe oscillation.

Using also the auto-correlation function, Latwesen and Junk (2002) patented

a method that, after visual detection of an oscillation, estimates the oscilla-

tion period based on the maxima and minima values of the function. This

method reduces the error in the determination of the oscillation period even

in signals containing overlaying of oscillations of different periods. Never-

theless, the need for visual detection and the characterization of exclusively

the oscillation of smallest period reduces its applicability.

In the process of characterizing the oscillations present in a time series,

Thornhill et al. (2003b) use the zero crossing of the auto-correlation function

for determining the oscillation periods. However, the presence of multiple

oscillations affects the determination of those zeros. Therefore, the method

uses the determination of the signal spectrum to identify the dominant fre-

quencies. Then, it applies a filter to remove the less significant oscillation

periods. But the filtering process makes the automation of the method more

difficult.

Nowadays, the overlay of oscillations with different periods still represents

a challenge in what concerns the automatic detection of oscillations with no

human interaction. With the objective of handling this kind of situations,
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Srinivasan et al. (2007) and Srinivasan et al. (2012) proposed an approach

using the modified empirical mode decomposition that is able to select the

different signal oscillations. After the selection step, the zero crossings of

the generated components are determined and the oscillation periods cal-

culated.

Also, Wang et al. (2013) developed a method to characterize multiple oscil-

lations present in a signal. This method makes use of the discrete cosine

transform to convert the signal in its more elementary frequency compo-

nents. The transform application makes the method computationally more

intensive, though. Besides, the method requires the application of filtering

as the noise strongly influences the method performance. The algorithm

consists of:

1. Standardize the signal x by removing its mean and determine the
respective discrete cosine transform z.

2. Apply the filter SL = 3σz using the function

zf,k =




zk, for |zk| > SL

0, for |zk| < SL
. (3.51)

3. Select the segments [ks, ke] not null of transform so that





zf,ks 6= 0 and zf,ks−r = 0, for r = 1 ,

zf,ke 6= 0 and zf,ke+r = 0, for r = 1, 2, 3, 4 ,

ks 6 ke .

(3.52)

4. Generate the inverse of the transform x′ for each segment.

5. Obtain the zero crossing of x′, ti, and calculate the oscillation peri-
ods

Ti = ti+1 − ti , (3.53)

with i = 1, . . . , L, where L is the number of the found number of
periods.

6. Calculate the regularity given by

r =

√
χ2
L−1,α/2√
L− 1

T

3σT
. (3.54)
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7. If r > 1, the oscillation is considered regular and, consequently,
the signal presents an oscillation of period T .

8. Apply the filter SL = σz (similarly to step 2) to obtain a new zf .

9. Repeat steps 3 to 7.

10. Select the T (obtained through the filter application SL = σz) with
the higher indices F . The index F is defined by

F = 100
(

1− ||x
′ − x||2
||x− x||2

)
, (3.55)

where x′ is the inverse transform of zf corresponding to the period
T , x is the mean of signal x and ||·||2 represents the euclidean mean
(dimension 2).

11. Localize the periods T (obtained through the filter application SL =

3σz) associated to the periods determined in the previous step.

12. Choose the dominant oscillations p with the criterion

p =




T SL=3σz if rSL=3σz > rSL=σz

T SL=σz if rSL=3σz < rSL=σz

. (3.56)

Although the detection of poor performance is a rather important task, the

challenge is to trace the bad performance to its root causes. For this task,

specialized methods and indices can be used. These indices do not require

the knowledge of time delays nor any model identification. Instead, they

are calculated based on the analysis of some measured signals, such as the

manipulated, controlled and setpoint variables.

As already mentioned, there are different reasons for poor control perfor-

mance, namely the limitations on achievable performance arising due to a

combination of system and controller design, changes in system dynam-

ics, varying disturbance, sensor or actuator faults, system non-linearities

as well as other unknown sources (Jelali, 2006). The presence of some of

these problems may render process dynamics non-linear (in opposition to

the frequent assumption of linearity, at least locally, for the system). In this

context, the root causes are usually divided into linear and non-linear (as

indicated in Figure 3.9).

The root cause diagnosis is decomposed into two parts. In the first part,
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Figure 3.12: Manual diagnosis of oscillating disturbances (Hägglund, 1995).

the root cause of the disturbance is distinguished from other disturbances

which will be posteriorly analyzed when the root cause is addressed. The

second part is testing the candidate root cause loop to confirm the diagnosis

report (Thornhill and Horch, 2007).

Hägglund (1995) proposed a procedure to manually diagnose oscillating

disturbances represented in Figure 3.12), also described in detail by Huba

et al. (2011). Apart from assuming that only stiction may be the oscillation

cause, the method has a reduced vision, i.e., when the controller in a par-

ticular loop is set to manual (first step of the procedure) and the oscillation

stops, its conclusion that the oscillation is caused by that control loop can be

misleading: oscillations often arise from multivariable interactions between

loops and the fact that the oscillation stops does not necessarily mean that

that loop is where the root cause is (Huba et al., 2011). These two facts con-

stitute the main disadvantages of the method.

The distinctive factor in the diagnosis of oscillating disturbances respects to

the linearity/non-linearity of the signal generated by the disturbance. Com-

mon linear root causes of the disturbances comprise (Thornhill and Horch,

2007) poor controller tuning, controller interaction, and structural prob-

lems involving recycles while non-linear root causes of the disturbances in-

clude (Choudhury et al., 2008b) problems in control valves (such as stiction,
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hysteresis, and deadband), on-off split-range control, sensor faults, process

nonlinearities, hydrodynamic instabilities such as sluggish flows, and limit

cycles.

Non-oscillating and non-stationary disturbances: Non-oscillating disturbances

are generally characterized by their spectra which may have broad-band

features or multiple peaks. Spectral decomposition methods are used to

detect this kind of disturbances because they may distinguish significant

spectral features from broad-band noise that spreads all across the spec-

trum (Thornhill et al., 2002; Xia and Howell, 2005; Xia et al., 2006; Tangirala

et al., 2007). The spectral envelope method was also developed for detecting

and categorizing process measurements with similar spectral characteris-

tics (Jiang et al., 2006a). Another method for the diagnosis of non-oscillating

random load changes based on a normalized index which is related to the

damping ratio of a second-order model is described by Salsbury (2005).

In what concerns disturbances characterized by magnitude changes or that

appear and disappear without a visible cause, designated as non-stationary

disturbances, they can be diagnosed by the wavelet model developed by

(Matsuo et al., 2003).

� Specific malfunction diagnosis

Once the type of oscillation is determined, the diagnostic focuses in the task of

finding the underlying causes. Two important root causes are PID controller as-

sociated problems and control valve related problems.

PID controller problems: PID controllers play a fundamental role in process in-

dustry keeping processes safe, stable and profitable. In order to reduce

process variability, the controller must respond quick and appropriately to

process load disturbances and setpoint changes. Moreover, it should coor-

dinate its action with other controllers when belonging to control schemes

such as cascade, ratio or feed-forward control.

In spite of the important functions they are supposed to perform, many of

the control loops are not properly configured. Actually, around 75% of them

may be increasing the variability of the process as reference variables are not
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followed, control valves are oscillating, and some control loops are in man-

ual control. Buckbee (2008) has reported a surprising set of statistics: 30%

of control loops are improperly configured in the DCS, 85% of them have

sub-optimal tuning and 15% of the control valves are improperly sized.

This poor performance is usually due to improper controller algorithm, im-

proper tuning, over- or under-filtering, improper control loop configura-

tion, and improper spanning. The use of an improper algorithm for the

controller may lead to the inability to track the setpoint or to the creation

of sustained oscillations. It also can generate excessive wear and tear of the

control valve as well as excessive process movement in response to setpoint

changes. In order to identify PID controllers with algorithm problems, a

few general rules may be applied by the operator to a list of all the control

loops in the plant suffering of poor performance. Buckbee (2008) suggests

the following rules:

Rule 1. Avoid derivative action on error because it causes a kick at setpoint

changes and excessive wear of the valve. It is specially problematic

when used on the inner loop of a cascade control scheme. Instead of

derivative on error, it is recommended to use derivative of the con-

trolled variable.

Rule 2. Avoid gap control on the PID controller algorithm because it does not

allow to track the setpoint closely leading to sustained oscillation or to

an off-set between the controlled and the setpoint variables.

Rule 3. Avoid integral action only when the controller under this algorithm

does not respond quickly to load disturbance and setpoints changes.

The response of a controller is said to be sluggish when the process variable

stays away from its setpoint for large periods of time. Poor tuning (im-

proper controller constants) originates sluggish responses, deficiently han-

dling the process upsets and ending up in propagating oscillations through

the whole process. The usual operator response to these effects is to switch

the controllers to manual mode disabling the loop action and compromising

the safety and product quality.
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In order to timely detect improper tuning some indices may be computed

and monitored. The most used method implemented in vendor tools is the

variance index (Xia and Howell, 2003; Zang and Howell, 2003). The Idle

index was proposed by Hagglund (1999) to detect sluggish responses of

controllers. Further improvements to deal with noisy data were proposed

by Kuehl and Horch (2005). Howard and Cooper (2010) also proposed a

new index to monitor the performance to disturbance rejection by applying

a second-order under-damped model as pattern recognition.

An extreme case of poor performance due to improper tuning is when the

process variables oscillate due to an aggressive controller. Ingimundarson

(2006) developed an index based on the normalized partial derivative of the

variance to deal with this situation. A positive synthetic gradient indicates a

controller tuned aggressively while a negative gradient identifies a sluggish

controller.

Poor performance can also be related to filtering. Filtering is a technique

usually applied to reduce the impact of noise preventing an over-reaction of

the controller to its presence in the feed signal. Since filters implementation

may be performed in multiples places (in the instrument, in the controller

software, and in the PID controller block), the lack of implementation con-

sistency may lead to the application of more than one filter for a single loop

and results in additional lags in the response. Such phenomenon is called

over-filtering. Under-filtering, presenting the opposite effect, may also oc-

cur. Any excess of noise entering the control algorithm is amplified by the

controller (specially with large controller gain or derivative action) induc-

ing large process variability and compromising its quality and stability. For

this reason, Buckbee (2008) suggests to keep all filtering in one place and

choose the filter constant based on the process dynamics. Welander (2010)

also proposes to coordinate simultaneously the determination of the filter

constant and the derivative time.

Also, an improper configuration of the control loop may also be a cause for

the decrease of its performance. Loops do not work in a vacuum and, con-

sequently, their operation must be coordinated with the other control loops

around. This is particularly important in the cases of cascade and ratio con-
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trol strategies where the operation of a loop relies on other loops informa-

tion. Poor performance induced from interaction or improper configuration

may be diagnosed by the variance index (Xia and Howell, 2003), the causal-

ity method (Bauer et al., 2004, 2007), or multivariate analysis (Rossi et al.,

2006). Anyway, interaction among loops, improper loop pairing and com-

peting controllers are issues that still require more research attention.

Finally, an improper spanning (under- or over-spanning) may influence

control loop performance as well. Usually, the under-spanned instrument

identification may be performed by monitoring the metric defined by the

percent of time at which the controlled variable exceeds the span limits.

Valve problems: Control valves are the most common final control element in

chemical plants. They may contain different non-linearities such as stiction,

backlash, deadband, saturation, and quantization (Bonavita et al., 2006), de-

scribed succinctly in Table 3.3. From these non-linearities, stiction is the

most common and one of the long-standing problems in process indus-

try (Choudhury et al., 2005). Its detection is mainly performed by methods

based on signals shape, surrogate analysis, and system identification (see

Section 3.2.4 for their description).

The interest on other phenomena affecting control valves has not been much,

maybe motivated by the fact that their consequences are not as prominent

as those of stiction. Just recently, Xu et al. (2015) developed an approach

to perform deadband online detection for a flow control valve based on a

mathematical model. Relatively to backlash, Hägglund (2007) have pro-

posed a method to detect the phenomenon in valves for stable processes.

Techniques to quantify and compensate the valve problem were also pro-

posed by the same author. Following this work, Haventon and Öberg (2008)

suggested some method improvements in order to guarantee robustness

and automation of the backlash estimation procedure. A second method

for backlash detection was introduced by Ling et al. (2007). It uses a non-

parametric statistical procedure to diagnose the phenomenon. Furthermore,

the method identifies other valve malfunctions besides backlash, classifying

the individual faults by extraction and analysis of the geometric features.

Focusing on integrating processes, Farenzena and Trierweiler (2012) pro-
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Table 3.3: Description of the most common non-linearities of the control
valves (adapted from Bonavita et al. (2006)).

Nonlinearity Definition Representation
of

output vs. input

Stiction

Property of an element such that
its smooth movement in response
to a varying input is preceded by
a static part followed by a sudden
jump.

Deadband

The range to reverse direction
through which the input may be
varied without initiating a re-
sponse.

Backlash

The play or loose motion in an in-
strument due to the clearance exist-
ing between mechanically contact-
ing parts. Lost motion after revers-
ing direction.

Saturation

The controller requires more action
than the actuator is able to deliver.
May lead to wind-up related prob-
lems if not taken into account.

100%

0%

Quantization

The process of transforming a con-
tinuous signal into one of finite
steps or levels, as in an A/D con-
verter.

Deadzone

The range to keep the motion
through which the input may be
varied without initiating a re-
sponse.

Hysteresis

The path dependent characteristic
attributed to materials not being
able to return to their original shape
and size after being stretched or de-
formed.

posed the backlash index that distinguishes between stiction and backlash

phenomena based on process variable patterns.

Another valve problem is that related to saturation that these elements can

suffer (valves can not open or close beyond their physical range of [0, 100]%

even if the controller demands so). The possibility of valve saturation should
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be checked when facing a situation of poor performance in the control loop.

A simple method to perform this task is to monitor the manipulated vari-

able movement when the controller is in automatic mode. It is notewor-

thy that sometimes saturation is deliberate, e.g., the controller will certainly

lead some valves to the saturation when an operator wants to maximize the

process throughput (Choudhury et al., 2008b).

3.2.3 Performance improvement

Once the poor performance diagnosis has been concluded, there is need to sug-

gest improvement measures, namely the inspection and maintenance of the loop

elements, the controller retuning, the controller redesign, and/or the compensa-

tion of valve problems, which should be selected depending on each particular

situation.

When the poor performance origin lies on problems or malfunctions of com-

ponents such as sensors and actuators, it is essencial to perform inspection /main-

tenance work. For instance, if a control loop is identified as having an oscillating

disturbance (derived from a valve suffering of stiction, for example), some valve

tests must be carried out to confirm that is the real root-cause (valve inspection).

If the suspicion is confirmed, the valve should be replaced (equipment mainte-

nance) (Jelali, 2006).

As an example of a maintenance procedure, one can also refer the controller

retuning (Veronesi and Visioli, 2010, 2015) by setting new values to the controller

parameters. Section 4.2.1 describes important aspects and methods necessary to

improve control loop performance by PID controllers tuning.

The controller redesign is another loop performance improvement alternative.

The introduction of specialized procedures (as, for example, anti-windup, time-

delay compensation, gain-scheduling or adaptive control) into the basic control

strategy can enhance process control. Jelali (2006) argues that most of control

performance problems are due to the lack of time-delay compensation and to the

negligence of system interactions.

Although the solution for problematic valves is, as referred above, to per-

form maintenance work on the equipment, this is seldom possible in a running

plant because of operation and safety considerations. Consequently, a problem-
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atic valve may remain in operation for months until the next turnaround. A

possible temporary solution to address these cases is the compensation of the

phenomena occurring in the valve in order to eliminate or reduce their effects,

to increase the valve lifetime, and to reduce the maintenance costs. Kato and

Hatanaka (1998) invented a method for compensating backlash that computes

the control signal based on the estimation of the disturbance acting on the system.

Non-linear model predictive control is also an appealing compensation solution

due to its ability to handle non-linearities and constraints. Several other appli-

cations to compensate valve problems were reported in literature. For example,

Zabiri and Samyudia (2006) implemented a model predictive control strategy to

control a plant under saturation and backlash. Also, Su et al. (2009) and Jang et al.

(2005) studied the compensation in systems exhibiting both dead-zone and satu-

ration. Rodríguez-Liñán and Heath (2012) developed an approach similar to that

of Zabiri and Samyudia (2006) by including the inverse backlash into the model

predictive control formulation which resulted in a set of mixed-integer inequali-

ties. Stiction compensation methods are reviewed in Section 3.2.4.

3.2.4 Stiction modeling, detection/quantification and compensa-

tion2

Modern chemical plants consist of a large number of process units that have

hundreds or thousands of control loops (Xu and Bao, 2010). These are essen-

tial assets because they ensure a high quality of the products as well as the safety

of personnel and equipment (Alemohammad, 2011). Maintaining their perfor-

mance is usually very time consuming (Yamashita, 2004) but necessary because

of the increasing environmental, societal and competitive demands, aggravated

by the lack of adequate training and experience of the staff in process control

troubleshooting, as pointed out by Desborough and Miller (2002).

The main root causes for poor control performance are classified as non-sta-

tionary, non-oscillating and oscillating disturbances (Thornhill and Horch, 2007).

2This section is a reproduction in part with permission from Brásio, A. S. R., Romanenko, A.,
and Fernandes, N. C. P. (2014). Modeling, detection and quantification, and compensation of stic-
tion in control loops: The state of the art. Industrial & Engineering Chemistry Research, 53(39):15020–
15040. URL http://dx.doi.org/10.1021/ie501342y. Copyright 2015 American Chemical
Society.
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The later have received most of the research attention because they occur fre-

quently in industrial processes (Desborough and Miller, 2002) due to linear and

nonlinear phenomena. The linear causes comprise mainly aggressive controller

tuning, interactions between controllers, and structural problems. In what con-

cerns the nonlinear causes, they may arise in the process from phenomena such

as valve malfunctions (Thornhill and Horch, 2007), namely hysteresis, backlash,

deadband, and, especially, stiction. In fact, stiction is one of the long-standing

problems in the process industry (Jelali and Huang, 2010) causing limit cycles

and undermining economic performance of the assets.

Although the definitive solution for a sticky valve is to perform maintenance

work on the equipment (Gerry and Ruel, 2001), this is seldom possible in a run-

ning plant because of operation and safety considerations. Consequently, a sticky

valve may remain in operation for months until the next turnaround. The com-

mon industrial practice for compensating the stiction phenomenon is the manual

detuning of the respective controller in order to eliminate or reduce the limit cy-

cle effect. However, while the oscillation may decrease, the closed-loop perfor-

mance of the process also deteriorates. The adequate mitigation of the stiction

phenomenon allows to guarantee a high-level performance of the control loops,

to extend control valves life time and to reduce maintenance costs.

While considerable progress has been made in stiction modeling, detection

/quantification, and compensation, there are only a few surveys on these top-

ics (Armstrong Hélouvry et al., 1994; Ordys et al., 2007; Choudhury et al., 2008a;

Jelali, 2010; Arumugam and Panda, 2011). Moreover, these surveys do not cover

a significant part of the models and methods already proposed by several re-

searchers. The objective of this work is to provide a systematic taxonomy of the

approaches covered in previous reviews, to describe significant contributions that

were left out and to encompass recent developments, resulting in a comprehen-

sive, contextualized, and updated state of the art in the field.

This section introduces the concept of stiction with a discussion on its influ-

ence in control loops, studies stiction phenomenon models reported in the liter-

ature, presents a thorough survey about approaches to detect/quantify stiction,

followed by a summary of stiction compensation methods that are useful while

valve maintenance or repair is not viable. An overview academic and commercial
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software with stiction diagnosis capabilities is also depicted. Finally, a summary

of the published techniques is provided.

� Stiction in control valves

Definition and characterization of stiction

According to the Merriam-Webster Dictionary (2012), the word stiction results

from the contraction of STactic and frICTION and was first mentioned in a jour-

nal of aeronautics in 1946 to emphasize the difference between the static and the

dynamic frictions.

In spite of the large number of works about static and dynamic frictions, only

Choudhury et al. (2005) have tried to define formally such phenomenon and have

proposed the only available description of the mechanism that causes stiction.

These authors defined stiction as a “property of an element such that its smooth

movement in response to a varying input is preceded by a sudden abrupt jump

called the slip-jump. Slip-jump is expressed as a percentage of the output span. Its

origin in a mechanical system is static friction which exceeds the friction during

smooth movement”.

According to ISA (1995), the phenomenon is measured as the difference be-

tween the final and initial position values required to overcome static friction.

For instance, 4% of stiction means that when the valve gets stuck, it will start the

movement only after the difference between the control signal and the valve stem

position exceeds 4%.

The typical behavior of a valve suffering from stiction may be observed in a

phase plot (Figure 3.13), where it is possible to distinguish a sequence of four

components (deadband, stickband, slip-jump and moving phase) that occur in the fol-

lowing process:

1. When the stem of a control valve arrives to a rest position or changes the di-

rection, the valve sticks (see point A in Figure 3.13). While it does not over-

come the frictional forces, the valve stem maintains the position (between

points A and C) resulting in deadband (between A and B) and stickband (be-

tween B and C).

2. After overcoming the static friction, the valve stem converts the potential
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Figure 3.13: Phase plot showing
the typical behavior of a sticky
valve (Choudhury et al., 2008b).
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Figure 3.14: Distinction of limit cy-
cles due to stiction and to other
causes.

energy stored in the actuator into kinetic energy, jumping in an abrupt way

to a new position. It is the slip-jump (between C and D).

3. Once the stem jumps, it continues to move until it eventually sticks again

because of a stop or inversion of the direction of the stem movement (be-

tween D and E). This phase is called the moving phase.

4. During the moving phase, the valve stem may have a reduced velocity. This

condition may stick the valve again while it keeps its travelling direction.

In this case, there will be only stickband (the magnitude of the deadband is

zero). This friction force is overcome if a valve input signal greater than the

stickband magnitude is applied to the valve.

Tribology science classifies the described behavior in two regimes: the slid-

ing regime and the pre-sliding regime (Altpeter, 1993; Swevers et al., 2000). The

sliding regime occurs when there is a relative motion between two contacting

surfaces being present in the moving phase. The pre-sliding regime occurs prior to

the motion, when the external forces are compensated by the friction forces, and

comprises the deadband and the stickband. The transition between the two regimes

is done by the slip-jump mentioned above.

Limit cycles due to stiction

If stiction is present, the behavior of a control loop deteriorates producing steady-

state control errors or unwanted limit cycles in the valve stem position and, there-

118



3.2. State of the art

fore, in the controlled variable (Armstrong Hélouvry et al., 1994; Canudas de Wit

et al., 1995; Olsson, 1996).

The limit cycles caused by stiction are characterized by distinctive wave shapes

from those caused by other sources (Figure 3.14). The stem velocity of a valve ex-

hibiting stiction remains at zero for a certain period of time, while other sources

generate limit cycles behaving as sinusoidal waves (Choudhury et al., 2008b).

The fact that stiction induced limit cycles do not decay is an important issue

because they cause permanent closed-loop performance degradation and under-

mine loop stability. An unstable behavior may appear when valve nonlinearities

exceed nominal values. Using a Nyquist diagram, Srinivasan and Rengaswamy

(2008) detected limit cycles in a control loop affected by stiction and highlighted

the existence of an unstable limit cycle. The magnitude of stiction is a crucial

element to determine the limit cycle behavior (Choudhury et al., 2004b).

Several effective techniques to analyze limit cycles behavior and to establish

criteria of limit cycles stability in nonlinear systems have been proposed (Nayfeh

and Mook, 1995; Somieski, 2001; Brito, 2011; Tsay, 2012). These techniques are not

in the scope of this review and therefore will not be discussed.

� Stiction modeling

Various approaches have been used to model the stiction phenomenon, although

all of them represent a trade-off between the accuracy of the predictions and the

simplicity of the model. Based on their shared characteristics, the models re-

viewed here were organized into the chart of Figure 3.15. The two major cat-

egories considered are the first-principle and the data-driven models (Garcia,

2008).

First-principle modeling

The first-principle models use the balance of forces and Newton’s second law

of motion to describe the friction phenomenon and belong to the following two

classes: static or dynamic friction models (Olsson, 1996; Garcia, 2008).

Static models: The simplest models describe the friction force as a time-invariant

function, using static functions of the stem velocity v. These models are of-

ten called static models.
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Stiction modeling

First-principle models

Static models

Dynamic models

Data-driven models

Figure 3.15: Compilation of the modeling approaches.

Models incorporating the classical friction components (Coulomb friction,

viscous friction, and static friction forces) are summarized by Armstrong

Hélouvry et al. (1994) and Olsson (1996). The so-called Classical Model

combines these classical friction components using the piecewise function (Gar-

cia, 2008)

Ffriction =





[
FC + (FS − FC) e−(v/vS)2

]
sign(v) + FV v , if v 6= 0

FE , if v = 0 and |FE| ≤ FS

FS sign(FE) , if v = 0 and |FE| > FS

,

(3.57)

where FC, FV, and FS are the Coulomb friction, viscous friction and stiction

coefficients, FE = SaP − kx is the external applied force, vS is the Stribeck

velocity, Sa is the diaphragm area, P is the air pressure, k is the spring con-

stant, and x is the stem position. In this formulation, FC, FV, FS, Sa, P , and

k are unknown parameters. The values of Sa, P , and k may often be de-

fined by the valve specifications, while FC, FV, and FS are estimated model

parameters. The Stribeck effect also described by the Classical Model is an

effect found at very low velocities which consists of the continuous decreas-

ing of the friction forces with increasing velocities. Figure 3.16 represents

the friction force components and the Stribeck effect.

This model describes well the friction forces for steady-state velocities. How-

ever, numerical problems around zero velocity do not allow the prediction

of complete stem stop typically exhibited by sticky valves. Karnopp (1985)

proposed an approach to overcome the problems with zero velocity detec-

tion and, at the same time, to avoid switching between different equations

for sticking and sliding. However, Sepehri et al. (1996) demonstrated that
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Figure 3.16: Friction force: a) Coulomb component; b) Coulomb and viscous com-
ponents; c) Coulomb, viscous and static components; d) Coulomb, viscous and
static components and the Stribeck effect. Adapted from Olsson (1996).

this model has numerical instabilities as well.

Later on, Leine et al. (1998) developed a modified version of the Karnopp

Model trying to overcome its numerical problems using a set of ordinary

non-stiff differential equations. Although this approach, designated by Switch

Model, represented an improvement relatively to the previous ones, it still

lacked the ability to describe friction thoroughly.

Dynamic models: From a control engineering point of view, it is preferable to

consider stiction as a dynamic phenomenon (Åström, 1998). Armstrong Hé-

louvry et al. (1994) also pointed out the importance of including the effects

of dynamic friction to complete the friction model.

Dahl (1968) explained the stiction phenomenon via an analogy with the

stress-strain property of the materials. He proposed a model with the form (Ols-

son, 1996)

dFfriction

dx
= σ0 ·

∣∣∣1− Ffriction

FC

sign(v)
∣∣∣
α

· sign
(

1− Ffriction

FC

sign(v)
)
, (3.58)

where σ0 is the stiffness coefficient, and α is a parameter that determines
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the shape of the stress-strain curve (usually set to 1). In the literature, this

model is commonly simplified to Olsson (1996)

dFfriction

dt
= σ0 ·

[
1− Ffriction

FC

sign(v)
]
· v . (3.59)

Model parameters σ0 and FC are estimated via empirical curve fitting of the

experimental data. Although the Dahl Model represents well the Coulomb

component in a dynamical form, it is unable to capture stiction and the

Stribeck effect. In spite of this, as argued by Leonard and Krishnaprasad

(1992), Dahl Model provides a realistic and reliable model of friction, spe-

cially during sinusoidal motions. After the Dahl Model appeared, the inter-

est on dynamic friction models increased leading to further developments.

Within this research direction, the Seven Parameter Model, described by

Armstrong Hélouvry et al. (1994), is an empirical model that includes the

pre-sliding and the sliding regimes. The friction force is defined as

Ffriction =





σ0 · x , if v = 0[
FC + FS(γ, td) · 1

1+
(
v(t−τl)
vS

)2
]
· sign(v) + FV · v , if v 6= 0

,

(3.60)

with

FS(γ, td) = FS,a +
(
FS,∞ − FS,a

) td
td + γ

, (3.61)

where x is the displacement, γ is the temporal parameter of the rising static

friction, td is the time since becoming stuck also called dwell time, τl is the

time constant of frictional memory, FS,a is the Stribeck friction at the end

of the previous sliding period, and FS,∞ is the magnitude of the Stribeck

friction at the end of the previous sliding period. The typical values of the

seven model parameters σ0, FC, γ, τl, vS, FV, FS,∞ are summarized by the

authors. The sliding regime incorporates the Coulomb and the viscous fric-

tion forces, as well as the Stribeck effect. This model attempts to capture

friction dynamics by introducing a time delay term. But since this is done

exclusively in the sliding regime, the stiction phenomenon is oversimplified

and the model does not capture the real behavior of the pre-sliding regime.

Besides, it does not show a clear distinction between these regimes and, as
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result, it fails to describe the transition behavior.

Another model in line with Dahl (1968) considerations has been proposed

by Canudas de Wit et al. (1995). This model, presented as the Lund-Grenoble

Model or, simply, as the LuGre Model, is described by

Ffriction = σ0 · z + σ1 · ż + σ2 · v , (3.62)

with

ż = v − |v|
g(v)

z , (3.63)

g(v) =
1

σ0

[
FC + (FS − FC) · e−(v/vS)2

]
, (3.64)

where z is the average bristles deflection, σ1 is the micro-viscous damping

coefficient, σ2 is the viscous damping coefficient, and g(v) is a function spec-

ifying how the average deflection depends on the relative velocity of the

contacting surfaces. The values of the model parameters σ0, σ1, σ2, FC, FS,

and vS were chosen according to the ranges summarized in the Armstrong

Hélouvry et al. (1994) work.

The LuGre Model employs the pre-sliding displacement (a component of

the pre-sliding regime) as an averaged characteristic. Besides, it is able to

account for several phenomena such as the Stribeck effect, hysteresis and

stick-slip transitions. However, Olsson et al. (1998) found out that the model

does not predict accurately some behaviors related to hysteresis. In studies

by Hensen (2002) and Hensen et al. (2002), a frequency domain identifica-

tion technique was applied to the first-principle LuGre Model in order to

obtain the parameters related with the frictional pre-sliding behavior.

Friction forces in valves have been researched since long ago. For exam-

ple, Rabinowicz (1951) studied the importance of the transition between

pre-sliding and sliding and regarded friction as a function of displacement,

observing a peak in the friction force for small displacements from the stick-

ing point. Inspired by the Dahl Model, Bliman and Sorine (1995) developed

a second-order linear dynamic friction model to describe this behavior. The
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Bliman-Sorine Model uses a state-space formulation given by

dxS

ds
= A · xS +B · uS , (3.65)

Ffriction = C · xS , (3.66)

with

A = − 1

εf

[
1/η 0

0 1

]
, B =

1

εf

[
f1/η

−f2

]
, and C =

[
1 1

]
, (3.67)

where s is the space independent variable, xS is the state variable vector,

uS = sign(v), εf is a distance, η is a dimensionless model parameter, and f1

and f2 are forces. The authors identified the model parameters εf , η, f1, and

f2 analytically.

Their model is viewed as two Dahl models connected in parallel, one with a

fast dynamics and the other with a slow dynamics. The fast model intends

to describe an highest steady-state friction. Subtracting the slow model

from the fast model results in a peak that corresponds to the friction force.

However, according to Olsson et al. (1998), this attempt was not very suc-

cessful, because the resulting model is less efficient than the LuGre Model.

Dupont et al. (2000) analyzed and discussed the stiction and the pre-sliding

displacement phenomena. They concluded that both dynamic Dahl and

LuGre models are able to describe pre-sliding displacement but not stiction.

Based on simulation studies, the authors derived an elasto-plastic dynamic

model which takes into account both phenomena. The Elasto-Plastic Model

is given by

Ffriction = σ0 · z + σ1 · ż + σ2 · v , (3.68)

with

ż = v ·
[
1− α(z, v) · σ0

fss(v)
· sign(v) · z

]i
, (3.69)

and

α(z, v) =





0, if |z| ≤ zba

0 < α < 1, if zba < |z| < zmax

1, if |z| ≥ zmax

, (3.70)
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where α(z, v) is used to achieve stiction behavior (requirements on the the

choice of α are developed by the authors), i is an integer exponent used

to govern the transition rate of z in order to achieve a better experimental

match (typically i = 1), fss(v) = σ0 · g(v) is related to the Stribeck friction

curve defined by the LuGre Model, zba is the breakaway displacement, and

zmax is the maximum presliding displacement.

This model was tested only by simulation using model parameters available

in literature.

Swevers et al. (2000) proposed a more complex model, known as Leuven

Model as

Ffriction = Fh(z) + σ1 · ż + σ2 · v , (3.71)

with

Fh(z) = Fb + Fd(z) , (3.72)

S(v) = FC + (FS − FC) · e−(v/vS)δ , (3.73)

ż = v

[
1− sign

( Fd(z)

S(v)− Fb

)
·
∣∣∣ Fd(z)

S(v)− Fb

∣∣∣
n
]
, (3.74)

where Fh(z) defines transition curves modeling the hysteresis friction force,

Fb is the value of Fh(z) at the beginning of a transition curve (i.e., z = 0),

Fd(z) is the transition curve, S(v) is a function that models the constant

velocity behavior, δ is a parameter that depends on the geometry of the

application (usually between 0.5 and 1), and n is a coefficient determining

the transition curve shape.

The parameter values are identified in two phases. The first phase iden-

tifies the parameters that define the sliding regime (FS, FC, vS, δ and σ2)

based on data obtained from constant velocity tests over a velocity range.

These parameters are estimated using a Markov estimator (weighted least

squares). The second phase determines the parameters that define the pre-

sliding regime (transition curve equation, Fd(z), and σ1). These parameters

are estimated based on experimental data where the applied force is slowly

ramped up and down and on a maximum likelihood estimator.

This formulation allowed an accurate modeling in both sliding and pre-
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sliding regimes without a switching function. It considers that hysteresis

occurs for the non-periodic pre-sliding regime what represents an improve-

ment of the model accuracy. In spite of the big improvement introduced

by this hybrid hysteresis model with non-local memory, its use is limited to

control design and analysis because of the associated implementation diffi-

culties and a discontinuity in friction force function for some cases.

The Leuven Model was later modified by other authors. In particular, Lam-

paert et al. (2002) implemented the hysteresis force using the more efficient

Maxwell slip model which allows to eliminate a stack overflow problem.

They also modified the model to overcome a discontinuity in the friction

force. Dupont et al. (2002) improved the Leuven Model to non-physical

drift phenomena, which arise when the force is characterized by small vi-

brations below the static friction limit.

Later, Lampaert et al. (2003) presented a novel friction model called Gener-

alized Maxwell-Slip (GMS) Model with the following form:

Ffriction(t) =
N∑

i=1

Fi(t) + σ2 · v(t) , (3.75)

where Fi(t) are the elementary friction forces modeled as

dFi
dt

= ki · v , (3.76)

for sticking (until Fi > αi · S(v)), and

dFi
dt

= sign(v) · FC ·
(
αi −

Fi
S(v)

)
, (3.77)

for slipping (until velocity goes through zero). The parameters ki and αi

define the shape of the hysteresis curve and the Stribeck effect, respectively.

The model is compared by its authors with well-known existing models

showing the capability of capturing accurately the major effects, such as the

pre-sliding regime and the Stribeck effect and found to be appropriate for

control purposes.
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Since some of the parameters coincide with the previous models (the case

of FC, FS, vS, δ and σ2), their values were adopted in this formulation. In

addition, a curve fitting of the hysteresis curve estimates the values of ki
and αi. Despite the model novelty, Jamaludin et al. (2009) identified that

the GMS Model is complex and has a large number of parameters which

complicates its use.

Recently, Ferretti et al. (2004) developed the single- and multi-state integral

friction models based on Dahl Model and on modifications by Lampaert

et al. (2002). This approach is advantageous in terms of computational ef-

ficiency and accuracy, two very important aspects in the compensation of

friction. According to Makkar (2006), the assumption that the friction coef-

ficient is constant with sliding speed and have a singularity at the onset of

slip limits the applicability of these models.

Most of the aforementioned approaches use piecewise continuous friction

models and that may be problematic from a numerical standpoint. Makkar

et al. (2005) developed a simple continuously differentiable model that cap-

tures the major effects reported in the friction forces modeling. They pro-

posed an empirical model that accounts for the Coulomb friction, the vis-

cous and the stiction friction forces, as well as for the Stribeck effect. The

model is described as follows

Ffriction(v) = γ1 ·
[

tanh(γ2 · v)− tanh(γ3 · v)
]

+ γ4 · tanh(γ5 · v) + γ6 · v , (3.78)

where γi denotes unknown positive constants that are varied manually in

order to capture the enumerated forces and effects. The lack of matching

experimental data to the analytical model reduces its usefulness in new for-

mulations.

In order to simplify the determination of the model parameters for adaptive

control algorithms, Márton and Lantos (2007) suggested a novel approach

that clearly distinguishes the low and the high velocity regimes.

He and Wang (2010) presented a comparison between some well-established

first-principle and data-driven models (models discussed in Section 3.2.4).

Based on a thorough analysis and on the effectiveness in simulating valve
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stiction, they proposed a semi-physical model to reproduce the first-principle

model predictions with simpler numerical implementation. The model has

the form

uv(t) =





uv(t− 1) +K
[
e(t)− sign

(
e(t)
)
· fD

]
, if |e(t)| > fS

uv(t− 1) , if |e(t)| ≤ fS

, (3.79)

where e(t) = u(t) − uv(t − 1), uv(t) is the stem position (system output),

u(t) is the actuator air pressure (system input), K accounts for the over-

shoot observed in the physical model, fD is the static friction force, and fS is

the Coulomb/dynamic friction force. Because they derived the model from

first principles, the authors used the parameters available in other similar

approaches to obtain values for the three model parameters (K, fS and fD).

The main drawbacks of this model are: the inability to describe the Stribeck

effect and the fact that it consists of a piecewise function.

Liang et al. (2012) introduced a model totally based on the physical struc-

tures and conditions. Built upon a modeling and simulation platform specif-

ically developed for hydraulic and mechanical systems, they simulated dif-

ferent nonlinear valve faults (stiction, deadband, leakage and saturation)

and verified the model using some nonlinearity assessment measures in

these simulations. The formulation has several parameters: the poppet di-

ameter, the moving parts mass, the hole diameter, the spring constant, the

diaphragm area, and the differential pressure in the valve. For simulation

purposes, four major parameters were introduced: the Coulomb friction

force, the stiction force, the clearance on diameter, and the higher displace-

ment limit.

Tang et al. (2015) developed a new semi-physical model to describe stiction

phenomenon based on a careful analysis using three signal conversion pro-

cesses and takes into account backlash component. In opposition to previ-

ous models, the new model showed consistency with experimental results.
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Data-driven modeling

A detailed first-principle stiction model requires the knowledge of several param-

eters that are difficult to estimate. In addition, computational implementations of

such models may be too slow for application purposes. Since data-driven mod-

eling approaches overcome these two disadvantages, several works in this direc-

tion have been reported the literature.

However, such kind of models also present some drawbacks. In fact, as pointed

out by Garcia (2008) and He and Wang (2010), they cannot fully capture the

dynamics of the valve. Moreover, different models are based on different as-

sumptions and the choice of the best approach for a specific physical valve is not

clear (He and Wang, 2010).

Stenman’s, Choudhury’s, Kano’s and He’s models are the most recent and

representative of the data-driven models. The proposal of Stenman et al. (2003)

attempts to reproduce the jump of the valve stem after the stickband, phenomenon

represented through an only parameter, d. The Stenman Model has the form

xk =

{
xk−1 , if |uk − xk−1| ≤ d

uk , if otherwise
, (3.80)

where u is the controller output, and x is the real position of the control valve.

For simulated and real data, the authors determined the model parameter via a

local tree search approach using the likelihood as the optimality criterion.

Nevertheless, Choudhury et al. (2008b) showed that the predicted and ob-

served behaviors of the Stenman Model do not match in the case of a sticky valve

excited with a sinusoidal input. Choudhury et al. (2004a, 2005, 2006b) suggested a

different version of the model aiming to improve the representation of the stiction

phenomenon (Figure 3.17). Based on a thorough discussion of the term “stiction”,

they proposed to distinguish stiction from other valve nonlinearities. Therefore,

their model contains two parameters: the amplitude of deadband plus stickband,

S, and the amplitude of the jump after the static friction is overcome, J . Both pa-

rameters were manually set to simulate open- and closed-loops without stiction

and with various magnitudes of stiction.

Since the Choudhury Model was able to deal only with deterministic signals,
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Figure 3.17: Choudhury Model (Choudhury et al., 2004a, 2005, 2006b).

Kano et al. (2004) and Maruta et al. (2005) developed a modified version that can

handle broader situations (Figure 3.18). Trying to relate the parameters of the

Choudhury Model with the elastic force, air pressure and frictional force, the au-

thors redefined the two parameters. In the Kano Model, S corresponds to the sum

of the static and dynamic frictions and J to the difference between the static and

the dynamic frictions. Quantitatively, these parameters are equivalent to those of

the Choudhury Model. Jelali and Huang (2010) compared these two models and

concluded that both are able to predict satisfactorily the stiction effects.

He et al. (2007) developed a model that reduces the complexity of Kano’s and

Choudhury’s formulations. Despite the structural simplification, the He Model

presented in Figure 3.19 also uses two parameters. Besides, it has a more straight-

forward logic, naturally handles stochastic noise and reproduces industrial cases

behavior (He and Wang, 2010). The model uses static fS and dynamic fD fric-
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Figure 3.18: Kano Model (Kano et al., 2004).

tion parameters brought closer to the first-principle based formulation. To reduce

the complexity, it uses a temporary variable representing the accumulated static

force.

Other data based approaches have also been presented in the literature (Chen

et al., 2008; Zabiri and Mazuki, 2010; Karthiga and Kalaivani, 2012).

The He Model assumes that the static friction is associated with all valve

movement. This model requires that the static friction must be exclusively ac-

counted for the pre-sliding regime. Chen et al. (2008) and Chen (2009) gener-

alized the He Model to eliminate this disadvantageby introducing a two-layer

binary tree logic (see Figure 3.20) that uses the two parameters defined by He

et al. (2007). Although two extra variables are added to the He Model (the valve

status flag, stop, and the movement direction, dt), the approach generalized the
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Figure 3.19: He Model (He et al., 2007).

static and the dynamic frictions improving the capture of various types of stiction

patterns. Some simulations in open- and closed-loop showed the accuracy and

the effectiveness of such stiction model.

Zabiri and Mazuki (2010) developed a black-box modeling approach based on

a nonlinear autoregressive with exogenous input series parallel neural network.

Numerical evaluations showed accurate predictions, even in multi-step ahead

scenario. However, the model is robust only when stiction is less than 6% of the

valve travel span.

Wang et al. (2010) proposed a blind approach to identify the system dynamics

containing a sticky valve. Without an explicit parametrization of the nonlinearity,

they used a Hammerstein Model to identify the system and disregarded the error

propagation. The method was capable of capturing both the nonlinearity and the

system dynamics in a feedback loop with a sticky control vale. However, this

approach has a larger number of parameters to be estimated in comparison to

other approaches considered in this section.

More recently, Karthiga and Kalaivani (2012) developed a new nonlinear data-

driven model (Figure 3.21) considering three parameters: the deadband, d, the

maximum pressure required to move the stem, umax, and the stick-slip magni-

tude, f .
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Figure 3.20: Chen Model (Chen et al., 2008; Chen, 2009).

� Stiction detection /quantification

About 20 to 30% of all process control loops have oscillations due to stiction,

resulting in losses of productivity (Kvam, 2009; Nallasivam et al., 2010). Because

stiction is one of the major causes for oscillations, numerous techniques for its

detection in linear control loops have been developed. These techniques take

advantage of the nonlinearity introduced by stiction in the control valves in order

to detect the presence of the phenomenon (Babji et al., 2012). Figure 3.22 shows

the classification of existing methods for stiction detection and quantification and

the relations among them.

Shape-based methods

The first detection attempt was made by Horch (1999), through a simple method

to diagnose oscillations in the process control loops. This pattern classification

method is based on the cross-correlation between the controller input u and the

process output y signals. The cross-correlation for the stationary signals u and y

is obtained from

ruy(τ) =

N−|τ |−1∑

k=0

u(k) y(k + τ) , (3.81)
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Figure 3.21: Karthiga Model (Karthiga and Kalaivani, 2012).

where the available datasets u and y are of finite length N , and τ represents the

lag. It allows to distinguish between the two most important causes of oscilla-

tions, stiction and external disturbances or unstable loop, and it is applicable to

non-integrating processes controlled by PI controllers (Figure 3.23). As stated by

Maruta et al. (2005), the main disadvantage of this method is that it is applicable

only to systems with periodical fluctuations.

Later, Horch (2000) developed a method applicable to integrating processes

using the probability density function (normalized raw histogram) of the second

derivative of the process output. Basically, he compared two theoretical proba-

bility density functions characteristic of the stiction and non-stiction cases with

the process output probability density function. The best fit determines whether
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Stiction detection/quantification

Shape-based methods

System identification-based methods

Hammerstein models

Wiener models

Other approaches

Figure 3.22: Compilation of the detection /quantification methods.

stiction is present (Figure 3.24).

Similarly, he applied the probability density function of the first derivative of

the error signal for self-regulating processes. These methods required not only

the data of the controlled variable, but also needed to know whether the process

is an integrating or a self-regulating process.

Kano et al. (2004) explored the relationship between the valve input and the

valve output and fitted a parallelogram to the phase plot. However, since the

valve output is frequently impossible to measure, it is substituted by the con-

trolled variable. This substitution changes the shape of the plot into an ellipse,

making it difficult to be recognized by the algorithm because of the parallelo-

gram shape assumption. In order to overcome the disadvantages of this method,

Choudhury et al. (2006b,a) quantified stiction by fitting an ellipse to the valve

input versus controlled variable data, where the maximum width of the ellipse

was designated the apparent stiction (Figure 3.25). Based on the Choudhury et al.

(2006b) method, de Souza L. Cuadros et al. (2010) proposed an improved algo-

rithm to quantify stiction that selects the most significant points of the valve in-

put and the controlled variable datasets and fits an ellipse. Although it has the

disadvantage of being applicable to parallelogram patterns only (such as those

generated by flow control loops), the authors argued that this new procedure es-

timates stiction with more precision than the Choudhury et al. (2006b) method

for the considered patterns.

Choudhury et al. (2004a) proposed an automatic method to detect nonlinear-

ities (such as stiction and backlash) that involves the calculation of higher-order
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Figure 3.23: Horch method application on signals u (dashed line) and y (solid
line). Oscillations due to stiction present an odd cross-correlation function, and
oscillations due to external disturbances or unstable loop present an even cross-
correlation function. Adapted from Horch (1999).

statistics of the closed-loop data. The statistical measures cumulants, bispectrum

and bi-coherence of the control error signal are used to infer two metrics: the

non-Gaussianity index, NGI , and the nonlinearity index, NLI . The metrics are

defined as

NGI , b̂2 − b̂2
c , (3.82)

NLI ,
∣∣∣b̂2

max −
(
b̂2 + 2σ

b̂2

)∣∣∣ , (3.83)

with

b̂2(f1, f2) ,
|B(f1, f2)|2

E[|X(f1)X(f2)|2] E[|X(f1 + f2)|2]
, (3.84)

B(f1, f2) , E[X(f1)X(f2)X∗(f1 + f2)] , (3.85)

where b̂2(f1, f2) is the squared bicoherence at frequencies f1 and f2, b̂2 is the aver-
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Figure 3.24: Probability density functions characteristic of the stiction and non-
stiction cases (Horch, 2000).

age squared bicoherence, b̂2
c is the statistical threshold (or critical) value obtained

from the central chi-square distribution of the squared bicoherence, b̂2
max is the

maximum squared bicoherence, σ
b̂2

is the standard deviation of the squared bico-

herence, X(f) is the discrete Fourier transform of the process output at frequency

f , B(f1, f2) is the bispectrum at frequencies f1 and f2, X∗(f) is the complex con-

jugate of the discrete Fourier transform X(f), and E[·] is the expectation.

This approach and those of Choudhury et al. (2006b,a) were later patented in

Choudhury et al. (2007, 2012).

Singhal and Salsbury (2005) proposed a method to detect stiction in an oscil-

lating control loop based on the calculation of the ratio between areas before and

after the peak of an oscillating signal (Figure 3.26) using the quantity R defined

as

R =
A1

A2

. (3.86)

The decision rule is then summarized as: if R > 1 the valve is sticking, but if

R ≈ 1 the controller is aggressive.

The main principle is to recognize the shape produced by the control signal in

a phase plot. The authors argued that the method is intuitive, requires very little
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Figure 3.25: Detection of stiction through the fitting of an ellipse (Choudhury
et al., 2006b,a).

Figure 3.26: Shape of the control error for valve stiction and aggressive control.
Adapted from Singhal and Salsbury (2005).

computational effort, and is easy to implement online in spite of some limitations

that they also report: it is not applicable to integrating processes and does not

distinguish stiction from other nonlinearities. As the method is based on calcu-

lating areas, some factors such as the signal noise and the sampling time need to

be carefully considered.

Srinivasan et al. (2005a) suggested the comparison of the valve input versus

controlled variable data shape with the sequences commonly seen in valves with

stiction problems. The approach consisted of pattern recognition using the dy-

namic time warping technique to find the optimal alignment between two given

sequences. The authors tested the method in different scenarios including non-

constant behavior, intermittent stiction and external disturbances.

Zabiri and Ramasamy (2009) developed a method that calculates an index
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based on nonlinear principal components analysis (NLPCA) using the distinctive

shapes of the signals caused by stiction and other sources. The index is termed

NLPCA curvature index and is calculated as

INC =

n∑
i=1

PiPi+1

P1Pn
, (3.87)

where Pi are the values of the loadings matrix obtained from NLPCA, and n is

the number of observations.

Together with its coefficient of determination, the index quantifies the degree

of nonlinearity and determines the presence of stiction. The method does not

make assumptions on the control valve characteristics (e.g., a linear valve) since it

does not assume any particular valve model. Although it is simple, effective and

easy to implement, the authors observed ambiguity in the results for integrating

processes as well as the need of a large amount of steady-state data for a correct

detection.

Since the real valve position (valve output) is often not available in the data

collected by the DCS (Distributed Control System), Chitralekha et al. (2010) de-

veloped an approach for estimating this variable through the application of the

unknown input observer technique. After the estimation, they fit a trapezoid

to the valve output versus valve input data, solving a constrained optimization

problem to find the four corner points of the polygon. Although the method does

not assume any specific stiction model, the authors used the Choudhury Model

to prove the effectiveness of their method.

Also based on a shape analysis of the waves, Hägglund (2011) proposed a

method that determines whether the shape of data between two consecutive zero

crossings of the control error corresponds best to a sine or a square wave. To

decide whether the loop has stiction, the author developed a normalized index

that allows to infer the existence of the problem if a positive value is found. The

index is given by

Istiction =
Vsine − Vsquare

Vsine + Vsquare

, (3.88)

139



Chapter 3. Control Loop Performance Assessment

where Vsine and Vsquare are loss functions in the following form

Vsine =
n∑

i=1

[
e(ti)− asine sin

(
2π

TP

ih

)]2

, (3.89)

Vsquare =
n∑

i=1

[e(ti)− asquare]
2 . (3.90)

In (3.89) and (3.90), e(ti) = ysp(ti) − y(ti) represents the control error, h the sam-

pling time, TP = 2(tc1 − tc0) the sine wave period corresponding to the times of

the zero crossing, tc0 and tc1 the two latest times of zero crossings of the control

error, n = TP/2h the number of samples in the interval [tc0, tc1], and asine and asquare

the amplitude of the pure sine and square waves. The procedure is automatic

and may be performed off- or on-line.

Other methods are based on additional knowledge about the qualitative shape

of the characteristic curve of the valve. For instance, Rengaswamy et al. (2001)

developed a qualitative shape-based method in which the valve input data is

fitted to find the most common types of oscillations: triangular, sinusoidal and

square oscillations.

Also, Yamashita (2006a) proposed a method for the diagnosis of valve stiction

based on the typical patterns of valve input versus valve output data. The valve

movements are classified using the notation I (for increasing), D (for decreasing)

and S (for steady). Some sequences of these letters represent the stiction pattern.

The idea consists in counting the periods τ of sticky movement and calculates the

following indexes

ρ1 =
τIS + τDS

τtotal − τSS

, (3.91)

ρ2 =
τIS II + τIS SI + τDS DD + τDS SD

τtotal − τSS

, (3.92)

ρ3 =ρ1−
τIS DD + τIS DI + τIS SD + τIS ID + τIS DS + τDS DI + τDS SI + τDS ID + τDS II + τDS IS

τtotal − τSS

.

(3.93)

Varying between 0 and 1, the indexes ρ1, ρ2 and ρ3 detect stiction if their values

are greater than the threshold value 0.25.
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Yamashita’s method revealed excellent performance in detecting the stiction

phenomenon in cases where other methods failed. Manum (2006) and Manum

and Scali (2006) investigated the method performance using a large number of

industrial flow control loops and concluded that the method correctly identifies

the presence of stiction in 50% of the cases. These authors argue that one of the

suggested indexes is not accurate enough to identify stiction. Another disadvan-

tage of this method is that it requires valve stem data. Although this data is often

unavailable, it is possible to apply the method for flow control loops where, as-

suming linearity and fast dynamics, the controlled variable is proportional to the

real valve position.

Yamashita (2006b) addressed this disadvantage with the development of a

new index for systems with slower dynamics, such as the level control loops. The

index evaluates the excess kurtosis defined by

γ =
1

n

n∑

i=1

(∆yi − µ∆y)
4

σ4
∆y

− 3 , (3.94)

where ∆y is the differential of y, µ∆y and σ∆y are the mean and the standard

deviation of ∆y, and n is the number of observations of ∆y. A loop suffering of

stiction presents a two peaked distribution which means a negative large value

of excess kurtosis.

Later, he extended the diagnostic method proposing a measure to quantify

stiction in control valves (Yamashita, 2008). The degree of stiction is evaluated by

calculating the width of the sticky pattern from the signals. This is an important

development as it allows to prioritize the list of the control loops to be revised by

the maintenance team.

Kalaivani et al. (2014) proposed a procedure to detect and quantify stiction

using trends qualitative analysis based on ant colony optimization. Firstly, the

method performs a piecewise fitting of the control signals. Triangular and sinu-

soidal waves are fitted to the controller output data and the parameters of the

Stenman model are estimated using ant colony optimization by minimizing the

error between the actual stiction model output and the simulated stiction model

output.
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System identification-based methods using the Hammerstein Model

Recently, stiction detection /quantification developments were proposed by means

of system identification using the Hammerstein Model. This is a commonly used

model that is composed by a static nonlinear element in series with a linear dy-

namic part (Eskinat et al., 1991). The nonlinear element represents the sticky

valve while the linear part models the process dynamics.

The first example is the approach of Stenman et al. (2003) based on the Sten-

man Model and on an ARX process model to detect stiction inspired by multi-

model mode estimation techniques. In addition, the method does not require

that an oscillating behavior of the loop be observed.

Srinivasan et al. (2005b) fitted the valve input and the controlled variable

datasets to a Hammerstein Model defined also by the nonlinear Stenman Model

plus a linear ARX model. As stiction nonlinearity is often modeled as a discon-

tinuous phenomenon, the grid search algorithm was used to determine the only

parameter of the chosen stiction model while the model parameters were com-

puted through the separable least-squares method.

Lee et al. (2008) used the ordinary least-squares method to identify the whole

Hammerstein Model. Other differences in their approach lie in the chosen stic-

tion model (the He Model) and in the process structure assumptions (the first- or

second-order plus time delay model). Additionally, their work defined a bounded

search region for the stiction model parameters formulated as a constrained op-

timization problem. The low computational cost of the algorithm is one of the

main advantages pointed out by its authors.

Choudhury et al. (2008b) improved the approach of Srinivasan et al. (2005b)

by introducing the Choudhury Model, because the stiction model used by Srini-

vasan et al. (2005b) did not capture the true stiction behavior. The same two

dimensional grid search method was used to estimate both the stiction and the

process model parameters. Several variants of these approaches have been devel-

oped. Based on the opinion of Srinivasan et al. (2005b), according to which better

search algorithms may be applied, Jelali (2008) developed a method using global

optimization to estimate the parameters related to stiction phenomenon. The

linear model parameters in this method were estimated using the least-squares

identification technique. The method proved to be robust considering different
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process types, controller settings and measurement noise. However, the high

CPU time required in the estimation was a limitation.

Ivan and Lakshminarayanan (2009) introduced a modified identification ap-

proach based in the Hammerstein Model. The improvements over other previous

works include the use of a modified He stiction model, a refined ARMAX model

to identify the linear part, and the introduction of data pre-processing (such as

data isolation and de-noising).

Karra and Karim (2009) considered a non-stationary disturbance term in the

linear model through an extended ARMAX structure. This new term allows the

inclusion of other possible root causes besides stiction, such as external distur-

bances. The work includes the nonlinear Kano Model for stiction description

although alternative models are applicable, as well. Because of the discontinuity

of the stiction phenomenon, the technique used in this work to determine all the

Hammerstein Model parameters is the grid search algorithm.

Lee et al. (2010) developed a closed-loop method for stiction detection /quan-

tification based on Hammerstein’s modeling. It starts with the identification of

the stiction model structure defining then the bounded search space of the stiction

model parameters. Following this procedure, a constrained optimization prob-

lem is performed to identify the model parameters based on the mean-squared

error criterion. The method was tested and validated with industrial data.

Following Lee et al. (2010) work, Qi and Huang (2011) built a bootstrap ap-

proach based on the Hammerstein Model identification to determine the confi-

dence interval of the estimation. These researchers argued that the estimation

of the stiction model parameters is not enough to quantify stiction and, conse-

quently, may lead to incorrect conclusions. They proposed the calculation of the

uncertainty of the estimated stiction parameters to complement the information

achieved by model identification, making the diagnosis of the problem more re-

liable.

Another interesting work related to this subject is that of Srinivasan et al.

(2012) who developed a reliability measure via frequency domain analysis of

closed-loop systems to validate the results obtained from stiction detection meth-

ods based on the Hammerstein Model. This measure is calculated independently

by the detection method and is applicable only for linear systems. It is note-
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worthy that the methods based on the Hammerstein Model are not suitable to

identify stiction unambiguously in integrating processes.

Babji et al. (2012) proposed a methodology where the Hammerstein Method

and the Hilbert-Huang Transform are combined for root cause analysis. The

Hammerstein Method developed by Srinivasan et al. (2005b) was used to detect

and quantify stiction, while the nonparametric transform was used to distinguish

oscillations occurring due to marginally stable control loop and external distur-

bances.

Shang et al. (2013) applied particle swarm optimization to estimate the pa-

rameters of the stiction model in a Hammerstein Model configuration where the

nonlinear and linear blocks are described by the Chen Model and by an ARX

model, respectively.

Brásio et al. (2014) proposed an approach for the detection and quantifica-

tion of valve stiction using a one-stage optimization technique. A Hammerstein

Model that comprises a complete stiction model (Chen Model) and a process

model (first-order model) is identified from industrial process data. It is note-

worthy that in order to simplify the identification process, the discontinuity of

the stiction model is smoothed by a continuous function.

Lei et al. (2013) proposed the detection and quantification of stiction based on

an extended Hammerstein Model where the discretized Preisach Model is used to

capture the behavior of a sticky control valve and a linear dynamic model is used

to describe the process. To identify the extended Hammerstein Model an iterative

method is presented. In short, the method estimates the parameter vectors in two

iterative steps in which the estimation problem is linear at each step. Also, Wang

et al. (2014) adapted the identification algorithm to the new model and proved

its identifiability, resulting in a more flexible structure to describe asymmetric

stiction.

Also based on a Hammerstein Model (using the Kano Model for stiction mod-

eling and an ARX model for process modeling), Bacci di Capaci and Scali (2014)

presented a procedure that includes oscillation detection, stiction detection, data

division and stiction quantification. Data division increases the reliability of the

results by discarding data that may provide wrong quantification of the phe-

nomenon. The method can be very useful in what concerns valve maintenance
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scheduling and checking.

System identification-based methods using the Wiener Model

While there are several studies discussing linear processes, nonlinear process con-

trol loops have not received the same attention despite all the potential bene-

fits. One of the few approaches to tackle nonlinearity is based on the Wiener

Model that is composed by a linear dynamic block connected to a nonlinear static

part (Vörös, 2001).

Wang and Wang (2009) extended the study of Jelali (2010) using a general-

ized stiction-Wiener model to describe the valve stiction and the nonlinear pro-

cess dynamics. These authors used the two-layer binary tree data-driven model

proposed by Chen et al. (2008) and applied a novel global search grid identifica-

tion algorithm for the quantification of stiction in closed-loops subject to colored

noise. The feasibility of the algorithm is successfully illustrated by its authors in

a case study.

Romano and Garcia (2010, 2011) associate the stiction phenomenon and the

nonlinear process in parallel via the Wiener Model which deals with eventual ex-

ternal disturbances. The process model is decomposed in a linear and a nonlinear

blocks. This structure received the designation of Hammerstein-Wiener Model.

Although not explicitly mentioned in the model name, the stiction phenomenon

is modeled using the Kano Model (model chosen by Garcia (2008) based on ISA

standard tests). The linear block is represented by an ARMAX model while ex-

ternal disturbances are represented using transfer models of nth-order. For un-

known nonlinear process dynamics, piecewise polynomials of third degree are

used to model the nonlinear block. This approach utilizes the Nelder-Mead Sim-

plex algorithm for searching the optimal pair of stiction model parameters lead-

ing to a reduction of the computational effort when compared with exhaustive

searching algorithms. Even though the method has reasonable results, it should

be simplified to make it suitable as a detection tool in industrial contexts. The

large number of parameters to be estimated also may affect the method effective-

ness when performed on-line.
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Other approaches

Ulaganathan and Rengaswamy (2008) also considered the nonlinearity of the pro-

cess. The nonlinear Stenman Model is used in the first block to represent the

stiction phenomenon. This block is connected to the process block characterized

by a nonlinear dynamics. Finally, a linear external disturbance, modeled by a

moving average model, is considered in the loop. The process is described by a

second-order model.

Zabiri et al. (2009) adopted an algorithm incorporating a neural network to si-

multaneously identify the model parameters and quantify the stiction phenomenon.

This approach, which uses the Choudhury Model for the stiction modeling, has

the advantage of being applicable to all kind of processes. Also, Venceslau (2012)

presented an artificial neural network approach in order to detect and quantify

the amount of stiction using only the controlled variable and valve input infor-

mation. The author applied different information preprocessing methods based

on the calculation of centroid and Fourier Transform to facilitate the approach via

neural networks. The main advantage of the method is the fact that it does not

need any specific knowledge either of the process or of the valve output data.

Nallasivam et al. (2010) used the Volterra model-based technique to detect

stiction in closed-loop nonlinear systems, the Stenman Model to represent the

stiction phenomenon, and a known nonlinear process model to identify both the

disturbance model parameters and the stiction model parameter. The grid search

technique discussed by Srinivasan et al. (2005b) was successfully applied to ob-

tain the stiction model parameter. These researchers estimated a moving average

model for the disturbance. This strategy, applicable to nonlinear systems, has the

peculiarity of not requiring prior information on whether the loop is linear or

nonlinear.

Villez et al. (2010) proposed an active fault tolerant control strategy which

enables the detection of valve stiction. The method, which showed promising

results, is based on the Kalman Filter and assumes that the system is linear time

invariant.

Farenzena and Trierweiller (2012) tackled the problem of stiction and back-

lash detection in integrating loops. They use the process variable patterns of a

valve with backlash and stiction to detect the phenomena and even to distin-
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guish between them. Computing first-order derivatives, they calculate an index

for stiction diagnosis. Using several simulation cases, they proved the efficacy

of the method through the correct detection of around 100% of the loops. More-

over, it is computationally inexpensive and requires only routine operating data.

In spite of these considerable advantages of the method, its high dependency on

the sampling time may lead to incorrect detection. Moreover, the tuning of the

controller also affects the detection success.

The describing function method, a common tool to predict the period and am-

plitude of limit cycles in control loops, was applied by citearaujo-etal10 to detect

and quantify a general nonlinearity using common process data and an approxi-

mate model of the nonlinearity. This approach showed good performance in the

presence of model uncertainty and of multiple frequency oscillations. Later, the

same authors applied the method to the specific nonlinearities such as deadband

and stiction (Araujo et al., 2012), generalized the procedure for processes with

unknown models, and provided the conditions for the uniqueness of the solu-

tions as well as a sensitivity analysis to indicate situations where the error may

increase. The method is a simple and efficient numerical algorithm that may be

extended to other nonlinearities that cause limit cycles.

Other approaches applied the surrogate analysis to evaluate the nonlinearity

of a signal. Thornhill (2005) developed a method to compare the signal and its

surrogate data predictability using the index

N =
Γsurrogate − Γsignal

3σΓsurrogate

, (3.95)

where Γ is the mean square error, and σ is the standard deviation.

The surrogate data is useful because it provides a reference distribution against

which the properties of the signal under test may be evaluated. Once the signal is

more structured and more predictable than the surrogate data, the method evalu-

ates the distribution properties of the original signal and of the respective surro-

gate data. The presence of a nonlinear signal may mean that stiction is a possible

source of oscillation.

Alemohammad (2011) presented a stiction detection method designed for multi-

loop control systems using both surrogate analysis and qualitative shape-based
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approach. The method was applied on simulation and industrial data allowing

to detect multiple sticky valves.

Based on the previously developed semi-physical model (He and Wang, 2010),

He and Wang (2014) proposed a noninvasive valve stiction quantification method

by using linear and nonlinear least-squares methods which are robust and easy

to implement.

Most of the stiction detection methods assume that there exists oscillations

in the control loops. This assumption may reduce the stiction detection robust-

ness in the presence of system disturbances. Zakharov and Jämsä-Jounela (2014)

proposed an oscillation detection method that evaluates the similarity of the os-

cillation periods by means of a correlation coefficient and compared it against five

other methods reported in the literature. The work also introduced two indexes

to quantify the mean-nonstationarity and the presence of noise in oscillating sig-

nals.

Arumugam (2014) presented an adaptive neuro-fuzzy methodology for the

identification of stiction in a vertical two tank process based on the Kano Model.

� Stiction compensation

The most effective solution for a sticky valve is to repair it. However, this may not

be feasible between plant turnarounds and, therefore, alternatives to mitigate the

negative impact on the plant should be considered. These alternatives consist in

trying to compensate the stiction phenomenon. Several compensation algorithms

have already been developed in process control and also in other areas such as

robotics (Bona and Indri, 2005).

The first classification of stiction compensators by Dupont et al. (2002) divided

them into model and non-model based. Recently, Sivagamasundari and Sivaku-

mar (2013) proposed a more detailed classification that is further updated herein

(see Figure 3.27) by adding a new branch that contains approaches that were left

out in the previous classifications.

Although the non-model based compensators do not directly use a model,

they require one for the prediction of operating point stability, of limit cycle sta-

bility or for performance analysis (Dupont et al., 2000). This promoted the de-

velopment of feedforward and feedback strategies relying on stiction models to
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Stiction compensation

Knocker or dither

Constant reinforcement

Alternate knocker

Two or three moves

Optimization approaches

Other approaches

Figure 3.27: Compilation of the compensation methods.

cancel the stiction force (Geffen, 2009). Canudas de Wit et al. (1995) rightfully

assert that the success of these compensators depends on the appropriateness

of the model structure and on the knowledge of the model parameters. Also,

the capability for parameter estimation is important when dealing with adaptive

controllers. These authors created a stiction compensation strategy that adds a

signal calculated with an observer built using the LuGre Model.

Canudas de Wit et al. (1987), Friedland and Park (1992), Ro and Hubbel (1993),

Amin et al. (1997) and Feemster et al. (1998) used adaptive control algorithms that

are based on static first-principle models to compensate stiction. A stiction com-

pensating adaptive controller based on the Dahl Model was designed and used

by Walrath (1984) and Leonard and Krishnaprasad (1992). Adaptive compensa-

tion methods using the LuGre Model were also proposed by Canudas de Wit and

Lischinsky (1997), Panteley et al. (1998) and Altpeter et al. (2000). Canudas de

Wit (1993) suggested a different control scheme aiming to strengthen the closed-

loop system in the cases where friction overcompensation exists. It takes into

account the uncertainties in the parameters and in the structure of the friction

model that may lead to inexact friction compensation in servo-mechanisms. This

control scheme reduced the oscillations in amplitude and modified the frequency

independently of the closed-loop system specifications.

Motivated by the complexity inherent to stiction models and the ability of

neural networks to approximate nonlinear behavior, Otten et al. (1997) designed

a neural network based controller for stiction compensation considering a static
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model.

Panteley et al. (1998) developed a novel adaptive friction compensator based

on the dynamic Dahl Model ensuring global position tracking when applied to a

system subject to friction forces. This method considers that all the parameters

(of the system and friction models) are unknown and uses a very simple adaptive

law to estimate them requiring only measurements of valve position and velocity.

As a generalization of the method suggested by Vedagarbha et al. (1997),

Hirschorn and Miller (1999) developed a Lyapunov based continuous dynamic

controller as a substitution of a tuned PID controller for nonlinear systems using

the Dahl Model. This method removes the restrictions on pole locations of the

compensated system allowing to improve the velocity of its response. However,

the authors observed that the overestimation of some parameters caused degra-

dation in performance.

Kayihan and Doyle-III (2000) also addressed the subject developing an algo-

rithm for stiction compensation that reconstructs the unmeasurable states provid-

ing a robust control action. The algorithm uses the Classical Model to describe

stiction and assumes that all model parameters are known. Unfortunately, such

detailed valve information is often not available.

Huang et al. (2000b) compensated the effects of stiction using an adaptive

scheme coupled with the LuGre Model which also incorporates a neural network

to model stiction. The technique utilizes a PD control structure and an adaptive

estimation of the friction force to correct the effects prediction. The results were

highlighted with a simulation experiment.

Lampaert et al. (2004) combined a model-based compensation method and a

disturbance observer to develop a new approach to compensate stiction. Static

friction was modeled using the GMS Model. Because both approaches are com-

plementary, the combination resulted in an accurate tracking performance.

In general, these compensation methods utilize complex models to describe

the stiction phenomenon and that restricts their industrial use. Nevertheless, the

most recent methods tend to be simpler. They may be classified into the cate-

gories below.
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Figure 3.28: Diagram illustrating the knocker used in a feedback loop (Hägglund,
1997; Hägglund, 2002).

Figure 3.29: Signal sent by the knocker compensator (Hägglund, 1997; Hägglund,
2002).

Knocker or dither

The knocker approach, also known as dither approach, consists of adding a high

frequency signal to the control signal before it is input to the system under a

feedback loop with the purpose of preventing process output fluctuations (Fig-

ure 3.28).

Hägglund (1997); Hägglund (2002) developed the first knocker compensation

method specifically targeting stiction in control valves. This researcher added a

pre-designed signal to the valve input so that the oscillations produced by stic-

tion are minimized. The signal shown in Figure 3.29 consists of short pulses with

constant amplitude, width and duration that must be tuned. His method suc-

cessfully removed oscillations induced by stiction from the controlled variable at

the cost of a faster and wider motion of the valve stem, i.e., increasing the rate of

mechanical wear of the valve. In fact, this aggressive movement and the required

parameters tuning are the main drawbacks of the method. To overcome such dis-

advantage, Srinivasan and Rengaswamy (2005, 2006b) developed a framework

implementing some suggestions for the automated choice of the parameters. The

framework, that integrates detection and compensation tasks, showed to reduce

the output variability found in the studied systems by 6 to 7 times.
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de Souza L. Cuadros et al. (2012b) proposed a method for stiction compensa-

tion that is also based on the knocker approach. The authors added a supervi-

sion layer to analyze the control error and interact with the PID controller. They

verified that its performance is good in simulation and experimental tests. The

strategy showed a reduced integral absolute error and a lower number of valve

movements.

All these knocker methods are characterized by a faster motion of the valve

and, thus, may cause mechanical problems. Therefore, they are just short-term

solutions.

Constant reinforcement

Ivan and Lakshminarayanan (2009) suggested an alternative similar to the knocker

approach. They preferred to design the compensating signal as a constant and to

add the reinforcement to the valve input only when this variable is not constant.

The constant compensation value recommended by the authors is the stiction pa-

rameter estimated by the detection method suggested in the same work. This

value is changed by the sign of the valve input variation. Although the method

is very useful for reduction of the output variability associated to a sticky valve,

it does not decrease the valve aggressiveness.

Alternate knocker method

Srinivasan and Rengaswamy (2007) proposed the addition of a special block to

the nominal PID algorithm. However, this control signal adaptation is not known

by the nominal controller and, consequently, it affects negatively the performance

of the controller. Moreover, since it is not taken into consideration at the time

of controller commissioning, the tuning parameters that are determined without

stiction compensation may even produce instability and/or additional wear of

the valve and the actuator.

Two or three moves compensator

The main focus of the two moves compensation method first introduced by Srini-

vasan and Rengaswamy (2008) is to maintain the valve at its steady-state posi-

tion. To achieve this objective, at least two stem moves in opposite directions
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Figure 3.30: Signal sent by the two moves compensator (Karthiga and Kalaivani,
2012).

are required as is shown in Figure 3.30. The compensating signals should have

magnitudes large enough to overcome stiction and move the valve stem, but not

sufficient to saturate it. This method has some limitations related with the change

of the control loop setpoint preventing its implementation on an automated set-

point tracking. Also, it uses a simpler model (the Stenman Model) to describe the

stiction phenomenon, decreasing its accuracy.

More recently, Farenzena and Trierweiler (2010) proposed a novel methodol-

ogy to compensate stiction effects, through the modification of the PI controller

block in the control loop. Instead of adding a compensator block, the approach

adapted the existent and traditional PI controller block regarding the stiction phe-

nomenon. Similarly to Srinivasan and Rengaswamy (2008), the authors used a

two move method that allows to specify closed-loop performances faster than

open-loop and reject load disturbances efficiently. In spite of this similarity, the

method is able to track the setpoint, unlike the method of Srinivasan and Ren-

gaswamy (2008). Beyond that, the method admits the existence of a small offset

from the setpoint, reducing significantly the valve travel.

Srinivasan and Rengaswamy (2008) proposal was thought for first-order non-

integrating systems. Later, Lanfredi (2011) applied the method also to second-

order integrating systems with good results in the reduction of the control error

and of the variability of the stem valve.

de Souza L. Cuadros et al. (2012a) revised the Srinivasan and Rengaswamy

(2008) method and suggested two improved versions to circumvent the draw-

back related to the setpoint tracking. None of the methods require the knowl-

edge of the plant model and both may handle setpoint changes by detecting the

increase of the control error. In spite of these advantages, the first method is still
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susceptible to disturbances. The second method is more robust since it was espe-

cially developed to overcome this aspect. The methods drawbacks are related to

the requirement of having similar control valve and process dynamics.

A new compensation method based on two movements of the valve was also

developed by Wang (2013). The method adds a short-time rectangular wave to

the setpoint in two distinct movements. The method is applied to a control loop

operating in automatic and leads the valve to the desired position avoiding high

variability. The main advantage of this method is its robustness against modeling

errors and measurement noise.

Besides the comparison between several compensation methods, Silva and

Garcia (2014) developed an improved two moves approach merging the two

moves and the constant reinforcement methods. In spite of providing similar

results to those obtained by other compensation methods, the developed algo-

rithm is harder to implement and has the necessity to disable the PID controller

for short periods of time which is not practical.

Karthiga and Kalaivani (2012) proposed a similar stiction compensation method

involving not two but three movements that revealed to be capable of reducing

the valve travelling. This method exhibits a lower overshoot and settling time

than other methods. The authors showed, by simulation, that the method im-

poses a smoother valve operation, resulting in a longer control valve life.

Optimization approaches

Srinivasan and Rengaswamy (2006a, 2008) proposed an optimization based ap-

proach for stiction compensation attempting to meet a less aggressive stem move-

ment, reduced output variability and less energy in the signal added to the con-

trol signal. A cost function is built taking these aspects into account and its value

is minimized using the compensator moves as optimization variables. This tech-

nique was used with the Stenman Model. The authors observed significant im-

provements compared to the classical approaches but stressed the need for an-

alyzing the model mismatch effect, the incorrect stiction measurement, and the

real time issues before trying an online implementation. In addition, the method

is computationally more expensive when applied to a large number of sticky

valves. As the cost function is non-smooth, the optimizer may be not able to
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attain a global minimum and the process output may not reach the setpoint.

Based on Hägglund (2002) and Srinivasan and Rengaswamy (2005, 2006b),

Sivagamasundari and Sivakumar (2013) proposed a new compensation approach

for the stiction nonlinearity present in control valves. The model-based approach

uses the He Model to determine the stiction magnitude since it predicts the be-

havior of the problematic valve more precisely. Instead of tuning the parameters

that determine the wave form of the compensated signal, the authors developed a

few rules to find those parameters. The method tuned with these rules achieved a

non-oscillatory output without forcing faster and wider moves of the valve stem.

In addition, it does not need process or controller extensive information and al-

lows a good tracking of the setpoint changes during operation.

Other approaches

Gerry and Ruel (2001) suggested simple and practical techniques for tackling stic-

tion on-line. Basically, they proposed a set of tuning rules to reduce the effect of

the stiction-induced oscillations at the cost of steady-state control errors.

Márton and Lantos (2007) reformulated the control law adding a term that

guarantees good tracking while cancels the effect of the friction force. Using the

model developed in the same work, the stiction model parameters are re-tuned

adaptively to account the modeling errors.

Halimi and Kune (2010) introduced a block in the control loop consisting in

a filtered feedback signal added to the control signal. They claimed that this

method may reduce significantly the oscillations in the controller variable (up to

75%). However, the authors did not specify either the structure or the order of

the filter introduced in the loop.

Alemohammad and Huang (2012) proposed a compensation framework based

on the oscillation condition previously introduced (Alemohammad and Huang,

2011). This condition allows to predict the occurrence and the severity of stiction-

induced oscillations in control systems, based on which it is possible to reduce or

eliminate process oscillations by following some controllers re-tuning guidelines

suggested by the authors. Fang et al. (2015) also developed an approach based

on the PID controller tuning. It reduces the oscillation amplitude generated by

the stiction phenomenon tuning the controller parameters via a complex equa-
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tion that has as inputs the He Model parameters, the process model (first-order

plus time delay) parameters and two other variables calculated by an iterative

method.

Finally, Zabiri and Samyudia (2009) proposed a model predictive control for-

mulation that is based on mixed integer quadratic programming and showed that

the closed-loop performance may be significantly improved if stiction is taken

into account explicitly in the optimization problem. However, the approach re-

quires that the stiction parameters be known a priori. Besides, the MIQP for-

mulation may not work well in highly nonlinear or highly dimensional systems

because of the required computational burden and the resulting feedback latency.

Silva and Garcia (2014) developed an experimental comparison study of stic-

tion compensation methods using such metrics to evaluate their performance as

the integral absolute error, a factor related to the stem position variation, a factor

related to the valve actuator pressure variation, and the rising time. The methods

tested in the flow control loop of a pilot plant were applied to setpoint tracking

and regulatory experiments. Although several methods exhibited good compen-

sation capacity, the choice of the best method depends on the trade-off between

the setpoint tracking, the stem position and actuator pressure variabilities, and

the rising time.

� Academic and commercial software

Most of the software packages that include features for stiction analysis are re-

lated to the detailed assessment of the control loop performance. Such software

is specially important given the large number of control loops existing in indus-

trial processes. Besides, these tools should not only determine the control loops

that need maintenance but also propose the most appropriate remedy. Some of

the most recent software packages for the assessment of the control loops perfor-

mance are summarized in Table 3.4.

From the review presented so far, it is clear that there exists a wide variety

of different techniques to analyze stiction in control valves. Even though most

packages in Table 3.4 include stiction analysis, little has been done on integrating

the different techniques.
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Table 3.4: Performance assessment software (extended and updated from Shardt
et al. (2012)).

Software Company Features

Performance assessment (univariate and multivariate
Process Assessment Technologies and Solutions1 analysis, minimum variance index and LQG benchmark)

University of Alberta, Canada Economic performance assessment

Data-driven performance assessment

Stiction modeling, detection, and compensation

Control Loop Performance Assessment2 Performance assessment (statistical measures)
Petroleum University of Tecnology, Iran Valve analysis

Performance assessment (control charts)
Control Performance Monitor (ProcessDoctor)3 Oscillation analysis

Matrikon/Honeywell Stiction detection and quantification
Economics analysis
Closed-loop system identification

Oscillation analysis
Performance assessment

PlantTriage4 (minimum variance and settling time method)
Expertune Stiction detection

Root cause analysis
Economic prioritisation of loop issues
PID controllers tuning

PCT Loop Optimiser Suite5 Performance assessment
Leikon GmbH

Auditing of loops
LPM, Loop Performance Manager6,7 Stiction detection

ABB Performance assessment (minimum variance)
Stiction detection

LoopScout8,9 Performance assessment
Honeywell PID controllers tuning

Oscillation detection

EnTech Toolkit (DeltaV Inspect)10 Performance assessment (basic indexes)
Emerson Process Management

INTUNE11 PID controllers tuning
ControlSoft Performance assessment

Aspen Watch Performance Monitor12 Performance assessment (statistical methods)
AspenTech PID controllers tuning

Stiction detection

Performance assessment
Control Monitor13 (statistical and model based methods)

Control Arts, Inc. Oscillation detection
Stiction detection

Control Loop Optimisation14 Performance assessement
PAS Interaction detection

Oscillation detection

Condition Data Point Monitoring15 Stiction detection
Flowserve

Automatic Control Loop Monitoring and Diagnostics16 Performance assessment
PAPRICAN Oscillation detection

Plantstreamer Portal17 Performance assessment
Ciengis Stiction detection and quantification

1 Shardt (2014), 2 Salahshoor et al. (2011), 3 Matrikon (2012), 4 ExperTune (2012), 5 GmbH (2012), 6 Belli et al. (2006),
7 Horch et al. (2007), 8 Desborough and Miller (2002), 9 Honeywell (2012), 10 Emerson (2012), 11 ControlSoft (2012),
12 Aspen Tech (2012), 13 Control Arts (2012), 14 PAS (2012), 15 Flowserve (2012), 16 Paprican (2012), 17 Ciengis (2015).
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Figure 3.31: Family tree of models and detection /quantification and compensa-
tion methods of stiction.

� Summary

Control loops are important capital assets and should be monitored to maintain

the process safe and efficient. Control valves are key components of control loops

and their malfunctioning deteriorates their performance. Stiction, as one of the

most long-standing problems in process industry, has received a special attention

in both industrial and academic environments. The present article reviews and

systematizes the extensive work that has been developed by different authors in

modeling, detection /quantification, and compensation of stiction. The result of

such systematization is summarized in Figure 3.31.

The reviewed stiction models fall into two main classes: first-principle and

data-driven. The former provide a detailed description of the most significant ef-

fects occurring in the valve. But the existence of a large number of often unknown

parameters limits their use and, consequently, their application in stiction detec-

tion. The data-driven models reduce the complexity of the first-principle based

modeling by capturing only the relevant behaviour observed in valves affected

by stiction. These models are quite common in practice owing to the simplicity
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and ease of use. However, their accuracy deteriorates when data extrapolation is

attempted.

Regarding detection and quantification approaches, the published methods

perform either a qualitative or a quantitative evaluation of stiction presence and

magnitude. Most of the algorithms use available routine data from the control

system. A number of methods require the knowledge of the real valve stem

position and that severely limits their applicability. The quantification is often

performed simultaneously with detection, especially in the case of model-based

approaches.

Stiction compensation techniques are normally applied to mitigate the perfor-

mance degradation of the control loop until valve repair is possible. Unlike the

detection /quantification methods, the compensation methods are few and lim-

ited. The most studied and industrially applied compensation technique is the

knocker that introduces an additional signal in the valve input variable providing

the necessary driving force to overcome static friction. Interesting new methods

based on optimization and on the changing of the control law are quite promis-

ing because they use quantitative metrics and adaptivity to minimize the impact

of stiction. However, the difficulty in industrial application of these methods lies

in the fact that they require global and/or mixed integer nonlinear optimizers

and call for changes of the standard control algorithms implemented in control

systems.

3.3 Detection and characterization of oscillating dis-

turbances

Oscillations induce an undesirable increase of the process variability leading to

excessive production costs and to the decrease of the final product quality. Be-

sides, their presence compromises the production stability and safety. It is there-

fore desirable to perform continuous monitoring in order to detect in real time

control loops with oscillations (Brásio et al., 2014).

Since oscillations occur frequently in control loops and have harmful conse-

quences, automatic detection has received some attention of the industrial and

scientific communities.
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The existing algorithms can be classified according to the number of time se-

ries (i.e., industrial datasets) needed for by the method. The methods aggregating

multiple time series (Thornhill et al., 2002; Xia and Howell, 2005; Xia et al., 2005,

2007; Tangirala et al., 2007; Zang and Howell, 2007; Tangirala et al., 2005; Jiang

et al., 2006b) do not detect the significant oscillation periods in the data. These

methods identify the time series containing similar time patterns and determine

the control loop that generates and propagates those patterns. Consequently, a

first individual identification of the control loops affected by oscillations is cru-

cial before applying the methods that determine the source of those oscillations.

Several developments have been made in what concerns the individual study

of time series. Nevertheless, those methods present characteristics that lead to an

incomplete detection and/or characterization of oscillations in control loops. The

majority of them is unable to deal with slower trends, noise presence, and sig-

nals containing multiple oscillations which often characterize in industrial sig-

nals. Therefore, those methods are very dependent on their parameters tuning

demanding a careful manual determination. In the present work, a new approach

to analyse the industrial control loops performance by the detection and charac-

terization of oscillations is developed. Using data easily available in plants, the

new method detects multiple oscillations, is computationally light, and runs au-

tomatically.

3.3.1 Auto-correlation function

Consider the following definitions.

Definition 1 The time series xt is (weakly) stationary if (Brockwell and

Davis, 2002, Definition 1.4.2)

i. the mean x is independent of t,

ii. the auto-covariance function γx(t, t + τ) is independent of t for

each τ .

�
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Definition 2 Consider the stationary time series xt. The auto-covariance

function of xt for the time delay τ is given by

γx(t, t+ τ) = E[(xt − x)(xt+τ − x)] , (3.96)

where E[z] is the expected value of the generic variable z. In addition,

the auto-correlation function of xt is defined by

ρx(t, t+ τ) =
γx(t, t+ τ)

γx(t, t)
, (3.97)

for a given value of τ (Brockwell and Davis, 2002, Definition 1.4.3).

�

Equation (3.97) may be extended in the following way

ρx(t, t+ τ) =
E[(xt − x)(xt+τ − x)]

E[(xt − x)(xt − x)]

=
E[(xt − x)(xt+τ − x)]

E[(xt − x)2]

=
1

N−τ
∑N−τ

t=1 (xt − x)(xt+τ − x)
1
N

∑N
t=1(xt − x)2

. (3.98)

Some authors assume that the numerator of (3.98) may be approximated by

1

N

N−τ∑

t=1

(xt − x)(xt+τ − x) ,

a form with more advantageous statistical properties (NIST and SEMATECH,

2012). The direct substitution of this approximation into (3.98) originates the def-

inition of the auto-correlation function used in the present work:

ρx(t, t+ τ) =

∑N−τ
t=1 (xt − x)(xt+τ − x)∑N

t=1(xt − x)2
, (3.99)

where x is the mean of the sample with size N , τ is the number of intervals cor-

responding to the time delay of the series, and ρx ∈ [−1, 1].
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controller sticky valve process �

ysp ye u λ

Figure 3.32: Process block diagram.

Gaussian noisewt may be defined as a random time series with zero mean and

variance σ2
w being usually represented by the normal distribution wt ∼ N (0, σ2

w).

Given its properties, Gaussian noise is a stationary signal and its auto-covariance

function may be defined as

γw(t, t+ τ) =

{
σ2
w, if τ = 0

0, if τ 6= 0
, (3.100)

and does not depend on t (Brockwell and Davis, 2002, Examples 1.4.1 and 1.4.2).

By Definition 2, its auto-correlation function is calculated as

ρw(t, t+ τ) =
γw(t, t+ τ)

γw(t, t)

=
0

σ2
w

= 0 , (3.101)

that is, the Gaussian noise auto-correlation function is null for τ > 0.

3.3.2 Proposed approach

The new method proposed herein automatically detects and characterizes the os-

cillations present in time series from that control loops.

A typical industrial control loop is composed by a Proportional-Integral-De-

rivative (PID) controller, a final control element (usually a control valve), and a

process (which one intends to control), as represented in Figure 3.32. All the con-

troller order to the final control element (manipulated variable or u), the real po-

sition of the final control element (λ) and the controlled variable (y) may contain

oscillations.

The main idea of the method consists in the detection of the different oscilla-

tions present in u, λ, and y time series as well as their characterization by deter-
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mining their oscillation periods. With this purpose, it applies the auto-correlation

function to the time series. After the detection and characterization of the first

period, the method automatically generates a new signal reducing the number of

points of the time series and repeats the analysis searching for a new oscillation

of higher period.

Sets of N points respecting to variables ysp, u, λ, and y of the previously se-

lected industrial control loops (among the active control loops of the plant) are

read with a sampling time of ∆t and stored chronologically in order to build the

respective time series. Consider that each of these time series may be represented

by a generic stationary time series of finite size N in discrete time points t consti-

tuted by xt = {x1, x2, · · · , xN} contaminated by the Gaussian noise wt ∼ N(0, σ2
w).

The auto-correlation function of xt is a measure of the statistical dependence be-

tween the series values at different times and is defined mathematically by (3.99).

The auto-correlation function of an oscillatory time series xt corrupted by

Gaussian noise wt generates a signal that is also oscillatory and has the same

period. Since the auto-correlation function of the noise ρw is null, the utilization

of this function advantageously decreases the detrimental impact of the noise al-

lowing for a more exact determination of the periods of the oscillations present

in the time series.

Based on these considerations, the method depicted schematically in Figure 3.33

is proposed. The method consists of the following steps:

Step 1. Determination of the auto-correlation function ρx via (3.99) with τ = 1, · · · , N − 1.

Step 2. Verification of the existence of oscillations using the stopping criterion SC1.

Step 3. Determination of the smallest period of the oscillations present in the
auto-correlation function.

(a) Determination of the time values ti (i = 1, · · · ,M ) for which the
auto-correlation function is maximum.

(b) Verification of the existence of sufficient information using the stop-
ping criterion SC2.

(c) Calculation of the oscillation periods Ti by

ni = ti+1 − ti , (3.102)

Ti = ni ∆t , (3.103)
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Figure 3.33: Proposed method flowchart.
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where i = 1, · · · ,M − 1 and ni is the number of time series points
corresponding to a single oscillation.

(d) Calculation of the statistical parameters

n = int
( 1

M − 1

M−1∑

i=1

ni

)
, (3.104)

T =
1

M − 1

M−1∑

i=1

Ti , (3.105)

σT =

√√√√ 1

M − 2

M−1∑

i=1

(Ti − T ) , (3.106)

where n is the mean number of time series points corresponding to
a single oscillation, T and σT are the mean and the standard devia-
tion of the oscillation periods, respectively.

(e) Calculation of the statistical regularity r by

r =
T

3σT
. (3.107)

Step 4. Detection of oscillations by applying the test

{
If r > 1, detected oscillation of period T .
If r ≤ 1, no oscillation is detected.

Step 5. Repeat of steps 3 and 4 using the auto-correlation function ρ′x obtained
by removal of the already detected oscillation period T by

ρ′x,i =
1

n

in∑

k=1+n(i−1)

ρx,k , (3.108)

where i = 1, · · · ,#ρx/n with #ρx representing the number of points
ofρx. The sampling period is set to ∆t = T .

The two stopping criteria referred as SC1 and SC2 are defined according to:

SC1. Oscillations presence: When data is not correlated, the auto-correlation func-

tion is null indicating the exclusive existence of Gaussian noise in the sig-

nal. In the proposed method, the detection of these situations in time series

makes use of the confidence interval concept. Accordingly, if a large part of

the data points of the auto-correlation function coincides in the confidence
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interval, it is concluded that the points do not present temporal dependence

and therefore the signal does not contain oscillations. The criterion is math-

ematically expressed by

β =
#{i < N ; |ρx,i| < ρx,lim}

N − 1
> tol1 , (3.109)

with

ρx,lim =
Z1−α/2√
N − 1

, (3.110)

where β represents the percentage of points of ρx that are coincident in

the confidence interval and #S defines the number of elements in set S.

The confidence interval limits for the auto-correlation function are calcu-

lated by±ρx,lim, where Z1−α/2 is the cumulative distribution function for the

standard normal distribution. For a confidence interval at 95% (α = 0.05),

Z1−α/2 = 1.96.

SC2. Sufficient information: In order to determine the oscillation period, at least

four intervals are necessary (an interval corresponds to the distance be-

tween two consecutive zero crossings of the auto-correlation function) be-

cause otherwise the calculation of the period and of the standard deviation

becomes unreliable. This criterion is defined by

M > tol2 , (3.111)

where M is the number of intervals.

Using data easily available in plants, the method should be applied individ-

ually to each time series calculating the auto-correlation function of that series

only once and identifying its maxima to detect and characterize the multiple os-

cillation possibly present in the signal. The method automation is of special im-

portance and is accomplished using stopping criteria that allow to: (i) detect, still

at an initial phase, the absence of oscillations and (ii) search for other oscillations

while data quality is still sufficient.
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Table 3.5: Methods analysed.

Method Designation
Hägglund (1995) A
Forsman and Stattin (1999) B
Miao and Seborg (1999) C
Wang et al. (2013) D
method here suggested E

3.3.3 Discussion of results

In this section, the performance of the method just described (Section 3.3.2) is

studied. Moreover, a comparative analysis of different methods (including the

new approach) is performed, emphasizing the advantages and disadvantages of

each of them. Furthermore, the comparative study of the methods comprises

not only applications to simulated data but also to data collected in industrial

environments.

With such purpose, several methods available in the literature as well as the

newly developed method were coded in the programming language GNU Oc-

tave. The five methods that were implemented are listed in Table 3.5. For the

sake of compactness and clearness of the results presentation and discussion, an

uppercase letter was assigned to each of the methods under analysis to work as

their short designations.

Each method is tested using data from two different origins:

Simulated data: Three different scenarios common in process industry (see Fig-

ure 3.34) were considered to generate data: a healthy control loop, D1; a

loop affected by an oscillation (of period 20 s), D2; and a loop suffering of

the overlay of two oscillations (of periods 20 and 200 s), D3. All datasets are

contaminated exclusively by Gaussian noise. Figure 3.34 shows the gener-

ated sets defined mathematically as

D1 : e = N (0, 1)

D2 : e = 2 sin

(
2π

20
t

)
+N (0, 1)

D3 : e = 2 sin

(
2π

20
t

)
+ 5 sin

(
2π

200
t

)
+N (0, 1)
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Figure 3.34: Simulated datasets.

Industrial data: Datasets collected in real environments (see Figure 3.35).

The first industrial dataset, D4, refers to a flow rate control loop affected

by valve stiction that causes an oscillation of the signal and contains 1998

points. The points were collected with a sampling time of 10 s and the PID

controller of the loop was tuned with a proportional gain kC = 0.429 %kg−1s

and an integral time τI = 102 s. This dataset, originally contributed by Scali,

is publicly available in the database of Jelali and Huang (2013) where it is

designated by CHEM32.

The second industrial dataset, D5, was collected between 2011 and 2012 in

a large-scale production petrochemical plant from Group Sinopec Yangzi

Petro-Chemical Co. (China). Provided by Wang, the dataset is available

via LPMOM (2013) in file Data_for_Example2.mat and contains 12402

points.

The third dataset, D6, pertains to a level control loop and presents a sam-

pling time of 5 s. It is constituted by 8641 points and is also available in the

database of Jelali and Huang (2013) under the designation POW2. It was

afforded by Choudhury.

Datasets D1 to D6 were independently analysed by the five methods A to E.

Table 3.6 condenses the results obtained by each of the methods and also exposes,
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Figure 3.35: Industrial datasets.

in the last line, the true evaluation associated to each of the datasets in order to be

possible to infer the degree of performance achieved by each method. While the

characteristics of the signal were imposed in the case of the simulated datasets

(and it is therefore easy to indicate the “true evaluation” characteristics), the in-

dustrial data “true evaluation” was obtained by visual inspection.

Table 3.6: Results of data analysis by different methods. The oscillation period(s)
identified are indicated in seconds. The dark shadow indicates a wrong detection
of the presence or absence of the oscillation(s) and the light shadow indicates a
partially wrong or incomplete analysis.

Simulated data Industrial data

D1 D2 D3 D4 D5 D6

Method A X(4) X(20) X(95) X(794) X(18) X(294)
Method B × X × X X X
Method C X X X X X X
Method D X(15) X(20) X(20) X(300) X(14, 996) X(294)
Method E × X(20) X(20, 200) X(898) X(14, 1010) X(294)

True Evaluation × X(20) X(20, 200) X(≈ 900) X(≈ 15, 1000) X(≈ 300)

In order to express the results of the data analysis, a check symbol X is used

when the method detects the presence of oscillation(s) and a cross × otherwise.

The check symbol X is followed by the oscillation(s) characterization indicating

in parenthesis its(their) period(s) whenever the method gives such information
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(methods B and C do not characterize the detected oscillations). Similarly, for

the line of the “true evaluation”, the cross symbol × indicates the absence of

oscillation, the check symbol X the presence and the number(s) in parenthesis

is(are) the period(s) of oscillation.

Method A

Method A detected oscillations disturbances in all the datasets, as listed along

the first line of Table 3.6, even for the case of dataset D1 with which the method

produced a wrong conclusion as this dataset belongs to a control loop performing

well just affected by Gaussian noise. Moreover, it even suggests an oscillation

period of 4 s to characterize the absent oscillation disturbance.

In opposition, for datasets D2 and D6 (which refer to datasets containing a

single oscillation each) the method correctly identified the presence of the oscil-

lation and also correctly characterized its period (exactly in the case of generated

data D2 and approximately in the case of industrial data D6).

Since it is based on the zero crossings of the control error signal, the method

leads to wrong detections when the controlled variable is not centered in the set-

point variable. Besides, the presence of noise may skew the detection as the al-

gorithm may interpret the x-axis crossings (provoked by noise) as the start or the

end of a new oscillation. Although the minimum oscillation amplitude parame-

ter, a, may reduce the noise impact, it must be defined individually which is not

practicable when an automated solution is intended.

These issues also affected oscillation characterization in the case of the dataset

D3, where the method proved unable to detect the presence of multiple oscilla-

tions and, moreover, the single period indicated by the method does not charac-

terize any of the two existing oscillations. Also with the industrial dataset D5,

method A showed to be unable to identify multiple oscillation disturbances.

As for dataset D4, the method detected the presence of the single existing os-

cillation but failed to characterize it, suggesting an oscillation period significantly

different from the real one. Figure 3.36 depicts with more detail the results for this

dataset. To detect and characterize oscillations, the IAElim was initially calculated

as 32.47, using the value of τI. As it is possible to see in Figure 3.36, the values

of IAE rise frequently above the IAElim (which is recalculated in each iteration).
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Figure 3.36: Application of method A to data D4.
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Figure 3.37: Graphical representation of the application of methods B (first plot)
and C (second plot) to dataset D2. The apparent lack of orthogonality between
the dashed line segments of the second plot is merely due to the different scales
for abscissae and ordinates.

Each time the limit is touched, the disturbance number n increases, achieving

quickly the maximum acceptable value approximately at 10000 s.

Methods B and C

Methods B and C perform exclusively the oscillations detection task, being unable

to compute the oscillation periods. Figure 3.37 highlights some variables associ-

ated to these methods (see (3.44) and (3.45) of method B and (3.50) of method C)

considering the analysis of dataset D2.

Applying method B (see (3.48)), hA = 39 and hB = 39, resulting an index of

h = 0.639. According this method’s criteria, such value indicates that the signal

is possibly oscillating, being candidate for a closer examination.

Figure 3.37 also presents the auto-correlation function ρ of the control error
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signal used by method C, emphasizing its capacity of signal filtering (compare,

in terms of noise, to the signal in Figure 3.34). By applying method C, an index of

R = 0.970 is computed, which points to an excessive degree of oscillation of the

signal.

Method B concluded correctly about the absence of oscillation disturbances

for dataset D1 as well as about the presence of oscillations for datasets D2, D4,

D5, and D6. However, it failed the analysis to dataset D3, wrongly indicating that

the control loop of such data is working perfectly. In fact, this dataset is affected

by oscillations characterized by two different oscillation periods. It is notewor-

thy that this method analyses directly the signal, what is potentially dangerous

from the point of view of the results obtained. For instance, the signal can be not

centered on the setpoint variable leading to wrong conclusions.

In contrast, method C identified correctly oscillations in D3 possibly due to

the auto-correlation function usage which removed the signal noise and centered

the signal around the x-axis. In spite of that, method C failed to recognize the

oscillation absence in dataset D1.

Method D

Method D wrongly indicated that the control loop of dataset D1 is affected by an

oscillation disturbance. It also could not detect the multiple oscillations presence

in dataset D3. Additionally, for dataset D4, the oscillation period with which

the method characterizes the oscillation correctly detected is about 1/3 of its true

value. However, it proved to perform very well for datasets D2, D5, and D6.

Analysing now in more detail the control error associated with dataset D5

(middle plot of Figure 3.35), it is possible to observe an oscillation of period

around 1000 s and a second oscillation with a period around the 15 s (first plot

of Figure 3.38, which consists of a zoom of Figure 3.35 for the first 195 s). The sec-

ond plot of Figure 3.38 shows the discrete cosine transform analysed by method

D. Several oscillations were successfully found by the application of the method

filters. However, only two oscillations are considered dominant as only them

have a regularity index greater than 1 (r = 21.0 and r = 12.9) and a high F value

(13.1 and 10.7 %). The two selected oscillations have periods of 996 s and 14 s.

Dataset D5 was also studied by Wang et al. (2013). In their study, the authors
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Figure 3.38: Application of method D to dataset D5. The first plot shows a zoom
out of the time series D5, the second shows the signal of the discrete cosine trans-
form, and the third and forth plots show isolated transform segments for each of
the oscillations detected.

found two disturbances oscillating with periods of 996 and 14 s characterized by

the regularities 19.8 and 14.9 and indices F of 13.1 and 11.8 %. These values are

quite similar to those established in this study.

Method E

As for the new method here proposed, it was able to extract correct conclusions

with all the datasets under study: it was able to infer that the control loop of

dataset D1 was working properly (absence of oscillation disturbances) while the

loops of all the other datasets were affected by oscillation disturbances. It was

able to correctly detect the cases of single and of multiple oscillations. Moreover,

it computed successfully the oscillation periods for both single and multiple os-

cillations cases. It handled efficaciously both simulated and industrial datasets.

With exemplifying purposes, lets consider dataset D5 in more detail. The
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Figure 3.39: Auto-correlation function used by method E for analysis of
dataset D5.

auto-correlation function was able to discern the different oscillations existing

in that data: a more fast disturbance with oscillation period of 14 s (see second

plot of Figure 3.39) and a slower oscillation of 1010 s (see first plot of Figure 3.39).

The high values of the regularity indices (9.45 and 15.71) showed that these os-

cillations are regular which confirms their presence in the signal. The oscillations

and their characteristics detected by method E for dataset D5 are similar to those

determined by method D (two oscillations with periods 996 s and 14 s). Visual

analysis confirms the existence of two oscillations with periods of approximately

1000 s and 15 s.

Besides dataset D5, dataset D3 also contains multiple oscillations. But for this

dataset, method D was not able to detect both oscillations while method E kept

its good performance.

The study accomplished showed that methods A, D, and E have the ability to

detect only significant oscillations. In opposition to methods A and B, methods C,

D, and E appear to be invulnerable to noise in the data. Methods D and E are the

only ones that can determine multiple oscillations (however, method D has failed

the detection of the multiple oscillations for dataset D3). As discussed above, the

use of controlled variables or their associated control errors by the methods rep-

resents an advantage (presented by methods C and E). Besides determining the

oscillation period, some of the methods also capable of characterizing its regular-

ity, namely methods B, D, and E.

On the other hand, methods A and B require the signal to be centered in the
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Table 3.7: Advantages and disadvantages exhibited by oscillation detection
and/or characterization methods

Methods

Advantages/disadvantages A B C D E∗

Advantages
Detects only significant oscillations • ◦ ◦ • •
Reduced impact of noise ◦ ◦ • • •
Detects multiple oscillations ◦ ◦ ◦ • •
Uses controlled or control error variables ◦ ◦ • ◦ •
Characterizes the regularity of the found oscillation period ◦ • ◦ • •

Disadvantages
Requires that the signal is centered of the setpoint variable • • ◦ ◦ ◦
Problems with zero crossings detection • • ◦ • ◦
Aplicable just to PID controllers with integral action • ◦ ◦ ◦ ◦
Problemas in determining several oscillation periods • • • • ◦
∗ Proposed approach.

setpoint variable and zero crossings detection are problematic. This last aspect

is an issue to method D as well. Method A is the only one that can be ap-

plied only to PID controllers with integral action. Finally, all the methods except

method E showed problems in determining the periods of multiple oscillations

(either because the methods even do not detect the multiple oscillations them-

selves (cases of methods A, B, and C) or because, detecting them, they failed to

always compute correctly the periods (method D)). This study showed that the

new method E outperforms even the only other method that can detect multiple

oscillations (method D).

Table 3.7 summarizes these advantages and disadvantages. A filled circle

signifies that the corresponding characteristic is present for the corresponding

method. A hollow circle signifies that the method does not present such charac-

teristic.

The study here performed reveals the potential of the proposed approach

when compared to previously existing methods. As the graphical description of

Table 3.7 easily conveys, the new method offers simultaneously the advantages

of all methods and, simultaneously, do not present any of their disadvantages.
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controller
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(nonlinear)
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(linear) �

ysp y
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Figure 3.40: Industrial control loop representing the Hammerstein Model, where
ysp is the variable setpoint, u is the controller output, x is the real valve position,
and y is the controlled variable.

3.4 Stiction detection and quantification through nu-

merical optimization3

Stiction is one of the long-standing control valve problems in the process indus-

try causing oscillations and, consequently, losses of productivity. Therefore, it is

important to understand this phenomenon for its early detection and separation

from other oscillation causes.

The present section explores the application of continuous optimization tech-

niques to the system identification of a model with the stiction phenomenon. A

strategy to deal with the discontinuities of the used Hammerstein Model in the

context of the optimization procedure is proposed.

3.4.1 Proposed approach

A novel technique for detection and quantification of valve stiction in control

loops based on one-stage identification is proposed in this section. The system to

be identified is represented by the Hammerstein Model shown in Figure 3.40. It

consists of a static non-linear element in series with a linear dynamic part (Eskinat

et al., 1991). In the context of an industrial control loop, the non-linear element

represents the sticky valve while the linear part models the process dynamics.
3This section is based on Brásio, A. S. R., Romanenko, A., and Fernandes, N. C. P. (2014). Stic-

tion detection and quantification as an application of optimization. In Murgante, B., Misra, S.,
Rocha, A., Torre, C., Rocha, J., Falcão, M., Taniar, D., Apduhan, B., and Gervasi, O., editors, Com-
putational Science and Its Applications – ICCSA 2014, volume 8580 of Lecture Notes in Computer Sci-
ence, pages 169–179. Springer International Publishing. URL http://dx.doi.org/10.1007/
978-3-319-09129-7_13, with kind permission from Springer Science and Business Media B.
V.
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After sufficiently rich process data is collected, the model parameters are de-

termined such that the model response reproduces the observed response of the

actual process. Mathematically, this is represented by the non-linear constrained

optimization problem

minimize
p

J(y,u,p) (3.112a)

subject to ẏ = f(y,x,p) (3.112b)

x = g(u,p) (3.112c)

yL ≤ y ≤ yU (3.112d)

uL ≤ u ≤ uU (3.112e)

pL ≤ p ≤ pU (3.112f)

h(p) ≤ 0, (3.112g)

where J denotes the objective function, p is the parameters vector including both

the stiction and the process models, y and u are the vectors of controlled variable

and controller output (respectively), x is the vector of the real valve position, and

the subscripts L and U stand for lower and upper bounds (respectively). The set of

equations (3.112b) and (3.112c) defines a set of constraints arising from the Ham-

merstein Model dynamics. Inequalities (3.112g) enforce additional identification

criteria.

As it may be seen in Figure 3.40, the non-linear element scales the controller

output and transforms it to the real valve position. The model expressed by

the set of equations (3.112c) corresponds to this transformation and is repre-

sented by a stiction model existent in the literature. In contrast, the linear element

whose output is the controlled variable is modeled by the linear model specified

by (3.112b).

Given the Hammerstein Model and a set of n experimental data points (ti, yexp,i),

the objective function J is written, according to the minimum least squares crite-

rion, as

J =
[
yexp − y

]>
Q
[
yexp − y

]
, (3.113)

where Q is a diagonal matrix containing the weights given to each observed vari-

able. In this work, equal weight was given to all output variables.
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From a practical point of view, the proposed technique only requires the con-

troller output and the controlled variable data that may be accessed in the DCS

(Distributed Control System) of industrial plants. Notice that the real valve po-

sition is an unmeasured intermediate variable, but the method does not require

it.

3.4.2 Smoothing of discontinuous models

Stiction is essentially described by discontinuous non-linear models and that calls

for mixed integer non-linear optimization problem formulation and a special

class of optimizers. Alternatively, smoothing approaches for discontinuous mod-

els have been successfully applied. Some works introduced smoothing tech-

niques in the context of exact penalty functions (Wu et al., 2004, 2005; Meng et al.,

2009). Others authors have suggested to express discontinuities by means of a

step function and then to substitute this function by a continuous approxima-

tion (Goldfeld and Quandt, 1972; Tishler and Zang, 1979; Zang, 1981). This is the

approach also adopted in the present work.

Consider the general discontinuous system

z(t) =





z1(t), if t ∈ T1

z2(t), if t ∈ T2

...

zm(t), if t ∈ Tm

, (3.114)

where zi(t), i = 1, · · · , m, are continuously differentiable real functions over Rn

subject to the conditions that define the subsets Ti. Assuming that the real expres-

sions ek(t), k = 1, · · · , p, are continuously differentiable over Rn, the subsets Ti
are defined as

Ti = {t ∈ Rn : ek(t) < 0, ∀k ∈ Li; ek(t) ≥ 0, ∀k ∈ Gi} , (3.115)

where Li and Gi are, for branch i, the sets of indexes k for which ek(t) < 0 and

ek(t) ≥ 0, respectively.

The discontinuous function (3.114) may be expressed by means of the Heavi-
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side function as

z(t) =
m∑

i=1

∏

k∈Li
[1−H(ek)]

∏

k∈Gi
H(ek) zi(t) , (3.116)

with

H(t) =

{
1, if t ≥ 0

0, if t < 0
, (3.117)

that is,

H(ek) =

{
1, if ek ≥ 0

0, if ek < 0
. (3.118)

It is possible to smooth the Heaviside function by approximating it by the hyper-

bolic function

H̃
(
t
)

= 0.5 + 0.5 · tanh (r · t) , (3.119)

where H̃
(
t
)

is second-order continuously differentiable on Rn varying within the

interval [0, 1], and r is an accuracy parameter. Similarly to the approach of Zang

(1981), the step function approximation here considered contains a single param-

eter. This parameter controls the accuracy of the approximation by adjusting the

size of the neighborhoods around the discontinuity points over which the ap-

proximation has an effective effect.

Therefore, the continuous differentiable on Rn function that approximates

function (3.114) may be written as

z̃(t) =
m∑

i=1

∏

k∈Li

[
1− H̃(ek)

] ∏

k∈Gi
H̃(ek) zi(t) . (3.120)

3.4.3 Development for a system containing a sticky valve

As mentioned above, the Hammerstein Model comprises a non-linear model de-

scribing the sticky valve and a linear process model. The present work uses

the complete Chen Model, also called by its authors as two-layer binary tree

model (Chen et al., 2008), to model the sticky valve.

In what concerns the process dynamics, it is modeled by the SISO state-space
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model

ẏ∗ = a y∗ + b x∗ , (3.121)

where a and b are state-space model constants, and the deviation variables vec-

tors y∗ and x∗ are related to the original variables y and x through the simple

translations y∗ = y − ȳ and x∗ = x− x̄, respectively.

In order to collect experimental data needed to perform a comparison between

the smoothed and the original versions of the Chen Model and also needed for

the identification process, a plant simulation was carried out using the Hammer-

stein Model containing the original discontinuous Chen Model. The parameters

used in the simulation are: (i) for the stiction model: fS = 2.8 % and fD = 0.9 %;

(ii) for the process model: a = 1 , b = −1 %−1, ȳ = 0 , and x̄ = 0 %. A sinusoidal

excitation on the controller output with amplitude of 5% and period of 40min is

applied to the system to generate a response, yexp, that includes sufficient dynam-

ical information about the valve and the process. The obtained dataset contains

n = 101 points covering an interval of 50 minutes with a sampling period of

0.5 minutes.

� Smoothing of the stiction model

An enhanced flow diagram of the Chen Model was built and is illustrated in

Figure 3.41. The diagram is complemented, relatively to the original model pre-

sented by its authors (Chen et al., 2008), with some notes to better explain the

model and the approach developed in the present thesis.

The Chen Model may be rewritten as

z(t) =





z1(t), if e1(t) = 1 ∧ e2(t) ≥ 0

z2(t), if e1(t) = 1 ∧ e2(t) < 0

z3(t), if e1(t) = 0 ∧ e3(t) < 0

z4(t), if e1(t) = 0 ∧ e3(t) ≥ 0

, (3.122)

where z(t) is a general variable used to represent the outputs c(t), x(t) and s(t).
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Figure 3.41: Enhanced Chen Model flow diagram.

Expressions e1(t) and e2(t) are given by

e1(t) = s(t− 1) , (3.123)

e2(t) = c(t)− fS , (3.124)

where s(t) is the valve status flag, c(t) is the accumulated force compensated by

friction, and fS is a model constant. The expression e3(t) becomes positive or

equal to zero when

(
e31(t) ≥ 0 ∧ e32(t) ≥ 0

)
∨
(
e31(t) < 0 ∧ e33(t) ≥ 0

)
, (3.125)

with

e31(t) = fD , (3.126)

e32(t) = |c(t)| − fD , (3.127)

e33(t) = d(t) · d(t− 1) , (3.128)
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where d(t) is the movement direction, and fD is a model constant. Notice that the

condition fD < 0 ∧ |c(t)| < −fD (see decision diamond-shaped box e3(t) of Fig-

ure 3.41) is not considered in the approach, because it is assumed that fD ≥ 0.

The expression e3(t) becomes negative otherwise.

The Chen Model contains m = 4 branches subject to p = 3 conditions. Sets Li
and Gi are defined as

L1 = {}, L2 = {2}, L3 = {1, 3}, L4 = {1} ,
G1 = {1, 2}, G2 = {1}, G3 = {}, G4 = {3} .

The continuous and differentiable function that approximates (3.122) is therefore

defined by

z̃(t) = e1(t) · H̃
(
e2

)
· z1(t) +

[
1− H̃

(
e2

)]
· e1(t) · z2(t)

+ [1− e1(t)] ·
[
1− H̃

(
e3

)]
· z3(t) + [1− e1(t)] · H̃

(
e3

)
· z4(t) , (3.129)

with

H̃
(
e3

)
= H̃

(
e31

)
· H̃
(
e32

)
+
[
1− H̃

(
e31

)]
· H̃
(
e33

)
. (3.130)

It is noteworthy that e1(t) is used in (3.122) inside an equality condition which

precludes the direct usage of the approximation approach described in Section 3.4.2.

However, as shown in (3.123), this condition is given by the output s(t−1) which

is smoothed and valued between 0 and 1 similarly to H̃(t). These facts enable the

use of this variable directly in equation (3.129) in a similar way as the smoothed

Heaviside functions, allowing to deal with the equality constraint.

Several simulations were performed in order to assess the performance of

the developed approach. Figure 3.42 depicts the simulation responses of the

Hammerstein Model when the non-linear element is described by the original

Chen Model (solid line) and also when the non-linear element is described by the

smoothed Chen Model, proposed in the present thesis (dashed lines and points).

Being a measure of the quality of the approximation applied, the parameter r has

a visible influence on the performance of the smoothed model. This influence

is quantified in Table 3.8 by the mean squared error (MSE) associated with the
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Figure 3.42: Comparison between the Hammerstein Model using the original
Chen Model and its smoothed version for different values of r.

Table 3.8: MSE for different values of r.

r 0.05 0.5 5 10 20 30 40 50

MSE 88.440 34.459 39.701 0.829 0.011 0.003 0.002 0.000

simulations for different values of r. As it may be easily seen in Figure 3.42, by

using bigger values of r it is possible to reproduce better the data obtained by the

original Chen Model. For bigger values of r, the approximation of the function

occurs in smaller neighborhoods of the discontinuity points leading to a better

approximation. The value of r = 50 was selected based on a mean squared error

tolerance of 10−3.

� Stiction detection and quantification

The Chen Model parameter fS is linearly dependent on fD through the mathe-

matical relationship (Chen et al., 2008)

fS = fD + fJ . (3.131)

Such dependence poses a difficulty in system identification, because it compro-

mises the identifiability of the individual parameters. In order to overcome this

problem, the model is reformulated to use parameters fJ instead of fS for opti-

mization purposes.
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Figure 3.43: System identification.

The optimization procedure described in Section 3.4.1 was used to identify

the system. The implementation was made in GNU Octave 3.6.3 using its gen-

eral non-linear sqp() (successive quadratic programming) solver. The set of

optimization related conditions and the obtained model parameters as well as

some fitting quality indicators are presented in Table 3.9. The optimization toler-

ance was 10−20. In order to avoid poor conditioning of the data, the parameters

were normalized by the vector α =
[
−0.1 0.1 1 1 1 1

]
, with the necessary

changes in the model.

The profile predicted by the identified model, y∗fit, may be directly compared

with the experimental profile, y∗exp, in Figure 3.43. The initial profiles, y∗init and

x∗init, are also displayed revealing that the starting initial situation was signifi-

cantly different from the experimental profiles. As it is possible to observe, the

fitted Hammerstein Model is able to capture well the sticky valve and the process

dynamics. The high correlation factor, R2, and the lower objective function prove
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Table 3.9: System identification results.

p Initial pL pU Fit Indicators

a, – -0.200 -10 10 -0.998
b, % 0.020 -10 10 0.998
ȳ, – 1.000 -10 10 0.000 J = 0.001
x̄, %−1 1.000 -10 10 0.000 R2 = 1.000
fJ, % 0.000 0 10 1.732
fD, % 0.000 0 10 0.898

Q = 102 I101, where In is the identity matrix of size n× n

the effectiveness of the one-stage system identification technique.

3.5 Detection of stiction in level control loops4

Stiction is an enduring problem of control loops in process industry. When it oc-

curs, the real position of the valve stem can differ substantially from the controller

output (see Figure 3.44) deteriorating the performance of the control loop.

controller sticky valve process �

ysp yu x

Figure 3.44: Industrial control loop with stiction, where ysp is the variable set-
point, u is the controller output, x is the real valve position, and y is the controlled
variable.

By applying Yamashita’s method (Yamashita, 2006a) to a considerable number

of industrial flow control loops, Manum and Scali (2006) concluded that it diag-

noses the presence of stiction in half of the occurrences. However, this method

presents the disadvantage of requiring valve stem position data. Even though

this data is often unavailable, it is nevertheless possible to apply the method in

4This section is based on Brásio, A. S., Romanenko, A., and Fernandes, N. C. (2015). Detection
of stiction in level control loops. IFAC-PapersOnLine, 48(8):421 – 426. 9th IFAC Symposium on Ad-
vanced Control of Chemical Processes ADCHEM 2015 Whistler, Canada, June 7-10, 2015. © IFAC
2015. Reproduced with the permission of IFAC. The original version was published in IFAC-
PapersOnline and can be found using the Digital Object Identifier 10.1016/j.ifacol.2015.09.004.
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Figure 3.45: Typical patterns of a sticky valve.

flow control loops with the assumption of linearity and fast dynamics. Indeed, in

such case the controlled variable is proportional to the real valve position. Later,

that disadvantage was addressed (Yamashita, 2006b) by developing a new index

for systems with slower dynamics, namely level control loops, based on the de-

tection of a two-peak distribution in the signal. However, this approach tends to

produce false positive stiction detection, which undermines the method credibil-

ity.

The present work develops a new approach to detect valve stiction in level

control loops that is based on the preprocessing of the variable profiles prior to

the application of the pattern recognition of Yamashita (2006b).

3.5.1 Yamashita’s method

Yamashita’s method is designed for control loops with pneumatic actuators. The

algorithm is based on the qualitative description of the changes suffered by the

signals to and from the valve and showed excellent performance in the detec-

tion (Yamashita, 2006a).

Yamashita’s method describes the typical patterns in the graphical representa-

tion of the real valve position versus the controller output (x-u phase plot) associ-

ated with the stem movement. Figure 3.45 shows those idealized typical patterns

of a sticky valve.

The qualitative changes of a signal may be represented using a sequence com-

posed by the symbolic values I, S, D meaning increasing, steady and decreasing,

respectively, and are represented in Figure 3.46 (top). The identification of the

symbols is based on the time derivatives of the signals for each sampling point.

For instance, at a given sampling point where the signal u increases while the

signal x is steady, the symbolic representation is IS. For detecting stiction, Ya-

mashita’s method uses two main indexes: ρ1 and ρ3. The index ρ1 counts the

periods of sticky movements by finding IS and DS shapes in the phase plot. The
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Figure 3.46: Symbols used to represent a signal (top) and typical qualitative
shapes found in sticky valves (bottom).

index ρ3 takes into account the fact that some fragments of the stiction patterns

may be represented by several sequences of two shapes (IS II, DS DD, . . . as

shown in Figure 3.46 (bottom)). Those indexes are calculated by

ρ1 =
τIS + τDS

τtotal − τSS

, (3.132)

ρ3 =ρ1 −
τIS DD + τIS DI + τIS SD + τIS ID + τIS DS

τtotal − τSS

+
τDS DI + τDS SI + τDS ID + τDS II + τDS IS

τtotal − τSS

, (3.133)

where τtotal is the width of the time window and τp is the time periods for pattern

p (with p = IS, IS DD, . . . ). Varying between 0 and 1, these indexes get higher if

the valve has severe stiction. The authors inferred that the loop is likely to have

valve stiction if the index values are greater than 0.25.

Later, Yamashita (2006b) developed a new index for systems with slower dy-

namics based on the detection of a two-peak distribution in the signal . It is based

on the idea that the distribution of the difference between consecutive level mea-

surements contains two separate peaks. To monitor valve stiction, the author

uses the excess kurtosis statistical index to verify the distribution peaks. The ex-

cess kurtosis is defined as

γ =
1

n

n∑

i=1

(∆yi − µ∆y)
4

σ4
∆y

− 3 , (3.134)

where ∆y is the differential of y, µ∆y and σ∆y are the mean and the standard

deviation of ∆y, and n is the number of observations of ∆y. A loop with stiction
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will present a two peaked distribution which means a negative large value of

excess kurtosis.

3.5.2 Proposed approach

The amount of the liquid stored in a vessel may be found by measuring the level

of the liquid, y. The dynamics of a container filled with liquid is defined through

the mass balance for constant density, ρ, and constant cross-sectional area, A, of

the container as

ρ A
dy

dt
= Fin − Fout , (3.135)

where Fin and Fout are the input and output mass flow rates, respectively. Consid-

ering linear installed flow characteristic F = a x, the balance shows that the valve

position is directly proportional to the time variation of the vessel level, that is,

dy

dt
∝ x . (3.136)

As mentioned above, Yamashita’s method performs well in flow rate control

loops because it assumes that the controlled variable y is almost proportional

to the real valve position x. However, such assumption is not valid for level

loops and Yamashita’s method fails because the dynamic patters are different

from those expected in flow control loops.

The rationale behind the present approach consists in applying a transforma-

tion function to the data to obtain a direct relation to the real valve position and

only then apply the well-known Yamashita’s method. Different transformation

is required for self-regulating and integrating processes. In the later, which is the

subject of this work, the transformation function f(y) is defined by (3.136) using

the finite difference approximation

f(y) =
y(t+ 1)− y(t)

∆t
, (3.137)

where ∆t is the sampling time.

Figure 3.47 shows the real valve position x (first row) and the controlled vari-

able y (second row) from a simulated level control loop containing a healthy valve

(left column) and a sticky valve (right column). The application of the transfor-
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x

No stiction Stiction

y
f(

y)

t t

Figure 3.47: Real valve position x, controlled variable y and transformation func-
tion f(y) applied to the level for no stiction and stiction cases.

mation function f(y) to the level data is also drawn in the same figure (third row)

showing how similar the transformed signal becomes to the real valve position

for both cases.

Although this extension is only applicable to level control loops data, it merely

uses operational data easily available in plants (the controller output u and the

controlled variable y) and requires no parameter tuning.

3.5.3 Application to a simulated system

This section presents an evaluation of the proposed approach using simulated

datasets generated by an Hammerstein Model which is frequently used to model

the stiction phenomenon. As already mentioned earlier, the Hammerstein Model

consists of a non-linear element in series with a linear dynamic part. In the

present context, the non-linear element represents the sticky valve while the lin-

ear part models the process dynamics. The present application uses the Choud-

hury Model to model stiction and the state-space model

ẏ(t) = a y(t) + b x(t) , (3.138)

where a and b are state-space model constants, to model the process dynamics.
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In order to collect the experimental data, a plant simulation was carried out

using the defined Hammerstein Model and the control algorithm

u(t) = u(t− 1) + kC e(t) +
1

τI

∫ t

0

e(t) dt+ τD ė(t) , (3.139)

where e(t) is the error signal, kC the proportional gain, τI the integral time (or

reset time), and τD the derivative time. Model parameters in Choudhury et al.

(2005) were used to generate data of a level control loop: a = 0 min, b = 1 m %−1,

kC = 0.4 % m−1, τI = 0.2 min−1, and τD = 0 min. The Choudhury Model parame-

ters (S, J) were defined as: (0, 0) % for no stiction, (3, 0) % for pure deadband,

(3, 1.5) % for stiction with undershoot, and (3, 3) % for stiction with no-offset.

Figure 3.48 and 3.49 show the collected data. Both are composed by two parts

showing the time trends of u versus x (part (a)) and u versus y (part (b)). Each

of these parts (a) and (b) is constituted by two columns showing the signals time

trends at the left-hand and the corresponding phase plots at the right-hand. It is

noteworthy that only u and y data are usually available from plants.

Figures 3.48 and 3.49 show the collected data. Both are composed by two parts

showing the time trends of u versus x (part (a)) and u versus y (part (b)). Each

of these parts (a) and (b) is constituted by two columns showing the signals time

trends at the left-hand and the corresponding phase plots at the right-hand. It is

noteworthy that only u and y data are usually available from plants.

Figure 3.48 represents the open-loop simulated response when the valve is

driven by a sinusoidal variation in the input variable u. The first row shows a

healthy valve (no stiction) where the real valve position x follows the input u.

The second row exemplifies the pure deadband case. Here the valve sticks dur-

ing a percentage of valve opening corresponding to the parameter S. The third,

forth and fifth rows represent cases of stiction with undershoot, no-offset, and

overshoot, respectively. In accordance, the u-x phase plots of the three cases in

Figure 3.48a show clearly the presence of stiction. However, the respective u-

y phase plots in Figure 3.48b (which is the available data in plants) shows ellip-

tical loops with sharp turn around which are not a very reliable shape to detect

stiction.

Figure 3.49 illustrates the closed-loop response to a step in the variable set-
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Figure 3.48: Open-loop response of a level control loop obtained by simulation
using the Choudhury Model.

Table 3.10: Stiction detection results for free-noise closed-loop data of the level
control. The shadow indicates a wrong detection.

Yamashita’s index
True Yamashita’s Method for slower dynamics New Approach

Case Eval. ρ1 ρ3 Eval. γ Eval. ρ1 ρ3 Eval.

No stiction × 0.22 0.22 × 48.87 × 0.05 0.05 ×
Pure deadband X 0.20 0.20 × -1.80 X 0.48 0.48 X
Stiction undershoot X 0.02 0.02 × -1.97 X 0.96 0.93 X
Stiction no-offset X 0.27 0.25 X -1.99 X 0.95 0.90 X

point ysp. If stiction is present, the behavior of the control loop deteriorates pro-

ducing unwanted limit cycles in the real valve position x and, therefore, in the

controlled variable y. The third, forth and fifth rows of Figure 3.49a and 3.49b

clearly exhibit these cycles. The second row evidences that an integrator pro-

duces limit cycles even in the presence of pure deadband.

The approach developed in the present work was applied to the generated

closed-loop data. The transformation function f(y) was calculated using (3.137)

for the level data y. Then, Yamashita’s method was applied to the variable u and

to the transformed signal f(y). Table 3.10 presents the numerical results for all

the datasets, under the reference “New Approach”.

The expected evaluation for detection of stiction is pointed out in the second
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Figure 3.49: Closed-loop response of a level control loop obtained by simulation
using the Choudhury Model.

column.

With comparison purposes, two other techniques were applied to the same

datasets. Yamashita’s original method was applied using variable u and the con-

trolled variable y. The study was complemented with the results of the version

of Yamashita’s method for slower dynamics (Yamashita, 2006b). The later was

applied using just the controlled variable y. The results of these two techniques

are also shown in Table 3.10.

The performance evaluation of the methods on the simulated noise free closed-

loop data (shown in Figure 3.49) reveals that Yamashita’s method produces two

wrong detections in the cases of deadband and stiction with undershoot whereas

Yamashita’s index for slower dynamics detects correctly the stiction phenomenon

for the four studied cases. The results of the new approach proposed in this work

are also correct and consistent for all the cases.

It is worth emphasising that such results were obtained for noise-free simu-

lated data, which is uncommon in real industrial practice.
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3.5.4 Influence of noise in the detection

The presence of noise in industrial data greatly impacts the plant performance

analysis as it may obfuscate relevant information and, consequently, affect the

algorithms. In this section, the influence of noise on the performance of the pro-

posed stiction detection approach as well as on the performance of the other two

techniques is studied. At first, the performance of the three methods was scruti-

nized by analysing how they handled sets of simulated data adulterated by noise.

Moreover, different intensities of noise were studied. Finally, the three methods

were compared when dealing with industrial data.

The dataset undergoes filter and downsampling as follows. The generated

dataset is subdivided in 10 datapoint windows and a straight line is fitted within

each of the intervals using the least-square criterion. The obtained function is

used to calculate the value at the beginning of the interval.

� Using simulated data

Noisy closed-loop data was generated with the parameters mentioned above and

with several degrees of noise ni added to the controlled variable. The results of

the detection methods are presented in Table 3.11 where the characterization of

the added noise is also explicitly defined.

The presence and intensity of noise degrades the performance of Yamashita’s

original method and, especially, of Yamashita’s index for slower dynamics. In

the presence of noise, both methods give false positives and the second method

additionally gives false negatives when the noise is more intense. In opposition,

the proposed method produced the expected diagnosis results for all the cases

highlighting its capacity to detect stiction even in noisy environments.

The trends of the indexes ρ1 and ρ3 for both Yamashita’s method and for the

new approach as well as the index γ for the slow dynamics Yamashita’s index (Ta-

ble 3.11) are represented in Figure 3.50 for the cases of no stiction, pure deadband,

and stiction with undershoot, and no-offset. Additionally, the indexes obtained

for the closed-loop datasets without noise are also illustrated.

In Figure 3.50a (that illustrates the results with Yamashita’s method), it is pos-

sible to observe that always there is noise in the data (but independently of its
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Figure 3.50: Influence of noise for the cases: (1) no stiction, (2) pure deadband, (3)
stiction with undershoot, and (4) stiction with no-offset.

195



Chapter 3. Control Loop Performance Assessment

intensity) the found indexes are similar even for different cases (no stiction, pure

deadband, stiction with undershoot, and stiction with no-offset). In these situa-

tions, index ρ1 is approximately 0.4. This suggests that the method is unable to

cope well with the presence of noise reducing the trust on its results. This does

not preclude the achievement of correct results, as it was the case of cases 2, 3,

and 4 when affected by noise as well as case 1 when the data was not affected by

noise. In all the other situations, the method has failed. Moreover, the index ρ3 is

almost always (except case 3, noise free data) around the pre-defined limit of 0.25

and therefore providing very poor information.

Figure 3.50b corresponds to Yamashita’s index for slow dynamics and it shows

that the method works well when the data is not affected by noise. For noisy data,

the method’s performance deteriorates rapidly as the index evolutes to values

close to the pre-defined limit of zero. In some situations, it even turns into wrong

conclusions (cases 2 and 3 with the highest intensity of noise). In Figure 3.50c

(which corresponds to the new approach proposed), it is possible to observe that

the values of the indexes obtained from the no-stiction data are clearly in the no

stiction zone (0 ≤ ρi ≤ 0.25 ). The pure deadband renders intermediate values

(ρi ∼ 0.5). The case of stiction with undershoot obtains higher values for ρi than

the other stiction case, probably justified by the larger jump component in this

last case (J ≥ S). In the presence of noise mitigated with the use of filtering,

the indexes maintain correct trends in all the cases, even though an evident in-

fluence of the presence/absence of noise may be observed. For instance, for the

no-stiction case and in the presence of noise, ρ1 is very close to 0.25 and almost

results in a false positive. Interestingly, for this case of no-stiction, the method

seems to be insensitive to the noise intensity, once it is present. In comparison, ρ3

copes better with the presence of noise and achieves a bigger distance from the

limit value for this no-stiction case. In the pure deadband case, ρi values experi-

enced a slight decrease. The most significant change was observed in the stiction

cases where the index values were radically reduced to values near the ones ob-

tained by the pure deadband case. Such behavior may be attributed to the fact

that the jump component of stiction is hidden by the noise as it has fast dynam-

ics and amplitude compared to the stick component and the process dynamics.

Although the present approach is affected by the presence of noise, it showed
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3.5. Detection of stiction in level control loops

Table 3.12: Stiction detection results for level control industrial data by the three
compared methods. The shadow indicates a wrong detection of the presence or
absence of stiction.

Yamashita’s index
True Yamashita’s Method for slower dynamics New Approach

Dataset Eval. ρ1 ρ3 Eval. γ Eval. ρ1 ρ3 Eval.

CHEM4 × 0.15 0.09 × -1.22 X 0.11 0.00 ×
CHEM26 X 0.03 0.01 × 0.90 × 0.48 0.21 X
CHEM73 × 0.29 0.15 X 32.10 × 0.24 0.11 ×

adequate performance after a simple data filtering.

� Using industrial data

The new approach was also applied to three industrial datasets collected by Jelali

and Huang (Jelali and Huang, 2013). The first dataset is identified by CHEM4 in

Jelali’s database and is characterized by containing a controller with tuning prob-

lems. The second dataset, identified by CHEM26, corresponds to a control loop

containing valve stiction. Finally, the third dataset is identified by CHEM73 and

corresponds to a control loop performing well (the root cause of the oscillation is

an external disturbance).

Table 3.12 presents the results obtained by the three methods.

The first case (CHEM4) is correctly undetected by Yamashita’s original method,

but Yamashita’s index for slower dynamics produces a false positive. As for the

case CHEM26, both methods fail in detecting the existence of stiction. In what

concerns the case CHEM73, the first method fails while the second indicates a

correct negative result. These results show that these two methods don’t consis-

tently detect the presence/absence of stiction. However, the new approach was

able to diagnose correctly all the cases under consideration.

Figure 3.51 shows graphically these results. Although the new approach de-

tects all cases correctly, it is noteworthy that the index ρ1 is very close to the pre-

defined limit for case CHEM73. In opposition, index ρ3 provides an unequivocal

conclusion of absence of stiction for that case. Figure 3.51 also makes it clear

that Yamashita’s method identifies incorrectly CHEM26 and CHEM73 cases and

Yamashita’s index fails to identify CHEM26 case.
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Figure 3.51: Stiction detection results for industrial data: CHEM4 (no stiction),
CHEM26 (stiction), and CHEM73 (no stiction).
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Chapter 4

PID controllers tuning

The diagnosis of problems in final control elements (addressed in Chapter 2)

plays an extremely important role in maintaining high performance of control

loops. However, such efforts are completely useless if, once the fault is detected

and characterized, a compensation or remedy is not activated. In this context, this

Chapter is concerned with the development of a tuning method of Proportional-

Integral-Derivative (PID) controllers that considers explicitly the fault potentially

existing in the final control element and provides a compensation strategy while

valve maintenance is not possible.

Beforehand, a number of PID algorithm formulations are introduced together

with some particular aspects of their digital computer implementation. Classic

tuning methods and their extensions, covering single and multiple control loops,

are discussed.

4.1 The PID controller

The PID controller is unquestionably the most common controller algorithm used

in industry. In fact, more than 95% of the controllers used in process industries

are PID algorithms or its enhanced versions (Yamamoto and Hashimoto, 1991;

Åström and Hägglund, 2004; Eriksson and Koivo, 2005). Its predominance relies

in three main reasons. PID controllers work very well in most of the systems.

They are simple to understand and implement. Moreover, these algorithms are

pre-programmed in every control systems (Desborough and Miller, 2002). In
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Chapter 4. PID controllers tuning

spite of its widespread use, there exists no generally accepted design method

for the controller. However, its design is a crucial point because a suboptimal

structure and tuning may result not only in undermined control performance but

also may originate process instability. The PID controller combines three types of

control actions: proportional, integral, and derivative. The proportional action is

expressed as

u = kC e , (4.1)

where kC is the proportional gain, has the advantage of providing small control

efforts comparatively to on-off control, but it also produces a steady-state error.

Commercial products may use proportional band defined as PB = 100/kC instead

of the proportional gain constant. The integral action is proportional to the inte-

gral of the control error

u =
1

τI

∫ t

0

e dt , (4.2)

where τI is the integral time. It relates to past values of the control error and elim-

inates the steady-state error generated by the proportional action. For this reason,

this action is also called automatic reset. The derivative action is expressed as

u = τD
de

dt
, (4.3)

where τD is the derivative time, and may improve the control performance antic-

ipating the undesired trend of the control error. This action may also be called as

anticipatory control or rate action. The combination of the three actions in various

configurations results in the PID controller structure.

According to Tan (1999), one important reason for the non-standard structures

is the transition of the controllers from pneumatic implementation through elec-

tronic implementation to the present microprocessor implementation. Figure 4.1

shows a simplified block diagram of the PID controller inside a control loop. The

control law as structured in Figure 4.1 is defined by the sum of the three compo-

nents as

u = kC e+
1

τI

∫ t

0

e dt+ τD
de

dt
, (4.4)

which is commonly called as the parallel form of the ideal PID controller and may
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Figure 4.1: Block diagram highlighting a PID controller inside the feedback con-
trol loop.

be rewritten by the application of the Laplace transformation L(·) as

GC(s) =
U(s)

E(s)
= kC +

1

τIs
+ τDs , (4.5)

where s is the Laplace frequency variable, U(s) = L(u), and E(s) = L(e).

Other structures commonly used are the series form of the ideal PID controller

described as

GC(s) = kC

(
1 +

1

τIs
+ τDs

)
, (4.6)

and the series form of the ideal PID controller with a first-order lag given by

GC(s) = kC

(
1 +

1

τIs
+ τDs

)
1

τfs+ 1
. (4.7)

A substantial number of the variations are detailed in O’Dwyer (2006) identifying

some software where those variations are implemented.

Usually, the proper combination (P, PI, PD, PID) of the three actions is part of

the controller design that considers process specifics and the control objectives.

For instance, the P controller is simple to design and may be the best choice for

some applications where the steady-state error is not a concern, such as in surge

tank levels. But if the zero steady-state error is a requirement, the PI controller

provides a sufficiently good performance for the most of processes. The most

complete combination, PID controller, may provide a significant improvement
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of the performance in processes with deadtime and slow dynamics. However,

derivative action has associated some problems related to the measurement noise

filtering and a more complicated tuning procedure.

Modern control systems implement digital versions of the control law derived

essentially from the approximations

∫ t

0

e dt ≈
k∑

i=1

ei ∆t , (4.8)

de

dt
≈ ek − ek−1

∆t
, (4.9)

where ∆t is the sampling period and ek is the control error at the kth iteration.

These approximations are used to generate two alternative forms of the digital

PID control law: the position and the velocity form given by

uk = ū+ kC

[
ek +

∆t

τI

k∑

i=1

ei +
τD

∆t
(ek − ek−1)

]
, (4.10)

and

uk = uk−1 + kC

[
(ek − ek−1) +

∆t

τI

ek +
τD

∆t
(ek − 2ek−1 + ek−2)

]
, (4.11)

respectively, where ū is the steady-state manipulated variable. Commonly, the

velocity form is preferable because it inherently contains anti-reset windup and

does not require the initialization of ū (Seborg et al., 2010).

The above velocity formulation is prone to the so called “proportional and

derivative kicks”(Johnson and Moradi, 2006; King, 2011), that is, to a spike in the

manipulated variable when a step change is introduced in the setpoint. This prob-

lem may be handled by substituting the control error in (4.11) with the controlled

variable in the respective control law terms. This gives rise to formulations that

clearly separate the terms that are based on the control error from those based

on the controlled variable, reflecting this in the naming: [terms based on control

error]-[terms based on controlled variable]. The derivative kick may be removed
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by using a PI-D controller defined by

uk = uk−1 + kC

[
(ek − ek−1) +

∆t

τI

ek +
τD

∆t
(yk − 2yk−1 + yk−2)

]
, (4.12)

where the proportional and integral actions are based on the control error and the

derivative action is based on the controlled variable. King (2011) refers to this last

approach as the derivative-on-pv version and explains that this improvement is

usually standard and must be preferred instead of the derivative action based on

the error. The proportional kick may be removed adding the proportional term

based on the controlled variable. The resulting I-PD controller

uk = uk−1 + kC

[
(yk − yk−1) +

∆t

τI

ek +
τD

∆t
(yk − 2yk−1 + yk−2)

]
, (4.13)

will not produce a sharp change because the proportional term is not affected

by the control error. King (2011) calls this equation as the proportional-on-pv

version of the PID control law and states that it is the most misunderstood and

most underutilised version.

4.2 State-of-the-art

The present section aims to review some of the most used methods for the PID

controller tuning.

4.2.1 Tuning methods

It is well known that good PID controller performance is necessary in order to

ensure safety and compliance as well as to achieve the economic objectives of

production lines. Therefore, it is essential to monitor PID controller performance

and, when necessary, carry out corrective actions, such as its retuning.

A considerable number of PID controller tuning methods is available for the

design of process control systems. They should be used instead of the com-

mon trial-and-error approach that is time consuming and that does not achieve

the optimal performance, especially of the inherently multivariate control sys-

tems (Dittmar et al., 2012). However, the practitioner should take care because
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Single-loop tuning methods

Process reaction curve methods

Step response Ziegler–Nichols method

Cohen–Coon method

Tuning methods based on performance criterion

Direct synthesis tuning rules

Lambda method

IMC method

Robust tuning rules

Step response MIGO method

Ultimate cycling methods

Frequency response Ziegler–Nichols method

Frequency response MIGO method

Other methods

Figure 4.2: Classification of single-loop tuning methods with some examples of
existing methods.

many tuning rules assume that the PID controller equations are that of the ideal

PID controller structure. But, as a matter of fact, there is substantial variation

among the vendors, as O’Dwyer (2006) explains.

For a design method to be efficient, it has to be applicable to a wide range

of systems and must have the capability of considering specific control problem

specifications. Therefore, it must be robust either by providing the controller

parameters in case they exist or by informing that the specifications may not be

met (Åström et al., 1998).

Some PID controller tuning methods are explored below.

� Single-loop tuning methods

O’Dwyer (2006) classified the tuning rules for SISO processes in six main divi-

sions: process reaction curve methods, tuning methods based on minimizing an

appropriate performance criterion, direct synthesis tuning rules, robust tuning

rules and ultimate cycling methods. Figure 4.2 depicts this classification.
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tangent line

Figure 4.3: Measurement of variables θ and τ from the system step response for
step response Ziegler-Nichols method.

Process reaction curve tuning rules are based on the calculation of controller

parameters from the model parameters determined from the open-loop process

step response. The advantages of such tuning strategies are that only a single

experimental test is necessary, a trial-and-error procedure is not required and the

controller settings are easily calculated. However, it is not trivial to determine

an accurate and parsimonious process model and to account for load changes

that may occur during the test, distorting the test results. Besides, a large step

input may be necessary to achieve a good signal to noise ratio (Hang et al., 1991;

O’Dwyer, 2003).

The well known Ziegler–Nichols and Cohen–Coon methods are examples of

process reaction methods.

Ziegler–Nichols methods were originally suggested by Ziegler and Nichols

(1942) and are still widely used in the process industry as the basis for the con-

troller tuning (Eriksson, 2008). The classical methods of Ziegler–Nichols are the

step and frequency response methods. Based on a SISO process described by a

first-order plus time delay (FODT) model, Ziegler and Nichols (1942) developed

the step response Ziegler–Nichols method (method that fits in the first class of

the classification in Figure 4.2) simulating a large number of different processes

and correlating the controller parameters with the features of the step response

as reviewed by Åström and Hägglund (2004). The method based on an open-

loop step response test of the process requires that the process be stable. The step

response (Figure 4.3) is characterized by two process parameters determined by
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Table 4.1: Step response Ziegler–Nichols tuning method formulae for self-
regulating and integrating processes, where θ is the process time delay and τ
is the process time constant.

Type kC τI τD

P θ/τ +∞ 0

PI 0.9θ/τ τ/0.3 0

PID 1.2θ/τ 2τ 0.5τ

Table 4.2: Cohen–Coon method formulae for self-regulating and integrating pro-
cesses, where Kp is the process static gain.

Type kC τI τD

P
1

Kp

τ

θ

[
1.0 +

θ

3τ

]
+∞ 0

PI
1

Kp

τ

θ

[
0.9 +

θ

12τ

]
θ




30 + 3
θ

τ

9 + 20
θ

τ


 0

PID
1

Kp

τ

θ

[
4

3
+

θ

4τ

]
θ




32 + 6
θ

τ

13 + 8
θ

τ


 θ


 4

11 + 2
θ

τ




drawing a tangent line at the inflexion point, where the slope of the step response

has its maximum value. The intersection of the abscissae axis and the tangent

is used to calculate the controller parameters (Eriksson, 2008) according to the

expressions summarized in Table 4.1.

The Cohen–Coon method developed by Cohen and Coon (1953), based on the

FODT process model and analytical and numerical computations, considers the

rejection of load disturbance as the main objective and requires that the process

be stable. It minimizes the integral of error due to a unit step load disturbance

subject to the restriction of a decay ratio of a quarter amplitude. The correspond-

ing expressions are given in Table 4.2.

Tuning rules based on minimizing a certain performance criterion may be de-

fined to optimize the regulatory response, servo response or other characteristics

of a compensated delayed process. The minimization of the integral of absolute

error (IAE), the integral of squared error (ISE), and the integral over time of the
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absolute error (ITAE) in a closed loop control are examples of such criteria. Lopez

et al. (1967) and Smith (1972) developed the penalty functions based method

for improving control loops performance based on these three criteria and in the

presence of load or setpoint disturbances. In the presence of load disturbances,

the rules

kC =

A

(
θ

τ

)B

Kp

, (4.14)

τI =
τ

A

(
θ

τ

)B , (4.15)

τD = A

(
θ

τ

)B
τ , (4.16)

are used for the tuning of P, PI, and PID controllers parametrized by constants in

Table 4.3. In opposition, rules (4.14), (4.16), and

τI =
τ

A+B

(
θ

τ

) (4.17)

are applied when the closed loop process is subject to setpoint disturbances (Ta-

ble 4.3).

Direct synthesis tuning rules give a desired closed loop response specifying

a time domain related metric, such as the desired poles of the closed loop re-

sponse, or a frequency domain metric, such as a specified gain margin and/or

phase margin. Lambda and IMC methods belong to the class of direct synthesis

tuning rules.

The Lambda method, originally proposed by Dahlin (1968) as a special case

of pole placement, is widespread in the process industry because it is simple and

may explicitly specify the closed loop response time, commonly chosen as three

times the open-loop process time constant. The process identification is done

with a FOTD model approximating the delay with the Taylor series expansion or

the Padé approximation. The main drawback of this rule is the poor response to

load disturbances for lag dominated systems due to the process pole cancellation.

The Lambda method formulae are presented in the first line of Table 4.4.
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Table 4.3: Performance criteria based tuning method constants.

kC τI τD

Type A B A B A B

IAE for load disturbances
P 0.902 -0.985 – – – –
PI 0.984 -0.986 0.608 -0.707 – –
PID 1.435 -0.921 0.878 -0.749 0.482 1.137

ISE for load disturbances
P 1.411 -0.917 – – –
PI 1.305 -0.959 0.492 -0.739 – –
PID 1.495 -0.945 1.101 -0.771 0.560 1.006

ITAE for load disturbances
P 0.490 -1.084 – – – –
PI 0.859 -0.977 0.674 -0.680 – –
PID 1.357 -0.947 0.842 -0.738 0.381 0.995

IAE for setpoint disturbances
PI 0.758 -0.861 1.020 -0.323 – –
PID 1.086 -0.869 0.740 -0.130 0.348 0.914

ITAE for setpoint disturbances
PI 0.586 -0.916 1.030 -0.165 – –
PID 0.965 -0.855 0.796 -0.147 0.308 0.929

The Internal Model Control (IMC) method is a model-based control method.

The method name derives from the fact that the controller contains a process

model internally. A process is controlled with IMC controller introducing a fil-

ter to obtain a closed-loop system less sensitive to modeling errors (Lee et al.,

1998). This method considers robustness explicitly through the use of a proper

filter (Åström and Hägglund, 2006). Since the method implies that the poles and

zeros are canceled, the system response to load disturbances may be poor in load

disturbances. The corresponding formula are described in Table 4.4.

All tuning methods discussed so far have in common the need to check the

robustness to process variations after the design. On the contrary, robust tuning

rules have an explicit robust stability and/or robust performance criterion built

into the design process.

The step response MIGO (M constrained integral gain optimization) method,

proposed by Åström and Hägglund (2004), maximizes the integral gain subject

to robustness constraints. This design method is suitable for systems where the

major concern is the load disturbance rejection. Although setpoint changes or
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Table 4.4: IMC tuning method formulae for self-regulating and integrating pro-
cesses, where λ is the desired process time constant response.

Self-regulating process Integrating process

Type kC τI τD kC τI τD

PI
1

Kp

τ

λ+ θ
τ 0

1

Kp

2λ+ θ

(λ+ θ)
2 2λ+ θ 0

PID (non-interactive)
1

Kp

τ +
θ

2
λ+ θ

τ +
θ

2

τθ

2τ + θ

1

Kp

2λ+ θ
(
λ+

θ

2

)2 2λ+ θ
λθ +

θ2

4
2λ+ θ

PID (interactive)
1

Kp

τ

λ+ θ
τ

θ

2

1

Kp

2λ+
θ

2(
λ+

θ

2

)2 2λ+
θ

2

θ

2

Table 4.5: Step response MIGO tuning method formulae for self-regulating and
integrating processes.

Self-regulating process Integrating process

Type kC τI τD kC τI τD

PI
0.15

Kp
+

(
0.35− θτ

(θ + τ)
2

)
τ

Kpθ
0.35θ +

13θτ2

τ2 + 12θτ + 7θ2
0

0.35τ

Kpθ
13.4θ 0

PID
1

Kp

(
0.2 + 0.45

τ

θ

) 0.4θ + 0.8τ

θ + 0.1τ
θ

0.5θτ

0.3θ + τ

0.45τ

Kpθ
8θ 0.5θ

noise are not taken into account in the method development, the authors pre-

sented guidelines to handle these aspects. The developed formulae for the step

response MIGO method are shown in Table 4.5.

Finally, the ultimate cycle tuning rules are based on recording appropriate pa-

rameters at the ultimate frequency (that is, the frequency at which marginal sta-

bility of the closed loop control system occurs). The first tuning rule was defined

in Ziegler and Nichols (1942). The frequency response Ziegler–Nichols method

describes the process with two parameters: the ultimate gain, kC,u, and the ulti-

mate period, Tu. To determine these parameters, the plant is controlled with a P

controller whose gain is increased until the system oscillates critically. The ulti-

mate period is the period of oscillation at the ultimate gain. The ultimate gain

is the proportional gain that yields the marginal stability. The need to bring the
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Table 4.6: Frequency response Ziegler–Nichols tuning method formulae for self-
regulating and integrating processes.

Type kC τI τD

P 0.50kC,u +∞ 0

PI 0.45kC,u Tu/1.2 0

PID 0.60kC,u Tu/2.0 Tu/8.0

process to a sustained oscillation is a critical drawback of the method because it

may be potentially harmful. Fortunately, it is possible to determine the ultimate

constants from the process dynamics using the following relationships:

Self-regulating processes:

kC,u = − 1

Kp · cos

(
2πθ

Tu

) , (4.18)

2πτ

Tu

+ tan(2πθTu) = 0 , (4.19)

Integrating processes:

kC,u =
π

2Kpθ
, (4.20)

Tu = 4θ . (4.21)

The determination of Tu requires an iterative process (see Section 3.10 of King

(2011) for practical issues). Finally, the tuning parameters are derived from sim-

ple calculations as shown in Table 4.6.

The MIGO method determines a set of rules for the frequency response of

processes whose gain ratio κ = 1/(KpkC,u) is greater than 0.4. The corresponding

formulae are given in Table 4.7.

More advanced performance criteria were considered in other methods avail-

able in the literature. For instance, Zareba et al. (2014) proposed an intuitive tech-

nique to tune PID controllers based on the Harris index to improve the controller

performance in a realistic process/simulation environment. The controller be-

haviour is characterized automatically by calculating the relative damping index
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Table 4.7: Frequency response MIGO tuning method formulae for self-regulating
and integrating processes.

Type kC τI τD

PI 0.16kC,u
1

1 + 4.5κ
Tu 0

PID
(
0.3− 0.1κ4

)
kC,u

0.6

1 + 2κ
Tu

0.15(1− κ)

1− 0.95κ
Tu

defined as

RDI =
DIR −DIR,agg

DIR,slug −DIR

, (4.22)

where DIR is the damping factor of the system impulse response, DIR,agg and

DIR,slug are user defined damping factor limits for aggressive and sluggish con-

troller behaviour, respectively, specifying the controller performance region (usu-

ally assuming the following values: 0.6 and 0.8 for self-regulating processes, and

0.3 and 0.5 for integrating processes). The interpretation of the damping factor in-

dex is performed as: the control performance is good when RDI > 0, the control

is aggressive when −1 ≤ RDI ≤ 0, and the control is sluggish when RDI < −1.

The method is presented in the flowchart of Figure 4.4. Here, the impulse

response is obtained by fitting a time series model of type AR or ARMA to the

measured closed-loop output data (see Chapter 2). Then, a second fitting is per-

formed to the time series model coefficients using the second-order model con-

sidering time delay given by

G(s) =
Kp e−θs

τ 2s2 + τDIRs+ 1
, (4.23)

where θ is the time delay, Kp is the static gain, and τ is the time constant. The

value of DIR necessary in (4.22) is inferred from the values of (4.23) coefficients.

PID controller parameters may be varied according to different strategies: varia-

tion of proportional gain alone and fine tuning of the integral time, simultaneous

variation, and successive variation. The strategies used by the method are de-

fined by the user.
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Figure 4.4: Zareba method flowchart (Zareba et al., 2014).
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Multi-loop tuning methods

Detuning methods

Biggest log modulus tuning method

Sequential loop closing methods

Independent design methods

Relay-feedback auto-tuning methods

Multivariate ultimate point method

Optimization methods

Robust optimization-based multi-loop method

Figure 4.5: Classification of multi-loop tuning methods with some examples of
existing methods.

�Multi-loop tuning methods

The tuning of PID controllers considering the system as SISO in a multivariate

environment is usually done in a time-consuming, sequential and iterative way.

Interactions among the process variables may make this task difficult and the

results strongly depend on the peculiarities of the application and on the expe-

rience of the engineer. Dittmar et al. (2012) presents a review of design methods

that have been developed for multi-loop tuning. According to these authors, they

may be classified into: detuning, sequential loop closing, independent design,

relay-feedback auto-tuning, and optimization methods (Figure 4.5).

The detuning methods consist of the design of each PID controller based on

its process transfer function and ignoring interactions from another loops. The

controllers are then detuned to take into account these interaction.

The most popular method is called biggest log modulus tuning method and

was developed by Luyben (1986). In order to determine PID controller constants

that generate good setpoint and load responses in the multivariable system, the

method ensures a sufficient margin of stability to the control loops by maximizing

the distance between the system and the instability point in a Nyquist plot. To do

that, the Ziegler–Nichols PID controller parameters are detuned to maximize the
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multivariable closed-loop log modulus defined as

Lcm = 20 log

∣∣∣∣
w

1 + w

∣∣∣∣ , (4.24)

guaranteeing its maximum value of 2n, where n denotes the dimension of the

multivariable system and w is a function given by

w = −1 + det (I +GC) , (4.25)

where I is the identity matrix, and G and C are the process and controller trans-

fer matrices, respectively. The method review in Section 9.2.1 of Schork (1993)

explains in detail the algorithm.

Hovd and Skogestad (1994) define the sequential loop closing methods as

methods that close the loops sequentially starting with the fastest loop. The dis-

advantage of these methods is that the results are dependent on the order of the

loop closing and on the method used for each controller design.

Using independent design methods, both Hovd and Skogestad (1993) and

Chen and Seborg (2003) considered loop interactions, robust performance and

stability using a first interaction analysis and then designed the controllers one

by one.

Relay-feedback automatic tuning methods are applicable if no analytical pro-

cess model exists. However, the necessity of sequential or simultaneous relay-

feedback experiments under industrial conditions limit them. Campestrini et al.

(2009) and Palmor et al. (1995) works are examples of these methods.

The multivariate ultimate point method provided by Campestrini et al. (2009)

extended the ultimate quantities based methods to the multivariable case. Al-

though other approaches had already performed this extension, they were not

consistent because they generate several ultimate points for the MIMO system

that are applied to the SISO formula or they develop the MIMO system tuning

based on one of the determined ultimate points resulting in ther closed-loop per-

formance strongly related to that particular point. Consider the MIMO square

processes described by

Y (s) = G(s)U(s) , (4.26)
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where U( ) and Y ( ) are the Laplace transforms of the process input and output

variables, respectively, andG( ) is the process transfer matrix calculated from data

generated by decentralized relay feedback experiments. The first step to obtain

PID controller parameters is to solve

am−iΛ
i =

∑
Mi ·G(jwu) · C(jwu) , (4.27)

in order to the controller transfer matrix C(jwu), where m is the order process, wu

is the ultimate frequency (related to the ultimate period by Tu = 2π/wu), j is the

imaginary unit equal to
√
−1, Mi are the ith principal minors of

G(jwu)C(jwu) =




g11(jwu) · · · g1m(jwu)

g21(jwu) · · · g2m(jwu)
... . . . ...

gm1(jwu) · · · gmm(jwu)



·




p1(jwu) · · · 0

0 p2(jwu) 0
... . . . ...

0 · · · pm(jwu)



,

(4.28)

(each sum is taken over all principal minors of order i), and am−1 are the coef-

ficients of the characteristic equation (s − λ)m obtained using the Newton bino-

mial formula am−i =
m!

(m− i)!i! . From (4.27) and (4.28), its possible to determine

p(jwu). Since p(jwu) is defined by

pk(jwu) = kC,k

[
1 +

(
τD,kwu −

1

τI,kwu

)
j

]
, k = 1, . . . ,m , (4.29)

the PID controller parameters are now calculated by

kC,k = Re{pk(jwu)} , (4.30)

kC,k

(
τD,kwu −

1

τI,kwu

)
= Im{pk(jwu)} . (4.31)

Considering the usual rule in the tuning of SISO systems τD = τI/4, τD and τI may

now be determined and the complete tuning is achieved.

Optimization methods are recent developments that consider an analytical

process model and a controller structure and close the loop via the minimization

a pre-defined objective function. However, a solver is required to find the solu-

tion of the optimization problem. Most common solvers are based on numerical
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methods, such as least squares or sequential quadratic programming (Dittmar

et al., 2012). Also, evolutionary algorithms based on mechanisms inspired by bio-

logical evolution are used by various authors (Sumana and Venkateswarlu, 2010).

Dittmar et al. (2012) classify these particular algorithms by their performance as

global search methods. The use of optimization methods brings advantages as

a less conservative controller design and the overall nominal stability naturally

achieved.

The robust optimization-based multi-loop method described by Dittmar et al.

(2012) identifies the full dynamic model of the multivariable system and uses con-

strained nonlinear optimization techniques to find the controller parameters. The

PID controller parameters are calculated by solving the optimization problem

minimize
kC,k, τI,k, τD,k

J (4.32)

subject to

gj(kC,k, τI,k, τD,k) ≤ 0

where J is the objective function defined by the weighted sum of terms J1, J2

and J3 referring to the IAE for setpoint tracking, the IAE for the input step dis-

turbance, and the control effort, respectively. Weighting factors are 1, α and β, re-

spectively. Nonlinear inequality constraints gj may be carefully selected from the

following list: maximum controller output deviation after setpoint changes, max-

imum overshoot on the process variable after setpoint changes, minimal damping

or maximum decay ratio, maximal measurement noise amplification, combined

process gain and deadtime safety margins, and maximum/minimum limits of

the controller parameters. These possible constraints allow the user to meet the

intended requirements. The initialization of the controller parameters may be

done by the user or obtained by the Cohen-Coon method. If the starting iteration

is infeasible, the initialization is done by one of two global search approaches:

grid search and genetic algorithms. The optimization problem is solved using

a gradient-free direct search method similar to the Nelder–Mead Simplex algo-

rithm.
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4.2.2 Automatic tuning

Tuning-on-demand is a tedious task because the controller must be retuned peri-

odically as well as whenever changes are introduced in the process. Additionally,

under-performance may be detected too late (Li et al., 2006).

These disadvantages may be solved using PID automatic tuning that is a tech-

nology with the benefits of structural and implementation simplicity. However,

it has not been widely applied in industrial practice. Some of the hindrance to its

acceptance is the conservative paradigm one size fits all (Bobál, 2005). Besides, the

applicability of automatic tuning may be limited in processes with strong changes

in operating conditions or lacking of information rich process data. Besides, au-

tomatic tuning requires a carefully supervised start-up and testing period. Nev-

ertheless, once the controller is correctly set up, the tuner may constantly monitor

the process and automatically adjust the PID controller parameters.

The most widely used automatic tuning methods are based on process reac-

tion curve and on rules because they yield the fastest tuning (Li et al., 2006).

4.3 Compensation of control valve faults by PID con-

troller tuning

Control loop performance may be affected by faults in control valves. Stiction

is the most common and one of the long-standing faults in the process indus-

try causing persistent oscillations and undermining the control loops performan-

ce (Brásio et al., 2014). Of course, the best solution for faults in control valves is

to perform maintenance work on the equipment (Gerry, 2002). However, it may

be impractical to take a faulty valve out of service until the next turnaround and,

therefore, fault accommodation approaches are very desirable.

The effect of stiction may be mitigated with the use of specially crafted sig-

nals added to the manipulated variable, the adjustment of the manipulated vari-

able (Srinivasan and Rengaswamy, 2010), or the addition of a special block to the

nominal PID algorithm (Farenzena and Trierweiler, 2010). However, this adapta-

tion is not known to the nominal controller and, therefore, may affect the control

loop performance causing instability and/or additional wear of mechanical parts.
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controller valve process �

ysp yu x

Figure 4.6: Industrial control loop.

Another way of dealing with stiction is the manual detuning of the PID con-

troller in order to reduce the oscillation effect (Mohammad and Huang, 2012).

However, while the oscillations effect may decrease (amplitude and frequency

reduction), the closed loop performance of the process may also become worse.

Besides, manual PID tuning is a time consuming task and, unfortunately, this is

common practice in the majority of the plants.

The present section describes an automated method that allows to optimize

the control loop performance in the presence of control valve faults. It retunes

the controller via numerical constrained optimization.

4.3.1 Proposed approach

Usually, an industrial control loop integrates a PID controller, a final control ele-

ment (control valve) and an industrial process (as depicted in Figure 4.6). Based

on the value of the setpoint ysp, on the integral of the past errors, and on the

derivative of the error or the process variable, the PID controller calculates a con-

trol action (manipulated variable, u) to be executed by the control valve resulting

in a process response (controlled variable, y). If the control valve is not in perfect

conditions, the controller order is not executed exactly by the valve and the real

position, x, does not match u.

In opposition to the previously published optimization based methods (see

Section 3.2.4), the approach presented below determines a set of tuning parame-

ters of the controller taking explicitly into account not only the process dynamics

and the control law itself, but also the existence and the magnitude of the faults in

the final control element. The tuning results in the best achievable performance

of the controller even if the control valve is affected by stiction. It is noteworthy

that no structural change of the control loop is required.

The method consists of the following sequence of steps (Figure 4.7):
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Start

Select data

Detect fault

Fault is

detected?

Determine

fault+process model

Determine

process model

Determine PID

controller parameters

Stop

yes

no

Figure 4.7: Proposed approach flowchart.

i. Selection of a dataset.

ii. Detect faults eventually present in control valve.

iii. If no faults are detected, proceed with the mathematical model determination

of the nominal process.

iv. If faults are detected, proceed with the mathematical model determination of

the process with the detected faults.

v. Use the mathematical models determined in the previous step to find the new

set of the controller parameters using numerical optimization techniques.
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The method starts by selecting a set of operational closed-loop data that com-

prises the setpoint, manipulated, and controlled variables and that has sufficient

dynamic information. This is followed by fault detection of the control valve

using available detection methods. The proposed approach may be applied to

several faults found in control valves. Stiction as the most common valve fault

is detected in two distinctive steps. Firstly, an oscillation detection method is

applied to data in order to detect the oscillatory behaviour, which is a typical in-

dicator of the stiction phenomenon. If oscillatory disturbances are not detected, it

is concluded that stiction is not present in the valve. However, if oscillations are

detected, valve stiction detection is performed using methods based on signals

shape, surrogate analysis, or system identification (see Section 3.2.4).

Then, the mathematical model of the process, f( ) is determined using com-

mon modeling techniques, such as state-space models, transfer functions, and

artificial neural networks. If faults in the control valve have been detected, the

parameter estimation of the fault model, j( ) is carried out. The parameter esti-

mation of the models is based on the minimization of the weighted sum of the

squared error between the controlled variable collected in loco yexp, and the cor-

responding mathematical model prediction y as

minimize
pp

q0

n∑

i=1

(yexp − y)2 (4.33a)

subject to

x = j(y,uexp,pp) (4.33b)

ẏ = f(y,x,pp) (4.33c)

where q0 is the weighting factor, uexp is the manipulated variable vector collected

in loco, ẏ is the time derivative of variable y, pp is the parameters vector of j( )

and f( ), and n is the number of experimental points. This strategy is called di-

rect closed-loop system identification (see Section 2.2.1) as it ignores the feedback

loop and performs the estimation using only the manipulated and the controlled

variables.

After the model has been identified, the tuning parameters of the PID con-

troller are determined via the numerical minimization of the weighted sum of
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the

• deviation of the controlled variable relatively to the setpoint variable, J1,

and

• control valve wear quantified by the movement degree of the moving parts

of the valve, J2,

resulting in the objective function

J = q1 J1(ysp,y) + q2 J2(u) , (4.34)

with

J1(ysp,y) = (ysp − y)> (ysp − y) , (4.35)

J2(u) =
m−1∑

i=1

(ui+1 − ui)
2 , (4.36)

where q1 and q2 are weighting factors associated with J1 and J2, respectively,

and m is the number of simulation points. The PID controller parameters are

determined by solving the mathematical problem

minimize
pc

J(ysp,pp,pc) (4.37a)

subject to

x = j(y,u,pp) (4.37b)

ẏ = f(y,x,pp) (4.37c)

u = h(y,ysp,pc) (4.37d)

yLB ≤ y ≤ yUB (4.37e)

uLB ≤ u ≤ uUB (4.37f)

pc,LB ≤ pc ≤ pc,UB (4.37g)

g(pc) ≤ 0, (4.37h)

where pc is the parameters vector of the PID controller, h( ) is the PID control

law, and g( ) is the functions set representing the conditions characteristic of the

industrial process and enforcing additional criteria to the optimization problem
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nonlinear valve linear process
u yx

Figure 4.8: Hammerstein Model.

(for instance, limits in the overshoot or the decay ratio and limits associated to

the process operation). Subscripts LB and UB refer to lower and upper bounds,

respectively.

The approach described above was implemented in GNU Octave 3.8.1 using

its general nonlinear minimization via sqp() successive quadratic programming

solver. For problems (4.33) and (4.37), the solver stopping criterion was set to

10−20 and 10−5, respectively, and the maximum number of iterations to 106.

4.3.2 Discussion of results

In the following, the proposed approach is applied to a simulated process both in

faulty and fault-free scenarios. Particularly, stiction will be considered as it is the

most common valve fault found in the industry.

� Data selection

A plant simulator based on the Hammerstein Model frequently used to model

processes with faulty valves (Figure 4.8) was used to generate two datasets: one

for a healthy control loop and another with stiction in the control valve. A Ham-

merstein Model consists of a non-linear element in series with a linear dynamic

part. In the present context, the non-linear element represents the faulty valve

while the linear part models the process dynamics. In order to apply continuous

optimization methods, a smoothed version of the Chen Model (Brásio et al., 2014)

is used to model stiction (j( ) in (4.33b)) and the state-space model

ẏ = a
(
y − ȳ

)
+ b

(
x− x̄

)
, (4.38)
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FIC

Figure 4.9: Flow control loop.

where a, b, ȳ, and x̄ are the state-space model constants to model the process

dynamics (f( ) in (4.33c)). The PID control law ( h( ) in (4.37d) is

uk = uk−1 + kC

[
(ek − ek−1) +

∆t

τI

ek +
τD

∆t
(ek − 2ek−1 + ek−2)

]
, (4.39)

where ek is the error signal, kC is the proportional gain, τI is the integral time (or

reset time), and τD is the derivative time. This algorithm is the digital parallel

version of the PID controller using the velocity form (Seborg et al., 2010).

Closed-loop data from a flow control loop (Figure 4.9) was generated using

the following parameters: a = −0.1 s−1, b = 0.3 kg %−1 s−2, ȳ = 0.0 kg s−1, x̄ = 0.0 %,

kC = 1.6 % s kg−1, and τI = 10 s. Following common industrial practice, no

derivative action is used and, therefore, τD = 0 s. The Chen Model parameters

(fD, fJ) were defined as (0, 0) % for the healthy valve case and (5, 3) % for the

sticky valve case. The accuracy parameter of the smoothed version of the Chen

Model was set to 5. Finally, a step excitation on the setpoint variable with ampli-

tude of 10 kg s−1 is applied to the system to generate the response y. In the case

of the healthy valve, a second excitation is performed with negative amplitude

(−5 kg s−1) in order to include sufficient dynamical information about the system.

The obtained datasets contain n = 6001 points covering an interval of 10 min with

a sampling period of 100 ms. The experimental variables are pictured in the first

column of Figures 4.10 and 4.11. Although variable xexp is also drawn, it is often

not available in industrial environments.

� Fault detection

The oscillation detection method described in Section 3.3 is applied to the data in

order to detect oscillatory behaviour. Then, valve stiction detection is performed

by the Yamashita’s method (Yamashita, 2006a).

The results of the detection methods (Table 4.8) show that an oscillatory be-
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Table 4.8: Fault detection results.

Detection of

Oscillation Stiction

Dataset Period Evaluation ρ1 ρ3 Evaluation

1 – × – – –
2 36.6 s X 0.969 0.811 X

Data preprocessed by downsampling to 1 second.
×: not detected,X: detected.

Table 4.9: Process and fault+process modeling results.

parameters pp quality

a b ȳ x̄ fD fS J R2

s−1 kg %−1 s−2 kg s−1 % % % – –

Dataset 1
exp -0.100 0.300 0.000 0.000 – – – –
init -1.000 1.000 0.001 0.001 – – 7.07× 106 0.5463
fit -0.099 0.297 0.001 0.005 – – 9.41× 102 0.9995

Dataset 2
exp -0.100 0.300 0.000 0.000 7.000 2.000 – –
init -1.000 1.000 0.001 0.001 0.000 0.000 4.51× 108 0.3702
fit -0.093 0.268 0.470 0.001 5.321 1.517 1.01× 105 0.9975

LB -10.000 10.000 0.001 0.001 0.001 0.001 – –
UB 10.000 10.000 10.000 10.000 10.000 10.000 – –

Dataset 1: q0 = 100 s2 kg−2. Dataset 2: q0 = 1000 s2 kg−2.

haviour is only detected in the dataset 2 characterized by an oscillation period of

36.6 s. Consequently, only this set is analysed with the Yamashita’s method that

detects stiction since the values of ρ1 and ρ3 are above the limit of 0.25.

� Process or fault+process modeling

The optimization problem described in (4.33) was used to the parameter esti-

mation. Because stiction was not found in dataset 1, only the nominal process

modeling will be performed in this dataset and, consequently, (fD, fJ) = (0, 0) %

is considered in (4.33b). A fault+process model will be identified for dataset 2.

The weighting factor q0 is set to 100 s2 kg−2 for dataset 1 and to 1000 s2 kg−2 for

dataset 2.

The modeling results are presented in Table 4.9. It contains the values of pa-
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Figure 4.10: Dataset 1 results.

rameters pp used for experimental data generation (exp), for optimization prob-

lem initialization (init), and those obtained from the curve fitting (fit). Also, the

quality indicators, namely the objective function value, J , and the determination

coefficient, R2, are presented along with the lower and upper bounds.

The first column of Figures 4.10 and 4.11 illustrates the modeling results of Ta-

ble 4.9. Both figures draw the experimental controlled variable in grey solid thick

line. Even though the initial guesses are quite poor (black dashed line), the identi-

fication process is capable of capturing well the dynamics of the nominal process

in dataset 1 and of the fault+process in dataset 2 (black solid line), reflected by

the high values of R2 and the drastic objective function value reduction from the

initial guesses to the final fits. The obtained parameter values are very similar to

the ones used in the data generation.

� PID controller tuning

The PID controller tuning is performed based on proportional and integral ac-

tions (configuration of the collected data) and, therefore, the decision variables
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Figure 4.11: Dataset 2 results.

are the controller gain kC and the integral time constant τI. The tuning problem

in (4.37) considers the models obtained in the previous subsection to define func-

tions j( ) and f( ), the setpoint variable excitation present in the experimental data

to define ysp, the weighting factors q1 = 1 s2 kg−2 and q2 = 10 %−2, and bounds in

the parameters pc.

The tuning results are presented in Table 4.10 where PID controller parameters

pc used to generated the experimental data (exp), to initialize the optimization

(init), and the tuning results (tun) are indicated along with the process overshoot

(OS), quality indicators and bounds. The second column of Figures 4.10 and 4.11

presents the tuning results. Here, the setpoint variable (in grey thick solid line),

the initial response (in black dashed line) and the optimized response (in black

solid line) are drawn for comparison. Also, initial and final manipulated variable

responses are pictured in the bottom figure.

In case of dataset 1, two sets of parameters identified by (a) and (b) were de-

termined. Set (a) was obtained without imposing any additional operational con-

straints. In comparison to the initial response, it reduced the aggressiveness of the
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Table 4.10: PID controller tuning results.

process
parameters pc charact. quality

kC τI τD OS J R2

% s kg−1 s s % – –

Dataset 1
init 1.300 8.000 0.000 1.83 3.76× 103 0.9382
tun (a) 0.744 1.651 0.000 27.15 2.91× 103 0.9207
tun (b) 0.868 6.165 0.000 5.00 3.15× 103 0.9154

Dataset 2
init 1.300 8.000 0.000 19.33 3.72× 104 0.1310
tun 1.462 31.361 0.000 0.00 3.23× 103 0.8397

LB 0.100 0.001 0.000 0.00 – –
UB 30.000 300.000 0.000 5.00 – –

Datasets 1 and 2: q1 = 1 s2 kg−2 and q2 = 10 %−2.

control valve for a similar rise time and superior overshoot in the controlled vari-

able. The superior overshoot (27.15 %) augments the deviation of the controlled

variable from the setpoint which is evident in the reduction of R2 from 0.9382 to

0.9207. Nonetheless, the objective function J composed by two terms was clearly

decreased from 3.76 × 103 to 2.91 × 103. The first term J1 (closely related to the

R2) became more prominent throughout the optimization process, justifying the

reduction of R2. However, the second term J2 related to the valve wear was

drastically reduced, due to the less aggressive behaviour observed in the con-

trol valve. According to the selected weights, the control loop performance was

greatly improved.

In some processes, an overshoot of this magnitude in the controlled variable

influences considerably the final product quality. So, it is important to monitor

and control the deviation of the controlled variable from the setpoint when set-

point changes occur. This criterion may be imposed in the proposed approach

defining

g(pc) =

[
OS − OSmax

OSmin − OS

]
, (4.40)

in the condition (4.37h). Set (b) was determined considering this additional char-

acteristic for OSmin = 0 % and OSmax = 5 %, which guarantees an acceptable range

of the controlled variable overshoot. This new set of tuning parameters of the PID
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controller generated a response with an overshoot of 5 % (the maximum value of

the defined range), while the valve movement and the overall deviation from

setpoint were penalized in the objective function. These parameters clearly im-

proved both the pre-tuning loop behaviour and the loop response using parame-

ters (a), because high overshoots and valve wear are avoided.

In the case of the dataset 2, the tuning did not consider the constraints on

overshoot. Nevertheless, the pre-tuning behaviour of the control loop (see Ta-

ble 4.10 and Figure 4.11) is clearly improved. The initially observed oscillations

in the controlled and manipulated variables were totally removed, allowing the

PID controller to obtain a clean response. This was achieved with an increase of

the proportional gain and of the integral time.
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Soft sensing technology

This chapter concerns the issue of soft sensing technology as a way to generate

new data that usually is not readily available from on-line instrumentation or

laboratory measurements. The methodology, the data pre-processing, the tech-

niques for soft sensing, and the concept drift detection and handling are deeply

reviewed.

Because glycerine concentration process in an energy intensive process, the

soft sensor technology has a high potential in the final glycerine quality predic-

tion. In this chapter, the soft sensor technology is applied in the prediction of the

glycerine quality in an industrial scenario for real-time monitoring and control

purposes.

5.1 Importance and definition

In order to meet economic and environmental targets in the process industry,

a continuous improvement of production processes has been pursued. This has

been done in a very enriched data environment because, currently, industrial pro-

cesses are highly instrumented with a large number of physical sensors providing

a huge amount of data for process optimization. However, while data amount is

increasing exponentially, the knowledge extraction through the understanding of

that data remains a challenge.

Motivated by the advances of low-cost technology (such as computer hard-

ware, graphical user interfaces and high-level software packages), the stored data
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has been used increasingly to obtain new knowledge by building virtual instru-

mentation, called soft sensors. Soft sensors present an attractive feature in the

industrial environment because they are low cost alternatives compared with the

expensive hardware devices. Furthermore, they may operate in parallel with the

existing instrumentation giving useful information for the detection of faults in

the process and in the instrumentation. The soft sensors may be easily devel-

oped and implemented on the existing hardware with little effort and high trans-

parency, and may be retuned when conditions and, consequently, parameters

change. In addition, the estimation of product quality variables, one of common

soft sensor applications, in real time reduces the long time delays typical of some

physical sensors, such as the chromatographs. Soft sensors are a valuable tool

in many application fields. Some industrial applications are found in refineries,

chemical plant, cement kilns, power plants, pulp and paper industry, food pro-

cessing, nuclear power plants, and urban and industrial waste processing plants.

Their functions include measuring system backup, what-if analysis, predic-

tion in real time for process control, sensor validation and fault diagnosis, as For-

tuna et al. (2007b) explains.

Due to their practical utility and a priori knowledge absence, soft sensors have

enjoyed an increasing popularity (Shang et al., 2014). They are based on a wide

variety of methods employed in the development of soft sensors, such as the com-

monly used system identification methods, machine learning methods and data

mining methods. Since system identification methods were already addressed in

Chapter 2, some concepts related to machine learning and data mining fields will

be detailed in the present chapter.

The term soft sensor emerged from the combination of the words software and

sensors and refers to the estimation in a computer program of any process variable

(usually product quality related variables) by using mathematical models and

data acquired from the physical sensors. Others definitions are found in literature

that also translate this concept as inferential sensors (Khatibisepehr et al., 2013),

virtual on-line analysers (Komulainen et al., 2004), software sensors (Soons et al.,

2008), and observer-based sensors (Pierri et al., 2008).

Soft sensors may be classified into two types: the model- and the data-driven

soft sensors. The model-driven soft sensors are based on first principles models
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translating the physical and chemical background of the process. Their main

drawback is the fact that the process expert knowledge is required in order to

build the model. Besides, oftentimes the theoretical background is not sufficient

because the real process is significantly influenced by others factors not accounted

in the model. Nonetheless, model-driven soft sensors are the most used type in

inferential control. Some examples of these sensors may be found in Welch and

Bichop (2001), Prasad et al. (2002), Frau et al. (2009), Frau et al. (2010), and Boizot

et al. (2010).

Due to the fact that the data-driven soft sensors do not have the complexity

problems inherent to the model-driven approach, the former have gained popu-

larity because they use directly plant data. The most used data-driven modelling

techniques are the principal component analysis, partial least squares, support

vector machines, artificial neural networks, fuzzy systems, time-series models,

and hybrid models. The following sections will mainly focus on data-driven

methods.

5.2 State-of-the-art

This section provides an overview of the techniques used for soft sensor devel-

opment and use, with a particular focus on the challenges and solutions encoun-

tered in the process industries. Other relevant reviews about the topic may be

found in the literature (Mansano et al., 2014; Saptoro, 2014; Haimi et al., 2013;

Kano and Fujiwara, 2013; Luttmann et al., 2012; Escobar, 2012; Kadlec et al., 2011;

Slišković et al., 2011; Li et al., 2011; Kadlec et al., 2009; Fortuna et al., 2007b, 2005b;

Gonzalez, 1999).

5.2.1 Development methodology

The availability of industrial data is a factor that motivates wider interest in soft

sensor development and use. However, special care should be taken because the

application of standard data-driven modelling methodologies for soft sensors de-

sign may lead to model degradation due to several aspects, such as the contami-

nation of data by outliers. Therefore, a systematic procedure for the soft sensors

development should be followed (Lin et al., 2007).
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First data inspection

Selection of historical data and
identification of stationary states

Data preprocessing

Model selection, identification and validation

Soft sensor maintenance

Figure 5.1: Methodology for the soft sensors development.

A rather general methodology, applicable to batch and continuous processes

(Figure 5.1) comprises the following steps:

Data inspection: The initial data inspection is performed with the aim of ob-

taining their structure and identification of eventual problems in the data,

namely collinearity, outliers, missing values, sampling frequencies, mea-

surements delays, and noise. These issues are reviewed in Fortuna et al.

(2007b) and Kadlec et al. (2009). In this stage, it is possible to evaluate if

the requirements of the system identification are accomplished and to do a

reasonable decision of the method that will be used.

Historical data selection: The selection of the data for the identification and

evaluation of the model is an important task. The stationary parts must be

identified and selected. This task is usually performed by manual annota-

tion of the data.

Data pre-processing: The role of the data pre-processing is to transform the

data to be more efficiently processed in the system identification step. The

problems detected in data at Data Inspection stage are handled with the
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appropriated tools. Fortuna et al. (2007b) and Kadlec et al. (2009) discuss

some methods that may solve those problems. Other techniques to deal

with relevant topic regarding collected data quality and its pre-processing

are summarized in Section 5.2.2.

Due to the characteristics of the industrial data, the data pre-processing is a

critical stage because, at the moment, it requires a large amount of manual

work and expert knowledge about the underlying process.

System identification: In soft sensing, system identification comprises model

selection, identification, and validation (see Chapter 2). The selection of the

model is crucial for the performance of the soft sensor because the model is

its engine. Currently, there is no unified theoretical approach for the model

selection and, consequently, it has been done based on the experience and

preference of the developer. The most common approach for the model se-

lection is to start with a simplified model structure and to assess its fitting to

the data. Then, the complexity is increased as long as there is a significant

improvement of the performance. After the model selection and identifi-

cation, the obtained soft sensor is validated with independent data. The

mean squared error is the most popular method to assess the fitting quality.

Often, visual tools, such as the four-plot analysis (NIST and SEMATECH,

2012; Fortuna et al., 2007b), are also used to compare the predictions with

the real data. Nevertheless, the resulting performance is dependent on the

subjective judgement of the model developer (Fortuna et al., 2007b).

Maintenance: The final step of the methodology is the maintenance of the soft

sensor. The existence of changes of the process or of external process con-

ditions may affect the process state, as well as the data in terms of variance

and mean. Some examples of such changes are varying environmental con-

ditions, purity of the input materials and catalyst deactivation. Therefore, in

these cases, the recalibration of the measurement devices or the adaptation

of the soft sensor must be carried out.

Currently, most of the soft sensors do not include any automated main-

tenance mechanism. Furthermore, there is often no objective measure for

assessing the quality level of the soft sensor. Instead, it is dependent on the
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model operator subjective perception based on visual interpretation of the

deviation between the correct target value and its prediction. This moti-

vated the use of adaptive versions of the methods used in the development

of soft sensors, such as moving window PCA (Wang et al., 2005), moving

window PLS (Ni et al., 2014), recursive PCA (Li et al., 2000) among others

(see Kadlec et al. (2009)).

5.2.2 Data pre-processing

A careful analysis of the available laboratory and operational data enables to se-

lect relevant variables and to assess data quality in order to extract important

information about the process. The experience and expertise of those involved in

the daily operation provides a valuable knowledge about the plant and may help

in the determination of the most relevant process variables and of the hardware

sensors performance (Khatibisepehr, 2013).

Kadlec (2009) classifies the data into two main classes: the historical and the

real-time data. Historical data describe the process behaviour in the past. Usually,

modeling tasks (model selection, training and validation, and parameter opti-

mization) use batches of historical data that allow to take into account the delays

between the input and the output variables. Indeed, using historical data, it is

possible to compensate the delay between measurements by entering the values

of the output variables at the time of taking the sample.

In contrast, in real-time data the delay between measurements may not be

compensated because the data is arriving in an incremental way. This restricts

their application to real-time simulation, adaptivity, and control. Input variables

are used to simulate the process and, when the output variables are available,

they are used to evaluate the model performance during the on-line prediction

phase. If a performance deterioration is detected, an adaptation mechanism is

activated using historical data (Kadlec, 2009).

Industrial plants are heavily instrumented for process control purposes and,

consequently, the recorded data is composed by a large number of variables. In

such scenario, it is likely that some problems arise in the data. Several works

have analysed industrial data problems and developed approaches for handling

irregular datasets (Khatibisepehr and Huang, 2008). Figure 5.2 shows some issues
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Data problems

Collinearity (Chandrashekar and Sahin, 2014)

Outliers (Gupta et al., 2014)

Missing data (Enders, 2010)

Sampling frequency and measurement delay (Ding and Chen, 2005)

Storage cost (Thornhill et al., 2004)

Noise (Guidorzi, 2003; Spinelli et al., 2005)

Different magnitudes (Fortuna et al., 2007b)

Insufficient quality (Shardt and Huang, 2012; Peretzki et al., 2011)

Figure 5.2: Problems present in industrial data.

that usually occur in data and enumerates some works that describe ways to

handle them. The next sections will focus on these problems of the data.

� Collinearity

For safety and process control purposes, it is common to have redundant or

closely related measurement in process plants. However, this may result in the

presence of collinearity in the measured data (for instance, two neighbour tem-

perature sensors in a distillation column will collect data that is strongly corre-

lated). Based on the classification of Chandrashekar and Sahin (2014), the data

collinearity may be handled by using the dimension extraction and the features

selection methods (Figure 5.3).

Dimension extraction methods describe a large set of data accurately gener-

ating a reduced number of variables. The most famous methods are Principal

Component Analysis (Zamprogna et al., 2005) and Partial Least Squares.

Usually, a subset of variables may efficiently describe the input data. Usu-

ally, the choice of important variables is done via manual selection by system

experts. However, this task may not be feasible for large and highly integrated

processes (Warne et al., 2004). Several techniques were developed to reduce ir-

relevant and redundant variables helping to understand data, to reduce compu-

tation requirements, and to improve the soft sensor performance. These tech-

niques are usually called feature selection methods (Chandrashekar and Sahin,
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Handling collinearity methods

Dimension extraction methods

Principal component analysis

Partial least squares

Feature selection methods

Supervised learning

Filter methods

Correlation criteria

Mutual information criteria

Wrapper methods

Sequential selection algorithms

Heuristic search algorithms

Embedded methods

Unsupervised and semi-supervised learning

Figure 5.3: Methods for handling collinearity in data.

2014; Guyon and Elisseeff, 2003).

In the context of soft sensing, the most relevant feature selection methods are

the supervised learning algorithms which include the filter, the wrapper, and the

embedded methods that are used to find the subset of useful variables based on

a pre-selected criterion.

Filter methods use the selection criterion to rank the variables and select them

based on a predefined threshold value. The most used criteria are the Pearson cor-

relation and the mutual information that measure the dependency between two

variables. Considering a one-dimensional space, the former is defined as (Chan-

drashekar and Sahin, 2014)

R(i) =
cov(X, Y )√

var(X) · var(Y )
, (5.1)

where cov(·, ·) is the covariance and var(·) the variance of the specified variables.

Varying between -1 and 1, the Pearson correlation measures linear associations

between input variables X and output variables Y . A value of zero means that
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the two variables are independent. Contrarily, the later calculates a non-linear

measure of the dependency between Y and X by (Chandrashekar and Sahin,

2014)

MI(Y,X) = H(Y )−H(Y |X) (5.2)

where H(Y ) is the entropy of Y and H(Y |X) is the conditional entropy of Y ob-

serving X . In addition, the mutual information may be expanded for multidi-

mensional spaces (Souza and Araujo, 2011). On one hand, these methods are

advantageous because they are simple, computationally light, avoid over-fitting,

and work well for certain datasets. On the other hand, the obtained subset may

not be optimal because, although the selected variables are uncorrelated with the

output variable, they may be also correlated to other input variables. Compared

to the Pearson correlation, mutual information is advantageous because it may

deal with non-linearities and with a large number of variables (Meyer, 2008).

Wrapper methods use the predictor performance as a selection criterion, wrap-

ping the predictor on a search algorithm which will find the subset with the

higher performance. The main disadvantage is the necessity of creating a new

model (soft sensor) for each subset evaluation. This greatly increases the number

of computations.

Embedded methods aim to reduce the computation time required by the wrap-

per methods incorporating the feature selection method as part of the training

process. Basically, one of the selection criteria used by filter methods is incor-

porated into the objective function to simultaneously maximize the correlation

between the selected inputs and the output, and to minimize the correlation be-

tween the selected inputs.

� Outliers

An outlier is an observation that deviates markedly from other observations of

the time series. The identification of outliers is a critical part of the data pre-

processing because outliers have a negative effect on the model performance (Di-

Bella et al., 2007). Outliers may arise from hardware failures, incorrect readings

from instrumentation, transmission problems, and strange process working con-

ditions (Kadlec et al., 2009).

Outlier detection may be performed either by formal tests (also known as tests
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of discordance) or by informal tests (also called labelling methods) (Seo, 2006).

Although formal tests usually require test statistics based on the distribution as-

sumptions and a hypothesis to determine if the extreme value is an outlier of

the distribution, they are quite powerful under well-behaving statistical assump-

tions. Contrarily, the informal tests are simpler to apply. Some examples are the

standard deviation method, the z-score method, the modified z-score method,

the Tukey method (boxplot), the adjusted boxplot, the MADE method, and the

median rule. When it is difficult to identify the data distribution or transform it

into a proper distribution, these methods may falsely identify outliers. However,

they may be used for a first detection of outlier points (Seo, 2006). Comparisons

of the different approaches are provided in the literature (Penny and Jolliffe, 2001;

Matsumoto et al., 2007; Seo, 2006; Manoj and Senthamarai, 2013).

Some formal methods to handle outliers focus on univariate time series that

follows an approximately normal distribution. As stated by NIST and SEMAT-

ECH (2012), Grubbs, Tietjen-Moore and generalized Extreme Studentized Devi-

ate (ESD) tests are the three most commonly used outlier detection tests and are

based on the criterion of distance from the mean. The test developed by Grubbs

(1969) and Stefansky (1972) is used to detect single outliers in a univariate time

series. Later, it was extended by Tietjen and Moore (1972). The main limitation

of these two tests is that they must specify exactly the number of outliers. Con-

trarily, the generalized ESD test developed by Rosner (1983) only requires that an

upper bound for the suspected number of outliers is specified. Given the upper

bound r, the generalized ESD test essentially performs r individual tests consid-

ering the two hypothesis:

H0: There are no outliers.

H1: There are up to r outliers.

For a given test i, the statistic Ri and the respective critical value λi (i = 1, · · · , r)
are computed and compared, considering the following definitions:

Ri =
maxi |yi − ȳ|

s
, (5.3)
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Figure 5.4: Outliers detection of the Rosner (1983) dataset.

and

λi =
(n− i)tp,n−i−1√

(n− i− 1 + t2p,n−i−1

)(n− i+ 1) , with p = 1− α

2(n− i+ 1)
, (5.4)

where ȳ and s denote the sample mean and the sample standard deviation, re-

spectively, tp,ν is the 100p percentage point from the t-distribution with ν degrees

of freedom, α is the significance level, and n is the number of observations. The

exact number of outliers is determined by finding the largest i such that Ri > λi

for a α level of confidence.

Other outlier detection procedures found in literature are the 3σ edit rule and

the Hampel identifier. The 3σ edit rule (Ratcliff, 1993) is a standard deviation

method based on σ = 3 and consists on

|x(i)− x̄| > t σ , (5.5)

where x̄ is the mean of the data sequence and t = 3 is the threshold. According

to Pearson (2005), it is one of the most popular approaches to outlier detection
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and is based on the statistical parameters mean and standard deviation. The basic

difficulty of the method is the sensitivity of the statistical parameters to outliers

presence which tends to mask the outliers.

An also very cited method is the Hampel identifier (Davies and Gather, 1993)

that substitutes the mean and the standard deviation of the 3σ edit rule by less

sensitive parameters. The obvious alternatives are the median to replace the

mean and the median absolute deviation from the median (MAD) to replace the

standard deviation. The MAD scale estimative is defined as

MAD = 1.4826 median
(
|x(i)− x∗|

)
, (5.6)

where x∗ is the median of the data and the factor 1.4826 is the MAD correspond-

ing to the standard deviation for normally distributed data. The method is more

effective than the 3σ edit rule but the MAD is identically zero if more than 50% of

the observation have the same value. This behaviour causes a bad performance

of the Hampel identifier. The combination of a moving window filter with the

Hampel identifier is able to overcome this problem.

A recent review of Gupta et al. (2014) enumerates and classifies several more

advanced approaches to handle outlier points.

�Missing data

Most of the techniques for soft sensor development are not able to deal with miss-

ing data, that is, the data points that do not represent correctly the real process

state and usually assume values like ±∞ or 0. The most common causes of miss-

ing data are the hardware sensor failure, maintenance or removal. Other causes

are related to the data transmission between sensors and databases, databases

access, and other database errors (Kadlec et al., 2009).

Rubin (1976) introduced a widely used classification of the missing data han-

dling methods. Let X = {Xobs, Xmiss} denote the data matrix including both

observed, Xobs, and unobserved/missing variables, Xmiss, and let M denote the

missingness indicator matrix expressing whether a particular variable is observed

(Mi,j = 1) or unobserved/missing (Mi,j = 0). The classification considers three

incompleteness mechanisms and describes how the probability of missing values
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relates to data, p(M |X):

• Missing completely at random (MCAR) data. The probability that an ele-

ment is missing is independent of both the observed and the missing data

and the missingness indicator is purely haphazard. The conditional distri-

bution of M given X is given by

p(M |X) = p(M) . (5.7)

• Missing at random (MAR) data. The probability that an element is missing

depends on the observed data only and

p(M |X) = p(M |Xobs) . (5.8)

In the present context, MAR data usually occurs due to planned missing-

ness, i.e., some measurements may be more costly then others and are thereof

obtained only for selected samples.

• Missing not at random data (MNAR) data or non-ignorable. The probability

that an element is missing depends on the observed and unobserved data

and (Enders, 2010)

p(M |X) = p(M |Xobs, Xmiss) . (5.9)

In the present context, MNAR data usually occurs when some values are

below the detection or quantification limit.

Figure 5.5 shows the influence of the different missingness mechanisms in the

probability distribution of a variable A. The distribution of the variable is drawn

using a solid line and circles. The three missingness mechanisms were applied

to the variable and the resulting probability distributions are shown using dot-

ted, pointed and solid lines. Subjected to missing data, the new distributions

clearly differ from the original. This is specially evident for the MNAR mecha-

nism whose distribution presents a bigger mean deviation.

In order to verify which of these mechanisms is present in data, it is neces-

sary to perform an evaluation. Enders (2010) describes two tests for assessing
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Figure 5.5: Influence of the missing mechanisms on the probability distribution.

MCAR data mechanism introduced by Dixon et al. (1988) and Little (1988). The

univariate t-test based approach developed by Dixon et al. (1988) is a simple test

for assessing MCAR mechanism using a t-test to compare data subgroups. Little

(1988) proposed a multivariate extension of the univariate t-test based approach

(see the algorithm in Appendix C.1) to evaluate simultaneously mean differences

on every variable in the dataset, the multivariate Little MCAR test. Contrarily to

MCAR, there is no way to confirm that the probability of missing data is solely

a function of the observed variables (MAR mechanism). This represents a prac-

tical problem because two of the most recommended techniques to handle miss-

ing data (maximum likelihood method and multiple imputation) assume a MAR

mechanism. There is also no way to verify the MNAR mechanism without know-

ing the values of the missing values.

Several methodologies to address the missing data problem were proposed (see

Figure 5.6). These methods deal with missing data by removing the cases with

incomplete scores or by filling in the missing values.

Case-wise deletion methods are the most common missing data handling ap-

proaches. List-wise deletion method (also known as complete-case analysis) dis-

cards the data for any case that has one or more missing data. The pair-wise

deletion method (also known as available-case analysis) allows to use more of

the data. It uses the available scores of the case with missing data to apply the
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Handling missing data methods

Case-wise deletion methods

List-wise deletion method

Pair-wise deletion method

Imputation methods

Single imputation

Arithmetic mean imputation

Regression imputation

Stochastic regression imputation

Hot-deck imputation

Similar response pattern imputation

Multiple imputation

Maximum likelihood method

Figure 5.6: Methods for handling missing data.

techniques only to those scores. These methods are of easy implementation and

are usually standard methods in statistical software packages. However, the re-

moval of incomplete samples is not beneficial because it may lead to a consid-

erable loss of information which can negatively impact the performance of the

soft sensor. Essentially, these approaches assume the MCAR missing data mecha-

nism producing distorted estimations when this assumption does not hold. Even,

when the mechanism is valid, the deletion may reduce the data power. Also, the

replacement of the missing values with a single statistical measure distorts the

statistical distribution of the data.

Single and multiple imputation methods are attractive because they yield com-

plete datasets. While the single imputation methods generate a single replace-

ment value for each missing score, the multiple imputation methods create a set

of points to replaced in the missing values. But the imputation methods may

produce biased parameters estimates and increase standard errors.

The single imputation methods category includes the following methods. Arith-

metic mean imputation consists in filling the missing scores with the arithmetic

mean of the available cases. Regression imputation replaces the missing scores
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with values predicted from a regression equation. Stochastic regression imputa-

tion, which is a method similar to the previous one, adds a normally distributed

residual term to the regression equation values. The hot-deck imputation replaces

each missing score by the respective variable from a random observed case. Fi-

nally, the similar response pattern imputation replacesthe missing value with the

score from another case which has a similar response on a set of variables.

The aforementioned methods are traditional missing data handling methods

usually encountered in literature reviews and statistical software packages. Max-

imum likelihood and multiple imputation methods are reported to be more ef-

ficient (Walczak and Massart, 2001; Khatibisepehr, 2013). They are essentially

based on statistical principle methods which include explicit assumptions about

the incompleteness of the data. Their algorithms are summarized in Appendix C.

� Sampling frequency and measurement delay

The availability of several sources of information brings the possibility of having

data with different sampling frequencies (rate). For instance, a simple dual-rate

system is found in a discrete-time case in which the control updating period ∆t1

is not equal to the output sampling period ∆t2 (∆t1 6= ∆t2). Multiple sampling

frequencies are abundant in industrial processes mostly due to sensor and actu-

ator speed constraints. In the cases of composition, density or molecular mass

distribution control, these quality measurements are typically obtained after sev-

eral minutes of analysis, while the manipulated variables could be adjusted at a

relatively fast rate. Usually, sampling frequency is handled by synchronising the

data (Kadlec and Gabrys, 2007) that consists of recording new samples only if one

of the observed variables changes more than a pre-defined threshold value. Ding

and Chen (2005) suggest to solve the multiple sampling frequencies problem by

mapping the relationships between the available multi-frequency input and out-

put data using the polynomial transformation technique and the lifting technique

and by estimating the inter-sample (missing) output samples with the obtained

model.

Closely related to data sampling frequency are the measurement delays of

the process. Specially associated with laboratory measurements, the delays may

reach up to several hours. Often, dealing with measurement time delays includes
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Figure 5.7: Industrial datasets of Jelali and Huang (2013) with different degrees
of compression identified at the right y-axis.

a delayed version of the input variables into the feature selection (Kadlec and

Gabrys, 2007; Souza et al., 2010).

� Storage cost

Storage cost reduction is an often adopted policy in industrial plants. Usually,

this policy has a negatively high impact because the stored data are a resource

for valuable data-driven methods such as perform statistical monitoring, pro-

cess control, fault detection and soft sensors development (Fortuna et al., 2007b;

Thornhill et al., 2004). Commonly, storage cost reduction is achieved by the com-

pression of data before the plant historian archives them (Figure 5.7). Compres-

sion techniques are mainly divided into piecewise linear and transform com-

pression approaches. Mah et al. (1995) and Watson et al. (1998) compared the

various compression techniques stating that the most effective way to compress

large sets of industrial data is by transformation (Laplace, Fourier or wavelet)

and by thresholding the insignificant transform coefficients. The piecewise lin-

ear compression technique showed to be less effective. Despite the results shown
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Figure 5.8: Effect of compression on data-driven analysis for different datasets
(adapted from Thornhill et al. (2004)).

in these studies, plant historians usually use piecewise linear compression tech-

niques (also known as direct techniques) because they may be applied in real-

time environments to local data (Thornhill et al., 2004).

Thornhill et al. (2004) proved the negative impact of data compression in the

data-driven methods results (statistical measures and control loop performance

assessment). Figure 5.8 shows that the ratio between the variance of the original

data y and the variance of the reconstructed data ŷ (RVE = σ2
y/σ

2
ŷ) and the Har-

ris index severely diverge when the compression factor is augmented. After the

reconstruction of a compressed dataset, the data is composed by linear portions

and their second derivative is zero everywhere apart from the places where linear

segments join.

Therefore, the compression detection is an important procedure to perform

during the pre-processing stage of a data-driven analysis. Thornhill et al. (2004)

suggested the calculation of the compression factor defined by

compression factor =
N

m
, (5.10)

where N and m are the number of samples of the original data and of the com-

pressed data. Counting zero-valued second derivatives

∆(∆ŷ)i =
ŷi+1 − 2ŷi + ŷi−1

h2
, (5.11)

where ŷ is the reconstructed signal and h is the sampling interval, gives a lower

bound for the compression factor. Besides, the authors highlight the importance

of the reconstruction of the data at the original sampling interval for an accurate

assessment of the compression factor.
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� Noise

Industrial data is susceptible to short variations due to noise. Noise associated

with measurements may arise from the sensors, the electrical equipment, or the

process itself. The noise induced by the process may have origin in variations re-

sulting from incomplete mixing, turbulence, and non-uniform multiphase flows (Se-

borg et al., 2010; Verhaegen and Verdult, 2012).

Filtering a signal consists in the suppression of some unwanted components

from the signal. There are analog and digital filters (Seborg et al., 2010). The

first ones play an important role in the removal of electrical noise (analog signal),

specially in the fields of telecommunications. In order to damp out the electric

noise, it is often used a low-pass filter described by the first-order differential

equation

τF ẏF(t) + yF(t) = ym(t) , (5.12)

Digital filters are applied to digital signals, usually found from process sen-

sors. The digital version of the low-pass filter is given by

yF(k) = α ym(k) + (1− α) yF(k − 1) , (5.13)

where α refers to the filter time constant (when α = 1, no filtering is applied,

and when α → 0, the measurement is ignored). Applying this filter may also be

called as single exponential smoothing or exponentially weighted moving aver-

age (EWMA) filtering.

The double exponential filter (also known as second-order filter) is also very

useful and is specially advantageous in dealing with signal drifts and in filtering

high-frequency noise. Equivalent to two-series low-pass filter, the second-order

filter is given by

yF(k) = γ α ym(k) + (2− γ − α) yF(k − 1)− (1− α)(1− γ) yF(k − 2) , (5.14)

where the second filter time constant γ may be assumed as γ = α resulting

ȳF(k) = γ2 ym(k) + 2(1− α) ȳF(k − 1)− (1− α)2 ȳF(k − 2) . (5.15)
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� Different magnitudes

Industrial data have different magnitudes depending on the variable units and on

the process nature. This characteristic may hinder system identification because

variables with larger magnitudes may be dominant over variables with smaller

ones. In order to deal with, data scaling may be applied. The most common scal-

ing methods are the min-max and the z-score normalizations defined by (Fortuna

et al., 2007b)

Min-max normalization: x′ =
x− xmin

xmax − xmin

(x′max − x′min) + x′min , (5.16)

z-score normalization: x′ =
x− x̄
σx

, (5.17)

where x and x′ are the unscaled and scaled variables, the min and max subscripts

refer to the minimum and maximum of the variable, and x̄ and σx are the mean

and the standard deviation of the variable. When outlier presence is likely, the

more robust z-score normalization approach is commonly preferred.

� Insufficient quality

The main purpose of data quality assessment techniques is to determine whether

the data contains sufficient excitation or information to be used in the system

identification step given the model structure (Shardt and Huang, 2012).

Shardt and Huang (2012) present a framework for assessing the quality of

routine operating data for system identification divided into two steps: the model

segmentation via signal entropy and the data quality assessment via the Fisher

information matrix.

Peretzki et al. (2011) develop an algorithm that searches and marks intervals

suitable for process identification. It is a simple and efficient recursive algorithm

that requires a minimum of process knowledge. Essentially, the steps are the

search for excitation of the input and output, followed by the estimation of a

Laguerre model combined with a chi-square test to check if at least one estimated

parameter is statistically significant. The use of Laguerre models is crucial to

handle processes with dead-time without explicit delay estimation. The method

was tested with a three year dataset from more than 200 control loops. It was able
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to find all intervals in which known identification experiments were performed

additional intervals with information rich data.

5.2.3 Techniques for soft sensing

There exists a wide variety of soft sensor techniques as Figure 5.9 illustrates.

Among those, the more representative examples are moving average model (Gra-

zia ni et al., 2008), principal components analysis (PCA) (Dunia and Qin, 1998;

Warne et al., 2004; Wang and Xiao, 2004; Lin et al., 2005), non-linear PCA (Wang

et al., 2014), partial least squares (PLS) (Lin et al., 2007; Zhang and Lennox, 2004),

dynamic PLS (Shang et al., 2015), support vector machines (SVM) (Kaneko and

Funatsu, 2013), artificial neural networks (ANN) (Shang et al., 2014; Graziani

et al., 2010; Fortuna et al., 2009, 2005a, 2007a; Liu et al., 2013; Jianxu and Huihe,

2002; Masson et al., 1999; Rogina et al., 2011; Rallo et al., 2003; Alhoniemi et al.,

1999), subspace identification (Chokshi, 2012; Kano et al., 2009), and genetic algo-

rithms (Mendes et al., 2012). Hybrid approaches include: PCA and radial basis

functions ANN (Salahshoor et al., 2009; Yu et al., 2006), kernel least squares and

SVM (Li et al., 2012), PCA and Gaussian process regression (Ge et al., 2011), PCA

and ANN (Linhares, 2010; Rebouças, 2009), least squares and SVM (Gomnam

and Jazayeri-rad, 2013), independent component analysis and PLS (Kaneko et al.,

2008), and kernel PCA and SVM (Yang and Huang, 2010).

5.2.4 Special techniques for soft sensing

In addition to the abovementioned methods, other highly evolved techniques de-

rived from machine learning and data mining fields were also applied in order

to improve the system identification and, consequently, the development pro-

cess. These include the ensemble methods, the local-learning, and the meta-

learning (see Figure 5.9).

� Ensemble methods

The ensemble methods generate a set of models (also called ensemble members)

and aggregate them to predict a system variable.
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Soft sensor methods

Common

Model-driven

Data-driven

Principal component analysis

Partial least squares

Support vector machines

Artificial neural networks

Fuzzy systems

Subspace identification

Time-series models

Hybrid models

Advanced

Ensemble

Local-learning

Radial basis function networks

Modular neural networks

Locally weighted learning based on projection regression

k-nearest neighbour method

Meta-learning

Learnt topology gating artificial neural networks

Figure 5.9: Methods for soft sensing.

The most common approaches to generate the set of models are the bagging

method, the boosting method, and the modular neural networks. The bagging

method (Breiman, 1996) generates multiple training sets of constant size by re-

sampling the training data with replacement that are then used to train each en-

semble member. The boosting method (Schapire, 1990) consists in an iterative

training, where the training set for each new ensemble member is drawn from

the points misclassified (or poorly predicted) by the previous member. Finally,

the modular neural networks (Jacobs et al., 1991) specializes the ensemble mem-
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bers on regions of the input space by a gating network. All these approaches

generate a set of p ensemble members F = {fi}pi=1.

The aggregation of the ensemble members is the second most important op-

eration in ensemble methods. Several combination strategies are studied in liter-

ature (Soares et al., 2011). Four common strategies are

• the best model selection via

f = argmin
fi

g
(
fi(xval,yval)

)
, (5.18)

where g(·) is an error function, and (xval,yval) are the input and output vari-

ables of the validation set;

• the simple mean

f =
1

p

p∑

i=1

fi , (5.19)

used with the bagging method;

• the trimmed mean withthe removal of some models fi before applying the

mean in (5.19);

• the weighted average based on the accuracy

f =

p∑

i=1

wi fi , (5.20)

wi =
Ci
p∑
i=1

Ci

, (5.21)

where wi are the combination weights with
p∑
i=1

wi = 1 , ∀i : wi > 0 and

C represents the correlation coefficient between the estimated and the real

outputs.

However, Kadlec (2009) refers that the best model selection strategy is not effi-

cient. Moreover, the quadratic error of the ensemble in the simple mean strategy

decreases with the increasing of the ensemble size. Furthermore, tests performed
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by Soares et al. (2011) showed that the simple mean, the trimmed mean and the

weighted average based on the accuracy have better performances.

Some soft sensor studies based on ensemble methods may be found in Kor-

don et al. (2004), Jordaan et al. (2004), Jordaan et al. (2006), Minku et al. (2010),

Soares et al. (2011), Liu et al. (2012), ZHANG Wenqing (2012) and Kaneko and Fu-

natsu (2014). Kordon et al. (2004), Jordaan et al. (2004), and Jordaan et al. (2006)

developed soft sensors based on genetic programming and the ensemble method

while Kaneko and Funatsu (2014) used online support vector regression and a

Bayesian-based ensemble method. Soares et al. (2011) studied several combina-

tions of the ensemble methods in diverse conditions (such as the noise injection)

proving their success in the chemical oxygen demand estimation in a pulp pro-

cess. Finally, the impact of concept drift on the diversity of on-line ensemble

methods was studied in Minku et al. (2010).

� Local-learning

Evolved from the lazy learning, local-learning (Bottou and Vapnik, 1992; Atkeson

et al., 1997) is a supervised learning that trains a set of models on limited parti-

tions of the data space. In these methods, all the samples are collected from the

plant and memorized in the database. When calculating a prediction for a given

iteration (called query), the method searches in the database those samples that

are contained in the neighbourhood of the query and builds a new model based

on them.

The evaluation criterion, the kernel function, and the local model are three es-

sential components in a local learning method. The first component evaluates the

database and selects the neighbourhood samples of a given query q. k-nearest

neighbours algorithm based on the distance function may be used to select the

neighbourhood. Commonly, the Euclidean distance is used as the evaluation cri-

terion and is calculated by

d(x,q) =
1

m

√
(x− q) (x− q)> , (5.22)

where x refers to the selected neighbourhood samples (training set) and m to the

number of samples.
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The kernel function describes the form of the local neighbourhood and is com-

monly an expression of the exponential functions family. The kernel size is an

important parameter of the kernel function that has a crucial influence on the lo-

cality of the model. It may be considered constant or variable with the density of

the data samples.

Finally, the local model trains the neighbourhood data previously selected by

the kernel function to calculate the prediction value. Several techniques may be

used, including linear and non-linear regression (see Chapter 2).

The choice of these three components is a trade-off between locality and ca-

pacity. While locality defines the size of the neighbourhood, capacity defines

the complexity of the local method. This is an important advantage of the local-

learning method, because its performance (or its capacity) may be defined and

controlled through the size of the training dataset (or through the locality). Local-

learning methods in soft sensors development are also promising due to the abil-

ity to recognize different operating states of the process (through the data clus-

tering). Consequently, the most adequate training method will be used instead of

the training of a global model with the complete dataset.

Some applications of local methods that cope with drifts in process charac-

teristics as well as non-linearity are presented in Zheng and Kimura (2001); Zeng

et al. (2011) and Fujiwara et al. (2009). Economical impact of soft sensors based on

this learning and their challenges are depicted in Kim et al. (2013). A method to

avoid over-fitting in local learning in also proposed in Shao et al. (2013). In addit-

tion to the referred methods, local learning methods also include the following:

Radial basis function networks: Usually composed by three layers (the in-

put, the hidden, and the output layers), the radial basis function networks

(RBFN) (Orr, 1996) are distinct from other types of artificial neural networks

because of the activation function used in the hidden layer and of the way

that these layer weights are calculated. The neurons of the hidden and out-

put layers are characterized by a Gaussian and a linear activation functions,
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respectively, defined as

z
hidden layer
i = exp

(
−1

2

(
xin − µi

)>
Σi

(
xin − µi

))
, (5.23)

y
output layer
i = wi zhidden layer , (5.24)

where zhidden layer
i is the neuron i output of the hidden layer, xin ∈ Rn×m is

the input space, µ is the mean values vector defining the function centre in

the input space, Σ is the covariance matrix defining the function spread in

the input space, youtput layer
i is the neuron i output of the output layer, and wi

is the weight vector associated to the output neuron i.

From the equations analysis, RBFN parameters are the vector µ and the ma-

trices Σ and w. The parameters related to the Gaussian activation function,

µ and Σ, are calculated off-line by clustering the training data into N clus-

ters (where N corresponds to the number of neurons in the hidden layer)

and by calculating the respective function parameters for each cluster. Ad-

ditionally, the weights w are calculated by applying the least squares

w =
((

zhidden layer)> zhidden layer
)−1

zhidden layer youtput layer . (5.25)

From the view point of local learning, the construction of the hidden layer

may be seen as the instances selection process while the output layer is seen

as the local model building the final prediction.

Modular neural networks: Also classified as an ensemble method, modular

neural networks (Jacobs et al., 1991) may be considered as a local-learning

method. In a first step, p ensembles (called local experts) are trained using

subsets of the training data. Then, the outputs of these networks ŷi are

used to build new networks (called gating networks) in order to obtain the

p local experts weights wi that will decide the final output prediction. These

weights are obtained by the gradient descent technique where the global

error function

J = −log

[
p∑

i=1

wi · exp

(
−1

2
||y − ŷi||2

)]
(5.26)
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is minimized enforcing the local experts specialization. In (5.26), y is the

target value.

Locally weighted learning based on projection regression: It is a method that

combines the advantages of the locally weighting learning (the speed, the

efficiency, and the incremental capabilities) with the dimension reduction

techniques (the capabilities to deal with a large number of inputs, possibly

collinear) to approximate non-linear behaviours (Vijayakumar et al., 2005).

Given a prediction request for xk, all the p local models fi(xk) calculate their

predictions ŷi and the total output prediction ŷ is obtained by

ŷ =

p∑
i=1

wi(xk) · ŷi
p∑
i=1

wi(xk)

. (5.27)

Here, weights wi are determined using the Gaussian kernel defined by

wi(xk) = exp

(
−1

2
(xk − ci)

>Di(xk − ci)

)
, (5.28)

where ci is the central point of the validity region for the local model fi
and Di is a positive semi-definite distance metric determining the size and

shape of the neighbourhood.

The neighbourhood selected by (5.28) is pre-processed to ensure zero mean

for all inputs and outputs as well as uncorrelated inputs by PLS method ap-

plication (see Section 2.2.4). Finally, the method finds a local approximation

using the standard linear regression model.

k-nearest neighbour method: The k-nearest neighbour or kNN method (Härdle,

1990) is among the simplest machine learning methods and uses weights wi
to set more significant contributions to the closer neighbours (xneigh, yneigh)

by

ŷ(x) =
1

m

m∑

i=1

wi(xneigh,i) yneigh,i . (5.29)

Given a new query point x, kNN estimates the outcome based on the exist-

ing dataset. For regression problems, KNN predictions are based on averag-
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Figure 5.10: Representation of the elbow in the cost function.

ing the outcomes of the found k nearest neighbours of the query point. The

Euclidean distance is usually takento define the neighbourhood measuring

the distance between the query point and the samples in the dataset.

The optimal clusters number k in kNN is an essential parameter often cho-

sen based on experience or knowledge about the problem. The elbow me-

thod is a method used to help the determination of k that searches for an

elbow in the curve cost function J (usually the mean square error or MSE)

versus clusters number using the following algorithm:

1. vary the clusters number and compute the corresponding cost func-

tion;

2. as the clusters number increase, the cost function should decrease (if

J = MSE);

3. plot the cost function versus the clusters number;

4. find the elbow point of the curve;

5. identify the clusters number k of the elbow point.

Unfortunately, the elbow identification is often performed by the user be-

cause usually the plot does not clearly show the elbow.

�Meta-learning

Meta-learning methods (Vilalta et al., 2010) are supervised learning methods ap-

plied on meta-data (such as data assumptions, problem properties, and perfor-

mance measures) from learning experiments trying to understand how to im-

prove the prediction performance. Each expert performs well only when the ap-

plication assumptions are similar to those they are based-on. Otherwise, they
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become non-experts and probably will fail the prediction, which limits their ap-

plicability. The usage of a meta-learning method may select, alter or combine

different learning algorithms in order to solve this problem in an effective and

automatic way.

The meta-learning methods usually intend to find an hypothesis h from the

hypothesis space HL for a given learning algorithm L and using the meta-data

space Strain to improve the prediction performance. Therefore, an objective func-

tion (usually called bias) is defined considering the most important aspects of the

target hypothesis. These aspects may be: the algorithm parameters (e.g., number

of layers and neurons in the ANN algorithm), the algorithm initialization (e.g.,

initial weights of the ANN algorithm), and the data pre-processing.

Learnt topology gating artificial neural networks:

Learnt topology gating artificial neural networks (Kadlec and Gabrys, 2008b)

applies meta-learning to an ensemble model based on modular neural net-

works. The approach generates ensemble members and weights them in or-

der to predict the output variable. Considering Figure 5.11, the generation

of the ensemble members based on modular neural networks is performed

in the following way. In a first phase, p artificial neural networks

ŷji = fj(xi) (5.30)

with a random number of hidden units are trained using N training data

points (xi, yi). They are called base models or local experts (LE). Then, new

ANN

ŵji = gi(xi) (5.31)

are trained in order to obtain the prediction performance ŵji for each expert

j and data point xi. The observed prediction performance wji is calculated

by

wji =
1

1 + (ŷji − yi)2
. (5.32)

These models are called gating ANN (GANN). Combining the two ANN
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Figure 5.11: Learnt topology gating artificial neural network.

types, the final prediction for a given xi is calculated as

ŷ(xi) =

p∑

j=1

ŵji(xi) ŷji(xi) . (5.33)

Restricting to three layer networks (input, hidden and output layers), the

meta-learning approach in Kadlec and Gabrys (2008b) considers an initial

distribution of the number of hidden units from equal distributions U(HLE)

and U(HGANN) for the local experts and gating ANNs, where H represents

the range of the hidden units number. After the ANNs generation and the

evaluation of the LE and GANN performance (performance indices qLE and

qGANN), the distributions U(·) are modified towards the conditional proba-

bility distributions

U∗(HLE) ∼ p(U(HLE)|qLE) , (5.34)

U∗(HGANN) ∼ p(U(HGANN)|qGANN) . (5.35)

The modification will result in the addition and removal of new local ex-

perts with a new neurons number in the hidden layer. This meta-learning

approach may deal with a fundamental ANN approach drawback which

consists of the manual definition of the neurons number.
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Figure 5.12: Concept drift patterns that may occur over time.

5.2.5 Detection and handling of concept drift

Concept drift refers to changes over time in the conditional distribution of the

output variables given the input variables in some hidden context, while the dis-

tribution of the inputs may stay unchanged (Gama et al., 2014). Concept drift has

important consequences because most of the learning procedures are based on

data distribution and, when it does not hold, their performance becomes unre-

liable. Therefore, detecting concept drifts is of vital importance for applications

working in dynamical environments, such as soft sensors (Dries and Rückert,

2009). It is important not to mix a true drift with outliers, noise, process anoma-

lies or one-off random deviation (Gama et al., 2014). Also, the ability to adapt to

a concept drift is a very important feature to guarantee an accurate performance

of the application.

Usually, they are distinguished into virtual and real concept drifts. The former

is a change in the distribution of the input data while the later is an actual change

of the concept drift or, in other words, in the relation between the input and out-

put variables. Concept drifts may also be distinguished by the form they manifest

over time (Figure 5.12). Drifts may happen suddenly or abruptly (e.g. replace-

ment of a sensor by another sensor with different calibration), incrementally (e.g.

sensor slowly wears off and become less accurate), and gradually. Minku et al.

(2010) and Kosina et al. (2010) characterized drifts by their severity, predictability,

and frequency.

Over the last years, learning in the presence of concept drifts has been the

subject of several works (Tsymbal, 2004; Kuncheva, 2004, 2008; Gama et al., 2014;

Moreno-Torres et al., 2012) with a focus on concept drift detection and handling

as described below.
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� Detection methods

Handling or adaptation methods may develop a new model at regular intervals

without checking if a drift occurred or only when a drift is detected. In the later

approaches, the detection is performed by monitoring some indicators over time.

For classification problems, several detection methods were developed: the drift

detection method (Gama et al., 2004), the early drift detection method (Baena-

García et al., 2006), and the Hoeffding trees (Domingos and Hulten, 2000). For

regression problems, the existing methods are scarce. Kadlec and Gabrys (2009)

(Section 4.1.1) developed a detection method based on the residual vectors be-

tween the eventual training data y and the model prediction f lm(x) defined by

r = y − f lm(x) . (5.36)

The authors refer to the model f lm(·) as “landmarker”. Provided historical data,

the first step of the algorithm is training a model using ninit samples from an

initial window Dinit (ninit is a tuning parameter). Then, the window is shifted

one step forward (s = 1) while keeping the size ninit constant in the following

form

Dshifted = (xshifted − yshifted) . (5.37)

Following this, the residuals of the initial and the shifted sets are calculated and

tested for a statistically significant difference using the t-test that considers the

residuals as normally distributed. The aim is looking for a significant difference

between the mean values of the two residuals vectors and, consequently, identify

a significant change in the model performance as an effect of the concept drift.

The procedure is repeated as long as the null hypothesis of the t-test remains

valid.

Metrics commonly used to monitor the industrial processes performance may

also be applied in the performance monitoring of soft sensors. The most used per-

formance metrics are the Hotelling’s T 2 and the squared prediction error (SPE) (Ka-

dlec et al., 2011). The Hotelling’s T 2 is calculated by

T 2 = τ>Λ τ , (5.38)
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where λ = diag(λ1, . . . , λl) is the weighting factors matrix and Λ are the latent

vectors (for PLS model) or the principal components (for PCA model). The values

of SPE for the output data y are obtained by

SPE = ||y − ŷ||22 . (5.39)

Considering that the Hotelling’s T 2 follows the F -distribution and SPE the central

χ2-distribution, the calculation of these two metrics is followed by the computa-

tion of the respective confidence limits T 2
β and SPEβ by

T 2
β =

l(n2 − 1)

n(n− l) Fl,n−l,β , (5.40)

SPEβ = θ1

(
1 +

cα
√

2θ2h2
0

θ1

+
θ2h0(h0 − 1)

θ2
1

)1/h0

, (5.41)

where l, n, β, and cα are distribution parameters, and h0 and θi (with i = 1, 2, 3)

are defined as

h0 = 1− 2θ1θ3

3θ2
2

, (5.42)

θi =
m∑

j=l+1

λij . (5.43)

Finally, using the block-wise moving window model adaptation method (de-

scribed below), the monitoring metrics may additionally be updated using

T 2
t = λ T 2

t−1 + (1− λ) T 2
t−2 , (5.44)

SPEt = λ SPEt−1 + (1− λ) SPEt−2 . (5.45)

� Handling methods

The most popular concept drift handling methods are based on the model adap-

tation and may be divided into three categories: instance selection methods, in-

stance weighting methods, and ensemble methods (Figure 5.13). Although the

performance monitoring is a very important issue in soft sensor application, it is

commonly omitted and the soft sensor is continuously adapted without checking

if the performance is actually degrading. It is the case of the categories instance
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Concept drift handling

Instance selection methods

Block-wise moving window

Moving window kernel PCA

Instance weighting methods

Recursive least squares

Recursive PCA

Fast moving window PCA

Ensemble methods

Incremental local learning method

Figure 5.13: Concept drift handling methods.

selection and instance weighting methods (Kadlec and Gabrys, 2010). On the

contrary, ensemble methods check the performance before the development of a

new soft sensor using concept drift detection.

Instance selection methods: The main goal of the instance selection methods

(also called moving window based methods) is to select relevant instances

(samples) to the concept. The most common handling methods are based on

this category and use moving window based techniques in which the model

is updated or retrained using a set of samples recently arrived (Tsymbal,

2004). The set is selected in order to maximize the relevance for the current

concept and, in the vast majority of cases, a fixed number of the most recent

data points is assumed to be the most relevant to the current concept. As

new instances are acquired, the window slides along the data so the newest

samples are included and the oldest are excluded (Kadlec et al., 2011).

However, moving window techniques have some drawbacks, such as the

parameters tuning and the data storage requirements. The tuning parame-

ters associated with these techniques are the size of the adaptation window

(usually referred to as window size) and the adaptation intervals between

updates (usually designated by step size). An inappropriate tuning may

lead to the performance degradation. Some approaches use adaptive mov-
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ing windowing where the window size is adapted with the arrival of drifts

(He and Yang, 2008; Kuncheva and Žliobaitė, 2009).

The adaptation by block-wise moving window is performed by retraining the

model periodically after a given number of collected samples specified by

the user as

ft = L(f init,D) , (5.46)

where ft is the new soft sensor, f init is the model structure, L is the training

algorithm, D are the latest samples for the training composed by input and

output variables.

Using the moving window method, Liu et al. (2009) uses the kernel PCA

model to handle with non-linear relationships between variables creating

the moving window kernel PCA method. In each window move which ex-

cludes the oldest sample xk−n and includes the newly available sample xk,

the mean vector bk and the covariance matrix Ck are updated by

bk = bk−1 +
1

n− 1

(
φ(xk)− φ(xk−n)

)
, (5.47)

Ck = Ck−1 −
n− 1

(n− 2)2

(
φ(xk−n)− bk−1

)(
φ(xk−n)− bk−1

)>
+

+
1

n− 1

(
φ(xk)−

n− 1

n− 2
bk−1 +

k − n
n− 2

φ(xk−n)
)
·

·
(
φ(xk)−

n− 1

n− 2
bk−1 −

k − n
n− 2

φ(xk−n)
)>

, (5.48)

where φ(·) is a non-linear kernel function and n is the window length. Then,

the kernel PCA model is recalculated using a numerically more efficient

decomposition of the new covariance matrix Ck suggested by the authors.

In terms of data storage, both techniques require the storage in memory of

all samples within the window which may be problematic for large win-

dows.

Instance weighting methods: Instance weighting methods (also called recur-

sive adaptation methods) use the current model and the new information

to update the model. Usually, this is achieved by down-weighting the cur-

rent model via the use of a forgetting factor. Because the weights are as-
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signed to the samples according to their age, there is the need to choose

the speed of the temporal decay of the sample weights (usually by tuning).

And, similarly to moving window techniques, instance weighting methods

do not provide any mechanism for concept drift detection needing informa-

tion about window size and step size. The forgetting factor may eventually

be adapted (Fortescue et al., 1981; Choi et al., 2006).

This approach has similar problems as the moving window approach. In

addition, the instance weighting techniques adapt the models excessively

when the process is operated within a narrow range for a certain period of

time. Therefore, the methods will not cope with abrupt changes in the pro-

cess because they will not function in a sufficiently wide range of operating

conditions (Fujiwara et al., 2009).

The recursive least squares method is an offline version of the algorithm of

least squares used incrementally to incorporate new incoming samples (Jang

et al., 1997; Ljung, 1999). The least squares estimator

θ = (X>X)−1(X>Y ) , (5.49)

where θ are the linear regression coefficients and X and Y the input and

output data matrices, may be rearranged in such a way that incorporates

the old data and the new sample xt by

θt =



[
Xt−1

xt

]> [
Xt−1

xt

]

−1

[
Xt−1

xt

]> [
Yt−1

yt

]
 (5.50)

or recursively by

θt = θt−1 + Ptxt
(
yt − x>t θt−1

)
, (5.51)

where Pt = (X>t Xt)
−1 is the inverted covariance matrix and may also be

calculated recursively by

Pt = Pt−1 +
Pt−1xtx

>
t Pt−1

1 + x>t Pt−1x
>
t

. (5.52)

In order to avoid that all samples be considered equal, this equation is re-
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duced to

Pt =
1

λ

(
Pt−1 +

Pt−1xtx
>
t Pt−1

1 + x>t Pt−1x
>
t

)
, (5.53)

where λ is the sample weighting factor.

The recursive PCA (Li et al., 2000) provides efficiently a new PCA model by

the updated correlation matrix calculation from the previous rather than by

using the old data. Consider a first data matrix Xo
k ∈ Rk×m composed by

m process variables in k time instants with mean and standard deviation

bk and Σk = diag{σk(1), . . . , σk(m)}, respectively. The scaled data matrix

Xk = Σ−1
k (Xo

k − bk) is used to calculate the correlation matrix Rk by

Rk =
1

k − 1
X>k Xk . (5.54)

When a new sample xo
k+1 arrives, the extended data matrix Xo

k+1 =

[
Xo
k+1

xo
k+1

>

]

has a new mean and standard deviation calculated using

bk+1 =
k

k + 1
bk +

1

k + 1
xo
k+1 , (5.55)

Σk+1 = diag{σk+1(1), . . . , σk+1(m)} , (5.56)

where

σ2
k+1(i) =

k − 1

k
σ2
k(i) + ∆b2

k+1(i) +

(
xo
k+1(i)− bk+1(i)

)2

k
, (5.57)

with ∆bk+1 = bk+1 − bk. The scaled new sample xk+1 = Σ−1
k+1(xo

k+1 − bk+1)

is now used to update the correlation matrix given by

Rk+1 =
k − 1

k
Σ−1
k+1ΣkRkΣkΣ

−1
k+1+

+ Σ−1
k+1∆bk+1b

>
k+1Σ−1

k+1 +
1

k
xk+1x

>
k+1 . (5.58)

Wang et al. (2005) proposed the fast moving window PCA. Conventional mov-

ing window PCA considers a moving window that discards the oldest sam-

ple and adds a new one to the window. Then, it calculates a new PCA model
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from the data matrix obtained from this new window, what is not efficient

because the number of data points must be sufficient to be representative

of the current plant operation. Fast moving window PCA tries to overcome

this deficiency by combining the recursive PCA to enhance the adaptation

mechanism. Recursive PCA brings the capacity to adapt without the need

to process all the data points inside the moving window. The new method

just adapts the mean and standard deviation of the variables and recur-

sively determines the new correlation matrix. In rigour, this method may

fall into both the instance selection and the instance weighting methods,

because it merges methods of these two categories.

Ensemble methods: Ensemble methods have in memory an ensemble of multi-

ple models to make a combined prediction. For concept drift handling, the

ensemble methods may be used in three different ways: by dynamic combi-

nation, by continuous update, and by structural update (Gama et al., 2014).

In dynamic combination, the individual models are dynamically combined

to handle the process changes by modifying the combination weights. In

continuous update, the models are retrained off-line or on-line modes us-

ing new data. Finally, in structural update, new models are added and the

worst models are removed.

The incremental local learning method (Kadlec and Gabrys, 2008a, 2011) is

based on the weighted combination of the p local models predictions trans-

lated by (5.20). The adaptation is performed by adapting the local models

and the weights, simultaneously. The local models update is implicitly per-

formed by using the recursive strategy associated to the PLS modelling.

While the weights calculated through a 2D map, which models the relative

prediction accuracy of the local models, are recalculated by an updated sec-

ond map multiplication.

5.3 Glycerine evaporator application

Biodiesel is a fuel produced by a chemical reaction between vegetable or animal

oil and alcohol (Aransiola et al., 2014). Its production costs are usually high which

motivates the search for options that lower these costs. Since biodiesel produc-
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tion generates about 1kg of glycerine per 10 kg of oil as the main by-product, its

utilization to defray the biodiesel production costs is very important in the pro-

motion of the large-scale production of biodiesel (Manosak et al., 2011; Tan et al.,

2013). After purification, glycerine is an important high-value and commercial

chemical with several uses in the food, cosmetic and pharmaceutical industries

as explained by Tan et al. (2013). The optimization of the glycerine purification

process is usually overlooked due to other tasks related with the main process

of biodiesel production. Consequently, this part of the plant commonly runs at a

suboptimal performance.

The importance of monitoring systems has been increasing in industrial plants

as they contribute decisively to the high product quality and to environmen-

tal constraint compliance (Salahshoor et al., 2011). According to Grazia ni et al.

(2008), soft sensors have been widely applied for on-line plant monitoring since

the mid 80’s for estimating process variables (usually product quality) by using

mathematical models as an attractive low cost alternative to the expensive hard-

ware analyzers.

One of the biodiesel manufacturing process byproducts is the mixture of wa-

ter and glycerine that, in order to be marketable, has to be purified to reach a

water composition around the 10%(w/w) via an energy intensive process. Usu-

ally, quality control is performed in the laboratory with large time delays and

some lack of accuracy. Therefore, a soft sensor for real-time prediction of the

glycerine quality is a tool with high potential for the biodiesel production pro-

cess monitoring and optimization. The aim of the current section is to develop a

soft sensor for the glycerine quality prediction to avoid measurement delays, to

monitor the process in real-time, and to enable quick control actions to be taken

by the operators or by a controller.

5.3.1 Glycerine concentration process

Glycerine is used in numerous applications and may be obtained from oil via the

transesterification reaction that occurs in biodiesel production (Tan et al., 2013).

Before the application in new products, glycerine must be recovered from a crude

solution with an initial water composition of 80–90%(w/w). Essentially, it in-

volves three steps: pre-treatment, concentration, and refining.
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In the pre-treatment phase, the non-glycerine components, such as dispersed

fat, fatty acid, organic non-glycerine matter, and salt, are largely removed by set-

tling, centrifugation, and other separation techniques. Subsequently, in the glyc-

erine concentration step the water content is reduced to 10–30%(w/w). This is

an important step that brings the product to a stable condition for storage. Fi-

nally, the refining step is used to remove the remaining water in the concentrated

glycerine by using a distillation unit under high vacuum at around 160 oC (IPS

Engineering, 2014).

Refining crude glycerine is costly as Dow (2015) states, so biodiesel plants

usually choose to perform only pre-treatment and concentration steps because

they already ensure a higher commercial product value and a substantial decrease

of the production costs. The glycerine recovery from the aqueous solution is an

energy intensive step. Therefore, its optimization may result in tangible economic

benefits.

Figure 5.14 illustrates the glycerine concentration process provided by IPS En-

gineering (IPS Engineering, 2014). It consists of two multiple-effect evaporators

followed by an heat exchanger and a flash tank. Initially, the feed composed by

pre-treated crude glycerine is pre-heated. Then, it passes by two effect evapora-

tors used to increase the steam economy. Steam feeds the tubes side of the first

effect where the pre-heated feed enters. The vapour produced from evaporation

in this first effect is fed to the second effect to provide the heat to evaporate more

water from the product. The more concentrated glycerine that leaves the first

evaporator feeds the second. The vapour produced in this second effect is di-

rected to the tubes side of the heat exchanger where the concentrated glycerine

from the second effect enters the shell side. Finally, the glycerine goes to a flash

tank at low pressure where further evaporation takes place. The flash tank liquid

stream is the concentrated glycerine product.

5.3.2 Soft sensor development

The basic steps in the development of the soft sensor (data collection, data pre-

processing, model selection, model training and model validation) are described

in the following sections.
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Figure 5.14: Diagram of the glycerine concentration process developed by IPS En-
gineering. Solid arrows represent liquid streams, while dashed arrows represent
vapour streams.

� Data collection

In order to predict the water composition in the concentrated glycerine using

soft sensing technology, a dataset collected in industrial environment is used. It

consists of six time series classified as input and output variables (Figure 5.15).

The temperature in the first evaporator (x1), the temperature in the second evap-

orator (x2), the flash tank pressure (x3), the temperature of the vapour stream

released in the flash tank top (x4), and the temperature of the liquid stream re-

leased in the flash tank bottom (x5) are the input variables. The water contents in

the concentrated glycerine (y) is the output variable. While input variables were

collected from the plant historian with a sampling time of 1h, the output variable

was measured in the plant laboratory by technicians. For confidentiality reasons,

normalized data will be shown below.

� Data pre-processing

The dataset was pre-treated in two steps. First, the data filling in was performed

in the output variable because it consists of laboratory measurements with a

variable sampling period. Hence, this dataset was filled in order to contain a

sampling time of 1h assuming a linear model between two consecutive values.

Second, outlier points were removed considering the mean and range of each

variable to define the normal operational band. The obtained dataset contains
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Figure 5.15: Soft sensor input and output variables.
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Figure 5.16: Selected data.

675 points and was normalized in order to avoid the overshadowing of variables

with small magnitudes. Figure 5.16 shows the input and output variables after

data pre-processing.

The data is divided into the training and validation subsets. The division is

performed distributing alternately one data point for each subset.

�Model selection

Considering the scheme presented in Figure 5.15, three modeling methodologies

were applied: Partial Least Squares (PLS), Feedforward Artificial Neural Net-

work (FANN), and Layer Recursive Artificial Neural Network (LRANN).
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Developed by the Swedish statistician Herman Wold (Wold, 1982), PLS is a

simple algorithm widely applied for relating variables by a linear multivariate

model able to analyse noisy and collinear data (see Chapter 2). Most popular

nonlinear methods found in the development of soft sensors are based on ANN

because they are powerful tools for the modelling of complex multivariable pro-

cesses (see Chapter 2). FANN is the simplest type of ANN where the connection

between the inputs and outputs is performed in only one direction (forward). In

contrast, LRANN contains connections between units in such a way that forms

feedback loops creating a state that exhibits a dynamical behaviour (Schuster and

Paliwal, 1997).

The PLS model was developed using all the components in the data, which

means that all the capacity of the model was used to predict data (nco = 5). The

ANN model development consisted of the model structure selection in the in-

put, the hidden, and the output layers, composed by 5 (number of input vari-

ables), nhi = 30, and 1 (number of output variables) neurons, respectively. In the

LRANN model, a sixth input is added to introduce the time dependence. The

number of past values introduced in this input is ntd = 3. For both ANN models,

the aggregation function is the sum whereas the hyperbolic tangent and linear

functions were chosen as activation functions for the hidden and output layers,

respectively. The performance goal was defined by default as 0, while the maxi-

mum number of epochs was set to 200. ANN based models representations are

shown in Figure 5.17.

The model training and validation was performed in Matlab R2014b program-

ming language where several default functions such as plsregress, net, and

trainlm were used.

�Model training

Figure 5.18 shows the output variable prediction of the three models for the train-

ing set. In the left column, it is possible to compare the time trends of actual and

predicted data. The plots in right column draw the predicted versus actual data.

To evaluate the models prediction capacity and the development performance,

the mean square error (MSE), the coefficient of determination (R2), and the com-

putational time of the model training (tcomp) were determined for all of the tests
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Figure 5.17: ANN based models representation: FANN (left) and LRANN (right).

and are in Table 5.1. An MSE value near zero and an R2 near one show a good

prediction of the model. Values in rows c, f and i and columns 2 and 3 show the

test results for the PLS, FANN, and LRANN models considered in the present sec-

tion, respectively. The values of MSE and R2 obtained by the PLS model demon-

strate its poorer predicting capability (MSEc=0.00230 and R2
c = 0.113) . Contrar-

ily, the values of MSE (MSEd=0.00038 and MSEh=0.00000) and R2 (R2
d = 0.853

and R2
h = 1.000) of ANN based models show that they may predict quite well

the system and that the LRANN approach rendered the best quality. Plots draw-

ing actual versus predicted data confirm these conclusions. Since the first ntd past

data points have no predicted values, it is assumed that the predicted variable has

the same value as the measured variable in the first ntd time instances. Regarding

the computational time, the training of the PLS is significantly less demanding

than the LRANN.

�Model validation

The model validation follows the training step and, as referred in Section 2.2.5,

it should be performed using independent process data. Figure 5.19 shows both

the process data and its estimation by the developed soft sensors. Performance

measures are pointed out in rows c, f and i and columns 4 and 5 of Table 5.1.

The visual inspection of the figures reveals that the ANN based models achieved

better results than the PLS model. LRANN model is the best approach showing

better performance values (MSEg = 0.00042 and R2
g = 0.838) than the obtained

with the FANN model (MSEd = 0.00116 and R2
d = 0.547).
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Figure 5.18: Results of the model training step.

5.3.3 Effect of model structure on prediction

In order to evaluate the model structure effect on the prediction of glycerine com-

position, a number of tests were performed varying the PLS model component

number, the FANN and LRANN models hidden neuron number, and the LRANN

model past point number and the results for the validation dataset are illustrated

in Figures 5.20–5.23.

Figure 5.20 shows the effect of the PLS model components number. Three

tests were performed using 3, 4 and 5 components. Using nhi = 5 components

is equivalent to use all the process variables, while using fewer components ex-

plores whether the variability may be predicted using less plant data. Entries a, b

and c of Table 5.1 show the performance measures for the training and validation

datasets. Although the performance measures of the PLS model increases in the

tests with more components, their values confirm that the prediction still is very

weak for all the considered components. Consequently, the PLS model is not able

to predict adequately the glycerine composition, possibly due to its inability of

modelling nonlinear relationships.

Due to a possible data over-fitting observed in Section 5.3.2, the number of

neurons that compose the hidden layer of the ANN based approaches was stud-
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Table 5.1: Performance measures.

Training set Validation set

Test MSE R2 MSE R2 tcomp, s

a PLS, nco = 3 0.00230 0.113 0.00228 0.113 0.0
b PLS, nco = 4 0.00229 0.116 0.00227 0.117 0.0
c PLS, nco = 5 0.00228 0.118 0.00226 0.119 0.0
d FANN, nhi = 5 0.00115 0.557 0.00127 0.506 2.2
e FANN, nhi = 10 0.00045 0.826 0.00092 0.642 1.3
f FANN, nhi = 15 0.00038 0.853 0.00116 0.547 1.3
g LRANN, nhi = 5 and ntd = 3 0.02004 0.000 0.02020 0.000 0.4
h LRANN, nhi = 10 and ntd = 3 0.00037 0.856 0.00240 0.066 5.3
i LRANN, nhi = 15 and ntd = 3 0.00000 1.000 0.00042 0.838 20.2
j LRANN, nhi = 15 and ntd = 6 0.00002 0.993 0.00201 0.215 138.2
k LRANN, nhi = 15 and ntd = 9 0.00008 0.971 0.00933 0.000 298.4

ied. Three tests using 5, 10 and 15 neurons in the hidden layer were performed.

Figures 5.21 and 5.22 show the neurons number effect on the glycerine composi-

tion prediction. Table 5.1 lists the performance measures in rows d, e, and f (for

the FANN model) and g, h, and i (for the LRANN model with a constant nhi = 3).

For the training dataset, FANN model performance is superior when a higher

number of neurons is used, because it allows to predict the glycerine composition

with higher accuracy. However, nco = 10 neurons are preferable due to lower

validation error. Regarding the LRANN model, the fit quality in the training step

is again superior when a higher number of neurons is used achieving the highest

performance when nco = 15. The lowest validation error was also achieved with

the number of neurons in the hidden layer of the LRANN model equal to 15. The

dynamic component of the LRANN model helps to improve the FANN model

results (as shown by the higher values of R2 and lower values of MSE). This

suggests that the system has a dynamic state.

The effect of the number of past data points that the recurrent connection con-

siders was also studied. Three tests using 3, 6 and 9 past values re-introduced

in the hidden layer were performed. Figure 5.23 presents the results for the val-

idation dataset and the performance measures may be found in rows i, j and k

of Table 5.1. An increase in the past data input leads to poorer prediction capa-

bility that suggests that the sampling time is higher than the time constant of the
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Figure 5.19: Results of the model validation step.

process.

When considering the validation dataset, the models with ntd = 6 and ntd = 9

failed the prediction, possibly due to over-fitting.

Comparing the results of the computational time used in the models train-

ing phase, it is possible to conclude that a LRANN model needs substantially

more time to perform the training than the other approaches. In contrast, the PLS

model is the fastest approach.
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Figure 5.20: Effect of PLS model components number in the glycerine composi-
tion prediction.
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Figure 5.21: Effect of FANN model hidden layer neurons number in the glycerine
composition prediction.
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Figure 5.22: Effect of LRANN model hidden layer neurons number in the glycer-
ine composition prediction.
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Figure 5.23: Effect of LRANN model time delay in the glycerine composition
prediction.
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Chapter 6

Conclusions and future work

In this chapter, the main contributions of the present research work in control

loops performance monitoring and improvement are marked. Possible future

research directions are also highlighted.

6.1 Main contributions

The research work covered in this thesis deals with performance monitoring and

optimization of industrial control loops, which is critical in order to maximize the

economic output of production assets subject to product quality specifications,

operational, safety, and environmental constraints. Both the theoretical method

development and the numerical implementation of the algorithms have been car-

ried out.

6.1.1 System Identification

Chapter 2 comprises a review of closed-loop system identification and two case

studies based on two chemical engineering problems.

The first presented the development of a system identification approach and

its computational implementation for SISO and MIMO systems. First- and second-

order linear models in the state-space were obtained from industrial heat ex-

changer data. Since their performance revealed to be very similar, the first-order

model was selected due to its simpler structure and lower computational effort.

Both linear models were also applied to a simulated dataset of a CSTR equipped
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with a heating coil and that has two input variables (the inlet flow concentra-

tion of reactant and the coil temperature) and two output variables (the reactant

concentration and the reactor temperature). The parameter estimation of the first

and second-order models showed some convergence difficulties and revealed to

be sensitive to the initial estimate. These problems were successfully overcome

by applying parameter normalization and by choosing a more adequate initial

model estimate.

The second case study consists of the development of an hybrid dynamic

model of a decanter of a biodiesel plant. The hybrid model is composed by a first

principle model to describe the dynamics of the biodiesel decanter and by an arti-

ficial neural network model of the liquid-liquid equilibrium among glycerol, ester

(the main compound of biodiesel), and methanol. Besides the complete study of

the decanter dynamics, this work utilized an alternative to the commonly used

iterative flash calculations with the purpose of reducing substantially the compu-

tation time of the model and enabling an online implementation.

6.1.2 Control Loop Performance Assessment

Since Harris (1989) work, control loop performance monitoring methods have en-

joyed a continuous interest in the academic and industrial world. Chapter 3 pro-

vides a state-of-the-art review and a systematic taxonomy of existing controller

performance monitoring approaches. Special attention was given to stiction, a

long-standing control valve problem, its modelling, detection/quantification, cov-

ering more than 150 publications.

The presence of stiction in control valves impacts the behaviour of the con-

trol loop and produces sustained oscillations. A significantly improved method

of detection and characterization of multiple oscillations was proposed in Sec-

tion 3.3. The approach is based on a single calculation of the auto-correlation

function and was successfully applied to 3 cases where other approaches had

failed, namely where the signals were affected by noise or multiple frequency os-

cillations as well as signals in which stiction was absent. Besides, the proposed

method requires a light computational burden and may be run automatically.

Two new approaches for stiction detection were also proposed in this thesis

(see Sections 3.4 and 3.5). The first approach detects and quantifies stiction using
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numerical optimization. It uses the Hammerstein Model of the control valve af-

fected by stiction and of the industrial process. The discontinuous valve stiction

part of the model was smoothed via the hyperbolic function in order to enable the

use of continuous optimization technique. The developed approach reproduced

quite well the experimental data and was able to detect and quantify correctly

valve stiction present in the control loops.

The second approach, based on pattern recognition, extended the stiction de-

tection method of Yamashita (2006a) to integrating processes such as level control

loops. The data is preprocessed by a transformation function to obtain a direct

relation between the controlled variable and the valve position. This approach

was successfully applied to simulated and industrial datasets from integrating

processes. A study about the influence of the noise was also carried out. Al-

though the stiction phenomena gets obfuscated by noise, correct stiction diagno-

sis is possible with data filtering. The method proved to outperform the existing

ones, namely when dealing with noisy data.

6.1.3 PID controller tuning

In Chapter 4, a tuning method of PID controllers was developed that is capable

of mitigating the impact of valve faults (such as stiction) until the maintenance

work is possible. After selecting an appropriate dataset, the method checks for

faults in the control valve. If some fault is identified, two mathematical models

(one for the process and other for the fault) are identified. Otherwise, the nominal

process model is obtained.

The determination of the controller tuning parameters is formulated as an op-

timization problem whose objective function penalizes both the deviation of the

controlled variable from the setpoint and the valve movement. Besides, the user

may specify additional performance criteria and variables constraints in order to

obtain the desired closed-loop response.

A detailed application on a flow rate control loop was demonstrated using

two simulated datasets that incorporate a healthy and a sticky valve. The method

produced correct stiction diagnosis results in both cases. Several sets of tuning

parameters were determined for the same open-loop process by varying the per-

formance criteria and constraints. The behaviour of the control loop with a sticky
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valve was significantly improved reducing the control moves and the oscillations

in the controlled variable.

6.1.4 Soft sensor technology

In Chapter 5, soft sensor technology was addressed as a way to generate new in-

formation that is not readily available from on-line instrumentation or laboratory

measurements, critical for real-time process monitoring and control.

The contribution in this thesis intended to broaden the use of soft sensors

technology in industrial scenarios.

Although the glycerine concentration process is not the main production unit

of a biodiesel plant, it is one of the most energy intensive. However, the use of on-

line analyzers for glycerine quality prediction is not common and, therefore, soft

sensor technology has a high potential for this task. In a case study, three soft sen-

sors were developed and their performance in the prediction of glycerine quality

was analyzed. The layer recursive ANN model showed the best prediction qual-

ity in both the training and validation phases due to its capacity of reproducing

nonlinear relationships and dynamical behaviours.

6.1.5 Publications

This thesis has been the outcome of four years of research and development and

a significant portion has been reviewed and published. An overview of these

contributions is given below.

System Identification

• Brásio, A. S., Romanenko, A., and Fernandes, N. C. (2012). System iden-

tification as an application of optimization. In Simos, T. E., Psihoyios, G.,

Tsitouras, C., and Anastassi, Z., editors, Proceedings of the AIP Conference,

volume 1479, pages 822–825, Kos (Greece). AIP. URL http://dx.doi.

org/10.1063/1.4756264

• Brásio, A. S., Romanenko, A., and Fernandes, N. C. (2013). Aproximação de

cálculos iterativos por redes neuronais em sistemas de equações diferenciais
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ordinárias. In Proceedings of the XVI Congress of the Portuguese Association of

Operational Investigation, Bragança (Portugal)

• Brásio, A. S., Romanenko, A., and Fernandes, N. C. (2015c). Using sequen-

tial quadratic programming for system identification. Applied Mathematics &

Information Sciences, 9(1):19–26. URL http://www.naturalspublishing.

com/Article.asp?ArtcID=7413

• Brásio, A. S., Romanenko, A., and Fernandes, N. C. (2015a). Development

of a numerically efficient biodiesel decanter simulator. In Operational Re-

search, CIM Series in Mathematical Sciences 4. Springer International Pub-

lishing Switzerland 2015. URL http://www.springer.com/us/book/

9783319203270

Control Loop Performance Assessment

• Brásio, A. S. R., Romanenko, A., and Fernandes, N. C. P. (2014). Mod-

eling, detection and quantification, and compensation of stiction in con-

trol loops: The state of the art. Industrial & Engineering Chemistry Research,

53(39):15020–15040. URL http://dx.doi.org/10.1021/ie501342y

• Brásio, A. S. R., Romanenko, A., and Fernandes, N. C. P. (2014). Stiction

detection and quantification as an application of optimization. In Mur-

gante, B., Misra, S., Rocha, A., Torre, C., Rocha, J., Falcão, M., Taniar, D.,

Apduhan, B., and Gervasi, O., editors, Computational Science and Its Applica-

tions – ICCSA 2014, volume 8580 of Lecture Notes in Computer Science, pages

169–179. Springer International Publishing. URL http://dx.doi.org/

10.1007/978-3-319-09129-7_13

• Brásio, A. S., Romanenko, A., and Fernandes, N. C. (2015). Detection of

stiction in level control loops. IFAC-PapersOnLine, 48(8):421 – 426. 9th IFAC

Symposium on Advanced Control of Chemical Processes ADCHEM 2015

Whistler, Canada, June 7-10, 2015. URL http://www.sciencedirect.

com/science/article/pii/S240589631501085X
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• Romanenko, A., Brásio, A. S., Fernandes, N. C., Portugal, A. A., and San-

tos, L. O. (2015). Método e sistema de análise do desempenho de anéis de

controlo industriais pela deteção e caracterização automáticas de oscilações

múltiplas. URL http://worldwide.espacenet.com/publicationDetails/

biblio?DB=worldwide.espacenet.com&II=21&ND=3&adjacent=true&

locale=en_EP&FT=D&date=20150318&CC=PT&NR=107168A&KC=A. Patent

Application PT 107168 (A)

• Brásio, A. S., Romanenko, A., and Fernandes, N. C. (2015b). Performance

monitoring of industrial process control loops. In Proceedings of the XVI

Convention Of Electrical Engineering, CIE 2015, Villa Clara, (Cuba)

PID controller tuning

• Romanenko, A., Brásio, A. S., Fernandes, N. C., Portugal, A. A., and Santos,

L. O. (2014). Monitorização e optimização do desempenho de controladores

na presença de falhas nos elementos finais de controlo. URL http://

worldwide.espacenet.com/publicationDetails/biblio?DB=worldwide.

espacenet.com&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&

date=20140630&CC=PT&NR=106716A&KC=A. Patent Application PT 106716 (A)

6.2 Future work

Although the topics covered in this thesis appear to be mature areas, further re-

finements are desirable. Based on the reflection and inspiration from this thesis,

several potential research directions may be provided.

6.2.1 System Identification

On-line and automatic time delay estimation to improve reliability of CLPA

tools: Several methods are strictly dependent on the time delay of the process

such as the Harris index. Usually, its estimation is not performed in the common

practice and a default value is used which lowers the effectiveness of the methods
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to detect and diagnose the performance problems of a control loop. In this con-

text, the on-line and automatic time delay estimation would be of extreme impor-

tance to improve the reliability of control loop performance assessment tools. Al-

though several univariable and multivariable methodologies are available in lit-

erature, an investigation over the existing methodologies to identify those which

perform better in data containing noise, setpoint changes, external disturbances,

and other phenomena would be very interesting. For several default scenarios,

this study could identify the time delay estimation methods robustness and au-

tomatically separate them in groups. Then, several improvements could be sug-

gested based on the weaknesses revealed by each of the groups.

6.2.2 Control Loop Performance Assessment

Compensation of stiction considering the multivariable system performance:

Although some emphasis of this thesis was placed on the refinement of stiction

detection, quantification, and compensation methods, other improvements may

be developed. For instance, stiction compensation could be viewed as a more

general active fault-tolerant control problem that handles multivariable nonlin-

ear systems. This way, instead of mitigating the effect of stiction in a single valve,

a more efficient closed-loop performance may be achieved by taking advantage

of eventual analytical and hardware redundancy. An example of such approach

may be the use of online stiction diagnosis built into the MPC system and the

adaptation of the move suppression and weight parameters associated to the ma-

nipulated variables.

Increasing precision/accuracy of stiction detection and diagnosis results:

Even though stiction detection and diagnosis methods based on model fitting

have proved to be very efficient, they are difficult to implement in an automatic

way. It is therefore desirable to develop an unified approach that combines sev-

eral stiction diagnosis methods in order to increase the robustness, precision, and

accuracy.

Translating performance improvement to economic benefits: When perfor-

mance degradation is identified, corrective measures are applied in order to bring

it back to the desired level. However, the common practice is to base the eval-

uation using purely technical terms without any reflection on the process eco-
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nomics. This economic benefit analysis may show what impact a particular loop

has and help prioritize loop maintenance and other optimization initiatives. Be-

sides, the use of economic indicators may allow to provide more transparent in-

formation to various plant stakeholders and increase their confidence in CLPA

tools.

Holistic view of plant goals: The interest in the performance measurement

and optimization at each plant layer is high. However, these layers may have dif-

ferent goals and metrics that may be conflicting and mismatching, such as keep-

ing the inventory low but asking to be ready for meeting a higher demand on the

production. This problem could be solved by developing a platform that provides

a holistic view of performance metrics across the whole plant. This would har-

monize these metrics and focus the plant layers on meeting the company goals.

Dissemination of advanced CLPA tools in industrial context: For the last few

years, commercial tools dedicated to the analysis of performance have emerged.

However, these tools still lack the more recent advanced metrics that help detect,

diagnose, and compensate control loop performance degradation. In addition, it

may be beneficial to incorporate automatic functionalities that, in addition to the

diagnosis, would implement corrective measures, minimizing the performance

loss. Besides, a wider dissemination of CLPA tools should be done both in the

industry and academia.

6.2.3 PID controller tuning

Evaluate performance of the developed method in other valve faults: In this

thesis, a method to compensate faults present in control valves through the auto-

matic tuning of the PID controller and a successful application to a valve affected

by stiction was performed. This method may be further generalized to other

valve faults in order to evaluate its performance in the fault compensation.

6.2.4 Soft sensor technology

Automatic selection of sufficient informative data from plant historians: Data

quality is critical for the success of soft sensor development. Therefore, an ap-

proach to extract automatically information rich data from the plant historian
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could improve the quality of the soft sensors and reduce the development time.

Shardt (2014) developed a first approach composed by two phases: the data seg-

mentation that identifies regions that may be described using the same model,

and the data quality assessment in which each region information content is ana-

lyzed. This method may be extended for multivariable systems.
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Appendix A

CSTR model

Consider a simple liquid phase reactor where an irreversible first-order chemical

reaction takes place converting reactant A to product B. The inlet stream consists

of pure component A with molar concentration CAi. A heating coil is used to

maintain the reaction mixture at the desired operating temperature by adding

heat needed for the endothermic reaction to take place.

A deterministic mathematical model can be built based on the following as-

sumptions:

• the CSTR is perfectly mixed;

• the reaction rate can be defined using the Arrhenius equation: k = k0 exp(− Ea

R T
),

where k0 is the frequency factor, Ea is the activation energy and R is the gas

constant;

• the mass densities, ρ, and the specific heat capacity, cp, of the feed and prod-

uct streams are equal and constant;

• the liquid volume, V , in the reactor is kept constant;

• the thermal capacitances of the heating fluid and of the coil wall are negli-

gible compared to the thermal capacitance of the liquid in the tank;

• all the heating fluid is at a uniform temperature, Tc;

• the rate of heat transfer from the heating fluid to the reacting mixture is

given by UAt(Tc− T ) where U is the overall heat transfer coefficient and At

is the heat transfer area.
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Appendix A. CSTR model

Table A.1: CSTR model parameters.

Parameter Value Unit

At 9.7980 m2

cp 1033.78 J kg−1 oC−1

Ea/R 1.0838·104 oC
k0 4.0·1013 s−1

q 0.0013 m3 s−1

Ti 50 oC
U 500 W m−2 oC−1

V 3.7854 m3

∆H 5.0·105 J mol−1

ρ 832.96 kg m−3

Material and energy balance equations may be rearranged into

V
dCA

dt
= q(CAi − CA)− V kCA , (A.1a)

V ρcp
dT

dt
= qρcp(Ti − T ) + (−∆H)V kCA + UAt(Tc − T ) . (A.1b)

The model parameters were adapted from exercise 4.14 of Seborg et al. (2010)

and are listed in Table A.1.

The set of differential equations defined by (A.1) was implemented in GNU

Octave (Eaton, 2002) and integrated using LSODE solver (Hindmarsh, 1983) for a

series of different steps in the input variables profiles and with a finite-differences

approximation of the derivative information. More details about it can be found

in Radhakrishnan and Hindmarsh (1993). The outputs of the model, corrupted

with a random noise, constitute the experimental dataset for the identification of

the MIMO system.
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Appendix B

Benchmarks modifications and

extensions

This appendix summarizes the modifications and extensions that have took place

in some benchmarks and indices. Modifications and extensions of the MVC

benchmark are introduced in Table B.1, of the user-specified indices in Table B.2,

and of the model-based benchmarks in Table B.3.

Table B.1: Modifications and extensions of the MVC benchmark.

Work Modification/Extension

SISO performance index

Desborough and Harris (1992) connected the Harris index to the squared correlation co-

efficient usually calculated by multiple regression analysis

Tyler and Morari (1995) and

Tyler and Morari (1996)

extended to unstable and non-minimum-phase systems

and introduced statistical likelihood ratio tests

Lynch and Dumont (1996) used Laguerre networks to evaluate the performance in-

dex

Huang and Shah (1998) developed an efficient, stable filtering and correlation

method to estimate MVC

Qin (1998) derived the minimum variance control based performance

assessment using the internal model control structure

Desborough and Harris (1993),

Stanfelj et al. (1993) and Huang

et al. (2000a)

extended to feedback and feedforward control loops

McNabb and Qin (2003) built a state-space framework for MVC

Continued on next page
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Table B.1 – continued from previous page

Work Modification/Extension

MIMO performance index

Huang and Shah (1998) showed that the performance assessment of MIMO feed-

back systems can be estimated from closed-loop data

Harris et al. (1996), Huang and

Shah (1998) and Huang and

Shah (1999)

showed the important role of interaction matrix in the per-

formance assessment of MIMO feedback systems

Ettaleb (1999) suggested a practical solution to MIMO control perfor-

mance assessment (for minimum phase systems) that per-

forms, in a first stage, time-series analysis as in SISO case

independently for each output yi to get minimum achiev-

able output variance σ2
MV,i.

Ettaleb (1999), Ko and Edgar

(2001b) and McNabb and Qin

(2003)

studied the elimination of the requirement to develop the

interaction matrix for multivariate systems with character-

istics that lead to a diagonal interaction matrix

Huang et al. (2005) investigated a multivariable control benchmark which

needs only the order of the interaction matrix. This ap-

proach is simple and a natural extension of SISO con-

trol performance assessment resulting in a less aggressive

benchmark control than the later approaches.

Varying the setpoint of the controlled variables

Perrier and Roche (1992) and Ko

and Edgar (2000)

modified the minimum variance index to include setpoint

variations in the inner loop of cascade controls

Seppala et al. (2002) discussed the influence of setpoint changes on MVC and

demonstrated the benefits of a decomposition of the con-

trol error into the components resulting from setpoint

changes and setpoint detrended signal

Thornhill et al. (2003a) examined the reasons why performance during setpoint

changes differs from regulatory performance during oper-

ation at a constant setpoint

Processes with time-variant behavior

Huang (1999, 2002) built a general framework for control performance assess-

ment of linear time-variant processes

Gustafsson (2000), Salsbury

(2005) and Xia et al. (2005)

described methods for detecting disturbance/load

changes and characterizing subsequent responses in

single-input-single-output (SISO).

Continued on next page
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Table B.1 – continued from previous page

Work Modification/Extension

Xu and Huang (2006) considered performance analysis problems for the process

that is subject to time varying disturbance dynamics for-

mulating the problem as the minimization of the sum of

the weighted variances of all disturbances.

Xu et al. (2008) extended Xu and Huang (2006) approach to MIMO sys-

tems.

Table B.2: Modifications and extensions of the user-specified performance in-
dices.

Work Observations

Desborough and Harris (1992)

and Thornhill et al. (1999)

proposed the use of the extended horizon performance in-

dex to consider user specifications and/or to avoid requir-

ing the loop time delay for calculating the control perfor-

mance index.

Rhinehart (1995) and Venkatara-

manan et al. (1997)

proposed and applied the statistical test r-statistic which

detects deviations from a setpoint regardless of the output-

noise amplitude.

Bezergianni and Georgakis

(2000, 2003)

introduced the relative variance performance index that

compares actual control to both minimum variance con-

trol and open-loop control.

Li et al. (2003) presented the relative performance monitor index which

compares the performance of a control loop to that of a

reference model.

Hagglund (2005) suggested to monitor the extended horizon performance

index and an alert limit according to the tuning of the loop

in order to fulfill design specifications.
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Table B.3: Modifications and extensions of the model-based performance indices.

Work Observations

Eriksson and Isaksson (1994)

and Ko and Edgar (1998)

applied PID controller order, structure and action con-

straints for the calculation of the more realistic perfor-

mance indicator optimal PID benchmarking.

Zhang and Henson (1999) proposed expectation-case approach where the actual per-

formance is compared online to the expected performance

obtained when the controller actions are implemented on

the process model instead of the plant.

Ko and Edgar (2001a) developed a methodology for the estimation of a con-

strained minimum variance performance bound for

MIMO systems with stable process inverses. The per-

formance bounds were subsequently used for the perfor-

mance assessment of MPC.

Horton et al. (2003) and Huang

(2003)

developed the approach of Ko and Edgar (2004) requiring

the process/disturbance model knowledge/identification

and the use of optimization algorithms to calculate the op-

timal controller settings.

Grimble (2003) provided a theoretical framework for control performance

analysis based on state-space models.

Ko and Edgar (2004) derived an explicit "one-shot" solution for the closed-loop

output as function of PID parameters.

Ko and Edgar (2001a) and

Schafer and Cinar (2004)

developed a model-based approach for benchmarking of

MPC systems, which can explicitly handle long-time de-

lays and constraints.

Julien et al. (2004) proposed design-case benchmark showing to be useful

both as a model diagnostic and as a tuning guide during

commissioning.

Rato (2009) normalizes the index developed by Qin and Yu (2007) to

contemplate variations in the load disturbances enabling

less variation and lower false alarm rate while maintains

its ability to detect the controller performance deteriora-

tion.

B.4



Appendix C

Missing data

This appendix summarizes some techniques to assess missingness mechanisms.

It also provides two techniques to handle missing data based on the maximum

likelihood method and on the multiple imputation method. It also exemplifies

the application of several techniques using a small dataset.

C.1 Methods for assessing MCAR mechanisms

The univariate t-test based approach (Dixon et al., 1988) separates the missing and

the complete cases of a particular variable X1 into two subgroups. If MCAR

mechanism is present, both subgroup means are the same. A t-test is applied

to examine subgroup mean differences on the other variable of the dataset , X2.

The algorithm is described as follows:

1. Select variables X1 and X2.

2. Calculate M matrix.

3. Using just the complete samples of X2, separate the
missing and complete cases ofX1 into two subgroups:
Xobs = {X1,obs, X2,obs} andXmiss = {X1,miss, X2,obs}.

4. Calculate the mean of X2 for each subgroup.

5. Perform the t-test to examine subgroup mean differ-
ences.

6. If p < 0.01, the mean difference is statistically signif-
icant and variable X1 is considered not MCAR.

7. If p > 0.01, the mean difference is not statistically
significant and variable X1 is considered MCAR.
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The correlation among variables may influence the test results because signif-

icant mean differences may be detected in several variables when the real cause

arises from just one of the variables (Enders, 2010).

The multivariate Little MCAR test (Little, 1988) compares the subgroups means

to the maximum likelihood estimates of the grand means. Contrarily to the pre-

vious test, it uses the cases that have a same missing data pattern applying the

statistic test

d2 =
J∑

j=1

d2
j =

J∑

j=1

nj

(
µ̂j − µ̂

ML
j

)>
Σ̂
−1

j

(
µ̂j − µ̂

ML
j

)
, (C.1)

where J is the total number of missing patterns, nj is the number of the cases in

the missing pattern j, µ̂j is the mean vector for the cases in the missing pattern

j, µ̂ML
j is the grand mean vector estimated by the maximum likelihood method,

and Σ̂j is the covariance matrix estimated by the maximum likelihood method.

d2 statistic is essentially a weighted sum of the J squared differences between

pattern j means and the corresponding grand means. When the data presents

a MCAR missing mechanism, this statistic has approximately a χ2-distribution

with
J∑
j=1

kj − k degrees of freedom.

The multivariate Little MCAR test algorithm is:

1. Estimate the maximum likelihood parameters µ̂
ML
j

and Σ̂.

2. Select a missing pattern.

3. Calculate the statistic test d2j for the selected missing
pattern.

4. Repeat steps 1 and 2 for every missing patterns.

5. Perform the χ2-test to the value d2 with
J∑

j=1

kj − k

degrees of freedom, where kj is the number of com-
plete variable for missing pattern j, and k is the total
number of variables.

6. If p < 0.01, the mean differences are statistically sig-
nificant and the data are considered not MCAR.

7. If p > 0.01, the mean differences are not statistically
significant and the data are considered MCAR.
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C.2 Methods for handling missing data

The maximum likelihood method, often referred to as full information maximum

likelihood or direct maximum likelihood method, is a missing data handling

method whose formulation relies on a probability density function to describe

the population data. Researchers routinely assume that the variables are nor-

mally distributed in the population and the density function comes as

Li =
1

(2π)ki/2|Σi|1/2
exp

[
−0.5 (Yi − µ)>Σ−1

i (Yi − µ)
]
, (C.2)

where Yi are the sample scores, µ is the population mean vector, Σ is the popula-

tion covariance matrix, Li is the likelihood value that describes the height of the

normal curve at a particular score value, and ki is the number of complete data

points for the case.

In order to identify the population parameter values that have the highest

probability of producing a particular sample of data, the maximum likelihood

is estimated. The fit measure used to estimate these values is the log-likelihood

consisting of the sum of the individual log-likelihood values, that is,

logL =
N∑

i=1

logLi , (C.3)

with Li given by C.2.

The algorithm of the maximum likelihood method is:

1. Select a missing pattern.

2. Calculate the individual log-likelihood of the cases
contained in the selected missing pattern consider-
ing just the population parameter values for the ob-
served data in that pattern.

3. Iterate along the missing patterns.

4. Calculate logL summing all the individual log-likelihoods.

5. Readjust the population parameter values and run
again steps 1 to 4 in order to maximize the log-likelihood
logL.
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Appendix C. Missing data

In the context of the maximum-likelihood method, other algorithms can be

used such as the expectation-maximization algorithm proposed by Dempster et al.

(1977) which is a deterministic iterative approach. The algorithm is composed by

the expectation and maximization steps (E-step and M-step, respectively). The

iterative algorithm starts with estimates of the mean vector and covariance ma-

trix (considering, for instance, the list-wise deletion method). The E-step builds

a set of regression equations that predict the incomplete variables using these es-

timates, while the M-step generates updated estimates for the mean vector and

the covariance matrix in such a way that the logL is maximized. These steps

are repeated until the convergence of the mean vector and covariance matrix are

reached (Ghomrawi et al., 2011). It is worth mentioning that the expectation-

maximization algorithm may diverge and find solutions with infinite likelihood

unless the covariances are regularized artificially.

The multiple imputation method is a modern tool for handling missing data

which generates several copies of the dataset and fills the gaps of missing val-

ues in each copy with different estimates. The method consists of the imputation,

the analysis, and the pooling phases. The imputation phase generates m copies

of the dataset containing different estimates of the missing values, the analysis

phase applies the soft sensor development method to each generated copy, and

the pooling phase combines the different results into a single final result.

Several methods based on the Markov chain Monte Carlo are used to imple-

ment the multiple imputation method, namely Gibbs sampling, data augmen-

tation, the Metropolis-Hastings algorithm, among others (Schafer, 1997, Section

1.2). One of the most popular is the data augmentation algorithm developed

by Tanner and Wong (1987). It is an iterative method that repeatedly cycles be-

tween two steps: the imputation step (I-step) and the posterior step (P-step). Ba-

sically, the I-step uses the stochastic regression imputation method to fill in the

missing values, while the P-step characterizes the posterior distribution and uses

a Monte Carlo simulation to draw new estimates for the defined distribution. The

P-step consists in a standalone Bayesian analysis (Enders, 2010). Several copies

of the data are obtained when this two-step procedure is run repeatedly.

Suppose that the complete data Y may be written as Y = {Yobs, Ymiss} and that
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the missing mechanism is ignorable. Given an estimation of θ∗t , the missing data

Y ∗miss is imputed from the distribution

Y ∗miss ∼ p(Ymiss|Yobs, θ
∗
t ) . (C.4)

This step is the so-called I-step. Considering now the complete dataset Y ∗ =

{Yobs, Y
∗

miss}, the estimation of θ∗t+1 is generated from

θ∗t+1 ∼ p(θt+1|Yobs, Y
∗

miss) . (C.5)

Procedurally, a Monte Carlo simulation randomly generates new parameters val-

ues (also called simulated parameters), θ∗t+1 = {µ∗t+1,Σ
∗
t+1}, using the following

posterior distributions

Σ∗t+1 ∼ p(Σ|µ̂, Y ∗) ∼ W−1(N − 1, Λ̂) , (C.6)

and

µ∗t+1 ∼ p(µ|Y ∗,Σ∗t+1) ∼MN(µ̂, N−1Σ∗t+1) , (C.7)

where µ̂ is the sample mean vector, Σ̂ is the sample covariance matrix, W−1 is the

inverse Wishart distribution, N is the number of samples, Λ̂ is the sample sum

of squares and cross products matrix, Λ̂ = (N − 1)Σ̂, MN denotes a multivariate

normal distribution, µ∗t+1 is the simulated mean vector, and Σ∗t+1 is the simulated

covariance matrix. This step is called P-step.

Both I- and P-steps are performed iteratively until a stopping criterion has

been satisfied. The imputed dataset s must mimic independent draws from the

distribution of the missing values. These data can be generated either by the se-

quential or the parallel data augmentation chains. While the sequential strategy

selects a dataset at regular intervals in the data augmentation chain (for example,

it selects the imputed dataset from every 150 iterations), the parallel strategy gen-

erates several data augmentation chains and chooses the final imputed dataset of

each chain (Enders, 2010, Section 7.13). The total number of iterations needed in a

given application to generate independent draws is problematic because it often

requires huge computation time (Kim and Shao, 2013).

Data augmentation generates random parameter estimates across successive
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P-steps that have been very hard to converge to a stable posterior distribution.

This random behaviour adds a layer of complexity that was not present in ap-

proaches such as the maximum likelihood estimation (Enders, 2010). There are

several methods for assessing the convergence of data augmentation. The use of

graphical displays, specially the time-series and autocorrelation function plots,

are methods commonly used due to their ready availability in software packages.

C.3 Application to a small dataset

Missing data handling is illustrated using variables A, B and C of the small

dataset in Table C.1. Scores of variable B were randomly deleted in order to

mimic a MCAR mechanism. In addition and to simulate a MAR mechanism, the

scores of variable C were systematically missing for variable A scores contained

in the lower half of A distribution.

Assessing the MCAR mechanism

The univariate t-test based approach is applied to assess the presence of MCAR

mechanism in variables A, B and C. The following combinations of data

(X1, X2) = {(C,A), (C,B), (B,A), (B,C)}

are evaluated. Table C.2 presents the results of the test application to the dataset.

Focusing on variable C, the t-test applied to the pair (C,A) indicates that the

means of the subgroups are statistically different (p < 0.001, Table C.2), suggest-

ing that variable C is not MCAR. This conclusion is correct because the missing

values of the variable C were selected based on the distribution of variable A.

Contrarily, the t-test for the pair (C, B) indicates that the mean difference is not

significant (p = 0.19) which supports the claim that the missingness mechanism

of C is MCAR. Collectively, these tests suggest that variable C is not MCAR be-

cause there is a dependence of the missing values on other variables (variable A).

Evaluating now variable B, the t-test to (B,A) indicates that the subgroup

means are equivalent, providing support to the MCAR mechanism. Finally, the

comparison between variables B and C is not performed because there is only
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Table C.1: Dataset (Enders, 2010, Table 1.1).

A B C C
(complete) (MCAR mech.) (MAR mech.) (complete)

78 13 – 9
84 9 – 13
84 10 – 10
85 10 – 8
87 – – 7
91 3 – 7
92 12 – 9
94 3 – 11
94 13 – 11
96 – – 7
99 6 7 7

105 12 10 10
105 14 11 11
106 10 15 15
108 0 10 10
112 10 10 10
113 14 12 12
115 14 14 14
118 12 16 16
134 11 12 12

one case of the missing data subgroup. Consequently, the missingness mecha-

nism of variable B is MCAR which is in agreement with the way used to choose

the missing values.

To illustrate the multivariate Little MCAR test, reconsider the dataset in Ta-

ble C.1 that contains three variables (k = 3) and, therefore, may present four

missing patterns (J = 4): cases with only A scores, cases with A and B scores,

cases with A, B and C scores, and cases with A and C scores. Matrices generated

by the maximum likelihood method are

µ̂
ML =




100.00

10.23

10.27


 and Σ̂ =




189.60 12.21 22.31

12.21 11.04 6.50

22.31 5.61 8.68


 .

Table C.3 shows the considered patterns, the corresponding statistic variables d2
j ,
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Table C.2: Results of the univariate t-test based approach.

(X1, X2) X̄2 in Xobs X̄2 in Xmiss degrees of freedom t p

(C,A) 111.50 88.50 14.68 6.44 10−5

(C,B) 11.44 9.13 11.70 1.39 0.19
(B,A) 100.53 97.00 3.60 0.50 0.65
(B,C) – – – – –

Table C.3: Results of the multivariate Little MCAR test.

j Missing pattern d2
j nj kj

1 {Aobs, Bmiss, Cmiss} 0.762 2 1
2 {Aobs, Bobs, Cmiss} 6.431 8 2
3 {Aobs, Bobs, Cobs} 6.868 9 3
4 {Aobs, Bmiss, Cobs} 0.564 1 2

d2 = 14.625

and other auxiliary variables. Performing the χ2-test to the value d2 with
J∑
j=1

kj −
k = 5 degrees of freedom, the probability p = 0.005 indicates that the mean

differences are statistically significant and the data are not MCAR.

Unlike the previous test, the multivariate Little MCAR test did not identify

the specific variables that violate MCAR mechanism.

Applying the maximum likelihood method based on numerical optimization

The maximum likelihood method in missing data is exemplified below using the

data in Table C.1. Estimating the statistical parameters mean and covariance is

easy with complete data. But, with incomplete data, this task will require an

iterative method.

Table C.4 shows the maximum likelihood and list-wise methods estimates and

the statistical parameters for the complete data. Because the list-wise deletion

method discards half of the samples, the remaining cases are unrepresentative

of the data and, consequently, estimates are too different. In contrast, estimates

by the maximum likelihood method are relatively similar to those of the com-

plete data. The maximum likelihood method produces better estimates of the
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Table C.4: Results of the maximum likelihood method based on numerical opti-
mization and comparison with other methods.

Estimator µA µC σ2
A σ2

C σAC

Complete data 100.00 10.35 189.60 6.83 19.50
Maximum likelihood method 100.00 10.28 189.60 8.21 23.41
List-wise deletion method 111.50 11.70 84.65 6.61 10.45

means because it uses the incomplete cases while list-wise deletion method ig-

nores them.

Applying the multiple imputation method based on augmentation algorithm

To illustrate the multiple imputation method application using data augmenta-

tion, first and third columns of Table C.1 are used (variablesA andC). In addition

to the complete pattern {Aobs, Cobs}, there is the missing data pattern {Aobs, Cmiss}
where only A is observed. When there are multiple missing data patterns, the im-

putation process complicates because each missing data pattern needs a unique

regression equation (Enders, 2010, p. 200, Table 7.5).

Firstly, the I-step constructs the regression equation

B̂i = β̂0 + β̂1Ai (C.8)

with β̂0 = −2.06462 and β̂1 = 0.12345. Then, the algorithm generates predicted

values by substituting the observed data Ai into the regression equation, and

it augments each predicted score B̂i with a normally distributed residual term zi

with zero mean and residual variance equals to 5.9111. Table C.5 shows them = 5

imputed dataset s using as starting point both mean vector and covariance matrix

calculated by the list-wise deletion method. Using the series data augmentation

chain, each dataset was collected after 150 cycles.

In some situations, data augmentation fails to converge. For example, when

some parameters are inestimable or because the number of variables is close to

the number of cases. The first solution consists of eliminating the problematic

variables but this is not the ideal solution because this may alter the quality of

the data. An alternative solution, called ridge prior method, consists of adding
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Table C.5: Imputed dataset s using data augmentation..

A C

m = 1 m = 2 m = 3 m = 4 m = 5

78 5.6178 4.9854 10.2433 5.9090 5.9090
84 6.0314 8.4913 9.6137 5.6551 5.6551
84 8.2116 11.3109 7.2158 9.6158 9.6158
85 11.3865 10.2372 7.1209 10.8447 10.8447
87 9.6068 9.8072 6.0376 12.1948 12.1948
91 7.5882 12.6001 12.7899 5.1053 5.1053
92 11.7692 5.9490 8.5538 11.4526 11.4526
94 12.0710 7.6582 5.7982 8.5460 8.5460
94 5.2938 7.0966 12.0719 10.3325 10.3325
96 11.0303 10.4707 9.1615 8.9509 8.9509
99 7 7 7 7 7

105 10 10 10 10 10
105 11 11 11 11 11
106 15 15 15 15 15
108 10 10 10 10 10
112 10 10 10 10 10
113 12 12 12 12 12
115 14 14 14 14 14
118 16 16 16 16 16
134 12 12 12 12 12

a small number of imaginary data records from a hypothetical population where

the variables are uncorrelated to stabilize the estimation and eliminate conver-

gence problems. The convergence for the mean vector and covariance matrix

may be inspected using a time-series plot. Figure C.1 exhibits the evolution of

the mean vector estimates. It is easy to realize that the two simulated parameters

settled into a random pattern almost immediately.
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Figure C.1: Time-series plot for the simulated A and C means.
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