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RESUMO           

 

O envelhecimento é um processo complexo que ocorre em todos os organismos, da 

levedura ao Homem. Apesar de um século de pesquisa e discussão científica, os factores 

subjacentes à progressão do envelhecimento permanecem por clarificar. Mas os ângulos sob os 

quais este processo é visto sofreram grandes mudanças com o tempo. As primeiras teorias 

sugeriam que o envelhecimento decorre da acumulação estocástica de danos nas macromoléculas, 

levando ao mal funcionamento dos organismos e, por fim, à morte dos mesmos. Esta área de 

investigação foi radicalmente transformada nas últimas décadas por uma série de estudos 

pioneiros em diferentes modelos animais que mostraram claramente que o envelhecimento pode 

ser alterado através da manipulação de várias vias metabólicas e genéticas. Estas descobertas 

sugeriram que o nível de protecção de um organismo contra danos estocásticos pode ser regulado 

e, consequentemente, também o período de vida durante o qual o mesmo permanece saudável. 

No entanto, à medida que o conhecimento acerca destes mecanismos foi maturando, tornou-se 

evidente que a duração de vida, a resistência a stress e a homeostase proteica, aspectos que são 

regulados pelas vias que regulam o envelhecimento, podem ser desacopladas sem se 

influenciarem mutuamente. Mais recentemente, o processo de envelhecimento revelou possuir 

um nível adicional de complexidade quando se mostrou que pode ser coordenado por diferentes 

tecidos ao nível do organismo.  

Neste trabalho, o nosso interesse focou-se nos princípios subjacentes à orquestração do 

envelhecimento ao nível do organismo, bem como na dissociação entre duração de vida, 

resistência a stress e homeostase proteica. De modo a abordar estes temas, usámos o nemátode 

Caenorhabditis elegans (C. elegans), modelo animal que oferece inúmeras vantagens no estudo 

do envelhecimento. Começámos por investigar os mecanismos de comunicação entre tecidos que 

regulam a heat shock response (HSR) a nível do organismo no modelo C. elegans, procurando, 

mais concretamente, esclarecer que receptores neuronais estão envolvidos neste mecanismo de 

sinalização e em que neurónios desempenham a sua função. Para responder a estas questões, 

empregámos nemátodes geneticamente modificados que apresentam hipersensibilidade a RNA 
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de interferência (RNAi) no tecido nervoso e identificámos um presumível receptor acoplado a 

proteínas G (GPCR) como sendo um componente-chave deste mecanismo. Este gene, a que 

atribuímos o nome gtr-1, é expresso em neurónios quimiosensoriais e desempenha um papel 

fundamental na indução de genes que codificam proteínas de heat shock nos tecidos somáticos 

após exposição a temperaturas elevadas, apesar de não ser necessário à percepção de calor. 

Surpreendentemente, o knockdown do gtr-1 através de RNAi tem um efeito protector em 

nemátodes que expressam nos músculos Aβ3-42 (um péptido com tendência agregativa associado 

à doença de Alzheimer), mas não influencia a duração de vida, a resistência a outros stresses ou 

funções associadas ao desenvolvimento. 

Na segunda parte deste trabalho pretendemos fazer uma caracterização mais detalhada 

dos elementos downstream à via de sinalização da insulina/IGF-1 (IIS) que estão directamente 

envolvidos na regulação da toxicidade proteica em C. elegans. Com este objectivo, procurámos 

genes previamente citados na literatura como reguladores da homeostase proteica e identificámos 

o tor-2 como sendo regulado ao nível da transcrição pela via IIS. Nesta tese mostramos que a 

expressão do tor-2 é induzida após a supressão desta via pelos factores de transcrição DAF-16 e 

SKN-1. Este gene revelou-se importante na resistência a temperaturas elevadas mas não na 

regulação do tempo de vida do animal ou na resistência a outros tipos de stress tais como 

exposição a bactérias patogénicas ou a radiação UV. Curiosamente, o tor-2 parece ser importante 

no combate à toxicidade proteica em neurónios, onde se mostrou anteriormente que este gene é 

expresso, ao passo que o seu knockdown protege os nemátodes que expressam proteínas 

agregativas tóxicas nos músculos.   

Este estudo oferece novas ideias: (1) que os neurónios quimiosensoriais desempenham 

um papel importante nos mecanismos que regulam a HSR no nemátode; (2) que o tempo de vida 

e a resistência a heat shock são separáveis; (3) consolida o conceito emergente de que a habilidade 

para responder o calor existe em detrimento da manutenção da proteostase; e (4) sugere que a 

homeostase proteica pode ser diferencialmente regulada de tecido para tecido por um único gene.   
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ABSTRACT           

 

Aging is a complex process that occurs in organisms ranging from yeast to humans. The 

factors underlying the progression of aging still elude us, despite a century of scientific inquiry 

and discussion. Nevertheless, the angles from which aging was perceived have greatly changed 

over time. Early theories suggested that aging results from the accumulation of stochastic damage 

to macromolecules, leading to organismal malfunction and ultimately death. The field was 

however revolutionized over the last decades by a series of pioneering studies carried out in model 

organisms that showed that aging can actually be altered by the modification of several metabolic 

and genetic pathways. These findings suggested that the level of protection against stochastic 

damage can be regulated and, hence, the length of time an organism remains healthy. However, 

as the knowledge on these mechanisms matured, it became evident that lifespan, stress resistance, 

and protein homeostasis (proteostasis), aspects that are regulated by the aging-modulating 

pathways, can be uncoupled without influencing one another. The aging process revealed another 

level of complexity when it was shown to be coordinated by different tissues in an organismal-

fashion.   

In this work, we were interested in the principles underlying the orchestration of aging at 

the organismal level, as well as in the uncoupling between lifespan, stress resistance, and 

proteostasis. To address these questions, we employed the nematode Caenorhabditis elegans (C. 

elegans), which offers key advantages in the study of aging. We started by focusing on the inter-

tissue communication mechanisms that regulate the heat shock response (HSR) at the organismal 

level in C. elegans and attempted to clarify which neuronal receptors are required for this 

signaling mechanism and in which neurons they function. To answer these questions, we 

employed worms that were engineered to exhibit RNA interference (RNAi) hypersensitivity in 

neurons and identified a putative G protein-coupled receptor (GPCR) as a novel key component 

of this mechanism. This gene, which we termed GPCR thermal receptor 1 (gtr-1), is expressed in 

chemosensory neurons and has no role in heat sensing but is critically required for the induction 

of genes that encode heat shock proteins in non-neural tissues upon exposure to heat. Surprisingly, 
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the knockdown of gtr-1 by RNAi protected worms expressing the Alzheimer's-disease-linked 

aggregative peptide Aβ3-42 in their body-wall muscles from protein toxicity (proteotoxicity) but 

had no effect on lifespan, resistance to other stresses, or developmental functions. 

 In the second part, we aimed at better characterizing the insulin/IGF-1 signaling (IIS)-

downstream components involved in the direct regulation of protein toxicity (proteotoxicity) in 

the C. elegans model. For this, we searched for genes that are known regulators of proteostasis 

and identified tor-2 as a transcriptional target of the IIS pathway. Here we show that tor-2 is 

upregulated upon suppression of the IIS by both DAF-16 and SKN-1transcription factors. This 

gene is important for the resistance to heat shock but has no role in the determination of lifespan 

or in the resistance to other acute stresses such as exposure to pathogenic bacteria or to UV 

radiation. Interestingly, tor-2 seems to be important to counteract proteotoxicity in neurons, 

previously shown to be its main site of expression, whereas its knockdown protects worms that 

express toxic, aggregative-proteins in their body-wall muscles. 

 In this work we provide several novel insights: (1) we show that chemosensory neurons 

play important roles in the nematode's HSR-regulating mechanism; (2) that lifespan and heat 

stress resistance are separable; (3) we strengthen the emerging notion that the ability to respond 

to heat comes at the expense of proteostasis; and (4) suggest that proteostasis can be differentially 

regulated in a tissue-specific manner by a sole gene. 

 

Key words: gtr-1, tor-2, insulin/IGF-1 signaling (IIS), aging, heat shock response, proteotoxicity, 

proteostasis, Caenorhabditis elegans.  
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Chapter 1 

RELATED LITERATURE  ______________________________________________   

 

1.1. Aging 

1.1.1. Aging as a regulated process 

Aging occurs in organisms that range from yeast to humans. But what determines how 

long an organism will live? The progression of aging remains under debate despite a century of 

scientific inquiry. Early theories suggested that aging results from the non-adaptive accumulation 

of stochastic damage to macromolecules, organelles, tissues, and cells, ultimately leading to 

organismal malfunction and inevitable death (Longo et al., 2005; Carvalhal Marques et al., 2015). 

The most famous is the free radical theory, which proposes that the reactive oxygen species (ROS) 

formed as a result of normal metabolism are the main instigators of aging (Harman, 1956; Longo 

et al., 2005). Other potential sources of aging-promoting damage have been proposed, including 

random mutagenesis and environmental insults (Martin et al., 1996). These theories share the 

underlying principle that aging is an uncontrolled, random process. Notwithstanding, could it be 

that aging occurs mostly due to the loss of efficiency of a putative program that regulates 

protection and repair systems? 

It was August Weismann who first introduced the idea of a programmed aging: “the 

causes of the duration of life must be contained in the organism itself and cannot be found in any 

of its external conditions or circumstances” (Weismann, 1889). In modern terms, aging must be 

controlled at the genetic level. Weismann suggested that the removal of aged animals that neither 

reproduce nor support offspring assists the evolution process by freeing resources (e.g. food, 

habitat) for younger animals. The observation that a restrictive diet, and not the opposite, extends 

lifespan in a diverse range of species is in disagreement with this idea (Mitteldorf, 2001). In 

addition, it does not provide convincing answers to major questions: how are the alleles that cause 

a decline in vitality late in life selected? Do they contribute to the fitness of the organism at a 

certain point of its early life? Can these alleles be selected because they carry benefits during early 

life, as suggested by the antagonistic pleiotropy theory (Longo et al., 2005)? Still, Weismann’s 



Neuronal orchestration of aging in Caenorhabditis elegans | 2015 

 -10-  
  

idea led to the realization that, while aging does have random aspects, it is also amenable to 

genetic regulation. 

In the last decades, several independent and evolutionary conserved mechanisms that 

regulate the pace of aging and lifespan in different species were identified and characterized: 

dietary restriction (DR) (McCay et al., 1989), the mitochondrial electron transport chain (ETC) 

pathway (Dillin et al., 2001; Feng et al., 2001; Lee et al., 2003), and the insulin/insulin-like 

growth factor 1 (IGF-1) signaling (IIS) pathway (Kenyon et al., 1993). The first aging-regulating 

pathway to be identified was DR, shown to extend lifespan in multiple species (Fontana et al., 

2010). The reduction of dietary intake below unlimited or ad libitum levels causes an increase in 

lifespan to an optimum point of consumption, typically around 60% of ad libitum food intake 

(Fontana et al., 2010). The second pathway enabling extension of lifespan acts through the 

disruption of the ETC function. This was first shown in the nematode Caenorhabditis elegans (C. 

elegans), in which a mutation or reduction of function of several mitochondrial ETC components 

is sufficient to extend lifespan (Dillin et al., 2002; Feng et al., 2001; Lee et al., 2003).  

In the next sections, we will describe the advantages of using C. elegans in our study, as 

well as describe in detail the third pathway, the IIS, to which this thesis gives particular emphasis. 

 

1.1.1.1. In search for a valuable approach to study stress resistance, proteostasis, and aging: 

Caenorhabditis elegans as a resourceful model 

Invertebrate models have been widely used to further explore how homeostatic 

mechanisms are regulated. It is the case of the small, free-living round nematode C. elegans 

which, following its introduction as a genetic model organism in 1965, has ever since been 

extensively used to study a large variety of biological processes, leading the way in the aging field 

(Nussbaum-Krammer and Morimoto 2014; Sin et al., 2014). Indeed, this nematode combines a 

number of anatomic and genetic features that make it an advantageous model in the acquisition 

of fundamental insights into aging. 

C. elegans is a small nematode of about 1 mm in length that feeds on bacteria, including 

Escherichia coli (E. coli), and exists in two sexual forms: as a hermaphrodite and a male. The 
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former is self-fertile, able to produce its own sperm and eggs, and is the predominant adult form. 

Wild type hermaphrodites are able to lay 300-350 eggs during reproductive adulthood. After 

hatching, it takes three days for the larvae to mature into adult worms whose mean lifespans vary 

between 18 to 20 days when grown at 20°C, allowing a large-scale production of animals within 

a short period of time. Importantly, although relatively short-lived, the worms do age and this 

process shares fundamental similarities with that of mammals. Among other features, aged worms 

suffer from muscle atrophy (sarcopenia), which leads to reduced agility and uncoordinated 

movement display, accumulate the autofluorescent molecule lipofuscin, and exhibit increased 

levels of oxidized proteins (Volovik et al., 2014; Rodriguez et al., 2013; Olsen et al., 2006; 

Nussbaum-Krammer and Morimoto, 2014).  

Another major advantage of C. elegans is its well-dissected anatomy; the adult 

hermaphrodite has exactly 959 cells, of which 302 are neurons. Its transparent body further allows 

one to easily follow fluorescently-tagged proteins of interest within both developing and mature 

living animals. This feature enables the study of gene expression and protein deposition in both 

temporal- and tissue-specific fashions. Antibody-based labeling techniques can be also used with 

the drawback of requiring the death of the animal. Additionally, because C. elegans was the first 

multicellular organism to have its complete genome sequence, several highly comprehensive 

databases and resources are currently available online for the scientific community. We further 

know that roughly 83% of worm genes have a human orthologue (Volovik et al., 2014; Sin et al., 

2014; Calahorro and Ruiz-Rubio, 2011). 

Perhaps one of the most useful tools in C. elegans is the possibility of performing genetic 

screens. One of the key genetic screens employed is the RNA interference (RNAi) screen, which 

offers information on a gene following its specific and effective expression knockdown (Fire, 

2007). This technique relies on feeding the worms with bacteria expressing double stranded RNA 

(dsRNA), which is then processed into small interfering RNA (siRNA) molecules by the 

nematode. This siRNA induces in turn the degradation of specific endogenous mRNAs, allowing 

the specific downregulation of different genes of interest (Timmons et al., 2001). The availability 

of RNAi libraries that cover the majority of the worm’s genome, along with the easy applicability 
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of this gene-silencing technique, makes C. elegans a preferred organism for RNAi-based genetic 

screens, a trait that allows deciphering the mechanisms that regulate the aging process. 

In short, C. elegans has shown to be crucial in giving fast answers to numerous, emerging 

questions, and, more importantly, useful in the transfer of knowledge to mammalian systems and, 

ultimately, to humans. For all of the abovementioned reasons, our study took advantage of this 

model. 

 

1.1.1.2. The insulin/IGF-1 signaling (IIS) pathway  

The IIS is perhaps the most prominent pathway that strongly regulates lifespan and 

youthfulness in both invertebrate and vertebrate species (Kenyon, 2011). In C. elegans, where it 

was first identified and well characterized, this pathway involves signaling through the 

Insulin/IGF-1 receptor (Fig. 1). The worm genome encodes a single receptor orthologue to the 

mammalian one, DAF-2, which negatively regulates the activity of a set of transcription factors 

through well-conserved functional components (Carvalhal Marques et al., 2015). So far, the 

forkhead (FOXO) transcription factor DAF-16 has been identified as a major downstream target 

of the C. elegans IIS pathway (Ogg et al., 1997; Lin et al., 1997; Lin et al., 2001. Under favorable 

conditions, DAF-16/FOXO is highly phosphorylated following the activation of a kinase cascade 

that includes the phosphatidylinositol 3-kinase (PI3K) AGE-1 (Murakami and Johnson, 1996) 

and is triggered by the activation of the kinase domain of DAF-2 upon its binding to insulin-like 

peptides (Murphy and Hsu, 2013). These post-translational modifications render DAF-16 

sequestered in the cytoplasm by 14-3-3 proteins and thus inactive (Li et al., 2007). Accordingly, 

mutations that interfere with the DAF-2 downstream signaling result in reduced phosphorylation 

of DAF-16. Consequently, it translocates to the nucleus, whereupon it controls the expression of 

genes that render the worms long-lived, youthful, and resistant to a diverse array of stresses 

(Murphy et al., 2003; Hsu et al., 2003; Garsin et al., 2003; Lee et al., 2003; Samuelson et al.,  

2007; Volovik et al., 2014; Cohen et al., 2006; Lithgow et al., 1995; Honda and Honda, 1999; 

Murakami and Johnson, 1996; Hamilton et al., 2005).  
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In addition to DAF-16, other transcription factors act downstream of the IIS pathway. It 

is the case of the transcription factor heat shock factor 1 (HSF-1), which was shown to be required 

for longevity and stress resistance induced by reduced IIS (Hsu et al., 2003; Singh and Aballay, 

Figure 1. The insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) pathway. 

Upon binding of one of the ligands, the sole insulin/IGF-1 receptor of C. elegans, DAF-

2, dimerizes and undergoes self-phosphorylation. The phosphatidylinositol 3-kinase 

AGE-1 and the kinase IST-1 (IRS1 ortholog) are then recruited to DAF-2 (II), whereupon 

AGE-1 catalyzes the generation of phosphatidylinositol 3,4,5-trisphosphate (PIP3) (III), 

a molecule that activates kinases of the AKT family in a PDK-dependent manner (IV). 

Activated AKTs phosphorylate the transcription factor DAF-16/FoxO and mediate its 

binding to a 14-3-3 family member (V), preventing it from entering the nucleus. 

Similarly,                       
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2006 – a; Singh and Aballay, 2006 – b). The IIS negatively regulates the activity of HSF-1 by 

modulating the formation of a multiprotein complex containing the conserved proteins HSB-1, 

DDL-1, and DDL-2, which sequester HSF-1 in the cytoplasm (Chiang et al., 2012). The integrity 

of this complex is dependent on the phosphorylation status of DDL-1, itself regulated by the IIS. 

IIS activity dephosphorylates DDL-1, enabling the complex to form and retain HSF-1 in the 

cytosol. Accordingly, a reduction in the IIS promotes the phosphorylation of DDL-1, leading to 

the complex's disintegration and to the entry of HSF-1 to the nucleus, where it regulates its target 

gene network.  

The C. elegans Nrf family transcription factor SKN-1, which regulates genes that protect 

against oxidative and xenobiotic stress, along with many genes involved in protein homeostasis 

and metabolism (An et al., 2005; Kahn et al., 2008; Oliveira et al., 2009; Li et al., 2011; Paek et  

al., 2012) , also contributes to lifespan extension in animals with reduced IIS (Tullet et al., 2008). 

When the IIS is fully functional, SKN-1 is directly phosphorylated by Akt/PKB and related 

kinases, being consequently sequestered in the cytoplasm. On the other hand, upon reduced IIS 

signaling, SKN-1 (Tullet et al., 2008) is allowed to translocate to the nucleus, similarly to DAF-

Figure 1. (continuation) Similarly, AKT-mediated phosphorylation retains the 

transcription factor SKN-1/Nrf in the cytosol (V). Thus, IIS reduction reduces the rate 

of AKT activity, allowing DAF-16/FoxO and SKN-1/Nrf to enter the nucleus (VI), 

interact with their functional partners, such as SWI/SNF and SMK-1 (VII), and regulate 

their target gene networks. The phosphatase DAF-18 (PTEN ortholog) acts in opposition 

to AGE-1, converting PIP3 to phosphatidyl-inositol 4,5-bisphosphate (PIP2) and thereby 

reducing the rate of AKT activation. The phosphatase DAF-18 (PTEN ortholog) acts in 

opposition to AGE-1, converting PIP3 to phosphatidylinositol 4,5-bisphosphate (PIP2) 

and thereby reducing the rate of AKT activation. The heat shock factor 1 (HSF-1) is also 

negatively regulated by the IIS pathway, which inhibits the phosphorylation of its 

interactor DDL-1 (VIII). Accordingly, IIS reduction increases the rate of DDL-1 

phosphorylation and disrupts the complex (DDL-1, DDL-2, and HSB-1) that binds HSF-

1, enabling its entry to the nucleus (IX). The transcriptional activator PQM-1 is also 

required for the IIS reduction-mediated longevity phenotype, and its cellular localization 

is governed by the IIS (X); however, PQM-1 and DAF-16/FoxO inhibit each other’s 

nuclear localization. The inhibition of the IIS cascade and the resulting modified activity 

of its downstream transcription factors promote longevity, stress resistance, and 

proteostasis (XI) (from Carvalhal Marques et al., 2015). 
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16 and HSF-1, and to induce the expression of its target genes. This concerted operation 

contributes to the long-lived phenotype and high stress resistance typical of worms with low IIS.  

 

1.1.1.3. Does the regulation of aging oppose cumulative damages?  

The identification of many mutations that extend lifespan in model systems supports the 

idea of a longevity program, but it does not necessarily oppose the cumulative damage theory. It 

is, in fact, conceivable that these aging-regulating pathways slow the aging process by enhancing 

the efficiency of the organisms’ mechanisms that confer resistance to both acute and chronic 

stresses, which in turn reduce the rate of damage accumulation. Before returning to this idea, we 

will provide a brief overview on the stress-responsive genes and mechanisms that contribute to 

the organism’s ability to maintain the integrity of the proteome and on the evidences showing that 

the proteome suffers a dramatic deterioration with aging (Taylor and Dillin, 2011). 

 

1.2. The proteome and its challenges 

1.2.1. Facing the inevitable or how to maintain a pristine proteome 

Proteins are involved in almost every biological process. Due to their structural and 

functional complexity, they are particularly fragile macromolecules that are only marginally 

stable at physiological temperature and are constantly at risk of misfolding (Hipp et al., 2014; 

Mattoo and Goloubinoff, 2014). Environmental and physiological stressors such as heat, 

oxidative stress, and inflammation challenge the stability of protein conformation. In addition, 

proteins must retain conformational flexibility to function and thus are constantly undergoing 

folding, assembly, disassembly, and trafficking through sub-cellular compartments, both within 

and outside the cell (Morimoto and Cuervo, 2014).  

This poses a universal problem for all types of cells given the high macromolecular 

crowding in the cytosol, with little or no “free” water, which provides a friendly environment for 

undesirable and, ultimately, harmful interactions (Fink, 1999; Ellis, 2007). When nascent 

polypeptides exit the ribosome in the unfolded state, or when labile mature proteins are partially 

unfolded, they may achieve conformations that expose hydrophobic surfaces to the aqueous phase 
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that are otherwise buried in the native structure (Hinault and Goloubinoff, 2007; Hartl and Hayer-

Hartl, 2011). Seeking intra-molecular stability, newly exposed hydrophobic residues tend to 

spontaneously associate to form polypeptide aggregates and leave solution, becoming unable to 

reach their native state within a biologically meaningful time-scale (Goldberg, 2003; Mattoo and 

Goloubinoff, 2014; Prahlad and Morimoto, 2011). These proteins can be directly cytotoxic by 

interacting with other cellular components and, on the other hand, can create increased demands 

on the cell’s protein homeostasis (proteostasis) machinery, titrating away components of this 

network and leading to further misfolding of other proteins (Stefani and Dobson, 2003; Gidalevitz 

et al., 2006; Taylor and Dillin, 2011).  

 To face these harmful events, organisms have developed an exquisite network of 

molecular components termed proteostasis network (Balch et al., 2008). It comprises highly 

conserved, specialized sets of chaperones that assist nascent polypeptides in folding correctly and 

ensure their integrity, and protein degradation machineries that remove misfolded or terminally 

damaged polypeptides, together with a number of adaptive cellular stress response pathways that 

act alone or together in various sub-networks to sense and respond to protein misfolding in all 

cellular compartments (Labbadia and Morimoto, 2015; Ciechanover and Kwon, 2015). These 

constitutive and inducible protein quality control mechanisms are central to reduce damage to a 

minimum and maintain or reestablish proteostasis, particularly in post-mitotic cells (Gupta et al., 

2010).  

 

1.2.1.1. The proteostasis network: the chaperone, proteasomal, and autophagic systems 

The molecular chaperones are a large family of highly conserved proteins that interact 

with, stabilize, and help other proteins to acquire their functionally active conformation (Hartl 

and Hayer-Hartl, 2011). Under normal conditions, they are expressed in adequate amounts to 

carry out their physiological and housekeeping functions; in contrast, during a stress such as heat-

shock, some ubiquitously expressed members of these families are massively synthesized by the 

cell (Hinault and Goloubinoff, 2007; Gestwicki and Garza, 2012; Ellis, 2007; Gupta et al., 2010). 

Indeed, the stress-inducible nature of many molecular chaperones has led to their early 
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classification as heat-shock proteins (Hsps). Chaperones are usually named according to their 

approximate molecular weight: small Hsps (sHsps), Hsp40, Hsp60, Hsp70, Hsp90 and Hsp100. 

All classes share the ability to screen for proteins exposing hydrophobic residues typically 

concealed within the core of the protein and thus execute fundamental roles in de novo folding 

and refolding of misfolded protein (Mattoo and Goloubinoff et al., 2014; Morimoto and Cuervo, 

2014). Notwithstanding, these classes share no apparent sequence or structural homology and in 

fact display large functional diversity, being involved in a multitude of proteome-maintenance 

functions including protein trafficking, macromolecular complex assembly, and direct 

cooperation with the cell’s proteolytic systems upon the need of protein disposal through 

degradation (Hartl and Hayer-Hartl, 2011; Smith et al., 2015; Hipp et al., 2014).  

Misfolded proteins can be disposed of through the ubiquitin proteasome system (UPS), 

the primary selective proteolytic system in the eukaryotic cell cycle and pro-survival pathways 

(Ciechanover and Kwon, 2015; Ortega and Lucas, 2014). It comprises two main stages: the 

ubiquitin-tagging of substrates and their proteolytic degradation. Proteins are flagged by 

sequential conjugation of ubiquitins and afterwards recognized and degraded by the proteasome, 

a large multicatalytic enzyme complex expressed in the cytoplasm and nucleus of all eukaryotic 

cells whose major assembly is the 26S complex (Shang and Taylor, 2004; Adams, 2003; 

Ciechanover and Kwon, 2015). Misfolded proteins can also be degraded through autophagy, a 

term that refers to any intracellular process resulting in the degradation of components inside 

lysosomes (Martinez-Vicente et al., 2005; Chen et al., 2011). Lysosomes consist of single-

membrane acidic organelles with an internal pH of 5.1-5.5, fully devoted to the degradation of 

intra and extracellular components. These organelles contain a large assortment of hydrolases 

capable of degrading most naturally-occurring macromolecules (Majeski and Dice, 2004; 

Martinez-Vicente et al., 2005; Koga et al., 2010). Depending on the type of cargo and means of 

delivery to the lysosome, autophagy is classified in different modalities. The best characterized 

form is macroautophagy, an inducible form of autophagy responsible for the degradation of 

cytosolic fractions, organelles, and macromolecules (Martinez-Vicente et al., 2005; Salminen and 

Kaarniranta, 2009.  
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1.2.1.2. Cellular stress responses: heat shock response (HSR) and unfolded protein response 

(UPR)  

Cells must also be responsive to acute stressful conditions (e.g. temperature variations) 

that cause proteins to unfold and increase the risk of aggregate formation. Under these conditions, 

the normal folding and triage capacity might be exceeded by increases in demand, requiring a 

dramatic up-regulation of chaperones and other proteostasis components (Taylor and Dillin, 

2011). In the compartmentalized eukaryotic cells, several pathways generally called stress 

responses have evolved independently to ensure the integrity of the protein-folding environments 

in the cytosol, the endoplasmic reticulum (ER), and the mitochondria.  

When facing elevated temperatures or other proteotoxic stress, cells activate a highly 

conserved program of stress-inducible gene expression termed the “heat shock response” (HSR) 

that senses protein misfolding in the cytosol (Lindquist and Craig, 1988; Morimoto, 1998) (Fig. 

2). This transcriptional response is regulated by a family of heat-shock transcription factors 

remarkably conserved from yeast to humans (Ahn et al., 2005; Anckar and Sistonen, 2007; 

Voellmy and Boellmann, 2007). In C. elegans, the HSR is predominantly mediated by the 

ubiquitously and constitutively expressed transcription factor HSF-1, which is negatively 

regulated in most cell types and largely localizes in the cytoplasm in a monomeric state in normal 

circumstances (van Oosten-Hawle and Morimoto, 2014). In response to a cellular stress, HSF-1 

senses the increase in the levels of cytosolic misfolded proteins, trimerizes, and re-localizes to the 

nucleus, wherein it binds with high affinity to consensus HS elements in the promoter region of 

its target genes. HSF-1 thus promotes the expression of Hsps together with other pro-survival 

factors, thereby enhancing protein folding and the assistance to client degradation (Lindquist and 

Craig, 1998; Morimoto, 1998; Kakkar et al., 2014).  

The functional complement to the cytosolic HSR in the cellular compartments is the 

unfolded protein response (UPR), which responds to acute stress within organelles. In the ER, an 

important site for synthesis, folding, and modification of membrane and secretory proteins in 

eukaryotic cells, the UPRER is activated upon increased protein flux during development or under 

stresses (e.g. heat shock) that lead to the accumulation of unfolded proteins (Korennykh and  
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Walter, 2012; Taylor and Dillin, 2011; van Oosten-Hawle and Morimoto, 2014). In higher 

eukaryotes, this pathway is induced by three upstream transmembrane sensors that coordinately 

detect the accumulation of unfolded proteins in the ER lumen and activate a transcriptional 

program with several outcomes: reduced flux of nascent chains entering the ER; increased levels 

Figure 2. The heat shock response (HSR). The HSR is one of the most ancient and 

conserved cellular stress responses that allow cells to adapt to changing environmental 

conditions and ensure recovery following perturbations to proteostasis. This response is 

mediated at the molecular level by the transcriptional regulation of heat shock genes by 

the remarkably conserved heat-shock transcription factor 1 (HSF-1). (A) In unstressed 

metazoan cells, HSF-1 is continuously present and largely localizes in the cytoplasm in 

a monomeric, transiently-bound-to-chaperones state. (B) As a result of heat shock or 

other proteotoxic stressors, HSF-1 undergoes trimerization and re-localizes to the 

nucleus, where it binds to heat-shock elements (HSEs), the upstream regulatory 

sequences of its target genes, inducing their expression. Thus, an increased flux of 

misfolded and damaged proteins is countered by a corresponding increase in, among 

other things, chaperone levels. (C) It is unclear what happens to the excess chaperone 

capacity induced in the cell following the resolution of protein misfolding. It is possible 

that the excess of chaperones renders the cells with a hormetic state in which cells are 

protected from a subsequent lethal stress (from Gidalevitz et al.,2006). 
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of ER luminal chaperones and protein-modifying proteins; and stimulated export and degradation 

of misfolded proteins (Ron and Walter, 2007; Taylor and Dillin, 2011; Jovaisaite et al., 2014).  

Similarly to the ER, the mitochondria-specific UPR (UPRmt) acts to ensure a proper 

protein folding environment in the mitochondrial matrix. This response copes with increased 

unfolded protein load by activating the transcription of nuclear-encoded mitochondrial chaperone 

protease genes (Jovaisaite et al., 2014; Haynes and Ron, 2010).  

 

1.3. When the system starts failing: aging, loss of proteostasis, and consequences  

The amount of damaged mature or newly folded proteins and the available protein quality 

control capacity are two sides of a carefully balanced system in our cells (Csermely et al., 2007). 

However, in certain situations, the proteostasis network cannot keep up with the rate of emergent 

unfolded proteins and, thus, becomes overloaded. This might occur when there is an excess of 

substrates or insufficient content in molecular chaperones and proteases in cells (Goldberg, 2003; 

Csermely et al., 2007; Hinault and Goloubinoff, 2007). The overload of the proteostasis network 

components becomes prominent in the elderly, where proteins bearing modifications (e.g. 

carbonylation and glycation) grow to be more abundant. Non-dividing cells such as neurons are 

particularly vulnerable to the accumulation of these modified, aggregative-prone proteins 

(Csermely et al., 2007; Calderwood et al., 2009). In fact, protein aggregation underlies the 

development of many age-related disorders collectively termed conformational disorders or 

proteinopathies. Among them we find the neurodegenerative diseases, including the highly 

abundant Alzheimer’s disease (AD), the polyglutamine (polyQ) expansion disorders such as 

Huntington’s disease, and Parkinson’s disease. These disorders share two unifying features: the 

late age of onset and the chronic accumulation of protein aggregates in intra or extracellular 

deposits within the central nervous system (Takalo et al., 2013). This defines aging as the major 

risk factor for the development of these disorders and implicates that a loss in the proteostasis-

maintaining machinery is inherent to the aging process. In other words, these mechanisms, highly 

active and thus protective in younger individuals, fail to prevent neurodegeneration late in life.  
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1.3.1. Aging-dependent decline in the system’s homeostasis: what are the evidences? Can 

aging be manipulated to prevent this decline? 

Recently, loss of proteostasis was indeed identified and categorized as one of the nine 

candidate hallmarks of aging given that, according to López-Otin et al., it fulfills three important 

criteria: (1) it manifests during normal aging; (2) its experimental aggravation accelerates aging; 

and (3) its experimental amelioration postpones the normal aging process and subsequently 

increases healthy lifespan (López-Otín et al., 2013). A number of animal models support the 

significant impairment of the protein quality control mechanism in aging, namely that of stress-

induced synthesis of cytosolic and organelle-specific chaperones (Calderwood et al., 2009). For 

instance, transgenic worms (Walker and Lithgow, 2003) and flies (Morrow et al., 2004) 

overexpressing chaperones are long-lived. The overexpression of HSF-1 also promotes longevity 

and delays the onset of disease-linked protein aggregation in the nematode C. elegans (Chiang et 

al., 2012; Hsu et al., 2003), while amyloid-binding components can maintain proteostasis during 

aging and extend lifespan in the same animal model (Alavez et al., 2011). Conversely, mutant 

mice deficient in a co-chaperone of the heat shock family exhibit accelerated aging phenotypes 

(Min et al., 2008), whereas long-lived mouse strains show a marked up-regulation of some Hsps 

(Swindell et al., 2009).  

Although the effects of aging in the functional capacity of both the proteasomal and 

autophagic systems in different tissues is not completely understood, they were observed to suffer 

an age-dependent decline in certain models and to be compromised in major neurodegenerative 

and metabolic diseases associated with aging (Lecker et al., 2006; Wong and Cuervo, 2010; 

Mizushima et al., 2008; Rubinsztein et al., 2011; Tomaru et al., 2010; Saez and Vilchez, 2014). 

Decreased expression of several autophagic genes was shown to shorten both C. elegans (Hars et 

al., 2007) and Drosophila melanogaster (D. melanogaster) (Simonsen et al., 2008) lifespans, 

while tissue-specific deletion of some autophagic genes precipitates aging and aging-associated 

phenotypes in mice (Vilchez et al., 2014). In agreement with this, interventions that aim at 

stimulating autophagy were shown to increase the lifespans of yeast, nematodes, flies, and mice 

(Zhang and Cuervo, 2008; Harrison et al., 2009; Wilkinson et al., 2012; Bjedov et al., 2010; 
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Eisenberg et al., 2009; Matsumoto et al., 2011; Soda et al., 2009; O’Rourke and Ruvkun, 2013). 

Likewise, an increase in the expression of various components of the UPS confers resistance to 

protein toxicity (proteotoxicity) and extends longevity in C. elegans (Liu et al., 2011; Vilchez et 

al., 2012; Chondrogianni et al., 2015). Kruegel et al. further showed that the enhancement of the 

UPS capacity results in improved proteotoxic stress response and increased replicative lifespan 

in yeast, while reduced UPS capacity has opposing consequences (Kruegel et al., 2011).  

The correlation between aging and the loss of proteome integrity is further strengthened 

by the ability of several aging-regulating pathways to modulate some, when not all, elements of 

the proteostasis machinery in order to extend healthspan (see sections 1.1.1. and 1.1.1.2.) 

(Friedman and Johnson, 1988; Kenyon et al., 1993; Hsin and Kenyon, 1999; Dillin et al., 2002; 

Feng et al., 2011; Vellai et al., 2003; McCay et al., 1989).  

 

1.3.2. Manipulating aging: what can we expect at the proteostasis level? 

For more than a decade, the IIS pathway has been seen as the major candidate linking 

aging, proteotoxicity, and late-onset neurodegenerative diseases (Cohen and Dillin, 2008). One 

of the first studies that disclosed this was carried out by Morley et al., which created several 

transgenic C. elegans lines expressing in their body-wall muscles polyQ repeats of different 

lengths ranging from polyQ0 to polyQ82, all fused to the yellow fluorescent protein (polyQ0-82-

YFP), to address the underlying principles of polyQ-mediated aggregation and toxicity (Morley 

et al., 2002). Using this approach, they showed that an expansion of 30-40 glutamines is 

associated to the appearance of protein aggregates and loss of motility, and that this is exacerbated 

with aging. The dynamic nature of polyQ aggregation and cytotoxicity throughout the lifetime 

led the authors to hypothesize that this might mirror not only the repeat length but also changes 

in the cellular protein-folding environment over time. To test this premise, they generated animals 

expressing different toxic polyQ lengths on the background of the age-1(hx56) mutation or age- 

1 RNAi knockdown and found that these animals display reduced aggregate accumulation over 

time, as well as a delay in the onset of motility defects. This protective effect was shown to rely 

on the activity of DAF-16 (Morley et al., 2002). Using polyQ40-YFP-expressing animals, Hsu et 
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al. showed that, in addition to DAF-16, HSF-1 is important to delay the onset of polyglutamine 

aggregates (Hse et al., 2003). 

Later work by Cohen et al. investigated the role of the aging process in the toxicity 

mediated by the aggregation of the AD-associated Amyloid β (Aβ) in worms expressing the 

human Aβ3-42 minigene driven by the unc-54 promoter (Cohen et al., 2006). These worms express 

the peptide in their body-wall muscles, which results in a time-dependent paralysis within the 

worm population (Link et al., 1995; McColl et al., 2009). By knocking down daf-2 in these 

animals, thereby reducing the IIS pathway, the authors succeeded to delay the emergence of 

paralysis and thus, not only to show that the IIS has a broader effect in counteracting 

proteotoxicity, but to strengthen the idea that the toxicity deriving from aggregative proteins is 

not stochastic but rather highly dependent on the aging process (Cohen et al., 2006). This work 

Figure 3. The IIS pathway links aging and proteotoxicity. The serial digestion of 

amyloid precursor protein (APP) gives rise to aggregation-prone amyloid-β (Aβ) peptides, 

which spontaneously form small toxic oligomers. These Aβ aggregates can be disrupted 

by a heat-shock factor 1 (HSF-1)-regulated disaggregation machinery, which prepares 

them for degradation. When this pathway is overloaded, a secondary pathway that 

involves active aggregation and is controlled by DAF-16 generates high-molecular-mass 

Aβ aggregates of lower toxicity that might subsequently undergo slow disaggregation and 

degradation or, alternatively, be secreted from the cell. The insulin/insulin-like growth 

factor 1 signaling (IIS) pathway negatively regulates HSF-1 and DAF-16, thereby 

compromising the activity of both protective mechanisms in an age-dependent manner 

(from Cohen and Dillin, 2008). 
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further showed that both HSF-1 and DAF-16 are required for the protective effect of reduced IIS 

against Aβ3-42-mediated toxicity through opposing mechanisms: the HSF-1-mediated 

disaggregation, believed to be the preferred pathway and to precede degradation; and the DAF-

16-mediated formation of less toxic high-molecular weight aggregates. The DAF-16-regulated 

mechanism is probably secondary but continuously assisting the HSF-1 controlled activities due 

to the constant overload of the latter (Fig. 3). The suppression on Aβ3-42-induced paralysis by daf-

2 knockdown was confirmed soon after in a different C. elegans strain expressing the gene in the 

body-wall muscles under the weaker promoter myo-3 (Florez-McClure et al., 2007). More 

importantly, this work provided an additional insight into the mechanism underlying this effect 

by demonstrating that it further relies on the promotion of the autophagic clearance of Aβ3-42. The 

proteasome seems to be as well of great relevance, as decreased IIS was shown to increase 

proteasome activity in C. elegans in a DAF-16-dependent and cell-type-specific manner 

(Matilainen et al., 2013).  

Many other studies established the reduction of the IIS pathway as powerful means to 

increase invertebrates’ resistance to the toxicity deriving from different disease-linked proteins 

expressed in different tissues (Oh and Kim, 2013; Scerbak et al., 2014; Knight et al., 2014). Of 

foremost importance is the conservation of this effect in mammals, observed in three parallel 

studies (Cohen et al., 2009; Freude et al., 2009; Killick et al., 2009). Cohen et al. took advantage 

of two existing animal mouse models (Cohen et al., 2009): mice that possess a single copy of the 

Igf1r gene (Igf1r+/-), the mammalian orthologue of daf-2 (Kimura et al., 1997), which have 

reduced signaling downstream of the IGF1 receptor, are long-lived, and resistant to oxidative 

stress (Holzenberger et al., 2003); and an AD mouse model that expresses two AD-linked mutated 

genes and that, as a consequence, express human Aβ, exhibit amyloid plaque formation in the 

brain, and slow, progressive age-onset AD-like symptoms such as behavioral impairments 

(Jankowsky et al., 2004; Jankowsky et al., 2007; Reiserer et al., 2007). These animals were 

crossed to obtain an AD mouse model with only one Igf1r copy, which displayed reduced 

behavioral impairments, as well as lower levels of inflammation and neuronal loss, while 

presenting more densely packed amyloid plaques and less SDS-soluble aggregates compared to 
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their AD counterparts with a normal IIS pathway (Cohen et al., 2009). Both studies of Freude et 

al. and Killick et al. obtained similar results, regardless of having crossed distinct but well 

characterized animal models of AD and reduced IIS, reinforcing the protective role of IIS 

suppression towards Aβ toxicity expression in mice brains (Freude et al., 2009; Killick et al., 

2009).  

 

1.3.3. The alteration of aging is associated with elevated stress resistance 

The above data concerning the (in)ability of the organisms to maintain the integrity of the 

proteome clearly demonstrates that aging is a genetically regulated process amenable to 

manipulation. The alteration of aging has, however, a much broader effect. In fact, the exposure 

of organisms with altered aging programs to environmental insults made evident that slowing 

aging robustly elevates stress resistance. IIS reduction confers protection from various stress 

conditions including oxidation (Honda and Honda, 1999), temperature elevation (Lithgow et al., 

1995), ultraviolet radiation (Murakami and Johnson, 1996), and exposure to pathogenic bacteria 

(Singh and Aballay, 2006 – a; Singh and Aballay, 2006 – b) or toxic heavy metals (Barsyte et al., 

2001). Similarly, DR promotes resistance to various stress conditions (Mair and Dillin, 2008).  

A detailed analysis showed that worms harboring a mutated, weak daf-2 allele and 

animals subjected to a DR regimen (Panowski and Dillin, 2009) exhibit elevated expression levels 

of genes encoding protective proteins, including members of the superoxide dismutase (SOD) 

family of ROS-detoxifying enzymes. IIS reduction also induces the expression of genes that 

encode molecular chaperones of the Hsp subset (Hsu et al., 2003; Morimoto, 1998; Carvalhal 

Marques et al., 2015). Actually, both HSR and UPRER are regulated by the IIS pathway and are 

required for the longevity mechanism downstream of this pathway (Henis-Korenblit et al., 2010; 

Morley and Morimoto, 2004). 

These observations are in accordance with a role of free radicals (although accumulated 

data from the last years strongly challenge this idea (Hekimi et al., 2011) and other harmful agents 

in causing aging-dependent damages, as previously discussed, and with the existence of a 

genetically programmed inactivation or decline of the stress resistance mechanisms that, thus, 
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fails to prevent or reduce the rate of damage accumulation. This brings up another important 

question: are stress resistance, proteostasis, and aging regulated in a cell-autonomous fashion or 

instead coordinated at the organismal level?   

 

1.4. The old paradigm changes: regulation of aging at the organismal level  

The ability of unicellular organisms and of cultured cells to induce the HSR, as well as 

the apparent intracellular nature of the UPRER and UPRmt signaling pathways, suggested that these 

stress response mechanisms are regulated at a cell-autonomous level. This notion has, however, 

been challenged by accumulating evidence, mainly from the nematode C. elegans, indicating that 

the activation of stress response mechanisms, the maintenance of proteostasis, lifespan 

determination, and, consequently, the regulation of aging are coordinated at the organismal level 

by inter-tissue communication (Fig. 4). 

 

1.4.1. Neuronal regulation of aging 

The pivotal role of thermosensory neurons in heat sensing (Mori and Oshima, 1995) 

raised the prospect that in C. elegans the activity of these cells controls HSR activation in somatic 

tissues. To test this hypothesis, Prahlad et al. employed worms that carry a mutated gcy-8, a 

receptor-type guanylyl cyclase-encoding gene that is exclusively expressed in the AFD 

thermosensory neurons (Inada et al., 2006), and express the green fluorescent protein (GFP) under 

the regulation of the hsp-70 promoter (Prahlad et al., 2008). They found that the inactivation of 

these neuronal cells abolishes the ability of the animals to induce the HSR in non-neuronal tissues. 

Similar results were obtained when the activity of the AFD partners, the AIY interneurons, was 

impaired by the knockdown of ttx-3, a gene that encodes an AIY-specific LIM homeodomain 

protein. This study showed for the first time that neurons coordinate the nematode's HSR and 

control the expression of Hsps in remote tissues. A follow-up study demonstrated that this 

communication requires serotonergic signaling (Tatum et al., 2015).  

Neurons also regulate the innate immune response, an IIS-controlled stress-response 

mechanism (Singh and Aballay, 2006 – a; Singh and Aballay, 2006 – b) that enables worms to 
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Figure 4. Inter-tissue communication regulates stress resistance, proteostasis, and 

life span. All three mechanisms that respond to protein misfolding – the heat shock 

response (HSR) and the endoplasmic reticulum (UPRER) and mitochondrial (UPRmt) 

unfolded protein responses – are regulated in a cell non-autonomous fashion. (a) In 

Caenorhabditis elegans, thermosensory neurons (I) regulate HSR activation in remote 

tissues, including the intestine. Neurons also induce the nematode’s innate immune 

response by activating the UPRER in intestinal cells (II). (b) Dietary restriction (DR)-

mediated SKN-1/Nrf activation in ASI neurons increases respiration in remote tissues, 

extends life span, and preserves proteostasis (III). The expression of a constantly active 

XBP-1 (XBP-1s) in neurons activates the UPRER in intestinal cells (IV) and muscle cells 

(V), confers longevity, and enhances proteostasis. The mitigation of electron transport 

chain (ETC) activity in neurons  
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exhibit relatively extended survival while feeding on pathogenic bacteria. The knockdown of the 

neuronal G protein-coupled receptor (GPCR)-encoding gene octr-1 extends the lifespan of worms 

fed on Pseudomonas aeruginosa (P. aeruginosa) by activating a DAF-16-independent, non-

canonical UPRER mechanism in the intestine (Sun et al., 2011). The surprising discovery that the 

UPRER is controlled by sensory neurons suggested that this stress-response mechanism may 

regulate lifespan and proteostasis in an inter-tissue fashion. In an attempt to reverse the loss of 

ER proteostasis that occurs with aging by inducing the UPRER in C. elegans, Taylor et al. found 

that the expression of a constitutively active xbp-1, a key UPRER-promoting transcription factor, 

can rescue the age-onset loss in UPRER function (Taylor and Dillin, 2013). Remarkably, if 

expressed in neurons, but not in other tissues, the xbp-1 active form can initiate a cell non-

autonomous, unidirectional response that requires neurotransmitters release from small clear 

vesicles (SCVs) and results in UPRER activation in the intestine and muscles, promoting ER stress 

resistance and substantially extending lifespan.  

Figure 4. (continuation) (V), confers longevity, and enhances proteostasis. The 

mitigation of electron transport chain (ETC) activity in neurons activates the UPRmt in the 

intestine (VI), extends life span, and enhances proteostasis in both intestinal and muscle 

cells (VII). (c) Non-neuronal tissues communicate to orchestrate the activation of stress 

response mechanisms. DAF-16 functions in both a cell-autonomous and a cell non-

autonomous manner. The activation of this transcription factor in intestinal cells activates 

DAF-16-mediated transcription in the hypodermis (VIII) and muscles (IX), whereas its 

activation in muscle cells induces the expression of DAF-16 target genes in the intestine 

(IX) and hypodermis (X). Impairment of proteostasis in the body wall muscle cells by 

aggregation-prone proteins induces the expression of daf-21, which encodes the C. 

elegans HSP90 chaperone, in a PHA-4-dependent manner. This induction was observed 

not only in the muscles but also in the intestine (XI) and pharynx (XII), tissues that do not 

express these aggregative proteins. Signals that originate from the reproductive system 

regulate proteostasis during adulthood in muscles (XIII), as well as life span, by inducing 

the activation of DAF-16 in intestinal cells. Although most studies point to direct 

communication between the gonads and the somatic tissues, a recent study showed that 

the life span extension effect mediated by the activation of DAF-16 in the intestine 

requires the expression of mir-71 in neurons (XIV) (adapted from Carvalhal Marques et 

al., 2015). 
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Similarly to the responses to acute stresses and lifespan, neurons can also regulate 

proteostasis non-autonomously. UNC-30, a neuron-specific transcription factor that regulates 

GABA signaling, was identified in a forward genetic screen as a modulator of proteotoxicity in 

muscles (Garcia et al., 2007). Neuronal signaling seems, therefore, to be an important modulator 

of protein homeostasis in the post-synaptic muscle cells of C. elegans. These results are supported 

by a later study demonstrating in animals expressing either polyQ or the Amyotrophic Lateral 

Sclerosis (ALS)-associated mutant SOD-1G93A in intestinal or muscle cells that the thermosensory 

neurons AFD indeed control the cellular response to these misfolded proteins through the release 

of calcium-activated dense core vesicles (DCV) (Prahlad and Morimoto, 2011). 

In another recent study, Durieux et al., showed that by tissue-specific knockdown of the 

nuclear-encoded cytochrome c oxidase-1 subunit Vb/COX4 (cco-1), an ETC component, worms’ 

lifespan extension occurs upon loss of mitochondrial function in the intestine and neurons of C. 

elegans but not in muscles (Durieux et al., 2011). Taking into account the role of UPRmt upon 

different forms of mitochondrial stress (Yoneda et al., 2004), the authors investigated its 

involvement in the ETC-mediated longevity. The UPRmt not only showed to be essential for this 

effect – this statement was later refuted by another group (Bennett et al., 2014) – but, surprisingly, 

activated in the intestine mainly in a cell non-autonomous manner that is dependent on unknown 

signals from the nervous system.  

These studies have established neuronal signaling cascades as critical regulators of the 

nematode's lifespan, stress resistance, and proteostasis. Nevertheless, non-neuronal inter-tissue 

communication mechanisms also appear to play crucial roles in the orchestration of these 

functions.  

 

1.4.2. Neuron-independent regulation of aging  

The first evidence indicating that endocrine signals function to coordinate the aging 

program of C. elegans originated from studies of the IIS pathway. Using mosaic analysis in 

worms, it was shown that the loss of daf-2 in only a subset of neurons results in prolonged lifespan 

and that the restoration of wild type daf-2 and, thus, of the insulin signaling, in these neurons 
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completely abolishes the worms’ long-lived phenotype (Apfeld and Kenyon, 1998). Consistently 

with this study, it was shown that expression of age-1 in neurons or in the intestine rescues the 

longevity phenotype of age-1 mutant animals, shortening an otherwise long lifespan back to wild 

type levels (Wolkow et al., 2000; Iser et al., 2007). A later study brought, however, new insights 

into the regulation of aging. To address the question of where does DAF-16 act to coordinate 

lifespan, Libina et al. created worms that bear a weak daf-2 allele and an inactive daf-16 and, thus, 

exhibit a short lifespan (Libina et al., 2003). The authors restored the expression of DAF-16 in 

these animals in a tissue-specific manner and found that this transcription factor is primarily 

important as a lifespan regulator in the intestine. Later, DAF-16 was found to exhibit both cell-

autonomous and cell non-autonomous regulation of gene expression (Alic et al., 2014; Zhang et 

al., 2013). The expression of DAF-16 in intestinal cells elevates the expression of two of its target 

genes, dod-11 and hsp-12.6 (Murphy et al., 2003), not only in the intestine but also in muscles 

and in the hypodermis. Similarly, the activation of DAF-16 in muscle cells affects the expression 

of its target genes in the intestine and hypodermis, implying that these tissues communicate to 

coordinate gene expression. Zhang et al. further showed that, in addition to lifespan, DAF-16 acts 

at a distance, namely in the intestines, to protect animals from amyloid-mediated paralysis (Zhang 

et al., 2013). These results, as well as others obtained in D. melanogaster (Hwangbo et al., 2004; 

Giannakou et al., 2004), imply the requirement of endocrine longevity signals from both the 

nervous system and the adipose tissue, which is represented by the intestine in worms, to other 

tissues to allow the IIS-dependent regulation of the whole animal’s aging and lifespan. 

Another independent mechanism found to be aging and lifespan regulator in C. elegans 

and D. melanogaster depends of the reproductive system. In both organisms, the removal of the 

germline precursor cells, the cells that give rise to sperm and oocytes, influence the adult tissues 

of the whole animal, leading not only to a 40-60% increase in lifespan but also rendering them 

youthful and with highly functional protein quality control networks in the somatic cells (Hsin 

and Kenyon, 1999; Arantes-Oliveira et al., 2002; Broué et al., 2007; Flatt et al., 2008; Shemesh 

et al., 2013). This phenotype depends mainly on the non-autonomous regulation of the nuclear 

hormone receptor DAF-12, the homologue of P450, DAF-9, the oxygenase DAF-36 (both thought 
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to be required for the synthesis and/or modification of DAF-12 ligands), the putative transcription 

elongation factor KRI-1 (Russel and Kahn, 2007; Panowski and Dillin, 2009), as well as on the 

activation of DAF-16 in somatic tissues, especially in the intestine, whereupon it regulates the 

transcription of its lifespan-extending target genes (Lin et al., 2001; Libina et al., 2003). To 

ascertain whether signaling that originates from the reproductive system affects proteostasis, 

Shemesh et al. compared the expression levels of Hsps in 2-day-old heat-stressed nematodes 

harboring either functional or impaired germ cells and found that, unlike those in the control 

group, worms of the germ line–impaired group maintained the ability to induce the expression of 

Hsps during late stages of life (Shemesh et al., 2013). They further followed the aggregation states 

of metastable proteins during the worms' life cycle and confirmed that germ line impairment 

results in enhanced proteostasis in somatic tissues. 

How the reproductive system and the somatic tissues communicate is nonetheless far 

from being understood. Although specific signals are exchanged directly between the gonad and 

distal tissues (Berman and Kenyon, 2006), neurons seem to coordinate this communication, at 

least in part, through microRNA-71 (mir-71), which acts within neurons to enable germ cell 

removal to extend lifespan by activating DAF-16 in the intestine (Boulias and Horvitz, 2012). 

An additional important insight into the neuron-independent maintenance of proteostasis 

was provided by the finding that the expression of metastable proteins in muscle cells of worms 

activates the FoxA transcription factor PHA-4, which in turn elevates the expression of Hsp-90 

(encoded by daf-21 in C. elegans) in these cells. Curiously, daf-21’s expression was also observed 

in other tissues that do not express these aggregation-prone proteins (e.g. intestine and pharynx) 

(van Oosten-Hawle et al., 2013). The authors further show that suppression of misfolding of 

metastable muscle proteins can be achieved by artificially enhancing the expression of DAF-21 

not only in muscle cells but also in intestinal and neuronal cells. Nonetheless, the cell non-

autonomous regulation of daf-21 seems to be independent of neuronal signaling and rather rely 

on direct communication between somatic tissues.  

Collectively, these studies indicate that the regulation of stress resistance, proteostasis, 

and lifespan, known to require communication between subcellular compartments, is also 
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orchestrated at the organismal level by neuron-dependent and neuron-independent mechanisms 

(Fig. 4) and raise principal questions: what is the meaning of such mechanisms from an 

evolutionary point of view? How is this control performed in higher animals such as mammals? 

What might be the impact of such complexity in the development and applicability of therapeutic 

strategies?  

 

1.5. The scope of this work 

This work aimed at exploring the principals of inter-tissue communication and assessing 

the mutual links between the determination of lifespan, stress resistance, and proteostasis. It can 

be divided into two main parts. One concerns the fundamental knowledge of how stress responses 

are coordinated at the organismal level and addresses the recent discoveries on the neuronal 

regulation of these responses (Prahlad et al., 2008). We performed an RNAi screen and identified 

a putative, neuronal GPCR, which we named GTR-1, as being involved in the resistance to heat 

stress. Following its identification, our main aims were to analyze gtr-1’s expression pattern and 

determine the mechanisms underlying its involvement in stress resistance, assess GTR-1’s role in 

other stress resistance pathways and lifespan, and determine its involvement in counteracting 

proteotoxicity. 

The second part of this study stands on the emerging optimism towards aging 

manipulation, particularly by interfering with the IIS pathway, as a feasible approach to postpone 

or even prevent the emergence of conformational disorders, including the highly prevalent, late-

onset neurodegenerative diseases. In fact, our lab recently reported that NT219, a novel IIS 

inhibitor, promotes stress resistance and protects nematodes from AD- and HD-associated 

proteotoxicity (El-Ami et al., 2014). The transposition of such data “from bench to bedside” is 

most probably far from being accomplished. However, a deep knowledge of the mechanistic 

details that underlie the IIS pathway is required in order to provide potential therapeutic 

approaches with means to address intrinsic difficulties of application. With this in mind, we 

attempted at better characterizing the IIS-downstream components involved in the direct 

regulation of proteotoxicity in the C. elegans model. For this, we searched for genes that are 
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known regulators of proteostasis in order to identify new effectors that are regulated by the IIS 

pathway. In this screen, we identified tor-2 as a transcriptional target downstream of daf-2, which 

we show to be upregulated upon suppression of the IIS. In this project we aimed to unravel which 

transcription factor regulates tor-2’s expression, evaluate the role of the endogenous TOR-2 in 

the regulation of proteostasis in different tissues and the mechanisms underlying this regulation, 

as well as investigate TOR-2’s involvement in the IIS-regulated stress pathways, lifespan, and 

developmental functions. 
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Chapter 2 

RESULTS           

 

2.1. A neuronal GPCR is critical for the induction of the HSR in the nematode C. elegans 

2.1.1. gtr-1 is required for the survival of worms at elevated temperatures  

We attempted to identify receptors that are expressed in neurons and are required for 

survival in elevated temperatures. The limited penetrance of dsRNA into neurons of C. elegans 

(Timmons et al., 2001) has notably restricted the efficiency of feeding RNAi bacteria as a 

screening technique for the identification of genes encoding products that are required for 

neuronal function. This technical obstacle has been, however, recently resolved by the creation 

of a worm strain that expresses the transmembrane protein SID-1, crucial for the uptake of dsRNA 

by the nematode's cells (Winston et al., 2002), under the regulation of the pan-neural unc-119 

promoter (strain TU3335). This expression not only enables an efficient gene-specific knockdown 

within neurons but also reduces the RNAi-mediated gene knockdown in other tissues (Calixto et 

al., 2010). As such, for our RNAi screen, we employed the TU3335 worms and found that animals 

that were fed bacteria expressing dsRNA towards gtr-1 (encoded by F25E2.1) exhibited 

significantly reduced viability over time when exposed to 35°C (Fig. 5A). Four independent 

experiments indicated that, whereas the average survival rates of control worm populations that 

were fed with bacteria harboring an empty vector (EV) was of approximately 42%, only 15% of 

the gtr-1 RNAi-treated worms were alive after 10 hours of exposure to heat (Fig. 5B). This 

survival rate was comparable to that of worms that were fed bacteria expressing dsRNA towards 

the neuronal gcy-8, previously shown to be required for HSR activation (Prahlad et al, 2008). 

We then tested whether gtr-1 is also required for the survival of wild type worms (strain 

N2) in elevated temperature. N2 worms that were treated with either gtr-1 or daf-16 RNAi and 

exposed to heat as described above exhibited similarly reduced survival rates over time compared 

to their untreated counterparts (EV) (Fig. 5C). These results were confirmed by three independent 

experiments in which the survival rate was examined after 12 h of exposure to heat (Fig. 5D). 
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Likewise, temperature-sensitive sterile worms (strain CF512) that were treated with either gtr-1 

or daf-16 RNAi exhibited reduced heat stress resistance over time compared with the untreated 

(EV) animals (Fig. 5E), as well as in three independent experiments in which worms from the 

Figure 5. Knockdown of gtr-1 sensitizes worms to heat stress. [A] Worms expressing 

sid-1 under the regulation of the pan-neuronal unc-119 promoter (strain TU3335) were 

treated with RNAi towards either gcy-8 or gtr-1 or left untreated (EV), exposed to 35°C, 

and their survival rates were recorded in 3 hours intervals. Much like those treated with 

gcy-8 RNAi, gtr-1 RNAi-treated animals exhibited reduced survival rates compared with 

their untreated counterparts. [B] Four independent experiments in which the RNAi- 

fggregr 
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same strain were treated with RNAi as described above and exposed to heat for 15 h (Fig. 5F). 

CF512 worms were exposed to 25°C during development to prevent them from having progeny, 

a mild treatment that was, nonetheless, shown to not activate the HSR (Volovik et al., 2012). In 

sum, these results point at gtr-1 as being critical for the survival of three different worm strains 

upon heat shock. 

The elevated heat stress resistance of daf-2 mutants (Lithgow et al., 1995) led us to 

investigate whether this phenotype is dependent on the activity of gtr-1. For this, we used daf-

2(e1370) mutant worms harboring a weak daf-2 allele that leads to low activity of the tyrosine 

kinase domain of DAF-2. When grown at normal temperature, these worms are long-lived and 

highly stress-resistant (Kenyon et al., 1993). The worms were either fed control bacteria (EV) or 

treated with RNAi towards either daf-16 or gtr-1 throughout development, exposed to 35°C at 

day 1 of adulthood, and their survival rates were analyzed after 20 hours of exposure to heat. 

Three independent experiments revealed that, whereas ∼85% of the untreated daf-2(e1370) 

mutant animals were alive, only 10% of both gtr-1 and daf-16 RNAi-treated worms survived after 

the heat insult (Fig. 5G). This further indicates that gtr-1 is also critically required for the 

increased resistance of daf-2 mutant animals to thermal stress. 

To further establish our observations and to verify the specificity of the RNAi-mediated 

knockdown of gtr-1, we created an RNAi construct that is directed towards the 3′UTR of gtr-1. 

Figure 5. (continuation) treated TU3335 worms survival rates at 35°C were recorded after 

a 10-hour exposure confirmed the results. [C] gtr-1 RNAi-treated wild type worms (strain 

N2) and [E] CF512 animals exhibited significantly reduced survival rates at 35°C compared 

with their untreated counterparts (EV). Three independent single-time-point survival assays 

with each strain (12 and 15 hours of exposure to 35°C for N2 [D] and CF512 [F] worms, 

respectively) showed that daf-16 and gtr-1 RNAi-treated animals exhibited similarly reduced 

lifespan after exposure to heat compared with untreated animals. [G] Similarly to daf-16, the 

knockdown of gtr-1 by RNAi abolished the elevated stress resistance of daf-2(e1370) mutant 

worms that were exposed to heat (35°C) for 20 hours. In B, D, F, and G, bars represent mean 

survival ± SEM; * pvalue < 0.01. The statistical significance of the results was performed using 

the Student’s t-test. [H] CF512 worms that were treated with RNAi towards the 3′UTR region 

of gtr-1 and exposed to 35°C exhibited significantly reduced survival rates compared with 

the control group (EV).                     
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Using CF512 worms, we found that knocking down gtr-1 by the new RNAi construct led to an 

identical reduced-survival effect after exposure to 35°C observed when gtr-1 was knocked down 

by the library's RNAi strain or upon daf-16 knockdown (Fig. 5H). 

 

2.1.2. gtr-1 is expressed in chemosensory neurons 

The fact that gtr-1 RNAi-treated daf-2(e1370) mutant, N2, and CF512 worms show 

reduced heat resistance puzzled us given the low penetrance of RNAi into neurons. Two 

hypotheses can explain these observations: (1) either gtr-1 is tightly regulated and thus the 

relatively low efficiency of RNAi-facilitated gtr-1 knockdown in neurons is sufficient to sensitize 

the worms to heat or (2) it executes its heat resistance functions in a non-neural tissue. To 

distinguish between these two possibilities and to analyze the spatial and temporal expression 

patterns of gtr-1, we created worms that express the red fluorescent protein tdTomato (Shaner et 

al., 2004) under the regulation of the gtr-1 promoter (3 kb upstream of the gtr-1 open reading 

frame, strain EHC101). 

To determine in which worm tissues gtr-1 is expressed, we visualized EHC101 worms 

using fluorescent microscopy and found that the expression of tdTomato was confined to neurons 

(Fig. 6A). Prominent expression was observed in the head and tail neurons and along the ventral 

cord. Some of the head neural cell bodies appeared to be located in close proximity to the pharynx. 

The key role of gtr-1 in the worm's resistance to heat and its expression in neurons that are located 

near the pharynx raised the prospect that, among other neuronal cells, gtr-1 is expressed in the 

AFD thermosensory neurons. To examine this hypothesis, we crossed the EHC101 worms with 

animals that express the GFP under the regulation of the gcy-8 promoter (strain PY1322) to obtain 

animals that concurrently express GFP in AFD neurons and tdTomato in gtr-1-expressing cells. 

Confocal microscopy showed   distinct expression patterns for GFP and tdTomato, clearly 

indicating that gtr-1 is not expressed in AFD neurons (Fig. 6B). Similarly, we crossed EHC101 

with animals that express GFP under the regulation of the ttx-3 promoter (strain OH99) and found 

that gtr-1 is not expressed in the AIY interneurons (Fig. 6C).  
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Figure 6. gtr-1 is expressed in chemosensory neurons. [A] Fluorescent visualization of 

worms that express tdTomato under the regulation of gtr-1 promoter (strain EHC101) 

revealed that gtr-1 is expressed in neurons of the head ganglia, the ventral cord, and the tail. 

Scale bar, 50 μm. [B–C] gtr-1 is expressed in neither the AFD thermosensory neurons 

(labeled by GFP driven by the gcy-8 promoter, B) nor in AIY interneurons (labeled with GFP 

driven by the ttx-3 promoter, C). [D] Visualization of worms that express GFP under the 

regulation of the chemosensory specific lin-11 promoter (green channel) and tdTomato 

driven by the gtr-1 promoter (red channel) showed colocalization. In B and D, scale bars, 10 

μm. 
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We then examined whether gtr-1 is expressed in other neurons of the thermosensory circuit (Ma 

and Shen, 2012). EHC101 worms were crossed with animals that express GFP under the 

regulation of the lin-11 promoter (strain OH103). lin-11 encodes a LIM homeodomain protein 

that is expressed in several head and tail neurons and is crucially required for the activity of the 

thermoregulatory neural network (Hobert et al., 1998). Accordingly, OH103 animals express GFP 

in the head chemosensory neurons ADF and ADL, as well as in the AIZ, AVG, and RIC 

interneurons (Hobert et al., 1998). Confocal visualization of these worms revealed identical 

expression patterns of GFP and tdTomato, indicating that lin-11 and gtr-1 are expressed in the 

same neuronal cells (Fig. 6D). 

 

2.1.3. gtr-1 is required for the induction of the HSR mechanisms downstream of both HSF-

1 and DAF-16 but not for thermosensation 

Neurons of the thermoregulatory circuit exhibit two major functions upon exposure to 

elevated temperature: heat sensation (Clark et al., 2007) and the initiation of signaling that 

activates the HSR in other tissues (Prahlad et al., 2008). With this in mind, we sought to determine 

in which of these neuronal functions gtr-1 plays its roles. We started by investigating whether gtr-

1 is essential for heat sensation by performing a worm migration assay on a temperature gradient. 

In this set of experiments, we used daf-2(e1370) mutant worms, a strain that exhibited the most 

prominent reduction in heat resistance upon RNAi-mediated gtr-1 knockdown. The worms were 

either grown throughout development on EV bacteria or fed with gtr-1 RNAi bacteria and placed 

on temperature gradient plates (6–38°C). The plates were photographed immediately after placing 

the worms and 12 min thereafter. Both untreated worms (EV) (Fig. 7A, top) and gtr-1 RNAi-

treated animals (Fig. 7A, bottom) rapidly migrated to the central region of the plate where the 

temperature was similar to their cultivation temperatures (18–20°C). To quantify the worms' 

migration behavior, we divided each plate to six equal zones along the temperature gradient and 

counted the worms that were present in each zone at the beginning of the experiment and after 12 

min in four independent experiments. Our results (Fig. 7B) confirmed the significance of the 

indistinguishable thermotactic behaviors of the worm groups. The migration of gtr-1 RNAi-  



Neuronal orchestration of aging in Caenorhabditis elegans | 2015 

 -43-  
  

 

treated worms away from the hot and cold regions indicates that this gene product is dispensable 

for heat sensation and suggests that it functions in the signaling mechanism that activates the 

HSR. 

Figure 7. Knockdown of gtr-1 by RNAi has no effect on heat sensing. [A] daf-2(e1370) 

mutant worms were placed on temperature gradient plates. The plates were photographed 

immediately after placing the worms and 12 min after. Both untreated (EV; top) and gtr-1 

RNAi-treated (bottom) animals migrated away from regions of high (∼38°C) and low 

(∼6°C) temperatures to populate the central region of the plates where the temperatures were 

similar to their cultivation temperature (18–20°C, rectangles). [B] Four independent 

experiments confirmed that untreated and gtr-1 RNAi-treated worms exhibited 

indistinguishable thermotactic behavior. 
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To examine the possibility that gtr-1 is required for the HSR-activating neuronal 

signaling mechanism, we investigated whether the knockdown of this gene impaired the induction 

of heat shock proteins in remote tissues upon exposure to high temperature. First, we used worms 

that express GFP under the regulation of the promoter of hsp-16.2 (strain CL2070), a well-

established HSF-1 target that encodes a small heat shock protein predominantly expressed in the 

worm's intestine (Link et al., 1999). These worms were left untreated (EV) or treated with RNAi 

towards either hsf-1 or gtr-1 from hatching to the first day of adulthood. The worms were exposed 
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Figure 8. Knockdown of gtr-1 prevents the induction of the HSR downstream of DAF-

16. [A] Worms expressing GFP under the control of the hsp-16.2 promoter (strain CL2070) 

that were treated with gtr-1 RNAi and exposed to heat shock exhibited reduced GFP signal 

compared with their untreated (EV) counterparts. [B–C] Measurement of GFP signal 

intensities (B) and Western blot analysis using GFP antibody (C) indicated that knockdown 

of gtr-1 resulted in remarkable reduction in the induction of hsp-16.2 by heat. This effect was 

significant but less prominent than the effect of hsf-1 RNAi; * pvalue < 0.01. [D–E] 

Knockdown of gtr-1 by RNAi reduces the signal intensity of worms expressing GFP under 

the regulation of hsp-70 (C12C8.1) promoter, as visualized by fluorescent microscopy. This 

effect was most prominent in the pharynx (D) and less in the spermatheca (“S”). Signal 

quantification (>20 worms per group; E) confirmed the significance of this observation; * 

pvalue < 0.01. (F) Knockdown of gtr-1 by RNAi reduced the induction of hsp-70 (C12C8.1) 

by heat shock as measured by qPCR in CF512 worms; * pvalue < 0.01, ** pvalue = 0.012. [G–

H] Induction level of hsp-12.6 was significantly reduced by the knockdown of gtr-1 by RNAi 

dfgdfsdgdsfg 
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to heat shock (33°C) for 3 hours and the GFP was visualized by fluorescent microscopy. Although 

a clear GFP signal was observed in the intestine of untreated animals, gtr-1 RNAi treatment 

largely abolished the induction of GFP in the worms (Fig. 8A). Signal quantification (Fig. 8B) 

confirmed that, despite having a less prominent effect on the expression of GFP than RNAi 

towards hsf-1, the knockdown of gtr-1 was still significant. To further establish and quantify this 

phenomenon, we treated the CL2070 animals with RNAi, exposed them to heat, as described 

above, and homogenized them to perform a Western blot analysis of the GFP levels using a GFP 

antibody. Our results showed that the knockdown of gtr-1 by RNAi resulted in a remarkably 

reduced GFP level compared with that seen in untreated worms (EV) (Fig. 8C). The effect of gtr-

1 RNAi treatment on the activity of the hsp-16.2 promoter was comparable to that of hsf-1 RNAi, 

though not as robust. It is plausible that the prominence of hsf-1 RNAi in this set of experiments 

results from the lower efficiency of RNAi-mediated gtr-1 knockdown in neurons (Timmon et al., 

2001).  

To further investigate the role of gtr-1 in HSR activation, we examined whether it is 

required for the induction of the inducible hsp-70, a pivotal and well characterized HSR-induced, 

HSF-1 target gene in C. elegans that is encoded by the gene C12C8.1 (Snutch et al., 1988). To 

directly visualize directly the activity of the hsp-70 promoter, we used worms that express GFP 

under its regulation (Morley and Morimoto, 2004). For this, we treated worms with the 

appropriate RNAi, exposed them     to heat shock as previously described, and visualized the GFP 

signal by fluorescent microscopy. Much like the hsp-16.2 promoter, the activity of the hsp-70 

promoter was largely reduced upon knockdown of gtr-1, most prominently in the pharynx (Fig. 

8D, E). The key role of gtr-1 in the induction of this gene was further confirmed by qPCR analysis   

of the hsp-70 mRNA levels in CF512 worms exposed to heat shock (33°C) for 3 hours (Fig. 8F). 

Figure 8. (continuation) as visualized (G) and quantified (H) in EHC102 worms that 

express tdTomato under the regulation of the hsp-12.6 promoter; * pvalue < 0.01. This 

effect was most prominent in the vulva (insets). (I) qPCR analysis confirmed the 

necessity of gtr-1 for the induction of hsp-12.6 in heat-shocked daf-2(e1370) worms 

(error bars represent ± SEM; the statistical significance of the results was performed 

using the Student’s t-test). 
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 We then investigated whether gtr-1 is also required for the activation of the arm of the 

HSR mechanism downstream of DAF-16 upon exposure to heat shock. We focused on hsp-12.6, 

a small heat shock protein member of the α-crystalline family (Leroux et al., 1997) that is co-

regulated by DAF-16 (Murphy et al., 2003) and by HSF-1 (Hsu et al., 2003). To visually follow 

the expression of hsp-12.6, we created worms that express the red fluorescent protein tdTomato 

under the regulation or the hsp-12.6 promoter (2,697 bp upstream of the hsp-12.6 open reading 

frame, strain EHC102). EHC102 worms were grown from hatching to day 1 of adulthood on 

bacteria expressing either gtr-1 or daf-16 RNAi or on EV bacteria and exposed to heat shock 

(33°C) for 3 hours. Similarly to the daf-16 RNAi treatment, the knockdown of gtr-1 reduced the 

tdTomato signal (Fig. 8G) in the vulva (insets) and intestine of the worms, indicative of reduced 

induction of the hsp-12.6 promoter by heat shock. Both signal quantification (Fig. 8H) and qPCR 

analysis (Fig. 8I) revealed that, whereas the knockdown of daf-16 reduced the induction of hsp-

12.6 by 80–90% when compared to the control counterparts, that of gtr-1 had a less prominent 

but still significant effect of 60% reduction. 

 

2.1.4. No role for gtr-1 in the regulation of lifespan, resistance to pathogenic bacteria, or 

IIS downstream developmental functions 

Lifespan extension is a hallmark of IIS reduction (Kenyon et al., 1993). Therefore, we 

sought to determine whether gtr-1 plays any role in the determination of lifespan. We started by 

analyzing whether the knockdown of gtr-1 has an effect on the lifespan of CF512 worms. The 

worms were fed with control bacteria (EV) or RNAi bacteria towards either gtr-1 or daf-16 

throughout development and adulthood and their lifespans were recorded. Unlike the daf-16 

RNAi-treated worms, those treated with gtr-1 RNAi exhibited no significant change in their 

lifespans (Fig. 9A; Table 1). We further assessed whether gtr-1 is required for the longevity 

phenotype of daf-2(e1370) mutant worms by treating the animals with daf-16 or gtr-1 RNAi as 

described above and by following their lifespan. As expected, the knockdown of daf-16 

dramatically reduced the lifespan of the animals to levels similar to those of wild type animals. In 
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contrast, gtr-1 RNAi treatment had no significant effect on the lifespan of these long-lived 

nematodes (Fig. 9B; Table 1). 

Figure 9. gtr-1 is dispensable for the determination of lifespan, for innate immunity, 

and for the developmental functions of the IIS. [A] gtr-1 RNAi-treated and untreated 

(EV) CF512 worms had indistinguishable lifespans. [B] Similarly, the knockdown of 

gtr-1 by RNAi had no significant effect on the lifespans of daf-2(e1370) mutant worms.  

[C] Knockdown of gtr-1 affected neither the egg-laying pattern of daf-2(e1370) mutant 

worms [D] nor the percentage of dauer larvae in a worm population that hatched and 

grew at 25°C. [E] In contrast to hsf-1 RNAi, gtr-1 RNAi treatment during larval 

development had no effect on the survival rates of daf-2(e1370) mutant worms that were 

fed with the pathogenic bacteria P. aeruginosa during adulthood. [F] Knockdown of 

octr-1 by RNAi had no effect on the heat stress resistance of daf-2(e1370) mutant 

worms. 
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We then examined whether gtr-1 is involved in the developmental functions of the IIS 

and found that knocking down this gene affected neither the modified egg-laying pattern of daf-

2(e1370) worms (Dillin et al., 2002) nor their rates of dauer larvae formation when grown at 25°C 

(Fig. 9C and 9D, respectively). 

The recent finding that the putative neuronal GPCR OCTR-1 regulates the innate immune 

response of C. elegans (Sun et al., 2011), as well as the critical necessity of HSF-1 (Singh and 

Aballay, 2006 – a; Singh and Aballay, 2006 – b) and DAF-16 (Garsin et al., 2003) for this stress 

response, prompted us to investigate whether gtr-1 is required for the survival of worms upon 

exposure to pathogenic bacteria. For this, daf-2(e1370) mutant worms were allowed to hatch and 

develop on EV bacteria or on bacteria harboring either hsf-1 or gtr-1 dsRNA. They were then 

transferred onto plates seeded with the pathogenic bacteria Pseudomonas aeruginosa and their 

survival rates were recorded daily. Contrarily to the animals treated with hsf-1 RNAi, which 

exhibited reduced survival upon exposure to the pathogenic bacteria, worms developed on gtr-1 

RNAi bacteria, as well their control counterparts (EV), displayed similar survival rates (Fig. 9E), 

excluding the involvement of gtr-1 in the innate immune response. 

To further scrutinize the possible relations between heat stress resistance and the innate 

immune response of the nematode, we investigated whether OCTR-1 (Sun et al., 2011) is also 

required for heat stress resistance. For this purpose, daf-2(e1370) mutant animals were developed 

on EV bacteria or on bacteria expressing dsRNA towards either daf-16 or octr-1 and exposed to 

35°C at day 1 of adulthood. Their survival rates were then followed in 4-hour intervals. Our results 

(Fig. 9F) showed no role for octr-1 in the neuronal regulation of heat stress resistance, supporting 

the notion that gtr-1 and octr-1 function in distinct neuronal stress response mechanisms. 

 

2.1.5. The ability to respond to heat comes at the expense of the capability to cope with 

proteotoxicity 

In addition to their key roles in stress response, DAF-16, HSF-1, and the Hsps are also 

instrumental for the maintenance of proteostasis (Cohen and Dillin, 2008). Although the roles of 

the Hsps suggest that abolishing the worm's ability to induce the HSR will result in impaired 
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proteostasis, it was reported recently that worms carrying mutated gcy-8 or ttx-3 are partially 

protected from proteotoxicity (Prahlad and Morimoto, 2011). For this reason, we investigated 

whether the knockdown of gtr-1 counters proteotoxicity or if it worsens the toxic phenotype 

associated with protein aggregation. To clarify this, we used worms that were engineered to 

express the Alzheimer's-disease-associated human Aβ3–42 peptide in their body wall muscles, 

hereafter called Aβ worms (strain CL2006) (Link, 1995). The expression of Aβ3–42 (McColl et al., 

2009) results in progressive paralysis of the worm population, which can be alleviated by the 

knockdown of daf-2 in a DAF-16- and HSF-1-dependent manner (Cohen et al., 2006) – see 

section 1.3.2. These worms were treated throughout life with RNAi towards daf-2, hsf-1, or gtr-

1 or left untreated (EV) and their rate of paralysis was followed from day 1 of adulthood. 

Interestingly, gtr-1 knockdown protected from the Aβ-derived toxicity (Fig. 10A, B), supporting 

the idea that abolishing the worm's ability to activate the HSR mitigates proteotoxicity. 

 

 

Figure 10. Knockdown of gtr-1 partially protects from Aβ proteotoxicity. [A] 

CL2006 worms expressing Aβ3–42 in their body wall muscles were either left untreated 

(EV) or were treated with daf-2, hsf-1, or gtr-1 RNAi and the rates of paralysis within 

the worm populations were recorded daily. The rate of paralysis within the gtr-1 RNAi-

treated population was lower than that of the control group (EV), but higher than that of 

daf-2 RNAi-treated worms. [B] The counter-proteotoxic effect of gtr-1 RNAi treatment 

was confirmed by three independent paralysis assays. Bars represent the relative slopes 

of the paralysis graphs as in A; * pvalue < 0.01, ** pvalue < 0.045. The statistical significance 

of the results was performed using the Student’s t-test. 
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2.2. tor-2 differentially regulates proteostasis at the organismal level 

2.2.1. tor-2 is upregulated by the IIS pathway  

We searched for genes that are known regulators of proteostasis in order to identify new 

effectors under the control of the IIS pathway. With this in mind, we started by testing whether 

the expression of these genes is regulated at the transcriptional level by the IIS. For this, we used 

CF512 worms fed with bacteria harboring an empty vector (EV) or expressing dsRNA towards 

daf-2 and measured the mRNA levels of a previously selected set of genes by qPCR. Among 

these genes, we found tor-2 mRNA levels to be upregulated around 2.5-fold in worms with 

reduced IIS activity compared to those with normal IIS activity (EV) (Fig. 11A). We used sod-3, 

a well-established IIS target, as a control for RNAi-mediated knockdown efficiency (Honda and 

Honda, 1999). The relative   mRNA levels of tor-2 and sod-3 genes are presented after 

normalization to act-1, the house-keeping gene used as a control.  

But what is tor-2 and why did it evoke interest? tor-2 is, together with ooc-5 (Ozelius et 

al., 1997) and tor-1 (Caldwell et al., 2003), one of the torsin-related genes previously shown to 

be encoded in the complete genome sequence of C. elegans and the one that shares higher 

sequence identity (~40%) with human torsinA gene (Caldwell et al., 2003). Torsins share amino 

acid sequence similarity with members of the large functionally diverse AAA+ family of proteins 

that include Hsps and molecular chaperones, among others (Neuwald et al., 1999). The Caldwell 

group pioneered the investigation on whether torsin proteins function in a similar capacity to 

molecular chaperones in facilitating the proper cellular management of misfolded proteins 

(Caldwell et al., 2003). The authors generated transgenic worms concomitantly expressing 

different lengths of polyQ repeats fused to GFP and the wild type TOR-2 in their body wall 

muscles and observed that TOR-2 dramatically reduces both the number and the size of 

polyQ82::GFP-containing aggregates while partially restoring the diffuse body wall muscle 

fluorescence. The authors further extended their study to another member of the torsin family, 

ooc-5, whose expression together with polyQ82::GFP produced identical results. Interestingly, 

the induction of tor-2’s expression upon IIS suppression seems to be specific for this gene given 

that that of ooc-5 remained unaltered (Fig. 11B).  
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Considering that tor-2 is regulated at the transcriptional level, we aimed at determining 

which of the three IIS-regulated transcription factors, DAF-16, HSF-1, and SKN-1 (see chapter   

1.1.1.2.), is responsible for controlling tor-2’s expression. For this, we used CF512 worms grown 

  

Figure 11. The IIS pathway regulates tor-2 at the transcriptional level. [A] A qPCR 

analysis showed that the knockdown of daf-2 in CF512 worms elevates the mRNA 

expression levels of tor-2. The efficiency of the RNAi treatment was confirmed by the 

induction of sod-3, known to be regulated by the IIS; * pvalue < 0.05, ** pvalue < 0.001. [B] 

The mRNA levels of ooc-5 remain unaltered upon the knockdown of daf-2. The quantified 

results of A and B represent the mean relative mRNA level ± SEM of at least three 

independent experiments. [C] A qPCR analysis revealed that a concurrent knockdown of 

daf-2 along with either daf-16 or skn-1 by RNAi abolishes the induction of tor-2’s 

expression. These results sdgs 
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on EV bacteria  or on dilutions of daf-2 RNAi with equal amounts of either EV, daf-16, hsf-1, or 

skn-1 RNAi bacteria. The worms were developed at 25ºC to ensure their sterility and, hence, the 

likely interference of mRNA originating from the animals’ eggs in these results, and harvested 

for mRNA extraction at day 1 of adulthood. The mRNA levels of tor-2 were analyzed by qPCR 

and normalized to those of act-1 (Fig. 11C). Three independent experiments showed that, while 

the mix of daf-2 dsRNA with EV produces an increase in the levels of tor-2’s mRNA when 

compared to the control, as observed in previous results (Fig. 11A), the knockdown of daf-16 and 

skn-1, but not of hsf-1, abolishes this effect, bringing its levels to those of the control worms (EV). 

These results point at both DAF-16 and SKN-1 as the main transcriptional regulators of tor-2 

downstream of the IIS pathway, consistent with an in silico analysis of the canonical recognition 

sites of DAF-16 (TATTTAC and TGTTTAC – Furuyama et al., 2000), HSF-1 (TTCTAGAA and 

GGGTGTC – GuhaThakurta et al., 2002), and SKN-1 (AATGTCAT, AATATCAT, 

ATTGTCAT, ATTATCAT, TATATCAT, TATGTCAT, TTTATCAT and TTTGTCAT – 

Blackwell et al., 1994) in the genomic sequence upstream of tor-2’s open reading frame. We 

analyzed 10,000 base pairs upstream of the tor-2 sequence (based on the cloning of Cao et al. 

(2005) for generating Ptor-2::GFP transgenic worms), which includes the tor-1 gene, previously 

reported to have undetectable expression levels (Cao et al., 2005), and found several recognition 

binding sites for both DAF-16 and SKN-1 (Fig. 11D). 

 Given the low whole-body expression of tor-2 and hence the lower accuracy of qPCR,   

we will further perform a digital droplet PCR (ddPCR), a newly developed digital PCR method 

in which a sample is fractioned into 20,000 individual droplets and the PCR reaction is carried 

out within each droplet. This method offers advantages over qPCR since it provides an absolute 

count of the target cDNA copies, detection of low-expression cDNA targets, and the measurement 

Figure 11. (continuation) Our results imply that these two transcription factors are 

critically needed for the regulatory effect of the IIS on the expression of tor-2. The 

statistical significance of the results was tested using the Student’s t-test. [D] Map 

representing 10,000 bp upstream of the tor-2 gene (assumed to contain tor-2’s 

transcriptional regulatory regions) and the putative binding sites of all IIS-regulated 

transcription factors, DAF-16, HSF-1, and SKN-1, in the promoter region of tor-2.  
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of small fold differences between samples (http://www.bio-rad.com/en-sn/applications-

technologies/droplet-digital-pcr-ddpcr-technology).  

 

2.2.2. tor-2 differentially regulates proteostasis across the worm’s tissues 

Our work aimed at understanding the role of the endogenous tor-2 in the context of altered 

IIS activity. Differential effects of IIS reduction on lifespan, stress resistance, and proteostasis in 

different tissues have been reported. Thus, taking into account that tor-2 is mainly expressed in 

neurons (Cao et al., 2005), we asked how the knockdown of tor-2 affects proteotoxicity in 

different tissues. First, we investigated the phenotypic outcome of knocking down tor-2 in a C. 

elegans model expressing polyQ67 in a pan-neuronal fashion. These worms display a pronounced 

age-dependent loss of motility (Vilchez et al., 2012). As expected, although less prominently at 

day 1 of adulthood, the knockdown of tor-2 increased polyQ67 toxicity at day 3 of adulthood, 

reflection of the lower number of body bends per 30 seconds in liquid, whereas the knockdown 

of daf-2 was protective (Fig. 12A). This suggests that TOR-2 acts within the neuronal tissues to 

protect against proteotoxicity. 

We further tested whether tor-2 might be involved in protecting against the toxic effects 

of other aggregative proteins expressed in a different tissue. For this, we grew Aβ worms 

(CL2006) in either daf-2 or tor-2 dsRNA-expressing bacteria or on the control bacteria (EV) and 

followed their rates of motility from day 1 to 12 of adulthood in order to avoid confounding age-

related paralysis with the RNAi effects. As previously shown (Cohen et al., 2006), daf-2 RNAi-

treated worms were protected from Aβ-toxicity (Fig. 12B, C). Surprisingly, and contrarily to what 

was observed for the neuron-expressing polyQ67 worms, tor-2 knockdown provided partial 

protection from the paralysis phenotype compared to the EV treatment (Fig. 12B, C).  

This remarkably distinct effect of tor-2 knockdown on the proteotoxicity of aggregative 

proteins expressed in different tissues, being detrimental in neurons but apparently protective in 

muscles (where its expression is believed to be absent), led us to hypothesize that tor-2 might act 

differently in distinct tissues: be protective within its tissue of expression and detrimental in a 

distant tissue. Alternatively, this effect might be related to the distinct properties of the 
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Figure 12. tor-2 regulates proteostasis in a tissue-specific manner. [A] The 

knockdown of tor-2 in worms expressing polyQ67 fused to YFP under the pan-neuronal 

promoter pF25B3.3 (strain AM716) aggravates the toxicity-derived reduction in the 

number of body bends per 30 seconds when compared to their EV-fed counterparts, 

whereas the knockdown of daf-2 by RNAi ameliorates the phenotype. The quantified 

results represent the mean ± SEM of the number of body bends on days 1 and 3 of 

adulthood of at least four independent experiments; * pvalue = 0.046, ** pvalue = 0.012. [B] 

tor-2 knockdown delays the progressive paralysis typical to worms that express the 

Alzheimer-linked Aβ peptide in their body-wall muscles (strain CL2006). The protective 

effect of tor-2 RNAi is significant but less prominent than that of daf-2 RNAi treatment. 

[C] The bars represent the mean ± SEM of the daily paralysis rates of the different worm 

populations of four independent experiments; * pvalue < 0.05, ** pvalue < 0.01. [D] Worms 

expressing MYO-3::GFP under the myo-3 promoter (strain RW1596) were also 

protected by tor-2 knockdown but exhibit a paralysis rate that resembles that of daf-2 

RNAi treatment. [E] The bars represent the mean ± SEM of the daily paralysis rates of 

different worm populations at the ages of 4, 5, 6, and 7 of adulthood of four independent 

experiments; * pvalue < 0.05. The statistical significance of the results was examined using 

the Student’s t-test. 
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aggregative proteins themselves. To discriminate between these two possibilities, we conducted 

the same assays employing other proteotoxicity models. We used a worm model featuring the 

expression in the body  wall muscles GFP fused to the naturally occurring metastable myosin 

heavy chain A (MYO-3 ts386 – strain RW1596), which shows age-dependent misfolding and 

aggregation later in adulthood (Shemesh et al., 2013). These worms were grown at 20ºC through 

larval development and adulthood and their paralysis rates were scored from day 1 of adulthood. 

Similarly to the Aβ worms, these animals showed a motility decline that was, as expected, delayed 

by the daf-2 RNAi treatment and, to the same extent, by knocking down tor-2 (Fig. 12D, E). This 

confirms the protective effect of tor-2 knockdown in muscles. Further experiments are required 

to establish this hypothesis. Currently, we are using other models expressing different aggregative 

proteins in neurons and muscles. Additionally, we will use rde-1 mutant animals in which the 

wild type rde-1 gene, which encodes an essential component of the RNAi machinery, has been 

rescued using tissue-specific promoters, and cross them with the different models of protein 

aggregation mentioned above. This will allow us to evaluate the effect of tissue-specific 

knockdown of tor-2 on proteotoxicity. 

 

2.2.3.  tor-2 is required for the resistance to elevated temperatures 

Since increased survival upon exposure to high temperatures is one of the features of IIS 

reduction (Lithgow et al., 1995), we asked whether tor-2 is also involved in this IIS-regulated 

function. For this, we employed daf-2(e1370) mutant worms that were grown throughout 

development on the control (EV) bacteria or on bacteria expressing dsRNA towards daf-16 and 

tor-2 and exposed to 35°C at day 1 of adulthood (Fig. 13A). As expected, the knockdown of daf-

16 decreased dramatically the worms’ resistance to heat. tor-2 RNAi treatment, on the other hand, 

seemed to have a mild, negative effect on the worm’s ability to survive to high temperatures. The 

Figure 12. (continuationRNAi treatment. [E] The bars represent the mean ± SEM of 

the daily paralysis rates of different worm populations at the ages of 4, 5, 6, and 7 of 

adulthood of four independent experiments; * pvalue < 0.05. The statistical significance 

of the results was examined using the Student’s t-test. 
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Figure 13. Neuronal tor-2 is required of heat shock resistance. [A] The knockdown 

of tor-2 by RNAi reduced the elevated stress resistance of daf-2(e1370) mutant worms 

that were exposed to heat (35°C), although not as prominently as that of daf-16. [B] 

CF512 worms fed with daf-16 or tor-2 RNAi bacteria show a mild, but significant, 

increase in sensitivity to heat compared to their untreated (EV) counterparts. [B] Three 

independent experiments using N2 worms after exposure to heat for 12 hours do not 

show, however, a statistically significant effect of in the animals’ survival. [D] Worms 

expressing sid-1 under the regulation of the pan-neuronal unc-119 promoter (strain 

TU3335) were either left untreated (EV) or treated with RNAi against gcy-8 or tor-2 from 
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knockdown of tor-2 by RNAi in CF512 worms resulted in the same minor, but significant, 

reduction of worms’ viability upon exposure to 35°C (Fig. 13B) whereas in N2 worms the effect 

of tor-2 knockdown on the worms’ sensitivity to elevated temperature was not perceptible after a 

12-hour exposure to 35°C (Fig. 13C).       

tor-2’s expression is very low, as confirmed by our qPCR results, and mainly limited to 

a few cells comprising vulva muscles, a single cholinergic pharyngeal neuron (M1), two sensory 

neurons (AW class) and two interneurons (AVE) in the head, and a few neurons that are located 

at the tail ganglia, including a pair of PVW neurons (Cao et al., 2005). With this in mind, we used 

the TU3335 worms to confirm that neuronal tor-2 is involved in the resistance to high 

temperatures. As described in section 2.1.1., these worms express the transmembrane protein SID-

1 in all neurons and thus exhibit increased neuronal sensitivity to dsRNA delivered by feeding 

(Calixto et al., 2010). Animals were grown on either EV, gcy-8 or tor-2 dsRNA-expressing 

bacteria and exposed to 35°C for 10 hours at day 1 of adulthood. The number of surviving worms 

Figure 13. (continuation) increase in sensitivity to heat compared to their untreated 

(EV) counterparts. [B] Three independent experiments using N2 worms after exposure 

to heat for 12 hours do not show, however, a statistically significant effect in the animals’ 

survival. [D] Worms expressing sid-1 under the regulation of the pan-neuronal unc-119 

promoter (strain TU3335) were either left untreated (EV) or treated with RNAi against 

gcy-8 or tor-2 from hatching until day one of adulthood and transferred to 35°C. Rates 

of survival were recorded in 2-hour intervals. Similarly to the gcy-8 RNAi treatment, the 

knockdown of tor-2 reduced the heat stress resistance of TU3335 animals, as determined 

by their lower rate of survival at elevated temperature. [E] Three independent 

experiments in which the survival rates of TU3335 worms were recorded after 10 hours 

of exposure to 35°C confirmed the results. The quantified results represent the mean 

survival ± SEM; * pvalue < 0.05. The statistical significance of the results was performed 

using the Student’s t-test. [F] Worms resulting from the crossing of TU3335 worms with 

daf-2(e1370) worms (strain EHC115), fed with tor-2 RNAi bacteria and exposed to heat 

(35°C) for 20 hours show greater sensitivity to heat stress when compared to daf-

2(e1370) worms, stressing the importance of RNAi penetrance into neurons for the 

effect of tor-2 knockdown. [G-H] The function of tor-2 seems to be important in neurons 

but not in muscles as worms wherein the RNAi is effective only in muscles (strain 

NR350) do not show sensitivity to heat (35°C for 12 hours) upon knockdown of tor-2. 

rde-1 mutants (strain WM27), which cannot process RNAi, were used as a control. 
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was then counted. RNAi against gcy-8, shown to be exclusively expressed in AFD thermosensory 

neurons and to be required for the viability of wild type worms under conditions of heat shock 

(Prahlad et al., 2008), was used as a control. A survival curve showed that, similarly to the gcy-8 

RNAi-treated animals, tor-2-RNAi treated animals have a low survival rate at 35°C compared to 

their EV counterparts (Fig. 13D). Three independent experiments confirmed the higher 

susceptibility to heat of worms fed with gcy-8 RNAi and tor-2 RNAi (Fig. 13E). Likewise, daf-

2(e1370) mutant worms crossed with TU3335 worms (strain EHC115) and fed with RNAi against 

gcy-8 or tor-2 showed higher susceptibility to elevated temperatures than their control 

counterparts (EV), corroborating the requirement of neuronal tor-2 for the response to acute heat 

stress (Fig. 12F). To exclude the involvement of TOR-2 that is expressed in tissues other than 

neurons in this effect, we performed heat shock experiments using rde-1(ne219) mutant animals 

as a control and rde-1(ne219) mutants in which rde-1 was restored in the muscles by expression 

of wild type rde-1 cDNA under the control of the hlh-1 body-wall muscle promoter (strain 

NR350) (Qadota et al., 2007). rde-1 encodes an essential component of the RNAi machinery and 

thus, in these animals, the RNAi is functional exclusively in the muscle cells. The animals were 

grown until day 1 of adulthood at 20°C and their survival rates were analyzed following 12 hours 

of exposure to 35°C. As expected, feeding rde-1(ne219) mutant worms with daf-16 dsRNA-

producing bacteria did not reduce their survival rates at elevated temperatures (Fig. 13G), whereas 

the specific knockdown of daf-16 in the muscles rendered the worms more sensitive to heat (Fig. 

13H). On the other hand, no effect was observed upon tor-2 knockdown either on the rde-

1(ne219) worms or the ones with rde-1 expression rescued in the muscles, suggesting that 

muscular TOR-2 has no role in heat stress resistance (Fig. 13G, H).    

Altogether, these results are consistent with those observed for gtr-1 and with the seminal 

work from Morimoto’s laboratory showing that thermosensory neuronal mutants are able to 

suppress aggregation and toxicity in muscles while being highly sensitive to acute heat shock 

(Prahlad and Morimoto, 2011).  
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2.2.4. tor-2 is not required for lifespan, resistance to pathogenic bacteria, or exposure to 

UV  

As mentioned in section 1.1.1.2., lifespan extension is one of the hallmarks of IIS 

reduction (Kenyon et al., 1993). With this in mind, we investigated the possible involvement of 

tor-2 in the determination of lifespan. We first assessed whether its knockdown affects the 

lifespan of CF512 worms. For this, we fed the worms throughout development and adulthood 

with control bacteria (EV) or with bacteria expressing dsRNA towards either tor-2 or daf-16 and 

recorded their lifespans. We observed that, while daf-16 RNAi dramatically reduced their 

survival, tor-2 had no significant effect on the worms’ lifespans (Fig. 14A; Table 2). We then 

examined whether the knockdown of tor-2 shortens the long lifespan of daf-2(e1370) mutant 

worms. To overcome the difficult penetrance of RNAi into neurons, the worms were grown on 

RNAi for two generations and the lifespans of the worms of the second generation were followed. 

Contrarily to daf-16 RNAi, tor-2 RNAi had no impact on the longevity of these worms (Fig. 14B; 

Table 2). Finally, we employed worms that express sid-1 in neurons (strain TU3335), fed them 

from hatching with control bacterial (EV) or with bacteria expressing dsRNA against gcy-8 or 

tor-2, and followed their lifespans. As observed for both daf-2(e1370) mutant and wild type 

worms, tor-2 knockdown did not impact the animals’ survival (Fig. 14C; Table 2). In sum, these 

results point to the absence of a role of tor-2 in the determination of lifespan and further establish 

the theme that stress resistance and lifespan are not necessarily coupled.  

As previously mentioned, Sun et al. showed that sensory neurons control the activity of 

a non-canonical UPRER pathway required for innate immunity in C. elegans (Sun et al., 2011). A 

recent study reported that resistance to heat stress and pathogenic bacteria are interrelated 

(Ermolaeva et al., 2013). This was corroborated by results from our group showing that the 

neuronal protein NHL-1 is required for resistance to both stresses (Volovik et al., 2014) Together 

with the necessity of tor-2 for heat stress resistance, these obervations have led us to anticipate 

that tor-2 might be involved in the innate immune response. To test this, we used daf-2(e1370) 

mutant worms, fed them from hatching with control bacteria (EV) or bacteria harboring dsRNA 

against daf-16 or tor-2 for two generations and transferred them into plates seeded with P. 



Neuronal orchestration of aging in Caenorhabditis elegans | 2015 

 -61-  
  

aeruginosa at day 1 of adulthood. Unlike the worms that were treated with daf-16 RNAi, those 

grown on tor-2 RNAi bacteria showed no significant difference in survival compared to their 

Figure 14. Lifespan and resistance to UV or pathogenic bacteria are not regulated 

by tor-2. [A] CF512 worms were treated throughout development and adulthood with 

daf-16 or tor-2 RNAi or left untreated (EV) and their lifespan were recorded. tor-2 

knockdown had no significant effect on the worms’ lifespan. [B] tor-2 showed to be 

dispensable for the longevity phenotype of daf-2(e1370) mutant worms grown on tor-2 

RNAi for two generations, as well as for [C] the lifespan of TU3335 worms. [D] tor-2 is 

also dispensable for the increased resistance of daf-2(e1370) worms grown on tor-2 

RNAi for two generations to the pathogenic bacteria P. aeruginosa and [E] to DNA 

damage inflicted by UV. The graphs D and E represent the mean survival ± SEM of four 

independent experiments.  
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control counterparts, indicating that tor-2 has no role in resistance to pathogenic bacteria (Fig. 

14D).  

Given that one neuronal protein can be involved in the activation of some but not all stress 

responses in remote tissues (Volovik et al., 2014), we further sought to determine whether tor-2 

is also involved in the resistance to UV stress, whose enhancement is another feature of reduced 

IIS (Murakami and Johnson, 1996). For this, synchronized day 1 daf-2(e1370) mutant worms 

grown for two generations on EV or on daf-16 or tor-2 RNAi were exposed to a sub-lethal dose 

of UV radiation, and their survival rates were followed. Four independent experiments show a 

remarkable effect of daf-16’s knockdown on the worms’ survival, mirrored by the pronounced 

decrease in the animals’ average survival. Conversely, the animals fed on tor-2 RNAi exhibited 

a survival curve identical to that of the control worms (EV) (Fig. 14E), advocating the absence of 

a role for tor-2 in the regulation of resistance to DNA damage inflicted by UV exposure. 
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Chapter 3 

DISCUSSION AND CONCLUSIONS       

  

3.1. Neuronal gtr-1 plays key roles in the orchestration of HSR activation in distal tissues 

In this study, we identified gtr-1 as a new critical component of the neuronal signaling 

mechanism that is required for HSR activation in non-neural tissues. gtr-1 (F25E2.1) is located 

on chromosome X and holds eight exons that encode a 329 aminoacids protein predicted to be a 

seven-transmembrane GPCR with close homologs in other nematodes. The role of gtr-1 as a 

GPCR has, however, not been established and thus one cannot exclude that it might play other 

functions.  

gtr-1 is co-expressed with lin-11 in chemosensory neurons (Hobert et al.,1998), but has 

no apparent role in thermotaxis. This finding indicates that gtr-1 is not required for heat sensing 

and suggests that this putative GPCR is solely needed for the induction of the neural signaling 

that activates the HSR in remote tissues upon exposure to heat. Interestingly, the similar effects 

of RNAi towards gtr-1 and gcy-8 on the worms' survival after heat shock (Fig. 5A, B) suggest 

that the thermosensory and chemosensory neurons are equally important for HSR induction. 

Although it is unclear how this signaling mechanism acts, it was reported recently that the worm's 

thermotactic behavior is dependent upon the activity of HSF-1 and the estrogen signaling pathway 

(Sugi et al., 2011). In the light of this study, it will be interesting to determine whether GTR-1 is 

also functionally interrelated with the estrogen signaling pathway. It would be further important 

to characterize the neuronal secretion mechanism that is influenced by GTR-1; does it affect dense 

core vesicle secretion mechanism? Is it perhaps involved in mediating neurotransmitter release? 

It was reported previously that the AFD neurons are pivotal for the activation of the HSR 

in remote tissues (Prahlad et al., 2008). In the present study, we show that the activation of the 

HSR is not exclusively controlled by this pair of neurons, but rather is also dependent upon the 

activity of additional components of the thermosensory circuit, the chemosensory neurons. This 

finding raises the key questions of how neurons of this circuit communicate to integrate 

environmental cues and how the decision to activate the HSR is made at the cellular and inter-
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neuronal levels. It will be crucial to determine whether the chemosensory neurons are involved in 

sending the HSR-activating signal or if they play their roles exclusively in the decision making 

process. 

 

3.2. tor-2 acts downstream of the IIS and is required for resistance to heat stress 

 In the second part of this thesis, we identified tor-2 as a new IIS-regulate gene by showing 

that it is transcriptionally regulated upon suppression of the pathway by both DAF-16 and SKN-

1 (Fig. 11A, C). This observation points at tor-2 as a possible effector of the functions downstream 

of this pathway. This putative chaperone had been previously reported to counteract 

proteotoxicity stemming from the expression of an aggregative protein in C. elegans muscles 

upon overexpression (Caldwell et al., 2003). The authors observed that the expression of TOR-2, 

as well as that of its human orthologue, the early-onset torsion dystonia-associated protein 

torsinA, concurrently with that of polyQ82::GFP, dramatically reduced the number and size of 

GFP-containing puncta in an age-persistent manner. They further showed that TOR-2 localized 

to the sites of putative aggregation in a ring-like formation that surrounded the inclusions 

(Caldwell et al., 2003). Later, the same group reported that the overexpression of TOR-2 or 

torsinA in dopaminergic neurons significantly elevated the resistance of these neurons to the 

dopamine-selective neurotoxin 6-OHDA and also conferred protection against α-synuclein-

induced neurodegeneration (Cao et al., 2005). TorsinA, shown to co-localize with Lewy bodies 

(Shashidharan et al., 2000; Sharma et al., 2011) and to suppress α-synuclein toxicity in cell 

cultures (McLean et al., 2002), was in fact shown recently to display molecular chaperone activity 

in vitro (Burdette et al., 2010), suggesting a similar role for TOR-2. As a direct target of the IIS 

pathway, in which functions is the endogenous tor-2 involved? Is it involved in other functions 

or is it just a proteostasis modulator and, if so, how does it exert its effects under the regulation 

of the IIS?   

 We considered the likely involvement of tor-2 in other IIS-regulated functions and 

discovered that, similarly to gtr-1, it is required for the worms’ survival under heat stress. This 

effect was more prominent in worms with a more efficient RNAi penetrance into neurons (Fig. 
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13D, E) and barely perceptible in both wild type (Fig. 13B, C) and daf-2(e1370) mutant worms 

(Fig. 13A). These findings, together with the absence of effect of the knockdown of tor-2 in 

muscles on the worms’ resistance to heat (Fig. 13H), are consistent with the fact that the 

expression of tor-2 is mainly confined to a few neurons (Cao et al., 2005). Indeed, by crossing 

the daf-2(e1370) mutant worms with the neuronal RNAi sensitive TU3335 worms, we observed 

an increased sensitivity of the resulting worm strain to heat when the animals were fed with tor-

2 RNAi bacteria (Fig. 13G).  

Among other neurons, tor-2 was reported to be expressed in two sensory neurons of the 

AW class (Cao et al., 2005). It is possible that tor-2 is specifically expressed in the amphid AWC 

neurons, which, together with the AFD and ASI neurons, are required for the worm’s 

thermosensation (http://www.wormatlas.org/). However, contrarily to AFD neurons, the major 

thermosensors and also coordinators of the HSR in somatic cells (Prahlad et al., 2008), AWC 

neurons display a supportive rather than primary role in thermosensation. This might offer an 

explanation for the fact that worms treated with tor-2 RNAi are not as dramatically affected upon 

exposure to heat as those fed with gtr-1 RNAi. This, however, needs further clarification. Among 

other things, it will be also crucial to investigate the mechanism through which tor-2 plays its role 

in the response to acute heat stress: is it involved in the activation of the HSR in distal tissues, 

similarly to gtr-1? Is it just required for the sensing of heat and subsequent avoidance behavior? 

 

3.3. The ability to respond to heat comes at the expense of the capability to cope with 

proteotoxicity 

Interestingly, while protecting against heat stress, both gtr-1 (Fig. 5) (Maman, Carvalhal 

Marques et al., 2013) and tor-2 (Fig. 13) seem to be less favorable when it comes to counteract 

proteotoxicity in the muscles given that, upon knockdown of both genes, worms are more 

protected against the expression of different aggregative proteins (Fig. 10A, B; Fig. 12B, C; 

respectively). This phenomenon was first observed in C. elegans expressing different protein 

misfolding reporters in distinct tissues, including polyQ44 in the intestine, or the ALS-associated 

mutant SOD-1G93A in muscle cells (Prahlad and Morimoto, 2011). In sequence of their previous 
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work (Prahlad et al., 2008), the authors hypothesized that, if the HSR is regulated at the 

organismal level by thermosensory neurons, neuronal activity could also be responsible for the 

response of the organism to chronic protein misfolding. Surprisingly, the loss of function of either 

AFD sensory neurons or AIY interneurons, whose activity is essential for the initiation of the 

HSR, resulted in a cell non-autonomous, HSF-1-dependent chaperone up-regulation that 

suppressed aggregation and toxicity in distal tissues such as the intestine and muscles (Prahlad 

and Morimoto, 2011). In view of these results, Prahlad and Morimoto proposed that the fine-

tuned neuronal control of chaperone expression in C. elegans allows tissues within the organism 

to maintain optimal levels of chaperones for normal function, being able to respond to acute 

environmental stresses by transiently upregulating chaperones but protecting inefficiently against 

chronic accumulation of protein damage. The work presented in this thesis, together with that of 

Volovik et al., wherein the knockdown of nhl-1, a putative E3 ligase that is expressed in 

chemosensory neurons and regulated by the IIS, was shown to decrease stress resistance in distal 

tissues while conferring protection against proteotoxicity (Volovik et al., 2014), comes in line 

with this discovery. Having tor-2 a chaperone-like behavior, it is also tempting to compare the 

counter-proteotoxic effect seen in muscle cells stemming from its knockdown and the results in a 

recent report showing that either enhancing or suppressing the levels of the HSP90 chaperone 

within a single tissue has complementary effects on the induction of the HSR in distal tissues of 

C. elegans (van Oosten-Hawle et al., 2013). The authors used living animals to monitor the effects 

of local HSP90 overexpression on the organismal HSR and observed a reduction in the heat shock 

inducibility of three representative HS genes in multiple tissues. Conversely, by reducing the 

tissue-specific expression of HSP90, the inducibility of hsp70 was restored in distinct individual 

tissues (van Oosten-Hawle et al., 2013). Hence, it is plausible that, by reducing the levels of TOR-

2 in neurons, a compensatory mechanism is activated in muscles and/or other tissues.  

 

3.4. TOR-2 regulates proteostasis in a different manner across different tissues 

Curiously, the knockdown of tor-2 by RNAi seems to be detrimental to worms expressing 

an aggregative protein in neurons (Fig. 12A). If proven to be consistent, our results open a new 
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possibility in the proteostasis field: can a protein protect against proteotoxicity wherein it is 

expressed and be disadvantageous in distal tissues? This possibility has to be critically evaluated 

to assess the therapeutic potential of inter-tissue manipulations for the treatment of age-onset 

maladies. The use of additional proteotoxicity models expressing other metastatic or aggregative-

proteins in distinct tissues (e.g. neurons, muscles, intestine) is still required to support this notion. 

Likewise, it would be of great importance to test the outcome of the tissue-specific knockdown 

of TOR-2 on the toxicity deriving from the expression of an aggregative protein in a different 

tissue (e.g. neuron-specific knockdown of tor-2 in worms expressing Aβ3-42 peptide in muscles).  

TOR-2 and torsinA were shown to be ER-resident proteins (Caldwell et al., 2003; 

Jungwirth et al., 2010). More recently, the Caldwell group discovered that the presence of torsinA 

reduces the ER stress within the same tissue by suppressing the UPRER (Chen et al., 2010). This 

led them to propose that torsinA increases the overall cellular threshold to which misfolded 

proteins or other stressors may induce dysfunction. More importantly, torsinA is able to attenuate 

the enhancement in the ER stress response caused by the expression of the ALS-associated 

SOD1G85R mutant in neurons, as well as to rescue these animals from the resulting locomotive 

defects (Thompson et al., 2014). The fact that the knockdown of tor-2 by RNAi exacerbates the 

movement impairment of worms expressing polyQ67 in neurons seems to be in accordance with 

the findings of the Caldwell group (Chen et al., 2010; Nery et al., 2011; Thompson et al., 2014) 

given that tor-2’s expression is mainly confined to neurons (Cao et al., 2005). Thus, it is expected 

that the knockdown of tor-2 results in a worsening of the polyQ67-resulting phenotype due to 

lack of protection against chronic ER stress, a known early event in polyglutamine toxicity 

(Duennwald and Lindquist, 2008). Despite this, we need yet to confirm that tor-2’s expression is 

indeed confined mainly to a few neuronal cells and absent in other tissues by generating worms 

expressing a fluorescent protein (e.g. tdTomato) under the control of the tor-2 promoter. It will 

be also critical to comprehensively test the possibility that tor-2 has roles in controlling the 

activation of the UPR and, if so, the relation between this effect and its differential regulation of 

proteotoxicity across different tissues. 
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3.5. Stress resistance, longevity, and counter-proteotoxic mechanisms are separable 

 This work further strengthens the notion that stress resistance, longevity, and protection 

from proteotoxicity are not necessarily coupled. Indeed, despite required for resistance to heat 

stress, both gtr-1 and tor-2 play no role in lifespan determination, as extensively confirmed in 

wild type (Fig. 9A; Fig. 14A; respectively), daf-2(e1370) mutant (Fig. 9B; Fig. 14B, C; 

respectively), and RNAi neuronal sensitive worms (Fig. 14D), in the resistance to other stresses 

such as exposure to pathogenic bacteria (Fig. 9E; Fig. 14E; respectively) or UV (Fig. 14F). 

The mutual relations of stress resistance, proteostasis, and lifespan have been previously 

addressed in our laboratory by testing whether IIS reduction can execute its counter-proteotoxic 

functions in midlife, when it can no longer extend lifespan (Cohen et al., 2010). By using the Aβ 

worm model and conditional daf-2 knockdown, we discovered that this treatment can, in fact,

 

Figure 15. The model. In Caenorhabditis elegans, chemosensory neurons regulate the 

heat shock response (HSR) in remote tissues, including the intestine. The putative G-

coupled protein receptor GTR-1 seems to play an important role in this regulation (I). 

TOR-2 that is expressed in neurons coordinates the response to heat shock in distal 

tissues through an unknown mechanism (II). It further regulates proteostasis in a tissue-

specific manner, being detrimental in distal tissues, such as muscles (II), but protective 

within its tissues of expression (neurons – III). 
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alleviate Aβ proteotoxicity in midlife, thereby demonstrating that the lifespan-regulating and 

counter-proteotoxic functions downstream of the IIS pathway are separable. Another study 

questioned whether the long-lived phenotypes observed in worms subjected to DR or with a low 

IIS activity are conferred by an elevation in the ability to resist oxidative stress stemming from 

the transcriptional regulation of sod family members in both aging-regulating pathways (Van 

Raamsdonk and Hekimi, 2009). Being this the case, one would expect that the deletion of genes 

of the sod family would shorten lifespan. Surprisingly, the deletion of sod-1, sod-3, sod-4, or sod-

5 has no effect on lifespan, whereas worms without the sod-2 gene, which encodes for the 

mitochondrial SOD of the worm, exhibit longer lifespan than their wild type counterparts (Van 

Raamsdonk and Hekimi, 2009). More recently, the deletion of all five sod genes was found to 

hypersensitize the nematode to oxidative stress but to have no effect on lifespan (Van Raamsdonk 

and Hekimi, 2012). Our lab further identified nhl-1 as a co-factor of DAF-16 that is required for 

resistance against heat, oxidative, and immune stresses while having no impact on lifespan 

(Volovik et al., 2014).  More striking is ours and others discovery that the knockdown of neuronal 

genes that abolish the nematode’s ability to activate a full HSR provides partial protection from 

proteotoxicity, as extensively described above (Prahlad et al., 2011; Maman, Carvalhal Marques 

et al., 2013). In sum, these studies reveal that the functions promoted by aging-regulatory 

pathways are not necessarily linked. The present work supports this idea by showing that the 

ability to cope with heat stress and proteotoxicity does not always impact lifespan.  

 

3.6. Concluding remarks 

This study offers new comprehensive data regarding how stress response mechanisms 

and proteostasis are regulated at the organismal level (Figure 15), highlighting that each 

component cell in a multicellular organism works in an integrated and interdependent way, 

consenting for a highly regulated division of labor that is required for proper physiological 

function and homeostasis. It further supports the idea that the functions promoted by aging-

regulatory pathways, lifespan, stress resistance, and proteostasis, are not necessarily linked. These 

insights might point at new research avenues for the development of systemic therapies that will 
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target signaling mechanisms to specifically modulate inter-tissue communication and preserve 

proteostasis through late stages of life. This is more clearly the case of the research on TOR-2, 

whose human orthologue, TorsinA, is involved in the development of the genetic disorder torsion 

dystonia when defective (Ozelius et al., 1997). This work further highlights the attractiveness of 

the alteration of aging as a therapeutic strategy, suggesting that protection from late-onset 

disorders may be achieved without extending lifespan.   
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Chapter 4 

METHODS           

 

C. elegans strains and growth conditions 

CF512 (fer-15(b26)II;fem-1(hc17)IV), N2 (wild type, Bristol), daf-2(e1370) mutant, CF1844 

(fer-5(b26) II; daf-2(mu150) III; fem-1(hc17) IV), CL2006 (dvIs2 [pCL12 (unc-54/human Aβ 

peptide 1-42 minigene) + pRF4]), RW1596 (stEx30[myo-3p::GFP + rol-6(su1006)], TU3335 

(uIs57 [unc-119p::YFP + unc-119p::sid-1 + mec-6p::mec-6]), PY1322 (gcy-8p::GFP), OH103 

(lin-11p::GFP), OH99 (ttx-3p::GFP), CL2070 (hsp-16.2p::GFP), WM27 (rde-1[ne219]), and 

NR350 (rde-1[ne219]; kzIs20[pDM#715(hlh-1p::rde-1) + pTG95(sur-5p::nls::GFP)] C. elegans 

strains were obtained from the Caenorhabditis Genetic Center. Strain AM716 (rmIs284 

[pF25B3.3::Q67::YFP]) was a gift from Andrew Dillin’s lab. All strains were grown at 20°C 

(unless indicated otherwise) on nematode growth media (NGM) plates and fed with E. coli HT115 

bacteria. CF512 are heat sensitive and were routinely grown at 15°C. To avoid progeny, CF512 

worms were hatched at 20°C and L1 larvae transferred to 25°C for 48 hours and back to 20°C 

until harvested. Standard C. elegans techniques were used to maintain the strains (Stiernagle, 

2006).   

 

RNAi 

All RNAi experiments were carried out on NGM-ampicillin plates seeded with cultures of E. coli 

harboring the appropriate RNAi clone grown in LB overnight at 37 ºC and supplemented with 

100 mM isopropyl β-d-1-thiogalactopyranoside (IPTG – ∼4 mM final concentration) to induce 

the expression of the dsRNA. All RNAi clones were obtained from the libraries generated in the 

laboratories of Dr. Julie Ahringer (Kamath et al., 2003) and D. Marc Vidal (Rual et al., 2004) and 

sent for verification by sequencing prior using. E. coli carrying an empty vector (EV) were used 

as a control.  
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Creation of worm strains and RNAi constructs 

The following primers were used to amplify the promoter region of gtr-1 (including restriction 

sites): forward-CAGAAGCTTCCCCACTCTCTACCCAACG; reverse-TGACCCGGGTGAAA 

ATGTGTTCTGAAAAAAAAAACGAATTCGATA. The PCR product was cloned into the 

plasmid vector pUC118 between BamH1 and XmaI restriction sites and upstream of tdTomato. 

The final construct was microinjected into N2 worms. The promoter region of hsp-12.6 was 

amplified using the following primer set (including restriction sites): forward-

CAAGTCGACAATTTGTTTATGTAAATGCGTTTTAGTGTG; reverse–ACGGGATCCATC 

ATCTTGGCAAAAGTTTTTGGG. The PCR product was cloned upstream of tdTomato and the 

resulting plasmid was injected into N2 worms. Selection was performed using fluorescence 

microscopy. The RNAi construct towards the gtr-1 3′UTR was generated using gBlock synthesis 

(Integrated DNA Technologies): AGCGAGCTATTTACCAACTTTTCCCCTTTTTTGCT 

GTGTTTAATTTTATCACTTTTGTAAATCTAAAGATCTCATTTTCATTCAATTC

ACGGTTATTTTAATAAATATTCTGTTCGGCTAGCTCG. The gBlock construct was 

digested with NheI and SacI and cloned into the pL4440 plasmid. 

RNA isolation, quantitative real-time PCR (qPCR) 

Synchronized worm populations were grown in four or more NGM-ampicillin plates until day 

one of adulthood, harvested in M9 buffer, and washed in RNase-free water. The worm pellet was 

resuspended in 2 volumes of QIAzol (catalog #79306; Sigma) and frozen overnight. Chloroform 

was used to separate RNA from protein and other materials. Total mRNA was then extracted 

using the RNeasy Lipid Tissue Mini Kit (catalog #74804; Qiagen) and quantified using a 

NanoDrop 2000c spectrophotometer. Random-primed cDNAs were generated by reverse 

transcription of the total RNA samples with iScriptRT Advanced cDNA Synthesis Kit for RT-PCR 

(catalog #170–8891; Bio-Rad) per manufacturer’s protocol. Quantitative real-time PCR (qPCR) 

analyzes were performed with EvaGreen SuperMix (catalog #172–5204; Bio-Rad) and 

normalized to levels of act-1 cDNA. Primer sequences are available on request. The qPCR 

reactions for each gene were performed, at least, in triplicate. 
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Lifespan assays 

Eggs were isolated by bleaching worms in order to obtain an age-synchronized worm population. 

The worms were grown in big NGM-ampicillin agar plates seeded with the appropriate dsRNA-

carrying bacteria and supplemented with 100 mM IPTG (∼4 mM final concentration) until the 

first day of adulthood at 15 or 20°C, according to the maintenance specifications of the strain. 

120 animals were assayed for each condition. For this, they were transferred into small NGM-

ampicillin plates seeded with the appropriate bacteria (12 worms per plate) and moved to new 

plates every two days of their reproductive period, after which they were transferred every three 

days. Lifespan was monitored every day and death was stipulated as the total movement 

irresponsiveness to gentle mechanical stimulation with a platinum wire.  

 

Stress resistance assays 

All assays were performed using age-synchronized, day-1 adult animals developed on NGM-

ampicillin plates seeded with E. coli harboring the appropriate RNAi clone or control and 

supplemented with 100 mM IPTG (∼4 mM final concentration). The worms were developed and 

maintained at 15 or 20°C, according to the strain. Following the treatment, the death scores of 

120-worm populations were scored every day as for the lifespan assays. 

 

Heat-stress 

For heat-stress assays, 120 day-1 adult animals were transferred onto fresh plates (12 animals per 

plate) spotted with RNAi bacteria and exposed to 35°C. Survival rates were recorded after 10, 12, 

15, or 20 hours, in conformity with the strain. Survival curves were obtained by counting the 

worm survival rates in 2-3 hours intervals, as indicated. 

 

UV-stress 

For the UV-stress assays, daf-2(e1370) worms were transferred to unseeded plates and irradiated 

with 800 Joules for 40 seconds, after which the worms were moved back to plates (12 per plate) 

spotted with the bacteria harboring the desired RNAi clone or control.  
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Immune stress  

To evaluate resistance to pathogenic bacteria (innate immunity), daf-2(e1370) worms grown on 

the appropriate RNAi bacteria until day 1 or adulthood were transferred onto small NGM plates 

(12 animals per plate) seeded with P. aeruginosa. The survival rates were scored daily. 

 

Microscopy and signal quantification 

Synchronous worms were washed twice with phosphate buffer saline (PBS) and snap frozen in 

liquid nitrogen. Fluorescent images were obtained using a Nikon AZ100 microscope and NIS 

elements software. Quantitative fluorescence analysis was performed using ImageJ software. 

Neural expression patterns were tested using confocal microscopy. The worms were washed twice 

with M9, anesthetized using 18 mM of sodium azide (#S-2002; Sigma) and placed on an agar pad 

for visualization. Images were obtained using a Zeiss LSM 710 laser scanning microscope. 

 

Thermotaxis assay 

Synchronized, 1-day-old, daf-2(e1370) mutant worms that were developed on the indicated RNAi 

bacteria were placed on fresh NGM-ampicillin plates and exposed to the temperature gradient. 

The temperatures of each zone of the plate were monitored using a laser-guided, infrared 

thermometer. Photographs were taken before exposing the worms to the temperature gradient and 

12 min thereafter. 

 

SDS-PAGE and Western blot analysis 

Twelve thousand CL2070 worms were treated with RNAi bacteria as indicated and homogenized 

using a dounce homogenizer. The worm homogenates were centrifuged for 3 minutes at 850 × g 

(3,000 rpm in a desktop centrifuge) to sediment debris. The post-debris supernatants were 

collected, protein amounts were measured (catalog #500–0006; Bio-Rad), supplemented with 

loading buffer (10% glycerol, 125 mM Tris base, 1% SDS), boiled for 10 minutes, and 10 μg of 

total protein was loaded into each well. Proteins were separated on polyacrylamide gels, 

transferred onto PVDF membranes (Pierce), and probed with either GFP antibody (catalog #2956; 
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Cell Signaling Technology) or anti γ-tubulin antibody clone GTU-88 (catalog #T-6557; Sigma). 

HRP-conjugated secondary antibody, a chemiluminescence system, and a luminescent image 

analyzer (Las-3000; Fujifilm) were used to detect protein signals.  

 

Egg-laying assay 

To follow the reproductive profiles of daf-2(e1370) mutant animals, synchronized eggs were 

placed on NGM-ampicillin plates seeded with the appropriate RNAi bacteria. At the L4 larval 

stage, 15 animals were transferred onto new plates seeded with the same RNAi strain (one worm 

per plate). The worms were transferred onto new plates in 24 hours intervals and the progeny 

number in each plate was counted 72 hours thereafter.  

 

Dauer formation assay 

Eggs of daf-2(e1370) mutant animals were transferred onto plates seeded with RNAi bacteria, as 

indicated, and were incubated at either 20°C or at 25°C. Dauer larvae and adult worms were 

counted 3 days after. 

 

Behavioral assays 

For the paralysis assay, synchronized CL2006 eggs were placed on NGM-ampicillin plates seeded 

with the desired bacteria and supplemented with 100 mM ampicillin (∼4 mM final) and allowed 

to develop until day 1 of adulthood. 120 animals were then transferred to small NGM plates 

seeded with the respective E. coli culture. The score of paralyzed worms was recorded daily by 

tapping the worms’ noses with a platinum wire. A paralyzed animal was defined as an animal 

than can move its head but is unable to crawl away (“windshield wiper” phenotype). The assays 

were terminated at the age of 12 of adulthood, when the wild type animals start exhibiting age-

related paralysis. The same assay was performed with the RW1596 strain. The trashing rate was 

determined by transferring individual animals in a drop of M9 buffer at day 1 and 3 of adulthood, 

allowing 30 seconds for adaptation and counting the number of body bends for 30 seconds. A 

body bend was defined as the change in direction of the bend in the mid-body of an animal 
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(Brignull et al., 2006; Chai et al., 2002). 20 animals per treatment per independent experiment 

were used. 

 

Statistical analysis and software 

The results are presented as the mean ± SEM of three or more independent, biological repeats of 

each experiment. Statistical significance of differences was assessed by Student’s t test. Both 

statistical analysis and plotting of the data were performed using Microsoft Excel.  
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APPENDIX           

 

Table 1. Lifespans of CF512 and daf-2(e1370) mutant worms on gtr-1 RNAi 

Strain 
RNAi 

treatment 

Mean lifespan ± 

SEM (hours) 

Number of animals 

/initial number 

Mean lifespan  

% of control 

Pvalue against 

control 

CF512 EV 17.02 ± 0.42 114/124 - - 

 daf-16 14.41 ± 0.33 115/125 85% 1.94E-06 

 gtr-1 16.19 ± 0.38 118/122 95% 0.128 

e1370 EV 42.30 ± 1.80 64/120 - - 

 daf-16 26.24 ± 0.66 61/121 62% 2.47E-16 

 gtr-1 39.74 ± 1.84 86/125 94% 0.321 

 

 

Table 2. Lifespans of CF512, TU3335, and daf-2(e1370) mutant worms on tor-2 RNAi 

Strain 
RNAi 

treatment 

Mean lifespan ± 

SEM (hours) 

Number of animals 

/initial number 

Mean lifespan  

% of control 

Pvalue against 

control 

CF512 EV 22.40 ± 0.64  83/120 - - 

 daf-16 15.13 ± 0.53 82/120 68%    1.33E-15 

 tor-2 20.65 ± 0.60 93/120 92% 2.52E-02 

TU3335 EV 25.44 ± 0.35 83/120 - - 

 daf-16 25.79 ± 0.54  53/120 101% 2.89E-01 

 tor-2 26.48 ± 0.53 65/120 104% 0.053    

e1370 EV 46.33 ± 1.73 55/120 - - 

 daf-16 26.40 ± 0.51 93/120 56% 3.62E-25 

 tor-2 47.82 ± 1.41 56/120 103% 0.5    

 

 




