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Abstract / Resumo 

  
The main research focus of this project was the development of a 

suitable enteral nutrition solution, to administer water insoluble nutrients 

overcoming their low bioavailability. To evaluate which ingredientes could 

produce the most effective formulation, solubility tests were performed to pre-

selected oils and surfactants, followed by emulsifying capacity evaluation. The 

highest solubility results were obtained for MCT, EO (1:1). As for the 

emulsifying capacity, all of the four mixtures tested show some 

microemulsion. The full characterization of the emulsion and other tests are 

required to draw conclusions regarding the most efficient formulations.  

 

* 

 

 O principal foco de investigação deste projecto foi o desenvolvimento 

de uma solução de nutrição enteral, capaz de administrar nutrientes não 

solúveis em água e aumentar a biodisponibilidade dos mesmos. Para avaliar 

que ingredientes produzem a fórmula mais eficaz, foram efectuados testes de 

solubilidade a alguns óleos e surfactantes pré-selecionados, e uma avaliação 

à  capacidade emulsificante. Os melhores resultados dos testes de 

solubilidade foram obtidos pela mistura MCT, EO (1:1). Quanto à capacidade 

emulsificante, todas as quatro misturas testadas formaram microemulsões. A 

caracterização total das emulsões e testes adicionais são necessários para 

tirar conclusões sobre quais das fórmulas são mais eficientes. 
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Chapter 1 

 

Preface: Context of the Project 

 
Аt thе bеginning оf 2012 I lеаrnеd аbоut thе Еrаsmus Plаcеmеnts 

prоgrаm, which spоnsоrs studеnts tо аpply fоr wоrk plаcеmеnt in а Еurоpеаn 

cоmpаny, оrgаnizаtiоn оr rеsеаrch cеntеr.   

I sеаrchеd fоr biоtеch аnd phаrmаcеuticаl cоmpаniеs thаt оffеrеd 

univеrsity studеnts thе оppоrtunity tо dо thеir mаstеr thеsis in industriаl 

rеsеаrch еnvirоnmеnt. My gоаl wаs tо intеrn fоr оnе оf thеsе еntеrprisеs, 

during thе fоllоwing аcаdеmic yеаr, аnd writе а mаstеr thеsis аbоut my wоrk 

during thаt intеrnship. Thе purpоsе оf wоrking in а lаrgе cоrpоrаtiоn wаs thаt I 

cоuld bоth еxpеriеncе this typе оf а prоfеssiоnаl еnvirоnmеnt, аnd bе pаrt оf 

аn оngоing prоjеct аiming tо dеvеlоp а prоduct thаt wоuld еvеntuаlly еntеr 

thе mаrkеt. 

I cоntаctеd sеvеrаl cоmpаniеs аnd thе оnе thаt оffеrеd mе thе mоst 

еxciting prоjеct wаs Frеsеnius Kаbi. I аccеptеd thеir оffеr tо jоin thе 

Innоvаtiоn аnd Dеvеlоpmеnt Tеаm аt thеir hеаdquаrtеrs, in Gеrmаny.  

Frеsеnius is а Fоrtunе 500 cоmpаny. Thе Frеsеnius Grоup hаs fоur 

businеss sеgmеnts rеspоnsiblе fоr thеir оpеrаtiоns wоrldwidе: Frеsеnius 

Kаbi, Frеsеnius Mеdicаl Cаrе, Frеsеnius Hеliоs аnd Frеsеnius Vаmеd. Kаbi 

dеvеlоps, prоducеs аnd cоmmеrciаlizеs phаrmаcеuticаls аnd mеdicаl 

dеvicеs. Thе mаin spеciаlitiеs аrе mеdicinеs, tеchnоlоgiеs fоr infusiоn and 

trаnsfusiоn, аnd clinicаl nutritiоn. 

Thе intеrnship prоjеct cоnsistеd in dеsigning а suitаblе lipid-bаsеd оrаl 

fоrmulаtiоn tо dеlivеr lipоphilic drugs tо chrоnicаlly ill pаtiеnts. Thе fоrmulаtiоn 

hаd tо bе prоducеd using sаfе еxcipiеnts аnd аllоw fоr аn еаsy аnd аffоrdаblе 

industriаl prоductiоn. Thе nаmе оf thе drug usеd in thе tеsts is nоt rеvеаlеd 

fоr cоnfidеntiаlity rеаsоns.  

During thе еight mоnths I spеnt аt Frеsеnius, I plаnnеd аnd cаrriеd оut 

tеsts оf sоlubility аnd еmulsifying cаpаcity, which prоvidеd mе cоnsidеrаblе 
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lаb еxpеriеncе аnd vаluаblе prаcticаl trаining. I аttеndеd sеvеrаl еquipmеnt 

trаining sеssiоns аnd аlsо hаd thе chаncе tо fоllоw clоsеly thе wоrk оf оthеr 

tеаms with whоm I lеаrnеd аbоut businеss оpеrаtiоns, rеgulаtiоns аnd 

mаrkеting prоcеssеs in thе phаrmаcеuticаl fiеld. 

 Thе еxpеriеncе wаs еxtrеmеly еnriching, аnd I аm vеry grаtеful tо thе 

Innоvаtiоn аnd Dеvеlоpmеnt tеаm frоm Kаbi fоr thеir tеаchings аnd 

еxcеptiоnаl intеrnship prоgrаm.  
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Chapter 2 

 

Introduction 
 

2.1. Importance this study  
 

2.1.1. The low oral bioavailability of lipophilic compounds 
Up to 70% of new chemical substances discovered by the 

pharmaceutical industry are poorly water soluble or lipophilic compounds. The 

low water solubility has been identified as the primary factor leading to poor 

oral bioavailability, high absorption variability, and issues in dose 

proportionality [1]. 

Very promising drug candidates are amongst these poorly soluble 

molecules. They commonly have a complex molecular structure, large size 

and molecular weight, high lipophilicity, inter and intramolecular H-bonding 

and other physicochemical properties that contribute to their low water 

solubility.  
Increasing the bioavailability of these compounds is a real need, in 

order to afford the use of these drugs. For pharmaceutical companies, such 

as Fresenius Kabi, this is a promising challenge, and significant investments 

are being made in the design of new complex formulations capable of 

enhancing the bioavailability of selected molecules. 

 

2.1.2. The enteral feeds market  
Thе еntеrаl fееds mаrkеt in Еurоpе is grоwing. Thе mаrkеt lеаdеr fоr 

еntеrаl fееds in Еurоpе is Rоyаl Numicо NV. Thе оthеr fоur firms thаt hаvе 

thе highеst sаlеs vоlumе in this fiеld аrе Nоvаrtis АG, Аbbоtt Lаbоrаtоriеs 

Ltd, Frеsеnius Kаbi, аnd Nеstlе [2]. 

Fresenius Kabi has a broad portfolio of tube feeds, powder 

formulations and nutritional supplements. Most of these products are directed 

at dysphagia patients and come with different consistencies [3].  
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While general feeds are still important, the demand for enteral feeds 

designed for disease-specific solutions is foreseen to grow the most. Changes 

in lifestyle and an ageing population are the primary reasons for this scenario. 

Companies are now starting to focus on building pipelines of disease-specific 

products, mainly for cancer, diabetes, human immunodeficiency virus, 

Alzheimer and cardiovascular diseases [2]. 

As more technologically advanced enteral feeds and devices develop, 

enteral nutrition will be more frequently used in hospitals, and in the homecare 

segment as well. More parenteral nutrition treatments will be substituted by 

enteral nutrition solutions, with less invasion and side effects for the patients. 

And, at the same, time more clinical data will promote the market expansion. 

 

 

2.2. Scope of the study 
 

The main goal of the project was to design a complex formulation for 

clinical nutrition application. The development of a suitable enteral nutrition 

solution, to administer water insoluble nutrients overcoming their low 

bioavailability, constituted the base challenge. 

This ambitious project continued after the end of this internship. This 

thesis covers the work done during eight-month of my stay at Fresenius, 

which comprises the method design, initial formulation models and first tests 

in vitro.  

Following the chapters comprising the literature review, objectives, 

method design and materials used, the results of the in vitro studies 

performed are presented. They are divided into two main sections: 

dependence of solubility of a model substance and emulsifying capacity. The 

results obtained from testing the solubility of the model substance in different 

oils, surfactants and mixtures are discussed in the first part of the chapter. As 

for the second part, it focuses on the outcomes of the emulsifying capacity 

screening study, which was made through microemulsion assay evaluation 

and phase diagrams construction. 
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The formulation designed is lipid-based. This formulations are still a 

niche when in oral delivery of poorly soluble drugs. However, a bigger 

demand is increasing investment in research in this field.  

The development of advanced lipid-based drug delivery systems is a 

suitable strategy to design successful pharmaceuticals with enhanced and 

more efficient therapeutic effects. 

In particular the self-microemulsifying drug delivery system (SMEDDS), 

is a good alternative strategy to transport and deliver hydrophobic drugs [4]. 

SMEDDS are characterised as being physically stable and fairly easy 

to manufacture. They are isotropic mixtures of oils and surfactants, able to 

create a fine oil-in-water (O/W) emulsions when introduced in an aqueous 

system such as the human body. When using microemulsion systems as 

vehicles for bioactive molecules, the formulations should be passed on 

SMEDDS. The SMEDDS will then form an O/W upon dilution to a particular 

water content, commonly leading to better practical results in increasing the 

bioavailability of the molecule.  

 

 

2.3. Objectives 
 

This thesis aims to provide deeper insight on complex formulations that 

enhance absorption of poorly water-soluble substances, for clinical nutrition 

applications. More precisely, it describes and discusses the results obtained 

during the project of the designing and testing of a novel and innovative 

formulation aimed to improve bioavailability of lipophilic substances. 

The purpose of the tests conducted was to create project ground for a 

new line of Fresenius Kabi oral products capable of delivering such 

substances to patients in need.  

As shown in the literature review, several techniques to deliver 

lipophilic drugs are available, but not many are fully understood, practical, or 

adequate for critically or chronically ill patients. A model substance was used 

to test the hypothesis of a new formulation design that relies on a lipid-based 

delivery system to improve the bioavailability of lipophilic compounds. 
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Additionally, the interest relied in gaining a better understanding of the impact 

of the properties of excipients on the formation of these complex formulations. 

The first part of this study will present data on the dependence of 

solubility of the model substance on ingredient properties. This data is crucial 

to evaluate which oils and surfactants show better results at solubilizing the 

drug and can become the best carrier. In order to explore and uncover the 

impact of ingredients on the formulation, there will be an analysis and 

discussion of the results, will be presented regarding the relationship between 

the properties of the mixture and components used.  

In the second part, the focus is on the emulsifying capacity. Results are 

discussed with respect to the physicochemical properties of the ingredients. 

This second part is essential to identify the most promising microemulsion 

formulations that will on a later stage of the product development be 

characterized and tested before product release. 
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Chapter 3 
 

Literature Review 
 
3.1. Enhancing the bioavailability of poorly water-soluble 

substances 
 

 

“These new compounds, like rocks, never dissolve in water” [5]   
 

 

3.1.1. Introduction - the problem 
Low water solubility is known to be one of the primary reasons for the 

poor absorption of new chemical entities (NCEs) by the human organism.  

Around 40-70% of all NCEs developed are insufficiently soluble in 

water. Consequently, their absorption in the gastrointestinal tract (GIT) is 

small and inadequate [1]. A poorly soluble drug in aqueous media is one that 

has a longer dissolution time in the gastrointestinal (GI) fluids, than the time it 

takes for it to go through the portions of the GIT where absorption occurs [6]. 

These NCEs and potencial drug candidates are very promising, 

however they display some performance issues due to their own design and 

characteristics [7]. 

It is now possible to create artificially very complex compounds thanks 

to the fast technological innovation in the field. Several physicochemical 

properties contribute to the poor solubility of potential drug candidates. Among 

them are their typical complex structure; large size; ionic charge and pH. 

Molecular weight; and intra and inter molecular H-bonds are also 

characteristics that make these compounds poorly soluble on water [8], [9]. 

[10]. 

Because of the unique characteristics of these molecules, traditional 

methods and formulations are not suitable approaches. They fail to provide 

the necessary bioavailability [11], [12]. The most common traditional methods 
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are solid wet granulation, solid dry granulation and water-soluble liquid in a 

capsule. 

Lipid formulation is a very interesting technology full of potential to 

address the issue of challenging new drugs design. Important advances have 

been made, however research is quite scarce in in this field. In fact, only a 

small percentage of currently marketed products uses lipids as the primary 

method of drug delivery [10]. Enhancing the bioavailability of these poorly 

soluble substances is of outmost importance. 

 

 

3.1.2. Application of LBDDS – an opportunity 
Humans have been using lipids to deliver drugs for a long time. Lipid-

based creams, emulsions or suppositories have been on the market for long, 

and some of them were created in the ancient Egyptian times. However, only 

recently a more substantial evolution has been accomplished in new designs 

of oral lipid carriers for poorly soluble drug delivery [13]. 

The application of lipid-based drug delivery systems (LBDDS) is 

comprehensive and versatile as they can deliver different types of drugs, as 

well as proteins and peptides [14]. The primary objective of LBDDS is to 

increase the bioavailability of a component with low water solubility more than 

a traditional oral solid dosage form could ever achieve [15]. In this way, the 

lipid-based systems are can be used to create pharmaceutical dosage forms 

with a more promising therapeutic effect [16]. 

 

3.1.3. Oral drug delivery - the most convenient and accepted method 
LBDDS can be administered to patients through several routes. Oral 

and parenteral are the most common, but there are products using nasal, 

dermal/transdermal, vaginal, ocular and pulmonar delivery methods. Oral is 

acknowledged the preferred way because it is a non-invasive method, less 

expensive and has fewer side effects – e.g. injection site reactions. It is 

particularly favorable in chronic therapies for the last reason stated [13]. 

Oral lipid-based formulations have not only proven their capability to 

improve gastrointestinal absorption of lipophilic drugs, but also to minimize 

reactions with food that sometimes make the absorption process less efficient 
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[1]. These products entered the market in 1981 and by 2007 they represented 

3% of the oral formulations being commercialized [12]. They come in different 

levels of complexity, from one-excipient formulations to multiple-excipient self-

emulsifying drug delivery systems [12]. 

Although, LBDDS have revealed more efficient results than the 

traditional oral formulations, in 2007 the marketed oral lipid-based 

formulations were still outnumbered 25 to 1 by the conventional formulations 

[1] [17] [18] [19]. The vast majority of oral formulations available in the market 

are still solid dosage forms, like tablets or capsules. 

 

3.1.4. Advantages of Lipids – versatile excipients 
The advantages of using lipid-based solutions to enhance 

bioavailability of lipophilic drug candidates and GI absorption is well 

documented with data in the literature [20] [21]. 

Lipids are considered to be an extremely versatile ingredient, that 

provides the formulation designer with many options for delivering and 

controlling the absorption of lipophilic drugs [15]. They can be manufactured 

in large scale and present many desirable features, such as being chemically 

compatibile and having self-emulsifying attributes [22]. 

 

3.1.5. Mechanisms by which lipids improve bioavailability 
The principal mechanism by which oral LBDDS enhance the absorption 

of the bioactive molecules is making unecessary to solubilize the drug before 

absorption by the GIT. Other mechanisms include the protection from 

chemical and enzymatic degradation from gastric and environmental 

conditions; promotion of lymphatic drug transport and also creating a 

hydrophobic environment that causes the release of the drug to initiate later in 

time. This positive effect on drug absorption comes from several factors. The 

first is the stimulation of bile salts that leads to the emulsification of the drug in 

the GI fluid, enhancing solubility in vivo; the interaction with enterocyte-based 

transport and improving drug uptake and efflux; and the recruitment of 

lymphatic drug transport [20] [13]. 
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3.1.6. Lipid Formulation Classification System 
The Lipid Formulation Classification System (LFCS) was published for 

the first time in 2000 and it was modified in 2006. The modification made was 

the addition of a new ‘type’ of formulation [24]. The classification system - 

represented below in Table 1 – and research works like this one, will lead to a 

better understanding of key factors that determine the performance of 

LBDDS. The LFCS contributes to creating more efficient methods and 

evaluating their performance in a simpler way [13]. 

The LFCS Consortium develops research on LBDDS to orally 

administrate water insoluble drugs. It was created after the LFCS’s publishing 

and since then integrates a scientific community of industrial and academic 

professionals. Its purpose includes developing guidelines that contribute to 

accelerating and promoting the development of drug delivery strategies for 

drug candidates. The goals of the Consortium are identifying the factors 

responsible for LBDDS performance and certifying operating procedures to 

assess this performance [25]. 

The LFCS has been discussing more in the last years towards deciding 

on a framework that can be adopted to compare the performance of lipid-

based formulations. Group III has been divided into Type IIIA and Type IIIB, to 

make a distinction between formulations that contain a higher proportion of 

oils (Type IIIA) and the others, which are predominantly water-soluble (Type 

IIIB). The differentiation between Types IIIA and IIIB was based on the 

dimensions of excipients in formulations. Table 1 shows the differences 

between Type I, II, III and IV formulations. Table 2 displays the standard 

composition of several types of lipid formulations [26]. 
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Formulation 

 

Materials 

 

Characteristics 

 

Advantages 

 

Disadvantages 

 

Type I 

Oils 

 

Oils with no 

surfactants (e.g. 

tri-, di- and 

monoglycerides). 

Non-dispersing; 

requires 

digestion. 

Recognized as 

safe (GRAS) 

status; simple; 

excellent 

capsule 

compatibility. 

Formulation has 

weak solvent 

capacity unless 

drug is highly 

lipophilic. 

 

Type II 

SEDDS 

Oils and water-

insoluble 

surfactants; no 

water-soluble 

components. 

SEDDS formed 

without water-

soluble 

components. 

Emulsion. Will be 

digested. 

Unlikely to lose 

solvent capacity 

on dispersion. 

Unclear O/W 

dispersion 

(particle size 

0.25-2µm). 

 

Type IIIA and 

IIIB 

SEDDS/SMEDDS 

Oils, surfactants, 

co-solvents (both 

water-insoluble 

and water-

soluble. 

SEDDS/SMEDDS 

formed with 

water-soluble 

components. 

IIIA: Fine 

emulsion. 

IIIB: Transparent 

dispersion. 

Transparent or 

mostly clear 

dispersion; drug 

absorption 

without 

digestion. 

Possible loss of 

dissolving 

capacity on 

dispersion; less 

easily digested. 

 

Type IV 

Lipid-free 

Only water-

soluble 

surfactants and 

cosolvents. 

Formulation 

disperses and 

forms a micellar 

solution. 

Adequate 

solvent capacity 

for most drugs. 

Likely loss of the 

solvent capacity; 

may not be 

digestible. 

 

Table 1 - Classification of Lipid-Based Formulations.  

Source: [25] [26]  
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Table 2 -Typical content of different types of lipid formulations.  

Source: [25] [26] 

	  

3.1.7. Digestion and Absorption of Lipids 
Using lipid-based formulations as a method of drug delivery can 

influence the absorption process of the drug. Most drugs that are delivered 

orally access systemic circulation via the portal blood. However, lipophilic 

drugs have a diferente path, they enter in systemic circulation via intestinal 

lymphatics, bypassing hepatic metabolism. Lipids can also have some 

consequences on digestion such as delays in the gastric transit period and 

increase passive permeability in the intestine [28]. 

Lipid digestion, illustrated in Fig.1, has three primary processes. Firstly, 

the fat globules dispersion that leads to the formation of an emulsion. 

Secondly, the enzymatic hydrolysis of triglycerides (TG) at the oil/water 

interface. Thirdly, the dispersion of the digestion products into an emulsion. 

This emulsion will have a high surface area from which absorption takes 

place.  
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Figure 1 - Diagram of intestinal drug transportation with lipid-based systems. 

 (A) Increased membrane fluidity facilitating transcellular absorption, (B) opening of 

tight junctions to allow paracellular transport, (C) inhibition of P-gp and or CYP450 to 

increase intracellular concentration and residence time, and (D) stimulation of 

lipoprotein/chylomicron production. Abbreviations: aqueous boundary layer (ABL); 

drug (D); ionized drug substance (D-); fatty acid (FA); long-chain fatty acid (LCFA); 

microemulsion (ME); monoglyceride (MG); self-emulsifying drug delivery (SEDDS); 

triglyceride (TG); tight junction (TJ) . 
Source: [29] 

	  

 

The dietary lipids start being digested as neutral TG in the stomach 

where gastric lipases begin the hydrolysis of the TG. They are decomposed 

into diglycerides and free fatty acids. The emulsion formed goes through the 

duodenum and there is an increase in the production of bile salts. Lipase 

enzymes are released from the pâncreas. There’s an increase in surface area 

as droplets comprising the emulsion go through a reduction. This helps lipid 

hydrolysis to occur at the oil/water interface. The result is the production of 

one molecule of 2-monoglyceride and two molecules of fatty acids for each 

TG molecule hydrolyzed. These digestion products stay at the surface of the 

lipid droplets forming crystalline. The micelles produced from the interaction of 

the digestion products and bile salts will dissociate and release emulsified 
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lipid digestion products. When the proteins L-FABP and I-FABP get inside the 

enterocyte they bind to the fatty acids and help their solubilization [30]. 

 

 

3.2. Techniques to improve bioavailability 

3.2.1. Introduction 
Several methods have been designed and tested to enhance the 

bioavailability of lipophilic molecules. The most commonly used are particle 

size reduction (micronization or nano sizing), complexation with cyclodextrins, 

formation of salts and solubilization with cosolvents and surfactants. Changing 

physicochemical properties, through salt formation and particle size reduction 

can improve the dissolution rate of the drug. However, these approaches 

cannot sometimes be used, for example, salt formation of neutral compounds 

is not doable. Also, the salts of a weak acid and a weak base will most of the 

times go return to original base or acid forms, which can have adverse effects 

on the GIT. Particle size reduction may cause an increase of static charges, 

causing handling difficulties [31]. 

Only recently, focus has been turning to the technique of using lipid-

based formulations to enhance the oral bioavailability of water insoluble drugs 

[32]. Lipid-based formulations are a physiologically well-tolerated and provide 

a vast choice of possibilities to formulate and to increase the bioavailability of 

water- insoluble drugs [13]. They are used for poorly soluble drugs in case the 

drug is an oil or when traditional formulations fail to enhance its bioavailability 

[12]. 

Lipid-based formulations include a vast group of formulations. From 

simple one-excipient triglyceride vehicle, such as corn oil, olive oil and 

soybean oil, to more complex formulations such as SEDDS [12]. The majority 

of lipid-based formulations are engineered to deliver the entire dose in 

solution so that the dissolution step does not happen in the GI  tract. This 

characteristic has been considered to be an essential requisite for the good 

performance of these formulations [32]. 

LBDDS represent a considerable number of formulation options. They 

can be prepared using: solutions, emulsions, suspensions, microemulsions, 
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solid lipid nanoparticles, liposomes, SEDDS, SMEDDS, or dry emulsions [32]. 

Fig.2 displays a classification of self dispersing lipid formulations in four 

groups of lipid-based formulations based on the impact of dilution and 

digestion and also composition [33]. 

 

	  
Figure 2 - Classification in four groups of lipid-based formulations based on 
composition and the effect of dilution and digestion. 

Source: [33] 
 

 

Microemulsions present intrinsic advantages, such as: being 

thermodynamically stable, optically clear and easy to prepare. Both water-

soluble and oil-soluble compounds can be be solubilized thanks to the 

microdomains of opposite polarity in a one-phase solution [34]. 
  

 
 



	   34	  

3.2.2. Lipid-based Formulations – a focus on Microemulsions and 
SMEDDS 

Microemulsions are mixtures of at least water, oil and a surfactant [35]. 

These systems are like a solution and have a stable inner structure of 

nanodroplets due to the action of the surfactants [36]. 

Microemulsions are very efficient carriers for a vast number of bioactive 

molecules, and when the ingredients are used in the proper ratio their 

formation is spontaneous, i.e. it does not require an input of energy [36]. 

In the 40s, Hoar and Shulman designed a clear single phase solution. 

This occured when they were making a titration with a milky emulsion 

containing hexanol. This experiment led to the introduction of the 

microemulsion concept [37]. The difference between emulsions and 

microemulsions are that emulsions are thermodynamically unstable and 

eventually the phases will separate, whilst microemulsions are stable [38]. 

Microemulsions are a cost effective technique to increase the 

bioavailability of poorly water soluble drugs. They have very low surface 

tension and small droplet size, leading to a high absorption. Interest in this 

systems are increasing, and microemulsion applications have now different 

administration methods. There have been significative results from the use of 

a microemulsion formulation of a poorly soluble drug, for example, 

immunosuppressants. Produced as a soft capsule, it contains a mixture of 

drug dissolved in oil and surfactant [31]. 

Even though, microemulsions have been studied and tested in depth 

from a physicochemical point of view, most of the systems investigated are 

not suitable for pharmaceutical use. The primary reason for this are the 

excipientes that need to be used [39]. The choice of ingredientes is critical 

when designing the formulation. 

Studies show that for microemulsion systems to be used as vehicles 

for potential drugs, the formulations they should be passed on SMEDDS, that 

will go on creating a O/W solution when diluted to a specific water content 

[36]. 

SMEDDS and microemulsions are different, however they are 

considered to be a similar system. A SMEDDS is commonly a mixture of 

surfactant, oil and API that when is administered rapidly disperses and 
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creates droplets with identical diameter to those existent in microemulsions. 

They are manufactured easily and suitable for oral delivery given their self-

emulsifying properties with the right choice and proportion of ingredients: lipid 

and surfactant [20]. The presence of the surfactant is necessary to obtain the 

hydrophilic-lipophilic balance needed for the emulsification to occur. 

Dispersed in the GI tract they are exposed to movements from the 

stomach and intestines that initiates the emulsification process [20]. 

 

3.3. Selection of ingredientes 
 

3.3.1. Introduction 
The selection of ingredients is one of the most significant and 

challenging steps in the development of a suitable self-emulsifying lipid-based 

oral formulation. 

An ideal excipient needs to be safe for human usage. It should be inert 

and not degrade during manufacturing or storage. It needs to be capable of 

solubilizing the dose of the API in the reduced boundaries of an oral capsule 

and have surface active properties that can allow self-emulsification or 

complete dissolution of the API. It must be reliable in delivering the 

transported drug and making it more bioavailable. Also, it should be 

compatible with a broad range of medicines, compounds, and other 

excipients. Manufacturing the product should be cheap and simple and  allow 

ready scale-up from the lab to the industrial context [23]. 

 

3.3.2. Lipid components 
Lipids are a resourceful class of ingredients capable of being used in 

many ways to enhance the delivery and absorption of chemical substances 

[15]. 

They are physically and chemically distinct substances between them. This 

class includes fatty acids, sterols, waxes, phospholipids, sphingolipids, 

glycerides and fat-soluble vitamins [20]. 

These ingredients can be used to deliver drugs orally as solutions, 

suspensions, emulsions, microemulsions, SEDDS or SMEDDS, solubilizing 
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the lipophilic compounds and facilitating self-emulsification and the absorption 

in the GIT [33]. 

The amount of this excipient will affect pancreatic secretion and 

consequently the absorption of the API so deciding the size of the dose is a 

vital step [20].  

 
3.3.3. Surfactant 

Most microemulsions and SMEDDS formulations need the addition of 

large quantities of surfactant. 

The surfactants used in these formulations usually have high values of 

HLB. They provoque a quicker dispersion in the GIT and also decrease the 

risk of drug precipitation post the dilution in the gastro intestinal fluids [20]. 

Most surfactants have a polar head group and an apolar tail. The tail 

has the larger molecular volume especially in the case of ionic surfactants. 

During the dispersal process in water, surfactants self-associate due to intra 

and intermolecular forces [34]. 

Surfactants of biological origin are usually selected for higher safety, 

even though the synthetic alternative provides a more eficiente result in self 

emulsification. However, artificially synthesized surfactants tend to have 

higher values of toxicity for humans [20]. 

Upon the addition of surfactants to a mixture of oil and water, the 

molecules of the surfactant accumulate in the oil/water interface. Various 

phases can form resulting from it [34]. 

Fig.3 shows some association structures that can be created when 

surfactants are added to water, oil or a mixture of the two.  
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Figure 3 - Representation of some commonly observed self-association structures in 
water, oil or mixture of both. 

Source: [34] 

 

 

Fig.4 depicts the most recurrent types of microemulsions: oil-in-water, 

bicontinuous and water-in-oil. 
 

	  

	  

Figure 4 - Representation of three most common microemulsion microstructures: a) 
oil-in-water, b) bicontinuous, and c) water-in-oil. 

Source: [34]	  
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Chapter 4 

 

Materials and methods to study 

formulation models 
 

4.1. Materials 
 

Oils and Surfactants: 

Ethyl Oleate obtained from Sigma-Aldrich;  

FK-Sunflower Oil obtained from Fresenius Kabi;  

FK-MCT Oil obtained from Fresenius Kabi; 

Miglyol 840 obtained from Sasol; 

Tween 80 viscous liquid obtained from Sigma-Aldrich; 

Labrasol obtained from Gattefossé; 

Model API.  

 

Devices: 

Sartorius, Scale Extend, Model ED2245; 

IKA RET basic, magnetic stirrer; 

Thermo Electron Corporation, HERAEUS Pico17 centrifuge; 

UV-spectrophotometer, Eppendorf BioSpectrometer, Kinetic. 

 

Other Equipment: 

Magnetic stir bars; 

Disposable plastic eppis, Eppendorf, with volume 1.5ml; 

Disposable plastic cuvettes, Plastibrand, 1.5ml semimicro (12.5 x 12.5 x 

45mm); 

Disposable plastic pipettes, Eppendorf 3ml; 

Metal spatulas; 

Glass beakers; 

Glass bottles with lids; 
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Disposable latex gloves; 

Protective glasses, shoes and lab coat. 

 

Specialized software: 

Origin Pro 8, by OriginLab Corporation. 

 
 
4.2. Solubility tests 
 

To evaluate which oils and surfactants present better results at forming 

microemulsions, four different oils and two different surfactants were pre-

selected to perform solubility tests with our model API. The oils tested were 

Ethyl Oleate, FK-Sunflower Oil, FK-MCT Oil, and Miglyol 840. Moreover, the 

surfactants used were Tween 80 viscous liquid and Labrasol. 

As shown in Fig. 5 solubility tests were performed using the following 

method:  

Firstly, an excessive amount of our API was added with a metal spatula to 

a concentrate (oil, surfactant or mixture). The chemicals were precisely 

weighed, and the resulting suspension was mixed, at room temperature, for 

16h at 480rpm, at 21ºC, using a magnetic stirrer. Secondly, the resulting 

mixed suspension was transferred to disposable plastic eppis and centrifuged 

at 10000 g for 10min. Thirdly, a new dilution was prepared using the 

supernatant that resulted from centrifugation. Lastly, the dilution was taken for 

analysis in a UV-spectrophotometer, where the absorbance values were 

measured at 425nm, using disposable plastic cuvettes.  

The method was repeated three times for each oil, surfactant and mixture 

stock solution. The dilutions were also repeated three times for higher 

accuracy in the results. 
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Figure 5 - Scheme showing the solubility test procedure. 

In order to analyze the data, the maximum values of diluted API in the concentrate 

were calculated from a calibration line for each of the mixtures (API + concentrate) 

being tested. The UV-spectrometry measurements were repeated three times for 

more accurate results. 
 

 

4.3. Emulsifying capacity evaluation by PDMPD method 
 

In the second phase of our formulations study, emulsifying capacity 

was evaluated. The Phase Diagram by Micro Plate Dilution (PDMPD) method 

was used, and consists in gradually diluting the oil phase with the water phase 

in a microtitre plate. 

The PDMPD method is an efficient and innovative approach that allows 

time and material savings while creating pseudo ternary phase diagrams for 

microemulsions and nanoemulsions. 

Compared with the traditional titration method (drop method), the 

PDMPD method enables a more exact status description of mixtures in 

pseudo ternary diagrams. It also offers the possibility of examining the dilution 

stages simultaneously on just one microplate [40]. 

Microemulsion assays consisting of a water phase, an oil phase, and a 

surfactant phase were prepared on microtiter plates (96 wells) as shown in 

Fig. 6 and described by Maeder in “Hardware and software system for 
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automatic microemulsion assay evaluation by analysis of optical properties” 

[41] with slight modifications. 

 

 

	  
	  

Figure 6 - Filling scheme for the microtitre plates. 

Inside each well, the upper value corresponds to the water phase and the bottom 

value to the oil plus surfactant phase. 

 

 

The preparation is described bellow:  

Firstly, the mixtures of oil and surfactants were prepared using a 

magnetic stirrer, at speed 480rpm, for one hour, at 21ºC.  

To evaluate the five different ratios between one oil and one surfactant 

five different mixtures were prepared, as shown in Table 1. In total 20 

mixtures were tested to assess the following mixtures: Tween80+EO; 

Tween80+MCT; Tween80+Mig840 and Tween80+(MCT,EO). For more 

accurate results, each mixture was prepared and tested three times making a 

total of sixty mixtures made. 
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 Oil 1 Phase % Surfactant 1 

Phase % 

Mixture 1 50 50 

Mixture 2 40 60 

Mixture 3 30 70 

Mixture 4 20 80 

Mixture 5 10 90 

 

Table 3 - Oil 1 /Surfactant 1 mixing ratios 

 

Secondly, the wells were filled in two steps: 

In the first phase, starting in A1 and finishing in D4 the mixture was 

gradually loaded in the wells using a Pipette Research Plus, 200µl, and 

disposable plastic pipette tips, Eppendorf, 200µl. The filling process must be 

done with care to avoid air bubbles, which is especially hard with the more 

viscous oils. If air bubbles are present, the plate is not valid for the study and 

must be thrown away. 

In the second step, the aqueous phase is added, starting at D5 with 

200µl up to A2 with 5µl. The microtitre plates used were Thermo Scientific* 

Nunc Flat Bottom 96-well polystyrene transparent plates with lids, 350µl/well. 

The wells E1 to H5 of the same plate were loaded following the same 

procedure, but with a different mixture (different ratio of the surfactant and oil 

phase). Following this scheme, two fixed surfactant/oil-ratios can be placed on 

every plate. Table 2, below, illustrates the distribution. 
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Plates Wells Content 

1 A1-D5 Mixture 1 + Water 

1 E1-H5 Mixture 2 + Water 

2 A1-D5 Mixture 3 + Water 

2 E1-H5 Mixture 4 + Water 

3 A1-D5 Mixture 5 + Water 

 

Table 4 - Mixtures distribution by plates 

 

Finally, the plates were sealed with their respective lids and were set in 

a Biometra, Rocking Platform, model WT15, for 16h, at maximum speed, with 

controlled temperature of 21ºC. At the end of the 16h, the plates were 

scanned using a RICOH Aficio, scanner, model MP-C2551 with a pre-

prepared marked lid. Each plate was repeated a minimum of three times and 

in different days. From the analysis of the several repetitions, it was 

determined which combinations resulted in the formation of microemulsion. 

This study consisted of observing the scans and attributing a 0 when a well 

showed turbidity and a 1 when was transparent, and it was possible to see 

clearly the marked dot on the bottom of the well. Two observers did this 

analysis and the results were crossed checked. When the sum of the three 

test was 2 or 3, the preparation was considered an emulsion. When the sum 

was 0 or 1, it was not considered an emulsion as depicted in Table 3. 

 

 

	  
	  

Table 5 - Determination of emulsifying capacity of wells A1-A7 of plates 16, 21 and 
25 containing a mixture of Tween80% and Mig840 (1:1). 
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After the determination of emulsifying capacity phase diagrams were 

plotted. The software used was Origin Pro 8, by OriginLab Corporation.  

Fig. 7 shows one of the phase diagrams built. Each red point 

represents an emulsion formulation identified and each white point a non-

emulsion. For each line in the diagram 3 plates were prepared and analyzed. 

 

	  
Figure 7 - Phase diagram 

 

 

To develop this method, several pre-tests were made in different 

conditions. In the first experimental setup the vortex was used to shake 2 

overlying plates, as shown on Fig. 8, at speeds 3, 2 and 1 and then one single 

plate at speeds 3, 2 and 1, for 16h. These pre-tests showed unrepeatable 

results and spilling. Therefore, the method was changed: the vortex was 

substituted a the rocking platform. 

Different time periods were also pre-tested. Testing plates were set on 

a rocking platform for 8h, 9h, 16h, 18h, 20h and 22h. The selected mixing 

time was 16h, as the results for 18h, 20h and 22h were identical. 
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Figure 8 - Abandoned experimental setup using a vortex and two overlying plates 
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Chapter 5 

 

Results and Discussion 
 
5.1. Dependency of solubility of a model substance (1st part of 
the study) 
 

5.1.1. Impact of the oil phase properties  
The first part of the study tested the solubility behavior of the API 

chosen in the different oils and mixtures of oils selected. Different oils have 

different properties, such as carbon chain length, polarity, molecular weight 

and molecular structure and that results in a specific interaction with the API 

and specific solubilization performance.  

Evaluating solubility behavior of the oils and mixtures is essential to 

identify the most suitable excipients to build a formulation capable of 

enhancing the absorption of the API by the human body. 

The oils tested were Ethyl Oleate and Sunflower Oil - long carbon 

chain oils (LC) and MCT Oil and Miglyol 840 - medium carbon chain oils (MC). 

And the mixtures of oils tested were MCT Oil with Sunflower Oil (1:1), Miglyol 

840 with Sunflower Oil (1:1), MCT Oil with Ethyl Oleate (1:1) and Miglyol 840 

with Ethyl Oleate (1:1). Table 6, below, contains information about some of 

the properties of the four oils. 
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 FK MCT Miglyol 840 FK Sunflower 
oil 

Ethyl 
oleate 

C-length C8/C10 C8/C10 C18 C18 

Molecular 
weight average 

500.8 340 885 310.51 

Density  
[g/cm³] 

0.93-0.96 0.91- 0.93 0.91- 0.92 0.87 

Viscosity at 
 20 °C [mPa·s]  

25-33 9 – 12 60.8 6.89 

 
Table 6 - Values of C-length, molecular weight average, density and viscosity of 
MCT, Miglyol 840, Sunflower Oil and Ethyl Oleate. 

 

 

Fig. 9 shows the results from testing the solubilization behavior of the 

chosen API in the four tested oils and four mixtures of two oils. 

 

	  
Figure 9 - Screening of oils and mixtures of two oils for the formulation at 21ºC. 

 

 

Regarding the results obtained for the four oils, the MC oils (MCT and 

Mig840) presented higher values of solubility than the LC oils (EO and SF).  

The reason for which medium chain oils seem to be more efficient to 

solubilize the API used is the fact that the core part of the molecule has 

approximately the same size chain of carbons as the API. It can also be 

observed that oils with higher polarity (MCT and Mig840) seem to be more 
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suitable to prepare ME formulations than lower polarity oils (EO and SF), as 

typically they solubilize excipients better. These results were expected, and 

are in accordance with previous results from Kawakami [35].  

Taking a more detailed look at molecular weight: the oil with higher 

molecular weight (SF, 885 g/mol) and the oil with lower molecular weight (EO, 

310.5 g/mol) have shown poorer results than the Mig840 (340g/mol) and MCT 

(500.8 g/mol). The molecular weight of the tested API is approximately 370.0 

g/mol, closer to the values of Mig840 and MCT.  

Regarding the mixtures of oils they presented similar solubilizing power 

as the medium carbon chain oils. The addition of LCT oils to the MCT oils did 

not dramatically improve the results. The highest solubility results were 

obtained for MCT, EO (1:1) and the lowest solubility results were obtained for 

EO, SF (1:1). It was expected, however, that both mixtures presented higher 

solubility values, as according to Kawakami [35], the mixing of different types 

of oils enhanced the solubilization significantly. The oils used were different 

which is the most likely reason for this discrepancy. 

It can also be observed that the standard deviation error is higher when 

EO is present. During the experimental procedure, it was noticed that EO 

provoked the plastic cuvettes to become turbid in just a few seconds after 

they were filled. This fact was considered the primary reason for the higher 

margin of error. 

 

5.1.2. Impact of oil surfactant properties  
Fig. 10 shows the solubilization behaviors of the API in the two tested 

surfactants Tween80 (20%) and Labraol (20%). The test with Labrasol was 

made later in time, after all, other solubility tests and emulsifying capacity 

screenings. Initially, Tween80 had been the only surfactant selected to be 

mixed with the oils and mixtures of oils.  

We can clearly observe that Labrasol (20%), medium carbon chain, 

revealed a higher solubilizing capacity than Tween80 (20%), long carbon 

chain. Both surfactants are ME-forming surfactants. Their HLB values are 

similar, which indicates there is no significant difference between comparative 

sizes of the head group and tail group of the molecules.  
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Figure 10 - Screening of surfactants for the ME formulation at 21ºC. 

 

 

5.1.3. Impact of mixture properties 
Fig.10 shows the solubilization behaviors of the API in mixtures of oils 

and a surfactant, Tween80. The values of solubilizing capacity of the 

surfactants alone are also in Fig.11 for convenience of comparison. 

Both medium chain and long chain oils had a drastic enhancement in 

their solubilizing capacity when mixed with a surfactant. However, the 

combination of a medium chain oil with a long chain oil and surfactant showed 

the best results, which goes in accordance with results previously published 

by Kawakami [35]. 

 

	  
Figure 11 - Screening of surfactants and mixtures of oils and surfactants for the ME 
formulation at 21ºC. 
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5.2. Emulsifying capacity evaluation by PDMPD method (2nd 
part of the study) 
 

As described in the methods chapter, in the second stage of the 

formulations study the emulsifying capacity of different formulations was 

evaluated. For that purpose the Phase Diagram by Micro Plate Dilution 

(PDMPD) method was used. It consists of gradually diluting the oil phase with 

the water phase in a microtitre plate and analyzing the results through the 

construction of phase diagrams. 

 

 

	  
Figure 12 - Illustrative scheme of how phase diagrams are constructed. 

After the dilution process, the microtitre plates are scanned, and these scans are in 

their turn analyzed. If a mixture is a microemulsion, it is represented by a red dot in 

the phase diagram. If the mixture is not a microemulsion, it is represented by a white 

dot. 

 

 

Thе next pаgе shоws one of scаns аnd micrоеmulsiоn rеsults оbtаinеd. All 

the other tables of results and scans are in annex section.  
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Microwell plates 15.L, 15.C, 15.R 

    
Well / Plate 15.L 15.C 15.R   FINAL 

    

A1 1 1 1 
 

Emulsion 
    A2 1 1 1   Emulsion 
    A3 1 1 1 

 
Emulsion 

    A4 1 1 1   Emulsion 
    A5 1 1 1 

 
Emulsion 

    A6 1 1 1   Emulsion 
    A7 0 0 0 

 
NOT 

 
 

 
 

A8 0 0 0   NOT 
 A9 0 0 0 

 
NOT 

 A10 0 0 0   NOT 
 A11 0 0 0 

 
NOT 

 A12 0 0 0   NOT 
 B1 0 0 0 

 
NOT 

 
15.L TW80(50%), EO(50%) 

 B2 0 0 0   NOT 
    B3 0 0 0 

 
NOT 

    B4 0 0 0   NOT 
 

 

 
 

B5 0 0 0 
 

NOT 
 B6 0 0 0   NOT 
 B7 0 0 0 

 
NOT 

 B8 0 0 0   NOT 
 B9 0 0 0 

 
NOT 

 B10 0 0 0   NOT 
 

15.C TW80(50%), EO(50%) 
 B11 0 0 0 

 
NOT 

    B12 0 0 0   NOT 
    C1 0 0 0 

 
NOT 

 
 

 
 

C2 0 0 0   NOT 
 C3 0 0 0 

 
NOT 

 C4 0 0 0   NOT 
 C5 0 0 0 

 
NOT 

 C6 0 0 0   NOT 
 C7 0 0 0 

 
NOT 

 
15.R TW80(50%), EO(50%) 

 C8 0 0 0   NOT 
    C9 0 0 0 

 
NOT 

 

 

C10 0 0 0   NOT 

 C11 0 0 0 
 

NOT 
    C12 0 0 0   NOT 
    D1 0 0 0 

 
NOT 

    D2 0 0 0   NOT 
    D3 0 0 0 

 
NOT 

    D4 1 1 1   Emulsion 
    D5 1 1 1 

 
Emulsion 

    
      

    Table 7 - Microwell plates 15.L, 15.C, 15.R, determination of emulsifying capacity. 

  

Figure 13 - Microwell plates 15.L, 15.C, 
15.R, scans 
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With the results obtained from the scans analysis, the phase diagrams 

below were built. The software used was Origin Pro 8 and, as described 

previously, the mixtures that resulted in microemulsions are marked in the 

diagrams as red dots and the others as white dots. It is important to note that 

the first and the last dot in each line are not a formulation; they correspond to 

the wells that contain either 100% water or 100% mixture of oil and surfactant.  

The PDMPD method allowed us to mix different ratios of the excipients 

in relatively few well plates and provided us with much more reliable data than 

the traditional drop method would. Looking at the scans, it is quite simple to 

identify the optically transparent microemulsions that allow the observer to 

see the dot in the bottom of the well. 

The reason there are only lines present on the upper part of the 

diagram is that formulations that contain more oil than surfactant show very 

poor results, i.e., they do not form microemulsions. Therefore, for 

convenience of resources and time it was decided that only mixtures with 

surfactant percentage between 10 and 90 would be screened. 

The most favorable scenario is to have a maximum number of red dots 

in the phase diagram. This represents a presence of microemulsion in most 

variation of aqueous states, meaning that the variation in content of water will 

have less influence in the maintenance of the microemulsion status.  

Also important is to have a presence of red dots in the region of the phase 

diagram where surfactant percentage is not at its maximum. High 

concentrations of surfactant may lead to adverse side effects on patients due 

to toxicity. 

 Below are shown the four phase diagrams obtained. Figure 14 

corresponds to the diagram of mixture EO and TW80; figure 15 corresponds 

to the mixture MCT and TW80; figure 16 corresponds to the mixture Mig840 

and TW80 and figure 17 corresponds to the mixture of MCT and EO (1:1) and 

TW80. 

 

 

	   	   	   	   	   	  
	   	   	   	  



	   54	  

	  
Figure 14 - Phase Diagram, Tween80 and EO. 

	  
Figure 15 - Phase Diagram, Tween80 and MCT. 
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Figure 16 - Phase Diagram, Mig840. 

 

 

	  
Figure 17 - Phase Diagram, Tween80 and MCT + EO (1:1) 
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At this stage, we can observe and compare the phase diagrams. It can 

be concluded that all of them present promising results, because 

microemulsions were formed at different variations of amount of the oils and 

surfactant. 

All phase diagrams show some microemulsion formulations in the 

interval 50-70% of surfactant percentage, which is necessary for keeping 

toxicity levels low.  

These results are not yet sufficient to choose the best formulation to be 

used. The full characterization of the emulsion and other tests are required to 

conclude about the most efficient formulations.  
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Chapter 6 

 

Conclusion 

 
To address the issue of low bioavailability, of some specific chemical 

compounds, several formulations were studied. The purpose of these 

formulations was to deliver these bioactive molecules and increase their 

bioavailability in the human organism. Various types of oils and mixtures are 

capable of forming microemulsions; the ones designed during this project 

revealed quite promising results. 

The formulations tested can potentially improve the bioavailability of 

poorly soluble drugs, as for the results obtained from solubility and 

emulsifying screenings.  

Mixing different oils, instead of combining one single oil with surfactant, 

did not enhance significantly solubility or the formation of microemulsions with 

the chosen API, contrary to what was expected. According to the literature 

mixing more than one oil with the surfactant would result in higher solubility of 

the chemical compound [35]. However, further tests using different excipients 

must be performed to confirm if the results are similar when using other 

mixture of oil and surfactant, or if the API is responsible for the difference.  

The next steps of research will include further tests of solubility; test 

using Labrasol as the surfactant component instead of Tween 80 and doing 

emulsifying screenings to the remaining mixtures.  

Furthermore, three other potential APIs will be studied. The objective is 

finding one formulation capable of delivering efficiently any of these four 

molecules. 

After that stage the characterization of the emulsions will be carried ou, 

to analyse particle size and stability, a re-evaluation and optimization of the 

formulation will follow and finally the validation of the formulation in the 

artificial gut model. 
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Phase Diagrams 

 
Table 2. Microwell plates 15.L, 15.C, 15.R, 
determination of emulsifying capacity. 

 
    

Well / Plate 15.L 15.C 15.R   FINAL 

    

E1 1 1 1 
 

Emulsion 
    E2 1 1 1   Emulsion 
    E3 1 1 1 

 
Emulsion 

    E4 1 1 1   Emulsion 
    E5 1 1 1 

 
Emulsion 

    E6 1 1 1   Emulsion 
    E7 1 1 1 

 
Emulsion 

 
 

 
 

E8 1 1 1   Emulsion 
 E9 0 1 0 

 
NOT 

 E10 0 0 0   NOT 
 E11 0 0 0 

 
NOT 

 E12 0 0 0   NOT 
 F1 0 0 0 

 
NOT 

 
15.L TW80(60%), EO(40%) 

 F2 0 0 0   NOT 
    F3 0 0 0 

 
NOT 

    F4 0 0 0   NOT 
 

 

 
 

F5 0 0 0 
 

NOT 
 F6 0 0 0   NOT 
 F7 0 0 0 

 
NOT 

 F8 0 0 0   NOT 
 F9 0 0 0 

 
NOT 

 F10 0 0 0   NOT 
 

15.C TW80(60%), EO(40%) 
 F11 0 0 0 

 
NOT 

    F12 0 0 0   NOT 
    G1 0 0 0 

 
NOT 

 
 

 
 

G2 0 0 0   NOT 
 G3 0 0 0 

 
NOT 

 G4 0 0 0   NOT 
 G5 0 0 0 

 
NOT 

 G6 0 0 0   NOT 
 G7 0 0 0 

 
NOT 

 
15.R TW80(60%), EO(40%) 

 G8 0 0 0   NOT 
    G9 0 0 0 

 
NOT 

  
G10 0 0 0   NOT 

 

Fig.2. Microwell plates 15.L, 15.C, 15.R, 
scans 

G11 0 0 0 
 

NOT 
    G12 0 0 0   NOT 
    H1 0 0 1 

 
NOT 

    H2 0 0 1   NOT 
    H3 0 0 1 

 
NOT 

    H4 1 0 1   Emulsion 
    H5 1 1 1 

 
Emulsion 

    
      

     
 
  



	   65	  

Table 3. Microwell plates 19,1, 19,2, 23, 
determination of emulsifying capacity. 

 
    

Well / Plate 19,1 19,2 23   FINAL 

    
A1 1 1 1 

 
Emulsion 

    A2 1 1 1   Emulsion 
    A3 1 1 1 

 
Emulsion 

    A4 1 1 1   Emulsion 
    A5 1 1 1 

 
Emulsion 

    A6 1 1 1   Emulsion 
    A7 1 1 0 

 
Emulsion 

 
 

 
 

A8 1 0 1   Emulsion 
 A9 1 0 1 

 
Emulsion 

 A10 1 0 1   Emulsion 
 A11 0 0 0 

 
NOT 

 A12 0 0 0   NOT 
 B1 0 0 0 

 
NOT 

 
19,1 TW80(70%), EO(30%) 

 B2 0 0 0   NOT 
    B3 0 0 0 

 
NOT 

    B4 0 0 0   NOT 
 

 

 
 

B5 0 0 0 
 

NOT 
 B6 0 0 0   NOT 
 B7 0 0 0 

 
NOT 

 B8 0 0 0   NOT 
 B9 0 0 0 

 
NOT 

 B10 0 0 0   NOT 
 

19,2 TW80(70%), EO(30%) 
 B11 0 0 0 

 
NOT 

    B12 0 0 0   NOT 
    C1 0 0 0 

 
NOT 

 
 

 
 

C2 0 0 0   NOT 
 C3 0 0 0 

 
NOT 

 C4 0 0 0   NOT 
 C5 0 0 0 

 
NOT 

 C6 0 0 0   NOT 
 C7 0 0 0 

 
NOT 

 
23 TW80(70%), EO(30%) 

 C8 0 0 0   NOT 
    C9 0 0 0 

 
NOT 

    
C10 0 0 0   NOT 

 

Fig.3. Microwell plates 19,1, 19,2, 23, 
scans 

C11 0 0 0 
 

NOT 
    C12 0 0 0   NOT 
    D1 0 0 0 

 
NOT 

    D2 1 1 1   Emulsion 
    D3 1 1 1 

 
Emulsion 

    D4 1 1 1   Emulsion 
    D5 1 1 1 

 
Emulsion 
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Table 4. Microwell plates 19,1, 19,2, 23, 
determination of emulsifying capacity. 

 
    

Well / Plate 19,1 19,2 23   FINAL 

    
E1 1 1 1 

 
Emulsion 

    E2 1 1 1   Emulsion 
    E3 1 1 1 

 
Emulsion 

    E4 1 1 1   Emulsion 
    E5 1 1 1 

 
Emulsion 

    E6 0 0 0   NOT 
    E7 0 0 0 

 
NOT 

 
 

 
 

E8 1 1 0   Emulsion 
 E9 1 1 1 

 
Emulsion 

 E10 1 1 0   Emulsion 
 E11 1 0 0 

 
NOT 

 E12 0 0 0   NOT 
 F1 0 0 0 

 
NOT 

 
19,1 TW80(80%), EO(20%) 

 F2 0 0 0   NOT 
    F3 0 0 0 

 
NOT 

    F4 0 1 0   NOT 
 

 

 
 

F5 0 1 0 
 

NOT 
 F6 0 1 1   Emulsion 
 F7 1 1 1 

 
Emulsion 

 F8 0 1 1   Emulsion 
 F9 1 1 1 

 
Emulsion 

 F10 1 1 1   Emulsion 
 

19,2 TW80(80%), EO(20%) 
 F11 1 1 1 

 
Emulsion 

    F12 1 1 1   Emulsion 
    G1 1 1 1 

 
Emulsion 

 
 

 
 

G2 1 1 1   Emulsion 
 G3 1 1 1 

 
Emulsion 

 G4 1 1 1   Emulsion 
 G5 1 1 1 

 
Emulsion 

 G6 1 1 1   Emulsion 
 G7 1 1 1 

 
Emulsion 

 
23 TW80(80%), EO(20%) 

 G8 1 1 1   Emulsion 
    G9 1 1 1 

 
Emulsion 

    
G10 1 1 1   Emulsion 

 

Fig.4. Microwell plates 19,1, 19,2, 23, 
scans 

G11 1 1 1 
 

Emulsion 
    G12 1 1 1   Emulsion 
    H1 1 1 1 

 
Emulsion 

    H2 1 1 1   Emulsion 
    H3 1 1 1 

 
Emulsion 

    H4 1 1 1   Emulsion 
    H5 1 1 1 

 
Emulsion 
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Table 5. Microwell plates 18, 39, 40, 
determination of emulsifying capacity. 

 
    

Well / Plate 18 39 40   FINAL 

    
E1 1 1 1 

 
Emulsion 

    E2 1 1 1   Emulsion 
    E3 1 1 1 

 
Emulsion 

    E4 1 1 1   Emulsion 
    E5 1 1 1 

 
Emulsion 

    E6 1 1 1   Emulsion 
    E7 1 1 1 

 
Emulsion 

 
 

 
 

E8 1 1 1   Emulsion 
 E9 1 1 1 

 
Emulsion 

 E10 1 1 1   Emulsion 
 E11 1 1 1 

 
Emulsion 

 E12 1 1 1   Emulsion 
 F1 1 1 1 

 
Emulsion 

 
18 TW80(90%), EO(10%) 

 F2 0 0 1   NOT 
    F3 0 0 0 

 
NOT 

    F4 0 0 0   NOT 
 

 

 
 

F5 0 0 0 
 

NOT 
 F6 0 0 0   NOT 
 F7 0 0 0 

 
NOT 

 F8 0 1 0   NOT 
 F9 1 1 1 

 
Emulsion 

 F10 1 1 1   Emulsion 
 

39 TW80(90%), EO(10%) 
 F11 1 1 1 

 
Emulsion 

    F12 1 1 1   Emulsion 
    G1 1 1 1 

 
Emulsion 

 
 

 
 

G2 1 1 1   Emulsion 
 G3 1 1 1 

 
Emulsion 

 G4 1 1 1   Emulsion 
 G5 1 1 1 

 
Emulsion 

 G6 1 1 1   Emulsion 
 G7 1 1 1 

 
Emulsion 

 
40 TW80(90%), EO(10%) 

 G8 1 1 1   Emulsion 
    G9 1 1 1 

 
Emulsion 

    G10 1 1 1   Emulsion 
 

Fig.5. Microwell plates 18, 39, 40, scans 
G11 1 1 1 

 
Emulsion 

    G12 1 1 1   Emulsion 
    H1 1 1 1 

 
Emulsion 

    H2 1 1 1   Emulsion 
    H3 1 1 1 

 
Emulsion 

    H4 1 1 1   Emulsion 
    H5 1 1 1 

 
Emulsion 
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Table 6. Microwell plates 16, 21, 25, 
determination of emulsifying capacity. 

 
    

Well / Plate 16 21 25   FINAL 

   

 
 
 

A1 1 1 1 
 

Emulsion 
    A2 1 1 1   Emulsion 
    A3 1 1 1 

 
Emulsion 

    A4 1 1 1   Emulsion 
    A5 1 1 1 

 
Emulsion 

    A6 1 1 1   Emulsion 
 

 

 
 

A7 0 0 0 
 

NOT 
 A8 0 0 0   NOT 
 A9 0 0 0 

 
NOT 

 A10 0 0 0   NOT 
 A11 0 0 0 

 
NOT 

 A12 0 0 0   NOT 
 

16 TW80(50%), Mig(50%) 
 B1 0 0 0 

 
NOT 

    B2 0 0 0   NOT 
    B3 0 0 0 

 
NOT 

 
 

 
 

B4 0 0 0   NOT 
 B5 0 0 0 

 
NOT 

 B6 0 0 0   NOT 
 B7 0 0 0 

 
NOT 

 B8 0 0 0   NOT 
 B9 0 0 0 

 
NOT 

 
21 TW80(50%), Mig(50%) 

 B10 0 0 0   NOT 
    B11 0 0 0 

 
NOT 

    B12 0 0 0   NOT 
 

 

 
 

C1 0 0 0 
 

NOT 
 C2 0 0 0   NOT 
 C3 0 0 0 

 
NOT 

 C4 0 0 0   NOT 
 C5 0 0 0 

 
NOT 

 C6 0 0 0   NOT 
 

25 TW80(50%), Mig(50%) 
 C7 0 0 0 

 
NOT 

    C8 0 0 0   NOT 
    C9 0 0 0 

 
NOT 

 
Fig.6. Microwell plates 16, 21, 25, scans 

C10 0 0 0   NOT 
    C11 0 0 0 

 
NOT 

    C12 0 0 0   NOT 
    D1 0 0 0 

 
NOT 

    D2 0 0 0   NOT 
    D3 0 0 0 

 
NOT 

    D4 0 0 0   NOT 
    D5 1 1 1 

 
Emulsion 
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Table 7. Microwell plates 16, 21, 25, 
determination of emulsifying capacity. 

 
    

Well / Plate 16 21 25   FINAL 

    

E1 1 1 1 
 

Emulsion 
    E2 1 1 1   Emulsion 
    E3 1 1 1 

 
Emulsion 

    E4 1 1 1   Emulsion 
    E5 1 1 1 

 
Emulsion 

    E6 1 1 1   Emulsion 
    E7 1 1 1 

 
Emulsion 

 
 

 
 

E8 1 1 1   Emulsion 
 E9 1 0 0 

 
NOT 

 E10 0 0 0   NOT 
 E11 0 0 0 

 
NOT 

 E12 0 0 0   NOT 
 F1 0 0 0 

 
NOT 

 
16 TW80(60%), Mig(40%) 

 F2 0 0 0   NOT 
    F3 0 0 0 

 
NOT 

    F4 0 0 0   NOT 
 

 

 
 

F5 0 0 0 
 

NOT 
 F6 0 0 0   NOT 
 F7 0 0 0 

 
NOT 

 F8 0 0 0   NOT 
 F9 0 0 0 

 
NOT 

 F10 0 0 0   NOT 
 

21 TW80(60%), Mig(40%) 
 F11 0 0 0 

 
NOT 

    F12 0 0 0   NOT 
    G1 0 0 0 

 
NOT 

 
 

 
 

G2 0 0 0   NOT 
 G3 0 0 0 

 
NOT 

 G4 0 0 0   NOT 
 G5 0 0 0 

 
NOT 

 G6 0 0 0   NOT 
 G7 0 0 0 

 
NOT 

 
25 TW80(60%), Mig(40%) 

 G8 0 0 0   NOT 
    G9 0 0 0 

 
NOT 

    G10 0 0 0   NOT 
 

Fig.7. Microwell plates 16, 21, 25, scans 
G11 0 0 0 

 
NOT 

    G12 0 0 0   NOT 
    H1 0 0 0 

 
NOT 

    H2 0 0 0   NOT 
    H3 0 0 0 

 
NOT 

    H4 0 0 0   NOT 
    H5 1 1 1 

 
Emulsion 

    
      

    
      

     
  



	   70	  

Table 8. Microwell plates 17, 22, 26, 
determination of emulsifying capacity. 

 
    

Well / Plate 17 22 26   FINAL 

    
A1 1 1 1 

 
Emulsion 

    A2 1 1 1   Emulsion 
    A3 1 1 1 

 
Emulsion 

    A4 1 1 1   Emulsion 
    A5 1 1 1 

 
Emulsion 

    A6 1 1 1   Emulsion 
    A7 1 1 1 

 
Emulsion 

 
 

 
 

A8 1 1 0   Emulsion 
 A9 1 1 1 

 
Emulsion 

 A10 1 0 0   NOT 
 A11 1 1 1 

 
Emulsion 

 A12 1 1 1   Emulsion 
 B1 1 0 1 

 
Emulsion 

 
17 TW80(70%), Mig(30%) 

 B2 1 0 1   Emulsion 
    B3 1 0 0 

 
NOT 

    B4 0 0 0   NOT 
 

 

 
 

B5 0 0 0 
 

NOT 
 B6 0 1 0   NOT 
 B7 0 1 0 

 
NOT 

 B8 0 0 0   NOT 
 B9 0 0 0 

 
NOT 

 B10 0 0 0   NOT 
 

22 TW80(70%), Mig(30%) 
 B11 0 0 0 

 
NOT 

    B12 0 0 0   NOT 
    C1 0 0 0 

 
NOT 

 
 

 
 

C2 0 0 0   NOT 
 C3 0 0 0 

 
NOT 

 C4 0 0 0   NOT 
 C5 0 0 0 

 
NOT 

 C6 0 0 0   NOT 
 C7 0 0 0 

 
NOT 

 
26 TW80(70%), Mig(30%) 

 C8 0 0 0   NOT 
    C9 0 0 0 

 
NOT 

    C10 0 0 0   NOT 
 

Fig.8. Microwell plates 17, 22, 26, scans 
C11 0 0 0 

 
NOT 

    C12 0 0 0   NOT 
    D1 0 0 0 

 
NOT 

    D2 0 0 0   NOT 
    D3 0 1 0 

 
NOT 

    D4 0 1 1   Emulsion 
    D5 1 1 1 

 
Emulsion 
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Table 9. Microwell plates 18, 39, 40, 
determination of emulsifying capacity. 

 
    

Well / Plate 18 39 40   FINAL 

    

A1 1 1 1 
 

Emulsion 
    A2 1 1 1   Emulsion 
    A3 1 1 1 

 
Emulsion 

    A4 1 1 1   Emulsion 
    A5 1 1 1 

 
Emulsion 

    A6 1 1 1   Emulsion 
    A7 1 1 1 

 
Emulsion 

 
 

 
 

A8 1 1 1   Emulsion 
 A9 1 1 1 

 
Emulsion 

 A10 1 1 1   Emulsion 
 A11 1 1 1 

 
Emulsion 

 A12 1 1 1   Emulsion 
 B1 1 1 1 

 
Emulsion 

 
18 TW80(90%), Mig(10%) 

 B2 1 1 1   Emulsion 
    B3 1 1 1 

 
Emulsion 

    B4 1 1 1   Emulsion 
 

 

 
 

B5 1 1 1 
 

Emulsion 
 B6 1 1 1   Emulsion 
 B7 1 1 1 

 
Emulsion 

 B8 1 1 1   Emulsion 
 B9 1 1 1 

 
Emulsion 

 B10 1 1 1   Emulsion 
 

39 TW80(90%), Mig(10%) 
 B11 1 1 1 

 
Emulsion 

    B12 1 1 1   Emulsion 
    C1 1 1 1 

 
Emulsion 

 
 

 
 

C2 1 1 1   Emulsion 
 C3 1 1 1 

 
Emulsion 

 C4 1 1 1   Emulsion 
 C5 1 1 1 

 
Emulsion 

 C6 1 1 1   Emulsion 
 C7 1 1 1 

 
Emulsion 

 
40 TW80(90%), Mig(10%) 

 C8 1 1 1   Emulsion 
    C9 1 1 1 

 
Emulsion 

    C10 1 1 1   Emulsion 
 

Fig.9. Microwell plates 18, 39, 40, scans 
C11 1 1 1 

 
Emulsion 

    C12 1 1 1   Emulsion 
    D1 1 1 1 

 
Emulsion 

    D2 1 1 1   Emulsion 
    D3 1 1 1 

 
Emulsion 

    D4 1 1 1   Emulsion 
    D5 1 1 1 

 
Emulsion 
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Table 10. Microwell plates 20, 24, 34, 
determination of emulsifying capacity. 

 
    

Well / Plate 20 24 34   FINAL 

    
A1 1 1 1 

 
Emulsion 

    A2 1 1 1   Emulsion 
    A3 1 1 1 

 
Emulsion 

    A4 1 1 1   Emulsion 
    A5 1 1 1 

 
Emulsion 

    A6 0 0 0   NOT 
    A7 0 0 0 

 
NOT 

 
 

 
 

A8 0 0 0   NOT 
 A9 0 0 0 

 
NOT 

 A10 0 0 0   NOT 
 A11 0 0 0 

 
NOT 

 A12 0 0 0   NOT 
 B1 0 0 0 

 
NOT 

 
20 TW80(50%), MCT(50%) 

 B2 0 0 0   NOT 
    B3 0 0 0 

 
NOT 

    B4 0 0 0   NOT 
 

 

 
 

B5 0 0 0 
 

NOT 
 B6 0 0 0   NOT 
 B7 0 0 0 

 
NOT 

 B8 0 0 0   NOT 
 B9 0 0 0 

 
NOT 

 B10 0 0 0   NOT 
 

24 TW80(50%), MCT(50%) 
 B11 0 0 0 

 
NOT 

    B12 0 0 0   NOT 
    C1 0 0 0 

 
NOT 

 
 

 
 

C2 0 0 0   NOT 
 C3 0 0 0 

 
NOT 

 C4 0 0 0   NOT 
 C5 0 0 0 

 
NOT 

 C6 0 0 0   NOT 
 C7 0 0 0 

 
NOT 

 
34 TW80(50%), MCT(50%) 

 C8 0 0 0   NOT 
    C9 0 0 0 

 
NOT 

    C10 0 0 0   NOT 
 

Fig.10. Microwell plates 20, 24, 34, scans 
C11 0 0 0 

 
NOT 

    C12 0 0 0   NOT 
    D1 0 0 0 

 
NOT 

    D2 0 0 0   NOT 
    D3 0 0 0 

 
NOT 

    D4 0 0 0   NOT 
    D5 1 1 1 

 
Emulsion 
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Table 11. Microwell plates 20, 24, 34, 
determination of emulsifying capacity. 

 
    

Well / Plate 20 24 34   FINAL 

    
E1 1 1 1 

 
Emulsion 

    E2 1 1 1   Emulsion 
    E3 1 1 1 

 
Emulsion 

    E4 1 1 1   Emulsion 
    E5 1 1 1 

 
Emulsion 

    E6 1 1 1   Emulsion 
    E7 0 0 0 

 
NOT 

 
 

 
 

E8 0 0 0   NOT 
 E9 0 0 0 

 
NOT 

 E10 0 0 0   NOT 
 E11 0 0 0 

 
NOT 

 E12 0 0 0   NOT 
 F1 0 0 0 

 
NOT 

 
20 TW80(60%), MCT(40%) 

 F2 0 0 0   NOT 
    F3 0 0 0 

 
NOT 

    F4 0 0 0   NOT 
 

 

 
 

F5 0 0 0 
 

NOT 
 F6 0 0 0   NOT 
 F7 0 0 0 

 
NOT 

 F8 0 0 0   NOT 
 F9 0 0 0 

 
NOT 

 F10 0 0 0   NOT 
 

24 TW80(60%), MCT(40%) 
 F11 0 0 0 

 
NOT 

    F12 0 0 0   NOT 
    G1 0 0 0 

 
NOT 

 
 

 
 

G2 0 0 0   NOT 
 G3 0 0 0 

 
NOT 

 G4 0 0 0   NOT 
 G5 0 0 0 

 
NOT 

 G6 0 0 0   NOT 
 G7 0 0 0 

 
NOT 

 
34 TW80(60%), MCT(40%) 

 G8 0 0 0   NOT 
    G9 0 0 0 

 
NOT 

    G10 0 0 0   NOT 
 

Fig.11. Microwell plates 20, 24, 34, scans 
G11 0 0 0 

 
NOT 

    G12 0 0 0   NOT 
    H1 0 0 0 

 
NOT 

    H2 0 0 0   NOT 
    H3 0 0 0 

 
NOT 

    H4 0 0 0   NOT 
    H5 1 1 1 

 
Emulsion 
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Table 12. Microwell plates 27, 38, 41, 
determination of emulsifying capacity. 

 
    

Well / Plate 27 38 41   FINAL 

    
A1 1 1 1 

 
Emulsion 

    A2 1 1 1   Emulsion 
    A3 1 1 1 

 
Emulsion 

    A4 1 1 1   Emulsion 
    A5 1 1 1 

 
Emulsion 

    A6 1 1 1   Emulsion 
    A7 1 1 1 

 
Emulsion 

 
 

 
 

A8 1 1 1   Emulsion 
 A9 0 0 0 

 
NOT 

 A10 0 0 0   NOT 
 A11 0 0 0 

 
NOT 

 A12 0 0 0   NOT 
 B1 0 0 0 

 
NOT 

 
27 TW80(70%), MCT(30%) 

 B2 0 0 0   NOT 
    B3 0 0 0 

 
NOT 

    B4 0 0 0   NOT 
 

 

 
 

B5 0 0 0 
 

NOT 
 B6 0 0 0   NOT 
 B7 0 0 0 

 
NOT 

 B8 0 0 0   NOT 
 B9 0 0 0 

 
NOT 

 B10 0 0 0   NOT 
 

38 TW80(70%), MCT(30%) 
 B11 0 0 0 

 
NOT 

    B12 0 0 0   NOT 
    C1 0 0 0 

 
NOT 

 
 

 
 

C2 0 0 0   NOT 
 C3 0 0 0 

 
NOT 

 C4 0 0 0   NOT 
 C5 0 0 0 

 
NOT 

 C6 0 0 0   NOT 
 C7 0 0 0 

 
NOT 

 
41 TW80(70%), MCT(30%) 

 C8 0 0 0   NOT 
    C9 0 0 0 

 
NOT 

    C10 0 0 0   NOT 
 

Fig.12. Microwell plates 27, 38, 41, scans 
C11 0 0 0 

 
NOT 

    C12 0 0 0   NOT 
    D1 0 0 0 

 
NOT 

    D2 1 1 1   Emulsion 
    D3 1 1 1 

 
Emulsion 

    D4 1 1 1   Emulsion 
    D5 1 1 1 

 
Emulsion 
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Table 13. Microwell plates 27, 38, 41, 
determination of emulsifying capacity. 

 
    

Well / Plate 27 38 41   FINAL 

    
E1 1 1 1 

 
Emulsion 

    E2 1 1 1   Emulsion 
    E3 1 1 1 

 
Emulsion 

    E4 1 1 1   Emulsion 
    E5 1 1 1 

 
Emulsion 

    E6 1 1 1   Emulsion 
    E7 1 1 1 

 
Emulsion 

 
 

 
 

E8 1 1 1   Emulsion 
 E9 1 1 1 

 
Emulsion 

 E10 1 1 1   Emulsion 
 E11 1 1 1 

 
Emulsion 

 E12 1 1 1   Emulsion 
 F1 1 1 1 

 
Emulsion 

 
27 TW80(80%), MCT(20%) 

 F2 1 0 0   NOT 
    F3 0 0 0 

 
NOT 

    F4 0 0 0   NOT 
 

 

 
 

F5 1 1 0 
 

Emulsion 
 F6 1 1 1   Emulsion 
 F7 1 1 1 

 
Emulsion 

 F8 1 1 1   Emulsion 
 F9 1 1 1 

 
Emulsion 

 F10 1 1 1   Emulsion 
 

38 TW80(80%), MCT(20%) 
 F11 1 1 1 

 
Emulsion 

    F12 1 1 1   Emulsion 
    G1 1 1 1 

 
Emulsion 

 
 

 
 

G2 1 1 1   Emulsion 
 G3 1 1 1 

 
Emulsion 

 G4 1 1 1   Emulsion 
 G5 1 1 1 

 
Emulsion 

 G6 1 1 1   Emulsion 
 G7 1 1 1 

 
Emulsion 

 
41 TW80(80%), MCT(20%) 

 G8 1 1 1   Emulsion 
    G9 1 1 1 

 
Emulsion 

    G10 1 1 1   Emulsion 
 

Fig.13. Microwell plates 27, 38, 41, scans 
G11 1 1 1 

 
Emulsion 

    G12 1 1 1   Emulsion 
    H1 1 1 1 

 
Emulsion 

    H2 1 1 1   Emulsion 
    H3 1 1 1 

 
Emulsion 

    H4 1 1 1   Emulsion 
    H5 1 1 1 

 
Emulsion 
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Table 14. Microwell plates 28, 35, 36, 
determination of emulsifying capacity. 

 
    

Well / Plate 28 35 36   FINAL 

    
A1 1 1 1 

 
Emulsion 

    A2 1 1 1   Emulsion 
    A3 1 1 1 

 
Emulsion 

    A4 1 1 1   Emulsion 
    A5 1 1 1 

 
Emulsion 

    A6 1 1 1   Emulsion 
    A7 1 1 1 

 
Emulsion 

 
 

 
 

A8 1 1 1   Emulsion 
 A9 1 1 1 

 
Emulsion 

 A10 1 1 1   Emulsion 
 A11 1 1 1 

 
Emulsion 

 A12 1 1 1   Emulsion 
 B1 1 1 1 

 
Emulsion 

 
28 TW80(90%), MCT(10%) 

 B2 1 1 1   Emulsion 
    B3 1 1 1 

 
Emulsion 

    B4 1 1 1   Emulsion 
 

 

 
 

B5 1 1 1 
 

Emulsion 
 B6 1 1 1   Emulsion 
 B7 1 1 1 

 
Emulsion 

 B8 1 1 1   Emulsion 
 B9 1 1 1 

 
Emulsion 

 B10 1 1 1   Emulsion 
 

35 TW80(90%), MCT(10%) 
 B11 1 1 1 

 
Emulsion 

    B12 1 1 1   Emulsion 
    C1 1 1 1 

 
Emulsion 

 
 

 
 

C2 1 1 1   Emulsion 
 C3 1 1 1 

 
Emulsion 

 C4 1 1 1   Emulsion 
 C5 1 1 1 

 
Emulsion 

 C6 1 1 1   Emulsion 
 C7 1 1 1 

 
Emulsion 

 
36 TW80(90%), MCT(10%) 

 C8 1 1 1   Emulsion 
    C9 1 1 1 

 
Emulsion 

    C10 1 1 1   Emulsion 
 

Fig.14. Microwell plates 28, 35, 36, scans 
C11 1 1 1 

 
Emulsion 

    C12 1 1 1   Emulsion 
    D1 1 1 1 

 
Emulsion 

    D2 1 1 1   Emulsion 
    D3 1 1 1 

 
Emulsion 

    D4 1 1 1   Emulsion 
    D5 1 1 1 

 
Emulsion 
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Table 15. Microwell plates 29, 31, 37, 
determination of emulsifying capacity. 

 
    

Well / Plate 29 31 37   FINAL 

    
A1 1 1 1 

 
Emulsion 

    A2 1 1 1   Emulsion 
    A3 1 1 1 

 
Emulsion 

    A4 1 1 1   Emulsion 
    A5 1 0 0 

 
NOT 

    A6 0 0 0   NOT 
    A7 0 0 0 

 
NOT 

 
 

 
 

A8 0 0 0   NOT 
 A9 0 0 0 

 
NOT 

 A10 0 0 0   NOT 
 A11 0 0 0 

 
NOT 

 A12 0 0 0   NOT 
 B1 0 0 0 

 
NOT 

 
29 TW80(50%), [EO,MCT(1:1)] (50%) 

B2 0 0 0   NOT 
    B3 0 0 0 

 
NOT 

    B4 0 0 0   NOT 
 

 

 
 

B5 0 0 0 
 

NOT 
 B6 0 0 0   NOT 
 B7 0 0 0 

 
NOT 

 B8 0 0 0   NOT 
 B9 0 0 0 

 
NOT 

 B10 0 0 0   NOT 
 

31 TW80(50%), [EO,MCT(1:1)] (50%) 
B11 0 0 0 

 
NOT 

    B12 0 0 0   NOT 
    C1 0 0 0 

 
NOT 

 
 

 
 

C2 0 0 0   NOT 
 C3 0 0 0 

 
NOT 

 C4 0 0 0   NOT 
 C5 0 0 0 

 
NOT 

 C6 0 0 0   NOT 
 C7 0 0 0 

 
NOT 

 
37 TW80(50%), [EO,MCT(1:1)] (50%) 

C8 0 0 0   NOT 
    C9 0 0 0 

 
NOT 

    C10 0 0 0   NOT 
 

Fig.15. Microwell plates 29, 31, 37, scans 
C11 0 0 0 

 
NOT 

    C12 0 0 0   NOT 
    D1 0 0 0 

 
NOT 

    D2 0 0 0   NOT 
    D3 0 0 0 

 
NOT 

    D4 0 0 0   NOT 
    D5 1 1 1 

 
Emulsion 
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Table 16. Microwell plates 29, 31, 37, 
determination of emulsifying capacity. 

 
    

Well / Plate 29 31 37   FINAL 

    
E1 1 1 1 

 
Emulsion 

    E2 1 1 1   Emulsion 
    E3 1 1 1 

 
Emulsion 

    E4 1 1 1   Emulsion 
    E5 1 1 1 

 
Emulsion 

    E6 0 1 1   Emulsion 
    E7 0 1 1 

 
Emulsion 

 
 

 
 

E8 0 0 0   NOT 
 E9 0 0 0 

 
NOT 

 E10 0 0 0   NOT 
 E11 0 0 0 

 
NOT 

 E12 0 0 0   NOT 
 F1 0 0 0 

 
NOT 

 
29 TW80(60%), [EO,MCT(1:1)] (40%) 

F2 0 0 0   NOT 
    F3 0 0 0 

 
NOT 

    F4 0 0 0   NOT 
 

 

 
 

F5 0 0 0 
 

NOT 
 F6 0 0 0   NOT 
 F7 0 0 0 

 
NOT 

 F8 0 0 0   NOT 
 F9 0 0 0 

 
NOT 

 F10 0 0 0   NOT 
 

31 TW80(60%), [EO,MCT(1:1)] (40%) 
F11 0 0 0 

 
NOT 

    F12 0 0 0   NOT 
    G1 0 0 0 

 
NOT 

 
 

 
 

G2 0 0 0   NOT 
 G3 0 0 0 

 
NOT 

 G4 0 0 0   NOT 
 G5 0 0 0 

 
NOT 

 G6 0 0 0   NOT 
 G7 0 0 0 

 
NOT 

 
37 TW80(60%), [EO,MCT(1:1)] (40%) 

G8 0 0 0   NOT 
    G9 0 0 0 

 
NOT 

    G10 0 0 0   NOT 
 

Fig.16. Microwell plates 29, 31, 37, scans 
G11 0 0 0 

 
NOT 

    G12 0 0 0   NOT 
    H1 0 0 0 

 
NOT 

    H2 0 0 0   NOT 
    H3 0 0 0 

 
NOT 

    H4 0 0 1   NOT 
    H5 1 1 1 

 
Emulsion 
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Table 17. Microwell plates 30, 32, 42, 
determination of emulsifying capacity. 

 
    

Well / Plate 30 32 42   FINAL 

    
A1 1 1 1 

 
Emulsion 

    A2 0 1 1   Emulsion 
    A3 0 1 1 

 
Emulsion 

    A4 0 0 0   NOT 
    A5 0 0 0 

 
NOT 

    
A6 1 0 0   NOT 

 

 

 
 

  A7 1 0 0 
 

NOT 
 

 

A8 0 0 0   NOT 
 A9 0 0 0 

 
NOT 

 A10 0 0 0   NOT 
 A11 0 0 0 

 
NOT 

 A12 0 0 0   NOT 
 B1 0 0 0 

 
NOT 

 
30 TW80(70%), [EO,MCT(1:1)] (30%) 

B2 0 0 0   NOT 
    

B3 0 0 0 
 

NOT 

 

 

 
 

  B4 0 0 0   NOT 
 

 

B5 0 0 0 
 

NOT 
 B6 1 0 0   NOT 
 B7 1 0 0 

 
NOT 

 B8 0 0 0   NOT 
 B9 0 0 0 

 
NOT 

 B10 0 0 0   NOT 
 

32 TW80(70%), [EO,MCT(1:1)] (30%) 
B11 1 0 0 

 
NOT 

    B12 1 0 0   NOT 
    C1 0 0 0 

 
NOT 

 
 

 
 

C2 0 0 0   NOT 
 C3 1 0 0 

 
NOT 

 C4 1 0 0   NOT 
 C5 0 0 0 

 
NOT 

 C6 0 0 0   NOT 
 C7 0 0 0 

 
NOT 

 
42 TW80(70%), [EO,MCT(1:1)] (30%) 

C8 0 0 0   NOT 
    C9 1 0 0 

 
NOT 

    C10 1 0 0   NOT 
 

Fig.17. Microwell plates 30, 32, 42, scans 
C11 0 0 0 

 
NOT 

    C12 0 0 0   NOT 
    D1 0 0 0 

 
NOT 

    D2 1 0 0   NOT 
    D3 1 0 1 

 
Emulsion 

    D4 1 1 1   Emulsion 
    D5 1 1 1 

 
Emulsion 
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Table 18. Microwell plates 30, 32, 42, 
determination of emulsifying capacity. 

 
    

Well / Plate 30 32 42   FINAL 

    
E1 1 1 1 

 
Emulsion 

    E2 1 1 1   Emulsion 
    E3 1 1 1 

 
Emulsion 

    E4 1 1 1   Emulsion 
    E5 1 1 1 

 
Emulsion 

    E6 1 0 1   Emulsion 
    E7 0 0 0 

 
NOT 

 

 

E8 0 0 1   NOT 
 E9 1 1 0 

 
Emulsion 

 E10 1 1 0   Emulsion 
 E11 0 1 0 

 
NOT 

 E12 0 0 0   NOT 
 F1 0 0 0 

 
NOT 

 
30 TW80(80%), [EO,MCT(1:1)] (20%) 

F2 0 0 0   NOT 
    F3 0 0 0 

 
NOT 

    F4 1 0 1   Emulsion 
 

 

 
 

F5 1 1 0 
 

Emulsion 
 F6 1 1 1   Emulsion 
 F7 1 1 1 

 
Emulsion 

 F8 1 1 1   Emulsion 
 F9 1 1 1 

 
Emulsion 

 F10 0 1 1   Emulsion 
 

32 TW80(80%), [EO,MCT(1:1)] (20%) 
F11 1 1 1 

 
Emulsion 

    F12 1 1 1   Emulsion 
 

 

 

  G1 1 1 1 
 

Emulsion 
 

 

G2 1 1 1   Emulsion 
 G3 1 1 1 

 
Emulsion 

 G4 1 1 1   Emulsion 
 G5 1 1 1 

 
Emulsion 

 G6 1 1 1   Emulsion 
 G7 1 1 1 

 
Emulsion 

 
42 TW80(80%), [EO,MCT(1:1)] (20%) 

G8 1 1 1   Emulsion 
    G9 1 1 1 

 
Emulsion 

    G10 1 1 1   Emulsion 
 

Fig.18. Microwell plates 30, 32, 42, scans 
G11 1 1 1 

 
Emulsion 

    G12 1 1 1   Emulsion 
    H1 1 1 1 

 
Emulsion 

    H2 1 1 1   Emulsion 
    H3 1 1 1 

 
Emulsion 

    H4 1 1 1   Emulsion 
    H5 1 1 1 

 
Emulsion 
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Table 19. Microwell plates 30, 32, 42, 
determination of emulsifying capacity. 

 
    

Well / Plate 30 32 42   FINAL 

    
E1 1 1 1 

 
Emulsion 

    E2 1 1 1   Emulsion 
    E3 1 1 1 

 
Emulsion 

    E4 1 1 1   Emulsion 
    E5 1 1 1 

 
Emulsion 

    E6 1 0 1   Emulsion 
 

 

  E7 0 0 0 
 

NOT 
 

 

E8 0 0 1   NOT 
 E9 1 1 0 

 
Emulsion 

 E10 1 1 0   Emulsion 
 E11 0 1 0 

 
NOT 

 E12 0 0 0   NOT 
 F1 0 0 0 

 
NOT 

 
30 TW80(80%), [EO,MCT(1:1)] (20%) 

F2 0 0 0   NOT 
    F3 0 0 0 

 
NOT 

    F4 1 0 1   Emulsion 
 

 

 
 

F5 1 1 0 
 

Emulsion 
 F6 1 1 1   Emulsion 
 F7 1 1 1 

 
Emulsion 

 F8 1 1 1   Emulsion 
 F9 1 1 1 

 
Emulsion 

 F10 0 1 1   Emulsion 
 

32 TW80(80%), [EO,MCT(1:1)] (20%) 
F11 1 1 1 

 
Emulsion 

    F12 1 1 1   Emulsion 
 

 

  G1 1 1 1 
 

Emulsion 
 

 

G2 1 1 1   Emulsion 
 G3 1 1 1 

 
Emulsion 

 G4 1 1 1   Emulsion 
 G5 1 1 1 

 
Emulsion 

 G6 1 1 1   Emulsion 
 G7 1 1 1 

 
Emulsion 

 
42 TW80(80%), [EO,MCT(1:1)] (20%) 

G8 1 1 1   Emulsion 
    G9 1 1 1 

 
Emulsion 

    G10 1 1 1   Emulsion 
 

Fig.19. Microwell plates 30, 32, 42, scans 
G11 1 1 1 

 
Emulsion 

    G12 1 1 1   Emulsion 
    H1 1 1 1 

 
Emulsion 

    H2 1 1 1   Emulsion 
    H3 1 1 1 

 
Emulsion 

    H4 1 1 1   Emulsion 
    H5 1 1 1 

 
Emulsion 
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Calibration Lines 
 
concentrations: 2,3793E-08 1,84521E-06 4,30038E-06 4,27725E-06 5,9639E-06 

Final ABS: 0,025000001 0,276000055 0,674000132 0,669000151 0,940000224 

concentration (µg) 0,02379297 1,845209071 4,300378972 4,277249823 5,963897401 
 

 

EO,Tw80 (1:1) 

 

concentrations: 5,79312E-07 1,28712E-06 1,03942E-06 1,86028E-06 1,52977E-06 

Final ABS: 0,235000008 0,525000018 0,441000015 0,775000027 0,638000022 

concentration (µg) 0,579311983 1,287120561 1,03942113 1,860275661 1,52977 
 

MCT, SF (1:1) 

  

y	  =	  0.155015x	  +	  0.008023	  
R²	  =	  0.998931	  

0	  
0.1	  
0.2	  
0.3	  
0.4	  
0.5	  
0.6	  
0.7	  
0.8	  
0.9	  
1	  

0	   1	   2	   3	   4	   5	   6	   7	  

Calibration	  Line	  A	  

y	  =	  0.419179x	  -‐	  0.005022	  
R²	  =	  0.998750	  

0	  
0.1	  
0.2	  
0.3	  
0.4	  
0.5	  
0.6	  
0.7	  
0.8	  
0.9	  

0	   0.2	   0.4	   0.6	   0.8	   1	   1.2	   1.4	   1.6	   1.8	   2	  

Calibration	  Line	  B	  
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concentrations (g): 3,808E-06 1,5284E-06 1,78699E-06 3,33445E-06 4,23086E-06 

Final ABS: 0,394000028 0,131000011 0,163000014 0,340000024 0,446000031 

concentration (µg/mL) 3,808000252 1,528399946 1,78698645 3,334447527 4,230864495 
 

 

EO	  
 

 

 

concentrations: 1,97424E-06 1,282E-06 2,79527E-06 2,36473E-06 3,24785E-06 

Final ABS: 0,174000021 0,090000013 0,272000033 0,240000027 0,305000035 

concentration (µg) 1,974240015 1,281996008 2,795265351 2,364734967 3,247846361 
 

 

SF	  	  
	   	  

y	  =	  0.113703x	  -‐	  0.039661	  
R²	  =	  0.999908	  

0	  
0.1	  
0.2	  
0.3	  
0.4	  
0.5	  
0.6	  
0.7	  
0.8	  
0.9	  
1	  
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Calibration	  Line	  C	  

y	  =	  0.122371x	  -‐	  0.068055	  
R²	  =	  0.995728	  
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Calibration	  Line	  D	  
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concentrations: 1,83793E-06 5,46642E-06 2,86829E-06 3,55191E-06 4,53964E-06 

Final ABS: 0,259000009 1,059000029 0,539000014 0,670000018 0,892000023 

concentration (µg) 1,837926099 5,466424183 2,868293174 3,551914301 4,539641741 
 
 

 

Mg840	  
 

 

 

concentrations:	   6,76269E-‐07	   1,69852E-‐06	   3,96871E-‐06	   4,58894E-‐06	  

Final	  ABS:	   0,054000011	   0,201000033	   0,518000061	   0,566000075	  

concentration	  (μg)	   0,676268762	   1,698524155	   3,968712444	   4,588944945	  
 

 

SF,	  Mg840	  (1:1)	  
  

y	  =	  0.219016x	  -‐	  0.116231	  
R²	  =	  0.994233	  
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Calibration	  Line	  E	  

y	  =	  0.133513x	  -‐	  0.030156	  
R²	  =	  0.996386	  
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Calibration	  Line	  F	  
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concentrations: 2,94597E-06 4,30676E-06 1,63946E-06 2,53736E-06 1,32455E-06 

Final ABS: 0,605000012 0,87800002 0,337000007 0,53300001 0,273000006 

concentration (µg) 2,945971922 4,306755706 1,639456459 2,537362128 1,324549242 
 

 

LB	  20%	  
 

 

 

concentrations: 6,68875E-07 1,17043E-06 2,36623E-06 8,95317E-07 6,6391E-07 

Final ABS: 0,154000007 0,27200001 0,582000023 0,212000008 0,175000006 

concentration (µg) 0,668874534 1,170430442 2,366232381 0,895316852 0,663909799 
 

 

Tw80	  20%	  
  

y	  =	  0.203035x	  +	  0.007296	  
R²	  =	  0.999368	  
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Calibration	  Line	  G	  

y	  =	  0.246560x	  -‐	  0.005272	  
R²	  =	  0.996241	  
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concentrations: 5,99996E-07 2,3624E-06 1,28812E-06 2,71211E-06 1,92816E-06 

Final ABS: 0,063000005 0,364000022 0,181000011 0,420000024 0,308000016 

concentration (µg) 0,599995665 2,362397254 1,288117236 2,712109301 1,928155846 
 

 

MCT	  
 

 

 

concentrations:	   3,12442E-‐06	   5,75833E-‐06	   2,23293E-‐06	   3,25207E-‐06	  

Final	  ABS:	   0,491000012	   0,845000028	   0,375000008	   0,512000015	  

concentration	  (μg)	   3,124421769	   5,758334997	   2,232933435	   3,252067913	  
 

 

Tween+MCT	  (1:1)	  
  

y	  =	  0.167938x	  -‐	  0.032275	  
R²	  =	  0.997698	  
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y	  =	  0.133456x	  +	  0.076384	  
R²	  =	  0.999930	  
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concentrations: 2,12377E-06 3,86116E-06 3,94083E-06 4,86286E-06 

Final ABS: 0,296000006 0,464000013 0,453000011 0,561000019 

concentration (µg) 2,123765011 3,861164283 3,940827206 4,862861896 
 

 
Tween+(EO,MCT	  (1:1))	  (1:1)	  
 

 

 

 

concentrations: 1,29823E-06 3,54818E-06 1,98991E-06 2,32774E-06 

Final ABS: 0,275000004 0,584000012 0,383000006 0,429000007 

concentration (µg) 1,298231711 3,548184559 1,989914305 2,327735842 
 

 
Tween+Mig840(1:1)	  
  

y	  =	  0.095575x	  +	  0.090143	  
R²	  =	  0.992827	  
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Calibration	  Line	  K	  

y	  =	  0.136037x	  +	  0.106087	  
R²	  =	  0.996765	  
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Calibration	  Line	  L	  
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concentrations: 1,97504E-06 4,39417E-06 5,48021E-06 3,45089E-06 7,26029E-06 

Final ABS: 0,216000008 0,46100002 0,580000025 0,373000025 0,747000033 

concentration (µg) 1,975038644 4,394171654 5,480209488 3,450890467 7,260288762 
 

MCT,	  EO	  (1:1)	  
 

 

 

 

concentrations:	   1,88314E-‐06	   3,71093E-‐06	   4,78935E-‐06	   5,85161E-‐06	   3,52189E-‐06	  

Final	  ABS:	   0,295000018	   0,562000038	   0,702000049	   0,868000064	   0,549000039	  

concentration	  (μg)	   1,883143314	   3,710930063	   4,789354802	   5,85160852	   3,521893686	  
 

 

Mig840,	  EO	  (1:1)	  
 

y	  =	  0.100591x	  +	  0.021520	  
R²	  =	  0.999272	  
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Calibration	  Line	  M	  

y	  =	  0.142261x	  +	  0.033070	  
R²	  =	  0.997663	  
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