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Abstract 
Arterial Spin Labeling (ASL) is an MRI (Magnetic Resonance Imaging) technique that 

enables perfusion quantification in a non-invasive way, by using magnetically labeled arterial 

blood water as an endogenous tracer. Since it was first proposed in 1992 by Williams et al., it has 

seen great advancements, making it a very promising approach. However, one of its challenges 

when compared to other imaging modalities is the low signal-to-noise ratio when measuring in 

white matter (WM), mainly due to the intrinsic lower perfusion in this tissue and also its larger 

transit time, when compared to grey matter (GM). By combining pulsed ASL acquisition with 

single-voxel spectroscopic localization – a sequence termed FAIRPRESS – highly sensitive 

perfusion measurements in WM have been previously obtained. The first step of this project was 

further optimizing this sequence for quantification in healthy human subjects’ WM. 

Measuring activation in WM using BOLD (Blood Oxygen Level Dependent) fMRI 

(functional MRI), has proven to be very difficult and somewhat controversial, but even so the 

number of studies reporting activation in WM has seen a recent increase, mainly in the corpus 

callosum (CC) and by using interhemispheric tasks. The novel approach proposed in this project 

was to use perfusion fMRI, which has previously shown some advantages over BOLD in 

functional studies, but focusing on WM. The BOLD signal was simultaneously acquired during 

these experiments. The reconstruction routines and stimuli used were improved throughout the 

project, and field strength was also increased from the clinically used 3T to the ultra-high 

research field of 9.4T. 

The results displayed good quantitative perfusion values using the optimized sequence in 

the resting brain, in both WM and GM. The activation experiments showed great promise for 

measuring perfusion and BOLD changes related to activation in GM. However, no significant 

activation in WM could be observed, which might indicate that there are no differences between 

the resting and activated states in WM, and that brain activation is purely restricted to GM. On 

the other hand, some data showed a tendency to have higher perfusion values during activation, 

which might imply that improved voxel positioning in the activated region of the CC could lead 

to significant activation measurements. Future work will combine this technique with Diffusion 

Tensor Imaging (DTI) tractography, in order to help in finding the best voxel position in the 

activated areas of the CC, for more precise measurements of WM perfusion during activation. 
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Resumo 
Arterial Spin Labeling (ASL) é uma técnica de MRI (Magnetic Resonance Imaging) que 

permite a quantificação de perfusão de forma não-invasiva, usando a água do sangue arterial 

marcada magneticamente como um traçador endógeno. Desde o seu desenvolvimento em 1992 

por Williams et al. tem vindo a ser aperfeiçoada, sendo atualmente uma técnica muito 

promissora. No entanto, um dos seus problemas quando comparada com outras modalidades de 

imagem é o baixo rácio sinal-ruído aquando medições em matéria branca, maioritariamente 

devido à baixa perfusão intrínseca do tecido e também ao seu maior tempo de trânsito, quando 

comparado com a matéria cinzenta. 

Através da combinação de ASL pulsado com localização espectroscópica single-voxel – 

numa sequência denominada FAIRPRESS – já foram previamente obtidas medições de perfusão 

altamente sensíveis. O primeiro passo deste projeto foi otimizar esta sequência para 

quantificação de perfusão na matéria branca de voluntários saudáveis. 

A medição da ativação em matéria branca usando BOLD (Blood Oxygen Level 

Dependent) fMRI (MRI funcional) é bastante difícil e algo controversa, mas ainda assim o 

número de estudos que reportam ativação neste tecido aumentou recentemente, maioritariamente 

no corpo caloso e usando tarefas interhemisféricas. A nova abordagem proposta neste projeto foi 

utilizar fMRI de perfusão, que já demonstrou algumas vantagens relativamente a BOLD em 

estudos funcionais, mas focando-se na matéria branca. O sinal BOLD foi simultaneamente 

adquirido durante estas experiências. A reconstrução e os estímulos usados foram melhorados ao 

longo do projeto, e a força do campo magnético utilizado foi também aumentado dos 3T usados 

na prática clínica para o campo ultra-elevado de 9.4T, utilizado apenas em investigação. 

Os resultados demonstraram bons valores quantitativos de perfusão usando a sequência 

otimizada no cérebro em repouso, tanto na matéria branca como cinzenta. As experiências de 

ativação mostraram-se promissoras na medição de alterações na perfusão e em BOLD 

relacionadas com a ativação na matéria cinzenta. Contudo, não foi possível observar ativação 

significativa na matéria branca, o que poderá indicar que não existem diferenças entre os estados 

de repouso e ativação neste tecido, e que a ativação neuronal é puramente restrita à matéria 

cinzenta. Por outro lado, alguns dados mostraram uma tendência para terem maiores valores de 

perfusão aquando a ativação, o que poderá indicar que melhorando o posicionamento do voxel 
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na região ativa do corpo caloso, poderiam ser feitas medições de ativação significativas. No 

futuro, pretende-se combinar esta técnica com tractografia DTI (Diffusion Tensor Imaging), para 

auxiliar ao posicionamento do voxel nas áreas ativas do corpo caloso, para medições mais 

precisas de perfusão em matéria branca durante a ativação. 
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Chapter 1 
Introduction 

1.1 Motivation 

Arterial Spin Labeling (ASL) has become a valuable tool for measuring cerebral 

perfusion in grey matter (GM) over the last years. However, detecting focal changes in white 

matter (WM) perfusion is challenging and represents a great disadvantage of ASL over PET 

(Positron Emission Tomography). In WM, perfusion tends to be much lower than in GM, which 

limits the signal-to-noise ratio (SNR) of ASL measurements. The transit time of WM is also 

considerably larger than in GM, which means there is more longitudinal relaxation of the 

labeled spins of interest. Precise knowledge of the tissue transit time of blood is more important 

for accurate perfusion quantification in WM. SNR in deep WM perfusion has been previously 

measured to be less than 1 using the FAIR (Flow-sensitive Alternating Inversion Recovery) 

sequence [1]. 

However, recent developments in ASL sequences have improved the detection of WM 

perfusion. Some years ago, PCASL (Pseudo-Continuous ASL) was used to investigate the 

number of averages necessary to obtain accurate single post-label delay time images and their 

effect on WM contrast-to-noise ratio (CNR) [2], and multiple post-labeling delay PCASL 

acquisition was combined with fine detail ROI (Region of Interest) analysis [3], both yielding 

promising results for measuring WM perfusion. 

The technique used in this project, based on the combination of pulsed ASL FAIR 

acquisition with single-voxel spectroscopic localization (PRESS) – the FAIRPRESS sequence – 

has already been successful in measuring perfusion values both in WM and in rat skeletal 

muscle [4, 5]. [4] [5] 

Over the past 20 years a great number of BOLD (Blood-Oxygen-Level Dependent) fMRI 

(functional Magnetic Resonance Imaging) studies have been published, however, only a very 

small number of these studies report WM activation. Since WM corresponds to approximately 

half of the brain tissue, this discrepancy takes larger proportions. Low magnitude of the signal 

in WM, mainly due to its lower cerebral blood flow (CBF) and cerebral blood volume (CBV), a 

possibly different Hemodynamic Response Function (HRF) for WM activation, and artifacts 

caused by motion, partial voluming effects and physiological noise, might be some of the 
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reasons behind it [6]. The source of the BOLD fMRI signal has also been mainly associated 

with post-synaptic potentials, the majority of which occur in GM [7]. 

Even so, studies reporting WM activation have seen a recent increase. The majority of 

these studies has been performed on the corpus callosum (CC) and relied on interhemispheric 

tasks, which involve hemi-field presentation of visual stimuli and motor responses from either 

the hand on the same side of the presented stimulus, or in the opposite side, in order to activate 

the CC. Besides choosing the appropriate task, the signal acquired from WM can also be 

enhanced by applying higher magnetic field strengths and using MRI sequences that have this 

tissue’s particularities in mind [6]. 

Functional studies with ASL have shown better spatial localization than BOLD, also 

allowing for absolute quantification of perfusion changes with activation. The combination of 

BOLD with ASL can also be performed, to measure changes in oxygen related to activation and 

increase our knowledge about the formation of BOLD signal changes [8]. 

Thus, being able to reliably measure absolute quantitative perfusion values in WM 

during rest and to detect perfusion changes during activation would be of great interest for the 

identification of WM dysfunction and open new neuroscience research routes in the future, 

regarding brain mapping and brain connectivity. 

 

1.2 Objectives 

The main goals of this thesis were as follows: 

- Optimization of FAIRPRESS sequence parameters; 

- Evaluation of FAIRPRESS, PCASLPRESS and FAIRPRESS with background 

suppression; 

- Optimization of the reconstruction routines; 

- Stimulus improvement; 

- Simultaneous measurement of perfusion and BOLD during activation, in the corpus 

callosum and in both grey and white matter in the visual cortex, using a 3T magnetic 

field; 

- Simultaneous measurement of perfusion and BOLD during activation, in the corpus 

callosum and in grey matter in the visual cortex, using a 9.4T magnetic field. 

2   
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Chapter 2 
Fundamentals of Magnetic Resonance 

Magnetic Resonance Imaging (MRI) is an essential tool in modern medical imaging, 

combining strong magnetic fields and radio-frequency (RF) signals to create pictures of tissues, 

organs and structures inside the body. The present chapter introduces some of the concepts 

associated with this technique. 

 

2.1 Spins 

The human body contains a large number of atoms. Atomic nuclei with an odd-number 

of protons and neutrons have an associated spin, their intrinsic angular momentum. Hydrogen 

nuclei are the most commonly used in Magnetic Resonance (MR) studies because 
1
H is the 

most abundant atom in the human body, being present in every water molecule, and also 

because it contains a single proton, making it easy to model. 

Each hydrogen proton behaves like a small magnet. While in a field-free space, the local 

magnetic fields of these protons are randomly oriented and cancel each other out. Therefore, the 

bulk magnetization (M), the vector sum of all spin magnetic moments, will typically be zero. 

However, when subjected to a magnetic field like B0 inside the MRI system, the spins 

tend to align parallel or anti-parallel to the applied field. The parallel orientation corresponds to 

a lower energy state, making it slightly more prevalent than the anti-parallel state [9]. This 

energy splitting into multiple discrete energy states in the presence of a static magnetic field is 

called the Zeeman Effect [10]. Spatial addition of the non-canceled spins is what generates the 

macroscopic magnetization effect that is measured in MRI acquisitions. 
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Figure 1 – Left: In the absence of a magnetic field, the spins show a random orientation and the same energy level, 

cancelling each other, resulting in null magnetization. Right: In the presence of the magnetic field B0, there is an 

energy gap and population difference between the parallel and anti-parallel states, generating macroscopic 

magnetization, parallel to B0 [10]. 

 

2.2 Larmor Precession 

In the same manner as a spinning top precesses around the axis defined by gravity, a spin 

subjected to a magnetic field rotates in the shape of a cone, around the direction of the applied 

field – the spin precession (Fig. 2). 

 

 

Figure 2 – In the presence of B0, nuclei with non-zero spins precess around the direction of the field, just like the 

spinning top precesses around gravity (but with opposite directions of precession, since the external fields are 

opposite) [11]. 

The frequency of this movement is constant and depends only on the type of the nucleus 

and the strength of the applied magnetic field, as described in Equations 1 and 2. 

       

or 

   
 

  
  . 

In these equations,     is the strength of the external magnetic field,   is the 

gyromagnetic ratio of the nuclei (depends solely on the type of nucleus),    is the angular 

velocity of this movement and    is the Larmor frequency – the precession frequency [10]. 

 

  

Equation 1 

Equation 2 
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2.3 Excitation 

The bulk magnetization is very small when compared to the external magnetic field 

(Fig.1). Its magnitude is less than the Earth’s magnetic field, making it nearly impossible to 

measure when aligned with B0 in the z-axis. However, by tilting M from the z-axis, it will 

precess and originate a component in the xy-plane that can then be measured. 

This is done by applying an additional rotating magnetic field with lower amplitude than 

B0, designated B1, which is turned on for a short period of time perpendicularly to B0, in effect 

generating a RF pulse, so called due to the usual frequencies involved (several MHz). If this 

field oscillates at the same frequency as the Larmor frequency of the spins, it will interfere with 

the spins’ equilibrium by a process of resonant excitation. The excess spins that were aligned 

with B0 will then precess in synchrony, tipping the magnetization M from the longitudinal 

direction and producing a component in the transverse plane [11]. 

We can then differentiate between longitudinal magnetization (Mz) – the portion of the 

bulk magnetization vector M in the z-direction, along B0 and transverse magnetization (Mxy) – 

the component of the M vector that rotates in the x-y plane. 

When the B1 field is turned off, the transverse magnetization continues to precess at the 

Larmor frequency. According to Maxwell-Faraday’s equation, this time-varying magnetic field 

will induce a small electric voltage in the receiver RF-coil. This current over time is the MR 

signal, called the Free Induction Decay (FID), which also oscillates with    and falls off 

exponentially as described by Eq. 3 and represented in Fig. 3 [12]. 

                   
 

 

  
 
 

    is the initial signal amplitude and   
  is the apparent transverse relaxation time, which 

will be explained in more detail in another section of this thesis [10]. 

  

Equation 3 
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Figure 3 – The primary signal measured in MR, the FID. The signal decays approximately with a time constant T2* 

due to both intrinsic T2 decay and also dephasing due to magnetic field inhomogeneities [13]. 

The stronger the energy of the excitation pulse and the longer its duration, the farther the 

M vector will tilt. The final tilt angle is called the flip angle (α). An RF pulse with α=90º will 

flip the magnetization into the xy-plane, while a pulse of α=180º will flip the magnetization into 

the opposite direction of the z-axis (this is also called an inversion pulse, since it inverts the 

direction of the magnetization) [14]. 

 

2.4 Relaxation 

 After an RF pulse disturbance, the spins return to their equilibrium state by a process of 

relaxation. This has to be described by two independent processes, separating both the 

transverse and longitudinal magnetizations; while Mz is recovering, Mxy is decaying, this decay 

being faster than the Mz recovery. 

 

2.4.1 Longitudinal Relaxation 

 T1 indicates how quickly a spin ensemble is able to transmit its excess energy to the 

lattice (the surroundings of the proton). It is the time needed for the longitudinal magnetization to 

return from zero to about 63% of its original magnitude, after the RF pulse is turned off. After 

~5T1, Mz is almost fully recovered. 

In in vivo experiments, its value is in the order of seconds [10]. The T1 tends to be longer 

in body fluids, like blood or cerebrospinal fluid (CSF), than in more solid tissues, like WM in the 

brain. Since this relaxation is caused by interactions with the surroundings of the nuclei, the T1 

value depends on both the type of tissue and also on which molecule the nucleus is bound to. 

This T1 tissue specificity is fundamental in obtaining sharp image contrast in MRI. 
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Assuming the initial value of Mz is null (after a 90º RF pulse, for simplicity), its recovery 

is given by Eq. 4, and is described in Fig. 4. 

             
  

    

 

 

Figure 4 – Graphical representation of the longitudinal magnetization recovery and its T1-dependent growth rate 

(adapted from [15]). 

 

2.4.2 Transverse Relaxation 

T2 is the time constant in transverse relaxation. The T2 decay is about 5 to 10 times 

shorter than the T1 relaxation. Immediately after the RF pulse the spins are phase-coherent, but 

eventually they begin to lose coherence due to interactions with magnetic fields from the 

individual nuclei, dephasing amongst themselves and causing the decay of the transverse 

magnetization due to loss of coherence. After a time T2, Mxy has lost 63% of its value before 

relaxation. In vivo, this time constant is measured in milliseconds [10]. This magnetization decay 

is described by Eq. 5 and is represented in Fig. 5. 

           
  

   

 

Equation 4 

Equation 5 
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Figure 5 – Graphical representation of the transverse magnetization decay and its T2-dependent decay rate (adapted 

from [15]). 

In practical terms, however, this decay is much faster. Due to additional dephasing 

caused by field inhomogeneities (small differences in the local field at different locations, either 

because of technical inhomogeneities of the magnet or even inhomogeneities in the subject’s 

body), that cause destructive interference and shortening of the FID. This effective decay of the 

FID also has an associated time constant, called T2*, previously presented in Fig. 3, which is 

always shorter than T2 [9]. 

Even though typical values for the time constants were previously mentioned, they vary 

widely between different tissues (and also for different B0s), as depicted in Table 1. 

Table 1 – Measured T1 and T2 values for white matter and grey matter, when subjected to a 3T B0 [16]. 

Tissue T1 (ms) T2 (ms) 

WM 832 110 

GM 1331 80 

 

2.5 Gradients 

To be able to differentiate between locations and form images from these signals, the 

precession frequency must change with position so that a receiver can “tune” to a location. Since 

the precession frequency is proportional to field strength (Eq. 1), this is achieved by applying 

field gradients, using three pairs of gradient coils along the x, y and z axis that produce linear 

spatial variations along the magnetic field [14]. 

For slice-selection, a gradient pulse is turned on in the z-direction simultaneously to the 

RF pulse, called the slice-selection gradient (Gs). Due to the spatial variation in the magnetic 

field, only spins in a region perpendicular to the gradient – the slice – will be excited, as the 

resonant frequencies will be impacted by the presence of Gs. Its thickness can be altered by 
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either modifying the bandwidth of the RF pulse or by changing the gradient strength. The spins 

outside the slice are not affected by the RF pulse, so the MR signal is only generated within the 

selected region. 

Along the x-direction, the signals from different locations can be differentiated by 

switching a gradient in the x-axis. The spins will then precess along the axis with increasing 

frequency. This is called frequency-encoding, and the gradient used is the frequency-encoding 

gradient (Gf). 

Between the RF pulse and the echo acquisition window, the gradient in the y-axis is 

switched on briefly, causing the spins to precess at different speeds for a short time. When the 

gradient is turned off, they will have different phases, related to their locations. This is phase-

encoding, and the gradient used is the phase-encoding gradient (Gp). Since one Gp can only 

phase-modulate one line of k-space (see below, section 2.6), phase-encoding requires several 

scans. Each scan line will have a different Gp strength, imposing spatially dependent phase-shifts 

between the signals. More phase-encoding steps improve resolution and image quality, but also 

prolong the scan time [9, 12]. [9] [12] 

 

2.6 K-Space 

The data from the previously mentioned encoding steps is collected in a spatial-frequency 

space, called k-space. Its horizontal axis (kx) represents the frequency information and the 

vertical axis (ky) the phase information. A single slice corresponds to a plane in the k-space. A 

dot in the k-space raw data does not correspond directly to a pixel of the image, but each dot has 

information about frequency, phase and signal intensity. 

The raw data in the center determines the image contrast and rough structures, while the 

raw data in the periphery contains information about margins, contours and finer structures, and 

is responsible for defining resolution [17]. 
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Figure 6 – Association between the raw data (left) and its corresponding image data (right) [9]. 

By applying the Inverse Fourier Transform, the raw data values in k-space are used to 

calculate the grey value distribution in the image, associating it to each pixel and reconstructing 

the raw data. Each pixel in the resulting image is the weighted sum of all the individual points in 

k-space, meaning that any disturbance in k-space data translates into a distortion in the image, 

determined by the phase and frequency data stored in that point (Fig. 6) [17]. 

 

2.7 Pulse Sequences 

A basic pulse sequence includes RF pulses, slice-selection, frequency-encoding and 

phase-encoding gradients, and also the read-out of the FID signal. 

The pulse sequence is repeated with TR (repetition time), the time between two 

consecutive excitation pulses. The number of phase-encoding steps (Np), which corresponds to 

raw data lines in k-space, is the number of repetitions of the sequence. The TA (acquisition time) 

is then given by Eq. 6. 

          

The echo time (TE) is the time between the excitation pulse and the peak of the generated 

echo, when the MR signal is sampled. This concept of “echo” is described in detail in section 

2.7.1, below. 

MR techniques strongly depend on choosing the adequate pulse sequence and 

acquisition parameters [9]. 

  

Equation 6 
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2.7.1 Spin-Echo 

Spin-echo (SE) sequences use a slice-selective 90° RF pulse for excitation, after which 

the transverse magnetization decays with T2*. After half of the TE has passed, a 180° RF pulse is 

applied to refocus the spins: the rotation direction is the same, but the magnetization is flipped 

around the transverse plane. The spins that were ahead before are now behind and vice-versa. 

However, the spins that are now behind will draw near since they are still exposed to the same 

field inhomogeneities, which caused the phase differences in the first place. After the second half 

of the TE, all the spins meet once again in phase, generating the SE. 

The 180º refocusing pulse consequently eliminates the effects of static magnetic field 

inhomogeneities, but it cannot compensate for spin-spin interactions. Therefore, the 

magnetization decay that occurs after excitation depends only on the spin-spin interactions, 

decaying with T2 rather than T2*, making it insensitive to static field inhomogeneities, which is 

one of the great advantages of this technique [9, 12]. [9] [12] 

 

 

Figure 7 – SE sequence. Gs is turned on at the same time as the excitation pulse. It dephases the spins along the 

slice, which needs to be balanced with a gradient of opposite polarity and half the duration (the rephasing gradient). 

During the refocusing pulse, the gradient is switched on again so that only the spins of the previously stimulated 

slice are affected. Gp is then switched on briefly, so it imposes a different phase on the spins. The phase encoding 

steps on the diagram are represented by the multiple horizontal lines in the bar. During the SE, Gf is turned on. 

Since at the same time the echo is read out, this gradient is also called readout gradient [9]. 
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2.7.2 Inversion Recovery 

The inversion recovery (IR) sequence adds a preparation pulse of 180º before the spin-

echo, inverting Mz. Mxy remains zero, so there is no signal after the inversion pulse. The time 

interval between the inversion pulse and the excitation pulse is called the inversion time (TI). 

During TI, Mz recovers. A 90º excitation pulse then converts the current Mz into Mxy.  

After the inversion, Mz relaxes its negative value, so that the M of different tissues 

reaches zero at different times. By changing the TI, the image contrast can be manipulated. With 

a short TI, all negative Mz is flipped into the xy-plane. With a longer TI, less longitudinal 

magnetization flips to the transverse plane, generating a weaker signal. However, if TI is long 

enough to allow full relaxation, the signal becomes stronger again [9, 12]. [9] [12] 

When only the signal magnitude is used for image contrast, and there are tissues with 

different relaxation speeds, there may be no differentiation made between positive and negative 

Mz. Therefore, tissues with very different T1s may be represented with the same grey value. 

Signals from white or grey matter may even disappear, depending on the TI used. 

 

 

Figure 8 – The a) faster relaxing tissue and b) slower relaxing tissue will display the same grey value, due to the TI 

selected in this case (adapted from [9]). 

This problem can be solved by considering Mz’s orientation. By taking into account not 

only the magnitude but also the phase of the signals, it is possible to differentiate the signals with 

originally positive or negative Mz, ensuring maximum T1 contrast. This phase-sensitive 

reconstruction technique is called True Inversion Recovery (TIR) [9, 10, 12]. [9] [12] [10] 
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2.7.3 Gradient-Echo 

As the name suggests, gradient-echo (GE) sequences use the gradient coils to generate an 

echo, instead of pairs of RF pulses. By first applying a frequency-encoding gradient with 

negative polarity to destroy the phase coherence of the precessing spins (dephasing), the gradient 

is then reversed and the spins rephase to generate a GE. 

The applied excitation pulse has a flip angle lower than 90º. This means the effect of the 

whole available magnetization in the transverse plane will not be present, rather only a part of it 

is converted to Mxy. Nonetheless, Mz still has a small magnitude, meaning that for the following 

pulse there is still Mz “available”, allowing for very short TRs. As TR is a major determinant of 

the overall TA, much faster imaging is possible when compared with SE and IR sequences, 

which is the most important advantage of this sequence [9, 10, 12]. [9] [12] [10] 

 

2.8 T1 and T2 contrast 

TE and TR are very important parameters when controlling contrast. By choosing a 

sufficiently long TR, the difference in signal after a repetition of the RF pulse will depend 

mainly on the proton density (PD) of the tissue, due to the almost complete longitudinal 

relaxation. By also generating echoes shortly after the RF pulses, with short TEs, we obtain a 

PD-weighted image. 

If besides selecting a long TR, a long TE is also selected, we can see that at longer echo 

times the Mxy curves begin to diverge (Fig. 9), so the contrast will be controlled by T2 relaxation 

– the resulting image will be T2-weighted. 

The T2 contrast depends strongly on the selected TE. Its optimal value is the mean value 

of the T2 constants of the tissue of interest. However, if the TE is too long, Mxy decays to such a 

level that the signal of some types of tissue disappears in the signal noise. 
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Figure 9 – TE and T2 contrast: for a short TE (A), there is almost no difference between the long and short T2 

tissues, but for larger TEs (B), the short T2 tissue loses signal and becomes darker, while the long T2 tissue remains 

brighter for a longer period [12]. 

By selecting a short TR, T1 relaxation is not complete, and the signals will be much 

weaker, so the smallest possible TEs must also be chosen. The short TR cancels the effect of PD, 

and the short TE cancels the effect of T2 relaxation, so the image obtained depends mainly on the 

T1 relaxation of the tissue – a T1 weighted image is acquired. 

 

 

Figure 10 – TR and T1 contrast: for a short TR (A), a tissue with a short T1 regains most of its Mz, producing a large 

signal, while a tissue with long T1 yields a small signal. For a long TR (B), this difference disappears due to the 

recovery of Mz in both tissues [12]. 

Soft tissues have only small differences in PD, but have different T1 relaxations, which 

makes T1-weighted imaging ideal for anatomical displays. 

In MR scans, tissues with longer T1 appear darker in a T1-weighted image, while tissues 

with larger T2 appear brighter [9, 12]. [9] [12] 
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2.9 MR Spectroscopy 

By using a single Fourier Transform (FT), the FID can be converted from the time to the 

frequency domain, in order to analyze its spectrum. 

If the signal has only one frequency (sine oscillation) the associated spectrum will have a 

single resonance line for the associated frequency. Since the signal decreases and has a 

bandwidth, the resonance line changes into a peak of limited width. This peak represents the 

resonance frequency in the measured voxel, and the area under the peak is proportional to the 

signal emitting nuclei. 

Hydrogen atoms are bound to different molecules and to different positions. This leads to 

variations in the local magnetic field, and also in the resonance frequencies of the bound protons 

when compared to Larmor frequencies. This change in resonance frequencies is called the 

chemical shift. This is the reason why the nuclei of a molecule can have multiple resonance lines. 

In the spectrum, the chemical shift can be visualized as a shift of the associated resonance lines 

or peaks, which allows us to differentiate between substances, molecules and molecular 

components [9]. 

 This technique can be performed by two different methods: Single Voxel Spectroscopy 

(SVS), or Multi Voxel Spectroscopy (MVS): 

 In MVS, spectra are obtained from multiple voxels of interest, in a single slab of 

tissue. When compared to SVS, a much larger area can be covered, almost 

eliminating the sampling error, but it presents the disadvantage of lower SNR and 

longer TA; 

 In SVS a single volume of interest is selected, by using the intersection of three 

mutually orthogonal slabs, where each slab is excited by a spatially selective 

pulse in the presence of a gradient. A single spectrum is then obtained from the 

voxel of interest [18]. 

 

SVS provides better SNR and is more robust than MVS, but only one spectrum is 

obtained. The choice of voxel positioning is then of critical importance and it may lead to 

interpretation errors if not done properly. An example of good voxel placement in GM and WM 

is depicted on Fig. 11. Suitable contrast images are also needed for good positioning [19, 20]. 

[19] [20] 
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Figure 11 – Axial brain image, showing suggested localization for a GM voxel (in the occipital midline) and for a 

WM voxel (in the parietal region) [19]. 

 

Two sequences are mainly used for single voxel MRS: 

 Stimulated Echo Acquisition Mode (STEAM) uses a stimulated echo generated 

by three 90° pulses, each with a gradient on one of the three axes. There may be 

signal loss due to motion sensitivity at long TEs. This method is then more 

suitable for short TE acquisitions; 

 Point Resolved Spectroscopy (PRESS) uses a double spin echo scheme, with a 

90º pulse followed by two 180º pulses, where each pulse has a slice-selective 

gradient on one of the three main axes so that only the protons within the voxel 

experience the three RF pulses. This sequence gives better SNR than STEAM, so 

spectra can be acquired in a shorter period of time. It is more fitting when there is 

interest in small volumes [21]. 
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2.10 Functional MRI 

Functional magnetic resonance allows for in vivo measurements of brain activity. Even 

though magnetic susceptibility effects can cause artifacts when imaging the brain, they are the 

basis for the most popular technique for functional MR – BOLD fMRI. 

The basis of this method is that the magnetic state of hemoglobin depends on its 

oxygenation. Deoxygenated hemoglobin is paramagnetic, while oxygenated hemoglobin is 

diamagnetic, relatively to brain tissue [22]. 

Deoxyhemoglobin tends to reduce the local MR signal by slightly dephasing the spins of 

the hydrogen nuclei in proximal water molecules of blood vessels and the adjacent tissue, 

creating small field gradients that lead to destructive interference and shortening of the T2* 

relaxation time. Therefore, a drop in deoxyhemoglobin will originate a longer T2* and a slight 

increase in the MR signal. 

 

Figure 12 – BOLD fMRI overview of the changes between basal and activated states [23]. 

BOLD does not reflect a single physiological process, but rather the combined effects of 

CBF, cerebral metabolic rate of oxygen (CMRO2) and CBV [22]. An increase in neuronal 

activation in the brain leads to an increase in CBF (Fig. 12). This increase is approximately twice 

as large as the CMRO2’s [24]. This imbalance translates into a decrease of the local oxygenation 

extraction fraction (OE) with activation. Since the local blood is more oxygenated, there is less 

deoxyhemoglobin present, slightly increasing the MR signal. The observed signal is then a 

composition of different signals related to different neural events. 

This signal, also called the HRF, is complex, and is typically delayed by 1 to 2s in the 

GM, due to the vascular system’s delayed response to the brain’s need for glucose. It reaches its 

maximum between 5 and 10s. An initial dip of the signal can sometimes be seen. After the 
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stimulus ends, a post-stimulus overshoot is often present, lasting typically 20s or more, after 

which the signal returns to the baseline (Fig. 13) [24]. 

 

 

Figure 13 – Typical HRFs, for a short stimulus of approximately 1s (blue) and for a long stimulus of approximately 

20s (red), measured with BOLD fMRI [24]. 

The characteristics of the HRF vary between different brain regions and depend on the 

stimulus and its duration [25]. 

Brain activation studies usually use an experimental paradigm in which a subject 

alternates between periods of stimulation and rest, while a rapid series of MR images are 

acquired: this is called a block design. The time series of each image voxel is then analyzed, to 

determine if the signal shows correlation with the stimulus (i.e. if it increases in the presence of 

the stimulus and decreases with rest). The pixels that show correlation are then displayed in color 

on a regular anatomical MR image, as the areas activated by the stimulus (Fig. 14) [24]. 

Since the T2* decay is very fast, there are only 100ms to generate the echoes. EPI (Echo-

Planar Imaging) is currently the fastest MR imaging technique, being the preferred method for 

these measurements. It is a single shot method, meaning that it requires a single excitation pulse 

in order to acquire an entire image. The readout gradient is switched bipolarly, by generating a 

series of ascending and descending gradient echoes with alternate polarity, within the course of 

one FID. Due to its very fast acquisition, EPI is very robust to motion artifacts, therefore being 

the preferred method for diffusion, cranial perfusion and functional neuroimaging. However, 

since it has a long acquisition per excitation, it is also very susceptible to B0 inhomogeneities. 

Since EPI is only a readout module, it can be combined with other preparation pulses (IR, 

SE or others), allowing us to obtain different kinds of contrasts with this technique [9]. 
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Figure 14 – Motor activation measured by BOLD fMRI, fused with an anatomical image – 3D MPRAGE 

(Magnetization Prepared Rapid Acquisition with Gradient Echo) [26]. 

 

2.11 Ultra-high magnetic field 

At higher magnetic field strengths, a higher proportion of the spins align parallel to the 

field, resulting in higher SNR. The higher magnetic field strength also influences the way the 

spins interact with each other and with the lattice, resulting in longer T1 relaxation times and 

shorter T2 decay times. The CNR of T2-weighted images can thus be increased. Therefore, ultra-

high magnetic fields can have increased sensitivity, contrast and resolution, improving the study 

of the function and structure of the brain [27]. 

However, as the magnetic field strength increases, higher frequency RF pulses are 

required to excite the bulk magnetization into the transverse plane, resulting in tissue heating due 

to RF power deposition. Another physiological issue that limits using ultra-high field strengths 

for human MRI is subject movement inside the B0 field, which may cause stimulation of sensory 

afferents of the central nervous system. This might result in temporary metallic taste or vertigo 

and nausea, which is more common with increasing field strengths [27]. While high fields offer 

the possibility of improved image quality, the safety and comfort of human subjects must be 

ensured. 

In addition, it is more difficult to create and maintain a homogeneous static field when 

the field strength is higher and more susceptible to inhomogeneities produced by introducing a 

subject in the field. Perturbations in the magnetic field are linearly dependent on B0, making the 

shimming of the magnet for each scan at higher field strengths extremely important [27]. 
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Chapter 3 
Arterial Spin Labeling: An Overview 

Arterial Spin Labeling is an MRI technique that allows for noninvasive perfusion 

quantification, by magnetically labeling water in arterial blood and using it as a tracer. It has 

been greatly improved over the last years, making it a very promising method. The main ideas 

behind it are presented in this chapter. 

 

3.1 Perfusion 

Perfusion is the delivery of oxygen and nutrients to the tissue by means of blood flow. It 

is classically measured using a diffusible tracer that can exchange between the vascular 

compartment and tissue [28]. 

The brain is highly perfused, receiving approximately 20% of the cardiac output, which 

reflects its high metabolic rate even at rest. It also has a well defined arterial supply, making it a 

good organ for perfusion measurements. The amount of blood that is supplied to the brain is 

expressed as CBF [18]. Perfusion is measured in milliliters of blood flow, per gram of tissue, per 

unit of time [ml/g/min]. 

The most commonly used techniques in current clinical practice use contrast agents as 

tracers to image CBF, like gadolinium-based contrast agents in Dynamic Susceptibility Contrast 

MRI (DSC-MRI), or iodine based contrast agents in Computerized Tomography (CT) perfusion 

imaging. However, there are concerns regarding the negative effects of ionizing radiation in 

general, and also regarding the use of contrast agents in patients with bad renal function: the 

latter is further limited by the need for intravenous access in infants and children [29]. 

 

3.2 ASL – General Principles 

 Arterial Spin Labeling uses magnetically labeled endogenous blood water as a tracer for 

perfusion MRI. It was first introduced in 1992 by Williams and Detre for visualizing brain 

perfusion and quantifying CBF [30]. By applying RF pulses, the Mz of arterial blood water is 

manipulated in a way that it differs from the magnetization of the tissue. 

The general procedure of this technique is as follows: after an initial RF labeling phase, 

during which the flowing magnetization is tagged by saturation or inversion, there is a delay to 
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allow the labeled protons to flow through the vascular tree and reach the tissue of interest. Then, 

an imaging pulse sequence is applied, and the tagged image is acquired. This procedure is then 

repeated, this time without labeling, to acquire a control image. The perfusion contrast is then 

given by the small difference between the tagged and the control images, caused by the exchange 

of labeled blood water molecules from blood to the surrounding tissue. The subtraction between 

the two images removes the static tissue signal. The magnetization difference is about 1% of M0, 

the reference magnetization acquired before applying any pulses. A model can then be applied in 

order to obtain a calculated CBF image, showing a quantitative perfusion value for each voxel 

[28]. 

This technique has been shown to have many advantages: 

- Gives absolute perfusion values, by using an endogenous tracer; 

- Can be repeated almost unlimitedly, since it is non-invasive (does not require the 

injection of a contrast medium) and non-radioactive (it decays with T1 relaxation); 

- Makes it possible to measure normal physiology and its variations with time; 

- Has a greater spatial resolution than PET/SPECT (radiation based imaging methods). 

 

However, it also presents some issues: 

- The duration of each measurement is relatively long; 

- Has low SNR, and the fast decay time of the tracer may result in having little 

remaining signal when the blood reaches the tissue; 

- Cannot be used in low blood flow situations or pathologies. 

 

The future development of higher magnetic fields for MRI will benefit this technique, 

increasing its SNR. Quantitative functional perfusion MRI will eventually replace some BOLD 

fMRI studies (as per its dependency on CBF, as seen above in section 2.10) [18]. 

 

3.3 Labeling strategies 

ASL has two main labeling strategies: Continuous Arterial Spin Labeling (CASL) and 

Pulsed Arterial Spin Labeling (PASL). Recently, an intermediate labeling technique has been 

introduced called Pseudo-Continuous Spin Labeling (PCASL) [31]. 
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3.3.1 CASL – Continuous Arterial Spin Labeling 

CASL was the first implementation of ASL. Low-power pulses with duration of 1 to 2s 

are continuously applied in presence of a gradient, on a plane inferior to the brain, inverting the 

blood magnetization (Fig. 15). This blood then flows into the brain, creating a steady-state where 

the regional brain magnetization reaches a new equilibrium governed by CBF. In humans, the 

labeling plane needs to be inferior to the Circle of Willis, where the major feeding arteries of the 

brain are perpendicular to the tagging plane. For slice selection, the long RF pulses are applied 

off-resonance and in the presence of a slice-selective gradient, along the flow direction in the 

arteries [31]. 

 

Figure 15 – Diagram depicting CASL: pulse sequence (left) and relative positioning of the imaging and labeling 

regions (imaging region in red and labeling region in blue, on the right) (adapted from [18]). 

The most efficient way to achieve continuous inversion is by using a technique called 

flow-driven adiabatic fast passage (AFP), which inverts the magnetization vector by shifting the 

resonance frequency of the flowing blood spins through resonance. 

The  spins  that  are  moving  through  the labeling plane suffer a gradual change in 

resonant frequency due to the additional field of the gradient (since it  is  directly  proportional  

to  the magnetic  field strength, as previously seen in Eq. 1). 

The difference between the resonance frequency of the protons and the transmission 

frequency changes from positive through negative as the spins move through the inversion plane, 

and it is zero at its center – there is a “frequency sweep”, making the resonant frequency of the 

blood water spatially dependent. 

Because of this, the effective magnetic field (a combination of B0, B1 and the magnetic 

field resulting from the spin’s precession itself) will rotate from pointing along the direction of 

B0 to pointing against it. If this rotation is slow when compared to the precession frequency, the 

flowing protons will enter a “spin-locked” state, so that their associated magnetization will 
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precess around the effective magnetic field, following it through its rotation and resulting in an 

inversion of the spins’ magnetization as they cross the labeling plane (Fig. 16) [32]. 

 

 

Figure 16 – Spins magnetization variation (red) while flowing through the labeling plane (blue) (adapted from [33]). 

Even though CASL yields high SNR, the continuous RF labeling may cause significant 

power deposition in the subject, which means that Specific Absorption Rate (SAR) maximum 

guidelines may be a limiting issue, particularly when working at high magnetic field strengths. 

Also, the application of this long inversion pulse in CASL is limited in many commercial 

scanners. 

In addition, this long pulse also induces magnetization transfer (MT) effects, since the 

application of long off-resonance RF pulses for labeling may cause direct macromolecular 

saturation in the brain tissue. When saturated, macromolecules exchange their magnetization 

with the “free” water in the tissue, changing both the apparent T1 and the M0 of the blood. The 

tagged-control subtraction would then indicate not only the perfusion effects, but also the degree 

of MT, reducing the observed signal and interfering with the CBF quantification. 

To overcome this problem, a distal labeling pulse can be applied before acquiring the 

control image, in order to produce identical MT effects (but symmetrical in frequency), so that 

the MT effects cancel upon subtraction. However, this only works for single slice acquisitions. 

To circumvent this, a hardware-based approach can also be used, by placing a small labeling coil 

on the neck, immediately adjacent to the artery supplying blood to the brain. Since the field of 

view (FOV) of the labeling coil does not reach the brain, there are no off-resonance effects, also 
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reducing the power deposition in the subject. Multi-slice acquisition with higher SNR is then 

possible, without subtraction artifacts. 

Even though this approach might seem simple to implement, the additional hardware 

needs to be synchronized with the main MRI scanner’s pulse sequence, and it also has the 

disadvantage of being more uncomfortable for the subject due to the additional neck coil [34, 

35]. [34] [35] 

 

3.3.2 PASL – Pulsed Arterial Spin Labeling 

In PASL, the spins’ inversion is achieved by applying a short RF inversion pulse, which 

will invert the spins in a specific region that contains the arterial supply – the inversion slab 

(Fig.17). 

 

Figure 17 – Diagram depicting PASL: pulse sequence (left) and relative positioning of the imaging and labeling 

regions (imaging region in red and labeling region in blue, on the right) (adapted from [18]). 

After the inversion, the inverted blood water in this slab flows into the region of interest, 

mixing with the non-inverted brain tissue water, after which the image is acquired. The control 

image is acquired without the slice-selective inversion. The signal intensity difference of the 

tagged and control images can then be quantified and translated into perfusion images. This 

process mimics the injection of a tracer bolus, rather than a constant infusion, like previously 

seen with CASL. 

One of the advantages of PASL over CASL is the closer proximity between the inversion 

labeling slab and the region of interest, minimizing transit time effects (Figs. 15 and 17). Even 

so, since the imaging and inversion slabs profiles are not perfectly rectangular, a gap between 

their edges is needed to avoid incomplete subtraction, which would introduce a systematic error 

in CBF quantification. MT effects are smaller with this technique due to the use of shorter RF 

pulses, and the SAR is lower as well, but PASL has a reduced sensitivity to flow since the 

inverted blood water relaxes during the inflow time. 
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In order to further improve the inversion efficiency in PASL sequences, adiabatic 

hyperbolic secant (AHS) pulses are usually preferred. These are relatively short adiabatic pulses, 

insensitive to B1 field inhomogeneity, which possess a sharp inversion profile [36]. 

 

3.3.2.1 PASL sequences 

PASL methods like FAIR, PICORE (Proximal Inversion with Control for Off-Resonance 

Effects) and EPISTAR (Echo Planar Imaging and Signal Targeting with Alternating 

Radiofrequency) use a single inversion pulse to magnetically label the spins. The difference 

between them is the location of the labeling plane (Fig. 18) and the choice of the magnetically 

labeled state of the blood for the control and label images. 

 

 

Figure 18 – Pulsed ASL labeling schemes, depicting the labeling planes for EPISTAR (orange line) and FAIR 

(white line) [37]. 

EPISTAR is theoretically similar to CASL. After saturation of the imaging slice, a short 

inversion pulse is applied proximal to the region of interest, followed by a delay (TI) to allow the 

inverted blood to flow into the tissue of interest, in the imaging slice, before acquiring the tagged 

image using EPI.  A control image is also acquired, in which the label is applied symmetrically 

distal to the imaging slab, thus having the same MT effects. 

An EPISTAR variant called PICORE, acquires the control image without a slice-

selection gradient. 

In FAIR, two IR images are acquired. An inversion pulse is applied over the whole brain 

(non-selective inversion), labeling all protons, followed by TI before acquiring the control image. 

For the tagged condition, an inversion pulse is applied only to the imaging slices (slice-selective 

inversion), followed by the same TI in order to allow for the blood to flow into the imaging 

region before acquisition [38]. 
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3.3.3 PCASL – Pseudo-Continuous Arterial Spin Labeling 

As previously discussed, PASL has a straightforward implementation and a high and 

stable tagging efficiency, while CASL has a longer and better defined tagging bolus, and 

consequently higher SNR. PCASL was developed to take advantage of both PASL and CASL’s 

benefits [39]. 

The continuous labeling pulse is divided into a rapidly applied train of pulses to achieve 

the same AFP (as previously described in section 3.3.1). During the control scan, the same pulse 

train is used but the phase of every other pulse is shifted by 180º, so that these pulses undo the 

flip of the previous pulse. This way, both the control and tagged images receive the same MT. 

The flowing blood’s magnetization gets inverted before the tagged image is acquired, while 

remaining un-inverted during the control image acquisition. 

The downside is that PCASL is sensitive to magnetic field inhomogeneity at the 

inversion plane, which may affect the efficiency of the labeling process and is exacerbated at 

higher magnetic field strengths [40]. 

 

3.4 Quantification 

The difference between the tagged and control images acquired with ASL is perfusion-

weighted, but for absolute quantification an accurate mathematical model of the system is 

needed, so the measured magnetization difference can be linked to perfusion. 

The ideal tissue magnetization difference signal over time is represented in Fig. 19. There 

are three clearly distinct parts in this curve. First, there is no signal until the labeled protons 

reach the tissue, during the transit time. Next, when these protons reach the tissue the signal 

difference increases while there is inflow of labeled water. Finally, the signal decreases due to 

relaxation and also to the outflow of labeled protons. 
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Figure 19 – Magnetization difference as a function of TI [41]. 

Buxton et al. developed a general kinetic model for the difference of magnetization in 

ASL experiments, where the parameters can be adjusted for CASL or PASL experiments [42].  

This model is based on the following functions: 

1.      – delivery function, the normalized arterial concentration of magnetization that 

arrives at the voxel at time t; 

2.         – residue function, the fraction of labeled spins that arrived at time t’ and are 

still present at time t in the voxel; 

3.         – magnetization relaxation function, the fraction of the original Mz tag carried 

by the water molecules that arrived at t’ and remains at time t. 

 

This model can be described as the following convolution, described in Eq. 7. 

                                    
 

 
 

                                 

In this equation,     is the equilibrium magnetization of arterial blood and f is the CBF 

[42]. 

By applying single-compartment kinetics, which implies assuming that the exchange 

between arterial blood and tissue is instantaneous, and that each voxel is a single well mixed 

compartment, this equation can be rewritten for PASL methods as follows, from Eq. 8 to Eq. 11. 
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In these equations,   is CBF in ml of blood/ml of tissue/second (note that in order to 

change from these units to ml of blood flow/g of tissue/second, its value must be multiplied by 

the tissue’s density),     and     are the blood’s T1 and the apparent tissue’s T1, respectively,   is 

the inversion efficiency,   is the blood-brain partition coefficient,    is the arterial transit time 

and   is the time width of the label.    is a correction factor, related to different relaxation times 

and venous clearance, and typically has a value close to 1. 

   is proportional to  , but it does not provide enough data for a quantitative perfusion 

map, since it lacks information about    and  . Both     and     are spatially invariant 

constants, that can either be estimated from measurements or based on literature values. 

In order to determine the labeling efficiency   in PASL, it is necessary to do 

measurements at different inversion times both in phantoms and in vivo. This value can generally 

be very close to 100%.     is obtained from a separate scan, before any acquisitions or 

inversions [42]. 

Applying Equations 8 to 11 to PASL, the following expressions are obtained, which were 

used in this project, presented on Eq. 12 and Eq. 13 [4]: 
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3.5 fMRI – ASL versus BOLD 

CBF changes can be used as a biomarker for regional brain function changes. 

As previously stated, the standard approach to fMRI is BOLD, but ASL has proven to 

have some advantages over BOLD. ASL can provide absolute quantification of perfusion, 

which allows for more accurate comparisons, both inter and intra-subject (since BOLD is more 

sensitive to non-physiological factors, these variations are lower in perfusion MRI) [18]. 

Additionally, BOLD is more weighted towards draining veins, so activation changes may 

be detected slightly downstream from the specific activated area, which has a higher metabolic 

rate in the brain tissue. There is evidence that suggests that perfusion changes have superior 

spatial and temporal specificity to neural activation than BOLD during a typical fMRI paradigm, 

making CBF changes more localized to the brain parenchyma than the BOLD effect. Perfusion 

fMRI based on ASL methods may then offer more accurate measurements of spatial localization 

and magnitude of neural activation [35, 43]. [35] [43]. 

As previously mentioned, the BOLD signal is a complex function, dependent on CBF, 

CMRO2, CBV and magnetic field strength. Changes in any of these parameters caused by 

disease, age or other factors can complicate the analysis of BOLD’s signal variations. 

Perfusion measurements are also insensitive to low-frequency fluctuations often observed 

in BOLD studies. In regions of high static susceptibility like the orbital-frontal cortex, there is 

loss of signal when using BOLD.  ASL can use imaging sequences less sensitive to signal loss 

caused by these magnetic susceptibility effects. 

However, the SNR of ASL is considerably lower and ASL requires longer scan time 

when compared to BOLD, since it requires many averages to overcome the low SNR. 

Additionally, event-related fMRI is nigh impossible with ASL. It is also important to consider 

that BOLD is much simpler to use and is much more widespread, regardless of its considerable 

disadvantages listed herein. 

Even so, ASL can complement the information given by BOLD, by providing 

quantitative measurements of both baseline and changes in CBF, helping in the analysis of 

BOLD signal changes. When combined with BOLD, both methods can measure the changes in 

oxygen use that accompanies changes in behavior [8]. 

ASL allows for a different functional approach by correlating rest perfusion with 

cognitive performance. Resting-state BOLD fMRI also allows for a qualitative analysis in 
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studies of this kind. This can remove the need for task-related paradigms inside the MRI 

scanner, in which the participants may perform poorly, benefitting studies focused on particular 

patient groups like the elderly [18].  

Regarding both techniques, it is also important to state that although there is a recognized 

coupling of CBF and metabolism in the working brain, the mechanisms behind this coupling are 

not yet fully understood. It is normally assumed that an increase in CBF is required to supply 

nutrients and oxygen for neural metabolism, but studies of brain energy metabolism have yet to 

conclusively support this idea. Alternatively, the increase of CBF may be required to remove 

toxic waste products of metabolism [18]. These topics are summarized in Table 2. 

Table 2 – Summary of the comparison between ASL and BOLD when measuring neural activation (adapted from 

[8]). 

Advantages of ASL versus BOLD Disadvantages of ASL versus BOLD 

Absolute quantification of a physiological 

parameter, with less intra and inter-subject 

variability than BOLD. 

ASL response SNR is typically half of the 

BOLD response SNR. 

Processing of ASL data by using difference 

minimizes the effects of low frequency 

drifts and makes this method more useful 

for experiments with longer stimulus 

duration. 

Temporal resolution of ASL is lower than 

BOLD’s, since it needs to acquire both tag 

and control images, and also wait for the 

blood to reach the imaging region. 

ASL can be used in conjunction with 

imaging methods like SE-readouts that 

reduce signal loss due to magnetic 

susceptibility variations. 

The maximum number of slices that can be 

acquired with ASL is less that with BOLD, 

because of the need to acquire data before the 

labeled signal has fully relaxed. 

The ASL perfusion signal is well localized 

to the capillary beds. 

ASL is not as simple to acquire and process as 

BOLD. 

4  
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Chapter 4 
Methodology 

This chapter includes a description of the methods used throughout the project. A general 

overview and biological background of the procedures used is presented, as well as specifics of 

the different experimental steps. 

 

4.1 Brief overview 

The different experimental stages of this project were conducted in an evolutionary 

process of optimization. The first step consisted on further optimizing the FAIRPRESS sequence 

[4] for perfusion measurements in WM.  

 Secondly, the optimized sequence was used to measure perfusion during functional 

activation, both in grey and white matter. The activation stimulus used was a rotating circular 

checkerboard with changing colors. The first acquisitions were done once for each voxel position 

(single acquisition), in the GM of the visual cortex (VC) and in the corpus callosum (CC). For 

one subject, data was also acquired once in the WM of the VC. Afterwards, the measurements in 

WM were performed twice for the same position (double acquisition), for both the CC and WM 

of the VC, while using shorter stimuli blocks and fewer repetitions. For all these measurements, 

the T2* was also measured and analyzed. 

 Afterwards, different pulse sequences were tested in order to find out which one yielded 

the best results for perfusion measurements in WM: the previously optimized FAIRPRESS, 

FAIRPRESS with background suppression (BS) and PCASL. After analyzing the results, it was 

concluded that FAIRPRESS with BS was the best method. 

This sequence was then used in conjunction with an adaptation of the Poffenberger task 

(previously reported to elicit activation in the anterior part of the CC) [44], to measure both 

perfusion and T2* variations during activation in the CC. These measurements were performed 

three times for the same voxel position (triple acquisition), using the same size in blocks and 

repetitions as the double acquisition measurements with the purely visual stimulus in the CC. 

One measurement was also performed on the GM of the VC. 

Finally, whereas the previous steps were conducted in a 3T scanner, additional 

experiments were conducted in the ultra-high magnetic field of 9.4T. Considering the SAR 
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limitations when working with such a strong magnetic field, the sequence used was FAIRPRESS 

without BS nor pre-saturation, and with only two saturation bands (above and below the voxel of 

interest). The adapted Poffenberger task was again used for stimulation, and measurements were 

performed both in the CC and in the GM. This overview is summarized in the flow chart 

displayed in Fig. 20. 

 

    

 

 

Figure 20 – Flow chart describing the chronological evolution and optimization of the project. 
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4.2 Biological background 

4.2.1 Brain 

The brain is a complex and extensive organ. It consists of billions of cells and is 

composed mainly of two different types of tissue: white matter and grey matter. 

The GM is composed of neuronal cell bodies, glial cells (specifically oligodendrocytes 

and astroglya) and the neuropil (composed by dendrites, and myelinated and unmyelinated 

axons). It is involved in multiple tasks, such as sensory perception, memory, seeing, hearing and 

muscle control [45]. 

The WM is composed by myelinated axons and glial cells, connecting the neurons 

through fiber pathways. Myelin is a fatty protein responsible for insulation and speed increase of 

transmission, giving WM its white color. WM modulates the distribution of action potentials, 

coordinating communication between different brain regions [46]. 

 

4.2.2 Corpus Callosum 

The CC is a WM fiber bundle that connects the two brain hemispheres, facilitating the 

transmission of visual, sensory and cognitive information between them. It is the largest WM 

structure in the brain, and is one of the few white matter tracts that can be discretely identified 

by conventional MRI. 

It can be divided in 4 regions, represented in Fig. 21. The rostrum, the genu (formed 

mostly by interfrontal fibers), the isthmus (main portion of the CC, allowing for interparietal and 

intertemporal communication) and the splenium (allows for interhemispheric communication 

between the parietal, temporal, and occipital lobes) [47]. 

 

Figure 21 – Left: Lateral view of the brain’s division into lobes [48].  Right: Sagittal view of the brain, centered on 

the corpus callosum, its regions highlighted [47]. 
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Two studies have established a topographical distribution on the CC of the fiber tracts 

connecting to the cortex (Fig. 22) [49, 50]. The division of the CC performed by Hofer is 

generally more accepted, since it was done in human subjects, while the Witelson study was 

based on primate data). [49] [50] 

  Based on Hofer’s CC topography, the CC is divided in five parts. Axons in the genu of 

the CC connect the prefrontal cortex of each brain hemisphere (Region I, Fig. 23).  The anterior 

midbody of the CC connects the premotor and supplementary motor cortical areas (Region II, 

Fig. 23), and the posterior half of the CC is divided in three, where fibers connect the primary 

motor, sensory and visual cortical areas (Regions III, IV and V, respectively, in Fig. 23). 

 

 

Figure 22 – Sagittal view of a 3D reconstruction of all callosal fibers comprising bundles projecting into the 

prefrontal lobe (green), premotor  and supplementary motor areas (light blue), primary motor cortex (dark blue), 

primary sensory cortex (red), parietal lobe (orange), occipital lobe (yellow), and temporal lobe (violet) [49]. 

 

 

Figure 23 – Hofer’s CC topography. Region I: prefrontal; region II: premotor and supplementary  motor; region III: 

motor; region IV: sensory; region V: parietal, temporal, and occipital. A: anterior; P: posterior [49]. 
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4.2.3 Visuo-Motor Interhemispheric Transfer 

The human VC is located in the occipital lobes of both brain hemispheres (Fig. 21, left). 

The primary VC is responsible for transmitting visual information from the retina to the other 

cortical regions of the VC. The left hemisphere visual cortex receives information from the right 

visual field, and the right hemisphere VC from the left visual field, by means of the optic 

chiasm. 

The following described tasks were designed in order to elicit interhemispheric transfer: 

- Poffenberger paradigm: 

During this task, light flashes are presented rapidly to the left or right visual 

hemifield, and the subject is asked to respond with either the contralateral (crossed) or 

ipsilateral (uncrossed) hand. This has been proven to elicit white matter activation in the 

anterior part of the corpus callosum, being the most well-established case of WM fMRI 

activation [6, 51]; [6] [51]  

 

- Sperry paradigm: 

Word and face stimuli associated with the left and right hemisphere, are 

presented rapidly to the right or left visual hemifield, respectively. In this case, the 

crossed condition is when the stimulus is presented to its contralateral hemisphere (i.e. 

presenting face stimuli to the left hemisphere via the right visual hemifield). This task 

has been shown to elicit activation in the CC, in its posterior portion [52]. 
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4.3 Sequences 

The three different sequences used were developed having WM particularities in mind, 

such as its intrinsically low perfusion and its long and inhomogeneous transit delay. They were 

tested to assess which yielded the best results for measuring WM’s perfusion. 

 

4.3.1 FAIRPRESS 

 

Figure 24 – FAIRPRESS sequence. Background suppression (green), FAIR’s perfusion encoding (red), slice 

selection only in tag scans (orange), outer volumes suppression (blue), PRESS volume selection (purple) and strong 

bipolar gradients (black).  

In Fig. 24, the BS pulses and gradients are represented in green; they are omitted in 

experiments without BS. First, the perfusion is encoded using FAIR (red), with slice selection 

only in the tag scans (orange dashed line). As shown above, FAIR requires the subtraction 

between the signal acquired with a global inversion pulse (control) and the signal acquired with a 

local inversion pulse (tag). For inversion, a highly selective adiabatic inversion pulse was used. 

The next 6 pulses (blue), with two gradients along each direction, correspond to the 

saturation slices in all directions around the voxel of interest, for outer volume suppression 

(OVS) to avoid partial volume effects. The subsequent three pulses are from the PRESS volume 

selection (purple), accompanied by strong bipolar gradients (black) to dephase the magnetization 

from the flowing blood in order to reduce the contribution from larger vessels. 

The acquisition is done alternating between tag and control. The first scan is done 

without the inversion pulse, in order to obtain M0 – the reference magnetization, which is needed 

for quantification. 
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4.3.2 FAIRPRESS with background suppression 

BS was introduced in order to cancel the signal from static tissue by applying two 

saturation pulses before the tag and two inversion pulses during TI (green, Fig. 24). The image is 

then acquired when the Mz of the tissue is zero. Two spin populations with different T1s can both 

be nullified by using two inversion pulses with adequate sequence timing. Background 

suppression has been shown to result in a significant increase in the SNR of perfusion 

measurements with ASL [53]. 

The rest of the sequence used was the same as above for FAIRPRESS without 

background suppression. 

 

4.3.3 PCASLPRESS 

 

Figure 25 – PCASLPRESS’s labeling scheme (balanced PCASL). 

As previously introduced in section 3.3.1, in CASL, the blood passing through a narrow 

slice in the neck is continuously labeled for approximately 2s, using a low power RF pulse, 

resulting in a steady state of flow driven adiabatic inversion. This mimics the injection of a 

constant infusion of a tracer and yields high SNR, but also results in significant RF power 

deposition in the subject. This, in conjunction with the previously mentioned implementation 

issues of this technique, gave way to the development and great interest in PCASL (section 3.3.3 

of this thesis), as an alternative to overcome these issues. PCASL achieves the same flow driven 

adiabatic inversion, but instead of using a continuous labeling pulse, it is split up in multiple 

shorter pulses (Fig. 25). 

Therefore, this labeling was also tested in order to see if the resulting longer and better 

defined tagging bolus would generate a higher SNR in WM perfusion measurements than FAIR. 

The rest of the sequence used, besides the labeling scheme depicted in Fig. 25 (used instead of 

FAIR) was the same as previously seen for FAIRPRESS without BS. 
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4.4 Participants 

A total of 26 healthy volunteers, with ages between 22 and 46 were scanned, after 

providing written informed consent. The participants received monetary compensation for their 

participation in the experiment. 

Of these, 7 participated in the sequence optimization experiment, 9 in the visual stimulus 

experiments, 8 in the adapted Poffenberger task experiments in the 3T MRI scanner and 2 others 

in the adapted Poffenberger task experiment at the 9.4T magnetic field. 

 

4.5 Experimental design 

4.5.1 Sequence Optimization 

The data regarding both FAIPRESS parameter’s optimization and the three different 

sequences evaluation was acquired during rest, in order to assess which of the tested parameters 

and sequences yielded the best perfusion measurement results. 

 

4.5.2 Functional Studies 

A fixation cross was displayed in the center of the screen for the duration of the 

activation experiments, and the subjects were asked to maintain central fixation throughout. The 

stimuli were displayed using back-projection to a screen placed inside the bore, viewed through a 

mirror mounted on the head coil. The rest condition, for all the stimulus experiments, consisted 

of a grey screen with the white fixation cross displayed in the middle of the visual field. 

A summary of the experimental designs used for the activation experiments is depicted in 

Table 3. All stimuli were presented in a block design with the same number of alternating rest 

and stimuli blocks (half of the blocks presented in Table 3 for stimulus and half for rest). Note 

that the number of blocks depicted is per acquisition, meaning that for the double and triple 

acquisitions, the total number of blocks should be multiplied by two and three, respectively. Also 

note that the duration shown is for single blocks. 
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Table 3 – Summarized experimental design for the activation experiments. 

Experiment Sequence Acquisition Tissue 

Design 

Blocks 
Duration 

(s) 

Visual 

Stimulus 

T2*-EPI Single GM (VC) 12 10.00 

FAIRPRESS 

Single 
GM (VC) 

14 68.16 
WM (CC and VC) 

Single GM (VC) 20 34.08 

Double WM (CC and VC) 12 51.12 

Adapted 

Poffenberger 

Task 

(3T) 

FAIRPRESS 

with BS 

Single GM (VC) 20 34.08 

Triple WM (CC) 12 51.12 

Adapted 

Poffenberger 

Task 

(9.4T) 

FAIRPRESS 

(adjusted) 

Single GM (VC) 

12 51.12 
Double WM (CC) 

 

4.5.2.1 Visual stimulus 

The participants were asked to simply look at the visual stimulus throughout the 

experiment. It consisted of a color changing rotating checkerboard, presented to the central 

visual field (Fig. 26). Its presentation was done using Cogent [54], running in MATLAB (The 

Mathworks Inc., Natick, MA). 

A T2*-weighted EPI acquisition was first performed to locate activated regions for voxel 

positioning (Fig. 33, on section 4.6.2 of this dissertation). 

FAIRPRESS experiments were performed initially as single acquisition measurements, in 

the GM of the VC and in the WM of the CC, for 5 subjects, using long blocks for both. In one 

subject, a measurement in the WM of the VC was also performed, using the same block design 

as in the CC. Secondly, double acquisition measurements using more blocks with shorter 

durations were performed for WM, both in the CC and in the VC, for 4 subjects. For these 

subjects, a single acquisition in the GM used more blocks with shorter length (Table 3). 
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Figure 26 – Still frame of the visual stimulus used. 

 

4.5.2.2 Adapted Poffenberger task 

The participants were asked to perform a variation of the Poffenberger task. The stimulus 

consisted of a color changing rotating checkerboard, presented to either the left or right visual 

hemifield in randomized order (Fig. 27).  The subjects were given two button boxes, one for each 

hand, and were asked to repeatedly perform a simple button-pressing sequence, during the 

presentation of the stimulus. The response hand was crossed for all trials (i.e. when the 

checkerboard was presented to the left visual hemifield, the subject replied with his right hand, 

and vice-versa), since this had been shown previously to elicit more activation than the ipsilateral 

response [44]. The stimuli were presented rapidly (100ms per change) to avoid saccades. 

Presentation was done using MATLAB and the Psychophysics Toolbox extension [55]. 

The FAIRPRESS experiments with BS at 3T where the aforementioned task was 

performed used triple acquisition in the CC in a total of 8 subjects. The block design used was 

the same as for the double acquisition experiments with the visual stimulus presented in last 

section. For one of these subjects, a single acquisition was performed in the GM of the VC, using 

a similar block design but more and shorter blocks (Table 3). 

 The adjusted FAIRPRESS experiments at 9.4T consisted in a single acquisition for GM 

in one subject and double acquisition in the CC for two subjects, both using the same block 

design as the CC measurements performed at the 3T scanner (Table 3). 
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Figure 27 – Still frame of the visual stimulus used for the adapted Poffenberger task. 

 

4.6 Data Acquisition 

All experiments at a magnetic field of 3T – FAIRPRESS optimization and the different 

sequences evaluation, as well as the functional activation experiments – were performed on a 

Siemens Magnetom Prisma (Siemens Medical Solutions, Erlangen, Germany) scanner, using a 

20-channel bird-cage coil for reception. The body coil was used for RF transmission. To restrict 

motion, the subjects' head was stabilized with foamed material inside the head coil. 

For every subject, localizer images were acquired, followed by an anatomical image 

using the MPRAGE sequence, which were used later for voxel placement in the areas of interest, 

as well as for correctly positioning the labeling slice in PCASLPRESS (Fig. 28). The MPRAGE 

was acquired with TR = 1750ms, TE = 2.84ms, TI = 1100ms and TA = 5min17s, flip angle = 9º, 

matrix size = 180x192, FOV = 256x240mm, and a slice thickness of 1.30mm. 

For perfusion quantification, an 8x8x5mm
3 

voxel was used. It was carefully positioned to 

avoid contributions from surrounding tissues. 

 

 

Figure 28 – PCASLPRESS’s labeling plane, placed on the MPRAGE. Its positioning was based on PCASL’s 

optimization studies found in the literature [56]. 
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4.6.1 Sequence Optimization 

The three sequences were tested by performing perfusion measurements in both white 

and grey matter during rest. The WM region chosen for these tests was the CC.  

For verification of the perfusion sensitivity, two measurements that were expected to 

yield no perfusion signal were performed, either by positioning the voxel in the ventricle (for 

three subjects) or by increasing the thickness of the FAIRPRESS label slice until no labeled 

blood can reach the voxel site within the inversion delay. The latter can be achieved by 

increasing the parameter Inversion Slice Factor (ISF) to 99.9. In PCASLPRESS, this can be 

reached by positioning the labeling plane distally from the voxel of interest. 

For FAIRPRESS without BS, the parameters used were: bandwidth = 1000Hz, TR = 

2130ms, TE = 29ms, TI = 1200ms, flip angle = 90º, ISF = 3, voxel size = 8x8x5mm and no pre-

saturation. 

FAIRPRESS with BS was the same, except for the presence of pre-saturation pulses. The 

used tissue T1 for WM was 919ms and for GM 1711ms, which had been previously measured 

using this sequence [4]. 

For PCASLPRESS, parameters were: bandwidth = 1000Hz, TR = 3670ms, TE = 30ms, 

tag delay = 1600ms, tag duration = 1500ms, tag pulse angle = 28º and voxel size = 8x8x5mm. 

The voxel was positioning in the CC is presented in Fig. 29. 

 

 

Figure 29 – Voxel positioning on the CC, sagittal (MPRAGE), coronal and transverse views (localizer). 

To facilitate positioning the voxel in the region of interest in GM or in the ventricles, a 

T2-weighted Turbo Spin Echo (TSE) image with 7 slices was acquired. The parameters thereof 

were: slice thickness = 2.7mm and a distance factor = 10%, TR = 5180ms, TE = 11ms, TI = 

900ms, TA = 2min1s matrix size = 384x512, FOV = 220x220mm and turbo factor = 35. 
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Voxel placement when measuring in the GM of the VC is depicted in Fig. 30 and in the 

ventricle in Fig. 31. 

 

 

Figure 30 – Voxel positioning in grey matter, sagittal (MPRAGE), and transverse views (TSE). 

 

 

Figure 31 – Voxel positioning on the ventricles, sagittal (MPRAGE), and transverse views (TSE). 

Summarized information about the sequence optimization experiments, such as 

acquisition times, total measurements performed (both tag and control) and perfusion 

measurements used for analysis, in which the first two tag/control pairs were discarded, is 

presented in Table 4. 
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Table 4 – Summarized experimental design for the activation experiments. 

Experiment Tissue Sequence Measurements TA 
Perfusion 

measurements 

Sequence 

Optimization 

CC 

FAIRPRESS 
200 7min 6s 98 

FAIRPRESS BS 

PCASLPRESS 120 7min 20s 58 

GM, ventricle 

and 

no perfusion 

labeling 

FAIRPRESS 
120 4min 16s 58 

FAIRPRESS BS 

PCASLPRESS 70 4min 17s 33 

 

4.6.2 Functional Studies 

Summarized information about the activation experiments, such as acquisition times, 

total measurements performed (both tag and control) and perfusion measurements used for 

analysis, in which the first four tag/control pairs were discarded, is presented in Table 5. Note 

that the number of measurements and acquisition times depicted is per acquisition, meaning that 

for the double and triple acquisitions, they should be multiplied by two and three, respectively. 

Table 5 – Summarized experimental design for the activation experiments. 

 

  

Experiment Acquisition Tissue Sequence Measurements TA 
Perfusion 

measurements 

Visual 

stimulus 

Single 

GM (VC) 

FAIRPRESS 

456 16min 11s 224 
WM 

(CC and VC) 

Double 

GM (VC) 328 11min 39s 160 

WM 

(CC and VC) 
296 10min 30s 144 

Adapted 

Poffenberger 

(3T) 

Single GM (VC) 
FAIRPRESS 

BS 

328 11min 39s 160 

Triple WM (CC) 296 10min 30s 144 

Adapted 

Poffenberger 

(9.4T) 

Single GM (VC) 
Adjusted 

FAIRPRESS 
296 10min 30s 144 

Double WM (CC) 
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4.6.2.1 Visual stimulus 

In the first stage of the project, perfusion was measured during the presentation of a 

visual stimulus, using the original FAIRPRESS sequence without BS. 

Perfusion measurements were performed in the CC, in the area associated with the 

intercommunication of visual information between hemispheres, associated with the occipital 

lobe, as seen in Fig. 22 (in yellow) and Fig. 23 (region V). 

Additional experiments were performed with the voxel positioned in the VC, located in 

the occipital lobe, both in the grey and white matter. In acquiring these images, extra care was 

taken when positioning the voxel so as to minimize contributions of other tissues. 

To facilitate accurate voxel positioning in the activated region of the VC, a functional 

BOLD experiment using a T2*-weighted-EPI sequence was performed. The activation maps 

obtained in this experiment served to localize regions with strong BOLD signal, where the 

perfusion measurements were then located (Fig. 33). The acquisition of 7 slices had the 

following parameters: slice thickness = 2,7mm and distance factor = 10%, TR = 1000ms, TE = 

30ms, TA = 2min 7s flip angle = 60º, matrix size = 94x94, FOV = 192x192mm and 120 

measurements. The FAIRPRESS parameters were the same as previously used for FAIRPRESS 

without BS, on section 4.6.1 of this thesis, except the TI was 1500ms for all the experiments. 

In all experiments, an additional TSE image with good contrast between white and grey 

matter was acquired for accurate positioning of the voxel in both tissues, using the same 

parameters as specified in section 4.6.1 and the same slice positions as in the BOLD images. 

These images were used for the purpose of locating voxels in or close to activated GM areas as 

well as to detect subject motion between scans (Fig. 32). 

 

 

Figure 32 – Transversal view of the voxel positioned on grey (left) and white (right) matter in the visual cortex 

(TSE).  
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Figure 33 – T2*-weighted EPI results, acquired during the visual stimulus presentation. The significantly activated 

areas are superimposed on anatomical images. 

 

4.6.2.2 Adapted Poffenberger task (3T) 

After determining that FAIRPRESS with BS yielded the best results, it was used for 

acquiring the stimulation data for the adapted Poffenberger task. For one subject, the voxel was 

positioned in the GM of the VC and the signal was acquired once. All the other measurements 

were acquired three times for the same voxel, in the anterior part of the CC. The voxel position 

was selected based on previous studies report BOLD activation in the CC and on Hofer’s CC 

topography (Fig. 23) [6, 51]. The TI used was 1500ms, and the rest of the parameters were the 

same as previously used for FAIRPRESS with BS in section 4.6.1 of this dissertation. [6] [51] 

To be sure that the subject had not moved between acquisitions, TSE images were 

acquired between the different repetitions of the experiment, using the same parameters as 

described in section 4.6.1 of this thesis. 

 

4.6.2.3 Adapted Poffenberger Task (9.4T) 

The functional activation experiments at higher field strength were performed on a 

Siemens Magnetom 9.4T (Siemens Medical Solutions, Erlangen, Germany) scanner with a 

magnetic field strength of 9.4T, using a 31-channel receive array in combination with a 16 

channel transmit coil [57]. Foamed padding was placed inside the head coil to keep the subjects' 

head stabilized. 

Due to the severe SAR limitations at a magnetic field as strong as 9.4T, the sequence 

parameters had to be adjusted. Therefore, the FAIRPRESS sequence with no BS was used, and 

instead of 6 saturation bands around the voxel of interest only two were applied, proximally and 

distally, to avoid vascular contributions. The parameters used were: bandwidth = 2000Hz, TR = 
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2130ms, TE = 29ms, TI = 1500ms, flip angle = 60º, ISF = 2.5, voxel size = 8x8x5mm
3
 and no 

pre-saturation. The voxel was carefully positioned to avoid contributions from the surrounding 

tissue. 

For measurements in the CC, the voxel was again placed in the region purportedly 

activated by the Poffenberger task, in its anterior portion (Fig. 34). 

 A FLASH (Fast Low Angle Shot) 2D sequence was used as anatomical scan, to facilitate 

the positioning of the voxel in the target areas. The parameters used for this scan were: 18 slices, 

thickness = 1mm, image matrix size = 464 x 512, FOV = 192 x 174 mm
2
, TR = 800ms and TE = 

12ms. Between scans, to check if the subject had moved, another FLASH 2D was used, though 

with only 6 slices, image matrix = 348x384 and TR = 100ms. 

 

 

Figure 34 – Voxel positioning in the CC. Sagittal (left) and transversal (right) views. 

 

4.7 Postprocessing 

The postprocessing was performed on the raw data, using home-written routines in 

MATLAB. In general, for every measurement, the single FIDs from each individual coil channel 

were exponentially filtered for noise reduction and better integration. They were also 4-fold zero 

filled prior to the FT, in order to increase frequency resolution in the resulting spectra, allowing 

for better integration over the peaks. The data was then Fourier transformed and combined by 

adding the root of the sum of squares of the individual signals from the different coils, thus 

reconstructing the data. 

The central 200 points of the water line peak were used for analysis (Fig. 35). 
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Figure 35 – Central points of the water spectra from the tagged (blue) and control (red) scans from a WM voxel. 

The difference between them is very small for WM, and slightly larger for GM. 

M0 was taken from the first scan of each series, acquired without any preceding pulses. 

For determining  M, the 4 first tag/control pairs were discarded in the stimulus 

experiments, as were the first two in the sequence optimization experiments. 

The T1s considered for the quantification parameters for measurements at 3T were: T1WM 

= 919ms, T1GM = 1711ms and T1blood = 1711ms. 

The transit delay was assumed to be 379ms, with an inversion efficiency of 95%, λ for 

GM of 0.98 and λ for WM of 0.82. These values were based on previous studies using this 

sequence on a 3T field [4]. 

For the 9.4T measurements, further testing using the FAIRPRESS sequence would have 

to be done to determine the equivalent parameters applicable at this field strength. Therefore, 

only the relative  M was calculated for the results’ analysis (below, on section 6.4.1 of this 

thesis), avoiding the calculation of absolute quantified perfusion values. This also applies to the 

T2* quantification and analysis. 

 

4.7.1 Sequence Optimization 

The analysis of the results was performed using Microsoft Excel 2007 (Microsoft, 

Redmond, Washington). In order to compare multiple results from the reconstructions, a one-

way analysis of variance (ANOVA) was performed on MATLAB, with the Statistical Toolbox, 

with the help of in-house functions. 
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4.7.1.1 Reconstruction optimization 

Different reconstruction methods for calculating  M were tested with respect to their 

influence on the signal stability and SNR. The results attained for each method were termed 

absFID, complFID, absSpec and complSpec. The first two used the signal amplitude after 

exponential fitting of the FIDs to calculate the difference between tag and control and determine 

 M. The Spec methods applied a FT to the data, and then calculated the difference of the integral 

of the tag and control spectra, for the predetermined central water peak points. Their differences 

are as follows: 

- absFID: the data was first magnitude-combined and then averaged; 

- complFID: the data was first averaged, phase corrected and then complex combined; 

- absSpec: the data was first exponentially filtered and an Fourier transformed. The 

resulting spectra were magnitude-combined and then averaged; 

- complSpec: the data was first averaged, phase corrected and complex combined. It is 

then exponentially filtered and Fourier transformed, and then magnitude-combined. 

Additional variations in which the averaging was performed before combining the coil 

signals yielded equal results, and were therefore discarded. 

 

4.7.2 Functional Studies 

All the analyses, both statistical and qualitative, were done using MATLAB, with home-

made routines. In order to compare matched pairs of data, Student’s paired sample t-tests were 

performed using MATLAB’s Statistical Toolbox. 

 

4.7.2.1 T2* reconstruction optimization 

The T2* corresponds to the decay rate of the FID, as seen in Eq. 3 and Fig. 3. It is 

possible to obtain this value by fitting an exponential to the data and calculating this decay rate. 

This was done by using MATLAB’s Curve Fitting Toolbox. In order to determine if there was an 

optimal reconstruction for the T2* data, two different possibilities were tested: 

- absFIDT2s: uses the absFID data (after being magnitude-combined and averaged) for 

the exponential fit; 

- complFIDT2s: uses the complFID data (after being averaged, phase corrected and 

then complex combined) for the exponential fit. 
5   
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Chapter 5 
Sequence Optimization 

This chapter includes the initial optimization of the FAIRPRESS sequence, as well as the 

testing and comparison of PCASLPRESS, FAIRPRESS and FAIRPRESS with BS perfusion 

measurements. The different reconstructions tested are also evaluated here. The analysis of the 

obtained results is also included. 

 

5.1 FAIRPRESS optimization 

Different parameters were tested, including pre-saturation, ISF, TI and a relaxation delay 

before each acquisition (waiting for a short time before running the sequence), while measuring 

perfusion in the CC during rest. The relative magnetization difference was assessed, as a relative 

perfusion measurement. Previous results for relative perfusion measurements in WM using this 

sequence found a  M value of around 0.1%. The stability of the results obtained with the 

different parameters was analyzed, and the ones that showed the most stable results were chosen. 

 No pre-saturation, an ISF of 3.0, a relaxation delay before each acquisition and a TI of 

1500ms (Fig. 36) were the parameters that yielded the best results, and were thus chosen for the 

following experiments. 

 

 
Figure 36 – Relative magnetization difference in function of TI, measured in the CC for a single subject. 
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5.1.1 Reconstruction optimization 

In order to analyze the results, the mean of the resulting relative perfusion values without 

averaging was calculated, as well as the standard deviation, for every acquisition and 

reconstruction. The SNR was calculated as the mean of the relative perfusion measurements 

divided by the standard deviation. The different results were then compared within each subject, 

for the different acquisitions (WM, GM, ventricle and no perfusion). Finally, the results were 

grouped for each sequence and for each acquisition (example depicted in Table 6), and an 

intersubject analysis was done, calculating the mean value of  M, standard deviation and SNR. 

The different reconstructions were then evaluated based on this information. 

Table 6 – Mean intersubject SNR analysis for FAIRPRESS with background suppression, for the different 

reconstructions, in white matter. 

Subject AbsSpec ComplSpec AbsFID ComplFID 

1 0.801 0.794 0.352 0.735 

2 0.476 0.471 0.344 0.373 

3 2.084 2.065 2.891 1.864 

4 0.192 0.196 0.304 0.202 

5 0.361 0.340 0.509 0.345 

6 0.747 0.697 0.856 0.673 

7 1.099 1.094 1.371 1.028 

  

 A One-Way ANOVA was applied to the different reconstructions’ SNR values, in all 

subjects for each sequence (as presented in Table 6), and separately for WM and GM. The results 

showed that there was not a significant difference between the different reconstructions (Table 

7), all of them being equivalent. Therefore, it was decided to use the value that was the 

computationally easiest to calculate, the absSpec, for the reconstruction and subsequent CBF 

calculations. 

Table 7 – One-Way ANOVA test results, for WM and GM and the different sequences. 

 
WHITE MATTER GREY MATTER 

Sequence p-value Significantly ≠? p-value Significantly ≠? 

FAIRPRESS 0.87 No 1.00 No 

FAIRPRESS BS 0.96 No 0.69 No 

PCASLPRESS 1.00 No 1.00 No 
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5.1.2 Sequences 

The comparison among the three sequences, FAIRPRESS without BS, FAIRPRESS with 

BS and PCASLPRESS, was done after obtaining the absSpec mean values, standard deviation 

and SNR for each sequence and for each acquisition, for the 7 subjects tested. Each sequence’s 

SNR error was calculated as the standard deviation of the SNR for each subject. 

Table 8 – Relative magnetization difference and SNR from the intersubject analysis, for the three sequences in GM. 

 FAIRPRESS no BS FAIRPRESS BS PCASLPRESS 

 M (%) 0.493 ± 0.268 0.375 ± 0.262 0.049 ± 0.353 

SNR 1.729 ± 0.652 2.188 ± 0.959 0.959 ± 0.663 

 

   

Figure 37 – Comparison between the three sequences for measurements in GM, regarding relative perfusion (left) 

and SNR (right). 

For measurements in GM (Table 8 and Fig. 37), there were no significant differences 

between sequences. Although the mean relative perfusion value for FAIRPRESS without BS was 

slightly larger than with BS, the mean SNR for FAIRPRESS with BS was higher. PCASLPRESS 

yielded the worst results. 
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Table 9 – Relative magnetization difference and SNR from the intersubject analysis, for the three sequences in WM. 

 FAIRPRESS no BS FAIRPRESS BS PCASLPRESS 

 M (%) 0.187 ± 0.091 0.147 ± 0.068 0.058 ± 0.116 

SNR 0.569 ± 0.281 0.823 ± 0.633 0.257 ± 0.298 

 

 

Figure 38 – Comparison between the three sequences for measurements in white matter, regarding relative 

perfusion (left) and SNR (right). 

For measurements in WM (Table 9 and Fig. 38) – the tissue that is the main object of our 

study – there were again no significant differences between sequences. The mean relative 

perfusion value for FAIRPRESS without BS was slightly higher than with BS and the mean SNR 

for FAIRPRESS with BS was the highest. PCASLPRESS showed the worst results again. 
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Figure 39 – Relative perfusion comparison between the three sequences for measurements in the ventricle (left) and 

without perfusion labeling (right). 

 The control experiments (Fig. 39), in situations where there was supposed to be no 

perfusion signal, showed similar results for all the sequences, being that their values’ interval 

include zero or are very close to it. PCASLPRESS in the ventricle showed slightly higher results 

than expected, which in conjunction with the results presented above in GM and WM, might 

indicate a problem in the sequence implementation. 

 FAIRPRESS with BS, supposedly without perfusion labeling when using an ISF of 99.9, 

displayed a high mean value of perfusion with a large standard deviation. The causes for this are 

not clear, however, considering the overall good results of the sequence, even when measuring in 

the ventricle, this factor did not have a big impact in this sequence’s evaluation. 
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Chapter 6 
Functional Studies 

In this chapter, the results of the functional studies performed are presented and analyzed, 

for both the visual stimulus and the adapted Poffenberger task, at a magnetic field of 3T and 

9.4T. The results of the T2* reconstruction optimization are also presented. 

 

6.1 General considerations 

For the stimulus experiments, extreme perfusion outliers, probably associated with 

subject motion during the scan, were removed by using a threshold of three times the 

interquartile range above the third quartile or below the first quartile, for all perfusion 

measurements. These values were replaced by the mean of the immediately prior and following 

values, or if the outlier was in the boundary between two states, the mean of the two previous 

values (example depicted on Fig. 40). 

 

       

Figure 40 – Left: Data acquired during a measurement in the corpus callosum, with an outlier probably due to 

motion circled in red (Subject 5 in the Poffenberger Task experiments). Right: Same dataset, after outlier removal. 

For the Student’s paired sample t-test analysis, as well as for the graphical representation 

of the averaged data, the response delay to stimulation, which can reach 8s in CC activation [58] 

but lies between 1 and 2s in the GM (Fig. 13), was taken into account. Therefore, the points used 

for further analysis were the ones acquired after approximately 10s for WM and 4s for GM after 

the beginning of each state. 

The significance level considered for these studies’ statistical analysis was 0.05, meaning 

that statistical significance is only achieved when the p-value is under 0.05. 
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Given the exploratory nature of the analysis and the multiple comparisons performed, 

usage of the Bonferroni correction was considered. This would imply lowering the significance 

level by dividing it by the number of comparisons performed. This correction is applied to take 

into account the increased possibility of type-I error when there are multiple comparisons being 

performed simultaneously, controlling for false positives. However, this correction also increases 

the risk of generating false negatives (type-II errors) and its use was therefore discarded [59]. 

For the percentage change analysis of the differences between the activation and rest 

states, the average of the considered data points for both the T2* and perfusion measurements 

was calculated. Then, the subtraction of these averaged values was done (activation minus rest), 

and the result was turned into a percentage of the average of the activated state – the percentage 

change. Therefore, a positive change means that the activated state has a larger value than the 

rest state, and a negative change the opposite. In order to normalize the percentage change, all 

dataset values were increased by the absolute of the minimum value, so that all values were 

positive while the changes between them remained the same. 

 

6.2 Visual stimulus 

6.2.1 T2* reconstruction optimization 

In order to analyze the results, the mean of the resulting relative perfusion values during 

rest, without averaging was calculated, as well as the standard deviation, for every acquisition 

and reconstruction. The SNR was calculated as the mean divided by the standard deviation. The 

two different reconstructions were then evaluated. 

Table 10 – Mean intersubject SNR analysis for FAIRPRESS without BS, for the two reconstructions, in the CC and 

only for the rest state. 

Subject absFIDT2s complFIDT2s 

1 194.51 192.91 

2 100.29 102.44 

3 139.26 138.84 

4 102.60 101.21 

5 111.99 112.66 

6 155.89 144.97 

7 144.44 120.99 

8 174.18 153.30 

9 96.04 95.42 
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A Student’s paired sample t-test was applied to the different reconstructions’ SNR 

results, in all subjects for the CC (Table 10). The results showed that there was no significant 

difference between the reconstructions (p-value = 0.08). However, this result was close to 

significance and showed that absFIDT2s had a generally higher SNR. Considering that this value 

was also computationally easier to calculate, the absFIDT2s was chosen for determining the T2* 

for the visual stimulus experiments. 

 

6.2.2 Results 

In GM measurements in the VC, the difference between the rest and activation states was 

predominantly very significant, for both the perfusion and T2* values. This is clear even without 

averaging the data, as depicted in Fig. 41. It is also interesting to note the clear presence of the 

previously mentioned T2* drift, that commonly affects BOLD acquisitions, which does not affect 

the simultaneous perfusion measurements (Fig. 41). 

 

 

Figure 41 – Left: Perfusion and T2* signals, acquired simultaneously for subject 1, in the GM. Above the graphics, 

the stimuli periods are represented in black and the rest periods in white. Right: Corresponding averaged data, 

where one point translates one state and also disregarding the points acquired during the activation delay considered 

for GM. 
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In the WM, the difference between rest and activation is not as clear as without 

averaging. Even after averaging, not all points seem to have a dependency on the state (rest or 

activation). This can be seen for both the CC and the VC, in Figs. 42 and 43, respectively. 

 

 

Figure 42 – Left: Perfusion and T2* signals, acquired simultaneously for subject 8, in the CC. Above the graphics, 

the stimuli periods are represented in black and the rest periods in white. Right: Corresponding averaged data, 

where one point translates one state and also disregarding the points acquired during the activation delay considered 

for WM. 
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Figure 43 – Left: Perfusion and T2* signals, acquired simultaneously for subject 6, in the VC. Above the graphics, 

the stimuli periods are represented in black and the rest periods in white. Right: Corresponding averaged data, 

where one point translates one state and also disregarding the points acquired during the activation delay considered 

for WM. 

After this qualitative analysis, Student’s t-tests were performed for each data set, to test if 

the perfusion and T2* measurements acquired during stimulation were significantly different 

from the ones acquired during rest. The percentage change from the average of all the stimulus 

states to the average of all the rest states, per subject and per tissue, was also calculated and used 

in the comparison (Table 11). 
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Table 11 – Student’s t-test and percentage change results for the different subjects in grey matter. 

  
PERFUSION T2* 

Acquisition Subject p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 
p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 

Single 

1 <0.01 Different Close 44.11 <0.01 Different Close 0.86 

2 0.30 Not Different Close 3.69 0.51 Not Different Not Close -0.11 

3 <0.01 Different Close 28.93 <0.01 Different Close 2.58 

4 0.02 Different Close 15.85 <0.01 Different Close 0.92 

5 <0.01 Different Close 16.10 <0.01 Different Close 1.32 

6 <0.01 Different Close 46.34 <0.01 Different Close 4.16 

7 <0.01 Different Close 28.45 <0.01 Different Close 1.03 

8 0.22 Not Different Close 9.07 <0.01 Different Close 0.25 

9 0.08 Not Different Close 11.90 0.16 Not Different Close 0.26 

 

In GM, 6 out of 9 subjects showed a significant difference between the activation and rest 

states, and one other had a result close to significance (considered at a 90% confidence level), 

regarding perfusion. For T2*, in 7 out of 9 subjects the differences between states were 

significant, and for one other subject the result was also close to significance. A probable 

explanation for the subjects where this difference was far from significance is that the voxel 

positioning was not accurately placed in an activated area of GM. Therefore, these subjects were 

not included in further analysis. 

The percentage change between activation and rest was much larger for the CBF values 

than T2*. The values obtained for both are in accordance with previous findings in GM [60]. 

When the difference was significant, the change value was generally also larger, which 

was to be expected. It is also interesting to note that in 8 out of the 9 of subjects, both T2* and 

perfusion behaved similarly, considering a “tendency” threshold with 70% confidence. For the 

only subject where this did not happen, the percentage change was also the lowest achieved. 

These results might indicate a generally good placement of the voxel and overall measure of 

neural activation, using this technique in GM. 
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Table 12 – Student’s t-test and percentage change results for the different subjects in the CC. 

  
PERFUSION T2* 

Acquisition Subject p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 
p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 

Single 

1 0.75 Not Different Not Close 1.69 <0.01 Different Close 0.19 

2 1.00 Not Different Not Close 0.01 0.89 Not Different Not Close 0.02 

3 0.52 Not Different Not Close -1.35 0.63 Not Different Not Close 0.05 

4 0.44 Not Different Not Close 3.43 <0.01 Different Close -0.40 

5 0.62 Not Different Not Close -0.26 0.50 Not Different Not Close 0.09 

Double 

6 0.86 Not Different Not Close -0.66 1.00 Not Different Not Close <0.01 

7 0.35 Not Different Not Close -0.80 0.63 Not Different Not Close -0.04 

8 0.16 Not Different Close 0.76 <0.01 Different Close -0.36 

9 0.18 Not Different Close -0.48 0.86 Not Different Not Close -0.02 

 

On the contrary, in the CC (Table 12), there were no significant differences between rest 

and stimulation regarding the perfusion measurements. Even so, it was possible to see a tendency 

towards difference in 2 out of the 9 subjects analyzed (with a confidence level of over 70%). 

 The T2* results were very significant for 1/3 of the subjects. In this case, only subject 8 

showed similar results between perfusion and T2*, regarding the t-test, which might indicate 

good voxel positioning in this case. The generally poor results obtained might be explained by 

overall poor voxel positioning in the specifically activated area of the CC. The number of 

acquisitions also had an impact in the results, since both the results closer to significance in the 

perfusion measurements were achieved for the double acquisition experiments. 

For two of the three significant results with T2*, the change was negative, meaning that 

the activated state had lower T2* than the rest state. This effect has been previously reported in 

the literature [61, 62]. Three possible explanations for this phenomenon have been theorized: 

1. “Vascular steal”, which is based on the concept that there is a fixed amount of 

oxygenated blood at a time, and as some of it is diverted to active areas, the 

neighboring areas would then show a negative BOLD signal [61]; 

2. Active neural suppression, which says that certain areas can have reduced functional 

activity below the baseline during a particular stimulus [61]; 

3. Extension of the “initial dip”, which states that there is actually an increase in neural 

activity during the stimulus, but there is not the corresponding expected CBF 

increase. The activation would then exhaust the local oxygen levels, resulting in an 

extension of the “initial dip” (Chapter 1, Functional MRI, Fig. 12) [61]. Another 



66 

 

study’s results suggest that the initial dip and the prolonged negative BOLD response 

have different origins and characteristics. The same study indicates that a decrease in 

CBF can be explained by the reduction or suppression of neural activity, or the 

previously explained “vascular steal” effect, as seen in previous studies [62]. 

 

Considering the case where there was a significant T2* difference between states and 

close to significance for the perfusion values (Subj. 8), the observed change values were positive 

for perfusion and yet, negative for T2*. In this case, the initial dip explanation would not fit, 

corroborating the results seen in [62]. 

Considering that the voxel was placed in the same structure and in the same region in all 

subjects, the active neural suppression theory seems unlikely, but since voxel positioning was not 

exactly the same for all subjects, it also cannot be ruled out. The “vascular steal” theory also 

seems unlikely based on these results, since the simultaneous CBF change was positive. 

The previously mentioned better spatial localization of ASL when compared with BOLD 

for fMRI studies may also account for this phenomenon, since ASL measurements are more 

weighted toward arteries and BOLD toward veins. For this reason, it is possible that the voxel is 

actually placed in an active area, showing a positive perfusion change, but since the BOLD 

signal localization is slightly deviated, it shows a negative value, possibly indicating an adjacent 

active area. 

Regarding subject 4, who shows a very significant T2* difference between states, but not 

for the perfusion measurements, the percentage changes showed the same tendency as for subject 

8 (being also the highest observed), so the same conclusions might be extrapolated for this case. 

The reason why some results do not show a similar behavior between both perfusion and 

T2*, being significant for one but not the other, is also not clear. For those particular acquisitions, 

it is possible that either measurement became more unstable than the other. For example, BOLD 

is more affected by bad shimming than ASL, and ASL is more affected by subject motion (for 

example, due to breathing) since the subtraction for perfusion calculation would then be 

unstable. The previously explained slight deviation between ASL and BOLD measurements 

might also account for this phenomenon, if that deviation is large enough to not even be adjacent 

to the activated region. 

Table 13 – Student’s t-test and percentage change results for the different subjects in the WM of the VC. 
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PERFUSION T2* 

Acquisition Subject p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 
p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 

Single 5 0,79 Not Different Not Close -1.33 0.18 Not Different Close 0.14 

Double 

6 0,07 Not Different Close 8.91 <0.01 Different Close 0.39 

7 0,08 Not Different Close 7.30 0.46 Not Different Not Close 0.08 

8 0,38 Not Different Not Close 3.84 0.10 Not Different Close 0.30 

9 0,04 Different Close -8.50 0.07 Not Different Close -0.24 

 

In the WM of the VC (Table 13), the perfusion measurements showed significant 

differences between the rest and activation states for one subject (9), and very close to 

significance in two others (6 and 7).  

The T2* showed a significant difference for one subject and close to significance 

differences for three others. It behaved similarly to perfusion in 2/5 of the cases. 

It is important to note that these measurements are much more prone to partial volume 

effects than the measurements in deep WM, like in the CC, due to WM’s proximity to GM in the 

VC and the voxel’s size and positioning (even with the extra care taken, described in Chapter 4). 

For subjects 6 and 9, who had similar results for T2* and perfusion and also significant or 

very close to significance differences in both cases, there was a correlation between positive 

change (6) and negative change (9) for T2* and perfusion. The percentage change observed was 

also the highest for both these subjects, which might also be indicative of good voxel 

positioning. 

The negative results might be explained by both the vascular steal and neural activation 

suppression theories, previously explained regarding the CC observations. The results that do not 

show similar behavior between T2* and perfusion might also have the same explanation as 

previously presented for the measurements in the CC. 

Again, the results seem to have been improved by acquiring twice for the same voxel 

position, as intended. 
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6.3 Adapted Poffenberger task (3T) 

6.3.1 T2* reconstruction optimization 

After analyzing the exponential fitting based on absFID and complFID, as previously 

done on section 6.1.1 of this thesis, the results observed for absFIDT2s on the background 

suppressed data were not viable. 

When there is no signal, there is still noise oscillating around zero. Since with absFID the 

magnitude of the data is taken, this noise is all made positive, and averaging after this generates a 

relatively strong offset (Fig. 44, left). Considering that the background suppressed data has a 

naturally lower maximum signal, the fit tries to keep up with the offset for a longer time, making 

the fit result unusable for calculating T2* . 

 

 

Figure 44 – Left: absFID reconstructed signal (blue) and the corresponding fit result (black). Right: complFID 

reconstructed signal (blue) and the corresponding fit result (black). Both graphs show background suppressed data 

from the same measurement in the CC. 

Therefore, for the data acquired using FAIRPRESS with BS, the T2* reconstruction used 

was complFIDT2s, which is not affected by this offset, for calculating the T2* results (Fig. 44, 

right). As is particularly visible in the graph on the right of Fig. 44, a single exponential fit does 

not yet seem to be optimal for the signals acquired in the WM. However, by using MATLAB’s 

Curve Fitting Toolbox to test other fit functions (single and double exponentials, as well as 

Gaussian functions), none proved to be better than the single exponential fit used in this thesis. 

 

6.3.2 Results 

In order to confirm if by using the adapted Poffenberger task and FAIRPRESS with BS 

the results in GM remained acceptable, one experiment in one subject was performed by placing 

the voxel in GM of the VC. 
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Table 14 – Student’s t-test and percentage change results for subject 1, in grey matter. 

  
PERFUSION T2* 

Acquisition Subject p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 
p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 

Single 1 <0.01 Different Close 39.75 <0.01 Different Close 3.96 

 

Regarding the qualitative analysis, the difference between states seems clear, for both T2* 

and perfusion, again, even without averaging (results not shown). By doing the statistical 

analysis, for both T2* and perfusion, the difference between rest and activation was very 

significant, and the percentage change for both was quite high, as expected for GM (Table 14). 

 

 

Figure 45 – Left: Perfusion and T2* signals, acquired simultaneously for subject 8, in the CC. Above the graphics, 

the stimuli periods are represented in black and the rest periods in white. Right: Corresponding averaged data, 

where one point translates one state and also disregarding the points acquired during the activation delay considered 

for WM. 
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Table 15 – Student’s t-test and percentage change results for the different subjects in the CC. 

  
PERFUSION T2* 

Acquisition Subject p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 
p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 

Double 1 0.82 Not Different Not Close -1.96 <0.01 Different Close -2.39 

Triple 

2 0.86 Not Different Not Close 1.33 0.67 Not Different Not Close -0.21 

3 0.95 Not Different Not Close -0.47 0.52 Not Different Not Close 0.21 

4 0.97 Not Different Not Close -0.34 0.90 Not Different Not Close 0.07 

5 0.20 Not Different Close -10.16 0.21 Not Different Close -0.60 

6 0.94 Not Different Not Close 0.54 0.02 Different Close -0.86 

7 0.15 Not Different Close 10.11 0.64 Not Different Not Close 0.22 

8 0.06 Not Different Close -17.03 0.09 Not Different Close -0.89 

 

Again, for the perfusion measurements in the CC, there were no significant changes 

between activation and rest for any of the subjects (Fig. 45 and Table 15). Even so, 3 out of the 8 

subjects showed results close to significance (with a confidence level of 80% or more). 

For T2*, 2 out of 8 subjects showed a significant difference between rest and activation, 

and 2 others showed results close to significance. 

Comparing these results to the ones acquired with the FAIRPRESS without BS and with 

the visual stimulus in the CC, there was an overall improvement of the number of close to 

significance cases (from 22% to 37.5% with perfusion and from 33% to 50% with T2*). 

Only subjects 8 and 5 showed similar t-test results between perfusion and the T2*, which 

might indicate better voxel placement in these cases. For these subjects it is also possible to see 

some of the highest percentage change between rest and activation, for both T2* and perfusion. 

There also exists a correlation between the sign of these changes, both being negative for both 

subjects as well. These negative changes may again be explained by the vascular steal and neural 

activation suppression theories, previously presented in section 5.2.1. 
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6.4 Adapted Poffenberger task (9.4T) 

6.4.1 Results 

A measurement was performed in a voxel in the GM of the VC, in order to test it at 

higher field strength. The statistical analysis results are presented on Table 16. 

Table 16 – Student’s t-test and percentage change results for subject 1, in grey matter. 

  
PERFUSION T2* 

Acquisition Subject p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 
p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 

Single 1 0.24 Not Different Close 8.28 <0.01 Different Close -14.92 

 

The results regarding perfusion were not as expected for a GM voxel, since they were not 

significant, although close, considering the 70% confidence level. However, for T2* there was a 

very significant difference between rest and activation (p<0.01). 

It is thus possible that the voxel was placed close to an activated region. This is also 

corroborated by the percentage changes having different signals, associated with the vascular 

steal theory, presented above. 

At higher field strengths, it is also possible that the previously mentioned instabilities, 

that might affect BOLD and ASL differently during the same acquisition might also be 

exacerbated, originating differences as the ones observed. 

A dual acquisition experiment was then performed on the CC, for two subjects. The 

graphical result for one of the subjects is presented in Fig. 46, while the statistical analysis results 

for both subjects are presented in Table 17. 
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Figure 46 – Left: Perfusion and T2* signals, acquired simultaneously for subject 1, in the CC. Above the graphics, 

the stimuli periods are represented in black and the rest periods in white. Right: Corresponding averaged data, 

where one point translates one state and also disregarding the points acquired during the activation delay considered 

for WM. 

Table 17 – Student’s t-test and percentage change results for the different subjects in the CC. 

  
PERFUSION T2* 

Acquisition Subject p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 
p 

Activation 

≠ 

Rest 

(95% conf.) 

Close to 

being ≠ 

(70% conf.) 

Change 

(%) 

Double 
1 0.64 Not Different Not Close -1.74 0.26 Not Different Close -1.26 

2 0.88 Not Different Not Close 0.72 <0.01 Different Close 6.69 

 

Regarding the qualitative analysis, the difference between activation and rest states is not 

clear for all data points, even after averaging, for neither perfusion or T2*. 

There were no significant differences regarding the perfusion measurements, however 

T2* showed one significant result and one close to significance. Again, this may mean that the 

change in perfusion is much weaker than the T2*’s, or even nonexistent. Other possible 

explanations are some instability, related to the ASL acquisition, or maybe a slight deviation 

from the activated region of the CC. 
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Something that is quite clear in these results is one of the advantages of ASL fMRI when 

compared to BOLD fMRI – the baseline variation that affects the T2* does not affect the 

perfusion measurements. It is possible to see that from block 12 to 13 for the averaged T2* 

results in Fig. 46, where the transition between acquisitions happens, there is a signal baseline 

“jump”. It is also important to note that between these acquisitions only a quick FLASH 2D was 

performed, to assess subject movement. At the 9.4T field there is a high sensitivity for T2*, 

therefore even slight subject motion, resulting in a slightly different voxel position for the second 

scan, could cause a large effect as the one seen in Fig. 46, while at the 3T field it would not be 

visible. 

The percentage change between states was also quite large, when compared to the 

previous results. This might be explained by the higher sensitivity derived from the higher 

magnetic field strength used in this experiment. However, the possibility of a higher signal due 

to external contributions (since the saturation around the voxel was not as good as the previous 

experiments in the 3T field) cannot be disregarded. 

  



74 

 

  



75 

 

Chapter 7 
Conclusions and Future Work 

Regarding sequence optimization, FAIRPRESS with BS yielded the best results. 

However, since the disappointing results obtained with the PCASLPRESS sequence are expected 

to be due to a still unidentified implementation issue, further studies should be done in order to 

test the efficiency of this sequence for measuring perfusion in WM. It is also important to note 

that both BS and PCASL are currently not applicable at higher magnetic field strengths like 

9.4T, due to SAR limitations. 

In addition, both the sequences and the data reconstruction and analysis can still be 

improved to obtain more significant results. 

The technique used in this dissertation for perfusion measurements shows that by 

sacrificing spatial resolution in favor of sensitivity, it is possible to get quantified perfusion 

values with high accuracy, even in WM. The optimized sequences presented in this project could 

be used to characterize and investigate localized WM pathologies. 

 The functional experiments performed in this project showed great potential when 

measuring activation in GM. One possible future application would be to use this technique for 

real-time neurofeedback acquisition, of both T2* and perfusion in the brain during stimulation. 

Functional single-voxel spectroscopy for real time studies has already been tested at 7T, showing 

promising results [63]. 

 However, the results obtained for functional measurements in WM are not clear. The 

majority of the results do not show a significant difference between rest and activation in this 

tissue. Based solely on these results, it could be stated that the changes associated with activation 

in the brain, measured using the techniques described in this dissertation, are purely restricted to 

GM, as previous studies have suggested [7]. It might also mean that the perfusion changes in the 

CC due to activation are very low or simply non-existing, or might occur at a very different 

timing than the one speculated in these experiments. 

 However, for some subjects, a tendency for different perfusion and T2* values between 

activation and rest was observed. This might imply that there may be other reasons why the 

observed change between states was not significant; one possible reason would be that the voxel 

was not correctly positioned in the specifically activated region of the CC. Even though previous 
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studies demonstrate that this region is quite limited, they also show some inter-subject variation 

for activation inside that specific region. Therefore, future work could combine this technique 

with DTI tractography, in order to help in finding the best possible voxel position in the activated 

area of the CC. 

Another possible reason for these results could be that the changes related to activation in 

the CC occur in a much smaller volume than the voxel used in this study. By using DTI, this 

issue could also be addressed, by identifying the appropriate voxel dimension in order to lessen 

the contribution from non-activated tissue inside the selected voxel. 

Despite the different stimuli used throughout the project, it is possible that they were still 

not the best suited for the desired activation effect in the CC; this can also still be improved. 

Also, a larger sample size might have helped to observe the desired difference between rest and 

activation in WM. In the future the number of measurements can still be increased, but the 

acquisition time of the experiment must be taken into account. 

 The negative changes observed for both T2* and perfusion during activation can be 

explained by the vascular steal and active neural suppression theories, presented above in 

Chapter 6. It is interesting to note that the majority of the results close to significance in the CC 

displayed these negative changes. A 2011 study on functional connectivity suggests a negative 

correlation between WM perfusion and GM activity [64], which could also be an explanation for 

these observations. 

 Ways to improve the stability of both T2* and ASL signals would also be beneficial for 

future applications of the techniques described in this dissertation. An optimized implementation 

of this technique for ultra-high field could also help in attaining better results. 

 In spite of the unclear results for the activation experiments, the examined technique 

shows great potential for measuring perfusion in WM. Further investigations, also using this 

sequence, will be necessary for determining the behavior of white matter under activation. 
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