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Abstract

Parkinson’s Disease (PD) is associated to a dopaminergic neural loss in the ni-

grostriatal pathway. Consequently, the temporal organization of motor cortical

activity during muscle contraction and movement planning and execution will

be affected. Disturbances of the dopaminergic system can lead to widespread

motor symptoms such as involuntary oscillatory movements (tremor), bradyki-

nesia, muscle rigidity and postural instability and also cognitive impairments.

Tremor in PD may occur in a rest or posture position or in both situations.

Rest and posture tremors can overlap in frequency. It has been reported that,

during rest, tremor exists in the 4 to 6 Hz range. Concerning postural tremor,

it typically ranges between 5 and 12 Hz, making it difficult to distinguish both

types of tremor, because of the overlapping frequencies.

This study presents a quantitative behavioural analysis of rest and posture

PD tremor in an functional magnetic resonance imaging (fMRI) noisy envi-

ronment. It aims to implement algorithms able to characterize the amplitude

and frequency of PD tremor when a task comprising rest and postural arm

positions was performed. To assess and quantify tremor, both accelerometry

and surface electromyography (sEMG) were used, as they are the most com-

mon techniques to efficiently detect and quantify tremor in PD patients. Six

runs were performed and, in half of them, a superimposed load was placed in

the participant’s wrist. This preliminary study included three idiopathic PD

patients.

Off-line processing started by filtering the sEMG signals to remove fMRI

artifacts, particularly high frequency content resulting from the radio frequency

(RF) pulses and the harmonic related frequencies originated by the magnetic

field gradient applied to acquire the fMRI data. Then, the frequency spectrum

was inspected in order to assess the frequency and amplitude changes across

resting and postural tremor conditions. Parameters such as peak frequency

and power and total power were computed. The envelope of the sEMG signals

was also assessed and the area under the envelope was computed for each

segment. Tremor and nontremor intervals were determined for each run and

each patient and used in a general linear model (GLM) multi-study analysis.
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An additional correlation analysis was performed to understand which were

the most contributing frequency bands for the signal power. The observed

blood oxygen level dependent (BOLD) signal changes could also be correlated

with the different frequency ranges, in a voxel-by-voxel analysis.

Our results confirmed that an upper limb postural position is able to con-

siderably increase tremor amplitude when compared to an upper limb rest

condition. Plots of frequency in function of amplitude showed a distinct peaks

in the 5 to 12 Hz frequency range. Particularly, in one patient peaks around

5 Hz were identified in the postural segments and second peaks were also found

in the 10 Hz frequency. The latter were absent in the other two patients. The

study of a larger and homogeneous population would clarify if the identified

peaks correspond to postural tremor or to re-emergent rest tremor, since they

can coexist at this frequency range. Increasing the number of participants

will also allow to study the effect of loading, which seems to provoke slight

and negligible changes in tremor amplitude (in agreement with what had been

reported in some studies in literature).

Using the signal processing methodology developed throughout this thesis

to analyse accelerometry and sEMG signals recorded in a fMRI environment it

could be possible to distinguish rest from postural tremor. Additionally, con-

comitant acquisition of functional images of the brain can provide an insight of

which regions are activated when different tasks designed to modulate tremor

are performed. The combined information provided by the three techniques,

accelerometry, sEMG and fMRI can be determinant to characterize and sepa-

rate PD tremors and identify the correspondent brain generators.

Keywords: Parkinson Disease, Tremor, Accelerometry, Surface Electromyo-
graphy, Functional Magnetic Resonance Imaging
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Resumo

A Doença de Parkinson (DP) está associada a uma perda de neurónios pro-

dutores de dopamina no sistema nigroestriatal. Por consequência, a orga-

nização temporal da actividade motora cortical durante a contracção mus-

cular e planeamento e execução de movimento vai ser afectada. Distúrbios

no sistema dopaminérgico podem levar à manifestação de sintomas motores

tais como movimentos oscilatórios involuntários (tremor), bradicinesia, rigidez

muscular e instabilidade postural e também défices cognitivos.

O tremor na DP pode ocorrer numa posição de repouso ou de postura, ou

em ambas as situações. Os tremores de repouso e postural podem sobrepôr-se

na frequência. Vários estudos têm evidenciado que o tremor de repouso se

manisfesta no intervalo de 4 a 6 Hz. Por outro lado, o tremor postural revela-

se tipicamente na gama de 5 a 12 Hz, o que torna dif́ıcil distinguir ambos os

tipos de tremor em termos da distribuição de frequências.

Este estudo apresenta uma análise comportamental quantitativa dos tremores

de repouso e postural na DP associada a um estudo de imagem por ressonância

magnética functional (fMRI em inglês). O objectivo é implementar algoritmos

que consigam caracterizar a frequência e amplitude do tremor na DP manifes-

tado quando é realizada uma tarefa em que a posição do braço do participante

alterna entre o repouso e a postura. Para avaliar e quantificar o tremor durante

a realização da tarefa foram adquiridos simultaneamente sinais de acelerome-

tria e electromiografia de superf́ıcie (sEMG). Estas duas técnicas têm sido fre-

quentemente utilizadas para detectar e quantificar o tremor na DP. A tarefa foi

realizada seis vezes em cada sessão sendo que em três delas foi adicionado um

peso a cada pulso do participante. Este estudo preliminar incluiu três doentes

parkinsónicos idiopáticos.

Na análise off-line, os sinais de acelerometria e sEMG foram filtrados re-

movendo assim os artefactos introduzidos pelo pulso de radiofrequências e pe-

los gradientes de campo magnético aplicados durante a acquisição das imagens

funcionais. De seguida, procedeu-se à inspecção do espectro de frequências por

forma a avaliar as alterações a ńıvel de amplitude e frequência ao longo da re-

alização da tarefa. Foram calculados parâmetros tais como picos de potência e
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frequência correspondente e potência total do espectro para cada um dos seg-

mentos da tarefa (em repouso e na postura). O envelope do sinal foi também

avaliado e a área abaixo do envelope foi determinada para cada segmento da

tarefa. Foram também determinados os intervalos em que há tremor para cada

sinal, sendo essa informação utilizada numa análise multi-estudos que aplica

o Modelo Linear Geral (GLM, em inglês). Foi ainda realizada uma análise

adicional com o objectivo de perceber quais as bandas de frequência que mais

contribuem para a potência do sinal. As gamas de frequência podem também

ser correlacionadas com as alterações observadas no sinal BOLD (Blood Oxygen

Level Dependent).

Os resultados confirmaram que a manutenção dos braços numa posição pos-

tural origina um aumento considerável da amplitude do tremor, comparando

com a posição de repouso. Os gráficos da frequência em função da amplitude

mostraram picos distintos no intervalo de frequências de 5 a 12 Hz. Nomeada-

mente, num dos doentes foram identificados picos de potência próximos de 5 Hz

nos segmentos de postura. Foram ainda identificados segundos picos perto de

10 Hz. Estes últimos estão ausentes nos gráficos dos segmentos de postura para

os outros dois doentes. O estudo de uma população maior e homogénea vai

esclarecer que tipo de tremor, postural ou reemergente, dá origem aos picos

identificados, sendo que ambos os tremores podem co-existir na mesma gama

de frequências. Aumentar o número de participantes vai permitir estudar o

efeito da introdução de um peso durante a tarefa, o que se verificou que não

resultar em alterações consideráveis na amplitude do tremor.

A metodologia de processamento de sinal desenvolvida ao longo desta tese

teve como objectivo analisar sinais de acelerometria e electromiografia de su-

perf́ıcie adquiridos dentro de um scanner de ressonância magnética. Foram

ainda calculados parâmetros que possibilitam a distinção dos tremores de re-

pouso e postural. Adicionalmente, a obtenção simultânea de imagens fun-

cionais pode revelar informação acerca das regiões do cérebro que são activadas

quando diferentes tarefas concebidas para modular o tremor são executadas.

Combinar a informação fornecida pelas três técnicas, acelerometria, sEMG e

fMRI pode ser determinante na caracterização e separação dos tremores da

DP e também na identificação dos circuitos cerebrais que os desencadeiam.

Palavras-chave: Doença de Parkinson, Tremor, Acelerometria, Electro-
miografia de Superf́ıcie, Imagem por Ressonância Magnética Funcional
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Chapter 1

Introduction

1.1 Motivation and Goals

Tremor is a clinical problem which has held the attention of researchers for

several years. Specifically, tremor classification has been of major importance

to determine a more accurate diagnostic and treatment.1 In the first instance,

tremor is defined as an involuntary movement oscillation, rhythmic and nearly

sinusoidal, characterized by particular amplitude and frequency content.2–4

Classification of the different types of tremor can be achieved by clinical subjec-

tive observation, standardized rating scales and signal processing methods.2,5

However, a lack of standard criteria to differentiate efficiently the different

types of tremor still exists because there are features of tremor that need to

be better understood. For example, it has been reported a 40% misdiagnosis

rate in a Parkinson’s Disease (PD) population which presents mixed forms of

rest and postural tremors.6 Thus, the study of tremor is of critical importance

to make possible an accurate classification of rest and postural tremor - the

latter being present in both PD and Essential Tremor (ET) neurodegenerative

disorders - and also improve differential diagnosis.2,4, 7, 8

Classification of tremor depends on the chosen criteria. In other words,

the different types of tremor can be divided in two major groups, depending in

which circumstances they occur, in rest or action tremor, the latter can include

postural and kinetic tremors.2,4, 7, 9, 10 Tremor can also be classified according

to its underlying cause in two main groups: physiological and pathological

tremor, the latter including ET and PD which are reported to be the most

diagnosed tremor disorders.4,7, 9, 11

Parkinson’s disease is considered to be the most suitable clinical model

to understand tremor. It is a chronic progressive neurological disorder with

1



2 CHAPTER 1. INTRODUCTION

motor and non-motor manifestations that will be responsible for the gradual

decrease in quality of live of patients.5,12,13 It is the second most common

progressive neurodegenerative disease. It affects about one million Americans

and more than five million subjects worldwide.14,15 Moreover, it is expected

an increase in PD prevalence in the next 20 years caused by population ageing.

So the need has been recognized for more suitable methods to deeply and fully

understand the triggers and neuronal circuits involved in this brain disease

in order to develop suitable treatments, that could help to, at least, optimize

patients’ quality of life.12,14

Parkinson’s disease results from disturbances in the dopaminergic system

which will affect the function of neuromuscular system, resulting in movement

abnormalities that typically include involuntary oscillatory movements (tremor

at rest), bradykinesia (slowness of movements), muscle rigidity and postural

instability - motor symptoms - accompanied by cognitive impairment, depres-

sion and sensory and sleep abnormalities - non-motor symptoms - among oth-

ers.4,5, 7, 12, 16 Tremor is present in more than 70% of patients diagnosed with

PD.3,7 Its classic manifestation occurs in stable positions as rest tremor, al-

though postural tremor is also been often seen in PD patients. These two types

of tremor can be defined by frequency ranges that overlap - rest tremor oc-

curs in the 4 to 7 Hz and postural tremor manifests in the 4 to 12 Hz frequency

range.10,15,17 Additionally, a re-emerging rest tremor can occur few seconds af-

ter patients stand in a postural position, presenting the same tremor frequency

range of rest tremor and suggesting that both rest and re-emergent tremors are

also triggered by the same pathophysiologic mechanism.10,11,17,18 Finally, be-

sides the classical rest or postural tremors, other types, such as kinetic tremor

can occur in PD patients, depending on how voluntary movements of the limbs

are performed.5,6, 8 In fact PD is a rather heterogeneous neurodegenerative

disorder, with differences in expression among patients, thus increasing data

variability.11,13 Better characterization of rest and postural tremors is impor-

tant in order to easily recognize them among the several parkinsonian tremor

phenomenologies and reduce the misdiagnosis rate.18,19

In this study, tremor will be accessed and quantified using accelerometry

and surface electromyography (sEMG). Those are the most reported tech-

niques presented in literature. They are considered to be non painful, non

invasive, easy to use and relatively low cost.2,4, 9, 10 The acquired signals will

then be processed off-line and tremor will be quantified using computational

algorithms. Among other parameters, frequency and amplitude are often as-
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sessed when studying tremor.2,19,20

Also, in previous works of our group21–23 accelerometers were used to quan-

tify tremor in idiopathic PD and ET patients and in a control cohort. The

three groups performed different tasks combining blocks of resting with pos-

tural positions21 and resting with kinetic movement22,23 (see Procedures22,23).

In both studies, a load condition was also tested by adding load to patients’

wrists during some of the tasks performed. Fourier analysis was used to com-

pute the area under the curve of the frequency versus amplitude. In the rest

vs postural task results pointed to a higher tremor variation in the dominant

arm (most affected limb). It was observed a statistically significant increase

in tremor amplitude only for the unloaded tasks in PD patients comparing

to controls.21 On the other hand, in the rest vs kinetic task, loading allowed

a better differentiation between the studied groups.22,23 In both studies, the

results obtained for the area under the curve did not enable to distinguish PD

from ET tremor, which presented overlapping results. This work sheds a light

on the motivation of this thesis, i.e, it helps to define which factors should

be explored in order to understand which are the main causes that can trig-

ger tremor modulation. Based on that, in this study it was decided to assess

tremor using both accelerometry and sEMG techniques, to include blocks of

resting and postural conditions in the task, to assess the effect of medication

withdrawal and loading and finally to implement suitable signal processing

algorithms, able to identify and characterize PD tremor. An accurate compu-

tation of rest and postural parameters, will improve its differentiation.

The study of tremor modulation can be assessed, simultaneously with ac-

celerometers and sEMG. Adding neuroimaging techniques, namely functional

magnetic resonance imaging (fMRI) will be of major importance to understand

the neuronal circuits involved in PD tremor modulation and the functional

connectivity of the involved brain areas.5,24–26 Literature reports the existence

of a tremor network that includes both basal ganglia and cerebellar circuits.

However, tremor has not been associated with a specific generator in the brain.

Therefore, fMRI can play an important role in the visualization of the brain

regions responsible for triggering tremor.9,27 The effect of rest and posture

tasks on PD tremor will be analysed by correlating the changes in amplitude

and frequency, assessed with accelerometry and sEMG, with the blood oxygen

level dependent (BOLD) contrast functional images. During acquisition in the

fMRI environment, sEMG signal is perturbed by artifacts of high amplitude

and frequency that ”hide” the real electromyographic signal. Thus, one of the
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main purposes of this thesis is to accurately remove artifacts of the signal by

developing two different approaches using signal processing methods. Such

that critical pre-processing steps are very important for subsequent statistical

modelling of the data.



Chapter 2

Tremor Classification

Tremor is a very common movement disorder symptom associated with several

unanswered questions, mainly concerning its pathophysiology.2,27 It is defined

as an involuntary, roughly sinusoidal and rhythmic movement of a body part.6

Amplitude and frequency are the most important neurophysiologic parame-

ters and are widely used in tremor characterization.2,15 Those parameters

can describe the involuntary oscillatory motion manifested by tremor, which

pathophysiology varies amongst all types of tremor and therefore still remains

unclear.2,20

2.1 Tremor classification based on occurrence

In Parkinson’s Disease (PD) rest tremor seems to be correlated with the rhyth-

mic activity observed in basal ganglia structures and thalamus. On the other

hand, only postural tremor has been reported to be the result of the activity

in cerebellum. Therefore, eventually, rest and postural tremors in PD can be

modulated by different neural networks.28

2.1.1 Rest tremor

Rest tremor can be characterized by a ”pill-rolling” tremor which occurs when

the body part stands in a relaxed position, completely supported against

gravity (e.g., forearm resting on a chair), without any voluntary muscle ac-

tion.2,4, 7–10,29 Tremor amplitude increases with mental stress (e.g., cognitive

task performance such as counting backwards) or when performing an action

with another body part (e.g., walking) and decreases when an action is per-

formed by the affected limb or even disappears during sleep.2,4, 5, 7, 9, 15,29 This

5
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tremor has been reported to manifest also as a re-emergent tremor, it dimin-

ishes or even vanishes when subject performs any movement of the affected

body part and reappears, with the same frequency, a few seconds after that

member is kept static in a postural position.2,4, 5, 8, 10, 11,18,27,29,30 Rest tremor

is characterized by sinusoidal oscillations and a frequency that ranges between

4 Hz to 7 Hz (see Table 2.1). Re-emergent tremor was reported to present

a 5.5 Hz mean frequency.5 The major cause of rest tremor is idiopathic PD,

which in turn is the most common cause of parkinsonism. More than 70 % of

patients diagnosed with PD manifest rest tremor at disease onset (usually after

the age of 60), slowly progressing during the course of the disease.5,7, 9, 10,16,29

It was also reported a 68% to 100% prevalence of rest tremor, sometime during

the patients’ disease course.17

2.1.2 Action tremor

Action tremor manifests when performing voluntary muscle contraction.2,4, 7, 15

This tremor is the major responsible for patients’ motor disability.17 It is char-

acterized by a higher frequency range than rest tremor and non-harmonically

related.2,11

Action tremor includes postural, kinetic, intention, isometric and task-

specific tremors.2,7, 10,15 Task-specific and intention tremors are considered by

some authors as subtypes of kinetic tremor.2,6 Task-specific tremor can be

caused by the execution of certain tasks such as writing or playing a musical

instrument. This type of tremor has not gathered consensus in the scientific

community in terms of its origin and nature, being considered by some authors

as a subtype of essential tremor.2,4, 10 Intention tremor occurs when the subject

voluntary and physically interacts with some object, after previous observation

(visually guided or target-directed movements). It develops due to the cerebel-

lum lesions and can be identified with a finger-to-nose test.2,4, 7, 10 Isometric

tremor develops when a muscle contracts against a stationary/fixed object,

without moving the affected part (e.g., when making a fist).2,4, 7, 10, 15 Postural

and kinetic tremors will be presented below using more detailed information.

2.1.2.1 Postural tremor

Postural tremor manifests in up to 60% of PD patients and is more prominent

and disabling than rest tremor, which encourages its accurate classification.5,10

It can be observed when the affected limb is positioned on the opposite direc-
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Table 2.1: Frequency of rest, postural and action tremors

XXXXXXXXXXXXXX
Author

Tremor
Rest Postural Action

Edwards et. al.29 3-4 Hz
6-8 Hz

Massano & Bhatia31

3-6 HzHess et. al.2 5-8 Hz

Grimaldi et. al.9 4-12 Hz

Jankovic et.al.5

4-6 HzVaillancourt & Newell3 5-12 Hz

Deuschl et. al.8
4-9 Hz

Helmich et. al.11

Buijink et. al.10 4-9 Hz

Elias et. al.15 4-7 Hz

tion of the gravity force during at least 30 seconds (eg. stretching out the

arms).2,4, 7, 9, 10,15 The reported frequency range of postural tremor is 4-12 Hz

and its main cause is essential tremor.9,29 Postural tremor amplitude can

increase by adding a load (e.g., when holding a book or glass).15

2.1.2.2 Kinetic tremor

Kinetic tremor occurs during positional changes i.e., when some tasks or ac-

tions are performed voluntarily by the affected body part (e.g., finger-to-nose

test) and takes its maximum value near the target.4,7, 9, 15,32 In most reported

cases, kinetic tremor frequency ranges from 2 Hz to 7 Hz9 and is a character-

istic of the cerebellar diseases. Its amplitude markedly increases at the onset

of voluntary movement.32 A less severe form of kinetic tremor is present in al-

most every PD patient8 although isolated manifestations of this type of tremor

rarely occur.6

2.2 Tremor classification based in the under-

lying cause

Tremor can also be divided according to the underlying cause in two main

groups, physiological and pathological tremors.

Physiological tremor manifests in healthy subjects and is not disabling

or easy to detect. It is prompted by some external factors which include
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stress, anxiety, muscular weariness, scary or exciting moments.4,9, 15,26 Wors-

ened symptoms can be caused by excessive consumption of alcoholic drinks,

drugs and toxins (caffeine). Tremor disappears when these type of causes are

eliminated and does not manifest in daily activities.4,10 This tremor can be

detected in flexion and extension movements, increasing its frequency with

muscular fatigue. It can be defined as high-frequency (5-12 Hz range), low-

amplitude, mostly postural and bilateral tremor. Physiological hand tremor

presents an high-frequency range of 8-12 Hz, with low-amplitude that approx-

imates to a sinusoidal movement.10,15,20,26,33

In the following section pathological tremors will be submitted to a deeper

characterization.

2.2.1 Pathological tremor

Pathological tremors are generated by a so far unknown mechanism in the

central nervous system.27 They are characterized by a dominant frequency,

which remains constant with little variations.33

It has been suggested that PD rest tremor and essential tremor share the

same direct generator, the cerebello-thalamo-cortical network which, however,

is thought to be differently activated, depending on the considered tremor.11,27

2.2.1.1 Parkinson’s Disease Tremor

Prevalence in PD increases with age, affecting about 100-300 per 100 000 in-

habitants over the age of 8034,35 and consequently decreases in countries with

lower life expectancy.16 This prevalence increases to 1% when considering sub-

jects over the mean age at onset (60 years).10,14,16 The disease duration from

diagnosis to death is 15 years.35

The disease is prompted by the loss or degeneration of dopamine-producing

neurons in the substantia nigra pars compacta and is also characterized by

the presence of neuronal Lewy Bodies in those dopaminergic neurons. The

substantia nigra pars compacta is part of the basal ganglia of the brain. Basal

ganglia is responsible for a specific effect on the temporal organization of motor

cortical activity during action control. Lewy Bodies consists of cytoplasmic

inclusions in the neurons composed of various proteins such as synuclein and

ubiquitin. These structures exists in the basal ganglia, brainstem and cortex,

increasing in number as the disease progresses. As consequence, the motor

control is severely affected. The most potential risk factors are age, family



2.2. TREMOR CLASSIFICATION BASED IN THE UNDERLYING CAUSE9

history and drug history (e.g. contact with pesticides).5,12,13,16,26,36

Motor impairments comprise tremor, rigidity, akinesia (or bradykinesia)

and postural instability.5,12 Those symptoms typically arise when dopamine

producing neurons degeneration in substantia nigra is up to 50-70%.12 Akinesia

(slowness of movement) includes movement impairment, fatigue and decrease

in amplitude of repetitive movement.5,12 A PD patient can present mainly

akinesia and rigidity or instead manifest prominently tremor.15 It has been

observed that patients with tremor at the onset show a slower progression of

the disease comparing than those with postural instability.13

PD tremor can be manifest in a rest or posture position or in both sit-

uations. Thus, it is sometimes difficult to distinguish both types of tremor.

Furthermore, the postural position tremor can be very similar to essential

tremor, overlapping in frequency. Rest tremor in PD lies in the 4-7 Hz fre-

quency range, while postural tremor frequency ranges from 4-12 Hz.2,7, 20,37

PD tremor diminishes or even disappears when movements are performed.27

This tremor is typically asymmetric (affects more one side of the body compar-

ing to the other) and unilateral at the onset (progressing to bilateral tremor

overtime).4,7, 12,16,38 The writing is small and hardly readable.4 Alcohol intake

has no effect on tremor.10 Voluntary movements tend to decrease PD tremor.7

There are also non-motor symptoms arising in the course of the disease

which significantly accounts for patients’ impairment. It includes cognitive

impairment (dementia), depression, sleep disturbance, sensory symptoms (e.g.

pain), fatigue and olfactory disturbances.5,16,26 Almost 80% of PD patients

present olfactory changes, independent of the disease stage and duration.10

The severity of PD symptoms is typically assessed using standardized rating

scales such as the Unified Parkinson’s Disease Rating Scale (UPDRS) and the

Hoehn & Yahr scale. UPDRS is the most used clinical test for PD diagnosis,

usually based on physician’s subjective examinations, that assesses disability

and impairment (see Appendix A). Disease severity increases with the scale

result.5,39,40 Hoehn & Yahr staging provides descriptive information about the

disease progression stages (see Appendix B).4,5, 16

Nevertheless, motor and non-motors symptoms vary among patients due

to each individual lifestyle and characteristics thus justifying the need for a

specific diagnosis.5 Specific medical and surgical therapies were developed to

reduce the impact of those symptoms. Among medical treatments, adminis-

tration of levodopa and other dopamine agonists are often chosen.15,16 Tremor

response to dopamine administration in PD population has been reported
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to be more variable comparing to bradykinesia and rigidity. In fact, some

patients report tremor attenuation when submitted to dopaminergic treat-

ment, in other no changes are detected and in other cases the patient presents

worsened tremor.2,6, 11,27,28 Among surgical procedures, Deep Brain Stimula-

tion (DBS) is the most used in PD. It is a reversible surgical therapy performed

in order to attenuate motor symptoms and reduce drug intake, without brain

tissue damage.12,15 However, besides being expensive, DBS is an invasive pro-

cedure that has some risks associated. For example, hardware problems such

as electrode infection and fracture can occur.39

The accurate diagnosis of PD is reported in 70% of patients in the early

stages.40 It accounts for the need for suitable methods such surface elec-

tromyography (sEMG) and kinematic measurements to analyse and character-

ize tremor and usually improve clinical assessment of the disease.20,40–42 Those

methods can be used in clinical experiments performed during a brief period of

time during day (objective measures of tremor or short-term recordings) or can

be used to continuously monitor disease features during day (subjective mea-

sures or long term recordings).41 Using objective measures different results can

be obtained due to oscillations in PD features severity during day, which makes

these momentary disease state evaluation less accurate. On the other hand,

subjective measures present some inconveniences such as daily movements as

tooth brushing being confused with tremor and specific conditions being re-

quired to acquire sEMG signals such as continuous skin suitable properties.41,42

Based on that and due to the limitations in the long-term acquisition of the

signals using the accelerometers and sEMG techniques, short-term recordings

were performed.

2.2.1.2 Essential Tremor

It is the most common movement disturbance in clinical practice, with no

gender or ethnic group distinction. This mean age of this disease onset is

about 45 years. Although ageing is considered a risk factor, Essential Tremor

(ET) onset can occur during childhood or in early adulthood.2,4, 10 This type

of tremor is more evident in subjects’ hands, affecting upper limbs in 95% of

the diagnosed cases, but can also be identified in head, lower limbs, speech,

face and trunk. It is typically an action tremor, with contributions from either

postural or kinetic conditions, the latter presenting higher tremor amplitude.

ET is a typical bilateral and symmetrical tremor (both sides of the body are

equally affected), occurring in the 4 to 12 Hz range. Roughly 18 % of ET
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patients manifest rest tremor.2,6, 10 Applying a load upon the limb does not

affect the tremor frequency due to the activation of a fixed central oscillating

mechanism.10 A positive effect of alcohol intake is a way to detect ET.10

Misdiagnosis rate in ET patients ranges from 25-50%, and it is often mis-

diagnosed with PD. Two hypothesis are considered, or this two disorders

share a common syndrome or ET patients progress to PD.4,15,28 Back to 2007,

Mansur et.al.,4 reported that research in ET physiopathology field (autopsies,

computed tomography and magnetic resonance imaging scans) reported no

signs of abnormality. Thus its pathophysiology still remains unknown.15





Chapter 3

Protocol

This chapter presents and describes the inclusion and exclusion criteria, the

task performed by the participants, the acquisition setup including all param-

eters defined to acquire surface electromyography (sEMG) and accelerometric

signals, and in the case of sEMG the on-line processing.

3.1 Patient selection and staging

In this study patients were diagnosed with idiopathic Parkinson’s Disease

(PD). Neurologists have staged PD using standard scales - Unified Parkin-

son’s Disease Rating Scale (UPDRS) Motor score (items 18-31, see Appendix

A) and Hoehn & Yahr stages (see Appendix B). To participate in this study

subjects had to be over 20 years and present a subsequent DaT-SPECT and

structural MRI with no changes. The Edinburgh Handedness Inventory43 was

filled for each participant in order to assess patient’s laterality. Inspection of

the clinical history, Beck Depression Inventory (BDI-II) and cognitive evalua-

tion using Montreal Cognitive Assessment (MoCA) helped to identify patients

with other neurological and psychiatric disorders or medication unrelated to

the treatment of the studied conditions and therefore that did not fulfil the

inclusion criteria. Subjects who had other possible causes for their tremor such

psychogenic or neuropathic tremor or drug-induced tremor/parkinsonism were

also excluded. Patients with cephalic tremor did not participate in the study.

In sum, subjects that have any other disease liable of interfere with motor

function were not included in the study. After giving their informed consent

four participants (three patients and one control) were included in this prelim-

inary study, after giving their informed consent. The patient group consisted

of three idiopathic PD patients and is characterized in Table 3.1. All patients

13
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Table 3.1: Clinical characteristics of patients
with Parkinson’s disease

XXXXXXXXXXXXXX
Characteristic

ID
1 2 3

Age (years) 33 36 71

Gender F F M

Duration of disease (years) 1.5 1 3

MoCA score 27 29 20

BDI-II score 12 10 1

UPDRS Motor score 8 35 22

Hoehn & Yahr stage 1 2 2

Right-handedness (y/n) y y y

Medication withdrawal (y/n) y n y

Rest tremor (y/n) n n y

Dominant arm (l/r) r l l

ID: patient’s identification number; UPDRS: Uni-
fied Parkinson’s Disease Rating Scale; MoCA:
Montreal Cognitive Assessment, normative for age
and education; BDI-II: Beck Depression Inven-
tory.

revealed an asymmetric tremor. This study and all procedures were reviewed

and approved by the Ethics Commissions of the Faculty of Medicine of the

University of Coimbra and were conducted in accordance with the declaration

of Helsinki. Written informed consent was obtained from all participants.

Until now medication withdrawal has gathered no consensus, in terms of

experimental results. Two studies concluded that maintaining medication be-

fore experiment lead to a decrease in tremor amplitude44 and absolute power45

of rest and postural tremors. On the other hand, Sturman et.al.46 compared

the performance of rest and postural tasks under medication and off treat-

ment. They observed a reduction in rest and postural tremor amplitude and

an increase in tremor frequency in the on medication condition. Kulisevsky

et. al.45 found that drug intake before task performance influenced differently

the dominant tremor frequency which decreased for rest task frequency and

increased for postural task.45 Nonetheless, it was decided that our patients

should stop medication 12 h before the beginning of the experiment.

Regarding loading it should be mentioned that its introduction in the pro-

tocol was also prompted by the controversial debate concerning its effect in



3.2. TASK DESCRIPTION 15

parkinsonian tremors. Some studies report no significant differences in tremor

peak frequency when load is placed in PD patients’ wrists or hands during the

execution of a postural task compared to the unloaded postural condition.47,48

Another study, testing the same postural condition with and without load,

observed that the first peak frequency had not shifted by adding load, contrar-

ily to the second peak which changed to a lower frequency.49 Also, Hwang et

al.37 reported no differences in tremor intensity between postural load and un-

loaded conditions recorded in patients’ hands. Finally, Burne et.al.32 verified

that loading had no significant effect in rest tremor amplitude. However the use

of a load condition is still controversial37 since it was recently reported/stated

that postural tremor amplitude can increase by adding a load.15

3.2 Task description

This study is divided in two separated experiments: one conducted in the out-

bore environment, outside the functional magnetic resonance imaging (fMRI)

scanner, recording only accelerometric and electromyographic signals and here-

after the in-bore environment, inside the fMRI scanner, simultaneously with

the previous techniques.

During both experiments, participant’s actions were visually guided. Dif-

ferent ball colours (blue and red) and screen positions were chosen to represent

the two arms (left and right, respectively). Those balls were initially placed on

the bottom of a 33.8×27.1 cm computer screen (1280×1024 pixels), as can be

seen in Figure 3.1. This stimulus was presented using Physicophysics Toolbox

Version 3, a free set of Matlab R2010a. Each participant had to follow the

balls movement with both arms.

Figure 3.1: Visual guidance to help subjects perform the task.
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Each run was composed by 21 segments resulting from the execution of five

blocks of four segments and an extra baseline segment added at the end of the

run in order to start and end each run with a baseline condition (see Figure

3.2). It results in a 6.50 min single run duration which includes the following

segments:

� Six segments started with the participants arms in a relaxed position,

placed near the body (rest condition) for 30 s.

� Five segments in which arms started an ascending 6 s movement.

� Five segments in which the arms remained for more 30 s at a shoulder

flexion with the elbow at full extension and forearm pronation (posture

position).

� Five segments in which arms started a descending 6 s movement back to

the rest position.

All subjects were asked to lay down (in supine position) with their hands

facing down (see Figure 3.3). Each participant performed runs with and with-

out a 0.5 kg load placed in each wrist (see Table 3.2).

45°

45°

...

Baseline (30 s)
Up (6 s)
Top (30 s)
Down (6 s)

Figure 3.2: Both out-bore and in-bore and in-bore experiment sequence of motor paradigm.
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Table 3.2: Load sequence

Run 1 2 3 4 5 6 Time (min)*

In-bore Unload Load Load Unload Unload Load 39

Out-bore Unload Load Unload Load - - 26

* Total task duration.

3.2.1 Out-bore experiment

The out-bore experiment was designed to characterize tremor during rest, pos-

ture and ascending and descending arms movement, with loaded and unloaded

conditions. Accelerometry and surface sEMG techniques were used to acquire

out-bore data, which can be used to control the in-bore artifact removal. The

experiment consisted of four runs with and without added load (see Table 3.2).

3.2.2 In-bore experiment

The in-bore experiment shares the first purpose of the out-bore study, i.e.,

to characterize tremor using a block related design in which rest and postural

conditions, with and without added load, are alternated and differences in neu-

ral activation are correlated. This experiment also aims to use accelerometer

and sEMG data to identify fMRI predictors in order to help to determine the

neural basis of tremor. Additionally, it was designed to develop solutions to re-

late synchronous signals and get further pathophysiological insights in tremor

genesis. In this part of the study, in order to increase the statistical power of

the fMRI analysis, two runs were added to the out-bore sequence (see Table

3.2), with the same duration as for the out-bore experiment.

3.3 sEMG setup

Disposable Ag/AgCl electrodes compatible with MR environment (disc shape,

unshielded, radio-translucent, EL254RT, 7.2 mm diameter housing, 4 mm di-

ameter of the contact area, MRI Touchproof, BIOPAC) were chosen to detect

sEMG signals in the abductor pollicis brevis (APB) hand muscle in both arms

(see Figure 3.4). This muscle was chosen since PD tremor is frequently asso-

ciated with the thumb movement towards the index finger - ”pill-rolling” rest

tremor.39,50
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a)

b)

Figure 3.3: a) In the out-bore setup two wooden bars connected with a wire were placed
along participants body in order to define arms rising up amplitude of 45°. All experiment
was recorded using a video camera. Loads were added during the task. b) In the in-bore
setup patients raised their arms up towards postural position, until the maximum range
compatible with the space in the MRI scanner, between 30°to 40°. In-bore cameras were
used to control the acquisition.

After determination of the proper location in the muscle to attach the

electrodes, skin was carefully cleansed with alcohol and abrasive gel (Nuprep,

D.O. Weaver and Co) to reduce skin-electrode impedance. This procedure is

sufficient since the tasks involves static and slow motion movements and our

goal is to quantify parameters such amplitude.51 Electrodes were filled with

sEMG electrode gel (Signa Gel, PARKER) and fixed to the subjects skin using

tape.

Inside the scanner, during in-bore experiment, movement artifacts can be

produced by the sEMG electrode wires movement. When a subject performs

the task, a conductive loop can occur in a non uniform magnetic field as result

of the electrode wires movement. In order to reduce the differential effect of

the magnetic field, the electrodes were disposed alongside the subject and were

fixed to a gutter existing in the scanner in both sides of the body, (see Figure
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3.6).25,52,53

3.3.1 Analog Filtering

Following the scientific recommendations from the International Society of

Electrophysiology and Kinesiology (ISEK) and from Surface Electromyogra-

phy for Non-Invasive Assessment of Muscles (SENIAM), no hardware filters

(e.g. notch filters) able to destroy signal content were applied during sEMG

acquisitions. On-line processing consisted in application of only a bandpass

amplifier filter (Biopac Systems Inc., Goleta, CA, USA) in order to avoid

anti-aliasing effects within sampling.51,54 sEMG signals were then amplified

(differential amplifier, with input impedance of 2 MΩ and total gain 5000).55

Signals were also analogically bandpass filtered by applying a lowpass filter

at 500 Hz (−20 dB/decade) and a high pass filter at 1 Hz (20 dB/decade), both

single pole roll-off.55 The low frequency cut-off of 1 Hz was set in order to allow

detection of the parkinsonian tremor frequencies (rest 4-7 Hz and postural

4-12 Hz tremors, instead of choosing a cut-off frequency in the 5 to 20 Hz

range usually indicated to filter sEMG signals.3,54 The low frequency cut-off

of the bandpass filter should also take into account the possibility of removing

interferences such as the baseline drift that could be originated by movement

or perspiration and should also remove the DC offset, leading the mean of the

signal to become nearly or totally zero.54 On the other hand, the bandpass

high frequency cut-off should be set in order to remove high frequency noise

and avoid aliasing of the signal. The value of the bandpass high frequency

cut-off should be high enough to allow identification of rapid on-off bursts of

the sEMG and, typically, should range between 200 - 1000 Hz.54 In this study,

the high frequency cut-off was set to 500 Hz (see Figure 3.4).

International Society of Electrophysiology and Kinesiology (ISEK) and

Surface Electromyography for Non-Invasive Assessment of Muscles (SENIAM)

recommend a sampling rate of at least twice the cut-off frequency of the analog

low pass filter used. However, there are some authors20,54 that recommend a

higher sampling rate of, at least, five times the nominal low pass filter cut-off

frequency, in order to avoid aliasing. Analog low pass filters roll off slowly, re-

quiring a higher sampling frequency to prevent significant power at frequencies,

well above the cut-off frequency, to be discarded.

Therefore, having set the high frequency cut-off to 500 Hz, a sampling rate

of 2000 Hz was used to acquire surface electromyography (sEMG) signals in

the out-bore experiment, determining the higher accuracy possible of 2 ms in
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time, in the subsequent measurements.20,54 In-bore, sampling rate was set to

10 000 Hz due to the occurrence of high frequency artifacts caused by the radio

frequency field (127.73 MHz/T in our scanner).52

3.3.2 Maximum Voluntary Contraction Normalization

Before the beginning of the task, control subjects should perform the Maximal

Voluntary Contraction (MVC) for one minute, in the rest, three times, in order

to proceed for amplitude normalization of the sEMG signal. The aim is to get

unbiased data, which amplitude can be influenced by the detection condition.

In other words, signal amplitude can change by changing electrode placement,

from subject to subject and also by getting measurements of the same muscle

in different days.51,56 Subject has to maximally move the thumb towards the

little finger, in order to obtain effective maximum innervation. This procedure

EXTERNAL 

TRIGGER
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Figure 3.4: MP150 Data Acquisition System is attached to STP100C isolated digital in-
terface which is connected with the UIM100C universal interface module which in turn is
connected to two EMG100C electromyogram amplifier modules. The parameters specifica-
tion is depicted. Interelectrode spacing was set 2 cm from center to center in order to obtain
information about a sufficient number of motor units (MUs).40 The ground electrode was
placed in the subjects’ wrist bone.
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Figure 3.5: Accelerometers configuration: NI USB-6008 channels correspondence to each
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should not be applied to Parkinson’s Disease (PD) patients since MVC require

perfect stabilization and hand supporting which is not the case.51,56

3.4 Accelerometry setup

Three-axis accelerometer transducers (sensitivity ± 200 mV/g, range ± 6 g,

Mag Design and Engineering, Redwood City, CA, EUA), were attached to

the dorsal surface of the hand. Accelerometers were connected to a National

Instruments USB-6008 (with 11-bit input single-ended resolution A/D con-

verter), the data acquisition device chosen to sample the analog data to digital

values.

The accelerometers themselves are analog devices and do not have an inher-

ent sampling rate, but have a 350 Hz (−3 dB) limit in X and Y axis and 150 Hz

(−3 dB) in Z axis. In Matlab acquisition code sampling frequency was set to
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50 Hz. Channels were configured for single-ended input and the acquisition

range was fixed between −10 to 10 V which yields a 9.8 mV resolution.

3.5 fMRI setup

In the fMRI environment, patients were scanned in a 3T Siemens Magnetom

Tim Trio scanner at the Portuguese Brain Imaging Network, using a 12-channel

head coil. A series of T2* weighted echo-planar images of the whole brain with

a resolution of 4×4×4 (3.5×3.5×3.5) mm3, a repetition time (TR) of 3 s and

a echo time (TE) of 30 ms, depicting blood oxygen level dependent (BOLD)

contrast (sensitivity to neural activity), were acquired in each session, together

with an anatomical MRI for coregistration purposes. One complete brain

Magnet room

Control room

Head coil

Accelerometers

sEMG

MP150 (EMG 

module)

NI (ACCEL 

DAQ)

PC saving and display 

Figure 3.6: fMRI acquisition setup.
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volume or scan is acquired every TR. To minimize the motion of the subject’s

head during the study, foam padding was employed.





Chapter 4

Accelerometry

Accelerometers are widely used to detect and quantify tremor, due to its abil-

ity to provide reliable and objective parameters. In this study, capacitance

accelerometers were used, which belong to the group of the micro electro-

mechanical systems (MEM) sensors. They are described by two microstruc-

tures, a set of fixed plates and a flexible plate attached to an internal spring.

Acceleration forces induce a displacement on the movable plate causing a pro-

portional variation of the electric capacitance between the two microstructures

that is measured as voltage by the accelerometers.4,57–59 Additionally, those

capacitance accelerometers are considered to have a wide bandwidth, very high

impedance, high accuracy and good ruggedness.4,9, 57

4.1 Pre-processing

The acquired accelerometric raw data consisted of three signals corresponding

to three axis. A signal was obtained from the Euclidian normalization of the

three acceleration components (see Equation 4.1).26,40

a =
√
x2 + y2 + z2 (4.1)

The accelerometer detects the gravitational component which would ideally

appear only in one of the three axis if the sensor was perfectly aligned with

the Earth’s gravitational field. In practice, a slight misalignment often occurs

and will be reflected in the gravity vector contribution to the three axes in

addition to the movement acceleration already detected in each axis.58

In order to correct for the gravity effects, the normalized signal was seg-

mented in postural and baseline resting segments and the latter were averaged

25
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over time. Assuming the sensor is not rotated significantly, then the average

over all previously obtained baseline means was subtracted from the normal-

ized data. Finally, data were detrended.

4.1.1 Bandpass digital filtering

The same filtering procedure applied to the surface electromyography (sEMG)

signals (see Section 5.1.1) will be also presented in this section. The signal

resulting from the normalization and gravity effect correction was band-pass

filtered using a Butterworth and Chebyshev type I infinite impulse response

(IIR) filters. High cutoff frequency was set to 16 Hz, since the information

related to tremor is located in the low frequencies.3,40–42,46,60 The low cutoff

frequency was set to 1 Hz in order to remove the low-frequency trends caused

by the ascending and descending arm movements (see Figure 4.1).40,42,46,60

Filters were both dual pass, thus filtering data twice (4th order filters) to

obtain a zero-shifted signal in comparison to the unfiltered signal.

The bandpass Butterworth filter was chosen to pre-process all acceleromet-

ric data, besides being often used in similar studies.3,46,60 Unlike Chebyshev,

Butterworth type filtering does not attenuate the signal in the band frequency

of interest (see Figures 4.2 and 4.3).

On the other hand, the roll-off of the Butterworth filter is clearly slower
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Figure 4.1: Frequency response for the two types of IIR filters using the zero-pole-gain
design. In the Chebyshev type I filter design it was used 1 dB of peak-to-peak ripple in the
passband.
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after bandpass filtering between 1 and 16 Hz, using zero-pole-gain design. This signal was
acquired during the in-bore experiment in PD patient 1 (run 6, loaded, right hand).

compared to the Chebyshev filter.

Peak amplitude and frequency were computed using the whole frequency

spectrum (see Figure 4.2).
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Figure 4.3: Time domain representation (fs = 50Hz) of the accelerometry signal after
bandpass filtering between 1 and 16 Hz, using a Butterworth filter (red signal) and a Cheby-
shev Type I filter (green signal). This signal was acquired during the in-bore experiment in
PD patient 1 (run 6, loaded, right hand).





Chapter 5

Surface Electromyography

The function of human neuromuscular system can be assessed using surface

electromyography (sEMG) technique.2,40,51 The control of the muscular con-

traction process is conducted through the motor units (MU), which ensemble a

motor neuron and the muscle fibers innervated. Depolarization and repolariza-

tion of the membrane induces action potentials in the muscle fiber that can be

recorded in sEMG signals.26,51 The resultant electromyographic activity can

be accessed by placing surface electrodes on the skin above the muscle of inter-

est. Frequency and amplitude of the recorded sEMG signals are modulated by

the recruitment of motor units action potentials and the corresponding firing

frequency.51 Evaluation of the muscle performance is a rapid, noninvasive and

painless process when using sEMG technique.4,9, 20 It allows studying the neu-

romuscular activation of muscles within postural tasks, functional movements,

work conditions and treatment regimes.51

Different type of information can be provided depending on what type of

study are we doing. There are static and/or dynamic muscle contractions, i.e.,

with a constant and/or a varying force and posture, respectively.40 Typically,

static sEMG is analysed using methods based on amplitude and Fourier-based

spectral analysis, providing information about the level of muscle activity and

fatigue.3,26,40 On the other hand, there are no suitable methods for dynamic

sEMG analysis, existing a lack of knowledge concerning the relation between

the signal features and the corresponding physiological mechanisms.40

New methods for sEMG analysis have been recently reported and include

nonlinear methods and higher order moments. These new approaches have

been used to analyse sEMG signals recorded during static muscle contraction

and, most recently also during voluntary isometric contractions tasks. Results

have shown that nonlinear methods are more effective in the quantification of

29
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differences in sEMG signals between Parkinson’s Disease (PD) patients and

healthy subjects, when comparing to traditional sEMG analysis methods (i.e.,

amplitude and median frequencies).40,55,61,62

In our study the task performed consists of a block design alternating static

posture and resting positions and ascending and descending dynamic segments

(see Section 3.2). We are particularly interested in the resting and posture

segments rather than ascending and descending movements. The latter last

considerably less time than posture and resting segments and are not in the

scope of this study. Knowing that, tremor amplitude and frequency and other

parameters derived from the spectral analysis will be determined by processing

the sEMG signals. Those parameters can be used to quantify and discriminate

rest from postural tremor.3,10,20

In order to relate brain activity in motor areas and the level of muscle

activation, the described task was performed in the magnetic resonance scanner

simultaneously with sEMG acquisitions.25,52 This chapter’s focus is mainly

the denoising and subsequent analysis of the in-bore sEMG signals. Out-

bore sEMG signals presents no image artifacts and thus will be used, when

necessary, as control signal to be compared with the cleaned in-bore sEMG

signal.52

Two cleaning methods were implemented in order to reduce and/or remove

the functional magnetic resonance imaging (fMRI) artifacts. One of them used

digital filters to eliminate the high frequency content of the sEMG signal. The

other was the so-called wavelet analysis and has been proved to be a suitable

method to filter signals in different frequency bands.26 In PD studies, wavelets

have been mainly used to extract features from sEMG signals.63–65 It is the

first time this method is used to clean noise of sEMG signals acquired in an

fMRI environment.

Signal processing was conducted using MatlabTM (MathWorks Inc.). A

diagram of the analysis is depicted in Figure 5.1.

5.1 Pre-processing: IIR Filtering

The raw sEMG signal can present a baseline shift from the true zero line, i.e.,

when the mean of the signal is different from zero. Knowing that, the first

step is to subtract that offset from the signal.51,54

Out-bore sEMG signals can be affected by the ground noise from the power

net which will be reflected in the increase in the baseline amplitude in the
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time domain and can also be seen in the frequency domain as the 50 Hz peak

frequency.51 This kind of interference is due to hardware problems (e.g., poor

grounding).

Artifacts originated by different sources can occur in the in-bore sEMG

signal. They can be divided in magnetic field gradients (used for proton exci-

tation and spatial localization), the radio frequency (RF) pulse and movement

artifacts (see Section 7.1).25,52 RF pulse artifact presents a much higher fre-

quency than sEMG (typically 64 MHz at 1.5 T) being easily removed using a

low-pass filter.52,66 Movement artifacts are generated by electrode wires move-

ment during the task performance and can be restrained by fixing those wires

(see Section 3.3 for more detailed information).

During the in-bore environment, echo-planar imaging (EPI) introduces the
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magnetic gradient field artifacts in the sEMG signals (see Section 7.1). Those

artifacts span the entire sEMG spectrum, not vanishing after applying a low-

pass filter. The gradient fields are applied every time an image slice of the

brain is acquired.52,53 As the image sequence repeats every 138.52 ms, the

gradient field artifacts will appear at a slice acquisition frequency of ∼ 14.33 Hz

and multiples. Peaks at ∼ 7 Hz and multiples, of lower amplitude, were also

identified (see Figure 5.2).
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Figure 5.2: Gradient field artifacts identification in sEMG signal recorded in the in-bore
experiment in PD patient 1. Noise is clearly present in frequencies in the multiple of 14.33 Hz.

5.1.1 Bandpass digital filtering

Knowing that, the next step was to design a bandpass filter able to, in the

first place, remove the high frequencies of the signal and hence the RF pulse

artifact and the 50 Hz power hum noise.

There are two types of digital filters, the finite impulse response (FIR)

or non-recursive filters and the IIR or recursive filters. The first has a finite

impulse response duration and only depends on the input samples. The latter

has an infinite response duration and depends on both input and previous

output samples.67 In this work we will use IIR filters since they allow to

achieve a set of design specifications with smaller filter order compared to the

FIR filters. IIR filters use feedback loops to achieve a steeper response with

far less coefficients. The feedback is also responsible for a response that never

decays to zero when an impulse is applied to the filter.68 Two types of IIR
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filters, the Butterworth and Chebyshev Type I were analysed in this project

and the best suitable filter to our purpose was applied to all sEMG filters.

Both types of filters are characterized by the following transfer function of

nth-order:

H(z) =
B(z)

A(z)
=

∑M
n=0 bnz

−n∑N
n=0 anz

−n
=
b0 + b1z

−1 + ...+ bMz
−M

1 + a1z−1 + ...+ aNz−N
; a0 = 1 (5.1)

with bn and bn corresponding to the filter coefficients.

The order of the filter was set knowing that the higher the order, more

noticeable will be the Gibbs phenomenon in the output of the filter. This

phenomenon is more evident when the signal presents on-off transitions. This

is the case of our sEMG signal which presents periods of muscle relaxation and

steadiness (during resting position segments) and hence low amplitude.

The filtfilt Matlab routine was used to filter data forward and back-

ward, avoiding zero-phase-shift between the original and the filtered signal.

However, by using this command, we are running the filter twice, in forward

and backward directions (dual-pass method) which doubles the effective order

of the filter and removes phase distortion. For example, a dual-pass second

order filter is a 4th order filter since at high frequencies the response drops off

proportional to frequency to the power −4. Knowing that, the cutoff frequency

had to be adjusted for the dual-pass.54,69 Data were then effectively filtered in

the 2 to 24 Hz bandwidth.3,50

The frequency response for this two types of IIR filters was compared in

order to identify the best filter to apply to sEMG data. As can be seen in

Figure 5.3, Butterworth filters are characterized by a magnitude response that

is maximally flat (or with no ripple) in the pass-band and monotonic overall.

Butterworth filters sacrifice rolloff steepness for monotonicity in the pass- and

stop-bands.68 Chebyshev type I filters are only equiripple in the pass-band and

monotonic in the stop-band. On the other hand, type II filters only have ripple

in the stop-band. Type I filters achieve faster roll off than type II filters, but

at the expense of greater deviation from unity in the pass-band. Concerning

type I filters, increasing ripple results in a sharper roll-off.68,70

As expected, frequency response for both filters for transfer function design

overlap, as well as for the zero-pole-gain design. Differences between the two

filter designs could perhaps be seen when increasing the order of the filter.

In this situation, using the transfer function design could lead to numerical
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Figure 5.3: Frequency response for the two types of IIR filters and for the two different
filter designs, transfer function and zero-pole-gain. In the Chebyshev type I filter design it
was used a 3 dB of peak-to-peak ripple in the passband.

problems due to the occurrence of roundoff errors. Then, even though we are

using a small filter order, we decided to use the zero-pole-gain syntax to filter

all the sEMG signals.

The fast Fourier transform (FFT) was applied to the signal in order to ob-
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bandpass filtering between 2 and 24 Hz, using zero-pole-gain design. The signal was acquired
during the in-bore experiment in PD patient 1 (run 6, loaded, right hand).
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Figure 5.5: Time domain representation (fs = 10000Hz) of the sEMG signal after band-
pass filtering between 2 and 24 Hz, using a Butterworth filter (red signal) and a Chebyshev
type I filter (green signal). The signal was acquired during the in-bore experiment in PD
patient 1 (run 6, loaded, right hand).

serve the results of the IIR filters (see Figure 5.4). As can be seen in the figure

and as expected, in our bandwidth of interest (2 to 20 Hz) the Butterworth

filter has the better performance. In this interval this filter has a frequency

response closer to the unit, with no signal attenuation. On the other hand,

the Chebyshev type I filter attenuates about 0.72 at 8 Hz. Knowing that, the

Butterworth filter was chosen to bandpass filter all sEMG signals, as selected

in other similar studies.40,46,71

The resulting signals from bandpass filtering can be see in Figure 5.5, which

presents a clearly less noise affected sEMG signal. At this point, the RF

pulse artifacts and the baseline noise resulting from the power hum no longer

interfere with the signal.

5.1.2 Notch filtering

However, if we take a look at Figure 5.6, it is possible to see that the frequency

peaks corresponding to the magnetic gradient field artifacts (14.33 Hz and

multiples and 7 Hz and multiples) still remain in the bandpass filtered sEMG

signal. Given that, the next step was to implement a IIR notching comb filter

in order to attenuate the harmonically related frequencies identified.52 Filter

coefficients were obtained using iircomb Matlab command and used to filter

data in the backward and forward directions.
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The notch filter transfer function is given by

H(z) = b
1− z−n

1− αz−n
(5.2)

where α and b are positive scalars. n is the order of the filter which corre-

sponds to the number of notches of the filter in the 0− 2π range or, in other

words, the number of harmonics to eliminate (see Figure 5.7).

In the frequency spectrum it is possible to confirm that the frequency con-

tent introduced by the magnetic gradient field artifacts vanished. However,

elimination of these interference peaks was achieved at the expense of am-

plitude loss in its neighbourhood. The bandwidth of the filter depends on a

quality factor (Q) that was altered until best compromise between the spec-

trum loss and the frequency harmonic influence attenuation was achieved.

Increasing that Q factor a sharper frequency response was obtained, however

harmonic peaks at 14.33 Hz were not efficiently removed. Decreasing Q factor,

increased the spectrum loss.

In the time domain, notch filtering lead to a significant decrease in the

amplitude of the signal specifically in the periods of muscle relaxation and

resting (baseline segments) (see Figure 5.6).

The loss in amplitude in the frequency spectrum can be noticed in the

time domain as a slight decrease in the amplitude when the muscle was in the

postural position (top segments). The signal was only scaled and this reduction
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in the signal amplitude did not compromise the performance of the filter. The

muscle activity in the frequency band of interest remains preserved.52

5.1.3 Downsampling

After bandpass filtering, the sEMG signal was downsampled. High frequency

components were filtered before downsampling to prevent its appearance as

other frequencies (aliasing) in the downsampled signal.

If we take a look at Figure 5.3 it is possible to see that at 100 Hz only 4 % of

the original signal is kept, using Butterworth filter. Neglecting this part of the

signal downsampling was performed resulting in a signal sampled at 200 Hz .

5.2 Pre-processing: Wavelet Analysis

Wavelet analysis has been proved to be efficient when applied to nonstation-

ary biosignals. It allows the precise detection of time evolutions in frequency

distribution.26,40 It has been widely used to for noise reduction and/or elimina-

tion, data compression and signal classification.9,64,65,72,73 With this method,

a time series can be displayed in multiple resolutions, i.e., in different band of

frequencies.

The Wavelet Transform (WT) is preferred to the Fourier transform (FT)

analysis. Given a function f(t) the FT F (ω) is obtained by integration of

the whole signal (see Equation 5.3). However this method does not provide
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information about temporal occurrence of the spectral components (see Figure

5.11).20,40,65,74,75 For example, if a signal has two different frequency compo-

nents, a low frequency component followed by a high frequency component or

vice-versa, the FT returns only the identified frequencies and corresponding

amplitude, but not the order of its appearance. Or, in other words, a peak in

the spectrum and the corresponding frequency can be related, for example, to

a period of intense muscle activity or can result from a short period of burst

activity.20,74 This means that it is not possible to distinguish two different

signals in time that have the same frequency component.74 In sum, FT is suit-

able to the analysis of stationary signals, instead of signals presenting short

duration frequency discontinuities as is the case of sEMG.65

F (ω) =

+∞∫
−∞

f(t)ejωtdt (5.3)

WT also overcome short-time Fourier transform (STFT). The latter ap-

plies the FT to assumed stationary portions of the non-stationary signal. With

this method, a temporal window function, which shape is given by g(t) is ap-

plied throughout all the signal (see Equation 5.4). STFT provides a good

time-frequency representation, although bad resolution is obtained (see Fig-

ure 5.11). This is due to the use of the same window, of fixed size, in the

whole signal which is characterized by different frequency components in dif-

ferent time intervals. Analogous to the Heisenberg’s Uncertainty Principle,

with STFT it is not possible to simultaneously know the time and frequency

components.65,74,75

F (ω, τ) =

+∞∫
−∞

f(t)g∗(t− τ)ejωtdt (5.4)

Observing Figures 5.10, 5.9 and 5.8 it is possible to conclude that as the

window length increases, the time resolution decreases and the frequency res-

olution considerably increases. In other words, as the nfft value increases,

the time intervals lose definition and the frequency is presents more defined

and distinguishable values. Hereupon, it can be concluded that STFT is not

suitable to the problem in study, since it needs a particular window for each

signal segment, in order to obtain the correct resolution in both time and

frequency.65,75,76

Identification of the frequency components and the corresponding time lo-
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patient 1, run 4, unloaded condition and dominant harm.
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Figure 5.9: Short-time fourier transform for nfft = 512 samples of a sEMG signal for
patient 1, run 4, unloaded condition and dominant harm.

cations can be achieved using the WT. This method applies a ”scale anal-

ysis”. In other words, generates small parts of the signal during which, fre-

quency and/or amplitude variations occur, allowing the correct analysis of the

non-stationary signal. It consists in the choice of a prototype wavelet, the

mother-wavelet .65,74,75,77 This function Ψ(t) has variable parameters, that al-

low scaling and translating operations. Temporal resolution can be obtained

by shifting the wavelet in time (changing b in Equation 5.5). Frequency res-

olution results from scale variations, (varying a in Equation 5.5). By varying
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Figure 5.10: Short-time fourier transform for nfft = 1024 samples of a sEMG signal for
patient 1, run 4, unloaded condition and dominant harm.

the scale parameter, the bandpass is also varied which allows the analysis of

a particular frequency band. Then, the resulting shifted functions, given by

Ψa,b, are applied to different portions of the signal.40,65,73,75

Ψa,b(t) =
1√
a

Ψ

(
t− b
a

)
(5.5)

The normalizing factor 1/
√
a in Equation 5.5, ensures that energy does not

change for different values of a.74

The WT (see Equation 5.6) is defined as the internal product between the

signal of interest f(t) and the basis function Ψa,b(t) (in Equation 5.5). If a

and b are continuous the WT is named continuous wavelet transform (CWT).

For a given scale, WT coefficient increases as more similar is frequency content

between the signal and the basis function.

CWT (a, b) =

∞∫
−∞

f(t)Ψ∗a,b(t)dt (5.6)

The WT performs a multiresolution analysis, by varying the scale factor a.

This method allows to detect the high frequency content (small and detailed

signal discontinuities) by setting a low scale, with good time resolution and

poor frequency resolution. Conversely the low frequencies (which are usually

present in almost the entire signal) can be obtained using a higher scale, with

good frequency resolution and poor time resolution (see Figure 5.11).73,76,78
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Figure 5.11: Interpretation of the transforms analysed

In this work we will use the discrete version of the WT, the Discrete Wavelet

Transform (DWT). The DWT (see Equation 5.7) is then given by the internal

product between the continuous function f(t) and the discrete representation

of the time-scale wavelet Ψm,n (see Equation 5.8).74,78

DWT (m,n) =

∫
Ψm,n(t)f(t)dt (5.7)

Ψm,n(t) = a
m/2
0 Ψ(am0 t− nb0) (5.8)

The basis function Ψm,n is still a continuous function of time, but with

discrete scaling and translating parameters:

a = a−m0 , b = nb0a
−m
0 ,m, n ∈ Z (5.9)

The two parameters are related in the way that if the scale value returns

a narrow function, the translation operation should correspond to small step

and vice versa.74 In order to effectively compute the DWT, the dyadic scaling

function (see Equation 5.10) is obtained by setting a0 = 2 and b0 = 1.76,78

Ψm,n(t) = 2m/2Ψ(2mt− n) (5.10)

The DWT provides enough information to the analysis and computation of
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the original sEMG signal, without redundant information which implies signif-

icantly less computation time and effort when compared to the CWT.65,76,79

Similarly to the CWT, DWT also returns a time-scale representation of the

desired signal using digital filtering methods. Different scales are obtained by

using filters with different cutoff frequencies. Thus yielding different frequency

sub-bands, as results of high pass (high frequency analysis) and low pass (low

frequency analysis) filtering. The amount of detail information in the signal,

given by the resolution, can be changed through the use of filters. The scale

can be changed by upsampling and downsampling operations.

DWT transforms the continuous function f(t) (our acquired sEMG signal)

in a sequence of wavelets coefficients which represent the decomposition of the

original signal.78 In this work Daubechies wavelet family was used because,

besides being one of the most reported in literature, presents an orthonor-

mal basis. This last property allows the reconstruction of the decomposed

signal.26,76

f [n]

 h[n]  g[n]

   2   2

 h[n]  g[n]

   2   2

 h[n]  g[n]

cD1cA1

cD2cA2

cD3

   2   2

10000 Hz

0-5000 Hz 5000-10000 Hz

1250-2500 Hz

2500-5000 Hz0-2500 Hz

cA3

 h[n]  g[n]

...

   2   2

625-1250 Hz

0-1250 Hz

0-625 Hz

Figure 5.12: DWT decomposition structure. The original signal passes through a half band
highpass filter g[n] and a lowpass filter h[n]. Then the filters output is downsampled by two
thus yielding the first decomposition level. Every level, involves filtering and downsampling
operations resulting in half the number of samples (and hence half the time resolution) and
half the frequency band spanned (and hence double the frequency resolution).



5.2. PRE-PROCESSING: WAVELET ANALYSIS 43

In each level of decomposition two functions operate. The scaling function

(see equation 5.11) which is responsible for the low pass filtering and returns

the approximation coefficients. Usually the signals are evaluated using scales

that are powers of two.

Φm,n(t) = 2m/2Φ(2mt− n) (5.11)

The wavelet function (see Equation 5.7) processes the high pass filter and

outputs the detail coefficients. The resolution of the wavelet function, or the

frequency band covered, can be varied by changing the scaling function.

In order to decompose the acquired signal, the fist step is to apply a half

band digital lowpass filter, removing all frequencies above half of the highest

frequency in the signal (according to the Nyquist sampling criterion). Since

the signal has now half of the original frequency as its highest frequency, half

of the samples are redundant and can be discarded, i.e., a signal with half the

number of the points is obtained (downsampled by two). Using the half band

lowpass filter results in the loss of the high frequency content and consequently

doubles the frequency resolution. Downsampling doubles the scale and halves

Table 5.1: Approximation and detail frequency bands.

cA
Frequency
range (Hz)

cD
Frequency
range (Hz)

cA1 0− 2500 cD1 2500− 5000

cA2 0− 1250 cD2 1250− 2500

cA3 0− 625 cD3 625− 1250

cA4 0− 312.5 cD4 312.5− 625

cA5 0− 156.25 cD5 156.25− 312.5

cA6 0− 78.13 cD6 78.13− 156.25

cA7 0− 39.06 cD7 39.06− 78.13

cA8 0− 19.53 cD8 19.53− 39.06

cA9 0− 9.77 cD9 9.77− 19.53

cA10 0− 4.88 cD10 4.88− 9.77

cA11 0− 2.44 cD11 2.44− 4.88

cA: approximation coefficients, cD: detail coefficients
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the time resolution.73,76

The signal is then decomposed into different frequency sub-bands with

different resolutions by sequential lowpass (see Equation 5.12) and highpass

(see Equation 5.13) filtering operations.

d[k] =
∞∑

n=−∞

f [n] · h[2n− k] (5.12)

h[k] =
∞∑

n=−∞

f [n] · g[2n− k] (5.13)

The 2n term presented in both filters refers to the downsampling operation.
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Figure 5.13: 11-level DWT decomposition using daubechie (’db10’) mother wavelet. (a)
The reconstructed 8th level approximation coefficient A8 is superimposed to the original
signal. (b) The highest frequency band of the signal corresponds to the non reconstructed
detail coefficient d1 (last 2002662 samples), followed by the second highest frequency band
represented by d2 (previous 1001340 samples) and so on. The lower frequencies, which carry
the information of interest (of the PD tremor frequency range), are represented by the last
coefficients computed in the zoomed window.
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Approximation and detail coefficients are obtained as can be seen in Figure

5.12. DWT is obtained through all coefficient concatenation starting from the

last level of decomposition. The most prominent frequencies in the original sig-

nal will occur as high amplitudes in the region of the DWT signal where those

frequencies can be observed. The temporal resolution will depend in which

level those frequencies of interest appear. High frequencies show better time

resolution, since they encompass a higher number of samples (see Figure 5.13).

Low frequencies are composed by a few samples resulting in low precision in

time localization. In other words, good time resolution is obtained at high fre-

quencies and good frequency resolution at low frequencies. As was depicted in

Figure 5.11, for lower frequencies the length of the coefficients decreases (lower

length of the rectangular areas in the frequency axis). As we are interested

in the low frequencies, samples corresponding to the higher frequencies can be

then discarded without any loss of information, thus reducing the size of the

final data that will be analysed.73,76

Due to successive downsampling by two, the signal length must be a power

of two, or at least a multiple of power of two (as is our case), allowing the

effective application of the method. The number of samples of the signal

determines the number of decomposition levels. Theoretically, the signal must

be decomposed until getting the level corresponding to the last sample, or, as

in our study, until the frequency levels of PD are obtained.

The main purpose of this wavelet analysis was to obtain a new cleaned

signal, containing the frequencies of interest and of lower size. The final result

would be a more easy to handle signal, with less computational time when

computing its characterizing parameters (peak frequency, peak amplitude, lin-

ear envelope, etc). However, a significant amplitude difference between the

unreconstructed approximation coefficient a at 11th level (see Figure 5.13)

and the corresponding reconstructed approximation coefficient A (see Figure

5.14) can be observed. That difference is more evident in Figure 5.15 for the

8th level of decomposition which encompasses the frequency band of interest

in this study. The reconstructed signal A has an amplitude that is in the

range of the original signal, unlike approximation coefficient a which presents

an abnormal high amplitude for a sEMG signal. This amplitude difference in

of the unreconstructed approximation coefficient represents a drawback in the

further calculations in the time domain, (e.g., the envelope and corresponding

area under the curve, see Section 5.4.2). Then the main purpose of this wavelet

analysis was not achieved since the returned approximation coefficient, even
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Figure 5.14: Reconstruction of the approximation coefficients. Using the mother wavelet
(’db10’ in our case) and the decomposition structure parameters (C and L) it is possible to
reconstruct the detail and approximation coefficients. A new signal corresponding to the
frequency range for each level is obtained, having the same size and sampling frequency as
the original sEMG signal.

though being composed of less samples and thus being posteriorly more easy

to handle, has an abnormal amplitude not in accordance with the standard

sEMG signal.

The spectrum of the unreconstructed and reconstructed approximation co-

efficient at 8th level was computed in Figure 5.16. The magnetic gradient field

artifacts (at 14.33 Hz and multiples and 7 Hz and multiples) are still present in

the signal which is reflected in the high amplitude of the baseline segments in

Figure 5.15. Instead, the next level of decomposition, the 9th approximation

coefficient (0−10 Hz) could be used and the noise frequency component would
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Figure 5.15: Comparison of the reconstructed approximation coefficient A for the 8th level
(0−20 Hz), with the same size of the original signal, and the corresponding unreconstructed
approximation coefficient a of much less length and significantly higher amplitude.

not interfere with the signal. However, the frequency range is too narrow and

neglects important information above 10 Hz. The solution could reside in the

application of a notch filter to the 8th level approximation coefficient, but that

would make this wavelet method redundant, comparing to the IIR filtering

method.
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5.3 Algorithm validation

Both algorithms (IIR filtering and wavelet analysis) tested on the sEMG signals

have proven to be effective in artifact removal. In a similar study, during

sEMG and fMRI simultaneous recordings, visual inspection of the amplitude

spectrum and also of the filtered signal in the time domain were sufficient

to validate the cleaning algorithm that makes use of filtering techniques.53

However, according to another analysis in the same conditions, an accurate

validation would imply a correlation between an sEMG signal acquired in

an artifact-free environment and the signal resulting from filtering. In other

words, a comparison of the distribution properties could be done between out-

bore and in-bore signals. Nevertheless, such direct measure is not feasible since

each sEMG signal is unique in the way that the pattern activation and force

levels hardly will be exactly reproduced in another signal acquired in the same

circumstances.51,52 There is also a reduction in the signal power caused by

filtering which does not happen in the artifact-free sEMG signal.52

In another study, the cleaning algorithm was validated using the informa-

tion of joint torque acquired using an optical torque sensor.52 In the present

study, accelerometer signals were used in validation since they were not in-

fluenced by fMRI artifacts. Therefore, accelerometric filtered signals can be

individually correlated with the corresponding cleaned sEMG signals (see Fig-

ure 5.17). However, the sEMG signals was found to be a suboptimal detection
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Figure 5.17: (a)Filtered sEMG data. (b)Filtered accelerometric data. Signals were ac-
quired in-bore in patient 1 (run6, loaded, right dominant hand).
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technique since rest tremor of patient 3, as an example, was not accurately

reproduced in the signal as it was in accelerometric data. Increasing the num-

ber of acquisitions in PD patients will allow to confirm the relation between

the sEMG and the accelerometric signals behaviour over time. Then valida-

tion could be performed using both signals that should be accurately detected

during in-bore and out-bore acquisitions.

In sum, two different methods were used to filter the sEMG data. Both were

able to remove the fMRI artifacts from the signals. However using wavelet anal-

ysis the results were not satisfactory since, even though the output included

the frequencies of interest, it also presented the fMRI artifacts resulting from

the magnetic field applied during the experiment. The IIR filtering method

was then used to remove artifacts from the sEMG data.

5.4 Parameter computation

5.4.1 Full wave rectification

The signal resulting from the filtering process was then rectified, i.e., its ab-

solute value was computed in order to proceed to determination of the shape

or ”envelope” of the sEMG signal (see Figure 5.19). sEMG signal typically

oscillates near zero (zero mean), with either fast negative and positive transi-

tions around zero. So if the next step is, e.g., the smoothing or moving average

computation of the signal, when rectification is skipped, the result will be an

approximately zero vector.54

5.4.2 Signal envelope

In this work the envelope of the sEMG signal was assessed using three dif-

ferent methods: moving average, root mean square (RMS), and a lowpass

Butterworth filter.54

First, a lowpass IIR filter was applied to the rectified signal in order to

obtain the correspondent ”linear envelope”, called this way due to the filter

feature requirement of linearity and signal envelope detection through the low-

pass filtering.54 A zero-phase lowpass Butterworth filter was then applied to

the downsampled data. The implementation of the filter and response fre-

quency was similar to the bandpass filter, explained in the Section 5.1.1, with

cutoff frequency of 0.5 Hz and filter order of two.
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As moving average is a small order, linear lowpass FIR filter (see Equation

5.14). It has a good performance in the time domain, whereas in the frequency

domain it is not capable to separate frequency bands. Other similar filters with

better performance in the frequency domain (e.g., Gaussian filters) could be

used, although at the expense of more computation effort.80 We are mainly

interested in the result in the time domain, i.e., in the envelope of the signal

and for that a moving average filter was used.

y[i] =
1

N

N−1∑
j=0

x[i+ j] (5.14)

In this work, moving average was obtained by convolving the input signal

with a rectangular impulse with a area of one. The output sample is computed

using a centered window, i.e., uses points from both sides of the corresponding

input sample (see Equation 5.15), preventing the occurrence of time shifts from

the original signal to the signal envelope.54,80

y(n) =
N−1∑
k=0

h(k)x(n− k) (5.15)

where x and y are the input and output signals, respectively and N is the

number of points averaged. N was set in order to achieve a cutoff frequency

similar to the lowpass filter, resulting in the same signal attenuation.

The response frequency is given by

h(n) =
1

N

N−1∑
k=0

δ(n− k) (5.16)

The discrete-time response frequency is given by

H(ω) =
∞∑

n=−∞

x[n]e−jωn =
1

N

N−1∑
n=0

e−jωn =
1

N

(
1− e−jωN

1− e−jω

)
(5.17)

Equation 5.17 can be simplified, using Euler’s formula, (which demonstra-

tion will not be presented here) resulting in the following equation

|H(ω)| =

∣∣∣∣∣sin(ωN
2

)

sin(ω
2
)

∣∣∣∣∣ (5.18)

Another way to analyse the envelope of the sEMG signals is to compute
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the RMS value of the signal within a window which spans the signal for short

successive intervals of time. Again, convolution was used to obtain the RMS

vector from the non-rectified, squared sEMG signal.

RMS =

√√√√√√
t+Tw/2∑
t−Tw/2

y(t)2

Nw
(5.19)

The moving average filter has a zero-phase response frequency, which is

flat in the passband, with a slow roll-off and very rippled (non-monotonic)

stopband (see Figure 5.18).

The Butterworth frequency response is closer to the unity in the passband

and nearly zero in the stopband. Looking at Figure 5.19 it is possible to see

that Butterworth filter has a greater smoothing effect comparing to the moving

average or the RMS.

Decreasing the cutoff frequency (and increasing the number of samples N),

lead to the occurrence of undershoot in the Butterworth envelope (see the

zoomed area in see Figure 5.19). The moving average and RMS envelopes also

present overshoot but with less smooth effect.
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Figure 5.18: Signal envelope response frequency.
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Figure 5.19: Signal envelope of the downsampled sEMG signal obtained during the in-
bore experiment in patient 1 (run 6, loaded, right hand), for (a) 5 Hz and for (b) 1 Hz cutoff
frequency.

5.4.3 Area Under the Curve

The area under the curve (AUC) was computed using the output of the moving

average filter using a window of 0.45 s. First the signal was divided in the

corresponding segments (see Figure 5.20), five posture segments (arms in the

postural position) and six rest segments (arms in the rest position). Results

indicate a clear difference in the envelope amplitude between rest and postural

segments and a higher difference between the dominant and the non-dominant

hand.

The AUC was obtained using Matlab routine trapz which computes the
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Figure 5.20: Identification of the rest and postural segments of the linear envelope of the
sEMG signal obtained during the in-bore experiment in patient 1 (run 6, loaded). There
is a clear reduction in the envelope amplitude from the right do the left hand (from the
millivolts to the microvolts).
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sEMG signal obtained during the in-bore experiment in PD patient 1.
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numerical integration using the trapezoidal method. This parameter was com-

puted for each segment (see Figure 5.21) and the values were stored in order to

be ready to the statistical analysis.51 Posture and rest segments greatly differ

in AUC values. Comparing loaded and unloaded tasks results it is possible to

conclude that postural condition is able to increase the effect of load. How-

ever, only statistical analysis with a larger and homogeneous PD population

will make possible to take robust conclusions.



Chapter 6

Spectral Analysis

In this section, methods to analyse both the accelerometric and surface elec-

tromyography (sEMG) signals are described. In a first approach spectral anal-

ysis, using Fourier transform (FT), was performed in order to identify the peak

amplitude (PA) and corresponding peak frequency (PF).3,42,44,60,81,82Spectral

analysis is the most common method used to obtain tremor parameters such

as frequency, amplitude or power.4,9, 20,26,42,81

This procedure was applied to signals acquired from three patients, all

presenting an asymmetric tremor. Patient 1 presents right hand dominant PD

tremor. Patients 2 and 3 have PD tremor most prominent in the left hand.

Patient 2 continued medication intake before the acquisition. Patients 1 and

3 stopped medication administration 12 hours before the experiment. Patient

3 was diagnosed with rest tremor.

6.1 Peak amplitude and frequency

The first results PA and PF for were obtained using the whole sEMG filtered

signal (see Table 6.1). Concerning tremor PA, the highest values are seen for

patient 1, with right hand dominant tremor. Tremor PA increases as more

runs are performed. Patient 2 reveals lower PA for the dominant left hand,

which could be explained by the medication effect.44 The less affected hands

for both patients present, as expected, lower tremor PA, when the latter can

even be identified. Contrarily to the tendency seen in the dominant limbs, in

the non-dominant hands patient 2 has higher tremor PA than patient 1.

As for the PF, it was present around 5 Hz in the patient 1 results and

7 Hz for patient 2. Once again, differences could be justified by the effect of

medication in the attenuation of tremor in patient 2.

55
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Table 6.1: Peak frequency and amplitude in all spectrum
computed for accelerometric signals of patients 1 and 2

Parameter Amplitude (mV) Frequency (Hz)

Patient 1 2 1 2 1 2 1 2

Hand LH RH LH RH

Run 1 - 0.99 2.52 - - 7.02 5.19 -

Run 2 - 0.93 4.31 - - 7.95 5.19 -

Run 3 0.27 1.27 3.98 - 6.99 6.75 5.11 -

Run 4 0.41 2.53 3.88 0.61 7.00 6.65 5.06 6.85

Run 5 0.56 1.99 5.39 0.87 5.29 6.73 5.15 6.79

Run 6 0.54 2.51 10.44 - 5.35 6.51 5.35 -

LH: left hand, RH: right hand, the ’-’ indicate that no peak was identi-
fied.

Second peaks, which were not inserted in Table 6.1, were observed only

in patient 1 accelerometric signals, in all runs of right hand and in the last

four runs of left hand. Those frequency peaks located near 10 Hz. The cor-

responding PA is lower than that observed for the first amplitude peaks, for

both hands. Higher PA was seen for the dominant hand comparing to the

non-dominant. Second PA increased with the number of runs performed by

the patient.

Peak frequency and power were also identified in the segmented filtered
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Figure 6.1: Segmentation into rest and postural segments of the accelerometer filtered
signal acquired in-bore in PD patient 1 (run 6, loaded, right hand).
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Figure 6.2: Peak amplitude and frequency for each postural segment for the accelerometer
filtered signal acquired in-bore in PD patient 1 (run 6, loaded, right dominant hand).

signal (see Figure 6.1). In other words, the signal resulting from the pre-

processing stage was divided in postural and rest segments. Then, Welch’s

power spectral density (PSD) estimate was computed for each segment, using

a Hanning window of the length of the signal and a 50% of overlapping of the

windows.

In the postural segments of patient 1, during which arms remained out-

stretched in a postural position, two distinct peaks were often identified, one

near 5 Hz and the other, of lower amplitude, near 10 Hz, as reported by an-

other study.20 Observing the results in Figure 6.2, it is possible to conclude
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Figure 6.3: Peak amplitude and frequency for each postural segment for the accelerometer
filtered signal acquired in-bore in PD patient 2 (run 6, loaded, left dominant hand).
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Figure 6.4: Peak amplitude and frequency for each rest segment for the accelerometer
filtered signal acquired in-bore in PD patient 1 (run 6, loaded, right dominant hand).

that postural segments power is the most contributive to the peak of amplitude

observed for all data (in Figure 4.2). Power peaks in the postural segments are

significantly higher than in rest segments and a second peak of about 10 Hz is

always seen.

Patient 2 results for the postural segments indicate a constant presence of

a power peak between 6 to 7 Hz (see Figure 6.3). Second peak are not seen in

the spectrum. This increase in the frequency from patient 1 to patient 2 in the

postural segments can be explained by the medication effect or the presence

of a different type fo tremor. As refereed in the Subsection 2.1.1, re-emergent

tremor typically manifests in the postural condition. A significant difference

in terms of power was seen between the two patients in the postural segments.

Patient’s 2 rest segments (not presented here) are similar to patient 1, being

Table 6.2: Peak frequency (Hz) in signal segments

Postural Segments Rest Segments

Run 1 2 3 4 5 1 2 3 4 5 6

1 5.59 8.15 6.81 6.47 6.45 2.66 2.25 6.47 10.52 4.13 3.39

2 5.07 5.19 5.27 5.18 5.40 4.25 7.01 7.01 7.01 7.01 4.08

3 4.88 5.11 4.96 5.09 5.00 7.01 4.37 3.27 7.01 11.62 4.61

4 4.92 5.08 5.13 5.05 4.64 4.42 7.01 6.20 7.01 6.98 7.01

5 5.21 4.90 4.96 4.88 5.30 7.01 4.49 10.45 7.01 12.45 8.59

6 5.22 5.35 5.15 5.22 5.40 8.40 7.01 6.45 10.08 4.54 7.01

This data corresponds to PD patient’s 1 right dominant hand.
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Figure 6.5: Peak amplitude and frequency for each postural segment for the accelerometer
filtered signal acquired out-bore in PD patient 3 (run 4, loaded, left dominant hand).

both within the same power range and with no peaks identified.

Results of the spectral analysis for patient 3 in each segment are depicted

in Figures 6.5 and 6.6. The significant difference in power seen in the other two

patients (which only had postural tremor) between rest and postural segments

is no longer present in patient 3. In fact, rest segments have higher power peaks

comparing to postural segments. A difference can also be observed concerning

peak frequency. Rest segments, during which patients’ hands were in a relaxed

resting position, showed frequency peaks tending to 5 Hz, as reported in other
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Figure 6.6: Peak amplitude and frequency for each baseline segment for the accelerometer
filtered signal acquired out-bore in PD patient 3 (run 4, loaded, left dominant hand).
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Figure 6.7: Total power in each segment for PD patient 1, right hand from in-bore ac-
celerometric signals.

similar studies.20,42 In postural segments peak frequency tended to 6 Hz and

no second peak was present.20,42,60

Total power of the spectra between 1-25 Hz was also computed and consid-

ered as a measure of tremor amplitude. Those values were determined using

trapezoidal method (using Matlab routine trapz). Then the values were av-

eraged over the loaded and unloaded runs for patient 1 (see Figure 6.7). Rest

and postural segments present very distinct values of total power. Noteworthy

are the results for unloaded and loaded runs, which, unlike for rest segments,

greatly differ in the postural segments. However, this results are merely rep-

resentative, since they are mean of three values of total power per segment for

loaded and unloaded conditions. With a more homogeneous and larger PD

population, a statistical analysis would provide reliable results.

6.2 Spectrogram

Spectrogram of the filtered data was computed in order to relate time and

frequency domains. This method outputs a PSD matrix with the number of

lines corresponding to the length of the frequency vector and the number of

columns equal to the length of the time vector.

Observing Figure 6.8 in (a), it is possible to see a clear increase in PSD

during the postural segments near 5 and 10 Hz. The plot of the frequency

corresponding to maximum PSD in each instant also shows a predominance of
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Figure 6.8: (a) Spectrogram plotting of the filtered accelerometric signal acquired during
the in-bore experiment in PD patient 1 (run 6, loaded, right hand). (b) Time-frequency
representation of the maximum PSD in each time.

the 5 Hz frequency in the postural segments.

6.3 Tremor and nontremor analysis

Using the spectrogram PSD matrix a method was developed in order to provide

predictors to analyse the functional magnetic resonance imaging (fMRI) data

(see Chapter 7). To obtain the spectrogram averaged data (see Figure 6.9)

the mean of the matrix over the time columns was computed. The resulting

vector (Spectrogram averaged data in Figure 6.9) was binarized, i.e., values

above and below a given threshold (defined by Equation 6.1) were set to one

and zero, respectively.42 Then, using a binary classification intervals of tremor

and non tremor were identified as being one and zero respectively.

threshold = MEAN − 2

3
SD (6.1)

An analysis over time will be performed in each run and blocks where

tremor exists and will be defined as predictors to input in the fMRI analysis.

An automatic algorithm was implemented in order to obtain this block design.

However, a close look at the Figure 6.9, at the signal resulting from Equation

6.1 (in blue) will be sufficient to note a misidentified tremor interval in the

second top segment. In that segment the non-tremor interval identified below

the threshold could be neglected. To avoid this cases a 4th order low-pass

Butterworth zero-lag IIR filter was applied to the data using a low-pass cutoff
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Figure 6.9: Tremor vs Nontremor plot of the filtered accelerometric signal acquired during
the in-bore experiment in PD patient 1 (run 6, loaded, right hand)

frequency of 6 Hz. The result is a well identified tremor block. A moving

average filter was also tested, but with less number of well identified tremor

intervals and the results were not presented here.

6.4 Frequency bands analysis

The spectrogram PSD matrix was again used to determine the mean PSD

vector for the following frequency bins: 0− 2, 2− 4, 4− 6, 6− 8, 8− 10 and

10−12 Hz.60 Another frequency division was also adopted, taking into account

the frequency bands characteristic of the rest (3− 7 Hz) and postural (7− 12

Hz) tremors. Each frequency band was obtained by averaging the spectrogram

matrix for the chosen frequency band. In other words, a given frequency band

vector was obtained by computing the mean in each time (each column) over

the two frequencies of the range.

In all runs performed by patient 1, frequency band 4 − 6 Hz showed the

greatest power comparing to the other bands, followed by the 6− 8 Hz band.

On the other hand, patient 2 presented 6 − 8 Hz as the most powerful fre-

quency band across the runs, followed by the 8− 10 Hz band, as seen in other

similar study during which patients remained on medication.3 Comparing the

results between the two patients, the patient 2 presents frequency bands with
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considerably less power (of about one unit bellow) than patient 1. Once more,

this could be the result of the on medication state.60

Both the tremor vs nontremor and frequency bands analysis will be used

to analyse the functional images. The latter analysis has the advantage of re-

taining the whole frequency band information, unlike the tremor vs nontremor

intervals analysis.
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Figure 6.10: Frequency bands
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6.5 Discussion

In this section signal processing was used to analyse the accelerometric data.

Namely, spectral analysis was performed and tremor changes in amplitude

and frequency were assessed, during the two different task conditions. All

methods proved to be efficient. However, the small and non-homogeneous PD

population were considered the main drawbacks of this work. Variability in

the PD tremor results were the reflex of different levels of disease progression,

medication state and type of diagnosed PD tremor (see Table 3.1).

Postural condition tended to increase the PD tremor.46 As the runs were

performed an increase in amplitude of the peak was observed that could be

explained by the fatigue.

In all patients it was reported a power increase in the 4 − 12 Hz and

lower power in the remaining spectrum. Vaillancourt & Newell3 assigned that

increase in power from the higher to the lower frequencies to the change of the

level of contribution of the peripheral feedback oscillator to the central neural

oscillator. Namely, in the postural segments, power peaks were identified for

patient 1 near 5 Hz and a second peak was also detected about 10 Hz. The

5 Hz peak can be assign to the presence of re-emergent tremor, which shares

the same frequency range with rest tremor but usually occurs in the postural

condition. On the other hand, the patient tested on medication presented a

reduced tremor amplitude and a shift in PF to higher frequencies (between

6 − 7 Hz),46 which can be explained or be the medication effect or by the

manifestation of a tremor type within another distinct frequency range. Second

peaks were not seen both in postural and rest segments in patients 2 and 3

results. The results for the patient diagnosed with PD rest tremor showed

the existence of one peak in both postural and rest segments, but located at

slightly different frequencies in the spectrum.

A quick look at the results (see Table 6.2) is sufficient to note a slight de-

crease in the tremor PF during the loaded runs.20 However, both the effect

of load and the difference between postural and rest segments can only be ac-

curately assessed by applying statistical analysis in a larger and homogeneous

population.



Chapter 7

fMRI

Functional magnetic resonance imaging (fMRI) arose as a useful functional

and non-invasive brain imaging technique. Namely, it has been widely used

to understand the pathophysiology of PD, including functional connectiv-

ity.25,36,52,53,83

The main purpose of this chapter is to determine the circuits modulating

Parkinson tremor and understand the functional connectivity of the involved

brain areas (i.e., describe the connections and ’synchrony’ between and within

brain regions).

7.1 Physical basis of fMRI

Herein a brief description of the physical principle of the fMRI technique is

presented. This technique relies on the intrinsic magnetic properties of the

water protons, which behave as a magnet if its spin is different from zero.

When no external magnetic field is applied, the spins and their nuclear mag-

netic moments are randomly oriented. However, is the presence of a strong

magnetic field, the nuclei align with the field. The nuclei precess around the

field with an angular frequency (Larmor frequency), but at a random phase.

Then, in order to align the phase and increase the flip angle of the spin, a

radio frequency (RF) pulse can be applied. Consequently, the longitudinal

magnetization (parallel to the magnetic field) decreases and a new transversal

magnetization (perpendicular to the field) is established. When the RF pulse

ceases, the equilibrium is replaced, i.e., the transverse magnetization decreases

and disappears (transversal relaxation) and the longitudinal magnetization in-

creases to its original size (longitudinal relaxation). The time constant T1

describes longitudinal relaxation (exponential growth) or restoration of net

65
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magnetization along the longitudinal direction as spins return to their parallel

state. The time constant T2 corresponds to the transverse relaxation (expo-

nential decay) or loss of net magnetization in the transverse plane due to loss

of phase coherence. T1 and T2 are tissue properties that can be differently

weighted, originating different image contrasts and consequently varying the

specificity of the study. Pulse sequences are then manipulated by tuning three

parameters: the frequency of the RF pulses, or repetition time (TR), how soon

after the excitation pulse we begin data collection, or echo time (TE) and the

flip angle. In the end of this process a signal is created that can be measured

using a receiver coil. In order to localize the voxels (single volume elements

containing protons), spatial information needs to be encoded into the mag-

netic resonance signal. This is the so called spatial encoding process which

relies on successively applying magnetic field gradients. To image a given slice

(containing the voxels), a magnetic gradient is added along the slice direction.

Therefore, a slice frequency acquisition corresponds to the frequency of the

magnetic gradient interference.84–86

Performance of certain sensory, motor or cognitive tasks induces local

changes in oxygen consumption, cerebral blood flow and blood volume which

can be related to increases or decreases of activity in specific regions of the

brain.25,36,52,53,83 An increase in neural activity originates a growing demand

for oxygen which results in a blood flow increase in the activated regions.

Hemoglobin, a protein responsible to deliver oxygen to the neurons, exists

in two different states, each characterized by different magnetic properties

that will producing different local magnetic fields. The oxyhemoglobin is dia-

magnetic and, when it delivers the oxygen to the cells, it becomes deoxyhe-

moglobin, which is paramagnetic. Deoxyhemoglobin creates an inhomogeneity

in the magnetic field which causes the nuclei to dephase quicker and therefore

to suppress the magnetic resonance signal. As the concentration of deoxyhe-

moglobin decreases the signal intensity increases. Then, the combined effect of

T2 and the distinct mechanism of transverse relaxation induced by the mag-

netic field is described by another property, the T2*. Being sensitive to flow

and oxygenation makes T2* suitable to be used in image brain function. The

gradient-echo pulse sequence was used in the study and is weighted in T2*.86

BOLD signals are taken from the ratio in T2* between oxygenated and deoxy-

genated hemoglobin in the blood. In sum, BOLD fMRI measures the neuronal

activity indirectly, by measuring the metabolic demands (oxygen consumption)

of active neurons. Instantaneous neuronal activity will change the magnetic
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resonance signal resulting in a hemodynamic response function (HRF). This

response reflects the variations in T2* and, consequently, it reflects the energy

demands and the neural activity. In the present study, the task paradigm is

composed of segments of alternating postural and resting periods during which

BOLD signal was acquired.36,52,53

7.2 Analysis

The imaging data analysis was performed using the Brain Voyager Software

(QX version 2.4; Brain Innovation, Maastricht, The Netherlands). Before ap-

plying statistical analysis, data needed to be pre-processed. First, slice scan

time correction was performed, followed by head motion correction, spatially

smoothed with a 4−mm full-width at half-maximum (FWHM) Gaussian fil-

ter and three-dimensional temporal filtering.53,83,87 The functional data were

co-registered with the structural images and the data collected was then au-

tomatically registered into the standard Tailarach space.

In the first-level, data were analysed for each subject separately using gen-

eral linear models (GLM) to identify significantly activated voxels. The predic-

tors model was obtained by convolution of the time course belonging to each

condition with a two-gamma hemodynamic response function. After model

estimation, contrast maps derived from each participant were calculated and

analysed individually. A second-level analysis with the total number of partic-

ipants, using one-way repeated measures ANOVAs, was performed correcting
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Figure 7.1: Data processing pipeline
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for temporal serial correlations.

Data will be analysed using a multivariate statistical general linear model

(GLM) (see Equation 7.1) of the experiment, voxel-by-voxel, with one predictor

for the tremor condition.

X = G · β + ε (7.1)

X is the observation matrix for single voxel, which columns corresponds

to the response variables (each one corresponding to one run) and the rows

correspond to the number of scans. G is called the design matrix with each

row corresponding to a scan and each column to an predictor variable. The

column vector β stands for the unknown parameters corresponding to each

predictor variable, with the rows corresponding to each voxel and ε are the

unknown errors, i.e., the independent and identically distributed normal ran-

dom variables with zero mean and variance. The GLM explains the response

variable X through the linear combination of the explanatory variables plus

the error term.53,87,88

In the present study, the explanatory variables are the tremor and non-

tremor periods, which are the effects of interest that will be modelled by a

boxcar function and convolved with the canonical HRF in Brain Voyager Soft-

ware.50,53

7.3 Multi-study results

Multi session/subject experiments allow to increase sensitivity of the overall

experiment since more data is available. This kind of study is important to

determine if the observed effects are common and stable across, or between,

groups and allows generalization of the individual conclusions to the whole

population of subjects. Since the experiment is composed of only three PD

patients, each one presenting different characteristics concerning presence of

rest tremor and medication withdrawal (see Section 3.1), intra-subject multi-

study was not performed. A multi-study between runs for patient 1, for the

unloaded conditions (runs 1, 4 and 5) is presented in Figure 7.2. Tremor vs

nontremor blocks were defined as predictors using sEMG or accelerometry data

(see Section 6.3).
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Figure 7.2: GLM multistudy of unloaded runs for patient 1 for the right dominant hand.
Gray Matter nearest to (-5,-14,-11) Talairach coordinates: Left Brainstem, Midbrain, Gray
Matter, Substantia Nigra.

7.4 Discussion

In this chapter the physical principles and context of fMRI were presented.

This technique will allow to identify the neural circuits of the subcortical and

cortical regions that are associated with tremor modulation. The GLM anal-

ysis can only be conducted having the time intervals of tremor vs nontremor

obtained using the accelerometric or the sEMG signal. Comparing blocks with

and without tremor (see Figure 7.2) it is possible to see activation in the sub-

stantia nigra and in areas related to motor control in the dominant hand. This

approach is then able to return important and meaningful results concerning

the brain oscillatory circuits responsible for PD tremor occurrence.

This preliminary analysis was important to define new steps towards a deep

investigation of the PD tremors. For example, the neural loops behind rest and

postural tremors generation could be determined by defining periods of tremor

vs nontremor in each postural and rest segments, using a binary approach.

Another analysis called linear correlation maps could be done using the fre-

quency band analysis (see Section 6.4), which return non binarized predictors.

This analysis allows to ascertain if there are differences between the frequency
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bands in terms of activation and what are the neuronal networks responsible

for those activations.



Chapter 8

Conclusions

In this research signal processing tools were used to process and analyse sig-

nals acquired with two distinct and also widely used techniques, surface elec-

tromyography (sEMG) and accelerometry. Parkinson’s disease (PD) tremor

was assessed by acquiring the two aforementioned signals during the perfor-

mance of a block defined task, in which PD patients alternated between resting

and postural arm positions. In order to understand which areas activate dur-

ing the performance of the task, the patients neuronal circuits were assessed

in the fMRI environment. However, the acquisition characteristics inside the

scanner interfere with the electromyographic signals, adding easily identifiable

frequency components in the signal spectrum. Then, one of the main purposes

of this study was to develop an algorithm capable of eliminate in-bore artifacts

from the sEMG signal. Accelerometric signals were also pre-processed. The

next step consisted in the PD tremor parameter computation, which aimed to

assess the frequency spectrum and identify frequency and amplitude peaks, in

each rest and postural condition, in both accelerometric and sEMG signals.

Simultaneous acquisition of functional images will allow to determine which

areas activate during postural and rest segments and identify the PD tremor

generators. This project has clinical interest, namely in diagnosis and thera-

peutics. Combining the three techniques, accelerometry, sEMG and fMRI has

the potential to distinguish different types of PD tremor, which can have dif-

ferent responses to different treatments and can evolve in different ways over

the disease course.
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8.1 Surface EMG artifact cleaning

Surface electromyographic signals obtained inside the scanner presented ar-

tifacts originated by the magnetic field gradient introduced during scanning

process, by the radio frequency pulse (RF) and also movement artifacts.

Two algorithms were tested in order to ascertain which one had the optimal

performance in a de-noising the sEMG signals.

The first developed algorithm tested different band-pass IIR filters intended

to remove the high frequency content. Butterworth type returned the best re-

sults. A notch comb filter was then applied to the previous band-pass filtered

signal to specifically eliminate or attenuate the interference of the magnetic

field gradient seen as individual harmonically related frequencies in the spec-

trum. The result is a cleaned sEMG signal, with no baseline noise. Validation

of the in-bore sEMG cleaning algorithm can be done by correlating the sEMG

and the accelerometric signals recorded out-bore and also correlating another

set of those signals acquired in-bore. High correlation between both signals

for both sets of in-bore and out-bore signals will yield the validity of the algo-

rithm. The second algorithm made use of the wavelet frequency decomposition

analysis. The frequency band of interest was easily obtained however, even

though the high frequency content has been correctly filtered, the magnetic

field gradient artifact is still present in the signal (the frequency harmonics

are still present) and would only be removed using a notch filter. This proce-

dure was performed in the aforementioned first algorithm using the IIR filters.

This wavelet approach was then considered not useful for accurately clean the

sEMG signal, even though a fast and efficient frequency band discrimination

has been attained.

Other studies applied IIR filters to clean sEMG signals acquired in a fMRI

environment in healthy subjects25,52,53,83 and in a PD population.50 In the

present research methods were combined in order to obtain a new method

that quickly removes the fMRI artifacts from the electromyographic signals.

8.2 Parameter computation

The purpose of this chapter was to construct algorithms to investigate the

effect of a task comprising rest and postural arm positions in PD tremor.

Segmentation of the accelerometric and sEMG signals in the rest and postural

blocks and inspection of the frequency spectrum was sufficient to be aware
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of the clear differences between the two types of arm positions in PD tremor.

Peak power and frequency and the total power of the spectrum were computed

for accelerometry and sEMG filtered signals. The area under the curve of

the sEMG envelope was also computed for each segment. Spectrogram was

used to inspect the accelerometry and sEMG signals and blocks of tremor vs

nontremor were identified. A frequency band analysis was also performed in

order to determine the most contributing frequencies to the signals.

During postural segments it was possible to identify a distinct peak of power

about 5 Hz in one patient, which could evidence the presence of reemergent

rest tremor in the postural segments. A second peak of lower amplitude about

10 Hz was also found which falls in the frequency range characteristic of this

postural condition. Rest segments were of considerably less power and did not

presented a clear peak across the runs.

Results for the postural segments of a second patient, which did not fulfil

the requirement for medication washout before the session, showed a clear

peak between 6 and 7 Hz of less power comparing to the same results for the

previously mentioned patient. The absence of a second peak was noted.

In the patient diagnosed with rest PD tremor, both rest and postural seg-

ments presented identifiable peaks for all runs, but second peaks were not

detected. Rest segments peak power was higher comparing to postural ones.

During rest segments power peaks were found near 5 Hz. On the other hand,

frequency peaks for the postural segments were identified near 6 Hz.

8.3 Functional MRI analysis

Principles of this technique were described and its utility to the study of the

PD tremor activated brain areas was underlined. A preliminary within runs

multi-study using the identified intervals from the tremor vs nontremor anal-

ysis was performed. The sample size did not allow for a deep analysis and a

larger population needs to be studied to increase the statistical power. How-

ever, a preliminary analysis of a multi-study for one of the patients showed

an activation of the substantia nigra, in which dopamine-producing neurons

are degenerated in PD. This analysis have the potential to together with the

accelerometry and sEMG results, return important conclusions about the rest

and postural tremors characterization (enabling tremor separation) and also

about the correspondent generators in the brain.
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8.4 Limitations & Future Work

Starting with the acquisition protocol, it must be noted that sEMG signals

need to be carefully detected. Electrodes should be precisely attached to the

cleaned muscle skin and the wires disposition should be thoroughly assessed.

Otherwise, interferences will influence the signal and even invalidate it.

Distinguish rest from postural tremor using the spectral parameters re-

turned through the analysis of the filtered accelerometric and sEMG signals

would be possible by performing a statistical analysis in a larger, homogeneous

and preferably disorder duration matched population. In order to obtain con-

sistent results, all patients should also be in the same medication state, i.e.,

in pharmacological washout condition since at least 12 h before the beginning

of the session. More parameters can also be computed to help distinguishing

between rest and postural tremors. Furthermore, coherence studies can be

performed between sEMG and accelerometric data. Future work with higher

sample sizes and statistical power are also expected to confirm the prelimi-

nary observations obtained in the fMRI study and should further elucidate the

about the dynamics of tremor modulation.

Finally, a feature space could be build with the tremor parameters deter-

mined in this research for a larger population. Then the best classifier would

be selected and used in the classification of postural or rest tremor.
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[40] S. M. Rissanen, M. Kankaanpää, M. P. Tarvainen, A. Y. Meigal, J. Nuutinen,

I. M. Tarkka, O. Airaksinen, and P. A. Karjalainen, “Analysis of dynamic

voluntary muscle contractions in Parkinson’s disease.,” IEEE transactions on

bio-medical engineering, vol. 56, pp. 2280–8, Sept. 2009.

[41] J. I. Hoff, E. a. Wagemans, and B. J. van Hilten, “Ambulatory Objective Assess-

ment of Tremor in Parkinson’s Disease,” Clinical Neuropharmacology, vol. 24,

pp. 280–283, Sept. 2001.

[42] M. Smeja, F. Foerster, G. Fuchs, D. Emmans, A. Hornig, and J. Fahrenberg,

“24-h Assessment of Tremor Activity and Posture in Parkinson’s Disease by

Multi-Channel Accelerometry,” Journal of Psychophysiology, vol. 13, pp. 245–

256, Oct. 1999.

[43] R. Oldfield, “The assessment and analysis of handedness: The Edinburgh in-

ventory,” Neuropsychologia, vol. 9, pp. 97–113, Mar. 1971.

[44] V. Rajaraman, D. Jack, S. V. Adamovich, W. Hening, J. Sage, and H. Poizner,

“A novel quantitative method for 3D measurement of Parkinsonian tremor.,”



BIBLIOGRAPHY 79

Clinical neurophysiology : official journal of the International Federation of

Clinical Neurophysiology, vol. 111, pp. 338–43, Feb. 2000.

[45] J. Kulisevsky, A. Avila, M. Barbanoj, R. Antonijoan, J. Torres, and R. Arcelus,

“Levodopa does not aggravate postural tremor in Parkinson’s disease.,” Clinical

neuropharmacology, vol. 18, pp. 435–42, Oct. 1995.

[46] M. M. Sturman, D. E. Vaillancourt, L. V. Metman, R. A. E. Bakay, and D. M.

Corcos, “Effects of subthalamic nucleus stimulation and medication on resting

and postural tremor in Parkinson’s disease.,” Brain : a journal of neurology,

vol. 127, pp. 2131–43, Sept. 2004.
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Appendix A

UPDRS Section III: Motor

Examination

18. Speech

0 = Normal.

1 = Slight loss of expression, diction and/or volume.

2 = Monotone, slurred but understandable; moderately impaired.

3 = Marked impairment, difficult to understand.

4 = Unintelligible.

19. Facial Expression

0 = Normal.

1 = Minimal hypomimia, could be normal ’poker face’.

2 = Slight but definitely abnormal diminution of facial expression.

3 = Moderate hypomimia; lips parted some of the time.

4 = Masked or fixed facies with severe or complete loss of facial expression;lips

parted 1/4 inch or more.

5 = Tremor at rest (head, upper and lower extremities)

20. Tremor at rest (head, upper and lower extremities)

0 = Absent.

1 = Slight and infrequently present.

2 = Mild in amplitude and persistent. Or moderate in amplitude, but only in-

termittently present.

3 = Moderate in amplitude and present most of the time.

4 = Marked in amplitude and present most of the time.

21. Action or Postural Tremor of hands

0 = Absent.

1 = Slight; present with action.
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2 = Moderate in amplitude, present with action.

3 = Moderate in amplitude with posture holding as well as action.

4 = Marked in amplitude; interferes with feeding.

22. Rigidity (Judged on passive movement of major joints with patient

relaxed in sitting position. Cogwheeling to be ignored.)

0 = Absent.

1 = Slight or detectable only when activated by mirror or other movements.

2 = Mild to moderate.

3 = Marked, but full range of motion easily achieved.

4 = Severe, range of motion achieved with difficulty.

23. Finger Taps (Patient taps thumb with index finger in rapid succes-

sion.)

0 = Normal.

1 = Mild slowing and/or reduction in amplitude.

2 = Moderately impaired. Definite and early fatiguing. May have occasional

arrests in movement.

3 = Severely impaired. Frequent hesitation in initiating movements or arrests in

ongoing movement.

4 = Can barely perform the task.

24. Hand Movements (Patient opens and closes hands in rapid succes-

sion.)

0 = Normal.

1 = Mild slowing and/or reduction in amplitude.

2 = Moderately impaired. Definite and early fatiguing. May have occasional

arrests in movement.

3 = Severely impaired. Frequent hesitation in initiating movements or arrests in

ongoing movement.

4 = Can barely perform the task.

25. Rapid Alternating Movements of Hands (Pronation-supination move-

ments of hands, vertically and horizontally, with as large an amplitude

as possible, both hands simultaneously.)

0 = Normal.

1 = Mild slowing and/or reduction in amplitude.

2 = Moderately impaired. Definite and early fatiguing. May have occasional

arrests in movement.

3 = Severely impaired. Frequent hesitation in initiating movements or arrests in

ongoing movement.

4 = Can barely perform the task.
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26. Leg Agility (Patient taps heel on the ground in rapid succession pick-

ing up entire leg. Amplitude should be at least 3 inches.)

0 = Normal.

1 = Mild slowing and/or reduction in amplitude.

2 = Moderately impaired. Definite and early fatiguing. May have occasional

arrests in movement.

3 = Severely impaired. Frequent hesitation in initiating movements or arrests in

ongoing movement.

4 = Can barely perform the task.

27. Arising from Chair (Patient attempts to rise from a straightbacked

chair, with arms folded across chest.)

0 = Normal.

1 = Slow; or may need more than one attempt.

2 = Pushes self up from arms of seat.

3 = Tends to fall back and may have to try more than one time, but can get up

without help.

4 = Unable to arise without help.

28. Posture

0 = Normal erect.

1 = Not quite erect, slightly stooped posture; could be normal for older person.

2 = Moderately stooped posture, definitely abnormal; can be slightly leaning to

one side.

3 = Severely stooped posture with kyphosis; can be moderately leaning to one

side.

4 = Marked flexion with extreme abnormality of posture.

29. Gait

0 = Normal.

1 = Walks slowly, may shuffle with short steps, but no festination (hastening

steps) or propulsion.

2 = Walks with difficulty, but requires little or no assistance; may have some

festination, short steps, or propulsion.

3 = Severe disturbance of gait, requiring assistance.

4 = Cannot walk at all, even with assistance.

30. Postural Stability (Response to sudden, strong posterior displacement

produced by pull on shoulders while patient erect with eyes open and

feet slightly apart. Patient is prepared.)

0 = Normal.

1 = Retropulsion, but recovers unaided.
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2 = Absence of postural response; would fall if not caught by examiner.

3 = Very unstable, tends to lose balance spontaneously.

4 = Unable to stand without assistance.

31. Body Bradykinesia and Hypokinesia (Combining slowness, hesitancy,

decreased arm swing, small amplitude, and poverty of movement in

general.)

0 = None.

1 = Minimal slowness, giving movement a deliberate character; could be normal

for some persons. Possibly reduced amplitude.

2 = Mild degree of slowness and poverty of movement which is definitely abnor-

mal. Alternatively, some reduced amplitude.

3 = Moderate slowness, poverty or small amplitude of movement.

4 = Marked slowness, poverty or small amplitude of movement.



Appendix B

Hoehn & Yahr staging

Stage 1 Symptoms on one side of the body only.

Stage 1.5 Symptoms on one side of the body only and axial symptoms.

Stage 2 Symptoms on both sides of the body; no impairment of balance.

Stage 2.5 Symptoms on both sides of the body plus recovery on the pull test.

Stage 3 Balance impairment; mild to moderate disease; physically independent.

Stage 4 Severe disability, but still able to walk or stand unassisted .

Stage 5 Wheelchair-bound or bedridden unless assisted.
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