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Abstract

Trust-region methods are a broad class of methods for continuous optimization that found application
in a variety of problems and contexts. In particular, they have been studied and applied for problems
without using derivatives.

The analysis of trust-region derivative-free methods has focused on global convergence, and they
have been proved to generate a sequence of iterates converging to stationarity independently of the
starting point. Most of such an analysis is carried out in the smooth case, and, moreover, little is
known about the complexity or global rate of these methods. In this thesis, we start by analyzing
the worst case complexity of trust-region derivative-free methods for smooth functions (based on a
modification of the existent general methodology), bounding the number of iterations and function
evaluations to reach a certain threshold of first or second order stationarity.

For the non-smooth case, we propose a smoothing approach, for which we prove global conver-
gence and bound the worst case complexity effort. For the special case of non-smooth functions that
result of the composition of smooth and non-smooth/convex components, we show how to improve
the existing results of the literature using the general modified methodology of the smooth case.





Resumo

Os métodos de região de confiança formam uma classe geral de métodos para optimização contínua
que encontram aplicação numa variedade de problemas e contextos. Em particular, estes métodos têm
sido estudados e aplicados a problemas sem recurso a derivadas.

A análise dos métodos de região de confiança sem derivadas tem incidido em convergência global,
mostrando que estes métodos geram sequências de pontos convergindo para pontos estacionários,
independentemente do ponto inicial. Uma grande parte desta análise é feita no caso suave, sabendo-se
pouco sobre a complexidade ou taxa global destes métodos. Nesta tese, começamos por analisar a
complexidade no pior dos casos de métodos de região de confiança sem derivadas para funções suaves
(recorrendo a uma modificação da metodologia geral existente), limitando o número de iterações e
de avaliações de função necessárias para atingir uma determinada proximidade a estacionaridade de
primeira ou segunda ordem.

Para o caso não suave, propomos uma abordagem de suavização, para a qual provamos convergên-
cia global e limitamos a complexidade no pior dos casos. Para o caso especial de funções não suaves
resultantes da composição de funções suaves com funções não suaves e convexas, mostramos como
melhorar os resultados existentes na literatura utilizando a metodologia geral modificada do caso
suave.
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Chapter 1

Introduction

1.1 Trust-region methods for DFO

Trust-region methods are iterative methods for the optimization of a function in a continuous space,
possibly subject to constraints. In these methods, to obtain a trial point, one typically considers the
minimization of a quadratic model in a region around the current iterate and measured by a certain
radius. The model serves as a local approximation of the function, in particular of its curvature (see
the extensive monograph by Conn, Gould, and Toint [18] and the recent survey paper by Yuan [69]).

This thesis concerns trust-region methods for unconstrained derivative-free optimization (DFO),
where it is assumed that there is only access to the function values. Derivatives, if they exist, are
unavailable or little reliable to be used. DFO problems are common in Engineering Optimization
where the evaluation of the functions may be the output of a numerical simulation. DFO has also been
relatively well studied (see the book by Conn, Scheinberg, and Vicente [23]). In DFO trust-region
methods, the models are frequently built by fitting a sample set using interpolation or regression, and
their quality is measured by the accuracy they provide relatively to a Taylor expansion. In particular,
fully linear models [20] are those as smooth and accurate as first-order Taylor ones.

Accepting the trial point as the new iterate and updating the trust-region radius depend on how
much the function was reduced relatively to the model. If the current iterate is non-stationary and the
model has good quality, the algorithms succeed in accepting a trial point as a new iterate in a finite
number of reductions of the trust-region radius. These methods have been shown to be convergent to
first-order stationary points by Conn, Scheinberg, Toint, and Vicente (in the papers [19, 22]) under
the condition that fully linear models are available when necessary. The strict need of controlling
geometry or considering model-improvement steps was questioned in [32], where good numerical
results were reported for an interpolation-based trust-region method which ignores the geometry of
the sample sets. Scheinberg and Toint [63] gave an example showing that geometry cannot be totally
ignored and that some form of model improvement is necessary, at least when the size of the model
gradient becomes small (a procedure known as the ‘criticality step’, which then ensures that the
trust-region radius converges to zero).

1



2 Introduction

1.2 Worst case complexity in DFO

For a long while, DFO methods have been analyzed by establishing their global convergence properties,
meaning their asymptotic convergence to stationary regardless of the starting point (see [23, 46]).
More recently, there has been some interest in establishing their global rates of convergence or,
similarly, bounds on the number of iterations (and of function evaluations) required in the worst case
to achieve a certain threshold of stationarity. Such results are derived independently of the starting
point which justifies saying that the rates are global.

In part, such a recent effort follows a similar trend occurred for the unconstrained, derivative-
based optimization of smooth functions (where the gradient exists and is Lipschitz continuous).
Nesterov [52] started by showing that the gradient or steepest descent method takes a number of
iterations of the order of ε−2 — and we write that as O(ε−2) — to drive the norm of the gradient
of the objective function below ε . This effort is reduced to O(ε−1) in the presence of convexity. It
is known that such a bound is sharp or tight (see the example of Cartis, Gould, and Toint [11]). A
similar worst case complexity bound of O(ε−2) has been proved by Gratton, Sartenaer, and Toint [41]
for trust-region methods. The worst case complexity (WCC) bound on the number of iterations can
be reduced to O(ε−1.5) for cubic overestimation methods (see Nesterov and Polyak [54] and Cartis,
Gould, and Toint [10]).

In the context of DFO, most of the WCC analysis has been carried out for direct-search methods
of directional type based on a sufficient decrease condition. The first worst-case complexity bound,
of O(ε−2), was derived by Vicente [64] for smooth functions, and later refined to O(ε−1) when the
function is convex by Dodangeh and Vicente [28]. Garmanjani and Vicente [34], using a smoothing
approach, have shown a WCC bound of O(| logε|ε−3) in the non-smooth case. Similar WCC bounds
were derived, in expectation, by Nesterov [53] for his random Gaussian smoothing approach. Cartis,
Gould, and Toint [14] have derived a WCC bound of O(ε−1.5) for their derivative-free adaptive cubic
overestimation algorithm, but using finite differences to approximate derivatives.

1.3 The contribution of this thesis

In this thesis we address the worst case complexity of trust-region methods for unconstrained DFO.
Our contributions are fourfold.

First we consider the smooth case and, as expected, derive a WCC bound of O(ε−2) for the
number of iterations and O(n2ε−2) for the number of function evaluations. There were a number
of delicate issues to overcome, one of which being how to appropriately measure the effort of the
criticality step to avoid worsening the power ε−2. It is also nontrivial to appropriately count the
number of iterations that are acceptable (the function is decreased, the trial point is accepted as the
new iterate, and the radius is reduced) or of model-improvement type (the iterate and the radius are
maintained), under the general setting in [22].

A second contribution is again in the smooth case but related to the WCC of derivative-free
trust-region methods when determining second-order critical points. It is known that such methods
globally converge to points satisfying the second-order necessary conditions [22]. It is also known
that derivative-based trust-region methods require a number of the O(max{ε−2

g ε
−1
H ,ε−3

H }) iterations
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to determine a point where the norm of the gradient of the objective function is below εg and the
smallest eigenvalue of the Hessian of the function is above −εH (see Cartis, Gould, and Toint [13]). In
this thesis, we prove a bound of O(ε−3), with ε = εg = εH , when no derivatives are used, and refine it
as O(n5ε−3) under certain assumptions for the corresponding number of functions evaluations. Very
recently, it was proposed in [39] a direct-search method (that may use eigenvectors of approximated
Hessians as directions), achieving the same WCC bounds in iterations and function evaluations.

Thirdly, we address the general non-smooth case, and develop a smoothing trust-region approach
in the same vein as for direct search [34]. The number of iterations required to drive the smoothing
parameter and the norm of the smoothing gradient below ε will be shown to be of O(| logε|ε−3) (for
function evaluations, O(n2| logε|ε−3)). The knowledge of the contribution [34] has provided some
guidance on how to obtain this result, but a lot had still to be done, from building all necessary blocks
from the smooth case to assembling all components in the new context of trust regions.

The fourth contribution addresses the analysis of WCC of derivative-free trust-region methods
for composite functions of the type h(F) where h is real, non-smooth, and convex and F is vectorial
and smooth (but for which derivatives are unavailable). This task was already attempted by Grapiglia,
Yuan, and Yuan [37] but under a restrictive setting (relatively to the general scenario in [22]) and
with sub-optimal results. Their complexity result in terms of function evaluations is of the form
O(| logε|ε−2), where ours will be just O(ε−2). We were able to remove the factor | logε| precisely
from the way we count iterations in the criticality step. Further, contrary to [37], we do not impose a
reduction of the trust-region radius on model-improvement iterations. In terms of function evaluations,
our bound looks like O(ℓn2ε−2), where ℓ is the number of functions components in F .

The author of this thesis is a co-author of the paper [33], under review in the SIAM Journal on
Optimization, where the first, third, and fourth contributions of this thesis are reported.

1.4 Organization of the thesis and some terminology

This thesis is organized as follows. We start by reviewing trust-region methods with and without
derivatives in Chapter 2, focusing on their global convergence properties. Then we review global rates
for nonlinear optimization, with and without derivatives, in Chapter 3. Our first two contributions
are described in Chapter 4: Section 4.1 for the WCC of derivative-free trust-region methods for
determining first-order critical points of smooth functions; Section 4.2 likewise but for second-order
critical points. Chapter 5 addresses the non-smooth case. In Section 5.3 we introduce and analyze
the smoothing approach. The non-smooth composite case is handled in Section 5.4. At the end of
this chapter (Section 5.5), we provide a numerical illustration of the latter two approaches for the
case ∥F∥1. The thesis is ended in Chapter 6, with some conclusions and prospects of future work.

In the thesis we will refer often to rates of convergence, most of the times in a global sense (where,
as opposed to a local sense, no assumption is made on the proximity of the starting point to stationarity).
Let {xk}k≥0 be a sequence in Rn converging to x∗. Consider the corresponding real sequence defined
by rk = ∥xk − x∗∥. We say that {xk}k≥0 has a linear rate of convergence if there exists θ ∈ (0,1) such
that rk+1/rk ≤ θ for all k sufficiently large. For example, the sequence {(1/2)k}k≥0 converges linearly.
The rate of convergence can be slower or faster than linear. For the former case, the sequence {xk}k≥0

converges sublinearly if the ratio rk+1/rk converges to 1 (while retaining the property that rk tends to
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zero). Examples of real sequences exhibiting sublinear rates to x∗ = 0 that appear often in first-order
methods for continuous optimization are {1/k2}k≥0, {1/k}k≥0, and {1/

√
k}k≥0. For the latter case,

the sequence {xk}k≥0 converges superlinearly if the ratio rk+1/rk converges to 0 (an example being
{(1/2)k2}k≥0 with x∗ = 0). Finally, we say that the sequence {xk}k≥0 converges quadratically if
rk+1/r2

k ≤ M, for some M > 0. An example is given by the sequence {10−2k}k≥0 that converges
quadratically to x∗ = 0. The rates described so far are the q-rates where the “q” stands for quotient,
see [56, Chapter 9]. There are also the so-called r-rates (r of root). A sequence converges with an
r-rate to x∗ if rk is bounded by a real sequence converging with a q-rate to 0. For instance, the rate of
convergence of the sequence {xk}k≥0 is r-linear if rk ≤ yk and {yk}k≥0 converges linearly to 0 ∈ R.
An example is given by the sequence defined by xk = (1/2)k for k even and xk = 0 for k odd. In
both cases, q and r, what we have described are consequences of the original, more complicated
definitions [56, Chapter 9].

In the WCC bounds, the notation O(A) will mean a scalar times A, where the scalar does not
depend on the iteration counter of the method under analysis (thus depending only on the problem or
on algorithmic constants). The dependence of A on the dimension n of the problem (or on a Lipschitz
constant) will be made explicit whenever appropriate.

The notation B(x;∆) stands for {y ∈ Rn : ∥y− x∥ ≤ ∆} and by default all norms are the Euclidean
ones.



Chapter 2

Derivative-free trust-region methods for
smooth functions

In this chapter we will review the basic concepts of trust-region algorithms for the unconstrained
minimization of a smooth function f : Rn → R, with or without derivatives.

Section 2.1 is devoted to the basics of trust-region methods in the presence of derivatives. We use
a simple trust-region method to describe the concepts involved, in particular the quadratic models and
the trust-region subproblem. The algorithm described converges to first and second order stationary
points. We will also comment on the local rate convergence of a Newton’s method globalized by such
trust-region scheme. This material is now classic and a more comprehensive coverage is given in
the book by Conn, Gould, and Toint [18], in [55, Chapter 4], and in the survey papers [48, 69]. The
proofs of the results stated in this section can be found in [18].

In Section 2.2 we start to address trust-region methods but without the use of derivatives. The
necessary tools for global convergence of derivative-free trust-region algorithms are presented. We
will show how interpolation and regression techniques can be used to build models with the desired
properties. Such models will replace the quadratic models using derivatives defined in Section 2.1.
The material is mostly taken from [23].

In Section 2.3 it is presented the derivative-free trust-region framework of [22] (see also [23,
Chapter 10]). This framework includes a number of provisions for the absence of derivatives including,
for instance, criticality and model-improvement steps. The global convergence properties will be
stated and discussed.

In Section 2.4 other derivative-free trust-region approaches are referred and commented.

2.1 Introduction to trust-region methods for smooth functions

A typical trust-region method approximates the objective function by a quadratic model in a neigh-
borhood or ball of the current iterate point. Then it minimizes the model in that neighborhood (trust
region). If the model solution is a good approximation for the function f , then the step is taken
and the radius of the ball (trust-region radius) is possibly increased. If not, the trust-region radius is
shrunk and the model is minimized again. This process is repeated until some form of approximate
stationarity is reached.

5



6 Derivative-free trust-region methods for smooth functions

To be more specific, let xk be the current iterate. A trust region is typically a set of the form

B(xk;∆k) = {x ∈ Rn : ∥x− xk∥ ≤ ∆k},

where ∆k is the trust-region radius. Assuming that f is continuously differentiable, one can approxi-
mate f in B(xk;∆k) by a quadratic of the form:

mk(xk + s) = fk +g⊤k s+
1
2

s⊤Hks, (2.1)

where fk = f (xk), gk = ∇ f (xk) ∈ Rn, and Hk ∈ Rn×n is a symmetric matrix. Observe that from
Taylor’s Theorem, we know that the difference between mk(xk + s) and f (xk + s) is O(∥s∥2), which is
small for small s. When the function is twice continuously differentiable, the matrix Hk is seen as
an approximation to the Hessian matrix ∇2 f (xk). If Hk = ∇2 f (xk), the difference between mk(xk + s)
and f (xk + s) becomes O(∥s∥3). To obtain the next iterate we must find s as an approximate solution
of the trust-region subproblem

min
s∈Rn

mk(xk + s) = fk +g⊤k s+
1
2

s⊤Hks s.t. ∥s∥ ≤ ∆k.

Observe that if Hk is positive definite and ∥H−1
k gk∥ ≤ ∆k, the exact solution of this problem is

sH
k =−H−1

k gk.

The minimizer of the model mk(xk + s) subject to ∥s∥ ≤ ∆k along the steepest descent direction
−gk = −∇ f (xk) is called the Cauchy step sC

k . For the trust-region method to globally converge to
first-order stationarity, the approximate solution sk must give a decrease on mk(xk + ·) as good as the
Cauchy step. It can be shown that [55, Lemma 4.3]

mk(xk)−mk(xk + sC
k ) ≥ 1

2
∥gk∥min

{
∥gk∥
∥Hk∥

,∆k

}
,

where we assume that ∥gk∥
∥Hk∥ =+∞ when Hk = 0. In fact, to guarantee global convergence to first-order

stationary points we only need the step sk to be as good as the Cauchy step in the sense of

mk(xk)−mk(xk + sk) ≥ κ f cd(mk(xk)−mk(xk + sC
k )), (2.2)

for some constant κ f cd ∈ (0,1). Thus, the step sk will satisfy

mk(xk)−mk(xk + sk) ≥
κ f cd

2
∥gk∥min

{
∥gk∥
∥Hk∥

,∆k

}
. (2.3)

The next step of the trust-region iteration is to measure the quality of the trial step sk. For this
matter, we compare the decrease in the model mk, given by mk(xk)−mk(xk + sk), with the actual
decrease in the function f , given by f (xk)− f (xk + sk). We then define the ratio

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
. (2.4)



2.1 Introduction to trust-region methods for smooth functions 7

The numerator in ρk is called the actual reduction and the denominator the predicted reduction. The
value of ρk is used to accept or not the trial point given by xk+1 = xk + sk. First, observe from (2.2)
that mk(xk)−mk(xk + sk)≥ 0. So, if ρk < 0 the function f increases at the trial point and so it must be
rejected and the trust-region radius decreased (and for the moment we consider that the same is done
when ρk ∈ [0,η) for small η ∈ (0,1)). On the other hand, if ρk is bigger than η ∈ (0,1), it means that
the model represents the function well in that trust region. In such a case, one accepts the trial step
and possibly increase the trust-region radius. A trust-region method is thus an iterative method that
starts with an initial guess and an initial trust-region radius. To proceed let us define it now formally.

Algorithm 2.1.1 Trust-region method (for smooth functions; first-order)

Initialization: Choose an initial point x0 and an initial trust-region radius ∆0 ∈ (0,∆max] for some
∆max > 0. Construct the initial model m0(x0 + s) as in (2.1). The constants η ∈ (0,1), γinc > 1,
and γ ∈ (0,1) are given. Set k = 0.

Step 1 (step calculation): Compute a step sk that sufficiently reduces the model mk, in the sense
of (2.2).

Step 2 (acceptance of the trial point): Compute f (xk + sk) and ρk.

If ρk ≥ η , then xk+1 = xk + sk and the model of the form (2.1) is constructed at the new iterate
xk+1 resulting in a new model mk+1(xk+1 + s). Otherwise the model and the iterate remain
unchanged (mk+1 = mk and xk+1 = xk).

Step 3 (trust-region radius update): Set

∆k+1 ∈

{
[∆k,min{γinc∆k,∆max}] if ρk ≥ η ,

{γ∆k} if ρk < η .

Increment k by one and go to Step 1.

Global convergence

Now we review the global convergence properties of Algorithm 2.1.1. Consider the initial level set

L(x0) = {x ∈ Rn : f (x)≤ f (x0)}. (2.5)

Given that trust-region methods impose some form of decrease on the acceptance of new iterates, such
points are always confined to an initial level set L(x0), on which the function must be bounded below.

Assumption 2.1.1 Assume that f is bounded below on L(x0), that is, there exists a constant flow such
that, for all x ∈ L(x0), f (x)≥ flow.

The function is also assumed smooth in L(x0).

Assumption 2.1.2 Assume that f is continuously differentiable with Lipschitz continuous gradient
(with constant L∇ f ) in an open domain containing the set L(x0).
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As in the convergence of most trust-region methods, one needs to assume that the model Hessians
are uniformly bounded.

Assumption 2.1.3 There exists a constant κbhm > 0 such that, for all xk generated by the algorithm,

∥Hk∥ ≤ κbhm.

Next we formally state that the difference between the model and the function is O(∥s∥2).

Lemma 2.1.1 Let Assumptions 2.1.2 and 2.1.3 hold. Then

|mk(xk + sk)− f (xk + sk)| ≤
(

κbhm +L∇ f

2

)
∥sk∥2.

The following lemma says that, as long as the trial point is not stationary, if the trust-region radius
is small enough relatively to the size of the gradient, then a successful iteration occurs in a finite
number of steps and f can be further reduced. The result is proved by showing that |ρk −1| ≤ 1−η ,
using (2.3) and Lemma 2.1.1.

Lemma 2.1.2 Let Assumptions 2.1.2 and 2.1.3 hold and ∇ f (xk) ̸= 0. Then there exists a constant
C1 > 0 such that if ∆k ≤C1∥∇ f (xk)∥ then ρk ≥ η and iteration k is successful.

Algorithm 2.1.1 is globally convergent to first-order stationary points in the sense of generating a
subsequence of iterates driving the gradient of the function to zero as stated in the next theorem. The
proof uses Lemma 2.1.2 and the fact that the function is bounded from below (Assumption 2.1.1).

Theorem 2.1.1 Let {xk} be a sequence generated by Algorithm 2.1.1. Let Assumptions 2.1.1–2.1.3
hold. Then

liminf
k→+∞

∥∇ f (xk)∥ = 0.

Note that since η > 0 in Algorithm 2.1.1, ρk ≥ η is a sufficient decrease condition. When η = 0,
ρk > 0 is equivalent to f (xk + sk)< f (xk) which amounts to impose a simple decrease condition on
function values. The result of Theorem 2.1.1 is also valid when η = 0 provided that the trust-region
radius is reduced when 0 ≤ ρk < η . In other words, the step can be taken when ρk ∈ [0,η), but the
radius is reduced.

As it is stated, Algorithm 2.1.1 also verifies the following stronger result:

Theorem 2.1.2 Let {xk} be a sequence generated by Algorithm 2.1.1. Let Assumptions 2.1.1–2.1.3
hold. Then

lim
k→+∞

∥∇ f (xk)∥ = 0.

There is a counter example [68] showing that the lim result of Theorem 2.1.2 might not hold for
simple decrease even with the provisions given after Theorem 2.1.1. There are ways of imposing
Theorem 2.1.2 for simple decrease by changing the way of updating the trust-region radius which will
later be discussed in the context where derivatives are not used.
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In the presence of second-order derivatives, the quadratic model can be constructed using Hk =

∇2 f (xk). In order to make the algorithm globally convergent to second-order points, the step sk has
then to satisfy additional requirements.

For such a purpose, let λmin(Hk) be the smallest eigenvalue of Hk, assumed negative for a moment.
Let sE

k be an eigenvector associated with λmin(Hk):

HksE
k = λmin(Hk)sE

k .

Suppose, without loss of generality, that ∥sE
k ∥= ∆k and (sE

k )
⊤∇ f (xk)< 0. It can be shown that τ = 1

is the optimal solution of
min
τ≥0

mk(τsE
k ) s.t. ∥τsE

k ∥ ≤ ∆k,

and it satisfies
mk(xk)−mk(xk + sE

k ) ≥ −1
2

λmin(Hk)∆
2
k . (2.6)

The step sk is then required to satisfy a condition called the fraction of the eigenvalue decrease: If
λmin(Hk) ≥ 0, we suppose that

mk(xk)−mk(xk + sk) ≥ κ f od(mk(xk)−mk(xk + sC
k )).

where κ f od ∈ (0,1). Otherwise, we suppose that

mk(xk)−mk(xk + sk) ≥ κ f od max{mk(xk)−mk(xk + sC
k ),mk(xk)−mk(xk + sE

k )}, (2.7)

The structure of the second-order algorithm is similar to Algorithm 2.1.1. A main difference is
that now Hk is set to the Hessian of f at xk. Another difference is in the trust-region subproblem
solution: it has to satisfy (2.7).

Algorithm 2.1.2 Trust-region method (for smooth functions; second-order)

Initialization: Choose an initial point x0 and an initial trust-region radius ∆0 ∈ (0,∆max] for some
∆max > 0. Construct the initial model m0(x0 + s) as in (2.1) with H0 = ∇2 f (x0). The constants
η ∈ (0,1), γinc > 1, and γ ∈ (0,1) are given. Set k = 0.

Step 1 (step calculation): Compute a step sk that sufficiently reduces the model mk, in the sense
of (2.7).

Step 2 (acceptance of the trial point): Compute f (xk + sk) and ρk.

If ρk ≥ η , then xk+1 = xk + sk and the model of the form (2.1) is constructed at the new
iterate xk+1, with Hk+1 = ∇2 f (xk+1) resulting in a new model mk+1(xk+1 + s). Otherwise the
model and the iterate remain unchanged (mk+1 = mk and xk+1 = xk).

Step 3 (trust-region radius update): Set

∆k+1 ∈

{
[∆k,min{γinc∆k,∆max}] if ρk ≥ η ,

{γ∆k} if ρk < η .
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Increment k by one and go to Step 1.

Now we review the global convergence of Algorithm 2.1.2 to second-order stationary points. First,
we need to assume that the Hessian is Lipschitz continuous.

Assumption 2.1.4 Assume that f is twice continuously differentiable with Lipschitz continuous
Hessian (with constant L∇2 f in an open set containing the set L(x0).

We also need to assume that the Hessian is uniformly bounded.

Assumption 2.1.5 There exists a constant κbhm such that, for all xk generated by the algorithm,

∥∇
2 f (xk)∥ ≤ κbhm.

Next we formally state that the difference between the model and the function is O(∥s∥3).

Lemma 2.1.3 Let Assumptions 2.1.4 and 2.1.5 hold. Then

|mk(xk + sk)− f (xk + sk)| ≤
(

L∇2 f

6

)
∥sk∥3.

The following lemma is a second-order version of Lemma 2.1.2. It says that, as long as the point
is not second-order stationary, if the trust-region radius is small enough relatively to the size of the
second-order stationarity measure σ(xk), where

σ(x) = max{∥∇ f (x)∥,−λmin(∇
2 f (x))}, (2.8)

then a successful iteration occurs in a finite number of steps and f can be further reduced.

Lemma 2.1.4 Let Assumptions 2.1.4 and 2.1.5 hold and σ(xk) ̸= 0. Then there exists a constant
C2 > 0 such that if ∆k ≤C2σ(xk) then ρk ≥ η and iteration k is successful.

The next theorem establishes global convergence to second-order stationary points.

Theorem 2.1.3 Let Assumptions 2.1.1, 2.1.4, and 2.1.5 hold. Let {xk} be a sequence generated by
the algorithm, where Hk = ∇2 f (xk) and sk satisfies a fraction of the eigenvalue decrease. Then

liminf
k→+∞

σ(xk) = 0.

It is well known that it is not possible to prove a lim-type result of the type

lim
k→+∞

σ(xk) = 0 (2.9)

for an algorithm of the type of Algorithm 2.1.2 without modifying the scheme that updates the
trust-region radius in successful iterations. A known modification is to increase the trust-region radius
in all successful iterations. In such a case, it is possible to prove a lim-type result of the form (2.9),
see, for instance, [18, Theorem 6.6.7].
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A trust-region scheme is a globalization procedure that enables Newton or quasi-Newton schemes
to converge from arbitrary starting points. In fact, it is well known that such methods enjoy a fast local
rate of convergence (quadratic in the case of Newton and superlinear for quasi-Newton methods),
but such properties require the starting point to be near a point satisfying the second-order sufficient
optimality conditions. Away from those points, steps from these methods can be too large and need to
be restricted. Line searches and trust regions are the two main schemes for doing that.

However, a globalization scheme must be able to recognize the proximity of such a point and
then become inactive. In trust-region methods that is encompassed by not reducing the radius after a
certain order. Such a global/local behavior can be described by the following result.

Theorem 2.1.4 Let f be twice continuously differentiable at x∗ and ∇2 f Lipschitz continuous near x∗.
Let {xk} be a sequence generated by Algorithm 2.1.1, where (for sufficiently large k) Hk =∇2 f (xk) and
sk = sN

k when ∥sN
k ∥ ≤ ∆k, and sN

k =−∇2 f (xk)
−1∇ f (xk) is well defined. Suppose that {xk} converges

to point x∗ and this one is such that ∇ f (x∗) = 0 and ∇2 f (x∗) is positive definite.
Then there exist ∆∗ > 0 and k∗ ∈ N such that ∆k ≥ ∆∗ for all k ≥ k∗.

Note that the assumptions of this theorem do not conflict with sk satisfying a fraction of the
Cauchy decrease. When ∥sN

k ∥ ≤ ∆k and ∇2 f (xk) is positive definite, sN
k is the minimizer of the

quadratic mk(xk + s) subject to ∥s∥ ≤ ∆k, and thus the decrease of sN
k is larger in mk(xk + s) than the

decrease of the Cauchy step sC
k .

As a consequence of the result of Theorem 2.1.4, the trust-region step becomes eventually the
Newton one. In fact, since ∇ f (xk) converges to zero and ∇2 f (xk) converges to a positive definite
matrix, sN

k converges to zero. Then, the result of the Theorem says that the Newton step is inside the
trust region for sufficiently large k and the modification of the algorithm stated in the theorem enables
to take it. The local rate of convergence becomes then quadratic.

A similar result can be obtained for quasi-Newton type methods by taking a step sk satisfying
∥sk − sN

k ∥= o(sN
k ) when ∥sN

k ∥ ≤ ∆k, yielding a superlinear rate of convergence.

2.2 Introduction to derivative-free trust-region concepts

When applying trust-region methods to problems where one can use derivatives of the objective
function, we have access to the gradient and possibly to the Hessian. These objects are then used
to build the quadratic models to be minimized in trust-region subproblems. In derivative-free trust-
region methods, one only has access to function values, and the quadratic models must therefore
strictly depend on the evaluation of the objective function on sample sets. Such models are typically
built using interpolation or regression techniques and polynomial basis functions. The models must,
however, enjoy the same accuracy properties as the Taylor based models used in the presence of
derivatives (expressed in Lemmas 2.1.1 and 2.1.3). As we will see in this section, such an accuracy
depends strongly on the geometrical properties of the sample sets.

Classical multivariate polynomial interpolation provides a measure for the quality of the geometry
of the sample sets based on the corresponding notion of Lagrange polynomials. Such polynomials are
defined in the space of polynomials used for the modeling in question. Each Lagrange polynomial is
associated with a sample point, and thus they are as many as the number of points in a sample set.
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Given a scenario where the interpolation is determined, i.e., where there are as many points as basis
functions, each Lagrange polynomial is defined by the property that its value is equal to one at the
corresponding point and to zero at the remaining ones. The maximal absolute value of all Lagrange
polynomials in a compact set containing the sample set (or a bound Λ for that value) is a measure of
its geometry, called the Lebesgue constant. The sample set in this case is called Λ-poised. Classical
multivariate polynomial interpolation provides Taylor-type accuracy bounds between the function and
the interpolating polynomial that depend on the Lebesgue constant. Lagrange polynomials can also be
defined in the underdetermined and regression cases, where the cardinality of the sample set is less
than or more than (respectively) the number of basis elements (see, respectively, [23, Chapter 5] and
[23, Chapter 4]).

There is, however, an alternative and equivalent way of measuring the quality of sample sets
for polynomial interpolation and regression, that is perhaps more intuitive and easier to monitor in
certain numerical contexts and for which it is also possible to derive Taylor-type accuracy bounds
for the corresponding polynomial models. This measure is essentially the condition number of the
matrix appearing in the interpolation conditions, but for a sample set obtained from the original by
first shifting and then scaling its points so that all the resulting points lie in the unitary ball centered at
the origin. In the book [23] (originally in the papers [20, 21]), it is proved for all types of polynomial
modeling (underdetermined, determined, and regression) that imposing a bound on such a condition
number is equivalent to impose a bound on the maximum absolute value of the Lagrange polynomials
(i.e., on being Λ-poised). In this section we will review polynomial modeling and the corresponding
accuracy bounds using the condition number approach of [23].

Fully linear models

Let x0 ∈ Rn be a starting point for the trust-region methods considered in this thesis. Let f : Rn → R
be a function for which one build models to be used in such methods. When imposing a certain
smoothness on f , one needs to consider only the region where these methods generate new iterates
and trial points. Given that trust-region methods impose some form of decrease on the acceptance of
new iterates, such points are always confined to an initial level set L(x0) = {x ∈ Rn : f (x)≤ f (x0)},
(see 2.5).

At each iteration of such methods, the function is sampled at the trial point xk + sk and possibly at
a certain number of sampling points in the ball B(xk;∆k), where xk is the current iterate and ∆k the
current trust-region radius. It might happen, however, that some of such points fall outside of the level
set L(x0), and thus the set in which the function is sampled is taken as:

Lenl(x0) =
⋃

x∈L(x0)

B(x;∆max), (2.10)

where ∆max is chosen such that ∆max ≥ ∆k, for all k ≥ 0. It is in Lenl(x0) that f is assumed smooth to
later derive the convergence and complexity properties for these methods.

Assumption 2.2.1 Suppose x0 and ∆max are given. Assume that f is continuously differentiable with
Lipschitz continuous gradient (with constant L∇ f ) in an open domain containing the set Lenl(x0).
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To establish global convergence to first-order stationary points (and the corresponding rates or
complexity bounds), certain models of f need to be assumed as accurate as first-order Taylor models,
in the sense of Point 1 of the definition below. It is further assumed that such models can be made
first-order accurate or fully linear in a finite number of model-improvement steps. We reproduce
below Definition 10.3 in [23].

Definition 2.2.1 Let a function f : Rn → R, that satisfies Assumption 2.2.1, be given. A set of model
functions M = {m : Rn → R, m ∈C1} is called a fully linear class of models if:

1. There exist positive constants κe f and κeg such that for any x ∈ L(x0) and ∆ ∈ (0,∆max] there
exists a model function m(x+ s) in M, with Lipschitz continuous gradient, and such that

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ f (x+ s)−∇m(x+ s)∥ ≤ κeg ∆, ∀s ∈ B(0;∆), (2.11)

and

• the error between the model and function satisfies

| f (x+ s)−m(x+ s)| ≤ κe f ∆
2, ∀s ∈ B(0;∆). (2.12)

Such a model m is called fully linear on B(x;∆).

2. For this class M there exists an algorithm, which we will call a ‘model-improvement’ algorithm,
that in a finite, uniformly bounded (with respect to x and ∆) number of steps can

• either establish that a given model m ∈ M is fully linear on B(x;∆) (we will say that a
certificate has been provided),

• or find a model m ∈ M that is fully linear on B(x;∆).

Note that fully linear models are not necessarily linear, in fact they are typically quadratic in
practice. Either way, the most popular models are based on polynomial basis functions. For this
purpose, we start by reviewing basic concepts and notation for multivariate polynomial interpolation
and regression.

General considerations

The model-improvement algorithms can be either based on the maximization of the absolute value
of the Lagrange polynomials or on the use of pivotal algorithms over the interpolation matrices (see
respectively Sections 6.2 and 6.3 of [23]). In this section we will only review how polynomial models
can achieve the (Taylor-type) error bounds of the form (2.11) and (2.12).

Let us consider Pd
n , the space of polynomials in Rn of degree less or equal to d. The dimension of

this space is q1 = n+1 for d = 1 and q1 = (n+1)(n+2)/2 for d = 2. Consider a basis for this space
φ = {φ0(x),φ1(x), ...,φq(x)}, where q1 = q+ 1. Elements of Pd

n can be written as m(x) = α⊤φ(x),
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with α ∈ Rq+1. Consider a set of sample points Y = {y0,y1, ...,yp} ⊂ Rn. We say that a polynomial
m ∈ Pd

n interpolates the function f : Rn → R at the set Y if

(m(yi) =)
q

∑
j=0

α jφ j(yi) = f (yi), i = 0, ..., p. (2.13)

Conditions (2.13) form a linear system in terms of the interpolation coefficients α . In matrix form, it
is equivalent to

M(φ ,Y )α = f (Y ), (2.14)

where f (Y ) =
(

f (y0), f (y1), . . . , f (yp)
)⊤ and M(φ ,Y )i j = φ j(yi), i = 1, . . . , p+ 1, j = 1, . . . ,q+ 1.

For the moment let us suppose that the interpolation matrix is square, which happens when there are
as many sample points as basis functions (i.e., p+1 = q+1). For the interpolation system (2.14) to
have a unique solution, the matrix M(φ ,Y ) has to be nonsingular. In this case, we say that the set Y is
poised for polynomial interpolation in Rn. Under these conditions the interpolating polynomial m(x)
exists and is unique (and is independent of the basis φ ), see [23, Lemma 3.2].

Let us consider now the case when there are more points than basis functions, i.e., p+1> q+1. In
this case, one can compute a least-squares solution of (2.14), i.e., a minimizer of ∥M(φ ,Y )α − f (Y )∥,
where, recall, ∥ · ∥ stands for the Euclidean norm. For that linear system (2.14) to have a unique
solution in the least-squares sense, the matrix M(φ ,Y ) must have full column rank. In this case, we
say that the set Y is poised for polynomial regression in Rn. Under these conditions the regression
polynomial m(x) exists and is unique (and is independent of the basis φ ), see [23, Lemma 4.3].

As mentioned earlier, a measure of the quality of the geometry of the sample set is given by the
conditioning of the interpolation matrix for a shifted and scaled set. Given a set Y = {y0,y1, . . . ,yp},
we first shift all the points by −y0 so that the first new point will be the origin and then scale the
remaining ones so that they lie in the unitary ball. In other words, we do

Ŷ = {0,(y1 − y0)/∆, . . . ,(yp − y0)/∆} ⊆ B(0;1), (2.15)

where ∆ = ∆(Y ) = max1≤i≤p ∥yi − y0∥. As we will see later for different scenarios, the Taylor-
type accuracy bounds for the different interpolating or regression polynomials will depend on the
conditioning of the matrix

M̂ = M(φ̄ ,Ŷ ), (2.16)

where φ̄ is the natural basis of Pd
n , or of particular submatrices or related submatrices.

Linear interpolation and regression models

We start by reviewing the linear case where d = 1 and φ̄ = {1,x1, . . . ,xn}. In this scenario, one has

M̂ =

[
1 0
e L̂

]
,
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where e = (1, . . . ,1)⊤ ∈ Rn and

L̂ =
1
∆
[y1 − y0 · · ·yp − y0]. (2.17)

First, let us consider the determined case p = q = n. In this case, the error bounds are derived in terms
of the submatrix L̂ under the following assumption.

Assumption 2.2.2 Assume that the function f is continuously differentiable in an open domain Ω

containing B(y0;∆(Y )) and ∇ f is Lipschitz continuous with constant L∇ f in Ω.

The following result is taken from [23, Theorems 2.11 and 2.12]. Note that in this case m(x) =
α⊤φ(x) = α0 +α1x1 + · · ·+αnxn.

Theorem 2.2.1 Let Assumption 2.2.2 hold and d = 1. Assume that the set Y is a poised set of sample
points (in the determined sense) contained in the ball B(y0;∆(Y )) of radius ∆ = ∆(Y ). For all points
y ∈ B(y0;∆), the following bounds hold

∥∇ f (y)−∇m(y)∥ ≤ L∇ f (1+n
1
2 ∥L̂−1∥/2)∆,

| f (y)−m(y)| ≤ L∇ f (3/2+n
1
2 ∥L̂−1∥/2)∆2.

A similar result exists for the overdetermined case, where the polynomial is obtained by least-
squares regression. This is [23, Theorem 2.13], and we reproduce it below:

Theorem 2.2.2 Let Assumption 2.2.2 hold and d = 1. Assume that the set Y is a poised set of sample
points (in the regression sense) contained in the ball B(y0;∆(Y )) of radius ∆ = ∆(Y ). For all points
y ∈ B(y0;∆), the following holds

∥∇ f (y)−∇m(y)∥ ≤ L∇ f (1+ p
1
2 ∥M̂†∥/2)∆,

| f (y)−m(y)| ≤ L∇ f (5/2+ p
1
2 ∥M̂†∥)∆2,

where M̂† = (M̂⊤M̂)−1M̂⊤ denotes the left inverse of M̂.

The last two results show that we can build models using linear interpolation or linear regression
on a poised sample set of points, satisfying the requirements (2.11) and (2.12) of fully linear models.

Several DFO methods are based on the notion of a simplex gradient. Given n+1 points, a simplex
gradient is the gradient of the linear interpolation model m(y) = α⊤φ(y) = c+ g⊤y, i.e., it is the
vector g. Simplex gradients can be computed in a regression way when there are more than n+1 points,
and are generally referred to as the gradient g of the linear regression model m(y) = f (y0)+(y−y0)⊤g
interpolating the first point y0.
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Underdetermined quadratic interpolation models

Linear models cannot incorporate the curvature of the function and are of limited use in trust-region
methods. The most popular models are quadratic; using the previous notation, one has d = 2 and
P2

n . The natural basis in this space is φ̄ = {1,x1, . . . ,xn,x2
1/2,x1x2, . . . ,xn−1xn,x2

n/2}. In the DFO
context, many times the function that we want to minimize is costly to evaluate. As we saw earlier,
we need q1 = (n+ 1)(n+ 2)/2 points to build a complete interpolating model. If n is large, this
can be prohibitive. This section explains how to build interpolating models when one has less
than (n+ 1)(n+ 2)/2 points available. In such a case, the interpolating matrix M(φ ,Y ) has more
columns than rows and the interpolating system (2.14) has no longer a unique solution. Hence, the
corresponding interpolation polynomials are no longer unique.

What we are reviewing in this section are the ways of building models between these extreme
cases, this is, using more than n+ 1 points (linear models) but less than (n+ 1)(n+ 2)/2 points
(quadratic models) to try to use some curvature information to speed up convergence. Similarly to
what we did before for linear interpolation and regression, one reviews here the results showing that
we can build models using undetermined quadratic interpolation satisfying (2.11) and (2.12) of fully
linear models (and ignore model-improvement algorithms).

We recall here the definition (2.17) of L̂, and denote its left inverse by L̂† = (L̂⊤L̂)−1L̂⊤. The next
theorem (see [23, Theorem 5.4]) says that we can build models satisfying the requirements (2.11)
and (2.12) of fully linear models through quadratic undetermined interpolation, provided the norm of
the Hessian of the models is bounded in some way. For convenience, we write the quadratic model
m(x) = α⊤φ(x) = f +g⊤x+ 1

2 x⊤Hx. One has ∇m(x) = g+Hx and ∇2m(x) = H.

Theorem 2.2.3 Let Assumption 2.2.2 hold. Assume that the set Y is a poised set of sample points
(in the linear interpolation or regression sense if p > n) contained in the ball B(y0;∆(Y )) of radius
∆ = ∆(Y ). Then, for all points y in B(y0;∆(Y )), we have that

∥∇ f (y)−∇m(y)∥ ≤ 5
√

p
2 ∥L̂†∥(L∇ f +∥H∥)∆,

| f (y)−m(y)| ≤ 5
√

p
2 ∥L̂†∥(L∇ f +∥H∥)∆2 + 1

2(L∇ f +∥H∥)∆2,

where H is the Hessian of the model.

This theorem provides schemes to compute models. In fact, one needs the models to have an
Hessian with the minimum possible norm, and this leads to a number of possibilities that we will
review next.

Minimum Frobenius norm models (for undetermined quadratic interpolation)

Let us consider again the natural basis φ̄ for P2
n and split it into linear and quadratic parts: φ̄L =

{1,x1, . . . ,xn} and φ̄Q = {1
2 x2

1,x1x2, . . . ,
1
2 x2

n}. The interpolation model takes the form

m(x) = α
⊤
L φ̄L(x)+α

⊤
Q φ̄Q(x),
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where αL and αQ are the appropriate parts of the coefficient vector α . We define the minimum
Frobenius norm solution αm f n as a solution of the following optimization problem in αL and αQ.

min
1
2
∥αQ∥2

s.t. M(φ̄L,Y )αL +M(φ̄Q,Y )αQ = f (Y ),
(2.18)

where the matrix M(φ̄ ,Y ) has been considered in the blocks M(φ̄L,Y ) and M(φ̄Q,Y ). This is approxi-
mately equivalent to minimize the Frobenius norm of the Hessian H of m(x). In fact, the Frobenius
norm of H and the Euclidean norm of α lead to almost the same polynomials in the components of αQ.
Consider the simple example where n = 2 and αQ = (α3,α4,α5)

⊤. The Hessian H is given by

H =

[
α3 α4

α4 α5

]
.

As we know, ∥αQ∥2 = α2
3 +α2

4 +α2
5 and ∥H∥2

F = α2
3 +2α2

4 +α2
5 . So, ∥αQ∥ ̸= ∥H∥F but the effect

of minimizing ∥αQ∥ is roughly the same as minimizing ∥H∥F .
The solution of the convex quadratic program (2.18) is given by its necessary optimality conditions,

which in turn are equivalent to solving a linear system where the matrix is

F(φ̄ ,Y ) =

[
M(φ̄Q,Y )M(φ̄Q,Y )⊤ M(φ̄L,Y )

M(φ̄L,Y )⊤ 0

]
. (2.19)

If this matrix is nonsingular, then the minimum Frobenius norm model exists and it is unique. In this
case, we say that the sample set Y is poised in the minimum Frobenius norm sense. This also implies
poisedness in the linear interpolation or regression senses. Note that F(φ̄ ,Y ) is nonsingular if and
only if M(φ̄L,Y ) has full column rank and M(φ̄Q,Y )M(φ̄Q,Y )⊤ is positive definite in the null space of
M(φ̄L,Y )⊤.

The next result ([23, Theorem 5.7]) shows that the Hessian of the minimum Frobenius norm model
is bounded, and, hence, these models satisfy the requirements (2.11) and (2.12) of fully linear models.
Recall that a sample set is Λ-poised in a domain if the maximum absolute value of all Lagrange
polynomials (in this case in the minimum Frobenius norm sense) in that domain are bounded by Λ.

Theorem 2.2.4 Let Assumption 2.2.2 hold. Assume that the set Y is a Λ-poised set of sample points
(in the minimum Frobenium norm sense) contained in the ball B(y0;∆(Y )) of radius ∆ = ∆(Y ). Given
an upper bound ∆max on ∆, we have that the Hessian H of the minimum Frobenius norm model satisfies

∥H∥ ≤
4(p+1)

√
q+1L∇ f Λ

c(∆max)
,

where c(∆max) = min{1,1/∆max,1/∆2
max}.

As we mentioned earlier, we need models that have a reduced Hessian norm in order to promote
models that satisfy the requirements (2.11) and (2.12) of fully linear models. Powell ([57, 58]) sug-
gested to solve the undetermined interpolation system (2.14) by choosing the solution that minimizes
the norm between the Hessian model H and a previous calculated Hessian model Hold . Such a model
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is the solution of
min

1
2
∥H −Hold∥2

F

s.t. M(φ̄L,Y )αL +M(φ̄Q,Y )αQ = f (Y ).
. (2.20)

In a certain way, this resembles the spirit of quasi-Newton updates. Powell provided practical schemes
to update such models ensuring good geometry and thus also error bounds like in the definitions of
fully linear models.

Fully quadratic models

To establish global convergence to second-order stationary points (and the corresponding rates or
complexity bounds) of the derivative-free trust region methods, certain models of f need to be assumed
as accurate as second-order Taylor models, in the sense of Point 1 of the definition below. For that
purpose, we need to assume that f is twice continuously differentiable.

Assumption 2.2.3 Suppose x0 and ∆max are given. Assume that f is twice continuously differentiable
with Lipschitz continuous Hessian (with constant L∇2 f ) in an open domain containing the set Lenl(x0).

It is further assumed that models in question can be made second-order accurate or fully quadratic
in a finite number of model-improvement steps. We reproduce below Definition 10.4 in [23].

Definition 2.2.2 Let a function f , that satisfies Assumption 2.2.3, be given. A set of model functions
M = {m : Rn → R, m ∈C2} is called a fully quadratic class of models if

1. There exist positive constants κe f , κeg, and κeh such that for any x ∈ L(x0) and ∆ ∈ (0,∆max]

there exists a model function m(x+ s) in M, with Lipschitz continuous Hessian, and such that

• the error between the Hessian of the model and the Hessian of the function satisfies

∥∇
2 f (x+ s)−∇

2m(x+ s)∥ ≤ κeh ∆, ∀s ∈ B(0;∆), (2.21)

• the error between the gradient of the model and the gradient of the function satisfies

∥∇ f (x+ s)−∇m(x+ s)∥ ≤ κeg ∆
2, ∀s ∈ B(0;∆), (2.22)

and

• the error between the model and the function satisfies

| f (x+ s)−m(x+ s)| ≤ κe f ∆
3, ∀s ∈ B(0;∆). (2.23)

Such a model m is called fully quadratic on B(x;∆).

2. For this class M there exists an algorithm, which we will call a ‘model-improvement’ algorithm,
that in a finite, uniformly bounded (with respect to x and ∆) number of steps can

• either establish that a given model m ∈ M is fully quadratic on B(x;∆) (we will say that a
certificate has been provided and the model is certifiably fully quadratic),
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• or find a model m̃ ∈ M that is fully quadratic on B(x;∆).

As in the linear case, model-improvement algorithms are based on Lagrange polynomials or
factorizations of the interpolation matrices (see [23, Chapter 6]). Below, we review only the form of
the bounds (2.21), (2.22), and (2.23) for quadratic interpolation and regression.

Quadratic interpolation models

We now consider the case where d = 2 (m(x) is quadratic) and the number of points is equal to the
number of basis functions, i.e., p+1 = q+1. We first state the required smoothness for f .

Assumption 2.2.4 Assume that the function f is twice continuously differentiable in an open do-
main Ω containing B(y0;∆(Y )) and ∇2 f is Lipschitz continuous in Ω with constant L∇2 f > 0.

Let us consider the matrix Q̂ formed by the last p rows and columns of the scaled matrix M̂ given
in (2.16). The next theorem (see [23, Theorem 3.16]) says that we can build models satisfying the
requirements (2.21), (2.22), and (2.23) of fully quadratic models using quadratic interpolation in the
determined case.

Theorem 2.2.5 Let Assumption 2.2.4 hold and d = 2. Assume that the set Y is a poised set of sample
points (in the determined sense) contained in the ball B(y0;∆(Y )) of radius ∆ = ∆(Y ). Then for all
points in B(y0;∆(Y )), we have that

∥∇2 f (y)−∇2m(y)∥ ≤
(

3
√

2p
1
2 L∇2 f ∥Q̂−1∥/2

)
∆,

∥∇ f (y)−∇m(y)∥ ≤
(

3(1+
√

2)p
1
2 L∇2 f ∥Q̂−1∥/2

)
∆2,

| f (y)−m(y)| ≤
(
(6+9

√
2)p

1
2 L∇2 f ∥Q̂−1∥/4+L∇2 f /6

)
∆3.

Quadratic regression models

It is possible to derive similar bounds for the case when d = 2 and there are more points than basis
components, i.e., p+1 > q+1. We have seen that in this case one can compute regression models
as least-squares solutions of (2.14). For this purpose, let us consider the reduced singular value
decomposition of the scaled matrix M̂ = Û Σ̂V̂⊤ given in (2.16). The next theorem (see [23, Theorem
4.13]) says that we can build models satisfying the requirements (2.21), (2.22), and (2.23) of fully
quadratic models using quadratic interpolation in the overdetermined or regression senses.

Theorem 2.2.6 Let Assumption 2.2.4 hold and d = 2. Assume that the set Y is a poised set of sample
points (in the regression sense) contained in the ball B(y0;∆(Y )) of radius ∆ = ∆(Y ). Then, for all
points y in B(y0;∆(Y )), we have

∥∇2 f (y)−∇2m(y)∥ ≤
(

L∇2 f +
√

2 p̄
1
2 L∇2 f /2∥Σ̂−1∥

)
∆,

∥∇ f (y)−∇m(y)∥ ≤
(

L∇2 f +(n
1
2 +

√
2p̄

1
2 )/2L∇2 f ∥Σ̂−1∥

)
∆2,



20 Derivative-free trust-region methods for smooth functions

| f (y)−m(y)| ≤
(

L∇2 f /2+(1/2+n
1
2 /2+

√
2 p̄

1
2 /4)L∇2 f ∥Σ̂−1∥

)
∆3,

where p̄ = n(n+1)/2.

Finally, a natural question to pose is whether random sample sets can lead to fully linear or fully
quadratic models in the framework of polynomial interpolation or regression. In the linear case,
the question seems related to the condition number of random matrices. In the quadratic case, it
was recently shown that, by randomly generating the points in the sample set following a uniform
distribution, it is possible to build quadratic interpolating polynomials that are fully quadratic with
high probability (see [5]). Such a technique can take advantage of the sparsity in the Hessian of the
function to be modeled even without any prior knowledge of its sparsity pattern. For instance, it is
proved in [5] that if the number of non-zero elements in the Hessian of the function is O(n), then
random generation of O(n(logn)4) sample points (instead of the O(n2) required for the deterministic
quadratic case) is sufficient to build fully quadratic models with high probability.

2.3 A derivative-free trust-region framework for smooth functions

Typically, a derivative-free trust-region algorithm starts with a chosen initial sample set, built around
an initial starting point. Such a sample set can be chosen so that it has favorable geometrical properties.
At each iteration, a quadratic model is built using the current sample set and then minimized inside the
trust region. The approximate solution of the trust-region subproblem provides a step and thus a trial
point. Whether the iteration is successful or not, this trial point can be included in the current sample
set, possibly by removing a point from it. Such a scheme, or any variant one can think of, results in an
iterative update of the sample set from which the models are built.

The quadratic model built around the current iterate xk is now written as

mk(xk + s) = fk +g⊤k s+
1
2

s⊤Hks,

where fk ∈ R (not necessarily equal to f (xk)), gk ∈ Rn, and Hk ∈ Rn×n. The trust region is a ball
B(xk;∆k) centered at xk and of radius ∆k. A major difference relatively to derivative-based trust-region
methods is that the models are computed based on sample values of f , and thus gk is not necessarily
the gradient of f at xk, although it is a good approximation thereof if the model is fully linear (the
same between fk and f (xk)). The matrix Hk is a good approximation for ∇2 f (xk) if the model is fully
quadratic.

Given the accuracy properties of these models, one can then see that a number of modifications
must be made in trust-region algorithms in the absence of derivatives. The modifications to a derivative
based trust-region method (like Algorithm 2.1.1) are essentially three.

A first fundamental modification is that the trust-region radius should not be reduced in unsuccess-
ful iterations unless the quality of the model is good. In fact, in the presence of derivatives or when the
models are always fully linear, one knows that after a finite number of reductions of the trust-region
radius, a successful iteration is generated and the method moves on (see, e.g., Lemma 2.1.2). Without
using derivatives, when the ratio between the actual and the predicted decrease is not large enough,
one should first promote a model-improvement before reducing the trust-region radius. Thus, and
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this is the second fundamental modification, a model-improvement step must be included in each
iteration. A third fundamental difference lies in the so-called criticality step. The algorithm should
accept a step when the model predicts a good relative decrease in the objective function (since there is
a cost at evaluating the objective function at the trial point). However, such successful iterations by
themselves drive only the gradient of the model to zero, not necessarily the gradient of the objective
function. One must then include a new step, called the criticality step, that ensures that when the
model gradient is small, the models are fully linear in trust regions where the radius is of the order of
the model gradient.

We describe below the derivative-free trust-region framework proposed and analyzed in [22] (and
also described in the book [23]). As opposed to Algorithm 2.1.1, it contains already provision for
accepting new iterates based on simple decrease of the objective function. Note that the incorporation
of the criticality step complicates matters significantly. The authors in [22, 23] have chosen to work
with incumbent models (a subject that will be revisited in Chapter 4 of this thesis) and thus the notation
icb below. The following algorithm is (verbatim) Algorithm 4.1 in [22] (or Algorithm 10.1 in [23]).
Note that at the end of the criticality step (Step 1 below) the trust-region is set as given in (2.24). This
ensures that ∆k is the number in [∆̃k,∆

icb
k ] closest to β∥g̃k∥. The outcome of the criticality step is a

radius ∆̃k ∈ (0,µ∥g̃k∥], where g̃k is the gradient of the latest model then computed. But ∆̃k may be too
small and so it is reset to β∥g̃k∥ in that case (with µ > β > 0). The update (2.24) also guarantees that
the trust-region radius is not increased in the criticality step.

Algorithm 2.3.1 Derivative-free trust-region method using fully linear models

Step 0 (initialization): Choose a fully linear class of models M and a corresponding model-improve-
ment algorithm (see, e.g., [20]). Choose an initial point x0 and ∆max > 0. We assume that an
initial model micb

0 (x0 + s) (with gradient and possibly the Hessian at s = 0 given by gicb
0 and

H icb
0 , respectively) and a trust-region radius ∆icb

0 ∈ (0,∆max] are given.

The constants η0, η1, γ , γinc εc, β , µ , and α are also given and satisfy the conditions 0 ≤ η0 ≤
η1 < 1 (with η1 ̸= 0), 0 < γ < 1 < γinc, εc > 0, µ > β > 0, and α ∈ (0,1). Set k = 0.

Step 1 (criticality step): If ∥gicb
k ∥> εc then mk = micb

k and ∆k = ∆icb
k .

If ∥gicb
k ∥ ≤ εc then proceed as follows. Call the model-improvement algorithm to attempt to

certify if the model micb
k is fully linear on B(xk;∆icb

k ). If at least one of the following conditions
holds,

• the model micb
k is not certifiably fully linear on B(xk;∆icb

k ),

• ∆icb
k > µ∥gicb

k ∥,

then apply Algorithm 2.3.2 (described below) to construct a model m̃k(xk + s) (with gradient
and possibly the Hessian at s = 0 given by g̃k and H̃k, respectively), which is fully linear (for
some constants κe f , κeg, and κblg, which remain the same for all iterations of Algorithm 2.3.1)
on the ball B(xk; ∆̃k), for some ∆̃k ∈ (0,µ∥g̃k∥] given by Algorithm 2.3.2. In such a case set

mk = m̃k and ∆k = min{max{∆̃k,β∥g̃k∥},∆icb
k }. (2.24)

Otherwise set mk = micb
k and ∆k = ∆icb

k .
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Step 2 (step calculation): Compute a step sk that sufficiently reduces the model mk (in the sense
of (2.2)) and such that xk + sk ∈ B(xk;∆k).

Step 3 (acceptance of the trial point): Compute f (xk + sk) and define

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 or if both ρk ≥ η0 and the model is fully linear (for the positive constants κe f , κeg,
and κblg) on B(xk;∆k), then xk+1 = xk + sk and the model is updated to include the new iterate
in the sample set, resulting in a new model micb

k+1(xk+1 + s) (with gradient and possibly the
Hessian at s = 0 given by gicb

k+1 and H icb
k+1, respectively); otherwise the model and the iterate

remain unchanged (micb
k+1 = mk and xk+1 = xk).

Step 4 (model improvement): If ρk < η1 use the model-improvement algorithm to

• attempt to certify that mk is fully linear on B(xk;∆k),

• if such a certificate is not obtained, we say that mk is not certifiably fully linear and make
one or more suitable improvement steps.

Define micb
k+1 to be the (possibly improved) model.

Step 5 (trust-region radius update): Set

∆
icb
k+1 ∈


[∆k,min{γinc∆k,∆max}] if ρk ≥ η1,

{γ∆k} if ρk < η1 and mk is fully linear,
{∆k} if ρk < η1 and mk

is not certifiably fully linear.

Increment k by one and go to Step 1.

It is was proved in [22, Lemma 3.2] (see also [23, Lemma 10.25]) that if a model is fully linear in
a ball, so it is in any larger concentric one. Thus, the possible increase of the trust-region radius at
the end of the criticality step does not pose problems to the convergence theory. Note also that since
we do not state such a result formally in this thesis, we have omitted the reference to the Lipschitz
constant of the gradient of the model in Definition 2.2.1.

The procedure called in the criticality step (Step 1 of Algorithm 2.3.1) is described in the following
algorithm, also taken verbatim from Algorithm 4.2 in [22] (see also Algorithm 10.2 in [23]).

Algorithm 2.3.2 (Criticality step: first order) This algorithm is only applied if ∥gicb
k ∥ ≤ εc and

at least one of the following holds: the model micb
k is not certifiably fully linear on B(xk;∆icb

k ) or
∆icb

k > µ∥gicb
k ∥. The constant α ∈ (0,1) is chosen at Step 0 of Algorithm 2.3.1.

Initialization: Set i = 0. Set m(0)
k = micb

k .

Repeat Increment i by one. Use the model-improvement algorithm to improve the previous model
m(i−1)

k until it is fully linear on B(xk;α i−1∆icb
k ) (notice that this can be done in a finite, uniformly
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bounded number of steps given the choice of the model-improvement algorithm in Step 0 of
Algorithm 2.3.1). Denote the new model by m(i)

k . Set ∆̃k = α i−1∆icb
k and m̃k = m(i)

k .

Until ∆̃k ≤ µ∥g(i)k ∥.

To better understand Algorithm 2.3.1, it helps enumerating the different types of iterations.

• successful iterations: ρk ≥ η1. This is when the new iterate is accepted. The trust-region radius
in maintained or increase.

• acceptable iterations: η1 > ρk ≥ η0 and the model mk is fully linear. Here the new iterate is
accepted and the trust-region is reduced.

• model-improving iterations: η1 > ρk and mk is not certifiably fully linear. The model is
improved. The new point is not accepted but might be included in the sample set. Importantly,
the trust-region radius is not reduced (in fact it is kept the same).

• unsuccessful iteration: ρk < η0 and the model mk is fully linear. No acceptable decrease
was obtained but because the model is accurate the trust-region radius can be reduced (as in
derivative-based methods).

Global convergence to first-order stationary points

We will now describe the main first-order global convergence properties of Algorithm 2.3.1. This
global convergence theory has been published in [22] and is also covered in [23]; the references will
be to [22]. For this purpose f has to satisfy the same assumptions as in the first part of Section 2.1
of this thesis, but with the level set L(x0) there replaced now by Lenl(x0) in (2.5) for the purpose of
smoothness. The assumptions are thus Assumption 2.1.1 and 2.2.1.

It is also required that the Hessian models are bounded (Assumption 2.1.3) and, implicitly, that
there exists a fully linear class of models as in Definition 2.2.1.

The first result guarantees that the criticality step is well defined (see [22, Lemma 5.1]).

Lemma 2.3.1 If ∇ f (xk) ̸= 0, Step 1 of Algorithm 2.3.1 will terminate in a finite number of improve-
ment steps (by applying Algorithm 2.3.2).

The next result is similar to Lemma 2.1.2 for derivative-based methods. It implies that a successful
iteration will be achieved in a finite number of reductions of the trust-region radius. The result was
stated as Lemma 5.2 in [22]. As model-improvement algorithms require also a finite number of steps
to produce a fully linear model, one can say that a successful iteration is achieved in a finite number
of iterations.

Lemma 2.3.2 If mk is fully linear on B(xk;∆k) and

∆k ≤ min
[

1
κbhm

,
κ f cd(1−η1)

4κe f

]
∥gk∥,

then the k-th iteration is successful.
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The convergence theory progresses in [22, Lemma 5.4] by showing that ∇ f (xk) converges to zero
if the number of successful iterations is finite. Then it is shown in [22, Lemma 5.5] that the trust-
region radius converges to zero. This result is important by itself and thus stated below. It provides a
stoping criteria for the algorithm in the absence of derivatives. The fact that ∥gk∥ ≥ min{εc,∆k/µ}
is essential to derive this result and we see also here the relevance of the criticality step.

Lemma 2.3.3 The trust-region radius converges to zero:

lim
k→+∞

∆k = 0.

Now we state the results that show that Algorithm 2.3.1 converges to stationary points. It can be
proved that there is a subsequence of iterations that drives the model gradient to zero ([22, Lemma
5.6]) and that for any subsequence that drives the model gradient to zero the gradient of the function f
also goes to zero ([22, Lemma 5.7]). From then, it is easily proved in [22] that the gradient goes to
zero for a subsequence of iterates (Theorem 5.8).

Theorem 2.3.1 Let Assumptions 2.1.1, 2.2.1, and 2.1.3 hold. Then,

liminf
k→+∞

∇ f (xk) = 0.

Finally, it was also guaranteed in [22] that the whole sequence of gradients of f converges to zero
(Theorem 5.9), following identical arguments as in the derivative-based case.

Theorem 2.3.2 Let Assumptions 2.1.1, 2.2.1, and 2.1.3 hold. Then,

lim
k→+∞

∇ f (xk) = 0.

Modifications to ensure global convergence to second-order stationary points

In part, the adaptation of Algorithm 2.3.1 to the second-order case follows what is done in the
derivative-based case. As in Section 2.1, we define σk = σ(xk) as the second-order measure of
criticality (2.8). Since now the models are not derivative based (and thus gk ̸= ∇ f (xk) and Hk ̸=
∇2 f (xk)) one defines the second-order measure of model criticality as

σ
m
k = max{∥gk∥,−λmin(Hk)} . (2.25)

The modifications to Algorithm 2.3.1 to make it globally convergent to second-order criticality
points consists, essentially, of replacing ∥gk∥ by σm

k and the use of fully linear models by the use of
fully quadratic models. Another relevant modification that must be made in Algorithm 2.3.1, if one
wants to achieve a lim-type result in the second-order case, concerns (as we mentioned in Section 2.1)
the update of the trust-region radius for successful iterations (when ρk is sufficiently large). Here,
instead of appealing to the known fix of increasing the trust-region radius for all such iterations, we
follow the presentation in [22] and increase the trust-region radius only when it is small compared to
the (model) measure of stationarity σm

k .
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Algorithm 2.3.3 Derivative-free trust-region method using fully quadratic models

Step 0 (initialization): Choose a fully quadratic class of models M and a corresponding model-
improvement algorithm (see, e.g., [20]). Choose an initial point x0 and ∆max > 0. We assume
that an initial model micb

0 (x0 + s) (with gradient and Hessian at s = 0 given by gicb
0 = ∇ f (x0)

and H icb
0 = ∇2 f (x0), respectively), with σ

m,icb
0 = max{∥gicb

0 ∥,−λmin(H icb
0 )}, and a trust-region

radius ∆icb
0 ∈ (0,∆max] are given.

The constants η0, η1, γ , γinc εc, β , µ , and α are also given and satisfy the conditions 0 ≤ η0 ≤
η1 < 1 (with η1 ̸= 0), 0 < γ < 1 < γinc, εc > 0, µ > β > 0, and α ∈ (0,1). Set k = 0.

Step 1 (criticality step): If σ
m,icb
k > εc then mk = micb

k and ∆k = ∆icb
k .

If σ
m,icb
k ≤ εc then proceed as follows. Call the model-improvement algorithm to attempt

to certify if the model micb
k is fully quadratic on B(xk;∆icb

k ). If at least one of the following
conditions holds,

• the model micb
k is not certifiably fully quadratic on B(xk;∆icb

k ),

• ∆icb
k > µσ

m,icb
k ,

then apply Algorithm 2.3.4 (described below) to construct a model m̃k(xk + s) (with gradient
and Hessian at s = 0 given by g̃k and H̃k, respectively), with σ̃m

k = max{∥g̃k∥,−λmin(H̃k)},
which is fully quadratic (for some constants κe f , κeg, κeh, and κblh, which remain the same
for all iterations of Algorithm 2.3.3) on the ball B(xk; ∆̃k) for some ∆̃k ∈ (0,µσ̃m

k ] given by
Algorithm 2.3.4. In such a case set

mk = m̃k and ∆k = min{max{∆̃k,βσ̃
m
k },∆icb

k } (2.26)

Note that ∆k is selected to be the number in [∆̃k,∆
icb
k ] closest to β∥σ̃m

k ∥. Otherwise set mk = micb
k

and ∆k = ∆icb
k .

Step 2 (step calculation): Compute a step sk that sufficiently reduces the model mk (in the sense of
(2.7)) and such that xk + sk ∈ B(xk;∆k).

Step 3 (acceptance of the trial point): Compute f (xk + sk) and define

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 or if both ρk ≥ η0 and the model is fully quadratic (for the positive constants κe f ,
κeg, κeh, and κblh) on B(xk;∆k), then xk+1 = xk + sk and the model is updated to include the new
iterate in the sample set, resulting in a new model micb

k+1(xk+1 + s) (with gradient and Hessian
at s = 0 given by gicb

k+1 and H icb
k+1, respectively), with σ

m,icb
k+1 = max{∥gicb

k+1∥,−λmin(H icb
k+1)};

otherwise the model and the iterate remain unchanged (micb
k+1 = mk and xk+1 = xk).

Step 4 (model improvement): If ρk < η1 use the model-improvement algorithm to

• attempt to certify that mk is fully quadratic on B(xk;∆k),
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• if such a certificate is not obtained, we say that mk is not certifiably fully quadratic and
make one or more suitable improvement steps.

Define micb
k+1 to be the (possibly improved) model.

Step 5 (trust-region radius update): Set

∆
icb
k+1 ∈



{min{γinc∆k,∆max}} if ρk ≥ η1 and ∆k < βσm
k ,

[∆k,min{γinc∆k,∆max}] if ρk ≥ η1 and ∆k ≥ βσm
k ,

{γ∆k} if ρk < η1 and mk

is fully quadratic,
{∆k} if ρk < η1 and mk

is not certifiably fully quadratic.

Increment k by one and go to Step 1.

Now we describe the second-order version of the criticality step. Note that at the end of the
criticality step (Step 1 above) the trust-region is set as given in (2.26). This ensures that ∆k is the
number in [∆̃k,∆

icb
k ] closest to β∥σ̃m

k ∥. The outcome of the criticality step is a radius ∆̃k ∈ (0,µ∥σ̃m
k ∥],

where σ̃m
k is the second-order measure of criticality of the latest model then computed. But ∆̃k may be

too small and so it is reset to β∥σ̃m
k ∥ in that case (with µ > β > 0). The update (2.26) also guarantees

that the trust-region radius is not increased in the criticality step.

Algorithm 2.3.4 (Criticality step: second order) This algorithm is only applied if σ
m,icb
k ≤ εc and

at least one the following holds: the model micb
k is not certifiably fully quadratic on B(xk;∆icb

k ) or
∆icb

k > µσ
m,icb
k . The constant α ∈ (0,1) is chosen at Step 0 of Algorithm 2.3.3.

Initialization: Set i = 0. Set m(0)
k = micb

k .

Repeat Increment i by one. Improve the previous model m(i−1)
k until it is fully quadratic on

B(xk;α i−1∆icb
k ) (notice that this can be done in a finite, uniformly bounded number of steps,

given the choice of the model-improvement algorithm in Step 0 of Algorithm 2.3.3). Denote
the new model by m(i)

k . Set ∆̃k = α i−1∆icb
k and m̃k = m(i)

k .

Until ∆̃k ≤ µ(σm
k )(i).

There is a one-to-one correspondence between the results of the first-order and second-order
cases and so we will list them next without introducing them first. The results are taken from [22]:
Lemma 2.3.4 is Lemma 7.3 in [22]; Lemma 2.3.5 is Lemma 7.4; Lemma 2.3.6 is Lemma 7.7;
Theorem 2.3.3 is Theorem 7.10, and Theorem 2.3.4 is Theorem 7.11. As for the assumptions they are
Assumptions 2.1.1 and 2.2.3.

Lemma 2.3.4 If σ(xk) ̸= 0, Step 1 of the Algorithm 2.3.3 will terminate in a finite number of improve-
ment steps (by applying Algorithm 2.3.4).

Lemma 2.3.5 If mk is fully quadratic on B(xk;∆k) and

∆k ≤ min
[

1
κbhm

,
κ f od(1−η1)

4κe f ∆max
,
κ f od(1−η1)

4κe f

]
σ

m
k ,
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then the k-th iteration is successful.

Lemma 2.3.6 The trust-region radius converges to zero:

lim
k→+∞

∆k = 0.

Theorem 2.3.3 Let Assumptions 2.1.1, 2.2.3, and 2.1.3 hold. Then,

liminf
k→+∞

σ(xk) = 0.

Theorem 2.3.4 Let Assumptions 2.1.1, 2.2.3, and 2.1.3 hold. Then,

lim
k→+∞

σ(xk) = 0.

In the proof of Theorem 2.3.4 (Theorem 7.11 in [22]), there is something significantly different
from the first-order case as the scheme to update the trust-region radius has been changed in successful
iterations, as we commented earlier.

2.4 Other derivative-free model-based approaches

The derivative-free trust-region framework of [22] described in Section 2.3 has been used by several
authors. Billups, Larson, and Graf [8] first extended the theory developed for quadratic polynomial
regression in the book [23, Chapter 4] from the regression case to the weighted regression case,
including the definitions of Lagrange polynomials, basic properties, and error bounds. Then, based on
the material of [22] and [23, Chapter 6], they developed a scheme to produce or update sets with good
geometrical properties for weighted quadratic regression. Lastly, their trust-region framework is based
on [22] thus exhibiting the same global convergence properties. Wild, Regis, and Shoemaker [66]
proposed the use of radial basis function interpolation models in the framework [22] (see Section 2.3).
Given the non-linearity of such basis functions, their fully linear models are non-linear, of non-
quadratic type. As in Lagrange polynomials, each radial basis function is associated with a sample
point, being of the form φ(∥x− yi∥) for a given sample point yi and a certain real function φ (and
thus constant for any sphere centered at yi). They characterized the types of radial basis functions
that fit the fully linear requirements and, using the framework [22] (see Section 2.3), showed global
convergence of the resulting algorithms to first-order stationary points. Perhaps due to the known
ability of radial basis functions to approximate curvature function, they reported good numerical
performance for their trust-region approach.

The influence of the geometry of the sample sets used for for interpolation/regression on the
performance of the corresponding derivative-free trust-region algorithms has always been a relevant
question. We have seen in this chapter that such geometry has to be good to built models that match
the order of accuracy of the corresponding Taylor ones. But can an algorithm perform relatively well
totally ignoring the geometry of the sample sets? Fasano, Morales, and Nocedal [32] considered
a numerical setting where a determined quadratic interpolation model is built at the first iteration
from (n+1)(n+2)/2 points and the sample set is kept with the same cardinality along the iterations.
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Essentially, at each iteration, they bring into the sample set the new trial point and discard the sample
point farthest away from the current iterate. Although the condition number of the interpolation matrix
was observed relatively high, they reported good numerical performance of the resulting trust-region
method. Scheinberg and Toint [63] provided an example showing, however, that an approach that does
not incorporate a criticality type step may converge to a non-stationary point — thus geometry cannot
be totally ignored. They then suggested a geometry-improving step only when the model gradient is
small. Global convergence for their method is the result of a self-correction property inherent to the
combination of trust regions and polynomial interpolation models.

In [6], the authors proposed an analyzed probabilistic trust-region methods, based on sample sets
where the points are randomly generated. At each iteration, the models are considered fully linear
or fully quadratic with a certain favorable probability conditioned to the past iteration history. Con-
vergence to first and second-order stationary points is proved but almost surely, i.e., with probability
one. Later, in [40], it was proved that this methodology exhibits, with overwhelming probability, the
same global rate of convergence as the the gradient method (a subject that will be covered in the next
chapter).

The use of interpolation and regression models is not restricted to trust-region methods. Direct-
search methods (see [46] and [23, Chapter 7 and 8] for a review) is another important class of rigorous
derivative-free algorithms where these models have been used. Direct-search methods can be based on
simplex sets (like the Nelder-Mead method [51]) but most of the existing ones are directional methods.
Their formulation incorporates typically two steps, a search step and a poll step. The poll step is
what determines the convergence properties of these methods and where directions are used. The
search step is optional for convergence and is used in practice to improve the numerical performance.
This search-poll framework was first introduced in [9]. The authors considered there a search step
where (surrogate) models are managed or calibrated, and showed that such a step does not interfere in
the global convergence properties to first-order stationarity of the underlying direct-search methods
strictly based on polling. Using the concept of a search step, interpolation and regression models
were then brought to direct search in [25] using quadratics. The idea is simple and consisted of
collecting the points previously evaluated in the poll step. After a while there are enough points to
build models with relevant curvature information. At each iteration, a model can be minimized in a
region of interest to define a new iterate if significant decrease is achieved. If not, the direct-search
iteration reverts to the (directional) poll step. The models were of minimum Frobenius type, when the
number of previously evaluated points was below (n+1)(n+2)/2, and regression was considered
when there were more than this number. The numerical experiments showed a great improvement
over the original direct-search algorithm used. A similar approach was taken in [3] but using models
built by radial basis functions. Note that trust-region methods can themselves incorporate a search
step at the beginning of their iterations [42] although its use is not so relevant as in direct search since
such methods already contemplate modeling.

Up to now we only discussed trust-region methods for unconstrained minimization. In a feasible
method for constrained optimization, where all iterates satisfy the constraints, the geometry of the
nearby constraints influence then the quality of the models. For instance, when using an active-set
type approach in trust-region methods for derivative-free bound constrained optimization, a difficulty
is that the set of interpolation points may get aligned at one or more active bounds and deteriorate
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the quality of the interpolation set. Such difficulty is overcome in [38], where an active-set strategy
method is developed by minimizing in the subspace of the free (non-active) variables, saving function
evaluations from optimization in lower dimensional subspaces (the respective code is called BC-
DFO). Other strategies have been developed by including all the constraints in the trust-region
subproblems. This type of trust-region methods were implemented in the codes BOBYQA [60]
(a generalization of NEWUOA [59] for bound constrained optimization) and DFO [DFO] (which
also considers feasible regions defined by continuously differentiable functions for which gradients
can be computed). Recently, extensions to linearly constrained problems have been provided in the
codes LINCOA [61] and LCOBYQA [43]. Sampaio and Toint [47] introduced the DEFT-FUNNEL
algorithm, and adaptation of the trust-funnel method presented in [35] to solve an equality-constrained
nonlinear optimization problem. Their algorithm also includes self-correcting geometry steps.





Chapter 3

Worst case complexity of algorithms for
continuous nonlinear optimization

For many decades the community of Nonlinear Optimization has analyzed their algorithms by
establishing asymptotic global convergence results (in form of limits of measures of stationarity, as
described in Sections 2.1 and 2.3 of this thesis) and by establishing fast local rates of convergence
(like superlinear and quadratic) close to strict local minimizers. More recently, following a trend
in the community of Convex Optimization, researchers have started to pay more attention to the
worst case complexity (WCC) of nonlinear optimization algorithms and to their companion global
rates (where no assumption is made about the starting point which may be far away from stationarity
or local minimization). Most of these results concern the unconstrained optimization of smooth
functions. Even more recently, the same trend has been followed in derivative-free optimization. In
this chapter, we will review the main WCC and global rates obtained so far for the derivative-based
and derivative-free cases.

3.1 WCC for optimization with derivatives

The first global rate or WCC bound for nonlinear optimization has been established by Nesterov [52]
for the gradient or steepest descent method. For a better understanding of what is at stake, let us
review in detail the method and the corresponding result.

Trust-region methods are globalization schemes where first a maximum size for a step is specified
and then the step itself is computed. There is another large class of globalization schemes called
line-search methods, where first a (descent) direction is calculated and then a step size (along such a
direction) is determined (see, e.g., [55, Chapter 3]). The iterates in a line-search method are updated
as xk+1 = xk +αk pk, where pk is a descent direction and αk is the step size. Assume now that the
function is continuously differentiable. The gradient method (also known as the steepest-descent
method) is a particular line-search method, where pk =−∇ f (xk) and thus it generates points using

xk+1 = xk −αk∇ f (xk). (3.1)

31
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The critical issue is the choice of the step length αk. One typically considers step sizes satisfying
certain conditions known as the Wolfe conditions.

The first Wolfe condition is the sufficient decrease condition (also known as the Armijo condition),
given by

f (xk +αk pk) ≤ f (xk)+ c1αk∇ f (xk)
⊤pk, (3.2)

for some c1 ∈ (0,1). It basically imposes a certain sufficient decrease on the objective function
along pk. We have already seen something similar in trust-region methods. In fact, in trust regions
one imposes a condition of the form ρk ≥ η , with η > 0. Given the definition of ρk in (2.4), ρk ≥ η

is equivalent to f (xk)− f (xk + sk) ≥ η [mk(xk)−mk(xk + sk)]. Thus, when the model mk is linear
(Hk = 0), one has mk(xk)−mk(xk + sk) =−∇ f (xk)

⊤sk, and given that sk in trust regions corresponds
to αk pk in line searches, one can see that ρk ≥ η corresponds to the sufficient decrease condition (3.2)
of line searches. When pk =−∇ f (xk), condition (3.2) becomes

f (xk +αk pk) ≤ f (xk)− c1αk∥∇ f (xk)∥2. (3.3)

The second Wolfe condition is the curvature condition, and it is imposed to avoid taking very
small steps. In general it takes the form

∇ f (xk +αk pk)
⊤pk ≥ c2∇ f (xk)

⊤pk,

for some c2 ∈ (c1,1). For the gradient method, where pk =−∇ f (xk), it becomes

∇ f (xk +αk pk)
⊤pk ≥ −c2∥∇ f (xk)∥2. (3.4)

The gradient algorithm can be then stated as follows:

Algorithm 3.1.1 Gradient method (Wolfe conditions)

Choose initial point x0. Let c1 and c2 be such that 0 < c1 < c2 < 1.

For k = 0,1,2, . . .

Compute αk satisfying (3.3) and (3.4).

Compute xk+1 as in (3.1).

We will now assume that the gradient of f is Lipschitz continuous (with Lipschitz constant L∇ f ), as
in Assumption 2.1.2. Under such an assumption and boundedness from below of f (Assumption 2.1.1),
it is possible to prove the existence of intervals satisfying the Wolfe conditions ([55, Lemma 3.1]),
which shows that Algorithm 3.1.1 is in some form well defined.

It is also possible to prove (see [55, Proof of Theorem 3.2]) that the iterates generated by
Algorithm 3.1.1 satisfy

f (xk)− f (xk+1) ≥ C3∥∇ f (xk)∥2, (3.5)

with
C3 = c1

1− c2

L∇ f
.
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This is the key condition used to prove the WCC bound and the associated global rate of convergence
of Algorithm 3.1.1 ([52, Pages 29–32]):

Theorem 3.1.1 Let Assumptions 2.1.1 and 2.1.2 hold. Then, the gradient method (Algorithm 3.1.1)
generates a sequence of iterates {xk} such that

min
0≤ j≤k

∥∇ f (x j)∥ ≤
(

f (x0)− flow

C3(k+1)

)1/2

,

where C3 = c1(1−c2)/L∇ f and, recall, L∇ f is the Lipschitz constant for ∇ f and flow is a lower bound
for f .

Let ε ∈ (0,1). The gradient method takes at most⌈
C3( f (x0)− flow)

1
ε2 −1

⌉
iterations to compute a xk such that ∥∇ f (xk)∥ ≤ ε .

One sees that the gradient decays at a sublinear rate 1/
√

k or, equivalently, that the WCC effort is
of the order of ε−2. No assumption on x0 is made — the result is global.

In practical situations, it may be difficult to impose both Wolfe conditions at the same time.
However, the effect of the imposition of the curvature condition (avoid small steps) can be achieved
by imposing the sufficient decrease condition by means of a backtracking procedure. At each iteration,
one starts by checking (3.3) for a certain constant value of α (below equal to b) and start reducing it
(below by a factor of 2) until it is satisfied.

Algorithm 3.1.2 Gradient method (backtracking)

Choose initial point x0. Let c1 ∈ (0,1) and b > 0.

For k = 0,1,2, . . .

Let αk be the first α in b,b/2,b/4, . . . such that (3.3) is satisfied.

Compute xk+1 as in (3.1).

Under Assumptions 2.1.1 and 2.1.2, it is possible to show that Algorithm 3.1.2 is well defined
in the sense that it is always possible to find αk of the form given in the algorithm such that (3.3) is
satisfied. Moreover, each iteration of Algorithm 3.1.2 satisfies (3.5) but now with

C3 = c1 max
(

1− c1

L∇ f
,b
)
.

Thus, Theorem 3.1.1 also holds for the gradient method with backtracking (Algorithm 3.1.2) under a
simple redefinition of C3.

In conclusion, as we have seen in Theorem 3.1.1, a gradient method based on the Wolfe conditions
takes at most O(ε−2) iterations to drive the norm of the gradient of the objective function below ε ∈
(0,1). The gradient decays at a sublinear rate of 1/

√
k, independently of the starting point. The
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result is also valid if only the sufficient decrease condition is imposed at each iteration by means of a
backtracking procedure.

Cartis, Gould, and Toint [11] have proved that the bound O(ε−2) is sharp for the gradient method.
The sharpness or tightness of the bound was established by constructing an example (for n = 1),
dependent on an arbitrarily small parameter τ > 0, for which the gradient method (using backtracking
until sufficient decrease is satisfied as in Algorithm 3.1.2) requires, for any ε ∈ (0,1), at least O(ε−2+τ)

iterations to reduce the norm of the gradient below ε . Interestingly, they have also shown a similar
result for Newton’s method.

Not surprisingly, a similar WCC bound of O(ε−2) has been proved by Gratton, Sartenaer, and
Toint [41] for trust-region methods (where sufficient decrease is imposed).

There is, however, a class of methods for nonlinear optimization that exhibit better WCC: cubic
regularization methods. The bound reduces to O(ε−1.5) iterations. The gradient decays globally at a
rate of 1/k2/3. The method and its complexity were first introduced by Nesterov and Polyak [54] by
using a cubic model where a multiple of a term of the form σ∥s∥3 is added to the quadratic model.
Here, σ is a positive parameter that plays the role of the trust-region radius in the sense of restricting
or regularizing the norm of the step. Cartis, Gould, and Toint [10] introduced later an adaptive scheme
for the cubic regularization parameter that generalizes the original results of [54] for more practical
scenarios where the subproblems are solved inexactly and only first-order derivatives are used. The
resulting approach has been coined adaptive cubic overestimation algorithm.

Very recently, Curtis, Robinson, and Samadi [24] modified the step acceptance criterion and the
trust-region radius update of trust-region methods and were apparently able to prove that the resulting
algorithm can also compute a gradient of norm smaller than ε in at most O(ε−1.5) iterations.

3.2 WCC for optimization without derivatives

The first global rate or WCC bound for nonlinear optimization without derivatives has been established
by Vicente [64] for a class of direct-search methods. In fact, in the context of DFO, most of the
WCC analysis has been carried out for direct-search methods of directional type based on a sufficient
decrease condition. Let us start also by reviewing these methods in a simple setting and look at the
corresponding result. In the derivative-free case, we are not only interested in bounding the number of
iterations but more importantly the number of function evaluations.

A directional method for minimizing a smooth function without the knowledge of the gradient
must use (at each iteration) a set of directions which contains a descent one. Such a property is given
by a positive spanning set (PSS), i.e., a set of vectors whose positive span is Rn (and by positive
span one means the set of linear combinations using nonnegative scalars). The theory of positive
spanning has been developed by Davis [26] and updated summaries for optimization can be found
in [23, 46]. Given any PSS and any nonzero vector w ∈ Rn, there exists a vector v in the PSS such
that w⊤v > 0. When f is continuously differentiable, this implies that, as long as ∇ f (x) ̸= 0, there is
always a descent direction for f at x in any PSS (since there will always be a direction v in the PSS
such that −∇ f (x)⊤v > 0).

Direct-search methods form a class of methods for DFO characterized by updating the iterates
based on the evaluation of the objective function on a finite number of points and without making any
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attempt to build models or indirectly approximating derivatives. As we said in Section 2.4, they can
be of directional or simplicial type (see [23]). The directional ones, when applied to smooth functions,
are based on PSSs. As we also said in Section 2.4, such direct-search methods include two main steps,
a search step and a poll step, but we will ignore here the search step as it is optional and does not
interfere in the analysis of the algorithms. In the poll step, one evaluates the function at points of the
form xk +αkd, for directions d in a PSS, and where αk is the step size. Not surprisingly, a new iterate
must provide a sufficient decrease on the objective function, of the form f (xk +αkdk)< f (xk)−α2

k /2,
where α2

k /2 plays the role of the so-called forcing function [46]. Let us now state such a direct-search
method (which is a simplified version of Algorithm 2.1 in [64]). The poll step can opportunistically
move to the first point where sufficient decrease is found or can be complete (where all points are
evaluated and the best is compared with the current one).

Algorithm 3.2.1 Direct-search method (polling)

Initialization: Choose a PSS D, an initial point x0, and an initial step size α0 > 0. The constants
0 < β < 1 ≤ γ are given. Set k = 0.

Step 1 (Poll Step): Order the set of poll points Pk = {xk +αkd : d ∈ D}. Start evaluating f at the poll
points following the chosen order. If a poll point xk +αkd is found such that f (xk +αkdk)<

f (xk)−α2
k /2, then set xk+1 = xk +αkdk and declare the iteration successful. Otherwise, declare

the iteration unsuccessful and set xk+1 = xk.

Step 2 (Step size parameter update): If the iteration was successful, then maintain or increase the
step size parameter: αk+1 ∈ [αk,γαk]. Otherwise, decrease the step size parameter αk+1 = βαk.
Increment k by one and go to Step 1.

It is possible to prove [46] that if the iteration k is unsuccessful, then

∥∇ f (xk)∥ ≤ cm(D)−1
(

L∇ f
maxd∈D ∥d∥

2
+

1
2mind∈D ∥d∥

)
αk, (3.6)

where cm(D) is the cosine measure of the PSS D, defined as

cm(D) = min
0̸=v∈Rn

max
d∈D

v⊤d
∥v∥∥d∥

.

The cosine measure of a PSS is always positive. For instance, the PSS D⊕ formed by the coordinate
vectors and their negatives is such that cm(D⊕) = 1/

√
n. The fact that (3.6) holds for unsuccessful

iterations shows that the algorithm is well defined in the sense that a successful iteration will always
be achieved in a finite number of reductions of the step size. It also provides a lower bound for the
step size similar to what holds in gradient methods. Thus, the combination of the fact that (3.6) holds
for unsuccessful iterations with the fact that a sufficient decrease condition, f (xk)− f (xk+1)≥ α2

k /2,
is achieved in successful iterations leads to a complexity result (see [64, Corollary 3.1]) similar to
gradient methods.
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Theorem 3.2.1 Let Assumptions 2.1.1 and 2.1.2 hold. Let ε > 0. Then, direct search (Algorithm 3.2.1)
takes at most ⌈

E1ε
−2 +E2

⌉
iterations to compute a xk such that ∥∇ f (xk)∥ ≤ ε , where

E1 =
(

1− logβ (γ)
) f (xk0)− flow

0.5β 2L2
1

− logβ (exp(1)),

E2 = logβ

(
βL1 exp(1)

αk0

)
+

f (x0)− flow

0.5α2
0

,

L1 = min(1,L−1
2 ),

L2 = cm(D)−1
(

L∇ f
maxd∈D ∥d∥

2
+

1
2mind∈D ∥d∥

)
,

and k0 is the index of the first unsuccessful iteration (and recall that L∇ f is the Lipschitz constant
for ∇ f and flow is a lower bound for f ).

Moreover, {min0≤ j≤k ∥∇ f (x j)∥} converges sublinearly to zero at the rate 1/
√

k.

The above result is proved in [64] in a more general setting. One can let the algorithm choose
different PSSs in different iterations as long as their cosine measures are bounded away from zero
(meaning that they cannot arbitrarily loose their defining property) and their vectors are bounded
below and above. One can consider a search step as long as it also imposes sufficient decrease.

From Theorem 3.2.1 it is also possible to deduce the WCC of direct search (like Algorithm 3.2.1)
in terms of the number of function evaluations. In fact, one can see from Theorem 3.2.1 that E1

is of the order of 1/cm(D)2 and that E2 does not depend on D. On the other hand, the maximum
number of function evaluations at each iteration is the cardinal |D|. In the case where D = D⊕, one has
cm(D) = 1/

√
n and |D|= 2n and the following corollary is thus well posed (see [64, Corollary 3.2]).

Corollary 3.2.1 Let all the assumptions of the Theorem 3.2.1 hold. Let D be a PSS such that
cm(D) = O(1/

√
n) and |D|= O(n). To reduce the gradient below ε ∈ (0,1), Algorithm 3.2.1 takes

at most O(n2ε−2) function evaluations.

Recently it was proved in [29] that the factor n2 is approximately optimal in this WCC bound, in
the sense that no other PSS considered for Algorithm 3.2.1 would yield an order of n better than the
one provided by D⊕. The result is the following [29, Theorem 4.1]:

Theorem 3.2.2 There exists a universal constant C4 > 0 such that

|D|
cm(D)2 ≥ C4n2,

for each n ≥ 1 and each PSS D in Rn.

In conclusion, as we have seen in Theorem 3.2.1, a direct-search method based on sufficient
decrease takes at most O(ε−2) iterations and at most O(n2ε−2) function evaluations to drive the norm
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of the gradient of the objective function below ε ∈ (0,1). The gradient decays also at a sublinear
rate of 1/

√
k, independently of the starting point. The fact that ε−2 is sharp in both bounds is shown

in [64] by recasting direct search as a gradient method when n = 1 and then appealing to the example
in [11]. The fact that n2 is sharp is shown in [29] (see Theorem 3.2.2).

Cartis, Gould, and Toint [14] have derived a WCC bound of O(ε−1.5) for their derivative-free
adaptive cubic overestimation algorithm in the smooth case, but using finite differences to approximate
derivatives, matching the counterpart result for derivatives.

Many practical problems where derivatives are not available are non-smooth. Direct-search
methods of directional type are particular tailored for dealing with non-smoothness as they do not fit
models but rather explore directions. However, it becomes difficult to measure effort in the worst case
without some type of smoothing or knowledge of the structure of non-smoothness. Garmanjani and
Vicente [34], using a smoothing approach for direct search, have shown a WCC bound of O(| logε|ε−3)

in the non-smooth case (where here ε refers to a threshold for the norm of the smoothing gradient and
the smoothing parameter). We will return to this issue in more detail in Chapter 5 of this thesis, where
we derive a similar result for smoothing trust-region methods. Similar WCC bounds were derived, in
expectation, by Nesterov [53] for his random Gaussian smoothing approach.

The convex and strongly convex cases

Gradient and direct-search methods are faster (in theory) in the presence of convexity for smooth
functions. Nesterov [52] proved that if the function is convex and the solution set is non-empty, the
gradient method takes only O(ε−1) iterations to identify a point where the norm of the gradient is
smaller that ε . It is also proved in [52] a sublinear global rate of 1/k for both f (xk)− f∗ (where f∗ is
the optimal value) and ∥∇ f (xk)∥. When the function is strongly convex, the WCC bound becomes
O(− log(ε)) and the global rates becomes linear. Similar results were proved by Dodangeh and
Vicente [28] for optimization without derivatives, using direct search based on sufficient decrease. The
WCC bounds in terms of function evaluations are multiplied by a factor of n2 as in the non-convex
case.





Chapter 4

Worst case complexity of derivative-free
trust-region methods

As reported in Sections 2.3–2.4, the global convergence properties of derivative-free trust-region
methods are well studied, whether the convergence is for first-order or for second-order stationary
points. In this chapter we will establish the worst-case complexity (WCC) analysis of such derivative-
free trust-region methods (for the unconstrained minimization of smooth functions f : Rn → R). First
we will do it for first-order stationary points in Section 4.1 and then for second-order stationary points
in Section 4.2. In both cases, due to the new way of looking at these algorithms introduced here, we
will revisit some of their global convergence properties.

4.1 Complexity in determining first-order stationary points

For the derivation of the WCC bounds we introduce two modifications in the presentation of the
derivative-free trust-region method stated in Algorithm 4.1 in [22] (see also [23, Algorithm 10.1] or
Algorithm 2.3.1 in this thesis).

The algorithm revisited

The first modification concerns how the so-called criticality step is incorporated (see Algorithm 4.2
in [22], presentation in [23, Algorithm 10.2], or Algorithm 2.3.2 in this thesis). One knows from
the counter example in [63] that such a step is indeed necessary. What the criticality step does is to
improve the accuracy of the models when the model gradient gk becomes small, ensuring that at the
end of the process one has a fully linear model in a ball B(xk;∆k) where ∆k is of the order of ∥gk∥. In
this thesis, for the purpose of measuring the overall effort of the trust-region method, we consider
each inner iteration of the criticality step as a regular trust-region iteration. By doing so we avoid
the use of incumbent models (as done in [22]; see Algorithm 2.3.1), which had to be used when the
criticality step was invoked and changed the models coming from the previous iteration.

The second modification generalizes [22] by subtracting to the actual decrease f (xk)− f (xk + sk)

a multiple of a power of the trust-region radius. The idea is that if an iteration is successful, then the
actual decrease is larger than the predicted decrease plus a term of the form c1∆

p
k , where c1 ≥ 0 and
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p > 1. When c1 = 0 we recover the traditional scenario. When c1 > 0, the additional term will allow
us to derive complexity bounds dependant of p. In particular, the choice p = 3/2 will ask more from
successful steps and lead to a worse WCC bound of O(ε−3), but such a choice will be instrumental in
the analysis of complexity of the smoothing trust-region approach of Section 5.3.

Algorithm 4.1.1 Derivative-free trust-region method using fully linear models (version WCC)

Initialization: Choose an initial point x0 and an initial trust-region radius ∆0 ∈ (0,∆max] for some
∆max > 0. Choose an initial model m0(x0 + s). The constants η0, η1, γ , γinc, λ , and β are given
and satisfy the conditions 0 ≤ η0 ≤ η1 < 1 (with η1 ̸= 0), γ ∈ (0,1), γinc > 1, and λ > β > 0.
Let c1 ≥ 0 and p > 1. Set k = 0.

Step 1 (one step of the criticality step): If ∆k > λ∥gk∥, then set xk+1 = xk. Apply the model-
improvement algorithm to compute a fully linear model mk+1 in B(xk+1;γ∆k). If the next
iteration skips the criticality step (meaning γ∆k ≤ λ∥gk+1∥), set ∆k+1 = max{γ∆k,β∥gk+1∥}.
If not, set ∆k+1 = γ∆k. Increment k by one and restart a new iteration in Step 1. Otherwise
(∆k ≤ λ∥gk∥) and go to Step 2.

Step 2 (step calculation): Compute a step sk that sufficiently reduces the model mk, in the sense
of (2.3) and such that xk + sk ∈ B(xk;∆k).

Step 3 (acceptance of the trial point): Compute f (xk + sk) and define

ρk =
f (xk)− f (xk + sk)− c1∆

p
k

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 or if ρk ≥ η0 and mk is fully linear, then xk+1 = xk + sk and the model is updated to
take into consideration the new iterate, resulting in a new model mk+1(xk+1 + s). Otherwise the
model and the iterate remain unchanged (mk+1 = mk and xk+1 = xk).

Step 4 (model improvement): If ρk < η1 use a model-improvement algorithm to

• attempt to certify that mk is fully linear on B(xk;∆k),

• if such a certificate is not obtained, we say that mk is not certifiably fully linear and make
one or more suitable improvement steps.

Define mk+1(xk + s) to be the improved model.

Step 5 (trust-region radius update): Set

∆k+1 ∈


[∆k,min{γinc∆k,∆max}] if ρk ≥ η1,

{γ∆k} if ρk < η1 and mk is fully linear,
{∆k} if ρk < η1 and mk

is not certifiably fully linear.

Increment k by one and go to Step 1.
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There are essentially five types of trust-region iterations resulting from Algorithm 4.1.1 (critical,
successful, acceptable, unsuccessful, model-improvement) but we will split the critical iterations in
two types depending on whether the trust-region radius is reduced or not. Below is a description of
these iterations and the symbols used to define their indices.

1. Critical iterations (C r), taken at Step 1 and where the trust-region radius is reduced.

2. Critical iterations (C nr), taken at Step 1 and where the trust-region radius is not reduced.

3. Successful iterations (S ), taken at Step 3 when ρk ≥ η1 (the trial point is accepted and the
trust-region radius is kept or increased).

4. Acceptable iterations (A ), taken at Step 3 when ρk ≥ η0 and the model is fully linear (the
trial point is accepted and the trust-region radius is decreased).

5. Unsuccessful iterations (U ), taken at Step 3 when ρk < η0 and mk is fully linear (the iterate
is kept and the trust-region radius is reduced).

6. Model-improving (M ), taken at Step 4 when ρk < η1 and mk is not certifiably fully linear (the
iterate and the trust-region radius are kept but the model is improved).

Whenever there are (more than one) consecutive model-improvement steps, we count the whole
series of them as one model-improvement iteration. We know that the cost in function evaluations
of such an iteration in M (or any iteration in C ) is of the order of n for a single function (see [23,
Chapter 2] or the explanation about linear interpolation and regression models in Section 2.2).

For analyzing the algorithm, we gather all iterations that are not successful in N = C ∪A ∪U ∪
M , where C = C r ∪C nr, and all iterations where ∆k is reduced in R = C r ∪A ∪U .

The two modifications described above do not restrict the general setting of [22]. However, a
careful reader would notice that in [22] (see Algorithm 2.3.1 in Section 2.3) the criticality step is only
applied when ∥gk∥ ≤ εc, with εc > 0. In our algorithmic presentation this would mean that a series
of critical iterations is only started under the same condition. Doing this however does not affect
our theory. It certainly does not have any impact on the analysis of global convergence. Selecting εc

appropriately, e.g., εc ≥ ε when p = 1, where ε is the threshold of stationarity, would not change the
analysis of WCC too. We will explain this in due course.

Global convergence

Given that substantial modifications in the presentation of the algorithm are made relatively to the
original description in [22] (Algorithm 2.3.1 in Section 2.3), it becomes necessary to redo the global
convergence theory. Part of it would have to be done anyhow for the sole purpose of analyzing the
worst case complexity.

As we have seen in Section 2.3, we need to assume that the objective function f is bounded from
below (Assumption 2.1.1), that the model Hessians are uniformly bounded (Assumption 2.1.3), and
that f has a Lipschitz continuous gradient in an open set containing initial enlarged level set Lenl(x0)

(Assumption 2.2.1).
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We will first show that the trust-region radius converges to zero. The proof is a modification of the
proof of Lemma 5.5 in [22] (see also [23, Lemma 10.9]), which we have stated before as Lemma 2.3.6.

Lemma 4.1.1 Let Assumptions 2.1.1 and 2.1.3 hold. Then

lim
k→+∞

∆k = 0.

Proof. First we assume that the number of successful iterations is finite. Suppose that the number
of iterations in R = C r ∪A ∪U is also finite. Then we would have an infinite number of iterations
either in C nr or in M . In the first case, a contradiction would be reached since after each iteration in
C nr (the last in a series of critical ones) the model is fully linear and we would either have an iteration
in S , A , or in U . In the second case, since after a model-improvement iteration we have an iteration
of different type, this would imply an infinite number of iterations in C r, C nr, S , A , or U , which
is not possible. Thus, there is an infinite number of iterations in R = C r ∪A ∪U . Hence, ∆k is
decreased an infinite number of times by a factor of γ , which leads to the convergence of ∆k to zero.

Let us assume now that S is infinite. When k is in S ,

f (xk)− f (xk+1) ≥ η1[mk(xk)−mk(xk + sk)]+ c1∆
p
k .

By using the bound on the fraction of Cauchy decrease (2.3) and Assumption 2.1.3, we have that

f (xk)− f (xk+1) ≥ η1
κ f cd

2
∥gk∥min

{
∥gk∥
κbhm

,∆k

}
+ c1∆

p
k .

Since the iteration is not critical, ∥gk∥ ≥ ∆k/λ , and thus

f (xk)− f (xk+1) ≥
η1κ f cd

2λ
∆k min

{
∆k

κbhmλ
,∆k

}
+ c1∆

p
k . (4.1)

Given that S is considered infinite and f is assumed bounded from below, the right-hand side of (4.1)
has to converge to zero for k ∈ S . Hence limk∈S ∆k = 0, and the proof is completed when there are
only successful iterations.

Now, if there exists an iteration k that is not successful then, due to the way in which the radii are
updated at Step 5 of Algorithm 4.1.1, we have ∆k ≤ γinc∆sk , where sk is the last successful iteration
before k. Since limsk∈S ∆sk = 0, the proof is completed in this case as well.

Having in mind the complexity results and the smoothing trust-region approach of Section 5.3,
global convergence is established by proving now that the gradient of the objective function is of the
order of the trust-region radius whenever this one is reduced.

Lemma 4.1.2 Let Assumptions 2.1.3 and 2.2.1 hold. If k is an iteration for which ∆k is reduced, then

∥∇ f (xk)∥ ≤ C5∆k +C6∆
p−1
k ,
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where

C5 = κeg +C0,1, C0,1 =
1

min
{

β , 1
κbhm

,
κ f cd(1−η1)

4κe f

} , and C6 =
2c1

κ f cd(1−η1)
. (4.2)

Proof. By assumption we have that k ∈ R = C r ∪A ∪U . Let us suppose that k ∈ A ∪U . We will
show first that

∥gk∥ ≤ C0,1∆k +C6∆
p−1
k . (4.3)

Assume by contradiction that (4.3) is false. Given that C0,1 ≥
4κe f

κ f cd(1−η1)
, we then obtain

∥gk∥ >
4κe f

κ f cd(1−η1)
∆k +

2c1

κ f cd(1−η1)
∆

p−1
k ,

which we rewrite as

1−η1 >
2κe f ∆k
κ f cd

2 ∥gk∥
+

c1∆
p−1
k

κ f cd
2 ∥gk∥

. (4.4)

On the other hand, using (2.3) and C0,1 ≥ κbhm, one has

mk(xk)−mk(xk + sk) ≥
κ f cd

2
∥gk∥min

{
∥gk∥
κbhm

,∆k

}
≥

κ f cd

2
∥gk∥∆k. (4.5)

Hence, we have, from (4.4) and (4.5) and the fully linearity (2.12) of the model at both s = 0 and
s = sk,

1−η1 ≥
∣∣∣∣ f (xk + sk)−mk(xk + sk)

mk(xk)−mk(xk + sk)

∣∣∣∣+ ∣∣∣∣ f (xk)−mk(xk)

mk(xk)−mk(xk + sk)

∣∣∣∣
+

∣∣∣∣ c1∆
p
k

mk(xk)−mk(xk + sk)

∣∣∣∣
≥

∣∣∣∣ f (xk)− f (xk + sk)− c1∆
p
k −mk(xk)+mk(xk + sk)

mk(xk)−mk(xk + sk)

∣∣∣∣
=

∣∣∣∣ f (xk)− f (xk + sk)− c1∆
p
k

mk(xk)−mk(xk + sk)
−1

∣∣∣∣
= |ρk −1|.

Therefore, we have ρk > η1, implying that the iteration is successful and contradicting the fact
that k ∈A ∪U . We have thus proved (4.3) for k ∈A ∪U . To establish the result of the lemma when
k ∈ A ∪U , it remains to use (2.11) and write

∥∇ f (xk)∥ ≤ ∥∇ f (xk)−gk∥+∥gk∥ ≤ κeg∆k +C0,1∆k +C6∆
p−1
k

= C5∆k +C6∆
p−1
k .
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Let us now suppose that k ∈ C r. If k is not the last critical iteration in a series of them, then
∆k+1 = γ∆k and ∆k+1 > λ∥gk+1∥. Thus,

∥∇ f (xk)∥ = ∥∇ f (xk+1)∥ ≤ ∥∇ f (xk+1)−gk+1∥+∥gk+1∥

≤ κeg∆k+1 +∥gk+1∥ ≤ κegγ∆k +
γ∆k

λ
≤

(
κeg +

1
β

)
γ∆k

≤ C5∆k +C6∆
p−1
k .

If k is the last critical iteration in a series of them, then due to ∆k+1 = max{γ∆k,β∥gk+1∥}, either
∆k+1 = γ∆k or ∆k+1 = β∥gk+1∥< ∆k. In the first case we have ∥gk+1∥ ≤ γ∆k/β ≤ ∆k/β and in the
second case we have ∥gk+1∥ ≤ ∆k/β . Thus,

∥∇ f (xk)∥ = ∥∇ f (xk+1)∥ ≤ ∥∇ f (xk+1)−gk+1∥+∥gk+1∥

≤ κeg∆k+1 +
∆k+1

β
≤ κeg∆k +

∆k

β
=

(
κeg +

1
β

)
∆k

≤ C5∆k +C6∆
p−1
k ,

and we establish the result of the lemma also for k ∈ C r.

A global convergence result follows directly from Lemma 4.1.2 and the asymptotic behavior of
the trust-region radius.

Theorem 4.1.1 Let Assumptions 2.1.1, 2.1.3, and 2.2.1 hold. Then

liminf
k→+∞

∥∇ f (xk)∥ = 0.

Proof. By Lemma 4.1.1, there is an infinite subsequence of iterations where the trust-region radius
is reduced, to which then we can apply Lemma 4.1.2.

Worst case complexity

In this section, we derive the worst-case complexity analysis of Algorithm 4.1.1. We first need the
following technical lemma establishing a lower bound on the trust-region radius when the size of the
gradient (of the objective function) is larger than a given threshold.

Lemma 4.1.3 Let Assumptions 2.1.3 and 2.2.1 hold. Let ε ∈ (0,1). Let k0 be the first iteration where
∆k is reduced. For every iteration k ≥ k0 of the algorithm, if ∥∇ f (x j)∥ > ε for j = k0, . . . ,k, then

∆k ≥ γC7ε
1

min(p−1,1) ,

where
C7 = min

(
1,(C5 +C6)

− 1
min(p−1,1)

)
, (4.6)

with C5 and C6 given in (4.2).
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Proof. Let k ≥ k0 be an iteration where ∆k is reduced. When ∆k < 1, by applying Lemma 4.1.2,

ε < (C5 +C6)max{∆k,∆
p−1
k } ≤ (C5 +C6)∆

min(p−1,1)
k .

If ∆k ≥ 1, then ∆k ≥ ε . Hence, considering both cases of ∆k < 1 and ∆k ≥ 1, and the fact that ε < 1,
we have

∆k ≥ C7ε
1

min(p−1,1) .

The lemma is proved for all iterations k ∈ R such that k ≥ k0.

At iterations in R = C r ∪A ∪U , ∆k is decreased by a factor of at most γ . At iterations in
C nr ∪S ∪M , ∆k is not decreased. Thus, we can backtrack from any iteration k in C nr ∪S ∪M , to
the previous iteration in R, say k1 (possibly k1 = k0), and obtain ∆k ≥ γ∆k1 .

We are now ready to count the number of successful iterations.

Theorem 4.1.2 Let Assumptions 2.1.1, 2.1.3, and 2.2.1 hold. Let k0 be the index of the first iteration
where ∆k is reduced (which must exist from Lemma 4.1.1). Given any ε ∈ (0,1), assume that
∥∇ f (xk0)∥ > ε and let k̄ be the first iteration after k0 such that ∥∇ f (xk̄)∥ ≤ ε . Then, to achieve
∥∇ f (xk̄)∥ ≤ ε , starting from k0, Algorithm 4.1.1 takes at most |S (k0, k̄)| successful iterations, where

|S (k0, k̄)| ≤
f (xk0)− flow

L
ε
− max(p,2)

min(p−1,1)

where

L =
η1κ f cdγ2C2

7

2λ
min

{
1

κbhmλ
,1
}
+ c1γ

pCp
7 ,

with C7 given in (4.6) (and S (k0, k̄) includes k0 but excludes k̄).

Proof. When k ∈ S , using (2.3) and ∥gk∥ ≥ ∆k/λ , we have

f (xk)− f (xk+1) ≥
η1κ f cd

2λ
min

{
1

κbhmλ
,1
}

∆
2
k + c1∆

p
k .

Hence, by applying Lemma 4.1.3,

f (xk)− f (xk+1) ≥
η1κ f cdγ2C2

7

2λ
min

{
1

κbhmλ
,1
}

ε
2

min(p−1,1) + c1γ
pCp

7 ε
p

min(p−1,1) .

We then obtain by summing up all the successful iterations starting at k0 that

f (xk0)− f (xk̄)≥ |S (k0, k̄)|Lε
max(p,2)

min(p−1,1) ,

and the proof is completed.

The impact of imposing ∥gk∥ ≤ εc to perform a series of criticality steps appears only when
counting successful iterations. In fact, one would have instead ∥gk∥ ≥ min{εc,∆k/λ} when k ∈ S .
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One possibility to fix the situation would be to select

εc ≥ O(ε
1

min(p−1,1) )

and that would only impact the constants in the result. An alternative would be to pick εc constant
and consider ∆k sufficiently small so that min{εc,∆k/λ}= ∆k/λ . Such a procedure would conflict,
however, with a proper WCC analysis since we would not know how many iterations would be
required for ∆k to be below εcλ .

The next step of the analysis is to count all iterations after k0 which are not successful.

Theorem 4.1.3 Under the conditions of Theorem 4.1.2, to achieve ∥∇ f (xk̄)∥ ≤ ε , starting from k0,
Algorithm 4.1.1 takes at most |N (k0, k̄)| other (not successful) iterations, where

|N (k0, k̄)| ≤ (3+4L1)|S (k0, k̄)|+4
(

L2 − logγ(e)ε
− 1

min(p−1,1)

)
,

L1 = − logγ(γinc), L2 = logγ

(
γC7e
∆k0

)
,

and C7 is given in (4.6).

Proof. For iterations k in R = C r ∪A ∪U where ∆k is reduced, ∆k+1 ≤ γ∆k. For successful
iterations k ∈ S , ∆k+1 ≤ γinc∆k. For the others (k ∈ C nr ∪M ), ∆k+1 ≤ ∆k. Thus, we obtain by
induction

∆k̄ ≤ ∆k0γ
|S (k0,k̄)|
inc γ

|R(k0,k̄)|.

As log(γ)< 0, one can then write

|R(k0, k̄)| ≤ − log(γinc)

log(γ)
|S (k0, k̄)|−

log(∆k0)

log(γ)
+

log(∆k̄)

log(γ)
.

By Lemma 4.1.3, we have

|R(k0, k̄)| ≤ L1|S (k0, k̄)|+ logγ

(
γC7

∆k0

)
− log(ε− 1

min(p−1,1) )

log(γ)
,

and thus, using log(x)≤ x−1 for x > 1,

|R(k0, k̄)| ≤ L1|S (k0, k̄)|+L2 − logγ(e)ε
− 1

min(p−1,1) . (4.7)

It remains to count the iterations that are in C nr and in M . After an iteration in C nr (the last
critical iteration in a series of them), the model is fully linear, and thus the next iteration is either
successful, acceptable, or unsuccessful, giving

|C nr| ≤ |S |+ |A |+ |U | ≤ |S |+ |R|.

After an iteration in M , the next one is of one of the other types, and thus

|M | ≤ |S |+ |R|+ |C nr| ≤ 2(|S |+ |R|).



4.1 Complexity in determining first-order stationary points 47

Thus,
|N | = |R ∪C nr ∪M | ≤ |R|+ |C nr|+ |M | ≤ 3|S |+4|R|,

which combined with (4.7) completes the proof.

The two last theorems show that the number of iterations, after the first iteration k0 where the
trust-region radius is reduced, that are needed to drive the norm of the gradient below ε is

O

(
ε
− max(p,2)

min(p−1,1)

)
.

It can be easily shown that k0 is also bounded by such a quantity. From what we have seen in the
proof of Theorem 4.1.3, since there are no iterations in R until k0, one has k0 ≤ 4|S (0,k0 −1)|. To
count the number of successful iterations up to k0 −1, we write, as in the proof of Theorem 4.1.2, for
such iterations k,

f (xk)− f (xk+1) ≥
η1κ f cd

2λ
min

{
1

κbhmλ
,1
}

∆
2
k + c1∆

p
k .

Summing up all these iterations up to k0, and considering ∆k ≥ ∆0 and ε < 1, we obtain

k0 ≤ 4|S (0,k0 −1)| ≤ 4
f (x0)− f (xk0)

min{∆2
0,∆

p
0}L0

≤ 4
f (x0)− f (xk0)

min{∆2
0,∆

p
0}L0

ε
− max(p,2)

min(p−1,1) , (4.8)

with

L0 =
η1κ f cd

2λ
min

{
1

κbhmλ
,1
}
+ c1.

To state our final complexity result, one needs to make explicit the dependence of the constants
appearing so far in terms of the problem dimension n and the Lipschitz constant of the gradient. It is
known that the constants κe f and κeg in the definition of fully linear models can meet the following
assumption (see [23, Chapter 2] or the explanation about linear interpolation and regression models in
Section 2.2).

Assumption 4.1.1 The constants κe f and κeg in the definition of fully linear models satisfy κe f =

O(
√

nL∇ f ) and κeg =O(
√

nL∇ f ), where n is the problem dimension and L∇ f is the Lipschitz constant
of the gradient of the objective function f .

Theorems 4.1.2 and 4.1.3 and the bound on k0 given above, together with Assumption 4.1.1, lead
to the following result.

Theorem 4.1.4 Let Assumptions 2.1.1, 2.1.3, 2.2.1, and 4.1.1 hold. To drive the norm of the gradient
below ε ∈ (0,1), Algorithm 4.1.1 takes at most

O

(
(L∇ f

√
n)

max(p,2)
min(p−1,1) ε

− max(p,2)
min(p−1,1)

)
iterations. When p = 2, this number is of O(L2

∇ f nε−2).
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Proof. It suffices to observe that for the constant L appearing in Theorem 4.1.2 we have

1
L

= O
(

C−max(p,2)
7

)
= O

(
(C5 +C6)

max(p,2)
min(p−1,1)

)
= O

(
κ

max(p,2)
min(p−1,1)

)
,

with κ = max{κe f ,κeg} and then to apply Assumption 4.1.1.

Algorithm 4.1.1 takes at most O(n) function evaluations at critical and model-improving iterations
and only one function evaluation at all other iterations. It is then possible to measure the worst case
effort also in terms of function evaluations.

Corollary 4.1.1 Let Assumptions 2.1.1, 2.1.3, 2.2.1, and 4.1.1 hold. To drive the norm of the gradient
below ε ∈ (0,1), Algorithm 4.1.1 takes at most

O

(
n(L∇ f

√
n)

max(p,2)
min(p−1,1) ε

− max(p,2)
min(p−1,1)

)
function evaluations. When p = 2, this number is of O(L2

∇ f n
2ε−2).

4.2 Complexity in determining second-order stationary points

It is also possible to count the effort of derivative-free trust-region methods in the determination of
second-order critical points. In fact, we will see in this section that most of what we did for the
first-order case can be extended to the second-order case in a way that the analysis is carried out
naturally.

The algorithm revisited

We start by reproducing in detail the second-order version of Algorithm 4.1.1. The changes are
the expected ones at this point of the thesis, meaning the use of fully quadratic models, the use of
the second-order model criticality measure (2.25), and an approximated solution of the trust-region
subproblem satisfying a fraction of the eigenvalue decrease. For simplicity, we use here the notation

τk = λmin(Hk).

We will make a simplification relatively to Algorithm 4.1.1, by not using the term c1∆
p
k in the definition

of ρk — as we will not apply the second-order version in the context of non-smooth problems (a topic
for future research).

Algorithm 4.2.1 Derivative-free trust-region method using fully quad. models (version WCC)

Initialization: Choose an initial point x0 and an initial trust-region radius ∆0 ∈ (0,∆max] for some
∆max > 0. Choose an initial model m0(x0 + s). The constants η0, η1, γ , γinc, λ , and β are given
and satisfy the conditions 0 ≤ η0 ≤ η1 < 1 (with η1 ̸= 0), γ ∈ (0,1), γinc > 1, and λ > β > 0.
Set k = 0.
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Step 1 (one step of the criticality step): If ∆k > λσm
k , then set xk+1 = xk. Apply the model-improve-

ment algorithm to compute a fully quadratic model mk+1 in B(xk+1;γ∆k). If the next iteration
skips the criticality step (meaning γ∆k ≤ λσm

k+1, set ∆k+1 = max{γ∆k,βσm
k+1}. If not, set

∆k+1 = γ∆k. Increment k by one and restart a new iteration in Step 1. Otherwise (∆k ≤ λσm
k )

and go to Step 2.

Step 2 (step calculation): Compute a step sk that sufficiently reduces the model mk, in the sense of

mk(xk)−mk(xk + sk) ≥
κ f od

2
max

{
∥gk∥min

{
∥gk∥
∥Hk∥

,∆k

}
,−τk∆

2
k

}
(4.9)

(with κ f od ∈ (0,1]), and such that xk + sk ∈ B(xk;∆k).

Step 3 (acceptance of the trial point): Compute f (xk + sk) and define

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 or if ρk ≥ η0 and mk is fully quadratic, then xk+1 = xk + sk and the model is updated
to take into consideration the new iterate, resulting in a new model mk+1(xk+1 + s). Otherwise
the model and the iterate remain unchanged (mk+1 = mk and xk+1 = xk).

Step 4 (model improvement): If ρk < η1 use a model-improvement algorithm to

• attempt to certify that mk is fully quadratic on B(xk;∆k),

• if such a certificate is not obtained, we say that mk is not certifiably fully quadratic and
make one or more suitable improvement steps.

Define mk+1(xk + s) to be the improved model.

Step 5 (trust-region radius update): Set

∆k+1 ∈


[∆k,min{γinc∆k,∆max}] if ρk ≥ η1,

{γ∆k} if ρk < η1 and mk is fully quadratic,
{∆k} if ρk < η1 and mk

is not certifiably fully quadratic.

Increment k by one and go to Step 1.

As in Algorithm 4.1.1, there are essentially five types of trust-region iterations resulting from
Algorithm 4.2.1 (critical, successful, acceptable, unsuccessful, model-improvement), and the critical
iterations are split in two types depending on whether the trust-region radius is reduced or not. The
description of these iterations has been made after Algorithm 4.1.1. All the other considerations made
there apply to Algorithm 4.2.1.

Global convergence

Let us recall the assumptions that we need for this section, the same as in Section 2.3 for the second-
order case: Assumptions 2.1.1, 2.1.3, and 2.2.3. Again, given that substantial modifications in the
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presentation of the algorithm are made relatively to the original description in [22] (Algorithm 2.3.3
in Section 2.3), it becomes necessary to redo the global convergence theory.

We will first show that the trust-region radius converges to zero, adapting the proof of Lemma 4.1.1
to the second-order case.

Lemma 4.2.1 Let Assumptions 2.1.1 and 2.1.3 hold. Then

lim
k→+∞

∆k = 0.

Proof. First we assume that the number of successful iterations is finite. This part of the proof is
verbatim equal to the one of Lemma 4.1.1 (except that “fully linear” there is now fully quadratic).

Let us assume now that S is infinite. When k is in S , from (4.9) and Assumption 2.1.3, we have
that

f (xk)− f (xk+1) ≥ η1
κ f od

2
max

{
∥gk∥min

{
∥gk∥
κbhm

,∆k

}
,−τk∆

2
k

}
.

Since the iteration is not critical, σm
k ≥ ∆k/λ . When σm

k = ∥gk∥,

f (xk)− f (xk+1) ≥
η1κ f od

2λ
∆k min

{
∆k

κbhmλ
,∆k

}
, (4.10)

and when σm
k =−τk,

f (xk)− f (xk+1) ≥
η1κ f od

2λ
∆

3
k . (4.11)

The proof can be completed exactly as in the proof of [22, Lemma 7.7] (see also [23, Lemma 10.20]):
There are two subsequences of successful iterations, possibly overlapping, {k1

i }, for which (4.10)
holds, and {k2

i }, for which (4.11) holds. Note that the union of these subsequences contains all
successful iterations, and because S is infinite and f is bounded from below, either the corresponding
subsequence {k1

i } (resp. {k2
i }) is finite or the right hand side of (4.10) (resp. (4.11)) has to converge

to zero. The conclusion is then that limk∈S ∆k = 0, and the proof is completed if all iterations are
successful. Now, if there exists an iteration k that is not successful then, due to the way in which ∆k is
updated at Step 5 of Algorithm 4.2.1, we have ∆k ≤ γinc∆sk , where sk is the last successful iteration
before k. Since limsk∈S ∆sk = 0, the proof is completed in this case as well.

The model criticality measure

σ
m(x) = max{∥∇m(x)∥,−λmin(∇

2m(x))} (4.12)

provides an accurate approximation to the criticality measure σ(x) defined in (2.8). The result is taken
from [22, Lemma 7.2] (see also [23, Lemma 10.15]).

Lemma 4.2.2 Let ∆ be bounded by ∆max. Suppose that Assumption 2.2.3 holds and m is a fully
quadratic model on B(x;∆). Then, we have that

|σ(x)−σ
m(x)| ≤ κσ ∆, (4.13)

where κσ = max{κeg∆max,κeh}.
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Using this notation, note that σm
k in (2.25) coincides with σm(xk). The next step in the analysis is

to prove that if the trust-region radius passes below a constant times this measure, then it is not further
reduced:

Lemma 4.2.3 Let Assumptions 2.1.3 and 2.2.3 hold. If k is an iteration for which ∆k is reduced, then

σ(xk) ≤ C8∆k,

where
C8 = κσ +C0,2 and C0,2 =

1

min
{

β , 1
κbhm

,
κ f od(1−η1)

4κe f ∆max
,

κ f od(1−η1)
4κe f

} . (4.14)

Proof. By assumption we have that k ∈ R = C r ∪A ∪U . Let us suppose that k ∈ A ∪U . We
will show first that

σ
m
k ≤ C0,2∆k. (4.15)

Assume by contradiction that (4.15) is false. From the definition (2.25) of σm
k , we have either

σm
k = ∥gk∥ or σm

k =−λmin(Hk) =−τk.
Suppose that σm

k = ∥gk∥. Given that C0,2 ≥
4κe f ∆max

κ f od(1−η1)
, we then obtain

σ
m
k >

4κe f ∆max

κ f od(1−η1)
∆k.

From (4.9), Assumption 2.1.3, C0,2 ≥ κbhm, we have

mk(xk)−mk(xk + sk) ≥
κ f od

2
∥gk∥∆k =

κ f od

2
σ

m
k ∆k.

Hence, using (2.23) for both s = 0 and s = sk,

1−η1 >
4κe f ∆max∆k

κ f odσm
k

≥
∣∣∣∣ f (xk + sk)−mk(xk + sk)

mk(xk)−mk(xk + sk)

∣∣∣∣+ ∣∣∣∣ f (xk)−mk(xk)

mk(xk)−mk(xk + sk)

∣∣∣∣
≥ |ρk −1|.

Consider now the second case where σm
k =−τk. From (4.9),

mk(xk)−mk(xk + sk) ≥
κ f od

2
(−τk)∆

2
k =

κ f od

2
σ

m
k ∆

2
k .

Hence, using similar arguments, given that C0,2 ≥
4κe f

κ f od(1−η1)
, and assuming that (4.15) is false, we

then obtain

1−η1 >
4κe f ∆k

κ f odσm
k

≥ |ρk −1|.

(Note that after having applied (2.23), ∆2
k canceled and there was no need to use the bound ∆k ≤ ∆max.)
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In any of the cases, we concluded that ρk > η1, implying that the iteration is successful and
contradicting the fact that k ∈ A ∪U . We have thus proved (4.15) for k ∈ A ∪U .

To establish the result of the lemma when k ∈ A ∪U , it remains to use Lemma 4.2.2 and write

σ(xk) ≤ σ(xk)−σ
m(xk)+σ

m(xk) ≤ κσ ∆k +C0,2∆k.

Finally, suppose that k ∈ C r. Here the proof is exactly as in the proof of Lemma 4.1.2, with the
use of (2.11) replaced by the use of (4.13).

As in the first-order case, a global convergence result follows directly from Lemma 4.2.3 and the
asymptotic behavior of the trust-region radius.

Theorem 4.2.1 Let Assumptions 2.1.1, 2.1.3, and 2.2.3 hold. Then

liminf
k→+∞

σ(xk) = 0.

Proof. By Lemma 4.2.1, there is an infinite subsequence of iterations where the trust-region radius
is reduced, to which then we can apply Lemma 4.2.3.

Worst case complexity

In this section, we derive the worst-case complexity analysis of Algorithm 4.2.1. Given a tolerance
ε ∈ (0,1), we are interested in knowing how many iterations are needed to compute an iterate xk such
that σ(xk)≤ ε . As in the first-order case, we start by stating the following auxiliary lemma whose
proof is exactly the same as the proof of Lemma 4.1.3 (with ∇ f (xk) replaced by σ(xk)).

Lemma 4.2.4 Let Assumptions 2.1.3 and 2.2.3 hold. Let ε ∈ (0,1). Let k0 be the first iteration where
∆k is reduced. For every iteration k ≥ k0 of the algorithm, if σ(x j)> ε for j = k0, . . . ,k, then

∆k ≥ γC9ε,

where
C9 = min

(
1,C−1

8

)
, (4.16)

with C8 is given in (4.14).

The next step is to count the number of successful iterations.

Theorem 4.2.2 Let Assumptions 2.1.1, 2.1.3, and 2.2.3 hold. Let k0 be the index of the first iteration
where ∆k is reduced (which must exist from Lemma 4.2.1). Given any ε ∈ (0,1), assume that σ(xk0)> ε

and let k̄ be the first iteration after k0 such that σ(xk̄) ≤ ε . Then, to achieve σ(xk̄) ≤ ε , starting
from k0, Algorithm 4.2.1 takes at most |S (k0, k̄)| successful iterations, where

|S (k0, k̄)| ≤
f (xk0)− flow

L̄
ε
−3,
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where

L̄ =
η1κ f odγ2C2

9

2λ
min

{
1

κbhmλ
,1,γC9

}
with C9 given in (4.16).

Proof. For those iterations in S (k0, k̄) we know that σm
k ≥ ∆k/λ , thus either ∥gk∥ ≥ ∆k/λ or

−τk =−λmin(Hk)≥ ∆k/λ . Using (4.9), one has

f (xk)− f (xk+1) ≥
η1κ f od

2λ
min

{
1

κbhmλ
,1
}

∆
2
k

in the first case, and

f (xk)− f (xk+1) ≥
η1κ f od

2
∆k

λ
∆

2
k

in the second case. One now applies Lemma 4.2.4 and use the same logic as in the first-order case to
obtain the desired result.

Now we count all iterations, after k0, which are not successful (the proof is the same as the proof
of Theorem 4.1.3).

Theorem 4.2.3 Under the conditions of Theorem 4.2.2, to achieve σ(xk̄) ≤ ε , starting from k0,
Algorithm 4.2.1 takes at most |N (k0, k̄)| other (not successful) iterations, where

|N (k0, k̄)| ≤ (3+4L̄1)|S (k0, k̄)|+4
(

L̄2 − logγ(e)ε
−1
)
,

where

L̄1 = L1 = − logγ(γinc), L̄2 = logγ

(
γC9e
∆k0

)
,

and C9 is given in (4.16).

The two last theorems show that the number of iterations, after the first iteration k0 where the
trust-region radius is reduced, that are needed to drive σ below ε is O

(
ε−3

)
. It can also be easily

shown that k0 is also bounded by such a quantity. As in the first-order case, since there are no
iterations in R until k0, one has k0 ≤ 4|S (0,k0 −1)|. Summing up all successful iterations up to k0,
and considering ∆k ≥ ∆0 and ε < 1, we obtain (as in the proof of Theorem 4.2.2)

k0 ≤ 4|S (0,k0 −1)| ≤ 4
f (x0)− f (xk0)

∆2
0L̄0

≤ 4
f (x0)− f (xk0)

∆2
0L̄0

ε
−3 (4.17)

with

L̄0 =
η1κ f od

2λ
min

{
1

κbhmλ
,1,∆0

}
.

Note that in the derivative-based trust-region setting [13] it is possible to prove that at most
O(max{ε−2

g ε
−1
H ,ε−3

H }) iterations are needed to determine a point xk such that

∥∇ f (xk)∥ ≤ εg and λmin(∇
2 f (xk)) ≥ −εH .

It is not clear, however, if such a result is still true in the derivative-free case.
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As in the first-order case, to state our final complexity result, one needs to make explicit the
dependence of the constants appearing so far in terms of the problem dimension n. The constants κe f ,
κeg, and κeh in the definition of fully quadratic models depend on

√
p and on the inverse of the norm of

scaled versions of the interpolation matrix (see [22], [23, Chapter 3], or the explanation about quadratic
interpolation and regression models in Section 2.2). Having in mind that p ≥ (n+1)(n+2)/2−1
and ignoring the latter effect, one can suppose that κe f , κeg, and κeh are all O(n). Theorems 4.2.2
and 4.2.3 and the bound on k0 given by (4.8), together with this assumption, lead to the following
result.

Theorem 4.2.4 Let Assumptions 2.1.1, 2.1.3, and 2.2.3 hold. Let us assume that κe f , κeg, and κeh are
all O(n). To drive the value of σ below ε ∈ (0,1), Algorithm 4.2.1 takes at most

O
(
n3

ε
−3)

iterations.

Proof. It suffices to observe that for the constant L̄ appearing in Theorem 4.2.2 we have

1
L̄

= O
(
C−3

9

)
= O

(
C3

8
)
= O

(
κ

3) ,
with κ = max{κe f ,κσ} and one knows from Lemma 4.2.2 that κσ = max{κeg∆max,κeh}.

Algorithm 4.2.1 takes at most O(n2) function evaluations at critical and model-improving iterations
and only one function evaluation at all other iterations. It is then possible to measure the worst case
effort also in terms of function evaluations.

Corollary 4.2.1 Let Assumptions 2.1.1, 2.1.3, and 2.2.3 hold. To drive the value of σ below ε ∈ (0,1),
Algorithm 4.2.1 takes at most

O
(
n5

ε
−3)

function evaluations.



Chapter 5

Derivative-free trust-region methods for
non-smooth functions

Trust-region methods have been well studied for non-smooth functions by considering non-smooth
trust-region subproblems which use the non-smooth structure of the function in a way that function
and model share the same (generalized) derivatives (see [27] and [18, Chapter 11]).

The existing approaches for non-smooth DFO are essentially of one of the three following types:
approximation by a family of smoothing functions (see [34, 45, 53]), where in practice the structure
of non-smoothness must be known; direct use of directions asymptotically dense in the unit sphere
(see [2, 4, 65]), where no structure is needed even for the theory; explicit use of a known type
of smoothness, both in theory and in practice (see [7, 44] for minmax-type structure and [37] for
composition of a smooth function with a non-smooth convex one, the latter approach using trust
regions).

In this chapter we start by reviewing basic properties of non-smooth functions (Section 5.1) and
of how to approximate them by a family of smooth functions (Section 5.2). Then we introduce two
new approaches for optimizing non-smooth functions using trust-region methods without derivatives.
The first one (Section 5.3) makes use of smoothing techniques, by applying trust-region methods to
a sequence of smooth functions converging to the original one. A second approach (Section 5.4) is
developed specifically for composite functions, where the non-smooth component of the function is
moved to the trust-region subproblem. A numerical illustration of the relative performance of these
methodologies is given in Section 5.5.

5.1 A review of basic concepts in non-smooth analysis

In this section we are going to review some basic results from non-smooth analysis that we need to
better understand the rest of the chapter. The presentation follows Clarke [17], focusing only on Rn.

A function f : Rn → R is Lipschitz near x if there exist scalars L,ε > 0 such that

| f (y)− f (z)| ≤ L ∥ y− z∥

55
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for all y,z in B(x;ε). When f is Lipschitz near x, one can define the Clarke generalized directional
derivative of f at x along the direction v by

f ◦(x;v) = limsup
y→x,t↓0

f (y+ tv)− f (y)
t

.

This definition is meant in the sense:

f ◦(x;v) = lim
ε→0

sup
y∈B(x;ε),t∈B(0;ε)

f (y+ tv)− f (y)
t

.

If the function f is Lipschitz continuous near x with constant L, then f ◦(x; ·) is also Lipschitz
continuous in Rn with the same constant L.

Suppose again that f is Lipschitz near x ∈ Rn. The Clarke generalized subdifferential of f at x
can then be defined by

∂ f (x) = {s ∈ Rn : f ◦(x;v)≥ v⊤s, ∀v ∈ Rn}.

Moreover, it can be proved that

f ◦(x;v) = max{v⊤s : s ∈ ∂ f (x)}. (5.1)

One can define stationarity or a first-order necessary condition for general Lipschitz continuous
functions using the Clarke generalized subdifferential or derivative. In fact, if f attains a local
minimum at x∗, then f ◦(x∗;v)≥ 0 for all v ∈ Rn, or, equivalently, 0 ∈ ∂ f (x∗).

When f is locally Lipschitz continuous, the Clarke generalized subdifferential is a nonempty
convex set and, as a set-valued mapping, is closed and locally bounded. A mean-value theorem can
also be formulated for locally Lipschitz functions using the Clarke generalized subdifferential, a result
known by the Lebourg mean-value theorem. In fact, if x and y are points in Rn and if f is Lipschitz
continuous in an open set containing the line segment [x,y], then there exists a point z in (x,y) such
that

f (y)− f (x) = s(z)⊤(y− x),

for some s(z) ∈ ∂ f (z). When f is convex, ∂ f (x) coincides with the subdifferential of convex analysis,
i.e., the set of vectors s ∈ Rn satisfying

f (x+u)− f (x) ≥ u⊤s, ∀u ∈ Rn.

There are intermediate degrees from non-smoothness to smoothness, from being Lipschitz con-
tinuous (with a Clarke generalized directional derivative) to being continuous differentiable. For
instance, a function f is regular at x if it has directional derivatives f ′(x;v) for all v and they coincide
with f ◦(x;v). It can be proved that, if a convex function is Lipschitz continuous near a point then
it is regular at that point (see [17, Proposition 2.3.6]). A function is said strictly differentiable at x
(when Lipschitz continuous) if there exists a vector ζ (called ∇ f (x)) such that f ◦(x;v) = ∇ f (x)⊤v,
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for all v, in which case ∂ f (x) = {∇ f (x)}. Such a strict differentiability implies regularity. Continuous
differentiability implies, in turn, strict differentiability.

The Clarke generalized subdifferential admits a nice geometrical characterization as the polar of a
tangent cone to the epigraph of the function. For this purpose, let us make some definitions first. A
vector d in Rn is said to be a Clarke tangent vector to the set Ω ⊆ Rn at the point x in the closure of Ω

if for every sequence {yk} of elements of Ω that converges to x and for every sequence of positive real
numbers {tk} converging to zero, there exists a sequence of vectors {wk} converging to d such that
yk + tkwk ∈ Ω. We denote such a set of tangent vectors by TΩ(x). We define the normal cone to Ω at x
by polarity with TΩ(x):

NΩ(x) = {ζ ∈ Rn : ζ
⊤v ≤ 0, ∀v ∈ TΩ(x)}.

In turn, the epigraph of a real-valued function f : Rn −→ R is the following subset of Rn ×R:

epi( f ) = {(x,r) ∈ Rn ×R : f (x)≤ r}.

It is then known that an element ζ of Rn belongs to ∂ f (x) if and only if (ζ ,−1) belongs to
Nepi( f )(x, f (x)).

We recall also here Rademacher’s Theorem that states that a Lipschitz continuous function on
an open set of Rn is differentiable almost everywhere, in the sense of the Lebesgue measure. Let us
denote by Ω f the set of points at which a given function f fails to be differentiable. Suppose that f
is Lipschitz continuous near x, and let S be any set of Lebesgue measure 0 in Rn. Then, the Clarke
generalized subdifferential also admits the following characterization:

∂ f (x) = co{lim∇ f (xi) : xi → x,xi ̸∈ S,xi ̸∈ Ω f },

where co denotes the convex hull operator.
Consider the simple example f (x) = |x| for x ∈ R. Let x = 0. By the geometrical characterization

given before, relating ∂ f (0) to the normal cone of the epigraph of f at (0, f (0)), it follows directly
that ∂ f (0) = ∂ | · |(0) = [−1,1]. Then, from (5.1) it results that f ◦(0;v) = |v|.

5.2 Smoothing of non-smooth functions

Given a possibly non-smooth objective function f , it is of interest to us the definition of a smoothing
function (see [15, 70]):

Definition 5.2.1 Let f : Rn →R be a locally Lipschitz continuous function. We call f̃ : Rn×R+ →R
a smoothing function of f if, for any µ > 0, f̃ (·,µ) is continuously differentiable in Rn and, for any
x ∈ Rn,

lim
z→x,µ↓0

f̃ (z,µ) = f (x).

Under reasonable assumptions, the smoothing trust-region methods derived in the next section
will generate a sequence of points and a sequence of smoothing parameters (converging to zero) for
which the gradient of the smoothing function tends to zero. In other words, we will show that any
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limit point x∗ of that sequence of points is a stationary point of the smoothing function f̃ , in the sense
that 0 ∈ G f̃ (x∗), with

G f̃ (x∗) = {v : ∃N ∈ N∞,(x,µ)−−→
N

(x∗,0) with ∇ f̃ (x,µ)−−→
N

v},

where N∞ represents the set of infinite sequences. It is known that for certain types of objective
functions and corresponding smoothing functions, co G f̃ (x∗) = ∂ f (x∗), where ∂ f (x∗) denotes the
Clarke subdifferential of f at x∗, a result known as gradient consistency and that follows from [62,
Theorem 9.67]). It is known that ∂ f (x∗) is generally contained in the convex hull of G f̃ (x∗). For
certain smoothing functions the other inclusion also occurs, i.e., G f̃ (x∗) is included in ∂ f (x∗) (for
more details see the summary in [34]). Thus, in those cases of gradient consistency, the smoothing
trust-region methods are capable of generating a sequence of iterates converging to Clarke stationary
points.

We have especially in mind the minimization of composite functions of the type f = g+h(F),
where h : Rℓ → R is non-smooth with a known smoothing function and g : Rn → R and F : Rn → Rℓ

are assumed smooth (continuously differentiable). The functions g and F can be a black box or a zero-
order oracle, in the sense that one does not access to derivative information, only function values can
be evaluated. An example that finds many applications is when h is given by the ℓ1-norm, h(·) = ∥ ·∥1.
In the rest of this section we will explain how to build a smoothing function for f = h(F) = ∥F∥1

with all the desired properties, including gradient consistency.
We start by describing how to build a smoothing function for the absolute value, using the approach

suggested by Chen and Zhou [16]:

s̃(t,µ) =
∫ +∞

−∞

|t −µτ|ρ(τ)dτ, (5.2)

where ρ : Rn → [0,+∞) is a piecewise continuous density function with a finite number of pieces
satisfying

ρ(τ) = ρ(−τ) and
∫ +∞

−∞

|τ|ρ(τ)dτ < +∞.

Let κ =
∫ +∞

−∞
|τ|ρ(τ)dτ . The following proposition, which is a special case of [16, Proposition 3.1],

describes the relevant properties of s̃(t,µ).

Proposition 5.2.1 The function s̃(t,µ) defined by (5.2) has the following properties:
(i) s̃(t,µ) = s̃(−t,µ) for t ∈ R, that is, s̃(·,µ) is symmetric.
(ii) s̃(·,µ) is continuously differentiable on R, and its derivative can be given by

s̃′(t,µ) = 2
∫ t

µ

0
ρ(τ)dτ.

(iii) s̃(·,µ) converges uniformly to |t| on R with

|s̃(t,µ)−|t|| ≤ κµ.

(iv) The set of limits of the derivatives s̃′(t,µ) coincides with the Clarke subdifferential of the absolute
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value, that is,{
lim

t→0,µ↓0
s̃′(t,µ)

}
= [−1,1] = ∂ | · |(0) and lim

t→t∗,µ↓0
s̃′(t,µ) =

{
1 t∗ > 0,
−1 t∗ < 0.

Moreover, one has

lim
µ↓0

s̃′(t,µ) =


1 t > 0,
0 t = 0,
−1 t < 0.

(v) For any fixed µ > 0, s̃′(t,µ) is Lipschitz continuous with constant 2κ0/µ , where κ0 is an upper
bound for ρ .

If one considers the following uniform density function [16],

ρ(τ) =

{
1 if τ ∈ [−1

2 ,
1
2 ],

0 otherwise,

then, using (5.2), the smoothing function for | · | corresponding to this density function is

s̃(t,µ) =

{
t2

µ
+ µ

4 if t ∈ [− µ

2 ,
µ

2 ],

|t| otherwise,

with gradient given by

s̃′(t,µ) =

{
2t
µ

if t ∈ [− µ

2 ,
µ

2 ],

sign(t) otherwise.

The Lipschitz constant of s̃′(·,µ) is 2/µ .

Based on the above given smoothing function for | · |, the following smoothing function for ∥F(·)∥1

has been introduced in [34]

F̃(x,µ) =
m

∑
i=1

s̃(Fi(x),µ). (5.3)

Using the properties of s̃ given in Proposition 5.2.1 and the use of non-smooth calculus rules for regular
functions, it has been proved in [34] that F̃ is indeed a smoothing function for ∥F(·)∥1, satisfying
the gradient consistency property and exhibiting a Lipschitz continuous gradient with constant of the
order of 1/µ .

Theorem 5.2.1 Let F̃(x,µ) = ∑
m
i=1 s̃(Fi(x),µ) be defined as in (5.3). Then

(i) F̃ is a smoothing function for ∥F∥1.
(ii) F̃(·,µ) satisfies the gradient consistent property, that is,{

lim
x→x∗,µ↓0

∇F̃(x,µ)
}

= ∂∥F∥1(x∗).

(iii) For each µ , ∇F̃(·,µ) is Lipschitz continuous with a Lipschitz constant of the order of 1/µ .
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Theorem 5.2.1 tells us, in fact, that F̃(·,µ) is a continuously differentiable smoothing function
for f (·) = ∥F(·)∥1, satisfying GF̃(x∗) = ∂ f (x∗) and for which the gradient is Lipschitz continuous
with constant O(1/µ).

Other examples of smoothing functions with the same desired properties are given using Gaussian
densities [53].

5.3 Smoothing trust-region methods without derivatives

In this section, following what has been done in [34] for direct search, we introduce a smoothing
trust-region algorithm for the unconstrained minimization of a locally Lipschitz continuous objective
function f for which a smoothing function f̃ is known.

The algorithm

The idea is simple and consists of the application of Algorithm 4.1.1 to the smoothing function for
decreasing values of the smoothing parameter µ . Each outer or main iteration (Algorithm 4.1.1 applied
to f̃ for a fixed value of µ) is stopped when the trust-region radius becomes smaller than a function
r(µ) of the smoothing parameter.

Algorithm 5.3.1 (Smoothing trust-region method)

Initialization
Choose x0 with f (x0)<+∞, ∆0 > 0, µ0 > 0, and σ ∈ (0,1).

For k = 0,1,2, . . .

1. Trust-region method for a fixed smoothing parameter: Apply Algorithm 4.1.1 to
f̃ (·,µk) (starting from y0,k = xk) generating points y0,k, . . . ,y jk,k until ∆ jk+1,k < r(µk).

2. Update of the smoothing parameter: Set xk+1 = y jk,k and decrease the smoothing
parameter: µk+1 = σ µk.

As we will see next, each outer iteration is well defined (in the sense of stopping in a finite number
of inner iterations) and, moreover, Algorithm 5.3.1 will stop under a criterion of the form µk ≤ µtol ,
where µtol ∈ (0,µ0).

Global convergence

We will analyze the global convergence of the smoothing trust-region method (Algorithm 5.3.1) under
the following assumptions, which are the natural counterparts, for the smoothing function, of the ones
assumed in the smooth cases of Chapters 2 and 4.

Assumption 5.3.1 For all k: f̃ (·,µk) has a Lipschitz continuous gradient with constant L
∇ f̃ (µk) on

an open set containing Lenl(y0,k), see (2.10), with L(y0,k) = {y ∈ Rn : f̃ (y,µk)≤ f̃ (y0,k,µk)}.
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Assumption 5.3.2 For all k: the functions f̃ (·,µk) are bounded below in L(y0,k).

Each inner iteration of Algorithm 5.3.1 consists of one iteration of Algorithm 4.1.1 using a
quadratic model now written as

m̃ j,k(y j,k + s,µk) = f̃ j,k + g̃⊤j,ks+
1
2

s⊤H̃ j,ks.

As in Chapters 2 and 4, we will require all these model Hessians to be uniformly bounded.

Assumption 5.3.3 There exists a constant κ̃bhm > 0 such that, for all j,k,

∥H̃ j,k∥ ≤ κ̃bhm.

One can immediately deduce that the smoothing parameter converges to zero.

Theorem 5.3.1 Let Assumptions 5.3.2 and 5.3.3 hold. Then the smoothing parameter goes to zero:

lim
k→∞

µk = 0.

Proof. For each k, one knows, from Lemma 4.1.1, that lim j→+∞ ∆ j,k = 0. Thus, one always
reaches the stopping criterion for every k and µk is reduced an infinite number of times, which
completes the proof.

The above result triggers the following one. Note that r(µ) is part of the algorithmic design and
can be chosen in whatever most appropriate way.

Theorem 5.3.2 Let Assumptions 5.3.2 and 5.3.3 hold. If limµ↓0 r(µ) = 0, then

lim
k→+∞

∆ jk,k = 0.

Proof. The proof results from Theorem 5.3.1 and the fact that r(µk)> ∆ jk+1,k = γ∆ jk,k.

Global convergence of Algorithm 5.3.1 requires that r(µ) goes to zero faster than the way that the
Lipschitz constant L

∇ f̃ (µ) of the gradient of the smoothing function goes to infinity (see the theorem
below). Later we will see that the optimal complexity bound asks for a Lipschitz constant L

∇ f̃ (µ) that
does not go to infinity faster than 1/µ , in other words that L

∇ f̃ (µ) = O(1/µ). As we have seen in
Section 5.2, there are smoothing functions satisfying this property as well as gradient consistency,
such as the smoothing function for composite functions of the type ∥F∥1 where F is smooth.

Theorem 5.3.3 Consider the application of Algorithm 5.3.1 and suppose that f̃ is a smoothing
function for f . Let Assumptions 5.3.1, 5.3.2, and 5.3.3 hold. Under these conditions, if limµ↓0 r(µ) = 0
and limµ↓0 L

∇ f̃ (µ)r(µ) = 0, then

lim
k→+∞

∥∇ f̃ (xk,µk)∥ = 0 (5.4)

and any limit point x∗ of {xk} is a stationary point associated with the smoothing function f̃ .
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Proof. For each k, xk+1 = y jk,k, where jk is an iteration such that the trust-region radius is reduced.
Thus, in view of Lemma 4.1.2, we have

∥∇ f̃ (xk,µk)∥ ≤ C5(µk)∆ jk,k +C6∆
p−1
jk,k

,

where now C5 =C5(µk) depends on µk through the dependence of L
∇ f̃ (µk). Since C5(µk) =O(κ̃eg) =

O(L
∇ f̃ (µk)), where κ̃eg is the constant in the error bound (2.12) for the gradient of the model of the

smoothing function f̃ , and r(µk)> ∆ jk+1,k = γ∆ jk,k, one obtains

∥∇ f̃ (xk,µk)∥ ≤ O(L
∇ f̃ (µk))r(µk)+C6∆

p−1
jk,k

.

Then, due to Theorems 5.3.1 and 5.3.2, we obtain (5.4) and the proof is completed.

If one considers a smoothing function f̃ for which L
∇ f̃ (µ) = O(1/µ), it suffices to choose

r(µ) = µq, with q > 1, to successfully apply Theorem 5.3.3.
As a consequence of the above result, when the smoothing function of f satisfies the gradient

consistent property at a limit point x∗, yielding G f̃ (x∗)⊆ ∂ f (x∗), x∗ is a Clarke stationary point of the
function f .

Worst case complexity

We also follow here the same steps as in [34] and start by first counting the number of inner iterations
of Algorithm 5.3.1 to drive the smoothing parameter below a given threshold.

Theorem 5.3.4 Consider the application of Algorithm 5.3.1 using the term c1∆p when calling Algo-
rithm 4.1.1 and r(t) = c2tq, with p,q > 1 and c1,c2 > 0. Suppose that f̃ is a smoothing function for f .
Let Assumptions 5.3.1, 5.3.2, and 5.3.3 hold.

Given any ξ ∈ (0,1) such that ξ < µ0, let k̄ be the first outer iteration such that µk̄+1 ≤ ξ . Under
these assumptions, Algorithm 5.3.1 takes at most O (| log(ξ )|ξ−pq) inner iterations to reduce the
smoothing parameter below ξ , i.e., to have µk̄+1 < ξ .

Proof. First let us consider each inner loop of Algorithm 5.3.1 where a trust-region method
is applied for a fixed µk > ξ . This loop is repeated until there is an iteration ( jk,k) for which the
trust-region radius is reduced and ∆ jk+1,k < r(µk) = c2µ

q
k .

For each k, the number of inner iterations needed to reach the first iteration ( j0,k,k) where the
trust-region radius is reduced is of the order of one (see (4.8)).

One has, for a successful iteration ( j,k), that

f̃ (y j,k,µk)− f̃ (y j+1,k,µk) ≥ η1
κ̃ f cd

2
∥g j,k∥min

{
∥g j,k∥
κ̃bhm

,∆ j,k

}
+ c1∆

p
j,k ≥ c1∆

p
j,k.

Since ∆ j,k ≥ c2µ
q
k ,

f̃ (y j,k,µk)− f̃ (y j+1,k,µk) ≥ c1cp
2 µ

pq
k .
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The number of inner successful iterations |Sk( j0,k, jk)| from ( j0,k,k) until ( jk,k) is then bounded by

|Sk( j0,k, jk)| ≤
f̃ (y j0,k,k,µk)− f̃low,k

c1cp
2

1
µ

pq
k

.

Similar to the first part of the proof of Theorem 4.1.3, the number of the other inner iterations is
bounded as follows (remember that 0 < γ < 1)

|Rk( j0,k, jk)| ≤ (3+4L1)|Sk( j0,k, jk)|− logγ(∆ j0,k,k)+ logγ(∆ jk,k).

The initial trust-region radii ∆ j0,k,k are considered constants. To bound the third term, recall that
∆ jk,k ≥ r(µk) = c2µ

q
k > c2ξ q, and thus, since p > 1, logγ(∆ jk,k) = O (ξ−pq). We conclude that the

maximum number of iterations needed in each inner loop minimization is O (ξ−pq).
Finally, let us count the number of outer loops. From the updating scheme of the smoothing

parameter, one has µk+1 ≤ σ kµ0. Thus, the number of outer iterations required to reach µk̄+1 < ξ

satisfies

k̄ ≥ log(ξ )− log(µ0)

log(σ)
,

and the proof is completed.

As we have seen in Section 5.2, there are situations where the Lipschitz constant of the gradient
of the smoothing function is of the order of 1/µ . Under such an assumption on L

∇ f̃ (µ) it is possible
to bound the gradient of f̃ at the end of the last outer loop.

Theorem 5.3.5 Let all assumptions of Theorem 5.3.4 hold and assume also that L
∇ f̃ (µk) = O(1/µk).

Suppose also that the constant κ̃ = max{κ̃e f , κ̃eg} in the bounds of the fully linear models of f̃ satisfies
Assumption 4.1.1.

Given any ξ ∈ (0,1) such that ξ < µ0, let k̄ be the first iteration such that µk̄+1 ≤ ξ . Under these
conditions, one has

∥∇ f̃ (xk̄,µk̄)∥ = O
(√

nξ
q−1 +ξ

(p−1)q
)
.

Proof. From Lemma 4.1.2 and ∆ jk,k = ∆ jk+1,k/γ < (c2/γ)µq
k , one has

∥∇ f̃ (xk̄,µk̄)∥ ≤ C5∆ jk̄ +C6∆
p−1
jk̄

≤ C5(c2/γ)µq
k̄ +C6(c2/γ)p−1

µ
(p−1)q
k̄ .

The proof is completed by noting that C5 = O(κ̃) = O(
√

nL
∇ f̃ ) = O(

√
n/µ) and that, from µk̄+1 =

σ µk̄, one has µk̄ ≤ ξ/σ .

This result suggests that p = 3/2 and q = 2 are the optimal choices in the sense that ∥∇ f̃ (xk̄,µk̄)∥
becomes O(

√
nξ ). We are thus finally ready to state a worst-case complexity bound for driving both

the norm of the smoothing gradient and the smoothing parameter below a common threshold.

Corollary 5.3.1 Under the assumptions of Theorem 5.3.5 and when q = 2 and p = 3
2 , Algorithm 5.3.1

takes at most O
(
| log(ξ )|ξ−3

)
iterations (and at most O

(
n| log(ξ )|ξ−3

)
function evaluations) to
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reduce the smoothing parameter below ξ ∈ (0,1), ending such process with

∥∇ f̃ (xk̄,µk̄)∥= O(
√

nξ ). (5.5)

Equivalently, the number of iterations needed to reach ∥∇ f̃ (xk̄,µk̄)∥ ≤ ε and µk̄ ≤ ξ = ε/(
√

nC),
where C > 0 is the constant that multiplies

√
nξ in the right hand side of (5.5), is

O
(

n
3
2 [| log(ε)|+ log(n)]ε−3

)
,

leading to the following overall worst case complexity bound in terms of the number of function
evaluations

O
(

n
5
2 [| log(ε)|+ log(n)]ε−3

)
.

5.4 Derivative-free trust-region methods for composite functions

In this section we consider the unconstrained minimization of composite functions of the type
f = h(F), where h : Rℓ → R is a convex, possibly non-smooth function at least globally Lipschitz
continuous (with constant Lh > 0). The vectorial function F : Rn → Rℓ is assumed smooth (continu-
ously differentiable) but it is considered that only function values can be computed, not derivatives.
The setting can be easily extended to f = g+h(F) as long as g : Rn → R is smooth and one can build
convex and fully linear models of it.

Fully linear models revisited

Let x0 ∈ Rn be a starting point for the trust-region methods considered in this section. Let F =

( f1, . . . , fℓ) : Rn → Rℓ be a function for which one build models to be used in such methods. When
imposing a certain smoothness on F , one needs to consider only the region where these methods
generate new iterates and trial points. Given that trust-region methods impose some form of decrease
on the acceptance of new iterates, such points are always confined to an initial level set L(x0) of the
form (2.5). As we have seen several times in this thesis, at each iteration of such methods, the function
is sampled at trial points that may fall outside of the level set L(x0), and thus the set in which the
function is sampled is taken as Lenl(x0), see (2.10). It is in Lenl(x0) that F is assumed smooth:

Assumption 5.4.1 Suppose x0 and ∆max are given. Assume that F is continuously differentiable with
Lipschitz continuous Jacobian (with constant LJF ) in an open domain containing the set Lenl(x0).

To establish global convergence to first-order stationary points (and the corresponding rates or
complexity bounds), the models of F need to be assumed as accurate as first-order Taylor models, in
the sense of being fully linear. It is further assumed that such models can be made fully linear in a
finite number of model-improvement steps. We adapt below the Definition 2.2.1 of fully linear models
for the case of vectorial functions, where ℓ can be greater than 1.

Definition 5.4.1 Let a function F = ( f1, . . . , fℓ) : Rn → Rℓ, that satisfies Assumption 5.4.1, be given.
A set of model functions M = {m = (m1, . . . ,mℓ) : Rn → Rℓ, m ∈C1} is called a fully linear class of
models if:
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1. There exist positive constants κe f and κeg such that for any x ∈ L(x0) and ∆ ∈ (0,∆max] there
exists a model function m(x+ s) in M, with Lipschitz continuous Jacobian, and such that

• the error between the gradient of the model components and the gradient of the function
components satisfies

max
1≤i≤ℓ

∥∇ fi(x+ s)−∇mi(x+ s)∥ ≤ κeg ∆, ∀s ∈ B(0;∆), (5.6)

and

• the error between the model and function components satisfies

max
1≤i≤ℓ

| fi(x+ s)−mi(x+ s)| ≤ κe f ∆
2, ∀s ∈ B(0;∆). (5.7)

Such a model m is called fully linear on B(x;∆).

2. For this class M there exists an algorithm, which we will call a ‘model-improvement’ algorithm,
that in a finite, uniformly bounded (with respect to x and ∆) number of steps can

• either establish that a given model m ∈ M is fully linear on B(x;∆) (we will say that a
certificate has been provided),

• or find a model m ∈ M that is fully linear on B(x;∆).

Note that when ℓ= 1, Definition 5.4.1 coincides with Definition 2.2.1.

The algorithm

Given x ∈ Rn and ∆ > 0, if the Jacobian J(x) of F was known, we could consider the trust-region
subproblem min∥s∥≤∆ l(x,s), where l(x,s) is the following approximation of f around x (composition
of h with a linear approximation of F):

l(x,s) = h(F(x)+ J(x)s).

The decrease predicted by the step would then be

Ψ(x,∆) = l(x,0)− min
∥s∥≤∆

l(x,s).

Ψ(x,1) was used in [12] as a criticality measure for f . In fact, x∗ is a critical point of f if and only if
Ψ(x∗,1) = 0 (and Ψ(x,1) is non-negative and continuous for all x), see [67, Lemma 2.1].

In this thesis, since we assume that the Jacobian of F is not available, we replace l(x,s) by a
composite model of the form lm(x,s) = h(m(x+ s)), where m(x+ s) is convex and fully linear in the
sense of Definition 5.4.1. One possibility to compute such a model is to set m(x+ s) = F(x)+ Jm(x)s,
where the lines of the matrix Jm(x) are the transposes of the simplex gradients of the components of F
at x (see [23, Chapter 2] or the explanation in Section 2.2). The decrease predicted by the solution of
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the trust-region subproblem min∥s∥≤∆ lm(x,s) is then

Ψ
m(x,∆) = lm(x,0)− min

∥s∥≤∆

lm(x,s),

and Ψm(x,1) is our model of criticality measure. In practice, and when h has a piecewise linear
structure such as the one given by the ℓ1 or ℓ∞ norms, the model m(x+ s) will be considered linear to
render easy the solution of the trust-region subproblem.

In the following we will show that the difference between the true and the model criticality
measures is of the order of trust-region radius. This result was proved originally in [37, Theorem 1]
assuming linearity of the model m(x+ s) in s, but it can be made simpler as we show below if
we only use the fully linearity of the models. Let t ∈ B(0;∆), st = argmin∥s∥≤1 l(x + t,s), and
sm

t = argmin∥s∥≤1 lm(x+ t,s). Consider first the case Ψm(x+ t,1)≤ Ψ(x+ t,1). Since lm(x+ t,sm
t )≤

lm(x+ t,st), using (5.7),

Ψ(x+ t,1)−Ψ
m(x+ t,1) ≤ l(x+ t,0)− l(x+ t,st)− [lm(x+ t,0)− lm(x+ t,st)]

≤ h(F(x+ t))−h(m(x+ t))+h(m(x+ t + st))−h(F(x+ t + st))

≤ (2Lhκe f ∆max)∆.

In the case Ψ(x+ t,1) ≤ Ψm(x+ t,1), it can be proved similarly that Ψm(x+ t,1)−Ψ(x+ t,1) ≤
(2Lhκe f ∆max)∆. Therefore, we have

|Ψ(x+ t,1)−Ψ
m(x+ t,1)| ≤ κΨ∆, ∀t ∈ B(0;∆), with κΨ = 2Lhκe f ∆max. (5.8)

A derivative-free trust region algorithm for composite functions can be stated in the same vein as
it was done in Algorithm 4.1.1 for smooth functions. The differences lie uniquely in the definition of
the criticality measure, in the trust-region subproblem, in the definition of the predicted decrease, and
in the fact that m models F in f = h(F) (instead of modeling f directly as in Algorithm 4.1.1). There
is no need now to consider the term c1∆

p
k in ρk, as its inclusion in Algorithm 4.1.1 was primarily done

for deriving the complexity bounds for the smoothing trust-region approach of Section 5.3.

Algorithm 5.4.1 Derivative-free trust-region method (for composite functions)

Initialization: Same as in Algorithm 4.1.1 but setting c1 = 0.

Step 1 (criticality step): Same as in Algorithm 4.1.1 but with gk replaced by Ψm
k = Ψm(xk,1).

Step 2 (step calculation): Compute the step sk by solving

min
∥s∥≤∆k

lm(xk,s).

Step 3 (acceptance of the trial point): Same as in Algorithm 4.1.1 with mk(xk)−mk(xk + sk) re-
placed by Ψm(xk,∆k).

Step 4 (model improvement): Same as in Algorithm 4.1.1.
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Step 5 (trust-region radius update): Same as in Algorithm 4.1.1.

Similar to Algorithm 4.1.1, there are six types of iterations and we will use the same notation as in
Section 4.1. For the rest of the current section, we use Ψk and Ψm

k instead of Ψ(xk,1) and Ψm(xk,1),
respectively.

Global convergence

As we said before we will require h to satisfy the following assumption.

Assumption 5.4.2 The function h : Rℓ → R is convex, globally Lipschitz continuous, with Lipschitz
constant Lh > 0, and bounded from below (by flow).

The following lemma and its proof are an adaptation of Lemma 2.1 in [12].

Lemma 5.4.1 Let Assumption 5.4.2 hold. Then

Ψ
m(xk,∆k) ≥ min{∆k,1}Ψ

m
k .

Proof. When ∆k > 1, from min
∥s∥≤1

lm(xk,s)≥ min
∥s∥≤∆

lm(xk,s), we have Ψm(xk,∆k) ≥ Ψm
k .

When ∆k < 1, consider s∗k = argmin∥s∥≤1 lm(xk,s). Then,

Ψ
m(xk,∆k) ≥ lm(xk,0)− lm(xk,∆ks∗k) ≥ ∆k[lm(xk,0)− lm(xk,s∗k)] = ∆kΨ

m
k ,

where the first inequality holds due to lm(xk,sk)≤ lm(xk,∆ks∗k) and the second inequality holds due to
the convexity of lm.

In our derivation of the worst-case complexity bounds we need to make sure that there exists at
least one iteration for which the corresponding trust-region radius is reduced. This is guaranteed by
the following lemma.

Lemma 5.4.2 Let Assumption 5.4.2 hold. Then

lim
k→+∞

∆k = 0.

Proof. The only differences from the proof of Lemma 4.1.1 lie in the use of the predicted decrease.
Now, when k ∈ S , we have

f (xk)− f (xk+1) ≥ η1Ψ
m(xk,∆k),

then by using Lemma 5.4.1,

f (xk)− f (xk+1) ≥ η1 min{∆k,1}Ψ
m
k ,

and due to Ψm
k ≥ ∆k/λ (since the iteration is not in C ),

f (xk)− f (xk+1) ≥ η1 min{∆k,1}λ
−1

∆k.
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In the following lemma, which can be seen as a combination of Lemma 4.1.2 and Lemma 2.2
in [12], we bound the criticality measure by a constant multiple of the trust-region radius.

Lemma 5.4.3 Let Assumptions 5.4.1 and 5.4.2 hold. If k is an iteration for which ∆k is reduced, then

∆k ≥ min
{

1
κΨλ +1

min{
√

C10Ψk,C10Ψk},
1

κΨ +1/β
Ψk

}
,

where
C10 =

1−η1

2Lhκe f
, (5.9)

and κΨ comes from (5.8).

Proof. By assumption we have that k ∈ R = C r ∪A ∪U . Let us suppose that k ∈ A ∪U . To
later arrive at a contradiction, suppose that

∆k < min{
√

C10Ψm
k ,C10Ψ

m
k }. (5.10)

Using (2.12) and Lemma 5.4.1, we have

|ρk −1| = |h(F(xk))−h(m(xk))− [h(F(xk + sk))−h(m(xk + sk))]|
Ψm(xk,∆k)

≤
(2Lhκe f )∆

2
k

min{∆k,1}Ψm
k
.

If ∆k ≤ 1, then, from ∆k ≤C10Ψm
k ,

|ρk −1| ≤
(2Lhκe f )∆k

Ψm
k

≤
(2Lhκe f )C10Ψm

k
Ψm

k
= 1−η1.

If ∆k > 1, then, from ∆k ≤
√

C10Ψm
k

|ρk −1| ≤
(2Lhκe f )∆

2
k

Ψm
k

≤
(2Lhκe f )C10Ψm

k
Ψm

k
= 1−η1.

We then obtain ρk ≥ η1 implying k ∈ S , which contradicts k ∈ A ∪U . Thus, (5.10) is not true. Now,
from (5.8) and the fact that k is not in C ,

Ψk ≤ |Ψk −Ψ
m
k |+Ψ

m
k ≤ κΨ∆k +Ψ

m
k ≤ (κΨλ +1)Ψ

m
k ,

and thus, Ψm
k ≥ Ψk/(κΨλ +1). Hence, since ∆k ≥ min{

√
C10Ψm

k ,C10Ψm
k }, we have

∆k ≥ min{
√

C10Ψk,C10Ψk}
κΨλ +1

.

If k ∈ C r, then similarly to the last part of the proof of Lemma 4.1.2 (with ∥∇ f (xk)∥, ∥gk∥, and
κeg replaced by Ψk, Ψm

k , and κΨ, respectively), it can be shown that ∆k ≥ Ψk/(κΨ +1/β ).
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As in Theorem 4.2.1, a global convergence result can then be easily proved at this point of the
analysis.

Theorem 5.4.1 Let Assumptions 5.4.1 and 5.4.2 hold. Then

liminf
k→+∞

Ψk = 0.

Proof. By Lemma 5.4.2, there is an infinite subsequence of iterations where the trust-region radius
is reduced, to which then we can apply Lemma 5.4.3.

Worst case complexity

We proceed by stating the analog of Lemma 4.1.3.

Lemma 5.4.4 Let Assumptions 5.4.1 and 5.4.2 hold. Let ε ∈ (0,1). Let k0 be the first iteration
where ∆k is reduced. For every iteration k ≥ k0 of the algorithm, if Ψ j > ε for j = k0, . . . ,k, then

∆k ≥ γC11ε.

where

C11 = min
{

min{
√

C10,C10}
κΨλ +1

,
1

κΨ +1/β

}
(5.11)

and C10 is given in (5.9).

Proof. When k ∈ R, it follows directly from Lemma 5.4.3, Ψk > ε , and ε < 1, that ∆k ≥C11ε .
When k /∈ R, the argument is the same as in the last paragraph of the proof of Lemma 4.1.3.

Again, to count the total number of iterations first we start by counting the number of successful
iterations.

Theorem 5.4.2 Let Assumptions 5.4.1 and 5.4.2 hold. Let k0 be the index of the first iteration
where ∆k is reduced (which must exist from Lemma 5.4.2). Given any ε ∈ (0,1), assume that Ψk0 > ε

and let k̄ be the first iteration after k0 such that Ψk̄ ≤ ε . Then, to achieve Ψk̄ ≤ ε , starting from k0,
Algorithm 5.4.1 takes at most |S (k0, k̄)| successful iterations, where

|S (k0, k̄)| ≤
λ ( f (xk0)− flow)

η1 min{γC11,1}γC11
ε
−2,

where C11 given in (5.11).
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Proof. Let k ≥ k0 be the index of a successful iteration. Using Lemma 5.4.1, Ψm
k ≥ ∆k/λ ,

Lemma 5.4.4, and ε ∈ (0,1), we obtain

f (xk)− f (xk+1) ≥ η1Ψ
m(xk,∆k)

≥ η1 min{∆k,1}Ψ
m
k

≥ η1 min{∆k,1}
∆k

λ

≥ η1

λ
min{γC11ε,1}γC11ε

≥ η1

λ
min{γC11,1}γC11ε

2.

We then obtain by summing up all the successful iterations starting at k0 that

f (xk0)− f (xk̄) ≥ |S (k0, k̄)|
η1

λ
min{γC11,1}γC11ε

2,

and the proof is completed.

Now, we count the number of iterations after k0 that are not successful.

Theorem 5.4.3 Let Assumptions 5.4.1 and 5.4.2 hold. Let k0 be the index of the first iteration where
∆k is reduced (which must exist from Lemma 5.4.2). Given any ε ∈ (0,1), assume that Ψk0 > ε

and let k̄ be the first iteration after k0 such that Ψk̄ ≤ ε . Then, to achieve Ψk̄ ≤ ε , starting from k0,
Algorithm 5.4.1 takes at most |N (k0, k̄)| other (not successful) iterations, where

|N (k0, k̄)| ≤ (3+4L3)|S (k0, k̄)|+4
(

L4 − logγ(e)ε
−1
)
,

where C11 is given in (5.11),

L3 =− logγ(γinc), and L4 = logγ

(
γC11e

∆k0

)
.

Proof. The proof, except using Lemma 5.4.4 instead of Lemma 4.1.3, follows along the lines of
that of Theorem 4.1.3.

The number of iterations necessary to achieve the first iteration k0 (where the trust-region radius
is reduced) is O(1), and thus k0 is of the order of O

(
ε−2

)
, and the explanation is similar to the one

for the smooth case discussed after Theorem 4.1.3. Again, as we saw in previous sections, some of
the constants appearing in the bound on the number of iterations depend on the dimension of the
problem space and on Lipschitz constants of first-order derivatives. In the case of this section we
frame this dependance in the following assumption, which can be easily met if the model of F is
formed by F(xk)+ Jm(xk)s where the transposed rows of Jm(xk) are computed as simplex gradients
for the entries of F centered at xk.

Assumption 5.4.3 The constants κe f and κeg in the definition of fully linear models satisfy κe f =

O(
√

nLJ) and κeg =O(
√

nLJ), where n is the problem dimension and LJF is the largest of the Lipschitz
constants of fi, i = 1, . . . , ℓ.
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Theorem 5.4.4 Let Assumptions 5.4.1, 5.4.2, and 5.4.3 hold. To drive Ψ below ε ∈ (0,1), Algo-
rithm 5.4.1 takes at most O

(
nε−2

)
iterations.

Proof. The proof is similar to that of Theorem 4.1.4.

The dependence of the bound on LJF was omitted but is L2
JF

as in Theorem 4.1.4 when p = 2.

Corollary 5.4.1 Let Assumptions 5.4.1, 5.4.2, and 5.4.3 hold. To drive Ψ below ε ∈ (0,1), Algo-
rithm 5.4.1 takes at most O

(
ℓn2ε−2

)
function evaluations.

It can then be seen that, in terms of ε , the bound on the number of function evaluations derived in
this thesis is better by a factor of | logε| than the bound O(| logε|ε−2) derived in [37].

5.5 A numerical illustration

We have compared the numerical behavior of Algorithm 5.3.1 (smoothing trust-region approach)
and a variant of Algorithm 5.4.1 (composite trust-region approach) on a test set suggested in [50]
consisting of 53 problems of the form minx∈Rn f (x) = ∥F(x)∥1. In this test set, F varies among 22
nonlinear vector functions of the CUTEr collection [36] with 2 ≤ n ≤ 12 and different initial points.

In the smoothing approach (Sdfo-tr) we used the practical trust-region implementation described
in [5] for each smooth outer iteration. The implementation [5] shares some of the ideas of [32]
(see Section 2.4). Unlike [32], determined quadratic models are only built when there are already
(n+1)(n+2)/2 points evaluated. The first iteration starts with a sample set with 2n points of the
form x0 ± ei∆k) (with ei the ith coordinate vector). Until the cardinality of the sample set reaches
(n+ 1)(n+ 2)/2, points are never discarded from the sample set, and new trial points are always
added independently of whether or not they are accepted as new iterates (in an attempt to be as greedy
as possible when taking advantage of function evaluations). Models are then computed using the
minimum Frobenius norm approach described in Section 2.2. Unlike [32], in the sample set update
when this has reached a cardinality of (n+1)(n+2)/2, it is the sample point farthest away from the
new iterate (instead of the current iterate) that is discarded — there is no difference if the iteration is
unsuccessful. Another difference from [5] to [32] is that points that are too far from the current iterate
are discarded when the trust-region radius becomes small (this can be viewed as a weak criticality
condition), expecting that the next iterations will refill the sample set resulting in a similar effect as a
criticality step. Notice that then the cardinality of the sample set may fall below n+1, the number
required to build fully linear models in general, in which case the trust-region radius is not reduced.
The implementation in [5] computes the minimum Frobenius models (2.18) by solving a system
with (2.19) using SVD, regularizing extremely small singular values after the decomposition and
before performing the backward solves (to avoid extreme ill-conditioning caused by nearly ill-poised
sample sets). To improve conditioning and better assess it, the model construction (2.18) is scaled
by first shifting and scaling the sample set to the unit ball as in (2.15). Finally, the trust-region
subproblems are solved using the routine trust.m from the MATLAB Optimization Toolbox which
corresponds essentially to the algorithm of Moré and Sorensen [49].

Algorithm 5.3.1 was run using µ0 = 104, r(µ) = min(10−5,µ2), and the update µk+1 = µk/100.
The algorithm was stopped when µk reaches 10−2, which, given the initial value for µ0, resulted in
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doing four outer iterations (k = 0,1,2,4). The final iterate and trust-region radius of the previous outer
iteration were provided as the starting one for the next.

The same code from [5] was then adapted as the composite approach (Cdfo-tr), by changing
the criticality measure and the trust-region subproblem. We used as models of F the linear ones
mk(xk + s) = F(xk)+Jm(xk)s, where the transposed rows of Jm(xk) were regression simplex gradients
(see Section 2.2) computed using the 2n points xk ± ei min(10−2,∆k) (with ei the ith coordinate
vector). Since these models are always fully linear, no critical or model-improvement iterations were
considered. The trust-region ball was defined using the ℓ∞-norm so that the resulting trust-region
subproblem was an LP (which was solved using the routine linprog.m from the Matlab Optimization
Toolbox).

For both methods, we set the common initial parameters as ∆0,0 = 1 (Sdfo-tr), ∆0 = 1 (Cdfo-tr),
η0 = 10−3, η1 = 0.25, γ = 0.5, γinc = 1 except when ρk ≥ 0.75 where γinc = 2 and ∆max = 103. For
Sdfo-tr, we set p = 1.5, c1 = 1 and for Cdfo-tr we set c1 = 0.

A data profile [50] is given in Figure 5.1, indicating the percentage of problems solved by the
two methods under consideration as function of a budget of objective function evaluations (scaled by
n+1). A problem is considered solved when

f (x0)− f (x) ≥ (1−θ)[ f (x0)− fL],

where θ ∈ (0,1) is a level of accuracy, x0 is the initial iterate, and fL is the best objective value found
by the two methods for a budget of 1500 function evaluations. The value of θ was set to 10−7.
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Fig. 5.1 Data profiles computed for a set of piecewise smooth problems, comparing the smoothing
and composite trust-region methods.

A performance profile [30] is then given in Figure 5.2, depicting how well a method performed
relatively to the other in reaching the same (scale invariant) convergence test [31], in our case chosen
as

f (x)− f∗ ≤ θ(| f∗|+1|),

where θ is the accuracy level and f∗ is an approximation for the optimal value of the problem being
tested. Each method curve describes (at τ = 1) the fraction of problems for which the method
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performs the best (efficiency) and (for τ sufficiently large) the fraction of problems solved by the
method (robustness). The value of θ was set to 10−4 and the budget of function evaluations to 1500.
The value of f∗ was selected as the best value attained by these two methods and by those also tested
in [25], to ensure that we indeed measure the real ability to solve the problems.
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Fig. 5.2 Performance profiles computed for a set of piecewise smooth problems, in a logarithmic scale,
comparing the smoothing and composite trust-region methods.

Despite the fact of exhibiting a worse WCC bound, the smoothing approach worked much better
than the composite one, which does not come as a surprise given the absence of curvature exploration
in the latter one. We then compared our smoothing trust-region approach with the smoothing direct
search introduced in [34], on the same set of problems. Data and performance profiles are given in
Figures 5.3 and 5.4, respectively, using the same levels of accuracy and budget of evaluations. It
can be seen that the smoothing trust-region approach worked better, both in terms of efficiency and
robustness.
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Fig. 5.3 Data profiles computed for a set of piecewise smooth problems, comparing the smoothing
trust-region and direct-search methods.
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Fig. 5.4 Performance profiles computed for a set of piecewise smooth problems, in a logarithmic scale,
comparing the smoothing trust-region and direct-search methods.



Chapter 6

Conclusion

This thesis presented a unified coverage of the worst case complexity of derivative-free trust-region
methods for unconstrained optimization, from the case where the function is smooth to the case where
it is non-smooth. In the non-smooth setting, we considered the general case of Lipschitz continuity
and the case of a composite type structure. The WCC bounds established in the various cases were
the expected ones, matching existent bounds for derivative-free or derivative-based optimization.
The novelty of the thesis lies in the way under which the trust-region algorithms were analyzed,
individually and all together.

The analysis of WCC of this thesis can be refined along several ways. One possibility would
be to establish a bound of the order of ε−1 when f is convex and smooth. Extension to the linearly
constrained case may be doable using the methodology of this thesis, or even to the more general case
where the constraints form a closed convex set.

Another topic of interest would be the investigation of the smoothing approach to determine
second-order stationary points of non-smooth functions. In such a setting, one would probably
consider the function continuously differentiable and smooth the second-order non-smoothness.
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