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 Resumo 

 

A técnica de imagiologia de tomografia por emissão de positrões (PET, 

acrónimo inglês de Positron Emission Tomography) permite medir a concentração de 

radiofármaco e visualizar a sua distribuição espacial e temporal. Porém, é possível obter 

informação quantitativa mais específica a nível da cinética do radiofármaco utilizado no 

exame. Foram desenvolvidos métodos matemáticos que permitem isolar o sinal 

correspondente à concentração de radiofármaco que interage com a molécula-alvo para 

que foi previamente desenhado. O estudo da cinética de moléculas relevantes contribui 

significativamente para desvendar mecanismos moleculares responsáveis por doenças. 

O ponto de partida para uma análise quantitiva de imagens PET é 

frequentemente um modelo compartimental. Neste modelo, em cada voxel é assumido 

que existem aglomerações homogéneas de radiofármaco e que cada aglomeração pode 

ser representada como um compartimento. Cada compartimento é associado a um 

possível estado do radiofármaco, referindo-se à interacção com a molécula alvo, 

interacção com outras moléculas não relevantes, sem qualquer interação ou estando 

presente nos vasos sanguíneos, nomeadamente no plasma. Considera-se que o 

radiofármaco pode alternar entre compartimentos, e tipicamente assume-se ainda que a 

variação da concentração de um compartimento se encontra linearmente relacionada 

com a concentração de radiofármaco nos outros compartimentos. O que se pretende 

determinar são as constantes de linearidade que relacionam as concentrações nos vários 

compartimentos, e que irão descrever a cinética do radiofármaco. 

Para calcular as contantes cinéticas, é necessário determinar uma função de input 

para o modelo, que corresponde à evolução da concentração de radiofármaco no plasma 

com o tempo. O método gold-standard para obter esta função consiste na amostragem 

de sangue arterial feita ao longo do exame PET, através da canulação da artéria radial. 

Porém, este apresenta várias desvantagens. É invasivo, desencoraja voluntários 

saudáveis e pacientes de participar em estudos clínicos e, para além de laborioso, inclui 

um risco de exposição à radiação. Outro ponto a considerar é que a função determinada 

deste modo tem de ser calibrada em relação aos dados PET e corrigida para um factor 

de atraso, tendo em conta que a medição da concentração de radiofármaco é feita no 

braço, e geralmente a zona em estudo é o cérebro. 
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Entre outras alternativas que foram desenvolvidas como possíveis substitutas da 

canulação da artéria radial, uma técnica interessante é a derivação da função de input 

directamente das imagens PET. Pretende-se deste modo obter uma função de input 

derivada da imagem (IDIF, acrónimo inglês para Image-Derived Input Function). A 

determinação de IDIFs para estudos cerebrais pode ser conseguida através da definição 

de volumes de interesse (VOI, acrónimo inglês para Volume of Interest) nas imagens 

PET, nas zonas correspondentes às artérias carótidas internas. Este método tem 

potencial para constituir uma alternativa não invasiva e já foi implementado com 

sucesso para alguns radiofármacos. 

O presente trabalho tem como objectivo investigar métodos para estimar IDIFs 

no contexto do trabalho desenvolvido no IBILI/ICNAS. Após uma revisão do estado da 

arte do problema, foi feito um estudo usando um fantoma computacional. 

Posteriormente, métodos para estimar IDIF foram aplicados a imagens PET de [11C]-

Raclopride para determinar a função de input arterial e efectuar a quantificação das 

correspondentes imagens PET. Os resultados da quantificação foram comparados com 

resultados obtidos utilizando uma técnica de quantificação já validada para [11C]-

Raclopride. 
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 Abstract 

  

 The Positron Emission Tomography (PET) imaging technique allows the 

measurement of radioligand concentration in the scanned regions and consequently a 

visualization of its spatial and temporal distribution. Nevertheless, more precise 

information about its kinetics is often sought. Mathematical quantification methods 

allow isolating the signal corresponding to the concentration of radioligand bonded to 

its predefined specific molecular target. A more precise understanding of the kinetics of 

relevant molecules significantly contributes to unveiling mechanisms responsible for 

diseases or malfunctions. 

 The starting point for the quantification analysis of PET images is often a 

compartmental model. In each voxel it is assumed that there are homogeneous pools of 

radioligand and each pool is represented as a compartment. Each compartment is 

associated to a possible condition of the radioligand, as being specifically bound to the 

target molecule, bound to other non relevant molecules, free or circulating in vessels. It 

is considered that the radioligand can exchange between compartments and that the 

concentration change of radioligand in one compartment is a linear function of the 

concentration of radioligand in the other compartments. One seeks to determine the 

constants that relate the compartments, which describe the kinetics of the radioligand. 

 Calculating the parameters of interest requires the determination of the arterial 

plasma input function (AIF), which is the time-varying plasma concentration of 

radiotracer, and is the input for the model. The gold-standard method for obtaining AIF 

is measuring the radioactivity of arterial blood samples, which relies on the cannulation 

of the radial artery. However, this procedure has several disadvantages. It is invasive, it 

discourages healthy volunteers and patients from participating in clinical research and 

may be considered laborious for the research personnel. Another point to consider is 

that the function extracted with this technique has to be calibrated according to the PET 

data and corrected for a delay factor, resulting from the time that the radiotracer takes to 

travel from the arm, where the blood samples are taken from, to the brain, which is 

frequently the region in which one is interested to study. 

 Among some alternatives to arterial sampling, an attractive one is deriving the 

input function from the image data, thus obtaining an image-derived input function 

(IDIF). IDIFs for brain PET studies are typically extracted by measuring the radioligand 
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concentration from a defined volume of interest (VOI) placed in the region matching the 

internal carotid arteries. This technique has the potential to constitute a non-invasive 

alternative to arterial cannulation as has been successfully applied for some radiotracers. 

 In this study we look at different IDIF methods described in the literature and 

develop some alternatives. The latter are compared to a well-established method using a 

computational phantom. IDIF methods are also applied to [11C]-Raclopride PET data to 

estimate the arterial input function and further calculate quantification parameters. The 

quantification estimates derived using IDIF are compared to those obtained using an 

alternative validated quantification method for [11C]-Raclopride PET. 
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1. Introduction 

 

1.1. Brain-PET Quantification and the Input Function 

 

Positron emission tomography (PET) images enable the visualization of a 

radiotracer’s distribution as a function of time, but often more specific quantification of 

its kinetics is sought. After the data has been reconstructed, further mathematical 

quantification methods allow isolating the signal corresponding to the concentration of 

radiotracer bound to its predefined specific target. The underlying notion is that PET 

allows the measurement of tracer concentration in the scanned regions, not 

discriminating between specific binding, non-specific binding, free tracer or tracer in 

plasma. More precisely, understanding the kinetics of relevant molecules allows 

unveiling target mechanisms responsible for diseases or malfunctions. 

The starting point for the quantification analysis of PET images is often a 

compartmental model. This model assumes that there are physiological homogeneous 

pools of radiotracer. Each pool is represented as a compartment, see figure 1.1. Various 

techniques have been proposed to quantify receptor kinetics using compartmental 

models, with varying model and experimental designs, invasiveness and mathematical 

solution (Watabe et al. 2006). Compartmental models are expressed by an initial 

boundary value problem that relates the concentrations of radiotracer in the different 

compartments and where the coefficients are the kinetic parameters. 
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Several different compartmental models have been proposed. Typically the 

concentration differences between two compartments are assumed to be linearly related 

to the transport and binding rates of the tracer. Considering the 4 compartments 

illustrated in figure 1.1, the model reads: 

 

 

dCTarget(t)

dt
= k3C

Free(t) − k4C
Target(t)                                          (1.1) 

 

dCNS(t)

dt
= =  K1C

Plasma(t) + k6C
NS(t) + k4C

Target(t) − (k2 + k3 + k5)C
Free(t)     (1.2)  

 

dCNS(t)

dt
= k5C

Free(t) − k6C
NS(t)                                                 (1.3)  

 

where K1, k2, k3, k4, k5 and k6 are the transfer rate constants. These are the parameters of 

interest that one is interested in obtaining from equations 1.1 to 1.3. In this process, 

often more precision is obtained by combining rate constants. Deriving macro 

parameters, which are combinations of the transfer rate constants, such as the 

distribution volume (DV) or the binding potential (BP) is also in many cases more 

meaningful for data analysis.  

Figure 1.1 – General three-tissue compartmental model. Here the flow of concentration of 

radiotracer between 4 compartments (plasma concentration CPlasma , free compartment CFree, 

specific binding to a target molecule CTarget and non-specific bindingCNS) is illustrated. The 

tracer concentration given by the PET image is a summation of CFree, CTarget and CNS.  
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Determining the parameters of interest requires more information to be collected 

besides the PET data. It requires the estimation of the arterial plasma concentration of 

tracer in time, which is the input function for the model. The gold-standard method for 

obtaining this arterial input function (AIF) is arterial sampling. In this process, during 

the PET exam, typically the cannulation of the radial artery is made to collect several 

arterial blood samples and for each the radioactivity in plasma is measured. However, 

this procedure has several disadvantages. It is invasive, though rarely dangerous 

(Everett et al. 2009), it discourages healthy volunteers and patients from participating in 

clinical research and may be considered laborious for the research personnel (Zanotti-

Fregonara et al. 2011). Another point to consider is that the samples are taken from the 

arm, and the radiotracer concentration in plasma is sought on the brain area. Ideally, the 

plasma time-activity curve (TAC) should be measured as near as possible to the brain.  

To avoid the invasiveness of the arterial cannulation, some less invasive or 

totally non-invasive alternatives were developed. Population-based input function 

(PBIF) consists on using a standard input function obtained from a population of 

subjects, scaled using some blood samples or individual noninvasive parameters. 

However this method has some limitations, since the shape of the input function may be 

very specific for an individual according to variations in the metabolism of the 

radioligand. A totally non-invasive alternative to arterial cannulation is given by 

extending compartmental models to include a reference tissue where it is assumed that 

specific binding does not occur. However, these reference region analysis are only 

applicable if that assumption indeed holds, which must be carefully evaluated and is not 

always case for all diseases (Kropholler et al. 2007) nor for all the radiotracers used. 

Moreover, they may result in loss of accuracy and increased bias (Liptrot et al. 2004).  

In this thesis, we will focus on a different alternative, Image-derived Input 

Function (IDIF) method. 

 

1.2. Image-derived Input Function – Idea, Advantages/Disadvantages and 

         Obstacles 

 

In order to overcome the limitations associated to the gold-standard method for 

obtaining the AIF, it was proposed that the input function would be taken directly from 

PET images. The idea of using an IDIF for brain PET quantification is a very attractive 
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solution. Ideally it allows to locally compute the input function non-invasively, avoiding 

calibration and radioactivity measurement errors associated with arterial sampling.  

A downside of the IDIF method is that it requires access to large blood pools. It 

has been validated for some applications using the heart (Choi et al. 1991) or the 

femoral arteries (Lüdemann et al. 2006). In brain studies, where there are no large blood 

pools in the field of view, the IDIF has to be estimated from intracranial blood vessels, 

usually the internal carotid arteries, which deliver the radiotracer to the brain. Unlike the 

heart or the femoral arteries, carotid arteries are small, their diameter averaging 5 mm, 

whereas the spatial resolution of modern PET cameras is often about 6 mm (Zanotti-

Fregonara et al. 2011). This constitutes a major obstacle since partial volume effects 

(PVE), spill-in and spill-out, strongly influence the results. Spill-in effects refer to the 

artificial increment in the IDIF measurement due to the activity from the surrounding 

tissues spilling into the carotid region. Spill-out is the opposite effect, in which the 

activity measured is lower than the real one. 

Due to the limited resolution of PET cameras, building a reliable completely 

non-invasive IDIF method has been a huge challenge. The reference method for 

extracting IDIF has been the one proposed by (Chen et al., 1998) in which 3 late venous 

blood samples are used to calibrate the TAC that has been extracted from the carotids 

and correct it for PVE. Several methods were proposed to avoid the necessity of taking 

blood samples, as for example the previous estimation of recovery coefficients using 

phantom studies (Croteau et al. 2010). More recently, it has been suggested that with 

standard resolution IDIF methods based solely on the PET data could not be considered 

reliable, and that late venous blood samples should be used whenever possible (Zanotti-

Fregonara, Fadaili, et al. 2009). It should be noted that promising developments of 

technology, notably the HRRT (High Resolution Research Tomograph), allow 

achieving spatial resolutions better than 3 mm (Fung & Carson 2013), thus opening new 

doors. 

Another important factor that contributes to the accuracy of the IDIF is the tracer 

used in the PET exam. Notably, three characteristics should be taken into account: 

tracer kinetics, production of metabolites, and interaction of the tracer with blood cells. 

The kinetics affects the signal’s carotid-background ratio. This means that different 

tracers show different carotid signal’s strengths, depending on the kinetic behavior of 

the tracer in the brain. Notably, whether the uptake of the tissue surrounding the carotid 

artery is weak or strong, slow or fast, comes into play. After administered in the patient, 
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tracers produce metabolites in an amount and timing which depends on the tracer. The 

goal when obtaining an IDIF is to measure the parent concentration of the tracer in 

plasma alone, but PET images do not allow distinguishing between parent activity or 

radiometabolites activity. While in some tracers the parent-metabolite ratio can be 

neglected, as for example in 18F - Fluoro-2-deoxyglucose (FDG), for others its 

calculation is mandatory to obtain an accurate input function. The most reliable way to 

do this is by blood sampling, thus adding again the necessity of introducing an invasive 

component to the IDIF method. This may be counterintuitive, as IDIF intends to prevent 

the invasiveness. Nevertheless, IDIF methods introduce the advantage of at least 

reducing the number of blood samples used. Often it suffices to take venous blood 

samples, which is also advantageous (Zanotti-Fregonara et al. 2011). Avoid blood 

samples seems difficult for another reason. By using IDIF, it is implicitly assumed that 

the difference between the plasma tracer concentration and the one in whole blood is 

negligible. Although this is true for some tracers like 18F-FDG, for many others its 

molecules can bind to blood cells that have specific binding sites, causing uneven 

distribution between cells and plasma and thus requiring determining plasma 

concentration of tracer. 

Finally, IDIF estimation was also shown to be vulnerable to patient head 

movements during the PET exam (Zanotti-Fregonara & Liow 2012).  

The large number of factors influencing a reliable carotid-based IDIF estimation 

turns this approach very difficult to successfully achieve. After years of research, there 

is some skepticism about considering IDIF as the solution for arterial cannulation.  In 

fact, despite all the interest, the incorporation of IDIF in clinical research protocols as a 

mechanism to reduce invasiveness was quite poor. As there are so many variables 

which influence the reliability of the results, IDIF extraction methods should be case-

specific, by fitting the technology and the tracer used.  

 

1.3. Objective and Outline of the Thesis 

 

The current work has the main goal of studying methods for deriving an IDIF 

from the internal carotid arteries, as an alternative to arterial cannulation, to perform 

quantification of PET images. 

As mentioned above, reliable IDIF estimations typically rely on the extraction of 

blood samples to calibrate the carotid activity function for PVE, and determine the 
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parent and plasma fraction of radiotracer, which is not possible to obtain from PET data 

alone. This study, however, was thought to be performed completely non-invasively, in 

the context of the work developed in the IBILI/ICNAS, since there is no blood sampling 

protocol or equipment available yet. In this sense, this thesis evaluates how IDIF 

methods may be implemented in the ongoing projects at IBILI/ICNAS.  

With this consideration, the assessment of the methods using PET data focused 

[11C]-Raclopride images. This particular tracer, which widely used for ongoing studies, 

does not typically require the estimation of an IDIF because the usage of a reference 

region as input for the quantification models has been validated. Furthermore, there is 

plenty of information in the literature on [11C]-Raclopride, in particular on data required 

to approximate the metabolites and plasma corrections. In addition, considering this 

radiotracer allows the possibility of evaluating the performance of IDIF methods by 

comparing the resulting quantified parameters to those obtained using the reference 

region methods. 

In this context, this thesis involves the understanding of several topics.  

In the second chapter the quantification methods for PET images are detailed, 

emphasizing the quantification methods specifically used in this work. In the third 

chapter, a review of the IDIF state-of-the-art is made, in which the carotid arteries’ 

segmentation procedures will be addressed, as well as the PVE correction methods and 

the metabolites and plasma fraction corrections. Based on the findings of this third 

chapter, two totally non-invasive methods were derived and assessed in the fourth 

chapter. They were compared to the widely used blood sampling method which had 

been proposed by (Chen et al. 1998) for [18F]-FDG. Finally, in chapter five, blood-free 

IDIF methods were applied to [11C]-Raclopride PET images of 13 subjects to derive the 

AIF and quantifications were performed, to determine the BP. The results will be 

compared to the ones derived with a validated reference region.  

Throughout the whole thesis, the application of invasive and non-invasive 

quantification methods for [11C]-Raclopride will be addressed. In particular, its kinetics, 

metabolites production and plasma interaction will be discussed. 
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2. Quantification of Brain PET     

     Images 

 

 

2.1. Introduction 

 

In a PET study, physiologically active compounds are labeled with a positron-

emitting isotope and administered to the patient intravenously. Through the 

measurement of the annihilation radiation using a coincidence detecting technique, it is 

possible to track and quantitatively measure the labeled compound and study its 

biochemical and physiological properties in vivo.  

After data reconstruction and correction for attenuation, scatter, dead-time, 

movement, partial volume effect and decay, PET images provide 4D data of 

radioactivity concentration (kBq/ml) as a function of time, which is assumed to be 

proportional to the ligand concentration. The ligand concentration in tissue is, in turn, 

related to the underlying processes in study. Nevertheless, PET also has the potential of 

providing more complex and specific information about the tracer’s kinetic behavior 

other than its distribution in time, by isolating specific signals of interest. That potential 

has been explored by developing tracer kinetic models that better characterize the tracer 

kinetics and biological states through the determination of significant kinetic 

parameters. The usual measurements include the quantification of blood flow, cerebral 

metabolic rate of glucose, cerebral oxygen utilization and neuroreceptor ligand binding, 

through the determination of significant compound parameters as the metabolic rate, the 

distribution volume (DV) and the binding potential (BP).  

In this chapter several quantification models and methods are reviewed, with 

special emphasis given to those that will be mentioned in Chapter 5.  

 

2.2. Compartmental Models 

 

 The frequent starting point for PET image analysis and quantification is 
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assuming the ligand interaction with the physiologic system in study may be 

mathematically described by a compartmental model. This model assumes there are 

physiologically independent pools (or “compartments”) of tracer, not discriminated in 

the PET image, and seeks to quantify the tracer concentration at each pool, as function 

of time (Watabe et al. 2006) The compartments should not be interpreted as 

representing physical volumes, but rather a homogenous mass of material that behaves 

uniformly, in which the tracer can assume several locations. Tracer may be exchanged 

between compartments and the concentration change in one compartment is often 

assumed to be a linear function of the concentration in the other compartments, which 

means the tracer exchange happens at a constant rate, described by the transfer 

coefficients. The number of compartments to be considered depends on the chemical 

and biological properties of the ligand, and also on the specificity of the analysis 

intended. Increasing the complexity of the model structure increases the complexity of 

determining the transfer coefficients to characterize the tracer’s behavior. 

The structurally simplest model of this kind is the one-tissue compartmental 

model. Tracer injected intravenously as a bolus is assumed to arrive to the capillary 

network of the considered physiologic zone as being well-mixed in arterial blood, and 

equally distributed throughout all the circulation. In this model, the tracer interaction 

between the arterial plasma in the capillary, CP, and the surrounding tissue, CT, can be 

represented as shown in figure 2.1. 

 

 

 

 

 

The transfer coefficient K1, expressed in units of mLmin-1mL-1, describes 

transfer of radiotracer from plasma to tissue and is a function of the blood flow, 

capillary permeability and plasma protein binding. The coefficient k2 characterizes the 

efflux from tissue back to plasma, indicating the fraction of mass transferred per unit of 

time and is therefore expressed in units of min-1. The change over time of tissue 

concentration in this model can be expressed by the following differential equation 

Figure 2.1 – One-tissue compartmental model. In this simple model, no 

further information about the radiotracer present in the tissue is provided. 
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𝑑𝐶𝑇(𝑡)

𝑑𝑡
= 𝐾1𝐶𝑃(𝑡)  −  𝑘2 𝐶𝑇(𝑡)                                            (2.1)  

 

which indicates that the tracer is transferred to the tissue from plasma in a way 

proportional to the plasma concentration CP and is transferred from the tissue back to 

plasma in a way proportional to the tissue concentration CT.  

Solving equation 2.1 and determining the kinetic parameters K1 and k2 is 

possible by fitting the model to measured PET data with the AIF as input. The latter 

corresponds to the metabolite-corrected plasma concentration of tracer in time, CP, as 

mentioned in section 1.2. More details about this function are addressed in section 2.6.  

A more specific characterization of the behavior of tracer in the tissue, which is 

usually particularly sought because of the interest in assessing the binding of tracer to 

the pre-defined target, leads to more complex compartment model structures. In 

particular, the three-tissue compartmental model considers that once in the tissue, the 

tracer may be free (CT1), specifically bound to the target molecule (CT2) or non-

specifically bound to other not relevant molecules (CT3), see figure 2.2. 

 

 

One can derive the differential equations that describe the three-tissue model 

likewise to what had been done for the one-tissue model. This would now lead to a 

more complex system of equations with six coefficients to be determined, see section 

1.1. There is then an increased difficulty in determining the coefficients reliably. For 

Figure 2.2 – Three-tissue compartmental model. Here, CT1 corresponds to the concentration of free 

radiotracer in tissue; CT2 corresponds to the concentration of radiotracer specifically bound to the target 

molecule; CT3 corresponds to the concentration of radiotracer bound to other molecules. This scheme is 

equivalent to the one introduced in section 1.1, however displaying the notation used throughout this 

chapter. 
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this reason, a simpler two-tissue model is used whenever possible, eliminating the non-

specific binding compartment CT3. This can be eliminated if the non-specific binding of 

the tracer can be neglected or included in the free compartment due to rapid exchange 

between free and nonspecific pools (Lammertsma et al. 1996). This model is 

represented in figure 2.3, where CT1 corresponds to the concentration of free radiotracer 

and CT2 corresponds to the concentration of radiotracer bound to the specific target. 

 

 

  

  

  

  

It can be described by the following equations: 

 

𝑑𝐶𝑇1(𝑡)

𝑑𝑡
= 𝐾1 𝐶𝑃(𝑡)  − (𝑘2 + 𝑘3) 𝐶𝑇1(𝑡) + 𝑘4 𝐶𝑇2(𝑡)                          (2.2) 

 

𝑑𝐶𝑇2(𝑡)

𝑑𝑡
= 𝑘3 𝐶𝑇1(𝑡)  −  𝑘4 𝐶𝑇2(𝑡)                                               (2.3) 

 

The coefficient k3 is the rate constant for transfer from free to specific binding of 

the tracer to a receptor (min-1) and k4 the rate constant for dissociation from that specific 

binding back to free compartment (min-1).  

A tissue ROI defined in a PET image constitutes a mix of different signals, 

representing the summed contributions from all tissue compartments. Considering the 

two-tissue compartmental model, it is then only possible to measure from PET the 

summed tissue concentration CT, which comprises the free and specifically bound 

concentrations: 

 

𝐶𝑇 = 𝐶𝑇1 + 𝐶𝑇2                                                              (2.4) 

 

Figure 2.3 – Two-tissue compartmental model. In this model, the non-specific binding 

compartment is not considered. CT1 is the concentration of free radiotracer in tissue and 

CT2 is the concentration of radiotracer bound to the specific target.  
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In addition, before determining the coefficients of the model, it is important to 

consider that a tissue PET ROI will also contain a significant contribution from the 

intravascular activity. Thus the measured tissue concentration will be affected by blood 

spill-over that will depend on all activity within the intravascular space, or by other 

words, the whole blood concentration (CB). A blood volume component VB, composed 

of small capillaries, should therefore be included in the measured ROI concentration 

 

𝐶𝑃𝐸𝑇(𝑡) =  (1 − 𝑉𝐵) 𝐶𝑇(𝑡)  +  𝑉𝐵 𝐶𝐵(𝑡)                                     (2.5) 

 

where CPET is the measured activity from a tissue PET ROI. From equations 2.2 to 2.5, 

the measured tissue activity CPET, the plasma activity (AIF) and the whole-blood 

activity CB it is possible to derive the parameters K1, k2, k3, k4 and VB using standard 

nonlinear regression analysis. For the simplification of the calculations it is usually 

assumed the fractional volume VB ranges approximately between 3% and 5% of the 

sampled ROI (Leenders et al. 1990). 

Depending on the properties of the radiotracer that we’re interested in studying, 

combinations of the transfer coefficients may provide a more meaningful analysis, and 

also simplifications in the calculations. For a neuroreceptor ligand, the most significant 

parameter is the binding potential (BP), which appears in compartmental models as the 

ratio between the specific binding transfer constant k3 and the dissociation constant k4: 

 

𝐵𝑃 =  
𝑘3

𝑘4
                                                                      (2.6) 

 

The distribution volume (DV) of a radioligand, in the context of a 

compartmental analysis, is defined as the ratio between the radioligand concentration in 

tissue target region, CT, and the radioligand concentration in plasma CP, at equilibrium. 

From the compartmental models, it is also possible to derive DV from the kinetic 

constants. For a one tissue compartmental model, the DV equals to  

 

𝐷𝑉 = 
𝐾1

𝑘2
                                                               (2.7) 

 

and for a two-tissue compartmental model, the DV equals to  
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𝐷𝑉 = 
𝐾1

𝑘2
( 1 +

𝑘3

𝑘4
 )                                                      (2.8) 

 

2.3. Reference Tissue Models 

 

Another compartmental model, alternative to those described above, is the 

reference tissue model, RTM, (Lammertsma et al. 1996). Again, the BP is the parameter 

of interest. This model does not require a plasma metabolite-corrected input function 

(AIF), and therefore avoids the invasiveness of arterial sampling. It uses as input the 

TAC of a tissue region in which one can assume there is a negligible concentration of 

specific binding sites, a reference region. On this reference region, it is assumed that a 

one-tissue model referring to plasma concentration and non-specific concentration of 

the tracer is enough to describe it, see figure 2.4. The concentration of radiotracer in the 

reference tissue is denoted by CR. By assuming that the degree of non–specific binding 

is the same in the reference tissue region and in a region of interest, the kinetics of the 

tracer in specific binding regions can be described as a function of the reference region 

TAC, CR, as is explained below. 

 

 

 

 

 

 

Equations derived from this model are equations 2.2 and 2.3, from the two-tissue 

model, and equation 2.9 

 

𝑑𝐶𝑅(𝑡)

𝑑𝑡
= 𝐾1′ 𝐶𝑃(𝑡)  −  𝑘2′ 𝐶𝑅(𝑡)                                            (2.9) 

Figure 2.4 – Reference tissue model. In this model, the kinetics of the region of interest are 

described using as input a reference region TAC, denoted as CR, avoiding the use of an 

AIF.  
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where K1’ is the rate constant for transfer from plasma to reference tissue compartment 

and k2’ is the rate constant for transfer from reference tissue back to plasma 

compartment, as described in (Lammertsma & Hume 1996). Considering equations 2.2, 

2.3 and 2.4, a relationship between CT and CP can be derived. Moreover, from equation 

2.9 which denotes a relationship between CP and CR, a relationship between CT and CR 

is further derived. Considering the additional assumption that the DV of compartments 

CT1 and CR, in the figure 2.4, is the same 

 

𝐾1

𝑘2

= 
𝐾1

′

𝑘2
′                                                                     (2.10) 

 

the model can be simplified obtaining an operational equation with four parameters: R1, 

k2 ,k3 and BP, R1 being the ratio K1 /K1’. These parameters can then be obtained using 

CT and CR and standard nonlinear regression analysis. This model has been validated for 

[11C]-Raclopride (Lammertsma et al. 1996). 

(Lammertsma & Hume 1996) presented a simplification in which the tissue 

region of interest to quantify may be described by a single compartment, see figure 2.5. 

This model, the simplified reference tissue model (SRTM), only works for some tracers 

though, in the situations in which tracers exchange rapidly between the free (CT1) and 

the specifically bound compartments (CT2), making it difficult to distinguish between 

them.  

 

Figure 2.5 – Simplified reference tissue model. In this model, the free (CT1) and the specifically 

bound compartments (CT2) are substituted by a single compartment by assuming the kinetics 

between the free and specifically bound compartments are sufficiently fast. 
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If the above assumption is verified, which is a condition that depends on the 

tracer, the tissue TAC of the interest region can be fitted by a one-tissue compartment 

model and equations 2.2 and 2.3 can be replaced by a single equation  

 

𝑑𝐶𝑇(𝑡)

𝑑𝑡
= 𝐾1 𝐶𝑃(𝑡)  − 𝑘2𝑎𝐶𝑇(𝑡)                                         (2.11) 

 

with an uptake rate constant k2a equal to  

 

𝑘2𝑎 = 
𝑘2

1 + 𝐵𝑃
                                                         (2.12) 

 

meaning the transfer from specific compartment to plasma.  This simplification reduces 

the number of parameters required to describe the model to three: R1, k2 and BP. These 

can be computed from the operational equation 

 

𝐶𝑇(𝑡) = 𝑅1𝐶𝑅(𝑡) + [𝑘2 −
𝑅1𝑘2

1+𝐵𝑃
] 𝐶𝑅(𝑡) ∗ 𝑒

−𝑘2𝑡

1+𝐵𝑃.                               (2.13) 

 

where * denotes the operation of convolution, as long as CT and CR are known. The 

SRTM was also validated for [11C]-Raclopride, (Lammertsma & Hume 1996). 

In conclusion, the main advantages of the RTM are robustness, since there is a 

minor number of parameters to estimate (four), and computational speed. The SRTM 

only has to estimate three parameters, providing increased convergence and stability. 

However these models rely on some assumptions that may not work for all tracers, as 

the existence of a valid reference region, devoid of binding sites; the degree of 

nonspecific binding and the DV of the compartments CR and CT1 being the same; and in 

addition, for the SRTM, the exchange between free and specifically bound compartment 

must be sufficient fast to be approximated by a single compartment. These models are 

also limited to the estimation of the BP and the delivery of the ligand relative to the 

reference region. 

Despite the potential of providing a completely non-invasive quantification, by 

avoiding the use of an AIF, the reference tissue models can only be applied to a limited 

number of radiotracers. For example, the radiotracer 2-[18F]-Fluoro-A-85380 is a 

marker for β2-containing nicotinic acetylcholine receptors. As nicotinic receptors are 
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widely spread in the brain, their quantification cannot be done using a reference region, 

and an AIF is necessary (Zanotti-Fregonara et al. 2012). Another example of limitations 

of methods based on the existence of reference regions is that for [11C]-Flumazenil the 

suitability of the Pons as a reference region, though it is widely used as such, has been 

questioned (Delforge et al. 1995).  

 

2.4. Graphical Analysis 

 

The graphical approaches for estimation of kinetic parameters rely on the 

differential equations from compartmental analysis. Instead of solving those equations 

to determine the individual solutions, they’re rearranged into linear plots, the slopes of 

which represent major compound parameters describing measures of tracer binding. 

 This analysis can require as input function both the AIF or, if available, the 

uptake data from a suitable reference region CR. 

The major advantage of graphical analysis is the ease of computation when 

compared to finding the individual coefficients of the model differential equations. This 

advantage is useful for the ease of comparison among experiments when more 

generalist information is enough, as graphical methods work with ratios of parameters. 

When more specific information is sought, the individual estimation of the parameters 

using compartmental models is the way to follow. Another advantage of this method is 

not being dependent on a particular compartmental model structure; the slopes 

determined can be related to different combinations of parameters.  

The graphical methods work differently according to whether the ligand 

reversibly or irreversibly bounds to the target during the scanning procedure. The Logan 

plot (Logan, 2000) was developed for graphically analyzing the reversible ligands, 

whereas the Patlak plot (Patlak et al. 1983) is focused on irreversible ligands. 

Raclopride is considered to be a reversible ligand, so the focus of this section will be on 

Logan’s approach. 

According to Logan’s approach for reversible ligands, the graphical analysis 

equation can be derived from the compartmental equations describing the tracer 

concentration in tissue. Considering the two-tissue model, equations 2.2 and 2.3 can be 

rearranged into 
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∫ 𝐶𝑃𝐸𝑇(𝑡′)𝑑𝑡′
𝑡

0

𝐶𝑃𝐸𝑇(𝑡)
 =  [ 

𝐾1

𝑘2
 (1 +

𝑘3

𝑘4
) + 𝑉𝐵 ]  ×  

∫ 𝐶𝑃(𝑡′)𝑑𝑡
𝑡

0

𝐶𝑃𝐸𝑇(𝑡)
 +  𝑖𝑛𝑡           (2.14) 

 

with int equal to, for the two-tissue compartmental model and neglecting VB,  

 

𝑖𝑛𝑡 =  −
1

𝑘2
[1 + 

𝑘3

𝑘4
] −

𝐶𝑇2(𝑡)

𝑘4[𝐶𝑇1(𝑡) + 𝐶𝑇2(𝑡)]
.                               (2.15) 

 

Equation 2.14 is linear when the term int is constant. Usually that happens after some 

time instant t, when the compartment concentrations follow the steady state condition, 

in which (CT1+CT2) ∝ CP and CT2 ∝ CP. 

The slope is the total tissue DV plus the blood contribution. For a one-

compartment model, the slope will be K1/k2, the ratio of transport constants, see 

equation 2.7. The DV for a two-tissue compartment (equation 2.8), which is related to 

the number of tracer binding sites, has been found to be estimated with much higher 

accuracy than individual model parameters. Another significant parameter, the 

distribution volume ratio (DVR), can be derived by taking the ratio between the DV 

from a ROI with significant number of binding sites and the DV of a reference region 

(devoid of binding sites), and considering the ratio of transport constants K1 and k2 is the 

same in both regions (i.e., considering equation 2.10 is valid). The DVR can then be 

written as 

𝐷𝑉𝑅 =  

𝐾1

𝑘2
 (1 +

𝑘3

𝑘4
)

𝐾1
′

𝑘2
′

= 1 +
𝑘3

𝑘4
 = 1 + 𝐵𝑃                            (2.16) 

 

A version of the Logan plot was derived to directly estimate the DVR using a 

reference tissue as input. When comparing to the SRTM, this method does not require 

the assumption of rapid exchange between the compartments in the target tissue, but 

requires an a priori estimate of the efflux rate constant in the reference region k’2 

(Gunn et al. 1997). 

 

2.5. Final Notes on Quantification Methods 
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When adopting a model/method for PET quantification, several topics must be 

considered. The methods vary in terms of the output provided, the input required, the 

reliability of the results, the pharmacokinetics of the tracer used and computational 

resources required. The best choice should fit the purpose and goals of the analysis and 

the materials available. 

Compartmental models may provide a more specific characterization of the 

tracer’s kinetic behavior, by solving the corresponding model equations and 

determining the individual kinetic parameters, assuming a determined model structure 

provides a good description of the radioligand. Nevertheless, determining the transfer 

coefficients requires significant computational resources and is more vulnerable to noise 

in the PET measures. Solving the model equations require an AIF, which can be 

obtained using arterial sampling. However, this is an invasive procedure. On the other 

hand, the AIF may also be determined using IDIF methods. The usual problem 

associated to IDIF methods is obtaining a good estimation of the shape of the input 

function curve, especially of the rapidly changing peak. This becomes a problem when 

using compartmental modeling, since the estimation of the kinetic parameters is highly 

dependent on a good estimation of the function shape. In the literature it is common to 

find large and unpredictable errors associated to the individual transfer coefficients 

when using IDIF methods. The errors of the kinetic constants will then propagate to the 

compound parameters which constitute significant relationships between individual 

transfer coefficients and provide a more meaningful analysis, as for example the BP. 

If the BP is the parameter of interest, it is possible to avoid using an AIF and 

resorting instead to a reference region, using the RTM or its simplified version, the 

SRTM. Both these models avoid the invasiveness of the arterial sampling and the 

obstacles of deriving a reliable IDIF, and are robust and simple to solve. Nevertheless, 

they only work for a limited number of radiotracers, since a reference region is not 

always available and it is necessary to assume some specific conditions that can only be 

respected by some particular tracers.  

Graphical approaches provide a quick, visual estimation of compound 

parameters like the DV and if a reference tissue is available, the DVR, from which it is 

possible to derive the BP. They are a robust solution and do not need an a priori 

assumption of a specific model structure. They require as input an AIF, a reference 

region TAC or both, depending on the compound parameters sought. As in the case of 

compartmental modeling, to avoid the invasiveness of the arterial sampling, the AIF 
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may be estimated using IDIF methods. When compared to the compartmental models 

regarding to the use of an IDIF, the graphical methods come up being more robust to the 

usual IDIF errors. As these approaches only work after a certain time, in which the 

linearity in achieved by reaching the equilibrium, they do not require a precise 

estimation of the early part of the curve. They are more sensitive to a good estimation of 

the tail of the AIF, which is potentially vulnerable to bias due to the late increased 

production of metabolites. Better results are achieved with blood-based IDIF methods, 

in which some blood samples are drawn to scale the IDIF for both correcting for PVE 

and also for obtain an accurate measurement of the contribution of radiometabolites.  

In conclusion, the literature suggests that graphical approaches are a good option 

when it comes to determining compound parameters. If individual rate constants are 

needed, compartmental modeling can solve the problem. More reliable results can be 

obtained using full arterial sampling than using other AIF estimation methods. 

 

2.6. The Arterial Input Function 

 

As previously mentioned, for many radiotracers it is not possible to find a valid 

reference region. Therefore, the most used input function is the AIF. In this section a 

brief review of the methods to derive the AIF that do not rely on the image will be 

made. A detailed discussion of the IDIF state of the art is available in the next chapter. 

The gold-standard method for obtaining the plasma concentration of radiotracer 

(AIF) is arterial blood sampling. This is based on the cannulation of the radial artery, 

and can be performed through manual sampling procedures or automated continuous 

sampling, in which the blood is flowing through the tubing at a certain flow rate, 

passing the detectors. Arterial cannulation has rarely resulted in clinically relevant 

adversities. Nevertheless, it is laborious, often discourages subjects from volunteering 

for PET studies and involves risk or radiation exposure for the technical staff, when 

following manual procedures. The typical AIF can be characterized by an initial peak 

caused by the radioligand bolus infusion, followed by a slow, almost constant, decrease 

with time, forming a tail (figure 2.6). 
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The tail reflects the redistribution of the radioligand, considering the radioligand 

is released from tissue back to circulation. The sampling frequency should therefore be 

high at the beginning of the bolus injection and lower at the tail, corresponding to the 

later times of the exam.   

It is important to emphasize that obtaining the AIF is not equivalent to 

determining the concentration of radiotracer in blood. After being injected in the 

patient’s circulation, the radioligand can interact with red blood cells (RBC). This alters 

the tissue uptake, and therefore it is necessary to determine the plasma fraction of 

radiotracer that is free to cross the capillary membrane. Depending on the tracer, 

different interactions can occur, from not connecting to RBC to slowly or rapidly 

connecting to them. For the tracers that bind to RBC, the radioactivity concentration in 

whole blood can then be considered to be the sum of radioactivity concentrations of 

tracer present in plasma and tracer present in RBC, weighted by their volume fractions: 

 

𝐶𝐵(𝑡) = (1 − 𝐻𝐶𝑇) × 𝐶𝑃~(𝑡) + 𝐻𝐶𝑇 × 𝐶𝑅𝐵𝐶(𝑡)                       (2.17) 

 

Figure 2.6 – Example of a [11C]-Raclopride arterial input function, extracted from 

(Lammertsma et al. 1996). 
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Here, HCT corresponds to the hematocrit, which is the proportion of blood 

volume that is occupied by RBC. Usually the blood samples taken from the patient are 

submitted to centrifugation to separate blood cells from plasma (Oikonen et al. 2014). 

The plasma concentration CP~ corresponds to the plasma concentration curve of 

radiotracer for which no metabolite correction was performed yet. 

Correcting the curve for the production of metabolites is another important 

consideration. As the ligand interacts with the physiological mean, it can produce 

metabolites (by the liver, for example) that are not desired since they will not have the 

predefined ligand biological behavior, thus acting as a signal contaminant. Usually is 

assumed that the labeled metabolites can not cross the blood-brain-barrier and enter the 

brain tissue, but can circulate in blood. Therefore, another correction must be done, 

which involves determining the fraction of radioligand in plasma that corresponds to the 

original radioligand, the parent. The final corrected curve (AIF), corresponding to the 

plasma metabolite-corrected one, CP, can be computed by multiplying the plasma 

concentration curve not corrected for metabolites CP~ by the parent fraction, as denoted 

in equation 2.18. 

 

𝐶𝑃(𝑡) = 𝐶𝑃~(𝑡) × 𝑃𝑎𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)                                     (2.18) 

 

According to the literature, after the centrifugation process for obtaining the 

tracer in plasma, typically the unchanged radioactive parent is separated using high-

performance liquid chromatography (HPLC) analysis. Finally, the radioactivity 

concentration is performed introducing the samples in a radioactivity counter and 

dividing the activity by the fractional volumes. 

The AIF can therefore be characterized as the plasma metabolite-corrected tracer 

concentration in time.  

Other corrections include accounting for delay, which is related to the time the 

tracer takes to travel from the measuring spot (arm) to the studying tissue (the brain). It 

is also important to correct for dispersion, which is related to the tracer circulation, 

specifically to the non-homogeneous velocity fields in the vessels and in the catheter, 

which affects the shape of the AIF curve, especially the peak. Typically as the 

experimental procedure involved in the blood activity measurements contribute with a 

certain amount of uncertainty and it is necessary to interpolate between blood samples, 

an analytical function is usually fit to the blood-related measurements (Silva 2012).  



21 
 

As an alternative to arterial sampling, there are some other techniques validated 

to obtain the AIF. Population-based input function (PBIF) or simultaneous estimation of 

the input function (SIME) are examples of potential viable alternatives to arterial 

sampling. 

PBIF assumes that the shape of the AIF is similar between different subjects, 

differing uniquely in amplitude. Based on this assumption, this method requires a 

previous calculation of a standard input function created by normalizing individual 

input functions from a group of subjects. It’s possible to derive a subject specific PBIF 

by scaling the standard function using one or two blood samples taken from the subject. 

(Zanotti-Fregonara et al. 2011) compares PBIF method with IDIF. It is mentioned that 

unlike IDIF, PBIF is independent on partial volume effects, scanner characteristics, 

quality of acquisition and reconstruction algorithm, besides being faster and requiring 

less labor. However like in IDIF, metabolite fraction of the tracer is presented as being a 

weakness. In addition, as the state of disease can alter the metabolite production, a 

standard input function based on healthy subjects may not be transferable to a different 

population of patients. 

As the name suggests, simultaneous estimation of the input function (SIME) 

estimates input function parameters simultaneously with kinetic parameters from 

several ROIs. This is accomplished by incorporating the input function parameters into 

the objective function to be optimized while modeling several ROI data sets 

simultaneously, aiming to recover the input function common to all ROIs. (Zanotti-

Fregonara et al. 2011) emphasize that at least one blood sample must be collected to 

improve the parameters estimates. 

 

2.7. Quantification and Kinetics of [11C]-Raclopride 

 

In this work, [11C]-Raclopride images will be used to derive IDIFs, which in turn 

will be used for quantification of the images to determine the BP. In this section no 

exhaustive review of the use of [11C]-Raclopride will be made. The main goal is to 

introduce the most important topics around the kinetics and typical quantification 

studies found in the literature. 

Raclopride is a highly selective antagonist of D2 dopamine receptors and is used 

in PET studies aiming to quantify those receptors in the striatum by labeling it with 11C. 

The striatum composed by the caudate nucleus and the putamen. It has been widely 
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used in studies related to movement disorders and schizophrenia, to determine the 

efficacy of dopaminergic drugs and to visualize the changes in synaptic dopamine. 

Unlike the striatum, the cerebellum is nearly devoid of D2 receptors and it is 

assumed that there is negligible specific binding of the tracer in that part of the brain. 

This makes the cerebellum an eligible region for extracting a reference tissue input 

TAC. As consequence, [11C]-Raclopride studies do not usually include arterial sampling 

procedures. Instead, a reference tissue TAC is used as input with the SRTM model, 

assuming Raclopride has rapid kinetics between free and specific compartments. This 

method has been the most popular method to derive the BP, considering it is non-

invasive, has ease of computation and produces reliable of results. 

Nevertheless, graphical methods for reversible tracers, the Logan plot, can be 

applied to [11C]-Raclopride PET data using both AIF and reference cerebellum curve to 

produce DV and DVR estimates (Logan et al. 1996). In (Lammertsma et al. 1996) a 

plasma input function was used. Resorting to compartmental modeling, the BP was 

calculated both from deriving the individual parameters k3 and k4 and from DV values 

of striatum and cerebellum. 

Since for the present work arterial blood sampling was not available, it was not 

possible to use blood samples to determine the unchanged fraction of tracer nor to 

quantify the plasma fraction. Therefore, those are obstacles that were solved by 

performing approximations based in the literature. We note that [11C]-Raclopride has 

been one of the most widely used radiotracers in PET imaging, and as consequence 

there is a vast amount of information published. 

In particular, [11C]-Raclopride usually persists in plasma and does not penetrate 

the RBC membrane (Oikonen et al. 2014). Considering this assumption, in equation 

2.17 the concentration of the radiotracer in RBC, denoted CRBC, will be zero. The 

concentrations in plasma and blood are then related by the equation 

 

𝐶𝐵(𝑡) = (1 − 𝐻𝐶𝑇) × 𝐶𝑃~(𝑡)                                            (2.19) 

 

This means that we simply need to know the whole blood concentration CB, which is 

taken from the image, and the hematocrit HCT to derive the plasma free tracer 

concentration CP~ ( as in equation 2.17, the ~ symbol denotes that no correction for 

metabolites is being considered yet ) . Based on the normal values for the hematocrit 

(Oikonen 2008), henceforth we take HCT=0.5. 
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About the production of metabolites, the literature suggests that Raclopride has a 

relatively slow metabolism, and that the labeled metabolites do not cross the blood-

brain barrier. Unlike most tracers, (Zanotti-Fregonara et al. 2011) mentioned that 

successful studies were performed with Raclopride using an average metabolite curve 

for metabolite correction. From this assumption, using values extracted from (Farde & 

Halldin 1989), in which the parent fraction was determined by measuring the unchanged 

tracer in arterial blood samples four and forty-two minutes after injection, a parent 

fraction curve was derive to be used in this work, see figure 2.7.  It was assumed that 

the fraction of unchanged tracer was 0% at the moment of injection of the tracer, 93% 

four minutes after the tracer injection and 73% at 42 minutes after the tracer injection. 

An exponential function was fitted to those values, similarly to what had been done in 

(Farde & Halldin 1989). 

 

 

 

 

Figure 2.7 – Parent fraction curve for [11C]-Raclopride determined from the literature to perform the 

necessary metabolite corrections in chapter 4 and 5. The red dots correspond to the values extracted 

from literature. 
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3. Image-Derived Input Function:       

     State-of-the-Art 

 

3.1. Systematic Review 

 

For purposes of organization and result’s quality, the contextualization of the 

problem was made by means of a systematic review. 

Studies sustaining IDIF techniques extend for several years and many different 

methods, including the use of different body parts other than the internal carotid arteries 

as the source for the IDIF extraction. Only studies in English language involving IDIF 

extraction from carotid arteries, for quantification of brain PET images, and human 

participants were considered.  

Studies reporting IDIF methods validation using carotid arteries were identified 

by searching the electronic database PubMed.  This search was run on the 25th February, 

2014. The following search string was used to identify full-text articles within the 

PubMed database: “(image and derived and input and function or IDIF or noninvasive) 

and PET and carotid”. Other relevant records were retrieved by hand-searching the 

bibliographies of the articles meeting the inclusion criteria.  

A total of 39 articles were retrieved by the search made in Pubmed.  A 

preliminary analysis was performed on the basis of their abstracts in order to exclude 

those that did not meet the inclusion criteria. As a result, 22 of the previous studies were 

discarded for not meeting the eligibility criteria. The full texts of the remaining 17 

studies were thoroughly examined. By checking the references of the 16 remaining 

articles, 8 additional relevant studies that met the inclusion criteria were identified.  

All the final selected articles were organized and characterized according to a 

relevant topics’ list. This list was progressively composed and built following the full-

text reading. In particular, the following topics were considered for each article: article 

type, technology of the scanners (standard, HRRT or hybrid), radiotracer used, carotid 

arteries’ segmentation method (PET or PET/MRI based images; manual, semi-

automatic or automatic methods), type of PVE correction, correction for metabolites 

and plasma fraction, and finally the kinetic model used. 
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3.2. Typical IDIF Study 

 

Several approaches for IDIF extraction are proposed in the literature. However, 

most share a number of features. Notably, the IDIF extraction process is typically 

composed of three steps: (1) Carotids VOI Definition and Raw-TAC Extraction; (2) 

Correction for Partial Volume Effects; (3) Correction for Metabolites and Plasma 

Fraction. These steps will be described in the following subsections. 

 

3.2.1. Carotids VOI Definition and Raw-TAC Extraction 

 

The first step in the IDIF extraction process is identifying the internal carotids 

region. This is done by manually or automatically selecting the voxels corresponding to 

the carotids. The concentration values in that region are then extracted throughout time.  

In most papers, this is made by placing volumes of interest (VOIs) directly on 

PET images. In this context, for obtaining the latter, it is common procedure to use a 

fast image-acquisition protocol. This allows obtaining frames with short duration, which 

is rather relevant to characterize the IDIF in the initial time instants, where it varies the 

most.  

Techniques for identifying carotid regions directly on dynamic PET data vary 

from manual to semi-automatic and automatic. Manual techniques typically start by 

summing the earliest PET frames, where carotid arteries are easier to identify, since the 

tracer hasn’t already spread into the surrounding tissue. According to (Zhou et al. 2011), 

the relevant frames are the ones that capture the function peak.  After summing the 

relevant PET frames a visual inspection of the data allows selecting the slices in which 

the arteries are visible. Usually 5 to 8 slices in the lower part of the brain are selected. 

Finally, the selection of the ROI in each slice can be done by applying a threshold so 

that voxels with intensity above its value are selected to compute the IDIF.  (Chen et al. 

1998) selected the voxels from the earliest frames (summed) whose values were greater 

or equal to the product of a constant and the highest intensity of voxels in the interest 

area. The constant was visually adjusted to generate the best result. The resulting ROI 

was copied to all frames to extract the TAC.  

 (Zhou et al. 2011), considered that using a subjective threshold method is not 

accurate enough to correctly determine the physical area of interest. Instead they 

purposed to use the knowledge of the behavior of TACs from both arterial and tissue 
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voxels to derive a semi-automatic method. It is known that arterial input function can be 

characterized as rapidly crescent, achieving its maximum in the first moments forming a 

peak, and then slowly decrescent over time, see figure 2.6. Contrastingly, tissue TAC 

simply slowly increases along time without forming a major peak (Zanotti-Fregonara et 

al. 2011). Using this features, they proposed a method which starts by manually define a 

3D region containing the carotid arteries. This was made in early summed images, by 

manually defining a rectangle in each slice. As previously, the slices had been selected 

so that the arteries would be visible. The voxel selection was made by fitting a linear 

regression to each voxel TAC, in order to evaluate its progression along time and select 

the voxels that in fact reveal an input function behavior. The ones with a negative slope, 

translating a decrease of measured activity along time, were selected.  Other approach, 

considered by (Jurgen E M Mourik et al. 2008), involves the use of a semi-automatic 

region growing method. This method requires as input a voxel threshold value and the 

choice of a voxel as starting seed for each carotid artery. For each seed defined, the 

algorithm examines whether the neighboring voxels satisfy the threshold also defined a 

priori. Iteratively, the voxels that pass the evaluation will be added to the seed, and the 

algorithm stops if no more voxels are added. 

Automatic methods were vastly explored in the past years. Although offering 

promising features like avoiding the subjectivity and labor of manual ROI delineation, 

it’s not clear whether more accurate results can be achieved when comparing to manual 

methods (Chen et al. 2007). Automatic methods are statistical procedures that use 

temporal tracer kinetics to identify carotid voxels directly on dynamic PET images. 

Notably, they are: k-means clustering (Liptrot et al. 2004); independent component 

analysis (ICA), studied by (Su et al. 2005), (Chen et al. 2007) and (Naganawa et al. 

2005), that introduced their own ICA version, named EPICA; local means analysis 

(Zanotti-Fregonara, Maroy, et al. 2009); graph based Mumford-Shah energy 

minimization (Parker & Feng 2005); and non-negative matrix factorization method 

(Bodvarsson et al. 2006).  

Identifying ROIs on PET images alone is not always simple due to their low 

signal-to-noise ratio and resolution. For that reason, some authors opt to co-register PET 

with anatomical MRI images for more precise carotid arteries definition. (Litton 1997) 

used MR images to manually draw carotid ROIs and then applied them directly on co-

registered PET images. Though the advantages of this approach are intuitive, it also 

may lead to co-registration errors. (Fung et al. 2009), explained that inaccurate co-
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registrations of carotids happen since co-registration algorithms operate using brain 

structures above carotids location. Besides, it is important to account for errors that arise 

from different patient’s head positioning across exams. Due to the small size and 

elasticity of carotids, they can be bent and twisted depending on the head position, 

leading to alignment errors (Zanotti-Fregonara et al. 2011). Nowadays, hybrid PET/MR 

scanners provide the means to overcome barriers in the co-registration, as they allow 

performing PET and MR exams simultaneously. As this technology is not yet widely 

available, this work will not focus much on it. 

 

3.2.2. Correction for Partial Volume Effects 

 

As described above, partial volume effects (PVE) are particularly relevant in 

IDIF-based methods for brain PET imaging, due to the small diameter of the carotids 

when compared to the resolution of most PET scanners. The literature proposes several 

strategies to deal with this source of errors. Calibration of the TAC curves extracted 

from the PET data can be done by using blood samples (blood-based IDIF methods) or 

in a non-invasive way (blood-free methods). Particularly for the former, it is important 

to note that errors arising from partial volume effects are particularly relevant in the 

later part of the exam, as the tracer starts to accumulate in the tissue around the carotids.  

The IDIF technique is meant to avoid or reduce the invasiveness of arterial blood 

sampling. However, drawing blood samples cannot always be totally avoided. It 

sometimes can, but the literature suggests that blood-free methods provide less accurate 

results (Chen et al. 2007; Zanotti-Fregonara, Fadaili, et al. 2009). In addition, using 

blood samples demonstrated to provide reliable results even if patient movement during 

image acquisition was present (Zanotti-Fregonara & Liow 2012). Accordingly, most 

IDIF methods use a reduced number of blood samples (1-3). Some propose drawing 

arterial blood samples (Naganawa et al. 2005), which by comparison to the gold 

standard only offers the advantage of reducing the number of samples to be obtained. 

Other IDIF methods are based on extracting venous samples to calibrate the raw-TAC, 

which is significantly less invasive. 

The possibility of using venous blood samples for effectively computing the 

IDIF depends on the tracer. Tracer arterial and venous kinetics are initially different but 

after a period of time, arteriovenous equilibrium is achieved and venous blood can be 

used to calibrate the TAC. The problem is that the timing of equilibrium varies from 
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tracer to tracer and for some it is not achieved during the PET data acquisition 

timeframe. For these reasons, a standard method valid for all tracers is not available. 

(Chen et al. 1998) proposed a method for PVE correction that has shown good 

results and also high reproducibility. In their study they used 18F-FDG, which is known 

to reach arteriovenous equilibrium in approximately 10 to 15 minutes after injection. 

With that consideration, the raw-TAC was calibrated using three late venous samples 

extracted from volunteers. These samples were used as input for the estimation of the 

recovery coefficients 𝑟 and 𝑠 that appear in the following equation relating the raw 

carotid TAC values measured from the PET image 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, with tissue TAC values 

 𝐶𝑡𝑖𝑠𝑠𝑢𝑒 and the sought IDIF, denoted by 𝐶𝑟𝑒𝑎𝑙: 

 

𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) =  𝑟 × 𝐶𝑟𝑒𝑎𝑙(𝑡) +  𝑠 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡)                              (3.1) 

 

Note that if no partial volume effects were present, 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑= 𝐶𝑟𝑒𝑎𝑙. However, 

spill-out effects imply that the activity measured from the ROIs is decreased relatively 

to the real one: in the equation this implies that 0 <  𝑟 < 1. Spill-in effects from the 

surrounding tissue increase the measured activity: in the equation this implies that         

0 <  𝑠 < 1. 𝐶𝑡𝑖𝑠𝑠𝑢𝑒 is extracted from a ROI drawn in a region close but not adjacent to the 

ROI of the carotids. In a practical situation, 𝐶𝑟𝑒𝑎𝑙 is sought, rather than known. Blood 

samples are drawn to provide an approximation for 𝐶𝑟𝑒𝑎𝑙. For the instances in which the 

samples are taken, 𝑟 and 𝑠 are determined resorting to the linear least square method. As 

they are considered to be time-independent, it becomes possible to finally compute the 

corrected IDIF: 

 

𝐶𝑟𝑒𝑎𝑙(𝑡) =  
𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) − 𝑠 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡)

𝑟
                                     (3.2) 

 

Several articles employing IDIF methods reproduce, sometimes with slight 

changes, the approach described above. (Zhou et al. 2011), proposed a variation that 

does not make use of the surrounding tissue TAC, hence avoiding errors that arise from 

the definition of the borders of the tissue. They rewrote (3.1) in the form 

 

𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) =  𝑟 × 𝐶𝑟𝑒𝑎𝑙  ×  [1 + 
𝑠 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) 

𝑟 × 𝐶𝑟𝑒𝑎𝑙 
]  .                         (3.3) 



30 
 

 

Now, using the notation 

 

𝑃(𝑡) =  𝑟 ×  [1 + 
𝑠 × 𝐶𝑡𝑖𝑠𝑠𝑢𝑒(𝑡) 

𝑟 × 𝐶𝑟𝑒𝑎𝑙 (𝑡)
]                                             (3.4) 

one obtains 

 

𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) =  𝐶𝑟𝑒𝑎𝑙(𝑡) × 𝑃(𝑡).                                                 (3.5) 

 

They further showed that 𝑃 = 𝑃(𝑡) is approximately linear, particularly toward 

the end of the scan, and so the function can then be written in the form 𝑃(𝑡) = 𝑎𝑡 + 𝑏. 

A minimum of two blood samples is enough to compute 𝑃 = 𝑃(𝑡) and consequently 

calibrate the IDIF. Also, there is no need to determine the tissue TAC. 

Despite it has been suggested that blood samples are required to accurately 

calibrate the IDIF, some authors propose correcting the raw-TAC using only image 

data. However, this has proved to be a difficult task. 

Noninvasive scaling usually requires an a priori estimation of the correction 

coefficients in the modeled relationship between 𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and 𝐶𝑟𝑒𝑎𝑙. Different 

experimental carotids geometries are simulated using phantoms and the constants are 

computed for each of these. When determining the IDIF for a new subject, the size of 

his carotids must then be determined. The corresponding constants from the phantom 

studies are used to establish a correspondence between the IDIF and the measured data 

(Croteau et al. 2010). The definition of the ROIs for this subject, which in turn allows 

estimating the size of the carotids, is then crucial for this approach. At the same time, it 

can be seen as a weakness, since even small disturbances in this step potentially lead to 

significant errors in recovery coefficient’s estimation (Zanotti-Fregonara et al. 2011). 

Additionally, phantoms do not exactly reproduce the shape of the carotid arteries, 

introducing other sources of errors.  

One other approach proposed to avoid blood samples is based on the assumption 

that the hottest (highest-valued) voxels from inside the carotid are free of partial volume 

effects. (Su et al. 2005) adopted the approach proposed by (Chen et al. 1998). In 

equation 3.1, 𝐶𝑟𝑒𝑎𝑙 was approximated by the maximum frame-wise voxel value of the 

blood vessel component (the last found using ICA), over the first 30 minute interval, 

considering the signal to noise ratio is higher. Similarly, (Parker & Feng 2005) used the 
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maximum value over the internal carotid ROI automatically segmented using the 

Mumford-Shah algorithm, as an arterial approximation. Using the maximum voxel 

values is an attractive alternative for the simplicity of its application. However, its use 

usually relies on images obtained with improved reconstruction algorithm and fine-

tuned imaging features. 

 

 

3.2.3. Correction for Metabolites and Estimation of the Plasma Fraction 

 

Obtaining the arterial plasma input function using exclusively imaging methods 

does not allow discriminating between the parent compound and its radioactive 

metabolites, nor between the tracer free in plasma and that bound to blood cells. Some 

tracers do not require this type of correction, as for example 18F-FDG. This particular 

tracer has a high parent-metabolite ratio and the difference between the plasma 

concentration and the one in whole-blood is negligible (Zanotti-Fregonara et al. 2011). 

Nevertheless, almost all tracers used in brain imaging produce considerable amounts of 

radiometabolites and many interact with blood cells.  

According to the literature, estimating the unchanged radioactive parent reliably 

typically involves the use of arterial blood samples and high-performance liquid 

chromatography (HPLC) analysis The plasma concentration is measured after 

centrifugation of the blood samples (Schain et al. 2013). Therefore, usually some 

arterial blood samples are introduced in the IDIF procedure to determine the metabolite 

parent fraction and the concentration in plasma. The number of blood samples required 

to successfully determine the parent fraction seems to be dependent on the complexity 

of the parent fraction curve. Again, using arterial blood sampling diminishes the 

practical utility of the method. The only advantage would be a reduced number of 

arterial blood samples. (Jurgen E M Mourik et al. 2008) used the collection of seven 

manual arterial blood samples throughout the PET exam, while (Sanabria-Bohórquez 

2003) used six and (Schain et al. 2013) used five, all for [11C]-Flumazenil studies. 

(Zanotti-Fregonara & Liow 2012) used four arterial blood samples to both correct the 

IDIF for partial volume effects and obtain the parent concentration for [11C]-(R)-

Rolipram, by fitting a monoexponential function through the parent/whole-blood ratio 

calculated using HPLC analysis in the four blood samples.  
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Using arterial blood samples reduces the practical advantage of IDIF, so the 

possibility of using late venous blood samples for metabolite correction is analyzed in 

(Zanotti-Fregonara et al. 2011). It is mentioned the need to validate this approach for 

each tracer, since the parent and radiometabolites concentration along time in arterial 

and venous blood differs from tracer to tracer. It is mentioned that for some tracers, like 

the case of [11C]-(R)-Rolipram, even after reaching arteriovenous equilibrium (when the 

radioactivity measured is the same in arterial and venous blood) the parent-metabolite 

fraction in arterial blood is still different from the one in venous blood , invalidating the 

use of late venous blood samples for that specific case. 

To avoid the use of arterial blood samples is possible to resort on an average 

metabolite curve. However it is important to account for a big variability of metabolites 

production among subjects, due to physiological characteristics or any external agent 

like disease or therapeutic agents that affects tracer’s metabolism. According to 

(Zanotti-Fregonara et al. 2011), an average metabolite curve cannot be used for most 

tracers. 

 

3.3. Recent Technologies 

 

The standard PET scanners used are associated with limited spatial resolution, 

constituting a major obstacle to the reliability of IDIF, due to a high level of PVE. As 

the carotids are small diameter structures with complex hemodynamic patterns, the 

resolution of the imaging system plays an important role in IDIF measurement. 

Technological advancements in acquisition hardware and image reconstruction 

software lead to the development of dedicated head scanners with improvements both in 

sensitivity and resolution. Most recent IDIF studies are based on images produced with 

the High Resolution Research Tomograph (HRRT). This is the state-of-the-art system 

for human brain PET imaging (Schain et al. 2013), and has a spatial resolution of 

approximately 2.5 mm, in comparison to the 6 mm of the standard machines (Zanotti-

Fregonara & Liow 2012). In addition to improved resolution, an extended field axial 

field of view allows a larger proportion of the head and neck region to be covered in 

PET images. 

Despite the higher resolution of this new technological solutions, spill-in and 

spill-out effects still influence quantitative analysis of small structures and must be 

taken into account (J. E M Mourik et al. 2008). (Zanotti-Fregonara & Liow 2012) also 
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mentions higher vulnerability to movements during the exam than with using standard 

PET scanners, mostly because in the HRRT carotid arteries are sampled by smaller 

voxels and are delineated by smaller ROIs. In that study, a blood-based method that 

uses four blood samples to calibrate the function according to the method proposed by 

(Chen et al. 1998) achieved minimized vulnerability to motion artifacts. In the study 

(Schain et al. 2013) it is presented a different approach to derive the IDIF, based on the 

calculation of the Pearson correlation coefficient between the time activity curves of 

voxel pairs in the HRRT PET images to localize voxels displaying blood-like behavior.  

Another important reference is the hybrid scanner 3TMR-BrainPET  (Herzog et 

al. 2011), which allows to simultaneously obtain MRI and PET images of the human 

brain. This scanner provides high-resolution anatomic and functional images without 

the usual co-registration errors derived from non-simultaneous acquisition. In the study 

(Nuno da Silva et al. 2012), IDIF is derived from 3TMR-BrainPET by drawing the 

carotid VOIs on MR images and then copying them to the PET images. It was 

considered the average of values inside the VOI, the four hottest voxels per place and 

the four hottest voxels of the VOI to compute the raw-TAC. Venous blood samples 

were used to calibrate the function. 

 

3.4. Summary 

 

The years of research in this field suggest that the concept of extracting the AIF 

from image completely non-invasively is limited to particular situations. The main 

reason is the large number of sources for errors that lead to unreliable estimations of the 

IDIF, being the most important the noise of the PET images, the PVE, the metabolites 

production of the radiotracer, the interaction of the radiotracer with blood cells and 

patient movement. These errors can be in most cases corrected by using blood-based 

IDIF methods, which require the extraction of some blood samples. Nevertheless, the 

possibility of using venous blood sampling for some radiotracers, which can be 

considered less invasive than arterial sampling, and the use of a reduced number of 

blood samples can be seen as an improvement to full arterial blood sampling.  

The different properties of each radiotracer are an obstacle to the reproduction of 

the IDIF methods, which should be validated for each radiotracer individually. 
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4. Numerical Simulations Using a      

   Computational Phantom 

 

4.1. Introduction 

 

In the previous chapter a revision of several techniques for extracting IDIFs 

from PET images was made. Here, some of those techniques will be assessed by testing 

them on a simple computational phantom.  

As the literature suggests, IDIF methods that rely exclusively on image (blood-

free) do not ensure reliable results. There is a need to extract some blood samples to 

correct the extracted whole-blood TAC for PVE. Nevertheless, completely non-invasive 

methods may work under some circumstances. We note that only non-invasive methods 

will be used to quantify [11C]-Raclopride PET data in chapter 5, as blood sampling was 

not available.  

In this chapter, we explore both non-invasive methods and methods based on 

venous blood samples. The main goal is to better understand how the methods work, 

identify strengths and weaknesses, understand what should be the expected differences 

between blood-free and blood-based techniques and search for a good approach to use 

on [11C]-Raclopride PET images, described in the following chapter. 

 

4.2. Materials and Methods 

 

In this chapter, we propose a computational phantom to assess some IDIF 

methods. In this section, first the phantom geometry and the concentration of radiotracer 

within it are defined. Subsequently, the methods that will be used to extract the input 

function from the phantom image data will be described. 

 

4.2.1. Computational Phantom  

 

In the literature, the internal carotid arteries ROI selection is made in an area 

prior to the brain, to avoid spill-in effect from the spread radiotracer in the brain area 
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(Jurgen E M Mourik et al. 2008). A few planes below the Circle of Willis the internal 

carotid arteries assume a consistent simple, straight shape, similar to a cylinder, and are 

easier to identify, see figure 4.1. This section of the internal carotid artery corresponds 

to the cervical segment. 

 

 

It is reasonable to assume that a geometrically simple phantom should be able to 

capture the relevant features of that portion of the carotids, at least as a first 

approximation, while still providing a highly controllable model.  

We propose a simple computational phantom meant to represent a portion of one 

carotid artery below the Circle of Willis (Cervical segment) corresponding to only 5 

slices of the PET image. The phantom is characterized by its geometry and by the time 

varying concentration of radiotracer within each voxel. A 23x23x5 matrix of voxels is 

considered for each time frame. Each voxel of the simulated PET image is assumed to 

be a cube of side length 2 mm, see figure (4.2). The carotid artery is simulated with the 

shape of a cylinder with 5 mm of diameter. Two different regions are then contained in 

the phantom: the carotid artery and the surrounding zone. Values of concentration of 

radiotracer have to be assigned to each voxel within the phantom. For that purpose, 

Figure 4.1 – Anatomic illustration of the internal carotid artery. After the bifurcation of the common 

carotid artery into the external and internal carotid artery (1), the internal carotid artery assumes a rather 

constant shape, the Cervical segment (2), until it curves to form the Petrous segment (3). Image adapted 

from (Gray 1918). 
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perfect concentration curves were generated using compartmental models and resorting 

to [11C]-Raclopride PET data reported in the literature. Three concentration curves were 

generated: an uncorrected whole-blood curve (CB) for the carotid area expressing the 

values of concentration of radiotracer in blood, a high-binding tissue curve (CHIGH), and 

a low-binding tissue curve (CLOW), to simulate two different situations for the tissue 

surrounding the carotid arteries. 

 

 

 

  
 

 

 

Voxel % Blood % Tissue 

A 100 0 

B 0.7159 0.2841 

C 0.2613 0.7387 

D 0 100 

 

The central voxel of each slice of the computational phantom is assumed to be 

fully inside the carotid, so the radiotracer concentration within is that of blood (CB). 

Voxels that contain solely tissue were all simultaneously assigned a radiotracer 

concentration equal to that of tissue. Two situations were simulated: in one, the 

concentration in these voxels was assumed to be CLOW whilst in the other it was assumed 

Figure 4.2 – Central 5x5 voxels of one slice of the phantom. The 

circle is a section of the cylinder that represents the carotid artery. 

Table 4.1 – Percentage of blood and tissue concentrations assigned to the voxels of the 

phantom. 
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to be CHIGH. For the voxels which contain both carotid and tissue, their TACs were 

computed as a weighted average of blood concentration and tissue concentration, 

according to the areas of tissue and carotid inside the voxel, see table 4.1. 

The starting point for generating the perfect concentration curves was a plasma 

metabolite-corrected concentration curve for [11C]-Raclopride, CP, displayed as a plot in 

(Lammertsma et al. 1996), together with kinetic parameters for high-binding and low-

binding regions (Farde & Halldin 1989). To extract numeric values from the plasma 

curve reported in the literature, the figure was loaded from the article into Matlab (The 

Mathworks, Inc., USA), where a script was created to extract the coordinates of the 

TAC. These coordinates were fitted with the following curve model proposed by (Feng 

et al. 1993) 

 

𝑦(𝑡) =  [𝐴1(𝑡) − 𝐴2 − 𝐴3]𝑒
𝛼1(𝑡) + 𝐴2𝑒

𝛼2(𝑡) + 𝐴3𝑒
𝛼3(𝑡)              (4.1) 

 

from which the values of CP were extracted for t=i seconds, i=0, ..., 5400. While the 

plasma curve (CP) is the relevant input for compartmental models, what can actually be 

directly extracted from PET data is the concentration in blood (CB). As seen in section 

here are two factors to take into account when relating CP with CB: metabolites and the 

volume fraction of red blood cells. Using equation 2.18 and 2.19, it is possible to derive 

the relationship between CP and CB. The parent fraction curve already determined in 

section 2.7 was used to correct for metabolites. The whole-blood curve CB can then be 

obtained by 

 

𝐶𝐵(𝑡) =  
𝐶𝑃(𝑡) × (1 − 𝐻𝐶𝑇)

𝑃𝑎𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)
                                            (4.2) 

 

where HCT corresponds to the hematocrit, the volume fraction of red blood cells in the 

blood, and it was assigned the value 0.5 (see section 2.7). 

The equations above allow computing the CB curve required to create the 

phantom. Both low-binding and high-binding curves are also sought. To simulate a low-

binding curve, kinetic constants of the cerebellum, a receptor-free region, taken from 

(Farde & Halldin 1989), were used. According to the models presented in chapter 2, due 

to the low-binding nature of the cerebellum, a simple one-tissue model can describe it. 

Solving equation 4.3 yields the concentration of the reference region CR  
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𝐶𝑅(𝑡) =  𝐾′1 ∫ 𝐶𝑃(𝑡) × 𝑒−𝑘′2×(𝑡−𝜏)𝑑𝜏                                   (4.3)
𝑡

0

 

 

Here K’1= 0.113 and k’2 = 0.271 are the kinetic parameters for this model, and CP is the 

plasma curve, as before.  The low-binding curve we seek will correspond to the 

concentration over the reference region. However the curve determined that way is not 

exactly the one that would be taken from a PET image, since the latter is affected by 

blood spill-over, which can be described by the equation 2.5. Applying this equation, 

one obtains 

𝐶𝐿𝑂𝑊 = (1 − 𝑉𝐵) 𝐶𝑅(𝑡)  +  𝑉𝐵 𝐶𝐵(𝑡)                                    (4.4) 

 

in which 𝐶𝐿𝑂𝑊 is the final low-binding tissue curve applied to the phantom and 𝑉𝐵 is the 

volume of blood, which can be considered to range between to 3 and 5% (Leenders et 

al. 1990). 

Finally, to simulate a high-binding curve, kinetic constants of the putamen, 

where there is high density for target receptors for Raclopride, were used, also taken 

from (Farde & Halldin 1989). Considering the two-tissue compartmental model 

described in the previous chapter, solving equations 2.2 and 2.3, it’s possible to 

calculate CT1 and CT2. To compute CHIGH, this model was solved using finite 

differences. Data from the PET image does not allow discriminating between CT1 and 

CT2, and like above, it is necessary to consider blood spillover. Therefore from 

equations 2.4 and 2.5 the final curve CHIGH can be shown to be equal to 

 

𝐶𝐻𝐼𝐺𝐻 = (1 − 𝑉𝐵)[𝐶𝑇1(𝑡) + 𝐶𝑇2(𝑡)] + 𝑉𝐵 𝐶𝐵(𝑡)                        (4.5) 

 

Thus far, we have not mentioned which framing sequence was considered when 

setting up the phantom. It is the same one that had been used in the acquisition of the 

[11C]-Raclopride PET images analysed in the next chapter. There are a total of 30 

frames in the phantom, with the following durations: 4 x 15 s, 4 x 30 s, 3 x 60 s, 2 x 120 

s, 5 x 240 s and 12 x 300 s. For obtaining the discrete values of the concentration of 

each frame from the concentration curve points determined earlier, the concentration 

values were averaged out within the frames. The plasma metabolite-corrected curve and 

the generated perfect curves used in the phantom are represented in figure 4.3. Three 
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points are also represented in the red line corresponding to the whole blood curve. 

These represent the time points where concentration values will be extracted to calibrate 

the IDIF. These values correspond to those that would be available in methods that draw 

blood samples from patients. Data in the literature suggested that arteriovenous 

equilibrium is reached 40 minutes after administration of the radiotracer (Bossong et al. 

2009). 

 

 

 Finally, noise was added at each voxel of the phantom. The noise model was 

adopted from (Varga & Szabo 2002). For a given frame, its standard deviation is given 

by  

𝑆𝐷 =  √
𝑛 × 𝐶

∆𝑡
                                                              (4.6) 

 

where 𝑛 is a constant that determines the noise level; ∆𝑡 is the length of the frame; C is 

the noise-free concentration value for that frame. In the literature 𝑛 varies between 0.5 

and 2.8. 

 The final noisy voxel concentration CN is equal to   

Figure 4.3 – Plasma metabolite-corrected concentration curve extracted from literature (green line); 

Generated whole-blood concentration curve (red line), with the times used for taking blood samples 

signaled with *; generated high-binding tissue curve (blue line); generated low-binding tissue curve 

(yellow line). 
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𝐶𝑁 =  𝐶 +  𝑆𝐷 × 𝐺(0,1)                                               (4.7) 

 

where G(0,1) is a pseudo-random number from Gaussian distribution with zero mean 

and standard deviation of one. Finally, after adding the previous noise, the phantom was 

filtered with a 3D Gaussian filter for each time frame. 

The phantom set up, though quite simple, is meant to allow testing the 

fundamental problems in extracting an IDIF. This approach is meant to yield a workable 

approximation of reality. The availability of a reference solution allows estimating the 

error associated to each method and then comparing them. Naturally, the simplifications 

assumed for the phantom come at a price. In particular, the geometry of real life carotids 

is more complex than a simple cylinder and the compartmental models are an 

approximation of reality. Still, preliminary conclusions can be taken from results 

obtained using this simplified model and checked later increasing the layers of 

complexity, and by working with real data. 

 

4.2.2. Blood-Based Methods 

 

In the previous chapter we reviewed methods for extracting the IDIF from PET 

images. The starting point was looking into the widely reproduced method proposed by 

Chen (Chen et al. 1998). This is a method we will use to extract the carotids TAC from 

the phantom data. Recall this method consists of summing the earliest frames where the 

tracer concentration reaches its peak, visually identifying and selecting the ROIs 

corresponding to the carotid arteries for slices where they are visible and extracting the 

raw-TAC using those ROIs by averaging the TACs of the voxels within them. At the 

same time, a tissue ROI is defined in a region close but not adjacent to the carotids ROI. 

Subsequently, a PVE correction is applied, in which three late venous blood samples are 

used to determine the time-invariant correction coefficients 𝑟 and 𝑠, according to 

equation 3.1. In the current study the 3 late venous blood samples are simulated using 3 

late values from the known generated CB curve as reference for calibration, see figure 

4.3. After determining the correction coefficients, the raw-TAC is corrected for all 

frames according to equation 3.2, yielding the PVE-corrected TAC. 

Different voxels are differently affected by PVE and this is not taken into 

account by the method proposed by Chen. As an alternative novel approach, we propose 
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individually calculating the weight contribution of each voxel from a 3x3 ROI centered 

in the carotid artery. We will refer to this new method as the “Weights method”, for the 

sake of simplicity and clarity, see figure 4.4.  

 

 

 

 

 

We will consider the carotid VOI is composed by five ROIs drawn in five slices, 

each one consisting on a 3x3 ROI centered in the carotid. We assume the true 

concentration value is the weighted sum of the intensities of the voxels over each slice 

ROI and that the contribution of the voxels is invariant of the slice. In other words, for 

each of the 5 slices and for time instant 𝑡𝑘, the weighted sum of the intensities of the 

voxels gives the real concentration value of the carotid at that time: 

 

𝑃1 × 𝐼1
1(𝑡𝑘) + … + 𝑃9 × 𝐼9

1(𝑡𝑘) =  𝐶𝐵(𝑡𝑘)                              (4.8) 

 

Here, 𝐼𝑖
𝑗
(𝑡𝑘) corresponds to the intensity value of the ith voxel on the jth slice at 

time tk. The Weights method requires computing a 3x3 weights matrix that contains 

information of each slice of the VOI, see figure 4.4. This calibration procedure will be 

similar to that used by Chen in his method, in the sense that venous blood samples will 

be used as estimates for the real arterial concentration values. So using 3 late values 

from the known generated CB curve as reference for calibration, the weights Pi (i=1, …, 

9) can be computed from the following system of equations using least squares: 

 

Figure 4.4 – Illustration of the Weights method. P1, …, P9 are the 

sought weights. 
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[
 
 
 
 
 
 
 
 
 
 
𝐼1
1(𝑡1) ⋯ 𝐼9

1(𝑡1)
⋮ ⋯ ⋮

𝐼1
5(𝑡1) ⋯ 𝐼9

5(𝑡1)

𝐼1
1(𝑡2) ⋯ 𝐼9

1(𝑡2)
⋮ ⋯ ⋮

𝐼1
5(𝑡2) ⋯ 𝐼9

5(𝑡2)

𝐼1
1(𝑡3) ⋯ 𝐼9

1(𝑡3)
⋮ ⋯ ⋮

𝐼1
5(𝑡3) ⋯ 𝐼9

5(𝑡3)
1 ⋯ 1 ]

 
 
 
 
 
 
 
 
 
 

× [

𝑃1

𝑃2

⋮
𝑃9

] =  

[
 
 
 
 
 
 
 
 
 
𝐶𝐵(𝑡1)

⋮
𝐶𝐵(𝑡1)
𝐶𝐵(𝑡2)

⋮
𝐶𝐵(𝑡2)
𝐶𝐵(𝑡3)

⋮
𝐶𝐵(𝑡3)

1 ]
 
 
 
 
 
 
 
 
 

                                    (4.9) 

 

The last equation in this system, corresponding to the last line of the matrix 

which has been filled with the number 1, expresses that weights sum up to one. It is, in 

this sense, a normalization. After the 3x3 matrix of time-independent weights has been 

determined, it is applied to all frames to extract the IDIF. The final IDIF value for each 

frame is computed by multiplying (element-wise) the weights matrix by the 3x3 matrix 

corresponding to the averaged 3x3 ROIs of all the 5 slices that constitute the VOI. 

 

4.2.3. Blood-Free Methods 

 

Most IDIF methods found in literature require drawing blood samples to 

calibrate the input function. Nevertheless, as mentioned in the previous chapter, it is 

possible to find completely non-invasive studies. Those studies rely on the 

determination of correction coefficients from physical phantoms or considering that a 

number of hottest voxels in the carotid area would be less affected by PVE and could 

therefore be assumed as an approximation of the real radiotracer concentration and 

serve as a reference for calibration.  

In particular, (Su et al. 2005) used ICA to extract IDIF from [18F]-FDG PET 

images without using any blood sampling procedure. For the PVE correction, they 

adapted Chen’s approach, defined in equation 3.1. The first 30 minutes of the true AIF 

were approximated by the first 30-min TAC of the maximum voxel value in the 

dynamic blood-vessels component images determined by ICA. The correction 

coefficients were calculated and finally the entire input function was approximated. The 

early frames were chosen for the PVE correction assuming at those instants the signal to 

noise ratio is higher, hence providing better ICA results. 
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(Parker & Feng 2005) supported that the PVE are related to the reconstruction 

algorithm used and that using filtered back-projection, when compared to an iterative 

expectation maximization (EM) algorithm, leads to worst estimates of the recovery 

coefficients. After proceeding to the reconstruction of the images with an EM algorithm, 

they used the higher 5% voxels over the internal carotid ROI as an “accurate but noisy 

estimate” of the true value of the arterial input function.  

Another study that used hottest voxels values was (Jurgen E M Mourik et al. 

2008). In this study, the hottest four voxels per plane within the carotids from 15 to 45 

seconds after the injection were selected to constitute the ROI of the carotid. 

Nevertheless, this approach is also performed after an improved reconstruction 

algorithm.  

In the present work, it was not possible to use physical phantoms, nor work with 

improvements to the reconstruction algorithm. Therefore, the focus was instead placed 

on the techniques that use hottest voxels as good estimates of the true arterial input 

function. From the studies mentioned above, two methods were derived and tested in 

this phantom study, envisioning the future work with real [11C]-Raclopride images.  

The first method consists of a hybrid combination of Chen’s method and Su’s 

method. The carotid segmentation and PVE correction follow Chen’s approach but 

instead of using late venous blood samples as real approximation values for three 

frames, we used the hottest voxel inside the carotid VOI drawn for each of three frames 

that cover the input function peak, from whose the correction coefficients were derived. 

The carotid VOI is composed by the ROIs drawn in each slice. There are some reasons 

for considering peak-coincident frames to derive the correction coefficients, instead of 

late ones, as Chen has done. The main reason is to obtain a better peak definition, which 

is important for the image quantification accuracy. In addition, at those frames it is 

easier to distinguish carotids from tissue in the PET images; as well as to detect a 

meaningful hottest voxel. Also (Parker & Feng 2005) mentions the possibility of in later 

times the maximum of the internal carotid artery be overestimated due to spill-in from 

the surrounding tissue, if the surrounding tissue activity assumes higher values than the 

carotids activity. For the sake of simplicity, we will refer to the method mentioned in 

the current paragraph as the Hybrid Chen (HC) method. 

The second method consists on the selection of the four hottest voxels in the 

carotid VOI drawn in the summed over image, assuming they are PVE-free, and 
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averaging them for each frame to extract the IDIF in the whole image. It will be referred 

to as the Hottest Four Voxels (H4V) method. 

The HC method, by relying on the hottest voxel, has the advantage of being 

closer to real values than H4V method and is expected to diminish the underestimation 

of the input function, which naturally occurs when considering more voxels without 

correcting them for spill-out using blood samples. However, the HC method is more 

sensitive to noise in the image than H4V.  

We chose not to use automatic segmentation methods since literature suggests 

no significant difference was found between ROI values and quantification results using  

automatic or manual segmentation (Zanotti-Fregonara, Maroy, et al. 2009). In addition, 

the problem of not having blood samples and consequently extracting PVE affected data 

persists. Therefore we opted for simpler to implement and control manual segmentation. 

 

4.2.4. Simulations 

 

As stated earlier, typically blood samples are drawn to calibrate the carotid TAC 

extracted from the PET data. However, blood samples are not always available. In what 

follows, we assess the aforementioned blood-free methods and the widely reproduced 

blood-based method, Chen’s method. In addition, the purposed Weights method will be 

compared with the latter to investigate in which way this can be a better solution for 

future work. 

The starting point for this simulation is the computational phantom we have 

proposed. As the concentrations of the voxels within were generated using 

compartmental models, reference solutions are available, allowing the determination of 

the errors resulting from the application of the different methods. Three parameters are 

to be considered in the simulations: the activity of the tissue surrounding the carotid, the 

characteristics of the carotid VOI and the level of noise in the image. 

As had been mentioned above, two different TACs were assigned to the voxels 

surrounding the carotid, corresponding to the high-binding and low-binding 

concentration curves CHIGH and CLOW, respectively. Assessing these two different 

situations is important as calibration typically relies on blood samples drawn at later 

times. Tissues with concentration curves CHIGH behave differently for latter times than 

those with concentration CLOW, which is why it important to consider how the 

calibration deals with different types of curves. In particular, the spill-in and spill-out 
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effects will be differently characterized in the PVE correction, and this study intends to 

simulate the different possibilities.  

Another factor to take into consideration is the size of each ROI drawn around 

the carotid and the number of slices used for that purpose, or by other words, the 

number of slices that constitute the final VOI. 

Different noise levels were also considered. In particular, different values were 

taken for the standard deviation proportionality constant 𝑛 in formula 4.6 which was 

made to vary between 0.5 and 10, by considering steps of 0.1. For each value of 𝑛, the 

process of adding random error to the perfect curves, generating a phantom, applying 

the IDIF methods and determining the corresponding error was repeated 100 times. 

Finally, the error associated to the application of a method to a phantom was 

assumed to be well characterized by the difference between the CB curve extracted from 

the carotid and the true CB curve introduced in the phantom to create it. The peak error 

(typically the most difficult region to correctly extract) and the tail error between those 

curves are the parameters we will look into. We define the former as being the relative 

difference between the maximum values between the two curves, the reference curve 

being subtracted. The latter is defined as the average relative difference between the 

curves, between t=700 and t=5400. For each error level, the differences are averaged 

over the 100 values corresponding to the different realizations of the noise. 

All the simulations were made using Matlab (The Mathworks, Inc., USA). 

 

4.3. Results 

 

In subsection 4.2.1, we proposed a computational phantom as a starting point to 

comparing performances between the IDIF methods addressed in 4.2.2 and 4.2.3. The 

aspects and parameters analyzed were laid out in subsection 4.2.4.   

We start by evaluating how the blood-free methods H4V and HC, described in 

4.2.3, differ from Chen’s method. For this purpose, we use both versions of the 

aforementioned computational phantom where the tissue surrounding the carotid is 

assumed to be of high-binding and where it is assumed that there is low-binding in that 

region. Figure 4.5 shows the errors associated to Chen’s method (blue), the H4V 

method (green) and the HC method (red), both in the peak region and in the tail region. 

These are plotted as a function of 𝑛, the parameter related to noise in equation 4.6. As 

described above, for each value of 𝑛 and for each method 100 phantoms with high-
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binding tissue and 100 phantoms with low-binding tissue were generated. They all stem 

from the arterial concentration curve – the exact solution – we described extracting from 

the literature in subsection 4.2.1 and the subsequence CHIGH and CLOW curves. By 

applying the three methods (Chen’s, H4V and HC) to each phantom and comparing the 

estimates for the IDIFs with the exact solution, the errors associated to the methods are 

computed. 

 

  

 Evaluating Chen’s method performance alone, the peak seems to be more 

sensitive to error variation than the tail, both in term of the magnitude of the average 

Figure 4.5 – Average error and standard deviation of the extracted TACs for 100 phantoms as function 

of the noise parameter 𝑛, for blood-based Chen’s method (blue) and for the blood-free HC method (red) 

and H4V method (green). Plot (a) concerns the extracted TACs’ peak error and (c) the TACs’ tail error 

when using the CHIGH tissue curve to fill the voxels around the carotid; Plot (b) concerns the extracted 

TACs’ peak error and (d) the TACs’ tail error when using the CLOW tissue curve to fill the voxels 

around the carotid. 
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differences and the corresponding standard deviations. This makes sense, since the 

blood samples used for calibration are drawn in later times and therefore the calculated 

time-invariant correction coefficients can be expected to offer a better characterization 

of the tail rather than the peak of the concentration curve. Blood-free methods seem to 

be more robust to noise level variation (𝑛) in the peak, and provide lower standard 

deviations, but both of them underestimate the peak true values by around 20%, see 

figure 4.5(a) and figure 4.5(b). When considering the tail, results overestimated by 

around 40% were achieved with both blood-free methods for the phantom filled with 

high-binding tissue surrounding the carotid, see figure 4.5(c). A better result was 

achieved using the low-binding tissue curve for both methods, achieving an 

underestimation of less than 20%, see figure 4.5(d).  

Focusing on comparing the blood-free methods between each other, one notices 

that despite similar underestimations of the peak, the HC method produce slightly less 

underestimated results. When it comes to characterizing the tail of the concentration 

curve for the phantom filled with high-binding tissue surrounding the carotid the HC 

method performed worse than the H4V because besides the similar overestimation of 

40% also has a high standard deviation, see figure 4.5(c). On the other side, when using 

a low-binding tissue curve, errors associated to the HC method produced were found to 

be closer to zero than those of the H4V method, see figure 4.5(d). 

In figure 4.6 the average and standard deviation of the determined correction 

coefficients 𝑟 and 𝑠 by both the HC and Chen’s method, for the same simulation that 

lead to the results exposed in figure 4.5, are represented. It is possible to notice that the 

𝑟 and 𝑠 coefficients don’t vary much both in average and standard deviation between 

high-binding or low-binding curves for the HC method. That is possibly related to the 

fact of in the early frames, where the coefficients are determined for the HC method, 

CLOW and CHIGH assume similar activities.  
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Considering Chen’s method, although the averaged values of the coefficients 

don’t vary much when comparing both tissues, they do vary in standard deviation. The 

standard deviation is higher for 𝑟 when using the CHIGH tissue curve than when using the 

CLOW tissue curve. At the same time, the standard deviation is higher for 𝑠 when using 

the CLOW tissue curve than when using the CHIGH tissue curve. These differences in the 

standard deviation across different tissue curves for Chen’s method are probably related 

to the different activities between CLOW and CHIGH in the late frames, see figure 4.3. 

The HC method tended to overestimate 𝑟 and underestimate 𝑠, when compared 

to Chen’s method. This can be interpreted as the measured VOI values of the HC 

method being closer to the assumed true value (the hottest voxel) than the measured 

VOI values of Chen’s method. One possible reason is because the assumed real values 

for the HC method (the hottest voxel) being values already affected by PVE, making the 

 

Figure 4.6 – Average and standard deviation of the correction coefficients 𝑟 and 𝑠 determined using 

the blood-based Chen’s method (blue) and the blood-free HC method (red) during the PVE correction 

made while extracting the IDIFs from the phantoms generated in the simulation of figure 4.5. 
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average VOI values closer to the real estimates, what in turn lead to the underestimation 

of 20% related above. 

Figure 4.7 represents how the blood-free methods vary with the number of slices 

considered to build the VOI of the carotid, which range from using just one slice to 

using five. In this particular simulation, the CLOW tissue curve was used for the voxels 

surrounding the carotid. The HC method seems to be more robust than the H4V method 

to variations in the number of slices used. When diminishing that number, both the peak 

error and the tail error rise considerably for the H4V method, while keeping 

approximately constant for the HC method.  

 

 

 

Another parameter tested was the size of the ROI drawn in each slice of the 

VOI, i.e., the number of voxels included in the ROI. We observed that varying the ROI 

diameter between realistic values didn’t significantly affect the results obtained by the 

blood-free methods. In fact, independently of the (realistic) number of voxels included 

Figure 4.7 – Average error and standard deviation of the extracted TACs for 100 phantoms as function 

of the noise parameter 𝑛, for the blood-free HC method (red) and H4V method (green), considering the 

variation of the number of slices used in the carotid VOI. In this simulation, the CLOW tissue curve was 

used to fill the voxels around the carotid. 
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in the ROI, the errors obtained were qualitatively well illustrated by the plots in figure 

4.5. 

Finally, figure 4.8 represents the results of the comparison between Chen’s 

method (blue) and the new suggested approach we had called the Weights method (red). 

The latter produces errors that are within a more narrow range of values, for all the 

situations, than the former. As expected, both methods produce very good results for the 

tail definition. In the peak definiton, the Weights method has tendency to slightly 

underestimate the values, but it is more robust to error variation and displays a lower 

standard deviation.  

 

 

 4.4. Discussion 

Figure 4.8 – Average error and standard deviation of the extracted TACs for 100 phantoms as function 

of the noise parameter 𝑛, for the blood-based Chen’s method (blue) and the proposed Weights method 

(red). Plot (a) concerns the extracted TACs’ peak error and (c) the TACs’ tail error when using the 

CHIGH tissue curve to fill the voxels around the carotid; Plot (b) concerns the extracted TACs’ peak error 

and (d) the TACs’ tail error when using the CLOW tissue curve to fill the voxels around the carotid. 
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 This study, though quite simple, allowed questioning many different topics about 

the IDIF extraction methods considered. 

The simulation demonstrated the efficacy of Chen’s method and the clear 

advantage of using blood samples to calibrate the curve extracted. It is noteworthy that 

this method is more prone to error in the IDIF peak definition rather than in the tail. 

This is likely due to the fact that it uses late blood samples to derive the considered 

time-invariant correction coefficients. On a clinical test,  (Zanotti-Fregonara, Fadaili, et 

al. 2009) obtained IDIFs with underestimated peak maximums and a good tail 

estimation using Chen’s method, when comparing to curves obtained by arterial 

sampling. 

On the other hand, blood-free methods showed a lower standard deviation than 

Chen’s. However they underestimated the peak in about 20%, as seen in figures 4.5(a) 

and 4.5(b). Underestimated values were expected for the peak using blood-free methods 

because both of them rely on spill-out affected early image data. When considering the 

tail, there is also a tendency for underestimation for when low-binding tissue was 

considered, as seen in figure 4.5(d), but a very different performance was obtained for 

high-binding tissue with highly overestimated results observed, as seen in figure 4.5(c). 

This result illustrates how different surrounding tissues can affect the performance of 

the IDIF methods and how the correction coefficients work. For the H4V method, 

which does not depend on any PVE correction, the overestimated results at the tail may 

indicate that the voxels selected were very affected by the surrounding high-binding 

tissue. In the case of the HC, the values are not only overestimated, as also the 

dispersion is high. As the HC method derives the PVE correction coefficients using the 

hottest voxel from inside the carotid region for three peak-coincident frames for 

calibration purposes, the outcome coefficients will better characterize how the extracted 

data is affected by tissue in the early time-frames. In the early frames, there is a spill-out 

tendency, since the carotid’s CB curve assumes high activity values when compared to 

the surrounding tissue, see figure 4.3. In the case where we consider high-binding 

tissue, in the late time-frames the CHIGH curve assumes higher activity values than the 

CB curve. This means that extracted carotid TAC will be affected in a spill-in way, the 

opposite to what happens in the peak-coincident frames. All this associated with the fact 

of using compromised image data for calibration purposes leads to the results shown.  
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In the study (Zanotti-Fregonara, Fadaili, et al. 2009) a comparison is established 

between several IDIF extraction methods, by simulating them in a phantom and 

applying them to [18F]-FDG images. Interestingly, in the simulation of the method 

proposed by (Su et al. 2005), the results shown a tendency for underestimation of the 

peak and overestimation of the tail - the area under the curve at the tail region is 

overestimated by 33.6%. This result is similar to the result found in the present phantom 

study using the HC, which uses a PVE correction similar to that used in (Su et al. 2005). 

(Zanotti-Fregonara, Fadaili, et al. 2009) confirmed that the overestimation of the tails 

happens most likely due to an underestimation of the tissue spillover into the carotids, 

because of the lower uptake by brain tissue at the early frames of the PET exam, where 

the correction coefficients are derived from, just as explained above. 

The average errors obtained using Chen’s method to estimate the peak region are 

similar, despite of the binding level of the surrounding tissue. However, there is less 

variability when low-binding tissue is considered, see figure 4.5(b). This is consistent 

with the fact that the correction coefficients were estimated using late blood samples, 

and therefore will reflect the spill-in tendency on the late frames when the high-binding 

tissue curve was used. 

The results obtained when using low-binding tissue are in general better for all 

methods. As seen in figure 4.3, in late time-frames the CLOW tissue curve has lower 

values than the blood curve, inducing spill-out, likewise with what happens in early-

frames. As a result, for both blood-free methods and Chen’s method better performance 

is achieved.  

Focusing on comparing the blood-free methods between each other, the HC 

method demonstrated to have slightly better performance than the H4V method, except 

for the tail in the situation of using the CHIGH tissue, which can be explained considering 

how the HC method depends on the calculation of the correction coefficients. By 

diminishing the number of slices used in the carotid VOI, the H4V method performance 

decreased significantly both for the peak and tail estimation, whereas the HC method 

remained approximately constant, proving to be more robust to this variation. This 

result suggests that the H4V method strongly relies on information given from different 

slices. Considering a VOI that includes 5 slices, the four hottest voxels would most 

likely belong to different slices, each one corresponding to the hottest of the slice. 

Decreasing the VOI to one slice, the method will consider the four hottest voxels of the 

ROI uniquely from that slice, introducing lower-value voxels more affected by PVE. On 
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another test, varying the ROI size in each slice did not significantly affect the 

performance of any of the methods probably because the hottest voxels considered 

didn’t change.  

The Weights method produced absolute errors deviating in average from zero 

more than Chen’s method, but the dispersion of the results was considerably inferior 

and the method was robust to noise variation. In opposition to Chen’s method, the 

Weights method showed tendency to slightly underestimate the results. In general, it 

may be considered a promising approach, mostly due to the way the correction 

coefficient constants are calculated. In the traditional Chen’s PVE correction, the 𝑟 and 

𝑠 values are calculated considering an average of several voxels from each carotid ROI. 

In the Weights method, the PVE correction is made for each voxel of the carotid ROI 

zone individually. It makes a partial volume correction by calculating how each voxel 

within the carotid region contributes to the real blood concentration value. It is equal to 

perform the calculation of the 𝑟 coefficient alone for each voxel, and for this reason no 

tissue input is required. In the end, the Weights method calculated matrix represents 

each voxel contribution for the real value of the function. This way, a more specific 

PVE correction is made and this is probably the reason why the Weights method 

performs better to estimate peak values in the sense that Chen’s method’s variability 

may lead to more aberrant results. 

 

 

4.5. Conclusion 

 

This study assesses the different performances of blood-free methods and blood-

based ones. Looking back to the results of this simulation, it is suggested that blood-free 

methods provide underestimated IDIFs.  

The HC method, when applied to the phantom we suggested, displays a more 

accurate and robust performance. It is also suggested that considering the hottest voxel 

as being less affected by PVE estimation and then as a good estimation for the real CB 

value may be a good assumption, although possibly noisy. 

Considering this, one may think a good approach may be doing exactly the same 

than in H4V method but considering only a single voxel, the hottest one, instead of four. 

However a single voxel to extract the function per frame should be very exposed to 

noise in the later frames. This highlights the advantages of the HC method. It uses the 
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hottest voxel in a zone where the CB function is highly distinguishable from the 

surrounding tissue (in the peak) and derives the coefficients that can be applied in later 

times. Although the tail seems to be very challenging to obtain in the high-binding 

tissue situation, when considering real data the surrounding tissue should not take such 

high values. The receptor-rich region of the [11C]-Raclopride (the striatum) is in a 

higher area of the head than the area where the carotids VOI selection should be made 

(below the Circle of Willis). The test was performed in this simulation to evaluate 

different situations and better understand the role of this variable in the method’s 

efficacy. It is more realistic, in this sense, to consider the results with low-binding 

tissue. 

All together this simulation suggests that despite the differences between using 

or not blood samples to calibrate the extracted TAC, the best non-invasive approach for 

using in the next chapter should be the HC method. 
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5. IDIF Extraction and                

   Quantification of [11C]-Raclopride   

   PET Images 

 

5.1. Introduction 

 

This chapter concerns a totally non-invasive IDIF study using [11C]-Raclopride 

PET images. The blood-free IDIF methods introduced in the previous chapter were used 

to derive the AIF and determine the binding potential distribution for a group of 

subjects.  

The initial bibliography research about IDIF techniques strongly suggested that 

blood samples, even in a reduced number, are important to correct for PVE and to 

estimate the amount of metabolites and the plasma fraction. Ideally, this study would 

dispose of a blood-sampling procedure for a more accurate study, but such was not 

possible. As a solution, the IDIF methods applied relied on the assumption that a 

number of hottest voxels from inside the carotids VOI were less affected by PVE, as 

studied in the previous chapter. In addition, the correction for metabolites and the 

determination of the plasma fraction was made using data from the literature. 

In the lack of a gold-standard AIF determined using arterial sampling to assess 

the results of the IDIFs extracted, the IDIFs were used as input in the estimation of the 

binding potential, and the results were compared with binding potential values 

determined using a validated alternative method for [11C]-Raclopride, the SRTM, as 

mentioned in chapter 2. 

  

5.2. Materials 

 

[11C]-Raclopride] PET images were obtained from ongoing patient studies, in 

ICNAS, involving healthy volunteers and patients with Parkinson's Disease.  

The PET images were obtained using a Philips Gemini GXL 16 scanner, 2009 model. 

The total scanning time was 90 minutes. The data was reconstructed using a LOR-
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RAMLA algorithm, the framing sequence being 4 x 15 s, 4 x 30 s, 3 x 60 s, 2 x 120 s, 5 

x 240 s and 12 x 300 s, and corrected for motion effects on SPM8. The data was later 

quantified using SRTM and employing the cerebellum as the reference region. 

All the analysis presented in this chapter were made using Matlab (The 

Mathworks, Inc., USA), which include simulations, IDIF method’s implementation 

(including raw-TAC extraction, PVE correction and metabolite and plasma fraction 

correction) and statistical calculations. 

 

5.3. Methods 

 

5.3.1. Evaluating IDIF Performance Using the Binding Potential 

 

In this study, since there is not any blood sampling procedure, it is not possible 

to produce a gold-standard arterial input function, extracted through arterial sampling, 

to directly compare the IDIFs determined and evaluate the efficacy of the IDIF methods. 

To overcome this problem, IDIFs were not directly compared to any curve. 

Instead, the figure of interest was rather the binding potential. To obtain this, the IDIFs 

extracted were used as inputs to compartmental models. This allowed determining the 

binding potential both for a VOI of the striatum, which is the high-binding region for 

[11C]-Raclopride, and voxel-wise – generating parametric images. The binding potential 

values determined using the IDIFs were compared to a verified solution: the binding 

potential generated using a validated method as an alternative to the gold-standard: the 

Simplified Reference Tissue Model. The latter resorts to a compartmental model that 

uses as input the TAC of a reference region, which is, for [11C]-Raclopride, the 

cerebellum, as studied in chapter 2. 

The quantification performed using IDIF as the input for the models was made 

through two different quantification methods: the two-tissue compartmental model and 

the Logan plot.  

As mentioned in chapter 2, by solving the two-tissue model is possible to 

estimate the kinetic parameters K1, k2, k3 and k4, from where the binding potential is 

derived as k3/k4. This model can be described by the equations 2.2, 2.3 and 2.5. To solve 

those equations, a linear least squares method was used, based on the work of  (Cai et 

al. 2002):  

 



59 
 

𝐶𝑃𝐸𝑇(𝑡) =  𝑃1𝐶𝐵(𝑡) + 𝑃2 ∫𝐶𝑃(𝜏)𝑑𝜏 + 𝑃3 ∬ 𝐶𝑃

𝑡 𝜏

0 0

𝑡

0

(𝑠)𝑑𝑠𝑑𝜏

+ 𝑃4 ∫𝐶𝑃𝐸𝑇(𝜏)𝑑𝜏 + 𝑃5 ∬ 𝐶𝑃𝐸𝑇(𝑠)𝑑𝑠𝑑𝜏

𝑡 𝜏

0 0

𝑡

0

                    (5.1) 

 

This model has in consideration the volume of blood VB, which in the above 

equation 5.1 takes the form of P1. As for CB, it corresponds to the whole-blood PVE-

corrected curve extracted, CP corresponds to the metabolite-corrected plasma curve and 

CPET corresponds to the TAC of the voxel or ROI we want to quantify. By solving this 

multi-linear equation with linear least squares it is possible to derive the coefficients P1 

to P5, from which the target parameters were finally derived as follows:  

    

 𝑉𝐵 = 𝑃1                                                                        (5.2) 

 

𝐾1 = 
𝑃1𝑃4 + 𝑃2

1 − 𝑃1
                                                                  (5.3) 

 

𝐾2 = −
𝑃1𝑃5 + 𝑃3

𝑃1𝑃4 + 𝑃2
− 𝑃4                                                           (5.4) 

 

𝑘3 = −(𝑘2 + 𝑘4 + 𝑃4)                                                               (5.5) 

 

𝑘4 = 
−𝑃5

𝑘2
                                                                         (5.6) 

 

This approach has the advantages of providing a fast solution and being able to 

be solved in one step. For the least squares method, upper and lower bounds were 

established for each of the coefficients P1 to P5 by assuming biologically plausible 

intervals of the values of the kinetic constants K1, k2, k3 and k4. The blood volume VB 

was considered to be invariant and equal to 4%, according to (Leenders et al. 1990). 

The other quantification method used was the Logan plot. This allows estimating 

the distribution volume (DV) of a region, using the arterial plasma function as input, 

through equation 2.9. After a certain time t, this equation becomes linear and the DV 
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can be extracted from the slope. The DV of a high-binding region, which for [11C]-

Raclopride corresponds to the striatum, is equal to 

 

𝐷𝑉𝐻𝐼𝐺𝐻 = 
𝐾1

𝑘2
 (1 +

𝑘3

𝑘4
)                                                            5.7 

 

and can be determined through equation 2.14 using as input the plasma metabolite-

corrected input function and the TAC of the VOI or voxel of the high-binding zone. The 

DV of a low-binding zone (reference region), as it is devoid of receptor sites, is simply 

given by 

𝐷𝑉𝐿𝑂𝑊 = 
𝐾1

′

𝑘2
′                                                                    5.8 

 

and can be determined through equation 2.14 using as input the plasma-

metabolite corrected input function and the TAC of a VOI of the reference region, 

which is for [11C]-Raclopride the cerebellum. By assuming the ratio of the transport 

constants K1/k2 to be the same on both the high-binding zone and the low-binding zone 

(the same assumption is made in the reference tissue model) the binding potential can 

be estimated as  

𝐵𝑃 =
𝑘3

𝑘4
 =  

𝐾1

𝑘2
 (1 +

𝑘3

𝑘4
)

𝐾1
′

𝑘2
′

 −  1 =   
𝐷𝑉𝐻𝐼𝐺𝐻

𝐷𝑉𝐿𝑂𝑊
− 1                            (5.9) 

  

By using the Logan plot this way, although the input function is the IDIF, we 

indirectly need a reference region TAC to determine the binding potential of the 

striatum, unlike using the two-tissue compartmental model, which requires only the 

arterial concentration. Nevertheless, this method was chosen in addition to the two-

tissue model because of how IDIF errors affect the DV values calculated and, in the 

end, the binding potential. Therefore, the Logan plot was used as an additional tool to 

better understand the differences between the IDIF methods and the type of errors that 

are being committed. 

Finally, the gold-standard BP values of the VOIs from the striatum were 

determined using the SRTM by solving equation 2.13, introducing the reference region 

TAC as input and the TAC of the VOI we wanted to quantify. For the voxel-wise 
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quantification, we used the approach proposed by (Gunn et al. 1997), which linearizes 

the operating equation of the SRTM, thus providing a faster approach less sensitive to 

noise. 

 

5.3.2. Comparison Between the Quantification Models Used 

 

The binding potential values determined by different quantification models may 

have some variability. It is important to verify what is the expected difference between 

the BP values determined with the three quantification methods used in this chapter. 

To evaluate that difference, perfect curves were generated through the same 

process used in chapter 4 and fitted to the models. We used the same [11C]-Raclopride 

plasma metabolite-corrected curve extracted from (Farde & Halldin 1989), the same 

kinetic constants and equations 4.2, 2.2, 2.3, 2.5, 4.3 and 4.4 to generate CB, CT and CR. 

To introduce variability in the curves, the several parameters of the CP curve in 

equation 4.1 were multiplied by a random number between 0.5 and 1.5, this way 

generating CP curves with different shapes. Holding the kinetic constants invariable, the 

calculated CT and CR for each variation of CP would also have some variability but still 

perfectly fit the models. For each variation, as the kinetic constants were always the 

same, one should always obtain the same BP.  

For each combination of CP and resulting generated curves CB, CT and CR, the 

binding potential was determined using SRTM, Logan plot and the two-tissue model 

and finally compared.  

 

5.3.3. Understanding How IDIF Errors are Processed by the Two-tissue 

Model and by the Logan Plot 

 

A clear disadvantage of not having a gold-standard AIF is not being able to 

identify the errors that are being committed in the IDIF extraction. Relying on the 

quantification parameters BP and DV to understand the errors associated to the IDIF 

extraction implies in first place understanding how those parameters should vary with 

regard to the expected IDIF errors. 

To determine the relationship between variations on the AIF and the resulting 

quantification parameters, a simulation was made. In that simulation, on one side, we 

used invariant CT and CR curves, so that the quantification parameters should remain 
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constant. On the other hand, several variations of the CP curve were performed by 

varying its parameters in equation 4.1, this way achieving CP curves with different 

peaks and tails. We observed how the BP and the DV values changed as a function of 

the overestimation and underestimation of the peak and tail regions of the CP curve. 

 

5.3.4. IDIF Determination 

 

In this subsection, we will describe how IDIFs were extracted. Two methods 

were considered: the HC method and the H4V method, both studied in the previous 

chapter. 

  

5.3.4.1. Whole-Blood TAC Extraction and PVE Correction  

 

The methods did not substantially vary from the description made in the 

previous chapter. Nevertheless, a more detailed description is made below. 

 In first place, the carotids VOI selection was made. The first 5 frames were 

summed (frames that cover the function peak) and the carotid arteries segmentation was 

made in the resulting image. The number of summed frames was sometimes adjusted 

for a better identification of the arteries. The selection was made manually, using a 

drawing tool, since is simpler to implement, efficient and totally controllable. 

 A ROI was drawn for each carotid on several slices, corresponding to the ones 

that captured the portion of the cervical segment of the carotids (see figure 4.1). In that 

zone, they are well-defined and the voxels are less affected by spill-in activity from the 

brain. The ROIs were manually drawn for groups of 3 to 6 slices. The number of slices 

was adjusted according to changes in the carotid definition on the image. 

The total VOI determined was common to both the HC and the H4V methods. 

The differences between the methods start after the carotid VOI selection. 

First, we’ll analyze the HC method. Using the total carotids VOI determined, 

consisting of several voxels from several slices, a mask was derived. That mask was 

multiplied by all frames. The TACs of each voxel of the mask were averaged, 

computing the whole-blood raw-TAC. At the same time, a TAC of the tissue 

surrounding the carotids was determined. That TAC was derived by placing a comma-

shaped ROI in a region close but not adjacent to each carotid artery ROI. Then, the PVE 

correction was made, according to the model proposed by (Chen et al. 1998), specified 
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in equation 3.1. In that equation, the real values of the input function were approximated 

by the hottest voxel found inside the carotid VOI for three early frames whose times 

matched the function peak. Using the tissue-TAC values and the whole-blood raw-TAC 

values for those frames, the correction coefficients 𝑟 and 𝑠 were derived using linear 

least squares. By assuming the correction coefficients were invariant in time, the whole-

blood raw-TAC was corrected for all frames, according to equation 3.2, leading to the 

whole-blood PVE-corrected curve. 

For the H4V method, the differences when compared to the HC method relies in 

the mask elaborated and in the fact that no PVE correction was made. From the same 

carotids VOI extracted using the summed early frames, a mask was built containing the 

four hottest voxels of the whole carotid VOI. That mask, containing four voxels, was 

then multiplied by all frames. The TACs of the four voxels were averaged, yielding the 

whole-blood PVE-corrected curve, because we assumed that those four voxels would be 

free of PVE. 

  

5.3.4.2. Fitting, Correction for Metabolites and Plasma Fraction Calculation 

 

In order to obtain the final plasma metabolite-corrected input function the 

whole-blood PVE-corrected curves extracted using both methods were fitted with an 

exponential model and corrected for metabolites and plasma fraction, generating the 

final IDIF curve.  

For each method, the whole-blood PVE-corrected curve was fitted with the same 

3-exponential model used in chapter 4, described by equation 4.1. The main interest of 

this step is the reduction of measurement noise. 

The correction for metabolites and accounting for the plasma fraction was based 

on the work done in the previous chapter. The difference is that then, to assign the 

phantom a whole-blood curve, a conversion was made from the plasma curve CP to the 

whole-blood curve CB. Now the opposite is required, following the same steps but in the 

opposite order. The whole-blood PVE-corrected TACs extracted from the PET images 

represent both the unchanged radioligand and its metabolites in blood. One wants to 

isolate the unchanged parent concentrated in plasma. 

The metabolite correction was done using the same parent fraction curve 

introduced in chapter 2, represented in figure 2.7. Finally, the plasma concentration of 
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the tracer was determined assuming the relation 2.19 and approximating HCT by 0.5. 

Joining equations 2.18 and 2.19 together, the final IDIF was computed as follows: 

 

𝐼𝐷𝐼𝐹(𝑡) =  
𝐶𝐵(𝑡)

(1 − 𝐻𝐶𝑇)
× 𝑃𝑎𝑟𝑒𝑛𝑡𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑡)                              (5.10) 

 

where CB is the whole-blood PVE corrected curve, HCT the hematocrit, ParentFraction 

the curve represented in figure 2.7 and IDIF the final plasma metabolite-corrected 

arterial input function derived from the PET image. 

  

5.3.5 Assessing the Accuracy of the IDIFs 

 

For each subject, an image-derived input function was extracted from the 

internal carotid arteries. A tissue TAC from the cerebellum (the reference region for 

Raclopride) using a cerebellum mask was additionally obtained.  

As a first test, the BP was determined for a TAC extracted from a VOI of 20 

voxels of the striatum, which is the high-binding zone for [11C]-Raclopride.  

The BP was determined using the two-tissue compartmental model and the 

Logan plot and the results were compared to the reference solution obtained using 

SRTM. The two-tissue compartmental model was solved according to equation 5.1, by 

introducing as input the IDIF, the corresponding whole-blood PVE-corrected curve (to 

determine VB) and the TAC of the striatum VOI. The BP was finally determined as 

being k3/k4. Additionally, another approximation for BP was also determined using the 

Logan plot by computing DVHIGH using the IDIF and the TAC of the striatum VOI, by 

determining DVLOW using the IDIF and the reference region TAC, and finally applying 

equation 5.9 to determine the BP. On the other side, the reference BP was determined 

with the SRTM using the reference tissue curve as input and the TAC of the striatum 

VOI.  

As a second test, we performed the same approach described above to compute 

parametric images displaying the BP. The only difference is that instead of the TAC 

extracted from the VOI of the striatum, one has to consider the TAC of each voxel, to 

produce the BP for each voxel.  
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5.4. Results  

 

In this section, we will first evaluate what is the expected difference for the BP 

determined by the several models and how the quantification parameters vary as 

function of the IDIF errors. 

Secondly, the results of the IDIF extraction, the quantification of the striatum 

VOI and the generation of parametric images will be evaluated. 

 

5.4.1. Comparison Between Quantification Models 

 

By fitting several variations of the perfect curves to the models, it was possible 

to observe the resulting difference of calculating BP using the two-tissue model and the 

Logan Plot relatively to the BP calculated by the widely used SRTM. The BP values 

estimated by fitting the curves with the two-tissue model were shown to have an 

overestimation of 6% in comparison to the BP determined using SRTM. On the other 

hand, the BP values estimated using the Logan Plot were very close to the ones 

estimated with SRTM, with a small difference of less than 1%. 

 

5.4.2. How the Two-Tissue Model and the Logan Plot Process IDIF Errors 

 

A total of 2000 variations of the perfect curve CP were generated by multiplying 

the corresponding parameters by a random number between 0.8 and 1.2. In the first 

place, we tested the two-tissue model. Using an invariable CT curve, corresponding to a 

high-binding curve, each generated CP was taken as input to generate the BP with the 

two-tissue model. We separately evaluated how the peak variation and the tail variation 

of CP affected the BP. The peak error was measured as the relative difference between 

the maximum of the modified CP and the maximum of the perfect CP. The tail error was 

taken as the average relative difference between the modified CP and the perfect CP, 

measured between t=700 and t=5400 seconds. The BP errors were measured as the 

relative difference of the BP generated using the modified CP and BP generated using 

the perfect CP. 

 In figure 5.1 the results for the two-tissue model are represented. On the left, 

figure 5.1 (a) is a plot of the BP error as a function of the peak error. For this plot, only 

data corresponding to a tail error between -5% and 5% was considered. It is possible to 
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notice a high sensitivity to peak variation, inducing a large dispersion of the BP values. 

It is possible though to observe a tendency to overestimate the BP values when there is 

an underestimation of the peak and an underestimation of the BP values with an 

overestimation of the peak. On the right, figure 5.1 (b) represents a plot of the BP error 

as function of the tail error of CP. Similarly to the previous plot, in this one only data 

corresponding to a peak error between -5% and 5% was considered. In this analysis, 

besides the dispersion of the results, there is a clear tendency to overestimate the BP 

values with an underestimation of the tail.  

 

 

In the second place, we tested the Logan plot. Using each variation of CP, the 

same invariant CT and an invariant CR corresponding to a low-binding tissue curve, 

DVHIGH and DVLOW values were generated, respectively, and finally BP was derived 

according to 5.9. The Logan plot takes as input coordinate points corresponding to latter 

time frames. Therefore, for this method the tail of the IDIF is the most important source 

of error in the estimation of the DV and BP. Similarly to what was done above, for this 

test the BP and DV errors were measured as the relative difference between the BP and 

DV generated using the modified CP and BP and DV generated using the perfect CP. 

 In figure 5.2 (a) the DVHIGH error as function of the peak error is represented. 

Similar results were found for the DVLOW. Similarly to above, only the data with a tail 

error between -5% and 5% was considered. It is possible to observe a high dispersion of 

the DVHIGH error, with a slight tendency to overestimate DVHIGH with an 

underestimation of the peak of CP. On the contrary, as expected, a very clear tendency 

Figure 5.1 – Error of the BP estimated using the two-tissue compartmental model as function of the 

peak (a) and tail (b) error of the CP.  
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was found by considering the tail error. Figure 5.2 (b) is a plot of the DVHIGH error as 

function of the tail error, for data in which the peak error varied between -5% and 5%. It 

clearly demonstrates the sensitivity of the method to IDIF tail errors in estimation of 

DV.  

 

 

  

 

Finally, a relationship was sought between the BP determined using the Logan 

plot and the error in the tail. Figure 5.3 is a plot of the BP error as function of the tail 

error of the CP curve. It is possible to observe, in contradiction to the two-tissue 

compartmental model, a tendency to underestimate the BP with an underestimation of 

the tail. The BP error variation is, however, lower than the BP error for the tail using the 

two-tissue model, see figure 5.1 (b). This means that the Logan plot is more robust to 

errors in the tail of the AIF than the two-tissue model. This is probably due to the fact 

that the BP determined with the Logan plot is a result of a ratio between DVHIGH and 

DVLOW, which are affected by the IDIF errors in the same manner. 

Figure 5.2 – Error of the DVHIGH estimated using the Logan plot as function of the peak (a) and 

tail (b) error of the CP.  
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5.4.3. Extraction of IDIFs 

 

In this subsection we’ll analyze several topics on the IDIF extraction process 

made.  

In the carotid ROI selection, there were some hotspots that mislead the 

identification. Some of those hotspots correspond to other blood vessels, as for example 

the vertebral artery or the external carotid artery. The best way to locate the internal 

carotid arteries, which are the ones that provide arterial blood to the brain, consisted in 

watching a slice sequence and observing hotspots changes accordingly to the predicted 

carotid shape. A reference point is certainly the Petrous section of the carotid. In this 

section, the carotid curves anteriorly and medially, and that curve is easy to identify, 

because it adopts a more distinct and identifiable shape from the entire resulting tracer 

pools. The slices for IDIF extraction were selected to belong to the section previous to 

the Petrous segment, which is named the Cervical segment, to avoid spill-in activity 

from the brain. In the upper slices, after the Petrous section, hotspots that corresponded 

to the carotids region were found. Some tests were made and the values extracted were 

found to be higher than the values of the IDIFs that produced good BP agreement, 

suggesting the values were overvalued by spill-in effects. With no samples available to 

Figure 5.3 – Error of the BP estimated using the Logan plot as function of 

the tail error of the CP.  
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calibrate the extracted data, all efforts should be done to seek for the less affected 

voxels.  

After summing the first five frames, the range of the resulting image was set 

between zero and the maximum value of the whole summed image, attenuating 

undesired hotspots and enhancing the carotids. This was done, in the first place, to 

identify the carotids. Once identified, the range for the visualization of each slice was 

set between zero and the maximum of the slice, for achieving a better definition.  

For a given image, the best results after quantification were found to be 

associated to regions of interest containing small, well defined carotid areas in which a 

good contrast is found between the carotids ROI and the surrounding tissue, see figure 

5.4 (a). There are identifiable carotid areas that are surrounded by high valued tracer 

pools, and this was an indicator for compromised spill-in affected values, see figure 

5.4(b). 

 

 

Focusing on the performance of the different IDIF methods, the H4V method 

had a tendency to produce IDIF curves with lower values than the HC method. For all 

subjects there was an underestimation of the peak using the H4V method, on average     

-14.4±11.23 %, when compared to the HC method. There was also an underestimation 

of the tail for 85% of the subjects, on average -43.70±8.93 % tail value, when compared 

to the HC method. 

Figure 5.4 – Example of different situations found when defining the carotids ROI. On the left, the 

carotids, corresponding to the red circular zones, are smaller and better defined than in the image of the 

right. 
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For each subject it was evaluated if the surrounding tissue assumed higher 

values than the average values of the carotid VOI for later frames, in order to exclude 

the situation of overestimation of the tail values, as studied in the previous chapter. The 

relative difference between the averaged voxels of the carotid VOI and the averaged 

voxels of the surrounding tissue VOI was, for later frames, always positive, giving an 

average of +28.31±12.38%. 

In figure 5.5 the several curves determined in the IDIF extraction process for one 

subject are represented as an example. 

 

 

  

 

 

Figure 5.5 – All the curves derived throughout the IDIF extraction process using the HC method, for 

one subject. The raw curve extracted from averaging the carotids VOI voxels’ TACs (top-blue). The 

corresponding PVE-corrected curve, after determining the correction coefficients (top-red). The fitted 

PVE-corrected whole-blood curve (bottom-red). And finally, after correcting for metabolites and 

plasma fraction, the IDIF curve (bottom-green). 



71 
 

5.4.4. Determining the BP Using a Striatum VOI 

 

Before calculating the parametric images, the BP was generated for a VOI of 20 

voxels of the striatum for each subject, using both the two-tissue compartmental model 

and the Logan Plot and, in both cases, the IDIFs computed using HC and H4V as input, 

see Table 5.1. In this, the reference values for the BP over the striatum of each subject, 

computed using SRTM, are included. 

Using the two-tissue compartmental model, the resulting BP values showed a 

high dispersion, with a tendency to be overestimated for both the HC and the H4V 

methods for obtaining the IDIF. Better results were achieved with the IDIFs generated 

by the HC method, with an average BP error of +16.55 ± 87.13%. For the case of the 

IDIFs determined using the H4V method the error was quite high: +97.05 ± 165.34%.  

 

Subject Nº 

 

SRTM 

 Two-Tissue Model 

  Hybrid Chen  Hottest4Voxels 

1  3.28  2.60  7.39 

2  3.60  8.33  9.89 

3  2.94  6.66  10.52 

4  1.95  0.43  0.48 

5  4.10  1.62  1.20 

6  3.40  2.48  2.01 

7  2.83  2.14  5.88 

8  2.98  2.30  1.78 

9  2.26  6.82  9.40 

10  3.67  5.16  7.86 

11  3.76  3.39  3.91 

12  3.04  3.99  16.49 

13  3.68  0.94  1.67 

 

Using the Logan Plot to determine the BP, significantly better results were 

achieved for both IDIF extraction methods, see Table 5.2. In this case, BP values were 

Table 5.1 – Binding potential determined for a VOI of 20 voxels of the striatum, using the 

validated SRTM and using the two-tissue model with the IDIFs extracted with the HC and the 

H4V method as input. 
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on average underestimated by -6.92 ± 5.69% for the HC method and -6.51 ± 4.46% by 

the H4V method, using again the SRTM values as reference. The DVHIGH values 

estimated by the H4V method were superior to the DVHIGH values estimated by the HC 

method in average by +54.18 ± 46.88%. A similar result was found for DVLOW: +54.43 

± 48.40%. 

 

Subject Nº 

SRTM 

  Logan Plot  

 Hybrid Chen  Hottest4Voxels 

BP  DVHIGH DVLOW BP  DVHIGH DVLOW BP 

1 3.28  0.91 0.22 3.12  1.96 0.48 3.06 

2 3.60  1.37 0.33 3.18  2.00 0.48 3.20 

3 2.94  0.69 0.19 2.60  1.03 0.28 2.70 

4 1.95  0.63 0.21 1.93  1.27 0.43 1.93 

5 4.10  1.42 0.29 3.83  2.44 0.52 3.72 

6 3.40  1.48 0.34 3.28  2.56 0.60 3.27 

7 2.83  1.31 0.35 2.75  2.91 0.77 2.76 

8 2.98  1.09 0.27 2.99  1.68 0.42 2.99 

9 2.26  0.88 0.28 2.17  1.41 0.46 2.10 

10 3.67  2.73 0.70 2.92  2.16 0.53 3.10 

11 3.76  2.00 0.44 3.55  2.53 0.56 3.56 

12 3.04  2.19 0.60 2.66  1.41 0.36 2.91 

13 3.68  1.19 0.27 3.46  1.65 0.38 3.29 

 

A correlation was made between the BP values determined with the SRTM and 

the BP values determined with the Logan plot, for both the situations of using IDIFs 

extracted with the HC method and using IDIFs extracted with the H4V method, and is 

represented in figure 5.6. 

Table 5.2 – BP determined for a VOI of 20 voxels of the striatum, using the validated SRTM and using 

the Logan plot with the IDIFs extracted with the HC and the H4V method as input, by determining 

DVHIGH and DVLOW. 
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5.4.5. Voxel-Wise Quantification 

 

Parametric images, in which the BP is determined for each voxel individually, 

were obtained using the two-tissue compartment model and the Logan plot, using IDIF 

as input function. The resulting BP parametric images generated using those methods 

were compared with the BP parametric images generated by the SRTM, which in turn 

took the reference region TAC as input.  

Generating parametric images using the two-tissue compartmental model, by 

solving equation 5.1 for each voxel individually using the IDIF of the subject as input, 

was found to yield acceptable results for only 3 subjects: subject one, seven and eleven 

(23% of the subjects). For those three subjects, only the IDIF estimated using the HC 

method provided good results. In general, the parametric images determined with the 

two-tissue model had the tendency to overestimate the BP in each voxel. 

The voxel-wise quantification was performed for each subject for one slice 

coincident to the zone we are particularly interested in quantifying, the striatum. In 

figure 5.7 the resulting parametric images for the SRTM (left) and the ones determined 

using the two-tissue compartmental model (right) are represented.  

 

Figure 5.6 – Correlation between the BP values determined using the SRTM and the BP 

values determined using the Logan plot considering IDIFs extracted using the HC method 

(a) and the H4V method (b). 
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A correlation between each voxel from the parametric image determined with 

the SRTM and the corresponding voxel determined using the two-tissue model is 

Figure 5.7 – Parametric images generated for 3 subjects. On the left, the parametric image generated 

using the SRTM and the reference region TAC as input. On the right, the parametric images generated 

using the two-tissue model and the IDIF as input. For all the subjects represented, the IDIF used was 

the one extracted with the HC method. 
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illustrated in Figure 5.8. For the three subjects, a good correlation between the BP 

values determined using the two different methods was found, with a slight tendency for 

the two tissue model to overestimate the BP, especially for low-binding zones, as is 

noticeable in figure 5.7.  

 

     

 

The best result achieved with the H4V method is represented in figure 5.9. It is 

possible to notice the overestimation of the binding potential, for both high-binding and 

low-binding zones. 

Figure 5.8 – Correlation between the voxel-wise BP values determined with the SRTM and the 

corresponding ones determined with the two-tissue model, for the parametric images of figure 5.7. 
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The correlation of the result from the figure above shows a clear tendency for 

this method to overestimate the BP. 

 

 

Unlikely using the two-tissue model, by generating the image quantification 

using the Logan Plot it was possible to quantify all images with good results, using both 

the IDIFs determined by the HC method and by the H4V method. This proves that the 

Logan plot is more robust with regard to IDIF errors in the calculation of the BP when 

compared to the two-tissue model. Table 5.3 shows the correlations between the voxels 

Figure 5.9 – Best result achieved in the generation of parametric images using IDIFs extracted with 

the H4V method. 

Figure 5.10 – Correlation between the voxel-wise BP values from the image determined with the 

SRTM and the corresponding ones from the image determined with the two-tissue model, referring 

to figure 5.9. 
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from the parametric images generated with SRTM and the corresponding voxels from 

the parametric images generated with the Logan Plot, for both IDIF methods. Both 

methods achieved similar results, with high linear correlation coefficients and a 

tendency to underestimate the BP.  

 

Subject Nº 

Hybrid Chen Method  Hottest 4 Voxels Method 

Slope Interception R  Slope Interception R 

1 0.94 0.01 0.98  0.78 -0.01 0.98 

2 0.86 -0.01 0.98  0.86 -0.01 0.98 

3 0.58 -0.01 0.94  0.83 0.00 0.97 

4 0.81 0.00 0.94  0.79 0.00 0.89 

5 0.74 -0.01 0.96  0.71 -0.01 0.96 

6 0.84 -0.01 0.94  0.82 -0.01 0.98 

7 0.92 0.00 0.99  0.91 0.00 0.99 

8 0.95 0.00 0.98  0.95 0.00 0.99 

9 0.82 -0.01 0.96  0.77 -0.01 0.96 

10 0.79 -0.01 0.97  0.81 -0.01 0.97 

11 0.87 0.00 0.98  0.87 0.00 0.98 

12 0.76 -0.01 0.95  0.87 -0.01 0.97 

13 0.89 -0.01 0.99  0.86 -0.01 0.98 

 

 

Figure 5.11 illustrates the voxel-wise quantification of the same slices that had 

been included in figures 5.7 and 5.9, but this time the BP values were obtained using the 

Logan plot. On the left, the parametric image included was generated with SRTM. On 

the center, the parametric image was generated with the Logan plot using the IDIF 

extracted with the HC method. On the right, the image shown was generated with the 

Logan plot and the IDIF extracted with the H4V method. 

 

 

Table 5.3 – Correlation between the voxel-wise BP values determined with the SRTM and the 

corresponding ones determined with the Logan plot using both the IDIFs extracted with the HC 

method and the IDIFs extracted with the H4V method as input, for all subjects. All results were 

statistically significant. 
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Figure 5.11 - Parametric images generated for the same subjects of figures 5.7 and 5.9, this time using 

the Logan plot. On the left, the parametric image generated using the SRTM and the reference region 

TAC as input. On the center, the parametric images generated using the Logan plot and the HC IDIFs 

as input. On the right, the parametric images generated using the Logan plot and the H4V IDIFs as 

input.  
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A correlation between each voxel from the parametric image determined with 

the SRTM and the corresponding voxel determined using the Logan plot, for subject 

number one, taking the IDIF obtained with the HC and H4V methods as input is 

represented in Figure 5.12. Similar results could be obtained for the other subjects. 

 

 

 

5.5. Discussion 

 

In this study, the two blood-free IDIF techniques evaluated in the chapter 4 were 

applied to [11C]-Raclopride images. Binding potential quantifications were performed 

for each subject using the extracted IDIFs as input of the two-tissue compartmental 

model and of the Logan plot. The resulting BP estimates were compared to the BP 

determined using a validated alternative solution to the gold-standard method which 

requires arterial sampling: the SRTM, which uses as input a reference region 

(cerebellum) TAC. 

The estimation of the BP from a striatum VOI for each subject, which is the 

target high-binding zone for [11C]-Raclopride, provided the first evaluation of the IDIFs 

extracted with both the HC method and the H4V method.  

In the first place, the two-tissue model lead to a considerable dispersion of the 

estimated BP values for the striatum VOI. That happened using the IDIFs of both the 

Figure 5.12 – Correlation  between the voxel-wise BP values determined with the SRTM and the 

corresponding ones determined with the Logan plot, for subject nº1, using the IDIF extracted with the 

HC method (left) and the IDIF extracted with the H4V method (right) as input. This results are relative 

to the first sequence of images of figure 5.11. 
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HC method and of the H4V method. In addition, the BP values were in average 

overestimated in comparison to the BP values generated using the SRTM. The 

comparison between models mentioned in section 5.4.1, using perfect curves, expected 

an overestimation of the BP determined by the two-tissue model of about 6% when 

compared to the values determined with the SRTM. However even considering that 

assumption in the results, there was still a considerable overestimation of the BP. The 

HC method achieved the better performance by estimating BP with an average error of 

+16.55 ± 87.13%, while for the H4V the average error was +97.05 ± 165.34%. 

Recalling the results of the simulation performed in section 5.4.2, the overestimation of 

the binding potential had been associated to the underestimation of the peak and of the 

tail of the plasma curve, when the quantification was performed with the two-tissue 

model. The latter induces that probably the IDIFs estimated with both the HC method 

and H4V method were underestimated in comparison to the true AIF. Nevertheless, the 

HC method extracted IDIFs that, though still underestimated, were closer to the true 

input function values than the IDIFs extracted using the H4V method, since the average 

BP error of the latter was significantly higher. In fact, the H4V method produced for all 

subjects IDIFs with maximum peak values that were lower than the maximum peak 

values of the IDIFs extracted using the HC method, with an average relative difference 

of -14.4±11.23 %. The same happened for eleven of the thirteen subjects in the tail of 

the curves, with an average relative difference of -43.70±8.93%.  

On the other hand, by using the Logan plot to determine the BP of the striatum 

VOI, a good accuracy was achieved using both IDIF methods. It had been found before, 

in section 5.4.2, that the Logan plot was robust to AIF errors in the estimation of the BP, 

since it relies on the ratio DVHIGH/DVLOW. In average, the BP values were slightly 

underestimated in comparison to the ones determined using the SRTM. It had also been 

found in section 5.4.2 that there was a tendency for the Logan plot to underestimate the 

BP when there was an underestimation of the tail of the AIF, see figure 5.3. In 

agreement with the conclusions derived from the two-tissue model, the underestimated 

BP results achieved with the Logan plot also suggest that there was an underestimation 

of the true AIF by the IDIF extraction methods. The estimated DVHIGH and DVLOW 

point to a bigger underestimation by the H4V method. According to figure 5.2 (b), the 

DV estimation by the Logan plot is particularly sensitive to errors in the tail of the input 

curve. Those results suggest that an overestimation of the DV is associated to an 

underestimation of the tail of the AIF. The IDIFs extracted with the H4V method 
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produced DVHIGH estimates that were, on average, 54.18 ± 46.88% bigger than the 

DVHIGH values estimated using the IDIFs from the HC method. This result is in 

agreement with the fact of the H4V method had produced IDIF tails that were lower-

valued in comparison to the tails of the IDIFs extracted using the HC method, discussed 

in the previous paragraph.  

The generation of parametric BP images, by individually quantifying each voxel, 

is more demanding, since the TAC of each voxel is more noisy than the averaged VOI 

TAC. Using the two-tissue compartmental model to obtain voxel-wise quantification, 

results close to the reference parametric maps were observed for three subjects. In all 

cases, the IDIFs had been obtained using the HC method. Since the two-tissue 

compartmental model has been shown to be considerably sensitive to AIF errors, see 

figures 5.1 (a) and 5.1 (b), it is very likely that the three IDIFs were good estimates of 

the true AIF. In general, the other quantified images revealed overestimation and 

dispersion of BP voxel estimates, from which reliable results were not obtainable. 

Similarly to the results obtained using the striatum VOI, the overestimation of the 

voxel-wise BP values are probably related to an underestimation of the true input 

function. 

On the other hand, using the Logan plot, it was possible to quantify images for 

all the subjects, and high correlations between the SRTM quantified voxels and the 

voxels quantified with the Logan plot and IDIF were found. The slopes of the linear 

correlation equations revealed that in general, the BP of the voxels was slightly 

underestimated. As before, this underestimation of the BP is most likely related to the 

underestimation of the AIF by the blood-free IDIF methods. 

Taken together, the comparisons of the BP values estimated by the validated 

alternative method SRTM and by the methods proposed in this study, in the context of 

the relations found with the simulation performed on the beginning of the chapter, 

suggest that probably a major source of error was an underestimation of the spill-out 

effects, leading to underestimated IDIF curves. Although relying on possibly noisy 

estimates of the true input function, the HC method achieved better results than the H4V 

method. In the first place, closer BP values were estimated for the striatum VOI using 

the two-tissue compartmental model. In the second place, three parametric images were 

good estimates. On the phantom study, also both methods produced underestimated 

peaks and tails, with slightly better results achieved with the HC method. As studied in 

the previous chapter, the possibility of the source of error being overestimation of the 
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tails, because of spill-in from the surrounding tissue in the late frames, was discarded 

since the tissue values were controlled and the carotid activity was superior for all 

subjects, in average by +28.31±12.38%. 

It is also important to consider that several approximations were made. The 

parent fraction of radiotracer was not measured from blood samples; it was instead 

derived from the literature. Additionally, the plasma fraction was not measured, it was 

rather determined assuming a HCT value. And, most importantly, this was a totally non-

invasive study that did not use blood samples to correct for PVE. In addition, it is 

important to mention that most studies that relied on the maximum carotid voxel values 

performed improvements in the reconstruction algorithm. Even with such 

improvements, reliable results are not always achieved. For example in the study 

(Jurgen E M Mourik et al. 2008), accurate IDIFs were obtained for [11C]-Flumazenil 

relying on the four hottest voxels per plane, together with reconstruction improvements 

and blood samples used solely to correct the function for plasma fraction and 

metabolites. However when applying the same method to [18F]-FDG, (Zanotti-

Fregonara, Fadaili, et al. 2009) observed an underestimation of the of the AIF tail, in 

both phantoms and in clinical studies, which further lead to overestimated cerebral 

metabolic rate of glucose values.  

  

5.6. Conclusion 

 

In this chapter, the implementation of the blood-free IDIF methods studied in 

chapter 4 was made in [11C]-Raclopride PET images to derive the AIF and determine 

the binding potential for a group of subjects. 

The results suggest that relying on totally non-invasive IDIF methods for 

estimation of the AIF limits the possibility of obtaining good quantification estimates 

using the two-tissue compartmental model. The biggest obstacle seemed to be the 

underestimation of the spill-out effects, which could be improved by using some blood 

samples to calibrate the extracted TAC, according to the literature. Nevertheless, the HC 

method, although relying on a noisy approximation of the real concentration value, 

provided IDIFs which were closer to the real input function curves by providing a better 

estimation of the spill-out effects than the H4V method. 

On the other hand, by performing the quantification using the Logan plot, good 

estimates of the BP were determined using both IDIF methods. However, although the 
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Logan plot method implemented uses the IDIF as the main input, it still relies on a 

reference region TAC to determine the DV of the reference region (DVLOW). In the 

context of the problem that we are trying to solve this is not a valid solution, since the 

goal is to avoid the invasiveness of the gold-standard AIF estimation method, arterial 

sampling, for radiotracers in which a reference region is not available.  
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6. Summary and Conclusion 

  

Deriving the AIF directly from the PET images by selecting the voxels 

corresponding to the internal carotid arteries and performing the related corrections is an 

attractive solution to the gold-standard method of arterial cannulation. Nevertheless, 

IDIF estimation has proven to be a technically challenging process. The low 

reproducibility of the methods across studies, due to the large number of factors that 

influence the reliability of IDIF estimation, has been an obstacle to the implementation 

of this technique in clinical protocols.  

The biggest obstacle hindering the reliability of this technique are the PVE, in 

particular considering the carotid arteries diameter (5 millimeters) is close to the spatial 

resolution of PET cameras. The most successful IDIF techniques rely on using a 

number of blood samples to calibrate the function and correcting for PVE. In chapter 3, 

a study performed with a computational phantom allowed to understand the 

vulnerability of the blood-free methods to PVE and the gains to accuracy of using blood 

samples. 

PVE have been a major issue since most studies in the literature relied on 

standard PET scanners with limited spatial resolution and high noise levels associated 

(Schain et al. 2013). Most recent PET scanners, as the HRRT, increased the resolution 

of the PET images and the success rate of IDIF estimation. Nevertheless, even in the 

most recent studies blood samples were still used for PVE corrections and other type of 

corrections, as determining the parent fraction of tracer and the plasma concentration, 

which also account for the reliability of IDIF estimation and must be determined for 

most tracers. In addition, a susceptibility to errors due to patient movements in the PET 

scanner has also been found in the literature. This type of error is particularly relevant 

for patients with neurologic conditions such as Parkinson’s or Alzheimer’s disease. 

Typically, the carotids are defined in the early frames, the ones in which they are more 

clearly identifiable. If throughout the scanning procedure there is significant movement 

by the patient, the delineated ROIs would not match the later frames, therefore causing 

IDIF errors (Zanotti-Fregonara & Liow 2012). (Mourik et al. 2011) showed that even a 

small amount of patient movement (5mm translation or 6 º rotations) was associated 

with large underestimation and overestimation in the final DV values. (Zanotti-
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Fregonara & Liow 2012) observed that blood-based methods allowed accurate estimates 

of the DV even in cases of significant patient movements during the PET exam.  

The current study was a proof-of-concept that IDIF can be estimated totally non-

invasively and still provide good quantification estimates for [11C]-Raclopride PET 

images in some cases, as seen in chapter 5. Nevertheless, good estimates were achieved 

for a limited number of subjects and results suggest that there was a tendency to 

underestimate the AIF due to PVE. It is also important to account that unlike the case of 

[11C]-Raclopride, for most radiotracers the amount of metabolites produced 

substantially varies across subjects, and therefore the parent fraction curve has to be 

estimated individually.  

All together, it seems that the IDIF technique, as a totally non-invasive 

alternative to the arterial cannulation, seems far from being reliable enough to be of 

widespread use. It is very dependent on the radiotracer used and on the image 

acquisition process. This is a technique that should be validated independently for each 

radiotracer and certainly for most of them blood sampling will be required. In the end, 

the IDIF has the advantage of reducing the number blood samples to draw and, 

depending on the radiotracer arteriovenous equilibrium time, using venous blood 

samples instead of arterial ones may be made possible. 

The alternative solution to arterial cannulation, which is completely non-

invasive, is using a reference region TAC as input of the reference tissue models. 

Nevertheless this is not always possible, since for many tracers or conditions a reference 

region is not available.  

On the other hand, using a population-based input function (PBIF) is a potential 

good alternative. Although IDIFs are theoretically more flexible than the latter, because 

they calculate an individually tailored input function without assuming a common shape 

across different subjects, PBIF have the potential to reduce the number of blood 

samples used and is less time-consuming (Zanotti-Fregonara et al. 2012). However 

population based input functions have rarely been used to estimate the kinetic 

parameters with neuroreceptor PET studies. 

In the future, when blood sampling is available, it will be possible to reliably use 

the methods assessed in this thesis on projects in IBILI/ICNAS, after the individual 

adaptation of the methods for each radiotracer. In particular, the usage of IDIF methods 

relying on venous blood samples will be a less invasive alternative to arterial 

cannulation when using reference region methods is not a possibility. 
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