III. Resultados.

ADN mitocondrial nas	Populações	de Cabo Verde	e Guiné-Bissau.
----------------------	------------	---------------	-----------------

As sequências obtidas, para as duas regiões hipervariáveis de cada amostra de Cabo Verde (N=77) e Guiné-Bissau (N=79), foram comparadas com a *Cambridge Reference Sequence* (*CRS*), descrita por Anderson S, *et al*, em 1981, e as diferenças, polimorfismos ou mutações, foram registadas. Esta sequência foi revista por Andrews R M, *et al*, em 1999 (*rCRS*), tendo sido apontadas algumas correcções. Contudo, a numeração das posições nucleotídicas foi consensualmente mantida, de forma a facilitar a comparação de dados de diversos autores, o que para as regiões em estudo se traduz no facto de ser equivalente a comparação com as duas sequências 'padrão', CRS e rCRS.

Na análise genética dos polimorfismos do ADN mt destas populações, na sua comparação e classificação em haplogrupos foi considerado o maior intervalo de pares de bases para o qual foi possível obter informação para todas as amostras consideradas. Ou seja, para a região hipervariável I (HVI) foram consideradas todas as posições nucleotídicas compreendidas entre as bases 16024 a 16392 e para a região hipervariável II (HVII) foram consideradas as posições nucleotídicas compreendidas entre as bases 058 a 391, inclusive. Todos os polimorfismos de comprimento das regiões homopoliméricas foram excluídos destas análises. Para o estudo comparativo pelo Software Arlequim 3.11 (Excoffier L, *et al*, 2005) foram também ignoradas todas as inserções. Estas regiões, HVI e HVII, foram analisadas individualmente e em conjunto para cada população.

Numa comparação global, englobando populações representativas dos 5 Continentes (África, Europa, Ásia, América e Oceânia), foram realizadas duas análises distintas: uma análise considerando apenas a região HVI e outra visando ambas as regiões hipervariáveis, HVI e HVII, conjugadas numa só sequência. Na análise comparativa baseada na região HVI foi possível comparar um número significativamente superior de populações, uma vez que muitos investigadores baseiam os seus estudos apenas nesta região havendo, consequentemente, mais informação disponível para HVI.

Para esta análise foi necessário considerar intervalos diferentes dos da análise individual e comparativa de Cabo Verde e da Guiné-Bissau. Para tal, teve de se encontrar um consenso entre número de posições nucleotídicas a considerar e número máximo e relevância das populações a englobar nesta análise comparativa, sem se perder muita informação e poder discriminatório das sequências de ADN mt. Nesse sentido foi estabelecido que para a primeira região hipervariável, HVI, seriam consideradas as sequências nucleotídicas compreendidas entre a posição 16090 e 16365 e para a segunda região hipervariável, HVII, os polimorfismos de sequência a considerar seriam todos os compreendidos no intervalo entre as posições 073 a 340. Todos os polimorfismos de comprimento das regiões homopoliméricas foram excluídos destas análises. Para o estudo comparativo foram também ignoradas todas as inserções. As populações cuja informação disponível não abrangia a extensão dos intervalos referidos, quer para uma, quer para outra região, não foram utilizadas na comparação global dos dados obtidos para as populações alvo do presente trabalho. As sequências que apresentavam 3 ou mais posições nucleotídicas duvidosas ou indeterminadas (N na notação IUPAC), nos intervalos considerados, não foram consideradas no presente trabalho.

1. ARQUIPÉLAGO DE CABO VERDE

1.1. ANÁLISE DE SEQUÊNCIAS DE ADN MT

No arquipélago de Cabo Verde foram obtidas as sequências das duas regiões hipervariáveis, HVI (16024 – 16392) e HVII (58 – 391), para 77 indivíduos provenientes de diferentes ilhas. Foram encontradas 66 sequências diferentes (**K**) quando consideramos as 2 regiões hipervariáveis; destas, 11 sequências aparecem duas vezes, são partilhadas por 2 amostras. Para a HVI encontraram-se 54 sequências diferentes; 1 sequência aparece 5 vezes, outra 4 vezes, 3 aparecem 3 vezes e 10 sequências 2 vezes. Para a HVII identificaram-se 42 sequências diferentes; sendo 1 comum a 9 amostras, outra a 6, outra a 5 e outra a 4 amostras, 2 aparecem 3 vezes e 11 são comuns a 2 amostras (Anexo IV, Tabela III.2 e Tabela III.3).

No total das regiões HVI e HVII foram analisadas 703 posições e contabilizadas 97 posições polimórficas (**A**) na amostragem Caboverdiana, se incluirmos inserções o número de posições polimórficas é de 101. Para a HVI, 65 das 369 posições apresentam polimorfia, ou 66 posições considerando inserções. Das 334 posições da HVII, 32 são polimórficas, 35 se incluirmos inserções. As 5 posições mais polimórficas são, na HVI: **16223**: C→T (95% das amostras); **16278**: C→T (77%); **16390**: G→A (45%); **16189**: T→C (34%) e **16311**: T→C (27%); e na HVII: **263**: A→G (100%); **73**: A→G (99%); **152**: T→C (75%); **195**: T→C (65%) e **150**: C→T (51%). Se contabilizarmos polimorfismos de comprimento, verificamos que 99% das amostras possuem a inserção de uma base, Citosina, no segundo Poli-C da HVII (posições: 311 – 315), **315.1C**, o que está de acordo com a CRS revista (Anexo IV, Tabela III. 2 e Tabela III.3).

Considerando a análise conjunta das duas regiões e excluindo a região dos Poli-Cs da HVII, verifica-se a ocorrência de 6 amostras cujas sequências possuem 20 ou mais posições variáveis, 2 amostras apresentam 22 polimorfismos, 3 um total de 21 e 1 amostra com 20. Para as regiões hipervariáveis em separado foram encontradas 10 amostras com 10 ou mais polimorfismos na HVI, 8 com 11 polimorfismos e 2 amostras com 10. O número de amostras com mais de 10 polimorfismos é de 17 amostras na HVII, 1 amostra apresenta 13 polimorfismos, outra apresenta 12, 6 apresentam 11 posições com polimorfismo e 9 amostras 10 (Anexo IV, Tabela III.2).

A maioria dos polimorfismos detectados nesta população é substituições de bases, sendo evidente a tendência para alterações transicionais, com razões de *transição:transversão* de 441:15 na HVI e de 439:37 na HVII. As transições são principalmente pirimídicas em ambas as regiões. Na HVI apenas se registam transversões de Citosinas e Adeninas, no entanto a HVII apresenta transversões envolvendo as quatro bases, Citosina, Timina, Adenina e Guanina. Apenas 4 amostras apresentam uma delecção, na HVII (Tabela III.1).

Como referido, a inserção de Citosinas na zona dos poli-C's ocorre com muita frequência na HVII, observando-se apenas uma vez na HVI. Estas zonas são frequentemente heteroplásmicas no número de bases que contêm (heteroplasmia de comprimento), originando desfasamentos nas sequências do ADNmt de uma mesma amostra. Este fenómeno está presente em 11 amostras, 9 amostras na HVI e 2 na HVII (Anexo IV, Tabela III.1).

Tabela III.1 – Polimorfismos de sequência, comprimento e heteroplasmias das regiões hipervariáveis do ADN mitocondrial na população de Cabo Verde.

	The state of the s		
		HVRI	HVRII
N.º Total de polimorfismos d	le sequência.	456	476
Razão Transição: Trans	sversão	441:15	439:37
Transições de pirimidinas:	T-C	101	136
	C-T	237	129
Transições de purinas:	A-G	40	148
	G-A	63	26
Transversões:	C-A	1	6
	C-G	3	-
	T-A	-	-
	T-G	-	17
	G-C	-	1
	G-T	-	7
	A-T	1	-
	A-C	10	6
Inserções	Total:	1	94
3		1 (16193.1C)	17 <i>(309.1C)</i>
		-	1 (309.2C)
		-	76 <i>(315.1C)</i>
Delecções	Total:	0	4
		-	4 (249 A)
Heteroplasmias	Total:	9	2
•	Sequência	-	-
	Comprimento	9 (Poli-C)	2 (Poli-C)

1.2. CLASSIFICAÇÃO EM HAPLOGRUPOS

A classificação em Haplogrupos e Sub-Haplogrupos foi efectuada com base nas sequências das duas regiões hipervariáveis do ADN mt, HVI e HVII, recorrendo a uma ferramenta para uso forense disponível on-line: 'mtDNAmanager – forensic mtDNA database' (http://mtmanager.yonsei.ac.kr), e verificada manualmente.

Tabela III.2 – Polimorfismos encontrados nas sequências das duas regiões hipervariáveis (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo poli-C's) do ADN mitocondrial nas amostras de Cabo Verde, seriados de acordo com a classificação em Haplogrupos.

Amos tra	"Raça"	Ilha	Haplo grupo	HVI (Polimorfismos)	HVII (Polimorfismos)
66	Negra	Sotav. Santiago	D4k	16192T 16223T 16278T 16390A	73G 93G 146C 152C 182T 195C 198T 204C 263G 325T
48	Negra	Sotav. Santiago	L0a1	16129A 16148T 16168T 16172C 16187T 16188G 16189C 16223T 16230G 16311C 16320T	93G 152C 189G 200G 236C 247A 263G
63	Negra	Sotav. Santiago	L1b	16126C 16187T 16189C 16223T 16264T 16270T 16278T 16311C	73G 152C 182T 185T 189G 195C 247A 263G 368G
21	Mulata	Sotav. Fogo	L1b1	16114G 16126C 16187T 16188T 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G
28	Branca	Sotav. Maio	L1b1	16126C 16145A 16187T 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G
39	Negra	Sotav. Santiago	L1b1	16104T 16187T 16189C 16223T 16270T 16278T 16289G 16293G 16311C	73G 152C 182T 185T 195C 247A 263G
52	Negra	Sotav. Santiago	L1b1	16126C 16187T 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G
53	Negra	Sotav. Santiago	L1b1	16126C 16187T 16189C 16223T 16256T 16264T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G
73	Mulata	Sotav. Santiago	L1b1	16114G 16126C 16187T 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G
69	Mulata	Sotav. Santiago	L1c	16129A 16187T 16189C 16223T 16248T 16261T 16278T 16311C 16360T	73G 151T 152C 182T 186A 189C 195C 247A 263G 291T 297G 316A
1	Negra	Barlav. S Nicolau	L1c1	16129A 16163G 16187T 16189C 16223T 16278T 16293G 16294T 16304C 16311C 16360T	73G 151T 152C 182T 186A 189C 195C 198T 247A 263G 316A
45	Negra	Sotav. Santiago	L1c1	16129A 16163G 16187T 16189C 16223T 16278T 16293G 16294T 16304C 16311C 16360T	73G 151T 152C 182T 186A 189C 247A 263G 316A
4	Branca	Barlav. S Vicente	L1c1	16129A 16163G 16187T 16189C 16223T 16278T 16293G 16294T 16304C 16311C 16360T	73G 151T 152C 182T 186A 189C 195C 198T 247A 263G 316A
5	Branca	Barlav. Sto Antão	L1c1	16129A 16163G 16187T 16189C 16223T 16278T 16293G 16294T 16304C 16311C 16360T	73G 151T 152C 182T 186A 189C 195C 247A 263G 316A
7	Negra	Barlav. Sto Antão	L1c1	16129A 16163G 16187T 16189C 16223T 16278T 16293G 16294T 16304C 16311C 16360T	73G 151T 152C 182T 186A 189C 195C 247A 263G 316A
43	Negra	Sotav. Santiago	L2a	16223T 16230G 16278T 16294T 16390A	73G 146C 152C 195C 263G
11	Negra	Sotav. Brava	L2a1	16111T 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 228A 263G
14	Branca	Sotav. Fogo	L2a1	16183C 16189C 16223T 16274A 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G
17	Negra	Sotav. Fogo	L2a1	16086C 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 198T 263G
20	Mulata	Sotav. Fogo	L2a1	16093C 16189C 16223T 16264T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G
46	Mulata	Sotav. Santiago	L2a1	16183C 16189C 16192T 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G 264T
62	Mulata	Sotav. Santiago	L2a1	16111T 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G

Tabela III.2 (cont.) – Polimorfismos encontrados nas sequências das duas regiões hipervariáveis (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo poli-C's) do ADN mitocondrial nas amostras de Cabo Verde, seriados de acordo com a classificação em Haplogrupos.

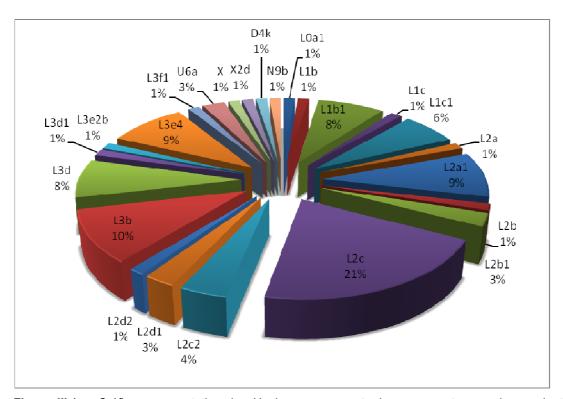
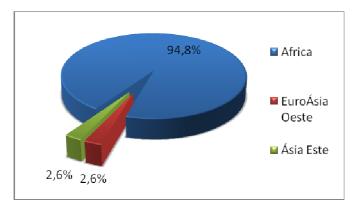

Amos tra	"Raça"	Ilha	Haplo grupo	HVI (Polimorfismos)	HVII (Polimorfismos)		
6	Mulata	Barlav. Sto Antão	L2a1	16111T 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G		
10	Mulata	Sotav. Brava	L2b	16093C 16114A 16129A 16213A 16223T 16271C 16278T 16390A	73G 146C 150T 152C 182T 195C 198T 207A 263G		
38	Negra	Sotav. Santiago	L2b1	16114A 16129A 16213A 16223T 16278T 16355T 16362C 16390A	73G 150T 152C 182T 195C 198T 204C 249d 263G		
68	Mulata	Sotav. Santiago	L2b1	16114A 16129A 16213A 16223T 16278T 16355T 16362C 16390A	73G 150T 152C 182T 195C 198T 204C 263G		
12	Branca	Sotav. Brava	L2c	16223T 16278T 16311C 16390A	73G 93G 146C 150T 152C 182T 195C 263G 325T		
13	Mulata	Sotav. Fogo	L2c	16192T 16223T 16278T 16390A	73G 89C 93G 146C 150T 152C 182T 195C 198T 263G 325T		
24	Mulata	Sotav. Fogo	L2c	16178C 16223T 16278T 16380T 16390A	73G 93G 146C 150T 152C 182T 195C 198T 263G 325T		
2	Branca	Barlav. S Nicolau	L2c	16192T 16223T 16261T 16278T 16390A	73G 89C 93G 146C 150T 152C 182T 195C 198T 263G 325T		
31	Mulata	Sotav. Santiago	L2c	16051G 16223T 16278T 16390A	73G 93G 146C 150T 152C 182T 195C 198T 263G 325T		
3	Branca	Barlav. S Vicente	L2c	16177G 16223T 16278T 16311C 16390A	73G 146C 150T 152C 182T 195C 263G 297G 325T		
51	Mulata	Sotav. Santiago	L2c	16223T 16278T	73G 93G 146C 150T 152C 182T 185C 189G 263G 325T		
55	Negra	Sotav. Santiago	L2c	16223T 16278T 16390A	73G 93G 146C 150T 152C 182T 183G 195C 198T 199C 204C 263G 325T		
56	Mulata	Sotav. Santiago	L2c	16051G 16223T 16278T 16390A	73G 93G 146C 150T 152C 182T 195C 198T 263G 319C 325T		
57	Negra	Sotav. Santiago	L2c	16223T 16261T 16278T 16390A	73G 146C 150T 152C 182T 195C 198T 263G 325T 73G 93G 146C 150T 152C 182T 195C		
61	Branca	Sotav. Santiago	L2c	16192T 16223T 16261T 16278T 16390A	198T 204C 263G 325T		
67	Branca	Sotav. Santiago	L2c	16223T 16278T 16390A	73G 93G 146C 150T 152C 182T 194T 198T 263G 325T		
74	ND	ND ND	L2c	16177G 16223T 16278T 16311C 16390A	73G 146C 150T 152C 182T 195C 263G 325T 73G 146C 150T 152C 182T 195C 198T		
76	ND	Barlav.	L2c	16223T 16261T 16278T 16390A	263G 325T 73G 146C 150T 152C 182T 195C 263G		
8	Mulata	Sto Antão Sotav.	L2c	16177G 16223T 16278T 16311C 16390A	297G 325T 73G 93G 146C 150T 152C 182T 195C		
33	Mulata	Santiago Sotav.	L2c	16223T 16278T 16320T 16390A 16084A 16093C 16220G 16223T 16264T 16278T	198T 263G 325T		
29	Mulata	Santiago Sotav.	L2c2	16064A 16093C 16220G 16223T 16264T 16278T 16311C 16390A 16093C 16126C 16223T 16264T 16274A 16278T	73G 93G 146C 150T 152C 182T 195C 198T 263G 325T 73G 93G 146C 150T 152C 182T 195C		
34	Mulata	Santiago	L2c2	16390A	263G 325T 73G 93G 146C 150T 152C 182T 195C		
58	Branca	Sotav. Santiago	L2c2	16084A 16093C 16220G 16223T 16264T 16278T 16311C 16390A	198T 263G 325T		
47	Branca	Sotav. Santiago	L2d1	16129A 16182G 16183C 16193.1C 16278T 16300G 16354T 16390A	73G 146C 150T 152C 195C 263G 310C		
9	Mulata	Sotav. Brava	L2d1	16093C 16129A 16189C 16259T 16278T 16300G 16354T 16390A	73G 146C 150T 195C 263G		
30	Mulata	Sotav. Santiago	L2d2	16111A 16145A 16184T 16189C 16223T 16239T 16278T 16291T 16292T 16355T 16390A	73G 146C 151T 152C 182T 185A 189G 263G		
18	Branca	Sotav. Fogo	L3b	16124C 16223T 16234T 16278T 16362C	73G 263G		
19	Negra	Sotav. Fogo	L3b	16124C 16223T 16234T 16278T 16362C	73G 151T 152C 263G		
22	Branca	Sotav. Fogo	L3b	16124C 16223T 16264T 16278T 16362C	73G 151T 152C 263G		
23	Branca	Sotav. Fogo	L3b	16124C 16223T 16234T 16278T 16362C	73G 263G		
42	Mulata	Sotav. Santiago	L3b	16124C 16223T 16278T 16362C	73G 151T 152C 263G		

Tabela III.2 (cont.) – Polimorfismos encontrados nas sequências das duas regiões hipervariáveis (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo poli-C's) do ADN mitocondrial nas amostras de Cabo Verde, seriados de acordo com a classificação em Haplogrupos.


Amos tra	"Raça"	Ilha	Haplo grupo	HVI (Polimorfismos)	HVII (Polimorfismos)		
50	Negra	Sotav. Santiago	L3b	16124C 16183C 16189C 16214T 16223T 16278T 16362C	73G 150T 263G		
60	Mulata	Sotav. Santiago	L3b	16124C 16188T 16223T 16278T 16362C	73G 263G		
75	ND	ND	L3b	16124C 16223T 16278T 16355T 16362C	73G 189G 263G		
15	Negra	Sotav. Fogo	L3d	16124C 16223T	73G 152C 189G 195C 207A 263G		
16	Negra	Sotav. Fogo	L3d	16124C 16223T	73G 152C 189G 195C 207A 263G		
54	Negra	Sotav. Santiago	L3d	16124C 16223T	73G 150T 152C 263G		
59	Branca	Sotav. Santiago	L3d	16093C 16124C 16223T	73G 146C 152C 263G		
70	Branca	Sotav. Santiago	L3d	16124C 16223T	73G 150T 152C 263G		
71	Mulata	Sotav. Santiago	L3d	16111T 16124C 16223T	73G 152C 199C 263G		
40	Negra	Sotav. Santiago	L3d1	16124C 16223T 16319A	73G 146C 152C 195C 263G		
65	Negra	Sotav. Santiago	L3e2b	16172C 16183C 16189C 16223T 16259T 16320T	73G 150T 195C 263G		
27	Negra	Sotav. Maio	L3e4	16051G 16223T 16264T 16299G	73G 150T 263G		
32	Mulata	Sotav. Santiago	L3e4	16051G 16223T 16264T 16299G	73G 150T 263G		
37	Branca	Sotav. Santiago	L3e4	16051G 16093C 16223T 16247G 16264T 16311C	73G 150T 263G		
44	Negra	Sotav. Santiago	L3e4	16051G 16223T 16264T	73G 150T 263G		
49	Mulata	Sotav. Santiago	L3e4	16051G 16223T 16257T 16264T	73G 150T 263G		
72	Mulata	Sotav. Santiago	L3e4	16051G 16148T 16223T 16264T	73G 150T 263G		
77	ND	ND	L3e4	16051G 16223T 16264T	73G 150T 257G 263G		
35	Negra	Sotav. Santiago	L3f1	16153A 16209C 16223T 16230G 16260T 16292T	73G 189G 263G		
36	Negra	Sotav. Santiago	N9b	16172C 16182G 16183C 16189C 16223T	73G 150T 195C 263G		
25	Mulata	Sotav. Fogo	U6a	16172C 16183C 16189C 16219G 16278T	73G 150T 263G		
26	Branca	Sotav. Fogo	U6a	16172C 16183C 16189C 16219G 16278T	73G 150T 263G		
64	Negra	Sotav. Santiago	X	16111A 16145A 16183T 16189C 16223T 16239T 16278T 16292T 16355T 16390A	73G 146C 152C 185A 189G 263G		
41	Negra	Sotav. Santiago	X2d	16189C 16223T 16259T 16274A 16278T 16390A	73G 146C 182T 195C 207A 263G 316A		

Os Haplogrupos mais frequentes são *L2c* (21%), *L3b* (10%), *L2a1* (9%), *L3e4* (9%), *L1b1* (8%) e *L3d* (8%), que são característicos do Continente Africano (Tabela III.2, Figura III.1). Os Haplogrupos característicos deste continente têm uma frequência elevada na população analisada (94,8%), existindo numa percentagem reduzida Haplogrupos

característicos da região Oeste da EuroÁsia (2,6%), **X** e **X2d**, e do Este da Ásia (2,6%), **D4k** e **N9b**, correspondendo 1 amostra a cada um destes Haplogrupos não africanos (Tabela III.2, Figura III.1, Figura III.2).

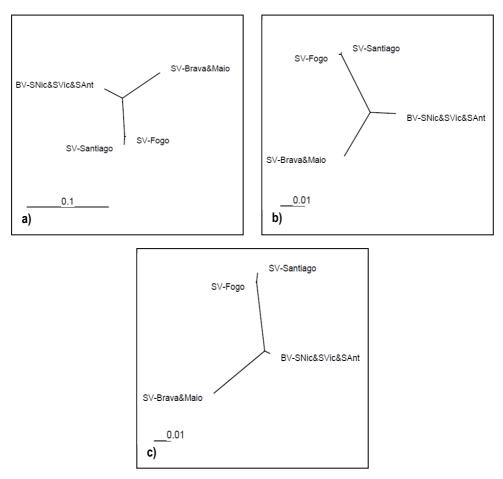
Figura III.1 – Gráfico representativo dos Haplogrupos encontrados na amostragem da população Caboverdiana analisada.

Figura III.2 – Gráfico representativo da origem Continental dos Haplogrupos encontrados nas amostras analisadas para a população Caboverdiana.

1.3. ANÁLISE INTRA – POPULACIONAL

Os parâmetros de diversidade molecular foram obtidos recorrendo ao software *Arlequin 3.11* (Excoffier L, *et al*, 2005). Nesta análise não foram consideradas inserções, delecções nas zonas homopoliméricas e heteroplasmias de comprimento. Estes parâmetros foram calculados de cada uma das regiões hiperváriáveis e para o seu conjunto, HVI, HVII e HVII + HVII. Foi feita uma análise global da população de Cabo Verde e uma análise intra – populacional considerando os dois grupos do arquipélago, Barlavento e Sotavento, e ainda cada ilha, quando a amostragem o permitia, com 5 ou mais amostras (Tabela II.1, Tabela III.3).

Os parâmetros de diversidade de sequência (\mathbf{J}) e nucleotídica ($\mathbf{\pi}$) apresentam valores semelhantes entre as ilhas, grupos e a população global de Cabo Verde. Exceptua-se o grupo do Barlavento (ilhas de São Nicolau, São Vicente e Santo Antão), com o menor valor de \mathbf{J} para a região HVI. O conjunto das ilhas Brava e Maio apresenta um valor de \mathbf{J} de 1 (número de amostras = número de sequências) para todas as análises. A ilha Fogo apresenta a menor diversidade nucleotídica ($\mathbf{\pi}$), em particular para a HVII e para o conjunto das duas regiões (Tabela III.3).


Tabela III.3 – Parâmetros de diversidade molecular obtidos para Cabo Verde para as duas regiões hipervariáveis e o seu conjunto (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo inserções e polimorfismos de comprimento nas regiões de poli-C's).

		HVI						ı	HVII		HVI + HVII				
	N	K	A	J	π	N	K	A	J	π	N	K	A	J	π
Santiago	45	40	58	0,9949 +/- 0,0058	0,0214 +/- 0,0112	45	31	29	0,9697 +/- 0,0138	0,0174 +/- 0,0094	45	43	87	0,9980 +/- 0,0052	0,0195 +/- 0,0099
Fogo	14	10	26	0,9451 +/- 0,0451	0,0182 +/- 0,0102	14	9	15	0,9451 +/- 0,0382	0,0142 +/- 0,0083	14	11	41	0,9670 +/- 0,0366	0,0162 +/- 0,0088
Brava & Maio	6	6	24	1,0000 +/- 0,0962	0,0250 +/- 0,0155	6	6	13	1,0000 +/- 0,0962	0,0156 +/- 0,0101	6	6	37	1,0000 +/- 0,0962	0,0205 +/- 0,0124
Sotavento	65	52	64	0,9918 +/- 0,0046	0,0210 +/- 0,0110	65	37	31	0,9638 +/- 0,0120	<i>0,0166</i> +/- 0,0089	65	62	97	0,9970 +/- 0,0030	0,0185 +/- 0,0094
Barlavento	8	4	15	0,7500 +/- 0,1391	0,0189 +/- 0,0113	8	5	14	0,8929 +/- 0,0858	0,0193 +/- 0,0117	8	5	29	0,8929 +/- 0,0858	0,0191 +/- 0,0110
Cabo Verde	77	54	65	0,9880 +/- 0,0045	0,0211 +/- 0,0110	77	42	32	0,9713 +/- 0,0085	0,0173 +/- 0,0093	77	66	97	0,9962 +/- 0,0027	0,0193 +/- 0,0097

 $N - n^{\circ}$ de amostras; K - número de sequências diferentes; A - número de posições nucleotídicas que apresentam polimorfismo; J - diversidade genética de sequências / haplótipos; $\pi - diversidade$ nucleotídica.

As matrizes de distâncias F_{ST}, calculadas pelo software *Arlequin 3.11* (Excoffier L, *et al*, 2005), foram utilizadas para gerar as árvores filogenéticas intra-populacionais, para cada análise realizada, HVI, HVII e HVI + HVII (Figura III.3, Anexo V).

Para esta análise foi considerado um nível de significância de distâncias de P=0,05, e verificamos que relativamente à análise da região HVI, da região HVII e da conjugação de HVI + HVII o grupo correspondente às ilhas do Barlavento (São Nicolau, São Vicente e Santo Antão) se encontra significativamente distante das ilhas do Sotavento Fogo e Santiago, embora esteja próximo do grupo constituído pelas ilhas do Sotavento Brava e Maio. De facto, a distância Fst entre o Sotavento e o Barlavento Caboverdiano é significativa, Fst = 0,16688 para a HVI, Fst = 0,15947 para a HVII e Fst = 0,16421 para a HVI+II, com P= 0.00000+-0.0000 para as 3 análises (Anexo V).

Legenda: SV - Sotavento; BV - Barlavento; SNic - São Nicolau; SVic - São Vicente; SAnt - Santo Antão

Figura III.3 – Árvores filogenéticas entre ilhas / grupos de ilhas de Cabo Verde, desenhadas com base na matriz de distância *pairwise* F_{ST} , calculadas para cada uma das regiões hipervariáveis e a sua conjugação: **a)** HVI (16024-16392); **b)** HVII (058-391); **c)** HVI + HVII (16024-16392 e 058-391).

2. REPÚBLICA DA GUINÉ-BISSAU

2.1. ANÁLISE DE SEQUÊNCIAS DE ADN MT

Na República da Guiné-Bissau foram obtidas as sequências das duas regiões hipervariáveis, HVI (16024 – 16392) e HVII (58 – 391), para 79 indivíduos. Esta população apresenta 68 sequências (**K**) diferentes quando consideramos as 2 regiões hipervariáveis, 1 sequência é comum a 4 amostras, 2 a 3 amostras e 4 aparecem 2 vezes. Para a HVI temos 61 sequências diferentes, 1 aparece 5 vezes, outra 4 vezes, 2 aparecem 3 vezes e 7 sequências 2 vezes. Na HVII o número de sequências diferentes é de 45; destas 1 é comum a 7 amostras, 2 a 6, 1 outra a 4, 4 a 3 e 5 são comuns a 2 amostras (Anexo IV, Tabela III.5 e Tabela III.6).

Nesta amostragem foram identificadas 97 (101, contabilizando as inserções) posições polimórficas (**A**), em 703 posições das duas regiões hipervariáveis, 63 para HVI, em 369 posições, e 34 (38, inserções incluídas) nas 334 posições da HVII. As 5 posições mais polimórficas da região HVI são: 16223: C→T em 91% das amostras; 16278: C→T, 63%; 16189: T→C, 43%; 16390: G→A, 37% e 16311: T→C, 33%. Na HVII as 5 posições com mais polimorfias são as seguintes: 263: A→G, 100% das amostras; 73: A→G, 92%; 152: T→C, 75%, 195: T→C, 59% e 146: C→T, 39%. Todas as amostras, 100%, possuem uma inserção de uma base, Citosina, no segundo Poli-C desta região (posições: 311 – 315), identificada como 315.1C (Anexo IV, Tabela III.5 e Tabela III.6).

Analisando as duas regiões em conjunto e excluindo os Poli-Cs da HVII encontramos 11 amostras com 20 ou mais posições variáveis, 1 apresenta 25 polimorfismos, 1 outra 23, 3 possuem 22 e 4 um total de 20. Na HVI foram encontradas 15 amostras com 10 ou mais polimorfismos, 5 apresentam 12, outras 5 apresentam 11 e mais 5 possuem 10, na HVII encontramos 11 amostras com 10 ou mais polimorfismos, 2 possuem 14, 1 apresenta 13, 4 possuem 12, 1 possui 11 posições polimórficas e 3 amostras 10 (Anexo IV, Tabela III.5).

A maioria das variações à CRS (Anderson S *et al*, 1981) detectadas nesta população está, também, ligada a fenómenos de substituição de bases. As razões de *transição: transversão* são de 383:19 na HVI e de 479:27 na HVII. As transições pirimídicas são mais frequentes do que as purínicas em ambas as regiões, verificando-se uma maior desproporção

na HVI. As transversões presentes na HVI envolvem Citosinas, Timinas e Adeninas e na HVII envolvem as quatro bases. As inserções e delecções são pouco frequentes, nomeadamente na HVI onde apenas se detecta 1 delecção (16183 A) e nenhuma inserção, na HVII registam-se 4 delecções (247 G) e 107 inserções na zona dos poli-C's (Tabela III.4).

Nesta população também verificamos a ocorrência de heteroplasmias de comprimento associados a inserções nesta região (poli-C's). No total, 18 amostras apresentaram heteroplasmias de comprimento, 13 amostras na HVI, 4 na HVII e 1 amostra possui heteroplasmia de comprimento nas duas regiões. Foi detectada uma heteroplasmia de sequência na posição 16261 da HVI, verificando-se a presença de Citosina e Timina em proporções equivalentes (Anexo IV, Tabela III.4).

Tabela III.4 – Polimorfismos de sequência, comprimento e heteroplasmias das regiões hipervariáveis do ADN mitocondrial na população da Guiné-Bissau.

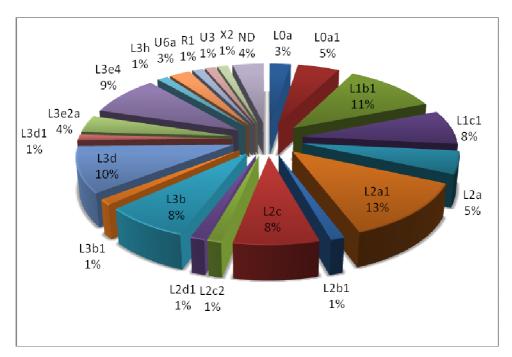
		HVRI	HVRII
N.º Total de polimorfismos	de sequência.	402	606
Razão Transição: Tra	nsversão	383:19	575:31
Transições de pirimidinas:	T-C	87	149
, ,	C-T	224	195
Transições de purinas:	A-G	39	186
	G-A	33	45
Transversões:	C-A	6	7
	C-G	6	-
	T-A	-	3
	T-G	2	-
	G-C	-	-
	G-T	-	9
	A-T	-	-
	A-C	5	12
Inserções:	Total:	-	107
		-	1 (94.1G)
		-	25 (309.1C)
		-	2 (309.2C)
		-	79 <i>(315.1C)</i>
Delecções:	Total:	1	4
3		1 (16183 A)	4 (247 G)
Heteroplasmias:	Total:	15	5
	Sequência	1 (16261 C/T)	-
	Comprimento	14 (Poli-C)	5 (Poli-C)

2.2. CLASSIFICAÇÃO EM HAPLOGRUPOS

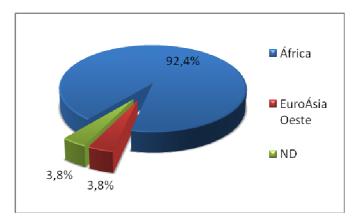
A classificação em Haplogrupos e Sub-Haplogrupos foi efectuada com base nas sequências das duas regiões hipervariáveis do ADN mt, HVI e HVII, recorrendo ao 'mtDNAmanager – forensic mtDNA database' (http://mtmanager.yonsei.ac.kr) e depois verificada manualmente.

Tabela III.5 – Polimorfismos encontrados nas sequências das duas regiões hipervariáveis (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo poli-C's) do ADN mitocondrial nas amostras da Guiné-Bissau, seriados de acordo com a classificação em Haplogrupos.

Amos tra	Etnia	Haplo grupo	HVI (Polimorfismos)	HVII (Polimorfismos)
40	Manjaco	L0a	16129A 16148T 16168T 16172G 16187T 16188A 16189C 16223T 16230G 16311C 16320T 16390A	152C 185A 189G 200G 236C 247A 263G
43	Manjaco	L0a	16129A 16148T 16168T 16172G 16187T 16188A 16189C 16223T 16230G 16311C 16320T 16390A	93G 152C 185A 189G 200G 236C 247A 263G
6	Balanta	L0a1	16129A 16148T 16168T 16172C 16187T 16188G 16189C 16223T 16230G 16311C 16320T	93G 152C 185A 189G 200G 236C 247A 263G
30	Mancanha	L0a1	16129A 16148T 16168T 16172C 16187T 16188G 16189C 16223T 16230G 16309G 16320T	93G 185A 189G 236C 247A 263G
44	Manjaco	L0a1	16093C 16129A 16148T 16168T 16172C 16187T 16188G 16189C 16223T 16230G 16311C 16320T	93G 146C 152C 185A 189G 200G 236C 247A 263G
46	Manjaco	L0a1	16129A 16148T 16168T 16172C 16174T 16187T 16188G 16189C 16223T 16230G 16311C 16320T	93G 95C 152C 185A 189G 200G 236C 247A 263G
4	Balanta	L1b1	16126C 16187T 16189C 16223T 16256T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 188G 195C 247A 262T 263G 357G
12	Balanta	L1b1	16114G 16126C 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G 274G
17	Beafada	L1b1	16126C 16187T 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G 357G
24	Fula	L1b1	16093C 16126C 16187T 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G 357G
25	Fula	L1b1	16069T 16093C 16126C 16187T 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G 357G
34	Mancanha	L1b1	16111T 16126C 16187T 16189C 16223T 16234T 16239T 16270T 16278T 16293G 16311C	73G 146C 152C 182T 185T 189G 247A 263G 357G
52	Papel	L1b1	16126C 16187T 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G 357G
53	Papel	L1b1	16114A 16126C 16189C 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G 357G
77	Saracule	L1b1	16126C 16187T 16189C 16213A 16223T 16264T 16270T 16278T 16293G 16311C	73G 152C 182T 185T 195C 247A 263G 357G
11	Balanta	L1c1	16038G 16086C 16129A 16187T 16189C 16223T 16278T 16293G 16294T 16360T	73G 151T 152C 182T 186A 189C 195C 198T 247A 263G 297G 316A
14	Beafada	L1c1	16129A 16178C 16187T 16189C 16293G 16294T 16311C 16360T	73G 151T 152C 182T 186A 189C 195C 198T 247d 263G 297G 316A
16	Beafada	L1c1	16129A 16163G 16187T 16189C 16223T 16278T 16293G 16294T 16311C 16360T	73G 146C 151T 152C 182T 186A 189C 195C 247A 263G 304T 316A
22	Fula	L1c1	16086C 16129A 16169T 16172C 16183C 16189C 16223T 16261T 16278T 16293G 16311C 16360T	73G 151T 152C 182T 186A 189C 195C 247d 263G 297G 316A
31	Mancanha	L1c1	16038G 16086C 16187T 16189C 16223T 16278T 16293G 16294T 16360T	73G 151T 152C 182T 186A 189C 195C 198T 204C 247A 263G 297G 316A
78	Sussu	L1c1	16093C 16129A 16187T 16189C 16192T 16223T 16256T 16261T 16278T 16293G 16311C	73G 151T 152C 182T 186A 189C 194T 195C 198T 245C 247d 263G 297G 316A


Tabela III.5 (cont.) – Polimorfismos encontrados nas sequências das duas regiões hipervariáveis (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo poli-C's) do ADN mitocondrial nas amostras da Guiné-Bissau, seriados de acordo com a classificação em Haplogrupos.

Amos tra	Etnia	Haplo grupo	HVI (Polimorfismos)	HVII (Polimorfismos)
19	Fula	L2a	16140C 16223T 16278T 16294T 16390A	73G 146C 152C 195C 263G 309T
48	Manjaco	L2a	16223T 16278T 16290G 16294T 16355T 16390A	73G 143A 146C 152C 195C 263G
58	Papel	L2a	16189C 16223T 16278T 16294T 16311C 16390A	73G 143A 146C 152C 195C 263G
73	Bijagós	L2a	16223T 16230G 16278T 16294T 16390A	73G 146C 152C 195C 263G
21	Fula	L2a1	16086C 16223T 16274A 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G
36	Manjaco	L2a1	16189C 16223T 16270T 16278T 16291T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G 264T
37	Manjaco	L2a1	16183d 16223T 16256T 16261Y 16278T 16294T 16309G 16368C 16390A	73G 146C 152C 195C 198T 263G
49	Manjaco	L2a1	16189C 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G 264T
50	Papel	L2a1	16189C 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G
51	Papel	L2a1	16223T 16278T 16294T 16309G 16390A	73G 146C 152C 195C 263G
57	Papel	L2a1	16093C 16183C 16189C 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G 264T
60	Papel	L2a1	16183C 16189C 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G
63	Papel	L2a1	16189C 16223T 16278T 16294T 16309G 16390A	73G 143A 146C 152C 195C 263G
65	Papel	L2a1	16189C 16192T 16223T 16278T 16294T 16309G 16390A	73G 146C 152C 195C 263G
26	Mancanha	L2b1	16114A 16213A 16223T 16239T 16278T 16355T 16362C 16390A	73G 150T 152C 182T 195C 198T 263G 292A
9	Balanta	L2c	16223T 16278T 16390A	73G 89C 93G 95G 146C 150T 152C 182T 195C 198T 263G 325T
15	Beafada	L2c	16223T 16278T 16390A	73G 93G 146C 150T 152C 182T 195C 198T 263G 325T
20	Fula	L2c	16223T 16278T 16390A	73G 93G 150T 152C 182T 195C 198T 263G 325T
38	Manjaco	L2c	16223T 16278T 16390A	73G 93G 95C 146C 150T 152C 182T 195C 198T 263G 325T
67	Papel	L2c	16223T 16234T 16278T 16362C 16390A	73G 89C 93G 95C 146C 150T 152C 182T 195C 198T 263G 325T
70	Mansoanca	L2c	16223T 16278T 16390A	73G 93G 146C 150T 152C 182T 195C 198T 263G 325T
27	Mancanha	L2c2	16093C 16126C 16223T 16264T 16274A 16278T 16390A	73G 93G 146C 150T 152C 182T 195C 263G 325T
23	Fula	L2d1	16129A 16189C 16278T 16300G 16354T 16378T 16390A	73G 146C 150T 195C 199C 263G
33	Mancanha	L3b	16124C 16223T 16362C	73G 152C 263G 316A
47	Manjaco	L3b	16124C 16223T 16362C	73G 152C 263G 316A
55	Papel	L3b	16124C 16223T 16278T 16362C	73G 263G
56	Papel	L3b	16124C 16223T 16234T 16278T 16362C	73G 151T 152C 263G
59	Papel	L3b	16124C 16183C 16189C 16223T 16278T 16362C	73G 195C 207A 263G
72	Nalu	L3b	16124C 16223T 16278T 16362C	73G 151T 152C 263G


Tabela III.5 (cont.) – Polimorfismos encontrados nas sequências das duas regiões hipervariáveis (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo poli-C's) do ADN mitocondrial nas amostras da Guiné-Bissau, seriados de acordo com a classificação em Haplogrupos.

Amos tra	Etnia	Haplo grupo	HVI (Polimorfismos)	HVII (Polimorfismos)				
79	ND	L3b1	16223T 16278T 16288C 16295T 16362C	73G 146C 263G				
75	Cobiana	L3d	16124C 16223T	73G 151T 152C 182T 186A 189C 194T 195C 198T 245A 247d 263G 297G 316A				
7	Balanta		16124C 16223T 16311C	73G 150T 152C 263G				
28	Mancanha	L3d	16093C 16124C 16223T	73G 146C 152C 263G				
32	Mancanha	L3d	16124C 16223T 16288C 16357C	73G 150T 152C 263G				
39	Manjaco	L3d	16111T 16124C 16223T	73G 152C 263G				
42	Manjaco	L3d	16111T 16124C 16223T	73G 152C 263G				
45	Manjaco	L3d	16124C 16223T 16288C 16357C	73G 150T 152C 263G				
68	Mandinga	L3d	16124C 16223T	73G 146C 152C 263G				
29	Mancanha	L3d1	16124C 16209C 16223T 16319A 16355T 16362C	73G 152C 263G				
1	Balanta	L3e2a	16223T 16320T	73G 150T 195C 198T 263G				
61	Papel	L3e2a	16223T 16320T	73G 150T 195C 198T 263G				
74	Bijagós	L3e2a	16223T 16320T	73G 150T 195C 198T 263G				
2	Balanta	L3e4	16051G 16093C 16223T 16264T 16311C	73G 150T 263G				
3	Balanta	L3e4	16051G 16223T 16264T	73G 150T 263G				
10	Balanta	L3e4	16051G 16223T 16264T	73G 150T 263G				
54	Papel	L3e4	16051G 16223T 16264T	73G 150T 263G 392C				
62	Papel	L3e4	16051G 16170G 16264T	73G 150T 263G				
69	Mandinga	L3e4	16051G 16093C 16148T 16223T 16264T 16311C	73G 150T 263G				
71	Nalu	L3e4	16051G 16223T 16264T	73G 150T 263G				
41	Manjaco	L3h	16179T 16189C 16192T 16215G 16223T 16256A 16284G 16311C	73G 189C 195C 263G				
5	Balanta	R1	16177G 16223T 16278T 16311C 16390A	73G 146C 150T 152C 182T 195C 263G				
64	Papel	U3	16223T 16343G 16355T	73G 150T 152C 235G 263G				
35	Manjaco	U6a	16111T 16172C 16183G 16189C 16219G 16278T	73G 150T 185A 189G 204C 207A 263G				
76	Felupe	U6a	16172C 16219G 16278T 16357C	73G 263G				
66	Papel	X2	16093C 16129A 16189C 16259T 16278T 16354T 16390A	73G 146C 150T 195C 263G				
18	Beafada	???	16217C 16223T 16264T 16278T 16311C 16390A	73G 93G 94.1G 146C 150T 152C 195C 263G 325T				
13	Balanta	???	16174T 16219G 16278T	73G 263G				
8	Balanta	???	16114A 16129A 16223T 16278T 16390A	73G 146C 150T 152C 182T 195C 198T 204C 213C 263G				

Os Haplogrupos mais frequentes são *L2a1* (13%), *L1b1* (11%), *L3d* (10%), *L3e4* (9%), *L1c1* (8%), *L2c* (8%) e *L3b* (8%), que são característicos do Continente Africano (Tabela III.5, Figura III.4). Os Haplogrupos Africanos são os mais frequentes (92,4%); 3,8 % das amostras (3) possuem Haplogrupos característicos do Oeste da EuroÁsia: *X2*, *U3* e *R1*. Não foi possível determinar o haplogrupo para 3 amostras (3,8%) (Tabela III.5, Figura III.5).

Figura III.4 – Gráfico representativo dos Haplogrupos encontrados na amostragem da população Caboverdiana analisada (ND – não determinado).

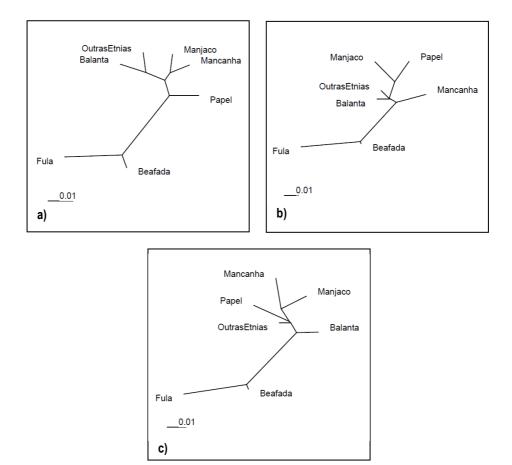
Figura III.5 – Gráfico representativo da origem Continental dos Haplogrupos encontrados nas amostras analisadas para a população Guineense (ND – não determinado).

2.3. ANÁLISE INTRA – POPULACIONAL

Os parâmetros de diversidade molecular foram calculados pelo software *Arlequin 3.11* (Excoffier L, *et al*, 2005), não tendo sido consideradas inserções, delecções nas zonas homopoliméricas e heteroplasmias de comprimento. Estes parâmetros foram calculados para cada uma das regiões hipervariáveis e a sua conjugação numa só sequência, HVI, HVII e HVI + HVII. Foi realizada uma análise global da Guiné-Bissau e uma análise intra – populacional de etnias, o limite estabelecido por grupo foi de um mínimo de 5 amostras da mesma etnia; as amostras de grupos étnicos com menos de 5 amostras foram agrupadas, com uma amostra de etnia desconhecida, num só grupo denominado de '*Outras*' (Tabela II.2, Tabela III.6).

Tabela III.6 – Parâmetros de diversidade molecular obtidos para a Guiné-Bissau para as duas regiões hipervariáveis e o seu conjunto (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo inserções e polimorfismos de comprimento nas regiões de poli-C's).

		HVI					HVII			HVI + HVII					
	N	K	A	J	π	N	K	A	J	π	N	K	A	J	π
Balanta	13	12	31	0,9872 +/- 0,0354	0,0214 +/- 0,0120	13	11	24	0,9615 +/- 0,0496	0,0196 +/- 0,0111	13	12	55	0,9872 +/- 0,0354	0,0206 +/- 0,0111
Beafada	5	5	17	1,0000 +/- 0,1265	0,0228 +/- 0,0149	5	5	13	1,0000 +/- 0,1265	0,0211 +/- 0,0139	5	5	30	1,0000 +/- 0,1265	0,0220 +/- 0,0139
Fula	7	7	25	1,0000 +/- 0,0764	0,0273 +/- 0,0162	7	6	16	0,9524 +/- 0,0955	0,0172 +/- 0,0107	7	7	41	1,0000 +/- 0,0764	0,0224 +/- 0,0131
Mancanha	9	9	35	1,0000 +/- 0,0524	0,0279 +/- 0,0160	9	9	20	1,0000 +/- 0,0524	0,0207 +/- 0,0122	9	9	55	1,0000 +/- 0,0524	0,0245 +/- 0,0137
Manjaco	15	13	35	0,9810 +/- 0,0308	0,0265 +/- 0,0144	15	13	20	0,9810 +/- 0,0308	0,0195 +/- 0,0109	15	13	53	0,9810 +/- 0,0308	0,0232 +/- 0,0123
Papel	18	17	27	0,9935 +/- 0,0210	0,0179 +/- 0,0099	18	12	18	0,9412 +/- 0,0388	0,0130 +/- 0,0075	18	17	45	0,9935 +/- 0,0210	0,0156 +/- 0,0083
Outras	12	11	28	0,9848 +/- 0,0403	0,0182 +/- 0,0104	12	11	18	0,9848 +/- 0,0403	0,0190 +/- 0,0109	12	12	46	1,0000 +/- 0,0340	0,0186 +/- 0,0102
Guiné - Bissau	79	61	63	0,9906 +/- 0,0043	0,0229 +/- 0,0119	79	45	34	0,9750 +/- 0,0069	0,0188 +/- 0,0100	79	68	97	0,9948 +/- 0,0034	0,0201 +/- 0,0105


 $N - n^{\circ}$ de amostras; K - número de sequências diferentes; A - número de posições nucleotídicas que apresentam polimorfismo; J - diversidade genética de sequências / haplótipos; $\pi - d$ iversidade nucleotídica.

Os parâmetros de diversidade de sequência (\mathbf{J}) e nucleotídica ($\mathbf{\pi}$) são semelhantes entre as etnias e a população global da Guiné-Bissau. Exceptua-se a etnia Papel que apresenta uma diversidade nucleotídica significativamente mais baixa para a região HVII,

seguida da etnia Fula. Esta região apresenta em todas as (sub) – populações, o valor de π mais baixo. As etnias Beafada e Mancanha apresentam um valor de J de 1 (número de amostras = número de sequências) para todas as análises, a Fula apresenta este valor para a HVI e HVI+HVII e o grupo 'Outras' para o conjunto das duas regiões (Tabela III.3).

As matrizes de distâncias obtidas, valores de pairwise F_{ST} calculados pelo software **Arlequin 3.11** (Excoffier L, *et al*, 2005), foram utilizadas para gerar as árvores filogenéticas intra-populacionais, para cada análise realizada, HVI, HVII e HVI + HVII (Figura III.6).

Para um nível de significância de distâncias de P=0,05 verificamos que, na análise da HVI e HVI+HVII, existe uma distância significativa entre a etnia Papel e as etnias Beafada e Manjaco, que, por sua vez, também se encontram significativamente distantes uma da outra. Quando analisamos somente a HVII, a etnia Papel apenas se apresenta distante da Beafada e a Manjaco apresenta-se a uma distância significativa das etnias Fula e Beafada (Anexo V).

Figura III.6 – Árvores filogenéticas ("*unrooted*") entre etnias e população Guineense, desenhadas com base na matriz de distância de *pairwise* F_{ST} , calculadas para cada uma das regiões hipervariáveis e a sua conjugação: **a)** HVI (16024-16392); **b)** HVII (058-391); **c)** HVI + HVII (16024-16392 e 058-391).

3. COMPARAÇÃO DE CABO VERDE E GUINÉ-BISSAU

3.1. ANÁLISE DE SEQUÊNCIAS DE ADN MT

As sequências das duas regiões hipervariáveis do ADN mt, HVI (16024 – 16392) e HVII (58 – 391), obtidas para as amostras de Cabo Verde (N=77) e da Guiné-Bissau (N=79) foram comparadas, tendo-se detectado que 6 sequências são homólogas entre as duas populações para ambas as regiões, 13 e 12 sequências da HVI e HVII, respectivamente, são partilhadas entre estas populações (Anexo IV, Tabela III.2, Tabela III.5).

O número total de posições polimórficas é semelhante entre as duas populações para ambas as regiões analisadas, ocorrendo uma quase total concordância entre as 5 posições de cada região analisada com um maior número de polimorfismos e a sua ordem (Tabela III.7). Para a região HVII existem mais duas posições bastante polimórficas, nomeadamente as posições 182 (C→T, 49%) e 146 (T→C, 47%) na população Caboverdiana e as posições 150 (T→C, 35%) e 182 (C→T, 33%) na Guiné-Bissau.

Tabela III.7 – Posições nucleotídicas mais polimórficas para as duas regiões hipervariáveis (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo inserções nas regiões de poli-C's) do ADN mitocondrial das amostras das populações de Cabo Verde e da Guiné-Bissau.

		Cabo Verde	9	Guiné-Bissau					
	Posição Nucleotídica	Substituição	Amostras (%)	Posição Nucleotídica	Substituição	Amostras (%)			
	16223	C→T	95 %	16223	C→T	91 %			
	16278	C→T	77 %	16278	C→T	63 %			
HVI	16390	G→A	45 %	16189	T→C	43 %			
	16189	T→C	34 %	16390	G→A	37 %			
	16311	T→C	27 %	16311	T→C	33 %			
	263	A→G	100 %	263	A→G	100 %			
	073	A→G	99 %	073	A→G	92 %			
HVII	152	T→C	75 %	152	T→C	75 %			
	195	T→C	65 %	195	T→C	59 %			
	150	C→T	51 %	146	T→C	39 %			

No geral, a população Guineense apresenta um maior número de amostras com 20 ou mais polimorfismos para o conjunto da HVI e HVII, 11 amostras versus 6 amostras de Cabo Verde e com 10 ou mais polimorfismos na HVI, 15 versus 10. No entanto a situação inverte-se quando comparamos as sequências da HVII. Para esta região Cabo Verde apresenta 17 amostras com 10 ou mais polimorfismos e a Guiné-Bissau apresenta 11 amostras (Anexo IV, Tabela III.2, Tabela III.5).

A maioria das variações à sequência padrão - CRS (Anderson S *et al*, 1981) detectadas nas duas populações deve-se essencialmente a fenómenos de substituição, como já foi referido. É evidente a tendência para alterações transicionais, com razões de *transição:transversão* de 441:15 e 439:37 para Cabo Verde e 383:19 e 479:27 para a Guiné - Bissau na HVI e HVII, respectivamente. As transições são mais pirimídicas do que purínicas em ambas as regiões hipervariáveis das duas populações estudadas, verificando-se uma maior discrepância na região HVI (Tabela III.1, Tabela III.4).

As inserções fora das regiões homopoliméricas (poli-C) e as delecções são muito pouco frequentes. Na HVI apenas se detecta 1 inserção (16193.1C) numa amostra de Cabo Verde e 1 delecção (16183 A) numa amostra Guineense. Quanto à HVII, apenas uma amostra Caboverdiana apresenta 1 inserção (94.1G) e ambas as populações apresentam 4 delecções nesta região, na posição 249 (A) em Cabo-Verde e na posição 247 (G) na Guiné-Bissau (Tabela III.1, Tabela III.4).

Exceptuando-se uma amostra de Cabo Verde, todas as amostras das duas populações apresentam 6 Citosinas no segundo Poli-C da HVII, posições 311-315, em vez das 5 da CRS (Anderson S, et al, 1981). O que é concordante com a revisão da CRS efectuada por Andrews R M, et al, em 1999, nesta rCRS (revised Cambridge Reference Sequence) a posição 315.1C passou a ser considerada como referência; logo esta amostra Caboverdiana apresenta uma delecção de uma Citosina neste Poli-C em relação à rCRS. Na população Guineense verificase a inserção de uma Citosina na região 303-309 em 32% das amostras. Mais frequente do que em Cabo Verde, onde esta situação está presente em 22% das amostras. Regista-se a ocorrência de outra inserção de uma Citosina na mesma região em duas e uma amostra de cada população, respectivamente, originando regiões homopoliméricas com 7, 8 e 9 Citosinas (Tabela III.1, Tabela III.4). Uma amostra de Cabo Verde regista ainda uma transição T→C na

posição 310 levando à fusão dos dois Poli-C's (303-309 e 311-315) num só Poli-C com 12 Citosinas (Anexo IV, Tabela III.2).

As inserções nos poli-C's estão frequentemente associadas a fenómenos de heteroplasmias de comprimento. Esta situação verificou-se para a HVI e a HVII de ambas as populações estudadas, 11 amostras de Cabo Verde e 18 amostras da Guiné-Bissau, como já foi referido. A ocorrência deste fenómeno na HVI parece estar de alguma forma relacionado com a transição de T→C na posição 16189 que origina uma região homopolimérica de 10 Citosinas (Bendall KE & Sykes BC, 1995). Esta transição é comum em ambas as populações (34% das amostras de Cabo Verde e 43% das Guineenses) e está presente em todas as amostras que apresentam heteroplasmia de comprimento na HVI (Anexo IV, Tabela III.7).

Na população da Guiné-Bissau observou-se a existência de 1 sequência / amostra com 1 heteroplasmia de posição numa proporção de aproximadamente 50%, na posição 16261 (C/T ou Y) da HVI (Tabela III.1, Tabela III.4).

3.2. CLASSIFICAÇÃO EM HAPLOGRUPOS

A maioria dos Haplogrupos encontrados nas duas populações é coincidente, sendo que os mais frequentes são comuns à Guiné-Bissau e Cabo Verde, nomeadamente os seguintes Haplogrupos: L1b1; L2a1; L2c; L3b; L3d e L3e4, com 6 ou mais amostras cada, conforme se encontra realçado na Tabela III.8. Os haplogrupos únicos a uma só das populações estudadas apresentam uma prevalência baixa em cada uma delas, 1 a 3 amostras (Tabela III.2, Tabela III.5, Tabela III.8, Figura III.1, Figura III.4).

A grande maioria das amostras de cada população pertence a haplogrupos que estão associados ao continente africano, com uma prevalência de 94,81 % em Cabo Verde e 92,41% na Guiné-Bissau. Praticamente todas estas amostras estão englobadas no Super-Haplogrupo L; excluem-se 2 amostras de cada população que pertencem ao Haplogrupo U6a.

Todos os haplogrupos não africanos encontrados são únicos e correspondem a uma única amostra; ambas as populações apresentam haplogrupos caracteristicamente do Oeste EuroAsiático, nomeadamente 2 amostras (2,60%) caboverdianas correspondem ao X e ao X2d

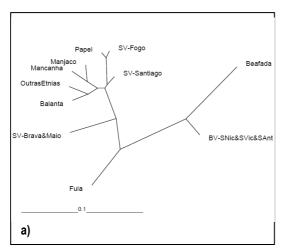
e 3 amostras (3,80%) guineenses apresentam sequências típicas dos R1, U3 e X2, Cabo Verde possui ainda duas amostras (2,60%) cujo haplogrupo correspondente é D4k e N9b, característico do Este da Ásia (Tabela III.2, Tabela III.5, Tabela III.8, Figura III.2, Figura III.5).

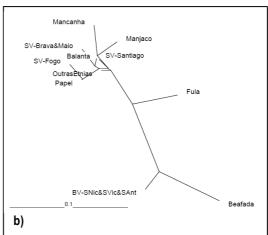
Tabela III.8 – Haplogrupos encontrados nas populações de Cabo Verde e Guiné-Bissau, sua frequência e localização característica por continente.

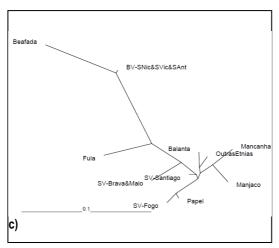
Haplogrupos	Cabo	Verde	Guiné-l	Bissau
(por localização)	Amostras	%	Amostras	%
África	73	94,81	73	92,41
L0a			2	2,53
L0a1	1	1,30	4	5,06
L1b	1	1,30		
L1b1	6	7,79	9	11,39
L1c	1	1,30		
L1c1	5	6,49	6	7,59
L2a	1	1,30	4	5,06
L2a1	7	9,09	10	12,66
L2b	1	1,30		
L2b1	2	2,60	1	1,27
L2c	16	20,78	6	7,59
L2c2	3	3,90	1	1,27
L2d1	2	2,60	1	1,27
L2d2	1	1,30		
L3b	8	10,39	6	7,59
L3b1			1	1,27
L3d	6	7,79	8	10,13
L3d1	1	1,30	1	1,27
L3e2a			3	3,80
L3e2b	1	1,30		
L3e4	7	9,09	7	8,86
L3f1	1	1,30		
L3h			1	1,27
U6a	2	2,60	2	2,53
EuroÁsia (Oeste)	2	2,60	3	3,80
R1			1	1,27
U3			1	1,27
Х	1	1,30		
X2			1	1,27
X2d	1	1,30		
Ásia (Este)	2	2,60		
D4k	1	1,30		
N9b	1	1,30		
Não Determinado			3	3,80

3.3. ANÁLISE INTER – POPULACIONAL

Os parâmetros de diversidade nucleotídica e de sequência determinados para as duas regiões hipervariáveis de cada população foram comparados. Verifica-se que a diversidade de sequência (J) determinada para cada uma das duas regiões hipervariáveis e para a sua análise conjunta é semelhante para as populações de Cabo Verde e Guiné-Bissau. Sendo ligeiramente superior na população Guineense quando consideramos cada região isoladamente, HVI e HVII, situação que se inverte quando consideramos as duas regiões em conjunto, HVI + HVII. Este parâmetro é superior para esta análise conjunta em detrimento da análise isolada de cada região, em ambas as populações, apresentando valores mais baixos para a HVII.


A diversidade nucleotídica (π) é também bastante semelhante para as duas populações, embora apresentando valores um pouco superiores na população da Guiné-Bissau. A HVI é a região que apresenta uma maior diversidade nucleotídica, nas duas populações (Tabela III.9).


Tabela III.9 – Comparação entre os parâmetros de diversidade molecular obtidos para as duas regiões hipervariáveis e o seu conjunto, para Cabo Verde e Guiné-Bissau (HVI: 16024 – 16392 e HVII: 58 – 391, excluindo inserções e polimorfismos de comprimento nas regiões de poli-C's).


	HVI						HVII							HVI + HVII					
	N	K	A	π	J	N	K	A	π	J	N	K	A	π	J				
Cabo Verde	77	54	65	0,0211 +/- 0,0110	0,9880 +/- 0,0045	77	42	32	0,0173 +/- 0,0093	0,9713 +/- 0,0085	77	66	97	0,0193 +/- 0,0097	0,9962 +/- 0,0027				
Guiné - Bissau	79	61	63	0,0229 +/- 0,0119	0,9906 +/- 0,0043	79	45	34	0,0188 +/- 0,0100	0,9750 +/- 0,0069	79	68	97	0,0201 +/- 0,0105	0,9948 +/- 0,0034				

 $N - n^{\circ}$ de amostras; K - número de sequências diferentes; A - número de posições nucleotídicas que apresentam polimorfismo; J - diversidade genética de sequências / haplótipos; $\pi - diversidade$ nucleotídica.

Foi obtida uma matriz de distâncias com os valores F_{ST} calculados pelo software **Arlequin 3.11** (Excoffier L *et al*, 2005) para cada população no global e subgrupos considerados, ilhas e etnias. Com base nesta matriz foram criadas as árvores filogenéticas inter- e intra-populacionais, para cada análise realizada, HVI, HVII e HVI + HVII (Figura III.7). Considerando P=0,05 verifica-se que para as análises de HVI e HVI+HVII existe uma distância significativa entre o grupo do Barlavento Caboverdiano de todas as outras (sub) – populações, excepto as etnias Beafada e Fula, quando consideramos apenas HVII o grupo 'Outras Etnias' apresenta-se também mais próximo do grupo do Barlavento. A etnia Beafada encontra-se significativamente distante da ilha Fogo para as análises de HVI e HVI+HVII. Para a análise de HVI a etnia Manjaco apresenta-se próxima somente do grupo das ilhas Brava e Maio, se consideramos a HVI e HVII isoladamente, esta etnia aproxima-se também da ilha do Fogo. O grupo das ilhas do Sotavento Caboverdiano e a etnia Beafada apresentam uma distância significativa para a HVI e HVII. Embora se verifiquem distâncias significativas entre algumas ilhas Caboverdianas e etnias Guineenses a distância entre as duas populações, Cabo Verde e Guiné-Bissau não é significativa, Fst = 0,00032 com P = 0,99099+-0,0030 (Anexo V).

Figura III.7 – Árvores filogenéticas de Cabo Verde e Guiné-Bissau e sub-populações (ilhas e etnias, respectivamente), desenhadas com base na matriz de distância de *pairwise* F_{ST} , calculadas para cada uma das regiões hipervariáveis e a sua conjugação: **a)** HVI (16024-16392); **b)** HVII (058-391); **c)** HVI + HVII (16024-16392 e 058-391).

4. COMPARAÇÃO GLOBAL

Como já foi referido, para esta análise foi necessário considerar intervalos diferentes dos da análise individual e comparativa de Cabo Verde e da Guiné-Bissau, para a primeira região hipervariável, HVI, foram consideradas as bases compreendidas entre as posições 16090 e 16365 e para a segunda região hipervariável, HVII, foram todas as compreendidas no intervalo entre as posições 073 a 340, inclusive. Todos os polimorfismos de comprimento das regiões homopoliméricas e inserções em geral foram excluídos desta análise. As sequências que apresentavam 3 ou mais posições nucleotídicas duvidosas ou indeterminadas (**N** na notação IUPAC) não foram consideradas.

A região HVI (16090-16365) das amostras de Cabo Verde e da Guiné-Bissau estudadas foi comparada com os dados publicados para 120 populações provenientes dos 5 continentes. A comparação com base no intervalo 073-340 da região HVII não foi possível para o mesmo número de populações, tendo sido analisadas 55 populações conjuntamente com Cabo Verde e a Guiné-Bissau (Tabela III.10).

Tabela III.10 – Populações utilizadas no estudo comparativo global realizado, e regiões hipervariáveis do ADN mt disponíveis e / ou consideradas para cada uma das populações analisadas neste estudo.

011	Donulooão	Oh a amaa ãa a	Reç	gião	Defenêncie
Código	População	Observações	HVI	HVII	Referência
001	África do Sul	Norte da Província do Cabo: Kung e Khwe	Χ	Х	Chen Y-S, et al, 2000.
002	Botswana	Noroeste: Kung	Х	Х	Vigilant L, et al, 1989.
003	Sul de África	Bantu (Sudeste) e Malawi	Х	Х	Soodyall H, et al, 1996.
004	Moçambique 1		Х		Salas A, et al, 2002.
005	Moçambique 2		Х	Х	Pereira L, et al, 2001.
006	Ilha Reunião	African	Х		Berniell-Lee G, et al, 2008.
007	Centro de África 1	Mbuti	Χ		Vigilant L, <i>et al</i> , 1990 in Watson E, <i>et al</i> , 1997.
008	Centro de África 2	Pygmy	Х	Х	Soodyall H, et al, 1996.
009	Angola 1		Х		Plaza S, et al, 2004.

Tabela III.10 (cont.) – Populações utilizadas no estudo comparativo global realizado, e regiões hipervariáveis do ADN mt disponíveis e / ou consideradas para cada uma das populações analisadas neste estudo.

Cádina	População	Observações	Reg	gião	Referência
Código	População	Observações	HVI	HVII	Referencia
010	Angola 2		Х	Х	
011	Angola - Cabinda		Х	Х	Beleza S, et al, 2005.
012	São Tomé	Angolares e Foros	Х	Х	Trovoada M J, et al, 2003.
013	São Tomé e Príncipe	Ilha de São Tomé	Х		Mateu E, et al, 1997.
014	Guine Equatorial 1	Tribo Fang	Х		Pinto F, et al, 1996.
015	Guine Equatorial 2	Ilha Bioko, Bubi	Х		Mateu E, et al, 1997.
016	Camarões		Х		Cerný V, et al, 2004.
017	Oeste de África	Nigéria, Níger, Mali, Benim, Camarões, Burkina-Faso	Χ		Watson E, et al, 1997; Watson E, et al, 1996.
018	Serra Leoa	Mende, Temme, Loko, Limba	Х		Jackson B A, et al, 2005.
019	Guiné-Bissau 1		Х		Rosa A, et al, 2004.
020	Guiné-Bissau 2	Várias Etnias	Х	Х	Este estudo.
021	Cabo Verde 1		Х		Brehm A, et al, 2002.
022	Cabo Verde 2	Várias Ilhas	Х	Х	Este estudo.
023	Senegal 1	Mandenka	Х	Х	Graven L, et al, 1995.
024	Senegal 2	Wolof, Serer e Outras	Х		Rando J C, et al, 1998.
025	Este de África	Quénia, Somália, Etiópia, Turkana, Kikuyu, Somali	Χ		Watson E, et al, 1997; Watson E, et al, 1996.
026	Quénia	Nairobi	Х	Х	Brandstätter A, et al, 2004.
027	Etiópia e Quénia		Х		Quintana-Murci L, et al, 1999.
028	Mauritânia		Х		Rando J C, et al, 1998.
029	Saara Ocidental		Х		Rando J C, et al, 1998.
030	Marrocos 1	e Berberes	Х		Rando J C, et al, 1998.
031	Marrocos 2	Berberes	Х		Pinto F, <i>et al</i> , 1996.
032	Argélia	Berberes - Mozabites	Χ		Côrte-Real H B S M, et al, 1996.
033	Egipto	Gurna e Norte	Х	Х	Stevanovitch A, et al, 2003.
034	Espanha - Canárias		Χ		Pinto F, et al, 1996.
035	Portugal - Arq. Madeira		Χ		Brehm A, et al, 2003.
036	Portugal - Açores		Χ	Х	Carvalho M, et al, 2006.
037	Portugal - Açores 2		Χ	Х	Santos C, et al, 2005.

Tabela III.10 (cont.) – Populações utilizadas no estudo comparativo global realizado, e regiões hipervariáveis do ADN mt disponíveis e / ou consideradas para cada uma das populações analisadas neste estudo.

2111	D / ~	a . ~	Reg	gião	D () .
Código	População	Observações	HVI	HVII	Referência
038	Portugal 1	Centro	Х	Х	Carvalho M, et al, 2003.
039	Portugal 2	Continental	Х	Х	Pereira L, et al, 2000.
040	Portugal 3		Х		Côrte-Real H B S M, et al, 1996.
041	Espanha 1	Norte	Х		Côrte-Real H B S M, et al, 1996.
042	Espanha - País Basco 1		Х		Côrte-Real H B S M, et al, 1996.
043	Espanha - Catalunha		Х		Côrte-Real H B S M, et al, 1996.
044	Espanha - Andaluzia	Sul	Х		Côrte-Real H B S M, et al, 1996.
045	Espanha 2		Х		Côrte-Real H B S M, et al, 1996.
046	Espanha - Galiza	Sim	Х	Х	Salas A, <i>et al</i> , 1998 (HVI); Salas A, <i>et al</i> , 2000 (HVII)
047	Espanha - País Basco2	Província Guipuzcoa	Х		Bertranpetit J, et al, 1995.
048	Espanha 3	Continental	Х		Pinto F, <i>et al</i> , 1996.
049	Espanha 4	Nordeste	Х	Х	Crespillo M, et al, 2000.
050	Itália 1	Toscânia	Х	Х	Torroni A, et al, 1996; Francalacci P, et al, 1996.
051	Itália 2	Sicília	Х		Vona G, et al, 2001.
052	França		Х	Х	Rousselet F & Mangin P, 1998.
053	Alemanha 1		Х	Х	Lutz S, et al, 1998
054	Alemanha 2	Nordeste	Х	Х	Poetsch M, et al, 2003; Poetsch M, et al, 2004
055	Alemanha 3	Ocidental	Х	Х	Baasner A, et al, 1998.
056	Polónia		Х	Х	Malyarchuk B A, et al, 2002.
057	Áustria		Х	Х	Parson W, et al, 1998.
058	Croácia		Х		Tolk H-V, et al, 2001.
059	Dinamarca - Gronelândia		Х		Saillard J, et al, 2000.
060	Inglaterra	Bretanha	Х	Х	Piercy R, et al, 1993.
061	Noruega	Saami	Х	Х	Delghandi M, et al, 1998.
062	Finlândia		Х		Kittles R A, et al, 1999.
063	Suécia		Х		Kittles R A, et al, 1999.
064	Rússia		Х	Х	Malyarchuk B A, et al, 2002.
065	Ucrânia		Х		Malyarchuk B A & Derenko M V, 2001.

Tabela III.10 (cont.) – Populações utilizadas no estudo comparativo global realizado, e regiões hipervariáveis do ADN mt disponíveis e / ou consideradas para cada uma das populações analisadas neste estudo.

0′ "	Danulaasa	Oh ~~-	Reg	gião	Defenên de
Código	População	Observações	HVI	HVII	Referência
066	Albânia		Х		Belledi M, et al, 2000.
067	Grécia		Х	Х	Kouvatsi A, et al, 2001.
068	Bulgária		Х	Х	Calafell F, et al, 1996.
069	Turquia		Х	Х	Calafell F, et al, 1996.
072	Arábia Saudita		Х	Х	Abu-Amero K K, et al, 2008.
073	Iraque		Х		Al-Zahery N, et al, 2003.
074	Geórgia		Х	Х	Alfonso-Sánchez M A, et al, 2006.
075	Japão 1	Centro	Х		Koyama H, et al, 2002.
076	Japão 2		Х	Х	Imaizumi K, et al, 2002.
077	China 1	Sul, Cantonês	Х	Х	Kivisild T, et al, 2002.
078	China 2	Sudoeste, Han	Х	Х	Yao Y-G, et al, 2002.
079	Coreia		Х	Х	Pfeiffer H, et al, 1998.
080	Rússia – Sibéria 1		Х	Х	Derbeneva O A, et al, 2002.
081	Rússia – Sibéria 2	Altai	Х		Shields G F, et al, 1993.
082	Índia 1	Sudeste, 3 castas: Havik; Mukri; Kadar.	Х	Х	Mountain J L, et al, 1995.
083	Índia 2	Chenchu - Tribo de Andhra Pradesh	Х		Kivisild T, et al, 2003.
084	Índia 3	Koya - Tribo de Andhra Pradesh	Х		Kivisild T, et al, 2003.
085	Índia 4	Sul, Karnataka	Χ	Х	Rajkumar R & Kashyap V K, 2003.
086	Índia 5	Este, Juang, Paroja, Saora, Orissa Brahmin, Karan, Khandayat, Gope	Х	Х	Sahoo S & Kashyap V K, 2006.
088	Filipinas		Х		Sykes B, <i>et al</i> , 1995.
089	Indonésia	Borneo - Sabah	Х		Sykes B, <i>et al</i> , 1995.
090	Indonésia		Χ	Х	Redd A J, et al, 1995.
091	Círculo Circum-Árctico	Alasca (EUA), Sibéria (Rússia), Gronelândia (Dinamarca)	Χ		Shields G F, et al, 1993.
092	EUA - Alasca	Haida, Bella Coola	Χ		Ward R H, et al, 1993.
093	EUA - Estado Washington	Yakima	Χ		Shields G F, et al, 1993.
094	Canadá + EUA	Nuu-Chah-Nulth (Ilha Vancouver + Península Olympic)	Х		Ward R H, et al, 1991.
095	EUA 1	Apache, Navajo	Х	Х	Budowle B, et al, 2002.
096	EUA 2	Sudeste - Muskogean Nativos	Χ		Bolnick D A W & Smith D G, 2003.

Tabela III.10 (cont.) – Populações utilizadas no estudo comparativo global realizado, e regiões hipervariáveis do ADN mt disponíveis e / ou consideradas para cada uma das populações analisadas neste estudo.

مر بالس	Danulaača	Observesãos	Reg	gião	Deferência
Código	População	Observações	HVI	HVII	Referência
097	EUA 3	Afro-Americanos	Х		Ely B, et al, 2006.
098	EUA 4	Euro-Americanos, Cheyenne, Pina	Х		Kittles R A, et al, 1999.
099	México		Х		Green L D, et al, 2000.
100	Caraíbas	Garifunas e Chocó	Х	Х	Salas A, et al, 2005.
102	Rep. Dominicana		Х	Х	Vélez A F, 2006.
103	Panamá 1	Ameríndios: Embera, Wounan	Х	Х	Kolman C J & Bermingham E, 1997.
104	Panamá 2	Ameríndios: Ngobe	Х	Х	Kolman C J, <i>et al</i> , 1995.
105	Venezuela	Guahibo	Х	Х	Vona G, et al, 2005.
106	Colômbia		Х	Х	Torres M M, et al, 2006.
107	Peru		Х		Lewis C M, et al, 2004.
108	Brasil 1	Sul, Sudeste, Norte, Nordeste,	Х	Х	Alves-Silva J, et al, 2000.
109	Brasil 2	Nordeste - Alagoas	Х	Х	Barbosa A B G, et al, 2008.
110	Brasil 3	Noroeste, Yanomami	Х	Х	Easton R D, et al, 1996.
111	Bolívia		Х	Х	Afonso Costa H, et al, (submetido)
112	Chile	Pehuenche, Mapuche, Yaghan	Х	Х	Moraga M L, et al, 2000.
113	Papuásia Nova Guine 1		Х		Sykes B, et al, 1995.
114	Kapingamarangi	Micronésia	Х		Sykes B, et al, 1995.
115	Ilhas Marshall	Micronésia	Х		Sykes B, et al, 1995.
116	Vanuatu		Х		Sykes B, et al, 1995.
117	Tonga		Х		Sykes B, et al, 1995.
118	Samoa 1		Х		Sykes B, et al, 1995.
119	Ilhas Cook - Nova Zelândia		Х		Sykes B, et al, 1995.
120	Tahiti - França	Analisada em conjunto com a população 121	Х		Sykes B, et al, 1995.
121	Ilhas Austrais - França	Analisada em conjunto com a população 120	Χ		Sykes B, et al, 1995.
122	Ilhas Marquesas - França		Х		Sykes B, et al, 1995.
123	Nova Zelândia		Χ		Sykes B, et al, 1995.
124	Papuásia Nova Guine 2		Χ	Х	Redd A J, et al, 1995.
125	Samoa 2		Χ	Х	Redd A J, et al, 1995.
126	Austrália	Sudeste e Centro-Norte, Aborígenes	Χ		Pellekaan S M v H, et al, 1998.

4.1. ANÁLISE DE SEQUÊNCIAS DE ADN MT

As sequências da região hipervariável I (16090 – 16365) e as sequências resultantes da conjugação desta com a região HVII (073 – 340) das amostras de Cabo Verde (N=77) e da Guiné-Bissau (N=79) foram comparadas com as sequências publicadas para diversas populações do globo (Tabela III.10).

Ao compararmos as sequências da região HVI (posições 16090 – 16365) das duas populações estudadas verificamos que ambas as populações possuem sequências comuns a 25 populações africanas: um total de 179 e 170 sequências de diferentes populações africanas aparecem também em Cabo Verde e na Guiné-Bissau, respectivamente. Esta partilha de sequências ocorre essencialmente com populações do Centro – Oeste Africano, embora também com populações do Sul, Norte e Este de África, mas em muito menor número (Tabela III.11).

Quando comparamos com populações europeias verificamos que Cabo Verde partilha 15 sequências de populações de 7 estudos que versam sobre diferentes grupos de Portugal e Espanha e 2 sequências com 1 estudo sobre a população polaca (056). A amostragem guineense apresenta sequências comuns com as mesmas populações europeias (16 sequências) que Cabo Verde, mas possui ainda 1 sequência comum à população italiana da Sicília (051). Cada uma das populações estudadas apresenta ainda 6 e 5 sequências comuns a populações do Médio Oriente, Arábia Saudita (072) e Iraque (073). Ambas partilham 1 sequência (comum) com a população do Sudoeste Indiano (082). Cabo Verde e a Guiné-Bissau apresentam ainda sequências iguais a 26 e 37 sequências de populações do continente americano, respectivamente. Esta homologia de sequência é para populações da América do Norte de 7 e 10 sequências, da América do Centro (México - 099) 2 sequências, comuns às duas populações, e 16 e 25 sequências são partilhadas com antigas colónias Portuguesas e Espanholas, nomeadamente as Caraíbas (100) e o Brasil (108 e 109) (Tabela III.11).

O número de sequências comuns a Cabo Verde e Guiné-Bissau quando consideramos este intervalo é de 14, e não as 13 verificadas para o intervalo considerado anteriormente, 16024 – 16392. O maior número de sequências comuns é encontrado entre as populações estudadas e outros estudos que versam sobre estas mesmas populações, Cabo Verde apresenta 29 sequências e 26 sequências comuns a outros estudos sobre os países aqui analisados, Cabo Verde (021) e Guiné-Bissau (019), respectivamente, a Guiné-Bissau partilha 20 e 27 sequências

com estes estudos sobre estas antigas colónias portuguesas (021 e 019, respectivamente). Excluindo estes estudos é a população de Serra Leoa (018) que compartilha o maior número de sequências com as populações de Cabo Verde e Guiné-Bissau estudadas, com 14 sequências comuns a ambas, seguindo-se a população do Senegal (024), com 14 e 13 sequências comuns, respectivamente, e São Tomé (019) com 11 e 9 sequências comuns. Também encontramos entre 6 a 8 sequências que são comuns com outros Países Africanos de Língua Oficial Portuguesa, nomeadamente, Angola (009, 010 e 011), Moçambique (004 e 005), e com outras populações vizinhas, Senegal (023, Mandenka) e Camarões (016). Embora em menor número, ambas as populações estudadas partilham ainda sequências com várias outras populações dispersas pelo continente Africano (Tabela III.11).

Considerando as duas regiões hipervariáveis verificamos que ambas as populações possuem sequências comuns a outras populações africanas, 25 sequências são coincidentes no caso de Cabo Verde e 26 na Guiné-Bissau, e a populações provenientes de outros continentes, embora numa escala muito inferior. Quando comparamos com populações europeias verificamos que para ambas as populações apenas 1 sequência é comum com as populações europeias, nomeadamente portuguesas, entre Cabo Verde e a população dos Açores (036) e a Guiné-Bissau e a população do Centro de Portugal (038). Cada uma das populações estudadas apresenta ainda 1 sequência comum à população da Arábia Saudita (Médio Oriente). Cabo Verde e a Guiné-Bissau apresentam ainda 2 e 9 sequências comuns, respectivamente, a antigas colónias Portuguesas e Espanholas do continente Americano, nomeadamente as Caraíbas (100) com 1 e 5 sequências, respectivamente, e o Brasil (108 e 109) com 1 e 4 sequências (Tabela III.11).

O número de sequências comuns entre Cabo Verde e Guiné-Bissau passa de 6 para 8 quando reduzimos as sequências a comparar de 16024 – 16392 (HVI) e 058 – 391 (HVII) para 16090 – 16365 (HVI) e 073 – 340 (HVII), é entre estas populações que encontramos o maior número de sequências partilhadas, seguindo-se a população de São Tomé (código 012), com 7 e 5 sequências comuns a Cabo Verde e Guiné-Bissau, respectivamente, e a população Mandenka do Senegal (023), que compartilha 5 e 4 sequências com as populações de Cabo Verde e Guiné-Bissau estudadas. Embora em menor número, também encontramos sequências comuns a outros Países Africanos de Língua Oficial Portuguesa, nomeadamente, Angola (010) 2 e 1 sequências, Cabinda (província Angolana, 011) 1 sequência comum a cada uma das populações e Moçambique, com 2 sequências comuns a cada. A amostragem da Guiné-Bissau

possui ainda 4 sequências comuns à população queniana (026) e 1 sequência comum a África do Sul (001) (Tabela III.11).

Tabela III.11 – Quadro resumo do número de sequências HVI e HVI+HVII partilhadas entre Cabo Verde e Guiné-Bissau e outras populações.

Código	População	Cabo	Verde	Guine	é-Bissau
-	. opanaguo	HVI	HVI + HVII	HVI	HVI + HVII
001	África do Sul	1	0	1	1
004	Moçambique 1	8		8	
005	Moçambique 2	4	2	2	2
009	Angola 1	4		3	
010	Angola 2	5	2	3	1
011	Angola - Cabinda	4	1	2	1
012	São Tomé	11	7	9	5
013	São Tomé e Príncipe	5		5	
014	Guine Equatorial 1	2		1	
015	Guine Equatorial 2	1		2	
016	Camarões	6		7	
017	Oeste de África	6		9	
018	Serra Leoa	14		14	
019	Guiné-Bissau 1	26		27	
020	Guiné-Bissau 2	14	8	67	67
021	Cabo Verde 1	29		20	
022	Cabo Verde 2	66	66	14	8
023	Senegal 1	8	5	8	4
024	Senegal 2	14		13	
025	Este de África	2		3	
026	Quénia	3	0	5	4
028	Mauritânia	4		5	
029	Saara Ocidental	3		4	
030	Marrocos 1	3		2	
032	Argélia	1		2	
033	Egipto	1	0	1	0
034	Espanha - Canárias	2		1	
035	Portugal - Arq. Madeira	5		5	
036	Portugal - Açores	1	1	1	0
037	Portugal - Açores 2	2	0	1	0
038	Portugal 1	1	0	2	1
039	Portugal 2	3	0	1	0
051	Itália 2	0		1	
056	Polónia	2		2	

Tabela III.11 (cont.) – Quadro resumo do número de sequências HVI e HVI+HVII partilhadas entre Cabo Verde e Guiné-Bissau e outras populações.

Código	População	Cabo	Verde	Guiné-Bissau			
	· openague	HVI	HVI + HVII	HVI	HVI + HVII		
072	Arábia Saudita	5	1	4	1		
082	Índia 1	1	0	1	0		
094	Canadá + EUA	1		1			
095	EUA 1	7	0	9	0		
099	México	2		2			
100	Caraíbas	7	1	8	5		
108	Brasil 1	4	0	8	1		
109	Brasil 2	5	1	9	3		

4.2. ANÁLISE INTER – POPULACIONAL

Os parâmetros de diversidade nucleotídica e de sequência foram calculados para a região hipervariável I e o conjunto das duas regiões hipervariáveis, HVI + HVII, das populações consideradas para a análise global e foram comparados.

Como já foi referido o número de sequências diferentes (**K**) de Cabo Verde e Guiné-Bissau reduziu devido ao novo intervalo de posições nucleotídicas considerado (HVI: 16090 – 16365 e HVII: 073 – 340). Em Cabo Verde reduziu de 54 para 52 na HVI, não havendo alteração (**K** = 66) para a HVI+HVII, e de 61 para 59 e 68 para 67 na população da Guiné-Bissau, para a região HVI e HVI+HVII, respectivamente (Tabela III.9, Tabela III.12).

Verifica-se que a diversidade de sequência (\mathbf{J}) determinada para cada uma das populações estudadas é ligeiramente mais baixa para este intervalo da HVI (16090 – 16365), embora não apresente diferenças significativas para a HVI+HVII (16090 – 16365 + 073 – 340). A diversidade nucleotídica ($\mathbf{\pi}$) apresenta um valor ligeiramente superior ao encontrado na análise anterior. Ambos estes parâmetros mantêm-se bastante semelhantes entre as duas populações (Tabela III.9, Tabela III.12).

O valor de **J** encontrado para a HVI e HVI+HVII nas populações estudadas é semelhante ao da maioria das populações do Continente Africano, Europa, Ásia e América. A maioria das populações da Oceânia possuem uma diversidade de sequência (**J**) muito menor, indicativo de uma menor diversidade populacional, justificável pelo isolamento geográfico e / ou por possuírem uma amostragem baixa (**N** < 50). De facto as populações dos restantes continentes com um **J** inferior 0,8 apresentam um **N** inferior a 50 (003, 008, 049, 104), embora haja populações com elevada diversidade genética (**J**) e amostragem muito reduzida (por ex: 002, 007, 014, 031). Apenas a população da Gronelândia (059) apresenta um **J** inferior 0,8 e um **N** = 82 (> 50). O valor de **J** é inferior para a região HVI em comparação com o conjunto HVI+HVII, excepto para o Egipto (033), nordeste Espanhol (049) e as tribos Embera e Wounan do Panamá (103) cujo valor de **J** decresce ao considerarmos a região HVII (Tabela III.12).

O valor de π é, por norma, superior para a região HVI em comparação com o valor encontrado para HVI+HVII, com excepção dos estudos referentes ao Sul de África (003), ao nordeste Espanhol (049) e à Colômbia (106). Este parâmetro é também semelhante entre Cabo Verde e a Guiné-Bissau e as restantes populações Africanas, apresentando uma variação entre 0,014 e 0,035, exceptuando-se os estudos do Sul de África (003), do Centro de África (008) e da Etiópia e Quénia (027) com valores inferiores: 0,006 a 0,009 (Tabela III.12).

Na Europa π é inferior, varia entre 0,010 e 0,023, sendo menor para o País Basco (042), Nordeste de Espanha (049) e a Gronelândia (059).

As populações Asiáticas apresentam uma diversidade nucleotídica (π) a variar entre 0,015 e 0,028, excluindo-se apenas uma população do Centro do Japão (075) com um valor próximo: 0,012 (Tabela III.12).

No continente Americano os valores de π variam entre 0,017 e 0,030 na maioria das populações, apresentados valores inferiores para o Alasca (092), República Dominicana (102) e a tribo Yanomani do noroeste Brasileiro (110) com valores aproximados de 0,011 a 0,013 (Tabela III.12).

A Oceânia apresenta o valor de π entre 0,012 e 0,027, embora com 5 populações, Kapingamarangi (114), Samoa (118 e 125), Nova Zelândia (123) e a Papuásia Nova Guiné (124), cuja diversidade nucleotídica (π) é inferior, em algumas (114, 124 e 125) menor do que 0,004, os valores mais baixos encontrados (Tabela III.12).

Tabela III.12 — Quadro resumo dos parâmetros de diversidade molecular calculados para as populações consideradas para a comparação global da região HVI e das duas regiões hipervariáveis combinadas HVI+HVII (HVI: 16090 — 16365 e HVII: 073 — 340, excluindo inserções e polimorfismos de comprimento nas regiões de poli-C's).

Código	População				HVI				HV	I + HVII	
Courgo	População	N	K	A	J	π	N	K	A	J	π
001	África do Sul	74	19	45	0,8878 +/- 0,0203	0,0313 +/- 0,0162	74	21	65	0,9160 +/- 0,0170	0,0242 +/- 0,0122
002	Botswana	15	9	18	0,9048 +/- 0,0544	0,0151 +/- 0,0089	15	11	27	0,9333 +/- 0,0538	0,0116 +/- 0,0065
003	Sul de África	31	8	14	0,4989 +/- 0,1088	0,0086 +/- 0,0054	31	14	26	0,8194 +/- 0,0667	0,0105 +/- 0,0058
004	Moçambique 1	307	115	75	0,9574 +/- 0,0060	0,0313 +/- 0,0160					
005	Moçambique 2	109	50	62	0,9604 +/- 0,0083	0,0316 +/- 0,0163	109	63	92	0,9715 +/- 0,0073	0,0257 +/- 0,0129
006	Ilha Reunião	41	18	37	0,8963 +/- 0,0300	0,0249 +/- 0,0133					
007	Centro de África 1	30	13	31	0,9218 +/- 0,0248	0,0333 +/- 0,0175					
008	Centro de África 2	10	3	4	0,6000 +/- 0,1305	0,0065 +/- 0,0046	10	4	9	0,7111 +/- 0,1175	0,0064 +/- 0,0040
009	Angola 1	44	34	54	0,9884 +/- 0,0072	0,0340 +/- 0,0177					
010	Angola 2	59	43	57	0,9848 +/- 0,0070	0,0319 +/- 0,0165	59	50	87	0,9924 +/- 0,0053	0,0289 +/- 0,0145
011	Angola - Cabinda	110	73	68	0,9895 +/- 0,0031	0,0338 +/- 0,0173	110	87	108	0,9942 +/- 0,0024	0,0307 +/- 0,0153
012	São Tomé	103	61	66	0,9850 +/- 0,0042	0,0310 +/- 0,0160	103	70	98	0,9880 +/- 0,0041	0,0282 +/- 0,0141
013	São Tomé e Príncipe	50	32	48	0,9731 +/- 0,0110	0,0291 +/- 0,0152					
014	Guine Equatorial 1	11	10	30	0,9818 +/- 0,0463	0,0310 +/- 0,0175					
015	Guine Equatorial 2	45	18	31	0,9283 +/- 0,0174	0,0264 +/- 0,0140					
016	Camarões	104	66	67	0,9862 +/- 0,0042	0,0274 +/- 0,0143					
017	Oeste de África	160	108	74	0,9900 +/- 0,0027	0,0251 +/- 0,0131					
018	Serra Leoa	277	147	84	0,9908 +/- 0,0014	0,0279 +/- 0,0144					
019	Guiné-Bissau 1	372	180	85	0,9855 +/- 0,0024	0,0276 +/- 0,0143					
020	Guiné-Bissau 2	79	59	56	0,9893 +/- 0,0045	0,0274 +/- 0,0143	79	67	87	0,9948 +/- 0,0033	0,0244 +/- 0,0123
021	Cabo Verde 1	289	114	74	0,9746 +/- 0,0036	0,0230 +/- 0,0121					
022	Cabo Verde 2	77	52	59	0,9853 +/- 0,0051	0,0252 +/- 0,0133	77	66	90	0,9962 +/- 0,0027	0,0233 +/- 0,0118
023	Senegal 1	111	47	46	0,9640 +/- 0,0075	0,0224 +/- 0,0119	111	52	71	0,9720 +/- 0,0061	0,0206 +/- 0,0104
024	Senegal 2	121	85	71	0,9916 +/- 0,0025	0,0259 +/- 0,0135					
025	Este de África	88	75	73	0,9958 +/- 0,0026	0,0310 +/- 0,0160					
026	Quénia	100	81	76	0,9943 +/- 0,0026	0,0337 +/- 0,0173	100	89	113	0,9966 +/- 0,0023	0,0278 +/- 0,0138
027	Etiópia e Quénia	25	15	19	0,8967 +/- 0,0464	0,0088 +/- 0,0055					

N – nº de amostras; K – número de sequências diferentes; A – número de posições nucleotídicas que apresentam polimorfismo; J – diversidade genética de sequências / haplótipos; π – diversidade nucleotídica.

Tabela III.12 (cont.) – Quadro resumo dos parâmetros de diversidade molecular calculados para as populações consideradas para a comparação global da região HVI e das duas regiões hipervariáveis combinadas HVI+HVII (HVI: 16090 – 16365 e HVII: 073 – 340, excluindo inserções e polimorfismos de comprimento nas regiões de poli-C's).

Código	População				HVI				HV	I + HVII	
Coungo	i opalação	N	K	A	J	π	N	K	A	J	π
028	Mauritânia	30	22	29	0,9701 +/- 0,0180	0,0214 +/- 0,0117					
029	Saara Ocidental	25	20	28	0,9733 +/- 0,0223	0,0184 +/- 0,0103					
030	Marrocos 1	92	62	65	0,9725 +/- 0,0106	0,0182 +/- 0,0099					
031	Marrocos 2	18	15	25	0,9804 +/- 0,0243	0,0149 +/- 0,0087					
032	Argélia	85	29	35	0,9420 +/- 0,0102	0,0173 +/- 0,0094					
033	Egipto	58	47	71	0,9921 +/- 0,0049	0,0292 +/- 0,0152	33	29	68	0,9905 +/- 0,0107	0,0209 +/- 0,0108
034	Espanha - Canárias	54	42	53	0,9762 +/- 0,0133	0,0194 +/- 0,0105					
035	Portugal - Arq. Madeira	155	87	71	0,9651 +/- 0,0100	0,0182 +/- 0,0098					
036	Portugal - Açores	64	45	56	0,9568 +/- 0,0190	0,0152 +/- 0,0085	64	53	78	0,9876 +/- 0,0072	0,0124 +/- 0,0066
037	Portugal - Açores 2	94	39	48	0,9334 +/- 0,0185	0,0150 +/- 0,0083	94	49	79	0,9819 +/- 0,0043	0,0129 +/- 0,0068
038	Portugal 1	106	68	66	0,9511 +/- 0,0154	0,0140 +/- 0,0078	106	81	108	0,9836 +/- 0,0068	0,0127 +/- 0,0067
039	Portugal 2	241	141	91	0,9588 +/- 0,0096	0,0162 +/- 0,0089	241	179	138	0,9868 +/- 0,0042	0,0131 +/- 0,0068
040	Portugal 3	54	37	38	0,9336 +/- 0,0290	0,0124 +/- 0,0071					
041	Espanha 1	30	26	33	0,9839 +/- 0,0160	0,0151 +/- 0,0086					
042	Espanha - País Basco 1	61	34	39	0,9257 +/- 0,0272	0,0096 +/- 0,0058					
043	Espanha - Catalunha	15	10	14	0,9238 +/- 0,0530	0,0121 +/- 0,0074					
044	Espanha - Andaluzia	15	12	27	0,9714 +/- 0,0327	0,0209 +/- 0,0119					
045	Espanha 2	11	11	21	1,0000 +/- 0,0388	0,0175 +/- 0,0104					
046	Espanha - Galiza	92	48	52	0,8982 +/- 0,0291	0,0103 +/- 0,0061	68	54	71	0,9868 +/- 0,0073	0,0102 +/- 0,0055
047	Espanha - País Basco2	45	27	29	0,9485 +/- 0,0214	0,0111 +/- 0,0065					
048	Espanha 3	18	17	38	0,9935 +/- 0,0210	0,0227 +/- 0,0127					
049	Espanha 4	24	6	9	0,6920 +/- 0,0935	0,0059 +/- 0,0040	24	6	17	0,6920 +/- 0,0935	0,0060 +/- 0,0036
050	Itália 1	48	38	53		0,0171 +/- 0,0095	48	42	81	0,9814 +/- 0,0139	0,0149 +/- 0,0078
051	Itália 2	49	32	35	0,9745 +/- 0,0110	0,0139 +/- 0,0079				, -	, -
052	França	44	37	49	0,9884 +/- 0,0088	0,0161 +/- 0,0090	44	41	70	0,9968 +/- 0,0057	0,0126 +/- 0,0067
053	Alemanha 1	187	125	80	0,9760 +/- 0,0071	0,0140 +/- 0,0078	187	157	142	0,9918 +/- 0,0034	0,0122 +/- 0,0064
054	Alemanha 2	300	148	84	0,9729 +/- 0,0053	0,0139 +/- 0,0078	300	201	127	0,9922 +/- 0,0018	0,0123 +/- 0,0064

N – n^o de amostras; K – número de sequências diferentes; A – número de posições nucleotídicas que apresentam polimorfismo; J – diversidade genética de sequências / haplótipos; π – diversidade nucleotídica.

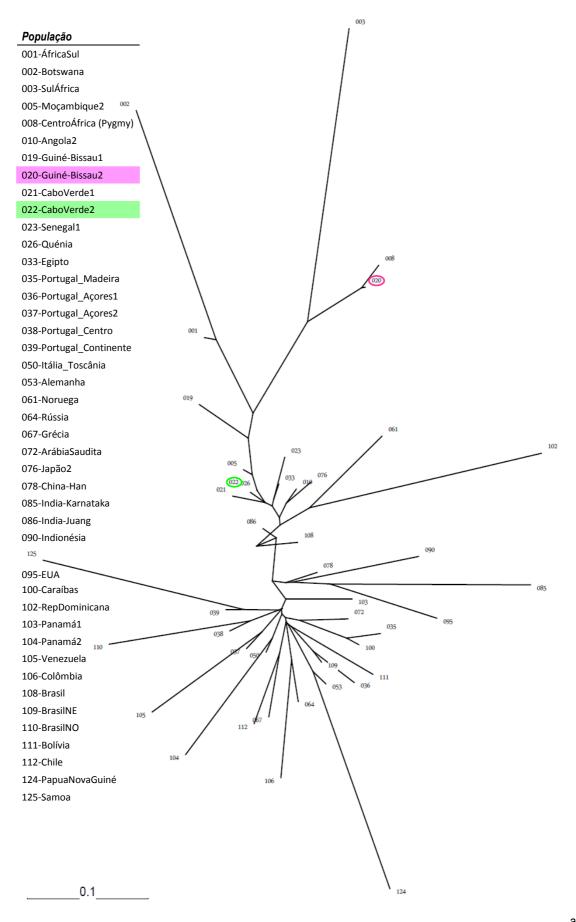
Tabela III.12 (cont.) – Quadro resumo dos parâmetros de diversidade molecular calculados para as populações consideradas para a comparação global da região HVI e das duas regiões hipervariáveis combinadas HVI+HVII (HVI: 16090 – 16365 e HVII: 073 – 340, excluindo inserções e polimorfismos de comprimento nas regiões de poli-C's).

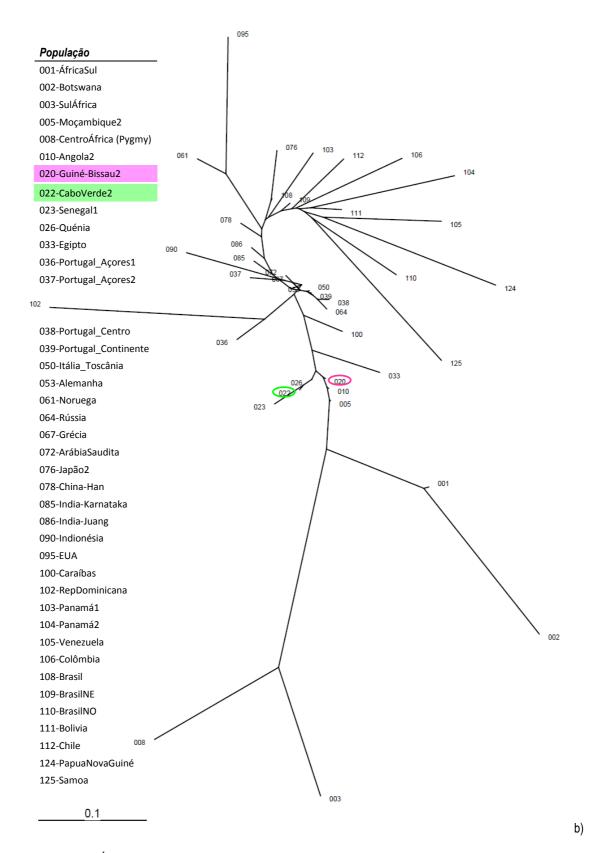
Código	População				HVI				HV	I + HVII	
Coungo	i opulação	N	K	A	J	π	N	K	A	J	π
055	Alemanha 3	50	34	45	0,9412 +/- 0,0268	0,0136 +/- 0,0078	50	40	68	0,9796 +/- 0,0128	0,0117 +/- 0,0063
056	Polónia	435	218	107	0,9642 +/- 0,0062	0,0158 +/- 0,0087	434	290	164	0,9878 +/- 0,0028	0,0132 +/- 0,0069
057	Áustria	96	64	69	0,9553 +/- 0,0164	0,0158 +/- 0,0087	96	79	108	0,9897 +/- 0,0053	0,0132 +/- 0,0069
058	Croácia	108	49	48	0,9720 +/- 0,0055	0,0172 +/- 0,0094					
059	Dinamarca - Gronelândia	82	10	10	0,7356 +/- 0,0357	0,0059 +/- 0,0039					
060	Inglaterra	86	63	63	0,9743 +/- 0,0102	0,0149 +/- 0,0083	86	73	100	0,9945 +/- 0,0033	0,0133 +/- 0,0070
061	Noruega	61	14	20	0,8093 +/- 0,0308	0,0125 +/- 0,0072	61	15	31	0,8104 +/- 0,0311	0,0090 +/- 0,0049
062	Finlândia	74	47	50	0,9534 +/- 0,0176	0,0139 +/- 0,0078				0,0011	0,00.0
063	Suécia	28	13	22	0,8386 +/- 0,0639	0,0132 +/- 0,0077					
064	Rússia	201	109	77	0,9769 +/- 0,0058	0,0158 +/- 0,0087	199	135	119	0,9889 +/- 0,0033	0,0132 +/- 0,0069
065	Ucrânia	18	16	23	0,9869 +/- 0,0229	0,0160 +/- 0,0092				0,0000	0,0000
066	Albânia	42	31	43	0,9698 +/- 0,0175	0,0152 +/- 0,0085					
067	Grécia	54	40	46	0,9741 +/- 0,0133	0,0145 +/- 0,0082	54	51	67	0,9972 +/- 0,0045	0,0119 +/- 0,0063
068	Bulgária	30	22	34	0,9770 +/- 0,0145	0,0147 +/- 0,0084	30	27	51	0,9931 +/- 0,0105	0,0126 +/- 0,0068
069	Turquia	29	27	52	0,9951 +/- 0,0106	0,0226 +/- 0,0123	29	29	83	1,0000 +/- 0,0091	0,0191 +/- 0,0100
072	Arábia Saudita	556	266	124	0,9892 +/- 0,0013	0,0239 +/- 0,0125	552	330	193	0,9928 +/- 0,0011	0,0187 +/- 0,0094
073	Iraque	52	52	55	1,0000 +/- 0,0038	0,0202 +/- 0,0110				-,	-,
074	Geórgia	48	36	45	0,9867 +/- 0,0071	0,0185 +/- 0,0101	48	42	72	0,9938 +/- 0,0059	0,0150 +/- 0,0079
075	Japão 1	50	27	30	0,8939 +/- 0,0354	0,0120 +/- 0,0069				2,222	-,
076	Japão 2	162	115	83	0,9869 +/- 0,0039	0,0238 +/- 0,0125	162	133	116	0,9942 +/- 0,0022	0,0159 +/- 0,0082
077	China 1	68	60	66	0,9952 +/- 0,0039	0,0278 +/- 0,0145	68	65	92	0,9987 +/- 0,0028	0,0191 +/- 0,0098
078	China 2	250	223	122	0,9978 +/- 0,0006	0,0276 +/- 0,0143	250	241	182	0,9997 +/- 0,0004	0,0196 +/- 0,0099
079	Coreia	60	51	62	0,9944 +/- 0,0043	0,0243 +/- 0,0129	60	57	93	0,9983 +/- 0,0034	0,0179 +/- 0,0092
080	Rússia – Sibéria 1	98	42	50	0,9695 +/- 0,0063	0,0204 +/- 0,0109	98	48	72	0,9745 +/- 0,0061	0,0148 +/- 0,0077
081	Rússia – Sibéria 2	17	16	27	0,9926 +/- 0,0230	0,0200 +/- 0,0113					
082	Índia 1	96	51	55	0,9669 +/- 0,0090	0,0215 +/- 0,0114	96	55	73	0,9724 +/- 0,0082	0,0145 +/- 0,0076
083	Índia 2	96	15	30	0,8610 +/- 0,0191	0,0157 +/- 0,0087					
084	Índia 3	81	29	42	0,9299 +/- 0,0166	0,0233 +/- 0,0124					

N – nº de amostras; K – número de sequências diferentes; A – número de posições nucleotídicas que apresentam polimorfismo; J – diversidade genética de sequências / haplótipos; π – diversidade nucleotídica.

Tabela III.12 (cont.) – Quadro resumo dos parâmetros de diversidade molecular calculados para as populações consideradas para a comparação global da região HVI e das duas regiões hipervariáveis combinadas HVI+HVII (HVI: 16090 – 16365 e HVII: 073 – 340, excluindo inserções e polimorfismos de comprimento nas regiões de poli-C's).

Código	População	HVI						HVI + HVII					
		N	K	A	J	π	N	K	A	J	π		
085	Índia 4	87	76	71	0,9939 +/- 0,0039	0,0174 +/- 0,0095	87	84	103	0,9992 +/- 0,0019	0,0131 +/- 0,0069		
086	Índia 5	131	88	92	0,9885 +/- 0,0033	0,0212 +/- 0,0113	130	116	147	0,9980 +/- 0,0013	0,0173 +/- 0,0089		
088	Filipinas	35	26	39	0,9664 +/- 0,0202	0,0189 +/- 0,0104					·		
089	Indonésia	37	25	26	0,9760 +/- 0,0120	0,0167 +/- 0,0093							
090	Indonésia	27	20	22	0,9630 +/- 0,0252	0,0158 +/- 0,0090	27	21	36	0,9744 +/- 0,0195	0,0118 +/- 0,0064		
091	Círculo Circum- Árctico	97	36	31	0,8896 +/- 0,0224	0,0114 +/- 0,0066					·		
092	EUA - Alasca	81	17	23	0,8762 +/- 0,0227	0,0132 +/- 0,0075							
093	EUA - Estado Washington	42	20	30	0,8931 +/- 0,0317	0,0174 +/- 0,0096							
094	Canadá + EUA	63	27	25	0,9519 +/- 0,0124	0,0192 +/- 0,0104							
095	EUA 1	326	74	55	0,8908 +/- 0,0118	0,0216 +/- 0,0114	325	92	87	0,9338 +/- 0,0086	0,0154 +/- 0,0079		
096	EUA 2	48	23	34	0,9415 +/- 0,0172	0,0236 +/- 0,0126					·		
097	EUA 3	78	57	56	0,9903 +/- 0,0041	0,0265 +/- 0,0139							
098	EUA 4	122	75	65	0,9831 +/- 0,0043	0,0241 +/- 0,0127							
099	México	85	64	60	0,9908 +/- 0,0038	0,0251 +/- 0,0132							
100	Caraíbas	93	54	56	0,9687 +/- 0,0087	0,0280 +/- 0,0146	93	62	87	0,9745 +/- 0,0086	0,0242 +/- 0,0122		
102	Rep. Dominicana	25	16	19	0,9567 +/- 0,0231	0,0113 +/- 0,0067	25	17	26	0,9667 +/- 0,0195	0,0075 +/- 0,0043		
103	Panamá 1	75	27	30	0,9427 +/- 0,0124	0,0215 +/- 0,0115	25	15	32	0,9400 +/- 0,0291	0,0179 +/- 0,0095		
104	Panamá 2	45	6	12	0,7485 +/- 0,0435	0,0171 +/- 0,0095	46	9	25	0,7710 +/- 0,0453	0,0139 +/- 0,0073		
105	Venezuela	59	12	13	0,8486 +/- 0,0217	0,0178 +/- 0,0098	59	22	29	0,9281 +/- 0,0168	0,0198 +/- 0,0101		
106	Colômbia	64	30	37	0,9033 +/- 0,0286	0,0187 +/- 0,0102	64	35	54	0,9559 +/- 0,0134	0,0156 +/- 0,0081		
107	Peru	33	25	37	0,9716 +/- 0,0181	0,0202 +/- 0,0111							
108	Brasil 1	247	164	102	0,9876 +/- 0,0034	0,0254 +/- 0,0133	97	84	124	0,9927 +/- 0,0044	0,0240 +/- 0,0121		
109	Brasil 2	167	121	84	0,9929 +/- 0,0020	0,0295 +/- 0,0152	167	133	125	0,9960 +/- 0,0014	0,0253 +/- 0,0126		
110	Brasil 3	47	22	25	0,8982 +/- 0,0353	0,0124 +/- 0,0071	46	39	40	0,9923 +/- 0,0065	0,0117 +/- 0,0063		
111	Bolívia	110	65	62	0,9538 +/- 0,0135	0,0218 +/- 0,0116	111	95	111	0,9933 +/- 0,0033	0,0184 +/- 0,0094		
112	Chile	73	26	29	0,8950 +/- 0,0291	0,0203+/- 0,0109	73	36	43	0,9498 +/- 0,0158	0,0140 +/- 0,0073		
113	Papuásia Nova Guine 1	9	4	13	0,7500 +/- 0,1121	0,0237 +/- 0,0141					·		
114	Kapingamarangi	16	3	2	0,6583 +/- 0,0748	0,0031 +/- 0,0026							


 $N-n^{\circ}$ de amostras; K-número de sequências diferentes; A-número de posições nucleotídicas que apresentam polimorfismo; J-diversidade genética de sequências / haplótipos; $\pi-d$ iversidade nucleotídica.


Tabela III.12 (cont.) – Quadro resumo dos parâmetros de diversidade molecular calculados para as populações consideradas para a comparação global da região HVI e das duas regiões hipervariáveis combinadas HVI+HVII (HVI: 16090 – 16365 e HVII: 073 – 340, excluindo inserções e polimorfismos de comprimento nas regiões de poli-C's).

Código	População	HVI					HVI + HVII				
		N	K	A	J	π	N	K	A	J	π
115	Ilhas Marshall	5	4	10	0,9000 +/- 0,1610	0,0159 +/- 0,0110					
116	Vanuatu	51	32	39	0,9671 +/- 0,0131	0,0216 +/- 0,0116					
117	Tonga	8	6	17	0,9286 +/- 0,0844	0,0265 +/- 0,0158					
118	Samoa	24	8	17	0,6558 +/- 0,1046	0,0094 +/- 0,0058					
119	Ilhas Cook - Nova Zelândia	79	13	26	0,6306 +/- 0,0554	0,0169 +/- 0,0093					
120 + 121	Tahiti + Ilhas Austrais - França	7	3	15	0,5238 +/- 0,2086	0,0210 +/- 0,0131					
122	Ilhas Marquesas - França	19	7	15	0,6082 +/- 0,1272	0,0126 +/- 0,0075					
123	Nova Zelândia	24	4	17	0,3080 +/- 0,1180	0,0067 +/- 0,0044					
124	Papuásia Nova Guine 2	23	9	7	0,7233 +/- 0,0960	0,0039 +/- 0,0030	23	11	10	0,8103 +/- 0,0797	0,0027 +/- 0,0019
125	Samoa	24	6	5	0,5000 +/- 0,1206	0,0027 +/- 0,0023	24	8	7	0,6123 +/- 0,1132	0,0017 +/- 0,0013
126	Austrália	114	44	45	0,9638 +/- 0,0076	0,0228 +/- 0,0121					

N – nº de amostras; K – número de sequências diferentes; A – número de posições nucleotídicas que apresentam polimorfismo; J – diversidade genética de sequências / haplótipos; π – diversidade nucleotídica.

Foram obtidas duas matrizes de distâncias F_{ST} inter – populacionais, calculados pelo software *Arlequin 3.11* (Excoffier, L, *et al*, 2005), considerando as populações com informação disponível para a região HVI, 16090 – 16365, e as populações que possuíam informação disponível para a HVII, 073 – 340 (Anexo V). Com base nestas matrizes foram desenhadas as árvores filogenéticas inter-populacionais, para cada uma das análises, HVI e HVI + HVII. Dado o elevado número de populações utilizadas nas duas comparações e a proximidade de algumas, as árvores obtidas ficaram sobrecarregadas e verificou-se alguma sobreposição. Para melhorar a visualização das árvores filogenéticas omitiram-se algumas populações (Figura III.8). Com o intuito de manter o máximo de informação foram seleccionadas as populações com informação para a HVI e para o conjunto HVI+HVII, com uma maior amostragem e representativas de todos os continentes. As árvores obtidas directamente do programa *Neighbor*, não tratadas (*outfile*), com todas as populações utilizadas na análise filogenética encontram-se no Anexo IV.

Figura III.8 – Árvores filogenéticas desenhadas com base na matriz de distâncias de *pairwise* F_{ST} , calculadas para a região hipervariável I e a sua conjugação com a região hipervariável II: a) HVI (16090-16365); b) HVI + HVII (16090-16365 e 073-340).

Considerando P=0,05, verificamos que as populações estudadas se encontram distantes de praticamente todas as consideradas para esta comparação global, excepto uma da outra. Este facto verifica-se na análise do conjunto HVI+HVII e da região HVI, embora nesta última se detecte alguma proximidade com populações vizinhas.

Analisando a matriz de distância *Fst* obtida considerando apenas a região HVI, Cabo Verde apresenta proximidade (P > 0,05) com 2 populações vizinhas: Guiné-Bissau (019 e 020) e Senegal (023 e 024); e um outro estudo que versa também sobre Cabo Verde (021). Quando consideramos ambas as regiões hipervariáveis conjugadas numa só sequência, HVI+HVII, não se verifica proximidade a nenhuma população excepto à Guiné-Bissau (020). As restantes populações que apresentam proximidade com a população de Cabo Verde estudada para a HVI (019, 021 e 024) não possuem informação relativa à HVII, logo não foram consideradas para esta análise (Tabela III.10, Anexo V).

A República da Guiné-Bissau apresenta, para a HVI, proximidade a São Tomé e Príncipe (013), a uma população representativa do Oeste Africano (017), à Serra Leoa (018), Cabo Verde (021 e 022), à população das Caraíbas (100) e ao estudo da Guiné – Bissau (019) realizado por Rosa A, *et al*, em 2004. Quando consideramos o conjunto desta região com a segunda região hipervariável do ADNmt, HVI+HVII, apenas se verifica proximidade à população de Cabo Verde (022) e das Caraíbas (100). Contudo, todas as outras populações consideradas próximas (P > 0,05) na análise individual da HVI (013, 017, 018, 021 e 019) não possuem informação relativa ao intervalo considerado para a HVII (Tabela III.10, Anexo V).

Na representação em árvore, baseada na análise da região HVI e na análise conjunta das regiões HVI e HVII, verifica-se que ambas as populações estudadas, Guiné-Bissau (020) e Cabo Verde (022), se encontram junto de outras populações africanas, embora se apresentem mais próximas de algumas populações Europeias do que das tribos autóctones do Sul de África. Apesar de próximas, estas populações encontram-se em ramos distintos das árvores e na análise da região HVI isolada aparecem mais distantes uma da outra, sendo que a Guiné – Bissau aparece mais distante das populações europeias, do que na análise conjunta das duas regiões hipervariáveis HVI + HVII (Fig. III.8)