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Abstrat

This thesis is devoted to mathematial modelling and solution tehniques for dynami

faility loation problems under unertainty. The unertainty regarding the evolution of

important problems' parameters along the planning horizon, suh as setup and assignment

osts, as well as level or loation of demand, is expliitly inorporated into the dynami

models through a �nite and disrete set of possible senarios.

In the present work we �rst propose a two�stage stohasti model for the unapaitated

problem. The �rst deisions to be made are the strategi ones, where and when to loate

the failities throughout the planning horizon. The seond�stage deisions refer to the

assignment of the existing ustomers to the open failities over the whole planning horizon

under eah possible senario. As opposite to loation deisions, that must be made here

and now and should be valid for all possible future senarios, assignment an be deided

after the unertainty has been resolved and thus an be adjusted in eah time period to

eah possible senario. The objetive is to �nd a solution that minimizes the expeted

total ost over all possible senarios. This model is then extended to other situations,

reognizing that other features should be inluded in the mathematial model to be able

to generate other possible solutions. A set of robust onstraints is inorporated into that

model, that in spite of restriting the set of admissible solutions, it o�ers more informed

and robust solutions under unertainty. A multi�objetive problem wherein eah senario

gives rise to an objetive is then developed, and relations with other known problems are

established as well. For this latter model, requirements about senarios probabilities or

risk pro�les are dropped. Within this ontext, it is emphasized that the Deision Maker

will have a better piture of the ompromises that exist among the possible senarios. In

terms of models, we onlude with several extensions onsidering apaitated failities.

The possibility of unmet demand appears naturally in this lass of problems, giving rise

to other interesting and hallenging questions. We propose and disuss both mono and

multi�objetive approahes.

We proeed with the desription of the solution tehniques that have been developed to

takle the unapaitated problems. First we present a primal-dual heuristi approah

inspired on lassial works and a branh&bound sheme integrating this same heuris-

ti. Afterwards, a Lagrangean relaxation approah developed to takle the problem with

robust onstraints is detailed. The alulation of non�dominated solutions for the multi�
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objetive problem is disussed and illustrated. Finally, as the models and algorithms

were tested over sets of randomly generated problems, the omputational experiments

and results obtained are provided inluding omparisons with general solvers.

The results of this work aim to help Deision Makers in the di�ult proess of deision

making when dealing with loation problems under unertainty, and thus should be in-

terpreted as deision support tools.

keywords: dynami loation problems, unertainty, senarios, primal-dual heuristis,

optimization
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Resumo

Esta tese versa sobre modelação matemátia e algoritmos de resolução de problemas de

loalização dinâmia em ontextos de inerteza. A inerteza aera de omo importantes

parâmetros dos problemas irão evoluir ao longo do tempo, tais omo ustos de instalação

de serviços e de afetação, loalização ou nível da proura, é expliitamente inorporada

nos modelos dinâmios através de um onjunto �nito e disreto de enários.

Na presente dissertação, propomos em primeiro lugar um modelo estoástio de duas

fases para o problema de loalização sem restrições de apaidades. As primeiras de-

isões a serem tomadas são as estratégias, onde e quando loalizar os serviços ao longo

do horizonte temporal. As deisões de segunda fase referem-se à afetação dos lientes

om proura aos serviços abertos ao longo do horizonte temporal para todos os enários

possíveis. Ao ontrário das deisões de loalização, tomadas no presente e válidas para

todos os futuros possíveis, as deisões de afetação podem ser tomadas após a realiza-

ção da inerteza e ajustadas em ada período temporal a ada enário. O objetivo do

problema é enontrar uma solução que minimize o usto total esperado para todos os

enários possíveis. Este modelo é depois alargado a outras situações, reonheendo-se

que outras araterístias devem ser inluídas no modelo de modo a gerar outras soluções

para o problema. Um onjunto de restrições de robustez é inorporado no modelo que,

apesar de restringir o onjunto de soluções admissíveis, oferee soluções mais informadas

e robustas em situações de inerteza. Um problema multi�objetivo em que ada enário

origina um objetivo é depois apresentado, assim omo relações om outros problemas

onheidos. Requisitos aera das probabilidades assoiadas aos enários ou aera de

per�s de riso são desneessários. É ainda sublinhado que neste ontexto o Agente de De-

isão terá um melhor retrato dos ompromissos existentes entre os possíveis enários. Em

termos de modelos, onluímos om várias extensões onsiderando serviços om apai-

dades limitadas. A possibilidade de proura insatisfeita surge naturalmente nesta lasse

de problemas, dando lugar a outras interessantes e desa�antes questões. Propomos e

disutimos abordagens mono e multi�objetivo.

Proedemos à desrição dos algoritmos onstruídos para resolução dos problemas sem

restrições de apaidades. Apresentamos uma heurístia primal�dual inspirada em abor-

dagens lássias e um algoritmo branh&bound que integra aquela heurístia. Uma té-

nia usando relaxação Lagrangeana é depois detalhada para resolução do problema om
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as restrições de robustez. O álulo de soluções não dominadas para o problema multi�

objetivo é disutido e ilustrado om um exemplo. Finalmente, omo tanto os modelos

omo os algoritmos foram testados om instânias geradas aleatoriamente, as experiên-

ias e resultados omputaionais são apresentados, inluindo omparações om general

solvers.

Os resultados deste trabalho pretendem ajudar os Agentes de Deisão no difíil proesso

de deisão perante problemas de loalização em ontexto de inerteza, e assim devem ser

interpretados omo ferramentas de apoio à deisão.

palavras�have: loalização dinâmia, inerteza, enários, heurístias primais-duais,

otimização.
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Prelude

A Faility Loation Problem an be seen as the problem of e�iently deiding where to

loate equipments/failities, being publi servies, suh as hospitals or shools, or private

servies (plants, warehouses,...). The question of where to loate may be assoiated

with other questions: what size (apaity) should be established; when to loate; how

long to keep the failities operating; in the ase of failities whose purpose is to meet

the needs of a set of ustomers, how to assign ustomers to the failities, et. Faility

loation problems have been widely studied by many researhers. From the literature

we an witness the diversity of situations onsidered and the orresponding diversity of

models developed, re�eting also the importane of suh problems (e. g., Mirhandani

and Franis [60℄, Daskin [18℄, Revelle et al. [71℄). Disrete versus ontinuous or planar

models, deterministi versus stohasti or under unertainty, stati versus dynami, are

only some lasses of loation models that an be found in the literature (Krarup and

Pruzan [48℄).

This work is onerned with dynami disrete faility loation problems where unertainty

is expliitly onsidered through the use of senarios. Disrete loation problems are those

problems in whih the failities to be loated an only be plaed at a �nite number of

potenial sites seleted via some prior analysis (Mirhandani and Franis [60℄). The lass

of models that deal expliitly with the presene of unertainty is usually alled loation

under unertainty or stohasti loation models. In suh ases some of the problem input

parameters are only known with unertainty, as opposed to their deterministi ounter-

parts where all the parameters are assumed to be known preisely. The inorporation of

unertainty into lassial (deterministi) loation models omes from the reognition that

at the time of deision making it may not be possible to know with ertainty some of the

problem input parameters (level or loation of demand, osts, for instane). Considering

that most loation deision problems are strategi by nature, and that the deisions made

are ostly to revert, with onsequenes in the medium and long terms, the unertainty

inherent in most real faility loation problems should be expliitly onsidered and rep-

resented in the onstruted models (Owen and Daskin [66℄). With suh models Deision

Makers �an better prepare for and respond to� unertainty in strategi planning (Shapiro

[81℄).

During the last deades there has been onsiderable interest in loation under unertainty
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and a large volume of work is now available in speialized papers and monographs. We

an �nd a primary division between unertainty and risk deision problems (Rosenhead et

al. [76℄). In situations under unertainty no probabilisti information about the unertain

parameters is advaned, whereas in risk deision problems it is assumed a perfet knowl-

edge about probability distributions. However, unertainty problems may be onverted

to risk deision problems by the onsideration of some probabilisti information, and the

term unertainty has been also used in risk deision situations. Regardless this and other

lassi�ations, the works found in the literature may di�er in the soure of unertainty

(most of them in level or loation of demand and/or osts), in the way unertainty is rep-

resented (mainly, stohasti programming and senario approahes), objetive funtions

onsidered, solution methods, et. A review about these hallenging problems, where

many situations are onsidered, is given by Snyder [82℄. Even so, ompared with the

researh devoted to deterministi versions, the literature related to stohasti loation

is still muh more limited, partiularly addressing disrete loation problems. As stated

by the authors ited above and others, as most deterministi disrete loation problems

are too omplex, formulated as mixed integer programming problems and lassi�ed as

NP -hard, the inorporation of randomness in suh models inreases their omplexity

and hinders its use in the omputation of optimal solutions, whih makes this lass of

problems less attrative than deterministi formulations.

Another lass of problems within our sope of interest onerns Dynami (or Multi-

period) Loation problems. Dynami models are mainly onerned with planning the

loation and/or size of failities over time, suh that the time dimension is expliitly rep-

resented through the use of time dependent deision variables. Classial (stati) models

are enrihed with the answer to questions suh as �when� to loate (Jaobsen [39℄). A

dynami loation problem approah is usually neessary whenever the assignment osts

hange signi�antly during the planning horizon or there are signi�ant osts for relo-

ating failities (Erlenkotter [30℄). Dynami models may require a large volume of data,

whih makes them also less attrative and less studied than stati problems.

Dynami and stohasti loation models are strongly related. Whenever it is neessary

to expliitly onsider a planning horizon, unertainty appears due to unknown future

onditions that may lead to a limited knowledge about problem parameters (Owen and

Daskin [66℄). If the parameters of dynami loation models hange deterministially over

time, then it is not possible to inorporate the unertainty inherent in real-world loation

problems even though time dimension is expliitly represented in the model. Consid-

ering both time and unertainty in loation models allows the onsideration of more

realisti situations, although the resulting models beome more omplex than stati and

deterministi ones. Most of the work that has been done addresses single-period (stati)

deterministi models, stati under unertainty models or deterministi dynami models,

although exploring many di�erent and relevant situations. There has been muh less
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work onsidering expliitly both time and unertainty in disrete loation models.

The main objetive of this work is to support loation deision making through the devel-

opment of mathematial models and algorithms that deal expliitly with the unertainty

inherent in most dynami faility loation problems. The main ontributions of this the-

sis are summarized as follows: (i) development of a new model for the unapaitated

disrete dynami faility loation problem that onsiders expliitly unertainty in many

of the problem's parameters via a set of senarios, as well as solution approahes to takle

this problem, �rst a primal-dual heuristi approah inspired on lassial works and then a

branh&bound sheme integrating this same heuristi to solve the problem to optimality

(ii) development of an extension of the �rst model onsidering robustness onerns and

also a Lagrangean relaxation approah to takle the problem (iii) development of a multi-

objetive approah for the unapaitated dynami loation problem under unertainty

(iv) development of new models onsidering apaitated failities.

Taking into aount the vast existing literature on faility loation, in Chapter 1 we

address di�erent loation problems and perspetives that are somehow related to this

work. First, in setion 1.1 we review some lassial (stati and deterministi) and de-

terministi dynami loation problems. Some referenes to these lasses of problems are

also provided. Setion 1.2 is devoted to the subjet of Unertainty, where Stohasti and

Senario approahes are addressed. We fous on those aspets that are more important

to the forthoming developments. In setion 1.3 an overview on past works onerning

faility loation problems under unertainty is given. These works address both stati

and dynami approahes, from earlier to most reent ones, re�eting the variety and

rihness of the existing ontributions on faility loation under unertainty.

In Chapter 2 we desribe new models for disrete dynami loation problems under un-

ertainty. We generalize some well known loation models by inorporating expliitly

the unertainty in these models through a set of senarios. In setion 2.1 we revisit the

lassial unapaitated faility loation problem (UFLP), proposing a dynami and un-

ertain version of this problem. In this model, �xed and assignment osts are senario

dependent, as well as the set of ustomers and the set of potential loations for faili-

ties. The problem is formulated as an integer linear programming model, that ontains

the deterministi stati and dynami UFLP as partiular problems (NP-hard problems

(Cornuejols et al. [16℄)). Taking into aount the forthoming developments in terms of

solution approahes to this problem (a primal�dual heuristi) formulations for the dual

problem and omplementary slakness onditions are given as well. We end this setion

onsidering variations in the �rst model proposed. Due to the assumptions regarding un-

ertainty in potential faility sites, the model here presented is more general than the �rst
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introdued. Afterwards, the �rst model proposed is further extended to other situations.

In setion 2.2 a regret based measure of robustness is inorporated and the solutions

provided by this problem are analysed through illustrative examples. In setion 2.3 a

Multi�objetive approah is onsidered and relations with other loations problems are

also provided. We advoate here the use of a multi�objetive approah as a valuable tool

in guiding the deision�making proess under unertainty, as the Deision Maker will

have a muh broader view of the ompromises that exist among the possible senarios.

In setion 2.4 we propose and disuss several extensions onsidering apaitated failities.

Chapter 3 details the solutions approahes developed to takle the problems presented

in the previous hapter. In setion 3.1 a primal-dual heuristi approah to takle the

�rst model presented is desribed along with illustrative examples. This heuristi ap-

proah is diretly inspired on the approahes developed by Bilde and Krarup [13℄ and

Erlenkotter [29℄, and Van Roy and Erlenkotter [88℄, designed for the stati and dynami

versions of the UFLP, respetively. In setion 3.2 this same heuristi is inorporated in

a branh&bound algorithm in order to solve the problem to optimality. Afterwards, in

setion 3.3 a Lagrangean relaxation approah developed to takle the problem with ro-

bustness onstraints is desribed, whih uses also the primal-dual heuristi. We end this

hapter explaining in setion 3.4 how Pareto�e�ient solutions for the Multi-objetive

problem an be alulated following an interative approah with an illustrative example.

Chapter 4 is devoted to the presentation and disussion of the omputational experienes

arried out to validate the proposed models and evaluate the performane of the orre-

sponding algorithms both in terms of solution quality and omputational time. First, in

setion 4.1 we disuss brie�y the issue of senarios' generation giving some referenes to

the subjet as well. The algorithm developed to generate test problems for the present

work is then desribed. The proposed models and solution tehniques were tested over

sets of randomly generated test problems. In setion 4.2 the omputational results are

presented. For the models and algorithms desribed in the previous hapters, we present

some details about the solutions obtained for those problems, in partiular the quality of

the solutions in terms of gap, and also the omputational time spent by the algorithms.

Comparisons with the results of general solvers are provided as well.

The numbering system used in this work is the ommon one whereby (2.3.1) refers to

the 1st numbered equation in setion 3 of hapter 2. An analogous sheme is followed

for propositions, �gures, tables, et. All referenes in the text are in the bibliography

hapter ordered alphabetially.
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Chapter 1

Bakground and Related Literature

The literature devoted to faility loation problems is immense. Among the vast olletion

of works onerning loation problems, we have hosen to review in this text only those

works and perspetives that are somehow related to the loation problems takled in this

thesis. Most of these works extend lassial (stati and deterministi) disrete loation

problems with di�erentiating harateristis, in a stohasti or/and dynami setting. We

start with a short review on some lassial problems as well as on deterministi dynami

problems. Afterwards, the subjet of unertainty modelling is disussed. The fous goes

to two main approahes, the Stohasti and Senario approahes, given not only their

relevane in the loation literature but also the forthoming developments of this thesis.

Speially related with the Senario approah, some notes and referenes on robustness are

given. In the following setion, we onsider previous works that are devoted to disrete

loation problems under unertainty (single-period and dynami). We also review some

reent works about supply hain design problems under unertainty in whih loation

deisions are inluded.

We stress that this hapter along with the additional works that will be ited throughout

this text have no pretensions of ompleteness. For other referenes and extensive reviews

on faility loation under unertainty, the reader is referred to Louveaux [55℄, Kouvelis

and Yu [47℄ and Snyder [82℄.

1.1 Some lassial faility loation problems

The lassial unapaitated faility loation problem (UFLP), also known as the simple

plant loation problem (SPLP), plays a entral role in the loation researh �eld, not only

by itself but also integrated in other problems. The UFLP onsists of deiding where to

loate a number of failities among a �nite set of potential sites, in order to minimize

total osts (�xed faility osts plus variable prodution osts and transportation osts to

ustomers). Sine the failities are unapaitated, all demands will be assigned to the

nearest open faility. The size of an open faility is omputed as the sum of the demands
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it serves. The UFLP has been extensively studied sine Kuehn and Hamburger [49℄ and

is known to be NP -hard (Cornuejols et al. [16℄). A well known variation of the UFLP is

the apaitated faility loation problem (CFLP) in whih there is a known upper bound

to the apaity of eah faility. In terms of formulation it is similar to the UFLP, with

additional apaity onstraints. It is possible that ustomers an no longer be assigned

to the losest open faility. It is neessary to de�ne if the demand of eah ustomer an

be served by more than one open faility, or if it has to be fully assigned to one and only

one faility. The p�median problem (introdued by Hakimi [34℄) onsists of �nding the

optimal loation of exatly p failities in order to meet a given demand at the lowest

possible transportation ost.

The above problems are by far well known and detailed desriptions and its variations

along with solution methods (mainly heuristi and approximation algorithms) may be

found in several books, papers and in the referenes therein (e.g., Mirhandani and Fran-

is [60℄, Daskin [18℄, Korte and Vygen [46℄).

In a dynami setting, the works found in the literature may di�er in the way some timing

aspets and other important issues are inorporated and handled. We an �nd models

that onsider both the possibility of opening new failities during the planning horizon,

or the losure of failities that were opened at the beginning of the planning horizon.

Most of the times, one a faility is opened, it stays open until the end of the planning

horizon. Similarly, one a faility is losed it stays losed until the end of the planning

horizon. Nevertheless, there are models that onsider more �exible settings where a

faility an be opened, losed and even reopened during the planning horizon. There are

models that onsider apaity onstraints or other type of onstraints like budget upper

bounds. The number and diversity of proposed solution methods is signi�ant. One of

the earliest dynami unapaitated faility loation problem (DUFLP) was proposed by

Roodman and Shwarz [74℄. The authors onsider the problem of losing up to a pre-

spei�ed number of initially open and operating failities as demand delines over a given

multiperiod planning horizon. It is also presented a branh and bound algorithm and

near optimal heuristi algorithms to solve the problem. In [75℄ the model is generalized to

solve a faility phase-in/phase-out problem (i.e., opening new failities or losing initially

opened ones). A related model was proposed by Wesolowsky and Trusott [91℄ that

onsiders the possibility of removing and establishing failities in eah time period and

additional restritions on the maximum number of failities to be removed in eah period.

As solution method the authors propose a dynami programming approah. Roy and

Erlenkotter [88℄ also onsider the DUFLP, where new failities an be opened and initially

opened failities an be losed over the planning horizon. The authors present a branh-

and-bound proedure inorporating a heuristi dual asent method, the latter initially

developed by Bilde and Krarup [13℄ and Erlenkotter [29℄ for the stati UFLP. More
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reently, Dias et al. [21℄ present a new version of the DUFLP that not only allows for the

opening and losing of failities over the time horizon but also their reopening, where �xed

osts inlude also reopening osts. A primal-dual heuristi is proposed and omputational

results are presented. Regarding the apaitated ase, referene to Erlenkotter [30℄ and

Jaobsen [39℄, where not only introdutions to suh problems are given and additional

di�ulties that arise in the apaitated ase are emphasized, but also earlier models and

solution methods are disussed. More reently, models and solution methods for dynami

apaitated problems are suggested by Dias et al. [22℄ and Soto and Uster[85℄. The reader

is referred to Dias [23℄ where an extensive study about dynami faility loation, both in

terms of models and solution tehniques, is given, and to a reent review given by Nikel

and Saldanha da Gama [64℄, where many other referenes an be found.

1.2 Unertainty modelling

Unertainty has been expliitly inorporated in faility loation models in several ways,

giving rise to several lasses of models and approahes. Unertainty appears typially

in the distribution osts or travel times, prodution osts, and mainly in the loation or

level of demand. A ommon approah to take unertainty into aount is through the

design of a set of possible senarios. In general, senarios an be interpreted as a limited

representation of the unertainty in problem data or unertainty about how the problem

parameters will evolve (Rokafellar and J-B Wets [72℄, Van der Heijden [87℄). Usually

a senario is any possible realization (disrete or interval) of the unertain problem pa-

rameters, and depending on the approah, senarios may require weights (probabilities)

assoiated to them or not. Another possibility to take unertainty into aount is to

onsider the unertain parameters as random variables with an expliit use of their prob-

ability distributions or density funtions. The orresponding models and related methods

an then be onsidered as belonging to the �eld of Stohasti Programming (SP) (Birge

and Louveaux [14℄). It should be noted here that a senario approah does not exlude

the possibility of using some stohasti programming tehnique. Two�stage stohasti

programs with reourse and hane onstrained programs, for instane, are two popular

stohasti approahes that have been applied to faility loation. The latter onsiders

a on�dene level type onstraint, as two�stage stohasti programs with reourse are

haraterized by two sets of deisions: the �rst�stage deisions are the deisions that

have to be made before the random events an be observed (here and now deisions) and

the seond�stage or reourse deisions are those that an be deided after the unertainty

has been revealed. Let us detail here only some features of two-stage stohasti problems

with reourse, given its relevane within the stohasti loation literature and the forth-

oming results of this work. The reader is referred to books (Birge and Louveaux [14℄,

Kall and Wallae [42℄) and many papers wherein SP approahes are applied.
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A standard two�stage stohasti programming problem with reourse, in short 2-SSPP,

an be formulated as follows:

(2-SSPP) min aTx + E[Q(x, ω)] (1.2.1)

s.t. x ∈ X ,

with

Q(x, ω) = min g(ω)Ty (1.2.2)

s.t. D(ω)y = h(ω) +W (ω)x,

y ∈ Y,

where X ⊆ IRn1
denotes the set of onstraints on the �rst stage variables, a ∈ IRn1

,

Y ⊆ IRn2
denotes the set of onstraints on the seond stage variables, ω is a random vari-

able from a probability spae (Ω, F , P) with Ω ⊆ IRk
, and (g(ω), D(ω), h(ω), W (ω))

are possible (real) unertain problem parameters that we assume here well dimensioned.

The symbol E[.] represents the mathematial expetation as usual.

The above formulation desribes well the nature of two�stage stohasti problems with

reourse, notiing however that other forms may be found in the literature. In the �rst

stage problem, the deisions about the values of variables x must be made before the

realization of unertainty. Afterwards, for a given value of the �rst stage variables x and

one the unertainty is resolved, the values of the seond stage or reourse variables y are

seleted (seond stage problem). The objetive (1.2.1) is to minimize the ost of the stage

one deisions plus the expeted ost of the stage two deisions. The above formulation

emphasizes also that the seond stage problem deomposes into independent subproblems

(1.2.2), one for eah realization of the unertain parameters. Although variables y depend

on the realization of ω, this is not expliitly represented here beause the subproblem

for eah outome is deoupled from all others outomes. Those subproblems, also alled

reourse problems, are linked by the �rst stage deisions. Whenever the reourse problems

are feasible for (at least) the �rst stage deisions, the stohasti problem is said to have

(relatively) omplete reourse. In SP the feasibility of the reourse problems is usually

enfored by the introdution of arti�ial reourse variables.

In most appliations, usually it is assumed that the random variable ω follows a disrete

distribution with �nite support Ω = {ω1, ..., ωS}, alled the senario set. Denoting by

ps the probability of realization of the sth senario ωs
, P (ω = ωs) = ps, and assuming

that ps > 0 for all ωs ∈ Ω and that

∑S

s=1 p
s = 1, it is possible to rewrite the 2�

SSPP in an extensive form, the so�alled deterministi equivalent programming problem

of 2�SSPP. In what follows, the unertain problem parameters (g(ω), D(ω), h(ω), W (ω))

assoiated with a partiular realization ωs
, i.e. with a senario, is suintly denoted

8



by (gs, Ds, hs, W s) with assoiated probability ps. Then, the deterministi equivalent

programming problem of 2�SSPP an be written as follows:

min aTx +

S
∑

s=1

psQs(x) (1.2.3)

s.t. x ∈ X ,

with

Qs(x) = min (gs)Ty (1.2.4)

s.t. Dsy = hs +W sx

y ∈ Y.

As we will see in the next setion, two�stage approahes have been applied both in stati

and dynami loation problems under unertainty. An important feature in stohas-

ti programming, impliit in the above formulations, is the so�alled non�anteipativity

priniple that, in simple terms, requires that deisions are based only on the informa-

tion available at the urrent stage of the deision proess and annot antiipate future

outomes of the unertain parameters (i.e., Rokafellar and J-B Wets [72℄, Birge and

Louveaux [14℄). Multi-stage problems are an extension of two�stage problems in whih

unertainty is resolved in more than one stage along the time horizon. More reently,

these stohasti programs have also been applied to dynami problems, whih an be

even harder to solve than two�stage programs (Dyer and Stougie [28℄).

A related issue addressed in the literature is robustness, speially when faed with senario-

based models. However, the onept of robustness may have di�erent meanings and in-

terpretations, being in reality a multi-faeted issue (Roy [78℄). A pioneer work about the

use of the robustness onept in strategi management is due to Rosenhead et al. [76℄.

The riterion robustness is �a measure of the �exibility whih an initial deision of a plan

maintains for ahieving near-optimal states in onditions of unertainty�. The proposed

onept is developed through the ase study of a fatory loation problem over time, and

here the robustness onept refers to individual failities, the ones that should be opened

�rst, when onsidering a time horizon under unertainty. Ever sine, several di�erent

robustness measures have been proposed in the literature, some of whih have already

been applied to faility loation under unertainty problems. As opposed to sensitivity

analysis, that measures the sensitivity of solutions to hanges in the input data (it is a

reative approah to takle unertainty), robustness should be taken into aount a priori

when the problem is formulated (Mulvey et al. [63℄, Kouvelis and Yu [47℄, Roy [78℄). For

instane, in deision environments with signi�ant unertainty, rather than the �optimal�

solution for a spei� senario or even for the most likely senario, a risk averse dei-

sion maker wants a robust deision, de�ned in this ontext as the one that performs well
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aross all senarios and hedges against the worst of all possible senarios ([47℄). Di�erent

riteria an then be used to selet among robust solutions, suh as min-max and min-max

regret riteria. In brief, the min-max riterion aims at onstruting solutions having the

best possible performane in the worst ase; regret riterion aims at obtaining a solution

minimizing the maximum deviation, over all possible senarios, between the value of the

solution and the optimal value of the orresponding senario (Aissi et al. [4℄). A di�erent

robustness approah is given by Mulvey et al. [63℄. The authors onsider both solution

robust and model robust onepts: a solution is robust if it remains lose to optimal for

any senario, and it is model robust if it remains almost feasible for any senario. As it is

unlikely that a given solution will remain both feasible and optimal for all senarios, the

authors propose a multiriteria objetive approah that allows to measure the tradeo�

between solution and model robustness. Usually the above approahes are assoiated

with the so�alled Robust Optimization (Snyder [82℄). The above and other robustness

approahes are also disussed and ompared in [19, 8, 12, 82, 83, 4, 11, 78℄, re�eting the

importane of the subjet.

1.3 Overview on Single-period and Dynami faility lo-

ation problems under unertainty

One of the earliest stohasti loation problems known was presented by Mirhandani

and Odoni [61℄. The authors extend the onept of p�median to stohasti networks

where the distane (travel time) on any ar or the demand (all rate) at any node may

be disrete random variables with known distributions. The authors prove that under

a set of assumptions an optimal solution exists at nodes of the network (satisfying the

Hakimi property, [34℄). Thus, the stohasti median loation problem an be formulated

as an integer linear program (sine there is a �nite number of identi�able potenial fa-

ility sites). Later, Weaver and Churh [90℄ propose two solution proedures for this

problem, a heuristi and a bounding proedure based on the subgradient optimization of

the Lagrangian dual. Louveaux [54℄ presents a stohasti version of the UFLP in whih

demands, variable prodution and transportation osts, and selling pries (inorporated

in the model) an be random. The problem is formulated as a two�stage stohasti

program with reourse, where the �rst�stage deisions are the loation and the size (a-

paity) of the failities to be established, and the seond�stage or reourse deisions are

the alloation of the available prodution to the most pro�table demands. As opposed

to the deterministi ase, the hoie of both the demands to be served and the size of

the failities to be established also beomes part of the deision proess. In this work

also a stohasti version of the p�median, de�ned as a two�stage stohasti program with

reourse, is presented, and relations between the stohasti versions of the p�median and
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the UFLP are disussed. Solution methods are later presented by Louveaux and Peeters

[56℄. The authors propose a heuristi dual�based proedure, inspired on the method

developed by Erlenkotter [29℄ for the lassial (stati and deterministi) UFLP. As the

omplexity of the problem inreases with the randomness in the demands and osts, it

is assumed that all random variables have disrete distributions with only a small num-

ber of senarios. Laporte et al. [51℄ onsider a CFLP in whih ustomer demands are

stohasti. The problem onsists of optimally determining the loation and size of fail-

ities given that future ustomer demand is unertain. The objetive funtion minimizes

the di�erene between the sum of �xed faility osts and average ost of operating trans-

portation servies between failities and ustomers (assignment osts), and the expeted

net revenue from supplying ustomers. The problem an also be viewed as a two�stage

stohasti integer program. Following the senario approah, Current et al. [17℄ address

loation problems in whih the total number of failities to be sited is unertain. Two

deision riteria are onsidered in p-median based formulations: the minimization of the

maximum regret and the minimization of expeted opportunity loss. Under the deision

riteria, eah problem loates an initial number of failities when the total number is un-

known. The approahes are illustrated with a sample problem. Serra and Marianov [80℄

onsider a p�median based model in whih travel times between nodes and/or demand at

nodes are unertain, desribed by senarios. Two p�median formulations are presented,

the min�max and the regret approahes. The authors propose a heuristi method for

both formulations, and a real appliation to the loation of �re stations in Barelona is

presented. Snyder and Daskin [83℄ onsider the lassial (stati) p�median and UFLP

problems with unertain demands and transportation osts, desribed by probabilisti

senarios. The models minimize expeted osts while making sure that the relative re-

gret for eah senario is no greater than a pre-spei�ed value (a new robustness measure

for optimization under unertainty). The relative regret of a solution assoiated with

a given senario is alulated by the di�erene between the value of the solution under

that senario and the optimal value of the senario divided by this latter value. The

authors inorporate regret into the problems's formulations by onsidering onstraints

that guarantee that the relative regret assoiated with eah solution, for eah of the pos-

sible future senarios, is upper bounded. They also propose a Lagrangian deomposition

algorithm to solve the orresponding optimization problems. In a reent work (Lim and

Sonmez [52℄) the same robustness measure is onsidered in a stati faility p�median

reloation problem. Berman and Drezner [10℄ also onsider the p�median problem when

the total number of failities to be sited in the future is unertain. The problem seeks the

loation for p failities that minimize the expeted weighted distane when up to q new

failities are added to the system in the future. The probability of adding 0 ≤ r ≤ q new

failities (possible senarios) is given. The authors prove that an optimal solution exists

with all the failities loated on nodes (satisfying the Hakimi property), and formulate
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the problem as an integer program. Heuristi algorithms are suggested to solve the pro-

blem (fousing in the ase q = 1; for q ≥ 2 it seems more di�ult). A similar integer

programming model and a deomposition algorithm to solve it is presented by Sonmez

and Lim [84℄. As opposed to the previous work, in this paper the problem allows the

losing of some of the failities that were opened initially, due to future demand hange,

and onsiders also budget restritions for the opening and losing of failities. Ravi and

Sinha [69℄ propose a two-stage stohasti version of the UFLP and an 8�approximation

algorithm

1

to solve it. Here, demand and �xed osts are both random, and failities may

be opened in either the �rst or seond stage. A related two-stage stohasti program

is proposed by Wang et al. [89℄ in whih servie installation osts are also onsidered

(servies must be installed at the open failities and eah ustomer must be assigned to

an open faility at whih the servie requested by the ustomer is installed). The authors

propose a primal-dual approximation algorithm to solve the optimization problem. Lin

[53℄ proposes a stohasti version of the single�soure apaitated faility loation pro-

blem in whih the demand is unertain. The objetive funtion is to minimize the total

system osts inluding �xed faility osts and osts of serviing eah demand point by its

assigned faility. Simultaneously, reognizing that failities should provide an adequate

level of servie, the model also inorporates faility servie level requirements. These

requirements are formulated as hane onstraints, being the probability that eah open

faility an ope with the stohasti demand assigned. Mo and Harrison [62℄ propose

a oneptual framework for robust supply hain design under demand unertainty. The

aim is to �nd a supply hain on�guration (or a group of on�gurations) that provides

robust performane under demand unertainty. Unertainty of demand is represented by

disrete senarios with known probabilities. First the authors de�ne various performane

measures of �robustness� (minimum total expeted ost, minimum variane of total ost,

minimum of maximum deviation, multiple riteria) emphasizing di�erent perspetives

of robust supply hain. As solution methods, the authors disuss expliit enumeration

methods and SP methods. In the SP approah the problem is formulated as a lassi

two-stage stohasti program. The objetive funtion is to minimize total expeted ost,

whih inludes �xed osts of opening plants and warehouses, expeted shipping ost from

plants to warehouses and from warehouses to ustomers, and expeted outsouring ost

when ustomers' demands annot be satis�ed from warehouses. The authors disuss the

di�ulties in using these approahes when the total number of senarios is large and

suggest that this number ould be redued by a sampling based approah. Albareda-

Sambola et al. [7℄ onsider a two-stage stohasti program for a faility loation problem

where unertain demand is modelled by a Bernoulli distribution. Kiya and Davoudpour

1

An approximation algorithm is a �approximation algorithm (where  is the approximation ratio)

if it an be proven that the solution found by the algorithm is at most  times worse than the optimal

solution (in this ase,  times larger as it is a minimization problem).
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[44℄ extend the deterministi warehouse network re-design model to unertain opera-

tional parameters (demand and operational osts) desribed by probability distributions.

A two-stage stohasti program with reourse is presented and an algorithm based on

the Sample Average Approximation method ombined with Benders deomposition and

other heuristi methods is developed.

Our attention returns now to those works wherein both unertainty and time are expli-

itly onsidered. Jornsten and Bjorndal [40℄ onsider the DUFLP under unertainty, where

the �xed and variable osts are desribed via a set of senarios. To solve the dynami

and stohasti program, the authors use the senario and poliy aggregation desribed

by Rokafellar and J-B Wets [72℄. The method is applied to a set of small illustrative

problems. Ahmed and Garia [3℄ onsider a dynami apaity aquisition and assignment

problem under unertainty. The problem seeks a apaity expansion shedule for a set of

resoures and the assignment of resoure apaity to tasks over the multi-period planning

horizon. The problem an be viewed as the planning of loations and apaities of distri-

bution enters (DCs) and the assignment of ustomers to the DCs. The model expliitly

inorporates unertainty in task proessing requirements and assignments osts via a set

of senarios. Although the problem is a multi-period one, the apaity planning deisions

for all periods are made in period/stage one (thus, a two-stage stohasti programming

approah is adopted). Romauh and Hartl [73℄ onsider a dynami faility loation pro-

blem with unertain demand, desribed by senarios. The problem seeks the optimal

deisions for prodution, inventory and transportation, to serve the ustomers during a

�xed number of periods. It is assumed that the prodution sites have limited storage

apaities. The model is �rst solved by dynami programming and then a heuristi is

proposed, the Sample Average Approximation Method (SSA) adapted to the multi-period

ase. Albareda-Sambola et al. [5℄ present a multi-period loation-assignment problem

under unertainty. It is a stohasti version of an earlier (deterministi and multi-period)

problem studied by the same authors. Here, the servie time periods of the ustomers

and the minimum number of ustomers to be served at eah time period are senario

dependent. The objetive is to minimize the expeted ost-penalty value (setup ost for

the open failities, assignment and servie ost, and penalty ost for not serviing us-

tomers with demand). More reently, the same authors present in [6℄ a new algorithm

for a multi�period loation�assignment problem under unertainty, a Fix�and�Relax�

Coordination sheme. Hernández et al. [36℄ present a multi-period stohasti model to

the loation of prison failities under unertainty, where the unertain future demand

for apaity is represented by probabilisti senarios. The problem seeks the loation

and sizes of a given number of new failities (jails) and determines where and when to

inrease the apaity of both new and existing failities over a time horizon. Subjet

to several onstraints (maximum inmate transfer distanes, upper and lower bounds for
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faility apaities, among others) the objetive is to minimize the expeted osts of the

prison system. The model is solved by a branh�and�luster oordination sheme (a

heuristi mixture of branh�and��x oordination and branh�and�bound shemes).

We next review some works where examples of faility loation problems integrated in

supply hain are proposed and where some other related referenes an be found. Aghez-

zaf [2℄ �rst developed a deterministi apaity planning and warehouse loation model

for the supply hain (whih an be viewed as a multiple�soure apaitated eonomi lot-

sizing problem). Then the model is extended to unertain realizations of future market

demand (the only soure of unertainty) desribed by senarios. The author uses the on-

ept of robust optimization developed by Mulvey et al. [63℄ ombined with Lagrangean

relaxation methods. Pan and Nagi [67℄ also propose a robust optimization formulation

for a multiple layer supply hain network under demand unertainty. The unertainty

of demand is represented by probabilisti senarios. The objetive funtion inludes ex-

peted total ost, ost variability and model infeasibility penalty by the onsideration

of a weighted penalty to unmet demand that may our under a possible senario. The

problem inludes several deisions: loation, distribution, prodution, inventory. To solve

the problem a heuristi is developed and extensive omputational results are presented.

Pimentel et al. [68℄ develop a stohasti apaity planning problem applied to a Global

Mining Supply Chain whih integrates lot sizing, apaity expansions, faility loation

and network design deisions. Faility loation deisions inlude the opening, losing and

reopening of failities. The authors adopt a multi-stage integer stohasti formulation

where the evolution of the unertain parameters is represented by a disrete probability

senario tree

2

. An analysis of di�erent solution approahes, from exat to approximate

methods, with solutions provided by software CPLEX is given. Nikel et al. [65℄ propose

a multi�period multi�ommodity stohasti supply hain network design problem whih

integrates, in addition to loation and distribution deisions, �nanial deisions suh as

what investments and loans to onsider in eah time period of the planning horizon.

Unertainty is assoiated with future demand and return rates, represented by a set of

senarios. Servie level and risk measures are also inluded in the model, both in the

objetive funtion. The problem is formulated as a multi�stage stohasti mixed�integer

linear programming problem. Due to omputational reasons, a more ompat formula-

tion of the problem is proposed whih is based upon the paths in the senario tree. In

order to measure the relevane of using a stohasti approah (the value of the stohas-

ti programming approah), a deterministi problem derived from the stohasti one is

presented. Computational results inluding omparisons between the stohasti and the

deterministi solutions are presented.

2

The nodes in period t onstitute the states of the world that an be distinguished from the informa-

tion available up to t ; the leaf nodes de�ne the senarios, whih represent the joint realizations of the

risky parameters over all periods.
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Chapter 2

Mathematial Models

The models proposed in this work an be applied to any situation in whih a ompany

has to do the planning of strategi loation investments over a given period of time. As

emphasized earlier, the motivation to study loation models whih expliitly inorporate

unertainty omes from the need to take into aount in the deision proess the envi-

ronmental hanges that may our during the planning horizon. The main soures of

unertainty onsidered in the models developed ome from the existene or lak of us-

tomers, as well as osts assoiated with the opening of failities and satisfying the lients'

demand. Costs for opening failities an hange due to the eonomi environment, be-

havior of the real estate market, hanges in interest rates. Suh osts an even hinder the

opening of a faility. Assignment osts an hange due to hanges in road infrastrutures,

new roads an be built while others may beome inaessible, government poliies, prie

of fuel, tolls, for instane.

We have witnessed that the representation of unertainty in optimization models, ap-

plied also to loation models, has been widely debated in the literature (e.g., Dembo [19℄,

Mulvey et al. [63℄, Van der Heijden [87℄, Kouvelis and Yu [47℄, Snyder [82℄, Durbah

and Stewart [27℄). The senario approah appears as �an extremely powerful, onvenient

and natural way to represent unertainty� ([19℄) and an be more appropriate than a

stohasti one, espeially when the available information may not be su�ient to sup-

port a stohasti programming model (Rokafellar and J-B Wets [72℄, Van der Heijden

[87℄). Under high unertain onditions, suh as those that may our during a multi-

period loation problem, the design of senarios an be more aurate than the use of

probability distributions or stohasti proess (Shoemaker [79℄, Van der Heijden [87℄). A

reent experimental study by Durbah and Stewart [27℄, about the e�et of unertainty

representation on deision making in terms of several items (the di�ulty experiened in

making a deision, for instane), indiates that the use of probability distributions ap-

peared to overload subjets, being more di�ult to use than other onise formats suh

as the use of senarios.
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We have hosen to represent unertainty in the models by a �nite and disrete set of

possible senarios. The study ited above only reinfores our hoie on the senario ap-

proah, dealing with dynami loation problems under unertainty that are by themselves

harder to be understood by Deision Makers. Senarios are interpreted as �a thinking

tool and ommuniation devie that aid the managerial mind rather than replae it�, an

aid espeially useful under onditions of high unertainty and omplexity (Shoemaker

[79℄). In some of the models presented, we also onsider probabilisti senarios and thus

we do not exlude here the use of stohasti approahes. In partiular, two�stage stohas-

ti problems (brie�y reviewed in setion 1.2) that model well the real nature of loation

problems, though the probabilities assoiated with the senarios must also be advaned.

Several other questions (and di�ulties) may arise whenever the unertainty is expliitly

inorporated into a model. For instane, it might be di�ult to �nd a single solution de-

�ned as the best one in all possible future realizations of unertainty. Within this ontext,

the onept of best solution strongly depends on the attitude towards risk of the Deision

Maker (DM). When the DM is assumed to be risk neutral, expeted ost riterion are

appropriated but, as already noted in setion 1.2, in the presene of di�erent risk pro�les

other features should be inluded in the mathematial models in order to generate other

possible solutions.

This hapter is dediated to the desription of the problems, mathematial modelling,

where integer and mixed-integer linear programming models are presented. We start in

setion 2.1 with an extension of the dynami unapaitated faility loation problem to an

unertain future (Marques and Dias [58℄). Later on, in setion 2.2 a regret based measure

of robustness is inluded in this model. This measure is not new in the loation literature,

but is expliitly inorporated in a dynami loation problem for the �rst time (as far as

the authors know) (Marques and Dias [59℄). By the analysis of some illustrative examples,

it is possible to obtain a deeper knowledge about the problem and its possible solutions:

the possibility of ahieving more robust solutions from small hanges in a given and less

robust solution, or the disovery of the ore failities, those that remain open even if the

robustness parameter varies. In setion 2.3 the dynami unapaitated loation problem

under unertainty is onsidered as a multi-objetive problem, where eah senario will

give rise to one objetive (Dias and Marques [24℄). Within this ontext, the aim is to

ahieve Pareto�e�ient solutions. A single objetive loation problem under unertainty

is takled by resorting to a multi�objetive approah, and the onept of Pareto�e�ieny

is thus applied in the ontext of a single objetive problem under unertainty. It is

quite di�ult to �nd the onept of Pareto e�ieny being applied in this ontext. We

have found several publiations dediated to multi�objetive stohasti programming,

usually takling the problem by reduing it to a single objetive stohasti program or

transforming it to a deterministi multi-objetive program (e.g., Hulsurkar et al. [37℄,
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Teghem Jr et al. [41℄, Urli and Nadeau [86℄, Abdelaziz [1℄, Gutjahr [33℄, Guillén et al.

[32℄,Cardona�Valdés et al. [15℄). Additional referenes goes to the reent works proposed

by Lamboray and Vanderpooten [50℄, Ianu and Trihakis [38℄, and Klamroth et al.

[45℄ wherein multiple objetive (deterministi) ounterparts for unertain optimization

problems are introdued and their relations to well known salar robust optimization

problems are disussed.

In all the models proposed so far, as we assumed that failities are unapaitated, for

the �rst�stage loation deisions taken, it is ertain that total demand will be satis�ed

in the seond�stage (whatever the senario that will our). In setion 2.4 we address

apaitated problems, following mono and multi�objetive approahes to takle these

hallenging problems.

2.1 Dynami unapaitated loation problem under un-

ertainty

In this setion the dynami unapaitated faility loation problem is extended to un-

ertain realizations of the potential loations for failities and the existene of ustomers

as well as �xed and variable osts. The future will be one of a �nite set of possibili-

ties, represented by senarios where eah senario haraterizes the value of all problem's

parameters in a possible future.

The �rst deisions to be made are where and when to loate the failities. We assume

here that one a faility is opened, it stays open until the end of the planning horizon.

Afterwards, it must be deided how to assign the existing ustomers over the whole plan-

ning horizon under eah possible senario. We are indeed in the presene of a two�stage

deision problem: loation deisions are strategi by nature so they must be deided here

and now and must be valid for all possible future senarios, whilst assignment deisions

an be deided after the unertainty has been resolved and thus an be adjusted in eah

time period to eah possible senario. The aim of the problem is to �nd a good solution

that performs well aross all possible senarios without fousing in a partiular senario.

More preisely, the objetive is to �nd a solution that minimizes the expeted total ost

(�xed plus assignment osts) over all possible senarios. A mixed linear programming

formulation for this problem is proposed. Let us introdue the notation that will be used

throughout this text.

The time horizon is represented by a �nite set of disrete time periods T = {1, ..., t, ..., T}.

The set of possible future senarios is denoted by S = {1, ..., s, ..., S}. In what follows,

suppose that eah senario s ∈ S will our with probability ps suh that ps > 0 and

∑

s∈S ps = 1.
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The set of potential faility sites is denoted by J = {1, ..., j, ...,M} and the set of possible

ustomer loations (or demand points) by I = {1, ..., i, ..., N}. These sets inlude all

the potential faility loations and all the potential ustomers for all possible senarios,

despite the fat that for eah senario in partiular possibly only a subset of potential

loations and a subset of ustomers is onsidered. Let us de�ne δsit as equal to 1 if us-

tomer i has a demand that has to be ful�lled during period t for senario s (in short, an

existing ustomer), and 0 otherwise. Then we have to guarantee that all ustomers suh

that δsit = 1 are assigned to an open faility, for all (t, s) ∈ T × S.

In terms of osts, the model onsiders not only �xed osts (opening and operating), but

also variable osts assoiated with the assignment of ustomers to the failities. For

(j, t, s) ∈ J × T × S, let f s
jt be the �xed ost of establishing (opening) faility j at the

beginning of period t plus the operating osts in all subsequent time periods, under se-

nario s; for (i, j, t, s) ∈ I × J × T × S, csijt represents the assignment ost of ustomer

i to faility j in period t and under senario s. If it is not possible to open faility j at

the beginning of time period t under senario s, then the orresponding �xed ost will be

onsidered equal to +∞. Suh a situation an only our for t > 1, given the possibility

that any new servie opens in that period.

The deisions to be made are where and when to loate new failities, and how to assign

the existing ustomers over the whole planning horizon under eah possible senario. Let

x ∈ {0, 1}|J |×|T |
be the vetor of loation deisions suh that xjt equals 1 if faility j

is opened at the beginning of period t, and 0 otherwise, and y ∈ {0, 1}|I|×|J |×|T |×|S|
the

vetor of assignment deisions suh that ysijt equals 1 if ustomer i is assigned to faility

j in period t under senario s, and 0 otherwise (we ould also onsider, for eah s ∈ S,

vetor ys ∈ {0, 1}|I|×|J |×|T |
, being the vetor of assignment deisions for senario s only).

The objetive is to minimize expeted total ost inluding �xed and assignment osts

over all senarios.

The dynami unapaitated faility loation problem under unertainty, in short DU-

FLPU, an be formulated in an extensive form as follows:

18



(DUFLPU) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jt xjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijt y
s
ijt (2.1.1)

s.t.

∑

j∈J

ysijt = δsit ∀i ∈ I, t ∈ T , s ∈ S, (2.1.2)

t
∑

τ=1

xjτ − ysijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (2.1.3)

∑

t∈T

(−xjt) ≥ −1 ∀j ∈ J, (2.1.4)

x ∈ {0, 1}|J |×|T |, (2.1.5)

y ∈ {0, 1}|I|×|J |×|T |×|S|. (2.1.6)

The objetive funtion (2.1.1) minimizes the expeted total osts (�xed plus variable

osts). Constraints (2.1.2) require that in every time period under eah senario an

existing ustomer is assigned to exatly one faility. Constraints (2.1.3) impose that an

existing ustomer an only be assigned to open failities. A ustomer an be assigned

to di�erent failities at di�erent time periods and di�erent senarios. Constraints (2.1.4)

ensure that eah faility is opened at most one during the time horizon (loated at the

same site in all senarios). Finally, (2.1.5)�(2.1.6) restrit the deision variables to be

binary.

The above formulation ontains the UFLP ( |T | = |S| = 1 ) and the DUFLP ( |T | >

1, |S| = 1 ) as partiular problems, and has |J | |T | + |J | |I| |T | |S| binary variables and

|I| |T | |S|+ |J | |I| |T | |S|+ |J | restritions (not ounting the zero-one onstraints). Even

for moderate dimensions of these sets, (2.1.1)�(2.1.6) beomes a quite large integer linear

program.

Remark 2.1.1 The DUFLPU is a two�stage stohasti model though a standard formu-

lation has not been expliitly written here. In spite of the loation deisions being senario

independent, in the sense that they annot be hanged aording to eah senario in par-

tiular, the �xed ost an be onsidered senario dependent as it was assumed here. Note

that if we onsider fjt =
∑

s∈S p
sf s

jt, the objetive funtion (2.1.1) an be rewritten as

follows:

∑

t∈T

∑

j∈J

fjt xjt +
∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijt y
s
ijt. (2.1.7)

The model an now be expliitly written as a two�stage program wherein the �xed osts

on the �rst stage are in fat expeted �xed osts. Throughout this text we will onsider
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mainly the form (2.1.1), but it should be stressed one more that loation deisions make

the DUFLPU non�separable by senarios as those deisions must be valid for all senarios.

The �rst tehnique developed to solve the DUFLPU is a primal-dual heuristi approah.

In order to apply this heuristi, we present next the dual problem, the ondensed dual

problem and the omplementary slakness onditions between the dual and primal prob-

lems. The forthoming formulations are ruial for the algorithm's desription whih is

only detailed in setion 3.1 for the interested readers.

2.1.1 Dual problem and omplementary slakness onditions

Consider the linear programming (LP) relaxation of the primal problem de�ned by

(2.1.1)�(2.1.4) and where restritions (2.1.5) and (2.1.6) are replaed by nonnegativ-

ity onstraints. De�ning in (2.1.1) Csijt = pscsijt and F s
jt = psf s

jt , and onsidering dual

variables vsit , ws
ijt and uj assoiated with the restritions (2.1.2), (2.1.3) and (2.1.4),

respetively, the dual problem is given by:

max
∑

i∈I

∑

t∈T

∑

s∈S

δsit v
s
it −

∑

j∈J

uj (2.1.8)

subjet to

vsit − ws
ijt ≤ C

s
ijt ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (2.1.9)

∑

i∈I

∑

s∈S

T
∑

τ=t

ws
ijτ − uj ≤

∑

s∈S

F s
jt ∀j ∈ J, t ∈ T , (2.1.10)

ws
ijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (2.1.11)

uj ≥ 0 ∀j ∈ J. (2.1.12)

For feasible variables vsit, by onstraints (2.1.9) and (2.1.11), we may set

ws
ijt = max{0, vsit − C

s
ijt} ∀i, j, t, s, (2.1.13)

to obtain the ondensed dual problem:

max
∑

i∈I

∑

t∈T

∑

s∈S

δsit v
s
it −

∑

j∈J

uj (2.1.14)

subjet to

∑

i∈I

∑

s∈S

T
∑

τ=t

max{0, vsiτ − C
s
ijτ} − uj ≤

∑

s∈S

F s
jt ∀j, t, (2.1.15)
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uj ≥ 0 ∀j. (2.1.16)

The orresponding slak variables πjt for onstraints (2.1.15) are given by:

πjt =
∑

s∈S

F s
jt −

∑

i∈I

∑

s∈S

T
∑

τ=t

max{0, vsiτ − C
s
ijτ} + uj ∀j, t. (2.1.17)

Then, the omplementary slakness onditions are:

πjt xjt = 0 ∀j, t, (2.1.18)

vsit

(

∑

j

ysijt − δsit

)

= 0 ∀i, t, s, (2.1.19)

ws
ijt

(

t
∑

τ=1

xjτ − ysijt

)

= 0 ∀i, j, t, s, (2.1.20)

uj

(

1−
∑

t

xjt

)

= 0 ∀j, (2.1.21)

ysijt
(

vsit − C
s
ijt − ws

ijt

)

= 0 ∀i, j, t, s. (2.1.22)

As it is well known from duality theory, if the dual and primal solutions satisfy all om-

plementary slakness onditions, then the solutions are optimal. If not, the orresponding

primal solution is said to have gap.

2.1.2 Extensions regarding the unertainty in potential faility

sites

It was assumed for the DUFLPU that if it is not possible to open faility j at the beginning

of time period t under senario s, then the orresponding �xed ost is onsidered equal to

+∞. The �xed ost inurred under that senario will be too high, and given the problem's

objetive funtion (2.1.1), the orresponding faility loation ertainly will not be seleted

to the set of open failities in that period of time. Consequently, this assumption will

only derease the number of potential faility sites in that period of time.

Let us assume now that, even if it is not possible to open faility j at the beginning of time

period t under senario s, it is still possible to open that faility under other senario(s)

s′ 6= s for s′ ∈ S. In addition, the �xed ost an be equal to any value < +∞, i.e., it is

possible to attribute a �nite �xed ost to the possibility of not opening that servie in
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the future. This ost may be null (if the faility will not be opened there will be no �xed

ost) or any positive value (representing osts no longer reoverable for instane).

In order to model this new and more realisti situation, let us assume that, for (j, t, s) ∈

J ×T ×S, the �xed ost f s
jt will be equal to any value in IR+

0 . In addition, let us de�ne,

for (j, t, s) ∈ J × T × S, parameter ρsjt as equal to 1 if it is possible to open faility

j at the beginning of time period t under senario s, and 0 otherwise. As opposite to

the �rst model, in the present situation, even if ρsjt = 0, faility loation j remains as

a potential faility site to open in period t, if and only if there is at least one s′ 6= s

with ρs
′

jt = 1. However, if xjt = 1 (faility j is opened at the beginning of period t) and

ρsjt = 0 for some senario s, no assignments an be made to that faility for all τ ≥ t

under that senario s, even if ρsjτ = 1 for some τ > t as the faility is opened one and

the important ρ is on that period when the faility is planned to be opened. Customers

will not be able to use that faility under that senario(s) and so assignments should

not be made to that faility. In terms of deision variables, the de�nitions introdued

earlier are still valid here, though to a deision xjt = 1 should be also added the infor-

mation about ρsjt for all s ∈ S. In terms of problem formulations and solution approah,

small hanges have to be introdued in the results already developed for the �rst problem.

The primal problem formulation is given by the primal problem (2.1.1)�(2.1.6) with

onstraints (2.1.3) replaed by

t
∑

τ=1

ρsjτ xjτ − ysijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S. (2.1.23)

The above onstraints still impose that an existing ustomer an only be assigned to open

failities. However, in the present model, eah ustomer i in period t under senario s

an only be assigned to a faility opened in τ and suh that ρsjτ = 1, for τ ≤ t.

In terms of dual problem formulation, onsider (2.1.8)�(2.1.12) where onstraints (2.1.10)

are replaed by

∑

i∈I

∑

s∈S

T
∑

τ=t

ρsjτw
s
ijτ − uj ≤

∑

s∈S

F s
jt ∀j ∈ J, t ∈ T . (2.1.24)

Consequently, the ondensed dual problem is given by (2.1.14)�(2.1.16) with onstraints

(2.1.15) replaed by

∑

i∈I

∑

s∈S

T
∑

τ=t

ρsjτ max{0, vsiτ − C
s
ijτ} − uj ≤

∑

s∈S

F s
jt ∀j, t. (2.1.25)

The orresponding slak variables πjt for onstraints (2.1.25) are given by:
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πjt =
∑

s∈S

F s
jt −

∑

i∈I

∑

s∈S

T
∑

τ=t

ρsjτ max{0, vsiτ − C
s
ijτ} + uj ∀j, t. (2.1.26)

Finally, the omplementary slakness onditions are given by (2.1.18)�(2.1.22) where

onditions (2.1.20) are replaed by:

ws
ijt

(

t
∑

τ=1

ρsjτxjτ − ysijt

)

= 0 ∀i, j, t, s. (2.1.27)

In spite of this model being more general than the DUFLPU �rst introdued, it requires

not only more (input) parameters but also additional information must be given whenever

loation deisions are taken. Mainly due to simpliity reasons, throughout this work we

will assume only the �rst situation desribed for the DUFLPU, hopping that this deision

will ontribute to an easier reading of this text.

2.2 Dynami unapaitated loation problem under un-

ertainty with a regret based measure of robustness

We propose now a variation of the DUFLPU where a regret based measure of robustness

is inorporated. The aim of this problem is still to �nd a good solution that performs

well aross all possible senarios, through the minimization of the expeted total ost

over all possible senarios, but the provided solution, if exists, is subjet to additional

onstraints being a more robust solution in a ontext of unertainty. The onept of

regret is well known in the literature and has been used mainly in stati senario�based

loation models (e.g., Snyder [82℄, Snyder and Daskin [83℄, Lim and Sonmez [52℄). In

simple terms, taking into aount that a deision has to be made onsidering several dif-

ferent senarios, regret an be understood as a measure of how muh will we lose due to

the fat that the optimal solution of the senario that ame to our was not implemented.

In order to formulate and desribe the problem, let us �rst introdue additional notation

as well as some important de�nitions that were adapted from the stati ase. For a given

solution (x, y) and for eah s ∈ S, let us represent the total ost ahieved under senario

s by ζs(x, y) :

ζs(x, y) =
∑

t∈T

∑

j∈J

f s
jt xjt +

∑

t∈T

∑

i∈I

∑

j∈J

csijt y
s
ijt. (2.2.1)
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As already noted, loation deisions to the DUFLPU must be valid for all senarios.

Consider now eah single�senario minimization problem wherein the objetive funtion

is to minimize the total ost for a given senario only. We are faed with |S| deterministi

dynami unapaitated faility loation problems (DUFLP), eah orresponding to one

single senario. Throughout this text we will refer to eah single�senario minimization

problem as DUFLP

s
and represent its optimal objetive funtion value by ζ∗s . Let us

assume that ζ∗s is known and suh that ζ∗s > 0, for all s ∈ S.

Taking into aount that we are faed with di�erent possible senarios (data hange for

di�erent senarios), the best solution of eah DUFLP

s
is expeted to be di�erent not only

from the best ones ahieved under other senarios but from the best of the DUFLPU as

well. In what follows, we are only interested in feasible solutions of the DUFLPU that

are also feasible to DUFLP

s
for all s ∈ S. In the present ase, this will always happen

sine we are dealing with an unapaitated problem.

De�nition 2.2.1 The Regret of a feasible solution (x, y) of the DUFLPU assoiated with

a given senario s ∈ S is de�ned by the di�erene between the value of the solution under

that senario and the optimal value of that senario:

Regs(x, y) = ζs(x, y)− ζ∗s . (2.2.2)

The relative regret is given by Regs(x, y)/ζ∗s .

Throughout this text we will use the terms regret and relative regret interhangeably.

The aim is to minimize the expeted total ost ensuring that the relative regret for eah

senario does not exeed a pre-spei�ed value α, α ≥ 0. Thus, for a given α ≥ 0, the

dynami unapaitated loation problem under unertainty with a regret based measure

of robustness, in short α-DUFLPU, is formulated by (2.1.1)�(2.1.6) and the following

onstraints:

ζs(x, y) ≤ (1 + α)ζ∗s ∀s ∈ S. (2.2.3)

Constraints (2.2.3) impose that relative regret for eah senario is no greater than α.

A solution for the problem α-DUFLPU is suh that the objetive funtion value under

any senario is at most 100α% worse than the senario's optimal solution. Thus, and

depending on the α value, a more demanding and robust solution is expeted to be found

for this problem than the solution to the DUFLPU, that an be seen as a∞-DUFLPU.We

will all throughout this text a feasible solution of the α-DUFLPU an α-robust solution.

De�nition 2.2.2 For a given α ≥ 0, a feasible solution of α-DUFLPU is alled an

α-robust solution.
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The approah developed to obtain α-robust solutions is desribed in setion 3.3.

2.2.1 Expeted total ost versus regret: illustrative examples

The e�et of inorporating parameter α into the proposed dynami loation problem

under unertainty is now illustrated. The tradeo� between the expeted total ost and α

is also analysed. It is worthwhile to study the ompromise that exists between expeted

total ost and maximum regret as the DM will be able to make a more informed deision,

hoosing the solution that is most �tted to his attitude towards risk.

Considering three randomly generated problem instanes, problem α-DUFLPU has been

solved iteratively for several values of α, and the best feasible solution found in eah

iteration was reorded. Initially, α was set to a large value and then it was redued by

0.01 units at eah iteration until no feasible solution ould be found.

Example 2.2.1 Consider an instane with 10 time periods, 20 potential faility sites,

100 possible ustomers and 5 senarios.

For this partiular instane, it was possible to prove that α-DUFLPU is infeasible for

α < 0.07. The best expeted total osts ahieved for eah α are plotted in Figure 2.2.1.

We an see that the expeted total ost has a non dereasing pattern as α dereases.

In addition, the steep urve indiates that large redutions in regret are possible with

small inreases in expeted total ost. These results are in aordane with similar results

already observed in stati models. Ahieving a more robust solution an sometimes be

aomplished by small hanges in a given solution. This is depited in Figure 2.2.2, where

two situations are ompared: onsidering a maximum relative regret of 19% and 7%. For

this partiular example, we an see that small hanges in loation deisions an lead to

more robust solutions.

Figure 2.2.1: Example 2.2.1:Expeted total ost versus α.
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Table 2.2.1: Example 2.2.1: Expeted total ost versus α.

α Best Obj Inrease Loation Deisions

t=1 t=2 t=3 t=4 t=6

0.19 128127 0.0% 9;11;13;14;17 10;18 7 4 2

0.17 128151,2 0.02% 9;11;13;14;17 10;18 7 4 �

0.09 128257,8 0.09% 6;9;11;13;14;17 18 � 4;16 �

0.07 128433,4 0.24% 9;11;13;14;17 18 � 4;16 2

Table 2.2.1 depits the solutions in detail. We report the best objetive funtion values

found for some values of α as well as the orresponding loation deisions. In olumn

'Inrease' we report the inrease (in perentage) of the best objetive funtion values

relative to the best one ahieved with α = 0.19, given by the diferene between the best

objetive funtion value for eah α and the best one with α = 0.19 divided by this latter

value. We an see that it is possible to derease the relative regret from 19% to only 7%

with a slightly inrease of 0.24% in the expeted objetive funtion value (illustrated in

Figure 2.2.2). Furthermore, we an gather additional information about this partiular

problem, suh as the disovery of a set of 'ore' failities, the ones that stay open for all

values onsidered for parameter α.

Example 2.2.2 Consider two instanes of the same size: 10 periods of time, 20 potential

faility sites, 100 possible ustomers and 10 senarios.

The �rst instane proved to be infeasible for α < 0.06 and the seond one for α < 0.17.

The best solutions ahieved for both problem instanes, presented in Figure 2.2.3 and

Table 2.2.2, show a similar behavior to the one observed in example 2.2.1. It is also

possible to identify for both instanes the orresponding set of ore failites.

Table 2.2.2: Example 2.2.2: Expeted total ost versus α.

α Best Obj Inrease Loation Deisions

t=1 t=2 t=3 t=4 t=5 t=6

Inst 1 0.19 118189.8 0.00% 5;7;8;14 4;12;16 18 � � �

0.18 118580.0 0.33% 5;7;8;14 12;16 18 � � �

0.1 118614.8 0.36% 5;7;8;14;20 12;16 18 � � �

0.06 118757.5 0.48% 5;7;8;14;18 12;16 � � � �

Inst 2 0.22 106920.6 0.00% 6;7;10 � � � 5 17

0.21 107088.5 0.16% 6;7;10 � 17 � 5 �

0.2 108047.1 1.05% 6;10 � 17 � 5 �

0.18 108251.6 1.24% 6;10 � 17 8 5 �

0.17 108339.1 1.33% 6;10 � 17;20 � 5 �
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Figure 2.2.2: Example 2.2.1: Best loation deisions for α = 0.19 and α = 0.07.

(a) Initial network (b) t=1

() t=2 (d) t=3

(e) t=4 (f) t=6

(a) Initial network. White nodes represent potential faility sites and gray nodes possible

ustomers. (b) � (f) Networks with best loation deisions. (•) represent failities opened
both for α = 0.19 and α = 0.07. (�) represent failities opened only for α = 0.19. (N)
represent failities opened only for α = 0.07.
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Figure 2.2.3: Example 2.2.2: Expeted total ost versus α.

(a) Instane 1 (b) Instane 2

The three instanes used here for illustration purposes depit the general behavior ob-

served in similar problems. It is also possible to see that eah problem has its own

features, and there an be huge variations in the obtained results (namely regarding the

minimum relative regret value for whih the problem is still feasible) even for problems

of the same dimension.

2.3 Multi�objetive dynami unapaitated loation pro-

blem under unertainty

Let us assume that it is not possible to onsider a priori any kind of assumptions regarding

the risk pro�le of the DM or even about his preferenes. Then one possible approah is

to onsider the dynami faility loation problem under unertainty as a multi�objetive

problem where eah senario will give rise to one objetive. Thus, a set of objetive

funtions is de�ned instead of one single objetive funtion and a set of solutions is

alulated instead of only one. Within this ontext, the DM will have a muh broader

view of the ompromises that exist among the possible senarios.

Realling that the de�nition of ζs(x, y) is (2.2.1), the multi�objetive dynami unapa-

itated faility loation problem under unertainty, in short MODUFLPU, is de�ned as

follows:

(MODUFLPU) min {ζ1(x, y), ..., ζs(x, y), ..., ζS(x, y)} (2.3.1)

s.t.

(2.1.2)�(2.1.6).

In a multi-objetive problem, the solutions of interest are designated Pareto�e�ient/non�

dominated solutions. In the present problem, non-dominated solutions will be the ones

suh that it is not possible to improve the objetive funtion of one given senario without

deteriorating the objetive funtion of at least one other senario (de�nition 2.3.1).
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De�nition 2.3.1 Let (x, y) be an admissible solution for MODUFLPU. (x, y) is a Pareto�

e�ient solution if and only if there is no other solution (x1, y1) suh that ζs(x1, y1) ≤

ζs(x, y) for all s ∈ S and ζs(x1, y1) < ζs(x, y) for at least one senario s. The image of

an e�ient solution in the objetive spae is alled a non�dominated solution.

Regardless the preferenes or pro�le of the DM, assuming only his rationality, the in-

terest goes to Pareto�e�ient solutions only. The proedure followed in this work to

generate non�dominated solutions to the MODUFLPU is only desribed and illustrated

in setion 3.4. In the rest of this setion our attention is restrited to results in whih the

approah was designed and to establish relations with other problems well known from

the literature.

Figure 2.3.1: Sets of non�dominated solutions.

(a) Instane with two senarios (b) Instane with three senarios

The non�dominated solutions of a multi�objetive problem an be ahieved by solving

auxiliary programming problems. When dealing with integer or mixed-integer problems,

are has to be taken though to guarantee that the hosen proedure is apable of alu-

lating non�supported non�dominated solutions (lying inside duality gaps). In this work

we resort to a result due to Ross and Soland [77℄, where an auxiliary mono�objetive

programming problem is onsidered, the well known optimization of a weighted sum of

the objetive funtions. The solutions to the original problem MODUFLPU are then

ahieved by solving the auxiliary problem that is de�ned next.

Let ν ∈ IRS
be a vetor where eah omponent νs represents the weight assoiated

with eah objetive funtion ζs of MODUFLPU, suh that νs > 0 for all s ∈ S and

∑

s∈S νs = 1. In addition, let M ∈ IRS
be a vetor with omponents Ms being upper

bounds to the objetive funtion (total ost) ahieved in eah senario s. It should be

stressed here that those weights ν do not represent any kind of DM's preferenes. Those

weights an and should be hanged in aordane with M for instane (further details

about this issue are given in setion 3.4).
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The auxiliary programming problem to the MODUFLPU, in short AUX, is formulated

as follows:

(AUX) min
∑

s∈S

νsζs(x, y) (2.3.2)

s.t.

(2.1.2)�(2.1.6)

ζs(x, y) ≤Ms ∀s ∈ S. (2.3.3)

The next result, based in Ross and Soland [77℄, is partiularly important in what on-

erns the alulus of non�dominated solutions to MODUFLPU. Afterwards, some results

related with well known problems from the literature are given.

Proposition 2.3.1 For any ν ∈ IRS
suh that νs > 0 for all s ∈ S and

∑

s∈S νs = 1,

(x, y) is an e�ient solution of MODUFLPU if and only if it is the optimal solution of

AUX for someM∈ IRS
.

Proposition 2.3.2 The optimal solution of DUFLPU, the minimum expeted total ost

over all senarios, is a non�dominated solution of MODUFLPU.

Proof: Considering in AUX, for all s ∈ S, νs = ps and Ms large enough (onstraints

(2.3.3) are redundant), the optimal solution of AUX is the minimum expeted total ost.

From proposition 2.3.1 we an onlude that this solution is a non�dominated solution

of MODUFLPU.

Proposition 2.3.3 An α-robust solution is a non�dominated solution of MODUFLPU.

Proof: Considering in AUX, for all s ∈ S,Ms = (1+α)ζ∗s , the optimal solution of AUX

is α-robust as AUX has an α-DUFLPU form. In addition, from proposition 2.3.1, the

solution is a non-dominated solution to MODUFLPU.

AUX an also be used to alulate an e�ient min-max solution. In a �rst stage, it is

neessary to solve the problem of minimizing the maximum ost under all senarios. This

an be done by solving the following programming problem:

(MIN-MAX) min ̺ (2.3.4)

s.t.

(2.1.2)�(2.1.6)

ζs(x, y) ≤ ̺ ∀s ∈ S. (2.3.5)
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Let ̺∗ be the optimal objetive funtion value of MIN-MAX.

Proposition 2.3.4 If in onstraints (2.3.3) Ms is de�ned suh that Ms = ̺∗ for all

s ∈ S, then AUX will generate an e�ient min�max solution.

Proof: Taking into aount that ̺∗ is the optimum of MIN-MAX (the objetive funtion

value for any senario s will be less than or equal to this value), it is easy to see that if

in onstraints (2.3.3)Ms is de�ned suh thatMs = ̺∗ for all s ∈ S, then any e�ient

solution alulated will also be a min-max solution.

A similar reasoning an be applied in order to obtain an e�ient solution that minimizes

maximum regret.

Proposition 2.3.5 Consider problem MIN-MAX with restritions (2.3.5) replaed by

the following set:

Regs(x, y) ≤ ̺ ∀s ∈ S. (2.3.6)

If in AUX Ms is de�ned suh that Ms = ζ∗s + ̺∗ for all s ∈ S, then AUX will generate

an e�ient solution that minimizes maximum regret.

Proof: Taking into aount that regret for any senario is no greater than ̺∗, it is easy

to see that if in onstraints (2.3.3)Ms is de�ned suh thatMs = ζ∗s + ̺∗ for all s ∈ S,

then any e�ient solution alulated minimizes maximum regret.

2.4 Dynami apaitated loation problems under un-

ertainty

The simultaneous onsideration of di�erent possible senarios and apaities assoiated

with failities brings up other interesting questions and additional di�ulties arise. This

setion is devoted to the modelling of apaitated faility loation problems being ex-

tensions of some of the unapaitated models presented earlier. We �rst propose several

mono�objetive approahes that later will lead us to multi�objetive ones. We restrit

our analysis to those problems in whih apaities are inputs to the problem, assumed to

be known preisely. We leave out of this study problems where the apaity (size) of fa-

ilities are deision variables (usually known as the lass of apaity planning/expansion

problems).

All the problem instanes onsidered in the examples shown throughout this setion have

been randomly generated and solved by CPLEX MIP optimizer, v12.4.
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2.4.1 Mono-objetive approahes

Let us introdue the following notation, in addition to the one previously de�ned. For

j ∈ J , Kj denotes the apaity of faility j in eah time period (expressed in units of

demand); for (i, t, s) ∈ I × T × S, let dsit be the total demand of ustomer i during time

period t under senario s; for (i, j, t, s) ∈ I × J ×T ×S, csijt denotes the assignment ost

of ustomer i's total demand to faility j in time period t under senario s (in this ase

it is a funtion of dsit and the distane distsijt between (i, j) in t under s, here the unit

transportation ost, and thus csijt = distsijt d
s
it). In terms of deision variables: xjt equals

1 if faility j is opened at the beginning of period t, and 0 otherwise; ysijt represents the

fration of ustomer i's demand assigned to faility j in time period t under senario s.

We assume here that the demand of eah ustomer an be assigned to more than one

faility.

Considering the DUFLPU, de�ned by (2.1.1)�(2.1.6), a possible extension of this problem

where apaities are assoiated with failities, naturally alled dynami apaitated lo-

ation problem under unertainty, in short DCFLPU, an be formulated in an extensive

form as follows:

(DCFLPU) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jt xjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijt y
s
ijt (2.4.1)

subjet to

∑

j∈J

ysijt = δsit ∀i ∈ I, t ∈ T , s ∈ S, (2.4.2)

∑

i∈I

dsity
s
ijt ≤ Kj

t
∑

τ=1

xjτ ∀j ∈ J, t ∈ T , s ∈ S, (2.4.3)

∑

t∈T

xjt ≤ 1 ∀j ∈ J, (2.4.4)

xjt ∈ {0, 1} ∀j ∈ J, t ∈ T , (2.4.5)

ysijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T . (2.4.6)

The above formulation is very similar to the one de�ned to the DUFLPU, namely the

objetive funtion (2.4.1) that minimizes the expeted total ost (�xed plus assignment

osts) over all senarios. The di�erene goes to onstraints (2.4.3) whih ditate that

ustomers' demand an only be assigned to open failities and no faility an supply

more than its apaity. This problem will have at least one admissible solution if and

only if total demand does not exeed total apaity under all possible senarios. However,
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it an be the ase that total demand may not be satis�ed under some senario(s) given the

established apaities. Consequently, the above problem an be infeasible, as opposite to

the DUFLPU where an admissible solution always exists for all senarios. For illustrative

purposes, onsider the small problem instane given in example 2.4.1.

Example 2.4.1 Consider a problem instane with 2 possible senarios, 2 time periods,

2 potenial faility loations and 4 possible ustomers. The possible demands of eah

ustomer in eah time period for both senarios are presented in table 2.4.1. The last

row presents total demands. In addition, onsider K1 = 90 and K2 = 150 (total potential

apaity equals 240 units).

Table 2.4.1: Possible ustomers'demand, (d1it, d
2
it).

t 1 2

1 (85,85) (93,88)

i 2 (49,49) (48,53)

3 (25,25) (28,23)

4 (68,68) (73,61)

(227,227) (242,225)

We an see that total apaity will not be su�ient to satisfy total demand in time period

two under senario one. The above major problem an then be lassi�ed as infeasible

or a problem without omplete reourse, as it is designated in Stohasti Programming

beause there is not an admissible solution for all possible senarios.

A possible extension of model DCFLPU is to onsider unmet demand. More preisely,

when loation deisions are made, it is expliitly assumed by the DM that total demand

may be unsatis�ed in the future. In addition, it is also assumed that a penalty ost is

inurred for eah unit of demand not satis�ed.

Let us represent the fration of the unmet demand of ustomer i during t and under

s by deision variable esit, for all (i, t, s). In addition, βs
it denotes the total ost of not

ful�lling the ustomer i's total demand during t under s. We onsider here a general

situation where the penalty osts an be di�erent for di�erent ustomers, but an equal

penalty ost for all ustomers ould also be onsidered. An extension of the DCFLPU

onsidering possible unmet demand an then be formulated as follows:

(DCFLPUII) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jtxjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijty
s
ijt+

∑

s∈S

∑

t∈T

∑

i∈I

ps βs
it e

s
it

(2.4.7)
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subjet to

∑

j∈J

ysijt + esit = δsit ∀i ∈ I, t ∈ T , s ∈ S, (2.4.8)

(2.4.3), (2.4.4),(2.4.5), (2.4.6),

esit ≥ 0 ∀i ∈ I, t ∈ T , s ∈ S. (2.4.9)

The objetive funtion (2.4.7) minimizes the expeted total osts inluding �xed, assign-

ment and penalty osts assoiated with unmet demands in the third term. Constraints

(2.4.8) ensure that the total demand of eah ustomer is distributed between met and

unmet demand.

Feasibility is guaranteed by formulation DCFLPUII and its best solution will result of

the ompromise de�ned by the problem's data. In partiular, the values of variables esit

will ertainly depend on the diferene between assignment osts and osts of not satisfy-

ing demand. Let us onsider again the problem instane of example 2.4.1 in whih total

demand in period two under senario one exeeds in two units the potential apaity.

In order to �t this problem to this new situation, we have onsidered for all ustomers

the penalty osts higher than the orresponding assignment osts, for illustrative pur-

poses only. The optimal solution for this new problem, where obviously both failities

are opened, results with e112 = 0.0215 and esit = 0.0 for all (i, t, s) 6= (1, 2, 1). Hene, and

as expeted, only two units of demand in time period two under senario one are not

satis�ed, in the present solution belonging to ustomer one.

Let us return to model DCFLPU and to those problems where the potential total a-

paity is su�ient to satisfy total demand. For instane, suppose that a third potential

faility site with K3 ≥ 2 is added to the problem's data of example 2.4.1. First, it is

easy to see that the DCFLPU is feasible and has several admissible solutions in whih

demand is fully satis�ed. However, the best one will be dependent on the apaities,

setup osts of those three failities, assignment osts, in summary the problem's data.

Assuming here the extreme situation in whih the osts assoiated with that third fa-

ility are all higher than the osts assoiated with the other two servies, the question

goes to the pratiability in terms of osts of one solution where three failities have

to be opened in order to satisfy total demand (in the present ase, a third faility is

opened to satisfy only the remaining two units under one single senario). This extreme

example is only to illustrate that, in spite of the DCFLPU being feasible, guaranteeing
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that total demand is satis�ed under all possible senarios, omes with a ost. Note that

model DCFLPUII an also be applied whenever the potential total apaity is su�ient

to satisfy total demand. It an be used to analyse the tradeo� between expeted total

osts, inluding �xed and assignment osts only, and expeted total osts assoiated with

unmet demand. The penalty osts represent the weight or importane given to satisfying

demand. It is easy to see from the objetive funtion (2.4.7) that if higher penalty osts

are onsidered, more satis�ed demand is expeted, leading to an inrease of the expeted

total osts assoiated with satis�ed demand; on the other hand, smaller penalty osts

will lead to solutions with more unsatis�ed demand but also with smaller expeted osts

for satisfying demand. This reasoning leads us to multi-objetive approahes that will be

disussed in the following sub�setion.

Before going any further, we shall remark that the above situations ould be modelled

through model DCFLPU with additional features instead of model DCFLPUII . Assume

that in the set of potential faility sites there is a potential faility site indexed by j = 0,

for instane, with zero �xed osts and with a huge apaity (at least large enough to

satisfy total demand). Throughout this text we will denote this new set of potential

faility sites by J0 = J ∪ {0} suh that f s
0t = 0 for all (t, s) and K0 = +∞. The demand

assigned to this virtual faility, ysi0t for all (i, t, s), represents unsatis�ed demand, and

the assignment osts between this virtual faility and ustomers, csi0t for all (i, t, s), are

in fat penalty osts. Hene, if in model DCFLPU, de�ned by (2.4.1)�(2.4.6), set J is

replaed by set J0 we get also an extension of DCFLPU with possible unmet demand.

Furthermore, onsidering csi0t = βs
it for all (i, t, s), both models DCFLPU and DCFLPUII

provide the same solution where ysi0t = esit for all (i, t, s). Considering this notation, the

optimal solution for the problem of example 2.4.1 with unmet demand is partially de-

pited in �gure 2.4.1.

A di�erent perspetive an be given of the above problem. Assume that total demand

should be always satis�ed (at any ost). A possibility is to assume expliitly future apa-

ity shortages. Let us assume also that osts are assoiated to suh shortages, interpreted

in this ontext as penalty osts inurred by the inrease of the apaities (by having to

pay extra hours to employees, or buy some units in outsouring for instane). Let us

represent the apaity shortage of eah open faility j during time period t and senario

s by deision variable osjt. Let θ denote the ost of eah unit of demand that is not sat-

is�ed by eah open faility (equal for all failities). We assume also that shortage osts

are equal for all failities. An extension of the DCFLPU onsidering possible apaity

shortages an then be formulated as follows:
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Figure 2.4.1: Optimal solution for example 2.4.1 with unsatis�ed demand.
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(DCFLPUIII) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jtxjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijty
s
ijt+

∑

s∈S

ps
∑

t∈T

∑

j∈J

θ osjt
(2.4.10)

s.t.

(2.4.2),

∑

i∈I

dsity
s
ijt ≤ Kj

t
∑

τ=1

xjτ + osjt ∀j ∈ J, t ∈ T , s ∈ S, (2.4.11)

osjt ≤M

t
∑

τ=1

xjτ ∀j ∈ J, t ∈ T , s ∈ S, (2.4.12)

(2.4.4),(2.4.5), (2.4.6),

osjt ≥ 0 ∀j ∈ J, t ∈ T , s ∈ S. (2.4.13)

The objetive funtion (2.4.10) minimizes the expeted total osts inluding in the third

term the osts assoiated with apaity shortages. Constraints (2.4.11) and (2.4.12),

where M represents a very large number, ensure that ustomers' demand an only be
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assigned to open failities and impose that the amount supplied by eah open faility

must be no greater than its available apaity plus its apaity shortage. Note that an a

priori maximum shortage of eah faility ould be also imposed, instead of onsidering M

in onstraints (2.4.12), although, in this ase, it is not possible to guarantee the existene

of an admissible solution.

2.4.2 Multi-objetive approahes

In this sub�setion we propose several multi-objetive approahes to the problems under

study, given several perspetives to apaitated problems as well. In order to formulate

the next problems, onsider the set of potential faility sites given by J0 = J ∪ {0},

in order to inlude possible unsatis�ed demand into the models as explained above. In

what follows, we still represent the total ost (faility loation and assignment of satis�ed

demand osts) ahieved in senario s by ζs(x, y). In addition, we represent the total ost

assoiated with unmet demand in senario s by Us(y) :

Us(y) =
∑

t∈T

∑

i∈I

csi0ty
s
i0t. (2.4.14)

We �rst propose a bi�objetive problem where expeted total osts, inluding �xed and

assignment osts only, and the expeted total penalty ost (assoiated with unmet de-

mands) give rise to two distint objetive funtions. We an formulate this bi�objetive

dynami apaitated faility loation problem under unertainty, in short BODCFLPU,

as follows, where set J is replaed by set J0 in the set of onstraints:

(BODCFLPU) min

{

∑

s∈S

psζs(x, y),
∑

s∈S

psUs(y)

}

(2.4.15)

s.t.

(2.4.2)�(2.4.6).

The non-dominated solutions for this problem are the ones suh that it is not possible to

improve the expeted total ost (�xed and assignment) for all senarios without deterio-

rating the expeted total penalty osts. Then, the analysis of the tradeo� between those

two objetives, disussed earlier with model DCFLPUII , an be made through model

BODCFLPU, where a set of interesting solutions an be found and analyzed.

In order to o�er a better piture of the ompromises that exist among the possible

senarios, a multi-objetive problem an be de�ned where eah senario will give rise to

one objetive. We are indeed proposing an extension of the multi-objetive approah

designed to the unapaitated ase, presented in setion 2.3, to the apaitated problem.

Thus, and now without making any assumptions about the risk pro�le or about the
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preferenes of the DM, we an formulate a multi�objetive dynami apaitated faility

loation problem under unertainty, in short MODCFLPU, as follows, where set J is

replaed by set J0 in the set of onstraints:

(MODCFLPU) min {ζ1(x, y) + U1(y), ..., ζs(x, y) + Us(y), ..., ζS(x, y) + US(y)}

(2.4.16)

s.t.

(2.4.2)�(2.4.6).

The non�dominated solutions of MODCFLPU, as well as the non�dominated solutions

of BODCFLPU, an be ahieved by solving the orresponding auxiliary programming

problems. We omit in this text their formulations taking into aount its resemblane

to the MODUFLPU onsidered in setion 2.3. The non�dominated solutions an also be

ahieved following the proedure illustrated in setion 3.4 for the MODUFLPU.

Strongly related with the type of failities under study, as well as the produts or servies

provided by suh failities, in reality it an be very di�ult to estimate the unmet demand

osts. This task an be easier if there are supply ontrats that determine the fees that

have to be paid for eah unit of demand not satis�ed, but it an be a hard task as in

some health are servies for instane. In the models proposed so far, those osts are

given (possibly with unertainty), but we now drop this requirement. In what follows,

we may still have possible senarios where total demand may not be satis�ed. However,

the osts assoiated with unsatis�ed demand are not known, not even with unertainty.

For simpliity reasons, we will represent the total unmet demand in senario s by Us(y)

but, under suh irumstanes, de�ned as follows:

Us(y) =
∑

t∈T

∑

i∈I

ysi0t. (2.4.17)

Note that, if (2.4.17) is onsidered instead of (2.4.14) in BODCFLPU, then the non-

dominated solutions of this model will represent ompromises between expeted total

unmet demand and expeted total ost.

Motivated by the previous model and taking into aount the unknown penalty osts, a

new problem an also be modelled that an provide additional information to the DM. To

the objetive funtions orresponding to the total osts in eah of the possible senarios

we add the set of funtions orresponding to the total unmet demand in eah senario

(if penalty osts are known, the total unmet demand ost ould be onsidered instead).

A new multi�objetive problem an be de�ned with 2S objetive funtions, where eah

senario will give rise to two distint objetives. The aim is to minimize simultaneously

total osts and total unmet demand for eah of the possible senarios.
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The new multi�objetive problem an then be formulated as follows, where set J is

replaed by set J0 in the set of onstraints:

(MODCFLPUII) min {ζ1(x, y), ..., ζs(x, y), ..., ζS(x, y), U1(y), ..., US(y)} (2.4.18)

s.t.

(2.4.2)�(2.4.6).

The non�dominated solutions for the present problem are the ones suh that it is not

possible to improve the total ost (or total unmet demand) of one given senario with-

out deteriorating, at least, the total unmet demand (or total ost) of that senario or

the total ost or total unmet demand of one other senario. Bellow, we present an il-

lustrative example with a small problem instane. We report and analyse some of the

non�dominated solutions alulated for this partiular instane, with only two possi-

ble senarios but where the tradeo� between the four objetives an be observed. The

auxiliary programming problem to the MODCFLPUII , that has been onsidered in the

alulation of non�dominated solutions, is formulated next.

Let ν1 ∈ IRS
and ν2 ∈ IRS

be the vetors of weights assoiated with the objetive

funtions of MODCFLPUII , suh that ν1s > 0 and ν2s > 0 for all s ∈ S, and
∑

s∈S(ν1s +

ν2s) = 1. In addition,M1 ∈ IRS
andM2 ∈ IRS

represent the vetors of upper bounds to

the objetive funtions. Then, the auxiliary programming problem to the MODCFLPUII

is formulated as follows:

(CAUX) min
∑

s∈S

( ν1sζs(x, y) + ν2sUs(y) ) (2.4.19)

s.t.

(2.4.2)�(2.4.6)

ζs(x, y) ≤M1s ∀s ∈ S. (2.4.20)

Us(y) ≤M2s ∀s ∈ S. (2.4.21)

Example 2.4.2 Consider a problem instane with 2 possible senarios, 5 time periods,

15 potenial faility loations (inluding the virtual one) and 50 possible ustomers.

In table 2.4.2 we detail twenty non�dominated solutions of this problem instane that

were found following an interative proedure (see setion 3.4 where this solution ap-

proah is applied to the MODUFLPU). For ease in the exposition of the results only,

the solutions (objetive funtion values and the orresponding loation deisions) are or-

dered by non dereasing values of the total ost for senario one, i.e. ζ1. The best values
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found for eah of the objetives are in bold. We an see that there are several sets of

solutions with the same loation deisions, same sites and time periods in whih failities

are opened, although with di�erent assignment deisions. Solutions number 1 and 2 are

suh an example, both with the best total ost for senario 1, the total ost for senario

2 improves but with an inrease of the unmet demand for senario 2. A similar behavior

is observed between solutions 5 and 11, both with the best total ost for senario 2, the

total ost for senario 1 worsens but the unmet demand for senario 1 dereases. In

solutions 3 and 4, with the same loation deisions as well, total osts deteriorate in both

senarios with an improve of total unmet demand. The solutions from number 12 to 20

were obtained searhing the regions de�ned by smaller upper bounds to the objetives U1

and U2, supposing that the DM is really interested in satisfying (almost) total demand

and there will be su�ient resoures to reah suh goals. As shown by solution number

20, it is possible in this instane to satisfy total demand for both senarios, though with

the worst total osts observed. We note that we have hosen a problem instane where

these solutions belong to the set of admissible solutions. However, suh admissible solu-

tions should be further analysed by the DM to deide if they are 'really' admissible (the

inrease in the ost that enables that total demand will be satis�ed under all senarios

may be unbearable). It is out of our sope to present all the non�dominated solutions

for this problem. Taking into aount that in the present model we are dealing with

2S objetives, within an interative approah the information given by the DM beomes

ruial in order to restrit the regions of searh, mainly in those problems where a huge

number of possibilities may arise. For this instane some other non�dominated solutions

were found with smaller values to total unmet demand, but no more by imposing smaller

bounds to total osts than the ones presented here. We onlude stressing that failities

9, 10, 13 and 14 are opened at the beginning of the planning horizon in all of the non-

dominated solutions found.

Suppose that instead of model MODCFLPUII the DM is only interested in analyzing the

ompromise between expeted total osts and expeted total unmet demand. We return

then to model BODCFLPU. For illustrative purposes, we have onsidered the problem's

data of example 2.4.2 and �xed equal probabilities for both senarios. By this example, we

an on�rm that models MODCFLPUII and BODCFLPU are indeed di�erent problems.

In fat, within the set of twenty non�dominated solutions of the multi-objetive problem,

eight beome dominated on the bi-objetive problem. The non�dominated solutions for

this new problem are depited in Figure 2.4.2, where it is easier to see that (expeted)

total osts inreases as total satis�ed demand also inreases (or total unsatis�ed demand

dereases).
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Table 2.4.2: Example 2.4.2: Time period in whih eah faility is opened.

Opened Failities

ζ1 ζ2 U1 U2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 368907 207845 165.14 125.98 1 1 2 1 1 1 1 1

2 368907 89370 165.04 128.31 1 1 2 1 1 1 1 1

3 369289 88547 166.95 128.68 1 1 2 4 1 1 1 1 1

4 369360.4 89459.8 165.50 125.50 1 1 2 4 1 1 1 1 1

5 381063 85252 166.99 129.10 1 1 1 1 1 1

6 420552.6 93738 125.50 127.46 1 1 2 1 2 1 1 1 3 1 1

7 420875.6 92719 125.50 127.46 1 1 2 1 2 1 1 1 1 1

8 421516.9 91581 125.50 127.12 1 1 2 4 2 1 1 1 1 1 1

9 555128 135632.2 99.50 99.50 1 1 2 4 2 1 1 3 1 1 1 1 1 1

10 904542 385418 49.50 49.50 1 1 2 1 2 1 1 3 1 1 1 1 1 1

11 998138 85252 145.16 129.10 1 1 1 1 1 1

12 1173015 806903 19.50 0.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

13 1222287.5 710482 14.50 8.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

14 1339496 806903 4.50 0.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

15 1395351 806903 0.50 0.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

16 1395351 814273 0.50 0.00 1 1 1 1 2 1 3 1 1 1 1 1 1 1

17 1395351 753989 0.50 4.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

18 1396208 608225 0.50 19.50 1 1 1 1 2 1 3 3 1 1 1 1 1 1

19 1402899 806903 0.00 0.50 1 1 1 1 2 1 3 1 1 1 1 1 1 1

20 2552968 1529019 0.00 0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2.4.2: Set of non�dominated solutions onsidering only two objetive funtions.
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Chapter 3

Solution Approahes

Primal-dual heuristis have proven their value when dealing with faility loation prob-

lems, whether being stati and deterministi (Erlenkotter [30℄), deterministi dynami

(Van Roy and Erlenkotter [88℄, Dias et al. [21℄) or stati under unertainty (Louveaux

and Peeters [56℄). From the existing literature we have witnessed though that suh teh-

niques have not been applied in dynami faility loation under unertainty yet. The

omplexity of the mathematial models under study as well as the suess of suh teh-

niques when takling related problems, were the main reasons to develop a primal�dual

heuristi to takle the DUFLPUD (Marques and Dias [58℄). This dual-based heuristi

is inspired on the lassial approahes developed by Bilde and Krarup[13℄, Erlenkotter

[29℄ and Van Roy and Erlenkotter [88℄. The main idea of the approah is to obtain good

solutions from the dual problem of the orresponding linear programming relaxation of

the primal problem, more preisely from the so�alled ondensed dual problem. This

tehnique is able to �nd admissible primal and dual solutions for feasible DUFLPUD.

The heuristi's proedures (dual asent, primal and adjustment proedure) detailed in

setion 3.1 are designed to redue progressively the duality gap between dual and primal

objetive funtion values. In those problems for whih the heuristi is unable to �nd

the optimal solution, it is still able to provide upper and lower bounds to the optimum

of DUFLPUD, being thus always possible to evaluate the quality of the best solution

ahieved. In order to solve DUFLPUD to optimality this primal�dual heuristi is in-

tegrated in a branh&bound approah (Marques and Dias [57℄). Instead of solving to

optimality relaxed versions of the original problems in eah node of the branh&bound

tree, we deided to use the dual-based heuristi to solve eah problem. Considering now

model α-DUFLPU, note that if onstraints (2.2.3) are relaxed, a problem with the same

struture of the DUFLPU is obtained, allowing then the use of the primal-dual heuristi

to takle that problem. Lagrangean relaxation is a well known tehnique that allows the

alulation of lower bounds for integer programming problems (Reeves [70℄, Guignard

[31℄). Hene, a Lagrangean relaxation and a subgradient algorithm is developed to takle

α-DUFLPU.
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There are several di�erent ways of dealing with a multi�objetive problem. One suh way

is the so-alled interative approah. The interative approah onsiders interhanging

alulation and dialogue phases. In the alulation phase a non-dominated solution is

alulated and showed to the DM. The DM will then reat by giving some new informa-

tion that will guide the alulation of the new non-dominated solution to be alulated

in the next iteration. The proess ontinues until the DM is satis�ed with a given so-

lution or the whole set of non-dominated solutions is found (see, for instane, Dias et

al. [20℄). The major drawbak of this approah has to do with the possibility of having

alulation phases taking too muh omputational time, not promoting a real-time in-

teration and making the proess not attrative to the DM. The main advantage has to

do with the ability of searhing areas of the solutions' surfae that are interesting to the

DM, not wasting time or resoures alulating solutions that the DM will simply disard.

Moreover, whenever a non-dominated solution is enountered, there is a region in the

objetive spae that is no longer interesting (the one that is dominated by this solution),

and another region where there annot be any admissible solutions (or else this solution

would not be non-dominated). So, it is possible, in eah iteration, to eliminate regions

from further searhes.

Another way of dealing with multi-objetive problems onsiders the a priori and o�-line

alulation of the whole set (or a signi�ant number) of non-dominated solutions. The

solutions an then be presented to the DM, all at the same time, or using an interative

approah similar to the one previously desribed. One of the advantages of this approah

is that the omputational burden of alulating the solutions is made a priori, promoting

a faster ation-reation interation with the DM sine no optimizations will be done.

The hoie between an interative or a generation approah should be done onsidering

several aspets of the problem suh as its dimension or the time needed to alulate a

solution for instane. As stated in setion 2.3, the set of non�dominated solutions of

MODUFLPU is ahieved by solving the auxiliary problem(s) AUX. It is quite easy to

embed the use of AUX in both an interative and an o�-line generation proedure, where

the whole set of e�ient solutions an be alulated. Note that the AUX formulation

presented an result in a omputationally heavy integer programming problem. It is a

NP-hard problem, and the omputational time needed to alulate a given solution will

be heavily dependent on the problem's dimension, espeially the number of senarios

and the number of potential faility loations. To solve AUX we an resort to general

solvers or use dediated proedures, both exat and heuristi proedures. Although the

latter will not be able to guarantee the optimality of the alulated solution, they an

be a very good hoie espeially in the presene of an interative proedure, where the

most important thing will be to de�ne a region of interest for the DM. It is even possible

to think of using a heuristi proedure in a �rst stage, and then an exat proedure to

44



atually guarantee the optimality of the solution of interest. For illustrative purposes,

onsidering a problem instane we propose here an interative proedure based on Dias

et al. [20℄, where all AUX problem instanes were solved by a general solver.

3.1 Primal-Dual heuristi

For ease in the exposition, let us reindex, for eah senario s, Csijt for eah (i, t) in

nondereasing order as C
s(k)
it , for k = 1, 2, ..., ks

it, where k
s
it denotes the number of faility-

to-ustomer links for (i, t) under senario s. Thus, C
s(1)
it = minj∈J{C

s
ijt}. For onveniene,

we also inlude C
s(ks

it
+1)

it = +∞, ∀ (i, t, s).

Let I+ be the set of pseudo ustomers (i, t, s) orresponding to the dual variables vsit that

the proedure will try to inrease. Initially, I+ will be equal to all possible ombinations

(i, t, s) ∈ I × T × S, exept those suh that δsit = 0. Later, I+ will be set within the

respetive proedures. We note that a ustomer without demand does not ontribute to

the improvement of the dual objetive funtion value and does not also ontribute to any

violation of the omplementary slakness onditions. Thus, these ustomers are exluded

from the asent proedures.

The steps of the heuristi are as follows:

1. Set vsit = C
s(1)
it , ∀ (i, t, s), and uj = 0, ∀ j.

Set I+ = {(i, t, s) ∈ I × T × S : δsit = 1}.

2. Exeute the dual asent proedure.

3. Exeute the primal proedure. If an optimal solution is found, then stop.

4. Exeute the primal�dual adjustment proedure.

The heuristi stops when the optimal solution is found or when there are no primal or

dual improvements after a given number of trials within the adjustment proedure.

3.1.1 Dual asent proedure

This proedure, that may start with any dual feasible solution, will try to inrease the

values of variables vsit belonging to set I+. The inrease of suh variables will lead to an

inrease of the dual objetive funtion value and, simultaneously, to the derease of some

slaks' values (see step 6). The maximum value that variables vsit an take is limited by

restritions (2.1.15). Equivalently, we an also onsider slaks de�ned by (2.1.17) and a-

knowledge that these slaks have to remain nonnegative. Instead of inreasing the value

of eah dual variable vsit as muh as possible in one single step, the proedure follows an
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iterative approah: in eah iteration, the algorithm will try to inrease a dual variable

vsit to the smallest Csijt that is greater than or equal to the urrent vsit value. If this is not

possible, due to the fat that at least one slak would beome negative, than the variable

is inreased as muh as possible guaranteeing that all slaks remain nonnegative (steps

4, 5 and 6). The proedure is repeated until it is not possible to inrease the value of

any variable vsit beause of the slaks that are already equal to zero. The slaks that are

equal to zero will de�ne the set of andidate faility loations.

In what follows, (i, t, s)q, with q ≤ |I×T ×S|, represents a given, but arbitrary, sequene

of pseudo ustomers.

1. Consider any dual feasible solution {vsit} suh that vsit ≥ C
s(1)
it , ∀ (i, t, s), and πjt ≥

0, ∀ (j, t).

For eah (i, t, s) de�ne k(i, t, s) = min{k : vsit ≤ C
s(k)
it }. If vsit = C

s(k(i,t,s))
it , then

k(i, t, s)← k(i, t, s) + 1.

2. (i, t, s)← (i, t, s)1 and q ← 1; r = 0.

3. If (i, t, s) /∈ I+ ∨ δsit = 0, then go to step 7.

4. Set ∆s
it = minj{πjτ : v

s
it − C

s
ijt ≥ 0, τ ≤ t}.

5. If ∆s
it > C

s(k(i,t,s))
it − vsit, then ∆s

it = C
s(k(i,t,s))
it − vsit; r = 1; k(i, t, s)← k(i, t, s) + 1.

6. For all j ∈ J with vsit − C
s
ijt ≥ 0, set πjτ = πjτ −∆s

it, τ ≤ t; set vsit = vsit +∆s
it.

7. If q < |I+|, then q ← q + 1, (i, t, s)← (i, t, s)q , and return to step 3.

8. If r = 1, then return to step 2, otherwise stop.

3.1.2 Primal proedure

From the dual asent proedure results the dual feasible solution {vs+it } with an objetive

funtion value v+D, and assoiated slaks {π+
jt}. A orresponding primal feasible solution,

{x+
jt} and {y

s+
ijt}, an be onstruted, with an objetive funtion value v+P .

In order to desribe the primal proedure, let us �rst de�ne the following sets:

J∗ = {(j, t) ∈ J × T : π+
jt = 0};

J∗
t = {j ∈ J : (j, τ) ∈ J∗, τ ≤ t}, ∀t ∈ T ;

J+
t = {j ∈ J : faility j is open at time t}, ∀t ∈ T .

In addition, de�ne t1(j) = min{γ : j ∈ J+
γ } and t2(j) = max{γ ≤ t1(j) : (j, γ) ∈ J∗}.

Then,

J+ = {(j, t2(j)) ∈ J × T : j ∈ J+
τ for some τ}.
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The set J∗
orresponds to all (j, t) suh that j an be opened at the beginning of t

without violating (2.1.18); set J∗
t orresponds to all j that an be opened up to t; set J+

t

orresponds to all j that are atually open during t; set J+ ⊆ J∗
orresponds to all j

that open at the beginning of t, i.e., J+
ditates what failities are atually opened and

when (loation deisions).

The failities that are onsidered �rst (step 2) are the ones that at a given time t should

be assigned to a given ustomer (i, s), aording to onditions (2.1.20), alled essential

failities. Other failities are only opened if stritly neessary (step 3). If a faility j

needs to be open at some time period(s) and the �rst time period when it needs to be

open is t, then it will be opened at the beginning of time period t2(j), de�ned as being the

time period losest to t suh that the orresponding slak is equal to zero. It should be

noted that, as we are dealing with an unapaitated loation problem, there will always

be an admissible solution that an be built in this way: we an be sure that there exists

at least one faility j suh that πj1 is equal to zero (at least one faility an be opened at

the beginning of the �rst time period). If this was not true, then it would still be possible

to improve the dual solution by inreasing at least one vsi1 dual variable.

The steps of the primal proedure are as follows:

1. Set J+ = J+
t = ∅, ∀t. Build J∗

and J∗
t , ∀t.

2. For eah t ∈ T , if j ∈ J∗
t suh that ∃(i, s) : vs+it ≥ C

s
ijt and vs+it < Csij′t, ∀ j

′ ∈ J∗
t \{j},

then J+
τ = J+

τ ∪ {j}, ∀τ ≥ t.

3. For eah (i, t, s), if ∄j ∈ J+
t with vs+it ≥ C

s
ijt, then

J+
τ = J+

τ ∪
{

j ∈ J∗
t : Csijt = min{Csij′t : v

s
it ≥ C

s
ij′t}

}

, ∀τ ≥ t.

4. Build J+
.

5. Update J+
t , ∀t. Assign eah (i, t, s) to faility j ∈ J+

t with lowest Csijt.

3.1.3 Primal�Dual adjustment proedure

The primal�dual adjustment proedure will try to enfore the onditions (2.1.20) that

are still being violated by the urrent solution. The violation of these onditions means

that, for a given senario s, time period t and ustomer i, there are at least two variables

ws
ijt di�erent from zero suh that the orresponding failities j are both open in period

t. The only way of satisfying (2.1.20) would be to assign ustomer i to more than one

opened faility, whih is not admissible from the primal problem point of view. This

proedure will try to hange the urrent dual solution, by dereasing the value of at least

one variable vsit (and thus possibly dereasing the value of some variables ws
ijt), suh that

at least two slaks will be inreased. The hanges in the slaks' values may lead to the

inrease of other dual variables inreasing the dual objetive funtion value.
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In order to desribe the primal�dual proedure, let us �rst onsider the additional sets:

Js∗
it = {j : ∃τ ≤ t | (j, τ) ∈ J∗

and vsit ≥ C
s
ijt}, ∀(i, t, s);

Js+
it = {j : ∃τ ≤ t | (j, τ) ∈ J+

and vsit > C
s
ijt}, ∀(i, t, s);

I+jt = {(i, τ, s) : J
s∗
iτ = {j} for τ ≥ t}, ∀(j, t).

In addition, we denote a best soure and a seond-best soure for (i, t, s) in J+
t by j(i, t, s)

and j′(i, t, s), respetively:

Csij(i,t,s)t = minj∈J+
t

{Csijt}, ∀(i, t, s);

Csij′(i,t,s)t = minj∈J+
t
,j 6=j(i,t,s){C

s
ijt}, ∀(i, t, s) for |J

s+
it | > 1.

And we de�ne, Cs−it = maxj{C
s
ijt : v

s
it > C

s
ijt}.

For a given (i, t, s), the set Js∗
it represents all failities j that an be open at period

t (beause a slak πjτ is equal to zero for some τ ≤ t) and suh that if j is open then

ustomer i an be assigned to j at period t under senario s. Similarly, for a given (i, t, s),

the set Js+
it onsiders all failities that are in operation during period t in the urrent

primal solution, and suh that ustomer i would have to be assigned to j in period t

under senario s to guarantee the satisfation of (2.1.20). If |Js+
it | > 1, for some (i, t, s),

then a omplementary slakness ondition (2.1.20) is violated. In suh ase, the derease

of the variable vsit auses the inrease of at least two slaks πjτ , assoiated with distint

failities (step 4). Set I+jt orresponds to all variables vsiτ whose value an be inreased

with the inrease of slaks πjτ , τ ≤ t, and that must be onstruted to the exeution of

the dual asent proedure (step 5).

The steps of the primal-dual adjustment are:

1. (i, t, s)← (i, t, s)1, q ← 1; set vD = v+D and vP = v+P ; set r = 0.

2. If |Js+
it | ≤ 1, then go to step 9.

3. If I+
j(i,t,s)t = ∅ and I+

j′(i,t,s)t = ∅, then go to step 9.

4. For eah (j, τ), with τ ≤ t and vsit > C
s
ijt, set πjτ = πjτ + vsit − C

s−
it ; set vsit = C

s−
it .

5. (a) Set I+ = I+
j(i,t,s)t ∪ I+

j′(i,t,s)t and exeute the dual asent proedure.

(b) Set I+ = I+ ∪ {(i, t, s)} and exeute the dual asent proedure.

() Set I+ = I × T × S and exeute the dual asent proedure.

6. If vsit is hanged, then return to step 2.

7. Exeute the primal proedure.

8. If neither v+D > vD nor v+P < vP , then r ← r + 1; otherwise r ← 0 and update vD

and vP .
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9. If vD ≥ vP , or r = rmax or q = |I×T ×S|, then stop; otherwise q ← q+1, (i, t, s)←

(i, t, s)q, and return to step 2.

As the primal�dual heuristi for the DUFLPUD has been desribed, we now explain the

hanges that have to be made in the above proedures in order to adjust the approah

for the version of the problem onsidered in subsetion 2.1.2. The proedures are in fat

very similar for both situations, but the variations are ruial. First, it is worthwhile to

ompare slak variable values de�ned by (2.1.17) and (2.1.26), for the �rst and seond

situations, respetively. Note that (2.1.26) will not be dereased whenever ρsjτ = 0, for

some τ ≥ t and s. Consequently, during the researh for the set of andidate faility

loations, within the dual asent proedure (subsetion 3.1.1), the pseudo�ustomers

under that senario will no longer ontribute to the derease of the slak values and thus

to the opening of these faility sites. However, it is possible that other pseudo�ustomers,

under other senarios s′ 6= s for whih ρs
′

jτ = 1, might ontribute to the derease of

the slak and thus to a new set of andidate faility loations for that senarios only.

Consequently, in terms of primal proedure (subsetion 3.1.2), in addition to onsider

assignments only to open failities, that were opened at the beginning of some time

period t, it must be also guaranteed that those failities are suh that ρsjt = 1.

3.1.4 Illustrative examples

We illustrate the heuristi by two small examples. Real-world problems are typially

muh larger and provide more hallenging situations. For the sake of simpliity, we

onsider problems with only two senarios, both with p1 = 0.70 and p2 = 0.30, three time

periods (T = 3), three potenial faility loations (M = 3) and four potenial ustomers

(N = 4). In terms of the primal formulations, we are dealing with problems with only

81 deision variables and 99 restritions.

Example 3.1.1 Consider the problem's data in Tables 3.1.1�3.1.3: possible ustomers,

assignment and �xed osts, respetively. We note that at t = 1 (present time) the input

data is the same for both senarios. In table 3.1.1 we an see that, under senario

2, ustomer 1's demand's should not be onsidered in period t = 3 nor ustomer 4's

demand's for periods t > 1.

The weighted assignment osts are presented in Table 3.1.4. The initial dual solution and

the initial slaks (derived after the weighting of the �xed osts) are shown in Tables 3.1.5

and 3.1.6, respetively.

The dual asent proedure tries to inrease the variables vsit belonging to I+, following

an arbitrary sequene of these variables. We hose to onsider the variables ordered by

inreasing values of t, s and i, respetively. We show below some of the �rst steps of the

algorithm.
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Table 3.1.1: Possible ustomers, (δ1it, δ
2
it).

t 1 2 3

1 (1,1) (1,1) (1,0)

i 2 (1,1) (1,1) (1,1)

3 (1,1) (1,1) (1,1)

4 (1,1) (1,0) (1,0)

Table 3.1.2: Assignment osts, (c1ijt, c
2
ijt).

t 1 2 3

j 1 2 3 1 2 3 1 2 3

1 (5,5) (7,7) (10,10) (7,10) (8,9) (13,14) (9,�) (8,�) (19,�)

i 2 (10,10) (6,6) (6,6) (11,12) (7,7) (8,11) (12,11) (7,7) (10,13)

3 (6,6) (10,10) (12,12) (7,9) (11,13) (13,13) (7,10) (13,15) (13,14)

4 (4,4) (7,7) (12,12) (6,�) (10,�) (14,�) (7,�) (11,�) (14,�)

Table 3.1.3: Fixed osts, f s
jt.

t 1 2 3

s � j 1 2 3 1 2 3 1 2 3

1 7 8 +∞ 9 10 11 +∞ 11 12

2 7 8 +∞ 12 10 12 +∞ 15 12

Table 3.1.4: Weighted assignment osts, Csijt.

t 1 2 3

j 1 2 3 1 2 3 1 2 3

1 3.5 4.9 7.0 4.9 5.6 9.1 6.3 5.6 13.3

s = 1 i 2 7.0 4.2 4.2 7.7 4.9 5.6 8.4 4.9 7.0

3 4.2 7.0 8.4 4.9 7.7 9.1 4.9 9.1 9.1

4 2.8 4.9 8.4 4.2 7.0 9.8 4.9 7.7 9.8

1 1.5 2.1 3.0 3.0 2.7 4.2 � � �

s = 2 i 2 3.0 1.8 1.8 3.6 2.1 3.3 3.3 2.1 3.9

3 1.8 3.0 3.6 2.7 3.9 3.9 3.0 4.5 4.2

4 1.2 2.1 3.6 � � � � � �

(t, s) = (1, 1)

i = 1:

min
j
{πj1 : v

1
11−C

1
1j1 ≥ 0} = π11 = 7 , ∆1

11 = min{7, 4.9−3.5} = 1.4, π11 = 7−1.4 =

5.6, v111 = 3.5 + 1.4 = 4.9;
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Table 3.1.5: Initial dual solution, (v1it, v
2
it).

t 1 2 3

1 (3.5, 1.5) (4.9, 2.7) (5.6,�)

i 2 (4.2, 1.8) (4.9, 2.1) (4.9, 2.1)

3 (4.2, 1.8) (4.9, 2.7) (4.9, 3.0)

4 (2.8, 1.2) (4.2,�) (4.9,�)

Table 3.1.6: Initial slaks, πjt.

t 1 2 3

1 7.0 9.9 +∞
j 2 8.0 10.0 12.2

3 +∞ 11.3 12.0

i = 2:

min
j
{πj1 : v121 − C

1
2j1 ≥ 0} = min

j
{π21, π31} = 8 , ∆1

21 = min{8, 4.2 − 4.2} = 0,

v121 = 4.2;

i = 3:

min
j
{πj1 : v131 − C

1
3j1 ≥ 0} = π11 = 5.6 , ∆1

31 = min{5.6, 7 − 4.2} = 2.8, π11 =

5.6− 2.8 = 2.8, v131 = 4.2 + 2.8 = 7;

i = 4:

min
j
{πj1 : v141 − C

1
4j1 ≥ 0} = π11 = 2.8 , ∆1

41 = min{2.8, 4.9 − 2.8} = 2.1, π11 =

2.8− 2.1 = 0.7, v141 = 2.8 + 2.1 = 4.9.

The algorithm proeeds to (t, s) = (1, 2), inreasing v211 to 2.1 and v231 to 1.9. Afterwards,

for t = 2 and s = 1, v112 is bloked by π11 = 0; for i = 2:

min
j
{πjτ : v

1
22−C

1
2j2 ≥ 0, τ ≤ 2} = min{π21, π22} = π21 = 8 , ∆1

22 = min{8, 5.6−4.9} =

0.7, π21 = 8− 0.7 = 7.3, π22 = 10− 0.7 = 9.3, v122 = 4.9 + 0.7 = 5.6.

The dual asent proedure ontinues until all the dual variables are bloked by some

slak. At the end, we obtain the dual solution {vs+it } and assoiated slaks {π+
jt} shown in

Tables 3.1.7 and 3.1.8, respetively. In addition, at the end of this proedure uj = 0, ∀j.

The orresponding dual objetive funtion value is equal to v+D = 87.8.

With sets J∗ = {(1, 1), (2, 1)}, J∗
t = {1, 2}, ∀t, the primal proedure advanes with sets

J+ = J∗
and J+

t = J∗
t , ∀ t. In fat, failities 1 and 2 are both essenial for some ustomers

at t = 1. For instane, v1+21 > C1221 but v1+21 < C1211, and v2+31 > C2311 but v2+31 < C2321, thus

t1(j) = t2(j) = 1, j = 1, 2. Then, v+P = 87.8 = v+D, whih means that the optimal solu-

tion has been found (illustrated in Figure 3.1.1). Despite the simpliity of this example,
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some of the inherent features of a nondeterministi and dynami problem an be observed.

Table 3.1.7: Dual solution from the asent proedure, (v1+it , v2+it ).

t 1 2 3

1 (4.9, 2.1) (4.9, 3.0) (6.3,�)

i 2 (6, 1.8) (5.6, 3.3) (7.0, 3.3)

3 (7, 1.9) (4.9, 2.7) (4.9, 3.0)

4 (4.9, 1.2) (4.2,�) (4.9,�)

Table 3.1.8: Slaks, π+
jt.

t 1 2 3

1 0 9.9 +∞
j 2 0 3.8 8.2

3 +∞ 11.3 12

Figure 3.1.1: Optimal solution for example 3.1.1
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Example 3.1.2 Consider the problem's data in Tables 3.1.9�3.1.11. As in the previous

example, at t = 1 the input data is the same for both senarios. The weighted assignment

osts are presented in Table 3.1.12. The initial dual solution and the initial slaks are

shown in Tables 3.1.13 and 3.1.14, respetively.
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Table 3.1.9: Possible ustomers, (δ1it, δ
2
it).

t 1 2 3

1 (1,1) (1,0) (1,0)

i 2 (1,1) (1,1) (1,1)

3 (1,1) (1,1) (1,1)

4 (1,1) (1,0) (1,0)

Table 3.1.10: Assignment osts, (c1ijt, c
2
ijt).

t 1 2 3

j 1 2 3 1 2 3 1 2 3

1 (5,5) (8,8) (10,10) (7,�) (9,�) (11,�) (9,�) (12,�) (12,�)

i 2 (8,8) (5,5) (6,6) (11,8) (6,7) (7,9) (13,13) (7,8) (10,12)

3 (6,6) (5,5) (7,7) (7,7) (6,8) (8,12) (7,8) (9,8) (8,13)

4 (4,4) (6,6) (8,8) (6,�) (7,�) (9,�) (7,�) (8,�) (9,�)

Table 3.1.11: Fixed osts, f s
jt.

t 1 2 3

s � j 1 2 3 1 2 3 1 2 3

1 15 17 13 17 19 14 +∞ 20 15

2 15 17 13 18 19 15 +∞ 21 15

Table 3.1.12: Weighted assignment osts, Csijt.

t 1 2 3

j 1 2 3 1 2 3 1 2 3

1 3.5 5.6 7.0 4.9 6.3 7.7 6.3 8.4 8.4

s = 1 i 2 5.6 3.5 4.2 7.7 4.2 4.9 9.1 4.9 7.0

3 4.2 3.5 4.9 4.9 4.2 5.6 4.9 6.3 5.6

4 2.8 4.2 5.6 4.2 4.9 6.3 4.9 5.6 6.3

1 1.5 2.4 3.0 � � � � � �

s = 2 i 2 2.4 1.5 1.8 2.4 2.1 2.7 3.9 2.4 3.6

3 1.8 1.5 2.1 2.1 2.4 3.6 2.4 2.4 3.9

4 1.2 1.8 2.4 � � � � � �

After the dual asent proedure, we obtain the dual solution and assoiated slaks shown

in Tables 3.1.15 and 3.1.16, respetively. At the end of this proedure uj = 0, ∀j. We an

see that all dual variables belonging to I+ were inreased, exept the one orresponding

to the pseudo ustomer (i, t, s) = (3, 3, 2). The orresponding dual objetive funtion

value is equal to v+D = 94.4.
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Table 3.1.13: Initial dual solution, (v1it, v
2
it).

t 1 2 3

1 (3.5, 1.5) (4.9,�) (6.3,�)

i 2 (3.5, 1.5) (4.2, 2.1) (4.9, 2.4)

3 (3.5, 1.5) (4.2, 2.1) (4.9, 2.4)

4 (2.8, 1.2) (4.2,�) (4.9,�)

Table 3.1.14: Initial slaks, πjt.

t 1 2 3

1 15.0 17.3 +∞
j 2 17.0 19.0 20.3

3 13.0 14.3 15.0

Table 3.1.15: Dual solution from the asent proedure, (v1+it , v2+it ).

t 1 2 3

1 (7, 3) (6.3,�) (8.4,�)

i 2 (5.6, 2.4) (7.7, 2.4) (8.1, 3.6)

3 (4.9, 1.8) (4.9, 2.4) (5.6, 2.4)

4 (5.6, 1.8) (4.9,�) (5.6,�)

Table 3.1.16: Slaks, π+
jt.

t 1 2 3

1 0.0 11.4 +∞
j 2 0.0 10.1 15.9

3 7.1 10.4 13.9

With sets J∗ = {(1, 1), (2, 1)}, J∗
t = {1, 2}, ∀t, the primal proedure advanes with

sets J+ = J∗
and J+

t = J∗
t , ∀ t. Failities 1 and 2 are both essential at t = 3, then

t1(1) = t1(2) = 3 and t2(1) = t2(2) = 1. The primal objetive funtion value equals

v+P = 98.5 > v+D, so the heuristi ontinues to the primal�dual adjustment proedure.

The previous result means that at least one of the onditions (2.1.20) is violated. For

instane, v1+11 > C11j1, for j = 1, 2, thus |J1+
11 | = 2.

The best soure and the seond-best soure for pseudo ostumer (i, t, s) = (1, 1, 1)

are, respetively, j(1, 1, 1) = 1 and j′(1, 1, 1) = 2. In addition, I+11 = {(3, 3, 1)} and

I+21 = {(2, 3, 1), (2, 3, 2)}. Within the primal-dual adjustment proedure, slaks π+
11 and

π+
21 are inreased v1+11 −C

1−
11 = 7−5.6 = 1.4 units and v1+11 is dereased to C1−11 = 5.6. After

the dual asent proedures, initially with I+ = {(3, 3, 1), (2, 3, 1), (2, 3, 2)}, no further
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improvements are possible. The resulting dual solution is presented in Table 3.1.17, with

assoiated slaks presented in Table 3.1.18. The dual objetive funtion value is updated

to vD = 95.1.

Table 3.1.17: Dual solution after the dual asent proedures within the primal-dual ad-

justment proedure.

t 1 2 3

1 (5.6, 3) (6.3,�) (8.4,�)

i 2 (5.6, 2.4) (7.7, 2.4) (9.2, 3.9)

3 (4.9, 1.8) (4.9, 2.4) (6.3, 2.4)

4 (5.6, 1.8) (4.9,�) (5.6,�)

Table 3.1.18: Slaks after the dual asent proedures within the primal-dual adjustment

proedure.

t 1 2 3

1 0.6 10.6 +∞
j 2 0.0 8.7 14.5

3 5 8.3 11.8

From the primal proedure results J∗ = J+ = {(2, 1)}, and J+
t = {2}, ∀t, then vP =

95.1 = vD, whih means that the heuristi found the optimal solution.

3.2 Branh&Bound approah

The branh&bound algorithm an be summarized as follows. The original problem DU-

FLPU is �rst solved in the root node using the dual-based heuristi. If the solution

alulated is not the optimal solution (or in ases where it is, but we annot prove it

beause of a duality gap), the searhing proeeds with a branh&bound sheme that

guarantees that the optimal solution is found (if enough time and omputational re-

soures are available). The branhing is based on those loation deision variables that

ontribute to the omplementary slakness violations of the urrent solution. After some

tests, we deided to follow a simple rule and hoose the �rst loation variable found that

ontributes to these violations. Other rules were tested (taking into aount the �xed

faility osts, expeted gains/losses in terms of assignment osts in hoosing a seond�

best soure instead of seleting the best soure for a given ustomer), but no signi�ant

improvements were observed, espeially in large sized problems. Inspired on previous

works (Erlenkotter [29℄, Van Roy and Erlenkotter [88℄ and Dias et al. [21℄), loation
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variables are �xed �rst to zero and then to one. The tree is searhed using a depth

searh proedure. Setting a variable to one is ahieved by hanging the orresponding

�xed ost to zero. To use the urrent dual solution in the next branh&bound tree node,

some hanges may have to be made to guarantee dual admissibility (some dual variables

must be redued, with a orresponding inrease in some of the slaks). When �xing a

variable to zero, its �xed ost is set equal to +∞, guaranteeing the admissibility of the

urrent dual solution that will be used in the next tree node. A node is fathomed only

if the urrent problem is infeasible, the optimal solution of the urrent problem has been

found or the urrent dual objetive funtion value is worse than the best primal objetive

funtion value found so far.

The omputational results are provided in subsetion 4.2.2.

3.3 Lagrangean relaxation approah

To be able to formulate and solve the problem α-DUFLPU (setion 2.2), it is neessary

to alulate the optimal solution ζ∗s for eah senario s ∈ S. These (deterministi) |S|

problems an be solved to optimality by the branh&bound proedure proposed earlier

or by a general solver (CPLEX, for instane). Assume then that ζ∗s is known and suh

that ζ∗s > 0, for all s ∈ S.

The Lagrangean relaxation of problem α-DUFLPU, in short LRα-DUFLPU, with respet

to the onstraint set (2.2.3) an be de�ned through the introdution of the Lagrange

multipliers λs ≥ 0, ∀s ∈ S. Eah λs is assoiated with the orresponding onstraint and

brought into the objetive funtion, as follows:

(LRα-DUFLPU) min
∑

t∈T

∑

j∈J

∑

s∈S

psf s
jtxjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

pscsijty
s
ijt+

∑

s∈S

λs

(

∑

t∈T

∑

j∈J

f s
jtxjt +

∑

t∈T

∑

i∈I

∑

j∈J

csijty
s
ijt − (1 + α)ζ∗s

)

(3.3.1)

s. t.

(2.1.2)�(2.1.6).

The algorithm has been designed onsidering two well known results from Lagrangean

Relaxation (e.g., Reeves [70℄, Guignard [31℄) adapted for the present problem in the

following proposition.

Proposition 3.3.1 The optimal solution of LRα-DUFLPU, for λs ≥ 0, ∀s ∈ S, gives

a lower bound to the optimal solution of the original problem α-DUFLPU. In addition,
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a solution of LRα-DUFLPU that satis�es also onstraint set (2.2.3) provides an upper

bound to the optimum of α-DUFLPU.

We have deided to use the e�ient primal�dual heuristi to solve problem LRα-DUFLPU.

In order to apply the primal-dual heuristi to the present problem, the objetive funtion

(3.3.1) is rewritten as follows:

∑

t∈T

∑

j∈J

∑

s∈S

(ps + λs)f
s
jtxjt +

∑

s∈S

∑

t∈T

∑

i∈I

∑

j∈J

(ps + λs)c
s
ijty

s
ijt. (3.3.2)

Notie that onstant −
∑

s∈S λs(1 + α)ζ∗s is not onsidered in (3.3.2), being only added

to the �nal objetive funtion value. De�ning in (3.3.2) F s
jt = (ps + λs)f

s
jt and Csijt =

(ps+λs)c
s
ijt , the formulations already presented for the DUFLPU in subsetion 2.1.1, for

the dual problem, the ondensed dual problem, as well as the omplementary slakness

onditions between dual and primal problems are still valid for the LRα-DUFLPU. Hene,

LRα-DUFLPU an be solved by the primal�dual heuristi presented in setion 3.1. Re-

all that the heuristi's proedures are designed to redue progressively the duality gap

between dual and primal objetive funtion values. Even if the heuristi is unable to

�nd the optimal solution of LRα-DUFLPU, it is still able to provide a good lower bound

to the optimal objetive funtion value of α-DUFLPU, in this ase through the dual

objetive funtion value as stated in the next proposition.

Proposition 3.3.2 The best dual solution alulated by the primal�dual heuristi applied

to LRα-DUFLPU provides a lower bound to the optimal objetive funtion value of α-

DUFLPU.

Proof: Let us represent the optimum of α-DUFLPU by Opt(α-DUFLPU) and the op-

timum of LRα-DUFLPU by Opt(LRα-DUFLPU). In addition, let (zP , zD) be the

primal and dual solutions alulated by the primal�dual heuristi for LRα-DUFLPU

and its dual, respetively. If zP = zD, then zP = Opt(LRα-DUFLPU) whih provides a

lower bound to Opt(α-DUFLPU) (proposition 3.3.1). If the heuristi's solutions are suh

that zD < zP , then, from duality theory, we know that zD < Opt(LRα-DUFLPU) ≤

Opt(α-DUFLPU), so zD is a valid lower bound to Opt(α-DUFLPU).

Let us now turn to the generation of upper bounds. Taking into aount the objetive

funtion (2.1.1) and the set of onstraints (2.2.3), it is trivial to prove that the objetive

funtion value of α-DUFLPU is bounded above by

∑

s p
s(1 + α)ζ∗s . This value an then

be onsidered as a �rst upper bound to the optimum of α-DUFLPU. Furthermore, if a

lower bound alulated at any iteration is greater than this value, then α-DUFLPU is

infeasible.

The primal solution alulated by the heuristi an be admissible or not for α-DUFLPU. If

it is admissible, then it represents an upper bound to the optimal solution of α-DUFLPU.
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After exeuting the primal-dual heuristi to LRα-DUFLPU, a loal searh proedure is

performed. This loal searh proedure will explore the neighborhood of the urrent

solution, trying to reah feasibility or trying to improve the objetive funtion value

(reahing better upper bounds). The neighborhood is onsidered to be the set of solutions

that are equal to the urrent one with the exeption of the opening time period of one

faility. The loal searh proedure tries to hange the time period when a given faility

is opened, or tries not to open the faility at all. Whenever a better solution is found,

it beomes the urrent solution and the loal searh ontinues until it is not possible to

�nd better solutions in the neighborhood of the urrent solution.

A standard subgradient algorithm is used to update the Lagrange multipliers. Let us

de�ne subgradients Gs for the relaxed onstraints, evaluated at the urrent solution, by:

Gs =
∑

t∈T

∑

j∈J

f s
jt xjt +

∑

t∈T

∑

i∈I

∑

j∈J

csijt y
s
ijt − (1 + α)ζ∗s , ∀s ∈ S.

In addition, let π represent the step size for the Lagrange multipliers and z the step size

oe�ients for the Lagrange multipliers.

Initially, in iteration k = 0, λ
(k)
s = 0, ∀s ∈ S,

and in iteration k > 0,

λ
(k+1)
s = max{0, λ

(k)
s + πGs}, with π = z

UB(k) − LB(k)

∑

s G
2
s

,

where UB(k)
and LB(k)

are the most reent upper and lower bounds ahieved.

During the exeution of the algorithm, the best upper and lower bounds ahieved are

updated and reorded, in order to alulate the solution gap, whih is one of the estab-

lished stopping riteria. The stopping riteria as other details of the algorithm will be

disussed further in subsetion 4.2.3.

3.4 Multi�objetive approah

We will explain in this setion a proedure to takle the MODUFLPU. As stated in

setion 2.3, the knowledge of non�dominated solutions to the original MODUFLPU is

ahieved by solving the auxiliary problem(s) AUX. In an interative approah, the dia-

logue phase with the DM onsists in de�ning new values to the righthand side of on-

straints (2.3.3), the Ms values. These values will then de�ne the regions of searh. In

a generating approah, Ms values an be automatially generated in a way that guar-

antees that the whole objetive spae is explored. The automati generation of vetor

M an be done resorting to two simple data strutures: a binary tree, with as muh

levels as the number of senarios, and a matrix. Eah time a new solution is alulated,

based on a given vetor M, a binary tree is generated suh that it will de�ne all pos-
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sible future vetors M. These vetors are then reorded in a matrix so that they an

be retrieved in future iterations. To give a simple example of this proedure, onsider

a problem with three senarios. The initial vetor M is set to (M1
1,M

1
2,M

1
3). Solving

AUX with this vetor, assume that the non-dominated solution (ζ11 , ζ
1
2 , ζ

1
3) is obtained,

where ζ11 ≤ M
1
1, ζ

1
2 ≤ M

1
2, ζ

1
3 ≤ M

1
3 taking into aount onstraints (2.3.3). Based on

both the given vetorM and the ahieved solution, a binary tree an be built as shown

in �gure 3.4.1.

Figure 3.4.1: Binary tree for automati generation of vetorM.
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The path from the root to eah node of the tree will de�ne a possible new future vetor

M. In the present example, eight vetors are de�ned, (M1
1,M

1
2, ζ

1
3), (M

1
1, ζ

1
2 ,M

1
3) or

(M1
1, ζ

1
2 , ζ

1
3) for example, orresponding to eight possible searh regions. These vetors

an be stored in a matrix, so that they an be retrieved in a future iteration of the

algorithm. Whenever a new solution is alulated, a new binary tree is built and the

orresponding vetors added to the matrix. Note, however, that to some of these vetors

will orrespond infeasible problems and thus should not be reorded and used. For in-

stane, (ζ11 , ζ
1
2 , ζ

1
3) will not be interesting beause it orresponds to an infeasible problem

(otherwise (ζ11 , ζ
1
2 , ζ

1
3) would not be a non-dominated solution). Other vetors will end

up with optimal solutions that are already known suh as (M1
1,M

1
2,M

1
3) for instane.

Furthermore, knowing that one given problem is impossible will allow us to onlude that

otherM vetors will also lead to impossible problems and then it is not worth to explore

the orresponding region. This searh method is easily implementable and will guarantee

that the whole objetive spae is explored.

Let us now turn to the hoie of the vetor of weights ν in order to de�ne the objetive

funtion of AUX. As noted before, these weights an and should be hanged in aordane

with vetorM in order to help dereasing the omputational time needed to alulate a

solution ([20℄). For instane, ifM is more demanding for a given senario, meaning that

Ms is lose to the best objetive funtion value ζ∗s , then the respetive objetive funtion

weight should be inreased. One simple way of doing this is setting ν as follows:

νs = 1−
Ms − ζ∗s

ζ∗s
, ∀s ∈ S, (3.4.1)

νs =
νs

∑

s νs
, ∀s ∈ S.
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We next illustrate a solution approah to the MODUFLPU by one small problem, follow-

ing an interative proedure based on Dias et al. [20℄ where all AUX problem instanes

were solved by CPLEX v12.6 .

Example 3.4.1 Consider a problem instane with 25 potential faility sites, 100 possible

ustomers, 10 time periods and 2 senarios.

Initially, and in order to delineate the region of interest, the solutions with the best

possible objetive funtion value for eah senario should be alulated. These solu-

tions an be ahieved onsidering in AUX binary vetors ν and large values toM. The

solutions obtained for the present problem are depited in the objetive spae in �g-

ure 3.4.2: (138023, 153313) with the optimum ost of senario 1 and (218195, 139854)

with the optimum of senario 2. The DM is now free to set the vetor M. Let us as-

sume that he does not want to explore any partiular region, so he deides to onsider

(M1,M2) = (218195, 153313) based on the two non�dominated solutions already al-

ulated. With weights (ν1, ν2) = (0.32, 0.68), alulated aording to (3.4.1), the new

solution reahed is (138902, 142526) (�gure 3.4.3).

Figure 3.4.2: Solutions with the optimum

of eah senario.

Figure 3.4.3: The �rst non�dominated so-

lution alulated.

Considering the newly alulated non-dominated solution, it is easy to see that two

regions of the objetive spae are no longer of interest. This is illustrated in �gure 3.4.4:

as region A has only solutions that are dominated by the solution alulated, region B

has only non-admissible solutions.

The DM an then deide whether to explore region C or region D. Let us assume that

he would explore region D. ThenM1 will remain equal to 218195 andM2 will be set to

142526 (given by the new non�dominated solution just alulated). Figure 3.4.5 shows

the new solution alulated, (141836, 141936). The proedure would be repeated until

the DM is satis�ed or the whole objetive spae has been explored. The whole set of

non�dominated solutions found for this problem is depited in �gure 3.4.6. It is possible
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Figure 3.4.4: Regions A and B disarded from further searhes.

to observe the ompromises that exist between the two senarios. The loation deisions

in eah of the non�dominated solutions, whih failities are to be opened and when, are

detailed in table 3.4.1. We an observe that a set of seven failities is opened exatly in

the same time period in all solutions alulated.

Figure 3.4.5: A new non�dominated solu-

tion.

Figure 3.4.6: The set of non�dominated so-

lutions.
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Table 3.4.1: Example 3.4.1: Time period in whih eah faility is opened.

Opened Failities

ζ1 ζ2 2 3 4 5 6 7 9 11 14 16 18 20 22 24 25

138023 153313 1 1 � 7 6 4 2 2 3 2 4 6 3 2 �

138228 150276 1 1 � 7 6 4 2 2 3 2 4 6 3 2 1

138237 150257 1 1 � 7 6 4 2 2 3 3 4 6 3 2 1

138360 150238 1 1 � 7 6 4 2 2 3 3 4 � 3 2 1

138384 150093 1 1 � � 6 4 2 2 3 2 4 6 3 2 1

138393 150074 1 1 � � 6 4 2 2 3 3 4 6 3 2 1

138564 145957 1 1 � 7 6 4 2 5 3 2 4 6 3 2 �

138720 145827 1 1 � � 6 4 2 5 3 2 4 6 3 2 �

138746 142709 1 1 � 7 6 4 2 5 3 2 4 6 3 2 1

138869 142690 1 1 � 7 6 4 2 5 3 2 4 � 3 2 1

138902 142526 1 1 � � 6 4 2 5 3 2 4 6 3 2 1

139281 142430 1 1 7 � 6 4 2 5 3 2 4 6 3 2 1

141238 142389 � 1 � 7 6 4 2 5 3 2 4 6 3 2 1

141457 142365 � 1 � � 6 4 2 5 3 2 4 6 3 2 1

141695 142200 � 1 7 � 6 4 2 5 3 2 1 6 3 2 1

141836 141936 � 1 7 � 6 4 2 5 3 2 4 6 3 2 1

145742 140500 1 1 � � 6 4 2 5 3 2 4 2 3 2 1

146121 140404 1 1 7 � 6 4 2 5 3 2 4 2 3 2 1

147507 140307 � 1 � 7 6 4 2 5 3 2 4 2 3 2 1

218195 139854 � 1 7 � 6 4 2 5 3 2 4 2 3 2 1
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Chapter 4

Computational Experiments

The algorithms developed to takle the DUFLPU, the primal�dual heuristi approah

(setion 3.1) and the branh&bound approah (setion 3.2), as well as the Lagrangean

relaxation proedure developed to solve α-DUFLPU (setion 3.3), have been tested over

sets of di�erent problem instanes. As we are not aware of the existene of benhmark

problem instanes that ould be easily adapted to onform to the presented models, we

have hosen to randomly generate problem instanes. It should be pointed out that the

generation of the data to a deision model under unertainty is in itself an ative area

of researh, mainly in what onerns stohasti programming models (see, for instane,

Dupaova [25℄, Dupaova et al. [26℄, Kaut and Wallae [43℄, Heitsh and Romish [35℄).

Senario based stohasti programs, in whih the true underlying probability distribu-

tions are replaed by disrete distributions onentrated in a �nite number of points

(senarios), or sequene of events, with probabilities, often require a spei� form of the

input (as multistage problems require senario trees for example). The variety of meth-

ods for generating senarios available in the literature is thus signi�ant: sampling and

sampling-based methods, moment mathing, path-based methods whih generate om-

plete paths/senarios, optimal disretization, et. These methods depend on the deision

model, level of knowledge about the underlying probability distributions or stohasti

proesses, availability of historial data, opinion of experts, et. The total number of

senarios generated by some of these methods is too large and thus with higher ompu-

tational di�ulties. To overome suh di�ulties, there are also methods for reduing

the total number of senarios (for details see the works ited above and the referenes

therein for example).

There are possibly many ways in whih one ould generate the senarios for the pro-

posed models. In a real-world setting suh senarios may be advaned by experts for

example. The purpose of the algorithm that has been developed for the generation of

test problems (desribed in setion 4.1) is only to reate input data to the models, in a

simple, understandable and fast manner, in order to make possible the realization of the

tests. Herein, the generated senarios are some kind of �what if� senarios. As we are in
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the presene of a dynami problem under unertainty, data must hange simultaneously

over time and among the di�erent senarios. Furthermore, we onsidered di�erent di-

mensions for the test problems, by varying the number S of senarios, number T of time

periods, number M of possible faility loations and number N of possible ustomers.

Our purpose was �rst to evaluate the quality of the solutions ahieved by the developed

algorithms in terms of gap, given by the di�erene between the best objetive funtion

value found by eah algorithm and the best known lower bound on the optimal value

divided by this best known lower bound. We also analyzed the algorithms in terms of

the omputational time spent on the searhing proess. Even though we are dealing with

strategi deisions, where time usually is not determinant, faster algorithms permit the

onsideration of larger and diverse problems, enrihing the deision making proess. For

α-DUFLPU in partiular, being able to solve it for several di�erent values of maximum

regret will allow the DM to get a better piture of the ompromises that exist. How-

ever, it is desirable that this proess takes plae within a reasonable omputational time.

The results obtained by general solvers onsidering the same sets of problems are also

presented.

4.1 Generation of test problems

The algorithm that was developed for the generation of test problems an be summa-

rized as follows. First, the network of the problem is randomly generated, inluding the

loation of the nodes (potenial faility sites and possible ustomer loations) and ars

between them. This network will be valid for all time periods and senarios. Then, we

onsider the generation of the data for all time periods of senario 1: ar osts, on-

sequently assignment osts, set of potential faility sites and orresponding �xed osts,

and set of ustomer loations. Senario 1 is alled the basi senario as it is from this

senario that all the others will be onstruted. Thus, for the other senarios, for the

�rst time period we onsider the data generated for the basi senario (the �rst time

period orresponds to the present situation that is not senario dependent), as for eah

one of the other periods of time the data may hange with some probability. For the

sake of simpliity, these input probabilities are only dependent of the senarios but these

ould be also dependent of other items suh as periods of time, ars, faility or ustomer

loations. This is a very important feature of the proedure, sine it will allow the gener-

ation of problems well distint. As far as senario probabilities (ps) are onerned, these

were randomly generated suh that the sum of all probabilities is equal to 1. Below we

provide the approah used in the generation of all test problems (in general). Table 4.1.1

presents some input values that were onsidered and that must be known before the gen-

eration proedure. For ease in the exposition, let us �rst onsider the following additional

notation:
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Js
t : Set of potenial faility loations that an be seleted (opened) at the beginning

of time period t ∈ T for senario s ∈ S,

Ist : Set of ustomer loations with demand during period t ∈ T for senario s ∈ S,

where Js
t ⊆ J and Ist ⊆ I.

Table 4.1.1: Input values.

MaxX 1000
MaxY 1000
parc 0.75

d 50

parcc 0.80

psf 0.80 for s = 1 and 0.5 ∀s 6= 1
psc 0.80 for s = 1 and 0.3 ∀s 6= 1
pc 0.10

psa 0.40

pscf 0.60

Data generation steps

1. Random generation of (x, y)−oordinates in a retangular area of size MaxX ×

MaxY orresponding to the loation of |J |+ |I| nodes (potenial faility sites plus

possible ustomer loations).

2. Random generation of ars between the network nodes with probability parc; af-

terwards, if there isn't an ar between two nodes �lose� (the Eulidean distane

between them is less than d), an ar is reated between them with probability

parcc > parc.

3. For s = 1 (basi senario):

3.1 for t = 1: random generation of osts assoiated with ars, aording to a

Uniform distribution U [lc, uc];

for eah t ≥ 2, eah ar ost is equal to the ost generated in period t− 1 plus

a hanging fator randomly generated.

3.2 for eah t ≥ 1:

i. alulation of the shortest path between eah possible ustomer loation

and eah potential faility loation.

ii. random generation of set J1
t , with J1

1 6= ∅, and �xed osts:

eah loation j is inluded in J1
t with probability p1f ;

65



− if j ∈ J1
t , then the �xed ost at j is randomly generated from a

Uniform distribution U [lf, uf ], and for eah τ > t the �xed ost is

inreased by a hanging fator randomly generated;

− if j /∈ J1
t , then the �xed ost at j is set to +∞.

iii. random generation of set I1t : eah ustomer i is inluded in I1t with prob-

ability p1c ; in addition, for t ≥ 3, if i was inluded in I1t−2 and exluded

from I1t−1, then i is inluded in I1t with probability pc < 0.5.

4. For s 6= 1 (other senarios):

4.1 for t = 1, onsider the data generated for the basi senario and t = 1.

4.1 for eah t ≥ 2:

i. eah ar ost that was generated for time period t of the basi senario

(basi ost) hanges in time period t of senario s with probability psa;

if a variation ours, then the ar ost is equal to the basi ost plus a

hanging fator Θa randomly generated.

ii. alulation of the shortest path between eah possible ustomer loation

and eah potential faility loation.

iii. random generation of set Js
t and �xed osts:

eah loation j is inluded in Js
t with probability psf ;

− if j ∈ Js
t ∩ J1

t , then the �xed ost at j that was generated for time

period t of the basi senario (basi ost) hanges in time period t of

senario s with probability pscf ; if a variation ours, then the �xed

ost is equal to the basi ost plus a hanging fator Θf randomly

generated;

− if j ∈ Js
t but j /∈ J1

t , then the �xed ost at j is randomly generated

from a Uniform distribution U [lf, uf ], and for eah τ > t the �xed

ost is inreased by a hanging fator randomly generated;

− if j /∈ Js
t , then �xed ost at j is set to +∞.

iv. random generation of set Ist : the demand state of ustomer i that was

generated for time period t of the basi senario hanges in time period t

of senario s with probability psc.

4.2 Computational results

The omputational results obtained are presented in the next subsetions. The algorithms

were all oded in C�language and the omputational experiments were arried out on a

AMD Turion(tm) X2 Dual�Core Mobile RM�70 proessor at 2.00GHz with 3.00GB of
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RAM. Gap is given in perentage and the omputational time in seonds. The time

results do not inlude the time required to read the problems' data, only the time to

solve them. The general solver used to make omparisons with the primal�dual heuristi

is LPSolve v5.5.2.0 [9℄. Afterwards, thanks to IBM Aademi Initiative, the results refer

to CPLEX MIP optimizer, v12.4.

4.2.1 Primal-Dual heuristi

The input values of (S, T,M,N) used in the random generation of the test problems are

given in Table 4.2.1. For eah ombination of (S, T,M,N), with N > M , �ve instanes

were randomly generated. Di�erent random seeds were used for eah of the instanes.

We have, in total, 780 instanes, that were solved by the heuristi and by LpSolve. We

deided to stop the solver if its solution time exeeded 7200 seonds (s). We note that

the smallest instane onsidered has 1025 variables with 1205 onstraints but the largest

has 3000750 variables with 3060050 onstraints.

Table 4.2.1: Parameters used in the random generation of the test problems.

S 2 5 10 20

T 5 10 15 �

M 5 10 20 50

N 20 50 100 200

In Tables 4.2.2�4.2.5 we summarize the omputational results obtained. Eah table or-

responds to a given number of senarios. We report the minimum and maximum number

of opened failities (dimension of the set J+
) as well as the minimum, average and maxi-

mum gap (in perentage) on the �ve instanes solved for eah ombination of (T,M,N).

The following tables also show the solution times (in seonds) of the heuristi and the

solver. We report the minimum, average and maximum time spent by the heuristi and

by the solver to solve eah group of �ve instanes. The primal�dual heuristi was able

to solve all the 780 instanes. As far as the solver results are onerned, the solver

ould not solve some of the �ve instanes, due to lak of memory to read the problem or

the exeution time has exeeded 7200 s. We report these ases and statistis refer only

to those instanes that were solved. Whenever the solver was not able to solve any of

the �ve instanes, the solver time is given as ' * '. Only on the larger instanes, with

(S, T,M,N) = (20, 15, 50, 200), the heuristi exeeded the time limit established a priori.

In terms of solution quality, the worst gap, 4.02%, was observed with instanes with 20

senarios and with T = 15, M = 50 and N = 100. Within eah S-senario problems, in

average, the larger gaps were observed in instanes with largest M and N .

The average results for all S�senario problems are reported in the last row of the or-

responding tables. We an see that the number of senarios onsidered do not result
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in markedly di�erent solution qualities. However, the exeution times required by the

solver are learly higher than those required by the heuristi, espeially for large sized

problems. In most of the test problems with large dimensions the solver ould not solve

them in less than 7200 s. The heuristi time an vary a lot, even for problems with the

same size. For example, for instanes with (S, T,M,N) = (10, 15, 20, 200) the exeution

time ranges from 0.28 to 1231.29 s, in average 508.18 seonds.

The omputational results show that the heuristi is apable of �nding very good quality

solutions in reasonable omputational times, learly outperforming the general solver.

As it is well known, when solving integer programming problems general solvers tend to

reah a good admissible (sometimes optimal) solution fast, and then spend a lot of time

trying to improve this solution or proving that the solution is optimal. So omparing the

omputational time of a dediated heuristi to that of a general solver an be seen as

unfair to the general solver. That is why we have repeated all the omputational tests

but now using the general solver as an heuristi proedure: for eah set of instanes, we

have limited the maximum omputational time spent by the general solver onsidering

this maximum time equal to the maximum time spent by the heuristi and then ompare

the quality of the solutions found by the two approahes. When this time limit was

onsidered, and for all test problems, the solver was not able to �nd any admissible

solution (upper and lower bounds of the optimal primal objetive funtion value were

equal to '+∞' and '−∞', respetively). It should be noted that the minimum times

presented by the solver (see Tables 4.2.2�4.2.5) are greater than the maximum times

spent by the heuristi to ompute the solution for the same problems.
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Table 4.2.2: Computational results for 2�senario problems.

T M N |J+| gap (%) Heur. time (s) Solver time (s)

min max min aver max min aver max min aver max

5 5 20 2 4 0.00 0.00 0.00 0.00 0.01 0.02 0.08 0.11 0.16

5 5 50 2 4 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.64 0.83

5 5 100 4 5 0.00 0.00 0.00 0.00 0.00 0.00 2.23 2.64 3.32

5 5 200 5 5 0.00 0.00 0.00 0.00 0.04 0.09 7.85 8.62 9.91

5 10 20 3 4 0.00 0.11 0.44 0.00 0.02 0.06 0.19 0.38 0.53

5 10 50 5 7 0.00 0.13 0.36 0.00 0.06 0.17 1.48 2.33 3.42

5 10 100 5 7 0.00 0.03 0.14 0.00 0.08 0.27 5.51 7.36 8.81

5 10 200 7 9 0.00 0.00 0.00 0.00 0.37 1.81 18.24 25.13 31.51

5 20 50 5 9 0.00 0.41 1.52 0.05 0.13 0.30 4.56 6.57 9.66

5 20 100 8 10 0.00 0.05 0.15 0.03 0.83 1.51 20.65 23.25 27.02

5 20 200 10 13 0.00 0.01 0.04 0.02 3.24 12.29 74.54 101.52 121.56

5 50 100 13 16 0.19 0.64 1.85 0.48 3.23 5.13 75.04 169.58 264.31

5 50 200 18 22 0.11 0.33 0.67 6.29 13.41 19.44 391.73 471.97 620.62

10 5 20 3 4 0.00 0.00 0.00 0.00 0.00 0.02 0.30 0.37 0.45

10 5 50 4 5 0.00 0.00 0.00 0.00 0.00 0.02 1.79 2.43 3.03

10 5 100 5 5 0.00 0.00 0.00 0.00 0.03 0.11 8.14 8.53 9.24

10 5 200 5 5 0.00 0.00 0.00 0.02 0.03 0.08 24.16 31.05 43.01

10 10 20 3 6 0.00 0.03 0.12 0.00 0.01 0.02 0.86 1.34 1.89

10 10 50 6 8 0.00 0.00 0.00 0.00 0.01 0.03 4.62 5.61 7.27

10 10 100 7 10 0.00 0.00 0.00 0.00 0.01 0.02 16.91 19.99 21.40

10 10 200 9 10 0.00 0.00 0.00 0.00 0.02 0.08 72.24 87.83 109.93

10 20 50 8 12 0.00 0.06 0.32 0.08 0.58 1.25 13.43 23.38 33.29

10 20 100 11 15 0.00 0.04 0.20 0.11 0.98 2.26 71.04 82.84 101.03

10 20 200 16 19 0.00 0.01 0.06 0.09 1.72 6.77 233.77 270.59 361.19

10 50 100 19 23 0.37 1.08 2.39 1.95 6.33 11.25 398.89 546.24 746.12

10 50 200 26 30 0.19 0.35 0.61 40.17 52.61 90.46 1510.53 1737.18 1880.55

15 5 20 3 5 0.00 0.00 0.00 0.00 0.01 0.06 0.70 0.91 1.28

15 5 50 4 5 0.00 0.00 0.00 0.00 0.00 0.00 4.09 5.09 6.19

15 5 100 5 5 0.00 0.00 0.00 0.00 0.04 0.09 16.65 19.49 22.07

15 5 200 5 5 0.00 0.00 0.00 0.00 0.34 1.64 71.09 80.89 91.23

15 10 20 4 7 0.00 0.00 0.00 0.00 0.00 0.02 1.72 2.70 3.67

15 10 50 7 9 0.00 0.00 0.00 0.00 0.01 0.03 11.00 12.75 14.56

15 10 100 8 10 0.00 0.00 0.00 0.00 0.03 0.11 37.30 49.85 67.16

15 10 200 10 10 0.00 0.00 0.00 0.02 0.02 0.02 155.06 215.19 247.49

15 20 50 9 12 0.00 0.03 0.13 0.31 1.02 1.97 47.00 54.76 71.79

15 20 100 14 16 0.00 0.07 0.21 0.02 1.62 7.47 114.54 168.61 217.79

15 20 200 17 20 0.00 0.00 0.00 0.27 1.16 3.23 620.72 696.22 878.47

15 50 100 23 28 0.35 0.76 1.31 2.39 5.40 9.50 1064.62 1768.31 2946.97

15 50 200

a
32 37 0.00 0.52 2.28 58.62 106.2 210.2 2699.81 3370.90 3957.47

Aver 0.03 0.12 0.33 2.84 5.12 9.94 200.09 258.54 331.95

a
Solver was unable to solve one of the instanes with T = 15, M = 50 and N = 200.
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Table 4.2.3: Computational results for 5�senario problems.

T M N |J+| gap (%) Heur. time (s) Solver time (s)

min max min aver max min aver max min aver max

5 5 20 1 2 0.00 0.00 0.00 0.00 0.00 0.02 0.47 0.51 0.56

5 5 50 2 3 0.00 0.00 0.00 0.00 0.01 0.02 3.42 4.29 5.54

5 5 100 4 4 0.00 0.00 0.00 0.00 0.01 0.02 10.48 14.21 18.70

5 5 200 4 5 0.00 0.00 0.00 0.00 0.01 0.03 38.05 51.95 61.87

5 10 20 2 3 0.00 0.00 0.00 0.00 0.02 0.06 1.50 2.06 3.42

5 10 50 3 5 0.00 0.07 0.36 0.00 0.19 0.55 8.80 11.93 17.44

5 10 100 5 7 0.00 0.00 0.00 0.00 2.63 10.19 35.65 41.94 53.42

5 10 200 7 8 0.00 0.00 0.00 0.00 0.24 0.66 138.92 176.28 204.44

5 20 50 5 6 0.00 0.39 1.41 0.08 0.74 1.89 33.79 51.27 66.67

5 20 100 7 8 0.00 0.19 0.56 0.02 5.38 10.78 93.54 184.33 240.07

5 20 200 9 13 0.00 0.08 0.26 2.14 34.26 52.57 602.52 840.71 1084.33

5 50 100 10 12 0.00 0.15 0.49 4.57 14.99 23.76 687.40 984.75 1292.27

5 50 200 14 18 0.16 0.24 0.34 49.97 94.49 188.82 3258.87 4243.81 5243.82

10 5 20 2 4 0.00 0.06 0.29 0.00 0.04 0.20 2.26 2.50 3.00

10 5 50 4 5 0.00 0.06 0.31 0.00 0.14 0.50 10.95 15.89 21.92

10 5 100 4 5 0.00 0.00 0.00 0.02 0.02 0.03 44.06 46.75 51.28

10 5 200 5 5 0.00 0.00 0.00 0.02 0.03 0.05 201.49 226.94 273.97

10 10 20 3 4 0.00 0.29 1.46 0.00 0.31 1.11 6.68 9.70 11.59

10 10 50 4 7 0.00 0.10 0.33 0.00 0.86 3.48 36.16 51.28 65.13

10 10 100 7 8 0.00 0.00 0.00 0.02 0.17 0.56 154.46 185.67 238.81

10 10 200 9 10 0.00 0.00 0.00 0.03 0.04 0.05 364.87 566.97 853.41

10 20 50 7 9 0.00 0.25 0.57 1.45 4.93 8.81 128.76 205.82 276.32

10 20 100 8 13 0.00 0.02 0.12 0.27 9.71 27.44 489.92 688.11 914.27

10 20 200 13 18 0.00 0.01 0.01 2.18 19.64 68.11 1766.34 2640.57 3348.20

10 50 100 15 19 0.30 0.74 1.34 11.22 50.01 82.74 3048.36 4795.48 7152.59

10 50 200 20 24 0.83 1.05 1.40 210.62 344.60 432.31 * * *

15 5 20 2 4 0.00 0.00 0.00 0.00 0.01 0.02 5.65 5.99 6.13

15 5 50 4 5 0.00 0.00 0.00 0.02 0.02 0.03 29.97 33.62 41.12

15 5 100 4 5 0.00 0.00 0.00 0.03 0.07 0.19 107.89 126.81 140.43

15 5 200 5 5 0.00 0.00 0.00 0.05 0.06 0.09 493.69 554.62 653.95

15 10 20 3 5 0.00 0.00 0.00 0.22 0.68 1.95 15.91 18.10 20.97

15 10 50 6 7 0.00 0.00 0.00 0.00 0.04 0.11 96.13 124.75 148.18

15 10 100 8 9 0.00 0.01 0.04 0.03 1.97 8.94 444.77 489.07 561.88

15 10 200 10 10 0.00 0.00 0.00 0.06 0.32 1.36 1187.18 1471.82 1701.38

15 20 50 7 9 0.00 0.11 0.39 2.81 10.82 25.55 316.88 353.42 404.52

15 20 100 9 15 0.00 0.13 0.41 4.99 23.75 48.55 1043.98 1300.18 1491.25

15 20 200 14 18 0.00 0.01 0.03 1.75 53.01 156.41 4576.93 5245.83 6506.93

15 50 100

a
17 24 0.68 1.47 2.72 23.43 60.40 120.53 6564.31 6882.34 7200.37

15 50 200 24 30 0.42 1.30 1.87 20.58 338.01 639.04 * * *

Aver 0.06 0.17 0.38 8.63 27.50 49.17 690.82 882.44 1091.36

a
Solver was unable to solve three of the instanes with T = 15, M = 50 and N = 100.
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Table 4.2.4: Computational results for 10�senario problems.

T M N |J+| gap (%) Heur. time (s) Solver time (s)

minmax min aver max min aver max min aver max

5 5 20 2 3 0.00 0.07 0.36 0.00 0.22 0.53 2.89 3.19 3.84

5 5 50 3 3 0.00 0.00 0.00 0.00 0.12 0.58 12.62 17.11 23.32

5 5 100 4 4 0.00 0.00 0.00 0.00 0.01 0.02 58.38 65.14 73.29

5 5 200 4 5 0.00 0.00 0.00 0.02 0.03 0.03 207.31 230.73 243.10

5 10 20 1 4 0.00 0.02 0.11 0.00 0.36 0.62 6.96 9.89 12.84

5 10 50 3 5 0.00 0.03 0.14 0.00 1.93 6.94 45.43 66.04 109.22

5 10 100 4 5 0.00 0.00 0.00 0.09 5.44 23.95 148.47 255.05 351.09

5 10 200 6 8 0.00 0.02 0.10 0.05 4.33 10.64 795.18 1038.60 1442.13

5 20 50 4 6 0.00 0.14 0.46 1.89 5.10 8.74 155.02 226.56 356.30

5 20 100 6 8 0.00 0.25 1.27 2.40 8.23 17.85 541.68 796.70 909.26

5 20 200 8 12 0.00 0.03 0.10 26.57 164.40 341.20 2121.63 2988.89 4074.88

5 50 100 8 12 0.00 0.17 0.57 34.94 79.29 121.93 3436.65 4215.17 5468.21

5 50 200 14 19 1.22 2.07 3.25 418.86 634.12 946.89 * * *

10 5 20 2 3 0.00 0.00 0.00 0.00 0.01 0.02 7.89 11.65 16.07

10 5 50 3 5 0.00 0.00 0.00 0.02 0.03 0.08 50.67 65.89 95.52

10 5 100 4 5 0.00 0.00 0.00 0.03 0.04 0.05 197.23 221.54 247.67

10 5 200 5 5 0.00 0.00 0.00 0.06 0.09 0.14 810.00 868.02 992.83

10 10 20 2 4 0.00 0.00 0.00 0.02 0.32 1.25 27.33 32.99 43.54

10 10 50 4 6 0.00 0.06 0.30 0.03 9.70 34.91 182.36 223.63 320.38

10 10 100 6 8 0.00 0.00 0.00 0.06 1.24 3.78 696.07 877.82 961.08

10 10 200 8 10 0.00 0.00 0.00 0.11 0.12 0.13 2308.36 2687.90 3046.52

10 20 50 6 9 0.00 0.33 0.97 6.51 27.74 49.41 584.74 954.05 1261.76

10 20 100 9 11 0.00 0.19 0.67 7.22 73.58 205.44 2551.49 3135.98 3598.62

10 20 200 13 15 0.00 0.04 0.12 1.79 243.75 460.86 * * *

10 50 100 13 17 0.62 1.66 2.27 73.26 225.40 334.34 * * *

10 50 200 18 25 0.50 1.23 2.30 1091.9 1871.4 2703.6 * * *

15 5 20 3 4 0.00 0.00 0.00 0.02 1.33 6.54 21.09 30.78 38.45

15 5 50 4 5 0.00 0.00 0.00 0.05 0.07 0.13 149.46 168.39 188.90

15 5 100 4 5 0.00 0.00 0.00 0.08 0.20 0.41 545.28 595.69 690.44

15 5 200 5 5 0.00 0.00 0.00 0.14 0.44 1.47 1953.11 2107.77 2261.94

15 10 20 3 5 0.00 0.07 0.37 0.28 1.62 4.68 65.30 88.62 126.95

15 10 50 4 7 0.00 0.00 0.00 0.05 1.25 3.65 447.81 497.29 550.57

15 10 100 7 9 0.00 0.00 0.00 0.11 10.99 41.96 1472.00 1997.70 2838.22

15 10 200

a
9 10 0.00 0.00 0.00 0.17 0.21 0.23 5932.49 6218.71 6353.24

15 20 50 6 8 0.00 0.18 0.35 0.78 17.82 40.72 1374.77 1757.89 2792.24

15 20 100

b
8 12 0.00 0.23 0.69 8.19 70.07 115.46 4948.38 5251.97 5518.58

15 20 200 14 18 0.00 0.02 0.05 0.28 508.18 1231.3 * * *

15 50 100 17 23 1.14 1.95 2.85 187.43 427.05 785.32 * * *

15 50 200 22 28 0.41 1.23 1.91 526.03 1771.8 3170.6 * * *

Aver 0.10 0.26 0.49 61.27 158.15 273.75 995.56 1178.35 1406.59

a
Solver was unable to solve one of the instanes with T = 15, M = 10 and N = 200. b

Solver was

unable to solve two of the instanes with T = 15, M = 20 and N = 100.
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Table 4.2.5: Computational results for 20�senario problems.

T M N |J+| gap (%) Heur. time (s) Solver time (s)

minmax min aver max min aver max min aver max

5 5 20 1 3 0.00 0.01 0.07 0.00 0.13 0.61 9.42 12.28 17.64

5 5 50 3 4 0.00 0.00 0.00 0.02 0.71 3.45 61.84 70.29 95.61

5 5 100 3 4 0.00 0.00 0.00 0.03 30.86 154.19 222.89 286.07 381.81

5 5 200 4 5 0.00 0.00 0.00 0.06 0.08 0.09 1001.93 1109.75 1302.44

5 10 20 2 4 0.00 0.22 1.08 0.02 2.53 4.96 37.78 45.14 57.60

5 10 50 3 4 0.00 0.08 0.39 1.26 14.10 23.99 257.40 291.35 309.33

5 10 100 5 6 0.00 0.00 0.00 3.09 71.90 245.59 877.80 1069.26 1361.01

5 10 200 6 8 0.00 0.03 0.15 0.09 145.20 638.04 2729.54 3547.23 4662.37

5 20 50 4 6 0.00 0.13 0.63 0.36 21.11 44.29 499.04 993.34 1600.09

5 20 100 6 8 0.00 0.19 0.82 19.64 101.85 222.91 2429.08 3547.42 4711.87

5 20 200 9 13 0.01 0.57 1.47 47.05 621.55 1342.97 * * *

5 50 100 8 14 1.28 2.01 2.75 202.60 310.82 359.07 * * *

5 50 200 16 20 1.85 2.47 3.33 383.79 1812.6 2803.42 * * *

10 5 20 2 3 0.00 0.00 0.00 0.03 0.55 1.78 34.05 47.44 67.78

10 5 50 3 4 0.00 0.00 0.00 0.06 0.07 0.09 256.78 266.85 277.40

10 5 100 4 5 0.00 0.00 0.00 0.13 0.15 0.19 1023.39 1138.34 1499.16

10 5 200 5 5 0.00 0.00 0.00 0.23 0.27 0.33 3540.65 3699.76 4046.42

10 10 20 2 4 0.00 0.23 1.16 0.05 2.61 6.44 128.87 157.65 201.02

10 10 50 4 5 0.00 0.00 0.00 0.08 23.42 45.74 791.93 949.63 1187.52

10 10 100 6 7 0.00 0.00 0.00 0.16 8.25 38.05 2891.10 3888.13 4534.98

10 10 200 9 10 0.00 0.00 0.00 0.30 1.62 3.76 * * *

10 20 50 5 8 0.00 0.12 0.56 34.94 140.44 225.34 2789.70 3035.98 3677.72

10 20 100 8 11 0.02 0.43 1.03 53.57 193.76 409.70 * * *

10 20 200 13 14 0.01 0.16 0.38 689.88 1786.9 3325.52 * * *

10 50 100 13 16 0.68 1.82 3.55 215.51 748.85 1289.9 * * *

10 50 200 18 21 0.62 1.10 2.25 1860.6 3639.3 4646.8 * * *

15 5 20 2 3 0.00 0.00 0.00 0.06 9.97 49.55 107.58 123.71 157.44

15 5 50 3 5 0.00 0.00 0.00 0.14 0.17 0.19 537.65 648.65 858.02

15 5 100 4 5 0.00 0.00 0.00 0.28 0.42 0.86 2195.15 2440.06 2643.19

15 5 200 5 5 0.00 0.00 0.00 0.50 0.57 0.70 * * *

15 10 20 2 5 0.00 0.14 0.72 0.06 12.31 43.73 296.65 414.25 614.06

15 10 50 5 6 0.00 0.00 0.00 0.17 79.82 297.60 1564.88 2319.46 2902.85

15 10 100 7 10 0.00 0.02 0.10 0.34 8.53 37.82 * * *

15 10 200 9 10 0.00 0.00 0.00 0.61 0.65 0.73 * * *

15 20 50 6 9 0.05 0.70 2.32 49.64 198.52 353.08 * * *

15 20 100 11 13 0.02 0.34 0.49 109.61 435.24 641.11 * * *

15 20 200 10 15 0.00 0.08 0.32 403.70 2561.1 5787.24 * * *

15 50 100 16 18 0.96 2.49 4.02 414.34 1973.1 3138.74 * * *

15 50 200 22 26 1.35 1.89 3.01 6442.4 13133.7 16098.22 * * *

Aver 0.18 0.39 0.78 280.40 720.35 1084.28 1055.87 1308.78 1615.97
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4.2.2 Branh&Bound approah

To assess the ability of the branh&bound approah we have onsidered randomly gener-

ated di�erent problem instanes aording to table 4.2.1 and following the same proedure

already desribed for the primal�dual heuristi. Thus, we have also 780 instanes in total,

that were solved by the branh&bound approah and by CPLEX MIP optimizer, v12.4,

that was used with its default settings. We have established a maximum omputational

time for the exeution of branh&bound algorithm equal to one hour

1

(no time limit was

imposed to CPLEX).

Tables 4.2.6�4.2.7 summarize the omputational results obtained in terms of primal so-

lution quality ahieved in the root node and by the branh&bound algorithm. We report

the minimum, average and maximum gap (in perentage) on the �ve instanes solved

for eah ombination of (S, T,M,N). The average results for all S�senario problems

are reported in the last row of the orresponding tables. Tables ??�?? show the solution

times (minimum, average and maximum times, in seonds, on the �ve instanes) of the

branh&bound, CPLEX, and also the time needed to alulate the admissible solution

of the root node. Due to the time limit restrition, the branh&bound was not able to

alulate the optimal solution of some instanes. As far as CPLEX results are onerned,

the solver ould not also solve to optimality some of the problems out of the �ve instanes,

due to lak of memory to proeed the alulation. We report these ases and solution gaps

are provided. However, if these solution gaps exeeded 10% (gaps exessively high when

ompared with solution gaps provided by our proedure), we have deided to exlude

them from the time statistis. We report these ases and CPLEX statistis refer only to

those instanes that were solved to optimality or presented a reasonable gap. Whenever

CPLEX was not able to solve any of the �ve instanes, the solver time is given as ' * ' (in

suh ases, due to lak of memory to read the problems).

The omputational results show that the admissible primal solution alulated in the

root node is of very good quality, and is obtained in reasonable omputational times.

The maximum time needed to ompute the root node solution is, for most problems

(around 60%), lower than the minimum time required by CPLEX for the same problems.

The worst results in terms of gap are observed in instanes with M ∈ {20, 50}, but still

with a maximum gap of 4.01% ((S, T,M,N) = (20, 15, 50, 100)). Within eah S-senario

problems, in average, the larger gaps are observed in instanes with largest M and N .

Nevertheless, the branh&bound algorithm is able to improve signi�antly the quality

of the primal solution alulated in the root node. It should be noted that CPLEX has

better omputational times than branh&bound for M ∈ {20, 50} and N ∈ {100, 200},

in general, but as the number of senarios inreases (espeially for problems with 20

senarios), CPLEX shows di�ulties in providing a better solution or even to be able to

1

This riterion is tested only at the beginning of eah node, thus the �nal omputational time may

in fat be higher than the time limit established a priori.
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generate a feasible solution. From our omputational tests we have observed that di�erent

problem instanes of the same size an make the optimization algorithms behave very

di�erently, both in terms of the omputational times and solution quality. To give an

example, onsidering the 5 instanes with size (S, T,M,N) = (20, 10, 50, 100), we have

observed the following: the branh&bound algorithm was able to alulate the optimal

solution of 2 out of the 5 problems using 1 (after only 215.5 se) and 3 nodes of the

tree, respetively. For the other problems, the algorithm was unable to alulate the

optimal solutions due to the time limit restrition, but still improved the solution of two

problems (using 6 and 7 nodes of the tree). CPLEX was able to alulate the optimum

of one problem only (715 se), and ould not provide feasible solutions for any of the

other problems due to memory restritions. These di�erent behaviors make us think that

time should be spent looking at the problem's harateristis to try and delineate more

e�ient branhing rules.
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Table 4.2.6: Solution quality (in %) for problems with 2 and 5 senarios.

S=2 S=5

T M N Root B&B Root B&B

min aver max min aver max min aver max min aver max

5 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 20 0.00 0.11 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 50 0.00 0.13 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 100 0.00 0.03 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 20 50 0.00 0.41 1.52 0.00 0.00 0.00 0.00 0.39 1.41 0.00 0.00 0.00

5 20 100 0.00 0.02 0.12 0.00 0.00 0.00 0.00 0.19 0.56 0.00 0.00 0.00

5 20 200 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.08 0.26 0.00 0.00 0.00

5 50 100 0.03 0.62 1.85 0.00 0.00 0.00 0.00 0.15 0.49 0.00 0.00 0.00

5 50 200 0.00 0.30 0.58 0.00 0.00 0.00 0.16 0.23 0.34 0.00 0.00 0.00

10 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.29 0.00 0.00 0.00

10 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.31 0.00 0.00 0.00

10 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 20 0.00 0.03 0.12 0.00 0.00 0.00 0.00 0.29 1.46 0.00 0.00 0.00

10 10 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.33 0.00 0.00 0.00

10 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 20 50 0.00 0.06 0.32 0.00 0.00 0.00 0.00 0.25 0.57 0.00 0.00 0.00

10 20 100 0.00 0.04 0.20 0.00 0.00 0.00 0.00 0.02 0.12 0.00 0.00 0.00

10 20 200 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00

10 50 100 0.37 0.68 1.17 0.00 0.00 0.00 0.08 0.46 1.25 0.00 0.02 0.10

10 50 200 0.02 0.25 0.45 0.00 0.02 0.08 0.02 0.15 0.40 0.00 0.10 0.23

15 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00

15 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 20 50 0.00 0.03 0.13 0.00 0.00 0.00 0.00 0.11 0.39 0.00 0.00 0.00

15 20 100 0.00 0.05 0.21 0.00 0.00 0.00 0.00 0.05 0.13 0.00 0.00 0.00

15 20 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00

15 50 100 0.26 0.52 0.90 0.00 0.00 0.00 0.29 0.61 1.20 0.00 0.48 1.20

15 50 200 0.00 0.34 1.47 0.00 0.11 0.57 0.00 0.37 1.06 0.00 0.26 0.75

0.02 0.09 0.26 0.00 0.00 0.02 0.01 0.09 0.27 0.00 0.02 0.06
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Table 4.2.7: Solution quality (in %) for problems with 10 and 20 senarios.

S=10 S=20

T M N Root B&B Root B&B

min aver max min aver max min aver max min aver max

5 5 20 0.00 0.07 0.36 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00

5 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 20 0.00 0.03 0.11 0.00 0.00 0.00 0.00 0.22 1.08 0.00 0.00 0.00

5 10 50 0.00 0.03 0.14 0.00 0.00 0.00 0.00 0.08 0.39 0.00 0.00 0.00

5 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 20 50 0.00 0.14 0.46 0.00 0.00 0.00 0.00 0.13 0.63 0.00 0.00 0.00

5 20 100 0.00 0.25 1.27 0.00 0.00 0.00 0.00 0.19 0.82 0.00 0.00 0.00

5 20 200 0.00 0.03 0.10 0.00 0.00 0.00 0.00 0.19 0.61 0.00 0.03 0.15

5 50 100 0.00 0.17 0.57 0.00 0.00 0.00 0.08 0.70 1.42 0.00 0.46 1.42

5 50 200 0.31 0.84 1.63 0.24 0.60 1.02 1.85 2.47 3.33 1.62 2.10 2.87

10 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 1.16 0.00 0.00 0.00

10 10 50 0.00 0.06 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 20 50 0.00 0.48 1.43 0.00 0.00 0.00 0.00 0.12 0.56 0.00 0.00 0.00

10 20 100 0.00 0.06 0.20 0.00 0.00 0.00 0.00 0.14 0.34 0.00 0.00 0.00

10 20 200 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.07 0.22 0.00 0.04 0.13

10 50 100 0.00 0.64 0.92 0.00 0.41 0.77 0.00 1.43 3.55 0.00 1.10 2.57

10 50 200 0.13 0.39 1.05 0.00 0.31 1.05 0.56 1.08 2.25 0.56 1.08 2.25

15 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 5 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 20 0.00 0.07 0.37 0.00 0.00 0.00 0.00 0.14 0.72 0.00 0.00 0.00

15 10 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 10 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.08 0.00 0.00 0.00

15 10 200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 20 50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.28 0.00 0.00 0.00

15 20 100 0.00 0.06 0.24 0.00 0.00 0.00 0.00 0.02 0.07 0.00 0.01 0.05

15 20 200 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.01 0.04

15 50 100 0.05 1.05 2.25 0.00 0.42 1.14 0.95 2.30 4.01 0.65 2.17 3.81

15 50 200 0.26 1.12 1.79 0.26 1.01 1.79 1.27 1.84 3.01 1.27 1.84 3.01

0.02 0.14 0.34 0.01 0.07 0.15 0.12 0.29 0.63 0.11 0.23 0.42
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Table 4.2.8: Computational time (in se.) for 2�senario problems.

T M N Root B&B CPLEX

(1)

min aver max min aver max min aver max

5 5 20 0.00 0.00 0.02 0.00 0.01 0.02 0.06 0.07 0.11

5 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.17 0.17

5 5 100 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.51 0.73

5 5 200 0.00 0.03 0.08 0.00 0.03 0.08 0.92 1.03 1.25

5 10 20 0.00 0.01 0.03 0.00 0.02 0.06 0.11 0.17 0.27

5 10 50 0.00 0.06 0.17 0.00 0.11 0.30 0.34 0.36 0.41

5 10 100 0.00 0.08 0.23 0.00 0.12 0.31 0.76 0.88 0.95

5 10 200 0.00 0.26 1.28 0.00 0.26 1.28 2.04 2.19 2.37

5 20 50 0.03 0.13 0.30 0.03 1.60 5.57 0.72 2.38 6.93

5 20 100 0.03 0.83 1.51 0.03 1.82 5.87 1.89 3.18 5.46

5 20 200 0.02 3.24 12.29 0.02 9.29 26.86 4.77 6.32 11.67

5 50 100 0.48 3.23 5.13 0.89 76.01 184.24 5.16 27.34 67.10

5 50 200 6.29 13.41 19.44 45.24 259.14 600.12 17.53 27.47 58.70

10 5 20 0.00 0.00 0.02 0.00 0.00 0.02 0.11 0.13 0.16

10 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.38 0.41

10 5 100 0.00 0.03 0.08 0.00 0.03 0.08 0.80 0.90 1.00

10 5 200 0.00 0.02 0.08 0.00 0.05 0.22 2.12 2.24 2.31

10 10 20 0.00 0.01 0.02 0.00 0.03 0.09 0.23 0.27 0.30

10 10 50 0.00 0.01 0.03 0.00 0.02 0.08 0.73 0.86 1.09

10 10 100 0.00 0.01 0.02 0.00 0.01 0.02 2.09 2.16 2.25

10 10 200 0.00 0.02 0.08 0.00 0.02 0.08 5.05 5.23 5.66

10 20 50 0.08 0.58 1.25 0.08 1.09 3.24 1.56 2.50 5.54

10 20 100 0.09 0.89 2.26 0.09 2.47 10.16 4.32 4.57 4.79

10 20 200 0.09 1.68 6.57 0.09 1.79 6.57 12.04 12.39 12.59

10 50 100 1.95 6.33 11.25 33.68 247.76 432.53 17.83 64.68 106.77

10 50 200 40.17 52.61 90.46 434.76 1238.78 3624.30 44.73 69.14 156.31

15 5 20 0.00 0.01 0.06 0.00 0.01 0.06 0.17 0.20 0.23

15 5 50 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.66 0.70

15 5 100 0.00 0.03 0.09 0.00 0.03 0.09 1.19 1.32 1.45

15 5 200 0.00 0.32 1.56 0.00 0.32 1.56 3.20 3.53 3.90

15 10 20 0.00 0.00 0.02 0.00 0.00 0.02 0.39 0.41 0.44

15 10 50 0.00 0.01 0.02 0.00 0.01 0.02 1.06 1.27 1.44

15 10 100 0.00 0.03 0.11 0.00 0.03 0.11 2.67 3.26 3.88

15 10 200 0.02 0.02 0.02 0.02 0.02 0.02 9.11 9.50 9.67

15 20 50 0.31 0.99 1.97 0.31 1.16 2.62 2.54 3.32 5.16

15 20 100 0.02 1.55 7.27 0.02 1.56 7.27 6.44 6.98 7.74

15 20 200 0.20 0.95 2.26 0.20 1.18 2.73 23.31 23.91 24.62

15 50 100 2.39 5.40 9.50 417.53 1751.79 3604.30 72.45 185.26 314.83

15 50 200 58.62 106.15 210.16 81.59 1469.96 3617.16 59.87 90.70 183.60

2.84 5.10 9.89 26.01 129.91 311.23 7.94 14.56 25.97

(1) (T,M,N) = (15, 50, 200): solution gap of 2.54% in one instane.
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Table 4.2.9: Computational time (in se.) for 5�senario problems.

T M N Root B&B CPLEX

(1)

min aver max min aver max min aver max

5 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.16 0.17

5 5 50 0.00 0.01 0.02 0.00 0.01 0.02 0.50 0.55 0.64

5 5 100 0.00 0.01 0.02 0.00 0.01 0.02 1.23 1.27 1.30

5 5 200 0.00 0.01 0.03 0.00 0.01 0.03 2.98 3.15 3.37

5 10 20 0.00 0.01 0.05 0.00 0.01 0.05 0.33 0.34 0.36

5 10 50 0.00 0.18 0.55 0.00 0.37 1.47 1.15 1.26 1.40

5 10 100 0.00 2.63 10.19 0.00 3.16 10.19 2.43 3.36 5.94

5 10 200 0.00 0.23 0.66 0.00 0.23 0.66 7.21 7.37 7.52

5 20 50 0.08 0.70 1.72 0.08 3.08 6.93 2.29 3.37 5.87

5 20 100 0.02 5.38 10.78 0.02 13.00 22.48 5.77 11.65 29.22

5 20 200 2.14 34.26 52.57 5.71 131.14 384.53 22.67 42.81 99.15

5 50 100 4.57 14.99 23.76 25.16 71.50 124.04 22.25 36.06 79.39

5 50 200 49.97 94.49 188.82 537.22 1708.13 3121.40 77.69 131.91 254.75

10 5 20 0.00 0.04 0.20 0.00 0.05 0.25 0.38 0.55 1.19

10 5 50 0.00 0.13 0.50 0.00 0.39 1.78 1.20 1.27 1.31

10 5 100 0.00 0.02 0.03 0.00 0.02 0.03 2.75 3.00 3.37

10 5 200 0.02 0.03 0.05 0.02 0.03 0.05 7.29 7.65 7.89

10 10 20 0.00 0.31 1.11 0.00 0.80 2.62 0.83 0.95 1.11

10 10 50 0.00 0.86 3.48 0.00 2.05 6.91 2.56 2.83 3.25

10 10 100 0.02 0.16 0.53 0.02 0.16 0.53 6.46 6.68 6.88

10 10 200 0.03 0.04 0.05 0.03 0.04 0.05 22.40 23.27 24.09

10 20 50 1.45 4.93 8.81 7.00 22.13 39.56 6.41 12.19 23.18

10 20 100 0.25 9.70 27.44 0.25 15.21 50.59 18.21 18.96 20.64

10 20 200 2.15 19.59 68.11 2.15 127.16 566.25 53.68 57.85 69.75

10 50 100 11.22 50.01 82.74 440.05 1672.13 3601.46 69.59 321.40 556.18

10 50 200 210.62 344.60 432.31 3672.54 3723.90 3843.65 200.18 244.33 297.48

15 5 20 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.59 0.66

15 5 50 0.00 0.02 0.03 0.00 0.02 0.03 1.86 1.98 2.03

15 5 100 0.03 0.06 0.19 0.03 0.06 0.19 4.43 4.68 4.90

15 5 200 0.05 0.06 0.09 0.05 0.06 0.09 15.29 15.60 15.91

15 10 20 0.22 0.63 1.95 0.33 1.06 3.76 1.23 1.81 3.42

15 10 50 0.00 0.03 0.06 0.00 0.03 0.06 4.51 4.60 4.65

15 10 100 0.03 1.97 8.94 0.03 2.58 12.00 12.22 14.67 23.31

15 10 200 0.06 0.32 1.36 0.06 0.32 1.36 38.41 39.64 40.73

15 20 50 2.81 10.82 25.55 2.81 14.30 32.21 9.95 11.94 14.03

15 20 100 4.99 23.75 48.55 4.99 74.52 161.87 33.23 41.48 63.80

15 20 200 19.19 64.08 156.41 19.19 95.58 282.41 91.23 93.13 95.00

15 50 100 23.43 60.40 120.53 738.02 2553.79 3768.07 111.53 594.58 1426.71

15 50 200 20.58 338.01 639.04 2986.28 3663.47 4178.27 264.97 264.97 264.97

9.07 27.78 49.16 216.46 356.42 518.61 28.92 52.15 88.86

(1) (T,M,N) = (10, 50, 200): solution gap of 5.04% in one instane; (T,M,N) = (15, 50, 200): statistis
refer only to one instane, as gaps on the other four were exessively high�ranged from 61% to 70%.
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Table 4.2.10: Computational time (in se.) for 10�senario problems.

T M N Root B&B CPLEX

(1)

min aver max min aver max min aver max

5 5 20 0.00 0.20 0.53 0.00 0.24 0.73 0.38 0.66 1.65

5 5 50 0.00 0.11 0.50 0.00 0.11 0.50 1.12 1.23 1.34

5 5 100 0.00 0.01 0.02 0.00 0.01 0.02 2.92 3.17 3.48

5 5 200 0.02 0.03 0.03 0.02 0.03 0.03 7.64 7.95 8.38

5 10 20 0.00 0.33 0.45 0.00 0.54 1.28 0.92 1.25 2.14

5 10 50 0.00 1.91 6.94 0.00 6.77 31.25 2.81 4.90 12.78

5 10 100 0.05 5.30 23.34 0.05 6.27 23.34 7.13 7.85 8.69

5 10 200 0.05 3.47 9.61 0.05 3.47 9.61 21.72 22.82 26.07

5 20 50 1.73 5.06 8.74 1.73 7.05 12.56 6.90 7.94 10.58

5 20 100 2.40 8.13 17.85 4.49 31.27 85.94 21.17 32.71 67.05

5 20 200 26.57 164.40 341.20 26.57 221.01 437.28 58.87 64.29 72.42

5 50 100 34.94 79.29 121.93 52.39 588.56 1301.41 69.14 139.48 259.37

5 50 200 418.86 634.12 946.89 3723.94 3935.26 4273.85 524.82 959.66 1527.31

10 5 20 0.00 0.01 0.02 0.00 0.01 0.02 0.83 0.90 0.98

10 5 50 0.02 0.03 0.08 0.02 0.03 0.08 2.67 2.88 3.17

10 5 100 0.03 0.04 0.05 0.03 0.04 0.05 7.44 7.88 8.14

10 5 200 0.06 0.08 0.08 0.06 0.08 0.08 21.68 23.37 24.98

10 10 20 0.00 0.29 1.20 0.00 0.29 1.20 1.93 2.10 2.43

10 10 50 0.03 9.70 34.91 0.03 15.07 59.16 6.66 9.36 19.19

10 10 100 0.06 1.23 3.78 0.06 1.23 3.78 21.11 22.02 22.50

10 10 200 0.11 0.11 0.13 0.11 0.11 0.13 55.16 57.02 59.45

10 20 50 6.16 27.61 49.41 6.16 91.57 207.54 18.80 55.25 132.16

10 20 100 7.22 73.58 205.44 7.22 357.21 803.21 56.55 118.88 226.20

10 20 200 1.64 241.84 460.86 1.64 302.18 648.24 127.48 136.49 152.48

10 50 100 73.26 225.40 334.34 73.26 2847.19 3658.22 161.01 612.17 841.99

10 50 200 1091.86 1871.35 2703.61 3344.55 4004.48 4996.68 401.34 610.96 820.58

15 5 20 0.02 1.33 6.54 0.02 2.06 10.22 1.53 1.78 1.95

15 5 50 0.05 0.07 0.13 0.05 0.07 0.13 4.98 5.10 5.34

15 5 100 0.08 0.20 0.41 0.08 0.20 0.41 14.98 15.69 16.65

15 5 200 0.14 0.43 1.47 0.14 0.43 1.47 43.07 45.16 47.69

15 10 20 0.28 1.62 4.68 0.28 10.41 34.41 3.21 3.77 4.88

15 10 50 0.05 1.24 3.57 0.05 1.24 3.57 12.81 13.24 13.73

15 10 100 0.11 10.94 41.96 0.11 10.94 41.96 37.46 40.84 46.11

15 10 200 0.17 0.21 0.23 0.17 0.21 0.23 99.33 103.01 105.32

15 20 50 0.78 17.82 40.72 0.78 46.89 158.57 32.93 43.70 72.59

15 20 100 8.19 58.64 105.66 8.19 270.82 796.27 95.40 164.64 398.57

15 20 200 0.28 508.17 1231.29 0.28 625.82 1231.29 217.14 248.22 310.01

15 50 100 187.43 427.05 785.32 2662.76 3490.24 3750.85 313.22 361.24 409.27

15 50 200 526.03 1771.76 3170.56 3674.49 4156.30 4983.22 * * *

61.25 157.77 273.45 348.46 539.38 706.89 65.37 104.20 151.25

(1) (T,M,N) = (5, 50, 200): gap of 2.28% in one instane, and gaps exessively high in two instanes;

(T,M,N) = (10, 50, 100): two exessively high gaps (15%; 19%); (T,M,N) = (10, 50, 200): three exes-

sively high gaps (around 60%). (T,M,N) = (15, 20, 200): one gap of 0.29%; (T,M,N) = (15, 50, 100):
two exessively high gaps (62%; 69%) and one instane without any feasible solution.
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Table 4.2.11: Computational time (in se.) for 20�senario problems.

T M N Root B&B CPLEX

(1)

min aver max min aver max min aver max

5 5 20 0.00 0.13 0.61 0.00 0.38 1.87 0.80 1.48 3.00

5 5 50 0.02 0.65 3.15 0.02 0.65 3.15 2.85 3.16 3.53

5 5 100 0.03 30.86 154.19 0.03 30.86 154.19 7.86 9.43 14.35

5 5 200 0.06 0.08 0.09 0.06 0.08 0.09 25.26 26.22 27.11

5 10 20 0.02 2.52 4.90 0.02 6.26 20.87 2.11 2.51 2.75

5 10 50 1.09 13.61 23.99 1.09 21.88 42.84 7.89 16.82 47.86

5 10 100 3.09 70.80 245.59 3.09 108.01 431.64 24.32 28.15 37.46

5 10 200 0.09 145.04 638.04 0.09 145.04 638.04 64.19 73.17 101.15

5 20 50 0.34 21.11 44.29 0.34 113.64 435.97 20.61 74.18 221.68

5 20 100 19.64 101.85 222.91 19.64 403.43 1015.67 56.89 117.68 288.10

5 20 200 47.05 621.55 1342.97 58.31 2219.18 4636.38 164.66 537.78 1190.23

5 50 100 202.60 310.82 359.07 988.31 2449.90 3983.55 264.14 468.16 883.07

5 50 200 383.79 1812.58 2803.42 3981.65 4692.20 5493.17 * * *

10 5 20 0.03 0.55 1.78 0.03 1.15 4.79 2.11 2.22 2.29

10 5 50 0.06 0.07 0.09 0.06 0.07 0.09 8.25 8.55 8.71

10 5 100 0.13 0.15 0.19 0.13 0.15 0.19 23.53 24.93 26.16

10 5 200 0.23 0.27 0.33 0.23 0.27 0.33 58.75 61.76 65.38

10 10 20 0.03 2.56 6.22 0.03 3.01 6.22 5.46 5.95 7.49

10 10 50 0.08 23.42 45.74 0.08 23.42 45.74 25.91 27.31 29.84

10 10 100 0.16 7.62 35.22 0.16 7.62 35.22 55.93 58.88 61.87

10 10 200 0.30 1.62 3.76 0.30 2.45 7.57 131.67 137.53 140.46

10 20 50 34.41 140.33 225.34 34.41 352.87 1008.43 62.28 75.39 97.60

10 20 100 53.57 193.76 409.70 107.17 1642.17 3957.66 141.54 228.71 470.41

10 20 200 689.88 1786.88 3325.52 689.88 2822.17 4521.18 313.94 390.26 512.89

10 50 100 215.51 748.85 1289.93 215.51 3259.06 4482.38 715.61 715.61 715.61

10 50 200 1860.63 3639.29 4646.76 4283.56 4696.01 5646.12 * * *

15 5 20 0.06 9.97 49.55 0.06 9.97 49.55 4.23 4.46 4.57

15 5 50 0.14 0.17 0.19 0.14 0.17 0.19 15.34 16.33 17.22

15 5 100 0.27 0.42 0.86 0.27 0.42 0.86 40.19 45.06 47.83

15 5 200 0.50 0.57 0.70 0.50 0.57 0.70 97.42 105.32 109.15

15 10 20 0.06 12.31 43.73 0.06 32.01 142.21 10.97 20.22 54.18

15 10 50 0.17 79.79 297.60 0.17 157.06 683.95 42.01 46.75 61.62

15 10 100 0.34 8.53 37.82 0.34 35.66 139.39 104.63 108.50 111.84

15 10 200 0.61 0.65 0.73 0.61 0.65 0.73 221.55 233.70 241.26

15 20 50 49.64 198.52 353.08 49.64 1109.26 3475.71 104.99 244.58 616.14

15 20 100 109.61 435.24 641.11 109.61 2080.56 3728.63 228.11 283.64 332.78

15 20 200 364.42 2457.07 5352.72 364.42 2525.55 5352.72 * * *

15 50 100 414.34 1973.06 3138.74 3914.32 4599.44 5882.31 * * *

15 50 200 6064.95 12619.44 15228.66 6064.95 12619.44 15228.66 * * *

269.69 704.43 1050.75 535.62 1183.91 1827.15 89.88 123.66 192.81

(1) (T,M,N) = (5, 50, 100): one exessively high gap (39%); (T,M,N) = (10, 50, 100): CPLEX was only

able to solve one of the instanes (no feasible solutions were provided for the other four).
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4.2.3 Lagrangean relaxation approah

In order to analyze the model α-DUFLPU and to assess the e�ieny of the proposed

algorithmi approah, six data sets were onsidered, with input values of (S, T, J, I) given

in Table 4.2.12. The orresponding number of variables and onstraints are also provided.

For eah one of these six sets, forty instanes were randomly generated.

Table 4.2.12: Dimension of the test problems.

Set S T J I num var num onst

I 10 10 20 100 200200 210030

II 10 10 20 200 400200 420030

III 10 10 40 100 400400 410050

IV 10 20 20 100 400400 420030

V 20 10 20 100 400200 420040

VI 50 5 20 100 500100 525070

We have onsidered α ∈ {0.075, 0.10, 0.15, 0.20}. The stopping riteria were established

after some preliminary tests. The maximum omputational time for the exeution of the

algorithm is two hours for problems with 20 and 50 senarios and one hour for all other

problems. In addition, we have also established as stopping riterium the quality of the

best solution ahieved by the algorithm, measured by the gap between the best known

upper and lower bounds: 2% for the problems with 20 and 50 senarios and 1.5% for

all the others. We have also imposed a maximum number of iterations whih ould vary

from 20 to 50 (largest instanes). The omputational results provided in this setion were

obtained onsidering a step size oe�ient z = 1 whih gave the best results in general.

Other initial values of z as well as lowering z after a few iterations of the algorithm were

tested without signi�ant improvements in results.

Table 4.2.13 summarizes the omputational results obtained. For eah data set and for

eah α, olumn 'feas/inf/ind' reports the number of instanes for whih a feasible solution

was found by the algorithm, the number of instanes identi�ed as infeasible and also the

number of instanes for whih the algorithm was unable to ahieve a feasible solution

(solution indeterminate). The statistis shown in the next olumns refer only to the

subsets of instanes for whih a feasible solution was found (feasible instanes). For eah

α and for eah feasible instane, the inrease of the best objetive funtion value relative

to the best one ahieved for α = 0.2 was alulated. Column 'inrease' depits the average

inrease (in perentage) obtained for eah α. The next olumns report the minimum,

average and maximum gap on the feasible instanes, and the minimum, average and

maximum time (in seonds) spent by the algorithm to solve eah set of feasible instanes.

For eah set, the last row shows the average results for gap and time.

We an see that the number of feasible instanes dereases as α dereases in all sets,

due to infeasibility of some instanes or due to the algorithm being unable to ahieve a
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feasible solution. The algorithm stopped with indeterminate solutions in only 7.6% of

all 960 problems, due to the time limit established a priori, remaining the doubt about

the feasibility of those instanes. As expeted, the objetive funtion values inrease as

regret dereases. In terms of solution quality, the larger gaps were observed in sets V

and VI, sets with larger number of senarios, but the quality of the solutions is still very

good. The worst gap equals 1.72% and was observed for instanes with 50 senarios.

Apparently, the derease of parameter α does not seem to ause a deterioration in the

quality of the solutions in terms of gap, notiing however that the dimensions of the

samples with problems for smaller values of α are very small. The omputational time

spent by the algorithm an vary a lot, even for problems within the same set (same size)

and same α. The higher exeution times were observed in set III, with larger number of

potential faility loations, and sets V and VI with larger number of senarios.

We have solved the same sets of problems using an exat algorithm, CPLEX MIP opti-

mizer, v12.4, with the same stopping riteria. The results are reported in Table 4.2.14.

CPLEX stopped with indeterminate solutions in 10% of all 960 problems, due to lak of

memory. Considering only set VI, CPLEX was unable to �nd a feasible solution in 19.4%

of those 160 problems as Lagrangean relaxation approah stopped with indeterminate

solutions in only 8%. We notied that within sets I to V the indeterminate instanes of

CPLEX were almost the same for whih our algorithm was also unable to �nd a feasible

solution, exept 11 instanes for whih only our algorithm was able to �nd a feasible

solution and 6 feasible instanes only ahieved by CPLEX. The results for these sets

are very similar, re�eting that some instanes are the hardest for both optimization

algorithms. In terms of solution quality, CPLEX provides smaller average gaps than the

Lagrangean relaxation approah, although less feasible instanes were found by CPLEX,

in partiular in set VI with larger number of senarios. In addition, CPLEX's maximum

gap 1.97% is greater than the worst gap 1.72% ahieved by the algorithm (ahieved in

sets V and VI, respetively, both for α = 0.2). In terms of omputational time, CPLEX

an also vary a lot. We an see that for all problems, the minimum omputational time

was obtained by the algorithm, in same ases learly outperforming CPLEX. In terms of

average omputational times, CPLEX is better than the algorithm on sets III and VI,

thought less feasible solutions were ahieved by the solver.

In order to gather more information about the set of indeterminate instanes, the om-

putational time of one hour was inreased to two hours in some of the sets. However, the

algorithms were only able to �nd more infeasible instanes, though very few.

In brief, the omputational results show that the Lagragean relaxation approah is apa-

ble of �nding very good quality solutions in reasonable omputational times. It should

be noted that CPLEX has better average gaps and omputational times for some of the

problems onsidered. However, for problems with larger number of senarios the solver

shows more di�ulties to generate feasible solutions.
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Table 4.2.13: Computational results.

inrease gap time

Set feas/inf/ind (%) (%) (se.)

α mean min mean max min mean max

I 0.2 40/0/0 0.00 0.00 0.23 1.05 9.95 119.13 873.9

0.15 39/0/1 0.17 0.00 0.30 1.32 9.20 130.02 1621.2

0.1 32/8/0 0.23 0.00 0.09 0.55 21.07 211.38 1567.9

0.075 14/26/0 0.29 0.00 0.04 0.39 28.23 222.41 1031.7

0.00 0.17 0.83 17.12 170.74 1273.7

II 0.2 40/0/0 0.00 0.00 0.09 0.51 1.2 327.2 1117.4

0.15 40/0/0 0.19 0.00 0.25 1.14 1.3 352.7 1126.5

0.1 38/0/2 0.25 0.00 0.19 0.99 1.3 449.2 1602.9

0.075 18/11/11 0.26 0.00 0.12 0.90 30.2 585.9 3029.4

0.00 0.17 0.89 8.47 428.77 1719.1

III 0.2 40/0/0 0.00 0.00 0.39 1.37 52.7 944.4 3609.0

0.15 40/0/0 0.06 0.00 0.35 1.10 52.9 1008.3 3691.9

0.1 25/9/6 0.14 0.00 0.25 0.83 98.2 789.1 3706.5

0.075 8/26/6 0.18 0.00 0.17 0.64 97.9 807.6 3528.9

0.00 0.29 0.99 75.42 887.33 3634.1

IV 0.2 40/0/0 0.00 0.00 0.29 1.46 5.5 303.2 2486.5

0.15 40/0/0 0.24 0.00 0.45 1.46 5.5 367.2 1753.8

0.1 23/1/16 0.28 0.00 0.33 1.33 5.5 586.4 3111.0

0.075 8/21/11 0.29 0.00 0.12 0.68 5.6 289.5 742.2

0.00 0.30 1.23 5.53 386.6 2023.4

V 0.2 40/0/0 0.00 0.00 0.31 1.59 88.4 480.3 2718.8

0.15 36/0/4 0.37 0.00 0.32 1.51 88.6 630.7 1951.6

0.1 18/20/2 0.44 0.00 0.28 1.05 127.0 769.9 3415.6

0.075 5/34/1 0.48 0.00 0.14 0.52 128.6 505.4 1449.7

0.00 0.26 1.17 108.2 596.6 2383.9

VI 0.2 40/0/0 0.00 0.00 0.24 1.72 59.4 929.8 3883.9

0.15 40/0/0 0.03 0.00 0.19 1.24 57.6 1058.5 6631.6

0.1 33/3/4 0.14 0.00 0.11 0.99 58.3 857.4 3124.8

0.075 17/14/9 0.44 0.00 0.04 0.33 165.6 781.2 1608.7

0.00 0.15 1.07 85.2 906.7 3812.3
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Table 4.2.14: Computational results using CPLEX.

Set feas/inf/ind gap (%) time (se.)

α min mean max min mean max

I 0.2 40/0/0 0.00 0.15 1.26 54.40 130.48 1071.06

0.15 39/0/1 0.00 0.21 1.46 54.41 150.48 475.98

0.1 32/8/0 0.00 0.17 1.40 69.94 341.02 1711.57

0.075 14/26/0 0.00 0.01 0.13 61.04 177.86 488.88

0.00 0.13 1 59.95 199.96 936.87

II 0.2 40/0/0 0.00 0.04 0.91 160.4 232.8 404.9

0.15 40/0/0 0.00 0.05 0.91 159.9 292.7 947.4

0.1 38/0/2 0.00 0.10 0.77 158.9 567.3 3582.2

0.075 18/11/11 0.00 0.04 0.38 167.2 685.7 2206.7

0.00 0.06 0.74 161.61 444.62 1785.28

III 0.2 40/0/0 0.00 0.29 1.37 138.3 404.5 1193.1

0.15 38/0/2 0.00 0.27 1.42 137.7 568.8 2218.1

0.1 25/9/6 0.00 0.17 1.08 144.6 877.0 3502.1

0.075 8/26/6 0.00 0.10 0.34 145.8 520.1 1596.8

0.00 0.21 1.05 141.59 592.62 2127.51

IV 0.2 37/0/3 0.00 0.10 0.95 139.7 268.2 917.8

0.15 36/0/4 0.00 0.16 1.30 149.0 425.9 1999.4

0.1 23/1/16 0.00 0.15 0.65 161.4 793.4 3600.5

0.075 12/21/7 0.00 0.15 0.58 200.2 1116.5 3268.7

0.00 0.14 0.87 162.60 651.02 2446.59

V 0.2 40/0/0 0.00 0.22 1.97 181.1 424.2 1861.5

0.15 38/0/2 0.00 0.32 1.51 201.7 934.7 4122.6

0.1 16/20/4 0.00 0.18 0.73 196.6 896.2 3567.0

0.075 5/34/1 0.00 0.00 0.00 198.8 409.3 784.4

0.00 0.18 1.05 194.6 666.1 2583.8

VI 0.2 37/0/3 0.00 0.2 1.77 287.2 504.2 1106.1

0.15 37/0/3 0.00 0.11 1.72 293.9 520.7 1092.9

0.1 25/3/12 0.00 0.00 0.01 288.1 416.9 975.6

0.075 13/14/13 0.00 0.00 0.00 294.3 384.9 590.9

0.00 0.08 0.88 290.9 456.7 941.4
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Postlude

We have been onerned with faility loation problems under unertainty, adding a hum-

ble ontribution to the loation researh �eld, through the development of mathematial

models and solution methods for this lass of problems. We are dealing with di�ult

problems, but with a growing importane from a pratial point of view as suh prob-

lems may re�et better the unertain world in whih we live.

In this work, we have onsidered several disrete dynami faility loation problems un-

der unertainty. The unertainty, in many of the problems' parameters, is expliitly

represented in the models by a set of possible future senarios. The lassial DUFLP is

addressed through several models and perspetives along Chapter 2: an extension onsid-

ering unertainty, that ontains the lassial deterministi stati and dynami problems

as partiular problems; an extension of the previous model with robust onstraints related

with the unertain future; a multi�objetive approah where eah senario is interpreted

as one objetive. We have onsidered several models with apaity failities that bring

additional di�ulties but other interesting situations arise as well. In terms of models, we

have limited ourselves to ertain assumptions suh as to objetive funtions minimizing

expeted total osts or total ost. Other objetive funtions that an better represent the

attitude towards risk of di�erent Deision Makers should be onsidered as well. Other

extensions to these problems ould onsider the introdution of the possibility of losing

already opened failities to inrease the range of appliability of the models. Mainly

within apaitated problems there is still a onsiderable amount of situations to be ex-

plored. The inorporation of robust onstraints into those models related with upper

bounds on satis�ed demand is an ongoing problem.

E�ient tehniques were developed in Chapter 3 to ope with the unapaitated prob-

lems, being an alternative to solvers that show more di�ulties to �nd solutions for large�

sized problems (Chapter 4). The e�et of data to the performane of those algorithms also

needs further study. We have not developed dediated solution approahes to takle the

apaitated models yet, hene it is also a possible future work. Classial heuristis have a

major drawbak: hanges in the problem's formulation (additional restritions, hanges

in the objetive funtion, for instane), imply hanges in the proedures with high osts

due to the time spent developing new dediated proedures. Meta-heuristis, namely

geneti algorithms, have the advantage of being �exible and intelligent algorithms, that
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an be easily ustomized to be applied to di�erent problems with di�erent spei�ities.

The �exibility advantage omes, usually, at the ost of omputational time. This is why

hybrid methods will possibly have to be thought inorporating all the available informa-

tion about the problem.

�The best way to handle unertainty, and to make deisions under unertainty, is to

aept unertainty, make a strong e�ort to struture it and understand it, and �nally,

make it part of the deision making reasoning� (Kouvelis and Yu [47℄).
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editors, Stohasti Algorithms: Foundations and Appliations. LNCS, pages 116�125.

Springer�Verlag Berlin Heidelberg, 2005.

[34℄ S. L. Hakimi. Optimum loations of swithing enters and the absolute enters and

medians of a graph. Operations Researh, 12:450�459, 1964.

[35℄ Holger Heitsh and Werner Romish. Senario tree generation for multi-stage

stohasti programs. In Marida Bertohi, Giorgio Consigli, and Mihael A. H.

Dempster, editors, Stohasti Optimization Methods in Finane and Energy, pages

313�341. Springer New York, 2011.

89



[36℄ Patriio Hernández, Antonio Alonso�Ayuso, Fernanda Bravo, Laureano F. Esud-

ero, Monique Guignard, Vladimir Marianov, and Andrés Weintraub. A branh-

and-luster oordination sheme for seleting prison faility sites under unertainty.

Computers & Operations Researh, 39:2232�2241, 2012.

[37℄ S. Hulsurkar, M. P. Biswal, and S. B. Sinha. Fuzzy programming approah to

multi-objetive stohasti linear programming problems. Fuzzy Sets and Systems,

88:173�181, 1997.

[38℄ D. A. Ianu and N. Trihakis. Pareto e�ieny in robust optimization. Management

Siene, 60:130�147, 2014.

[39℄ S. K. Jaobsen. Multiperiod apaitated loation models. In P. B. Mirhandani and

R. L. Franis, editors, Disrete Loation Theory, pages 173�208. John Wiley&Sons,

1990.

[40℄ K. Jornsten and M. Bjorndal. Dynami loation under unertainty. Studies in

Regional and Urban Planning, 3:163�183, 1994.

[41℄ J. Teghem Jr, D. Dufrane, M. Thauvoye, and P. Kunsh. Strange: an interative

method for multi�objetive linear programming under unertainty. European Journal

of Operational Researh, 26:65�82, 1986.

[42℄ Peter Kall and Stein W. Wallae. Stohasti Programming. John Wiley& Sons, 2nd

edition, 1994.

[43℄ Mihal Kaut and Stein W. Wallae. Evaluation of senario-generation methods for

stohasti programming. Pai� Journal of Optimization, 3(2):257�271, 2007.

[44℄ Farhad Kiya and Hamid Davoudpour. Stohasti programming approah to re-

designing a warehouse network under unertainty. Transportation Researh Part E,

48:919�936, 2012.

[45℄ K. Klamroth, E. Köbis, A. Shöbel, and Chr. Tammer. A uni�ed approah for dif-

ferent onepts of robustness and stohasti programming via non�linear salarizing

funtionals. Optimization, 62(5):649�671, 2013.

[46℄ Bernhard Korte and Jens Vygen. Faility loation. In Bernhard Korte and Jens

Vygen, editors, Combinatorial Optimization, volume 21 of Algorithms and Combi-

natoris, pages 593�628. Springer Berlin Heidelberg, 2012.

[47℄ Panos Kouvelis and Gang Yu. Robust Disrete Optimization and its Appliations.

Kluwer Aademi Publishers, 1997.

90



[48℄ Jakob Krarup and Peter M. Pruzan. Ingredients of loational analysis. In P. B.

Mirhandani and R. L. Franis, editors, Disrete Loation Theory, pages 1�54. John

Wiley&Sons, 1990.

[49℄ A. A. Kuehn and M. J. Hamburger. A heuristi program for loating warehouses.

Management Siene, 9:643�666, 1963.

[50℄ C. Lamboray and D. Vanderpooten. Lexiographi α�robustness: An alternative to

min�max riteria. European Journal of Operational Researh, 220:722�728, 2012.

[51℄ G. Laporte, F. V. Louveaux, and L. Van Hamme. Exat solution to a loation

problem with stohasti demands. Transportation Siene, 28(2):95�103, 1994.

[52℄ Gino J. Lim and Ayse Durukan Sonmez. γ-robust faility reloation problem. Eu-

ropean Journal of Operational Researh, 229(1):67�74, 2013.

[53℄ C. K. Y. Lin. Stohasti single-soure apaitated faility loation model with servie

level requirements. International Journal of Prodution Eonomis, 117(2):439�451,

2009.

[54℄ François V. Louveaux. Disrete stohasti loation models. Annals of Operations

Researh, 6:23�34, 1986.

[55℄ François V. Louveaux. Stohasti loation analysis. Loation Siene, 1:127�154,

1993.

[56℄ François V. Louveaux and D. Peeters. A dual-based proedure for stohasti faility

loation. Operations Researh, 40(3):564�573, 1992.

[57℄ Maria Céu Marques and Joana Matos Dias. Dynami loation problem with uner-

tainty: a branh&bound approah. In José F. Oliveira and Clara B. Vaz, editors,

Proeedings XVI Congresso da Assoiação Portuguesa de Investigação Operaional,

pages 233�243. Instituto Politénio de Bragança, Bragança, Portugal, 2013.

[58℄ Maria Céu Marques and Joana Matos Dias. Simple dynami loation problem with

unertainty: a primal-dual heuristi approah. Optimization, 62(10):1379�1397,

2013.

[59℄ Maria Céu Marques and Joana Matos Dias. Dynami loation problem under un-

ertainty with a regret based measure of robustness. (submitted), 2014.

[60℄ P. B. Mirhandani and R. L. Franis. Disrete Loation Theory. John Wiley&Sons,

1990.

91



[61℄ P. B. Mirhandani and A. R. Odoni. Loation of medians on stohasti networks.

Transportation Siene, 13:85�97, 1979.

[62℄ Yin Mo and Terry P. Harrison. A oneptual framework for robust supply hain

design under demand unertainty. Supply Chain Optimization, pages 243�263, 2005.

[63℄ J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios. Robust optimization of large-sale

systems. Operations Researh, 43(2):264�280, 1995.

[64℄ Stefan Nikel and Franiso Saldanha da Gama. Multi-period faility loation. In

Gilbert Laporte, Stefan Nikel, and Franiso Saldanha da Gama, editors, Loation

Siene, pages 289�310. Springer International Publishing, 2015.

[65℄ Stefan Nikel, Franiso Saldanha da Gama, and Hans-Peter Ziegler. A multi-stage

stohasti supply network design problem with �nanial deisions and risk manage-

ment. Omega, 40:511�524, 2012.

[66℄ S. H. Owen and M. S. Daskin. Strategi faility loation: A review. European

Journal of Operational Researh, 111:423�447, 1998.

[67℄ Feng Pan and Rakesh Nagi. Robust supply hain design under unertain demand in

agile manufaturing. Computers & Operations Researh, 37:668�683, 2010.

[68℄ Bruno S. Pimentel, Geraldo R. Mateus, and Franklin A. Almeida. Stohasti apaity

planning in a global mining supply hain. Computational Intelligene in Prodution

And Logistis Systems (CIPLS), 2011 IEEE Workshop On, pages 1�8, 2011.

[69℄ R. Ravi and A. Sinha. Hedging unertainty: approximation algorithms for stohasti

optimization problems. Leture Notes in Computer Siene, 3064:101�115, 2004.

[70℄ Colin R. Reeves. Modern Heuristi Tehniques for Combinatorial Problems. Blak-

well Sienti� Publiations, Oxford, 1993.

[71℄ C.S. Revelle, H.A. Eiselt, and M.S. Daskin. A bibliography for some fundamental

problem ategories in disrete loation siene. European Journal of Operational

Researh, 184:817�484, 2008.

[72℄ R. T. Rokafellar and R. J-B Wets. Senarios and poliy aggregation in optimization

under unertainty. Mathematis of Operations Researh, 16:119�147, 1991.

[73℄ M. Romauh and R. F. Hartl. Dynami faility loation with stohasti demands.

Leture Notes in Computer Siene, 3777:180�189, 2005.

[74℄ Gary M. Roodman and Leroy B. Shwarz. Optimal and heuristi faility phase-out

strategies. AIIE Transations, 7(2):177�184, 1975.

92



[75℄ Gary M. Roodman and Leroy B. Shwarz. Extensions of the multi-period faility

phase-out model: new proedures and appliation to a phase-in/phase-out problem.

AIIE Transations, 9(1):103�107, 1977.

[76℄ Jonathan Rosenhead, Martin Elton, and Shiv K. Gupta. Robustness and optimality

as riteria for strategi deisions. Operational Researh Quarterly, 23(4):413�431,

1972.

[77℄ T. Ross and R. Soland. A multiriteria approah to the loation of publi failities.

European Journal of Operational Researh, 4:307�321, 1980.

[78℄ Bernard Roy. Robustness in operational researh and deision aiding: A multi-

faeted issue. European Journal of Operational Researh, 200:629�638, 2010.

[79℄ Paul J. H. Shoemaker. When and how to use senario planning: A heuristi ap-

proah with illustration. Journal of Foreasting, 10:549�564, 1991.

[80℄ D. Serra and V. Marianov. The p-median problem in a hanging network: the ase

of Barelona. Loation Siene, 6:383�394, 1998.

[81℄ Jeremy F. Shapiro. Challenges of strategi supply hain planning and modeling.

Computers and Chemial Engineering, 28:855�861, 2004.

[82℄ L. V. Snyder. Faility loation under unertainty: a review. IIE Transations,

38:537�554, 2006.

[83℄ L. V. Snyder and M. S. Daskin. Stohasti p�robust loation problems. IIE Trans-

ations, 38:971�985, 2006.

[84℄ A. D. Sonmez and G. J. Lim. A deomposition approah for faility loation and

reloation problem with unertain number of future failities. European Journal of

Operational Researh, 218:327�338, 2012.

[85℄ J. E. Torres-Soto and H. Uster. Dynami-demand apaitated faility loation prob-

lems with or without reloations. International Journal of Prodution Researh,

1:1�27, 2010.

[86℄ B. Urli and R. Nadeau. Promise/senarios: An interative method for multiobje-

tive stohasti linear programming under partial unertainty. European Journal of

Operational Researh, 155:361�372, 2004.

[87℄ Kee Van der Heijden. Senarios: The art of Strategi Conversation. John

Wiley&Sons, 1996.

93



[88℄ T. J. Van Roy and D. Erlenkotter. A dual-based proedure for dynami faility

loation. Management Siene, 28(10):1091�1105, 1982.

[89℄ Xing Wang, Dahuan Xu, and Xinyuan Zhao. A primal-dual approximation algo-

rithm for stohasti faility loation problem with servie installation osts. Frontiers

of Mathematis in China, 6(5):957�964, 2011.

[90℄ J. R. Weaver and R. L. Churh. Computational proedures for loation problems on

stohasti networks. Transportation Siene, 17(2):168�180, 1983.

[91℄ G. O. Wesolowsky and W. G. Trusott. The multiperiod loation-alloation problem

with reloation of failities. Management Siene, 22(1):57�65, 1975.

94


	A4
	cd
	Folha_de_rostoF
	thesisMCM
	Blank Page
	Blank Page


