
University of Coimbra

Faculty of Sciences and Technology
Department of Electrical and Computer Engineering

Symone Gomes Soares

Ensemble Learning Methodologies for Soft Sensor

Development in Industrial Processes

Tese de Doutoramento em Engenharia Electrotécnica e de Computadores,

ramo de especialização em Automação e Robótica, orientada pelo Prof. Dr.

Rui Alexandre de Matos Araújo e apresentada ao Departamento de Engen-

haria Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia

da Universidade de Coimbra.

February 2015

University of Coimbra

Faculty of Sciences and Technology
Department of Electrical and Computer Engineering

Ensemble Learning Methodologies for Soft Sensor

Development in Industrial Processes

by

Symone Gomes Soares

Tese de Doutoramento em Engenharia Electrotécnica e de Computadores, ramo
de especialização em Automação e Robótica, orientada pelo Prof. Dr. Rui Alexandre
de Matos Araújo e apresentada ao Departamento de Engenharia Electrotécnica e de
Computadores da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Coimbra

February 2015

Agradecimentos

O desenvolvimento desta tese de doutoramento teria sido demasiado difícil, ou até

mesmo impossível, sem a contribuição de pessoas e instituições. Agradeço primeira-

mente a Deus pelas oportunidades concedidas e pela força nos momentos difíceis ao

longo desta caminhada de quase cinco anos.

Agradeço ao meu orientador, Professor Dr. Rui Alexandre de Matos Araújo, pela

confiança que depositou no meu trabalho, pela orientação e pelos conhecimentos

transmitidos. Agradeço também ao Instituto de Sistemas e Robótica da Universi-

dade de Coimbra (ISR-UC) e à empresa AControl pelo suporte na realização deste

trabalho.

Agradeço à Fundação para a Ciência e a Tecnologia (FCT) que suportou esta

tese através da bolsa de doutoramento que tem a referência SFRH/BD/68515/2010

e que foi apoiada por financiamento do “Programa Operacional Potencial Humano”

(POPH) e pelo “Fundo Social Europeu” (FSE). Agradeço ao Projeto “Sistemas In-

teligentes de Controlo, Aquisição e Comunicação Industrial” (SInCACI) com refer-

ência SInCACI/3120/2009, cofinanciado pelo Quadro de Referência Estratégico Na-

cional (QREN) no âmbito do “Mais Centro - Programa Operacional Regional do

Centro”, pela União Europeia através do Fundo Europeu de Desenvolvimento Re-

gional (FEDER), e pela Agência de Inovação (AdI). Agradeço ao Dr. Petr Kadlec,

ao M. Eng. Ratko Grbić e ao Dr. Luigi Fortuna por fornecerem data sets para o

desenvolvimento desta tese.

Um profundo agradecimento aos meus colegas e amigos do ISR-UC, em especial

ao Dr. Jérôme Mendes, Ricardo Maia, Dr. Francisco Alexandre, Saeid Rastegar e

Alireza Emami. Agradeço em especial ao Professor Dr. Talles Marcelo Gonçalves

de Andrade Barbosa pelo incentivo na realização deste trabalho.

Agradeço aos meus amigos, aos quais muitas vezes não disponibilizei tempo e

atenção que lhes eram devidos, mas mesmo assim foram fundamentais a longo deste

i

ii

trabalho.

Um eterno agradecimento a toda a minha família. Aos meus pais pela paciência

e amor incondicional sempre demonstrados. Ao meu querido irmão, pelo carinho e

amizade em todos os momentos.

Fernando, obrigada por todo apoio, amor, tranquilidade e segurança transmitidos

em todos os momentos.

Por fim, agradeço a todos que de alguma forma contribuíram para a realização

desta tese. A todos o meu profundo agradecimento.

Abstract

Increasing demands for on-line monitoring and control of industrial processes and

their associated variables, and difficulties related to measuring systems have led to

the development of predictive models called Soft Sensors (SSs). SSs use computa-

tional intelligence methods to estimate difficult-to-measure variables based on some

easy-to-measure variables in industrial applications. However, SS development has

some difficulties. The performance of the SSs relies on the quality of the data used

to extract knowledge during the identification procedure. Other problem is that

industrial systems have many complex characteristics (e.g. non-linearity and time-

variance). Thus, bringing SSs to real-world industrial applications is a challenge.

This thesis focuses on the development of computational learning methods ap-

plied to SSs, with particular emphasis on methodologies for improving the prediction

accuracy and the system adaptation, in order to achieve adaptivity and stability in

time-varying processes and reduce the maintenance costs. To deal with these issues,

this thesis investigates the use of combinations of multiple learning models, a type of

structure called ensemble system. These methodologies have demonstrated ability

to improve the performance and stability of the systems. However, efficient mecha-

nisms for balancing the diversity, adaptivity, and performance of the models should

be investigated and proposed. For this purpose, four main research objectives and

research directions are considered.

The first objective is to develop methodologies for the automatic design of Neural

Network (NN) ensembles in regression problems. Genetic Algorithm (GA) and Sim-

ulated Annealing (SA) methodologies are proposed and compared to select the best

subset of models (from a set of models) to be aggregated to the ensemble, taking

into account the key factors of ensemble systems (i.e. diversity, number of models,

and combination strategy). First, a set of models with high degree of diversity is

generated. That is, each model is trained with a different training data set by ap-

iii

iv

plying bootstrap, and the best NN architecture is selected by varying the number

of hidden neurons, the activation function, and the synaptic weights initialization.

Second, GA and SA are employed to select the best subset of models and the optimal

combination.

The second objective is to design an adaptive ensemble for regression which is

able to learn samples in the presence of several types of changes and simultaneously

retain old information in scenarios where changes may recur. The key idea is to

keep a moving data window that slides when a new sample is available. To handle

recurring and non-recurring changes, the proposed ensemble uses a new assignment

of models’ combination weights that takes into account the models’ errors on the

past and current windows using a discounting factor that decreases or increases the

contribution of old windows. New models are launched if the accuracy of the system

is decreasing, and inaccurate models can be excluded over time.

The third objective is to design an adaptive ensemble for regression with fast

adaptation capability for on-line prediction of variables in time-varying applications.

The properties of the proposed ensemble are: on-line inclusion and removal of models

to keep only the most accurate models with respect to the current state of the

system; dynamic adaptation of the model’s combination weights based on their on-

line predictions on the most recent samples; and on-line adaptation of the models’

parameters.

The fourth objective is to design an on-line ensemble for regression that selects

dynamically the best subset models (from a set of models) to form the ensemble.

The proposed method employs ordered aggregation to choose the ensemble size and

the subset of models based on the minimization of the ensemble error on the newest

sample. It is also proposed an adaptive NN using a variable forgetting factor.

The performance and effectiveness of the proposed methodologies are validated

and demonstrated using real-world industrial applications, including the estimation

of the free lime in a cement kiln process, and other benchmarks for evaluating real-

world SS applications. Additionally, experimental results using artificial data sets

with several types of changes are presented to demonstrate the effectiveness and

accuracy of the proposed methodologies that deal with time-varying environments.

Resumo

A procura crescente por monitorização e controlo on-line de processos industriais

e suas variáveis associadas, e dificuldades relacionadas com os sistemas de medição

disponíveis têm levado ao desenvolvimento de modelos de predição chamados Senso-

res Virtuais (SVs). SVs utilizam métodos de inteligência computacional para estimar

variáveis difíceis de medir tendo por base a utilização de variáveis fáceis de medir

em aplicações industriais. Contudo, o desenvolvimento de SVs envolve algumas di-

ficuldades. O desempenho do SV depende da qualidade dos dados utilizados para

extrair conhecimento durante o procedimento de identificação. Outro problema é

que os sistemas industriais possuem várias características complexas (por exemplo,

não-linearidade e variância no tempo). Assim, trazer SVs para aplicações industriais

reais é um desafio.

Esta tese foca no desenvolvimento de métodos de aprendizagem computacional

aplicados aos SVs, com ênfase específica em metodologias para melhorar a precisão

da predição e a adaptação do sistema, de modo a obter adaptabilidade e estabili-

dade em processos variantes no tempo e reduzir os custos de manutenção. Para lidar

com estas questões, esta tese investiga o uso da combinação de múltiplos modelos

de aprendizagem, um tipo de estrutura designada por sistemas ensembles. Este

tipo de metodologia tem demonstrado capacidade de melhorar o desempenho e a

estabilidade dos sistemas. Contudo, mecanismos eficientes para balancear a diversi-

dade, adaptabilidade e desempenho dos modelos devem ser investigados e propostos.

Assim, quatro principais objetivos de investigação e direções de investigação são con-

siderados.

O primeiro objetivo é desenvolver metodologias para a construção automática

de sistemas ensemble de Redes Neuronais (RNs) em problemas de regressão. Meto-

dologias baseadas em Algoritmos Genéticos (AG) e Simulated Annealing (SA) são

propostos e comparados para selecionar o melhor subconjunto de modelos (a partir

v

vi

de um conjunto de modelos) para constituir o ensemble, tendo em conta os fatores

principais de sistemas ensembles (ou seja, diversidade, número de modelos e estra-

tégia de combinação). Em primeiro lugar, um conjunto de modelos com elevada

diversidade é produzido. Isto é, cada modelo é treinado com diferentes dados de

treino utilizando bootstrap, e a melhor arquitetura de RN é selecionada variando

o número de neurónios na camada oculta, a função de ativação e a inicialização

de pesos sinápticos. Em seguida, AG e SA são utilizados para selecionar o melhor

subconjunto de modelos e a melhor combinação.

O segundo objetivo é desenvolver um novo sistema ensemble adaptativo para

regressão que seja capaz de aprender amostras na presença de vários tipos de mu-

danças e simultaneamente manter informações antigas em cenários em que mudanças

podem reaparecer. A ideia principal é manter uma janela deslizante de dados que se

move quando uma nova amostra fica disponível. Para tratar mudanças recorrentes

e não-recorrentes, o sistema ensemble proposto utiliza uma nova atribuição de pesos

de combinação de modelos que considera os erros dos modelos nas janelas antigas

e recentes, utilizando um fator de desconto que diminui ou aumenta a contribuição

de janelas antigas. Novos modelos são incluídos se a precisão do sistema estiver a

diminuir, e modelos com baixa precisão podem ser removidos ao longo tempo.

O terceiro objetivo é desenvolver um novo sistema ensemble adaptativo para

regressão com capacidade de adaptação rápida para a predição on-line de variáveis

em aplicações variantes no tempo. As propriedades do sistema ensemble proposto

são: inclusão e remoção on-line de modelos para manter apenas os modelos mais

precisos em relação ao estado atual do sistema; adaptação dinâmica dos pesos de

combinação dos modelos baseada nas predições on-line das amostras mais recentes;

e adaptação on-line dos parâmetros dos modelos.

O quarto objetivo é desenvolver um novo sistema ensemble adaptativo para re-

gressão que selecione dinamicamente o melhor subconjunto de modelos (a partir de

um conjunto de modelos) para constituir o ensemble. O método proposto utiliza

agregação ordenada para escolher o tamanho do ensemble e o melhor subconjunto

de modelos baseados na minimização do erro do ensemble na amostra mais recente.

Também é proposta uma RN adaptativa utilizando fator de esquecimento variável.

A performance e eficácia das metodologias propostas são validadas e demonstra-

das utilizando aplicações industriais reais, incluindo a estimação da cal livre num

processo de forno de cimenteira, e outros conjuntos de dados importantes para avaliar

vii

aplicações reais de SVs. Além disso, resultados experimentais utilizando conjuntos

de dados artificiais com vários tipos de mudanças são apresentados para demonstrar

a eficácia e precisão das metodologias propostas que lidam com ambientes variantes

no tempo.

Abbreviations and Symbols

General Abbreviations

λDF F OS-ELM On-line Sequential Extreme Learning Machine using

Directional Forgetting Factor

AddExp Additive Expert

BP Back-Propagation

BVD Bias-variance Decomposition

CSTR Continuous Stirred-Tank Reactor

DFF Directional Forgetting Factor

DOER Dynamic and On-line Ensemble Regression

EBP Ensemble Before Pruning

ELM Extreme Learning Machine

EOS-ELM Ensemble of On-line Sequential Extreme Learning Machine

ES Ensemble System

FCCU Fluidized Catalytic Cracking Unit

FF Forgetting Factor

FPM First Principle Model

Friedman-GnRG Global Non-recurring Gradual Friedman data set

Friedman-GRA Global Recurring Abrupt Friedman data set

Friedman-LA Local and Abrupt Friedman data set

GA Genetic Algorithm

GA-NNE Genetic Algorithm for Designing Neural Network Ensemble

GASEN Genetic Algorithm based Selective Ensemble

GMM Gaussian Mixture Model

ix

x

GPM Gaussian Process Model

ILLSA Incremental Local Learning Soft Sensing Algorithm

KF Kalman Filter

LDO Light Diesel Oil

LGP Liquefied Petroleum Gas

LM Levenberg-Marquardt

LMBP Levenberg-Marquardt Back-Propagation

LS Least Squares

ML Machine Learning

MSE Mean Squared Error

NCL Negative Correlation Learning

NIPALS Non-linear Iterative Partial Least Squares

NN Neural Network

NNE Neural Network Ensemble

OA Ordered Aggregation

OAUE On-line Accuracy Updated Ensemble

OB On-line Bagging

OEOA On-line Ensemble using Ordered Aggregation

OLP On-line Prediction

OS-ELM On-line Sequential Extreme Learning Machine

OWE On-line Weighted Ensemble

PCA Principal Component Analysis

PCR Principal Component Regression

PLS Partial Least Squares

PMPFD Process Monitoring and Process Fault Detection

RLS Recursive Least Squares

RPLS Recursive Partial Least Squares

SA Simulated Annealing

SA-NNE Simulated Annealing for Designing Neural Network Ensemble

SD Standard Deviation

xi

SFDR Sensor Fault Detection and Reconstruction

SIMPLS Statistically Inspired Modification of Partial Least Squares

SLFN Single-hidden Layer Feedforward Network

SRU Sulfur Recovery Unit

SS Soft Sensor

SSE Sum of Squared Error

SVR Support Vector Regression

SVM Support Vector Machine

SW Sliding Window

General Symbols

α Factor for controlling the inclusion of a new model

θ Factor for demarcating correct and incorrect predictions

β Output synaptic weights vector

β0 An initial output synaptic weights vector

βk Output synaptic weights vector of the k-th data block

βj Weight connecting the j-th hidden node and the output node

ϑ Learning parameter of the LMBP algorithm

κ Discounting factor

ρ Pruning activation factor

λGASEN Threshold for selecting a model for an ensemble in the GASEN

algorithm
λNCL Correlation penalty term in the cost function of the NCL algorithm

µ Learning parameter of the LMBP algorithm

E An ensemble system

ℓ Number of latent variables

aj Weights vector connecting the input nodes and the j-th hidden

node
ajk Weight connecting the j-th hidden node and the k-th input node

bj Bias of the j-th hidden node

D A data set

D0 An initial training data set

Dk k-th data set

xii

Donline An on-line data set

Dt t-th data window

et
n Error of the n-th model on the t-th sample

F Ensemble system

F () An ensemble output

f A predictive model

f() Output of a predictive model

fn n-th predictive model of an ensemble

fn() Output of the n-th predictive model of an ensemble

g() Hidden layer activation function of a NN

H Hidden layer output matrix

H0 An initial hidden layer output matrix

Hk Hidden layer output matrix of the k-th data block

hk Hidden layer output vector of the k-th data block

h() Output layer activation function of a NN

j j-th hidden node

L Number of hidden nodes

lifen Total number of on-line predictions performed by the n-th model

MSEt MSE of all the models of the ensemble at the time t

MSEt
n MSE of the n-th model at the time t

m Window’s size

N Number of models of an ensemble

n n-th model of an ensemble

ot Estimated output of the t-th sample

P0 Initial covariance matrix

Pk Covariance matrix of the k-th data block

r Number of inputs

T Number of samples

Tk Number of samples of the k-th data set

T0 Initial number of samples

xiii

t t-th sample

x Input vector

xt Input vector of the t-th sample

xk
t k-th input value of an input vector xt

wn Combination weight of the n-th predictive model

y Output vector

y Output value

yt Output value of the t-th sample

Overview of Soft Sensors (Chapter 2)

σx Standard deviation of the variable x

σx(new) New standard deviation of the variable x

σx(old) Old standard deviation of the variable x

MADx Mean Absolute Deviation (MAD) scale of the variable x

x An unscaled variable x

x̄ Mean of the variable x

x̄(new) New mean of the variable x

x̄(old) Old mean of the variable x

x∗ Median of the variable x

xt t-th unscaled sample of the variable x

x
′

t t-th scaled sample of the variable x

x
′

max Maximum value of the scaled variable x

x
′

min Minimum value of the scaled variable x

xmax Maximum value of the unscaled variable x

xmin Minimum value of the unscaled variable x

Overview of Learning Models Applied to Soft Sensors (Chapter 3)

ℓmax Maximum number of latent variables

bout Bias of the output node

c Output synaptic weights vector

cj Weight connecting the j-th hidden node and the output node

xiv

ED Expectation operator of a data set D

I Identity matrix

X Input matrix

Xt Input matrix of the t-th block data

yt Output vector of the t-th block data

Automatic Ensemble Development Using Meta-Heuristics (Chapter 4)

ν Colling ratio

τ Temperature

τf Final temperature

τi Initial temperature

Dinit An initial (original) data set

Dtest A testing data set

Dtrain A training data set

Dn
train Training data set of the n-th model

Dvalid A validation data set

c Number of bits to represent all the combination strategies

e Number of individuals selected by elitism for the next generation

Gmax Maximum number of generations

H Hamming distance

K Number of individuals of the population

MSEtest MSE of the ensemble using a testing data set

P% Percentage of excluded models (from the ensemble) for obtaining

the trimmed mean
p%

c Crossover probability

p%
m Mutation probability

p%
s Selection probability

tr Number of tries per iteration

An Adaptive Ensemble with Discounting Factor (Chapter 5)

Ψn Total error rate of model fn

τn Total number of windows where the n-th model has been evaluated

xv

AREF
i Absolute relative error of the ensemble on the i-th sample

AREn
i Absolute relative error of the n-th model on the i-th sample

D Penalty distribution

di Weight of a sample i

downFactor Decreasing weight for the samples predicted correctly

upFactor Increasing weight for the samples predicted incorrectly

εt
n Error rate of the n-th model at the time t

An Adaptive Ensemble Using Ordered Aggregation (Chapter 7)

υ Parameter of the directional forgetting factor

υ0 Initial parameter of the directional forgetting factor

γ Parameter of the directional forgetting factor

γ0 Initial parameter of the directional forgetting factor

ǫp
t Error prediction of an ordered aggregation at the time t

λ Forgetting factor

λ0 Initial forgetting factor

ρ Parameter of the directional forgetting factor

Nmax Maximum number of models of an ensemble

Nmin Minimum number of models of an ensemble

ôp
t Output prediction of an ordered aggregation at the time t

Contents

Agradecimentos i

Abstract iii

Resumo v

Abbreviations and Symbols ix

Contents xvii

List of Figures xxi

List of Tables xxv

List of Algorithms xxix

1 Introduction 1

1.1 Main Motivation . 1

1.2 Soft Sensor Motivation . 2

1.3 Ensemble Learning Motivation . 4

1.4 Thesis Contributions . 5

1.5 Thesis Organization . 8

2 Overview of Soft Sensors 9

2.1 Introduction . 9

2.2 Historical Data Selection . 10

2.3 Data Preprocessing . 11

2.3.1 Data Transformation . 11

xvii

xviii CONTENTS

2.3.2 Data Cleaning . 12

2.3.3 Data Reduction . 14

2.4 Model Selection, Training and Validation 15

2.4.1 Model Selection . 15

2.4.2 Model Training . 17

2.4.3 Model Validation . 19

2.5 Soft Sensor Maintenance . 19

2.6 Soft Sensor Applications . 19

2.7 Data Sets for Soft Sensor Modeling 20

2.8 Conclusion . 23

3 Overview of Learning Models Applied to Soft Sensors 25

3.1 Introduction . 26

3.2 The Regression Problem . 26

3.3 Single Learning Models . 28

3.3.1 Neural Networks . 28

3.3.2 Partial Least Squares . 35

3.4 Ensemble Learning Models . 36

3.4.1 Theoretical Analyzes of Ensemble Learning Models 37

3.4.2 Key Factors in Ensemble Learning Models 40

3.5 Adaptive Learning Systems . 42

3.5.1 The Concept Drift Problem 43

3.5.2 Approaches for Handling Concept Drift 44

3.5.3 Main Structures of On-line Learning Algorithms 49

3.5.4 On-line Single Learning Models 53

3.6 Conclusion . 57

4 Automatic Ensemble Development Using Meta-Heuristics 59

4.1 Introduction . 60

4.2 Proposed Methodology: Design of NNs and Combinations 62

4.2.1 Training, Validation, and Testing Data Sets 63

4.2.2 Generation of Candidate Neural Networks 63

4.2.3 Proposed Combination Strategies 64

4.3 Proposed Methodology: NNE Design by GA and SA 65

CONTENTS xix

4.3.1 Genetic Algorithm for Designing Neural Network Ensemble

(GA-NNE) . 68

4.3.2 Simulated Annealing for Designing Neural Network Ensemble

(SA-NNE) . 70

4.4 Experimental Results . 72

4.4.1 Data Set Description . 72

4.4.2 Individual Neural Networks 74

4.4.3 Generation of the Candidate Neural Networks 76

4.4.4 Genetic Algorithm for Designing Neural Network Ensembles . 77

4.4.5 Simulated Annealing for Designing Neural Network Ensembles 80

4.4.6 The Models Selected by GA-NNE and SA-NNE 81

4.4.7 Comparisons of the Ensemble Systems 84

4.5 Conclusion . 89

5 An Adaptive Ensemble with Discounting Factor 91

5.1 Introduction . 91

5.2 On-line Weighted Ensemble of Regressor Models 94

5.3 Experimental Results . 100

5.3.1 Data Set Description . 101

5.3.2 Approach Setup and Description 103

5.3.3 Analysis of OWE Parameters 105

5.3.4 Experimental Results Using Artificial Data Sets 109

5.3.5 Experimental Results Using Industrial Data Sets 114

5.4 Conclusion . 122

6 An Adaptive Ensemble with Fast Adaptation Capability 125

6.1 Introduction . 125

6.2 Dynamic and On-line Ensemble Regression 128

6.2.1 DOER Description . 128

6.3 Experimental Results . 131

6.3.1 Data Set Description . 132

6.3.2 Approach Setup and Description 132

6.3.3 Analysis of DOER Parameters 135

6.3.4 Comparing DOER to Other Approaches 138

xx CONTENTS

6.3.5 Discussion . 145

6.4 Conclusion . 147

7 An Adaptive Ensemble Using Ordered Aggregation 149

7.1 Introduction . 150

7.2 An OS-ELM Model with DFF . 151

7.3 An On-line Ensemble Using Ordered Aggregation 153

7.3.1 OEOA Component Models . 155

7.3.2 OEOA Algorithm Description 155

7.4 Experimental Results . 159

7.4.1 Data Set Description . 159

7.4.2 Evaluation Methodology . 160

7.4.3 Approach Description and Setup 160

7.4.4 Comparison of Single Model Learning Algorithms 161

7.4.5 Analysis of OEOA Parameters 164

7.4.6 Comparison of On-line Ensemble Learning Algorithms 165

7.5 Conclusion . 172

8 Conclusion 175

Bibliography 181

List of Figures

1.1 An example of a SS connected to a plant. 3

2.1 The main steps of the SS design. 10

2.2 An overview of the SS modeling approaches [Fortuna et al., 2006]. . . 16

3.1 A scheme of the SLFN architecture. 29

4.1 Binary solution representation. 66

4.2 Example of a solution. 67

4.3 Performance of the individual NN models. 75

4.4 NN’s properties of a subset from 10-fold cross-validation. 77

4.5 GA-NNE - Mean of the MSE (i.e., 1/fitness) of the individuals in the

population and MSE of the best individual in the population versus

the number of generations (G) of the best run of the best experiments

of Table 4.3 and Table 4.4. The average of the 10 test subsets of the

10-fold cross-validation is presented. 79

4.6 SA-NNE - Decay of temperature and MSE versus number of tries

(tr). The average of the 10 test subsets of the 10-fold cross-validation

is presented. 82

4.7 Results of the GA-NNE on the best experiment on the Friedman data

set. The dashed line represents the MSEtest of the ensemble of the

best run; underlined numbers represent the selected NN models to

design such ensemble. 82

xxi

xxii LIST OF FIGURES

4.8 Results of the GA-NNE on the best experiment on the Boston Hous-

ing data set. The dashed line represents the MSEtest of the ensemble

of the best run; underlined numbers represent the selected NN models

to design such ensemble. 83

4.9 Results of the SA-NNE on the best experiment on the Friedman data

set. The dashed line represents the MSEtest of the ensemble of the

best run; underlined numbers represent the selected NN models to

design such ensemble. 83

4.10 Results of the SA-NNE on the best experiment on the Boston Housing

data set. The dashed line represents the MSEtest of the ensemble of

the best run; underlined numbers represent the selected NN models

to design such ensemble . 84

5.1 Error weighting of a model in OWE. 99

5.2 Discounting factor behavior in OWE. 99

5.3 Artificial data sets: OWE’s accuracy using different values of the dis-

counting factor (κ). 107

5.4 Industrial data sets: OWE’s accuracy using different values of the

discounting factor (κ). 108

5.5 MSE results of the approaches in the artificial data sets using different

window’s sizes (m). 109

5.6 Pruned ensembles’ errors (MSE) using the artificial data sets when

the maximum number of models varies (for m = 40). 111

5.7 MSE results of the approaches in the industrial data sets using dif-

ferent window’s sizes (m). 115

5.8 The predicted outputs of all the algorithms using the polymerization

reactor data set. 116

5.9 The predicted outputs of all the algorithms using the FCCU data set

(gasoline concentration). 117

5.10 The predicted outputs of all the algorithms using the FCCU data set

(LDO concentration). 118

5.11 The predicted outputs of all the algorithms using the FCCU data set

(LPG concentration). 119

LIST OF FIGURES xxiii

5.12 Pruned ensembles’ errors (MSE) using the industrial data sets when

the maximum number of models varies. 120

6.1 Average of errors of the DOER algorithm on all the data sets using

different values of m and α. (Part 1). 136

6.2 Average of errors of the DOER algorithm on all the data sets using

different values of m and α. (Part 2). 137

7.1 Performance of the single learning algorithms when the number of

training samples m increases. 162

7.2 Experiments using different values of Nmin and Nmax in the OEOA

algorithm for the cement kiln data set. 165

List of Tables

2.1 A list of the most recent, and state-of-the-art, SS applications. 21

3.1 The main on-line ensembles to deal with changing environments. . . . 46

4.1 MSEtest results using EBP. 76

4.2 Abbreviations for the activation functions in the layers. 77

4.3 MSEtest results of GA-NNE using the Friedman data set on 12 exper-

iments. 78

4.4 MSEtest results of GA-NNE using the Boston Housing data set on 12

experiments. 78

4.5 GA-NNE - Percentage of combination type selection on the 20 runs

of the best experiment. 79

4.6 MSEtest results of SA-NNE using the Friedman data set on 12 exper-

iments. 80

4.7 MSEtest results of SA-NNE using the Boston Housing data set on 12

experiments. 81

4.8 SA-NNE - Percentage of combination type selection on the 20 runs

of the best experiment. 81

4.9 Comparison of ensemble systems: MSEtest results using the Friedman

data set. 85

4.10 Comparison of ensemble systems: MSEtest results using the Boston

Housing data set. 86

4.11 Comparison of ensemble systems: MSEtest results using the polymer-

ization reactor data set. 86

4.12 Comparison of ensemble systems: MSEtest results using the cement

kiln data set. 86

xxv

xxvi LIST OF TABLES

4.13 Comparison of ensemble systems: MSEtest results using the debu-

tanizer column data set. 87

4.14 Average number of the selected NN models using different ensemble

systems. 89

5.1 Artificial data sets: average and standard deviation of the MSE by

varying the value of m. 112

5.2 Artificial data sets: average and standard deviation of the number of

models and running time (minutes) of the approaches by varying the

value of m. 112

5.3 Industrial data sets: average and standard deviation of the MSE by

varying the value of m. 121

5.4 Industrial data sets: average and standard deviation of the number

of models and running time (minutes) of the approaches by varying

the value of m. 121

6.1 Specifications of the industrial data sets used in the experiments. . . 132

6.2 MSE results of the on-line learning algorithms using the hyperplane

data set, the Friedman-LA data set and the Friedman-GRA data set. 140

6.3 MSE results of the on-line learning algorithms using the Friedman-

GnRG data set, the polymerization reactor data set and the cement

kiln data set. 141

6.4 MSE results of the on-line learning algorithms using the thermal ox-

idizer data set, the powder detergent data set and the debutanizer

column data set. 142

6.5 MSE results of the on-line learning algorithms using the SRU data set.143

6.6 Processing time (seconds) of all the approaches in all on-line samples

(AOS) and per on-line sample (POS) when m = 60 using the artificial

data sets. 145

6.7 Processing time (seconds) of all the approaches in all on-line samples

(AOS) and per on-line sample (POS) when m = 30 using the real-

world data sets. 146

7.1 Specifications of the real-world data sets used in the experiments. . . 159

LIST OF TABLES xxvii

7.2 Average and SD of the MSE1 and processing time (seconds) of the

single model learning algorithms by varying m. 163

7.3 Results of the on-line ensemble learning algorithms using the hyper-

plane data set and the Friedman-LA data set. 166

7.4 Results of the on-line ensemble learning algorithms using the Friedman-

GRA data set and Friedman-GnRG data set. 167

7.5 Results of the on-line ensemble learning algorithms using the poly-

merization reactor data set and the cement kiln data set. 168

7.6 Results of the on-line ensemble learning algorithms using the powder

detergent data set and the thermal oxidizer data set. 169

7.7 Results of the on-line ensemble learning algorithms using the debu-

tanizer column data set. 170

List of Algorithms

3.1 Learning algorithm for LMBP models. 33

3.2 Learning algorithm for ELM models. 35

3.3 Learning algorithm for PLS using the SIMPLS method. 37

3.4 A generic on-line batch-based learning algorithm using a single model. 49

3.5 A generic on-line sample-based learning algorithm using a single model. 50

3.6 A generic on-line SW learning algorithm using a single model. 50

3.7 A generic on-line batch-based ensemble learning algorithm. 51

3.8 A generic on-line sample-based ensemble learning algorithm using SW. 52

3.9 Learning algorithm for the OS-ELM model. 55

3.10 Learning algorithm for the recursive SIMPLS method. 56

4.1 Genetic algorithm for designing neural network ensemble (GA-NNE). 69

4.2 Simulated annealing for designing neural network ensemble (SA-NNE)

(Maximization problem). 71

5.1 On-line weighted ensemble of regressor models (OWE). 96

6.1 Dynamic and on-line ensemble regression (DOER). 129

7.1 Learning algorithm for λDF F OS-ELM. 154

7.2 Learning algorithm for OEOA. 156

7.3 OutputOEOA: output prediction based on the OA of the best models. 157

xxix

Chapter 1

Introduction

Contents

1.1 Main Motivation . 1

1.2 Soft Sensor Motivation . 2

1.3 Ensemble Learning Motivation 4

1.4 Thesis Contributions . 5

1.5 Thesis Organization . 8

1.1 Main Motivation

In recent decades, the performance requirements for industrial processes have be-

come more difficult to satisfy. Production specifications, environmental and safety

regulations, cost and energy efficiency, better plant capacity exploitation are key fac-

tors for ensuring safe, robust and low cost production in industries. Additionally, it

is necessary to maintain the production with minimum down-time for maintenance.

In this scenario, there is a strong need for continuous intelligent control and mon-

itoring of processes in order to optimize the production, and provide mechanisms

for efficient monitoring and early control of abnormal situations. For this purpose,

reliable measuring systems are valuable tools to cover or support all these objectives.

However, monitoring and controlling industrial systems is a challenge, because

such systems suffer from different complex characteristics, such as non-linearity,

time-variance, multi-modes, and dangerous operating conditions. Other difficulty

1

2 CHAPTER 1. INTRODUCTION

is the large number of interacting variables in the process dynamics. Moreover,

installing and maintaining a measurement network system for monitoring a plant

with a large number of process variables is never cheap and the required budget can

increase significantly the total costs of the plant. Additionally, often, key variables

associated to the product quality can be only measured off-line (e.g. by laboratory

analyses), introducing significant and undesirable delays and latencies in industrial

applications. Due to measurement latencies or by some other reasons, in many cases

the measurement of key variables is organized to be done with large sampling in-

tervals/low frequencies. Technological reasons, practical reasons, design reasons, or

economical reasons, often dictate such large values of measurement latencies and/or

sampling intervals. Thus, it is desirable to develop on-line measuring systems for

monitoring complex, dynamical, and time-varying industrial systems with flexibility,

reliability, and efficiency.

By these reasons, Soft Sensors (SSs) have been widely investigated and em-

ployed as inferential sensing systems for providing on-line estimations of industrial

processes’ variables. This thesis focuses and proposes intelligent modeling method-

ologies applied to SS development in industrial processes. Industrial processes are

dynamical systems in the sense used in [Narendra and Parthasarathy, 1990]. Addi-

tionally, industrial processes are often also time-varying processes/systems, whose

characteristics and models change and evolve over time. In this thesis the main

focus of attention is on the time-varying characteristic of industrial dynamical pro-

cesses. In this context, in the sequel in this thesis the term dynamic is used with

the meaning of time-varying.

1.2 Soft Sensor Motivation

In the last two decades, researchers started to use the data being measured and

stored in industry for designing predictive models based on such data. These mod-

els are called Soft Sensors. The term Soft Sensors is a combination of the word

software, because these models are based on computer programs; and the term sen-

sors because these models provide similar information as the hardware sensors. SSs

are a valuable tool in different industrial fields of application, including pulp indus-

try, refineries, wastewater treatment, copper extraction and fermentation. SSs can

help to reduce the need for hardware measuring tools, improve system reliability,

1.2. SOFT SENSOR MOTIVATION 3

Controller
Industrial

Plant

Input

Variables

Soft Sensor

Learning
Reference

Sensor or

Lab. samples

Output

Variable

Figure 1.1: An example of a SS connected to a plant.

and offer alternative tools to the implementation of control policies.

The principal application area of SS is the on-line estimation of difficult-to-

measure variables (which cannot be automatically measured at all, or can be only

measured at high cost, inaccurately, sporadically, or with high delays) based on

easy-to-measure variables. Because the estimated variables are often related to the

process quality, they are important for process control and process monitoring. A SS

can be designed to replace temporally or permanently a sensor in a plant, because the

physical sensor may be unavailable in the plant, may have failed or may have been

removed for maintenance. Additionally, a SS can be designed for process monitoring

and process fault detection, thus being used for detecting the state of the process

and possible deviations from the normal conditions of the process. Figure 1.1 shows

a case in which a SS is connected to a plant. In this case, the SS can be calibrated

using a sensor or laboratory samples, and it can replace the sensor or the laboratory

estimates. SSs offer a number of attractive advantages for industries [Fortuna et al.,

2006]:

• They are a low-cost alternative to expensive hardware sensors;

• They can operate in parallel with hardware sensors, providing useful informa-

tion for process monitoring and process fault detection;

• They allow on-line estimations of variables, eliminating the delays introduced

by other measurement tools and improving the quality of process control and

process monitoring.

SSs can be developed by using first principle models (model-driven SSs or white-

box SSs) that describe the process by physical or chemical background; or by compu-

tationally learning models from historical data (data-driven SSs or black-box SSs).

4 CHAPTER 1. INTRODUCTION

Model-driven models require physical or chemical knowledge of the systems and

processes. Data-driven SSs are implemented using data measured by hardware sen-

sors and thus can alleviate the requirement for physical knowledge, and the physical

model development effort. Data-driven models require short development time and

can be used for a broad range of applications (flexibility) when compared to model-

driven models.

SS development has some difficulties. The performance of SS relies on the quality

of the data employed to extract knowledge during the identification procedure. At

the preprocessing step, a lot of manual effort is necessary to deal with problems

like noise, missing data, inadequate sampling times, outliers, high dimensionality,

and others. Additionally, in some applications, the amount of historical data is

limited and very long periods of time are necessary to significantly enlarge the

amount of data. Small data sets pose some difficulties because they have insufficient

information about processes [Fortuna et al., 2009].

Other difficulty is that process plants are rather dynamic, being very difficult

for the SS models to react to the changes. Causes for such behavior are changes

in the measuring devices, environment changes, and changes of process behavior or

of some external process condition. To cope with these effects, methodologies for

developing adaptive SS are necessary.

Concerning model learning, the prediction performance of the system can be

significantly improved by using ensemble learning algorithms [Polikar, 2012]. The

underlying idea is to train a set of models and combine their outputs in order to

obtain a final output prediction. Despite the remarkable performance of ensemble

systems, more efficient mechanisms for balancing the diversity and adaptivity, and

improving performances of the models should be developed. Motivated by these

challenges, this thesis investigates and proposes predictive methodologies for SS

applications using ensemble learning algorithms.

1.3 Ensemble Learning Motivation

Researches have shown that a combination of multiple models is usually more ac-

curate than any single model [Lan et al., 2009]. The main motivations are the

possibility of improving the generalization and stability of the system, including in

cases where a small number of samples is available [Fortuna et al., 2009]. An im-

1.4. THESIS CONTRIBUTIONS 5

portant issue in ensemble development is the diversity. In other words, an accurate

ensemble tends to be one where the models make different errors on the same data

point. The combination strategy is another important issue for ensuring ensemble

accuracy and balancing the diversity between the models.

In ensemble learning, a major drawback is that it is usually necessary a large

number of models to ensure the ensemble accuracy. A good way to alleviate this

problem is the adequate selection of a subset of models from the original set of mod-

els. This approach is known as ensemble pruning [Wang and Alhamdoosh, 2013]. It

reduces the system complexity, and in some cases, it improves the system accuracy.

However, ensemble pruning is a difficult problem whose solution is commonly com-

putationally expensive. Pruning an ensemble with N models requires searching in

the space of the 2N − 1 non-empty solutions to minimize a cost function correlated

with the generalization error. A possible candidate approach to meet this challenge

is the application of Genetic Algorithms (GAs) or Simulated Annealing (SA) as an

optimization technique to select the best subset of models to be aggregated.

Moreover, most ensemble learning applications are developed off-line and they

do not take into account the fact that system/process changes may occur over time.

To address this problem, a number of different adaptive mechanisms should be in-

vestigated and developed, such as dynamic adaptation of the models’ combination

weights1, dynamic adaptation of the models’ parameters, dynamic inclusion and re-

moval of models, and dynamic selection of models. Currently, most SS applications

using ensemble systems do not add and remove models over time; but these strate-

gies are important keys for improving the prediction performance in time-varying

applications. Motivated by these listed problems, this PhD work investigates and

develops methodologies for automatic design of ensemble learning systems in order

to improve the on-line output prediction in SS applications.

1.4 Thesis Contributions

The main contributions of this research study are:

1. [Chapter 4], [Soares et al., 2013]: Design of a new methodology for automatic

Neural Network (NN) ensemble development in regression problems. The main
1In this thesis, the term combination weight refers to the weight/contribution of a model to the

final ensemble output.

6 CHAPTER 1. INTRODUCTION

contribution is the proposal of techniques that select the best subset of models

to be aggregated to the ensemble taking into account the key factors of en-

semble systems (i.e. diversity, number of models, and combination strategy).

First, a set of models with a high degree of diversity is generated. That is, each

model is trained with a different training data set by applying bootstrap, and

the best NN architecture is selected by varying the number of hidden neurons,

the activation function, and the synaptic weights initialization. Then, GA

and SA are proposed and compared to select the best subset of models and

the optimal combination strategy. Experimental results on two well-known

regression data sets and three real-world industrial data sets demonstrate the

effectiveness and accuracy of the proposed methodologies over state-of-the-art

ensemble approaches.

2. [Chapter 5], [Soares and Araújo, 2015c]: Design of a new On-line Weighted

Ensemble (OWE) of regressor models which is able to learn incrementally sam-

ple by sample in the presence of several types of changes and simultaneously

retain old information in scenarios where changes may recur. The key idea is

to keep a moving data window that slides when a new sample is available. The

main contributions are (2.1) a new dynamic assignment of models’ combina-

tion weights that takes into account the models’ errors on the past and current

windows using a discounting factor that decreases or increases the contribution

of old windows; (2.2) dynamic removal and inclusion of models; (2.3) regres-

sion scope (in contrast with most on-line ensemble applications for handling

changes which are devoted to classification tasks); (2.4) thorough analysis of

the experimental results using both artificial data sets and industrial data sets;

and (2.5) implementation of a new Learn++.NSE algorithm [Elwell and Po-

likar, 2011] for regression tasks. Experimental results on four artificial data

sets (with several types of changes) and two real-world industrial data sets

demonstrate that OWE outperforms well-known adaptive ensemble learning

methods and adaptive single model learning methods in most cases.

3. [Chapter 6], [Soares and Araújo, 2015b]: Design of a new Dynamic and On-line

Ensemble Regression (DOER) with fast adaptation capability for on-line pre-

diction of variables in time-varying applications. The contributions (2.2)-(2.4)

were incorporated into the DOER method. The new contributions are (3.1)

1.4. THESIS CONTRIBUTIONS 7

on-line inclusion and removal of models to keep only the most accurate mod-

els with respect to the current state of the system; (3.2) dynamic adaptation

of the models’ combination weights based on their on-line predictions on the

recent samples; and (3.3) on-line adaptation of the models’ parameters. Ex-

perimental results on four artificial data sets (with several types of changes)

and six real-world industrial data sets demonstrate that DOER has higher

accuracy in changing environments when compared to well-known adaptive

ensemble learning methods and adaptive single model learning methods.

4. [Chapter 7], [Soares and Araújo, 2015a]: Design of a new On-line Ensemble

using Ordered Aggregation (OEOA). OEOA dynamically selects an optimal

ensemble size and composition of the subset of models based on the mini-

mization of the ensemble error on the newest sample. The proposed strategy

overcomes the problem of defining the optimal ensemble size, and in most

cases it obtains better performance than aggregating all the models. More-

over, the contribution 3 was incorporated into the OEOA method. Other

contribution of this work is the proposal of a new on-line and adaptive NN

model with variable forgetting factor using the Directional Forgetting Factor

(DFF) method [Bobál et al., 2005], called λDF F OS-ELM (On-line Sequential

Extreme Learning Machine using DFF). Experimental results on four artificial

data sets (with several types of changes) and five real-world industrial data

sets show that λDF F OS-ELM outperforms the standard Extreme Learning Ma-

chine (ELM) [Huang et al., 2006] and On-line Sequential Extreme Learning

Machine (OS-ELM) [Liang et al., 2006] algorithms in most cases. Experiments

also reveal that λDF F OS-ELM improves the prediction accuracy of adaptive

ensemble learning algorithms in real-world scenarios. Moreover, experimen-

tal results show that OEOA delivers more accurate estimations of the output

variables in the industrial applications, as well as in several other cases, when

compared to the other state-of-the-art ensembles in the literature.

8 CHAPTER 1. INTRODUCTION

1.5 Thesis Organization

The thesis is organized as follows:

• Chapter 2 provides a background on SS development and SS applications.

The background on SS development focuses on the current methodologies and

proposes some improvements based on the actual SS applications; a list of the

most recent, and state-of-the-art, SS applications is presented.

• Chapter 3 provides an overview of the main machine learning methods applied

to SS modeling. The review focuses on single model learning methods and

ensemble learning models which are commonly applied to SSs. Moreover,

key factors of ensemble learning algorithms are discussed. Finally, the main

adaptive learning systems and the main adaptive ensemble learning systems

are described.

• Chapter 4 describes the proposed methodologies for automatic NN ensemble

development using GA and SA. Experiments are reported to evaluate the

effectiveness of the proposed methodologies.

• Chapter 5 presents the OWE ensemble. The discounting factor behavior is

also discussed. Experiments are reported to evaluate, and demonstrate the

performance and the effectiveness of OWE over state-of-the-art approaches.

• Chapter 6 describes the DOER ensemble. Experiments are reported to evalu-

ate the effectiveness of DOER.

• Chapter 7 presents the OEOA ensemble and the λDF F OS-ELM model. Ex-

periments are reported to demonstrate the performance and effectiveness of

OEOA and λDF F OS-ELM over state-of-the-art methods.

• Chapter 8 presents concluding remarks. Future research suggestions are also

outlined.

Chapter 2

Overview of Soft Sensors

Contents

2.1 Introduction . 9

2.2 Historical Data Selection 10

2.3 Data Preprocessing . 11

2.3.1 Data Transformation . 11

2.3.2 Data Cleaning . 12

2.3.3 Data Reduction . 14

2.4 Model Selection, Training and Validation 15

2.4.1 Model Selection . 15

2.4.2 Model Training . 17

2.4.3 Model Validation . 19

2.5 Soft Sensor Maintenance 19

2.6 Soft Sensor Applications 19

2.7 Data Sets for Soft Sensor Modeling 20

2.8 Conclusion . 23

2.1 Introduction

This Chapter provides an overview of SS applications. First, the main steps to

develop data-driven SSs are described. The initial Sections of the Chapter follow the

9

10 CHAPTER 2. OVERVIEW OF SOFT SENSORS

model selection,

training and

validation

historical

data

selection

data

preprocessing
Soft Sensor

maintenance

Figure 2.1: The main steps of the SS design.

scheme illustrated in Figure 2.1 [Kadlec et al., 2009]. Section 2.2 describes challenges

and techniques in the historical data selection step. Section 2.3 describes aspects

related to the data preprocessing step. Section 2.4 describes challenges and methods

related to the model selection, model training, and model validation. Section 2.5

introduces issues related to the Soft Sensor maintenance. This Chapter also gives

an overview of case studies of SS applications. Section 2.6 describes the main SS

application types and provides a list of the most recent, and state-of-the-art, SS

publications. The goal is to identify the current research trends, the most common

computational methods, and the most popular SS application types. Finally, Section

2.7 provides a list regarding data sets for SS modeling.

2.2 Historical Data Selection

Historical data selection aims to identify how the data are collected and stored in

order to select valuable data for SS modeling. The selection takes into account

mainly the sampling time.

Multirate systems are abundant in industrial processes since some variables may

have slower sampling rates when compared to others. For example, in chemical

processes, difficult-to-measure variables (e.g. concentration measurements) are typ-

ically obtained after several minutes or hours, while easy-to-measure variables (e.g.

temperature measurements) are obtained at each minute and with negligible delay.

In this case, a data sample may have missing values of difficult-to-measure variables.

In SS applications, the most common procedure is to remove all the data samples

that have missing values on the difficult-to-measure variables, so that the retained

samples are characterized by the slow rate of the difficult-to-measure variables. Al-

though this technique is straightforward to implement in practice, information may

be lost. Several strategies can be employed in order to obtain intermediate values for

the difficult-to-measure variables or an appropriate model at a fast sampling rate.

2.3. DATA PREPROCESSING 11

Such common strategies include linear interpolation, polynomial transformation,

and data lifting [Lin et al., 2009].

2.3 Data Preprocessing

In data preprocessing, data are processed and transformed so that they can be

effectively processed by the learning model. Data preprocessing usually involves the

following steps: data transformation, data cleaning, and data reduction [Han and

Kamber, 2005].

2.3.1 Data Transformation

In data transformation, data are transformed into forms which are appropriate for

the learning process. Different variables may have different numerical magnitudes

so that it is important to scale them before the learning process. This procedure is

known as normalization or scaling. Two common scaling techniques are min-max

normalization and z-score (or zero-mean) normalization [Fortuna et al., 2006].

The min-max normalization scales the original data into a specific range. Con-

sider that xmin and xmax are the minimum and maximum values of an unscaled

variable x with T samples, where each sample is represented as xt. The min-max

normalization scales each sample xt into a new range [x
′

min, x
′

max] by calculating:

x
′

t =
xt − xmin

xmax − xmin

(x
′

max − x
′

min) + x
′

min, t = 1, . . . , T, (2.1)

where x
′

t is a scaled sample of xt. The z-score normalization scales the original data

based on the mean and standard deviation (SD), so that the scaled data have zero

mean and unit variance. Each sample xt of an unscaled variable x is normalized as:

x
′

t =
xt − x̄

σx

, t = 1, . . . , T, (2.2)

where x̄ and σx are the mean and SD of x. This method is useful when xmax and

xmin of x are unknown. Because many processes exhibit time-varying behavior and

the means and SDs of the variables may change over time, on-line data scaling is

important to ensure good learning performance and prediction accuracy over time.

12 CHAPTER 2. OVERVIEW OF SOFT SENSORS

Consider an unscaled variable x, where the mean x̄(old) and SD σx(old) are obtained

using T (old) samples; when a new unscaled sample xt is available, it is scaled as

[Galicia et al., 2012]:

x
′

t =
xt − x̄(new)

σx(new)

, (2.3)

where

x̄(new) =
T

T + 1
x̄(old) +

1
T + 1

xt , (2.4)

σx(new) =

√

T − 1
T

σ2
x(old) +

1
T

(

xt − x̄(new)

)2
+
(

x̄(new) − x̄(old)

)2
, (2.5)

and x̄(new) and σx(new) are the new mean and SD of x, respectively.

2.3.2 Data Cleaning

Noisy, incomplete and unreliable data are common in industrial data sets. The

data cleaning process addresses the detection of missing and erroneous data. In this

Subsection, two main problems are discussed: missing data and outliers.

Missing Data. The main factors that explain why measurements may be missing

from data are: because they were forgotten or lost; certain measurements are not

applicable for a given variable; or, for a given variable, the designer of the data

does not care about the measurements. There are two main ways for dealing with

missing data. The first method, known as ignoring and discarding, discards samples

or variables with missing values. The second method, called imputation, aims to

replace a missing value using an estimated value. The main imputation procedures

include mean substitution, where a missing value of a variable x is replaced by the

mean of x; last observation carried forward, where a missing value is replaced by

the last measured value before the missing one [Abusnina and Kudenko, 2013]; and

regression imputation, where a regression model is used to predict missing values

based on the existing data. The choice between these methods depends on the

nature and quantity of the missing data. The method of ignoring and discarding

is not applicable if the percentage of missing values on the total data is significant.

Recent methods based on the expectation-maximization theory have demonstrated

ability to deal with missing data [Jin et al., 2012; Khatibisepehr and Huang, 2008].

2.3. DATA PREPROCESSING 13

Outliers. Outliers are inconsistent samples with respect to the majority of the

data. Outliers may occur in industrial data due to sensor noise, sensor degrada-

tion and/or process disturbances. Outlier detection and treatment are crucial steps

because outliers can decrease the SS performance. Common techniques for outlier

detection are classified as univariate and multivariate approaches. Multivariate out-

lier detection is performed by analyzing the dependence between multiple variables,

while univariate outlier detection is performed independently on each variable. The

most popular univariate outlier detection is the 3σ edit rule approach [Fortuna et al.,

2006]. In this case, a sample xt of a variable x (with T samples) is considered an

outlier if the following condition is fulfilled:

|xt − x̄| > 3 · σx, t = 1, . . . , T, (2.6)

where the mean x̄ and the standard deviation σx are obtained using the T samples

of x, and the data is assumed to follow a normal distribution. Robust scaling has

been proposed in order to reduce the influence of multiple outliers in estimating the

mean and SD. The mean is replaced by the median and the SD is replaced by the

Median Absolute Deviation (MAD). This method is known as Hampel identifier.

The MAD scale of a variable x is defined as [Lin et al., 2007]:

MADx = 1.4826 ·median{|xt − x
∗|}, t = 1, . . . , T, (2.7)

where x∗ is the median of the variable x. A sample xt is an outlier if the following

condition is fulfilled:

|xt − x
∗| > 3 ·MADx. (2.8)

Once an outlier is detected, it should be removed or replaced. In SS applications,

most authors either remove variables with a high presence of outliers [Ni et al., 2014];

or only discard samples with a presence of outliers [Grbić et al., 2013; Abusnina and

Kudenko, 2013]. When the Hampel identifier is used, one strategy is to replace an

individual measurement xt that is detected as an outlier, by the median value x∗ of

the variable x [Matias et al., 2013].

Multivariate outlier detection is used when the variables are highly correlated,

because when only one variable is analyzed, the variability of the other variables

are not considered. Popular techniques are Principal Component Analysis (PCA)

14 CHAPTER 2. OVERVIEW OF SOFT SENSORS

and Partial Least Squares (PLS). Statistics using these methods can be employed

to detect samples that do not conform with the correlation structure of the data, or

that inflate the variance of the data [Fortuna et al., 2006].

2.3.3 Data Reduction

The complexity of a model may depend on the number of variables and/or samples.

Data reduction techniques decrease the data into a smaller size, maintaining the

integrity and information of the original data set. Such techniques include dimen-

sionality reduction which reduces the number of variables, and numerosity reduction

which reduces the number of samples [Alpaydin, 2004].

Dimensionality Reduction. Dimensionality reduction strategies are classified

as variable extraction (feature extraction) and variable selection (feature selection).

Variable extraction approaches project the original data into a smaller space

so that important variables can be easily identified. The aim is to find a new set

of dimensions that is a combination of the original dimensions. PCA is a popu-

lar method in industry for reducing high-dimensional inputs into few orthonormal

inputs, extracting essential information from the data [Liu et al., 2012c].

Variable selection techniques select a representative subset of variables from the

original set of variables. The best subset of variables contains the least number

of variables that most contribute to the model accuracy. Industrial data sets may

contain a large number of process input variables (e.g. sensors of temperature, flow,

pressure, etc). From the SS modeling point of view, high dimensional data sets not

only increase the complexity of models, but also can increase the problems of noise,

outliers, and missing values, as well as the presence of irrelevant inputs, and can also

lead to lower prediction performance. Therefore, variable selection is an important

process in SS modeling [Grbić et al., 2013]. Variable selection techniques can be

divided into filter methods and wrapper methods [Chandrashekar and Sahin, 2014].

Filter methods select a subset of variables independently of the choice of the pre-

dictor. Such methods rank the variables after some evaluation and then take/retain

the best variables. Evaluation metrics include the correlation coefficient [Rogina

et al., 2011], mutual information [Vergara and Estéves, 2014], minimum redundancy

maximum relevancy criterion using mutual information [Peng et al., 2005], etc. Fil-

2.4. MODEL SELECTION, TRAINING AND VALIDATION 15

ter methods do not make assumptions about the process, and they can overcome

overfitting since the variable selection is independent of the learning process [Das,

2001]. However, it is not clear how to determine the cut-off point for demarcating

relevant variables.

Wrapper methods select the best subset of variables based on their usefulness to

a predictor. That is, the prediction accuracy is used as the metric for the variable

selection. Wrapper methods employ some methodology to search the space of all

possible subsets of variables. Such methodologies can be optimization algorithms,

e.g. GA [Vignolo et al., 2013]. The main advantage of wrapper methods is that the

estimated prediction accuracy is the best measurement for the variable selection.

However, wrapper methods are computationally expensive because it is necessary

to train and test the model for evaluating each subset of variables, making wrapper

methods inadequate for high-dimensional data sets.

To take the advantages of both wrapper and filter methods, some researchers

consider a hybrid approach of them. Hybrid approaches usually apply a filter method

to choose a pool of variables and then a wrapper method is employed to select an

optimal subset of variables from the pool of variables [Hsu et al., 2011].

Numerosity Reduction. Few strategies using numerosity reduction have been

developed in the SS context. This is because, in most SS applications, only a limited

number of samples (e.g. obtained by laboratory analysis) is available. In [Kadlec and

Gabrys, 2011], the authors apply downsampling to reduce the number of samples to

fit a Recursive Partial Least Squares (RPLS) model. In [Han and Kamber, 2005], a

number of strategies for numerosity reduction is proposed.

2.4 Model Selection, Training and Validation

This Section describes the key factors in SS modeling: model selection, model train-

ing, and model validation.

2.4.1 Model Selection

As explained in Section 1.2, SS models can be classified as black-box (model-driven)

and white-box (data-driven models). A hybrid approach of them is called gray-box

16 CHAPTER 2. OVERVIEW OF SOFT SENSORS

Black-Box

Modeling

Gray-Box

Modeling

White-Box

Modeling

IdentificationPhysical Modeling

Knowlegde

Known

constitutive laws;

unknown

parameters

Known

constitutive laws

and parameters

Known physical principles;

unknown model structure

and parameters

Only experimental

data available;

hypotheses on

model structure

to be made

Figure 2.2: An overview of the SS modeling approaches [Fortuna et al., 2006].

model. Figure 2.2 shows an overview of SS models based on physical modeling and

identification modeling (computational learning models).

In white-box modeling, mechanistic knowledge obtained from first principles (e.g.

physics and chemistry) is employed to design a model, also known as First Principle

Model (FPM) [Abonyi, 2002]. In [Escobar et al., 2015], a SS for sensor fault com-

pensation in an evaporator system is modeled using a mathematical model based

on algebraic and differential equations. Black-box models have been increasingly

employed in SS modeling, since they require little domain expertise of systems and

processes, and they can be used for a wide range of SS application types. As indus-

trial processes are complex, and adequate physical or chemical knowledge is often

limited, difficult to be obtained and organized in an adequate model, and frequently

unavailable in practical terms, black-box models have been increasingly employed in

SS modeling. The main disadvantage of black-box models is the dependency on the

data quality. Common black-box models for SS modeling are the NN [Rullo et al.,

2014; Stanišić et al., 2015], PLS [Shao et al., 2014; Liu et al., 2015], RPLS [He et al.,

2015; Ni et al., 2014], and Support Vector Regression (SVR) [Cheng and Liu, 2015;

Kaneko and Funatsu, 2014] algorithms. Models which are only partially based both

on first principles and on data are called gray-box models. The main advantage of

gray-box models is that they exploit the available mechanistic knowledge to improve

the model.

Another issue in model selection is the choice between a linear model or a non-

linear model. Some authors suggest to use first a linear model, and then, if it does

not have satisfactory performance, one explanation is that the process has a non-

linear behavior. However, as almost industrial processes are non-linear, normally SS

2.4. MODEL SELECTION, TRAINING AND VALIDATION 17

designers first consider non-linear models.

A variety of multivariate statistical methods are currently employed for SS mod-

eling. Common methods are the PCA, PLS, and RPLS. PCA can be employed to

extract meaningful information from the data, detecting and diagnosing abnormal

operating conditions in industrial contexts [Liu et al., 2012c]. PLS is able to deal

with large dimensional co-linear data by projecting the data into a new space. A

number of versions of the PLS exist, including the Non-linear Iterative PLS (NI-

PALS) [Geladi and Kowalski, 1986] algorithm, and the Statistically Inspired Modi-

fication of PLS (SIMPLS) algorithm [Jong, 1993]. SIMPLS calculates PLS compo-

nents faster and more accurately when compared to the other PLS methods. RPLS

has been developed to deal with time-varying processes [Qin, 1998]. In this case,

the RPLS model is updated to reflect the current state of the process when new

samples become available [Ni et al., 2014].

Nature-inspired modeling is a computational intelligence paradigm for SS mod-

eling, where the goal is to develop algorithms inspired by nature behaviors to deal

with real problems [Kadlec and Gabrys, 2007]. Examples of nature-inspired methods

include NN and some optimization techniques (e.g. GA). There are many challenges

in NN development, including which NN architecture should be chosen, how large

the NN should be, and which training algorithm is most suitable. Optimization

techniques have been successfully applied to these tasks, including GA [Ding et al.,

2012], and SA [Ludermir et al., 2006]. Recently, the Extreme Learning Machine

(ELM) has been attracting attention among the scientific community. ELM is a

single (or a multiple) hidden-layer NN with faster training time and better perfor-

mance than other NN models. As many industrial applications exhibit time-varying

behavior, it may be difficult for the ELM model to react to changes. Therefore, the

research of efficient adaptive mechanisms for ELM models is a promising field in

machine learning [Lim et al., 2013].

2.4.2 Model Training

During model training, a phenomenon called overfitting may occur. In this case,

the model fits too well to the training samples, while presenting poor prediction

accuracy (poor generalization capability) on new samples [Caruana et al., 2000]. In

the NN context, strategies to avoid overfitting can be applied before learning, during

18 CHAPTER 2. OVERVIEW OF SOFT SENSORS

learning or after learning. In strategies applied before learning, training samples

are resampled, or new training samples are artificially created, e.g. by bootstrap

[Breiman, 1996] or noise injection [Ho et al., 2010], respectively. Noise injection

introduces noises into the input and/or output variables [Fortuna et al., 2009]. It can

improve the generalization capability and the convergence of the training, avoiding

the possibility of local minina entrapment. Bootstrap is a resampling technique

which produces a new training data set by randomly drawing with replacement

from the original training data set. It reduces the risk of overfitting that may

occur when a model is trained with all samples. Strategies applied during learning

aim to overcome the overfitting during the learning procedure. An example is the

early stopping criteria [Jeong and Kim, 2005]. The main idea is to inspect the

prediction error of a NN on an independent set, a validation data set, so that when

the prediction error increases the NN training is stopped to avoid overfitting. In

strategies applied after learning, the NN model is trained (with possible overfitting),

and then the overfitting is handled. Such methods include pruning techniques, and

NN ensembles. The pruning technique eliminates insignificant nodes from a trained

NN, since a NN with too many hidden neurons may overfit [Yang and Chen, 2012].

NN ensemble improves the generalization by combining a set of NN models [Lan

et al., 2009].

In SS development, one difficulty is to get sufficient data samples for the training.

Small data sets offer some challenges due to the insufficient information about the

system. Ensemble learning is an efficient way to overcome the limitations associated

to small data sets [Polikar, 2006]. In the absence of training samples, bootstrap and

noise injection can be employed for drawing different data sets for each model in the

ensemble. A well-known ensemble based on bootstrap is Bagging (e.g. Bootstrap

aggregating) [Breiman, 1996]. Bagging trains each model of the ensemble with a

different training data set, obtained by bootstrap. Noise injection can be performed

to create different training data sets with the same size as the original training

data set, or different training data sets with augmented size when compared to the

original training data set [Zhang, 2007].

2.5. SOFT SENSOR MAINTENANCE 19

2.4.3 Model Validation

The model validation procedure verifies whether the SS model can represent the

underlying system. In this step, the most relevant issue is to determine the gen-

eralization error of the learning model. That is, the capability of the model of

performing accurately on unseen samples that were not used during the training

procedure. Therefore, the generalization error is obtained using an independent

test data set. Common error metrics are cross-validation [Arlot and Celisse, 2010],

Mean Squared Error (MSE), root mean squared error [Willmott, 1981], mean ab-

solute error, relative mean absolute error, and correlation coefficient [Ikonomovska,

2012; Fortuna et al., 2006]. Other specific approaches for evaluating on-line learning

models can be employed, such as predictive sequential error [Gama et al., 2009].

2.5 Soft Sensor Maintenance

SS maintenance is an important issue that deals with maintaining the SS perfor-

mance over time. In industrial processes, many factors (e.g. changes in measuring

devices due to aging, environment changes, process changes, etc) may lead to the

degradation of the SS performance. To deal with these effects, regular model adap-

tation is necessary to capture all the changes. The main adaptive methodologies

include Sliding Window (SW) techniques, recursive learning algorithms, ensemble

methods [Kadlec et al., 2011], and just-in-time learning [Saptoro, 2014]. Most SS

applications combine a SW technique and learning algorithms [Ni et al., 2014; Facco

et al., 2009; Shao et al., 2014]. There are some challenges and problems in the devel-

opment of adaptive SSs. First, if the model is updated with any abnormal data, its

predictive accuracy may deteriorate. Second, in scenarios with recurring changes,

the system should conciliate old and new information. Third, the SS should be able

to perform well in both gradual and abrupt changes. Therefore, there is still a large

amount of work to be done for developing adaptive SSs. The next Chapter discusses

the main adaptive mechanisms which can be employed to develop adaptive SSs.

2.6 Soft Sensor Applications

SSs can belong to the following application fields:

20 CHAPTER 2. OVERVIEW OF SOFT SENSORS

• On-line Prediction (OLP): the goal is to estimate important variables

which cannot be measured on-line using automated or traditional measure-

ment tools. This occurs due to either technological reasons or economical

reasons;

• Process Monitoring and Process Fault Detection (PMPFD): a SS is

employed to monitor the operating state of a process or detect possible process

faults;

• Sensor Fault Detection and Reconstruction (SFDR): detection and

identification of a faulty sensor, and then the sensor is reconstructed or sub-

stituted by a SS.

Table 2.1 shows a list of the most recent, and state-of-the-art, SS applications

arranged by year. The columns contain the reference, process description, SS appli-

cation type, main method(s), and information about whether some adaptive mech-

anism is applied. The list reveals an increasing interest for adaptive methodologies

over the past years. A total of 31.25% of the publications in the list do not employ

adaptive mechanisms; while 68.75% of the publications in the list use some adaptive

method. An interesting aspect observed from Table 2.1 is that the most common SS

application field is OLP (contrasting with PMPFD and SFDR). The list also shows

a preference for the PLS, RPLS, NN, and SVR algorithms.

2.7 Data Sets for Soft Sensor Modeling

Below, public and private SS data sets are summarized. These data sets can be used

to evaluate and validate a SS on different cases and particularities:

1. Debutanizer column1: the goal is to predict the butane concentration in a

debutanizer column of a refinery process using a set of 7 available measurement

variables (e.g. temperature and flow) and 2394 samples. The measuring device

gives the butane concentration with a delay of about 45 minutes, therefore fast

on-line estimation can be the suitable choice [Fortuna et al., 2006];

1http://www.springer.com/engineering/control/book/978-1-84628-479-3

2.7. DATA SETS FOR SOFT SENSOR MODELING 21

Table 2.1: A list of the most recent, and state-of-the-art, SS applications.

Reference Process Description SS App. Main Adaptive
Type Method(s) Method(s)?

[Facco et al., 2009] Polymerization process OLP PLS Yes
[Ahmed et al., 2009] Polymerization process OLP RPLS Yes
[Shakil et al., 2009] NOx and O2 estimations in boilers OLP NN No
[Liu et al., 2009] FCCU process OLP SVR Yes
[Liu et al., 2010] Fermentation process OLP SVR No
[Ge and Song, 2010] Tennessee Eastman process and OLP PLS, SVR Yes

distillation process
[Zhang et al., 2010] Ozone generation system OLP NN No
[Kadlec and Gabrys, 2011] Polymerization process OLP RPLS Yes
[Napoli and Xibilia, 2011] Distillation process OLP NN No
[Soares et al., 2011] Pulping process OLP NN No
[Xu et al., 2011] Ammonia synthesis process OLP NN No
[Rogina et al., 2011] Continuous distillation process OLP NN No
[Chen et al., 2011] FCCU process OLP SVR Yes
[Jia et al., 2011] Copper extraction process OLP RPLS Yes
[Liu et al., 2012a] Air separation process OLP PLS Yes
[Bhattacharya et al., 2012] Welding process OLP NN No
[Liu et al., 2012b] Streptokinase fermentation process OLP SVR Yes
[Galicia et al., 2012] Pulping process OLP PLS Yes
[Zhang et al., 2012] Continuous annealing process and PMPFD PCA Yes

penicillin fermentation process
[Liu et al., 2012c] Wastewater treatment process OLP, SFDR RPLS, PCA Yes
[Tang et al., 2012] Grinding process OLP PLS, NN No
[Lingfang and Yechi, 2012] Oxygen content estimation OLP SVR No
[Grbić et al., 2013] Powder detergent product process, OLP GMM Yes

thermal oxidizer process, and others
[Lv et al., 2013] NOx prediction in a boiler OLP SVR Yes
[Pani et al., 2013] Cement process OLP NN No
[Serpas et al., 2013] Process monitoring in CSTRs PMPFD KF -
[Liu et al., 2013] Polymerization production process OLP SVR Yes
[Kim et al., 2013] Ethylene production process OLP PLS Yes
[Wang and Guo, 2013] Polymerizing process OLP NN No
[Iliyas et al., 2013] NOx prediction in a boiler OLP NN No
[Matias et al., 2013] Cement process OLP, SFDR NN Yes
[Abusnina and Kudenko, 2013] Catalyst activation process OLP GPM Yes
[Hu et al., 2013] Polymerization process and OLP PLS Yes

penicillin production process
[Kaneko and Funatsu, 2014] Alkylaluminum production process OLP SVR Yes

and exhaust gas denitration proc.
[Ni et al., 2014] Three chemical processes OLP RPLS Yes
[Jin et al., 2014] Fermentation process OLP PLS Yes
[Sharma and Tambe, 2014] Biochemical processes OLP NN, SVR No
[Ge et al., 2014] Tennessee Eastman process OLP, PMPFD PCR Yes
[Shao et al., 2014] SRU process and Debutanizer proc. OLP PLS Yes
[Rullo et al., 2014] Hydrogen production process OLP NN No
[Xu et al., 2014] Hydro-isomerization process OLP PLS Yes
[Yuan et al., 2014] Debutanizer column process and OLP PCR Yes

fermentation process
[Stanišić et al., 2015] Cement process OLP NN Yes
[Escobar et al., 2015] Evaporation process OLP, SFDR FPM -
[Liu et al., 2015] Wastewater treatment process OLP PLS Yes
[Cheng and Liu, 2015] Propylene polymerization process OLP SVR Yes
[He et al., 2015] Gasoline blending process OLP RPLS Yes
[Soares and Araújo, 2015c] Polymerization proc. and FCCU proc. OLP PLS Yes
[Soares and Araújo, 2015b] Cement process and other processes OLP NN Yes
[Soares and Araújo, 2015a] Cement process and other processes OLP NN Yes

22 CHAPTER 2. OVERVIEW OF SOFT SENSORS

2. Sulfur Recovery Unit (SRU)1: the goal is to predict the hydrogen sulfide

(H2S) and sulfur dioxide (SO2) concentrations in a SRU of a refinery process.

The data set has 5 input variables (mainly related to gas flows) and 10081

samples. The H2S and SO2 frequently cause damage to hardware sensors,

which are often removed for maintenance. Therefore, a SS can be a valuable

tool to predict the H2S and SO2 concentrations [Fortuna et al., 2006];

3. Industrial Fluidized Catalytic Cracking Unit (FCCU)2: The FCCU

process converts heavy gas oils into lighter hydrocarbon products in a refin-

ery. In traditional operations, gasoline, light diesel oil (LDO), and liquefied

petroleum gas (LPG) concentrations can be only measured with a delay of

about 8 hours or one day. The fast on-line estimation of these concentrations

is important to ensure process quality. The data set has 6 input variables and

104 samples [Liu et al., 2009];

4. Polymerization process2: the objective is to predict the catalyst activity

in a polymerization reactor. The catalyst activity values were synthetically

produced using chemical reactions equations for simulating a real case. The

data covers 1 year of operation of the process plant and contains 15 input

variables and 8687 samples [Kadlec and Gabrys, 2011];

5. Powder detergent production process2: the goal is to predict the powder

weight in a reactor, since the final product quality depends on the properties

of the powder. The powder weight measurements are obtained by laboratory

analysis with a frequency of every hour or every half an hour. An appropriate

SS can reduce this frequency. The data set consists of 14 input variables and

1962 samples [Grbić et al., 2013];

6. Thermal oxidizer2: the goal is to estimate the nitrogen oxide (NOx) con-

centration in a process for air pollution control. The NOx concentration is

measured with gas chromatograph at a low sampling rate; and a SS needs to

be designed. The data set consists of 40 input variables and 2053 samples

[Grbić et al., 2013];

2The data set can be made available for academic purposes by requesting it to the authors.

2.8. CONCLUSION 23

7. Cement kiln3: the goal is to estimate the free lime (CaO) variable in a

cement kiln process, since the product quality is related by the amount of CaO.

The data set contains 195 input variables (e.g. temperatures and pressures)

and 43469 samples. The input variable samples were recorded with sampling

interval of 1 minute, while the output variable samples were obtained with

a variety of different sampling intervals (> 20 minutes) using a laboratory

automation system.

2.8 Conclusion

This Chapter presented an overview of SS applications. It described that many issues

related to the SS model development and SS maintenance are unaddressed. Con-

cerning model selection, it is necessary to develop additional strategies for improving

the adaptivity of single learning algorithms (such as PLS and ELM) in time-varying

applications. Concerning model training, strategies to overcome the overfitting and

improve the SS performance when an insufficient number of data samples is avail-

able should be improved. Concerning SS maintenance, a large amount of work is

necessary to develop adaptive SS for dealing with changing environments. The next

Chapter will detail these issues. The use of NN models, optimization techniques,

and ensemble systems constitute a promising research direction for the development

and implementation of improved methodologies for SS applications in industrial

processes. NNs have the ability of capturing and mapping complex input-output re-

lationships, and modeling non-linear systems without using prior knowledge; which

makes them valuable predictive tools for industrial systems. Ensemble learning has

been established as a very promising approach for improving the generalization of

learning models. GA and SA optimizations can be employed for automatic ensemble

development, for selecting an appropriate number of models and an optimal com-

bination strategy. Additionally, the way ensemble systems may deal with diversity

makes them possible strong candidate methods to handle time-varying industrial

systems, when adaptation mechanisms are developed and incorporated into the en-

semble system.

3This data set was provided by “AControl - Automação e Controle Industrial, Lda.”, Coimbra,
Portugal.

Chapter 3

Overview of Learning Models

Applied to Soft Sensors

Contents

3.1 Introduction . 26

3.2 The Regression Problem 26

3.3 Single Learning Models . 28

3.3.1 Neural Networks . 28

3.3.2 Partial Least Squares . 35

3.4 Ensemble Learning Models 36

3.4.1 Theoretical Analyzes of Ensemble Learning Models 37

3.4.2 Key Factors in Ensemble Learning Models 40

3.5 Adaptive Learning Systems 42

3.5.1 The Concept Drift Problem 43

3.5.2 Approaches for Handling Concept Drift 44

3.5.3 Main Structures of On-line Learning Algorithms 49

3.5.4 On-line Single Learning Models 53

3.6 Conclusion . 57

25

26 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

3.1 Introduction

Designing intelligent learning systems that can learn from data and adapt to their

environments has attracted attention in many fields. In the industrial field, many

factors occurring in parallel (e.g. changes, small quantity of data, noise, etc) make

difficult the development of such learning and adaptive systems. The goal of this

Chapter is to review and describe the main intelligent learning systems applied

to SSs. The Chapter is organized as follows. Section 3.2 describes the regression

problem and its challenges. Section 3.3 presents two single learning algorithms, PLS

and NN, widely employed in SS applications. Section 3.4 describes ensemble learning

models. The main objective is to analyze theoretically why ensemble learning models

outperform single learning models. Additionally, key factors in ensemble learning

systems are discussed. Section 3.5 describes intelligent learning systems that can

automatically adapt to their environments. Moreover, a thorough analysis of the

main structures of on-line learning systems is provided; and two on-line learning

algorithms are described.

3.2 The Regression Problem

Machine learning (ML) methods are computer programs employed to solve a given

problem using data or past experience. These programs have the ability of learn-

ing from data, where learning is the process of obtaining new knowledge. Learning

methods are classified into four groups: supervised learning, unsupervised learning,

semi-supervised learning, and reinforcement learning [Alpaydin, 2004; Mallapragada

et al., 2009]. This thesis will consider only supervised learning methods. In super-

vised learning, the learning (training) process is performed using a set of T samples

of the form {(x1, y1), . . . , (xT , yT)}, each one consisting of values of r independent

input variables and one dependent output variable (for the sake of simplicity, this

thesis will consider only one output). Each input xt, of a sample t, is a vector of

the form xt = [x1
t , . . . , x

r
t]

T , where the notation xk
t refers to the k-th input value of

xt; and yt is the output value of sample t. If the output values are categorical (e.g.

“apple”, “orange”, “lemon”; or “1”, “2”, “3”, “4”; etc), belonging to a countable,

and usually fixed, set of finite cardinality, then the supervised learning task is called

classification. If the output values are numerical, y ∈ R, then the supervised learn-

3.2. THE REGRESSION PROBLEM 27

ing task is called regression. This thesis will consider regression problems. Consider

a training data set D = {(xt, yt)}T
t=1 with T training samples. In regression, the

main goal is to construct a function (or “machine”, model, predictive model, regres-

sor model) f , based on D, which is able to estimate/approximate an output y given

an input x ∈ R
r, i.e. f : Rr → R.

The input and output samples, xt, and yt, respectively, may correspond to the

input and output samples of a system at the time instant t. However, the compo-

nents of the input vector xt may correspond to variables associated to more than one

time instant. Therefore, regression model f may be used as a basis to implement

dynamical system models [Narendra and Parthasarathy, 1990] if xt is composed of

system variables corresponding to different time instants (denoting the existence of

system state inside the model). Using this framework, the models proposed in this

thesis (Chapters 3 to 7) have the capacity to directly form the basis to implement

dynamical system models.

An important issue in ML is the generalization, which is the ability of a model to

correctly predict samples that have not been presented during the training process.

The generalization performance is a useful measure of the quality of a model. The

loss of generalization (i.e. when a model cannot generalize well on new samples)

is known as overfitting. A key problem is how to obtain a powerful model with

good generalization. A complex model does not guarantee good generalization,

since it usually fits too well on the training samples. Therefore, there is a trade-

off between obtaining a model which is not too complex and achieving a good fit

to the training samples. This trade-off can be analyzed using the bias-variance

decomposition (BVD) [Bishop, 2006]. In this analysis, the generalization error of

a model is decomposed into two components, bias and variance. BVD is given by

[Brown et al., 2005b]:

ED{(f(x)− y)2} = (ED{f(x)} − y)2

︸ ︷︷ ︸

(bias)2

+ED{(f(x)− ED{f(x)})2}
︸ ︷︷ ︸

variance

, (3.1)

where (x, y) is an arbitrary testing point. The expectation operator ED{·} is with

respect to a random training data set D of size T , where each element is indepen-

dently drawn from an unknown distribution p(x, y). For the sake of simplicity and

28 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

without loss of generality, it is assumed a noise level of zero in the data1. The bias

measures the difference between the expected prediction and the real output. The

variance measures the sensitivity of the estimation with respect to the data set. The

main goal of a learner is to minimize the expected loss ED{(f(x)− y)2}. However,

this is not an easy task, because a decrease of the bias term will cause an increase

of the variance term, and vice versa. In most cases, a complex model tends to have

low bias and high variance, while a simple model tends to have low variance and

high bias [Suen et al., 2005]. The model with optimal predictive performance is the

one that achieves the best balance between bias and variance.

3.3 Single Learning Models

This Section describes NNs and PLS models. They are powerful learning methods,

and are widely employed as data-driven techniques in industry.

3.3.1 Neural Networks

NNs are computational models inspired by biological neuron behaviors and consist

of processing elements (neurons) and connections between them (synaptic weights),

a neural architecture, and a learning algorithm. NN systems offer a number of at-

tractive properties and capabilities: non-linearity, input-output mapping, adaptivity,

generalization, and robustness [Kasabov, 1996; Haykin, 1999]. There are many types

of NN architectures, but Feedforward NNs (FNNs), also known as Multilayer Per-

ceptrons (MLPs), are the most popular and successful NN. They consist of one

input layer, one or multiple hidden (intermediate) layers, and one output layer. In

FNN, during prediction, the information propagates in only one direction (forward),

from the input layer to the output layer. Single-hidden Layer Feedforward Networks

(SLFNs) are FNN with one hidden layer, and they are the simplest and mostly used

FNN because of the good approximation capabilities in many problems. Researches

have proved that MLPs are universal approximators [Hornik et al., 1989]. Cybenko

[1989] demonstrated that any continuous function can be uniformly approximated

1For a non-zero noise level, y in the BVD would be replaced by its expected value ED{y}, and
a constant (irreducible) variance term σ2 would be added, representing the variance of the noise
[Brown et al., 2005b].

3.3. SINGLE LEARNING MODELS 29

by a continuous NN having a single hidden layer with neurons that use an arbitrary

continuous sigmoidal non-linear activation function.

Researches have compared and proven the effectiveness of MLPs over other learn-

ing algorithms. Support Vector Machines (SVMs) usually have greater generaliza-

tion ability than MLPs. SVMs are based on the structural risk minimization princi-

ple, and use quadratic programming, which has the global optimal solution. While,

MLPs may have problems of convergence to local minima. On the other hand, SVM

models require long training time, and the number of parameters increases as the

number of training samples increases, while MLPs have fixed structure size as the

number of training samples increases [Antón et al., 2013; Abe, 2010]. Other ad-

vantage of MLPs over SVMs is that MLPs can have more than one output, while

SVMs have only one output. Studies have demonstrated that an Extreme Learning

Machine (a type of NN model that uses a SLFN architecture, i.e. only one hidden

layer) tends to be faster and have better generalization performance than other NN

learning models, SVMs and Gaussian process [Miche et al., 2010]. Below, the SLFN

architecture is described.

Single-hidden Layer Feedforward Network Architecture. The architecture

of a SLFN includes an input layer with r input nodes, a hidden layer with L hidden

nodes, and an output layer with an output node, as shown in Figure 3.1. Hidden

1 2 L

1 r

xt

output layer

a11 aL1

a21
aLra1r

a2r

b1 b2
bL

hidden

layer

input layer

g(a1,b1,xt) g(a2,b2,xt) g(aL,bL,xt)

fL(xt)

h(.)

bout

c1
c2

cL

x1t x r
t

Figure 3.1: A scheme of the SLFN architecture.

30 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

nodes and output nodes have activation functions defined as g(x) and h(x), respec-

tively. For example, a sigmoid activation function is often used in hidden nodes,

g(x) = 1/(1 + exp(−x)), and a linear activation function is often used in output

nodes, h(x) = x. An activation function performs a transformation as the last step

to obtain the node’s output value. Consider a data set D = {(xt, yt)}T
t=1 with T

samples (where xt = [x1
t , . . . , x

r
t]

T ∈ R
r, and yt ∈ R), a standard SLFN model f

with L hidden nodes is mathematically represented as:

f(xt) = h

L∑

j=1

g

(
r∑

k=1

ajkx
k
t + bj

)

cj

+ bout

 = ot, for t = 1, . . . , T, (3.2)

where aj = [aj1, aj2, . . . , ajr]T is the vector of weights connecting the r input nodes

and the j-th hidden node (for j = 1, . . . , L); c = [c1, c2, . . . , cL]T is the weights

vector connecting the L hidden nodes and the output node; bj is the bias of the

j-th hidden node; bout is the bias of the output node; and ot is the predicted output.

Consider that a hidden node j with activation function g(x) can be mathematically

represented by g(aj, bj,xt), that is:

g(aj, bj,xt) = g

(
r∑

k=1

ajkx
k
t + bj

)

, for t = 1, . . . , T, (3.3)

then Equation (3.2) can be rewritten in a simple form as:

f(xt) = h

L∑

j=1

g(aj, bj,xt)cj

+ bout

 = ot, for t = 1, . . . , T. (3.4)

The network parameters (e.g. synaptic weights and biases) of a SLFN should be

adjusted using a learning algorithm in order to reduce the predictive error in all the

T samples.

Many learning algorithms have been proposed for this task. The most popular

is the Back-Propagation (BP) algorithm, which employs a gradient descent method

to tune the NN parameters [Rumelhart et al., 1986]. However, the BP algorithm

is very time-consuming and it may result in overfitting. To overcome these limi-

tations, other algorithms were proposed, such as the Levenberg-Marquardt Back-

Propagation (LMBP) algorithm [Hagan et al., 1996]. The LMBP achieves good

results for non-linear problems.

3.3. SINGLE LEARNING MODELS 31

NN learning algorithms that randomly assign NN parameters have shown good

generalization, faster training time and lower computational cost when compared to

other algorithms. Schmidt et al. [1992] use random hidden synaptic weights (weights

connecting input layer and hidden layer) in a SLFN with a sigmoid activation func-

tion. However, the universal approximation capability of the proposed solution was

not theoretically proved, and the proposed solution is limited to the sigmoid acti-

vation function. Pao et al. [1994] proposed and proved the universal approximation

of a Random Vector Functional-Link (RVFL) approach based on the conventional

gradient descent method, in which random hidden synaptic weights can be used in

a SLFN with sigmoid or radial basis functions. According to [Huang, 2015], this ap-

proach is classified as “semi-random”, since hidden node biases are calculated based

on the training samples and hidden synaptic weight values. Recently, Huang et al.

[2006] proposed a SLFN called ELM which has easy parameter tuning, uses random

assignment of hidden synaptic weights and biases, and has other advantages, such

as fast learning speed, low computational cost, good generalization capability and

its universal approximation capability was proved theoretically for a wide variety of

types of non-linear piecewise continuous activation functions. The ELM concepts

and learning approach can also be used with multiple hidden layer architectures

[Huang, 2015]. In this context, the ELM has established itself as an important NN

learning architecture. In this thesis (only) the single hidden layer ELM will be con-

sidered. For a further discussion about randomness in learning, in NN architectures,

and in NN learning, including some works made before ELM, or comparison about

NN algorithms that use some form of randomness, references [Huang, 2014, 2015]

are suggested.

Below, the ELM and the LMBP learning algorithms for the SLFN architecture

are described.

Levenberg-Marquardt Back-Propagation. The LMBP algorithm [Hagan and

Menhaj, 1994] was originally proposed to improve the BP algorithm in terms of

convergence speed. In the LMBP algorithm, all the network parameters (synaptic

weights and biases) are tuned together. Defining θ as a vector with all the tunable

network parameters:

θ = [a1; . . . ; aL; b1; . . . ; bL; c; bout]Tz×1, (3.5)

32 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

where the number of parameters is z = r(L + 2) + 1. At the (k + 1)-th algorithm

iteration, the values of θ are updated as:

θk+1 = θk + ∆θk, (3.6)

where

∆θk = −(JT J + µkI)−1JT e, (3.7)

J is the Jacobian matrix; I is the identity matrix; µk is the learning factor at iteration

k; and e is an error vector of all the samples,

e = y− o, (3.8)

where y = [y1, . . . , yT]T is the real output vector from a training data set D =

{(xt, yt)}T
t=1; o = [o1, . . . , oT]T is the estimated output vector of the NN (with the

current parameters θk) using D; and e = [e1, . . . , eT]T . The key step in the LMBP

algorithm is the computation of the Jacobian matrix. In [Hagan et al., 1996], this

computation is performed by using a variation of the BP algorithm. In this case,

to create the Jacobian matrix, it is necessary to obtain the derivatives of the error

vector e with respect to all the network parameters θ as:

J =

∂e1

∂a11
. . . ∂e1

∂aLr

∂e1

∂b1
. . . ∂e1

∂bj

∂e1

∂c1
. . . ∂e1

∂cL

∂e1

∂bout

∂e2

∂a11
. . . ∂e2

∂aLr

∂e2

∂b1
. . . ∂e2

∂bj

∂e2

∂c1
. . . ∂e2

∂cL

∂e2

∂bout

... . . .
...

... . . .
...

... . . .
...

...
∂eT

∂a11
. . . ∂eT

∂aLr

∂eT

∂b1
. . . ∂eT

∂bj

∂eT

∂c1
. . . ∂eT

∂cL

∂eT

∂bout

T ×z

. (3.9)

The LMBP algorithm is summarized in Algorithm 3.1 [Hagan et al., 1996]. In

Step 1, the bias and synaptic weights are initialized. In the NN literature, several

synaptic weights initialization methods are proposed, such as the uniform random

initialization method [Kasabov, 1996], and the Nguyen-Widrow method [Nguyen

and Widrow, 1990]. The parameter µ is dynamically tuned using a parameter ϑ. If

the SSE value reduces using the new network parameters, then µ is divided by ϑ;

otherwise, µ is multiplied by ϑ. When µ is large the algorithm becomes the steepest

descent algorithm (with step 1/µ), while when µ is small the algorithm becomes the

Gauss-Newton method. In [Hagan and Menhaj, 1994], the learning parameters are

3.3. SINGLE LEARNING MODELS 33

Algorithm 3.1 Learning algorithm for LMBP models.
Input: a training data set D = {(xt, yt)}

T
t=1; activation functions g(x) and h(x); a number

of hidden nodes L; learning parameters µ and ϑ;

1. Initialize synaptic weights (a1, . . . , aL ; c) and biases (b1, . . . , bL; bout); Set k = 0
and µ0 = µ; Build vector θk as θ in Equation (3.5);

2. Present all the inputs to the network and obtain the estimated outputs o; Obtain
the error vector e using Equation (3.8); Obtain the SSE as: SSEk =

∑T
t=1(et)

2;

3. Obtain the Jacobian matrix J with Equation (3.9);

4. Compute ∆θk with Equation (3.7);

5. Recalculate the SSE
(

let it be SSE
(2)
k

)

using θk + ∆θk; if SSE
(2)
k < SSEk, then let

θk+1 = θk + ∆θk, µk+1 = µk/ϑ, k ← k + 1, and Go to Step 2; else let µk = µkϑ
and Go to Step 4;

set as µ = 0.01 and ϑ = 10.

The LMBP algorithm can be modified to stop when the actual Sum of Squared

Errors (SSE) is smaller than a threshold, or using an early stopping criterion [Caru-

ana et al., 2000]. In the case of an early stopping criterion, the SSE of the LMBP

model is inspected at a predefined frequency using an independent data set, so that

when the SSE increases, the LMBP training is stopped, avoiding overfitting.

Extreme Learning Machine. ELMs were proposed by [Huang et al., 2006]. The

input synaptic weights and biases of the SFLN are chosen randomly, and the out-

put synaptic weights are obtained analytically by the Least Squares (LS) method,

allowing significant training time reduction when compared to other models. ELMs

have demonstrated ability to deal with non-linear problems and exhibit good gen-

eralization [Butcher et al., 2013].

Consider a training data set D with T distinct samples. A standard ELM with

L 6 T hidden nodes and hidden layer activation function g(x) is mathematically

represented as:

f(xt) =
L∑

j=1

βjg(aj, bj,xt) = ot, for t = 1, . . . , T, (3.10)

where βj connects the j-th hidden-layer node to the output node [Huang et al.,

34 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

2006]. It is worth noting that most ELM representations use a linear activation

function for the output layer (i.e. h(x) = x in (3.2)), so that for simplicity, h(x) is

not used/defined to compute the output prediction f(xt). Therefore, in this thesis,

only g(x) should be defined for ELM-based models.

If an ELM can approximate the T samples with zero error, then Equation (3.10)

can be written as:

f(xt) =
L∑

j=1

βjg(aj, bj,xt) = yt, for t = 1, . . . , T. (3.11)

The ELM model can be represented as:

Hβ = y, (3.12)

H =

g(a1, b1,x1) . . . g(aL, bL,x1)
... . . .

...

g(a1, b1,xT) . . . g(aL, bL,xT)

T ×L

, (3.13)

β = [β1, . . . , βL]T , y = [y1, . . . , yT]T , (3.14)

where β is the output synaptic weights vector. H is called the hidden layer output

matrix, where the j-th column of H represents the j-th hidden node output vector

with respect to all the input vectors; and the t-th row of H is the output vector of

the hidden layer with respect to xt.

The learning in ELM is based on finding a solution for vector β. In most cases,

the number of training samples is greater than the number of hidden neurons (i.e.

T > L); so that H is a nonsquare matrix and there may not exist a β such that

Hβ = y. A solution for β can be determined using the LS method as:

β̂ = H†y, (3.15)

where H† is the Moore-Penrose generalized inverse or pseudoinverse [Ben-Israel and

Greville, 2003] of matrix H. It will be assumed that L 6 T . In this condition, if the

inverse of HT H exists, then H† can be obtained as:

H† = (HT H)−1HT . (3.16)

3.3. SINGLE LEARNING MODELS 35

Algorithm 3.2 Learning algorithm for ELM models.
Input: a number of hidden nodes L; a training data set D = {(xt, yt)}

T
t=1, where at least

L samples are distinct, and L 6 T ; a hidden layer activation function g(x);

1. Randomly assign input synaptic weights aj and biases bj , j = 1, . . . , L;

2. Obtain matrix H using D and Equation (3.13);

3. Obtain the output synaptic weight β as the values of β̂ obtained from Equation
(3.17);

Substituting Equation (3.16) into Equation (3.15), yields:

β̂ = (HT H)−1HT y. (3.17)

Solution β̂ in (3.17) is the minimum-norm least squares solution of (3.12). It will

be assumed that H is full rank, i.e. rank(H) = L. If H is full rank, then the inverse

of HT H in (3.17) exists [Rao and Mitra, 1972]. Theorem II.1 of [Liang et al., 2006]

states that if L training samples in D are distinct, then rank(H) = L. The ELM

algorithm is summarized in Algorithm 3.2.

3.3.2 Partial Least Squares

PLS has been effectively employed in industrial processes which involve a large

number of correlated variables [He et al., 2015; Xu et al., 2014; Liu et al., 2015].

PLS is a linear multivariate regression model that projects the input and output

data into a latent space, extracting principal factors with an orthogonal structure

and capturing variance in the data.

Consider an input matrix X = [x1,x2, . . . ,xT]T ∈ R
T ×r and an output vector

y = [y1, y2, . . . , yT]T ∈ R
T ×1 from a data set D = {(xt, yt)}T

t=1. PLS designs a linear

model by decomposing X and y into two equations [Qin, 1998]: X = WZT + Ex

and y = UqT + ey, where W ∈ R
T ×ℓ and U ∈ R

T ×ℓ are score matrices that

produce ℓ linear combinations/scores (where ℓ is also known as the number of latent

variables), with 1 6 ℓ 6 r; Z ∈ R
r×ℓ and q ∈ R

1×ℓ are the loading matrix and

loading vector, respectively. Ex ∈ R
T ×r and ey ∈ R

T ×1 are input and output data

residuals, respectively. PLS designs a regression model by relating the scores of X

and y. The main objective is to build a predictive linear model y = Xb + ereg,

36 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

where b ∈ R
r×1 is a vector of regression coefficients that are obtained by minimizing

ereg.

There are many methods devoted to obtain the PLS vectors and matrices. The

most commonly used algorithms are the NIPALS [Geladi and Kowalski, 1986], and

the SIMPLS [Jong, 1993]. Both algorithms achieve similar results for problems

with only one output y. However, most authors agree that SIMPLS has faster

computation with less memory requirements than NIPALS [Martins et al., 2010].

SIMPLS assumes that the variables from X and y are scaled to zero mean and unit

variance (as proposed in Equation (2.2)), and finds projection directions of X by

obtaining the data cross variance (XT y) on an orthogonal subspace. The SIMPLS

algorithm for single output problems is summarized in Algorithm 3.3 [Jong, 1993].

The inputs of the algorithm are X, y, and the maximum number of latents ℓmax. The

main objective of the algorithm is to obtain a matrix B = [b1, . . . ,bℓmax
] ∈ R

r×ℓmax

that holds vectors of regression coefficients bi, where each bi corresponds to the

use of a set of i latent variables (i = 1, . . . , ℓmax). In Step 1, matrices and vector

B ∈ R
r×ℓmax , R ∈ R

r×ℓmax , W ∈ R
T ×ℓmax , Z ∈ R

r×ℓmax , q ∈ R
1×ℓmax , U ∈ R

T ×ℓmax ,

and V ∈ R
r×ℓmax are initialized with zero values. The notations bi, ri, wi, zi, ui,

and vi refer to the i-th column vector of B, R, W, Z, U, and V, respectively; and

qi refers to the i-th column element of q. At each iteration i of the algorithm, a

new vector of regression coefficients bi is obtained. The final matrix B is useful to

determine the prediction error of the model with respect to all the possible numbers

of latent variables. Thus, this information can be employed to determine the optimal

number of latent variables. Consider an input matrix Xval and an output vector

yval from a validation data set Dval = {(xt, yt)}
T1

t=T +1; and the SSE as the metric for

the prediction error. The error of the model for the case of using i latent variables

is obtained as: SSEi =
∑T1

t=T +1(yt − ot)2, where ot = xtbi.

3.4 Ensemble Learning Models

Ensemble learning models are sets of models that combine in some way their deci-

sions, or their learning algorithms, or different data to achieve accurate predictions.

An ensemble learning model is usually more accurate than any single model used

separately, and the effectiveness of ensemble systems (ESs) has been shown in differ-

ent benchmark data sets. Nowadays, ensemble learning represents one of the main

3.4. ENSEMBLE LEARNING MODELS 37

Algorithm 3.3 Learning algorithm for PLS using the SIMPLS method.
Input: an input matrix X ∈ R

T ×r; an output vector y ∈ R
T ×1; and the maximum number

of latent variables ℓmax (with 1 6 ℓmax 6 r);

1. Initialize with zero values the matrices and vector: B, R, W, Z, q, U, and V;

2. Calculate s = XT y;

3. for i = 1, . . . , ℓmax

(a) Obtain: qi = 1, ri = sqi; wi = Xri; and wi ← wi − w̄i (where w̄i is the mean
value of wi);

(b) Compute the norm of wi: ‖wi‖ =
√

wT
i wi;

(c) Calculate: wi ← wi/‖wi‖; ri ← ri/‖wi‖; zi = XT wi; qi = yT wi; ui = yqi;
vi = zi;

(d) if i > 1; then vi ← vi −V(VT zi); else ui ← ui −T(TT ui);

(e) Calculate: vi ← vi/‖vi‖

(

where ‖vi‖ =
√

vT
i vi

)

; and s← s− vi(v
T
i s);

(f) Obtain the regression coefficient vector of the i-th latent: bi = r1q1 + . . .+riqi;

(g) Store bi, ri, wi, zi, qi, ui, and vi into column i of B, R, W, Z, q, U, and V,
respectively;

4. end for

Output: matrix of regression coefficients B;

research lines in ML. The main motivations are the possibility of improving the

generalization capability and the overall system performance. Despite the remark-

able performance of ESs, authors have demonstrated that the ensemble performance

depends on several factors, such as the diversity between the models and the combi-

nation strategy. Clearly, an adequate strategy should be used to train each ensemble

member-model. However, on ESs other key factors exist as will be discussed below.

3.4.1 Theoretical Analyzes of Ensemble Learning Models

Theoretical analysis for ensemble learning algorithms is a key to understand how

they work, and prove their efficiency over single learning algorithms. There is no

unified theory for these studies, however several theoretical analyzes proved the

effectiveness of ESs. This Subsection outlines two main theoretical analyzes for

38 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

ESs.

Notation. Consider an ensemble of N regression models and a data set D =

{(xt, yt)}T
t=1, and consider that the output of the n-th model on the t-th data point

is given by fn(xt), and that the ensemble output is given by:

F (xt) =
N∑

n=1

wnfn(xt), (3.18)

where wn is the combination weight of the n-th model, and reflects the contribution

of this model to the final ensemble output, and the combination must satisfy the

following constraints: 0 6 wn 6 1,
∑N

n=1 wn = 1, and N > 1.

The Ambiguity Decomposition. Krogh and Vedelsby [1995] proved that for

each data point (xt, yt), the squared error of the ensemble is less than or equal to

the average squared error of the ensemble members:

(F (xt)− yt)
2 =

N∑

n=1

wn (fn(xt)− yt)
2 −

N∑

n=1

wn (fn(xt)− F (xt))
2 , (3.19)

where F (xt) is a convex combination (
∑N

n=1 wn = 1) as given in Equation (3.18).

This decomposition is known as ambiguity decomposition and it is based on the

BVD analysis. Details of the proof can be found [Krogh and Vedelsby, 1995;

Brown et al., 2005a]. The decomposition is divided into two terms. The first term,
∑N

n=1 wn (fn(xt)− yt)
2, is the weighted average error of the models; while the second

term,
∑N

n=1 wn (fn(xt)− F (xt))
2, is the ambiguity term, and it measures the amount

of variability among the models for this data point. Since, the ambiguity term is

positive and subtractive from the first term, the ensemble error, (F (xt)− yt)
2, is

guaranteed to be less than or equal to the weighted average error of the models.

The larger the ambiguity term, the larger the ensemble error reduction. However,

an increase of the ambiguity term, may also produce an increase of the weighted av-

erage error of the models as well. This reveals that diversity itself is not enough, and

the best ensemble error reduction can be obtained by a right balance between accu-

racy and diversity. Unlike the BVD method, the ambiguity decomposition does not

take into account the expected error of the ensemble on future data points [Brown

3.4. ENSEMBLE LEARNING MODELS 39

et al., 2005a].

Bias, Variance, and Covariance Decomposition. The BVD method for single

learning models (detailed in Section 3.2) can be employed for ensemble learning

algorithms, so that Equation (3.1) becomes:

ED{(F (x)− y)2} = (ED{F (x)} − y)2

︸ ︷︷ ︸

(bias)2

+ED{(F (x)− ED{F (x)})2}
︸ ︷︷ ︸

variance

, (3.20)

where the ensemble combination is given by F (xt) = 1
N

∑N
n=1 fn(xt). The BVD

method can be reformulated to the Bias, Variance, and Covariance Decomposition

(BVCD) which includes the correlation among the ensemble members [Brown et al.,

2005a,b]. The BVCD method decomposes the ensemble error into tree terms:

E{(F (x)− y)2} = bias
2

+
1
N

variance +
(

1−
1
N

)

covariance,

where

bias
2

=

(

1
N

N∑

n=1

(E{fn(x)} − y)

)2

, variance =
1
N

N∑

n=1

E{(fn(x)− E{fn(x)})2},

covariance =
1

N(N − 1)

N∑

n=1

N∑

k=1
k 6=n

E{(fn(x)− E{fn(x)})(fk(x)− E{fk(x)})} ,

and E{·} is the expectation operator with respect to different training data sets.

The first term, bias
2
, is the averaged bias of the ensemble members; the second

term, variance, is the averaged variance of the ensemble members; and the third

term, covariance is the averaged covariance of the ensemble members. BVCD shows

that the generalization error of the ensemble not only depends on the bias and

variance, but also on the covariance between the ensemble members. The bias

and variance terms are constrained to be positive-valued, while the covariance term

can be negative. The main objective in ES is to decrease the covariance, without

increasing the bias and variance terms. According to [Chandra et al., 2006] the

covariance term also indicates the diversity between the ensemble members. Since

it is believed that the more the diversity between the ensemble members, the less

40 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

correlated they would be, which implies a reduced error of the ensemble. This is the

main reason why diversity is important in ES.

3.4.2 Key Factors in Ensemble Learning Models

The key factor of ensemble systems is to design an ensemble which performs better

than random individual ensemble members, and to design members which make

different errors on the same sample [Chandra et al., 2006]. That is, diversity is

important in the ensemble members’ decisions. If the models provide the same

output, there is nothing to be gained from their aggregation. However, as described

in the previous subsection, diversity itself is not enough. An optimal ensemble is

the one which achieves a right balance between accuracy and diversity.

During ensemble development, there are several ways to promote diversity. Strate-

gies to promote diversity in ensemble systems are divided into explicit and implicit

diversity methods; while implicit methods rely on randomness to generate diversity,

explicit methods deterministically generate diversity. For example, Bagging employs

an implicit strategy to achieve diversity [Coelho and Nascimento, 2010; Jia and Cul-

ver, 2006]. Bagging randomly samples the training data set by applying bootstrap

to create a different training data set for each predictor [Breiman, 1996]; at no point

a measurement is taken to promote diversity. On the other hand, Boosting is an

explicit strategy. Boosting directly manipulates the training data set distributions

by using specific sample weights to ensure some form of diversity in the set of models

[Cristinacce and Cootes, 2007]. The main drawback of this method is that there is

no guarantee that it is the right way to promote diversity.

Brown et al. [2005a] state that the majority of ensemble diversity approaches

can be subdivided into three main categories: (i) starting the learning with differ-

ent conditions; (ii) altering the set of predictors; (iii) altering the trajectory used

by the component models in the search space. The first category (i) creates each

predictor with different initial components. For an ensemble of NN models, training

each NN with a different synaptic weights initialization technique may increase the

probability of continuing on a different learning trajectory with respect to the other

NN models. Approaches in this category usually give poor results, because the pre-

dictors are not diverse enough [Castro and Zuben, 2011]. Methods in category (ii)

aim to modify each ensemble member. Common strategies attempt to manipulate

3.4. ENSEMBLE LEARNING MODELS 41

the training data set that each member receives (e.g., k-fold cross-validation [Ries

et al., 2007], Bagging, Boosting, or noise injection [Fortuna et al., 2009]), or to alter

the model’s architecture (e.g., NN models with different architectures or different

activation functions), or to design members with heterogeneous learning algorithms

[Coelho and Nascimento, 2010]. Approaches in the third category (iii) aim to mod-

ify the way the search space is traversed, leading different component models to

converge to different hypotheses. This category can be subdivided into evolutionary

methods and penalty methods. Penalty methods introduce a correlation penalty

term into the cost function of the ensemble system so that each model minimizes its

error together with the error correlation within the ensemble. On the other hand,

evolutionary algorithms can also evolve a population of models using techniques to

promote diversity. Penalty methods and evolutionary algorithms can be hybridized.

A penalty term can be employed to promote interaction and diversity among the

ensemble members and evolutionary algorithms can be used to select the ensemble

members [Liu et al., 2000].

Member selection is also a key factor for ensemble development [Soares et al.,

2012]. This strategy can lead to better generalization performance. One motiva-

tion is that during this process a subset of uncorrelated models (or diverse models)

can be selected, promoting the diversity in the ensemble. Several strategies have

been employed to select the members for the ensemble, including Genetic Algo-

rithms [Zhou et al., 2002], Particle Swarm Optimization [Yu-Bo and Zhi-Bin, 2011],

Bayesian Artificial Immune System [Dondeti et al., 2005], and pruning strategies

[Martínez-Muñoz et al., 2009].

During ensemble development some issues are at stake [Re and Valentini, 2012]:

how to generate the ensemble members (diversity should be promoted here), how

to evaluate the ensemble members, and what member selection method should be

employed. Another important issue is what combination strategy should be applied

to aggregate the models’ outputs. The most common combination strategy is mean,

where the ensemble’s output is obtained as the average of all the models’ outputs

[Oza and Russell, 2001; Chu and Zaniolo, 2004; Lan et al., 2009]. Other combina-

tion strategy is the weighted mean, where the ensemble’s output is obtained as the

weighted average of all the models’ outputs. In this case, the combination weight of

each model is usually assigned based on the model’s prediction accuracy [Dondeti

et al., 2005]. The combination strategy is crucial for enhancing the ensemble perfor-

42 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

mance [Torres-Sospedra et al., 2005] and balancing the diversity among the ensemble

members. An important drawback of most ensemble systems is that usually they

consider only one combination strategy during ensemble development.

3.5 Adaptive Learning Systems

In real-world systems, learning algorithms operate in dynamic environments where

not only the data but also the data characteristics are evolving continuously. In

this case, the target concept to be learned may change over time. This problem

is known as concept drift in ML [Klinkenberg, 2005]. Learning algorithms must be

able to handle dynamic environments and adapt accordingly. Learning algorithms

able to automatically adjust their parameters and/or their structures during the

on-line phase are known as adaptive learning algorithms. They differ from “off-

line learning” algorithms which cannot incorporate new knowledge into the model.

When new samples are available, an off-line learned model is usually discarded, and

other model is trained with all the stored data. On the other hand, adaptive learning

algorithms are equipped with mechanisms which allow them to incorporate/learn

new data on-line, and/or receive feedback information about their performances

based on incoming data [Kadlec et al., 2011]. In these cases, an on-line learning

capability is required.

An ideal on-line learning algorithm should have the following properties [Polikar

et al., 2002; Gabrys, 2005]: learn new information from new data; do not require ac-

cess to previously used data; retain previously acquired important knowledge when

learning new knowledge; learn fast from large amounts of data; improve its per-

formance by interacting with other systems; add, retrieve, and remove informa-

tion/data. This last ability is usually associated to the stability/plasticity dilemma,

where stability describes the ability of the learner of retaining existing important

knowledge and remaining stable to irrelevant data (e.g. outlier); while plasticity

refers to the ability of learning new knowledge [Polikar et al., 2002].

An on-line learning algorithm incrementally processes each new sample or set

of samples which is/are continuously arriving. In this scenario, a sequence of steps

should be defined to process the new samples. This thesis considers the following

steps: (1) the algorithm receives an input (or a set of inputs); (2) the algorithm

predicts the output of the sample (or the outputs for a set of samples); (3) the

3.5. ADAPTIVE LEARNING SYSTEMS 43

system reveals the real output value(s) to the algorithm; and (4) the algorithm

updates its structure or parameters based on the new sample(s).

It is worth noting that in real-world SS applications, input samples are furnished

by the system with low sampling intervals/high frequencies; while output samples are

furnished by the system with large sampling intervals/low frequencies. Therefore,

steps from (1) to (4) may not be performed sequentially. In some cases (sampling

intervals), for a given sample, step (3) and step (4) are not performed, since the

real output is not furnished by the system. In these cases, the SS is applied only

for on-line prediction, and the on-line learning algorithm of the SS is not updated

(i.e. step (4) is not performed). In other cases, for a given sample, step (3) and

step (4) are performed, since the real output is furnished by the system. In these

cases, the on-line learning algorithm of the SS is updated (i.e. step (4) is performed).

Therefore, even if the real outputs are furnished with large sampling intervals, the

SS keeps performing on-line predictions.

Below, background of the concept drift problem is given. Moreover, an overview

of approaches for dealing with concept drift is given.

3.5.1 The Concept Drift Problem

Recently, the concept drift problem has gained much attention from the ML com-

munity. Concept drift happens when the context represented by data changes over

time [Klinkenberg, 2005]. For analyzing this problem, consider an on-line learning

algorithm where each sample d = (x, y) arrives incrementally one by one. Consider

a sliding window strategy [Liu et al., 2012a], where a window of fixed size m slides

along the data, keeping the most recent m samples:

d(1,1), . . . ,d(1,m)
︸ ︷︷ ︸

window 1

,d(2,1), . . . ,d(2,m)
︸ ︷︷ ︸

window 2

, . . . ,d(t,1), . . . ,d(t,m)
︸ ︷︷ ︸

window t

,d(t+1,1), . . . ,d(t+1,m)
︸ ︷︷ ︸

window t + 1

,

where d(k,i) is the i-th sample of window k. For each window k, the data is assumed

to follow a distribution Dk(x, y). If all the windows are distributed over the same

distribution, the concept is considered stable and thus there is no concept drift.

Otherwise, if two windows p and q have different data distributions, i.e. Dp(x, y) 6=

Dq(x, y), then there is a concept drift. Learning algorithms to handle the concept

drift problem should be able to predict the next data window (e.g. t+ 1) using the

44 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

old data windows (from 1 to t) or a subset of them.

Changes may occur in different forms. In the literature, drifts are classified

with respect to their speed, cyclical nature, scope, etc [Minku et al., 2010; Elwell

and Polikar, 2011; Zliobaite, 2009]. The drift speed describes the rate at which old

concepts are substituted by new concepts. An abrupt drift happens when an old

concept is abruptly replaced by a new concept; while a gradual drift happens when

an old concept is slowly substituted by a new concept. Gradual drifts are harder

to identify since they typically result in lower rate of change of error, and lower

prediction of error, when compared to abrupt drifts.

Drifts can also be classified according to their cyclical nature. A recurring drift

happens if a previously occurring concept recurs after some time; while a non-

recurring drift happens if a previously occurring concept cannot recur over time.

Recurring drifts may occur due to the cyclic nature of a system (e.g. due to the

seasons of the year). Other drift classification is with respect to scope. A local drift

affects only some regions of the input space; while a global drift affects the whole

input space. In local drifts, changes depend on the location in the input space. A

learning algorithm should detect such changes and adapt only those locations of the

model that cover the influenced regions of the input space [Ikonomovska, 2012].

3.5.2 Approaches for Handling Concept Drift

Algorithms to deal with concept drift can be classified as explicit or implicit. Explicit

algorithms employ a drift detection strategy to detect the starting time and severity

of a drift. The Early Drift Detection Method (EDDM) is an example of an explicit

algorithm to deal with changes [Baena-García et al., 2006]. EDDM measures the

distance (interval of time) between two classification errors. It considers that, if the

distance increases, then the system is improving its predictions. Otherwise, if the

distance decreases, EDDM assumes that the system is learning a new concept, and

so a drift is detected. In this case, the system is reset and a new model is trained

using a recent set of samples stored since an early drift warning instant is detected.

Other examples of drift detection approaches are the t-test [Kadlec and Gabrys,

2011], and the Page-Hinkley test [Ikonomovska, 2012].

Implicit algorithms do not perform techniques to detect the starting time of a

drift. They constantly learn from the environment, adjusting and constructing the

3.5. ADAPTIVE LEARNING SYSTEMS 45

knowledge without explicitly detecting drifts. The main approaches are instance

selection, instance weighting, and ensemble learning [Tsymbal, 2004]. In instance

selection, a set of relevant samples of the actual concept are selected to build or

adapt the model. A common technique is the Sliding Window (SW), also known as

moving window. The window can slide on a sample basis (i.e. at each sample) or

on a batch basis (i.e. at each set/batch of samples). An important issue in a SW

approach is the selection of the window’s size. Small windows can provide faster

adaptivity, but in more stable phases they can affect the model’s performance; while

large windows can be more stable but they cannot react faster to the changes. To

overcome these issues, adaptive window’s size can be employed [Bifet and Gavaldà,

2007].

In instance weighting, samples are weighted according to their age and/or rel-

evance to the current concept, e.g. recursive methods. Recursive methods usually

involve down-weighting of the old samples’ contribution using a forgetting factor, λ

(0 < λ 6 1) [Qin, 1998]. The forgetting factor indicates the strength of the adapta-

tion. Its value should be flexible so that adaptation can overcome faster and slower

changes. Specifically, the forgetting factor works as follows: when λ is close to 0

higher weights are given to the new samples and lower weights are given to the old

samples; when λ is close to 1 lower weights are given to the new samples and higher

weights are given to the old samples; and when λ is 1, the RLS model is assumed

to have “infinite memory”. In [Gjerkes et al., 2011], it is proposed a Recursive Least

Squares (RLS) algorithm, where the value of λ is adjusted according to the model’s

prediction error. If the error is small, it is assumed that the estimation is correct

and that the process is not changing, so that λ is increased; while if the error is

large, then λ is decreased to allow a quick adaptation of the model.

Approaches for Handling Concept Drift in Ensemble Methods. This thesis

focuses on ensemble learning algorithms. Table 3.1 lists the main on-line ensembles

existing on the literature. An ensemble to deal with concept drift can have the

following characteristics: (i) adapt the models’ combination weights; (ii) adapt the

models’ parameters; and/or (iii) add new models or exclude models [Polikar, 2012].

Additionally, other approaches (iv) recreate a new ensemble from scratch when a

drift is detected [Minku and Yao, 2012; Chu and Zaniolo, 2004].

The removal of models can be performed using an ensemble pruning strategy.

46 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

Table 3.1: The main on-line ensembles to deal with changing environments.

Approach Scope Types Drift Ensemble Time
of drifts mechanism learn. mech. step

ACE classification mainly recur. explicit/implicit (i), (iii) sample basis
drifts

AddExp classification/ all the types explicit/implicit (i), (ii), (iii) sample/
regression batch bases

FLB classification gradual and explicit/implicit (iii), (iv) batch basis
abrupt drifts

IBoost classification all the types implicit (i), (iii) sample basis
ILLSA regression ∗ explicit/implicit (i), (ii) sample basis

Learn++.NSE classification all the types implicit (i), (iii) batch basis
OAUE classification all the types implicit (i), (ii), (iii) sample basis

OB classification ∗ implicit (ii) sample basis

∗ No reference about the types of drifts which the approach can deal with.

In ensemble pruning, a subset of relevant models from the original set of models is

selected, and those models that do not contribute to the ensemble’s performance

are removed. The exclusion of a model from the ensemble can occur when the

number of models exceeds a threshold [Nishida and Yamauchi, 2007; Elwell and

Polikar, 2009; Chu and Zaniolo, 2004; Kolter and Maloof, 2005]; at a fixed frequency;

when a model’s parameter reaches a value [Grbovic and Vucetic, 2011]; and/or

when the memory usage exceeds a threshold [Brzezinski and Stefanowski, 2014].

Other decision to be taken concerns as to which model should be removed from

the ensemble. The excluded model can be the oldest model [Elwell and Polikar,

2009; Chu and Zaniolo, 2004; Kolter and Maloof, 2005], or the model with the worst

performance [Nishida and Yamauchi, 2007; Elwell and Polikar, 2009; Kolter and

Maloof, 2005; Grbovic and Vucetic, 2011]. In changing environments, identifying

the best ensemble pruning strategy is not an easy task. In recurring drifts, there is

a risk of removing a model that may be important in the future. Therefore, weakest

first strategy should be preferred over oldest first strategy.

A time step defines the time interval at which an on-line ensemble is adapted.

An on-line ensemble can be classified as sample-based or batch-based, when it learns

on-line and incrementally on a sample basis, or when it learns from a set of samples,

respectively.

Batch-based ensembles tend to be more stable, in the sense that even if a batch

3.5. ADAPTIVE LEARNING SYSTEMS 47

contains an outlier, the system may perform well. Examples of batch-based en-

sembles are the Learn++.NSE [Elwell and Polikar, 2011, 2009], and the Fast and

Light Boosting (FLB) [Chu and Zaniolo, 2004]. In both of these works, for learning

purposes, when a new batch is available, the ensembles are employed to predict it.

Then, each sample from the batch receives a weight proportional to its prediction

error and, a weighted training batch is obtained using the samples’ weights. The

objective is to train a new model using the weighted training batch. However, en-

semble prediction can still be performed on a sample basis. In the FLB algorithm, if

a change is detected using statistical decision theory, a new ensemble is created from

scratch for fast adaptation of the system to the current concept. This approach may

lead the system to a poor performance in scenarios where concepts can recur, since

models trained on old concepts are removed. FLB obtains the ensemble’s output

using the average of the models’ outputs. On the other hand, Learn++.NSE obtains

the ensemble’s output using a weighted average of the models’ outputs, where each

model’s combination weight is calculated using a weighted average of its prediction

errors on the old and current batches.

On-line Bagging (OB) is a sample-based ensemble inspired by the Bagging al-

gorithm [Oza and Russell, 2001]. Given a training data set D with T samples, OB

creates a set of N base models, each one trained with a different training data set

D
′

n (n = 1, . . . , N) of size T obtained from D by bootstrap. When T tends to

infinity, a data set D
′

n (n = 1, . . . , N) may contain K copies of a sample from D.

OB assumes that the distribution of K tends to a Poisson distribution. Specifically,

during the on-line phase of the OB, when a new sample is available, it is presented

K times for retraining each base model, where K ∼ Poisson(φ) and φ = 1. OB uses

simple average for combining the models’ outputs and no ensemble pruning strategy

is applied.

Incremental Boosting (IBoost) [Grbovic and Vucetic, 2011] and Incremental Lo-

cal Learning Soft Sensing Algorithm (ILLSA) [Kadlec and Gabrys, 2011] are ensem-

bles inspired on the SW concept. IBoost is a sample-based ensemble that keeps a

SW with the most recent samples. At a fixed frequency, a model may be added to

the ensemble if the ensemble’s prediction on the newest sample is incorrect. IBoost

has faster adaptation when compared to the batch-based ensembles. ILLSA is an

ensemble of RPLS models. ILLSA builds a map for each model using a weighted

two-dimensional Parzen Window method. The map stores each model’s performance

48 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

in the input-output space, such that it can be later employed to estimate the local

model’s performance given an input data and its prediction. Then models’ combi-

nation weights on the new sample are calculated by a Bayesian framework using the

posterior probabilities of the component-models, given the sample and the predic-

tion of the component-models for the sample. ILLSA does not prune dynamically

the ensemble. On-line Accuracy Updated Ensemble (OAUE) [Brzezinski and Ste-

fanowski, 2014], and Adaptive Classifiers-Ensemble system (ACE) [Nishida et al.,

2005; Nishida and Yamauchi, 2007] are ensembles for classification tasks that employ

a hybridization of strategies of sample-based and batch-based ensembles. Namely,

the models’ parameters are updated whenever a new sample is available. However, a

model is added to, or removed from, the ensemble only after accumulating a number

of samples.

In the OAUE, the error of each model fn, MSEt
n at time t, is estimated by

calculating the Mean Square Error (MSE) using the most recent m samples from

a data set D. Then, the combination weight of each model fn is obtained as:

1/(MSEt
n + MSEt

∗ + ǫ), where ǫ is a small positive value, and MSEt
∗ is a prediction

error threshold used as a reference to the combination weighting strategy. MSEt
∗

is obtained using the most recent m samples by MSEt
∗ =

∑Z
z=1 p(ωz)(1 − p(ωz))2,

where p(ωz) is the a priori probability (or percentage) of a sample belonging to class

ωz, for a Z-class problem. At time instants defined by a fixed period of m samples,

a candidate model is established by training it with the most recent m samples.

Afterwards, the candidate model is incrementally trained with the next batch of m

samples, and then it is finally added to the ensemble and a new candidate model is

established by training it with the new batch of the most recent m samples. If the

number of models raises above a threshold, the weakest model is substituted.

Additive Expert (AddExp) is the most popular on-line ensemble for regression

[Kolter and Maloof, 2005]. It applies a loss bound to measure the models’ perfor-

mances, and combination weights are adapted according to the current losses and a

decreasing factor, ̟ (factor for decreasing combination weights), used to decrease

a model’s combination weight when it predicts incorrectly. The output values must

be set in the interval [0, 1]. In AddExp, a new model is included when the total

ensemble’s loss is greater than a factor ϕ (factor for adding a new model). The new

model’s combination weight is set according to a factor ψ (factor for new model com-

bination weight). A model can be removed when the number of models is greater

3.5. ADAPTIVE LEARNING SYSTEMS 49

Algorithm 3.4 A generic on-line batch-based learning algorithm using a single
model.
Inputs: a data set D = {(xt, yt)}

T
t=1 divided into M batches (D1, . . . , DM), each one of

size m; an on-line supervised learner;

1. f ← Obtain a model trained with D1; Set k = 2;

2. while k 6 M do:

(a) Obtain the output prediction of f using Dk;

(b) Incrementally retrain the existing f using Dk;

(c) k ← k + 1;

3. end while

than a threshold. Two pruning strategies are proposed: oldest first or weakest first.

AddExp does not reveal which samples should be taken for training a new model.

3.5.3 Main Structures of On-line Learning Algorithms

Consider a data set D = {(xt, yt)}T
t=1, where samples from D are given incremen-

tally. Three scenarios are considered. The first is a batch-based scenario where D

is partitioned into M batches, D1, . . . ,DM , each one of size m, where T = M ·m;

and at each learning time step, k, a batch is provided for learning, as in Algorithm

3.4. The second is a sample-based scenario, where each sample (xt, yt) from D is

sequentially and individually provided for learning, as in Algorithm 3.5.

In the third scenario, the SW scenario defined in Algorithm 3.6, when a new

sample is available, an old model trained on the old data window is replaced by a

new model trained on the current data window. However, differently from the batch

approach, in a SW approach the new data window is obtained from the previous

window by adding only one sample, the newest sample, and discarding the oldest

sample. Algorithm 3.6 usually outperforms Algorithms 3.4 and 3.5, since in the SW

approach the model contains only information about the most recent set of samples.

However, Algorithm 3.6 is more computationally expensive, since a new model must

be trained for a window at each time step (each sample).

As the standard ELM [Huang et al., 2006] (detailed in Subsection 3.3.1) does

not have a retraining strategy, it can be tuned to operate with a SW of fixed size m.

50 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

Algorithm 3.5 A generic on-line sample-based learning algorithm using a single
model.
Inputs: a data set D = {(xt, yt)}

T
t=1; number of samples for the initial training phase, m;

an on-line supervised learner;

1. Initialization: Set the training data as Dtrain = {(xt, yt)}
m
t=1 ⊂ D;

2. f ← Obtain a model trained with Dtrain; set t = m + 1;

3. while t 6 T do:

(a) Obtain the output prediction of f using xt;

(b) Incrementally retrain the existing f using (xt, yt);

(c) t← t + 1;

4. end while

Algorithm 3.6 A generic on-line SW learning algorithm using a single model.
Inputs: a data set D = {(xt, yt)}

T
t=1; window’s size, m; a supervised learner;

1. Initialization: Set t = m and the window as Dt = {(xt, yt)}
m
t=1 ⊂ D;

2. f ← Obtain a model trained with Dt; Set t = m + 1;

3. while t 6 T do:

(a) Slide the window: Dt = Dt−1 + (xt, yt)− (xt−m, yt−m);

(b) Obtain the output prediction of f using xt;

(c) Replace f with a new model trained with Dt;

(d) t← t + 1;

4. end while

The On-line Sequential Extreme Learning Machine (OS-ELM) [Liang et al., 2006]

is an on-line ELM model that can learn data on a batch and/or sample bases. On

the on-line phase, once a new sample or a new batch is available, it is employed for

retraining, and then it can be discarded.

Lan et al. [2009] proposed the sample-based EOS-ELM ensemble, an ensemble

of OS-ELM models, which can provide better performance and more stability when

compared to the original OS-ELM. Initially, EOS-ELM creates a set of models, all

trained using the same activation function and number of hidden neurons, and then

3.5. ADAPTIVE LEARNING SYSTEMS 51

Algorithm 3.7 A generic on-line batch-based ensemble learning algorithm.
Input: a data set D = {(xt, yt)}

T
t=1 divided into M batches (D1, . . . , DM), each one

of size m; model error measure, e(); an on-line supervised learner; maximum number of
models, N ;

1. Initialization: Set the ensemble as E← ∅; n = 1;

2. fn ← Obtain a model trained with Dn; Obtain the prediction error of fn on Dn

using the error function e(); Combination weight fn based on its prediction error;
Set E← E ∪ {fn}, and n← n + 1;

3. while n 6 M do:

(a) Obtain the output prediction of E based on the models’ combination weights;

(b) Obtain the prediction error of all the models on Dn using e();

(c) Weight all the models based on their prediction errors;

(d) Incrementally retrain all the existing models using Dn;

(e) Train a new model fn with Dn; Obtain the prediction error of fn on Dn using
e(); Weight fn based on its prediction error; Set E← E ∪ {fn};

(f) if |E| > N then Exclude a model from E;

(g) n← n + 1;

4. end while

the models’ outputs are combined by average. In the on-line phase, when a new

sample becomes available, EOS-ELM retrains all the models. EOS-ELM has low

diversity between the models, since all the models are trained on the same data

and they have the same architectural structure. One alternative is the OB which

manipulates the training samples so that each model of the ensemble can be retrained

on different samples, increasing the diversity degree between the models.

Other algorithms are the on-line batch-based ensemble and the on-line sample-

based ensemble using a SW, detailed in Algorithms 3.7 and 3.8, respectively. They

depend on the number of models N , and on e(), a generic model error function for

measuring the accuracy of the ensemble and the accuracies of the individual models

on a data. For example, for the OAUE, the models’ errors are obtained using the

MSE between the predicted and real outputs on the current window. Algorithm

3.8 depends on a factor for adding a new model on the ensemble. Specifically, a

new model is included into the ensemble when the ensemble’s prediction error on

52 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

Algorithm 3.8 A generic on-line sample-based ensemble learning algorithm using
SW.
Input: a data set D = {(xt, yt)}

T
t=1; window’s size, m; model error measure, e(); an

on-line supervised learner; maximum number of models, N ; α, factor for adding a new
model;

1. Initialization: set t = m, Dt = {(xt, yt)}
m
t=1 ⊂ D, n = 1, and set the ensemble as

E← ∅;

2. fn ← Obtain a model trained with Dt; Obtain the prediction error of fn on Dn

or (xt, yt) using the error function e(); Weight fn based on its prediction error; Set
E← E ∪ {fn}, and t = m + 1;

3. while t 6 T do:

(a) Slide the window: Dt = Dt−1 + (xt, yt)− (xt−m, yt−m);

(b) Obtain the output predictions of E based on the models’ combination weights;

(c) Obtain the prediction error of all the models on Dn or (xt, yt) using e();

(d) Weight all the models based on their prediction errors on Dt or (xt, yt);

(e) Incrementally retrain all the existing models using (xt, yt);

(f) if e(E) on (xt, yt) > α then Train a new model fn+1 with Dt; Obtain the
prediction error of fn on Dn or (xt, yt) using e(); Weight fn based on its
prediction error; Set E← E ∪ {fn+1}, and n← n + 1;

(g) if |E| > N then Exclude a model from E;

(h) t← t + 1;

4. end while

a new sample is greater than a predefined factor. In contrast, in Algorithm 3.7, a

new model is added when a new batch is available. In both algorithms, a model is

replaced by a new model, if the number of models exceeds N .

Learn++.NSE and FLB use the scheme presented in the Algorithm 3.7. However,

they do not apply Step 3(d), i.e. no retraining of models is applied. AddExp employs

a scheme similar to Algorithm 3.8, a robust solution when compared to Algorithm

3.7, since Algorithm 3.8 evaluates the models and the ensemble on every new sample.

Additionally, Algorithm 3.8 can add new models at a high frequency when compared

to the batch-based ensemble, avoiding the on-line ensemble’s degradation. OAUE

weights models using the function e() on Dt, while AddExp uses the function e() on

(xt, yt). OAUE performs Algorithm 3.8 with some modifications, since new models

3.5. ADAPTIVE LEARNING SYSTEMS 53

are added when m new samples are available/accumulated (that is, at a fixed period

of m samples), and these new m samples are grouped to form a new batch. A new

model is trained by jointly using the samples of both the new batch and the previous

batch. Although the described batch-based algorithms are employed to learn and

predict a batch at each iteration of the algorithm, these algorithms can be modified

so that the prediction can be performed sample by sample.

3.5.4 On-line Single Learning Models

This Subsection describes two on-line single learning models, OS-ELM and RPLS.

They are on-line versions of the ELM and PLS/SIMPLS learning algorithms detailed

in Subsections 3.3.1, and 3.3.2, respectively.

On-line Sequential ELM (OS-ELM). The OS-ELM model is an on-line ELM

that uses concepts of the RLS algorithm [Haykin, 1996]. The OS-ELM learning

consists of two phases: the initialization phase and the sequential learning phase

[Liang et al., 2006]. In the initialization phase, an initial training data set, D0 =

{(xt, yt)}
T0

t=1 from a data set D = {(xt, yt)}T
t=1 (with T0 < T), is considered for

designing an initial ELM. In the sequential learning phase, on-line samples are em-

ployed either one-by-one or in batches/chunks (with fixed or varying size) for on-line

incremental retraining of the ELM, where the (k + 1)-th chunk of the data set is

given by:

Dk+1 = {(xt, yt)}
t=
∑k+1

l=0
Tl

t=(
∑k

l=0
Tl)+1

, (3.21)

where k > 0 and Tk+1 is the number of samples in the (k + 1)-th chunk. The

initialization phase is similar to the standard ELM learning. The initial output

synaptic weights vector β0 is determined as:

β0 = (HT
0 H0)−1HT

0 y0, (3.22)

54 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

where y0 = [y1, . . . , yT0
]T is the output vector from D0; and H0 is the initial hidden

layer output matrix obtained with D0:

H0 =

g(a1, b1,x1) . . . g(aL, bL,x1)
... . . .

...

g(a1, b1,xT0
) . . . g(aL, bL,xT0

)

T0×L

. (3.23)

Considering P0 = (HT
0 H0)−1 as an initial covariance matrix, Equation (3.22) can

be written as:

β0 = P0H
T
0 y0. (3.24)

Upon the arrival of (k + 1)-th chunk, the new output synaptic weights vector βk+1

is computed using concepts of the RLS algorithm as follows:

βk+1 = βk + Pk+1H
T
k+1(yk+1 −Hk+1βk), (3.25)

Pk+1 = Pk −PkHT
k+1(I + Hk+1PkHT

k+1)
−1Hk+1Pk , (3.26)

Hk+1 =

g(a1, b1,x(
∑k

l=0
Tl)+1

) . . . g(aL, bL,x(
∑k

l=0
Tl)+1

)
... . . .

...

g(a1, b1,x∑k+1

l=0
Tl

) . . . g(aL, bL,x∑k+1

l=0
Tl

)

Tk+1×L

, (3.27)

yk+1 =
[

y
(
∑k

l=0
Tl)+1

, . . . , y∑k+1

l=0
Tl

]T

, (3.28)

where Pk is a covariance matrix of the k-th chunk. For detailed derivation of Equa-

tions (3.25) and (3.26) the paper [Liang et al., 2006] is suggested. It is assumed

that the samples are such that rank(H0) = L, so that HT
0 H0 is invertible. Theorem

II.1 of [Liang et al., 2006] states that if L training samples in D0 are distinct, then

rank(H0) = L. When the (k + 1)-th chunk contains only one sample, Equations

(3.25) and (3.26) can be written using the Sherman-Morrison formula2 as [Maponi,

2007]:

βk+1 = βk + Pk+1hk+1(yk+1 − hT
k+1βk), (3.29)

Pk+1 = Pk −
Pkhk+1h

T
k+1Pk

1 + hT
k+1Pkhk+1

, (3.30)

2
(
S + uvT

)
−1

= S−1 − S
−1uvT

S
−1

1+vT S−1u
.

3.5. ADAPTIVE LEARNING SYSTEMS 55

Algorithm 3.9 Learning algorithm for the OS-ELM model.
Input: a data set D = {(xt, yt)}

T
t=1; a hidden layer activation function g(x); a number of

hidden nodes L; number of samples for the initialization phase T0 (where L 6 T0 < T),
where at least L samples are distinct;

1. Initialization/training phase: Consider a training data set D0 = {(xt, yt)}
T0

t=1;

(a) Randomly assign input synaptic weights aj and biases bj , j = 1, . . . , L;

(b) Calculate H0 using D0 and Equation (3.23);

(c) Obtain the output synaptic weight β0 through Equation (3.24), where P0 =
(HT

0 H0)−1 and y0 = [y1, . . . , yT0
]T ; Set k = 0;

2. Sequential/on-line learning phase: Present the (k + 1)-th chunk Dk+1 defined
in Equation (3.21);

(a) Obtain matrix Hk+1 using Dk+1 and Equation (3.27);

(b) Set yk+1 using Equation (3.28);

(c) Obtain Pk+1 and βk+1 using Equations (3.26) and (3.25), respectively;

(d) Set k ← k + 1; Go to Step 2.

where hk+1 = [g(a1, b1,x(
∑k

l=0
Tl)+1

), . . . , g(aL, bL,x(
∑k

l=0
Tl)+1

)]. The OS-ELM algo-

rithm is summarized in Algorithm 3.9.

Recursive Partial Least Squares (RPLS). RPLS is widely employed in indus-

trial process monitoring and control [He et al., 2015; Ni et al., 2014]. The main idea

is to adapt a PLS model in order to capture all the process changes. In [Qin, 1998], a

RPLS algorithm with a SW and fixed forgetting factor that controls the strength of

the adaptation is proposed. The main disadvantage is that a fixed forgetting factor

may not be sufficient to track all the systems’ dynamics. Ahmed et al. [2009] devel-

oped a RPLS model which is implemented by updating recursively the mean and

variance data, and the oldest sample is excluded and the newest sample is included

into the model simultaneously. This method can be seen as a SW approach, since

the model is always trained using a fixed number of the most recent samples. It

allows the adaptation to new events and the partial retention of the process history.

Inspired by this approach, this thesis proposes a recursive SIMPLS algorithm,

detailed in Algorithm 3.10. When a new sample is available, the new sample is

included to, and the oldest sample is removed from, the previous training data set.

56 CHAPTER 3. LEARNING MODELS APPLIED TO SOFT SENSORS

Algorithm 3.10 Learning algorithm for the recursive SIMPLS method.
Input: a data set D = {(xt, yt)}

T
t=1; window’s size, m; the maximum number of latent

variables ℓmax (with 1 6 ℓmax 6 r);

1. Initialization: Set D0 ← ∅;

2. for t = 1, . . . , T :

(a) if (t > m)

i. then Slide the window: Dt = Dt−1 + (xt, yt)− (xt−m, yt−m);

ii. else Fill the window: Dt = Dt−1 + (xt, yt);

(b) if (t = m) then Go to Step 2(d); if (t < m) then Go to Step 2;

(c) Obtain an output prediction of model f using xt;

(d) Obtain the current input matrix Xt and output vector yt from Dt;

(e) if (t = m)

i. then Obtain the mean and SD of the data Dt;

ii. else Update the mean and SD of the data with the new sample (xt, yt) using
Equations (2.4) and (2.5);

(f) Scale Xt and yt to zero mean and unit variance using Equation (2.2);

(g) f ← Obtain a SIMPLS model trained with Xt and yt using Algorithm 3.3;

3. end for

The mean and SD of the data are obtained for the first time (when t = m) in Step

2(e)i; otherwise the mean and SD are recursively updated with the new sample using

Equations (2.4) and (2.5) in Step 2(e)ii. The main objective is to scale the input

matrix Xt and output vector yt (to zero mean and unit variance) for the SIMPLS

learning procedure (Step 2(g)). In Step 2(g), the best number of latent variables

of the SIMPLS model can be obtained by SSE and/or k-fold cross-validation [Arlot

and Celisse, 2010]. It is worth noting that Step 2(c) involves some sub-steps: xt is

scaled using the current mean and SD; the scaled xt is presented to the SIMPLS

model and so a scaled output prediction is given; and the scaled output prediction

is rescaled into the original magnitude/scale (unscaled output).

3.6. CONCLUSION 57

3.6 Conclusion

This Chapter presented important issues related to intelligent learning systems.

Theoretical analyzes showed that the ensemble error is guaranteed to be less than

or equal to the average error of the ensemble members. It was described that the

success of an ensemble system depends on the diversity of the ensemble members.

The ambiguity decomposition showed that diversity itself is not enough, because

an increase on the diversity may also produce an increase of the models’ errors

as well. Therefore, the success of an ensemble system depends on the optimal

balance between the diversity and accuracy of the ensemble members. In this case,

an optimal combination strategy is an important factor for achieving this balance.

However, most ensemble systems consider only one combination strategy during

ensemble development. In this context, meta-heuristics optimization are valuable

tools to select an appropriate set of accurate and diverse models, and the optimal

combination strategy in ensemble systems. In this thesis, meta-heuristics based

approaches will be proposed for automatic ensemble development/learning.

This Chapter also described that additional strategies are necessary to guaran-

tee the ensemble performance in dynamic environments. In this case, the ensem-

ble should adapt the model’s combination weights, adapt the models’ parameters,

and/or add new models or exclude models. This Chapter showed that some adap-

tive ensembles only add or exclude models after accumulating a certain number of

samples, which makes difficult the system adaptation to abrupt changes. In this

context, having ensembles adapted on every new sample is a key element to achieve

superior predictive performance in changing environments. Sample-based learning

is one of the elements that are explored in the on-line ensemble learning methods

proposed in this thesis.

Chapter 4

Automatic Ensemble Development

Using Meta-Heuristics

Contents

4.1 Introduction . 60

4.2 Proposed Methodology: Design of NNs and Combina-

tions . 62

4.2.1 Training, Validation, and Testing Data Sets 63

4.2.2 Generation of Candidate Neural Networks 63

4.2.3 Proposed Combination Strategies 64

4.3 Proposed Methodology: NNE Design by GA and SA . . 65

4.3.1 Genetic Algorithm for Designing Neural Network Ensem-

ble (GA-NNE) . 68

4.3.2 Simulated Annealing for Designing Neural Network En-

semble (SA-NNE) . 70

4.4 Experimental Results . 72

4.4.1 Data Set Description . 72

4.4.2 Individual Neural Networks 74

4.4.3 Generation of the Candidate Neural Networks 76

4.4.4 Genetic Algorithm for Designing Neural Network Ensembles 77

59

60 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

4.4.5 Simulated Annealing for Designing Neural Network En-

sembles . 80

4.4.6 The Models Selected by GA-NNE and SA-NNE 81

4.4.7 Comparisons of the Ensemble Systems 84

4.5 Conclusion . 89

4.1 Introduction

In the recent decades ensemble learning has established itself as a valuable strat-

egy within the computational intelligence modeling and ML community. Ensemble

learning has proven to be effective in a broad set of ML problems, including feature

selection, learning in small data sets, local learning, concept drift theory, among oth-

ers; and the ensemble learning effectiveness has been recognized in different bench-

mark data sets [Brown et al., 2005b; Liu et al., 2000; Coelho and Nascimento, 2010].

In this context, Neural Network Ensembles (NNEs) have been widely investigated

for both classification and regression problems [Lan et al., 2009]. The main motiva-

tion is that the generalization ability of a NNE system can be significantly better

than the generalization ability of a single NN model.

Section 3.4 described that the key factors of the ensemble system are diversity,

combination strategy, accuracy, and ensemble member selection. Research has en-

couraged, or explored, diversity by manipulating the training data set, e.g. using

bootstrap [Oza and Russell, 2001] or noise injection [Zhang, 2007]; or by designing

ensembles with different architectures, e.g. NN models with different numbers of

hidden neurons in NNE systems [Fortuna et al., 2009]; or heterogeneous learning

algorithms, e.g. an ensemble with NN and SVM models [Coelho and Nascimento,

2010]. Other key factor of an ensemble system is the approach used to combine the

individual models in the ensemble. The combination strategy is a way for ensuring

ensemble accuracy and balancing the diversity between the individual models.

A major drawback in ensemble learning is that it is usually necessary to combine

a large number of models to ensure the ensemble accuracy. A good way to alleviate

this problem is the adequate selection of the subset of models from the original

set of models [Wang and Guo, 2013] by ensemble pruning [Martínez-Muñoz et al.,

2009]. The aim is to find a good subset of ensemble members in order to improve

4.1. INTRODUCTION 61

generalization ability, which additionally reduces the system complexity. However,

ensemble pruning is a difficult problem whose solution is commonly computationally

expensive. Pruning an ensemble with N models requires searching in the space of

the 2N − 1 non-empty solutions to minimize a cost function correlated with the

generalization error.

To address this problem, a number of different meta-heuristics have been de-

veloped for model selection. An example is the Genetic Algorithm based Selective

Ensemble (GASEN), which trains a set of NNs using bootstrap to increase the di-

versity among the models. GASEN uses a GA to select an optimal subset of NN

models to include in the ensemble. In this strategy, a combination weight derived

from the marginal improvement in the fitness (measuring the solution quality) asso-

ciated with including a model in the ensemble is assigned to each model. Then, the

models whose combination weights are higher than a fixed threshold are selected for

inclusion in the ensemble [Zhou et al., 2002]. The main drawback of GASEN is that

the NNs have fixed architectures and the combination techniques are only simple

average and weighted average for regression and classification, respectively.

Liu et al. [2000] present an automatic strategy for designing ensemble systems

using Evolutionary Learning and Negative Correlation Learning (EENCL). Nega-

tive Correlation Learning (NCL) generates negatively correlated NN models using a

correlation penalty term in the error function to encourage specialization and coop-

eration among the models. EENCL does not explore the linear combination among

the models, and the models’ architectures are also predefined. On the other hand,

Bayesian Artificial Immune System (BAIS) [Castro and Zuben, 2011] is an immune-

inspired methodology for designing NNEs with better generalization ability when

compared to the EENCL. Artificial Immune Systems is a computational paradigm

inspired by the immunological system of vertebrates, where the immunological sys-

tem’s characteristics of learning and memory are exploited to solve a problem. BAIS

introduces diversity in the models’ architecture. However, only one combination type

is used for designing the NNE systems.

This Chapter proposes and compares GA and SA based approaches for the auto-

matic development of NNEs for regression problems. The main contribution of the

proposed method is the development of optimization techniques to select the best

subset of models to be aggregated taking into account all the key factors of ensem-

ble systems (i.e. diversity, combination strategy, and ensemble member selection).

62 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

First, a set of models with a high degree of diversity is generated. For each model,

the proposed approach creates a different training data set by applying bootstrap.

Then, the method selects the best model’s architecture by varying the number of

hidden neurons, the activation functions, and the synaptic weights initializations.

Finally, the optimization strategy is employed to select both the best subset of

models and the optimal combination strategy for aggregating the subset of mod-

els. Experiments on five data sets are reported to evaluate the effectiveness of the

proposed methodologies. Results show that the proposed methodologies outperform

state-of-the-art approaches including Simple Bagging, NCL, AdaBoost [Cristinacce

and Cootes, 2007], and GASEN in terms of generalization ability.

This Chapter is organized as follows. Section 4.2 and Section 4.3 describe the

proposed methodologies. Specifically, the design of the initial set of NN models

and the proposed combination strategies are described in Section 4.2. Section 4.3

details the proposed methodology for designing NNE systems using GA and SA.

Experimental results are detailed and analyzed in Section 4.4. Section 4.5 contains

concluding remarks.

4.2 Proposed Methodology: Design of NNs and

Combinations

In NN modeling, there are several NN structures and NN parameters that need

to be carefully chosen. In the NN structure selection, the number of layers, the

number of neurons in each layer, and the activation functions are usually chosen.

In the NN parameter selection, the synaptic weights initialization method, and the

learning rates are usually selected (besides the NN synaptic weights adaptation

during the learning process). Techniques have been proposed for the NN parameter

selection and the NN structure selection [Matias et al., 2014]. However, even if the

resulting NN is correctly designed, the generalization ability can be a problem [Rosin

and Fierens, 1995]. Ensemble learning has been established as a very promising

approach for improving the generalization of NN systems [Torres-Sospedra et al.,

2005; Dondeti et al., 2005; Yu-Bo and Zhi-Bin, 2011]. The next Subsections describe

the data set manipulation performed before training NNs, the design/training of the

candidate (or initial set of) NNs, and the proposed combination strategies.

4.2. PROPOSED METHODOLOGY: DESIGN OF NNS AND COMBINATIONS63

4.2.1 Training, Validation, and Testing Data Sets

Consider an initial data set (original data set) Dinit = {(xt, yt)}T
t=1 of size T , where

xt ∈ R
r×1 is the input vector, and yt ∈ R is the output variable. The initial data

set is divided into a training data set Dtrain = {(xt, yt)}
T0

t=1, a validation data set

Dvalid = {(xt, yt)}
T0+T1

t=T0+1, and a testing data set Dtest = {(xt, yt)}
T =T0+T1+T2

t=T0+T1+1 , of sizes

T0, T1 and T2, respectively, and T = T0 + T1 + T2.

Bootstrap can be applied to the training data set for promoting diversity in the

ensemble. In ML, bootstrap is employed to expand upon a single realization of a

distribution or generate different data sets that can provide a better understanding

of the mean and variability of the original unknown distribution [Jia and Culver,

2006]. Bootstrap is performed by randomly sampling with replacement from the

original training data set Dtrain. To sample with replacement, one sample {(xt, yt)}

from Dtrain is randomly selected and then placed into a new training data set Db
train.

Db
train must contain the same number of samples as Dtrain, i.e. T0 samples. Random

sample selections from Dtrain continues until Db
train has been filled with T0 samples.

The Db
train data set may include multiple copies of the same sample and no copies

of other samples from Dtrain.

Let us assume a set of N candidate NN models, i.e. f1, . . . , fN . N different train-

ing data sets Db
train are obtained from Dtrain by bootstrap, i.e. D1

train, . . . ,D
N
train.

Each model fn is associated and trained with a different training data set Dn
train.

Dvalid is used to control the overfitting by early stopping [Jeong and Kim, 2005].

The testing data set Dtest is employed to evaluate the ensemble’s performance in

Section 4.3.

4.2.2 Generation of Candidate Neural Networks

After creating N training data sets, D1
train, . . . ,D

N
train, the next step is to train N

candidate NN models. NN models are implemented using SLNF architecture trained

by the LMBP algorithm [Hagan and Menhaj, 1994], described in Subsection 3.3.1.

The learning parameters are set according to the authors’ suggestions: µ = 0.01,

and ϑ = 10.

For each training data set Dn
train, the topology of the model fn is chosen from

a collection of NN models based on its performance. This evaluation is done using

the MSE between the estimated output of the NN and the actual output y in the

64 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

validation data set Dvalid. The collection of models is obtained by varying the

number of neurons in the hidden layer L (from 1 to 10); varying among two activation

functions (linear ζ(x) = x, and fast hyperbolic tangent ̺(x) = 1− 2/(1 + exp(2x)))

for the hidden layer activation function g(x) and for the output layer activation

function h(x); and three different synaptic weights initialization methods. The

employed synaptic weights initialization methods are:

• Randomly initialize the synaptic weights within the interval [−1/r, 1/r], where

r is the number of input neurons [Kasabov, 1996];

• Nguyen-Widrow approach: set initial synaptic weights using the Nguyen-Widrow

initialization method [Nguyen and Widrow, 1990];

• Randomly initialize the synaptic weights within the interval [−0.5, 0.5], using

a uniform distribution [Škutová, 2008].

Therefore, at the end of this process, the best NN model for each training data set

Dn
train (n = 1, . . . , N) is obtained, producing a set of N candidate NN models.

4.2.3 Proposed Combination Strategies

This thesis uses the main combination strategies reported in the literature: mean,

trimmed mean, median [Polikar, 2006], and weighted mean [Hashem, 1994]. In this

Subsection, for the sake of simplicity in describing the combination strategies, and

without loss of generality, it is assumed that N candidate NN models are used to

constitute an ensemble, that fn(xt) is the output of model fn, and that F (xt) is the

ensemble’s output. If only a strict subset ofN∗ candidate models (with 1 < N∗ < N)

from the original set of N models is combined, then in the combination strategies

described below, only such N∗ models are used in the calculation of the combination

weight wn of each model fn of the subset of combined models. The combination

strategies (using a sample (xt, yt)) are given by:

1. Mean: the ensemble’s output is calculated by averaging the N models’ predic-

tions: F (xt) = 1
N

∑N
n=1 fn(xt);

2. Trimmed mean: the ensemble’s output is obtained as the trimmed mean of

the N predictors’ outputs. Trimmed mean excludes the lowest predictors’

4.3. PROPOSED METHODOLOGY: NNE DESIGN BY GA AND SA 65

outputs and the highest models’ outputs before obtaining the mean, avoiding

extreme outputs. For example, considering a P% trimmed mean, the mean

is calculated by removing a percentage of P%/2 of the highest NN models’

outputs and a percentage of P%/2 of the lowest NN models’ outputs. (This

thesis sets P% as 10%).

3. Median: the ensemble’s output is the median among all the models’ outputs:

F (xt) = median
n=1,...,N

{fn(xt)};

4. Weighted mean: the ensemble’s output is calculated through a weighted sum of

the models’ outputs: F (xt) =
∑N

n=1 wnfn(xt); where each combination weight

wn is related to the accuracy of model fn, and the combination must satisfy

the following constraints: 0 6 wn 6 1 and
∑N

n=1 wn = 1. In this Chapter,

the combination weight wn of a model fn is obtained using its prediction

error (MSEn) in the validation data set Dvalid. Specifically, MSEn is the MSE

between the real outputs of Dvalid and the estimated outputs of fn using

Dvalid. A combination weight wn is obtained as [Dondeti et al., 2005]: wn =

adjusted MSEn/
∑N

k=1 adjusted MSEk, where the “adjusted MSEn” is obtained

as: adjusted MSEn = (1− average MSEn); and the average MSEn is given by:

average MSEn = MSEn/
∑N

k=1 MSEk.

4.3 Proposed Methodology: NNE Design by GA

and SA

This Section proposes two different methods for automatic ensemble development:

Genetic Algorithm for Designing Neural Network Ensembles (GA-NNE, Subsection

4.3.1), and Simulated Annealing for Designing Neural Network Ensembles (SA-NNE,

Subsection 4.3.2). The ensemble construction using GA-NNE and SA-NNE is per-

formed by two main steps:

1. Generation of candidate NN models;

2. Selection of both a subset of NN models and the best combination strategy

for aggregating this subset.

66 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

models

1 c...

combination type

Available Neural Networks:

...
comb.

#1

comb.

#2

...
comb.

#z

Available combination strategies:

f1 f2 fN

f1 f2 fN

Figure 4.1: Binary solution representation.

The aim is to produce an ensemble which has good performance when compared to

an individual NN performance. This objective is achieved by producing and selecting

diverse NN models and then selecting the most suitable combination strategy.

The sub-steps for the generation of candidate NN models are the same as in

Subsections 4.2.1 and 4.2.2. For generating N candidate NN models, first N different

training data sets are generated by applying bootstrap. Then, the most suitable

NN’s architecture is chosen for each training data set. At the end of this process N

candidate NN models are generated.

For defining the method proposed for the selection of a subset of NN models and

a combination strategy using GA-NNE and SA-NNE algorithms, first it is necessary

to introduce (i) how the possible solutions are encoded, and (ii) the fitness function.

Solution Encoding. A candidate solution to the problem is encoded as a bi-

nary string sequence. The solution contains information about the ensemble of NN

models to be designed. The solution structure consists of two parts, as illustrated in

Figure 4.1. The first part is the model section, which contains information about the

subset of NN models for composing the ensemble. The second part is the combina-

tion type, which represents the combination strategy to be employed for aggregating

the subset of NN models. As an example, consider a set of N candidate NN models

{f1, f2, . . . , fN}, where each locus of the model part is related to the absence “0”

or presence “1” of a model fn in the ensemble system. Consider z as the num-

ber of combination strategies, and c as the number of bits to represent them, then

c = ⌈log2(z)⌉, where ⌈v⌉ is the smallest integer not lower than v. The proposed

methodology uses the four combination strategies mentioned in Subsection 4.2.3:

4.3. PROPOSED METHODOLOGY: NNE DESIGN BY GA AND SA 67

models combination

type

1 1 0 1 0 1 0 1 10

f1 f2 f3 f4 f5 f6 f7 f8

(a) Binary solution representation.

selected

Neural Networks

comb.

#3

selected

combination type

weighted

mean

f1 f2 f5 f7

(b) Decoding the solution.

Figure 4.2: Example of a solution.

mean, trimmed mean, median, and weighted mean, with their binary representations

being “00”, “01”, “10”, and “11”, respectively. Figure 4.2 illustrates an example of

a solution representation using a set of eight NN models {f1, f2, f3, . . . , f8}. Figure

4.2(a) shows the binary encoding of the solution, and Figure 4.2(b) shows the decod-

ing of the same solution. The final subset of NN models to compose the ensemble is

{f1, f2, f5, f7} and the selected combination strategy is weighted mean (i.e., “11”).

Fitness Function. For a candidate solution containing a subset of NNs, the fitness

function is calculated based on the performance of the subset of NNs. This is

obtained through the aggregation of the subset of NN models using the selected

combination strategy. The subset of NNs is employed to estimate the outputs on the

testing data set Dtest. Then, the estimation error of the subset of NNs is computed

using the MSE between the estimated outputs (of the subset of NNs) and the real

outputs in the testing data set Dtest. Here, the notation MSEtest is employed to

refer to the MSE of this subset of NNs in Dtest. The fitness of a candidate solution

containing a subset of NNs is defined by 1/MSEtest.

68 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

4.3.1 Genetic Algorithm for Designing Neural Network

Ensemble (GA-NNE)

GAs were proposed by Holland [Holland, 1992] as a global optimization approach

inspired by natural evolution and survival of the fittest. GAs use a solution popu-

lation (chromosomes) which evolves by means of selection, crossover, and mutation

operators [Sivanandam and Deepa, 2007].

GA-NNE is herein proposed for evolving a population of candidate ensembles

[Soares et al., 2013], as shown in Algorithm 4.1. GA-NNE starts by setting the

parameters N , c, Gmax, p%
m, p%

s , p%
c , e, and K. In GA-NNE, each chromosome

represents an ensemble to be designed. A chromosome is implemented using a binary

solution representation shown in Figure 4.1, and 1/MSEtest is the fitness function.

In Step 1, a set of N candidate NN models is produced according to Subsection

4.2.2. In Step 2 an initial population P1 with K individuals is generated, where each

individual has length of (N + c) bits.

Step 3 evaluates each individual of P1 using the fitness function. This is done by

evaluating the performance of the subset of models (information contained in the

model part) using all possible combination strategies. Step 4 assigns the combination

strategy with the best performance to the chromosome (last c bits, i.e., combination

type part). This strategy ensures that the ensemble system will always be designed

using the optimal combination type. In Step 6, the algorithm loops over Gmax

generations, where the generation number loops over G = 1, . . . , Gmax. Sub-step

6(a) selects a percentage of p%
s of the individuals of population PG by using Roulette

Wheel Selection [Sivanandam and Deepa, 2007]. In this operation, an individual

of PG is picked to be a parent with a probability proportional to its fitness. The

individuals selected to be parents are stored sequentially one by one in a population

PSP .

Sub-step 6(b) combines the selected parents in PSP to compose a new popula-

tion of offspring OG. The crossover operation (i.e. combination of chromosomes for

producing new chromosomes) is performed using the population PSP according to

a predefined crossover probability p%
c . The crossover probability defines how often

crossover will be performed [Sivanandam and Deepa, 2007]. For a given value of

p%
c , a percentage of (1 − p%

c) of the offspring are copies from their parents, and a

percentage of p%
c of the offspring are obtained by crossover. In this thesis, p%

c is set

4.3. PROPOSED METHODOLOGY: NNE DESIGN BY GA AND SA 69

Algorithm 4.1 Genetic algorithm for designing neural network ensemble (GA-
NNE).

Inputs: number of candidate models N ; number of bits to represent all the combination
strategies c; mutation probability p%

m; selection probability p%
s ; crossover probabil-

ity p%
c ; number of individuals selected by elitism e; number of individuals of the

population K; maximum number of generations Gmax;

1. Produce N candidate models according to Subsection 4.2.2;

2. Generate randomly an initial population P1 with K individuals;

3. Evaluate the fitness of each individual of P1 with all possible combination strategies;

4. Assign the best combination strategy (on the last c bits) to each individual of P1

according to the fitness;

5. Set generation number as G← 1;

6. Repeat:

(a) Select a percentage p%
s of the individuals of PG; and store them sequentially

in a population PSP of selected parents;

(b) Perform crossover, with a crossover probability p%
c , on the individuals of PSP

to generate a new population of offspring OG;

(c) Mutate randomly with probability p%
m on the first N bits (the model part) of

the individuals in OG;

(d) Evaluate the fitness of each individual in OG with all possible combination
strategies;

(e) Assign to each individual in OG the best combination strategy (on the last c
bits) according to the fitness;

(f) Select individuals for the new population PG+1:

i. Set P ′
G as a temporary population P ′

G ← (OG ∪ PG);

ii. Apply elitism by assigning to PG+1 the e individuals of P ′
G with the best

fitness;

iii. Select (K − e) individuals of P ′
G for PG+1;

(g) Set G← G + 1;

until G = Gmax.

70 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

to 100%; and the crossover operation is performed by combining two parents from

PSP for producing two offspring. To perform each crossover operation, the next set

of two parents is sequentially selected from PSP .

The crossover operation is done using uniform crossover with a random mask,

where two parents, parent1 and parent2, generate two offspring, offspring1 and off-

spring2. The method applies crossover only on the model part of each individual.

First, a random binary mask of length N is produced. If there is a 0 in a bit of

the mask, then the corresponding bit from parent1 is copied to the same position in

offspring1 and the corresponding bit from parent2 is copied to the same position in

offspring2. If there is 1 in the bit of the mask, the corresponding bit from parent1

is copied to the same position in offspring2 and the corresponding bit from parent2

is copied to the same position in offspring1 [Haupt, 2004].

Sub-step 6(c) selects a percentage of p%
m of the individuals from population OG

to be mutated on the model part, where p%
m is the mutation probability. In this

operation, for each selected individual one or more bits can be randomly changed

to foster diversity in the offspring population. Sub-steps 6(d), and 6(e) evaluate

each individual of OG with all possible combination strategies and then the best

combination type is assigned to the last c bits.

Individuals for composing the new population PG+1 are picked in sub-step 6(f).

In this operation, elitism is applied, by means of which e (with e < K) individuals

with the best fitness from OG ∪ PG are assigned to PG+1 (of size K). Then (K − e)

individuals of PG+1 are selected from OG ∪ PG using Roulette Wheel Selection.

After Gmax generations, an individual with the best fitness of the last population

is selected as the final solution to the problem.

4.3.2 Simulated Annealing for Designing Neural Network

Ensemble (SA-NNE)

SA is a meta-heuristic that has proven to be effective in solving many difficult prob-

lems, especially combinatorial problems. Annealing is a process to change materials’

properties. It is performed by heating a material and then freezing it slowly until it

crystallizes. As the heating allows the atoms to move randomly, the cooling process

should be slow enough to allow atoms to move themselves to lower energy positions.

Considering this procedure as an optimization problem, if the atoms’ arrangement

4.3. PROPOSED METHODOLOGY: NNE DESIGN BY GA AND SA 71

Algorithm 4.2 Simulated annealing for designing neural network ensemble (SA-
NNE) (Maximization problem).

Inputs: number of candidate models N ; number of bits to represent all the combination
strategies c; initial temperature τi; final temperature τf ; number of tries per iteration
tr; colling factor ν; Hamming distance H;

1. Produce N candidate models according to Subsection 4.2.2;

2. Generate randomly a current solution sc composed of (N + c) bits;

3. Set τ ← τi;

4. Repeat:

(a) Set q ← 0;

(b) Repeat:

i. Select randomly a new (N + c)-bits-solution sn in the neighborhood of sc

defined using a Hamming distance H;

ii. if eval(sc) < eval(sn)

A. then sc ← sn;

B. else if random[0, 1) < exp
(

eval(sn)−eval(sc)
τ

)

a. then sc ← sn;

iii. Set q ← q + 1;

until q = tr.

(c) Set τ ← τ × ν;

until τ 6 τf .

is achieved with the lowest energy level, the arrangement is an optimal solution to

the energy minimization problem. SA applies this analogy in order to search for the

optimal solution to an optimization problem [Michalewicz and Fogel, 2000]. The

main SA’s advantage is the ability to avoid becoming trapped at local optima.

This Section develops a SA based approach for designing ensembles of NN mod-

els, as detailed in Algorithm 4.2. SA-NNE is able to simultaneously select the best

subset of models from a set of candidate models, and the best combination type for

aggregating the subset. A solution is encoded according to Figure 4.1 and 1/MSEtest

is used as the evaluation function, given by eval().

72 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

SA-NNE is started by setting the parameters N , c, τi, τf , tr, ν, and H. Step 1

produces N candidate NN models according to the description in subsection 4.2.2.

In Step 2, a current solution sc of size (N + c) bits is randomly generated.

Step 3 assigns the initial temperature τi to the temperature parameter τ . In

Step 4, SA-NNE loops over until temperature τ is equal to final temperature τf .

Temperature τ is gradually decreased according to the cooling ratio τ ← τ × ν,

where ν is the cooling factor. In Step 4(b)i, a new solution sn is randomly selected

in the neighborhood of sc. This neighborhood is defined using a Hamming distance

H, that is, only H bits at most change from sc to sn. If sn is better than sc, then

the algorithm always accepts sn as the new sc. If sn is worse than sc, there is a

probability of acceptance of sn that depends on the current value of τ and a random

value, as described in Step 4(b)ii. Parameter tr is the maximum number of tries

allowed for a given value of the temperature parameter.

4.4 Experimental Results

In this Section, experiments to evaluate the proposed GA-NNE and SA-NNE ap-

proaches are described. The main objectives of the experiments are: (i) to evaluate

the performance of a single NN; (ii) to analyze the characteristics of the candidate

NN models; (iii) to evaluate the GA-NNE and SA-NNE performances by varying im-

portant parameters; and (iv) to compare GA-NNE and SA-NNE to other ensemble

techniques.

4.4.1 Data Set Description

Experiments are performed using two benchmark data sets (for regression models)

available at Luís Torgo’s website [Torgo, 2011], Friedman and Boston Housing; and

three real-world industrial data sets. The use of Friedman and Boston Housing

data sets allows the control and setting of relevant parameters of the GA-NNE and

SA-NNE algorithms; while the industrial data sets are employed to prove the effec-

tiveness of the proposed methodologies in real-world case studies. The benchmarks

for regression are summarized as follows:

• Friedman: The Friedman function is a well-known function for data genera-

tion [Friedman, 1991]. It uses both non-linear and linear relations between

4.4. EXPERIMENTAL RESULTS 73

output and inputs. The original Friedman function contains five independent

variables, and is defined as follows:

y = 10 sin(πx1x2) + 20
(

x3 −
1
2

)2

+ 10x4 + 5x5 + ǫ , (4.1)

where ǫ ∼ N(0, 1) is a random variable with normal (Gaussian) probability

distribution with zero mean and unit variance. In the data set, the input

space is increased by adding other five independent variables x6, . . . , x10 that

do not have influence on y. Each of the variables x1, x2, . . . , x10 is uniformly

distributed over [0, 1]. The data set includes 40768 samples.

• Boston Housing: this data set has been applied extensively in literature to

benchmark methods. It contains information collected by the United States

Census Service about housing in the area of Boston, Massachusetts. The data

set consists of 13 independent variables (mainly socio-economic) and 1 output

variable (median housing price). The data set is smaller than the Friedman

data set, with 506 samples.

The industrial data sets are the debutanizer column, polymerization reactor, and

cement kiln data sets. They are described in Section 1.4. Input variable selection was

performed to remove variables with missing values and noises, and to select input

variables highly correlated to the output [Fortuna et al., 2006] for the polymerization

reactor and cement kiln data sets. Despite the fact that input variable selection is an

important step in SS applications [Grbić et al., 2013], this thesis focus mainly on the

model selection, training and validation steps. Variable selection and dimensionality

reduction is not a central topic in this thesis. The data sets are summarized as

follows:

• Polymerization reactor: The data set covers one year of operation of the process

plant and it contains 15 input variables (x1, . . . , x15), 1 output (the catalyst

activity) and 8687 samples. The sampling rate of the output for the last 3000

samples is lower so that the data set was preprocessed as follows: downsample

by a factor of 10 of the first 5687 samples; remove x3, x4, and x15 [Miranda,

2012; Kadlec and Gabrys, 2011], since they are affected by outliers and missing

samples; remove x2, since it is not correlated to the output; remove x13, since it

is redundant with x12; and exclude all the samples with missing output values.

74 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

At the end of this process, the data set contains 648 samples, 10 inputs, and

1 output.

• Debutanizer column: it contains 2394 samples; 1 output (butane concentra-

tion); and 7 input variables. No input variable selection was performed.

• Cement kiln: input variables and output variable (free lime concentration) have

different sampling intervals, so that samples with missing output values were

removed from the data set. Moreover, since the data set is high dimensional

(195 input variables), only inputs correlated to the output were selected. At

the end of this process, the data set contains 701 samples and 45 inputs.

Experiments are organized in runs. Each run is evaluated using 10-fold cross-

validation, where the data set is split into 10 subsets. The result is the average of

the results of the 10 subsets, where each subset is in turn used as a testing data set

while the samples of the other 9 subsets are randomly divided into a training data

set (90%), and a validation data set (10%). At the end of this process, there are 10

artificial data sets each of which consists of training, validation, and testing data

sets. Below, the results of MSEtest are given by averaging the MSE of all 10 testing

subsets.

Subsections from 4.4.2 to 4.4.6 report experimental results using the Friedman

and Boston Housing data sets; while Subsection 4.4.7 reports experimental results

using all the data sets.

4.4.2 Individual Neural Networks

First, the performance of individual NN models is investigated by altering the num-

ber of neurons in the hidden layer L. The experiment was done by setting the

synaptic weights initialization approach and activation function according to pop-

ularity, where Nguyen-Widrow was selected as the synaptic weights initialization

technique, and fast hyperbolic tangent and linear were selected as the activation

functions for the hidden layer (g(x)) and the output layer (h(x)), respectively.

Early stopping criteria is applied as a strategy to control overfitting [Caruana

et al., 2000]. Early stopping has been recognized as a good strategy for avoiding

overfitting and optimizing the generalization performance of NN models in practice

[Jeong and Kim, 2005]. The main idea is to inspect the test error of a NN model

4.4. EXPERIMENTAL RESULTS 75

5 10 15 20 25 30

Number of neurons in the hidden layer (L)

0

2

4

6

8

10

12

14

16

18
M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

Minimum value in

the testing data set

7.0e-3

Training data set

Validation data set

Testing data set

(a) Friedman data set.

5 10 15 20 25 30

Number of neurons in the hidden layer (L)

0

5

10

15

20

25

30

35

40

45

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

Minimum value in

the testing data set

8.8e-3

Training data set

Validation data set

Testing data set

(b) Boston Housing data set.

Figure 4.3: Performance of the individual NN models.

on an independent set using a validation data set, so that when the validation

data set error starts to increase the NN training is stopped to avoid overfitting.

In this thesis, early stopping is employed through the following procedures: set the

maximum number of epochs as 500; use the results of the first NN training for

initializing the current best synaptic weights; then, train the NN calculating the

validation data set error every 50 epochs and keep the NN synaptic weights at this

current point; if the validation data set error has decreased in comparison to the

previous point, continue the NN training and assign the current synaptic weights as

the current best NN synaptic weights; if the validation data set error at the current

point has risen in comparison to the previous point, terminate the NN training and

assign the current best NN synaptic weights as the final NN synaptic weights.

Figure 4.3 shows the performance of the individual NN models, where MSE

is obtained by 10-fold cross-validation. The experiment reveals that NN models

with lower number of neurons in the hidden layer are less prone to overfitting and

consequently these NN models have better generalization capability. For this reason,

in this Chapter, the maximum number of neurons in the hidden layer is limited to

10.

Moreover, Figures 4.3(a) and 4.3(b) illustrate the minimum MSE value achieved

for a NN in the testing data set over all NN models. For the Friedman data set, the

minimum value is 7.0×10−3, and the NN has 5 neurons in the hidden layer (L = 5);

and for the Boston Housing data set, the minimum value is 8.8× 10−3, and the NN

has 4 neurons in the hidden layer (L = 4). In the next experiments, a reduction of

the minimum value is observed.

76 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

Table 4.1: MSEtest results using EBP.

Data Set Combination Type

mean trimmed mean median weighted mean

Friedman 2.100 2.100 2.100 2.100
Boston Housing 4.500 4.400 4.400 4.500

All the MSE values have been multiplied by 103 in the table.

4.4.3 Generation of the Candidate Neural Networks

This Subsection details the characteristics of the set of candidate NNs to be used

in the next experiments. A set of 20 candidate models (N = 20) was generated

according to Subsection 4.2.2 by 10-fold cross-validation. The set is used by the

GA-NNE and SA-NNE approaches. Before doing the experiments with GA-NNE

and SA-NNE, all the 20 candidate NN models were aggregated to constitute an

ensemble. Therefore, no optimization techniques were employed to select the best

subset of models. The term Ensemble Before Pruning (EBP) is employed to refer

to this ensemble.

EBP was implemented using mean, trimmed mean, median, and weighted mean

as combination types. Table 4.1 shows the results of EBP based on the MSE in the

testing data set. For the Friedman data set, the combination types have the same

value of MSEtest. On the other hand, median and trimmed median outperform mean

and weighted mean for the Boston Housing data set. From the results, it is possible

to notice that EBP has good generalization ability when compared to the individual

models generated in Subsection 4.4.2.

For the Friedman and Boston Housing data sets, an artificial data set from 10-fold

cross-validation was randomly chosen to show the characteristics of the candidate

NNs. Figure 4.4 shows the NN’s properties, such as the number of neurons in the

hidden layer, the synaptic weights initialization type, and the activation function

types for the hidden layer and the output layer. For the activation functions in the

layers the abbreviations displayed in Table 4.2 are used. It is observed that the

models from the Friedman data set have a higher number of neurons in the hidden

layer when compared to the models from Boston Housing data set. Moreover, for the

Friedman data set all the NN models have the fast hyperbolic tangent as activation

function for both the hidden layer and the output layer.

4.4. EXPERIMENTAL RESULTS 77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0

2

4

6

8

10

12

N
o
.
o
f
n
eu
ro
n
s
(L
)

HH HH HH

HH

HH HH
HH

HH
HH

HH
HH

HH

HH

HH HH
HH

HH
HH

HH HH

Interval of [-1/r,1/r]

Nguyen-Widrow

Interval of [-0.5,0.5]

(a) Friedman data set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0

2

4

6

8

10

12

N
o
.
o
f
n
eu
ro
n
s
(L
)

HL

HH

HH
HH

HH

HL

HH

HH

HH

HL

HL
HL HL

HL HL
HH HL

HL

HH

HL

Interval of [-1/r,1/r]

Nguyen-Widrow

Interval of [-0.5,0.5]

(b) Boston Housing data set.

Figure 4.4: NN’s properties of a subset from 10-fold cross-validation.

Table 4.2: Abbreviations for the activation functions in the layers.

Abbreviation Hidden layer activation function g(x) Output layer activation function h(x)

HH fast hyperbolic tangent fast hyperbolic tangent
LL linear linear
HL fast hyperbolic tangent linear
LH linear fast hyperbolic tangent

4.4.4 Genetic Algorithm for Designing Neural Network

Ensembles

After generating the 20 candidate models, Algorithm 4.1 proceeds with Step 2.

Several experiments were performed by varying the GA-NNE’s inputs/parameters

among the following values:

• Mutation probability: p%
m ∈ {5%, 10%, 15%};

• Selection probability: p%
s ∈ {60%, 100%};

• Population size: K ∈ {20, 40}.

The crossover probability p%
c is set to 100%, the number of mutated bits for the

mutation operations is set to c = 2, the maximum number of generations is set to

Gmax=500, and one individual is selected by elitism for the next generation (e = 1).

78 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

Table 4.3: MSEtest results of GA-NNE using the Friedman data set on 12 experi-
ments.

No. exp. 1 2 3 4 5 6 7 8 9 10 11 12
p%

m 5% 5% 5% 5% 10% 10% 10% 10% 15% 15% 15% 15%

p%
s 60% 100% 60% 100% 60% 100% 60% 100% 60% 100% 60% 100%

K 20 40 20 40 20 40 20 40 20 40 20 40

Mean 1.794 1.789 1.794 1.787 1.791 1.788 1.788 1.787 1.793 1.787 1.789 1.786
S.D. 0.005 0.002 0.005 0.002 0.003 0.003 0.002 0.001 0.003 0.001 0.003 0.001
Min 1.787 1.785 1.785 1.785 1.786 1.785 1.785 1.785 1.787 1.785 1.785 1.785
Max 1.808 1.795 1.803 1.795 1.799 1.797 1.794 1.790 1.798 1.791 1.797 1.788

Each experiment is composed of 20 runs, and each run consists of a 10-fold cross-validation. All
the MSEtest values have been multiplied by 103 in the table.

Table 4.4: MSEtest results of GA-NNE using the Boston Housing data set on 12
experiments.

No. exp. 1 2 3 4 5 6 7 8 9 10 11 12
p%

m 5% 5% 5% 5% 10% 10% 10% 10% 15% 15% 15% 15%

p%
s 60% 100% 60% 100% 60% 100% 60% 100% 60% 100% 60% 100%

K 20 40 20 40 20 40 20 40 20 40 20 40

Mean 2.454 2.445 2.458 2.449 2.447 2.445 2.445 2.445 2.447 2.443 2.445 2.441
S.D. 0.008 0.004 0.010 0.008 0.007 0.003 0.004 0.003 0.007 0.003 0.004 0.002
Min 2.442 2.439 2.441 2.440 2.439 2.440 2.438 2.439 2.439 2.439 2.439 2.438
Max 2.472 2.453 2.478 2.471 2.471 2.452 2.457 2.452 2.461 2.449 2.457 2.450

Each experiment is composed of 20 runs, and each run consists of a 10-fold cross-validation. All
the MSEtest values have been multiplied by 103 in the table.

Table 4.3 and Table 4.4 show the mean, standard deviation (SD), minimum, and

maximum of the MSE obtained with GA-NNE in 12 experiments, with 20 runs on

each experiment, using the Friedman and Boston Housing data sets, where 10-fold

cross-validation is performed for each run.

Considering mean as the metric to evaluate the performance in the experiments,

some characteristics are noticed for both data sets. For example, in most exper-

iments, GA-NNE’s results improve when the mutation probability (p%
m) increases.

Moreover, selection probability p%
s = 100% has better performance when compared

to p%
s = 60%. The experiments indicate that improvements are obtained when the

population size is K = 40.

4.4. EXPERIMENTAL RESULTS 79

Table 4.5: GA-NNE - Percentage of combination type selection on the 20 runs of
the best experiment.

Data set Combination type

mean trimmed mean median weighted mean

Friedman 0% 0% 90% 10%
Boston Housing 0% 0% 90% 10%

0 100 200 300 400 500

Number of generations (G)

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

Mean

Best

(a) Friedman data set.

0 100 200 300 400 500

Number of generations (G)

2.5

3.0

3.5

4.0

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

Mean

Best

(b) Boston Housing data set.

Figure 4.5: GA-NNE - Mean of the MSE (i.e., 1/fitness) of the individuals in the
population and MSE of the best individual in the population versus the number of
generations (G) of the best run of the best experiments of Table 4.3 and Table 4.4.
The average of the 10 test subsets of the 10-fold cross-validation is presented.

The experiments with the best performance in Table 4.3 and Table 4.4 are shown

in bold. Considering the best individuals at the end of the 20 runs of experiment

12, the percentage of selection of each combination type is shown in Table 4.5. For

both data sets median is the most frequently selected strategy.

Considering again experiment 12, the runs with the best MSE performance (i.e.,

min value) are the runs with MSE of 1.785×10−3 and 2.438×10−3 for the Friedman

and Boston Housing data sets, respectively. Figure 4.5 shows the properties of

these best runs according to the average of the 10 test subsets of the 10-fold cross-

validation. Mean is the average of the MSE (i.e., 1/fitness) of all the individuals in

the population in a generation, and Best is the best value of MSE for all individuals

of the population in a generation. As can be seen, no important improvements are

shown after 300 generations for the Friedman data set and 100 generations for the

Boston Housing data set.

80 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

Table 4.6: MSEtest results of SA-NNE using the Friedman data set on 12 experi-
ments.

No. exp. 1 2 3 4 5 6 7 8 9 10 11 12
ν 0.85 0.85 0.85 0.85 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95

H 1 1 2 2 1 1 2 2 1 1 2 2

tr 1 2 1 2 1 2 1 2 1 2 1 2

Mean 1.835 1.838 1.811 1.800 1.836 1.836 1.797 1.791 1.839 1.832 1.796 1.790
SD 0.010 0.016 0.006 0.007 0.013 0.011 0.006 0.003 0.012 0.009 0.006 0.003
Min 1.820 1.818 1.797 1.788 1.811 1.809 1.788 1.785 1.808 1.814 1.785 1.785
Max 1.857 1.879 1.822 1.814 1.859 1.864 1.813 1.798 1.855 1.847 1.815 1.798

Each experiment is composed of 20 runs, and each run consists of a 10-fold cross-validation. All
the MSEtest values have been multiplied by 103 in the table.

4.4.5 Simulated Annealing for Designing Neural Network

Ensembles

Using the 20 candidate models, several experiments were carried out by varying the

SA-NNE’s parameters as follows:

• Cooling factor: ν ∈ {0.85, 0.90, 0.95};

• Hamming distance: H ∈ {1, 2};

• Number of tries: tr ∈ {1, 2}.

The initial temperature τi is set to 1000 and the algorithm stops when the final

temperature τf is 10−20 or less.

Table 4.6 and Table 4.7 show the mean, SD, minimum, and maximum of the

MSE obtained with the SA-NNE in 12 experiments, with 20 runs on each experiment,

using the Friedman and Boston Housing data sets. Considering the mean to evaluate

the performance of all experiments, some patterns are observed. For example, most

experiments with a high cooling factor (ν) have better results when compared to

experiments with a low cooling factor (ν). In general, a Hamming distance H = 2

outperforms H = 1 and the number of tries tr = 2 has the best performance.

The experiments with the best performance in Table 4.6 and Table 4.7 are shown

in bold. In this case, the best experiment for both the Friedman data set and Boston

Housing data set is experiment 12. Considering the best individuals after 20 runs

4.4. EXPERIMENTAL RESULTS 81

Table 4.7: MSEtest results of SA-NNE using the Boston Housing data set on 12
experiments.

No. exp. 1 2 3 4 5 6 7 8 9 10 11 12
ν 0.85 0.85 0.85 0.85 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95

H 1 1 2 2 1 1 2 2 1 1 2 2

tr 1 2 1 2 1 2 1 2 1 2 1 2

Mean 2.656 2.633 2.507 2.480 2.649 2.639 2.484 2.464 2.612 2.602 2.466 2.454
SD 0.053 0.055 0.024 0.023 0.059 0.075 0.024 0.013 0.048 0.051 0.019 0.011
Min 2.558 2.551 2.463 2.448 2.545 2.533 2.456 2.438 2.535 2.534 2.440 2.441
Max 2.792 2.743 2.547 2.529 2.746 2.805 2.542 2.487 2.712 2.743 2.509 2.484

Each experiment is composed of 20 runs, and each run consists of a 10-fold cross-validation. All
the MSEtest values have been multiplied by 103 in the table.

Table 4.8: SA-NNE - Percentage of combination type selection on the 20 runs of the
best experiment.

Data set Combination type

mean trimmed mean median weighted mean

Friedman 0% 0% 90% 10%
Boston Housing 0% 0% 90% 10%

of these best experiments, the percentage of selection of each combination type is

shown in Table 4.8. Again, median is the most frequently selected combination

strategy.

For experiment 12, the run with the best MSE performance has a MSE value of

1.785×10−3 for the Friedman data set and 2.441×10−3 for Boston Housing data set.

The behavior of these runs is shown in Figure 4.6. As can be seen, improvements of

the MSE follow the decaying of temperature. In the initial tries, it is observed that

MSE increases its value. This happens because SA-NNE can more easily accept

worse solutions when the temperature is high.

4.4.6 The Models Selected by GA-NNE and SA-NNE

In this Subsection, characteristics of the models selected by GA-NNE and SA-NNE

are detailed. The same artificial data set from 10-fold cross-validation of Subsection

4.4.3 is considered. Here, the results discussed are based on the best experiments

82 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

0 500 1000 1500 2000

Number of tries (tr)

0

200

400

600

800

1000

T
em

p
er
at
u
re

(τ
)

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

Temperature (τ)

Mean Squared Error (MSE)

(a) Friedman data set.

0 200 400 600 800 1000

Number of tries (tr)

0

200

400

600

800

1000

T
em

p
er
at
u
re

(τ
)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

Temperature (τ)

Mean Squared Error (MSE)

(b) Boston Housing data set.

Figure 4.6: SA-NNE - Decay of temperature and MSE versus number of tries (tr).
The average of the 10 test subsets of the 10-fold cross-validation is presented.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0

5

10

15

20

N
o
.
o
f
se
le
ct
io
n
s

o
n
20

ru
n
s

(a) Statistics of NN models that participate in the ensembles using GA-NNE on 20 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
S
E

×10
−3

- - - - -

Training data set

Validation data set

Testing data set

(b) Accuracy of each NN in the data set.

Figure 4.7: Results of the GA-NNE on the best experiment on the Friedman data set.
The dashed line represents the MSEtest of the ensemble of the best run; underlined
numbers represent the selected NN models to design such ensemble.

from Subsection 4.4.4 and Subsection 4.4.5.

Figures 4.7(a), 4.8(a), 4.9(a), and 4.10(a) show the statistics of the numbers

of selections of the NN models that participate in the ensembles on the 20 runs,

considering the presence of a NN in the final solution of each run. Figures 4.7(b),

4.8(b), 4.9(b), and 4.10(b) display the accuracy of each NN based on the training,

validation, and testing data sets. The dashed line represents the MSEtest value of

the ensemble on the run with minimum MSE value. The underlined NN numbers

4.4. EXPERIMENTAL RESULTS 83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0

5

10

15

20

N
o
.
o
f
se
le
ct
io
n
s

o
n
20

ru
n
s

(a) Statistics of NN models that participate in the ensembles using GA-NNE on 20 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0

1

2

3

4

5

M
S
E

×10
−2

- - - - -

Training data set

Validation data set

Testing data set

(b) Accuracy of each NN in the data set.

Figure 4.8: Results of the GA-NNE on the best experiment on the Boston Housing
data set. The dashed line represents the MSEtest of the ensemble of the best run;
underlined numbers represent the selected NN models to design such ensemble.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0

5

10

15

20

N
o
.
o
f
se
le
ct
io
n
s

o
n
20

ru
n
s

(a) Statistics of NN models that participate in the ensembles using SA-NNE on 20 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
S
E

×10
−3

- - - - -

Training data set

Validation data set

Testing data set

(b) Accuracy of each NN in the data set.

Figure 4.9: Results of the SA-NNE on the best experiment on the Friedman data set.
The dashed line represents the MSEtest of the ensemble of the best run; underlined
numbers represent the selected NN models to design such ensemble.

represent the NN models selected for designing the ensemble of this run. As can be

seen, all the cases design ensembles with MSEtest values lower than the NN with the

lowest MSEtest value. This confirms that the ensemble is more accurate than any

single model in the ensemble.

84 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0

5

10

15

20

N
o
.
o
f
se
le
ct
io
n
s

o
n
20

ru
n
s

(a) Statistics of NN models that participate in the ensembles using SA-NNE on 20 runs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id. of the Neural Network

0

1

2

3

4

5

M
S
E

×10
−2

- - - - -

Training data set

Validation data set

Testing data set

(b) Accuracy of each NN in the data set.

Figure 4.10: Results of the SA-NNE on the best experiment on the Boston Housing
data set. The dashed line represents the MSEtest of the ensemble of the best run;
underlined numbers represent the selected NN models to design such ensemble

In Figures 4.7, 4.8, 4.9, and 4.10, it is observed that the most common mod-

els selected by all runs are also selected by the best run, i.e., the one with the

minimum MSE value. Common characteristics are noticed for the GA-NNE and

SA-NNE approaches. Specifically, GA-NNE and SA-NNE select the same models

for designing the ensemble and the same combination type. For the Friedman data

set, as depicted in Figures 4.7(b) (GA-NNE) and 4.9(b) (SA-NNE), the selected NN

models for designing the ensemble are {2, 13, 14, 18, 20}, MSEtest = 1.481 × 10−3

and median is the combination type. For the Boston Housing data set, as displayed

in Figures 4.8(b) (GA-NNE) and 4.10(b) (SA-NNE), the selected NN models for

aggregating the ensemble are {3, 4, 13, 17, 19}, MSEtest = 1.231 × 10−3 and median

is the combination type.

4.4.7 Comparisons of the Ensemble Systems

In this Subsection, the proposed GA-NNE and SA-NNE methodologies are compared

to other ensemble systems. The ensemble systems include Simple Bagging, GASEN,

NCL, and AdaBoost.

As mentioned before, Bagging creates an ensemble where each model is trained

by a different training data set using bootstrap resampling. Bagging is a common

4.4. EXPERIMENTAL RESULTS 85

Table 4.9: Comparison of ensemble systems: MSEtest results using the Friedman
data set.

AdaBoost Simple NCL EBP Pruned Bagging

Bagging mean t. mean median w. mean GASEN SA-NNE GA-NNE

Mean 24.465 7.081 2.438 2.100 2.100 2.100 2.100 1.914 1.790 1.786
SD 0.000 0.027 0.029 - - - - 0.034 0.003 0.001
Min 25.465 7.036 2.396 - - - - 1.862 1.785 1.785
Max 25.465 7.138 2.510 - - - - 1.964 1.798 1.788

The results are for 20 runs, except for EBP (one run). All the MSEtest values have been multiplied
by 103 in the table.

technique applied to GASEN, GA-NNE, and SA-NNE. However, as these approaches

employ pruning techniques for selecting the best subset of models, in this Subsection

the Bagging strategy is applied for designing an ensemble without pruning technique,

i.e. all the candidate NN models are aggregated. Additionally, in this ensemble the

NN component-models have fixed architecture and parameters since most Bagging

applications apply this strategy. To distinguish from other approaches (GASEN,

GA-NNE, and SA-NNE), this ensemble of NN models is called “Simple Bagging”.

In the experiments, Simple Bagging is composed of 20 NN models using mean as

the combination strategy. The Nguyen-Widrow method is employed for synaptic

weights initialization. Fast hyperbolic tangent and linear activation functions are

used for the hidden layer and output layer, respectively.

The number of neurons in the hidden layer was chosen using the experiment in

Subsection 4.4.2. Specifically, this number was selected according to the performance

in the validation data set (see Figure 4.3). Early stopping (as detailed in Subsection

4.4.2) was chosen for controlling overfitting.

GASEN employs a GA to select the appropriate subset of NN models to consti-

tute the ensemble [Zhou et al., 2002]. GASEN assigns a combination weight to each

model, and then models with combination weights higher than a specified threshold

λGASEN are selected to compose the ensemble. In the GASEN procedure, combi-

nation weights evolve using a GA and the fitness function is characterized by the

generalization error of the ensemble. Experiments were done using the code available

at the website http://lamda.nju.edu.cn/files/Gasen.zip.

The experiment and parameter setting were performed according to [Zhou et al.,

http://lamda.nju.edu.cn/files/Gasen.zip

86 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

Table 4.10: Comparison of ensemble systems: MSEtest results using the Boston
Housing data set.

AdaBoost Simple NCL EBP Pruned Bagging

Bagging mean t. mean median w. mean GASEN SA-NNE GA-NNE

Mean 19.162 9.129 7.817 4.500 4.400 4.400 4.500 6.254 2.454 2.441
SD 0.000 0.509 0.092 - - - - 0.564 0.011 0.002
Min 19.162 8.104 7.629 - - - - 5.457 2.441 2.438
Max 19.162 10.176 8.016 - - - - 7.440 2.484 2.450

The results are for 20 runs, except for EBP (one run). All the MSEtest values have been multiplied
by 103 in the table.

Table 4.11: Comparison of ensemble systems: MSEtest results using the polymer-
ization reactor data set.

AdaBoost Simple NCL EBP Pruned Bagging

Bagging mean t. mean median w. mean GASEN SA-NNE GA-NNE

Mean 9.419 6.872 1.690 1.556 1.261 0.962 1.548 3.362 0.365 0.361
SD 0.000 0.377 0.016 - - - - 3.474 0.005 0.001
Min 9.419 6.360 1.665 - - - - 1.759 0.361 0.359
Max 9.419 7.528 1.719 - - - - 17.768 0.378 0.364

The results are for 20 runs, except for EBP (one run). All the MSEtest values have been multiplied
by 103 in the table.

Table 4.12: Comparison of ensemble systems: MSEtest results using the cement kiln
data set.

AdaBoost Simple NCL EBP Pruned Bagging

Bagging mean t. mean median w. mean GASEN SA-NNE GA-NNE

Mean 18.533 21.899 10.600 10.384 10.285 10.621 10.383 9.766 7.683 7.634
SD 0.000 1.834 0.340 - - - - 0.517 0.044 0.016
Min 18.533 17.865 9.914 - - - - 8.842 7.628 7.616
Max 18.533 24.454 11.264 - - - - 10.925 7.806 7.668

The results are for 20 runs, except for EBP (one run). All the MSEtest values have been multiplied
by 103 in the table.

2002], where the genetic operators are set to the default values of the Genetic Algo-

rithm Optimization Toolbox (GAOT) [Houck et al., 1996]. The predefined threshold

4.4. EXPERIMENTAL RESULTS 87

Table 4.13: Comparison of ensemble systems: MSEtest results using the debutanizer
column data set.

AdaBoost Simple NCL EBP Pruned Bagging

Bagging mean t. mean median w. mean GASEN SA-NNE GA-NNE

Mean 23.739 10.595 13.508 9.894 9.894 9.902 9.894 12.128 8.731 8.701
SD 0.000 0.100 0.203 - - - - 0.153 0.026 0.006
Min 23.739 10.485 13.197 - - - - 11.736 8.700 8.691
Max 23.739 10.897 13.947 - - - - 12.375 8.796 8.715

The results are for 20 runs, except for EBP (one run). All the MSEtest values have been multiplied
by 103 in the table.

λGASEN is set to 0.05. The initial set of candidate models is composed of 20 NN

models. Each NN has just one hidden layer with five hidden neurons, where the NN

is trained using the BP algorithm. Other NN’s parameters are set to the default

values, such as hyperbolic tangent sigmoid as activation function for the hidden

layer, linear activation function for the output layer, and the training stops when

the number of iterations reaches 100. GASEN uses simple average for combining

the models’ outputs.

NCL produces an ensemble of NN models using negative correlation [Liu and

Yao, 1999]. The aim is to train the NN models in parallel and use a correla-

tion penalty term λNCL in their cost function for ensuring specialization and co-

operation among the individual NN models. In this thesis, the value of λNCL is

determined using λNCL = N
N−1

, where N is the number of NN models [Brown

et al., 2005a]. NCL is tested using the code available at Gavin Brown’s website

http://www.cs.man.ac.uk/~gbrown/projects/nc/NCL.zip. A set of 20 NN mod-

els is produced by the BP algorithm. The models’ architecture and parameters are

the same of as the ones of GASEN. NCL also uses simple average for combining the

models’ outputs.

In this thesis, the AdaBoost algorithm uses the GentleBoost logistic regression

method as detailed in [Cristinacce and Cootes, 2007]. A weak learner is selected

at each round and the residual displacements from the real output and predicted

output are adjusted. In this model, the training samples have equal weight. After

R rounds a strong regressor function F (x) is the final output, where the weak

learners have the same combination weights. GentleBoost was implemented using

http://www.cs.man.ac.uk/~gbrown/projects/nc/NCL.zip

88 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

the AdaBoost Toolbox [Cordiner, 2009]. The best performance of the boosting

ensemble was achieved in 50 rounds.

For GA-NNE and SA-NNE, the parameters are set according to the best experi-

ments of Subsection 4.4.4 and Subsection 4.4.5, respectively. That is, for GA-NNE,

parameters are set to p%
m = 15%, p%

s = 100%, and K = 40; and for SA-NNE,

parameters are set to ν = 0.95, H = 2, and tr = 2.

Tables 4.9-4.13 show the experimental results of MSEtest in the two benchmark

data sets and three real-world industrial data sets using different ensemble systems

on 20 runs, except for EBP where the results are for one run. As pointed out

in Subsection 4.4.3, EBP is an ensemble with all the candidate NN models used

by GA-NNE and SA-NNE. Therefore, EBP is an intermediate ensemble obtained

before performing these pruning techniques.

It can be seen that ensembles of NN models (e.g. NCL, Simple Bagging, EBP,

GASEN, SA-NNE, and GA-NNE) outperform AdaBoost in most data sets. NCL

also obtains more accurate predictions than Simple Bagging and AdaBoost in most

cases. NCL can produce NN ensembles with good generalization ability (compared

to Simple Bagging). However, within an/each NCL ensemble, component-models

have the same architecture, making the ensemble have a low degree of diversity.

Simple Bagging presents the worst generalization ability when compared to the

other NNEs with the bootstrap technique (namely EBP, GASEN, GA-NNE, and SA-

NNE). The main issue is that Simple Bagging achieves diversity just by manipulating

the training data set while the models have the same architecture and parameters.

Moreover, Simple Bagging does not employ any strategy for selecting the best subset

of models and combination type.

On the other hand, EBP considerably outperforms Simple Bagging in terms

of generalization ability. The success is attributed to the several diversity levels

employed by EBP, for example, using a different synaptic weights initialization and

a different architecture for each model in the ensemble.

It is observed that pruned Bagging systems (e.g. GASEN, SA-NNE, and GA-

NNE) have better results when compared to ensembling all techniques (e.g. EBP,

and Simple Bagging), except the lower performance obtained by GASEN for the

Boston Housing data set.

As pointed out before, here EBP aggregates all the candidate models used by

GA-NNE and SA-NNE. Therefore, it is noticed that the proposed GA-NNE and

4.5. CONCLUSION 89

Table 4.14: Average number of the selected NN models using different ensemble
systems.

Data Set GASEN SA-NNE GA-NNE

Friedman 4.17 5.31 5.10
Boston housing 4.87 5.69 5.81

Polymerization reactor 3.74 6.33 6.60
Cement kiln 5.85 4.96 4.94

Debutanizer column 5.38 5.56 6.01

SA-NNE approaches achieve good results when compared to EBP. The results prove

the efficiency of models subset selection, and combination type selection during the

ensemble development to obtain good generalization ability for the Friedman, Boston

Housing, and industrial data sets.

Table 4.14 shows the average number of selected models by GASEN, GA-NNE,

and SA-NNE. The results were obtained by averaging the number of selected models

of the best individuals after the 20 runs on experiments described in the Table 4.9

and Table 4.10. Table 4.14 shows that SA-NNE and GA-NNE select a higher number

of models when compared to GASEN.

4.5 Conclusion

NNE has established itself as a valuable tool for computational intelligence mod-

eling. The main motivation is that the generalization ability of the system can be

significantly improved. Most studies consider the following key factors during the

ensemble development: diversity among the models, subset selection of models, and

optimal combination strategy. Since there is no automatic procedure to implement

these steps, this Chapter proposes and compares two approaches for automatic de-

velopment of NNE: GA-NNE and SA-NNE.

The main contributions of the proposed methodologies are the selection of the

subset of models and combination type providing a high degree of diversity among

the models. First, models are generated by starting the learning with different

conditions (synaptic weights initialization methods), using different training data

sets (applying bootstrap), and using models with different learning parameters and

architectures. Second, two optimization techniques, GA and SA, are used to select

90 CHAPTER 4. ENSEMBLE DEVELOPMENT USING META-HEURISTICS

the best subset of models and the optimal combination strategy.

The GA-NNE and SA-NNE methodologies proposed in this Chapter, obtained

a superior performance when compared to well-known ensemble systems, including

Simple Bagging, NCL, AdaBoost, and GASEN. This success results from the diver-

sity among the NN models, and the optimal selection of the subset of models and

combination type. These are crucial factors to ensure the ensemble performance in

terms of generalization ability. Moreover, experiments have shown that GA-NNE

and SA-NNE have good performance when compared to a single model and the

aggregation of all candidate models (EBP). The results also revealed that GA-NNE

and SA-NNE obtained a similar performance.

Therefore, the aim of proposing methodologies for automatic NNE development

(taking into account diversity and accuracy) by meta-heuristics was reached in this

Chapter. The experiments revealed that the proposed approach designs a pool

of diverse NN models with different synaptic weights initialization strategies and

number of hidden neurons; and that GA-NNE and SA-NNE can select a reduced

subset of accurate NN models for building an ensemble system. The performance

and effectiveness of the proposed methodologies in industrial problems has been

demonstrated. According to the experimental results, the proposed methodologies

can deliver more accurate estimations of key variables in industrial applications

than well-known ensemble systems. However, adaptive mechanisms (such as the

ones described in Section 3.5) may be necessary to guarantee the performance of

the proposed ensembles in time-varying environments.

Chapter 5

An Adaptive Ensemble with

Discounting Factor

Contents

5.1 Introduction . 91

5.2 On-line Weighted Ensemble of Regressor Models 94

5.3 Experimental Results . 100

5.3.1 Data Set Description . 101

5.3.2 Approach Setup and Description 103

5.3.3 Analysis of OWE Parameters 105

5.3.4 Experimental Results Using Artificial Data Sets 109

5.3.5 Experimental Results Using Industrial Data Sets 114

5.4 Conclusion . 122

5.1 Introduction

On-line learning applications where the target concept may change over time pose

serious problems. Underlying changes may make the model designed on old data,

inconsistent with new data. Section 3.5 described that this problem is called concept

drift. A challenge in on-line learning models is to adapt and handle changes without

being informed about them, and make use of the past experiences in situations where

91

92 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

old contexts may reappear. Reusing previously acquired knowledge can enhance the

learning in terms of accuracy and processing time [Gomes et al., 2014].

Ensemble learning has been proven itself as a valuable tool to handle concept

drifts [Brzezinski and Stefanowski, 2014]. As mentioned in Subsection 3.5.2, en-

sembles to deal with concept drift can combine a subset of the following strategies:

(i) adaptation of the models’ combination weights; (ii) adaptation of the models’

parameters; (iii) and/or add new models or exclude models. Ensembles can be clas-

sified as batch-based or sample-based if they are adapted when a batch of data or a

sample is available, respectively. Unfortunately, most ensembles to deal with con-

cept drift are batch-based and focus on classification tasks [Chu and Zaniolo, 2004].

Adaptations on a batch basis usually require a long time, and batch data may not

reflect the current state of the system. However, even if the system is adapted on a

sample basis, existing algorithms may adapt slowly to changes and cannot conciliate

old and new information [Oza and Russell, 2001; Lan et al., 2009], in scenarios in

which changes may recur.

As described in Subsection 3.5.2, Learn++.NSE [Elwell and Polikar, 2011] is a

batch-based ensemble, inspired by the Boosting [Drucker, 1997], and it can conciliate

old and new knowledge. The combination weight of each model is assigned using a

weighted average of its errors on the current and old batches by a sigmoid function

with two slope parameters. However, the parameters’ setting is not an easy task,

since Learn++.NSE is sensitive to their values. AddExp [Kolter and Maloof, 2005]

is a sample-based ensemble which uses a loss bound to obtain the models’ errors,

and models’ combination weights are adapted according to the models’ actual losses

and a decreasing factor, employed to reduce a model’s combination weight when it

performs poorly. ILLSA is an ensemble for SS applications [Kadlec and Gabrys,

2011]. On the training phase, a set of models is designed, where each model is

trained with samples of a different concept contained on the training data; while

on the on-line phase, for each incoming sample, the models’ combination weights

are dynamically adapted using a Bayesian framework. One drawback is that few

models are designed if the training data contains few concepts; and new models

are not launched on the on-line phase. Unfortunately, most SS applications using

ensemble systems do not add and remove models over time [Ge and Song, 2014; Lv

et al., 2013; Fortuna et al., 2009], which makes difficult the system adaptation to

process changes.

5.1. INTRODUCTION 93

This Chapter proposes an on-line weighted ensemble of regressor models (OWE)

which is able to learn incrementally sample by sample in the presence of several types

of changes and simultaneously retain old knowledge in recurring scenarios. OWE is

inspired by Learn++.NSE [Elwell and Polikar, 2011]. But unlike Learn++.NSE, in

the OWE, the ensemble is adapted on a sample basis, leading the system to faster

recovery from changes and increasing the system accuracy. Additional and new

strategies are proposed to increase the OWE’s accuracy. The experiments indicate

that OWE outperforms Learn++.NSE in all tests.

The key idea is to keep a fixed-size SW that slides along data when a new sample

is available. Then, the error of each model on the current window is determined using

a Boosting strategy [Feely, 2000; Shrestha and Solomatine, 2006] that assigns small

errors to the models that predict accurately the samples predicted poorly by the

ensemble. To handle recurring and non-recurring changes, OWE uses a new method

for assigning the models’ combination weights that takes into account the models’

errors on the past and recent windows using a discounting factor that decreases or

increases the contribution of old windows. OWE launches new models if the system’s

accuracy is decreasing, and it can remove inaccurate models for reducing memory

and computational time. Experiments on artificial data sets and industrial data sets

are detailed to evaluate, and demonstrate the performance and the effectiveness of

the OWE over the state-of-the-art concept drift approaches.

The main contributions of OWE and of this Chapter are: (1) a new on-line

sample-based ensemble of regressor models which can conciliate old and new knowl-

edge using a discounting factor; (2) dynamic removal and inclusion of models (while,

most ensembles for SS applications do not perform these tasks); (3) regression scope

(while most ensemble applications for handling concept drifts are devoted to classifi-

cation tasks); (4) thorough analysis of the experimental results using both artificial

data sets and industrial data sets, demonstrating faster adaptation capability and

accuracy of the OWE over the main state-of-the-art approaches; and (5) implemen-

tation of a new Learn++.NSE algorithm for regression tasks.

This Chapter is organized as follows. Section 5.2 describes the OWE. In Section

5.3 the results are presented and discussed. Section 5.4 presents the concluding

remarks.

94 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

5.2 On-line Weighted Ensemble of Regressor

Models

This Section details the On-line Weighted Ensemble of Regressor Models (OWE)

algorithm. OWE incorporates all the main adaptive mechanisms to deal with the

problem of concept drift (Subsection 3.5.2); that is: (A1) instance selection, (A2)

instance weighting, and (A3) ensemble learning. OWE employs the common assump-

tion that the most recent data provides the best and most relevant representation

of the current concept and near-future concept; and only this input data should be

kept [Brzezinski and Stefanowski, 2014; Klinkenberg, 2005] (but the ensemble model

keeps information about other past concepts). For this purpose, a fixed-size SW is

used to keep the most recent set of samples (A1). These samples are employed

to obtain the ensemble’s accuracy based on the prediction errors, and to train a

new model. Additionally, OWE also incorporates instance weighting mechanisms

(A2) based on Boosting [Feely, 2000; Shrestha and Solomatine, 2006]. That is, a

weighted distribution of the ensemble’s error on the current window is obtained, and

then the error of each model is calculated based on its contribution to the ensemble.

This contribution is seen as the ability of a model to predict accurately the samples

poorly predicted by the ensemble.

Boosting algorithms were firstly developed for solving binary classifications prob-

lems. Freund and Schapire [1997] proposed the first regression boosting algorithm

called AdaBoost.R. The main idea is to map each regression sample into an infi-

nite set of binary classification samples. Although it has theoretical proof of its

convergence, the number of classification samples grows linearly in each iteration,

hindering its practical application. Drucker [1997] proposed the AdaBoost.R2 algo-

rithm, a modification of the AdaBoost.R, that has promising results. AdaBoost.R2

uses loss functions to convert regression loss into the domain of classification loss.

Big Error Margin (BEM) boosting [Feely, 2000] is quite similar to AdaBoost.R2.

However, BEM is less sensitive to noise and the system can handle weak learners

with larger errors. In BEM, the absolute predictive error of a sample is compared to

a predefined threshold, so that the corresponding sample is demarcated as incorrect

or correct. The absolute error has a problem when the variability of the magnitude

of real values is very high. To overcome this drawback, in OWE, absolute relative

error (ARE), which adapts to the magnitude of the real value, is employed as the er-

5.2. ON-LINE WEIGHTED ENSEMBLE OF REGRESSOR MODELS 95

ror measure, as in the AdaBoost.RT algorithm [Shrestha and Solomatine, 2006]. In

OWE, a threshold is used to demarcate an incorrectly or correctly predicted sample

based on the ARE.

OWE is an ensemble learning (A3) algorithm that takes into account that the

data exhibits time-varying behavior. The main adaptive ensemble mechanisms used

in OWE for dealing with concept drift are: (i) adaptation of the models’ combination

weights (with respect to their contributions on the recent and old windows); (iii)

dynamic inclusion of models when the ensemble’s performance is degrading; and

removal of models over time. Adaptation of the models’ parameters (ii) is not

employed for old models to retain information about past scenarios, so that the

ensemble can perform well in old and past scenarios.

The Steps of the OWE algorithm are detailed in Algorithm 5.1. The inputs of

the algorithm are: a data set D = {(xt, yt) |xt ∈ R
r×1, yt ∈ R, t = 1, . . . , T}, where

xt is a vector of r inputs, yt is the output and (xt, yt) is a sample; the window’s

size, m; a factor for demarcating correct and incorrect predictions, θ; a factor for

controlling the inclusion of a new model, α; a discount factor, κ; where 0 < θ, α < 1

and 0 6 κ < 1; a generic supervised learning algorithm for regression, Weak Learner;

a pruning activation factor, ρ; and the maximum number of models, N (enforced

if and only if (iff) ρ is activated). In Step 1, the initialization of some variables is

done. Variable k denotes the number of models in the ensemble, fk denotes the

most recently designed model, and t is the time step. Dt is a data window (of size

m) produced at time t.

The penalty distribution (or window data weights), D = [d1, . . . , dm]T , holds the

weights of each sample on the current data window, where each weight is based on

the ensemble prediction accuracy on a sample. D is firstly initialized to be a uniform

distribution [1/m, . . . , 1/m]T . The penalty distribution is not employed during the

model training as instance/sample weighting, e.g. for resampling the training data

set. It is considered that all the training samples have the same weight/contribution

during the training process.

Step 2 is repeated when a new sample from data set D becomes available. The

data window Dt is firstly filled with the first m samples of D, if t is not greater

than m (Step 2(a)ii). Otherwise, the window slides along D (Step 2(a)i). In Step

2(b), the algorithm is directed to create the first model if t is equal to m. In Step

2(c), the ensemble F (·) is used to predict the new sample. The ensemble’s output

96 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

Algorithm 5.1 On-line weighted ensemble of regressor models (OWE).
Inputs: a data set D = {(xt, yt)}

T
t=1; window’s size m; factor for demarcating correct and incor-

rect predictions θ; factor for controlling the inclusion of a new model α; discounting factor κ; a
supervised learning algorithm, Weak Learner; pruning activation factor ρ; maximum number of
models N (enforced if ρ is activated);

1. Initialization: Set s = 1; Number of models k = 0; D0 ← ∅; D = [d1, . . . , dm]T , with di = 1/m,
for i = 1, . . . , m;

2. for t = 1, . . . , T :

(a) if (t > m)

i. then Slide the window: s← s + 1; Dt = Dt−1 + (xt, yt)− (xt−m, yt−m);

ii. else Fill the window: Dt = Dt−1 + (xt, yt);

(b) if (t = m) then Go to Step 2(h)i; else if (t < m) then Go to Step 2;

(c) Predict yt as: F (xt) =
(
∑k

n=1 log (1/Ψn) fn(xt)
)

/
∑k

n=1 log (1/Ψn);

(d) Obtain the error of the ensemble on (xt, yt): AREF
t = |(F (xt)− yt) /yt|;

(e) Count the number of samples incorrectly predicted by the ensemble: totalSamples =
∑t

i=sJAREF
i > θK; where for any condition φ, JφK = 1 if φ is true, and JφK = 0 if φ is

false;

(f) Calculate upFactor and downFactor: upFactor = m/totalSamples, and downFactor =
1/upFactor;

(g) Update and normalize the distribution D:

i. Set di = 1/m, for i = s, . . . , t;

ii. if (AREF
i > θ), then di ← di × upFactor, else di ← di × downFactor, for i = s, . . . , t;

iii. d
(new)
i ← di/

∑t

i=s di, for i = s, . . . , t; di ← d
(new)
i , for i = s, . . . , t;

(h) if |(F (xt)− yt) /yt| > α

i. then Set k ← k + 1; set τk = 0; Call Weak Learner and obtain a new model fk trained
with Dt; Obtain the error of fk on Dt as AREk

i = |(fk(xi)− yi) /yi|, for i = s, . . . , t;
Include fk into the ensemble; if (k = 1), then AREF

i ← AREk
i for i = s + 1, . . . , t;

(i) Evaluate the models using Dt and obtain their current error rates using D, (for n = 1, . . . , k):
AREn

t = |(fn(xt)− yt)/yt|;
τn ← τn + 1; ετn

n =
∑t

i=s diJAREn
i > θK;

(j) Obtain the total error rate of each model on the past and recent windows using κ:

Ψn =
(
∑τn

p=1 κτn−pεp
n

)

/
∑τn

p=1 κτn−p, for n = 1, . . . , k;

(k) if (ρ = 1) and (k > N), then
Exclude the model fn where n = argmaxq=1,...,k−1 (Ψq), and set k ← k − 1; and

Renumber models: σq ← σq+1, for σq ∈
{

fq, τq, εp
q , Ψq

}
, q = n, . . . , k, p = 1, . . . , τq;

3. end for

5.2. ON-LINE WEIGHTED ENSEMBLE OF REGRESSOR MODELS 97

is obtained by a weighted sum of the models’ outputs using a (natural) logarithm

function. Step 2(d) obtains the ARE of the most recent sample (xt, yt) predicted

by the ensemble. Each error AREF
t of a sample (xt, yt) is obtained using the real

output value yt, and the predicted output of the ensemble F (xt).

In Step 2(e), samples of Dt are demarcated as incorrectly or correctly predicted

by the ensemble using a threshold θ. The objective is to count the total number

of samples incorrectly predicted by the ensemble for obtaining the new penalty

distribution. OWE employs concepts similar to the BEM boosting [Feely, 2000] and

to the AdaBoost.RT [Shrestha and Solomatine, 2006] boosting regression algorithms.

The strategy works as follows: if an error AREδ
i (of a sample i ∈ Dt predicted by a

component model, δ = 1, . . . , k, or the ensemble, δ = F ; Steps 2(e), 2(g)ii, 2(i)) is

greater than θ, then sample i is demarcated as incorrect, otherwise as correct. As in

the AdaBoost.RT and BEM algorithms, OWE is sensitive to the setting of θ. The

methods perform well when θ is between 0 and 0.4.

Step 2(f) determines the values of variables upFactor and downFactor using

totalSamples. The variable upFactor increases the weights of the samples predicted

incorrectly by the ensemble and downFactor decreases the weights of the samples

predicted correctly by the ensemble. In Step 2(g), the values of D are updated.

First, in Step 2(g)i, distribution D is reinitialized to be uniform. In Step 2(g)ii, each

weight di of a sample i is obtained. The main idea is to assign larger weights to

the samples predicted incorrectly by the ensemble and small weights to the samples

predicted correctly by the ensemble.

In Step 2(h), a new model is launched to the ensemble if the absolute relative

error of the ensemble on the newest sample is greater than α. The new model is

trained using all samples of Dt. Additionally, the absolute relative errors of the new

model with respect to all the samples of the current window Dt are obtained; where

each error of sample i is given by AREk
i (for i = s, . . . , t and i ∈ Dt). If the new

model is the first generated model of the ensemble, then the obtained values are

assigned to the absolute relative error values of the ensemble with respect to Dt.

Then, all the models are evaluated based on their predictions of Dt and their

contributions to the ensemble (using D) in the Step 2(i). In summary, the prediction

error of a model fn on Dt is given by AREn
s , . . . ,AREn

t , where AREn
t is the model’s

error on the most recent sample and is obtained at each iteration of the algorithm.

The current error rate, εt
n, of model n at sample t is calculated using the sum of the

98 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

weights (from D) of the samples demarcated as incorrectly predicted by model fn.

Therefore, since the sum of the elements of D is 1, εt
n can assume values between 0

and 1. As mentioned before, large errors are given to the models that predict poorly

the samples predicted incorrectly by the ensemble; and small errors are given to the

models that predict correctly the samples predicted incorrectly by the ensemble. In

this Step 2(i), the variable τn for each model fn is incremented. It holds the total

number of windows where model fn has been evaluated.

The total error rate Ψn of each model fn is calculated using a discounting factor

that weights the model’s errors on the past and recent windows (Step 2(j)). The

discounting factor weights recent errors more heavily than old errors for obtaining

the total error rate Ψn of a model fn as:

Ψn =
Ψ(1)

n,t

Ψ(2)
n,t

=

τn∑

p=1

κτn−pεp
n

τn∑

p=1

κτn−p

, (5.1)

where κ is the discounting factor with 0 6 κ < 1; εp
n denotes the error of model fn

on a window p; and let at sample t

Ψ(1)
n,t =

τn∑

p=1

κτn−pεp
n, (5.2)

Ψ(2)
n,t =

τn∑

p=1

κτn−p. (5.3)

Equation (5.1) can be rewritten as:

Ψn =
1

∑τn
p=1 κ

τn−p

(

κτn−1ε1
n + . . .+ κ1ετn−1

n + κ0ετn

n

)

. (5.4)

The sequence of weights κτn−p is decreasing with the oldness of the window, τn − p,

so that κτn−1 6 . . . 6 κ1 < κ0, as can be observed in the Figures 5.1 and 5.2. Also,

smaller values of κ imply that lower weights are given to the errors on the old win-

dows. This case works well in non-recurring drifts, since more importance is given

to the current scenario/concept. Larger values of κ imply that larger weights are

given to the errors on the old windows. This case performs well in scenarios with

5.2. ON-LINE WEIGHTED ENSEMBLE OF REGRESSOR MODELS 99

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time instant p when τn = 30

0.0

0.2

0.4

0.6

0.8

1.0

E
rr
o
r
o
f
th
e
m
o
d
el
n
(ε

n
)

εn

0.0

0.2

0.4

0.6

0.8

1.0

A
ss
o
ci
at
ed

w
ei
g
h
t
o
f
an

er
ro
r
(ε

n
)

κ = 0

κ = 0.1

κ = 0.2

κ = 0.3

κ = 0.4

κ = 0.5

κ = 0.6

κ = 0.7

κ = 0.8

κ = 0.9

κ = 0.99

Figure 5.1: Error weighting of a model in OWE.

0 1

increase of κ

decrease of κ

increase of contribution of the old windows

decrease of contribution of the old windows

Figure 5.2: Discounting factor behavior in OWE.

recurring drifts, since more importance is given to the errors on the old windows.

The proposed approach employs concepts of the discounted Mean Square Forecast

Error (MSFE) method [Shen et al., 2008]. It uses discounting factors for obtain-

ing weights of each forecast in an ensemble system. This strategy is simple and

easy to apply, and it is simple to tune the discount factor value. Other strategy is

the Weighted Majority Algorithm (WMA) which combines a set of models using a

weighted majority vote of the models’ predictions [Littlestone and Warmuth, 1994].

When a model incorrectly classifies a sample, then WMA decreases its combination

weight by a constant. Therefore, the combination weight is discounted only when

it performs poorly on the newest sample. AddExp also employs the same concept.

Learn++.NSE employs a sigmoid function with two parameters to decrease or in-

crease the contribution of the old batches. However, the parameters’ setting is not

an easy task, and Learn++.NSE is sensitive to their values.

In Step 2(k), if the pruning factor ρ is activated by the user, then a model is

removed if the number of models is greater than the threshold N . The pruning

strategy removes the model with the largest total error rate Ψn. Note that a new

model fk created at sample-iteration t is never removed by the pruning strategy at

100 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

that same iteration t.

Using the value of τn at sample t, and from (5.2)-(5.3), at sample t + 1, the

computations of Equation (5.1), which are used to obtain Ψn in Step 2(j), can be

recursively implemented with the following two recursions:

Ψ(1)
n,t+1 = κΨ(1)

n,t + κ0ε(τn+1)
n , (5.5)

Ψ(2)
n,t+1 = κΨ(2)

n,t + κ0, (5.6)

initialized (at the sample when model n is created) with Ψ(1)
n,t = ε1

n, and Ψ(2)
n,t = κ0 =

1. This implementation prevents the unbounded growth of the memory costs of

saving εp
n and the computational costs related to the implementation of (5.1) for a

single sample for the case of models which might never happen to be removed. Past

values of εp
n do not need to be stored in memory, so that in Step 2(k) the values εp

n

do not need to be updated/saved if in Step 2(j) Ψn = Ψ(1)
n,t/Ψ

(2)
n,t is computed using

(5.1), (5.5)-(5.6).

5.3 Experimental Results

Experimental results are detailed in this Section to compare OWE to the state-

of-the-art approaches. The approaches are evaluated on different scenarios using

artificial data sets and industrial data sets. The use of artificial data sets allows

the control of relevant parameters and to empirically evaluate the algorithms in

several types of changes. There is a lack of artificial data sets to simulate changing

environments for regression tasks. In this Chapter, it is used the hyperplane data set

proposed by [Kolter and Maloof, 2005], a benchmark for evaluating algorithms that

deal with concept drifts for both classification and regression tasks; and the drifting

Friedman’s function proposed by [Ikonomovska, 2012], a recent data set created for

evaluating regression algorithms in changing environments. The real-world data sets

enable us to evaluate the merit of the proposed approach in real-world problems, and

compare it to the most recent works in real-life problems. However, it may not be

possible to precisely state when drifts occur or if there is any drift at some specific

time instant. This Chapter uses two well-known industrial data sets (previously

described in Section 2.7) widely employed to evaluate algorithms for dynamic system

modeling: the polymerization reactor data set, which has slowly changing process

5.3. EXPERIMENTAL RESULTS 101

dynamics due to the catalyst decay over the period of one year [Kadlec and Gabrys,

2011]; and the Fluidized Catalytic Cracking Unit (FCCU) data set, a benchmark

for evaluating dynamic systems [Liu et al., 2009]. The tests have been performed

in the Matlab environment, running on a PC equipped with an Intel Core i7-2600

3.4GHz process of 4 cores and 8GB of RAM.

5.3.1 Data Set Description

Drifting Hyperplane Data Set. It is a well-known drifting data set used to

evaluate algorithms that deal with concept drift [Minku et al., 2010]. It contains

noise, and gradual and non-recurring drifts, and is similar to the one proposed in

[Kolter and Maloof, 2005] (AddExp). The whole data set consists of 10 inputs

with uniform distribution over the interval [0, 1], 1 output, yt ∈ [0, 1], and 2000

samples (T = 2000). The data set contains 4 concepts, where each concept holds

500 samples. The outputs of the data set are given by

• Concept 1: yt = (x1
t + x2

t + x3
t)/3, for t = 1, . . . , T

4
;

• Concept 2: yt = (x2
t + x3

t + x4
t)/3, for t = (T

4
+ 1), . . . , T

2
;

• Concept 3: yt = (x4
t + x5

t + x6
t)/3, for t = (T

2
+ 1), . . . , 3T

4
;

• Concept 4: yt = (x7
t + x8

t + x9
t)/3, for t = (3T

4
+ 1), . . . , T ;

where xz
t denotes the value of the input z of a sample t, where the sample input vector

is xt = [x1
t , . . . , x

r
t]

T ∈ R
r×1, r is the number of inputs, and z = 1, . . . , r. A random

variate noise uniformly distributed in the interval of [−0.1, 0.1] is injected/added to

each output sample yt (for t = 1, . . . , T). The value of yt is clipped to 0 or 1 if its

value is less than 0 or greater than 1, respectively.

Drifting Friedman’s Function. As described in Chapter 4, the Friedman’s func-

tion contains 5 input variables, x1, . . . , x5, and 1 output variable, yt:

yt = 10 sin(πx1
tx

2
t) + 20(x3

t − 0.5)2 + 10x4
t + 5x5

t + ǫ , (5.7)

where ǫ ∼ N(0, 1) is a zero-mean, unit-variance Gaussian random variable. The

input space is enlarged by including other 5 input variables x6, . . . , x10 that are not

102 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

relevant for predicting y. The input variables are uniformly distributed over the

interval of [0, 1]. To create drifting scenarios, three drifting/artificial data sets using

the Friedman’s function were produced according to [Ikonomovska, 2012], each one

with 2000 samples (T = 2000). After generating the input values for all samples

of all data sets (with D = {(xt, yt)}T
t=1), the output values of each data set are

produced as follows.

1. Local and abrupt drift data set (Friedman-LA). Drifts in two different regions

(local drift), R1, and R2, of the input space are introduced, where R1 = {x2 <

0.3 ∧ x3 < 0.3 ∧ x4 > 0.7 ∧ x5 < 0.3} and R2 = {x2 > 0.7 ∧ x3 > 0.7 ∧ x4 <

0.3 ∧ x5 > 0.7}. The data set contains 3 points of abrupt drifts. The output

values are obtained as:

• Obtain the output yt using (5.7), (for t = 1, . . . , T
4
);

• (1st point) if xt ∈ R1, then Obtain yt as yR1

t = 10x1
tx

2
t + 20(x3

t − 0.5) +

10x4
t + 5x5

t + ǫ, else Obtain yt using (5.7), for t =
(

T
4

+ 1
)

, . . . , T
2
;

• (2nd point) if xt ∈ R2, then Obtain yt as yR2

t = 10cos(x1
tx

2
t) + 20(x3

t −

0.5)+ex4
t +5(x5

t)
2 +ǫ, else Obtain yt using (5.7), for t =

(
T
2

+ 1
)

, . . . , 3T
4

;

• (3rd point) remove the inequalities x4 > 0.7 and x4 < 0.3 from R1 and R2,

respectively; if xt ∈ R1, then Obtain yt using yR1

t , else if xt ∈ R2, then

Obtain yt using yR2

t , else Obtain yt using (5.7), for t =
(

3T
4

+ 1
)

, . . . , T .

2. Global recurring abrupt drift data set (Friedman-GRA). It simulates global,

abrupt and recurring drifts in two drift points of the data. The output values

are produced as follows:

• Obtain the output yt using (5.7), for t = 1, . . . , T
2
;

• (1st point) Obtain the output yt as yt = yglr1

t = 10 sin (πx4
tx

5
t)+20 (x2

t − 0.5)2+

10x1
t + 5x3

t + ǫ; for t =
(

T
2

+ 1
)

, . . . , 3T
4

;

• (2nd point) Obtain the output yt using (5.7), for t =
(

3T
4

+ 1
)

, . . . , T .

3. Global non-recurring gradual drift data set (Friedman-GnRG). It is produced

by gradually introducing samples which belong to a different function in con-

trast to the samples of the initial function. Two points are introduced to

simulate gradual changes. After each point, samples of an old concept are

5.3. EXPERIMENTAL RESULTS 103

gradually replaced by samples of a new concept by increasing their probabil-

ity of being included in the data. This thesis considers that the probability

of acceptance depends on a sigmoid function, and a random value uniformly

distributed over the [0, 1] interval. The output values are produced as follows,

where p = 0.02, and q = M/8:

• Obtain the output yt using (5.7), for t = 1, . . . , T
2
;

• (1st point) if random[0, 1) 6 (1+e−p(t− T
2

−q))−1, then obtain yt using the

function yglr1

t , else obtain yt using (5.7), for t =
(

T
2

+ 1
)

, . . . , 3T
4

;

• (2nd point) if random[0, 1) 6 (1 + e−p(t− 3T
4

−q))−1, then obtain yt using

function yt = yglr2

t = 10 sin (πx2
tx

5
t) + 20 (x4

t − 0.5)2 + 10x3
t + 5x1

t + ǫ, else

obtain yt using yglr1

t , for t =
(

3T
4

+ 1
)

, . . . , T .

Polymerization Reactor Data Set. The aim is to predict the catalyst activity

in a reactor (for more details see Section 2.7). The data set was preprocessed as

described in Subsection 4.4.1. Thus, it contains 648 samples, 10 inputs, and 1

output.

FCCU Data Set. The aim is to estimate the gasoline, light diesel oil (LDO)

and liquefied petroleum gas (LGP) concentrations in a refinery (for more details see

Section 2.7). The data set has 104 samples, 6 inputs, and 3 outputs.

5.3.2 Approach Setup and Description

Experiments are performed by comparing OWE to the RPLS, AddExp, ILLSA,

and Learn++.NSE. RPLS is a widely used algorithm in on-line process modeling to

adapt to process changes. Its popularity is motivated by its reduced computational

time and computer memory requirements [Qin, 1998]; and by its robustness under

collinearity, measurement error and high dimensionality of input space, which are

common characteristics in most industrial data sets. AddExp and Learn++.NSE are

two well-known adaptive ensembles for dealing with concept drifts; they are suit-

able to compare OWE to adaptive sample-based ensembles (AddExp) and adaptive

batch-based ensembles (Learn++.NSE), respectively. On the other hand, ILLSA is

a popular adaptive ensemble for soft sensing.

104 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

For the OWE, AddExp, and Learn++.NSE algorithms, ensembles are designed

with and without pruning strategy. Ensembles with pruning strategy are termed

as pruned. For each pruned ensemble, the pruning strategy was selected according

to the best result indicated by its authors. In the pruned AddExp, the model with

the lowest combination weight is excluded. In the pruned Learn++.NSE [Elwell and

Polikar, 2009], the model n with the largest current error is excluded. In all the

pruned algorithms, the maximum number of models in the ensemble (N) is set to

20. This choice was considered the best suitable for all the ensembles, since the

maximum number of models usually varies between 15 and 30 [Elwell and Polikar,

2009; Kolter and Maloof, 2005; Nishida and Yamauchi, 2007], and the use of more

models linearly increases the processing time of the experiments.

Either PLS or RPLS [Ahmed et al., 2009] is used as base model in the methods

studied in the experiments. The PLS was implemented using the SIMPLS algorithm

[Jong, 1993] (described in Algorithm 3.3); while the RPLS was implemented using

the recursive SIMPLS algorithm (proposed in Algorithm 3.10). The optimal num-

ber of latents ℓ is determined by 10-fold cross-validation using the sum of squared

prediction errors between the real output and the predicted output.

The following structure is performed in all the algorithms (except ILLSA). Con-

sider a data set D = {(xt, yt)}T
t=1 with T samples. The first model is designed using

the first m samples from D, while the other (T −m) samples of D are grouped to

form the on-line data to simulate an on-line scenario. Each method is evaluated

using MSE, which is calculated using the predicted outputs and the real outputs

from the on-line data. MSE is a widely used metric to evaluate models. It provides

a quadratic loss function that penalizes larger errors.

The component-models of the AddExp were implemented using RPLS models,

each one trained using the most recent m samples. The parameters are set based

on the pilot studies from [Kolter and Maloof, 2005]: ̟ = 0.5 (factor for decreasing

combination weights), ψ = 0.1 (factor for new model combination weight), and

ϕ = 0.05 (factor for adding a new model). For more details, see Subsection 3.5.2. In

the experiments, the ensemble is adapted on a sample basis. If a new model should be

included at time step t, its training data is obtained as: Dt = {(xi, yi)}t
i=t−m+1 ⊂ D.

As the AddExp requires the output data to be normalized to the interval of [0, 1],

the outputs of all the data sets for all the methods are normalized to this interval.

As the Learn++.NSE is an algorithm for classification tasks, a new scheme is here

5.3. EXPERIMENTAL RESULTS 105

proposed to adapt it for regression tasks. Learn++.NSE was implemented using a

boosting regression algorithm, the AdaBoost.RT [Shrestha and Solomatine, 2006].

Each time step of the Learn++.NSE consists of a batch of samples (it can be viewed

as the window’s size). Therefore, the batches are considered to have size m. The

Weak Learner is the SIMPLS. In Learn++.NSE, the slope parameters of the sigmoid

function are set according to the authors’ suggestions [Elwell and Polikar, 2011]:

a = 0.5, and b = 10,

The ILLSA was implemented according to the works [Kadlec and Gabrys, 2011;

Miranda, 2012]. The ILLSA is simulated by dividing the data set D into two data

sets: 30% of D is used as the training data set (the initial samples of D), for building

the pool of RPLS models; and 70% of D is used as an on-line data set (the ending

samples of D). Therefore, the on-line data set of ILLSA is different from the other

methods. Here, even if only one concept is detected on the training data set to train

one model, two models are designed to ensure that an ensemble is designed. ILLSA

does not have an ensemble pruning strategy. The size of the initial window (ninit)

is set as m. In each experiment, the optimal values of the kernel size (σ) and the

kernel size for the adaptation masks (σadapt) are chosen by 10-fold cross-validation

(using the training data) using values in the range of {10−4, 10−3, 10−2, 10−1, 100}.

The OWE and pruned OWE are implemented according to Algorithm 5.1, where

the SIMPLS Algorithm 3.3 is used as the Weak Learner. Based on pilot studies,

θ is set to 0.05 for the OWE, pruned OWE, and Learn++.NSE; since in the tests,

large values of θ produce unstable systems. For the pruned OWE, ρ is set to 1, and

N is set to 20; and for the OWE, ρ is set to 0. For each experiment, the result is

obtained by averaging 20 independent runs.

5.3.3 Analysis of OWE Parameters

The parameters’ setting is discussed in this Subsection. In on-line ensembles, the

frequency of adding new models may impact on the ensemble’s performance, and

the discounting factor κ can be tuned according to the data characteristics. Based

on pilot studies, tests of the OWE algorithm are conducted by varying α from 0.01

to 0.1 in steps of 0.01 (α lower than 0.01 produces a very large number of models and

increases the computational time, while α greater than 0.1 may produce inaccurate

ensembles); varying κ from 0 to 0.95 (in steps of 0.05) and also using κ = 0.99

106 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

(its values range over all the interval of 0 6 κ < 1 for analyzing its behavior); and

varying m in the following ranges:

• m ∈ {20, 30, 40, 50, 60}, for the artificial data sets;

• m ∈ {10, 15, 20, 25, 30}, for the industrial data sets.

These ranges of m are sufficient to analyze the behaviors with the other parameters.

It has been observed that for the hyperplane data set and the Friedman-GnRG

data set, the OWE’s performance improves when α increases; while for the other

artificial data sets, OWE has almost constant accuracy when α varies. For the in-

dustrial data sets, the accuracy of OWE slightly improves when α decreases. From

the performed analysis it is seen that the most adequate α depends on the charac-

teristics of each data set, i.e. in data sets that require faster adaptation capability,

α should be set to a low value for including new models at a higher frequency. For

data sets with small amounts of concept changes and that require low adaptation,

α should be set to a large value for adding new models at a low frequency. In the

tests below, α is set to 0.10 for the artificial data sets, and to 0.04 for the industrial

data sets.

The MSE results of the OWE when κ varies using all the data sets are shown

in Figure 5.3 and Figure 5.4. The tests show that for the hyperplane data set and

Friedman-GnRG data set, OWE performs well when κ takes small values; and in

this case, the MSE increases substantially when κ is 0.99. This happens because

both data sets have non-recurring drifts and more importance should be given to

the current concept. Therefore, the ensemble has better performance when the total

error rate of each model is assigned by decreasing the contribution of the old window

errors, and consequently, increasing heavily the contribution of the recent window

errors. In contrast, on the Friedman-GRA data set, which is a recurring drift data

set, OWE improves significantly its performance when κ is large, since the total

error of the models takes more into account the errors on the old windows. For the

Friedman-LA data set, OWE has almost constant accuracy when κ varies. In the

polymerization reactor data set, it is observed that OWE performs well when κ is

low; while in the FCCU data set, OWE oscillates its performance when κ varies. In

the tests below, κ is set to 0.2 for all the data sets, except for the Friedman-GRA

where κ is set to 0.99.

5.3. EXPERIMENTAL RESULTS 107

0.0 0.2 0.4 0.6 0.8 1.0

Discounting factor (κ)

12.0

12.5

13.0

13.5

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(a) Hyperplane data set.

0.0 0.2 0.4 0.6 0.8 1.0

Discounting factor (κ)

6.35

6.40

6.45

6.50

6.55

6.60

6.65

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(b) Friedman-LA data set.

0.0 0.2 0.4 0.6 0.8 1.0

Discounting factor (κ)

11.6

11.7

11.8

11.9

12.0

12.1

12.2

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(c) Friedman-GRA data set.

0.0 0.2 0.4 0.6 0.8 1.0

Discounting factor (κ)

11.85

11.90

11.95

12.00

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(d) Friedman-GnRG data set.

Figure 5.3: Artificial data sets: OWE’s accuracy using different values of the dis-
counting factor (κ).

108 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

0.0 0.2 0.4 0.6 0.8 1.0

Discounting factor (κ)

2

4

6

8

10

12

14

16

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 10

m = 15

m = 20

m = 25

m = 30

(a) Polymerization reactor data set.

0.0 0.2 0.4 0.6 0.8 1.0

Discounting factor (κ)

20

22

24

26

28

30

32

34

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 10

m = 15

m = 20

m = 25

m = 30

(b) FCCU data set (gasoline concentration).

0.0 0.2 0.4 0.6 0.8 1.0

Discounting factor (κ)

28

30

32

34

36

38

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 10

m = 15

m = 20

m = 25

m = 30

(c) FCCU data set (LDO concentration).

0.0 0.2 0.4 0.6 0.8 1.0

Discounting factor (κ)

30

35

40

45

50

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 10

m = 15

m = 20

m = 25

m = 30

(d) FCCU data set (LPG concentration).

Figure 5.4: Industrial data sets: OWE’s accuracy using different values of the dis-
counting factor (κ).

5.3. EXPERIMENTAL RESULTS 109

20 40 60 80 100 120 140

Window´s size (m)

6

8

10

12

14

16

18

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(a) Hyperplane data set.

20 40 60 80 100 120 140

Window´s size (m)

6

8

10

12

14

16

18

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(b) Friedman-LA data set.

20 40 60 80 100 120 140

Window´s size (m)

15

20

25

30

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(c) Friedman-GRA data set.

20 40 60 80 100 120 140

Window´s size (m)

10

12

14

16

18

20

22

24

26

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(d) Friedman-GnRG data set.

RPLS

ILLSA

AddExp

pruned AddExp

Learn++.NSE

pruned Learn++.NSE

OWE

pruned OWE

Figure 5.5: MSE results of the approaches in the artificial data sets using different
window’s sizes (m).

5.3.4 Experimental Results Using Artificial Data Sets

Results. In this Subsection, results of the algorithms using the artificial data sets

are detailed and analyzed. Results of the ILLSA can be hidden in some figures

due to their large errors when compared to the other methods, making difficult the

analysis of the experiments. The first test aims to determine the impact of window’s

size m on the algorithms’ accuracies. Figure 5.5 shows the algorithms’ errors when

m varies from 10 to 150 (in steps of 5). This range was chosen in pilot tests that

indicated that, for all the approaches, the accuracies do not significantly improve

when m is greater than 150 (see Figure 5.5). As can be observed, m is a factor that

may influence the algorithms’ accuracies. The results indicate different behaviors

when m varies. But in most cases, the approaches’ accuracies increase when m is

110 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

large. Figures 5.5b and 5.5c show that all the algorithms’ errors do not significantly

reduce after m = 100.

Table 5.1 shows the average and Standard Deviation (SD) of the MSE results of

all the approaches on all values of m; bold font is used to indicate the best result in

each data set. The MSE results reveal that OWE and pruned OWE have the best

accuracies in most cases. The exception is in the hyperplane data set, where AddExp

outperforms (6.34× 10−3) OWE (13.35× 10−3) and pruned OWE (6.95× 10−3) on

average. In the Friedman-LA data set, OWE and pruned OWE have achieved the

lowest errors (6.46×10−3 and, 7.11×10−3, respectively); while other approaches have

MSE greater than 8× 10−3 on average. In the Friedman-GRA data set, OWE and

pruned OWE also outperform (11.78×10−3, and 11.81×10−3, respectively) AddExp,

pruned AddExp, RPLS, Learn++.NSE, and pruned Learn++.NSE (13.08 × 10−3,

13.13× 10−3, 13.67× 10−3, 13.87× 10−3, and 13.91× 10−3, respectively) on average.

In the Friedman-GnRG data set, pruned OWE has the lowest error (10.86× 10−3),

while other methods have errors greater than 12 × 10−3. OWE and pruned OWE

have the lowest SD of the MSE when compared to the other approaches.

A test is applied to show the impact of the ensemble size (maximum number

of models) on the algorithms’ accuracies. Figure 5.6 shows the MSE errors of the

pruned ensembles when the maximum number of models is increased (m is set to

40). For the drifting Friedman data sets, the Learn++.NSE and the AddExp have

constant accuracies when the maximum number of models increases; while the OWE

tends to reduce the error when the maximum number of models increases. However,

for the hyperplane data set, the OWE performs better when the maximum number

of models is small. Table 5.2 shows some details of all the approaches on the ar-

tificial data sets. The values are calculated by obtaining the average and standard

deviation of the running (computation) time and the number of models using dif-

ferent values of m for each algorithm. Learn++.NSE and pruned Learn++.NSE have

the lowest running time among all the methods (including the single model RPLS).

OWE and AddExp produce larger number of models when compared to ILLSA and

Learn++.NSE. It can be observed that the ILLSA produces fewer models than the

other methods.

Discussion. ILLSA has achieved the largest error when compared to the other

approaches. This is because, in ILLSA, each model is trained with a different concept

of the training data set; and, if the training data contains few concepts (for example,

5.3. EXPERIMENTAL RESULTS 111

20 40 60 80 100

Maximum number of models (N)

4.5

5.0

5.5

6.0

6.5

7.0

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(a) Hyperplane data set.

20 40 60 80 100

Maximum number of models (N)

6.5

7.0

7.5

8.0

8.5

9.0

9.5

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(b) Friedman-LA data set.

20 40 60 80 100

Maximum number of models (N)

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

15.0

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(c) Friedman-GRA data set.

20 40 60 80 100

Maximum number of models (N)

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(d) Friedman-GnRG data set.

pruned AddExp pruned Learn++.NSE pruned OWE

Figure 5.6: Pruned ensembles’ errors (MSE) using the artificial data sets when the
maximum number of models varies (for m = 40).

the Friedman-GRA data set, which contains one concept in the training data set),

few models are built and they may be insufficient to deal with the dynamics of

the data during the on-line phase. Regarding Learn++.NSE and RPLS, they rarely

outperform OWE and AddExp algorithms. In the Learn++.NSE, the ensemble is

adapted only when a new batch is available, requiring a long period of time for

system adaptation. In contrast, sample-based ensembles (such as the OWE and

the AddExp) have faster adaptation capability, since the ensembles are adapted on

a sample basis. The RPLS is also adapted on a sample basis, but it employs few

strategies to deal with concept drifts: the only strategy is to recursively include each

new sample into the model at each time.

AddExp has good prediction performance when compared to the Learn++.NSE

and RPLS algorithms; and to the OWE for some values of m (mainly in the hyper-

112
C

H
A

P
T

E
R

5
.

A
D

A
P

T
IV

E
E

N
S
E

M
B

L
E

W
IT

H
D

IS
C

O
U

N
T

IN
G

F
A

C
T

O
R

Table 5.1: Artificial data sets: average and standard deviation of the MSE by varying the value of m.

Data set/Approach Hyperplane Friedman-LA Friedman-GRA Friedman-GnRG

RPLS 6.62 (2.46) 8.46 (2.53) 13.67 (4.24) 12.37 (3.72)
ILLSA - - - 38.13 (9.90)
AddExp 6.34 (1.80) 8.07 (1.97) 13.08 (3.34) 11.87 (3.00)
Pruned AddExp 6.37 (1.87) 8.12 (2.03) 13.13 (3.42) 11.91 (3.04)
Learn++.NSE 8.72 (1.63) 8.18 (1.94) 13.87 (3.46) 12.29 (3.15)
Pruned Learn++.NSE 8.75 (1.73) 8.25 (2.13) 13.91 (3.73) 12.35 (3.35)
OWE 13.35 (1.06) 6.46 (0.28) 11.78 (0.37) 12.04 (0.19)
Pruned OWE 6.95 (0.96) 7.11 (0.82) 11.81 (1.17) 10.86 (1.28)

MSE values have been multiplied by 103;
m is varied from 10 to 150 (in steps of 5).

Table 5.2: Artificial data sets: average and standard deviation of the number of models and running time (minutes)
of the approaches by varying the value of m.

Data set / Approach Hyperplane Friedman-LA Friedman-GRA Friedman-GnRG

n. of models run. time n. of models run. time n. of models run. time n. of models run. time

RPLS 1.00 (0.00) 0.36 (0.04) 1.00 (0.00) 0.36 (0.02) 1.00 (0.00) 0.36 (0.06) 1.00 (0.00) 0.35 (0.01)
ILLSA 3.34 (1.78) 0.13 (0.10) 2.86 (2.03) 0.09 (0.08) 3.32 (2.84) 0.08 (0.09) 2.80 (2.48) 0.06 (0.05)
AddExp 1005.83 (87.81) 7.28 (0.48) 1023.48 (92.85) 6.90 (0.38) 1220.07 (100.34) 8.25 (1.14) 1186.28 (95.11) 7.76 (0.50)
Pruned AddExp 20.00 (0.00) 0.81 (0.03) 20.00 (0.00) 0.81 (0.01) 20.00 (0.00) 0.95 (0.20) 20.00 (0.00) 0.91 (0.12)
Learn++.NSE 41.00 (41.68) 0.07 (0.12) 41.00 (41.68) 0.06 (0.07) 41.00 (41.68) 0.07 (0.12) 41.00 (41.68) 0.06 (0.06)
Pruned Learn++.NSE 18.45 (2.47) 0.04 (0.02) 18.45 (2.47) 0.04 (0.02) 18.45 (2.47) 0.05 (0.05) 18.45 (2.47) 0.04 (0.04)
OWE 1201.90 (22.67) 3.52 (0.19) 792.48 (40.08) 2.52 (0.15) 1190.17 (39.96) 3.94 (0.40) 1144.10 (37.22) 3.47 (0.32)
Pruned OWE 20.00 (0.00) 0.61 (0.02) 20.00 (0.00) 0.52 (0.01) 20.00 (0.00) 0.74 (0.16) 20.00 (0.00) 0.70 (0.12)

m is varied from 10 to 150 (in steps of 5).

5.3. EXPERIMENTAL RESULTS 113

plane data set). AddExp outperforms RPLS since AddExp is a dynamic ensemble of

models, while RPLS is composed of only one model. This shows that an ensemble is

usually more accurate than any single model. AddExp outperforms Learn++.NSE,

because in the AddExp, the ensemble is adapted when a sample is available (rather

than on a batch basis). AddExp has worse performance when compared to the

OWE for the drifting Friedman data sets. In the AddExp, when a new sample is

available, all the models are re-trained using such new sample. After some time,

the models become very similar. This occurs because the models start to contain

only information about the recent samples, since the recursive learning excludes the

oldest samples. In this way, the old models start to lose information about the old

scenarios. In recurring drifts, if the system becomes to lose information about the

past concepts, the system takes more time to react to them when they recur.

In summary, the results in the data sets indicate that the OWE has better or

comparable performance to the other state-of-the-art methods. The good accuracy

of OWE is attributed to the development of a set of mechanisms. For example, OWE

keeps a set of diverse models trained with different parts of the data so that when

an old concept recurs, old models can be re-activated and the system performs well.

Additionally, in the pruned OWE, the pruning strategy removes the model with

the worst performance on the old and current windows. This strategy is important

to maintain the ensemble’s performance in recurring scenarios, since it reduces the

probability of excluding good models that belong to old concepts. OWE dynamically

launches new models if the ensemble’s performance is poor on the newest sample.

Furthermore, the models’ combination weights are obtained by taking into account

their accuracies on the recent and past windows.

Common behaviors are observed in the experiments. For example, pruned en-

sembles outperform ensembles without pruning strategy in the non-recurring drifts;

and ensembles without pruning strategy outperform pruned ensembles in the recur-

ring drifts. In recurring drifts, since an old concept recurs, the pruning strategy

may exclude models trained on an old concept. On the other hand, in non-recurring

drifts, the pruning strategy can be seen as a way to remove redundant models and

keep the most accurate set of models that maximize the performance on the current

concept.

114 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

5.3.5 Experimental Results Using Industrial Data Sets

Results. Experimental results of the algorithms using industrial data sets are pre-

sented in this Subsection. The algorithms’ accuracies when the window’s sizes vary

from 10 to 20 (in steps of 1) are shown in Figure 5.7. This range was chosen in pilot

tests that indicated that, for all the approaches, the accuracies do not significantly

improve when m is greater than 20. The test indicates that the OWE has the lowest

error when compared to the other methods in most values of m. For the FCCU

data set, most approaches achieve smaller errors for large m. Table 5.3 shows the

average and standard deviation of the MSE results of all the algorithms for all values

of m, where bold font indicates the best result in each data set. The MSE results

indicate that OWE and pruned OWE have the best results in most data sets. In the

polymerization reactor data set, OWE (0.97× 10−3) slightly outperforms the RPLS

(1× 10−3) on average; while other approaches have MSE greater than 1× 10−3. In

the gasoline concentration prediction (FCCU data set), OWE, pruned OWE, and

AddExp have achieved the lowest errors on average, i.e. 24.48× 10−3, 26.05× 10−3,

and 28.92×10−3, respectively; while most of the other approaches have errors larger

than 30×10−3. In the LDO concentration estimation (FCCU data set), pruned OWE

and OWE have the lowest errors, i.e. 33.23 × 10−3 and 33.41 × 10−3, respectively;

and other methods have errors larger than 35 × 10−3. For the LPG concentration

estimation (FCCU data set), AddExp has the best accuracy (i.e. 37.08 × 10−3),

followed by OWE (i.e. 37.39 × 10−3). Figures from 5.8 to 5.11 show the estimated

outputs of each algorithm on its best window’s size m as evaluated by the MSE.

Figure 5.12 shows the performance of the pruned ensembles when N increases (m

is set to 20). In most cases, it is observed that the error tends to decrease when N

increases. Table 5.4 shows interesting details of all the approaches. The test shows

that OWE produces more models than the other methods. However, in most cases,

OWE has smaller running time when compared to AddExp. For the polymerization

reactor data set, ILLSA has produced a larger number of models when compared to

the artificial data sets, because this data set contains more concept changes in the

training data set.

Discussion. It can be observed that ILLSA and the Learn++.NSE are more

sensitive to the value of m. The RPLS and ILLSA have achieved better accuracy

in the polymerization reactor data set when compared to their performances in the

5.3. EXPERIMENTAL RESULTS 115

10 12 14 16 18 20

Window´s size (m)

1

2

3

4

5

6

7

8

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(a) Polymerization reactor data set.

10 12 14 16 18 20

Window´s size (m)

20

40

60

80

100

120

140

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(b) FCCU data set (gasoline concentration).

10 12 14 16 18 20

Window´s size (m)

50

100

150

200

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(c) FCCU data set (LDO concentration).

10 12 14 16 18 20

Window´s size (m)

50

100

150

200

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(d) FCCU data set (LPG concentration).

RPLS

ILLSA

AddExp

pruned AddExp

Learn++.NSE

pruned Learn++.NSE

OWE

pruned OWE

Figure 5.7: MSE results of the approaches in the industrial data sets using different
window’s sizes (m).

artificial data sets. Possibly, in the polymerization reactor data set, the dynamics

of the process are well represented for designing the set of models in the ILLSA;

and for training the model in the RPLS. The AddExp and the OWE algorithms

outperform the Learn++.NSE approach. As mentioned before, Learn++.NSE uses

batch learning and it takes longer time to adapt to the changes. In most cases, the

tests indicate that the ensembles without pruning usually have equal or superior

performance when compared to their pruned versions. Therefore, this result reveals

that a larger number of models may lead to a better ensemble’s accuracy. This

performance may be related to the diversity among the models or because the data

sets have recurring behavior and, consequently old models are necessary to be re-

activated during predictions.

116 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

0 100 200 300 400 500 600

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

C
at
al
y
st
ac
ti
v
it
y

predicted
output
(RPLS)

real output

0 100 200 300 400

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

C
at
al
y
st
ac
ti
v
it
y

predicted
output (ILLSA)

real output

0 100 200 300 400 500 600

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

C
at
al
y
st
ac
ti
v
it
y

predicted
output
(pruned
AddExp)

predicted
output
(AddExp)

real output

0 100 200 300 400 500 600

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

C
at
al
y
st
ac
ti
v
it
y

predicted
output
(pruned
Learn++.NSE)

predicted
output
(Learn++.NSE)

real output

0 100 200 300 400 500 600

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

C
at
al
y
st
ac
ti
v
it
y

predicted
output
(pruned OWE)

predicted
output (OWE)

real output

Figure 5.8: The predicted outputs of all the algorithms using the polymerization
reactor data set.

5.3. EXPERIMENTAL RESULTS 117

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
as
o
li
n
e
co
n
ce
n
tr
at
io
n
% predicted

output
(RPLS)

real output

0 10 20 30 40 50 60 70

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
as
o
li
n
e
co
n
ce
n
tr
at
io
n
% predicted

output (ILLSA)

real output

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
as
o
li
n
e
co
n
ce
n
tr
at
io
n
% predicted

output
(pruned
AddExp)

predicted
output
(AddExp)

real output

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
as
o
li
n
e
co
n
ce
n
tr
at
io
n
% predicted

output
(pruned
Learn++.NSE)

predicted
output
(Learn++.NSE)

real output

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

G
as
o
li
n
e
co
n
ce
n
tr
at
io
n
% predicted

output
(pruned OWE)

predicted
output (OWE)

real output

Figure 5.9: The predicted outputs of all the algorithms using the FCCU data set
(gasoline concentration).

118 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
D
O
co
n
ce
n
tr
at
io
n
%

predicted
output
(RPLS)

real output

0 10 20 30 40 50 60 70

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
D
O
co
n
ce
n
tr
at
io
n
%

predicted
output (ILLSA)

real output

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
D
O
co
n
ce
n
tr
at
io
n
%

predicted
output
(pruned
AddExp)

predicted
output
(AddExp)

real output

0 10 20 30 40 50 60 70 80 90

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
D
O
co
n
ce
n
tr
at
io
n
%

predicted
output
(pruned
Learn++.NSE)

predicted
output
(Learn++.NSE)

real output

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
D
O
co
n
ce
n
tr
at
io
n
%

predicted
output
(pruned OWE)

predicted
output (OWE)

real output

Figure 5.10: The predicted outputs of all the algorithms using the FCCU data set
(LDO concentration).

5.3. EXPERIMENTAL RESULTS 119

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
P
G
co
n
ce
n
tr
at
io
n
%

predicted
output
(RPLS)

real output

0 10 20 30 40 50 60 70

Sample (t)

0.0

0.5

1.0

1.5

L
P
G
co
n
ce
n
tr
at
io
n
%

predicted
output (ILLSA)

real output

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
P
G
co
n
ce
n
tr
at
io
n

predicted
output
(pruned
AddExp)

predicted
output
(AddExp)

real output

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
P
G
co
n
ce
n
tr
at
io
n
%

predicted
output
(pruned
Learn++.NSE)

predicted
output
(Learn++.NSE)

real output

0 10 20 30 40 50 60 70 80

Sample (t)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
P
G
co
n
ce
n
tr
at
io
n

predicted
output
(pruned OWE)

predicted
output (OWE)

real output

Figure 5.11: The predicted outputs of all the algorithms using the FCCU data set
(LPG concentration).

120 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

20 40 60 80 100

Maximum number of models (N)

2

4

6

8

10

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(a) Polymerization reactor (catalyst activity).

20 40 60 80 100

Maximum number of models (N)

20

40

60

80

100

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(b) FCCU data set (gasoline concentration).

20 40 60 80 100

Maximum number of models (N)

30

35

40

45

50

55

60

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(c) FCCU data set (LDO concentration).

20 40 60 80 100

Maximum number of models (N)

50

100

150

200

250

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

(d) FCCU data set (LPG concentration).

pruned AddExp pruned Learn++.NSE pruned OWE

Figure 5.12: Pruned ensembles’ errors (MSE) using the industrial data sets when
the maximum number of models varies.

5
.4

.
C

O
N

C
L

U
S
IO

N
121

Table 5.3: Industrial data sets: average and standard deviation of the MSE by varying the value of m.

Data set/ Polymerization reactor FCCU FCCU FCCU
Approach (catalyst activity) (gasoline concentration) (LDO concentration) (LPG concentration)

RPLS 1.00 (0.23) 35.33 (12.13) 38.16 (4.91) 47.43 (14.54)
ILLSA 1.71(1.66) 80.68(12.07) 91.28(52.93) 198.27(0.00)
AddExp 1.19 (0.24) 28.92 (3.23) 35.86 (6.20) 37.08 (2.37)
Pruned AddExp 1.19 (0.24) 29.35 (3.48) 35.22 (5.42) 37.65 (2.72)
Learn++.NSE 4.44 (1.27) 47.23 (35.49) 44.02 (16.35) 54.86 (21.47)
Pruned Learn++.NSE 4.50 (1.54) 46.42 (35.50) 42.79 (17.46) 54.03 (21.95)
OWE 0.97 (0.21) 24.48 (3.66) 33.41 (2.77) 37.39 (3.28)
Pruned OWE 1.03 (0.29) 26.05 (5.25) 33.23 (2.80) 38.12 (3.69)

The MSE values have been multiplied by 103;
m is varied from 10 to 20 (in steps of 1).

Table 5.4: Industrial data sets: average and standard deviation of the number of models and running time (minutes)
of the approaches by varying the value of m.

Data set / Polymerization reactor FCCU FCCU FCCU
Approach (catalyst activity) (gasoline concentration) (LDO concentration) (LPG concentration)

n. of models run. time n. of models run. time n. of models run. time n. of models run. time

RPLS 1.00 (0.00) 0.182 (0.047) 1.00 (0.00) 0.019 (0.005) 1.00 (0.00) 0.021 (0.001) 1.00 (0.00) 0.017 (0.004)
ILLSA 31.45(15.40) 0.578 (0.234) 2.00 (0.00) 0.005 (0.002) 2.00 (0.00) 0.006 (0.000) 2.00 (0.00) 0.006 (0.001)
AddExp 44.64 (5.39) 0.205 (0.053) 73.27 (5.46) 0.065 (0.020) 70.36 (1.91) 0.071 (0.002) 72.36 (2.80) 0.064 (0.014)
Pruned AddExp 20.00 (0.00) 0.163 (0.048) 20.00 (0.00) 0.053 (0.014) 20.00 (0.00) 0.058 (0.001) 20.00 (0.00) 0.049 (0.013)
Learn++.NSE 44.91 (10.38) 0.070 (0.018) 6.82 (1.72) 0.005 (0.002) 6.82 (1.72) 0.005 (0.001) 6.82 (1.72) 0.004 (0.001)
Pruned Learn++.NSE 20.00 (0.00) 0.054 (0.013) 6.82 (1.72) 0.005 (0.002) 6.82 (1.72) 0.005 (0.001) 6.82 (1.72) 0.004 (0.001)
OWE 192.64 (17.87) 0.322 (0.090) 80.27 (3.61) 0.054 (0.014) 79.91 (3.75) 0.060 (0.002) 83.18 (3.84) 0.055 (0.012)
Pruned OWE 20.00 (0.00) 0.192 (0.052) 20.00 (0.00) 0.048 (0.014) 20.00 (0.00) 0.054 (0.002) 20.00 (0.00) 0.049 (0.012)

m is varied from 10 to 20 (in steps of 1).

122 CHAPTER 5. ADAPTIVE ENSEMBLE WITH DISCOUNTING FACTOR

5.4 Conclusion

In on-line applications, changes may happen over time and thus additional adaptive

strategies are necessary to guarantee the ensemble performance in changing envi-

ronments. The main contribution of the ensemble proposed in this Chapter, OWE,

is the ability to learn incrementally sample by sample in presence of several types

of changes, and retain old knowledge in recurring scenarios by using a discounting

factor. Moreover, the proposed ensemble is adapted whenever a new sample is avail-

able, and thus it can achieve better performance than ensembles adapted only when

a set of samples is available. The proposed ensemble also dynamically removes and

adds models over time.

The methodology proposed in this Chapter was compared to RPLS, ILLSA,

AddExp, and Learn++.NSE using artificial data sets with concept drifts, and real-

world industrial data sets. The results have shown that, in most experiments, OWE

achieves better accuracy than other state-of-the-art methods, and in some cases,

OWE has comparable accuracy to the other state-of-the-art approaches. RPLS

assumes that samples that fall outside the moving window are irrelevant for the

learning, and such method does not have capability to use the old acquired data,

since the oldest samples are discarded. Other methods able to conciliate previous

data and current data (e.g. Learn++.NSE) may perform poorly since a long time is

required for system adaptation.

In this Chapter, the tests show notable behaviors. Results show that, in most

cases, ensemble learning outperforms learning using only one single model. The tests

also show that OWE has capability to deal with the concept drifts. The analysis

reveals that the frequency of including a new model to the ensemble (α), the contri-

bution of old windows over new windows (κ), and the maximum number of models

are important issues in on-line ensembles that deal with changing environments.

Other important issues are shown in this Chapter. In ensemble learning, the

re-training of all models on the same data can produce very similar models. In this

specific case, the ensemble loses information about the old scenarios, leading the

ensemble to a poor accuracy in scenarios where an old concept can recur. In recurring

drifts, ensembles without pruning strategies are usually more accurate than pruned

ensembles. Since in recurring drifts old concepts can recur, the pruning strategy

may remove important models trained on these old concepts. OWE monitors the

5.4. CONCLUSION 123

models’ performances on the current and old windows so that when an old concept

recurs, old and accurate models can be re-activated.

Despite the attractive characteristics of the OWE, its accuracy is related to the

windows’ size and the α value; since the prediction of a data set with time-varying

behavior depends on the values of α and windows’ size m. To cover these limita-

tions, as a future work, a variable window size that adapts according to the process

dynamics and an adaptive setting of α that is automatically adjusted according to

the change of characteristics (e.g. when a change occurs, α would be set to a low

value to include new models in a high frequency) can be proposed. Moreover, as a

future work, the author suggests the introduction of other pruning strategies and

methods to dynamically adjust other OWE’s parameters over time.

Therefore, the objective of proposing an adaptive ensemble to deal with sev-

eral types of changes and simultaneously retain old information in scenarios where

changes may recur was reached in this Chapter. Tests with artificial data sets with

different types of changes showed that the proposed ensemble learning algorithm is

able to learn in changing environments and simultaneously retain old information in

scenarios where changes may recur. The success of the proposed ensemble is mainly

attributed to the use of the discounting factor that can increase or decrease the

contribution of old models. The experimental results showed that, in most cases,

the proposed methodology can estimate key variables in soft sensing applications

more accurately than well-known adaptive ensemble methods.

Chapter 6

An Adaptive Ensemble with Fast

Adaptation Capability

Contents

6.1 Introduction . 125

6.2 Dynamic and On-line Ensemble Regression 128

6.2.1 DOER Description . 128

6.3 Experimental Results . 131

6.3.1 Data Set Description . 132

6.3.2 Approach Setup and Description 132

6.3.3 Analysis of DOER Parameters 135

6.3.4 Comparing DOER to Other Approaches 138

6.3.5 Discussion . 145

6.4 Conclusion . 147

6.1 Introduction

Industrial plants are rather dynamic, being very difficult for the models to react to

the changes, and thus leading to a deterioration of the model accuracy. The main

reasons for such changes are the sensor drift and/or process drift. Sensor drift is a

temporal shift of a sensor (which cannot be predicted or defined) due to aging or

125

126 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

environment changes [Vergara et al., 2012]. Process drift is related to the changes of

process behavior or to some external process conditions over time [Chincholkar and

Herrmann, 2008]. Sensor drift and process drift are difficult to detect and handle,

since many other factors may be changing the process conditions in parallel. In ML,

all these drifting problems are summarized under the term concept drift [Tsymbal,

2004] (see Section 3.5.1).

To cope with all these effects, the development of predictive models with adap-

tive capability is necessary. Different strategies for on-line adaptation have been

proposed in the literature. Recently, Just-in-time Learning (JITL) has been rais-

ing much attention in modeling industrial systems with time-varying behavior [Jin

et al., 2014]. JITL designs a local model using samples which are similar to a test-

ing sample. Once the testing sample is predicted, the local model is discarded. The

main drawback is the high computational time to continuously train a new model

from scratch whenever a new sample is available. Other strategies are the recursive

methods such as the RLS [Gjerkes et al., 2011], the RPLS [Qin, 1998], or the OS-

ELM [Liang et al., 2006], where model’s parameters are recursively adapted over

time. Recursive methods perform well in cases where the process dynamics are well

represented in the training data set. However, these methods are not efficient and

sufficient to deal with new process dynamic characteristics occurring in new samples,

becoming difficult to adapt quickly to abrupt changes of the process.

Adaptive sample-based ensembles for regression inspired by SW have been used

as predictive models for industrial processes. One of the first methods to introduce

this concept is the ILLSA [Kadlec and Gabrys, 2011]. Kaneko and Funatsu [2014]

propose an ensemble of on-line SVM models. On the on-line phase, a new model is

added at a fixed frequency using the current data window. In [Lv et al., 2013] the

training data is partitioned into different subsets using the Fuzzy C-means clustering

algorithm. Then, each subset is employed to train a Least Squares-SVM model.

No adaptive mechanisms are employed to the ensemble. However, all these listed

ensembles do not include and exclude models during on-line operation; but the on-

line inclusion and exclusion of models can be an important factor for improving

ensemble prediction performance.

The frequency of including a new model in the ensemble is a key factor in on-

line ensembles. Ensemble applications usually add a new model only at a predefined

fixed frequency (e.g. batch frequency) [Brzezinski and Stefanowski, 2014]. However,

6.1. INTRODUCTION 127

results indicate that when new models are added at a sample frequency, the ensemble

can adapt quickly to the changes and the system’s performance is improved signifi-

cantly [Kolter and Maloof, 2005]. Another important issue is the dynamic removal

of models from the ensemble, since the used memory and computational resources

may be increasing considerably; and some models may contain little information

about the current state of the process.

In Chapter 5, an on-line weighted ensemble (OWE) of regression models, which

can include and remove models over time, was proposed. OWE achieves good per-

formance in several types of changes by tuning a discounting factor. It does not

retrain models over time. This characteristic is important to maintain the system

performance in recurring changes, since it avoids that models lose knowledge about

the past data. However, in some applications, it is not possible to maintain knowl-

edge about the past scenarios, due to limited memory capacity of the system; and

applications may have non-recurring and abrupt behaviors so that all the models

of the ensemble should be tuned to reflect the current state of the process. In this

outlined scenario, retraining models is one of the key factors for covering this chal-

lenge. Since old models trained on past data can be adapted to the new concepts

using new samples, and thus the system can acquire more adaptation capability.

This Chapter proposes a new dynamic and on-line ensemble regression (DOER)

approach of OS-ELM models with fast adaptation capability for on-line prediction of

variables measured at low sampling frequency and on a sample basis in applications

with time-varying behavior. In this thesis, the term “fast adaptation capability”

is related to a property of the ensemble system of adapting all models quickly to

the current state of the process. This work incorporates three contributions from

Chapter 5: dynamic removal and inclusion of models; regression scope; and thorough

experimental analysis using artificial and industrial data sets. Moreover, DOER

brings together desired properties which are not given by OWE method proposed in

Chapter 5: (1) on-line inclusion and removal of models to keep only the most accurate

models with respect to the current state of the system; (2) dynamic adaptation of

the models’ combination weights based on their on-line predictions on the recent

samples; and (3) on-line adaptation of the models’ parameters (i.e. on-line model

retraining). Therefore, the ensemble system is tunned to reflect the current state of

the system, so that it can adapt faster to the changes.

Experiments on four artificial data sets and six real-world industrial data sets

128 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

are reported to evaluate the effectiveness of the DOER. Results show that DOER

has high adaptation capability, and DOER is not only comparable to the state-of-

the-art approaches, but in most cases, DOER has better accuracy when compared

to them.

This Chapter is organized as follows. Section 6.2 describes the DOER algorithm.

The experiments are reported and analyzed in Section 6.3. Finally, Section 6.4

contains concluding remarks.

6.2 Dynamic and On-line Ensemble Regression

DOER offers together the following strategies or characteristics which are not jointly

given by previous works from other authors in the literature: (1) on-line ensemble

learning - most ensembles are developed off-line and do not take into account that

the process or data may exhibit time-varying behaviors; (2) regression scope, as there

is a lack of on-line regression ensembles; (3) sample-based ensemble which offers

higher accuracy and faster adaptivity when compared to batch-based ensembles;

(4) adaptation of the models’ combination weights, DOER incorporates dynamic

adaptation of the models’ combination weights based on the models’ accuracies on

the most recent samples - DOER assigns high combination weights to the most

accurate models, allowing that inaccurate models do not degrade the ensemble’s

performance; (5) adaptation of the models’ parameters, leading the system to a

faster adaptation in changing environments; (6) dynamic inclusion and removal of

models, new models are launched to the ensemble and models that do not contribute

to the ensemble are excluded; the (7) pruning strategy removes the model with the

worst accuracy on the most recent samples, therefore old and accurate models can

be kept; DOER can work with (8) unnormalized data; and (9) overfitting control,

the model evaluation does not consider the performance on the training phase.

6.2.1 DOER Description

DOER builds a dynamic sample-based ensemble of weighted models based on the

SW approach. A data window of fixed size is maintained, and when a new sample is

available, it is included into the window, and the oldest sample is removed from the

window. The main idea is to add a new model trained with the data window when

6.2. DYNAMIC AND ON-LINE ENSEMBLE REGRESSION 129

Algorithm 6.1 Dynamic and on-line ensemble regression (DOER).
Input: a data set D = {(xt, yt)}

T
t=1; window’s size m; an on-line supervised learner; factor

for controlling the inclusion of a new model α; maximum number of models N ;

1. Initialization: set E← ∅ (ensemble), t = m, k = 1, and Dt = {(xt, yt)}
m
t=1 ⊂ D;

2. fk ← Obtain a new model trained with Dt; Set lifek = 0, MSEt
k = 0; wk = 1, and

E← E ∪ fk;

3. while t 6 T do:

(a) Slide the window: t← t + 1; Dt = Dt−1 + (xt, yt)− (xt−m, yt−m);

(b) Predict yt as: F (xt) =
(
∑k

n=1 wnfn(xt)
)

/
∑k

n=1 wn;

(c) For all models fn ∈ E: obtain the prediction error et
n on xt as et

n = (yt − fn(xt))
2;

and Set lifen ← lifen + 1;

(d) Obtain MSEt
n for each model fn ∈ E using Equation (6.2);

(e) Weight all models from E using Equations (6.3), and (6.4);

(f) Incrementally retrain all models from E using (xt, yt);

(g) if |(F (xt)− yt) /yt| > α

i. f0 ← Obtain a new model trained with Dt; Set life0 = 0, MSEt
0 = 0, and w0 = 1;

ii. if k < N

A. then Include f0 into E: Set k ← k + 1, fk ← f0, and E← E ∪ fk;

B. else Replace model fz by f0, where z = argmaxv=1,...,k

(
MSEt

v

)
; Set fz ← f0;

4. end while

the ensemble’s performance is not satisfactory on the newest sample of the window.

The proposed on-line ensemble regression method is presented in Algorithm 6.1.

The algorithm starts by defining some inputs: a data set D = {(xt, yt)|xt ∈

R
r×1, yt ∈ R, t = 1, . . . , T}, where (xt, yt) is the sample given at time t, xt is a

vector of r input variables, and yt is the output variable; the window’s size, m; a

generic on-line supervised learner; a factor for controlling the inclusion of a new

model, α; and the maximum number of models, N . In Step 1, some variables are

set: E denotes the set of models; k is the number of models; and Dt corresponds to

the current data window of size m, at time t, where Dt initially receives the first m

samples from D. Step 2 creates the first model for the ensemble. It is trained with

the initial data window.

130 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

On the on-line phase of the algorithm (from Step 3 to Step 4), for each new

incoming sample, the window slides along the data (Step 3(a)). This operation

excludes the oldest sample, (xt−m, yt−m) from the window and includes the newest

sample, (xt, yt), into the window. The ensemble prediction F (xt) of a new input

sample xt is obtained using a weighted sum of the models’ outputs (Step 3(b)).

The error of each model fn from the ensemble E (n = 1, . . . , k) on the newest

sample (xt, yt) is calculated as (Step 3(c)):

et
n = (yt − fn(xt))2, (6.1)

where fn(xt) is the predicted output of model fn using the input sample xt. In Step

3(c), the variable lifen is also incremented. It denotes the total number of on-line

evaluations performed with a model fn. After this, the current error of each model

on the current data window, MSEt
n, is obtained as (Step 3(d)):

MSEt
n =

0, if lifen = 0,
life

n
−1

life
n

·MSEt−1
n + 1

life
n

· et
n, if 1 6 lifen 6 m,

MSEt−1
n + et

n
m −

et−m
n
m , if lifen > m.

(6.2)

This approach is similar to one proposed by OAUE [Brzezinski and Stefanowski,

2014]. The aim is to estimate the average of the predictive error of fn on the most

recent m samples using the MSE. Equation (6.2) works like an adaptive MSE. A

new model initially receives MSEt
n equal to 0. As it performs on-line predictions

and the variable life lifen is incremented, the window of errors is also enlarged up

to a maximum width m. If lifen > m at a time t, the new error et
n is considered to

compute MSEt
n and the old error et−m

n is eliminated in the calculation of MSEt
n. Note

that only errors observed on the on-line phase are considered to calculate MSEt
n.

Step 3(e) dynamically assigns the current combination weight wn of each model

fn according to its error on the window, MSEt
n, as:

wn = exp

(

−
MSEt

n −med(MSEt)
med(MSEt)

)

, (6.3)

where

MSEt = [MSEt
1, . . . ,MSEt

k], (6.4)

6.3. EXPERIMENTAL RESULTS 131

and med(MSEt) is the median value of the models’ errors, MSEt. Equation (6.3)

transforms the combination weights in such a way that a model fn with MSEt
n

around the median value receives a combination weight equal to 1, while models

with MSEt
n lower than the median have their combination weights exponentially

increased, and models with MSEt
n larger than the median have their combination

weights exponentially decreased. This strategy allows that models with low accura-

cies do not impact negatively the ensemble’s performance. On the other hand, more

“credit” is given to the models that have high accuracy. In Step 3(f), all the models

are retrained, keeping the models updated on the current scenario.

Step 3(g) evaluates if a new model should be included to the ensemble. The

criterion includes a new model when the absolute relative error of the ensemble on

the newest sample is greater than α. The new model f0 is trained using the samples

from the current data window, Dt, where its combination weight is initially set as

1. Therefore, it receives the same combination weight as a model with error around

the median error, med(MSEt). This criterion smooths the contribution of a new

model at the time t+ 1, the period in which this model will be evaluated on-line for

the first time.

In Step 3(g)ii, if the number of models of the ensemble (k) is lower than N ,

then the value of k is incremented by 1 and the new model f0 is attributed to fk.

Otherwise, if k is greater than or equal to N , then f0 replaces the least accurate

model fn of the ensemble. The criterion substitutes the model fn with the highest

error MSEt
n. Therefore, a new model created in iteration t is never excluded by the

pruning strategy at the same time t.

6.3 Experimental Results

In this Section, experiments are performed with the DOER and the results are de-

tailed and compared to state-of-the-art approaches. Four artificial data sets and six

real-world data sets are employed to evaluate the algorithms’ effectiveness on differ-

ent changing scenarios. The tests have been performed on the Matlab environment,

running on a PC equipped with an Intel Core i7-2600 3.4 GHz processor of 4 cores

and 8 GB of RAM.

132 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

Table 6.1: Specifications of the industrial data sets used in the experiments.

Data set Before preprocessing After preprocessing Data Set

Samples # Inputs # Samples # Inputs Size

polymerization reactor 8687 15 648 10 small
cement kiln process 43469 195 701 45 small
debutanizer column 2394 7 1836 7 medium

powder detergent production 1962 14 1962 7 medium
thermal oxidizer 2053 39 2053 6 medium
SRU, output 1 10081 5 6909 5 large
SRU, output 2 10081 5 6806 5 large

6.3.1 Data Set Description

The artificial data sets are the hyperplane data set [Kolter and Maloof, 2005]; the

local and abrupt drift data set (Friedman-LA); the global recurring abrupt drift data

set (Friedman-GRA); and the global non-recurring gradual drift data set (Friedman-

GnRG) [Ikonomovska, 2012]. For more details, see Subsection 5.3.1.

Six real-world data sets are considered [Fortuna et al., 2006; Kadlec and Gabrys,

2011; Grbić et al., 2013], as listed in Table 6.1. They aim to predict important

variables in industrial applications. Most industrial processes exhibit some kind of

time-varying behavior, and so these data sets are crucial to evaluate the proposed

methodologies. Details and descriptions of the data sets can be found in Section

2.7. Preprocessing was applied to select input variables in every single data set, as

the strategy described in Subsection 4.4.1. Unlike the other Chapters, this Chapter

uses Hampel identifier [Lin et al., 2007] (as described in Subsection 2.3.2) to detect

outliers. For data sets with a large number of outliers, outliers were replaced by

the median value. In this case, for a given variable, an outlier was replaced by

the median value of the corresponding variable. For data sets with few number of

outliers, outliers were removed.

6.3.2 Approach Setup and Description

Experiments are performed by comparing DOER to four on-line strategies using a

single model OS-ELM algorithm; and six on-line ensemble algorithms (EOS-ELM,

AddExp, On-line Bagging (OB), Learn++.NSE, OWE, and OAUE). The single mod-

els are designed using the main structures of on-line learning algorithms presented in

6.3. EXPERIMENTAL RESULTS 133

Subsection 3.5.3: sample-based OS-ELM (OS-ELMs), as in Algorithm 3.5; batch-

based OS-ELM (OS-ELMb), as in Algorithm 3.4; sample-based OS-ELM using a

SW (OS-ELMs-SW), as in Algorithm 3.6; and batch-based OS-ELM using a SW

(OS-ELMb-SW), which is a modified version of Algorithm 3.6, where samples are

given in batches.

The following structure is employed to evaluate all the approaches. Consider

a data set D = {(xt, yt)}T
t=1 with T samples. The initial single model, or the first

model of the ensemble, or the pool of models (depending on the approach) is created

using the first m samples from D, i.e. D0 = {(xt, yt)}m
t=1. The other (T−m) samples,

Donline = {(xt, yt)}T
t=m+1, are grouped to form the on-line data to simulate an on-

line scenario. For each approach, its performance (accuracy) is evaluated using the

mean and the standard deviation of the MSE between the real and the predicted

outputs of the on-line data set Donline in 20 trials.

The OS-ELM (described in Subsection 3.5.4) is the base model for all the en-

sembles, except Learn++.NSE and OWE. As the Learn++.NSE and OWE ensembles

do not employ model retraining, their base model is the ELM algorithm. ELM and

OS-ELM were implemented using Algorithm 3.2 and Algorithm 3.9, respectively.

The number of training samples to train an ELM model is m; while for an OS-ELM,

the number of training samples in the initialization/training phase T0 is equal to m.

For both OS-ELM and ELM, the hidden layer activation function g(x) is sigmoid.

The number of neurons in the hidden layer L is selected by varying it in the interval

of [1, 20]. This interval may be adjusted to [1,m] if m < 20, since L should not be

greater than m in order to comply with the assumptions in the ELM algorithms.

The value of L is selected based on the best performance on a 10-fold cross-validation

using the training data set in 1 trial, where the best number of neurons is selected

as the one that maximizes the mean testing performance on the 10-folds.

For the OS-ELM model, on-line data scaling of the input and output variables

is applied using Equations (2.3)-(2.5) to attain zero-mean and unit-variance, where

on the on-line phase, the mean and standard deviation of each variable are recur-

sively adapted using (2.4)-(2.5) as new samples are available [Galicia et al., 2012].

The AddExp requires that the output samples are normalized to the [0, 1] interval.

Therefore, the outputs of all data sets were firstly normalized to this interval for

facilitating the comparison of AddExp with the other methods.

For the on-line ensembles, the maximum number of models is 15, i.e. N = 15.

134 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

This value was chosen to reduce the processing time and memory, since there is not a

considerable improvement of the ensembles’ performances when N further increases.

The on-line ensemble learning algorithms were implemented as follows:

• EOS-ELM [Lan et al., 2009]. The training data set is D0. All the models are

trained with the same activation function and L, where L is selected as the

most frequent best number of neurons on 20 trials of 10-fold cross-validation

on D0, and at each trial the best number of neurons is selected as the one

that maximizes the mean testing performance on the 10-folds. On the on-line

phase, all the models are retrained and combined by average.

• OB. It was implemented according to the structure in [Oza and Russell, 2001],

where L can be different for each model and the training data set for creating

the first model is D0. On the on-line phase, all models are retrained and

combined by average.

• AddExp [Kolter and Maloof, 2005]. It was implemented according to the

“pruned AddExp” description in Subsection 5.3.2, where the first model is

created using D0.

• Learn++.NSE [Elwell and Polikar, 2011, 2009]. It was implemented according

to the “pruned Learn++.NSE” description in Subsection 5.3.2. The first model

is created using D0.

• OAUE. It is an ensemble for classification tasks; so that the models’ com-

bination weights are obtained as 1/(MSEt
n) to convert OAUE for regression

tasks, where MSEt
n is obtained using Equation (6.2). OAUE was implemented

according to [Brzezinski and Stefanowski, 2014], where each batch/block is

considered to have size m. If the number of models is greater than N , then

the weakest model is replaced.

• OWE [Soares and Araújo, 2015c]. It was implemented according to Algorithm

5.1 and the “pruned OWE” description in Subsection 5.3.2, with the ELM as

the base model. The factor for demarcating incorrect and correct predictions

is set to θ = 0.05, and the pruning activation factor ρ is set to 1. The discount

factor κ is set to 0.2 for all data sets, except for Friedman-GRA where κ is

set to 0.99, because it has a recurring nature. The factor for including a new

6.3. EXPERIMENTAL RESULTS 135

model is set to α = 0.10 for artificial data sets; and α = 0.04 for industrial

data sets.

• DOER. It was implemented according to the structure proposed in Section

6.2. The values of m and α can vary on each experiment and analysis.

6.3.3 Analysis of DOER Parameters

The parameter setting is discussed in this Subsection, since in SW approaches the

window’s size is a factor that may influence the system’s accuracy; and in on-line en-

semble systems that add dynamically new models, the frequency of including models

may also impact the ensemble’s performance. Tests of the DOER are conducted by

setting α in the range of α ∈ {0.04, 0.06, 0.08, 0.10}, and m in the following ranges:

• m ∈ {10, 15, 20, 25, 30}, for the real data sets of small size;

• m ∈ {20, 30, 40, 50, 60}, for the real data sets of medium size and the artificial

data sets; and

• m ∈ {30, 60, 90, 120, 150}, for the real data sets of large size.

Five data sets using the hyperplane data were generated by varying T in the following

range in order to study different rates of concept drift:

• T ∈ {250, 500, 1000, 1500, 2000}.

The smaller the value of T , the larger is the rate of concept drift, since concept drift

episodes with the same overall concept-state transitions occur in intervals of smaller

duration (lower number of samples). For all data sets, the average errors on the 20

trials are shown in Figure 6.1 and Figure 6.2.

The results indicate different behaviors when m takes different values. Figures

6.1(a)-6.1(e) indicate that m is related to the rate of the concept drift. That is, in

data sets where the rate of concept drift is large, DOER has better accuracy when

m is small; while in data sets where the rate of concept drift is small, DOER has

better accuracy when m is large. This can be observed in Figure 6.1(a) (hyperplane

T = 250), where DOER has the best performance for m = 20, and has the worst

performance for m = 60; and in Figure 6.1(e) (hyperplane T = 2000), where DOER

has the best performance for m = 30, and has the worst performance for m = 20.

136 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

14

16

18

20

22

24

26

28

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(a) Hyperplane (T = 250).

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(b) Hyperplane (T = 500).

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(c) Hyperplane (T = 1000).

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

6.0

6.2

6.4

6.6

6.8

7.0

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(d) Hyperplane (T = 1500).

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

5.5

5.6

5.7

5.8

5.9

6.0

6.1

6.2

6.3

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(e) Hyperplane (T = 2000).

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

8.4

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(f) Friedman-LA.

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

11.5

12.0

12.5

13.0

13.5

14.0

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(g) Friedman-GRA.

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

10.5

11.0

11.5

12.0

12.5

13.0

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(h) Friedman-GnRG.

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

0.6

0.8

1.0

1.2

1.4

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 10

m = 15

m = 20

m = 25

m = 30

(i) Polymerization reactor

Figure 6.1: Average of errors of the DOER algorithm on all the data sets using
different values of m and α. (Part 1).

For the Friedman data sets, the tests indicated that the DOER’s performance in

general increases when m increases. Otherwise, for the real-world data sets, DOER

usually has high accuracy when m is small. This indicates that the real-world data

sets contain concepts of large concept drift rate.

The results also indicate that α is related to the rate of concept drift. For ex-

ample, for the hyperplane with T = 1000 (Figure 6.1(c)), DOER has a considerable

improvement of accuracy when α has small values; while for the hyperplane with

T = 2000 (Figure (6.1(e)), DOER has better accuracy when α is large. The same

trend as in the hyperplane data set is observed in the Friedman data sets: DOER

6.3. EXPERIMENTAL RESULTS 137

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

10.0

10.1

10.2

10.3

10.4

10.5

10.6

10.7

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 10

m = 15

m = 20

m = 25

m = 30

(a) Cement kiln.

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

6.2

6.3

6.4

6.5

6.6

6.7

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(b) Thermal oxidizer.

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

4.75

4.80

4.85

4.90

4.95

5.00

5.05

5.10

5.15

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(c) Powder detergent.

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 20

m = 30

m = 40

m = 50

m = 60

(d) Debutanizer column.

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

0.30

0.35

0.40

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 30

m = 60

m = 90

m = 120

m = 150

(e) SRU (output 1).

0.04 0.05 0.06 0.07 0.08 0.09 0.10

Values of α

0.8

0.9

1.0

1.1

1.2

1.3

M
ea
n
S
q
u
ar
ed

E
rr
o
r
(M

S
E
)

×10
−3

m = 30

m = 60

m = 90

m = 120

m = 150

(f) SRU (output 2).

Figure 6.2: Average of errors of the DOER algorithm on all the data sets using
different values of m and α. (Part 2).

improves the performance when α is larger. Otherwise, for the polymerization re-

actor and cement kiln data sets, DOER improves significantly the accuracy when

α is low. For the other real-world data sets, α does not affect substantially the

DOER’s performance. Therefore, the experiments reveal that the most adequate α

depends on the change characteristics of each data set. For example, for data sets

with high rate of changes and that require faster adaptation capability (as some

industrial data sets), α should be set to a small value for including new models with

high frequency so that the ensemble is adapted quickly to the new changes. On

the contrary, for data sets with low rate of changes and that require low adaptation

capability, α should be set to a large value for adding models at a low frequency. In

the experiments below, the hyperplane data set has 2000 samples (T = 2000); and

α is set to 0.10 for the artificial data sets, and α is set to 0.04 for the real-world

data sets.

138 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

6.3.4 Comparing DOER to Other Approaches

Tables 6.2, 6.3, 6.4, and 6.5 report the experimental results based on the MSE of

all the approaches using different values of m. For the artificial data sets, in most

cases, the performances of all the methods improve when m increases. For the SW

approaches, such as the OS-ELMs-SW and the OS-ELMb-SW, the ideal window’s

size m should be such that the window contains relevant samples that maximize

the representativeness of the current concept: a small value of m can provide faster

adaptivity, but in more stable phases the model’s performance can decrease; while

a large value of m can provide stability, but the system cannot recover faster to

the changes. For example, since the artificial data sets contain concepts of large

time durations, the SW approaches have high performance for large windows. In

other approaches, large windows offer low adaptation capability to the system. This

strategy is important to data sets where concepts are replaced more slowly by new

concepts, as in the artificial data sets. This can be observed in the Learn++.NSE,

where the ensemble’s accuracy improves when m increases, since the ensemble is

only adapted when a batch is available. Other important remark for the artificial

data sets is that in most cases the on-line single models have low accuracies when

compared to the on-line ensembles, demonstrating that an ensemble is usually more

accurate than any single model.

DOER outperforms the other approaches on the data sets with non-recurring

concepts, i.e. the hyperplane and Friedman-GnRG data sets. On the other hand,

the DOER has inferior accuracy when compared to OAUE and AddExp in the

Friedman-LA data set; and the DOER has accuracy comparable to the accuracy

of the AddExp method in the Friedman-GRA data set, a data set with recurring

concepts. This reveals that DOER can also deal with recurring changes. Therefore,

the experiments using the artificial data sets seem to support that, in terms of

accuracy, DOER is not only comparable to the other approaches of the state-of-the-

art, but in most cases DOER has higher performance.

In this Chapter, it can be observed that OWE has inferior performance when

compared to AddExp in the Friedman data sets; while in Chapter 5, OWE achieved

higher accuracy when compared to AddExp. This is mainly attributed to the change

of learning algorithm. Chapter 5 employs PLS and RPLS as learning algorithms;

while this Chapter employs ELM and OS-ELM as learning algorithms.

6.3. EXPERIMENTAL RESULTS 139

In the real-world data sets, different characteristics are noticed when m increases

or decreases. In the OS-ELMs, m is the number of samples to be used on the training

phase. Therefore, when m increases the model performs better, and consequently

its on-line performance is improved, as can be seen in the powder detergent data set,

where for m = 20 the MSE is 7.09× 10−3, and for m = 60 the MSE is 6.48× 10−3.

On the other hand, in the OS-ELMb, m has impact not only in the number of

samples to be employed on the training, but m also influences the time interval

of the model adaptation. So that, when m is small, the time interval is small, and

consequently the model will be adapted at a high frequency. In this case, for the OS-

ELMb, low values of m offer higher adaptation and performance. This can be seen

in the debutanizer column data sets, where for m = 60 the MSE is 13.85 × 10−3,

and when m = 10 the MSE 11.90 × 10−3. In the OS-ELMs-SW, m holds the

number of samples employed to train a new model. Therefore, data sets with fewer

concepts operate better when m is large (large window), while data sets with more

concepts perform well with small windows, ensuring faster adaptation. The OS-

ELMb-SW and Learn++.NSE are batch-based algorithms, and m has impact on the

time interval of the system adaptation, as in the OS-ELMb. Therefore, low values

of m guarantee faster adaptation to changes. For example, for the Learn++.NSE

using the thermal oxidizer data set, when m = 20 the MSE is 12.14 × 10−3, and

when m = 60 the MSE is 24.15 × 10−3. In EOS-ELM and OB, m works as in

OS-ELMs, i.e. m refers to the size of the initial training data set. Therefore, these

algorithms improve their performances when m increases. As shown in the cement

kiln data set for the EOS-ELM, when for m = 10 the MSE is 22.88 × 10−3, and

for m = 30 the MSE is 19.13× 10−3. In the AddExp, m only refers to the number

of samples to be used to train a new model. The results show that variations of

m have small impact on the AddExp’s performance, as indicated in the standard

deviation of the last column of the tables. In the OAUE, m is applied to measure

the models’ performances, to define the number of samples to train a new model

(2×m), and to define the time interval for including a new model in the ensemble.

Possibly, m affects mainly the time interval for including a new model, since, in

most cases, approaches that add new models at a high frequency (DOER, OWE,

and AddExp) have a higher accuracy when compared to other approaches. This

is because, in such high frequency approaches such as DOER, OWE, and AddExp,

ensembles contain mainly models trained on the samples of the most recent concept.

140
C

H
A

P
T

E
R

6
.

E
N

S
E

M
B

L
E

W
IT

H
F
A

S
T

A
D

A
P

T
A

T
IO

N
C

A
P

A
B

IL
IT

Y

Table 6.2: MSE results of the on-line learning algorithms using the hyperplane data set, the Friedman-LA data set
and the Friedman-GRA data set.

Method/Data set Window’s size All the

(m = 20) (m = 30) (m = 40) (m = 50) (m = 60) window’s sizes

hyperplane data set
OS-ELMs (on-line single model) 23.00 (2.28) 21.39 (0.86) 21.36 (1.20) 21.35 (0.67) 21.37 (0.57) 21.69 (0.73)
OS-ELMb (on-line single model) 22.42 (1.75) 21.53 (0.47) 21.66 (0.57) 21.83 (0.61) 21.92 (0.23) 21.87 (0.34)

OS-ELMs-SW (on-line single model) 23.81 (0.93) 14.97 (0.38) 11.64 (0.29) 10.23 (0.31) 9.59 (0.32) 14.05 (5.84)
OS-ELMb-SW (on-line single model) 24.46 (1.62) 16.00 (1.11) 12.32 (0.47) 11.93 (0.50) 11.57 (0.66) 15.25 (5.44)

EOS-ELM (on-line ensemble) 19.09 (0.20) 19.24 (0.24) 19.51 (0.19) 19.69 (0.17) 19.78 (0.13) 19.46 (0.29)
OB (on-line ensemble) 19.10 (0.37) 19.24 (0.24) 19.61 (0.21) 19.66 (0.17) 19.80 (0.23) 19.48 (0.30)

Learn++.NSE (on-line ensemble) 16.54 (0.88) 11.38 (0.47) 10.07 (0.40) 10.21 (0.44) 10.13 (0.46) 11.67 (2.78)
OAUE (on-line ensemble) 19.70 (0.17) 19.55 (0.12) 19.59 (0.18) 19.63 (0.12) 19.67 (0.16) 19.63 (0.06)

AddExp (on-line ensemble) 7.26 (0.24) 6.73 (0.15) 6.85 (0.15) 6.93 (0.13) 7.22 (0.11) 7.00 (0.23)
OWE (on-line ensemble) 7.91 (0.19) 6.47 (0.11) 6.33 (0.09) 6.37 (0.09) 6.48 (0.08) 6.71 (0.67)
DOER (on-line ensemble) 5.89 (0.12) 5.52 (0.07) 5.59 (0.06) 5.66 (0.06) 5.80 (0.07) 5.69 (0.15)

Friedman-LA data set
OS-ELMs (on-line single model) 12.81 (4.53) 9.55 (3.14) 8.13 (1.99) 7.41 (0.64) 7.63 (0.66) 9.11 (2.23)
OS-ELMb (on-line single model) 11.91 (3.65) 8.48 (1.54) 8.63 (1.24) 7.98 (0.79) 7.60 (0.73) 8.92 (1.72)

OS-ELMs-SW (on-line single model) 20.87 (0.62) 15.59 (0.56) 13.08 (0.26) 11.81 (0.31) 10.71 (0.26) 14.41 (4.04)
OS-ELMb-SW (on-line single model) 20.90 (1.47) 15.60 (0.56) 13.29 (0.51) 11.69 (0.45) 10.80 (0.35) 14.45 (4.04)

EOS-ELM (on-line ensemble) 9.61 (1.32) 6.89 (0.35) 6.58 (0.37) 6.53 (0.14) 6.39 (0.10) 7.20 (1.36)
OB (on-line ensemble) 8.45 (0.67) 6.85 (0.23) 6.58 (0.17) 6.56 (0.09) 6.46 (0.09) 6.98 (0.83)

Learn++.NSE (on-line ensemble) 12.37 (0.60) 10.01 (0.39) 9.02 (0.27) 8.37 (0.22) 8.13 (0.26) 9.58 (1.72)
OAUE (on-line ensemble) 6.55 (0.17) 6.51 (0.15) 6.51 (0.15) 6.49 (0.11) 6.59 (0.18) 6.53 (0.04)

AddExp (on-line ensemble) 7.16 (0.22) 6.84 (0.13) 6.73 (0.11) 6.70 (0.14) 6.64 (0.10) 6.81 (0.21)
OWE (on-line ensemble) 9.31 (0.20) 7.89 (0.10) 7.44 (0.07) 7.24 (0.06) 7.12 (0.07) 7.80 (0.89)
DOER (on-line ensemble) 7.28 (0.13) 6.89 (0.06) 6.76 (0.07) 6.76 (0.05) 6.76 (0.05) 6.89 (0.23)

Friedman-GRA data set
OS-ELMs (on-line single model) 18.87 (4.20) 18.00 (4.84) 16.60 (3.34) 15.21 (3.20) 15.07 (2.12) 16.75 (1.68)
OS-ELMb (on-line single model) 22.57 (5.92) 19.71 (7.07) 15.93 (3.49) 14.87 (2.08) 15.12 (1.66) 17.64 (3.38)

OS-ELMs-SW (on-line single model) 36.11 (0.74) 26.59 (0.93) 21.61 (0.63) 19.16 (0.50) 17.54 (0.46) 24.20 (7.49)
OS-ELMb-SW (on-line single model) 36.56 (1.80) 26.83 (1.69) 21.52 (0.90) 19.89 (0.84) 17.76 (0.67) 24.51 (7.52)

EOS-ELM (on-line ensemble) 15.75 (2.58) 13.15 (1.25) 12.42 (0.67) 12.09 (0.24) 11.98 (0.22) 13.08 (1.56)
OB (on-line ensemble) 14.79 (0.91) 13.19 (0.78) 12.27 (0.21) 12.08 (0.19) 11.99 (0.15) 12.87 (1.18)

Learn++.NSE (on-line ensemble) 28.43 (2.17) 21.06 (1.01) 17.76 (0.69) 16.62 (0.73) 15.49 (0.55) 19.87 (5.22)
OAUE (on-line ensemble) 12.46 (0.36) 12.21 (0.25) 12.25 (0.22) 12.26 (0.23) 12.44 (0.36) 12.32 (0.12)

AddExp (on-line ensemble) 12.41 (0.26) 11.78 (0.17) 11.58 (0.17) 11.48 (0.13) 11.50 (0.13) 11.75 (0.39)
OWE (on-line ensemble) 14.54 (0.33) 12.71 (0.13) 12.09 (0.18) 11.77 (0.12) 11.56 (0.10) 12.54 (1.20)
DOER (on-line ensemble) 12.72 (0.20) 11.68 (0.12) 11.48 (0.11) 11.38 (0.11) 11.35 (0.11) 11.72 (0.57)

The MSE values have been multiplied by 103. Average and SD of MSE are obtained on 20 trials of the algorithms.
Bold values indicate the lowest error of a data set on a window’s size. The last column reports the average and SD
of the error of each approach on all window’s sizes.

6
.3

.
E

X
P

E
R

IM
E

N
T

A
L

R
E

S
U

L
T

S
141

Table 6.3: MSE results of the on-line learning algorithms using the Friedman-GnRG data set, the polymerization
reactor data set and the cement kiln data set.

Method/Data set Window’s size All the

m = 20 m = 30 m = 40 m = 50 m = 60 window’s sizes

Friedman-GnRG data set
OS-ELMs (on-line single model) 19.19 (4.08) 15.68 (2.10) 14.74 (1.09) 14.27 (0.99) 14.20 (1.43) 15.61 (2.08)
OS-ELMb (on-line single model) 19.72 (4.76) 16.22 (4.00) 15.08 (2.04) 14.98 (2.04) 14.43 (1.51) 16.09 (2.13)

OS-ELMs-SW (on-line single model) 30.34 (0.87) 23.12 (0.63) 19.36 (0.51) 17.11 (0.45) 15.77 (0.44) 21.14 (5.85)
OS-ELMb-SW (on-line single model) 30.70 (1.06) 23.53 (1.42) 19.55 (0.85) 16.53 (0.69) 15.83 (0.52) 21.23 (6.10)

EOS-ELM (on-line ensemble) 13.68 (1.23) 12.37 (0.23) 12.36 (0.22) 12.32 (0.19) 12.26 (0.12) 12.60 (0.61)
OB (on-line ensemble) 13.77 (0.67) 12.43 (0.23) 12.28 (0.17) 12.28 (0.13) 12.29 (0.11) 12.61 (0.65)

Learn++.NSE (on-line ensemble) 22.49 (1.16) 17.51 (0.47) 15.51 (0.48) 13.92 (0.52) 13.45 (0.47) 16.58 (3.67)
OAUE (on-line ensemble) 12.52 (0.21) 12.58 (0.23) 12.51 (0.26) 12.54 (0.26) 12.53 (0.15) 12.54 (0.03)

AddExp (on-line ensemble) 11.57 (0.18) 11.06 (0.12) 10.90 (0.14) 10.74 (0.13) 10.72 (0.12) 11.00 (0.35)
OWE (on-line ensemble) 14.43 (0.30) 12.03 (0.15) 11.22 (0.13) 10.73 (0.10) 10.54 (0.13) 11.79 (1.58)
DOER (on-line ensemble) 11.53 (0.15) 10.72 (0.07) 10.52 (0.09) 10.36 (0.07) 10.30 (0.07) 10.69 (0.50)

m = 10 m = 15 m = 20 m = 25 m = 30

Polymerization reactor data set
OS-ELMs (on-line single model) 10.16 (1.31) 10.65 (1.23) 14.38 (4.65) 9.42 (0.79) 8.91 (0.96) 10.70 (2.16)
OS-ELMb (on-line single model) 11.94 (1.76) 12.65 (2.70) 19.14 (10.70) 14.47 (2.08) 14.22 (2.14) 14.48 (2.81)

OS-ELMs-SW (on-line single model) 0.49 (0.09) 0.62 (0.09) 0.83 (0.21) 0.99 (0.20) 1.02 (0.20) 0.79 (0.23)
OS-ELMb-SW (on-line single model) 1.79 (0.47) 2.70 (0.48) 5.26 (0.98) 4.30 (0.46) 5.84 (1.31) 3.98 (1.71)

EOS-ELM (on-line ensemble) 8.14 (0.41) 8.08 (0.42) 13.75 (2.80) 7.76 (0.38) 5.90 (0.50) 8.72 (2.95)
OB (on-line ensemble) 8.42 (0.40) 8.03 (0.28) 11.18 (1.26) 7.57 (0.30) 5.79 (0.19) 8.20 (1.95)

Learn++.NSE (on-line ensemble) 4.18 (0.68) 5.30 (0.61) 6.39 (0.68) 6.27 (0.89) 8.42 (1.91) 6.11 (1.57)
OAUE (on-line ensemble) 2.77 (0.21) 3.13 (0.25) 2.99 (0.46) 2.99 (0.32) 3.58 (0.28) 3.09 (0.30)

AddExp (on-line ensemble) 2.80 (0.09) 2.78 (0.13) 2.73 (0.14) 2.75 (0.15) 2.61 (0.13) 2.73 (0.07)
OWE (on-line ensemble) 0.55 (0.06) 0.77 (0.09) 0.99 (0.10) 1.06 (0.11) 1.29 (0.10) 0.93 (0.29)
DOER (on-line ensemble) 0.47 (0.03) 0.58 (0.04) 0.67 (0.07) 0.75 (0.06) 0.81 (0.06) 0.66 (0.14)

Cement kiln data set
OS-ELMs (on-line single model) 22.92 (2.52) 23.24 (2.06) 22.58 (3.26) 21.96 (3.14) 19.67 (2.11) 22.07 (1.42)
OS-ELMb (on-line single model) 25.31 (1.70) 26.06 (2.04) 25.74 (2.77) 25.12 (2.51) 26.62 (2.24) 25.77 (0.60)

OS-ELMs-SW (on-line single model) 12.72 (3.88) 12.11 (0.50) 12.41 (0.68) 12.12 (0.43) 12.44 (0.60) 12.36 (0.25)
OS-ELMb-SW (on-line single model) 16.42 (1.66) 20.45 (2.55) 20.28 (2.95) 21.73 (3.01) 27.07 (2.84) 21.19 (3.84)

EOS-ELM (on-line ensemble) 22.88 (0.95) 22.01 (1.94) 22.77 (1.75) 18.99 (2.62) 19.13 (2.69) 21.16 (1.94)
OB (on-line ensemble) 20.61 (0.85) 19.10 (1.15) 18.99 (1.10) 16.86 (0.70) 16.42 (0.65) 18.40 (1.73)

Learn++.NSE (on-line ensemble) 17.31 (0.65) 21.99 (1.78) 22.42 (1.57) 23.44 (2.09) 27.06 (1.96) 22.44 (3.50)
OAUE (on-line ensemble) 11.98 (0.26) 12.64 (0.32) 12.48 (0.39) 12.55 (0.56) 13.02 (0.40) 12.53 (0.37)

AddExp (on-line ensemble) 12.13 (0.25) 12.29 (0.25) 12.33 (0.28) 12.03 (0.33) 11.98 (0.35) 12.15 (0.15)
OWE (on-line ensemble) 11.33 (0.32) 12.05 (0.43) 12.51 (0.42) 13.08 (0.62) 13.38 (0.56) 12.47 (0.82)
DOER (on-line ensemble) 10.06 (0.16) 10.20 (0.21) 10.21 (0.12) 10.02 (0.27) 10.14 (0.20) 10.13 (0.08)

The MSE values have been multiplied by 103. Average and SD of MSE are obtained on 20 trials of the algorithms.
Bold values indicate the lowest error of a data set on a window’s size. The last column reports the average and SD of
the error of each approach on all window’s sizes.

142
C

H
A

P
T

E
R

6
.

E
N

S
E

M
B

L
E

W
IT

H
F
A

S
T

A
D

A
P

T
A

T
IO

N
C

A
P

A
B

IL
IT

Y

Table 6.4: MSE results of the on-line learning algorithms using the thermal oxidizer data set, the powder detergent
data set and the debutanizer column data set.

Method/Data set Window’s size All the

m = 20 m = 30 m = 40 m = 50 m = 60 window’s sizes

Thermal oxidizer data set
OS-ELMs (on-line single model) 17.86 (6.37) 14.67 (2.93) 15.15 (4.73) 14.33 (3.55) 14.41 (3.00) 15.28 (1.48)
OS-ELMb (on-line single model) 20.36 (5.35) 18.42 (5.26) 17.06 (2.67) 18.04 (3.26) 19.50 (2.98) 18.68 (1.29)

OS-ELMs-SW (on-line single model) 8.12 (0.35) 8.14 (0.31) 8.19 (0.41) 8.07 (0.46) 8.03 (0.48) 8.11 (0.06)
OS-ELMb-SW (on-line single model) 17.23 (16.29) 20.69 (5.86) 30.19 (31.66) 27.96 (8.57) 29.27 (7.06) 25.07 (5.77)

EOS-ELM (on-line ensemble) 14.22 (1.88) 12.89 (1.50) 11.30 (0.70) 11.52 (0.72) 11.37 (0.82) 12.26 (1.27)
OB (on-line ensemble) 14.80 (1.24) 12.21 (0.71) 11.45 (0.54) 11.15 (0.42) 11.50 (0.48) 12.22 (1.49)

Learn++.NSE (on-line ensemble) 12.14 (1.12) 17.92 (2.94) 18.26 (4.19) 28.35 (13.94) 24.15 (10.30) 20.16 (6.24)
OAUE (on-line ensemble) 6.90 (0.08) 7.19 (0.08) 7.41 (0.16) 7.72 (0.19) 7.83 (0.14) 7.41 (0.38)

AddExp (on-line ensemble) 6.84 (0.13) 6.63 (0.07) 6.55 (0.10) 6.54 (0.08) 6.60 (0.07) 6.63 (0.12)
OWE (on-line ensemble) 8.39 (0.46) 9.02 (1.14) 8.76 (0.43) 8.41 (0.38) 8.40 (0.39) 8.60 (0.28)
DOER (on-line ensemble) 6.48 (0.06) 6.33 (0.06) 6.23 (0.06) 6.16 (0.07) 6.15 (0.07) 6.27 (0.14)

Powder detergent data set
OS-ELMs (on-line single model) 7.09 (0.62) 7.05 (0.67) 6.86 (0.61) 6.58 (0.29) 6.48 (0.28) 6.81 (0.28)
OS-ELMb (on-line single model) 7.77 (0.74) 7.64 (0.60) 7.62 (0.64) 7.46 (0.30) 7.48 (0.33) 7.59 (0.13)

OS-ELMs-SW (on-line single model) 6.79 (0.29) 6.63 (0.39) 6.40 (0.25) 6.30 (0.24) 6.04 (0.20) 6.43 (0.29)
OS-ELMb-SW (on-line single model) 11.24 (1.21) 10.09 (1.32) 9.79 (1.05) 10.43 (1.22) 9.98 (0.70) 10.31 (0.57)

EOS-ELM (on-line ensemble) 6.79 (0.60) 6.24 (0.37) 6.02 (0.28) 5.91 (0.11) 6.00 (0.10) 6.19 (0.36)
OB (on-line ensemble) 6.54 (0.23) 6.11 (0.15) 5.91 (0.08) 5.83 (0.08) 5.89 (0.06) 6.06 (0.29)

Learn++.NSE (on-line ensemble) 7.67 (0.40) 7.40 (0.28) 7.71 (1.08) 8.07 (0.52) 7.95 (0.32) 7.76 (0.26)
OAUE (on-line ensemble) 5.07 (0.06) 5.23 (0.07) 5.33 (0.08) 5.44 (0.06) 5.59 (0.14) 5.33 (0.20)

AddExp (on-line ensemble) 5.32 (0.08) 5.27 (0.08) 5.28 (0.08) 5.31 (0.10) 5.30 (0.08) 5.30 (0.02)
OWE (on-line ensemble) 6.09 (0.14) 6.20 (0.18) 6.15 (0.13) 6.06 (0.11) 6.15 (0.11) 6.13 (0.05)
DOER (on-line ensemble) 4.79 (0.06) 4.75 (0.05) 4.83 (0.07) 4.89 (0.07) 4.96 (0.05) 4.84 (0.08)

Debutanizer column data set
OS-ELMs (on-line single model) 10.86 (0.69) 10.28 (0.74) 10.10 (0.68) 9.94 (0.39) 9.79 (0.50) 10.19 (0.41)
OS-ELMb (on-line single model) 11.90 (0.50) 12.45 (0.52) 12.72 (0.62) 13.18 (0.55) 13.85 (0.56) 12.82 (0.74)

OS-ELMs-SW (on-line single model) 2.73 (0.27) 3.40 (0.28) 4.24 (0.30) 5.51 (0.76) 5.67 (0.38) 4.31 (1.28)
OS-ELMb-SW (on-line single model) 22.03 (18.83) 20.24 (3.53) 34.70 (7.11) 27.48 (2.87) 35.83 (8.77) 28.06 (7.11)

EOS-ELM (on-line ensemble) 10.56 (0.31) 10.02 (0.28) 9.86 (0.32) 9.58 (0.21) 9.25 (0.25) 9.85 (0.49)
OB (on-line ensemble) 10.38 (0.20) 9.83 (0.16) 9.77 (0.15) 9.49 (0.18) 9.28 (0.13) 9.75 (0.42)

Learn++.NSE (on-line ensemble) 12.83 (2.34) 15.38 (2.53) 24.73 (4.06) 20.68 (4.69) 25.21 (3.89) 19.76 (5.53)
OAUE (on-line ensemble) 7.32 (0.08) 7.92 (0.09) 8.25 (0.11) 8.54 (0.13) 8.73 (0.14) 8.15 (0.56)

AddExp (on-line ensemble) 5.77 (0.17) 5.94 (0.12) 6.01 (0.20) 6.25 (0.12) 6.38 (0.11) 6.07 (0.24)
OWE (on-line ensemble) 6.00 (0.39) 7.09 (0.27) 9.93 (0.73) 13.21 (1.03) 14.59 (1.48) 10.16 (3.73)
DOER (on-line ensemble) 1.98 (0.05) 2.48 (0.07) 3.04 (0.08) 3.57 (0.16) 3.95 (0.14) 3.00 (0.80)

The MSE values have been multiplied by 103. Average and SD of MSE are obtained on 20 trials of the algorithms.
Bold values indicate the lowest error of a data set on a window’s size. The last column reports the average and SD
of the error of each approach on all window’s sizes.

6
.3

.
E

X
P

E
R

IM
E

N
T

A
L

R
E

S
U

L
T

S
143

Table 6.5: MSE results of the on-line learning algorithms using the SRU data set.

Method/Data set Window’s size All the

(m = 30) (m = 60) (m = 90) (m = 120) (m = 150) window’s sizes

SRU data set (output 1)
OS-ELMs (on-line single model) 0.51 (0.01) 0.51 (0.01) 0.51 (0.01) 0.51 (0.00) 0.51 (0.00) 0.51 (0.00)
OS-ELMb (on-line single model) 0.55 (0.01) 0.58 (0.03) 0.59 (0.08) 0.63 (0.04) 0.63 (0.09) 0.59 (0.04)

OS-ELMs-SW (on-line single model) 0.39 (0.03) 0.46 (0.03) 0.46 (0.01) 0.46 (0.01) 0.47 (0.01) 0.45 (0.03)
OS-ELMb-SW (on-line single model) 1.92 (1.61) 1.82 (0.45) 2.11 (0.54) 2.14 (0.82) 2.19 (0.72) 2.03 (0.16)

EOS-ELM (on-line ensemble) 0.51 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)
OB (on-line ensemble) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00) 0.50 (0.00)

Learn++.NSE (on-line ensemble) 0.98 (0.28) 1.18 (0.19) 1.29 (0.25) 1.33 (0.21) 1.68 (0.54) 1.29 (0.26)
OAUE (on-line ensemble) 0.44 (0.00) 0.47 (0.00) 0.48 (0.00) 0.48 (0.00) 0.49 (0.00) 0.47 (0.02)

AddExp (on-line ensemble) 0.49 (0.01) 0.49 (0.00) 0.49 (0.00) 0.49 (0.00) 0.49 (0.00) 0.49 (0.00)
OWE (on-line ensemble) 0.60 (0.02) 0.66 (0.02) 0.64 (0.02) 0.65 (0.02) 0.66 (0.01) 0.64 (0.03)
DOER (on-line ensemble) 0.27 (0.00) 0.32 (0.00) 0.34 (0.00) 0.35 (0.00) 0.37 (0.00) 0.33 (0.04)

SRU data set (output 2)
OS-ELMs (on-line single model) 1.45 (0.01) 1.45 (0.00) 1.45 (0.01) 1.44 (0.01) 1.44 (0.01) 1.44 (0.01)
OS-ELMb (on-line single model) 1.58 (0.05) 1.60 (0.03) 1.66 (0.12) 1.81 (0.35) 1.70 (0.10) 1.67 (0.09)

OS-ELMs-SW (on-line single model) 1.10 (0.11) 1.35 (0.10) 1.37 (0.03) 1.40 (0.04) 1.40 (0.03) 1.32 (0.13)
OS-ELMb-SW (on-line single model) 4.37 (0.58) 6.58 (1.91) 6.02 (1.37) 6.47 (2.26) 7.36 (2.64) 6.16 (1.11)

EOS-ELM (on-line ensemble) 1.41 (0.01) 1.41 (0.01) 1.41 (0.01) 1.41 (0.00) 1.41 (0.00) 1.41 (0.00)
OB (on-line ensemble) 1.41 (0.00) 1.42 (0.00) 1.41 (0.00) 1.41 (0.00) 1.41 (0.00) 1.41 (0.00)

Learn++.NSE (on-line ensemble) 2.33 (0.24) 3.19 (0.75) 3.75 (0.85) 4.03 (0.94) 4.13 (1.08) 3.49 (0.74)
OAUE (on-line ensemble) 1.31 (0.01) 1.37 (0.01) 1.39 (0.00) 1.39 (0.01) 1.39 (0.01) 1.37 (0.04)

AddExp (on-line ensemble) 1.39 (0.01) 1.38 (0.01) 1.38 (0.01) 1.38 (0.01) 1.38 (0.01) 1.38 (0.00)
OWE (on-line ensemble) 1.59 (0.04) 1.95 (0.04) 1.98 (0.04) 1.93 (0.05) 1.93 (0.06) 1.88 (0.16)
DOER (on-line ensemble) 0.74 (0.01) 0.89 (0.01) 0.96 (0.01) 1.02 (0.01) 1.05 (0.01) 0.93 (0.12)

The MSE values have been multiplied by 103. Average and SD of MSE are obtained on 20 trials of the algorithms.
Bold values indicate the lowest error of a data set on a window’s size. The last column reports the average and
SD of the error of each approach on all window’s sizes.

144 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

The results show that when m decreases, the OAUE’s performance increases. In the

DOER, in general, when m is low, DOER achieves high accuracy. The value of m

is related to the number of samples to be used for training a new model and to

measure the models’ performances. As can be seen, m plays an important role on

all the approaches.

The OS-ELMs-SW has better performance in the real-world data sets than in

the artificial data sets, being a remarkable improvement of performance when com-

pared to what happens in similar comparisons made with the other on-line methods.

OS-ELMs-SW has high accuracy in scenarios where the most recent samples are

sufficient to describe the system. However, the OS-ELMs-SW requires high compu-

tational time when compared to the other algorithms, since in the OS-ELMs-SW, a

new model is trained when a new sample is available. The OS-ELMb-SW has low

computation time, because a new model is trained only when a batch is available.

However, the OS-ELMb-SW has larger error than the OS-ELMs-SW, since in the

OS-ELMb-SW, the system is adapted on a batch basis, taking more time to adapt

to the new concepts.

The experiments indicated that the presented industrial applications require

faster adaptation capability. Therefore, on-line ensembles with few adaptive mecha-

nisms have worse performances, as for example the EOS-ELM and OB which employ

few adaptive ensemble mechanisms, since only the models’ parameters (retraining of

models) are adapted. On both the methods, the ensembles react slowly to changes.

The OB slightly outperforms the EOS-ELM. In the OB, each new sample can be

presented more times for retraining each model in comparison to the EOS-ELM, so

that the OB can adapt faster.

Learn++.NSE employs more adaptive ensemble mechanisms when compared to

EOS-ELM and OB. However, the Learn++.NSE’s performance is usually worse

when compared to them, since the ensemble is adapted on a batch basis. Addi-

tionally, Learn++.NSE does not perform retraining of the models. In contrast to

Learn++.NSE, OAUE retrains all the models when a sample is available. However,

OAUE adds new models to the ensemble at a low frequency (batch frequency) when

compared to AddExp and DOER; and in most cases, the tests show that AddExp

and DOER outperform OAUE. AddExp employs the same adaptive ensemble mech-

anisms ((i), (ii), and (iii), defined in Section 3.5.2) as the DOER. However, the

AddExp’s performance is inferior in the Tables 6.3 and 6.5. As described before, in

6.3. EXPERIMENTAL RESULTS 145

the AddExp, new models trained on the new concepts take more time to have their

combination weights significantly increased. In scenarios that require faster adap-

tation to the new concepts, this strategy may fail. In contrast to AddExp, DOER

assigns high combination weights to the new and accurate models if they have low

errors on the recent samples.

Table 6.6 and Table 6.7 show the processing time (in seconds) of all the ap-

Table 6.6: Processing time (seconds) of all the approaches in all on-line samples
(AOS) and per on-line sample (POS) when m = 60 using the artificial data sets.

Method/ Hyperplane Friedman-LA Friedman-GRA Friedman-GnRG

Data Set AOS / POS AOS / POS AOS / POS AOS / POS

OS-ELMs 1.7 / 8.7×10−4 1.4 / 7.0×10−4 1.4 / 7.0×10−4 1.8 / 9.0×10−4

OS-ELMb 1.5 / 7.4×10−4 1.1 / 5.4×10−4 1.1 / 5.6×10−4 1.1 / 5.5×10−4

OS-ELMs-SW 1089.1 / 5.5×10−1 909.1 / 4.6×10−1 1124.6 / 5.7×10−1 1130.7 / 5.7×10−1

OS-ELMb-SW 7.7 / 3.9×10−3 11.2 / 5.7×10−3 7.7 / 3.9×10−3 8.3 / 4.2×10−3

EOS-ELM 41.4 / 2.1×10−2 44.3 / 2.2×10−2 44.1 / 2.2×10−2 38.8 / 2.0×10−2

OB 43.7 / 2.2×10−2 45.6 / 2.3×10−2 50.7 / 2.6×10−2 45.2 / 2.3×10−2

Learn++.NSE 36.2 / 1.8×10−2 38.6 / 2.0×10−2 36.1 / 1.8×10−2 38.3 / 1.9×10−2

OAUE 79.2 / 4.0×10−2 76.5 / 3.9×10−2 74.6 / 3.8×10−2 75.7 / 3.8×10−2

AddExp 555.0 / 2.8×10−1 724.7 / 3.7×10−1 801.5 / 4.1×10−1 910.2 / 4.6×10−1

OWE 455.6 / 2.3×10−1 410.7 / 2.1×10−1 539.5 / 2.7×10−1 754.6 / 3.8×10−1

DOER 707.0 / 3.6×10−1 634.8 / 3.2×10−1 825.1 / 4.2×10−1 837.1 / 4.2×10−1

proaches in all on-line samples (AOS) and per on-line sample (POS) using all the

data sets. The results reveal that sample-based windowing techniques (OS-ELMs-

SW, DOER, and AddExp) are more time consuming when compared to the sample-

based techniques that do not use a window (EOS-ELM, OB, etc). This is because,

sample-based windowing techniques require that more models are trained. There-

fore, in most cases, DOER is more time consuming than other ensembles, since more

models are designed. Nevertheless, in most cases, DOER gives better accuracy than

other methods. For the real-world data sets, all the approaches can perform on-line

prediction for each sample in less than 1 second.

6.3.5 Discussion

In summary, the results in the previous Subsections reaffirm the superiority of DOER

over the other methodologies in both the real scenarios and the artificial scenarios.

146 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

Table 6.7: Processing time (seconds) of all the approaches in all on-line samples
(AOS) and per on-line sample (POS) when m = 30 using the real-world data sets.

Method/ Polymerization Cement Thermal Powder
reactor kiln oxidizer detergent

Data set AOS / POS AOS / POS AOS / POS AOS / POS

OS-ELMs 0.6 / 9.5×10−4 0.6 / 9.3×10−4 1.4 / 6.8×10−4 1.3 / 6.5×10−4

OS-ELMb 0.6 / 9.0×10−4 0.6 / 8.2×10−4 1.1 / 5.4×10−4 1.1 / 5.5×10−4

OS-ELMs-SW 365.9 / 5.9×10−1 428.7 / 6.4×10−1 1190.7 / 5.9×10−1 1024.7 / 5.3×10−1

OS-ELMb-SW 7.2 / 1.2×10−2 9.2 / 1.4×10−2 29.1 / 1.4×10−2 29.6 / 1.5×10−2

EOS-ELM 21.2 / 3.4×10−2 22.8 / 3.4×10−2 43.4 / 2.1×10−2 37.4 / 1.9×10−2

OB 8.9 / 1.4×10−2 12.0 / 1.8×10−2 33.0 / 1.6×10−2 42.7 / 2.2×10−2

Learn++.NSE 14.4 / 2.3×10−2 18.5 / 2.8×10−2 65.0 / 3.2×10−2 57.1 / 3.0×10−2

OAUE 15.0 / 2.4×10−2 37.3 / 5.6×10−2 137.8 / 6.8×10−2 132.5 / 6.9×10−2

AddExp 95.5 / 1.5×10−1 242.8 / 3.6×10−1 635.1 / 3.1×10−1 429.1 / 2.2×10−1

OWE 84.8 / 1.4×10−1 211.1 / 3.1×10−1 669.4 / 3.3×10−1 468.8 / 2.4×10−1

DOER 140.0 / 2.3×10−1 294.2 / 4.4×10−1 896.4 / 4.4×10−1 597.2 / 3.1×10−1

Debutanizer SRU SRU
column (output 1) (output 2)

AOS / POS AOS / POS AOS / POS

OS-ELMs 1.2 / 6.7×10−4 3.9 / 5.6×10−4 4.0 / 5.8×10−4

OS-ELMb 1.1 / 5.9×10−4 3.1 / 4.6×10−4 3.1 / 4.6×10−4

OS-ELMs-SW 1206.4 / 6.7×10−1 3966.1 / 5.8×10−1 3533.8 / 5.2×10−1

OS-ELMb-SW 27.2 / 1.5×10−2 93.2 / 1.4×10−2 97.0 / 1.4×10−2

EOS-ELM 38.6 / 2.1×10−2 116.6 / 1.7×10−2 123.2 / 1.8×10−2

OB 40.7 / 2.3×10−2 126.4 / 1.8×10−2 131.2 / 1.9×10−2

Learn++.NSE 55.9 / 3.1×10−2 215.4 / 3.1×10−2 205.5 / 3.0×10−2

OAUE 124.4 / 6.9×10−2 705.3 / 1.0×10−1 668.7 / 9.9×10−2

AddExp 545.2 / 3.0×10−1 200.0 / 2.9×10−2 752.8 / 1.1×10−1

OWE 679.6 / 3.8×10−1 522.9 / 7.6×10−2 551.4 / 8.1×10−2

DOER 799.1 / 4.4×10−1 912.3 / 1.3×10−1 810.1 / 1.1×10−1

SW algorithms using a single model assume that samples that fall outside the window

are irrelevant, and such algorithms do not have capability to handle the previously

acquired data, since old data are discarded. On the other hand, algorithms able to

retain the previously acquired knowledge (e.g. EOS-ELM, and OB) have difficulty

to adapt quickly to changes, since the old data are still relevant to the learned

model. But even if the algorithm is able to conciliate previous data and current data,

some algorithms have slow adaptation capability, because a long time is required to

introduce new knowledge to the system.

The results in this Chapter revealed interesting characteristics of the proposed

6.4. CONCLUSION 147

DOER method. DOER attains an error lower than the best single model, the

OS-ELMs-SW. The results also indicate that DOER has capability to deal with

changing environments; and they also indicate that the correct setting of the fac-

tor of including a new model to the ensemble, α, is an important issue to control

the system’s adaptation capability. For example, in scenarios with fewer concept

changes, α should be set to approximately 0.10; while in scenarios that require fast

adaptation (as in the cement kiln data set or in the polymerization reactor data

set), α should be set to 0.04, since low values of α do not improve significantly the

DOER’s performance; while in other scenarios (e.g. SRU data set), the DOER’s

performance does not improve when α varies. It has also been observed that the

accuracy of each approach is related to the setting of m. Therefore, m should be

set using some knowledge about the data or using a value proportional to the data

set’s size.

In contrast to other approaches, DOER does not perform any down-weighting

mechanism of the old models. Additionally, a recently created model can have a

contribution similar to the other accurate models from the ensemble, if they predict

well the recent samples. Therefore, old and new models can have the same contribu-

tion to the ensemble if they predict accurately the recent set of samples. It has been

observed that this characteristic is important to increase the ensemble’s accuracy.

Moreover, the DOER’s weighting strategy decreases exponentially the contribution

of models that perform poorly on the current window, not allowing that they affect

the ensemble’s accuracy.

6.4 Conclusion

This Chapter proposed a dynamic and on-line ensemble regression (DOER) method

for on-line prediction of variables in changing environments, with application, for

example, for predicting variables measured with significant delay, as in soft sensing

applications. The main contribution of this Chapter is the proposal of an on-line

ensemble for regression that incorporates three different levels of adaptation (dy-

namic inclusion and removal of models, models’ combination weights adaptation,

and models’ parameters adaptation), which enable to maintain the system’s per-

formance in changing environments. DOER was shown to have higher accuracy

when compared to state-of-the-art approaches in scenarios that require adaptation

148 CHAPTER 6. ENSEMBLE WITH FAST ADAPTATION CAPABILITY

capability, and with non-recurring drifts. According to the simulation results of soft

sensing applications, the proposed method can deliver more accurate predictions of

the key variables in industrial processes when compared to the traditional SW ap-

proach using a single model, commonly used in soft sensing applications. Therefore,

the proposed method can be designed for practical use in industrial applications,

reducing the time and maintenance costs of traditional systems (e.g. laboratory

measurement systems).

The window’s size setting may have an important role in some data sets, e.g.

the debutanizer column data set. Therefore, in these cases, it is important to apply

extra experiments using the proposed method to define the window’s size. Also,

as a future work, it is proposed a variable window’s size that adapts according to

the process dynamics and characteristics. Moreover, it seems to be interesting to

propose an adaptive setting of α. In this way, α should be set to a high value when

a change occurs, and to a low value when no changes are detected. Additionally,

future efforts can also be devoted to apply fast dynamic optimization strategies for

on-line selection of the best subset of models from the ensemble.

Therefore, the aim of proposing an adaptive ensemble with fast adaptation capa-

bility for on-line predictions in changing environments was reached in this Chapter.

The experimental results showed that the proposed methodology can predict impor-

tant variables in industrial SS applications more accurately than well-known single

learning algorithms and ensemble learning algorithms.

Chapter 7

An Adaptive Ensemble Using

Ordered Aggregation

Contents

7.1 Introduction . 150

7.2 An OS-ELM Model with DFF 151

7.3 An On-line Ensemble Using Ordered Aggregation 153

7.3.1 OEOA Component Models 155

7.3.2 OEOA Algorithm Description 155

7.4 Experimental Results . 159

7.4.1 Data Set Description . 159

7.4.2 Evaluation Methodology 160

7.4.3 Approach Description and Setup 160

7.4.4 Comparison of Single Model Learning Algorithms 161

7.4.5 Analysis of OEOA Parameters 164

7.4.6 Comparison of On-line Ensemble Learning Algorithms . . 165

7.5 Conclusion . 172

149

150 CHAPTER 7. ENSEMBLE USING ORDERED AGGREGATION

7.1 Introduction

Many practical systems, such as industrial plants, exhibit time-varying behavior,

being very difficult for ELM models to react to the changes. Recently, ELM models

for dynamic environments have been proposed. The most popular is the OS-ELM

model [Liang et al., 2006]. In [Deng et al., 2014], it is proposed an On-line Sequential

Reduced Kernel ELM that is incrementally updated based on the new samples’

confidence estimation. In [Matias et al., 2013], a forgetting factor (FF) is introduced

to the OS-ELM algorithm. When the FF value is close to 1 more contribution is

given to the old samples, and when the FF value is close to 0 more importance is

given to the recent samples. Since a fixed value for the FF may not be sufficient

to track all the system dynamics, a variable FF for the OS-ELM is proposed in

[Lim et al., 2013]. The FF is adapted using a gradient (derivative) descent method,

derived from a cost function of the RLS. This method depends on the appropriate

step size and takes too many iterations to converge to the appropriate FF value.

RLS with FF discounts continuously the old data even when the new data does not

carry sufficient information, producing a phenomenon known as windup [Cao and

Schwartz, 2000]. As a consequence, values of the information matrix will tend to zero

and the model gain will tend to be unbounded, so that the model becomes sensitive

to noises. The directional FF (DFF) method can overcome this effect [Bobál et al.,

2005]. It considers that the data has directions, and the old samples are forgotten

only in some specific directions.

Although on-line ELM models have shown good performance in real-world ap-

plications, Chapter 6 showed that a combination of multiple on-line ELM models

(ensemble systems) is more accurate than a single on-line ELM model. Chapter 4

showed that the optimal subset selection of models from a set of models (ensemble

pruning) is a valuable tool to increase the ensemble accuracy. In off-line ensembles,

a subset of models is usually selected by GA [Soares et al., 2013] or Greedy optimiza-

tions [Partalas et al., 2008] based on the ensemble error and/or ensemble diversity.

However, these methods are computationally expensive for on-line applications, so

that other methods should be preferred. The Ordered Aggregation (OA) technique

uses some measure in order to produce a decreasing order of the best models for a

given data. In [Coelho and Zuben, 2006] models are ordered according their accu-

racies on a validation data set; while in [Lazarevic and Obradovic, 2001] models are

7.2. AN OS-ELM MODEL WITH DFF 151

ranked according to their accuracies and their diversities.

This Chapter proposes a new sample-based On-line Ensemble of regressor models

using Ordered Aggregation (OEOA) which is able to provide on-line prediction of

variables in changing environments. The proposed ensemble incorporates all the

previous contributions and characteristics of DOER (Chapter 6). However, OEOA

dynamically selects an optimal ensemble size and composition of the subset of models

based on the minimization of the ensemble error on the newest sample. Then, the

models are ordered based on their on-line prediction errors and the best models of

the ordered sequence are employed to obtain the ensemble’s output. OEOA builds

an ensemble based on a SW. A new model is trained (with samples of the current

window) and added, if the current ensemble’s error is higher than a threshold. The

error of each model is obtained using a window that is filled with its predictive

errors on the most recent on-line samples. The models’ combination weights are

dynamically assigned according to their prediction errors. Inaccurate models are

removed for assuring adaptation of the ensemble in changing environments. The

proposed ensemble overcomes the problem of defining the optimal ensemble size,

and in most cases it obtains better performance than aggregating all the models.

As a base model for the ensemble, this Chapter proposes an OS-ELM model

using DFF (termed as λDF F OS-ELM), a new algorithm which shows superior accu-

racy in industrial applications when compared to the well-known OS-ELM model.

Experiments are reported to demonstrate the performance, effectiveness, and faster

adaptation capability and accuracy of the proposed methods. Furthermore, a thor-

ough analysis of the experimental results using on-line ensembles of the state-of-the-

art and OEOA, is presented and reveals that the performances of these methods can

be significantly improved using λDF F OS-ELM as the base model in industrial data

sets.

The Chapter is organized as follows. Section 7.2 describes the λDF F OS-ELM

algorithm. Section 7.3 describes the OEOA algorithm. The experimental results

are presented and analyzed in Section 7.4. Section 7.5 presents concluding remarks.

7.2 An OS-ELM Model with DFF

An OS-ELM model with variable FF, called λDF F OS-ELM, is proposed in this

Section. It is based on the assumption that a priori selection of the FF may not

152 CHAPTER 7. ENSEMBLE USING ORDERED AGGREGATION

be able to track all the system dynamics. Using the DFF method, λDF F OS-ELM is

adapted only when the new data contains sufficient information so that the windup

phenomenon [Cao and Schwartz, 2000] is avoided.

Similarly to the OS-ELM algorithm, described in Subsection 3.5.4, the λDF F OS-

ELM has two phases: initialization phase and on-line learning phase. In the ini-

tialization phase, a training data set of size m, D0 = {(xt, yt)}m
t=1 from a data set

D = {(xt, yt)}T
t=1 (with m < T), is used to train an initial model. In the on-line

learning phase, on-line samples from a data set Donline = {(xt, yt)}T
t=m+1 are given

incrementally one-by-one for on-line retraining of the model.

Similarly to ELM and OS-ELM, the main objective is to obtain an output synap-

tic weights vector β, so that Hβ = y. For more details, see Subsection 3.3.1 and

Subsection 3.5.4. In the initialization phase, the initial output synaptic weights

vector β0 is obtained as:

β0 = P0H
T
0 y0, (7.1)

where P0 = (HT
0 H0)−1; y0 = [y1, . . . , ym]T (from D0); H0 is the initial hidden layer

output matrix and it is obtained from Equation (3.23), where L is the number of

hidden nodes; and β0 = [β1, . . . , βL]T .

In the on-line learning phase, when a new sample (xt, yt) from Donline is available,

it is employed to obtain a new output synaptic weights vector βk+1 using the RLS

with DFF [Mendes et al., 2013; Bobál et al., 2005] as follows:

βk+1 = βk +
Pkhk+1

1 + ξk+1

êk+1 , (7.2)

êk+1 = yt − hT
k+1βk, (7.3)

ξk+1 = hT
k+1Pkhk+1, (7.4)

hk+1 = [g(a1, b1,xt), . . . , g(aL, bL,xt)], (7.5)

k = t−m− 1 and k > 0. If ξk+1 = 0, then the covariance matrix Pk is obtained by

Pk+1 = Pk. Otherwise, if ξk+1 > 0, then Pk+1 is updated as:

Pk+1 = Pk −
Pkhk+1h

T
k+1Pk

ε−1
k+1 + ξk+1

, (7.6)

7.3. AN ON-LINE ENSEMBLE USING ORDERED AGGREGATION 153

εk+1 = λk −
1− λk

ξk+1

, (7.7)

where λk is the FF at the k-th iteration, and it should be initialized as 0 < λ0 6 1.

The FF for the (k + 1)-th iteration is obtained as [Bobál et al., 2005; Bobál and

Chalupa, 2008], [Kulhavý, 1985, cited in [Bobál and Chalupa, 2008]]:

λk+1 =

{

1 + (1 + ρ)

[

ln(1 + ξk+1) +

(

(υk+1 + 1)ηk+1

1 + ξk+1 + ηk+1

− 1

)

ξk+1

1 + ξk+1

]}−1

(7.8)

where

ηk+1 = ê2
k+1/γk+1, (7.9)

γk+1 = λk

(

γk +
ê2

k+1

1 + ξk+1

)

, (7.10)

υk+1 = λk(υk + 1), (7.11)

and ρ is a positive constant. The initial values of γ and υ (i.e. γ0 and υ0) should

be set between 0 and 1. The λDF F OS-ELM learning algorithm is summarized in

Algorithm 7.1. Similarly to the OS-ELM algorithm, it is assumed that L distinct

samples, with L 6 m < T , are included among the m samples contained in D0.

7.3 An On-line Ensemble Using Ordered Aggre-

gation

OEOA designs an ensemble using a SW. It employs the common assumption that the

most recent data provides the best and most relevant representation of the current

state of the process and of the near-future state; thus only this data should be kept

[Brzezinski and Stefanowski, 2014; Klinkenberg, 2005]. A data window of fixed size

is kept, and when a new sample is available, it is added to the window, and the

oldest sample is removed from the window. The data window is employed to train

a new model when the ensemble’s performance is deteriorating, and to obtain the

models’ prediction errors. Similarity to DOER, the main strategies of OEOA for

achieving faster adaptivity in time-varying environments are: sample-based ensemble

which offers higher performance and faster adaptivity when compared to batch-based

ensembles; models’ combination weights adaptation; models’ parameters adaptation;

154 CHAPTER 7. ENSEMBLE USING ORDERED AGGREGATION

Algorithm 7.1 Learning algorithm for λDF F OS-ELM.

Input: a data set D = {(xt, yt)}
T
t=1; a hidden layer activation function g(x); a number

of hidden nodes L; number of samples for the initialization phase m, including L
distinct samples (where L 6 m < T); λ0; γ0; υ0; ρ;

1. Initialization/training phase: consider a training data set D0 = {(xt, yt)}
m
t=1;

(a) Randomly assign input synaptic weights aj and biases bj , j = 1, . . . , L;

(b) Calculate matrix H0 using D0 and Equation (3.23);

(c) Obtain the output synaptic weight β0 through Equation (3.24), where P0 =
(HT

0 H0)−1, and y0 = [y1, . . . , ym]T ;

2. On-line learning phase: consider a testing data set Donline = {(xt, yt)}
T
t=m+1;

set t = m;

(a) While t < T do:

i. Set t← t + 1; k = t−m− 1;

ii. Obtain sample (xt, yt) from Donline;

iii. Obtain vector hk+1 using Equation (7.5);

iv. Obtain βk+1, êk+1, and ξk+1 using Equations (7.2)-(7.4), respectively;

v. Obtain Pk+1:

Pk+1 =

{

Pk, if ξk+1 = 0,
as Equations (7.6)-(7.7), if ξk+1 > 0;

vi. Calculate ηk+1, γk+1, and υk+1 using Equations (7.9)-(7.11), respectively;

vii. Compute λk+1 using Equation (7.8);

(b) end while

and dynamic inclusion and removal of models. But unlike DOER, OEOA selects

dynamically the best subset of models from a set of models using an OA approach.

Firstly, consider a regression problem with a data set D = {(xt, yt)}T
t=1, where

xt ∈ R
r and yt ∈ R, and a window’s size m (with m < T). Consider an ensemble

E with Nmax models, where E = {f1, . . . , fNmax
} and fn ∈ E represents a model.

OEOA has two phases: creation of an initial pool of Nmax models, and on-line

learning phase. In the first phase, an initial data window Dt with the first m

samples of D is employed to train the initial pool of models. In the second phase,

samples t = m + 1, . . . , T from D are given one-by-one for on-line prediction and

on-line learning. Therefore, for each t, a data window Dt keeps the most recent m

7.3. AN ON-LINE ENSEMBLE USING ORDERED AGGREGATION 155

samples.

Before introducing the OEOA algorithm, Subsection 7.3.1 describes the models’

characteristics. Then, Subsection 7.3.2 details the OEOA algorithm.

7.3.1 OEOA Component Models

Each model fn from ensemble E is initially trained with samples from a data window

Dt using the initialization phase of an on-line supervised learner (e.g. OS-ELM or

λDF F OS-ELM). Similarly to the DOER approach (for more details, see Subsection

6.2.1), in the OEOA algorithm, the main parameters associated to a model fn are:

lifen which denotes the total number of on-line predictions performed by fn; wn

which is the combination weight of model fn; and MSEt
n which denotes the total

prediction error of fn at time t. The value of MSEt
n is computed using Equation

(6.2), and as described in Subsection 6.2.1.

7.3.2 OEOA Algorithm Description

OEOA selects a subset of its models to participate in forming the ensemble pre-

diction. Ensemble model selection usually involves selecting an optimal subset of

models by searching the space of all models’ combinations. However, the compu-

tational complexity of such an approach is exponential in the number of models:

an ensemble with Nmax models involves searching a space of (2Nmax − 1) non-empty

solutions to minimize a cost function. OEOA sorts models according to their errors

obtained on the on-line predictions to avoid exhaustive search. Then, the best N

models (with N 6 Nmax) in the ordered sequence are selected as the optimal subset

of models for predicting each incoming sample. When the real output is available,

the optimal subset size is determined so as to minimize the ensemble prediction error

on the newest sample.

The proposed OEOA method is summarized in Algorithm 7.2. Factor α controls

the inclusion of a new model based on the prediction error on the newest sample, as in

the OWE and DOER algorithms, where 0 < α < 1. An ensemble E = {f1, . . . fNmax
}

with Nmax > 1 models is considered. To avoid the problem of reaching a small

size of the subset of models [Santos et al., 2009], a variable Nmin was included to

control the minimum size of the optimal subset in the ordered aggregation, where

1 < Nmin 6 Nmax.

156 CHAPTER 7. ENSEMBLE USING ORDERED AGGREGATION

Algorithm 7.2 Learning algorithm for OEOA.

Input: a data set D = {(xt, yt)}
T
t=1; m; an on-line supervised learner; factor for controlling the

inclusion of a new model α; maximum Nmax and minimum Nmin number of models of the
ensemble (where 1 < Nmin 6 Nmax);

Creating a pool of Nmax models:

1. Set E ← ∅; t = m; number of considered best models N = Nmax; current window Dt =
{(xt, yt)}

m
t=1 ⊂ D;

2. for n = 1, . . . Nmax do:

(a) fn ← obtain a new model trained with Dt using the initialization phase of the on-line
supervised learner (e.g. λDF F OS-ELM);

(b) Set lifen = 0, MSEt
n = 0, wn = 1; Include fn into the ensemble: E← E + {fn};

3. end for

4. Build the vector of the MSE of the models: MSEt = [MSEt
1, . . . , MSEt

Nmax
];

On-line learning phase:

5. for t = m + 1, . . . , T do:

(a) Receive a new sample (xt, yt);

(b) Slide the window: Dt = Dt−1 + (xt, yt)− (xt−m, yt−m);

(c) Get models’ predictions ot, where ot = [o1
t , . . . , oNmax

t], and oi
t = fi(xt);

(d) Obtain the final prediction of the optimal subset:
F (xt)← OutputOEOA(E, Nmax, N, MSEt−1, ot);

(e) if Nmin 6= Nmax, determine a new value for N :
Set minError =∞;
for p = Nmin, . . . , Nmax do:

i. ôp
t ← OutputOEOA(E, Nmax, p, MSEt−1, ot);

ii. Determine the error as ǫp
t = (yt − ôp

t)2;

iii. if ǫp
t < minError, then set minError = ǫp

t ; N = p;

end for

(f) Update the models (for n = 1, . . . , Nmax):

i. Obtain the error et
n of fn for input xt: et

n = (yt − on
t)2;

ii. Set lifen ← lifen + 1;

iii. Obtain MSEt
n using Equation (6.2);

iv. Incrementally retrain model fn using sample (xt, yt) and using (one iteration of) the
on-line learning phase of the on-line supervised learner (e.g. λDF F OS-ELM);

(g) Build vector MSEt = [MSEt
1, . . . , MSEt

Nmax
];

(h) if |(F (xt)− yt) /yt| > α

i. f0 ← obtain a new model trained with Dt using the initialization phase of the on-line
supervised learner; Set life0 = 0, MSEt

0 = 0, and w0 = 1;

ii. Replace model fz ∈ E by f0, where z = argmaxn=1,...,Nmax

(
MSEt

n

)
:

fz ← f0; lifez ← life0;

6. end for

7.3. AN ON-LINE ENSEMBLE USING ORDERED AGGREGATION 157

Algorithm 7.3 OutputOEOA: output prediction based on the OA of the best
models.

Input: Ensemble E; maximum number of models of the ensemble Nmax; number of
models to be aggregated Q; MSE errors of all the models MSEt−1; predicted outputs
of all the models ot;

1. Sort the elements of MSEt−1 in ascending order forming MSEt−1
Sort =

[MSEt−1
ix1

, . . . MSEt−1
ixNmax

] and return a vector of indexes IXSort = [ix1, . . . ixNmax]

which contains the position of each element of MSEt−1
Sort in vector MSEt−1;

2. Assign to MSEt−1
T op = [MSEt−1

ix1
, . . . MSEt−1

ixQ
] and IXT op = [ix1, . . . ixQ] the first Q

elements from MSEt−1
Sort and IXSort, respectively;

3. for each n ∈ IXT op do:

wn =

1, if lifen = 0,

exp

(

−
MSEt−1

n −median
(

MSEt−1

T op

)

median
(

MSEt−1

T op

)

)

, if lifen > 0;
(7.12)

4. end for

5. Obtain the output prediction:

ôT op =
(
∑

n∈IXT op
wnon

t)
)

/
∑

n∈IXT op
wn;

Output: ôT op;

In Step 2 a pool of Nmax models is created using the initialization phase of a

generic on-line supervised learner. The models are trained using the initial window

Dt = {(xt, yt)}m
t=1 ⊂ D. When a new sample (xt, yt) is available (Step 5(a)), the

window slides along the data (Step 5(b)). This operation adds the new sample

(xt, yt) to the window and excludes the oldest sample (xt−m, yt−m) from the window.

In Step 5(d), the final output of the optimal subset of N models is given. It is

obtained by a weighted sum of the models’ outputs. This step is performed using

the Algorithm 7.3, an algorithm that obtains the output prediction based on the

ordered aggregation of the best models.

Algorithm 7.3 obtains a vector of indexes, IXT op = [ix1, . . . ixQ], of the Q best

performing models of the ensemble with respect to the MSEt−1. The MSE values

of this subset of models are kept in vector MSEt−1
T op. Step 3 of Algorithm 7.3 aims

to obtain only the combination weights of the subset of models. Similarly to the

DOER algorithm, Equation (7.12) transforms combination weights in such a way

158 CHAPTER 7. ENSEMBLE USING ORDERED AGGREGATION

that a model fn with MSEt−1
n around the median value receives a combination weight

equal to 1. Models with MSEt−1
n lower than the median have their combination

weights exponentially increased, while models with MSEt−1
n larger than the median

have their combination weights exponentially decreased. A model with lifen = 0

created at time t is initialized with combination weight equal to 1. This criterion

smooths the contribution of a new model at the time t+ 1, the time at which such

model will be evaluated on-line for the first time.

Then, the question is how to determine the optimal subset size N for the next

iteration. N is chosen so as to minimize the square error on the newest sample

(xt, yt):

N = argmin
p=Nmin,...,Nmax

(ǫp
t) , (7.13)

where ǫp
t = (yt − ôp

t)2, and ôp
t is the output prediction of an ordered aggregation

with the best p models of the ensemble with respect to the MSEt−1. This strategy

may obtain a small value of N and induce the inclusion of only new models, since

a new model fn is initialized with MSEt
n = 0. To prevent this case and ensure

stability to the ensemble, Nmin should be large (> 5). It is worth noting that

when Nmin = Nmax no ordered strategy is employed, and the ensemble has a fixed

number of models, since N = Nmax in all iterations. This strategy is called as

“OEOA without ordering”. In this case, the algorithm has lower processing time

and the algorithm has similar performance when compared to the DOER algorithm.

However, the main advantage of the “OEOA with ordering” (specifically the main

advantage of having Nmin 6= Nmax) is that it is not necessary to tune the ensemble

size (but only Nmin and Nmax), and then the algorithm dynamically selects the

optimal ensemble size; and in some cases, this strategy has higher accuracy when

compared to ensembles of fixed size.

In Step 5(f) the parameters of all models are updated. All the models are re-

trained, keeping the models updated on the current state of the process. Step 5(h)

evaluates if a new model should be added. The criterion adds a new model when

the absolute relative error of the ensemble on the newest sample is greater than α.

The new model f0 is trained using the samples from the current data window Dt;

and f0 replaces the least accurate model of the ensemble. The criterion substitutes

the model fz with the highest error, MSEt
z. A new model created at iteration t is

never excluded by the pruning strategy at the same time t.

7.4. EXPERIMENTAL RESULTS 159

Table 7.1: Specifications of the real-world data sets used in the experiments.

Data set # Samples # Inputs # Inputs Data Set
(bef. preproc.) (af. preproc.) Size

polymerization reactor 648 15 10 small
cement kiln process 701 195 45 small
powder detergent production 1962 14 14 medium
thermal oxidizer 2053 39 39 medium
debutanizer column 2394 7 7 medium

7.4 Experimental Results

In this Section, four artificial data sets and five real-world data sets with time-varying

behavior are employed to demonstrate the predictive performance of λDF F OS-ELM

and OEOA over state-of-the-art approaches. The experiments have been performed

on the Matlab environment, running on a PC equipped with an Intel Core i7-

4700MQ 2.4GHz-3.4GHz processor of 4 cores and 8GB of RAM.

7.4.1 Data Set Description

Artificial data sets. They are the same data sets as the ones employed in Chapter

5 and Chapter 6: the hyperplane data set [Kolter and Maloof, 2005]; the local and

abrupt drift data set (Friedman-LA); the global recurring abrupt drift data set

(Friedman-GRA); and the global non-recurring gradual drift data set (Friedman-

GnRG) [Ikonomovska, 2012]. For more details, see Subsection 5.3.1.

Industrial data sets. Five real-world data sets are considered in this Chapter, as

detailed in Table 7.1. Most industrial processes exhibit some kind of time-varying

behavior, and so these data sets are crucial to evaluate the proposed methodologies.

Input variable selection was performed to the cement kiln and polymerization reactor

[Kadlec and Gabrys, 2011] data sets, as described in Subsection 4.4.1. No input

variable selection was performed to the powder detergent production and thermal

oxidizer data sets [Grbić et al., 2013] (unlike Chapter 6). Additionally, no outlier

detection and outlier treatment were applied in this Chapter. The aim is to analyze

the algorithms’ behaviors when erroneous data are available in the on-line learning

process. Details and descriptions of all the data sets can be found in Section 2.7

and Subsection 4.4.1.

160 CHAPTER 7. ENSEMBLE USING ORDERED AGGREGATION

7.4.2 Evaluation Methodology

The same evaluation methodology that was used in Chapter 6 is applied in this

Chapter. That is, consider a data set D = {(xt, yt)}T
t=1 with T samples. The single

model, the first model of the ensemble, or the pool of models (depending on the

approach) is designed using the first m samples from D in the initialization phase of

the learner. The remaining (T −m) samples of D are arranged to form the on-line

data to simulate an on-line scenario, where samples are given incrementally one-by-

one. Each approach is evaluated using the mean and standard deviation of the MSE

between the predicted outputs and the real outputs on the on-line data in 20 trials.

In the experiments below, only the MSE on the on-line data is reported.

7.4.3 Approach Description and Setup

Tests are performed by comparing λDF F OS-ELM and OEOA to other state-of-the-

art methods. The accuracies of the following single model learning algorithms are

compared:

• ELM: standard ELM [Huang et al., 2006], implemented as Algorithm 3.2.

• OS-ELM: sample-based OS-ELM [Liang et al., 2006], implemented as Algo-

rithm 3.9.

• λDF F OS-ELM: OS-ELM using a variable FF, implemented as Algorithm 7.1,

where λ0 = 1; γ0 = 10−3; υ0 = 10−6, and ρ = 0.99 (the parameters are set as

recommend by [Bobál et al., 2005]).

For all the models, the hidden layer activation function g(x) is sigmoid. The number

of neurons in the hidden layer L is selected by 10-fold cross-validation, as detailed

in Subsection 6.3.2. Each OS-ELM or λDF F OS-ELM model is created by firstly

training it with m samples (e.g. belonging to D0, for OS-ELM or λDF F OS-ELM, or

belonging to Dt in OEOA) using the initialization phase of the learner; and then,

whenever a new on-line sample is available, the model is retrained using the on-line

learning phase of the learner.

Experiments are also conduced by comparing the effectiveness of the following

on-line ensemble learning algorithms, which were implemented as described in Chap-

ter 6: AddExp, DOER, EOS-ELM, Learn++.NSE, OAUE, OB, OEOA, and OWE.

7.4. EXPERIMENTAL RESULTS 161

DOER and OWE were implemented using α = 0.04 for the industrial data sets;

and α = 0.10 for the artificial data sets. OEOA was implemented according to

Algorithm 7.2. Its parameters setting will be discussed in Subsection 7.4.5.

As Learn++.NSE and OWE do not employ model retraining, their base model

is the ELM. For the other ensembles, tests are performed using λDF F OS-ELM and

OS-ELM as base models. For all the learning algorithms, the data are scaled as

described in Chapter 6, Subsection 6.3.2. In all experiments, small values of m

(training data set size) are considered, since in real-world setups of SS applications,

it is often difficult to get sufficient data for modeling.

7.4.4 Comparison of Single Model Learning Algorithms

λDF F OS-ELM is evaluated and compared to ELM and OS-ELM. For each model, the

results are averaged over 20 trials. It has been observed that, for medium size data

sets, small windows (e.g. m = 10) lead to a significant increase in computational

time, and in some cases no improvement in the accuracy of the system is observed.

Thus, large windows were chosen for artificial data sets and real-world data sets

of medium size. On the other hand, previous tests in Chapter 6 have shown that,

in real-world data sets of small size, better performance is obtained when small

windows are selected. Therefore, the experiments are conducted by varying m from

20 to 100 in steps of 1 for artificial data sets and real-world data sets of medium

size; and varying m from 10 to 50 in steps of 1 for real-world data sets of small size

(see Table 7.1). Figure 7.1 shows the MSE results of each algorithm as a function of

m in all data sets. Table 7.2 shows the average and standard deviation of the MSE

and processing time over all values of m for all the algorithms. The processing time

considers the time spent on the training and on-line phases.

As observed in Figure 7.1, for the artificial data sets, the algorithms tend to

decrease their errors as m increases. For the real-world data sets, in most cases, OS-

ELM and λDF F OS-ELM methods keep their performances as m increases. For the

Friedman data sets, it is observed that OS-ELM outperforms λDF F OS-ELM. This

reveals that λDF F OS-ELM may not track scenarios with local and abrupt drifts

(Friedman-LA), global recurring abrupt drifts (Friedman-GRA), and global non-

recurring gradual drifts (Friedman-GnRG). This is because, λDF F OS-ELM forgets

old information over time. λDF F OS-ELM has the best performance in the hyper-

162 CHAPTER 7. ENSEMBLE USING ORDERED AGGREGATION

20 30 40 50 60 70 80 90 100

Number of Training Samples (m)

0

10

20

30

40

50

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(a) Hyperplane data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (m)

0

5

10

15

20

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(b) Friedman-LA data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (m)

0

5

10

15

20

25

30

35

40

45

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(c) Friedman-GRA data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (m)

0

5

10

15

20

25

30

35

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(d) Friedman-GnRG data set.

10 15 20 25 30 35 40 45 50

Number of Training Samples (m)

0

100

200

300

400

500

600

700

800

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(e) Polymerization reactor data set

10 15 20 25 30 35 40 45 50

Number of Training Samples (m)

0

10

20

30

40

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(f) Cement kiln data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(g) Thermal oxidizer data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (m)

0

5

10

15

20

25

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(h) Powder detergent data set.

20 30 40 50 60 70 80 90 100

Number of Training Samples (m)

0

10

20

30

40

50

60

70

80

M
S
E

×10
−3

ELM OS-ELM λDFFOS-ELM

(i) Debutanizer column data set.

Figure 7.1: Performance of the single learning algorithms when the number of train-
ing samples m increases.

7.4. EXPERIMENTAL RESULTS 163

Table 7.2: Average and SD of the MSE1 and processing time (seconds) of the single
model learning algorithms by varying m.

Data set Approach MSE Processing time

Hyperplane2 ELM 37.120 (2.741) 1.481 (0.259)
OS-ELM 21.472 (0.323) 1.950 (0.241)
λDF F OS-ELM 10.867 (1.350) 1.408 (0.202)

Friedman-LA2 ELM 11.032 (3.024) 1.477 (0.015)
OS-ELM 8.285 (1.151) 2.007 (0.197)
λDF F OS-ELM 11.359 (1.618) 1.332 (0.161)

Friedman-GRA2 ELM 21.497 (5.349) 1.487 (0.016)
OS-ELM 15.299 (1.654) 1.518 (0.208)
λDF F OS-ELM 19.253 (2.921) 1.294 (0.197)

Friedman-GnRG2 ELM 19.735 (3.738) 1.475 (0.013)
OS-ELM 14.775 (0.965) 2.035 (0.176)
λDF F OS-ELM 16.801 (1.683) 1.411 (0.159)

Polymerization ELM 323.506 (160.943) 0.710 (0.075)
reactor3 OS-ELM 9.152 (2.983) 0.878 (0.100)

λDF F OS-ELM 4.891 (2.015) 0.715 (0.112)

Cement ELM 29.608 (2.666) 0.757 (0.092)
kiln3 OS-ELM 21.825 (1.192) 0.888 (0.106)

λDF F OS-ELM 12.736 (0.882) 0.666 (0.099)

Powder ELM 14.751 (1.699) 1.473 (0.035)
detergent2 OS-ELM 6.922 (0.218) 1.660 (0.314)

λDF F OS-ELM 4.756 (0.119) 1.457 (0.145)

Thermal ELM 2.250 (0.148) 1.788 (0.326)
oxidizer2 OS-ELM 1.755 (0.055) 2.071 (0.298)

λDF F OS-ELM 1.443 (0.031) 1.518 (0.154)

Debutanizer ELM 45.426 (8.936) 1.629 (0.337)
column2 OS-ELM 22.243 (0.493) 1.688 (0.322)

λDF F OS-ELM 4.398 (0.883) 1.693 (0.175)

1The values have been multiplied by 103.
2The values of m are varied from 20 to 100 (in steps of 1).
3The values of m are varied from 10 to 50 (in steps of 1).

plane data set that contains non-recurring abrupt drift. For the real-world data sets,

λDF F OS-ELM obtained the lowest MSE. From Table 7.2, it is noted that, in terms

of processing time, λDF F OS-ELM outperforms OS-ELM and ELM in most cases.

164 CHAPTER 7. ENSEMBLE USING ORDERED AGGREGATION

7.4.5 Analysis of OEOA Parameters

The frequency of adding new models (which is related to α) may impact on the

performances of OEOA, OWE, and DOER: small values of α generate large numbers

of new models and increase the computational time; and large values of α may

produce an inaccurate ensemble in changing environments, since new models are

rarely added to the ensemble. Previous tests in Chapter 6 were conducted by varying

α from 0.04 to 0.1 in steps of 0.02. It has been shown that α is related to the rate of

concept change. That is, in data sets where concepts have large sizes (e.g. hyperplane

data, where each concept has 500 samples), α should be set to a large value; while

in data sets with concepts of small sizes (e.g. most industrial data sets due to the

dynamics), α should be set to a small value. Therefore, for the OEOA, OWE, and

DOER, in this Chapter, α is set to 0.10 for the artificial data sets, and 0.04 for the

real-world data sets. The training size m (or window size) is also related to the rate

of change of the data. In data sets which have a large rate of change, the system

has better accuracy when m is small; while in data sets which have a small rate of

change, the system has better accuracy when m is large. This characteristic can be

observed in the experiments of the next Subsection.

Experiments were done to evaluate the effect of the minimum number of models

(Nmin) and maximum number of models (Nmax) in the OEOA algorithm. The ex-

periments use the cement kiln data set with m = 10 and α = 0.04. The base models

are λDF F OS-ELM and OS-ELM. The ELM model is not used since it does not have

retraining. The first test aims to show the OEOA algorithm when Nmin = Nmax,

namely, no OA is employed (see Figure 7.2(a)). The test reveals that when λDF F OS-

ELM is the base model, the error is reduced as the number of models increases.

When OS-ELM is the base model, the best performances are not obtained with the

largest ensemble sizes. Figures 7.2(b) and 7.2(c) show the OEOA’s performance

when Nmin varies and Nmax is fixed. In Figure 7.2(b), Nmax is set to 15, and in

Figure 7.2(c), Nmax is set to 30. When λDF F OS-ELM is the base model, as an

overall tendency the experiment shows that if Nmin increases, then the ensemble

accuracy increases; while when OS-ELM is the base model, if Nmin increases the

ensemble error increases, after having obtained the best accuracy for some value of

Nmin. Thus, the adequate setting of Nmin may depend on the base model. The test

shows that λDF F OS-ELM outperforms OS-ELM as base model for the cement kiln

7.4. EXPERIMENTAL RESULTS 165

5 10 15 20 25 30

Number of Models (Nmin = Nmax)

8.0

8.5

9.0

9.5

10.0

10.5

11.0

M
S
E

×10
−3

OS-ELM λDFFOS-ELM

(a)

2 4 6 8 10 12 14

Minimum Number of Models (Nmin) when Nmax=15

8.0

8.5

9.0

9.5

10.0

10.5

11.0

M
S
E

×10
−3

OS-ELM λDFFOS-ELM

(b)

5 10 15 20 25 30

Minimum Number of Models (Nmin) when Nmax=30

8.0

8.5

9.0

9.5

10.0

10.5

11.0

M
S
E

×10
−3

OS-ELM λDFFOS-ELM

(c)

Figure 7.2: Experiments using different values of Nmin and Nmax in the OEOA
algorithm for the cement kiln data set.

data set. This is because, λDF F OS-ELM models are able to forget old information

and track better the dynamics of this data set.

7.4.6 Comparison of On-line Ensemble Learning Algorithms

In this Subsection, results of the on-line ensemble learning algorithms are compared.

For the ensembles of fixed size (i.e. all ensembles except OEOA with the ordering

strategy), the maximum number of models (Nmax) is set to 15. This choice was

considered the best suitable for all the ensembles, since in literature Nmax usually

varies between 15 and 30 [Elwell and Polikar, 2011; Kolter and Maloof, 2005], and

the processing time of the experiments increases as Nmax increases. Pilot tests

indicate that, overall, the results and conclusions do not change significantly when

Nmax increases, for example to Nmax = 30.

The OEOA is tested in two scenarios. In the first scenario Nmin = Nmax and

thus no OA is employed. In the second scenario Nmin 6= Nmax, and thus OA is

tested. For each data set, the following pairs of values of (Nmin, Nmax) are tested in

OEOA: (5, 15), (5, 30), (10, 15), and (10, 30); and for each data set and base model,

and over all the tested values of m, the pair with the lowest average MSE error is

166
C

H
A

P
T

E
R

7
.

E
N

S
E

M
B

L
E

U
S
IN

G
O

R
D

E
R

E
D

A
G

G
R

E
G

A
T

IO
N

Table 7.3: Results of the on-line ensemble learning algorithms using the hyperplane data set and the Friedman-LA
data set.

Approach Ensemble Average and SD of MSE for different values of m Av. and SD on all values of m

size m = 20 m = 40 m = 60 m = 80 m = 100 MSE Proc. time (min.)

Hyperplane data set
O

S
-E

L
M

AddExp Nmax = 15 7.23 (0.26) 6.77 (0.17) 7.16 (0.14) 7.69 (0.15) 8.10 (0.10) 7.39 (0.52) 9.84 (0.30)
DOER Nmax = 15 5.87 (0.11) 5.57 (0.05) 5.80 (0.06) 6.18 (0.06) 6.50 (0.05) 5.98 (0.36) 7.72 (0.69)
EOS-ELM Nmax = 15 19.20 (0.69) 19.61 (0.19) 19.79 (0.16) 20.03 (0.12) 20.14 (0.10) 19.75 (0.37) 0.52 (0.11)
OAUE Nmax = 15 19.68 (0.20) 19.59 (0.12) 19.76 (0.27) 19.74 (0.17) 19.85 (0.19) 19.72 (0.10) 1.29 (0.35)
OB Nmax = 15 19.01 (0.26) 19.55 (0.19) 19.77 (0.20) 20.04 (0.14) 20.16 (0.14) 19.71 (0.46) 0.44 (0.13)
OEOA Nmin = 15, Nmax = 15 5.82 (0.07) 5.54 (0.07) 5.80 (0.05) 6.16 (0.04) 6.49 (0.06) 5.96 (0.37) 7.08 (0.95)
OEOA Nmin = 10, Nmax = 15 5.87 (0.09) 5.54 (0.05) 5.76 (0.07) 6.15 (0.08) 6.49 (0.08) 5.96 (0.37) 7.25 (0.83)

λ
D

F
F

O
S

-E
L

M AddExp Nmax = 15 7.26 (0.23) 6.47 (0.14) 6.51 (0.16) 6.58 (0.12) 6.70 (0.14) 6.70 (0.32) 7.91 (0.69)
DOER Nmax = 15 6.30 (0.09) 5.51 (0.06) 5.58 (0.07) 5.77 (0.05) 6.04 (0.06) 5.84 (0.33) 8.13 (0.75)
EOS-ELM Nmax = 15 8.82 (1.77) 6.35 (0.28) 6.31 (0.14) 6.37 (0.10) 6.51 (0.12) 6.87 (1.09) 0.47 (0.03)
OAUE Nmax = 15 10.21 (0.83) 8.49 (0.59) 8.23 (0.43) 8.51 (0.51) 8.89 (0.37) 8.87 (0.78) 1.20 (0.67)
OB Nmax = 15 8.57 (0.73) 6.38 (0.15) 6.41 (0.12) 6.59 (0.16) 6.84 (0.12) 6.96 (0.92) 0.50 (0.01)
OEOA Nmin = 15, Nmax = 15 6.23 (0.10) 5.53 (0.05) 5.57 (0.08) 5.76 (0.05) 6.01 (0.07) 5.82 (0.30) 7.07 (0.86)
OEOA Nmin = 10, Nmax = 30 6.01 (0.09) 5.44 (0.05) 5.50 (0.07) 5.67 (0.06) 5.88 (0.08) 5.70 (0.24) 7.19 (0.76)

E
L

M Learn++.NSE Nmax = 15 23.63 (1.17) 12.92 (1.35) 11.47 (0.49) 10.33 (0.43) 11.97 (0.40) 14.06 (5.43) 0.54 (0.09)
OWE Nmax = 15 7.91 (0.19) 6.32 (0.08) 6.48 (0.08) 6.87 (0.08) 7.29 (0.10) 6.97 (0.64)

Friedman-LA

O
S

-E
L

M

AddExp Nmax = 15 7.23 (0.16) 6.71 (0.12) 6.66 (0.09) 6.60 (0.08) 6.59 (0.07) 6.76 (0.27) 5.99 (0.47)
DOER Nmax = 15 7.29 (0.11) 6.75 (0.06) 6.75 (0.05) 6.72 (0.05) 6.67 (0.06) 6.84 (0.26) 6.29 (0.36)
EOS-ELM Nmax = 15 8.98 (1.87) 6.53 (0.14) 6.49 (0.13) 6.45 (0.14) 6.42 (0.10) 6.97 (1.12) 0.55 (0.01)
OAUE Nmax = 15 6.62 (0.14) 6.48 (0.09) 6.53 (0.10) 6.64 (0.15) 6.56 (0.13) 6.56 (0.07) 1.60 (0.94)
OB Nmax = 15 8.70 (0.86) 6.60 (0.15) 6.45 (0.08) 6.46 (0.08) 6.43 (0.07) 6.93 (0.99) 0.71 (0.03)
OEOA Nmin = 15, Nmax = 15 7.22 (0.12) 6.72 (0.06) 6.76 (0.05) 6.70 (0.05) 6.65 (0.04) 6.81 (0.23) 5.55 (0.36)
OEOA Nmin = 10, Nmax = 30 6.86 (0.09) 6.48 (0.04) 6.48 (0.07) 6.47 (0.05) 6.46 (0.05) 6.55 (0.17) 6.48 (0.43)

λ
D

F
F

O
S

-E
L

M AddExp Nmax = 15 8.84 (0.17) 7.99 (0.13) 7.70 (0.09) 7.49 (0.10) 7.37 (0.07) 7.88 (0.59) 7.13 (0.50)
DOER Nmax = 15 8.79 (0.12) 7.51 (0.08) 7.18 (0.06) 6.94 (0.05) 6.80 (0.06) 7.45 (0.80) 5.95 (1.52)
EOS-ELM Nmax = 15 11.34 (2.25) 8.12 (0.34) 7.73 (0.13) 7.64 (0.15) 7.55 (0.11) 8.48 (1.61) 0.45 (0.01)
OAUE Nmax = 15 6.64 (0.15) 6.62 (0.10) 6.77 (0.09) 6.94 (0.09) 7.10 (0.16) 6.81 (0.21) 1.23 (0.70)
OB Nmax = 15 9.48 (0.68) 7.45 (0.12) 7.27 (0.15) 7.20 (0.11) 7.11 (0.09) 7.70 (1.00) 0.48 (0.01)
OEOA Nmin = 15, Nmax = 15 8.73 (0.11) 7.53 (0.06) 7.17 (0.06) 6.96 (0.04) 6.80 (0.05) 7.44 (0.77) 5.99 (0.27)
OEOA Nmin = 10, Nmax = 30 8.40 (0.08) 7.48 (0.06) 7.15 (0.06) 6.95 (0.05) 6.81 (0.05) 7.36 (0.63) 6.65 (0.41)

E
L

M Learn++.NSE Nmax = 15 20.45 (0.93) 13.30 (0.53) 10.79 (0.39) 9.57 (0.37) 8.93 (0.25) 12.61 (4.69) 0.71 (0.28)
OWE Nmax = 15 9.26 (0.14) 7.41 (0.07) 7.10 (0.05) 6.89 (0.06) 6.76 (0.06) 7.49 (1.02) 6.62 (0.78)

The MSE values have been multiplied by 103. Average and SD of MSE and processing time are obtained on 20
trials of the algorithms. The last two columns report the average and SD of MSE error and processing time of each
approach on all window’s sizes, respectively.

7
.4

.
E

X
P

E
R

IM
E

N
T

A
L

R
E

S
U

L
T

S
167

Table 7.4: Results of the on-line ensemble learning algorithms using the Friedman-GRA data set and Friedman-GnRG
data set.

Approach Ensemble Average and SD of MSE for different values of m Av. and SD on all values of m

size m = 20 m = 40 m = 60 m = 80 m = 100 MSE Proc. time (min.)

Friedman-GRA data set

O
S

-E
L

M

AddExp Nmax = 15 12.40 (0.29) 11.55 (0.16) 11.51 (0.13) 11.46 (0.12) 11.46 (0.12) 11.67 (0.41) 8.78 (1.29)
DOER Nmax = 15 12.63 (0.16) 11.43 (0.10) 11.30 (0.12) 11.17 (0.08) 11.08 (0.06) 11.52 (0.63) 9.40 (0.97)
EOS-ELM Nmax = 15 16.30 (3.18) 12.42 (0.64) 11.92 (0.11) 11.84 (0.13) 11.85 (0.11) 12.87 (1.94) 0.55 (0.01)
OAUE Nmax = 15 12.45 (0.22) 12.29 (0.28) 12.16 (0.14) 12.33 (0.30) 12.28 (0.29) 12.30 (0.10) 1.66 (0.97)
OB Nmax = 15 14.83 (1.48) 12.26 (0.31) 11.99 (0.11) 11.94 (0.11) 11.88 (0.10) 12.58 (1.27) 0.74 (0.13)
OEOA Nmin = 15, Nmax = 15 12.60 (0.16) 11.40 (0.10) 11.33 (0.08) 11.14 (0.09) 11.04 (0.07) 11.50 (0.63) 8.92 (1.11)
OEOA Nmin = 10, Nmax = 30 11.96 (0.13) 11.16 (0.11) 11.02 (0.05) 10.97 (0.09) 10.89 (0.08) 11.20 (0.43) 9.63 (0.70)

λ
D

F
F

O
S

-E
L

M AddExp Nmax = 15 14.24 (0.38) 12.60 (0.19) 12.15 (0.13) 11.87 (0.18) 11.63 (0.12) 12.50 (1.04) 8.63 (0.38)
DOER Nmax = 15 14.47 (0.23) 12.21 (0.13) 11.61 (0.11) 11.27 (0.08) 11.09 (0.10) 12.13 (1.38) 7.74 (0.30)
EOS-ELM Nmax = 15 16.03 (1.52) 13.69 (1.21) 12.46 (0.42) 12.50 (0.37) 12.16 (0.26) 13.37 (1.60) 0.45 (0.01)
OAUE Nmax = 15 12.23 (0.31) 11.90 (0.42) 11.88 (0.19) 11.90 (0.25) 11.97 (0.41) 11.98 (0.15) 1.25 (0.79)
OB Nmax = 15 15.09 (0.82) 12.20 (0.50) 11.74 (0.21) 11.53 (0.25) 11.44 (0.17) 12.40 (1.53) 0.48 (0.01)
OEOA Nmin = 15, Nmax = 15 14.51 (0.16) 12.16 (0.10) 11.62 (0.10) 11.27 (0.10) 11.04 (0.08) 12.12 (1.40) 8.81 (1.19)
OEOA Nmin = 10, Nmax = 30 13.66 (0.15) 12.07 (0.10) 11.57 (0.10) 11.17 (0.08) 11.04 (0.09) 11.90 (1.06) 8.87 (0.40)

E
L

M Learn++.NSE Nmax = 15 37.56 (10.02) 21.34 (0.93) 17.81 (0.64) 16.06 (0.55) 16.03 (0.69) 21.76 (9.09) 0.68 (0.29)
OWE Nmax = 15 14.54 (0.33) 12.10 (0.17) 11.59 (0.13) 11.29 (0.10) 11.21 (0.08) 12.15 (1.38) 7.89 (2.19)

Friedman-GnRG data set

O
S

-E
L

M

AddExp Nmax = 15 11.63 (0.19) 10.87 (0.12) 10.70 (0.09) 10.67 (0.11) 10.62 (0.07) 10.90 (0.42) 7.54 (1.25)
DOER Nmax = 15 11.54 (0.16) 10.51 (0.09) 10.27 (0.06) 10.15 (0.06) 9.98 (0.07) 10.49 (0.61) 8.90 (0.85)
EOS-ELM Nmax = 15 13.73 (1.53) 12.40 (0.44) 12.27 (0.13) 12.27 (0.15) 12.20 (0.10) 12.57 (0.65) 0.56 (0.00)
OAUE Nmax = 15 12.54 (0.14) 12.45 (0.17) 12.53 (0.19) 12.66 (0.26) 12.71 (0.45) 12.58 (0.11) 1.37 (1.10)
OB Nmax = 15 13.70 (0.52) 12.30 (0.19) 12.22 (0.10) 12.25 (0.10) 12.27 (0.12) 12.55 (0.65) 0.71 (0.05)
OEOA Nmin = 15, Nmax = 15 11.51 (0.17) 10.53 (0.09) 10.26 (0.11) 10.14 (0.11) 9.98 (0.06) 10.48 (0.61) 8.15 (1.16)
OEOA Nmin = 10, Nmax = 30 10.99 (0.13) 10.23 (0.06) 10.05 (0.06) 9.97 (0.06) 9.84 (0.06) 10.22 (0.45) 9.04 (0.57)

λ
D

F
F

O
S

-E
L

M AddExp Nmax = 15 13.02 (0.21) 11.60 (0.18) 11.12 (0.14) 10.81 (0.12) 10.59 (0.11) 11.43 (0.97) 8.39 (0.69)
DOER Nmax = 15 13.25 (0.17) 11.20 (0.07) 10.56 (0.10) 10.28 (0.08) 10.03 (0.07) 11.06 (1.30) 8.31 (0.53)
EOS-ELM Nmax = 15 14.63 (2.59) 12.07 (0.74) 11.65 (0.35) 11.40 (0.43) 11.09 (0.25) 12.17 (1.42) 0.46 (0.01)
OAUE Nmax = 15 11.97 (0.22) 11.60 (0.21) 11.49 (0.30) 11.30 (0.31) 11.21 (0.30) 11.52 (0.30) 1.22 (0.53)
OB Nmax = 15 13.72 (1.00) 11.06 (0.26) 10.77 (0.18) 10.59 (0.10) 10.52 (0.17) 11.33 (1.35) 0.49 (0.01)
OEOA Nmin = 15, Nmax = 15 13.15 (0.13) 11.21 (0.10) 10.58 (0.09) 10.26 (0.07) 10.04 (0.07) 11.05 (1.26) 8.44 (1.36)
OEOA Nmin = 10, Nmax = 30 12.46 (0.14) 11.04 (0.09) 10.50 (0.09) 10.26 (0.07) 10.05 (0.05) 10.86 (0.97) 8.55 (0.60)

E
L

M Learn++.NSE Nmax = 15 29.73 (1.03) 19.42 (0.84) 15.50 (0.57) 14.16 (0.44) 13.34 (0.58) 18.43 (6.73) 0.68 (0.31)
OWE Nmax = 15 14.44 (0.26) 11.21 (0.14) 10.52 (0.07) 10.30 (0.09) 10.06 (0.09) 11.31 (1.80) 9.80 (1.12)

The MSE values have been multiplied by 103. Average and SD of MSE and processing time are obtained on 20
trials of the algorithms. The last two columns report the average and SD of MSE error and processing time of each
approach on all window’s sizes, respectively.

168
C

H
A

P
T

E
R

7
.

E
N

S
E

M
B

L
E

U
S
IN

G
O

R
D

E
R

E
D

A
G

G
R

E
G

A
T

IO
N

Table 7.5: Results of the on-line ensemble learning algorithms using the polymerization reactor data set and the
cement kiln data set.

Approach Ensemble Average and SD of MSE for different values of m Av. and SD on all values of m

size m = 10 m = 20 m = 30 m = 40 m = 50 MSE Proc. time (min.)

Polymerization reactor data set
O

S
-E

L
M

AddExp Nmax = 15 2.80 (0.09) 2.73 (0.14) 2.67 (0.20) 2.52 (0.17) 2.75 (0.21) 2.70 (0.11) 1.28 (0.35)
DOER Nmax = 15 0.47 (0.04) 0.66 (0.06) 0.80 (0.07) 0.99 (0.08) 1.22 (0.09) 0.83 (0.29) 1.41 (0.51)
EOS-ELM Nmax = 15 8.09 (0.42) 14.18 (3.07) 6.01 (0.25) 4.54 (0.26) 4.12 (0.20) 7.39 (4.10) 0.26 (0.04)
OAUE Nmax = 15 2.76 (0.23) 2.93 (0.19) 3.59 (0.34) 3.74 (0.42) 4.06 (0.37) 3.42 (0.55) 0.17 (0.04)
OB Nmax = 15 8.32 (0.57) 10.73 (1.47) 5.99 (0.34) 4.49 (0.25) 4.27 (0.24) 6.76 (2.75) 0.28 (0.03)
OEOA Nmin = 15, Nmax = 15 0.50 (0.02) 0.68 (0.05) 0.81 (0.07) 1.10 (0.12) 1.37 (0.08) 0.89 (0.35) 1.36 (0.45)
OEOA Nmin = 5, Nmax = 30 0.40 (0.06) 0.52 (0.06) 0.69 (0.09) 0.87 (0.10) 1.12 (0.09) 0.72 (0.28) 1.38 (0.36)

λ
D

F
F

O
S

-E
L

M AddExp Nmax = 15 0.97 (0.12) 1.33 (0.19) 1.47 (0.16) 1.58 (0.25) 1.62 (0.15) 1.39 (0.26) 0.31 (0.06)
DOER Nmax = 15 0.29 (0.02) 0.46 (0.04) 0.54 (0.05) 0.64 (0.09) 0.88 (0.05) 0.56 (0.22) 0.88 (0.29)
EOS-ELM Nmax = 15 0.68 (0.13) 2.94 (2.42) 1.50 (0.38) 2.23 (0.26) 2.25 (0.21) 1.92 (0.86) 0.22 (0.04)
OAUE Nmax = 15 0.81 (0.13) 1.45 (0.40) 1.76 (0.47) 2.31 (0.34) 2.40 (0.51) 1.75 (0.65) 0.40 (0.14)
OB Nmax = 15 1.03 (0.16) 2.13 (0.86) 2.13 (0.27) 2.75 (0.26) 2.61 (0.17) 2.13 (0.68) 0.21 (0.03)
OEOA Nmin = 15, Nmax = 15 0.29 (0.03) 0.48 (0.03) 0.52 (0.05) 0.62 (0.05) 0.87 (0.06) 0.56 (0.21) 0.94 (0.32)
OEOA Nmin = 5, Nmax = 30 0.30 (0.03) 0.43 (0.05) 0.51 (0.04) 0.60 (0.07) 0.82 (0.09) 0.53 (0.19) 1.25 (0.30)

E
L

M Learn++.NSE Nmax = 15 2.89 (0.42) 5.74 (0.87) 6.74 (1.30) 8.05 (2.69) 16.83 (2.99) 8.05 (5.26) 0.26 (0.09)
OWE Nmax = 15 0.55 (0.06) 0.94 (0.10) 1.33 (0.11) 1.90 (0.12) 2.42 (0.27) 1.43 (0.75) 1.85 (0.81)

Cement kiln data set

O
S

-E
L

M

AddExp Nmax = 15 12.13 (0.26) 12.22 (0.23) 12.02 (0.35) 11.97 (0.24) 11.86 (0.34) 12.04 (0.14) 3.39 (1.10)
DOER Nmax = 15 10.03 (0.19) 10.25 (0.21) 10.20 (0.23) 10.26 (0.20) 10.13 (0.18) 10.17 (0.10) 3.17 (1.20)
EOS-ELM Nmax = 15 22.40 (1.17) 22.05 (2.00) 17.33 (2.31) 18.59 (2.64) 17.88 (1.98) 19.65 (2.39) 0.28 (0.05)
OAUE Nmax = 15 12.07 (0.32) 12.67 (0.32) 12.97 (0.40) 13.47 (0.64) 14.99 (1.15) 13.23 (1.11) 0.49 (0.10)
OB Nmax = 15 20.08 (0.86) 18.70 (1.09) 16.52 (1.12) 16.46 (0.96) 16.13 (0.91) 17.58 (1.73) 0.31 (0.05)
OEOA Nmin = 15, Nmax = 15 9.96 (0.18) 10.22 (0.14) 10.08 (0.23) 10.21 (0.20) 10.15 (0.23) 10.12 (0.11) 2.85 (1.10)
OEOA Nmin = 5, Nmax = 30 9.26 (0.17) 9.59 (0.17) 9.56 (0.29) 9.73 (0.25) 9.69 (0.22) 9.56 (0.18) 3.18 (1.16)

λ
D

F
F

O
S

-E
L

M AddExp Nmax = 15 9.13 (0.24) 9.44 (0.25) 9.35 (0.23) 9.67 (0.32) 9.78 (0.31) 9.47 (0.26) 2.47 (0.72)
DOER Nmax = 15 8.61 (0.11) 8.86 (0.11) 8.78 (0.15) 8.97 (0.16) 8.97 (0.20) 8.84 (0.15) 2.68 (0.97)
EOS-ELM Nmax = 15 10.03 (0.63) 10.20 (1.33) 9.15 (1.05) 9.49 (0.91) 9.46 (1.14) 9.67 (0.44) 0.24 (0.05)
OAUE Nmax = 15 9.61 (0.30) 9.55 (0.28) 9.45 (0.35) 9.70 (0.56) 10.17 (0.81) 9.70 (0.28) 0.57 (0.20)
OB Nmax = 15 9.44 (0.43) 9.36 (0.34) 8.94 (0.21) 9.19 (0.28) 9.16 (0.20) 9.22 (0.19) 0.23 (0.04)
OEOA Nmin = 15, Nmax = 15 8.60 (0.09) 8.88 (0.13) 8.77 (0.15) 8.93 (0.15) 8.92 (0.19) 8.82 (0.14) 2.70 (1.05)
OEOA Nmin = 10, Nmax = 30 8.57 (0.09) 8.71 (0.13) 8.67 (0.08) 8.81 (0.08) 8.79 (0.11) 8.71 (0.10) 4.40 (2.02)

E
L

M Learn++.NSE Nmax = 15 23.12 (3.03) 24.47 (1.71) 28.51 (2.03) 26.75 (3.51) 33.44 (5.59) 27.26 (4.03) 0.31 (0.07)
OWE Nmax = 15 11.23 (0.41) 12.67 (0.69) 13.04 (0.67) 13.55 (0.65) 13.16 (0.49) 12.73 (0.89) 3.40 (1.63)

The MSE values have been multiplied by 103. Average and SD of MSE and processing time are obtained on 20
trials of the algorithms. The last two columns report the average and SD of MSE error and processing time of each
approach on all window’s sizes, respectively.

7
.4

.
E

X
P

E
R

IM
E

N
T

A
L

R
E

S
U

L
T

S
169

Table 7.6: Results of the on-line ensemble learning algorithms using the powder detergent data set and the thermal
oxidizer data set.

Approach Ensemble Average and SD of MSE for different values of m Av. and SD on all values of m

size m = 20 m = 40 m = 60 m = 80 m = 100 MSE Proc. time (min.)

Powder detergent data set

O
S

-E
L

M

AddExp Nmax = 15 5.13 (0.09) 5.11 (0.10) 5.21 (0.09) 5.29 (0.11) 5.37 (0.06) 5.22 (0.11) 5.14 (1.11)
DOER Nmax = 15 4.53 (0.06) 4.76 (0.09) 4.97 (0.08) 5.09 (0.08) 5.19 (0.06) 4.91 (0.27) 7.47 (0.22)
EOS-ELM Nmax = 15 6.92 (0.70) 6.04 (0.47) 6.14 (0.37) 5.94 (0.17) 5.83 (0.22) 6.17 (0.43) 0.54 (0.01)
OAUE Nmax = 15 5.09 (0.07) 5.36 (0.11) 5.59 (0.17) 5.72 (0.16) 5.79 (0.20) 5.51 (0.29) 1.36 (0.79)
OB Nmax = 15 6.43 (0.26) 5.87 (0.15) 5.80 (0.15) 5.76 (0.12) 5.72 (0.08) 5.92 (0.29) 0.68 (0.05)
OEOA Nmin = 15, Nmax = 15 4.51 (0.06) 4.74 (0.08) 4.95 (0.10) 5.07 (0.09) 5.17 (0.11) 4.89 (0.27) 6.54 (0.42)
OEOA Nmin = 5, Nmax = 30 4.31 (0.09) 4.51 (0.11) 4.69 (0.11) 4.84 (0.13) 4.96 (0.11) 4.66 (0.26) 7.66 (0.52)

λ
D

F
F

O
S

-E
L

M AddExp Nmax = 15 4.07 (0.15) 4.05 (0.10) 4.15 (0.12) 4.20 (0.08) 4.26 (0.10) 4.15 (0.09) 4.48 (0.68)
DOER Nmax = 15 4.00 (0.04) 4.17 (0.07) 4.18 (0.08) 4.27 (0.07) 4.40 (0.08) 4.20 (0.15) 7.02 (2.22)
EOS-ELM Nmax = 15 3.86 (0.14) 3.78 (0.08) 3.75 (0.05) 3.86 (0.07) 3.84 (0.06) 3.82 (0.05) 0.45 (0.01)
OAUE Nmax = 15 3.89 (0.08) 3.91 (0.10) 3.96 (0.13) 4.20 (0.19) 4.21 (0.17) 4.03 (0.16) 1.45 (1.00)
OB Nmax = 15 3.84 (0.08) 3.79 (0.06) 3.80 (0.09) 3.84 (0.08) 3.89 (0.06) 3.83 (0.04) 0.46 (0.00)
OEOA Nmin = 15, Nmax = 15 3.99 (0.07) 4.11 (0.10) 4.19 (0.11) 4.26 (0.09) 4.35 (0.10) 4.18 (0.14) 6.23 (0.27)
OEOA Nmin = 10, Nmax = 30 3.87 (0.05) 3.87 (0.06) 3.90 (0.06) 3.99 (0.06) 4.10 (0.08) 3.95 (0.10) 6.54 (0.56)

E
L

M Learn++.NSE Nmax = 15 9.94 (1.14) 11.51 (1.66) 12.01 (1.68) 11.77 (2.47) 11.07 (1.69) 11.26 (0.82) 0.64 (0.28)
OWE Nmax = 15 5.88 (0.17) 6.28 (0.21) 6.67 (0.20) 7.06 (0.20) 7.12 (0.18) 6.60 (0.53) 7.36 (1.57)

Thermal oxidizer data set

O
S

-E
L

M

AddExp Nmax = 15 1.45 (0.04) 1.40 (0.04) 1.38 (0.03) 1.38 (0.03) 1.39 (0.03) 1.40 (0.03) 1.53 (0.26)
DOER Nmax = 15 1.12 (0.01) 1.13 (0.01) 1.12 (0.01) 1.13 (0.01) 1.13 (0.00) 1.13 (0.01) 7.41 (2.24)
EOS-ELM Nmax = 15 1.66 (0.10) 1.64 (0.13) 1.79 (0.08) 1.78 (0.13) 1.70 (0.12) 1.72 (0.07) 0.66 (0.07)
OAUE Nmax = 15 1.19 (0.01) 1.26 (0.01) 1.29 (0.02) 1.34 (0.03) 1.39 (0.03) 1.30 (0.07) 1.64 (0.97)
OB Nmax = 15 1.64 (0.03) 1.57 (0.05) 1.65 (0.04) 1.70 (0.05) 1.66 (0.04) 1.64 (0.04) 0.79 (0.07)
OEOA Nmin = 15, Nmax = 15 1.12 (0.01) 1.13 (0.01) 1.12 (0.01) 1.13 (0.00) 1.14 (0.00) 1.13 (0.01) 7.41 (2.41)
OEOA Nmin = 5, Nmax = 15 1.12 (0.01) 1.12 (0.01) 1.11 (0.01) 1.11 (0.01) 1.12 (0.01) 1.12 (0.01) 6.54 (2.17)

λ
D

F
F

O
S

-E
L

M AddExp Nmax = 15 1.32 (0.04) 1.28 (0.05) 1.27 (0.05) 1.28 (0.04) 1.26 (0.05) 1.28 (0.02) 0.80 (0.16)
DOER Nmax = 15 1.17 (0.02) 1.19 (0.02) 1.18 (0.02) 1.17 (0.02) 1.18 (0.02) 1.18 (0.01) 6.29 (1.80)
EOS-ELM Nmax = 15 1.26 (0.04) 1.27 (0.04) 1.24 (0.05) 1.23 (0.05) 1.27 (0.09) 1.25 (0.02) 0.54 (0.08)
OAUE Nmax = 15 1.17 (0.03) 1.22 (0.04) 1.24 (0.07) 1.27 (0.07) 1.27 (0.07) 1.23 (0.04) 1.64 (0.86)
OB Nmax = 15 1.22 (0.04) 1.20 (0.03) 1.19 (0.03) 1.19 (0.04) 1.20 (0.03) 1.20 (0.01) 0.57 (0.05)
OEOA Nmin = 15, Nmax = 15 1.18 (0.03) 1.19 (0.01) 1.17 (0.02) 1.18 (0.02) 1.17 (0.02) 1.18 (0.01) 6.73 (2.74)
OEOA Nmin = 10, Nmax = 15 1.18 (0.02) 1.20 (0.02) 1.18 (0.02) 1.18 (0.02) 1.17 (0.01) 1.18 (0.01) 8.48 (3.09)

E
L

M Learn++.NSE Nmax = 15 1.36 (0.10) 1.50 (0.13) 1.59 (0.09) 1.69 (0.14) 1.76 (0.15) 1.58 (0.16) 0.83 (0.26)
OWE Nmax = 15 1.12 (0.01) 1.16 (0.01) 1.17 (0.01) 1.19 (0.01) 1.21 (0.01) 1.17 (0.03) 6.88 (2.65)

The MSE values have been multiplied by 103. Average and SD of MSE and processing time are obtained on 20
trials of the algorithms. The last two columns report the average and SD of MSE error and processing time of each
approach on all window’s sizes, respectively.

170
C

H
A

P
T

E
R

7
.

E
N

S
E

M
B

L
E

U
S
IN

G
O

R
D

E
R

E
D

A
G

G
R

E
G

A
T

IO
N

Table 7.7: Results of the on-line ensemble learning algorithms using the debutanizer column data set.
Approach Ensemble Average and SD of MSE for different values of m Av. and SD on all values of m

size m = 20 m = 40 m = 60 m = 80 m = 100 MSE Proc. time (min.)

Debutanizer column data set

O
S

-E
L

M

AddExp Nmax = 15 7.28 (0.19) 7.94 (0.20) 8.87 (0.15) 9.59 (0.15) 10.14 (0.18) 8.77 (1.17) 8.62 (1.10)
DOER Nmax = 15 2.61 (0.21) 3.62 (0.12) 5.72 (0.18) 6.73 (0.20) 7.73 (0.22) 5.28 (2.13) 14.02 (1.82)
EOS-ELM Nmax = 15 23.22 (0.82) 21.41 (0.54) 20.59 (0.48) 20.86 (0.45) 20.45 (0.25) 21.30 (1.13) 0.58 (0.03)
OAUE Nmax = 15 15.22 (0.30) 17.86 (0.31) 18.72 (0.29) 19.04 (0.26) 19.30 (0.23) 18.03 (1.66) 1.81 (1.06)
OB Nmax = 15 22.61 (0.45) 21.25 (0.19) 20.58 (0.26) 20.56 (0.25) 20.57 (0.25) 21.11 (0.88) 0.74 (0.03)
OEOA Nmin = 15, Nmax = 15 2.60 (0.20) 3.60 (0.11) 5.68 (0.17) 6.73 (0.16) 7.77 (0.17) 5.28 (2.15) 12.59 (1.63)
OEOA Nmin = 5, Nmax = 30 2.17 (0.20) 3.07 (0.15) 4.92 (0.17) 5.87 (0.19) 6.90 (0.27) 4.59 (1.95) 13.12 (3.95)

λ
D

F
F

O
S

-E
L

M AddExp Nmax = 15 1.39 (0.24) 1.94 (0.26) 2.66 (0.35) 2.77 (0.31) 3.26 (0.36) 2.40 (0.73) 3.68 (0.87)
DOER Nmax = 15 1.55 (0.19) 2.14 (0.10) 3.18 (0.14) 3.74 (0.15) 4.31 (0.17) 2.99 (1.14) 16.56 (1.37)
EOS-ELM Nmax = 15 1.11 (0.16) 1.89 (0.34) 2.82 (0.21) 2.84 (0.30) 3.05 (0.16) 2.34 (0.82) 0.50 (0.02)
OAUE Nmax = 15 2.19 (0.44) 2.75 (0.31) 3.31 (0.30) 3.32 (0.26) 3.47 (0.30) 3.01 (0.53) 1.68 (0.98)
OB Nmax = 15 2.03 (0.17) 3.09 (0.23) 3.96 (0.19) 3.95 (0.23) 4.30 (0.16) 3.47 (0.92) 0.53 (0.02)
OEOA Nmin = 15, Nmax = 15 1.55 (0.13) 2.15 (0.11) 3.20 (0.11) 3.72 (0.14) 4.29 (0.22) 2.98 (1.12) 8.75 (1.07)
OEOA Nmin = 10, Nmax = 30 1.19 (0.09) 1.77 (0.12) 2.42 (0.23) 2.84 (0.14) 3.07 (0.14) 2.26 (0.78) 12.13 (2.13)

E
L

M Learn++.NSE Nmax = 15 26.49 (4.69) 42.15 (4.83) 51.06 (8.00) 72.20 (15.63) 98.71 (31.13) 58.12 (28.07) 0.77 (0.36)
OWE Nmax = 15 9.19 (0.61) 19.58 (1.18) 31.18 (1.52) 29.67 (1.54) 32.76 (1.80) 24.48 (9.98) 16.79 (3.09)

The MSE values have been multiplied by 103. Average and SD of MSE and processing time are obtained on 20
trials of the algorithms. The last two columns report the average and SD of MSE error and processing time of each
approach on all window’s sizes, respectively.

7.4. EXPERIMENTAL RESULTS 171

presented in the results of the experiments. The simulation results are presented

in Tables 7.3, 7.4, 7.5, 7.6, and 7.7. Several values of m were tested, as described

in these tables. For each problem, the simulation was conducted 20 times. The

average and standard deviation values of the MSE and processing time (in minutes)

are presented. The processing time considers the time spent on both the training

and on-line phases.

As described in Subsection 7.4.4, λDF F OS-ELM has poor performance when

compared to OS-ELM in the Friedman data sets. This can be observed in Table 7.3

where most ensembles have better performance when OS-ELM is the base model.

The exceptions are for the OAUE in the Friedman-GRA and Friedman-GnRG data

sets; and for the OB in the Friedman-GnRG data set; where the error is reduced

when λDF F OS-ELM is the base model. For the other data sets, in most cases, the

ensembles’ errors reduce significantly when λDF F OS-ELM is the base model. The

reduction can be observed mainly in the debutanizer column data set. For example,

for the EOS-ELM with OS-ELM as base model, the average of the MSE over all

tested values of m is 21.3×10−3; and with λDF F OS-ELM as base model, the average

of the MSE is reduced to 2.34× 10−3; and for the OB with OS-ELM as base model,

the average of MSE on all values of m is 21.11 × 10−3; and with λDF F OS-ELM as

base model, the MSE is reduced to 3.47 × 10−3. OB and EOS-ELM are ensembles

with few adaptive mechanisms, since only retraining of models is employed, and no

combination weights’ adaptation and no dynamic selection of models are employed.

However, they significantly improve their performances when λDF F OS-ELM is the

base model. Additionally, they have low processing time when compared to the

other approaches.

OWE outperforms Learn++.NSE in all cases. This is because, Learn++.NSE is

adapted on a batch basis; while OWE is adapted on a sample basis. Therefore, OWE

adapts faster to changes. The best performances of OWE are achieved mainly in the

artificial data sets and the thermal oxidizer data set. In the thermal oxidizer data

set, the average of the MSE on all values of m for the OWE is 1.17× 10−3; while for

OEOA with ordering (Nmin 6= Nmax) and λDF F OS-ELM as base model, the average

MSE is 1.18× 10−3. In contrast to OWE and Learn++.NSE, OAUE retrains all the

models at each new sample. However, OAUE includes new models into the ensemble

at a low frequency when compared to AddExp, OEOA, OWE, and DOER. AddExp

employs the same adaptive ensemble mechanisms as the OEOA. However, AddExp

172 CHAPTER 7. ENSEMBLE USING ORDERED AGGREGATION

has an error larger than the error on OEOA in all cases. In the AddExp, new

models take more time to have their combination weights significantly increased.

In scenarios that require faster adaptation to the new concepts, this method for

assigning combination weights may fail. In contrast to AddExp, OEOA assigns

large combination weights to the new and accurate models if they have low errors

on the newest samples.

In most cases, OEOA with OA significantly reduces the ensemble error when

compared to OEOA without OA - for example, in the debutanizer column and

cement kiln data sets. In other cases, OEOA with OA has similar performance when

compared to OEOA without OA - for example, in the hyperplane data set with OS-

ELM as the base model. In most cases, it can also be observed that OEOA with OA

has better performance when Nmin and Nmax are large; and the sets with the best

performances are (Nmin, Nmax) = (10, 30) and (Nmin, Nmax) = (5, 30). DOER, and

OEOA without OA, have similar performances, since they have similar methods for

the assignment of combination weights and for the selection of models. However,

DOER starts the system by creating an ensemble with one model; while OEOA

starts the system by creating an initial pool of Nmax models. The results indicate

that OEOA without OA slightly outperforms DOER in most cases. However, in the

polymerization reactor data set, with OS-ELM as base model, the average of the

MSE over all values of m for the DOER is 0.83×10−3; while for the OEOA without

OA it is 0.89× 10−3.

The results reveal that OEOA with OA is more time consuming when compared

to the OEOA without OA. This is because the OA strategy requires more time

to compute the best subset size. Additionally, the results show that sample-based

ensembles with SW strategies (DOER, OEOA, OWE, and AddExp) require more

processing time than batch-based ensembles (Learn++.NSE, and OAUE). This is be-

cause, sample-based ensembles with SW train more models over time. Nevertheless,

these ensembles outperform batch-based ensembles in prediction performance.

7.5 Conclusion

An on-line ensemble of regressor models using an OA method which is able to predict

on-line variables in changing environments is proposed in this Chapter. The main

contribution of the proposed ensemble is that it overcomes the problems of defining

7.5. CONCLUSION 173

the optimal ensemble size and selecting of the set of most relevant models. These

problems are solved by minimizing the ensemble’s error on the newest sample. The

results have shown that this strategy obtains better performance than combining all

the models, in most cases. The proposed ensemble (OEOA) was shown to deliver

more accurate estimations of the output variables in industrial applications, as well

as in several other cases, when compared to the other state-of-the-art ensembles

in the literature. This Chapter also proposed the λDF F OS-ELM model, an on-line

ELM model using variable FF. λDF F OS-ELM was shown to have higher accuracy

when compared to the OS-ELM; and it also improves the performance of well-

known state-of-the-art ensembles. In most cases, OEOA and λDF F OS-ELM have

high accuracy and fast adaptivity in non-recurring abrupt drifts (hyperplane data

set), and in real-world applications. Thus, the proposed methods can be built for

real industrial applications, reducing the time and maintenance costs of traditional

measurement systems, such as laboratory measurement systems.

Therefore, the aim of proposing an adaptive ensemble with dynamic selection of

models was reached in this chapter, and the proposed ensemble also includes all the

other adaptation mechanisms (models’ parameters adaptation, models’ combination

weights adaptation, removal and inclusion of models). The experiments showed

that the proposed ensemble is able to overcome the problem of defining the optimal

ensemble size, and additionally perform on-line selection of models. Additionally, the

aim of proposing an adaptive NN (λDF F OS-ELM model) which can be dynamically

adapted over time was reached in this Chapter. Unlike the standard OS-ELM model,

the proposed λDF F OS-ELM model can be dynamically adapted, according to the

changes in system characteristics, using a variable forgetting factor. The proposed

adaptive NN model can improve significantly the predictive accuracy of ensemble

systems in industrial applications.

Chapter 8

Conclusion

SSs offer a number of advantages for industries. SSs help to reduce the need for

hardware measuring tools, improve system reliable and offer alternative tools to the

implementation of control policies. Taking these facts into account, technology com-

panies have started to propose and sell software based on SSs for on-line estimation

of quality variables [Siemens, 2015]. Although SSs have been employed in industry

for estimating quality variables, SS methods (e.g. data preprocessing and learning

methods) can also be applied to other application fields, such as, health monitor-

ing, meteorological prediction, financial applications, etc. Chapter 2 identified the

current research trends in historical data selection, data preprocessing, computa-

tional learning algorithms and SS maintenance. Additionally, Chapter 3 reported

the current trends in single on-line learning algorithms and ensemble on-line learning

algorithms.

Motivated by the current problems and challenges in SS modeling, the thesis

proposed several methodologies for improving the predictive performance on SS

applications. The main contribution of the thesis is the proposal of several method-

ologies for automatic design of ensemble learning systems in order to improve the

on-line output prediction in SS applications. Experimental results using real-world

data sets showed that, in most cases, the proposed methodologies are able to provide

more accurate estimations of the quality variables in industrial applications than the

state-of-the-art methods in the literature. The thesis also reported experimental re-

sults of the methodologies using artificial data sets with several types of changes.

Results of these data sets were important to validate and prove the performance of

175

176 CHAPTER 8. CONCLUSION

the proposed methodologies over the state-of-the-art approaches.

In Chapter 4, a methodology for automatic NN ensemble development in re-

gression tasks was proposed. The main contribution is the proposal of techniques

that select the best subset of models to be aggregated to the ensemble taking into

account the key factors of ensemble systems (i.e. diversity, number of models, and

combination strategy). The proposed approach employs GA and SA to select models

and the optimal combination strategy. The proposed methodologies obtained su-

perior performance when compared to state-of-the-art ensemble systems (Bagging,

NCL, AdaBoost, and GASEN) in two well-known regression data sets and three

real-world industrial data sets. Although the proposed methodology can achieve

good results, it does not incorporate adaptive mechanisms which may be necessary

to guarantee the ensemble performance in time-varying applications. Therefore,

future research topics can be considered to improve the accuracy of the proposed

methodologies: dynamic meta-heuristics to dynamically include and remove models

over time; dynamic selection of the combination strategy; and dynamic tunning of

the NNs’ architectures.

Chapter 5 proposed an adaptive ensemble (OWE) which is able to learn incre-

mentally sample by sample in the presence of several types of changes and simul-

taneously retain old information in scenarios where changes may recur. The main

contributions of OWE are dynamic assignment of models’ combination weights that

takes into account the models’ errors on the past and current windows using a dis-

counting factor that decreases or increases the contribution of old windows; dynamic

removal and inclusion of models; and regression scope. Four artificial data sets with

concept drifts and two well-known real-world industrial data sets were employed to

compare the proposed approach to Learn++.NSE, ILLSA, AddExp, and RPLS. The

tests showed that OWE has capability to deal with the concept drifts. The exper-

imental results revealed that, in most cases, OWE achieves better accuracy when

compared to the state-of-the-art approaches, and in some cases, OWE has compara-

ble accuracy to the state-of-the-art approaches. Despite the attractive characteristics

of OWE, its accuracy may be related to the windows’ size. To cover these limita-

tions, a variable window’s size that adapts according to the process dynamics can be

investigated as a future research topic. In this case, the actual window’s size should

lead the window to contain relevant samples that maximize the representativeness

of the current concept, avoiding that the actual window contains samples of an old

177

concept. For example, the window’s size can be automatically reduced if a concept

change is detected, so that old samples are discarded; and the window’s size can

be automatically increased, when the system is learning a new concept [Lazarescu

et al., 2004].

In Chapter 6, a dynamic and on-line ensemble regression (DOER) approach of

OS-ELM models with fast adaptation capability for on-line prediction was proposed.

DOER brings together desired properties which are not given by OWE: on-line in-

clusion and removal of models to keep only the most accurate models with respect

to the current state of the system; dynamic adaptation of the models’ combina-

tion weights based on their on-line predictions on the recent samples; and on-line

model retraining. Experiments on four artificial data sets and six real-world indus-

trial data sets were reported to evaluate the effectiveness of DOER over OS-ELMs,

OS-ELMb, OS-ELMs-SW, OS-ELMb-SW, OB, Learn++.NSE, OAUE, AddExp, and

OWE. Results showed that DOER has high adaptation capability. DOER is not

only comparable to the state-of-the-art approaches, but in most cases, DOER has

better accuracy when compared to them. The experimental results showed that

the proposed methodology can more accurately predict important variables in SS

applications when compared to all the tested state-of-the-art approaches. Overall,

the proposed DOER method has limited capability for predicting local and abrupt

drift data sets, and gradual recurring data sets. This may happen because the pro-

posed method loses information about the past scenarios. Moreover, the window’s

size setting may have an important role in some data sets (e.g. the debutanizer

column data set). In these cases, it is important to apply extra experiments using

the proposed method to define the window’s size. Therefore, strategies for selecting

the best window’s size can be considered as a future research topic. Moreover, it

seems to be interesting to propose an adaptive setting of α. In this way, α should

be set to a high value when a change occurs, and to a low value when no changes

are detected.

Chapter 7 proposed an adaptive ensemble (OEOA) that dynamically selects an

optimal ensemble size and composition of the subset of models based on the min-

imization of the ensemble error on the newest sample. The proposed approach

overcomes the problem of defining the optimal ensemble size and composition, and

in most cases it obtains better performance when compared to the case where all

models are aggregated. Chapter 7 also proposed an on-line sequential ELM model

178 CHAPTER 8. CONCLUSION

using the DFF method. In most cases, OEOA delivers more accurate estimations of

the output variables in industrial applications when compared to the other state-of-

the-art ensembles in the literature. Also, the proposed λDF F OS-ELM model showed

higher accuracy when compared to the OS-ELM; and the integration of the pro-

posed λDF F OS-ELM also improves the performance of well-known state-of-the-art

ensembles. Other strategies for ordering aggregation can be considered as a future

work. Specifically, ordering aggregation of models according to their accuracies and

their diversities.

In this thesis, problems related to the learning of SS models were addressed; and

methodologies were proposed and developed in order to overcome such problems.

The proposed methods were compared with state-of-the art approaches: SA-NNE

and GA-NNE achieved higher accuracy than all the state-of-the-art approaches for

all data sets (Chapter 4); OWE, in most cases, had better performance when com-

pared to the state-of-the-art approaches (Chapter 5); DOER, an adaptive ensemble

with fast adaptation capability, was successfully tested in predicting important vari-

ables in industrial applications (Chapter 6); OEOA aims to dynamically select the

best number of models to be aggregated into the ensemble, the results showed that

OEOA can deliver accurate on-line estimations of key variables in industrial pro-

cesses (Chapter 7). Therefore, all the proposed methods can be successfully applied

to SS applications. However, there are still general aspects in SS modeling that need

future work, such as:

• Data preprocessing approaches should be developed to track environmental

changes. Methodologies for dynamic selection of variables that influence the

model output and their respective time delays should be investigated. Tech-

niques for on-line data scaling, on-line outlier detection, and for on-line over-

coming of missing data should be proposed;

• In SS applications, the real output samples for the SS adaptation are given

sporadically or with high delays. In such cases, the application of the SS

may correspond to situations where prediction may be performed in every

sampling interval, while model learning and adaptation may be applicable

only on a subset of the sampling intervals (e.g. when the output is available).

In this case, additional tests can be employed to measure the influence of

the availability of the real output in the SS performance [Kadlec and Gabrys,

179

2011]. Semi-supervised learning methods can also be considered to estimate

the real output samples when unlabeled samples (i.e. samples containing only

input data) are given [Ge and Song, 2011].

• Change detection and change classification techniques should be investigated,

so that the SS model can be adapted based on the type of change;

• Model maintenance strategies should be continued to be researched and im-

proved to avoid the SS degradation. Further mechanisms to reduce the main-

tenance and implementation costs should be developed.

Bibliography

[Abe, 2010] Chigeo Abe. Support Vector Machines for Pattern Classification. Ad-

vances in Computer Vision and Pattern Recognition. Springer-Verlag London, 2nd

ed., 2010. (Cited in page 29).

[Abonyi, 2002] Janos Abonyi. Fuzzy Model Identification for Control. Birkhäuser,

2002. (Cited in page 16).

[Abusnina and Kudenko, 2013] Ali Abusnina and Daniel Kudenko. Adaptive Soft

Sensor Based on Moving Gaussian Process Window. In: IEEE Int. Conf. on

Industrial Technology, ICIT’13, pp. 1051–1056. February 25-28 2013. (Cited in

pages 12, 13, and 21).

[Ahmed et al., 2009] Faisal Ahmed, Salman Nazir, and Yeong Yeo. A Recursive

PLS-based Soft Sensor for Prediction of the Melt Index During Grade Change

Operations in HDPE Plant. Korean Journal of Chemical Engineering, vol. 26, pp.

14–20, January 2009. (Cited in pages 21, 55, and 104).

[Alpaydin, 2004] Ethem Alpaydin. Introduction to Machine Learning (Adaptive

Computation and Machine Learning). The MIT Press, 2004. (Cited in pages 14,

and 26).

[Antón et al., 2013] Juan Carlos Álvarez Antón, Paulino José García Nieto, Ce-

cilio Blanco Viejo, and José Antonio Vilán Vilán. Support Vector Machines Used

to Estimate the Battery State of Charge. IEEE Transactions on Power Electron-

ics, vol. 28, no. 12, pp. 5919–5926, December 2013. (Cited in page 29).

[Arlot and Celisse, 2010] Sylvain Arlot and Alain Celisse. A Survey of Cross-

validation Procedures for Model Selection. Statistics Surveys, vol. 4, pp. 40–79,

2010. (Cited in pages 19, and 56).

181

182 BIBLIOGRAPHY

[Baena-García et al., 2006] Manuel Baena-García, José del Campo-Ávila, Raúl Fi-

dalgo, Albert Bifet, Ricard Gavaldà, and Rafael Morales-Bueno. Early Drift

Detection Method. In: ECML/PKDD 2006 Workshop on Knowledge Discovery

from Data Streams, pp. 1–10. September 18 2006. (Cited in page 44).

[Ben-Israel and Greville, 2003] Adi Ben-Israel and Thomas N.E. Greville. Gener-

alized Inverses: Theory and Applications. Springer-Verlag, New York, USA, 2nd

ed., 2003. (Cited in page 34).

[Bhattacharya et al., 2012] Sandip Bhattacharya, Kamal Pal, and Surjya K. Pal.

Multi-sensor Based Prediction of Metal Deposition in Pulsed Gas Metal Arc Weld-

ing Using Various Soft Computing Models. Applied Soft Computing, vol. 12, no. 1,

pp. 498–505, January 2012. (Cited in page 21).

[Bifet and Gavaldà, 2007] Albert Bifet and Ricard Gavaldà. Learning from Time-

Changing Data with Adaptive Windowing. In: Proc. of the 2007 SIAM Int. Conf.

on Data Mining, pp. 443–448. April 26-28 2007. (Cited in page 45).

[Bishop, 2006] Christopher M. Bishop. Pattern Recognition and Machine Learning.

Information Science and Statistics. Springer, 2006. (Cited in page 27).

[Bobál et al., 2005] V. Bobál, J. Böhm, J. Fessl, and J. Machácek. Digital

Self-tuning Controllers: Algorithms, Implementation and Applications. Ad-

vanced Textbooks in Control and Signal Processing. Springer, 2005. (Cited in

pages 7, 150, 152, 153, and 160).

[Bobál and Chalupa, 2008] Vladimir Bobál and Petr Chalupa. Self-Tuning Con-

trollers Simulink Library. Department of Control Theory, Institute of Information

Technologies, Faculty of Applied Informatics, Tomas Bata University in Zlín,

Zlín, Czech Republic, March 2008.

http://www.mathworks.com/matlabcentral/fileexchange/8381-stcsl-standard-version.

(Cited in page 153).

[Breiman, 1996] Leo Breiman. Bagging Predictors. Machine Learning, vol. 24, no. 2,

pp. 123–140, August 1996. (Cited in pages 18, and 40).

http://www.mathworks.com/matlabcentral/fileexchange/8381-stcsl-standard-version

BIBLIOGRAPHY 183

[Brown et al., 2005a] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao.

Diversity Creation Methods: A survey and Categorisation. Information Fusion,

vol. 6, no. 1, pp. 5–20, March 2005. (Cited in pages 38, 39, 40, and 87).

[Brown et al., 2005b] Gavin Brown, Jeremy L. Wyatt, and Peter Tiňo. Managing

Diversity in Regression Ensembles. Journal of Machine Learning Research, vol. 6,

pp. 1621–1650, December 2005. (Cited in pages 27, 28, 39, and 60).

[Brzezinski and Stefanowski, 2014] Dariusz Brzezinski and Jerzy Stefanowski. Com-

bining Block-based and Online Methods in Learning Ensembles from Concept

Drifting Data Streams. Information Sciences, vol. 265, pp. 50–67, May 2014.

(Cited in pages 46, 48, 92, 94, 126, 130, 134, and 153).

[Butcher et al., 2013] J. B. Butcher, D. Verstraeten, B. Schrauwen, C. R. Day, and

P. W. Haycock. Reservoir Computing and Extreme Learning Machines for Non-

linear Time-series Data Analysis. Neural Networks, vol. 38, pp. 76–89, February

2013. (Cited in page 33).

[Cao and Schwartz, 2000] Liyu Cao and Howard Schwartz. A Directional Forgetting

Algorithm Based on the Decomposition of the Information Matrix. Automatica,

vol. 36, no. 11, pp. 1725–1731, November 2000. (Cited in pages 150, and 152).

[Caruana et al., 2000] Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in

Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping. In: Pro-

ceedings Neural Information Processing Systems Conference, NIPS’00, pp. 402–

408. November 28-30 2000. (Cited in pages 17, 33, and 74).

[Castro and Zuben, 2011] Pablo A. Dalbem Castro and Fernando José Von Zuben.

Learning Ensembles of Neural Networks by Means of a Bayesian Artificial Immune

System. IEEE Transactions on Neural Networks, vol. 22, no. 2, pp. 304–316,

February 2011. (Cited in pages 40, and 61).

[Chandra et al., 2006] Arjun Chandra, Huanhuan Chen, and Xin Yao. Trade-Off

Between Diversity and Accuracy in Ensemble Generation. In: Multi-Objective

Machine Learning, vol. 16 of Studies in Computational Intelligence, pp. 429–464.

Springer, 2006. (Cited in pages 39, and 40).

184 BIBLIOGRAPHY

[Chandrashekar and Sahin, 2014] Girish Chandrashekar and Ferat Sahin. A Survey

on Feature Selection Methods. Computers & Electrical Engineering, vol. 40, no. 1,

pp. 16–28, January 2014. (Cited in page 14).

[Chen et al., 2011] Kun Chen, Jun Ji, Haiqing Wang, Yi Liu, and Zhihuan Song.

Adaptive Local Kernel-based Learning for Soft Sensor Modeling of Nonlinear Pro-

cesses. Chemical Engineering Research and Design, vol. 89, no. 10, pp. 2117–2124,

October 2011. (Cited in page 21).

[Cheng and Liu, 2015] Zhong Cheng and Xinggao Liu. Optimal Online Soft Sensor

for Product Quality Monitoring in Propylene Polymerization Process. Neuro-

computing, vol. 149, Part C, pp. 1216–1224, February 2015. (Cited in pages 16,

and 21).

[Chincholkar and Herrmann, 2008] Mandar Chincholkar and Jeffrey W. Herrmann.

Estimating Manufacturing Cycle Time and Throughput in Flow Shops with Pro-

cess Drift and Inspection. International Journal of Production Research, vol. 46,

no. 24, pp. 7057–7072, December 2008. (Cited in page 126).

[Chu and Zaniolo, 2004] Fang Chu and Carlo Zaniolo. Fast and Light Boosting for

Adaptive Mining of Data Streams. In: Advances in Knowledge Discovery and Data

Mining, vol. 3056 of Lecture Notes in Computer Science, pp. 282–292. Springer

Berlin Heidelberg, 2004. (Cited in pages 41, 45, 46, 47, and 92).

[Coelho and Nascimento, 2010] André L. V. Coelho and Diego S. C. Nascimento.

On the Evolutionary Design of Heterogeneous Bagging Models. Neurocomputing,

vol. 73, no. 16-18, pp. 3319–3322, October 2010. (Cited in pages 40, 41, and 60).

[Coelho and Zuben, 2006] G. P. Coelho and F. J. Von Zuben. The Influence of the

Pool of Candidates on the Performance of Selection and Combination Techniques

in Ensembles. In: Proc. of the Int. Joint Conf. on Neural Networks, IJCNN’06,

pp. 5132–5139. July 16-21 2006. (Cited in page 150).

[Cordiner, 2009] Alister Cordiner. AdaBoost Toolbox - A Matlab Toolbox for Adap-

tive Boosting. Tech. rep., School of Computer Science and Software Engineering,

University of Wollongong, Wollongong, Australia, 2009.

http://thedeadbeef.files.wordpress.com/2010/07/techreport_boosting.pdf. (Cited

in page 88).

http://thedeadbeef.files.wordpress.com/2010/07/techreport_boosting.pdf

BIBLIOGRAPHY 185

[Cristinacce and Cootes, 2007] David Cristinacce and Tim F. Cootes. Boosted Re-

gression Active Shape Models. In: Proc. of the British Machine Vision Conference,

vol. 2, pp. 880–889. BMVA Press, September 10-13 2007. (Cited in pages 40, 62,

and 87).

[Cybenko, 1989] G. Cybenko. Approximation by Superpositions of a Sigmoidal

Function. Mathematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303–314,

1989. (Cited in page 28).

[Das, 2001] Sanmay Das. Filters, Wrappers and a Boosting-Based Hybrid for Fea-

ture Selection. In: Proc. of the 8th Int. Conf. on Machine Learning, ICML’01,

pp. 74–81. June 28 - July 1 2001. (Cited in page 15).

[Deng et al., 2014] Wan-Yu Deng, Qing-Hua Zheng, and Zhong-Min Wang. Cross-

person Activity Recognition Using Reduced Kernel Extreme Learning Machine.

Neural Networks, vol. 53, pp. 1–7, May 2014. (Cited in page 150).

[Ding et al., 2012] Shifei Ding, Li Xu, Chunyang Su, and Fengxiang Jin. An Op-

timizing Method of RBF Neural Network Based on Genetic Algorithm. Neural

Computing and Applications, vol. 21, no. 2, pp. 333–336, March 2012. (Cited in

page 17).

[Dondeti et al., 2005] Satyanarayana Dondeti, Kamarajan Kannan, and Rajappan

Manavalan. Genetic Algorithm Optimized Neural Networks Ensemble for Esti-

mation of Mefenamic Acid and Paracetamol in Tablets. Acta Chimica Slovenica,

vol. 52, no. 4, pp. 440–449, December 2005. (Cited in pages 41, 62, and 65).

[Drucker, 1997] Harris Drucker. Improving Regressors using Boosting Techniques.

In: Proc. of the 14th Int. Conf. on Machine Learning, ICML’97, pp. 107–115.

Morgan Kaufmann Publishers Inc., 1997. (Cited in pages 92, and 94).

[Elwell and Polikar, 2009] Ryan Elwell and Robi Polikar. Incremental Learning

in Nonstationary Environments with Controlled Forgetting. In: Proc. of the

Int. Joint Conf. on Neural Networks, pp. 771–778. June 14-19 2009. (Cited in

pages 46, 47, 104, and 134).

[Elwell and Polikar, 2011] Ryan Elwell and Robi Polikar. Incremental Learn-

ing of Concept Drift in Nonstationary Environments. IEEE Transactions on

186 BIBLIOGRAPHY

Neural Networks, vol. 22, no. 10, pp. 1517–1531, October 2011. (Cited in

pages 6, 44, 47, 92, 93, 105, 134, and 165).

[Escobar et al., 2015] R. F. Escobar, C. M. Astorga-Zaragoza, J. A. Hernández,

D. Juárez-Romero, and C. D. García-Beltrán. Sensor Fault Compensation Via

Software Sensors: Application in a Heat Pump’s Helical Evaporator. Chemical

Engineering Research and Design, vol. 93, pp. 473–482, January 2015. (Cited in

pages 16, and 21).

[Facco et al., 2009] Pierantonio Facco, Franco Doplicher, Fabrizio Bezzo, and Mas-

similiano Barolo. Moving Average PLS Soft Sensor for Online Product Quality

Estimation in an Industrial Batch Polymerization Process. Journal of Process

Control, vol. 19, no. 3, pp. 520–529, March 2009. (Cited in pages 19, and 21).

[Feely, 2000] R. Feely. Predicting Stock Market Volatility Using Neural Networks.

Bachelor’s thesis (unpublished), Department of Computer Science, Trinity College

Dublin, 2000. (Cited in pages 93, 94, and 97).

[Fortuna et al., 2009] L. Fortuna, S. Graziani, and M. G. Xibilia. Comparison of

Soft-Sensor Design Methods for Industrial Plants Using Small Data Sets. IEEE

Transactions on Instrumentation and Measurement, vol. 58, no. 8, pp. 2444–2451,

August 2009. (Cited in pages 4, 18, 41, 60, and 92).

[Fortuna et al., 2006] Luigi Fortuna, Salvatore Graziani, Alessandro Rizzo, and

Maria Gabriella Xibilia. Soft Sensors for Monitoring and Control of Industrial

Processes (Advances in Industrial Control). Springer-Verlag New York, Inc., Se-

caucus, NJ, USA, 2006. (Cited in pages xxi, 3, 11, 13, 14, 16, 19, 20, 22, 73,

and 132).

[Freund and Schapire, 1997] Yoav Freund and Robert E. Schapire. A Decision-

Theoretic Generalization of On-Line Learning and an Application to Boosting.

Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119 – 139, August

1997. (Cited in page 94).

[Friedman, 1991] Jerome H. Friedman. Multivariate Adaptive Regression Splines.

The Annals of Statistics, vol. 19, no. 1, pp. 1–67, March 1991. (Cited in page 72).

BIBLIOGRAPHY 187

[Gabrys, 2005] B. Gabrys. Do Smart Adaptive Systems Exist? - Introduction,

chap. 1, pp. 1–17. Springer, 2005. (Cited in page 42).

[Galicia et al., 2012] Hector J. Galicia, Q. Peter He, and Jin Wang. Comparison

of the Performance of a Reduced-order Dynamic PLS Soft Sensor with Different

Updating Schemes for Digester Control. Control Engineering Practice, vol. 20,

no. 8, pp. 747–760, August 2012. (Cited in pages 12, 21, and 133).

[Gama et al., 2009] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues.

Issues in Evaluation of Stream Learning Algorithms. In: Proc. of the 15th Int.

Conf. on Knowledge Discovery and Data Mining, KDD’09, pp. 329–338. June 28

- July 1 2009. (Cited in page 19).

[Ge and Song, 2010] Zhiqiang Ge and Zhihuan Song. A Comparative Study of Just-

in-time-learning Based Methods for Online Soft Sensor Modeling. Chemometrics

and Intelligent Laboratory Systems, vol. 104, no. 2, pp. 306–317, December 2010.

(Cited in page 21).

[Ge and Song, 2011] Zhiqiang Ge and Zhihuan Song. Semisupervised Bayesian

Method for Soft sensor Modeling with Unlabeled Data Samples. AIChE Jour-

nal, vol. 57, no. 8, pp. 2109–2119, August 2011. (Cited in page 179).

[Ge and Song, 2014] Zhiqiang Ge and Zhihuan Song. Ensemble Independent Com-

ponent Regression Models and Soft Sensing Application. Chemometrics and In-

telligent Laboratory Systems, vol. 130, pp. 115–122, January 2014. (Cited in

page 92).

[Ge et al., 2014] Zhiqiang Ge, Zhihuan Song, and Manabu Kano. External Analysis-

based Regression Model for Robust Soft Sensing of Multimode Chemical Pro-

cesses. AIChE Journal, vol. 60, no. 1, pp. 136–147, January 2014. (Cited in

page 21).

[Geladi and Kowalski, 1986] Paul Geladi and Bruce R. Kowalski. Partial Least-

Squares Regression: A Tutorial. Analytica Chimica Acta, vol. 185, pp. 1–17,

1986. (Cited in pages 17, and 36).

[Gjerkes et al., 2011] Henrik Gjerkes, Joze Malensek, Anze Sitar, and Iztok Golobic.

Product Identification in Industrial Batch Fermentation using a Variable Forget-

188 BIBLIOGRAPHY

ting Factor. Control Engineering Practice, vol. 19, no. 10, pp. 1208–1215, October

2011. (Cited in pages 45, and 126).

[Gomes et al., 2014] João Bártolo Gomes, Mohamed Medhat Gaber, Pedro A. C.

Sousa, and Ernestina Menasalvas. Mining Recurring Concepts in a Dynamic

Feature Space. IEEE Trans. on Neural Networks and Learning Systems, vol. 25,

no. 1, pp. 95–110, January 2014. (Cited in page 92).

[Grbić et al., 2013] Ratko Grbić, Dražen Slišković, and Petr Kadlec. Adaptive Soft

Sensor for Online Prediction and Process Monitoring Based on a Mixture of Gaus-

sian Process Models. Computers & Chemical Engineering, vol. 58, pp. 84–97,

November 2013. (Cited in pages 13, 14, 21, 22, 73, 132, and 159).

[Grbovic and Vucetic, 2011] Mihajlo Grbovic and Slobodan Vucetic. Tracking Con-

cept Change with Incremental Boosting by Minimization of the Evolving Expo-

nential Loss. In: Proc. of the European Conf. on Machine Learning and Knowledge

Discovery in Databases - Volume Part I, pp. 516–532. Springer, 2011. (Cited in

pages 46, and 47).

[Hagan and Menhaj, 1994] Martin T. Hagan and Mohammad B. Menhaj. Training

Feedforward Networks with the Marquardt Algorithm. IEEE Transactions on

Neural Networks, vol. 5, no. 6, pp. 489–501, November 1994. (Cited in pages 31, 32,

and 63).

[Hagan et al., 1996] Martin T. Hagan, Howard B. Demuth, and Mark Beale. Neural

Network Design. PWS Publishing, Boston, MA, USA, 1996. (Cited in pages 30,

and 32).

[Han and Kamber, 2005] Jiawei Han and Micheline Kamber. Data Mining: Con-

cepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2005. (Cited in pages 11, and 15).

[Hashem, 1994] Sherif Hashem. Optimal Linear Combinations of Neural Networks.

Neural Networks, vol. 10, no. 4, pp. 599–614, June 1994. (Cited in page 64).

[Haupt, 2004] Randy L. Haupt Sue Ellen Haupt. Practical Genetic Algorithms.

Wiley-Interscience, 2nd ed., 2004. (Cited in page 70).

BIBLIOGRAPHY 189

[Haykin, 1996] Simon Haykin. Adaptive Filter Theory. Prentice-Hall, Upper Saddle

River, NJ, USA, 3rd ed., 1996. (Cited in page 53).

[Haykin, 1999] Simon Haykin. Neural Networks: A Comprehensive Foundation.

Prentice Hall, Upper Saddle River, NJ, USA, 2nd ed., 1999. (Cited in page 28).

[He et al., 2015] Kaixun He, Feng Qian, Hui Cheng, and Wenli Du. A Novel Adap-

tive Algorithm with Near-infrared Spectroscopy and Its Application in Online

Gasoline Blending Processes. Chemometrics and Intelligent Laboratory Systems,

vol. 140, pp. 117–125, August 2015. (Cited in pages 16, 21, 35, and 55).

[Ho et al., 2010] Kevin I.-J. Ho, Chi-Sing Leung, and John Sum. Convergence and

Objective Functions of Some Fault/Noise-Injection-Based Online Learning Algo-

rithms for RBF Networks. IEEE Transactions on Neural Networks, vol. 21, no. 6,

pp. 938–947, June 2010. (Cited in page 18).

[Holland, 1992] John H. Holland. Adaptation in Natural and Artificial Systems.

MIT Press, Cambridge, MA, USA, 1992. (Cited in page 68).

[Hornik et al., 1989] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Mul-

tilayer Feedforward Networks are Universal Approximators. Neural Networks,

vol. 2, no. 5, pp. 359–366, 1989. (Cited in page 28).

[Houck et al., 1996] Christopher R. Houck, Jeffery A. Joines, and Michael G.

Kay. A Genetic Algorithm for Function Optimization: A Matlab Implemen-

tation. Tech. rep., North Carolina State University, Raleigh, NC, USA, 1996.

http://www.daimi.au.dk/~pmn/Matlab/dochome/toolbox/GAOT/. (Cited in

page 86).

[Hsu et al., 2011] Hui-Huang Hsu, Cheng-Wei Hsieh, and Ming-Da Lu. Hybrid Fea-

ture Selection by Combining Filters and Wrappers. Expert Systems with Applica-

tions, vol. 38, no. 7, pp. 8144–8150, July 2011. (Cited in page 15).

[Hu et al., 2013] Yi Hu, Hehe Ma, and Hongbo Shi. Enhanced Batch Process Mon-

itoring Using Just-in-time-learning Based Kernel Partial Least Squares. Chemo-

metrics and Intelligent Laboratory Systems, vol. 123, pp. 15–27, April 2013. (Cited

in page 21).

http://www.daimi.au.dk/~pmn/Matlab/dochome/toolbox/GAOT/

190 BIBLIOGRAPHY

[Huang, 2014] Guang-Bin Huang. An Insight into Extreme Learning Machines:

Random Neurons, Random Features and Kernels. Cognitive Computation, vol. 6,

no. 3, pp. 376–390, September 2014. (Cited in page 31).

[Huang, 2015] Guang-Bin Huang. What are Extreme Learning Machines? Filling

the Gap between Frank Rosenblatt’s Dream and John von Neumann’s Puzzle.

Cognitive Computation, vol. 7, no. 3, pp. 263–278, May 2015. (Cited in page 31).

[Huang et al., 2006] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Ex-

treme Learning Machine: Theory and Applications. Neurocomputing, vol. 70, no.

1-3, pp. 489–501, December 2006. (Cited in pages 7, 31, 33, 49, and 160).

[Ikonomovska, 2012] Elena Ikonomovska. Algorithms for Learning Regression

Trees and Ensembles on Evolving Data Streams. PhD thesis, Jožef Ste-

fan Int. Postgraduate School, Ljubljana, Slovenia, October 2012. (Cited in

pages 19, 44, 100, 102, 132, and 159).

[Iliyas et al., 2013] Surajdeen A. Iliyas, Moustafa Elshafei, Mohamed A. Habib, and

Ahmed A. Adeniran. RBF Neural Network Inferential Sensor for Process Emission

Monitoring. Control Engineering Practice, vol. 21, no. 7, pp. 962–970, July 2013.

(Cited in page 21).

[Jeong and Kim, 2005] Dae-Il Jeong and Young-Oh Kim. Rainfall-runoff Models

using Artificial Neural Networks for Ensemble Streamflow Prediction. Hydrological

Processes, vol. 19, no. 19, pp. 3819–3835, December 2005. (Cited in pages 18, 63,

and 74).

[Jia et al., 2011] Run-Da Jia, Zhi-Zhong Mao, Yu-Qing Chang, and Lu-Ping Zhao.

Soft-Sensor for Copper Extraction Process in Cobalt Hydrometallurgy Based on

Adaptive Hybrid Model. Chemical Engineering Research and Design, vol. 89,

no. 6, pp. 722–728, June 2011. (Cited in page 21).

[Jia and Culver, 2006] Yanbing Jia and Teresa B. Culver. Bootstrapped Artifi-

cial Neural Networks for Synthetic Flow Generation with a Small Data Sample.

Journal of Hydrology, vol. 331, no. 3-4, pp. 580–590, December 2006. (Cited in

pages 40, and 63).

BIBLIOGRAPHY 191

[Jin et al., 2014] Huaiping Jin, Xiangguang Chen, Jianwen Yang, and Lei Wu.

Adaptive Soft Sensor Modeling Framework Based on Just-in-time Learning and

Kernel Partial Least Squares Regression for Nonlinear Multiphase Batch Pro-

cesses. Computers & Chemical Engineering, vol. 71, pp. 77–93, December 2014.

(Cited in pages 21, and 126).

[Jin et al., 2012] Xing Jin, Siyun Wang, Biao Huang, and Fraser Forbes. Multi-

ple Model Based LPV Soft Sensor Development with Irregular/Missing Process

Output Measurement. Control Engineering Practice, vol. 20, no. 2, pp. 165–172,

February 2012. (Cited in page 12).

[Jong, 1993] Sijmen de Jong. SIMPLS: An Alternative Approach to Partial Least

Squares Regression. Chemometrics and Intelligent Laboratory Systems, vol. 18,

no. 3, pp. 251–263, March 1993. (Cited in pages 17, 36, and 104).

[Kadlec and Gabrys, 2007] P. Kadlec and B. Gabrys. Nature-Inspired Adaptive Ar-

chitecture for Soft Sensor Modelling. In: 3rd European Symposium on Nature-

inspired Smart Information Systems, NiSIS’2007, pp. 407–414. November 26-27

2007. (Cited in page 17).

[Kadlec and Gabrys, 2011] Petr Kadlec and Bogdan Gabrys. Local Learning-

based Adaptive Soft Sensor for Catalyst Activation Prediction. AIChE

Journal, vol. 57, no. 5, pp. 1288–1301, August 2011. (Cited in

pages 15, 21, 22, 44, 47, 73, 92, 101, 105, 126, 132, 159, and 178).

[Kadlec et al., 2009] Petr Kadlec, Bogdan Gabrys, and Sibylle Strandt. Data-driven

Soft Sensors in the Process Industry. Computers & Chemical Engineering, vol. 33,

no. 4, pp. 795–814, April 2009. (Cited in page 10).

[Kadlec et al., 2011] Petr Kadlec, Ratko Grbić, and Bogdan Gabrys. Review of

Adaptation Mechanisms for Data-driven Soft Sensors. Computers & Chemical

Engineering, vol. 35, no. 1, pp. 1–24, January 2011. (Cited in pages 19, and 42).

[Kaneko and Funatsu, 2014] Hiromasa Kaneko and Kimito Funatsu. Adaptive Soft

Sensor Based on Online Support Vector Regression and Bayesian Ensemble Learn-

ing for Various States in Chemical Plants. Chemometrics and Intelligent Labora-

tory Systems, vol. 137, pp. 57–66, October 2014. (Cited in pages 16, 21, and 126).

192 BIBLIOGRAPHY

[Kasabov, 1996] Nikola K. Kasabov. Foundations of Neural Networks, Fuzzy Sys-

tems, and Knowledge Engineering. MIT Press, Cambridge, MA, USA, 1st ed.,

1996. (Cited in pages 28, 32, and 64).

[Khatibisepehr and Huang, 2008] Shima Khatibisepehr and Biao Huang. Dealing

with Irregular Data in Soft Sensors: Bayesian Method and Comparative Study.

Industrial & Engineering Chemistry Research, vol. 47, no. 22, pp. 8713–8723,

October 2008. (Cited in page 12).

[Kim et al., 2013] Sanghong Kim, Ryota Okajima, Manabu Kano, and Shinji

Hasebe. Development of Soft-sensor Using Locally Weighted PLS with Adap-

tive Similarity Measure. Chemometrics and Intelligent Laboratory Systems, vol.

124, pp. 43–49, May 2013. (Cited in page 21).

[Klinkenberg, 2005] Ralf Klinkenberg. Meta-Learning, Model Selection, and Ex-

ample Selection in Machine Learning Domains with Concept Drift. In: Proc. of

Annual Workshop of the Special Interest Group on Machine Learning, Knowledge

Discovery, and Data Mining, FGML’05, pp. 164–171. October 2005. (Cited in

pages 42, 43, 94, and 153).

[Kolter and Maloof, 2005] Jeremy Zico Kolter and Marcus A. Maloof. Using Addi-

tive Expert Ensembles to Cope with Concept Drift. In: Proc. of the 22nd Int.

Conf. on Machine Learning, pp. 449–456. ACM, August 7-11 2005. (Cited in

pages 46, 48, 92, 100, 101, 104, 127, 132, 134, 159, and 165).

[Krogh and Vedelsby, 1995] Anders Krogh and Jesper Vedelsby. Neural Network

Ensembles, Cross Validations, and Active Learning. In: Advances in Neural In-

formation Processing Systems, vol. 8, pp. 231–238. MIT Press, 1995. (Cited in

page 38).

[Kulhavý, 1985] Rudolf Kulhavý. Probabilistic Identification of Time-Variable Sys-

tems with Unknown Model of Parameter Evolution. PhD thesis, Institute of In-

formation Theory and Automation of Czechoslovak Academy of Sciences, Praha,

Czechoslovakia, 1985. (in Czech). (Cited in page 153).

[Lan et al., 2009] Yuan Lan, Yeng Chai Soh, and Guang-Bin Huang. Ensemble of

Online Sequential Extreme Learning Machine. Neurocomputing, vol. 72, no. 13-15,

pp. 3391–3395, August 2009. (Cited in pages 4, 18, 41, 50, 60, 92, and 134).

BIBLIOGRAPHY 193

[Lazarescu et al., 2004] Mihai M. Lazarescu, Svetha Venkatesh, and Hung H. Bui.

Using Multiple Windows to Track Concept Drift. Intelligent Data Analysis, vol. 8,

no. 1, pp. 29–59, January 2004. (Cited in page 177).

[Lazarevic and Obradovic, 2001] Aleksandar Lazarevic and Zoran Obradovic. Ef-

fective Pruning of Neural Network Classifier Ensembles. In: Proc. of the Int.

Joint Conf. on Neural Networks, vol. 2 of IJCNN’01, pp. 796–801. July 15-19

2001. (Cited in page 150).

[Liang et al., 2006] Nan-Ying Liang, Guang-Bin Huang, P. Saratchandran, and

N. Sundararajan. A Fast and Accurate Online Sequential Learning Algorithm for

Feedforward Networks. IEEE Transactions on Neural Networks, vol. 17, no. 6, pp.

1411–1423, November 2006. (Cited in pages 7, 35, 50, 53, 54, 126, 150, and 160).

[Lim et al., 2013] Jun-Seok Lim, Seokjin Lee, and Hee-Suk Pang. Low Complexity

Adaptive Forgetting Factor for Online Sequential Extreme Learning Machine (OS-

ELM) for Application to Nonstationary System Estimations. Neural Computing

and Applications, vol. 22, no. 3-4, pp. 569–576, March 2013. (Cited in pages 17,

and 150).

[Lin et al., 2007] Bao Lin, Bodil Recke, Jørgen K. H. Knudsen, and Sten Bay Jør-

gensen. A systematic Approach for Soft Sensor Development. Computers &

Chemical Engineering, vol. 31, no. 5-6, pp. 419–425, May 2007. (Cited in pages 13,

and 132).

[Lin et al., 2009] Bao Lin, Bodil Recke, Torben M. Schmidt, Jørgen K. H. Knud-

sen, and Sten Bay Jørgensen. Data-Driven Soft Sensor Design with Multiple-Rate

Sampled Data: A Comparative Study. Industrial & Engineering Chemistry Re-

search, vol. 48, no. 11, pp. 5379–5387, May 2009. (Cited in page 11).

[Lingfang and Yechi, 2012] Sun Lingfang and Wang Yechi. Soft-sensing of Oxygen

Content of Flue Gas Based on Mixed Model. Energy Procedia, vol. 17, Part A,

pp. 221–226, 2012. (Cited in page 21).

[Littlestone and Warmuth, 1994] Nick Littlestone and Manfred K. Warmuth. The

Weighted Majority Algorithm. Information and Computation, vol. 108, no. 2, pp.

212–261, February 1994. (Cited in page 99).

194 BIBLIOGRAPHY

[Liu et al., 2010] Guohai Liu, Dawei Zhou, Haixia Xu, and Congli Mei. Model

Optimization of SVM for a Fermentation Soft Sensor. Expert Systems with Ap-

plications, vol. 37, no. 4, pp. 2708–2713, April 2010. (Cited in page 21).

[Liu et al., 2012a] Jialin Liu, Ding-Sou Chen, and Ming-Wei Lee. Adaptive Soft

Sensors Using Local Partial Least Squares with Moving Window Approach. Asia-

Pacific Journal of Chemical Engineering, vol. 7, pp. S134–S144, February 2012.

(Cited in pages 21, and 43).

[Liu et al., 2009] Yi Liu, Naiping Hu, Haiqing Wang, and Ping Li. Soft Chemical

Analyzer Development Using Adaptive Least-Squares Support Vector Regression

with Selective Pruning and Variable Moving Window Size. Industrial & Engi-

neering Chemistry Research, vol. 48, no. 12, pp. 5731–5741, May 2009. (Cited in

pages 21, 22, and 101).

[Liu et al., 2012b] Yi Liu, Zengliang Gao, Ping Li, and Haiqing Wang. Just-in-Time

Kernel Learning with Adaptive Parameter Selection for Soft Sensor Modeling of

Batch Processes. Industrial & Engineering Chemistry Research, vol. 51, no. 11,

pp. 4313–4327, February 2012. (Cited in page 21).

[Liu et al., 2013] Yi Liu, Zengliang Gao, and Junghui Chen. Development of Soft-

sensors for Online Quality Prediction of Sequential-reactor-multi-grade Industrial

Processes. Chemical Engineering Science, vol. 102, pp. 602–612, October 2013.

(Cited in page 21).

[Liu et al., 2012c] Yiqi Liu, Daoping Huang, Yan Li, and Xuefeng Zhu. Develop-

ment of a Novel Self-Validating Soft Sensor. Korean Journal of Chemical Engi-

neering, vol. 29, no. 9, pp. 1135–11439, September 2012. (Cited in pages 14, 17,

and 21).

[Liu et al., 2015] Yiqi Liu, Yongping Pan, and Daoping Huang. Development of

a Novel Adaptive Soft-sensor Using Variational Bayesian PLS With Accounting

For Online Identification of Key Variables. Industrial & Engineering Chemistry

Research, vol. 54, no. 1, pp. 338–350, 2015. (Cited in pages 16, 21, and 35).

[Liu and Yao, 1999] Yong Liu and Xin Yao. Ensemble Learning Via Negative Cor-

relation. Neural Networks, vol. 12, no. 10, pp. 1399–1404, December 1999. (Cited

in page 87).

BIBLIOGRAPHY 195

[Liu et al., 2000] Yong Liu, Xin Yao, and Tetsuya Higuchi. Evolutionary Ensembles

with Negative Correlation Learning. IEEE Transactions on Evolutionary Com-

putation, vol. 4, no. 4, pp. 380–387, November 2000. (Cited in pages 41, 60,

and 61).

[Ludermir et al., 2006] Teresa B. Ludermir, Akio Yamazaki, and Cleber Zanchettin.

An Optimization Methodology for Neural Network Weights and Architectures.

IEEE Transactions on Neural Networks, vol. 17, no. 6, pp. 1452–1459, November

2006. (Cited in page 17).

[Lv et al., 2013] You Lv, Jizhen Liu, Tingting Yang, and Deliang Zeng. A Novel

Least Squares Support Vector Machine Ensemble Model for NOx Emission Pre-

diction of a Coal-fired Boiler. Energy, vol. 55, pp. 319–329, June 2013. (Cited in

pages 21, 92, and 126).

[Mallapragada et al., 2009] Pavan Kumar Mallapragada, Rong Jin, Anil K. Jain,

and Yi Liu. SemiBoost: Boosting for Semi-Supervised Learning. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 31, no. 11, pp. 2000–2014,

Novemver 2009. (Cited in page 26).

[Maponi, 2007] P. Maponi. The Solution of Linear Systems by Using the Sherman-

Morrison Formula. Linear Algebra and Its Applications, vol. 420, no. 2-3, pp.

276–294, January 2007. (Cited in page 54).

[Martínez-Muñoz et al., 2009] Gonzalo Martínez-Muñoz, Daniel Hernández-

Lobato, and Alberto Suárez. An Analysis of Ensemble Pruning Techniques Based

on Ordered Aggregation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 31, no. 2, pp. 245–259, February 2009. (Cited in pages 41,

and 60).

[Martins et al., 2010] João Paulo A. Martins, Reinaldo F. Teófilo, and Márcia M. C.

Ferreira. Computational Performance and Cross-Validation Error Precision of

Five PLS Algorithms using Designed and Real Data Sets. Journal of Chemomet-

rics, vol. 24, no. 6, pp. 320–332, June 2010. (Cited in page 36).

[Matias et al., 2013] Tiago Matias, Dulce Gabriel, Francisco Souza, Rui Araújo,

and J. Costa Pereira. Fault Detection and Replacement of a Temperature Sensor

196 BIBLIOGRAPHY

in a Cement Rotary Kiln. In: Proc. of the 18th IEEE Int. Conf. on Emerging

Technologies and Factory Automation, ETFA’13, pp. 1–8. September 10-13 2013.

(Cited in pages 13, 21, and 150).

[Matias et al., 2014] Tiago Matias, Francisco Souza, Rui Araújo, and Car-

los Henggeler Antunes. Learning of a Single-hidden Layer Feedforward Neural

Network using an Optimized Extreme Learning Machine. Neurocomputing, vol.

129, pp. 428–436, April 2014. (Cited in page 62).

[Mendes et al., 2013] Jérôme Mendes, Rui Araújo, and Francisco Souza. Adaptive

Fuzzy Identification and Predictive Control for Industrial Processes. Expert Sys-

tems with Applications, vol. 40, no. 17, pp. 6964–6975, December 2013. (Cited in

page 152).

[Michalewicz and Fogel, 2000] Zbigniew Michalewicz and David B. Fogel. How to

Solve it: Modern Heuristics. Springer-Verlag, Berlin, Germany, 2000. (Cited in

page 71).

[Miche et al., 2010] Yoan Miche, Antti Sorjamaa, Patrick Bas, Olli Simula, Chris-

tian Jutten, and Amaury Lendasse. OP-ELM: Optimally Pruned Extreme Learn-

ing Machine. IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 158–162,

January 2010. (Cited in page 29).

[Minku and Yao, 2012] Leandro L. Minku and Xin Yao. DDD: A New Ensemble

Approach for Dealing with Concept Drift. IEEE Trans. on Knowledge and Data

Engineering, vol. 24, no. 4, pp. 619–633, April 2012. (Cited in page 45).

[Minku et al., 2010] Leandro L. Minku, Allan P. White, and Xin Yao. The Impact of

Diversity on Online Ensemble Learning in the Presence of Concept Drift. IEEE

Transactions on Knowledge and Data Engineering, vol. 22, no. 5, pp. 730–742,

May 2010. (Cited in pages 44, and 101).

[Miranda, 2012] Luís Filipe Pereira Miranda. Metodologias de Inteligência Com-

putacional para Projecto de Sensores Virtuais em Processos Industriais. Mas-

ter’s thesis, Dep. of Electrical and Computer Engineering, University of Coimbra,

Coimbra, Portugal, 2012. (Cited in pages 73, and 105).

BIBLIOGRAPHY 197

[Napoli and Xibilia, 2011] Giuseppe Napoli and Maria Gabriella Xibilia. Soft Sen-

sor Design for a Topping Process in the Case of Small Datasets. Computers &

Chemical Engineering, vol. 35, no. 11, pp. 2447–2456, November 2011. (Cited in

page 21).

[Narendra and Parthasarathy, 1990] Kumpati S. Narendra and Kannan

Parthasarathy. Identification and Control of Dynamical Systems Using

Neural Networks. IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4–27,

March 1990. (Cited in pages 2, and 27).

[Nguyen and Widrow, 1990] Derrick Nguyen and Bernard Widrow. Improving the

Learning Speed of 2-Layer Neural Networks by Choosing Initial Values of the

Adaptive Weights. In: Proc. of the IEEE Int. Joint Conf. on Neural Networks,

vol. 3 of IJCNN’90, pp. 21–26. June 17-21 1990. (Cited in pages 32, and 64).

[Ni et al., 2014] Wangdong Ni, Steven D. Brown, and Ruilin Man. A Localized

Adaptive Soft Sensor for Dynamic System Modeling. Chemical Engineering Sci-

ence, vol. 111, pp. 350–363, May 2014. (Cited in pages 13, 16, 17, 19, 21, and 55).

[Nishida and Yamauchi, 2007] Kyosuke Nishida and Koichiro Yamauchi. Adaptive

Classifiers-Ensemble System for Tracking Concept Drift. In: Int. Conf. on Ma-

chine Learning and Cybernetics, vol. 6, pp. 3607–3612. August 19-22 2007. (Cited

in pages 46, 48, and 104).

[Nishida et al., 2005] Kyosuke Nishida, Koichiro Yamauchi, and Takashi Omori.

ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments.

In: Multiple Classifier Systems, vol. 3541 of Lecture Notes in Computer Science,

pp. 176–185. Springer, 2005. (Cited in page 48).

[Oza and Russell, 2001] Nikunj C. Oza and Stuart Russell. Experimental Compar-

isons of Online and Batch Versions of Bagging and Boosting. In: Proc. of the 7th

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD’01,

pp. 359–364. 2001. (Cited in pages 41, 47, 60, 92, and 134).

[Pani et al., 2013] Ajaya Kumar Pani, Vamsi Krishna Vadlamudi, and Hare Krishna

Mohanta. Development and Comparison of Neural Network Based Soft Sensors

for Online Estimation of Cement Clinker Quality. ISA Transactions, vol. 52, no. 1,

pp. 19–29, January 2013. (Cited in page 21).

198 BIBLIOGRAPHY

[Pao et al., 1994] Yoh-Han Pao, Gwang-Hoon Park, and Dejan J. Sobajic. Learning

and Generalization Characteristics of the Random Vector Functional-link Net.

Neurocomputing, vol. 6, no. 2, pp. 163–180, April 1994. Backpropagation, Part

IV. (Cited in page 31).

[Partalas et al., 2008] Ioannis Partalas, Grigorios Tsoumakas, Evaggelos V.

Hatzikos, and Ioannis Vlahavas. Greedy Regression Ensemble Selection: The-

ory and an Application to Water Quality Prediction. Information Sciences, vol.

178, no. 20, pp. 3867–3879, October 2008. (Cited in page 150).

[Peng et al., 2005] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature Selection

Based on Mutual Information: Criteria of Max-dependency, Max-relevance, and

Min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 27, no. 8, pp. 1226–1238, August 2005. (Cited in page 14).

[Polikar, 2006] Robi Polikar. Ensemble Based Systems in Decision Making. IEEE

Circuits and Systems Magazine, vol. 6, no. 3, pp. 21–45, Third Quarter 2006.

(Cited in pages 18, and 64).

[Polikar, 2012] Robi Polikar. Ensemble Learning. In: Ensemble Machine Learning:

Methods and Applications, pp. 1–34. Springer, New York, NY, USA, 2012. (Cited

in pages 4, and 45).

[Polikar et al., 2002] Robi Polikar, Jeff Byorick, Stefan Krause, Anthony Marino,

and Michael Moreton. Learn++: A Classifier Independent Incremental Learning

Algorithm for Supervised Neural Networks. In: Proc. IEEE Int. Joint Conf. on

Neural Networks, vol. 2 of IJCNN’02, pp. 1742–1747. May 12-17 2002. (Cited in

page 42).

[Qin, 1998] S. Joe Qin. Recursive PLS Algorithms for Adaptive Data Modeling.

Computers & Chemical Engineering, vol. 22, no. 4-5, pp. 503–514, January 1998.

(Cited in pages 17, 35, 45, 55, 103, and 126).

[Rao and Mitra, 1972] C. Radhakrishna Rao and Sujit Kumar Mitra. Generalized

Inverse of a Matrix and Its Applications. In: Proc. 6th Berkeley Symposium on

Mathematical Statistics and Probability, Volume 1: Theory of Statistics, pp. 601–

620. University of California Press, Berkeley, CA, USA, 1972. (Cited in page 35).

BIBLIOGRAPHY 199

[Re and Valentini, 2012] Matteo Re and Giorgio Valentini. Ensemble Methods: A

Review, chap. 26, pp. 563–582. Chapman & Hall/CRC. CRC press, 2012. (Cited

in page 41).

[Ries et al., 2007] Michal Ries, Olivia Nemethova, and Markus Rupp. Performance

Evaluation of Mobile Video Quality Estimators. In: Proc. of the 15th European

Signal Processing Conference, pp. 159–163. Poznań, Poland, September 3-7 2007.

(Cited in page 41).

[Rogina et al., 2011] A. Rogina, I. Šiško, I. Mohler, Ž. Ujević, and N. Bolf. Soft

Sensor for Continuous Product Quality Estimation (In Crude Distillation Unit).

Chemical Engineering Research and Design, vol. 89, no. 10, pp. 2070–2077, Octo-

ber 2011. (Cited in pages 14, and 21).

[Rosin and Fierens, 1995] Paul L. Rosin and Freddy Fierens. Improving Neural

Network Generalisation. In: Proceedings of International Geoscience and Remote

Sensing Symposium (IGARSS’95), vol. 2, pp. 1255–1257. Firenze, Italy, 1995.

(Cited in page 62).

[Rullo et al., 2014] P. Rullo, L. Nieto Degliuomini, M. García, and M. Basualdo.

Model Predictive Control to Ensure High Quality Hydrogen Production for Fuel

Cells. International Journal of Hydrogen Energy, vol. 39, no. 16, pp. 8635–8649,

May 2014. (Cited in pages 16, and 21).

[Rumelhart et al., 1986] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.

Williams. Learning Internal Representations by Error Propagation. In: Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1:

Foundations, pp. 318–362. MIT Press, 1986. (Cited in page 30).

[Santos et al., 2009] Eulanda M. Dos Santos, Robert Sabourin, and Patrick Maupin.

Overfitting Cautious Selection of Classifier Ensembles with Genetic Algorithms.

Information Fusion, vol. 10, no. 2, pp. 150–162, April 2009. (Cited in page 155).

[Saptoro, 2014] Agus Saptoro. State of the Art in the Development of Adaptive Soft

Sensors based on Just-in-Time Models. Procedia Chemistry, vol. 9, pp. 226–234,

2014. (Cited in page 19).

200 BIBLIOGRAPHY

[Schmidt et al., 1992] Wouter F. Schmidt, Martin A. Kraaijveld, and Robert P. W.

Duin. Feed Forward Neural Networks with Random Weights. In: Proc. of the 11th

IAPR International Conference on Pattern Recognition. Conference B: Pattern

Recognition Methodology and Systems, vol. II, pp. 1–4. August 1992. (Cited in

page 31).

[Serpas et al., 2013] Mitch Serpas, Yunfei Chu, and Juergen Hahn. Fault Detection

Approach for Systems Involving Soft Sensors. Journal of Loss Prevention in the

Process Industries, vol. 26, no. 3, pp. 443–452, May 2013. (Cited in page 21).

[Shakil et al., 2009] M. Shakil, M. Elshafei, M. A. Habib, and F. A. Maleki. Soft

sensor for NOx and O2 Using Dynamic Neural Networks. Computers & Electrical

Engineering, vol. 35, no. 4, pp. 578–586, July 2009. (Cited in page 21).

[Shao et al., 2014] Weiming Shao, Xuemin Tian, and Ping Wang. Local Partial

Least Squares Based Online Soft Sensing Method for Multi-output Processes

with Adaptive Process States Division. Chinese Journal of Chemical Engineering,

vol. 22, no. 7, pp. 828–836, July 2014. (Cited in pages 16, 19, and 21).

[Sharma and Tambe, 2014] Suraj Sharma and Sanjeev S. Tambe. Soft-sensor De-

velopment for Biochemical Systems Using Genetic Programming. Biochemical

Engineering Journal, vol. 85, pp. 89–100, April 2014. (Cited in page 21).

[Shen et al., 2008] Shujie Shen, Gang Li, and Haiyan Song. An Assessment of Com-

bining Tourism Demand Forecasts Over Different Time Horizons. Journal of

Travel Research, vol. 47, no. 2, pp. 197–207, November 2008. (Cited in page 99).

[Shrestha and Solomatine, 2006] D. L. Shrestha and D. P. Solomatine. Experiments

with AdaBoost.RT, An Improved Boosting Scheme for Regression. Neural Com-

putation, vol. 18, no. 7, pp. 1678–1710, July 2006. (Cited in pages 93, 94, 95, 97,

and 105).

[Siemens, 2015] Siemens. INCA Sensor: Soft Sensors for Non-Measurable Quality

Variables, 2015.

http://mall.industry.siemens.com/mall/en/WW/Catalog/Products/10017370.

(Cited in page 175).

http://mall.industry.siemens.com/mall/en/WW/Catalog/Products/10017370

BIBLIOGRAPHY 201

[Sivanandam and Deepa, 2007] S. N. Sivanandam and S. N. Deepa. Introduction to

Genetic Algorithms. Springer, 2007. (Cited in page 68).

[Soares et al., 2011] Symone Soares, Rui Araújo, Pedro Sousa, and Francisco Souza.

Design and Application of Soft Sensor Using Ensemble Methods. In: Proc. of

the 16th IEEE Int. Conf. on Emerging Technologies and Factory Automation,

ETFA’11, pp. 1–8. September 5-9 2011. (Cited in page 21).

[Soares et al., 2012] Symone Soares, Carlos Antunes, and Rui Araújo. A Genetic

Algorithm for Designing Neural Network Ensembles. In: Proc. of the 14th Int.

Conf. on Genetic and Evolutionary Computation Conference, GECCO’12, pp.

681–688. ACM, Philadelphia, PA, USA, July 7-11 2012. (Cited in page 41).

[Soares et al., 2013] Symone Soares, Carlos Henggeler Antunes, and Rui Araújo.

Comparison of a Genetic Algorithm and Simulated Annealing for Automatic Neu-

ral Network Ensemble Development. Neurocomputing, vol. 121, pp. 498–511, De-

cember 2013. (Cited in pages 5, 68, and 150).

[Soares and Araújo, 2015a] Symone Gomes Soares and Rui Araújo. An Adaptive

Ensemble of On-line Extreme Learning Machines with Variable Forgetting Factor

for Dynamic System Prediction. Neurocomputing, vol. X, no. Y, pp. ppp–ppp,

2015. URL http://dx.doi.org/10.1016/j.neucom.2015.07.035. (Accepted).

(Cited in pages 7, and 21).

[Soares and Araújo, 2015b] Symone Gomes Soares and Rui Araújo. A Dynamic and

On-line Ensemble Regression for Changing Environments. Expert Systems with

Applications, vol. 42, no. 6, pp. 2935–2948, April 2015. (Cited in pages 6, and 21).

[Soares and Araújo, 2015c] Symone Gomes Soares and Rui Araújo. An On-line

Weighted Ensemble of Regressor Models to Handle Concept Drifts. Engineering

Applications of Artificial Intelligence, vol. 37, pp. 392–406, January 2015. (Cited

in pages 6, 21, and 134).

[Stanišić et al., 2015] Darko Stanišić, Nikola Jorgovanović, Nikola Popov, and Ve-

limir Čongradac. Soft Sensor for Real-time Cement Fineness Estimation. ISA

Transactions, vol. 55, no. 0, pp. 250–259, March 2015. (Cited in pages 16, and 21).

http://dx.doi.org/10.1016/j.neucom.2015.07.035

202 BIBLIOGRAPHY

[Suen et al., 2005] Yuk Lai Suen, Prem Melville, and Raymond J. Mooney. Com-

bining Bias and Variance Reduction Techniques for Regression Trees. In: Machine

Learning: ECML 2005, vol. 3720 of Lecture Notes in Computer Science, pp. 741–

749. Springer, 2005. (Cited in page 28).

[Tang et al., 2012] Jian Tang, Dianhui Wang, and Tianyou Chai. Predicting Mill

Load Using Partial Least Squares and Extreme Learning Machines. Soft Com-

puting - A Fusion of Foundations, Methodologies and Applications, vol. 16, no. 9,

pp. 1585–1594, September 2012. (Cited in page 21).

[Torgo, 2011] Luís Torgo. Regression Datasets. Laboratory of Artificial

Intelligence and Decision Support (LIAAD), University of Porto, 2011.

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html. (Cited in

page 72).

[Torres-Sospedra et al., 2005] Joaquín Torres-Sospedra, Mercedes Fernández-

Redondo, and Carlos Hernández-Espinosa. A Research on Combination Methods

for Ensembles of Multilayer Feedforward. In: Proc. IEEE Int. Joint Conf. on

Neural Networks, vol. 2 of IJCNN’05, pp. 1125–1130. July 31 - August 04 2005.

(Cited in pages 42, and 62).

[Tsymbal, 2004] Alexey Tsymbal. The Problem of Concept Drift: Definitions and

Related Work. Tech. rep., The University of Dublin, Trinity College, Department

of Computer Science, Dublin, Ireland, April 2004. (Cited in pages 45, and 126).

[Vergara et al., 2012] Alexander Vergara, Shankar Vembu, Tuba Ayhan, Mar-

garet A. Ryan, Margie L. Homer, and Ramón Huerta. Chemical Gas Sensor Drift

Compensation Using Classifier Ensembles. Sensors and Actuators B: Chemical,

vol. 166-167, pp. 320–329, May 2012. (Cited in page 126).

[Vergara and Estéves, 2014] Jorge R. Vergara and Pablo A. Estéves. A Review of

Feature Selection Methods Based on Mutual Information. Neural Computing and

Applications, vol. 24, no. 1, pp. 175–186, January 2014. (Cited in page 14).

[Vignolo et al., 2013] Leandro D. Vignolo, Diego H. Milone, and Jacob Scharcanski.

Feature Selection for Face Recognition Based on Multi-objective Evolutionary

Wrappers. Expert Systems with Applications, vol. 40, no. 13, pp. 5077–5084,

October 2013. (Cited in page 15).

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html

BIBLIOGRAPHY 203

[Škutová, 2008] Jolana Škutová. Weights Initialization Methods for MLP Neural

Networks. Tran. of the VŠB - Technical University of Ostrova, Mechanical Series,

vol. LIV, no. 2, pp. 147–152, 2008. (Cited in page 64).

[Wang et al., 2015] Di Wang, Ping Wang, and Yan Ji. An Oscillation Bound of

the Generalization Performance of Extreme Learning Machine and Correspond-

ing Analysis. Neurocomputing, vol. 151, Part 2, pp. 883–890, March 2015. (No

citations).

[Wang and Alhamdoosh, 2013] Dianhui Wang and Monther Alhamdoosh. Evolu-

tionary Extreme Learning Machine Ensembles with Size Control. Neurocomput-

ing, vol. 102, pp. 98–110, February 2013. (Cited in page 5).

[Wang and Guo, 2013] Jiesheng Wang and Qiuping Guo. Locally Weighted Ker-

nel Principal Component Regression Model for Soft Sensing of Nonlinear Time-

Variant Processes. Instrumentation Science & Technology, vol. 41, no. 1, pp.

18–36, February 2013. (Cited in pages 21, and 60).

[Willmott, 1981] Cort J. Willmott. On the Validation of Models. Physical Geogra-

phy, vol. 2, no. 2, pp. 184–194, 1981. (Cited in page 19).

[Xu et al., 2014] Ouguan Xu, Yongfeng Fu, Hongye Su, and Lijuan Li. A Selective

Moving Window Partial Least Squares Method and Its Application in Process

Modeling. Chinese Journal of Chemical Engineering, vol. 22, no. 7, pp. 799–804,

July 2014. (Cited in pages 21, and 35).

[Xu et al., 2011] Wei Xu, Lingbo Zhang, and Xingsheng Gu. Soft Sensor for Am-

monia Concentration at the Ammonia Converter Outlet Based on an Improved

Particle Swarm Optimization and BP Neural Network. Chemical Engineering

Research and Design, vol. 89, no. 10, pp. 2102–2109, October 2011. (Cited in

page 21).

[Yang and Chen, 2012] Shih-Hung Yang and Yon-Ping Chen. An Evolutionary Con-

structive and Pruning Algorithm for Artificial Neural Networks and its Prediction

Applications. Neurocomputing, vol. 86, pp. 140–149, June 2012. (Cited in page 18).

[Yu-Bo and Zhi-Bin, 2011] Tian Yu-Bo and Xie Zhi-Bin. Particle-Swarm-

Optimization-Based Selective Neural Network Ensemble and Its Application to

204 BIBLIOGRAPHY

Modeling Resonant Frequency of Microstrip Antenna. In: Microstrip Antennas,

pp. 69–82. InTech, April 2011. (Cited in pages 41, and 62).

[Yuan et al., 2014] Xiaofeng Yuan, Zhiqiang Ge, and Zhihuan Song. Locally

Weighted Kernel Principal Component Regression Model for Soft Sensing of Non-

linear Time-Variant Processes. Industrial & Engineering Chemistry Research,

vol. 53, no. 35, pp. 13736–13749, August 2014. (Cited in page 21).

[Zhang, 2007] G. Peter Zhang. A Neural Network Ensemble Method with Jittered

Training Data for Time Series Forecasting. Information Sciences, vol. 177, no. 23,

pp. 5329–5346, December 2007. (Cited in pages 18, and 60).

[Zhang et al., 2010] Haichuan Zhang, Zhongyang Liu, Dongwei Xu, and Ninghui

Wang. Soft-Sensor of Ozone Concentration in Ozone Generation System. Ozone:

Science & Engineering, vol. 32, no. 1, pp. 56–60, March 2010. (Cited in page 21).

[Zhang et al., 2012] Yingwei Zhang, Shuai Li, and Yongdong Teng. Dynamic Pro-

cesses Monitoring Using Recursive Kernel Principal Component Analysis. Chem-

ical Engineering Science, vol. 72, pp. 78–86, April 2012. (Cited in page 21).

[Zhou et al., 2002] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling

Neural Networks: Many Could Be Better Than All. Artificial Intelli-

gence, vol. 137, no. 1-2, pp. 239–263, May 2002. Code available at

http://lamda.nju.edu.cn/files/Gasen.zip. (Cited in pages 41, 61, and 85).

[Zliobaite, 2009] Indre Zliobaite. Learning under Concept Drift: an Overview. Tech.

rep., Faculty of Mathematics and Informatics, Vilnius University, 2009. (Cited in

page 44).

http://lamda.nju.edu.cn/files/Gasen.zip

	Agradecimentos
	Abstract
	Resumo
	Abbreviations and Symbols
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Main Motivation
	Soft Sensor Motivation
	Ensemble Learning Motivation
	Thesis Contributions
	Thesis Organization

	Overview of Soft Sensors
	Introduction
	Historical Data Selection
	Data Preprocessing
	Data Transformation
	Data Cleaning
	Data Reduction

	Model Selection, Training and Validation
	Model Selection
	Model Training
	Model Validation

	Soft Sensor Maintenance
	Soft Sensor Applications
	Data Sets for Soft Sensor Modeling
	Conclusion

	Overview of Learning Models Applied to Soft Sensors
	Introduction
	The Regression Problem
	Single Learning Models
	Neural Networks
	Partial Least Squares

	Ensemble Learning Models
	Theoretical Analyzes of Ensemble Learning Models
	Key Factors in Ensemble Learning Models

	Adaptive Learning Systems
	The Concept Drift Problem
	Approaches for Handling Concept Drift
	Main Structures of On-line Learning Algorithms
	On-line Single Learning Models

	Conclusion

	Automatic Ensemble Development Using Meta-Heuristics
	Introduction
	Proposed Methodology: Design of NNs and Combinations
	Training, Validation, and Testing Data Sets
	Generation of Candidate Neural Networks
	Proposed Combination Strategies

	Proposed Methodology: NNE Design by GA and SA
	Genetic Algorithm for Designing Neural Network Ensemble (GA-NNE)
	Simulated Annealing for Designing Neural Network Ensemble (SA-NNE)

	Experimental Results
	Data Set Description
	Individual Neural Networks
	Generation of the Candidate Neural Networks
	Genetic Algorithm for Designing Neural Network Ensembles
	Simulated Annealing for Designing Neural Network Ensembles
	The Models Selected by GA-NNE and SA-NNE
	Comparisons of the Ensemble Systems

	Conclusion

	An Adaptive Ensemble with Discounting Factor
	Introduction
	On-line Weighted Ensemble of Regressor Models
	Experimental Results
	Data Set Description
	Approach Setup and Description
	Analysis of OWE Parameters
	Experimental Results Using Artificial Data Sets
	Experimental Results Using Industrial Data Sets

	Conclusion

	An Adaptive Ensemble with Fast Adaptation Capability
	Introduction
	Dynamic and On-line Ensemble Regression
	DOER Description

	Experimental Results
	Data Set Description
	Approach Setup and Description
	Analysis of DOER Parameters
	Comparing DOER to Other Approaches
	Discussion

	Conclusion

	An Adaptive Ensemble Using Ordered Aggregation
	Introduction
	An OS-ELM Model with DFF
	An On-line Ensemble Using Ordered Aggregation
	OEOA Component Models
	OEOA Algorithm Description

	Experimental Results
	Data Set Description
	Evaluation Methodology
	Approach Description and Setup
	Comparison of Single Model Learning Algorithms
	Analysis of OEOA Parameters
	Comparison of On-line Ensemble Learning Algorithms

	Conclusion

	Conclusion
	Bibliography

