

Marisa Cristina Marquês Neto de Matos Resende

THE ROBUST SHORTEST PATH PROBLEM WITH DISCRETE DATA

Tese de Doutoramento do Programa Inter-Universitário de Doutoramento em Matemática, orientada pela Professora Doutora

Marta Margarida Braz Pascoal e apresentada ao Departamento de Matemática da Faculdade de Ciências e Tecnologia da

Universidade de Coimbra.

Fevereiro de 2015

Marisa Cristina Marquês Neto de Matos Resende

The robust shortest path problem

with discrete data

Dissertação apresentada à Faculdade de Ciências
e Tecnologia da Universidade de Coimbra, para a
obtenção do grau de Doutor em Matemática na
especialidade de Matemática Aplicada

Coimbra

2015

Acknowledgments

First of all, I would like to thank my advisor, Professor Marta Pascoal, for the motivation and

useful hints while making my research. My recognition to her dedication, care and interest

for preparing this thesis and for improving my skills and learnings on discrete optimization. I

appreciate all the corrections and suggestions.

To the professors of the courses I attended in the first year of the PhD, I thank the academic

preparation.

To the Department of Mathematics of the University of Coimbra and to the Institute for

Systems Engineering and Computers at Coimbra (INESCC), I thank the working conditions

for developing my work.

To the Foundation of Science and Technology, I thank the economic support during these

last four years with grant SFRH/BD/51169/2010.

Finally, my acknowledgments are dedicated to all the people who contributed for my emo-

tional support along the PhD. To my parents and my closest friends a sincere word of gratitude.

Resumo

Problemas de otimização são frequentemente utilizados para modelar fenómenos reais, sendo,

deste modo, um instrumento de apoio à decisão. Tais modelos dependem de parâmetros que

podem ser afetados pela incerteza. Na prática, é bastante comum que estes parâmetros as-

sumam um conjunto de cenários possíveis, cujos valores podem variar num dado intervalo ou

ser discretos. Uma forma de lidar com a incerteza, denominada otimização robusta, tem como

objetivo minimizar o pior caso que possa ocorrer para todos os cenários. Esta tese considera

o problema do caminho robusto mais curto com o mínimo desvio máximo de custo numa rede

com um número finito de cenários. O problema consiste na determinação de um caminho entre

dois nós, com o mínimo custo de robustez, isto é, com o mínimo desvio máximo de custo com

respeito ao caminho mais curto em cada cenário. Na literatura, têm sido desenvolvidos pre-

dominantemente métodos de resolução do problema anterior, ou de algumas das suas variantes,

quando são considerados intervalos de custo. Contudo, para o caso discreto, o tema não tem

sido explorado significativamente.

Após serem demonstrados resultados fundamentais relativamente às soluções ótimas do

problema do caminho robusto mais curto, são introduzidos três novos métodos exatos. Um deles

é um método de rotulação, enquanto os outros dois têm por base a enumeração de caminhos

limitados superiormente em termos de custo. Um destes algoritmos, denominado híbrido, utiliza

uma técnica de desvio de caminhos para eliminar caminhos que o outro método de enumeração

determina, por meio da aplicação de uma regra eliminatória utilizada no algoritmo de rotulação.

Resultados computacionais em redes aleatórias mostram que as versões rotulação e híbrida são

os algoritmos mais eficientes.

A redução da rede é outro dos tópicos tratados, com vista a simplificar a busca de um

caminho robusto mais curto. Neste contexto, são desenvolvidas técnicas de pré-processamento

para identificar arcos contidos em qualquer solução ótima, e nós que não estão contidos em

nenhuma solução ótima. Os métodos seguem dois tipos de abordagem, estática e dinâmica.

A primeira fixa o limite inferior dos custos, enquanto a segunda atualiza aqueles valores, de

acordo com o mínimo custo de robustez dos caminhos que vão sendo obtidos. Nestas condições,

os conjuntos de arcos e de nós identificados pela última destas estratégias contêm os conjuntos

identificados pelo método estático. Testes computacionais em redes geradas aleatoriamente

mostram que as regras de pré-processamento são eficazes para os nós, se o número de cenários

usados pelas condições testadas for limitado. Além disto, determinar um caminho robusto mais

curto após pré-processamento dinâmico dos nós foi mais eficiente do que resolver o problema

após o pré-processamento estático ou mesmo sem pré-processamento, em alguns casos.

O último tema aborda a reotimização do caminho robusto mais curto, após eliminação ou

inclusão de cenários ou de arcos na rede inicial. Esta consiste na resolução do problema na rede

modificada, assumindo que a solução ótima original, bem como os custos dos caminhos mais

curtos e o valor ótimo iniciais são conhecidos. Inicialmente, são deduzidas condições que per-

mitem verificar se a solução ótima se mantém. Quando estas não são satisfeitas, é desenvolvido

um algoritmo para calcular a nova solução num conjunto de caminhos específico previamente

determinado. O método de procura tem por base a construção de uma árvore de caminhos, que

começa por incluir os sub-caminhos da solução ótima original que podem ser estendidos a cam-

inhos potencialmente ótimos. Em cada passo, é adicionado um arco a cada caminho na árvore

e as regras de extensão são aplicadas, de acordo com o mínimo custo de robustez conhecido na

rede modificada. A aplicação dos algoritmos de reotimização é ilustrada.

Palavras-Chave: otimização em redes, cenários discretos, caminho robusto mais curto,

pré-processamento, reotimização.

Abstract

Optimization problems are often used to model real phenomena and thus aid decision making.

Such models depend on parameters that may be affected by uncertainty. In practice, it is quite

common that these parameters are known to assume a given set of possible scenarios, which

can range within an interval or be a discrete set of values. A way to handle uncertainty, called

robust optimization, aims at minimizing the worst case that can happen for all scenarios. This

thesis considers the minmax regret robust shortest path problem in a network, with a finite

set of scenarios. The goal of this problem is to determine a path between two nodes, with the

minimum robustness cost, that is, with the minimum maximum deviation cost with respect to

the shortest path in each scenario. In the literature, methods to solve the latter problem or

some of its variants have been mainly developed when each cost ranges within a given interval.

However, for the discrete case, the subject has not been significantly explored.

After proving fundamental results concerning optimal solutions of the robust shortest path

problem, three new exact methods to solve it are introduced. One is a labeling method, whereas

the other two are based on an upper-bounded ranking of paths. One of these methods, denom-

inated hybrid, uses a deviation technique that allows to skip some of the paths determined

by the other ranking method, through the application of a pruning rule used in the labeling

algorithm. Computational results in random networks reveal that the labeling and the hybrid

versions are the most efficient algorithms.

The reduction of the network in order to simplify the search for a robust shortest path is

also addressed. In this context, preprocessing techniques for identifying arcs that belong to all

optimal solutions, and nodes that do not belong to any optimal solution, are developed. The

methods follow two types of approach, static and dynamic. The first fixes the cost lower-bounds,

while, the second, updates them according with the least robustness cost of the computed paths.

Under these conditions, the sets of arcs or nodes identified by the latter strategy contain the

sets identified by the static method. Computational results in randomly generated networks

show that the preprocessing rules are effective for nodes, if the number of scenarios used in

the test conditions is limited. Besides, determining a robust shortest path after the dynamic

preprocessing of nodes has shown to be more effective than solving the problem after the static

preprocessing or even without preprocessing for some cases.

The reoptimization of the robust shortest path, after deleting or inserting scenarios or arcs

in the initial network, is the last approached subject. It consists in solving the problem in the

modified network, assuming that the original optimal solution as well as the shortest path costs

and the optimal value in the initial network are known. First, conditions to verify if the optimal

solution remains the same are deduced. When these do not hold, an algorithm is developed in

order to calculate the new solution in a specific set of paths previously determined. The method

is based on the construction of a paths tree, which initially includes the sub-paths of the original

optimal solution that can be extended and produce potentially optimal paths. At each step,

one arc is added to each path in the tree and the extension rules are applied, according with the

least robustness cost known in the transformed network. The application of the reoptimization

algorithms is illustrated.

Keywords: network optimization, discrete scenarios, robust shortest path, preprocessing,

reoptimization.

Contents

Introduction ii

1 Preliminaries 1

1.1 Problem definition and notation . 1

1.2 Properties of the optimal solutions . 3

2 Algorithms for the robust shortest path problem 5

2.1 Introduction . 5

2.2 Labeling approach . 6

2.3 Ranking approach . 16

2.4 Hybrid approach . 21

2.5 Computational experiments . 30

2.6 Conclusions . 42

3 Preprocessing techniques for the robust shortest path problem 43

3.1 Introduction . 43

3.2 Identification of robust 1-persistent arcs . 45

3.3 Identification of robust 0-persistent nodes . 54

3.4 Computational experiments . 64

3.5 Conclusions . 70

4 Reoptimization methods for the robust shortest path problem 71

4.1 Introduction . 71

4.2 Variation of the number of scenarios . 72

4.2.1 Elimination of scenarios . 74

4.2.2 Addition of scenarios . 84

4.3 Variation of the number of arcs . 96

4.3.1 Elimination of arcs . 97

i

ii Introduction

4.3.2 Addition of arcs . 109

4.4 Conclusions . 126

5 Concluding remarks 127

Bibliography 131

List of notation 137

Introduction

Optimization problems have long been used to model reality and, thus, to aid decision making.

Traditionally, these problems have been treated in a deterministic manner, which means that

the parameters involved in their description are assumed to be known and well determined. In

reality, however, these values are often subjective, inaccurate, subject to changes, or sometimes

unknown, making difficult the task of choosing reliable models. One approach for assigning

plausible value(s) to each model parameter, considers the model nature and the possible varia-

tions of their parameters before optimizing the problem. In this context, the data uncertainty

may be addressed by two types of optimization methods: stochastic and robust. The former

is applied when probability laws may describe scenarios for the parameter values. However,

in practice, it can be difficult to know an exact distribution for the data and to enumerate

scenarios that reproduce them. Hence, the robust optimization arises as a common alternative

by assuming scenarios with deterministic values.

In combinatorial optimization, looking for robust solutions is usually related with determin-

ing a solution that is good taking into account uncertainty, more precisely, a good solution for

the generality of the possible scenarios. Thus, the goal is, generally, to find the solution that

behaves the best in the worst case. To determine the worst case scenario, the robustness strat-

egy must take into account what is affected by uncertainty, namely, whether it is the feasibility

of the solution or the objective function value. In particular, the works [7, 43] cover problems

handling both latter aspects.

When uncertainty affects the feasibility of a solution, robust optimization is focused on

seeking for a solution that is feasible for any realization taken by the unknown coefficients of

the uncertainty set, which is centered around the nominal values of uncertain parameters. This

methodology comes widely from the mathematical programming formulation over convex sets

in the literature [6]. Since the middle of the 90’s, two models were particularly developed:

discrete and interval data models. In the former case, there is a finite number of possible cost

scenarios, whereas in the latter the costs can range within given intervals.

When uncertainty affects the optimality of a solution, and, therefore, the objective function

iii

iv Introduction

to be considered, several kinds of robustness measures are adopted in order to establish a

criterion to solve the problem [46]. When paths are evaluated in terms of robustness, three

types of criteria can be distinguished. The first is classical and results from the decision theory,

which considers the minimization of an objective function that expresses the worst case in

terms of cost or the regret cost [27]. The second methodology comes from the resolution of

the mathematical programming formulation, by considering cost intervals around the nominal

values of the objective function coefficients and a parameter of adjustment, in order to control

the number of coefficients that deviate from their nominal value [7]. The third approach is

based on multicriteria analysis, where the decision problem is commonly defined using a set of

solutions, a discrete set of criteria and an aggregation model of these criteria. In this context,

the robustness analysis is based on the choice of a suitable evaluation vector associated with each

solution and on the definition of an aggregation model for the obtained evaluation vectors [45].

This thesis approaches the classical criteria of robustness, which considers the minimization

of one of two possible objective functions. One that represents the maximum cost among all

scenarios, known as the absolute robustness cost, and another that represents the maximum

deviation cost with respect to the best cost over all scenarios, known as the relative robustness

cost. When the purpose is to find a path between a given pair of nodes in a network, this leads

to the absolute robust shortest path problem, in the first case, and to the minmax regret robust

shortest path problem, in the second. Some works have addressed these problems for interval

data, however the literature on the discrete case is rather scarce.

Most of the research on the robust shortest path problem with interval data is based on a

discretization of the intervals into two particular scenarios, which result from considering only

the interval lower and upper-limits. This idea was first applied to the case of acyclic networks,

in 2001, by Karasan, Pinar and Yaman [26]. This work also introduced rules to reduce the

network, after the determination of arcs that do not belong to any optimal solution. In 2004-

2005, Montemanni and Gambardella [31, 33, 32] proposed new algorithms for the interval data

robust shortest path problem, based on the idea used in [26]. More recently, Catanzaro, Labbé

and Salazar-Neumann [13] developed enhanced pre-processing techniques to reduce the network

before finding a robust shortest path, for any type of network.

When arc costs may have a finite set of realizations, i.e., a finite set of scenarios, Dias and

Clímaco [16] considered that only a finite set of cost realizations, i.e., a finite set of scenarios

is known. Given that not all information is available, those authors explored the problem

from a multicriteria point of view, and proposed the determination of a set of non-dominated

paths, that is, a set of paths that are not worse than any other for all scenarios. Perny and

Spanjaard [42] also used the concept of dominance to develop specific rules in state space

graphs as an axiomatic approach to robustness. In 1992, Murthy and Her [35] showed that an

Introduction v

optimal solution of the absolute robust shortest path problem with finite scenarios must be a

non-dominated path. As a result, they developed a labeling algorithm to solve the problem,

which combines dominance tests on the labels with pruning techniques, to discard some labels

which cannot lead to an optimal solution. The relative version of the problem was introduced

only in 1998, by Yu and Yang [50], who designed a dynamic programming strategy to solve it.

The methods are pseudo-polynomial in time but were shown not to be effective for problems

with large cost upper-bounds or a large number of scenarios. Moreover, it was also shown that

the problem is strongly NP-hard when the number of scenarios is unbounded. To overcome

such difficulties, an exact method was conceived specifically for layered networks and heuristics

were developed to compute an approximate optimal solution in general. In 2010, Bruni and

Guerriero [11] proposed several heuristics and evaluation functions to guide the search performed

by Murthy and Her’s algorithm. Empirical tests have shown that this enhanced the original

version of the method. To our knowledge, these are the only works that address the robust

shortest path problem when the arc costs assume a discrete set of scenarios.

The book by Kouvelis and Yu [27] provides a complete state-of-the-art on robust optimiza-

tion for combinatorial problems in general, up to the end of last century. Additionally, more

recently, survey papers have also been published on this topic, [12, 22, 23].

As mentioned above, this work focuses the robust shortest path problem with discrete data.

It has three main goals, to propose exact methods to solve the problem efficiently, to introduce

conditions and procedures that enable the identification of arcs or nodes of the network which

can be deleted before actually solving the problem, and to study techniques to reoptimize an

optimal path if the set of network arcs or the set of network scenarios is modified. The remainder

of this work is organized into five chapters. The first is dedicated to the introduction of notation

and the definition of the minmax regret robust shortest path problem. Then, preliminary results

to be used in the following are presented. Namely, the existence of solutions for this problem

is analyzed and some of their properties are derived, concerning uniqueness and simplicity.

In Chapter 2, three exact algorithms are presented to determine an optimal simple path

between a pair of nodes of a network. These methods were introduced in [39], the first of these

algorithms is a variant of the labeling approach proposed in [35], adapted to the minmax regret

objective function. The cost lower and upper-bounds are used similarly. The second algorithm

ranks simple paths by non-decreasing order of cost. A cost upper-bound is used to limit the

ranking. The search can be restricted along the process, according to the costs of the optimal

path candidates. The third algorithm is a hybrid version of the two previous methods. This

algorithm ranks simple paths, however the cost bounds imposed for the first method are applied.

This allows to discard useless solutions at an early stage, and, therefore, to skip some of the

paths ranked in the second algorithm. The time complexity orders of the proposed algorithms

vi CONTENTS

are deduced. An example of the application of the introduced methods is provided and, then,

computational results over random instances are presented.

Preprocessing techniques are derived in Chapter 3. Their purpose is to reduce the network

into a subnetwork where an optimal solution can still be identified. Inspired by the results in

[13], sufficient conditions are established to detect arcs that surely belong to all optimal solutions

and nodes that do not belong to any of them. The preprocessing rules are implemented following

two approaches: static and dynamic. The first, the static version introduced in [40], sets and

fixes a cost lower-bound involved on a test condition that is constant along the algorithm. The

second, the dynamic version introduced in [41], aims to enhance the former strategy by applying

the same type of conditions, but updating the cost lower-bounds and the arcs or nodes scanned

along the algorithm, as paths are computed. The two types of algorithms are described and

their time computational complexity orders are determined. The arcs and nodes identified by

the preprocessing procedures as useless are eliminated from the original network and a robust

shortest path is found on the reduced model by applying the labeling and the hybrid algorithms

presented in Chapter 2. The impact of the static and dynamic procedures is evaluated by means

of empirical tests on randomly generated instances, comparing the running times for solving

the problem with and without preprocessing. The obtained results are analyzed and discussed.

In Chapter 4, the reoptimization of the robust shortest path problem is addressed, assuming

that the network changes by the elimination or the inclusion of scenarios or arcs. It is assumed

that the original optimal solution, its robustness cost and the shortest path costs are known

in the initial network. In a first step, conditions for verifying whether the former optimal path

does not change after the modifications are established. When these conditions do not hold,

the new optimal solution needs to be computed, being possible to restrict the search for the

latter to a subset of paths in the modified network. With this purpose, a labeling method

that constructs a paths tree is designed. The method starts with the sub-paths of the original

optimal solution, except the optimal path itself, which are defined in the modified network and

can be extended to an optimal solution. This requirement is evaluated using cost lower-bounds

as in the pruning technique of the labeling and the hybrid approaches of Chapter 2. The same

rule is applied whenever an arc is added to the paths tree. Besides, when any of those arcs

ends in the terminal node of the network, it is verified whether the obtained path belongs to

the search set previously defined and if its robustness cost in the modified network improves

the least attained. The established results and the associate algorithms are exemplified.

The last chapter is devoted to the presentation of a summary of the main results of the

developed work and of final conclusions. Some open questions and possible research directions

are highlighted.

Chapter 1

Preliminaries

In this chapter some preliminary concepts are presented. Namely, notation is introduced, the

robust shortest path problem is defined and some of its properties are discussed.

1.1 Problem definition and notation

A finite multi-scenario model is represented by G = G(V,A, S), where G is a directed graph

with a set of nodes V = {1, . . . , n}, a set of m arcs A ⊆ {(i, j) : i, j ∈ V and i 6= j} and a finite

set of scenarios S = {s1, . . . , sk}, k > 1. When indexing scenarios, Uk is used to denote the set

{1, . . . , k}. The density or average degree of G is denoted by d, which is given by d = m/n.

For each arc (i, j) ∈ A, i and j are named the tail and the head node, respectively, and

csuij (G) ∈ R represents its cost under scenario su in G, u ∈ Uk. It is assumed that the graph

contains no parallel arcs, nor self-loops.

Let A∗ and S∗ be nonempty sets of arcs and scenarios, respectively. Then, G−
A∗ and G−

S∗

denote the subgraphs of G with set of arcs A\A∗ and set of scenarios S\S∗, respectively.

Analogously, G+
A∗ and G+

S∗ denote the extensions of G with set of arcs A ∪ A∗ and set of

scenarios S ∪S∗, respectively. To simplify notation, when A∗ = {(i, j)} and S∗ = {su}, u ∈ Uk,

the representations G−
(i,j) and G−

su , for the subgraphs G−
A∗ and G−

S∗ , and the representations

G+
(i,j) and G+

su
, for the extensions G+

A∗ and G+
S∗ , are adopted.

A path from i to j, i, j ∈ V , in graph G, also called an (i, j)-path, is an alternating sequence

of nodes and arcs of the form

p = 〈v1, (v1, v2), v2, . . . , (vr−1, vr), vr〉,

with v1 = i, vr = j and where vl ∈ V , for l = 2, . . . , r−1, and (vl, vl+1) ∈ A, for l = 1, . . . , r−1.

The sets of arcs and of nodes in a path p are denoted by A(p) and V (p), respectively. Given

two paths p, q, such that the final node of p is also the initial node of q, the concatenation of p

and q is the path formed by p followed by q, and is denoted by p ⋄ q.

1

2 Preliminaries

Because it is assumed that graphs do not contain parallel arcs, paths will be represented

simply by their sequence of nodes. A cycle, or loop, is a path from a node to itself. A path is

said to be simple if all its nodes are different.

The cost of a path p in G under scenario su, u ∈ Uk, is defined by

csuG (p) =
∑

(i,j)∈A(p)

csuij (G).

With no loss of generality, 1 and n denote the origin and the destination nodes of the graph G,

respectively. The set of all (i, j)-paths in G is represented by Pij(G), i, j ∈ V .

Let pl,suij (G) represent the l-th shortest (i, j)-path of G, i, j ∈ V , in scenario su, u ∈ Uk. In

order to simplify the notation, pl,su(G) is used to denote the l-th shortest (1, n)-path of G in

scenario su, i.e. pl,su1n (G), and LBsu
ij (G) is used to denote the cost of the shortest (i, j)-path of

G in scenario su, i.e. csuG (p1,suij (G)).

For each scenario su, u ∈ Uk, the trees of the paths p1,su1i (G) and of the paths p1,suin (G), for

any i ∈ V , are represented by T su
1 (G) and T su

n (G), respectively, and 1 and n are called the

roots of these trees.

The minmax regret robust shortest path problem in G corresponds to determining a path

in P1n(G) with the least maximum robust deviation, i.e. satisfying

arg min
p∈P1n(G)

RCG(p), (1.1)

where RCG(p) is the robustness cost in G of a path p ∈ P1n(G), defined by

RCG(p) := max
u∈Uk

RDsu
G (p),

where RDsu
G (p) represents the robust deviation in G of a path p ∈ P1n(G) under scenario su,

u ∈ Uk, defined by

RDsu
G (p) := csuG (p)− LBsu

1n(G).

Any optimal solution is called a robust shortest path of G. The set of scenarios indices in which

RCG(p) occurs is denoted by UG(p) = {argmaxu∈Uk
RDsu

G (p)}.

The idea behind minimizing the maximum robust deviation is to find a (1, n)-path with the

best deviation cost in all scenarios, with respect to the shortest (1, n)-path in each one. A prob-

lem that resembles this one is the minmax shortest path problem [35]. The latter is an absolute

version of problem (1.1), for which the objective function to minimize is maxu∈Uk
{csuG (p)}. Both

problems have the same optimal solution if the cost LBsu
1n(G) is constant for any u ∈ Uk.

For the theoretical results in the remainder of this chapter and in Chapters 2 and 3, G is

used to represent a general network. For particular examples, other notations can be considered.

In Chapter 4, other variants of G are represented according to the introduced modifications.

Properties of the optimal solutions 3

1.2 Properties of the optimal solutions

In this section, the existence of a robust shortest path is analyzed. Then, some elementary

properties of the optimal solutions in G are deduced, concerning uniqueness and cyclic nature.

This last property will be a requirement to be satisfied when searching for an optimal solution

when developing algorithms.

To start, two preliminary results are settled. The first is related with the sign of the

robustness cost of any (1, n)-path of G.

Proposition 1.1. For every p ∈ P1n(G), RCG(p) ≥ 0.

Proof. Let p ∈ P1n(G). By definition of shortest (1, n)-path in scenario su, LB
su
1n(G) ≤ csuG (p),

for any u ∈ Uk. The result is then an immediate consequence of the definition of robustness

cost of a (1, n)-path.

This proposition assures the existence of a minimum among the robustness costs of the

paths of P1n(G), given that this set is non-empty and finite by assumption. Therefore, the

existence of a solution for the robust shortest path problem is always assured. Moreover, any

path in P1n(G) with null robustness cost must be a robust shortest path of G.

The second result is a particular consequence of the previous proposition and of the problem

definition, because it characterizes a robust shortest path of G with null robustness cost as a

shortest (1, n)-path of G for all scenarios.

Corollary 1.2. A path p is a shortest (1, n)-path of G in every scenario of S, if and only if p

is a robust shortest path of G, satisfying RCG(p) = 0.

The network G1 = G1(V,A, {1, 2}), depicted in Figure 1.1, shows that a robust shortest path

may not be unique. In fact, for this example, p1,1(G1) = 〈1, 2, 4〉 and p1,2(G1) = 〈1, 3, 4〉. Under

these conditions, the two (1, 4)-paths p1,1(G1) and q = 〈1, 2, 3, 4〉 are both robust shortest paths

of G1, as they have the minimum robustness cost 2
(
UG1(p

1,1(G1)) = {2} and UG1(q) = {1, 2}
)
.

1

1, 0

4, 1

2
0, 4

2, 3

3
0, 1

4

i
c1ij(G1) , c

2
ij(G1)

j

Figure 1.1: Network G1

In order to develop algorithms that compute a (1, n)-path with the minimum robustness

cost in G, other properties must be established. An important result concerns the cyclic nature

4 Preliminaries

of an optimal solution. In fact, any robust shortest path on an acyclic network is naturally

simple. Nevertheless, in a network containing cycles, there may exist robust shortest paths

including cycles as well. In fact, let G2 be the network represented in Figure 1.2. In this case,

the shortest (1, 4)-paths of G1 for scenarios 1 and 2 are the same for G2

(
p1,1(G2) = 〈1, 2, 4〉

and p1,2(G2) = 〈1, 3, 4〉
)
. Hence, the simple paths p1,1(G2) = 〈1, 2, 4〉 and q = 〈1, 2, 3, 4〉 are

still optimal solutions in G2, with the same robustness cost 2. However, path q′ = 〈1, 2, 1, 2, 4〉

is a new robust shortest path of G2, containing the cycle 〈1, 2, 1〉, given that RCG2(q
′) = 2

(
UG2(q

′) = {1, 2}
)
.

1
1, 0

4, 1

2
0, 4

2, 3

1, 0

3
0, 1

4

i
c1ij(G2) , c

2
ij(G2)

j

Figure 1.2: Network G2

Although there may exist robust shortest paths containing cycles, Yu and Yang [50] proved

the existence of a simple optimal solution for networks with non-negative arc costs for all

scenarios. This result is still valid for networks without cycles with negative cost in any scenario,

as shown in Proposition 1.3.

Proposition 1.3. Let G be a network without cycles with negative cost in any scenario, then

there exists a simple robust shortest path in G.

Proof. Let p ∈ P1n(G). In case p is simple, consider p′ = p, otherwise, consider p′ as the

(1, n)-path resultant from p by deleting all its cycles. Under these conditions, p′ is a simple

(1, n)-path. Since, by assumption, all the cycles in G must have a non-negative cost for all

scenarios,

csuG (p′) ≤ csuG (p) , for any u ∈ Uk.

Hence, by definition of robustness cost of a (1, n)-path,

RCG(p
′) ≤ RCG(p).

Consequently, there exists a simple path p′ ∈ P1n(G) such that RCG(p
′) = minp∈P1n(G)RCG(p),

i.e. there exists a simple robust shortest path in G.

As a consequence of this property, it is assumed from now on that G is a network without

cycles with negative cost in any scenario. Under these conditions, it is enough to solve the

robust shortest path problem by scanning the simple paths of P1n(G) only.

Chapter 2

Algorithms for the robust shortest

path problem

As mentioned in the introductory chapter, robust optimization has greatly developed in the

recent years, as a way to handle uncertainty that deals with the variability of the parameters of

the problem. The present chapter is dedicated to the discrete case of the robust shortest path

problem, in particular. Namely, algorithms are developed and illustrated for this problem, and

their computational complexities in terms of the performed operations are deduced. Finally,

their performance is evaluated by means of a set of tests on random instances.

2.1 Introduction

Similarly to what generally happens with the shortest path problem, the methods introduced in

this chapter compute a simple robust shortest path. These methods were introduced in [39] and

explore two traditional approaches to deal with the shortest path problem, and more concretely

with its multiobjective version: labeling and ranking.

The first approach can be seen as an extension of the shortest path label correcting algo-

rithms, like Bellman-Ford-Moore’s algorithm [5, 19, 34], to the case with several cost functions,

each one associated with one scenario. The application is not straightforward, given that the

present problem does not follow the Bellman’s principle of optimality [5]. Therefore, the growth

of the search tree formed by the algorithm has to be controlled by means of additional pruning

rules. Works that propose labeling algorithms with a variety of strategies, in the context of

constrained, or multiobjective, shortest path problems can be found in [10, 35, 25, 28, 48].

The second approach is based on ranking paths by non-decreasing order of their cost ac-

cording to a chosen scenario. Because it has been proven that the robust shortest path problem

has a simple optimal solution (Proposition 1.3), the ranking can be limited to simple paths.

5

6 Algorithms for the robust shortest path problem

One of the dangers of such an approach is related with the number of simple paths that may

have to be calculated before an optimal solution is found. In order to cope with this issue, the

robustness costs of the ranked paths are used to obtain an upper-bound to halt the ranking.

A third approach to the robust shortest path problem is also proposed. This results from

a combination of the two previous methods, in the sense that it uses an algorithm for ranking

shortest simple paths, complemented with pruning rules tuned to skip useless paths.

2.2 Labeling approach

The method presented in this section for computing a robust shortest path of G is inspired on

the labeling algorithm proposed by Murthy and Her [35] for the minmax shortest path problem.

This problem consists of determining a (1, n)-path with the minimum maximum cost over all

scenarios and it does not satisfy Bellman’s principle of optimality [5], as said above. However,

an optimal path must be non-dominated, which can be assured in case all its sub-paths are

non-dominated as well. Here, the concept of dominance is applied to the costs of the paths in

P1i(G), i ∈ V , for all scenarios. With this knowledge, Murthy and Her create labels for each of

the nodes of G and apply dominance tests to select only the labels associated with the sub-paths

that could be contained in an optimal path. The method is complemented by rules for pruning

useless labels. One of them is based on the use of cost lower-bounds for the paths of Pin(G),

i ∈ V , in each scenario. The other results from the Lagrangian relaxation of the subproblem of

the linear programming formulation obtained when the previous bounds are fixed.

Like the minmax shortest path problem, the robust shortest path problem does not satisfy

Bellman’s principle of optimality either. Thus, the algorithm described in the following for

the latter problem has an approach similar to the method of Murthy and Her, because of the

dominance tests and the pruning rule that uses cost lower-bounds to extend sub-paths to node

n. The main modifications concern the adaptation of the labels and upper-bounds to the new

objective function. Moreover, the dominance tests for the labels associated with the computed

(1, n)-paths are skipped. Along the algorithm, a search tree rooted at node 1 is constructed,

labeled by the costs vector for each path in that tree. Some notation is now introduced.

Let zG(p1i) = (z1G(p1i), . . . , z
k
G(p1i)) denote a label associated with a path p1i ∈ P1i(G),

i ∈ V . Each u-th component of a label is related with a cost for p1i in scenario su, u ∈ Uk.

By default, it is considered that node 1 is a (1, 1)-path of G represented by 〈1〉. Because the

objective function to evaluate (1, n)-paths depends on the robust deviations for all scenarios,

in order to simplify intermediate calculations, the label associated with node 1 is given by

zG(〈1〉) = (−LBs1
1n(G), . . . ,−LBsk

1n(G)).

Labeling approach 7

Along the algorithm, the labels can be recursively obtained when an arc is added to the final

node of a path previously selected. Specifically, given p1i ∈ P1i(G) and its label, zG(p1i), i ∈ V ,

the label associated with p1j = p1i ⋄ 〈i, j〉, can be obtained, for any (i, j) ∈ A, according to the

formula

zG(p1j) = (z1G(p1i) + cs1ij (G), . . . , zkG(p1i) + cskij (G)).

With the above initialization,

zG(p1n) = (RDs1
G (p1n), . . . , RDsk

G (p1n)),

is the vector of robust deviations of a (1, n)-path p1n. Then, by definition, the robustness cost

of p1n in G can be determined by

RCG(p1n) = max
u∈Uk

zuG(p1n).

Under these conditions, a robust shortest path of G is found among the paths of P1n(G) with

labels having the least maximum component. This result is stated in the following lemma.

Lemma 2.1. Let p1n ∈ P1n(G). Then, p1n is a robust shortest path of G if and only if

max
u∈Uk

zuG(p1n) ≤ max
u∈Uk

zuG(p
′
1n),

for any p′1n ∈ P1n(G).

Any (1, n)-path p1n can be eliminated as potentially optimal, when its label zG(p1n) does

not satisfy the condition of Lemma 2.1. Nevertheless, extending all the paths of P1i(G), i ∈

V \{n}, to all possible (1, n)-paths can be computationally demanding. Therefore, two pruning

techniques will be derived with the aim of discarding in an early stage of the algorithm, paths

that cannot be part of a simple robust shortest path, which allows to reduce the total number

of labels that have to be stored along the calculations as well. For the first reduction rule, new

concepts related with the dominance of the generated labels are given.

Definition 2.2. Let p1i, p
′
1i ∈ P1i(G), i ∈ V . Then, the label associated with p1i, zG(p1i),

dominates the label associated with p′1i, zG(p
′
1i), if

z1G(p1i) ≤ z1G(p
′
1i) , . . . , z

k
G(p1i) ≤ zkG(p

′
1i)

and at least one of the inequalities is strict.

Let ZG(P1i) denote the set of labels for all the paths of P1i(G), i ∈ V .

Definition 2.3. A label of ZG(P1i) is efficient (or non dominated) if there is no other label in

ZG(P1i) that dominates it.

8 Algorithms for the robust shortest path problem

In [35], the dominance tests are applied to the labels in each set ZG(P1i), i ∈ V . For the

method presented here, the tests are skipped for the labels in ZG(P1n), which are only selected

when the inequality in Lemma 2.1 is strict. In this way, computational effort can be spared.

Two aspects must be taken into account for each set ZG(P1i), i ∈ V \{n}. One is the

dominance between its labels and the other is their equivalence, which happens when they have

equal components. Proposition 2.4 allows to discard any (1, i)-path p1i with a label dominated

by, or equivalent to, a label of some other (1, i)-path p′1i. In fact, in either case, it is shown that

the (1, n)-path that results from extending p1i is never better than the same extension of p′1i.

Proposition 2.4. Let p1i, p
′
1i ∈ P1i(G), q ∈ Pin(G), i ∈ V \{n}, and p1n = p1i ⋄q, p

′
1n = p′1i ⋄q.

1. If zG(p1i) is dominated by zG(p
′
1i), then RCG(p

′
1n) ≤ RCG(p1n).

2. If zG(p1i) is equivalent to zG(p
′
1i), then RCG(p

′
1n) = RCG(p1n).

Proof.

1. If zG(p1i) is dominated by zG(p
′
1i), then,

zuG(p
′
1n) = zuG(p

′
1i) + csuG (q) ≤ zuG(p1i) + csuG (q) = zuG(p1n) , for any u ∈ Uk,

with

zu
′

G (p′1n) < zu
′

G (p1n) , for some u′ ∈ Uk.

Consequently,

max
u∈Uk

zuG(p
′
1n) ≤ max

u∈Uk

zuG(p1n),

and the result follows from the definition of robustness cost of a (1, n)-path.

2. If zG(p1i) is equivalent to zG(p
′
1i), then,

zuG(p
′
1i) = zuG(p1i) , for any u ∈ Uk,

and the reasoning applied to point 1. allows to obtain

max
u∈Uk

zuG(p
′
1n) = max

u∈Uk

zuG(p1n).

The result follows by definition of robustness cost of a (1, n)-path.

Labeling approach 9

As a consequence of the last result, the paths of P1i(G), i ∈ V \{n}, with labels not domi-

nated by, or equivalent to, another in ZG(P1i) can be considered for possible extension. Since

it is intended to restrict the search to simple (1, n)-paths, a first in first out (FIFO) policy for

managing the paths under evaluation can be adopted. This means that breadth-search is used

to build the search-tree and that when equivalent labels occur in each ZG(P1i), i ∈ V \{n}, only

the associate (1, i)-path which is generated first is stored. To show this result, a representa-

tion for the subsets of P1i(G) associated with equivalent labels is introduced in the following.

Specifically, given p1i ∈ P1i(G),

[p1i]
eq
G = {p′1i ∈ P1i(G) : zG(p

′
1i) is equivalent to zG(p1i)}

defines the set of paths of P1i(G) with labels equivalent to zG(p1i). It can be easily checked that

the equivalence between the labels of ZG(P1i) is an equivalence relation, because the equalities

between the components of the labels are, trivially, reflexive, symmetric and transitive. Under

these conditions, [p1i]
eq
G is an equivalence class of paths with respect to the equivalence relation

between the associate labels. Proposition 2.5 shows that, when paths are managed in a FIFO

policy, it is always possible to obtain a simple robust shortest path of G with each of its sub-

paths being first generated, when other paths exist in the associate equivalence class.

Proposition 2.5. Assume that the set of paths for scanning is managed as a FIFO list. Then,

there exists a simple robust shortest path q, such that each of its (1, i)-sub-paths, q1i, is the first

generated in [q1i]
eq
G , i ∈ V (q)\{n}.

Proof. If there exists a simple robust shortest path, q, of G, such that all of its (1, i)-sub-paths,

q1i, i ∈ V (q)\{n}, satisfy
∣∣[q1i]eqG

∣∣ = 1, the result is immediate. It remains to prove that q1i

is the first generated in [q1i]
eq
G , when

∣∣[q1i]eqG
∣∣ > 1, i ∈ V (q)\{n}. By contradiction, assume

that no simple robust shortest path q exists under such conditions. Let p∗ be a simple robust

shortest path and j ∈ V (p∗) be its node closest to node 1 such that
∣∣[p∗1j]

eq
G

∣∣ > 1, with p∗1j the

(1, j)-sub-path of p∗. Suppose p′1j 6= p∗1j is the first path of [p∗1j]
eq
G to be generated. Denote by

p∗jn the (j, n)-path in p∗. Then, p′1j ⋄ p
∗
jn is a (1, n)-path, such that

RCG(p
′
1j ⋄ p

∗
jn) = RCG(p

∗).

Hence, p′1j ⋄ p
∗
jn is a robust shortest path of G and p′1j was the first path generated in [p′1j]

eq
G =

[p∗1j]
eq
G . By assumption, p′1j ⋄ p

∗
jn should contain a cycle. Let x be the first repeated node in

p′1j ⋄ p
∗
jn, and p′1x ⋄ p

∗
xn be the simple (1, n)-path obtained from p′1j ⋄ p

∗
jn after removal of that

cycle. Here p′1x and p∗xn correspond to p′1j’s sub-path from 1 to x and p∗jn’s sub-path from x to

n, respectively. Again,

RCG(p
′
1x ⋄ p

∗
xn) = RCG(p

′
1j ⋄ p

∗
jn),

10 Algorithms for the robust shortest path problem

and p′1x ⋄ p
∗
xn is a simple robust shortest path of G. By hypothesis, and because paths are

managed as a FIFO list, all the (1, i)-sub-paths, p′1i, of p′1j are the first to be generated in

[p′1i]
eq
G , i ∈ V (p′1j). So the same happens for the (1, i)-sub-paths, p′1i, of p′1x, i ∈ V (p′1x), because

V (p′1x) ⊆ V (p′1j). For i ∈ V (p∗xn)\{n}, if all the (1, i)-sub-paths, p′1x ⋄ p
∗
xi, of p′1x ⋄ p

∗
xn are

the first to be generated in [p′1x ⋄ p
∗
xi]

eq
G , then the result is proven by considering q = p′1x ⋄ p

∗
xn.

Otherwise, because p∗xn has less nodes than p∗jn, the reasoning can be repeated a finite number of

times leading to the existence of a simple path q under the stated conditions, which contradicts

the assumption.

From now on, it will be assumed that the paths to be extended are treated in a FIFO

manner. Otherwise, it should be verified whether a selected path contains a cycle or not.

A second pruning rule for the paths of P1i(G), i ∈ V \{n}, is inferred in Proposition 2.6.

This property is based on a bounding condition satisfied by every sub-path of a (1, n)-path.

Proposition 2.6. Let p ∈ P1n(G) and p1i be a (1, i)-sub-path of p, i ∈ V \{n}. Then,

max
u∈Uk

{zuG(p1i) + LBsu
in (G)} ≤ RCG(p).

Proof. Let p1i be a (1, i)-path, i ∈ V \{n}, contained in p. Then,

csuG (p) ≥ csuG (p1i ⋄ p
1,su
in (G)) = csuG (p1i) + LBsu

in (G) , for any u ∈ Uk

or, equivalently,

RDsu
G (p) ≥ zuG(p1i) + LBsu

in (G) , for any u ∈ Uk,

and the result follows from the definition of the robustness cost of a (1, n)-path in G.

The second test for the paths of P1i(G), i ∈ V \{n}, allows to eliminate those that would

produce (1, n)-paths with robustness costs which are not better than the least computed value.

In fact, denoting by UB an upper bound for the optimal value of the problem, when

max
u∈Uk

{zuG(p1i) + LBsu
in (G)} ≥ UB (2.1)

holds with a strict inequality, then the (1, i)-path p1i cannot be part of any optimal solution. In

case of an equality, p1i can be part of an optimal solution with robustness cost UB. Nevertheless,

taking into account that a candidate path with the same robustness cost is already known, p1i

and zG(p1i) can be discarded in both cases. If (2.1) is satisfied with a strict inequality, this

pruning rule is equivalent to the first one proposed in [35].

Labeling approach 11

The value UB is initialized with the best robustness cost of the shortest (1, n)-paths for each

scenario, keeping in mind that calculating their costs is fundamental to start the algorithm.

Hence, UB is initialized with

min
u∈Uk

RCG(p
1,su(G)) = min

u∈Uk

max
u′∈Uk

RD
su′
G (p1,su(G)). (2.2)

This value is then updated as new labels for (1, n)-paths are computed.

The structure of the labeling algorithm for finding a robust shortest path is described in the

following.

Global algorithmic structure To start with, the computation of the trees T su
n (G) and of

the associate costs LBsu
in (G), i ∈ V \{n}, are necessary, for each u ∈ Uk. Any shortest path

tree algorithm can be applied with such purpose [1]. Then, the optimal cost upper-bound UB

is initialized with (2.2). In order to do that, calculating the deviation costs for the shortest

(1, n)-paths of G over all scenarios is required. Since some of them can be the shortest for

more than one scenario, the computation of their robustness costs can be avoided by using a

list Q with only the distinct shortest paths. The first candidate is the path of Q with the least

robustness cost.

A variable RCaux stores the robustness cost of a (1, n)-path after its label has been calcu-

lated. It updates UB in case it improves the least robustness cost found so far. The variable

sol represents any potentially optimal (1, n)-path.

A list X collects the paths of P1i(G) to be scanned and list Zi stores the labels associated

with the paths in X, i ∈ V \{n}. List X is managed under a FIFO policy. When implementing

the code, in order to save space memory, only the last node of each generated path is stored,

rather than the whole path. In this way, the optimal solution can be retrieved at the end of the

algorithm, by tracing back the nodes up to node 1.

When selecting p1i ∈ X for extension, a (1, j)-path p1j = p1i ⋄ 〈i, j〉, (i, j) ∈ A, j ∈ V \{n},

is not discarded when its label, zG(p1j), is not dominated by, or equivalent to, another label

in Zj and it does not satisfy (2.1). Then, all the labels in list Zj dominated by zG(p1j) are

removed, as well as the corresponding (1, j)-paths in X. Afterwards, path p1j and zG(p1j) are

inserted in lists X and Zj , respectively.

The pseudo-code for the labeling procedure is presented in Algorithm 1.

12 Algorithms for the robust shortest path problem

Algorithm 1: Labeling approach for finding a robust shortest path of G

1 Q← ∅;
2 for u ∈ Uk do

3 Compute T su
n (G); Q← Q ∪ {p1,su(G)};

4 for i = 1, . . . , n− 1 do LBsu
in (G)← csuG (p1,suin (G));

5 UB ← min{RCG(q) : q ∈ Q};
6 sol← q such that q ∈ Q and RCG(q) = UB;
7 zG(〈1〉)← (−LBs1

1n(G), . . . ,−LBsk
1n(G)); X ← {〈1〉}; Z1 ← {zG(〈1〉)};

8 for i = 2, . . . , n− 1 do Zi ← ∅;
9 while X 6= ∅ do

10 p1i ← first path in X ; X ← X − {p1i};
11 for (i, j) ∈ A do

12 p1j ← p1i ⋄ 〈i, j〉;

13 zG(p1j)← (z1G(p1i) + cs1ij (G), . . . , zkG(p1i) + cskij (G));

14 if j = n then

15 RCaux← max{zuG(p1j) : u ∈ Uk};
16 if RCaux < UB then UB ← RCaux; sol← p1j ;

17 else if zG(p1j) is not dominated by, or equivalent to, any label in Zj and

maxu∈Uk
{zuG(p1j) + LBsu

jn(G)} < UB then

18 Delete from Zj all the labels dominated by zj(p1j);
19 Delete from X the (1, j)-paths associated with the labels deleted from Zj ;
20 X ← X ∪ {p1j}; Zj ← Zj ∪ {zG(p1j)};

21 return sol;

Computational time complexity order In order to determine the worst case computa-

tional complexity of Algorithm 1, some auxiliary procedures are analyzed.

1. Determination of a tree T su
n (G), for some u ∈ Uk, and of the associate costs

c
su′
G (p1,suin (G)), i ∈ V , for any u′ ∈ Uk: The computational time complexity is O(m) for

acyclic networks [1], and O(m+n log n) for general networks, if using Fibonacci heaps [21].

Computing the costs for all scenarios has O(kn) in both cases, so this step has O(m+kn)

time for acyclic networks and O(m+ n log n+ kn) time for general networks.

2. Calculation of RCG(p
1,su(G)), for some u ∈ Uk, given c

su′
G (p1,su(G)), for any u′ ∈ Uk:

The k robust deviations, RD
su′
G (p1,su(G)), u′ ∈ Uk, are obtained in O(k) time and their

minimum can be found with O(k) comparisons. Thus, the required work has O(k) time.

3. Generation of a label given another: The label of a path p1j = p1i ⋄ 〈i, j〉, (i, j) ∈ A,

is obtained from the label of p1i, i ∈ V , by adding the costs of arc (i, j), for all scenarios

of S. Hence, this calculation is performed in O(k) time.

Labeling approach 13

4. Dominance test between two labels: Since in a worst case all the components of

two labels are considered on a dominance test, at most k comparisons are involved and

consequently this operation has O(k) time.

Algorithm 1 is performed in two stages. The first one consists of the initialization steps,

done in O(km+ k2n) for acyclic networks and in O(k(m+n log n)+ k2n) for general networks,

according to 1. In a worst case, the calculation of the robustness costs of all the k paths in Q

is necessary, which takes O(k2) time, attending to 2. Initializing the upper bound UB requires

O(k) time. Hence, the total amount of operations that precede the generation of the labels is

performed in Oa
1 = O(km+k2n) time for acyclic networks and in Oc

1 = O(k(m+n log n)+k2n)

for general networks.

The second stage concerns computing the search tree of paths through the generation,

scanning and pruning of the associate labels. Let W denote the maximum number of paths in

each set P1i(G), i ∈ V \{n}, that are generated (a value dependent on the parameters n, m

and k). Then, W (n − 1) is the maximum number of iterations of the while loop in line 9 of

Algorithm 1, and each of them implies at most n − 1 iterations of the for loop in line 11. In

each of these iterations, the calculation of a new label is done in O(k) time, the dominance tests

for the labels are performed in O(kW), and (2.1) is checked in O(1). Additionally, updating X,

Zi i ∈ V \{n}, takes one operation, therefore, the second phase of Algorithm 1 has complexity

of O2 = O(kn
2W 2).

Therefore, Algorithm 1 has a time complexity of O(k2n+ kn2W 2) for any type of network,

since log n≪ n and m < n2.

Example Let G3 = G3(V,A, {1, 2}) be the network depicted in Figure 2.1, and consider the

application of Algorithm 1 for finding a robust shortest path in G3.

1

10, 15

0, 10

0, 1

2
10, 20

3

20, 0

2, 11

5, 0

52, 30

4
10, 10

5

20, 21 6

20, 20

40, 42

i
c1ij(G3) , c

2
ij(G3)

j

Figure 2.1: Network G3

The plots in Figure 2.2 show the trees T 1
6 (G3) – Figure 2.2.(a) – and T 2

6 (G3) – Figure 2.2.(b).

The values attached to each tree node i represent the cost of the (i, 6)-path in that tree,

14 Algorithms for the robust shortest path problem

i = 1, . . . , 6.

1

40

2

30

3

40

4

20

5

40

6

0

i

LB1
i6(G3)

(a) under scenario 1

1

40

2

40

3

30

4

20

5

41

6

0

i

LB2
i6(G3)

(b) under scenario 2

Figure 2.2: Shortest path trees rooted at n = 6 in G3

Initially, the elements of set Q are the shortest (1, 6)-paths of G3 in scenarios 1 and 2, i.e.

p1,1(G3) = 〈1, 2, 4, 6〉, with LB1
16(G3) = 40, and p1,2(G3) = 〈1, 3, 6〉, with LB2

16(G3) = 40.

Because c1G3
(p1,2(G3)) = 52 < c2G3

(p1,1(G3)) = 55, p1,2(G3) is the path in Q with the minimum

robustness cost, 12, which allows to set initially

UB = 12 and sol = 〈1, 3, 6〉.

Figure 2.3 shows the tree of paths that is obtained when applying Algorithm 1.

1 (−40,−40)

3 (−40,−30)

2(−20,−30) 5 (−35,−30)

4 4(−10,−10) (−15,−9)

6(10, 10)

Figure 2.3: Search tree of paths for G3 produced by Algorithm 1

The method starts by selecting the label

zG3(〈1〉) = (−LB1
16(G3),−LB

2
16(G3)) = (−40,−40)

and including it in Z1. From node 1, paths 〈1, 2〉 and 〈1, 3〉 are generated, with labels (−30,−25)

and (−40,−30), respectively. However, path 〈1, 2〉 is discarded, because it leads to (1, 6)-paths

Labeling approach 15

with a robustness cost that does not improve UB, given that

max
u∈U2

{zuG3
(〈1, 2〉) + LBu

26(G3)} = 15 > UB.

Moreover,

max
u∈U2

{zuG3
(〈1, 3〉) + LBu

36(G3)} = 0 ≤ UB,

which means that the extension of 〈1, 3〉 might be optimal. Then, zG3(〈1, 3〉) = (−40,−30) is

inserted in Z3. After that, paths 〈1, 3, 1〉, 〈1, 3, 2〉, 〈1, 3, 5〉 and 〈1, 3, 6〉 are created with labels

(−40,−29), (−20,−30), (−35,−30) and (12, 0), respectively. The first of them is dominated by

label (−40,−40) in Z1, therefore, the former is eliminated together with its path. Nevertheless,

because

max
u∈U2

{zuG3
(〈1, 3, 2〉) + LBu

26(G3)} = 10 ≤ UB

and

max
u∈U2

{zuG3
(〈1, 3, 5〉) + LBu

56(G3)} = 11 ≤ UB,

paths 〈1, 3, 2〉 and 〈1, 3, 5〉 are stored in X and the associate labels, (−20,−30) and (−35,−30),

are included in Z2 and Z5, respectively. Path 〈1, 3, 6〉 is discarded, because its robustness cost

is not better than UB,

max
u∈U2

{zuG3
(〈1, 3, 6〉)} = UB.

After selecting the next path in X, 〈1, 3, 2〉, path 〈1, 3, 2, 4〉 is created, with the label (−10,−10).

Because

max
u∈U2

{zuG3
(〈1, 3, 2, 4〉) + LBu

46(G3)} = 10 ≤ UB,

this path and its label are inserted in X and Z4, respectively. Path 〈1, 3, 5〉 is the next to

be picked from X, and extended to paths 〈1, 3, 5, 3〉, 〈1, 3, 5, 4〉 and 〈1, 3, 5, 6〉, which have

labels (−33,−19), (−15,−9) and (5, 12), respectively. The first of these labels is dominated by

(−40,−30) in Z3, so it is deleted together with its path. Path 〈1, 3, 5, 6〉 and its label are not

stored either, because

max
u∈U2

{zuG3
(〈1, 3, 5, 6〉)} = UB.

The label zG3(〈1, 3, 5, 4〉) = (−15,−9) is not dominated by the label (−10,−10) in Z4, neither

is this label dominated by (−15,−9). In addition, the extensions of the path 〈1, 3, 5, 4〉 can

produce (1, 6)-paths with a robustness cost of at least

max
u∈U2

{zuG3
(〈1, 3, 5, 4〉) + LBu

46(G3)} = 11 ≤ UB.

16 Algorithms for the robust shortest path problem

Thus, 〈1, 3, 5, 4〉 is inserted in X and its label is included in Z4. The path associated with the

other label in Z4 is extended to 〈1, 3, 2, 4, 6〉, which has a label of (10, 10) and a robustness cost

of 10. Then, the following updates are performed

UB = 10 and sol = 〈1, 3, 2, 4, 6〉.

Path 〈1, 3, 5, 4〉 remains to be extended, but the only possibility is to consider 〈1, 3, 5, 4, 6〉,

which has a label of (5, 11). Its robustness cost is 11, which is not better than UB. Hence,

〈1, 3, 2, 4, 6〉 is the robust shortest path of G3.

2.3 Ranking approach

This section presents an alternative strategy to the previous for determining a simple robust

shortest path. It is based on ranking simple (1, n)-paths by non-decreasing order of cost under

a fixed scenario until a previously set cost upper-bound is reached. This technique is inspired

on the work of Dias and Clímaco [16], who considered the determination of a set of (1, n)-paths

that are not dominated in terms of cost with respect to any scenario. With this goal, they

adapted the bicriteria shortest path algorithm by Clímaco and Martins [14]. This strategy was

particularly useful when continuous models were considered, after discretizing the cost intervals

using simply their lower and upper-limits. For the robust shortest path problem with finite

multi-scenarios, some adaptations to the previous method can be made, taking into account

the new optimal values according to the number of scenarios involved. Namely, only simple

(1, n)-paths have to be ranked and the update of the cost upper-bounds according to the least

produced robustness costs can be done till an optimal path is found.

In the following, the algorithmic procedures are explained in detail. To start with, the next

result provides an upper-bound on the robust shortest path cost under particular scenarios.

Proposition 2.7. Let q ∈ P1n(G). If p is a robust shortest path of G, then

csuG (p) ≤ csuG (q) , for any u ∈ UG(q).

Proof. Let q ∈ P1n(G), u be any element of UG(q), and p be a robust shortest path of G. By

definition of UG(q) and of the robustness cost of a (1, n)-path,

RCG(q) = RDsu
G (q).

By contradiction, assume that p satisfies csuG (p) > csuG (q). Then, by definition of robust deviation

and of robustness cost of a (1, n)-path, one deduces that

RCG(p) ≥ RDsu
G (p) > RDsu

G (q) = RCG(q).

Consequently, p cannot be a robust shortest path of G, which contradicts the assumption.

Ranking approach 17

Proposition 2.7 allows to establish the scenario under which simple (1, n)-paths are ranked

and the first associate cost upper-bound. In fact, once a (1, n)-path q is set as candidate for

robust shortest path, a better candidate can be found by ranking (1, n)-paths from p1,sr(G)

to q, with r ∈ UG(q). Under this condition, RDsr
G (q) = RCG(q), and, consequently, csrG (q) =

LBsr
1n(G) + RCG(q) is set as the first cost upper-bound of the ranking. For an imposed cost

upper-bound associated with any robust shortest path candidate q, the search for an optimal

solution must consider only the paths of the ranking with a cost under scenario sr smaller than

csrG (q). In fact, the paths with that cost will have a robustness cost of at least RCG(q) and the

goal of the algorithm is to find only one optimal solution. Whenever a path pl,sr(G), l ≥ 1,

is found along the ranking, satisfying RCG(p
l,sr(G)) < RCG(q), the cost upper-bound can be

improved. The next result shows this and that it is also possible to detect an optimal solution

when r ∈ UG(p
l,sr(G)).

Proposition 2.8. Let q ∈ P1n(G)\{p1,sr (G)} and r ∈ Uk. Let pl,sr(G) 6= q, l ≥ 1, satisfy:

1. RCG(p
l,sr(G)) < RCG(q),

2. RCG(p
l′,sr(G)) ≥ RCG(q), ∀l

′ : 1 ≤ l′ < l.

Then, any robust shortest path of G is of the form pl̂,sr(G), for some l̂ ≥ l, and it satisfies

csrG (pl̂,sr(G)) ≤ LBsr
1n(G) +RCG(p

l,sr(G)) < LBsr
1n(G) +RCG(q). (2.3)

Moreover, if r ∈ UG(p
l,sr(G)), then pl,sr(G) is a robust shortest path as well.

Proof. Given q ∈ P1n(G)\{p1,sr (G)} and r ∈ Uk, let pl,sr(G) 6= q, l ≥ 1, be a path obtained

when ranking in scenario sr, satisfying conditions 1. and 2. Then, according to these inequali-

ties, every robust shortest path of G must be a (1, n)-path of the form pl̂,sr(G), for some l̂ ≥ l,

since otherwise, it does not have the minimum robustness cost in P1n(G). Hence,

RCG(p
l̂,sr(G)) ≤ RCG(p

l,sr(G)),

and, therefore,

RDsr
G (pl̂,sr(G)) ≤ RCG(p

l,sr(G)),

according to the definition of robustness cost. Consequently,

csrG (pl̂,sr(G)) ≤ LBsr
1n(G) +RCG(p

l,sr(G)).

and, then, from condition 1., one concludes (2.3).

18 Algorithms for the robust shortest path problem

In addition to 1. and 2., let now be assumed that r ∈ UG(p
l,sr(G)). For this case, sr is the

scenario under which the robust deviation of pl,sr(G) is maximum, which means that

RCG(p
l,sr(G)) = RDsr

G (pl,sr(G)).

Moreover, because l̂ ≥ l,

RDsr
G (pl,sr(G)) ≤ RDsr

G (pl̂,sr(G)) ≤ RCG(p
l̂,sr(G)),

where the last inequality follows from the definition of robustness cost. Consequently,

RCG(p
l,sr(G)) ≤ RCG(p

l̂,sr(G)).

Since, by assumption, pl̂,sr(G) is a robust shortest path of G, one must have

RCG(p
l,sr(G)) = RCG(p

l̂,sr(G)),

and, therefore, pl,sr(G) is a robust shortest path of G as well.

Recalling that the goal is to find a simple robust shortest path, the last result applies when

q is a simple path and only simple paths pl,s(G), l ≥ 1, are ranked for scenario sr. Under these

assumptions, for each calculated simple path pl,sr(G), two conditions are analyzed to determine

how the ranking can be shortened. The first condition is related with the improvement of

RCG(q). In fact, if RCG(p
l,sr(G)) < RCG(q), the cost upper-bound LBsr

1n(G)+RCG(q) can be

decreased to LBsr
1n(G)+RCG(p

l,sr(G)). The second condition is checked if the first is satisfied,

and it consists on the identification of the ranking scenario with one of the scenarios in which

RCG(p
l,sr(G)) occurs. This is crucial to spare computational effort, because if r ∈ UG(p

l,sr(G)),

the search can halt, given that it can be concluded that pl,sr(G) is an optimal solution.

The efficiency of the method depends on the scenario in which the minimum robustness cost

occurs versus the scenario for which the ranking is performed, and on how many paths have to

be ranked after the shortest one.

Analogously to Algorithm 1, the upper-bound for the least robustness cost is denoted by

UB and initialized with the least robustness cost for the shortest (1, n)-paths of G over all

scenarios. Another important issue concerns the choice of the scenario for the ranking. For

that, let p1,su′ (G) be a shortest (1, n)-path with robustness cost equal to the initial UB, for

some u′ ∈ {1, . . . , k}. Under these conditions, p1,su′ (G) is a first candidate optimal solution,

and, without loss of generality, the smallest r in UG(p
1,su′ (G)) will define the ranking scenario

index. That is

r = min{u ∈ {1, . . . , k} : RDsu
G (p1,su′ (G)) = RCG(p

1,su′ (G))}. (2.4)

Ranking approach 19

Consequently, csrG (p1,su′ (G)) is set as the first cost upper-bound for the ranking in scenario sr.

The structure of the algorithm for the robust shortest path problem based on ranking simple

paths is given in the following.

Global algorithmic structure The preliminary procedures for this approach are similar to

Algorithm 1 and the variables Q, UB, RCaux and sol represent the same. Another variable

stores the cost upper-bound for the ranking, Cmax. The ranking scenario sr is initialized

according to (2.4).

Several algorithms can be applied to rank simple paths in general networks, for instance [29,

30, 38, 49]. For acyclic networks, unconstrained ranking algorithms, which are generally more

efficient, can be used, like [18, 30].

The list Q allows to control if some ranked path coincides with some shortest (1, n)-path

p1,su(G), u ∈ Uk, already analyzed, thus preventing its robustness cost from being recalculated.

Whenever a ranked path pl,sr(G), l ≥ 1, has a robustness cost RCaux that is smaller than UB,

the latter must be updated with RCaux and the candidate optimal solution sol with pl,sr(G).

Moreover, in case UG(p
l,sr(G)) = r, the search halts, since pl,sr(G) is an optimal solution;

otherwise the cost upper-bound Cmax is set to LBsr
1n(G) + UB.

The pseudo-code of the method just described is presented in Algorithm 2.

Algorithm 2: Ranking approach for finding a robust shortest path of G

1 Q← ∅;
2 for u ∈ Uk do

3 Compute p1,su(G); Q← Q ∪ {p1,su(G)};
4 LBsu

1n(G)← csuG (p1,su(G));

5 UB ← min{RCG(q) : q ∈ Q};
6 sol← q such that q ∈ Q and RCG(q) = UB;

7 r ← min
{
u ∈ Uk : RDsu

G (sol) = UB
}
; Cmax← csrG (sol); l ← 2;

8 while pl,sr (G) exists do

9 Compute pl,sr (G);

10 if csrG (pl,sr (G)) ≥ Cmax then break;

11 if pl,sr (G) /∈ Q then

12 RCaux← RCG(p
l,sr (G));

13 if RCaux < UB then

14 UB ← RCaux; sol← pl,sr(G);

15 if RDsr
G (pl,sr (G)) = UB then break;

16 Cmax← LBsr
1n(G) + UB;

17 l← l + 1;

18 return sol;

20 Algorithms for the robust shortest path problem

Computational time complexity order In order to determine the worst case computa-

tional complexity of the algorithm, the upper-bounds of the involved procedures will be ana-

lyzed.

Algorithm 2 has two major steps, the first concerned with preliminary procedures for

the ranking and the second involving the ranking itself. Points 1. and 2. presented for

the complexity analysis of Algorithm 1 are still valid for the first phase of Algorithm 2.

Thus, such procedures are performed in Oa
1 = O(km + k2n) time for acyclic networks and

in Oc
1 = O(k(m + n log n) + k2n) time for the general case. According to (2.4), the choice of

the ranking scenario is done in O(k) time, which does not affect the previous bounds.

If L simple paths are ranked in scenario sr, the time is of O(m + n log n + L logL) for

acyclic networks, using Eppstein’s algorithm [18], and of O(Ln(m+n logn)) in the general case,

applying Yen’s algorithm or one of its variants [29, 38, 49]. Parameter L depends on n, m and k,

and cannot be known in advance. Because the shortest path p1,sr(G) was previously computed,

the second phase ranks the remaining L − 1 simple paths in O(n log n + L logL) for acyclic

networks and in O(Ln(m + n log n)) for general networks. In the worst case, the robustness

costs of all the ranked paths, besides p1,sr(G), have to be determined. The cost of each of those

paths in a given scenario can be computed in O(n) time, that is in O(kn) for all scenarios,

resulting in O(Lkn) time complexity for all ranked paths. Therefore, the work required for the

ranking and the related procedures can be done in Oa
2 = O(L(logL + kn) + n log n) time for

acyclic networks and in Oc
2 = O(Ln(k +m+ n log n)) time for general networks.

In conclusion, the algorithm has a time complexity of Oa
1 +Oa

2 = O(k2n+ kmax{m,Ln}+

L logL+n logn) for acyclic networks and of Oc
1+Oc

2 = O(k
2n+max{k, Ln}(m+n log n)+kLn)

for general networks.

Example Consider the application of Algorithm 2 to the network G3, depicted in Figure 2.1,

in order to find a simple robust shortest path. The initial upper-bound UB and the first

candidate for the optimal solution sol are determined as in Algorithm 1. That is,

UB = 12 and sol = p1,2(G3) = 〈1, 3, 6〉.

Since UG3(〈1, 3, 6〉) = {1}, the simple paths will be ranked in scenario 1, with a first cost

upper-bound set to

Cmax = c1G3
(〈1, 3, 6〉) = 52.

Table 2.1 summarizes the steps of Algorithm 2.

Hybrid approach 21

l pl,1(G3) c1G3
(pl,1(G3)) c2G3

(pl,1(G3)) Updates

1 〈1, 2, 4, 6〉 40 55 UB ← 12; sol ← p1,2(G3); Cmax← 52

2 〈1, 3, 5, 6〉 45 52 RCaux← 12

3 〈1, 3, 5, 4, 6〉 45 51 UB = RCaux← 11 < 12; sol ← p3,1(G3);
RD1

G3
(p3,1(G3)) 6= 11; Cmax← 51

4 〈1, 3, 2, 4, 6〉 50 50 UB = RCaux← 10 < 11; sol ← p4,1(G3);
RD1

G3
(p4,1(G3)) = 10; Stop

Table 2.1: Simulation of Algorithm 2 for G3

The computation of the second shortest (1, 6)-path in scenario 1, p2,1(G3) = 〈1, 3, 5, 6〉,

with a robustness cost of 12, does not improve UB, which demands the calculation of path

p3,1(G3) = 〈1, 3, 5, 4, 6〉. This new path has a robustness cost smaller than the previous, 11,

which allows to update UB, the potential optimal solution sol and the cost upper-bound Cmax

with

UB = 11 ; sol = p3,1(G3) and Cmax = c1G3
(p3,1(G3)) = 51.

Since the maximum robust deviation of p3,1(G3) does not occur in scenario 1, the next path in

the ranking must be obtained. The robustness cost, 10, of such path, p4,1(G3) = 〈1, 3, 2, 4, 6〉,

is the least obtained so far, updating

UB = 10,

and, moreover, it occurs under scenario 1. Consequently, the algorithm halts, returning

sol = p4,1(G3) = 〈1, 3, 2, 4, 6〉

as the optimal solution.

2.4 Hybrid approach

The method presented in this section results from the combination of Algorithm 2 and some

pruning techniques used in Algorithm 1. In order to apply these pruning rules in the broadest

possible way, a specific ranking algorithm will be used, based on the deviation algorithm MPS,

introduced by Martins, Pascoal and Santos [30]. The idea is to skip some useless paths of

the ranking for a set cost upper-bound in order to determine a robust shortest path in fewer

iterations than with Algorithm 2. For completeness, first, the MPS method is very briefly

reviewed. After that, the deviation algorithm used here is described and the rules applied to

discard useless paths are presented. Unless otherwise stated, it is assumed that the ranking is

done with respect to a given scenario sr, r ∈ Uk.

Let p ∈ P1n(G), i ∈ V (p), and p1i denote the (1, i)-sub-path of p. The idea behind deviation

algorithms for ranking paths, or simple paths, is to generate l-th shortest (1, n)-path candidates,

22 Algorithms for the robust shortest path problem

l > 1, as paths that coincide with p along p1i and that deviate from p exactly at node i. Because

the aim of such methods is to rank (1, n)-paths by order of cost, p1i is extended with (i, j) ∈ A

and the shortest (j, n)-path for scenario sr, according to Figure 2.4.(a). Hence, the generated

paths have the form

qp,sri,j = p1i ⋄ 〈i, j〉 ⋄ p
1,sr
jn (G) , (i, j) ∈ A. (2.5)

In this case, p is called the father of qp,sri,j . Additionally, i and (i, j) are denominated the deviation

node and the deviation arc of qp,sri,j , respectively, and this path is said to be a deviation of p.

When i = 1, p1i reduces to the initial node, 1. By convenience, it is considered that the father

of p1,sr(G) is not defined and that 1 is its deviation node.

1

i

n

p

j

n

qp,sri,j

(a) Generation of a path

1

i

j

n

p

j1

n

qp,sri,j1

jli

n

qp,sri,jli

(b) Ranking deviation paths

Figure 2.4: Deviation method

Ranking paths in a certain scenario can be done either using the costs or the reduced costs.

Thus, in order to decrease the number of performed operations in the MPS algorithm, the arc

costs are replaced by reduced costs to rank the paths, as explained next. The reduced cost

c̄srij (G) of an arc (i, j) ∈ A in scenario sr is defined by

c̄srij (G) = LBsr
jn(G)− LBsr

in(G) + csrij (G).

The reduced cost of a path p ∈ P1n(G) in scenario sr is then given by

c̄srG (p) =
∑

(i,j)∈A(p)

c̄srij (G).

Now, because c̄srij (G) = 0 for any (i, j) ∈ T sr
n (G), then c̄srG (p1,srjn (G)) = 0, for any j ∈ V . Hence,

c̄srG (qp,sri,j) = c̄srG (p1i) + c̄srij (G) , (i, j) ∈ A,

and, therefore, the shortest path with form (2.5) with respect to scenario sr must contain the

arc with tail node i with the minimum reduced cost.

Hybrid approach 23

Let Asr
G (i) = {(i, j1), . . . , (i, jli)} represent the set of arcs of G with tail node i sorted by

non-decreasing order of the reduced costs with respect to scenario sr, that is, such that

c̄srij1(G) ≤ . . . ≤ c̄srijli
(G).

Therefore,

c̄srG (qp,sri,j1
) ≤ . . . ≤ c̄srG (qp,sri,jli

),

and, thus, the costs in scenario sr of the paths generated from a (1, n)-path p by deviation at

node i ∈ V (p) are sorted, as Figure 2.4.(b) shows, in the following way

csrG (qp,sri,j1
) ≤ . . . ≤ csrG (qp,sri,jli

). (2.6)

Assuming that p1i is a simple (1, i)-path, the deviation path qp,sri,j results from the concatenation

of three simple paths and therefore it can still contain repeated nodes. However, the choice of

node j can be made in a way that avoids the generation of paths with cycles, by comparing the

possible nodes j with the nodes in p1i. Let i ∈ V (p)\{n} and (i, j) ∈ A(p), the deviation arcs

from path p at node i are chosen from the subset of Asr
G (i) given by

Âsr
G (p1i, j) = {(i, jw) ∈ A

sr
G (i) : jw 6= j , c̄srijw(G) ≥ c̄srij (G) and p1i ⋄ 〈i, jw〉 is simple }.

The nodes considered for each path p are those from p’s deviation node to the node that precedes

n. Figure 2.5.(a). shows a scheme of the deviation paths generated by the MPS algorithm with

respect to a path with a deviation arc (i, j).

1

i

j

n

(a) MPS version

1

i

j

n

(b) Hybrid version

Figure 2.5: Deviation techniques used in the MPS and the hybrid algorithms

In the MPS algorithm, the deviation from a path p at one of its nodes, i, such that (i, j) ∈

A(p), is obtained by taking the first arc in the ordered set Âsr
G (p1i, j). In order to simplify

24 Algorithms for the robust shortest path problem

the choice of deviation arcs, the graph is stored in the sorted forward star form, that is, as

mentioned earlier, each subset Asr
G (i) is sorted according to non-decreasing order of the reduced

costs, for any i ∈ V [30]. For scenario sr, the MPS algorithm starts to generate deviations

from the shortest path p1,sr(G) at every of its nodes but n. The resulting paths, one per each

scanned node, are stored in a list and are selected, by non-decreasing order of the reduced costs,

in future iterations. Each of these paths is identified as the l-th simple shortest path in scenario

sr in case it is simple, for some l > 1. This process is repeated under the same conditions.

When scanning a path node, at most one new deviation path is generated. The purpose is to

avoid the calculation and the storage of unnecessary paths as much as possible, when ranking

paths by order of cost. Scanning only the nodes in simple sub-paths reduces the calculation of

paths containing cycles, and selecting deviation arcs that have not been scanned earlier avoids

the determination of repeated paths.

Any ranking strategy can be applied with Algorithm 2 in order to compute a robust shortest

path. The hybrid algorithm here presented uses a specific variant of the MPS algorithm to

rank paths, as explained next. With the goal of improving the chances of computing paths

with the least robustness cost in an early stage, the new method generates the highest possible

number of solution candidates when scanning a path node in the deviation process. An expected

consequence is to reduce faster the cost upper-bound and to find an optimal solution quicker

than when generating fewer candidates at a time. The deviation technique explored will be

similar to the generalization of Yen’s algorithm described in [30]. Specifically, the nodes of

a path p for scanning are those between its deviation node and node n. Deviating from one

of those nodes, i, such that (i, j) ∈ A(p), consists in generating all deviation paths of form

(2.5), with the deviation arcs chosen from set Âsr
G (p1i, j), according to its underlying order.

Figure 2.5.(b) illustrates the deviation technique with respect to a path with a deviation arc

(i, j).

Since the goal is to determine a robust shortest path that is simple, the generated paths

that result from the deviation process must avoid cycles as much as possible. Taking this into

account, the deviation process for the hybrid algorithm is performed for the first path p1,sr(G),

by scanning all its nodes but n. For the subsequent deviation paths of form (2.5), all their nodes

between their deviation node and node n or the first node which is repeated, are scanned. Every

scanned node is the tail node of an arc in T sr
n (G). This is valid both for p1,sr(G), which is a

path in that tree, as well as for the paths of the form (2.5), because they result from the

concatenation with a path in that tree. Consequently, for a given path p under deviation, any

node i ∈ V (p) that is scanned and (i, j) ∈ A(p), it holds c̄srij (G) = 0. Therefore, (i, j) is the first

arc in Asr
G (i), i.e. j = j1, and the available deviation arcs with tail node i belong to Âsr

G (p1i, j1).

Because this set is sorted, the generated deviation paths qp,sri,jw
, (i, jw) ∈ Â

sr
G (p1i, j1) are ordered

Hybrid approach 25

according with (2.6) for the costs in scenario sr.

In the following, the pruning rules used in Algorithm 1 and the stopping criterion applied

for Algorithm 2 are adapted to the hybrid algorithm according to the paths generated at the

previous deviation process. Corollary 2.9 rewrites the results in Propositions 2.6 and 2.7 for a

generic deviation path, according to the notation introduced in the current section.

Corollary 2.9. Let p ∈ P1n(G), i ∈ V (p)\{n}, and qp,sri,j = p1i ⋄〈i, j〉⋄p
1,sr
jn (G) be the deviation

path of p with deviation arc (i, j) ∈ A\A(p). Let p̃ be any robust shortest path of G containing

the sub-path p1i. Then,

1. maxu∈Uk
{csuG (p1i) + LBsu

in (G) − LBsu
1n(G)} ≤ RCG(p̃);

2. csuG (p̃) ≤ csuG (qp,sri,j), for every u ∈ UG(q
p,sr
i,j).

The first point of this corollary is a condition for a deviation path to be potentially optimal.

The second point states that the cost of a deviation path, in the scenario where its robustness

cost occurs, is an upper-bound for the correspondent cost of any robust shortest path containing

the sub-path p1i. These cost upper-bounds can be combined with the ranking method previously

described in order to obtain a robust shortest deviation path. In the following, the results of

Corollary 2.9 are applied to establish pruning rules that discard unnecessary deviation paths

that do not lead to an optimal solution in G, according with set upper-bounds. These are

denoted by UB and Cmax for the robustness cost and for the cost in scenario sr, respectively,

of the paths in P1n(G). Their initial values and the ranking scenario sr for the deviation paths

are determined as in Algorithm 2. According to the deviation process explained above for the

hybrid approach, let path p ∈ P1n(G) be analyzed. Selecting a node i ∈ V (p)\{n}, from which

the deviation is performed, one has (i, j1) ∈ A(p), with (i, j1) the first arc in Asr
G (i). For the

generated paths qp,sri,jw
, (i, jw) ∈ Â

sr
G (p1i, j1), the following rules apply:

1. By point 1. of Corollary 2.9, the sub-path p1i does not produce robust shortest deviation

paths if

max
u∈Uk

{csuG (p1i) + LBsu
in (G)− LBsu

1n(G)} > UB.

In this case, all the deviation paths qp,sri,jw
, with (i, jw) ∈ Â

sr
G (p1i, j1), can be skipped.

2. The previous rule can be refined since, by the same result, if

max
u∈Uk

{csuG (p1i) + csuijw(G) + LBsu
jwn(G)− LBsu

1n(G)} > UB,

the path p1i ⋄ 〈i, jw〉 ⋄ p1,srjwn(G), (i, jw) ∈ Â
sr
G (p1i, j1), and its subsequent deviations will

not lead to optimal paths, and thus can be skipped.

26 Algorithms for the robust shortest path problem

3. Let (i, jw′) be the first arc in Âsr
G (p1i, j1) such that

csrG (qp,sri,jw′
) > Cmax.

Then, all the deviation paths qp,sri,jw
, with (i, jw) ∈ Â

sr
G (p1i, jw′)∪{(i, jw′)}, can be discarded.

4. Let (i, jw′′) be the first arc in Âsr
G (p1i, j1) such that

RCG(q
p,sr
i,jw′′

) = RDsr
G (qp,sri,jw′′

) ≤ UB.

By point 2. of Corollary 2.9 all paths of form qp,sri,jw
, with (i, jw) ∈ Â

sr
G (p1i, jw′′), and sub-

sequent deviations have a robustness cost not smaller than the optimal value. Therefore,

they can be skipped.

The potentially optimal deviation paths are stored in a list X and the path with the least

cost in scenario sr is chosen to be analyzed in the next iteration. Throughout the algorithm,

the upper-bounds Cmax and UB are updated. A simple robust shortest path is identified when

the stopping criterion used in Algorithm 2 is satisfied.

The main steps of this method are outlined next.

Global algorithmic structure The preliminary procedures for this approach have points in

common with both Algorithms 1 and 2. A list W stores the non discarded deviation paths in

each iteration and another list X stores all such paths for all iterations. The variables RCaux,

UB, sol and Cmax have the same meaning as in Algorithm 2 and the ranking scenario sr is

determined in the same way. Additionally, the sorted forward star form of the network with

respect to the costs in scenario sr is obtained. The path being scanned is represented by variable

p. The deviation node of a new deviation path is represented by i, the arc (i, j1) corresponds

to p’s deviation arc, i.e. p = p1i ⋄ 〈i, j1〉 ⋄ p
1,sr
j1n

(G).

According to the pruning rules described previously, one deviates at a given node i in case

1. or 2. are not satisfied and one may stop deviating at i when a deviation path qp,sri,j satisfies

3. or 4., for some (i, j) ∈ Âsr
G (p1i, j1). Whenever the robustness cost, RCaux, of a deviation

path improves UB, the latter and the cost upper-bound Cmax are updated. Additionally, one

can delete all the paths q in W which exceed the ranking bounds or that would not produce

any optimal solution, i.e. that satisfy rules 2. or 3.

An iteration is complete once all the necessary nodes of path p have been scanned. Then,

if this is a simple path with robustness cost UB, it is identified as an optimal path candidate,

and sol is updated. Additionally, the paths in X that satisfy the pruning rules 2. or 3. are

removed from the list. Finally, all the paths stored in W are inserted in list X and the path to

be considered at the next iteration is the shortest in X with respect to scenario sr.

The pseudo-code of the method described above is presented in Algorithm 3.

Hybrid approach 27

Algorithm 3: Hybrid approach for finding a robust shortest path of G

1 Q← ∅;
2 for u ∈ Uk do

3 Compute T su
n (G); Q← Q ∪ {p1,su(G)};

4 for i = 1, . . . , n− 1 do LBsu
in (G)← csuG (p1,suin (G));

5 UB ← min{RCG(q) : q ∈ Q};
6 sol← q such that q ∈ Q and RCG(q) = UB;

7 r ← min
{
u ∈ Uk : RDsu

G (sol) = UB
}
;

8 Cmax← csrG (sol) ; X ← ∅ ; p← p1,sr (G);
9 Store the network in the sorted forward star form with respect to the costs for scenario sr;

10 while there exists a path p to be scanned such that RDsr
G (p) 6= UB do

11 W ← ∅;
12 for i ∈ V (p) from the head node of p’s deviation arc to the node that precedes n do

13 p1i ← (1, i)-sub-path of p;
14 if p1i is not simple then break;
15 if maxu∈Uk

{csuG (p1i) + LBsu
in (G) − LBsu

1n(G)} > UB then break;
16 j1 ← head node of p’s arc with tail node i;

17 Âsr
G (p1i, j1)← {(i, jw) ∈ A

sr
G (i) : w > 1 and p1i ⋄ 〈i, jw〉 is simple};

18 for (i, j) ∈ Âsr
G (p1i, j1) do

19 if maxu∈Uk
{csuG (p1i) + csuij (G) + LBsu

jn(G)− LBsu
1n(G)} ≤ UB then

20 qp,sri,j ← p1i ⋄ 〈i, j〉 ⋄ p
1,sr
jn (G);

21 if csrG (qp,sri,j) > Cmax then break;

22 W ←W ∪ {qp,sri,j };

23 RCaux← max{csuG (p1i) + csuij (G) + LBsu
jn(G)− LBsu

1n(G) : u ∈ Uk};

24 if RCaux < UB then

25 UB ← RCaux ; Cmax← LBsr
1n(G) + UB;

26 Delete from W any path q such that csrG (q) > Cmax, or
maxu∈Uk

{csuG (q1i) + csuij (G) + LBsu
jn(G)− LBsu

1n(G)} > UB, such that (i, j) is

q’s deviation arc;

27 if RDsr
G (qp,sri,j) = UB then break;

28 if RCG(p) = UB and p is simple then sol ← p;
29 Delete from X any path q such that csrG (q) > Cmax, or

maxu∈Uk
{csuG (q1i) + csuij (G) + LBsu

jn(G) − LBsu
1n(G)} > UB, such that (i, j) is q’s deviation

arc;
30 X ← X ∪W ;
31 p← shortest path for scenario sr in X ; X ← X − {p};

32 return sol;

28 Algorithms for the robust shortest path problem

Computational time complexity order Algorithm 3 has two phases. Like for the previous

approaches, the first phase, related with the preliminary procedures, can be performed in Oa
1 =

O(km + k2n) for acyclic networks and Oc
1 = O(k(m + n log n) + k2n) for general networks.

Before the ranking starts, the arc costs are replaced by their reduced costs, O(m), and the

network is represented in the sorted forward star form, O(m log n) [30].

The second phase concerns the deviation process. Assume H paths are ranked, that is, the

while loop in line 10 is performed H times. In the worst case, scanning one path p demands

scanning all the arcs of G, trying to generate new deviations. The costs of all father sub-paths

in p to be deviated for all scenarios are obtained in O(kn) time. When deviating from each

node i ∈ V (p), the first pruning rule is tested once in O(k) time. The second rule involves

the analysis of the extension of each path p1i ⋄ 〈i, j〉, with (i, j) the deviation arc, by testing

the condition at line 19 in O(k) time. The third rule involves the calculation of csrG (qp,sri,j) and

its comparison with Cmax in O(1). The fourth rule implies the calculation of RCG(q
p,sr
i,j),

O(k), and its comparison with UB, in O(1). Hence, the total amount of work for each path is

O(km+ kn) = O(km), and the second phase has a complexity of O(Hkm).

In these circumstances, the total complexity is Oa
1 + Oa

2 = O(k2n + kmH + m log n) for

acyclic networks, and Oc
1 +Oc

2 = O(k
2n+ kmax{mH,n log n}+m log n) for general networks.

Like parameter L used in Algorithm 2, H depends on each problem’s dimension and cannot be

known in advance.

Example Like for Algorithms 1 and 2, network G3 of Figure 2.1 is considered for illustrating

the application of Algorithm 3. Let be recalled that Figure 2.2 represents the trees T u
6 (G3),

u ∈ U2. The hybrid method has the same initialization procedure of Algorithm 2 before ranking

the paths. Analogously,

UB = 12 ; sol = 〈1, 3, 6〉 and Cmax = 52

are set and scenario 1 is chosen to rank the deviation paths.

Figure 2.6 shows the tree of the paths obtained by Algorithm 3. The first path under

deviation is

p = p1,1(G3) = 〈1, 2, 4, 6〉,

by scanning all its nodes but 6. Taking into account that

Â1
G3

(〈1〉, 2) = {(1, 3)} ; Â1
G3

(〈1, 2〉, 4) = ∅ and Â1
G3

(〈1, 2, 4〉, 6) = ∅,

the only path outputted on the first iteration of the method is qp,11,3 = 〈1, 3, 1, 2, 4, 6〉, with

c1G3
(qp,11,3) = 40 < Cmax and RCG3(q

p,1
1,3) = 26 ≥ UB.

Hybrid approach 29

1 (0, 0)

2(10, 15) 3 (0, 10)

4(20, 35)

6(40, 55)

1(0, 11)

2(10, 26)

4(20, 46)

6(40, 66)

2(20, 10)

4(30, 30)

6(50, 50)

5 (5, 10)

6 (45, 52)

Figure 2.6: Tree of the deviation paths produced by Algorithm 3 for G3

Hence, in the following iteration, the path

p = qp,11,3 = 〈1, 3, 1, 2, 4, 6〉

is considered. Because p contains a cycle, only node 3 is scanned. In fact, potentially optimal

paths can be produced with such deviation, given that

max
u∈U2

{
cuG(〈1, 3〉) + LBu

36(G3)− LBu
16(G3)

}
= 0 ≤ UB.

The set of possible deviation arcs is given by

Â1
G3

(〈1, 3〉, 1) = {(3, 5), (3, 2), (3, 6)}.

When using deviation arc (3, 5), the simple path qp,13,5 = 〈1, 3, 5, 6〉 is computed, with

c1G3
(qp,13,5) = 45 < Cmax and RCG3(q

p,1
3,5) = 12,

where the last equality does not improve UB. Path 〈1, 3, 5, 6〉 is stored in list W and the

deviation path qp,13,2 = 〈1, 3, 2, 4, 6〉 is obtained. This path satisfies

c1G3
(qp,13,2) = 50 < Cmax and RCG3(q

p,1
3,2) = 10 < UB,

so it is a new candidate for optimality, which is stored in W . Then, the variables UB and

Cmax are updated to

UB = 10 and Cmax = 50.

Moreover, since

RD1
G3

(qp,13,2) = UB,

30 Algorithms for the robust shortest path problem

future deviations from path p at node 3 do not improve the best robustness cost obtained so

far, and, therefore, the deviation arc (3, 6) is not considered. In spite of

c1G3
(〈1, 3, 5, 6〉) = 45 < Cmax,

path 〈1, 3, 5, 6〉 satisfies

max
u∈U2

{cuG3
(〈1, 3〉) + cu35(G3) + LBu

56(G3)− LBu
16(G3)} = 11 > UB.

Thus, this path will not produce optimal deviation paths and it is removed from W . Then, the

only path left in W , 〈1, 3, 2, 4, 6〉, is transferred to the empty list X. Because

Â1
G3

(〈1, 3, 2〉, 4) = Â1
G3

(〈1, 3, 2, 4〉, 6) = ∅,

no new deviation arcs exist. Therefore, 〈1, 3, 2, 4, 6〉 updates sol, because it is simple and its

robustness cost is UB, being returned as the robust shortest path of G3.

It is worth noting that, compared with the simple paths ranked by Algorithm 2, the com-

putation of 〈1, 3, 5, 4, 6〉 is skipped in Algorithm 3.

2.5 Computational experiments

This section is devoted to the empirical evaluation of the methods presented in the preceding

sections and to their comparison with the exact algorithm by Yu and Yang [50]. This latter

approach is based on dynamic programming. It applies a recursive relation to find the optimal

value of the problem, starting with a cost upper-bound for each scenario, given by the sum of

the costs of the n− 1 arcs with the largest costs. This makes the method particularly sensitive

to the range of cost values and to the variation of the number of scenarios.

From now on, Algorithms 1, 2 and 3 will be represented by LA, RA and HA, respectively,

whereas YA will represent Yu and Yang’s algorithm. In order to evaluate and to compare

the performances of these algorithms, they were implemented in Matlab 7.12. and ran on a

computer equipped with an Intel Pentium Dual CPU T2310 1.46GHz processor and 2GB of

RAM. The implementations of LA, RA and HA use Dijkstra’s algorithm [1] to compute the

trees T su
n (G), u ∈ Uk. In LA, X is managed as a FIFO list. The MPS algorithm [30] is applied

to rank the simple paths in RA.

The benchmarks used in the experiments correspond to randomly generated directed net-

works. For each network dimension, 10 problems were generated and solved by each of the

aforementioned algorithms. The average and the standard deviation of the total CPU times

(registered in seconds) are denoted by Avet and Stdt, respectively.

Computational experiments 31

A first set of tests intended to compare the new methods with YA. These tests ran for

random networks with n ∈ {5, 10}, d ∈ {2, 3, n− 1}, k ∈ {2, 3} and costs generated in U(0, 20).

The obtained total CPU times are summarized on Table 2.2.

LA RA HA YA

n d k Avet Stdt Avet Stdt Avet Stdt Avet Stdt

5

2
2 0.008 0.002 0.008 0.002 0.007 0.002 14.101 2.658

3 0.010 0.001 0.023 0.024 0.009 0.001 954.120 166.942

3
2 0.010 0.004 0.009 0.002 0.009 0.005 19.490 1.526

3 0.020 0.015 0.040 0.035 0.013 0.008 1673.298 230.015

4
2 0.009 0.002 0.010 0.001 0.010 0.006 24.181 2.737

3 0.017 0.022 0.026 0.026 0.017 0.015 2196.441 342.817

10

2 2 0.016 0.006 0.031 0.024 0.018 0.011 363.342 60.763

3 2 0.014 0.001 0.017 0.007 0.013 0.002 513.922 57.470

9 2 0.021 0.007 0.039 0.025 0.019 0.016 1305.751 76.355

Table 2.2: Total CPU times (in seconds)

For these cases, YA has a poor performance when compared with the other three methods,

reporting results 104 or 105 times bigger than the corresponding ones for LA, RA and HA,

which had all a similar behavior. Such difference increases with the number of scenarios. For

k ≥ 4, the tests for YA ran too slowly, therefore the results are omitted.

Because of the previous results with YA, the second set of tests only comprised the codes

LA, RA and HA. The considered instances were bigger than the previous set and the costs

were generated in U(0, 100). For k ∈ {2, 3, 4, 5, 10, 50, 100, 500, 1000, 5000}, the computational

experiments were performed over complete networks, with n ∈ {5, 10, 15}, and over random

networks, with n ∈ {250, 500, 750} and d ∈ {5, 10, 15}. For these tests, the total CPU time is

split into the time needed to compute the trees T su
n (G), u ∈ Uk, and the time required for the

remaining procedures. The averages of the partial times are denoted by Aveti , i = 1, 2, and

they are reported in Table 2.3 for complete networks and in Table 2.4 for random networks.

Some of the values are omitted, whenever the codes were too slow. In terms of the total CPU

time, Avet = Avet1 +Avet2 .

Let Aver and Aveh represent the average number of simple (1, n)-paths ranked in RA and

HA, respectively, and Stdr and Stdh be the corresponding standard deviations. Such results

are presented in Table 2.5, for complete networks, and in Table 2.6, for random networks.

The averages of the total number of computed simple paths are then Avepr = Aver + k and

Aveph = Aveh + k. Analogously, the associate standard deviations are Stdpr = Stdr and

Stdph = Stdh.

32 Algorithms for the robust shortest path problem

LA RA HA

n k Ave
(∗)
t1

Avet2 Avet2 Avet2

5

2 0.007 0.003 0.005 0.002

3 0.010 0.003 0.005 0.002

4 0.018 0.003 0.007 0.002

5 0.019 0.004 0.005 0.004

10 0.028 0.005 0.006 0.004

50 0.136 0.043 0.031 0.046

100 0.229 0.148 0.918 0.158

500 1.043 3.413 2.712 3.508

1000 1.994 13.345 10.844 13.808

5000 8.990 315.105 598.546 325.259

10

2 0.020 0.008 0.027 0.012

3 0.022 0.006 0.072 0.004

4 0.030 0.019 0.124 0.010

5 0.038 0.008 0.718 0.006

10 0.068 0.014 0.272 0.009

50 0.264 0.056 0.696 0.064

100 0.440 0.195 1.213 0.214

500 2.174 4.240 5.456 4.384

1000 4.167 16.965 17.959 17.441

5000 21.399 421.006 909.843 427.992

15

2 0.019 0.030 0.855 0.011

3 0.029 0.024 21.920 0.013

4 0.041 0.021 83.914 0.011

5 0.057 0.014 366.546 0.008

10 0.084 0.014 175.924 0.015

50 0.376 0.070 616.213 0.089

100 0.663 0.234 1141.484 0.270

500 2.981 5.003 1050.504 5.280

1000 7.038 19.713 1136.937 20.486

5000 31.923 524.525 3483.262 541.136

(∗) : Avet1(LA) = Avet1(RA) = Avet1(HA)

Table 2.3: Partial CPU times for complete networks (in seconds)

C
o
m

p
u
ta

tio
n
a
l
e
x
p
e
r
im

e
n
ts

3
3

LA RA HA LA RA HA LA RA HA

n = 250 n = 500 n = 750

d k Ave
(∗)
t1

Avet2 Avet2 Avet2 Ave
(∗)
t1

Avet2 Avet2 Avet2 Ave
(∗)
t1

Avet2 Avet2 Avet2

5

2 0.243 0.172 0.061 0.055 0.486 0.368 0.152 0.148 0.967 1.582 0.380 0.329

3 0.374 0.274 0.117 0.057 0.718 0.322 0.401 0.166 1.393 1.051 0.537 0.348

4 0.487 0.253 0.407 0.069 1.022 0.506 0.767 0.180 2.352 1.117 1.014 0.430

5 0.580 0.205 1.085 0.077 1.316 0.433 1.179 0.208 2.492 1.346 2.015 0.443

10 1.152 0.290 5.024 0.117 2.276 0.340 14.091 0.268 4.914 1.402 32.518 0.634

50 6.239 0.473 166.560 0.528 11.990 0.876 393.408 1.013 23.491 1.562 588.175 1.629

100 11.052 0.899 243.745 1.074 23.050 1.607 508.091 2.228 50.008 2.768 1695.842 3.727

500 51.618 7.662 1332.511 9.734 108.264 10.247 5177.183 13.169 233.830 14.968 6256.625 19.879

1000 102.774 24.211 1078.863 28.347 301.306 33.695 3999.946 39.847 397.955 40.415 7532.278 51.006

5000 514.241 522.163 3480.725 568.822 1190.716 631.577 10060.447 719.241 1873.489 627.860 − 712.522

10

2 0.268 0.479 0.259 0.057 0.599 0.764 0.428 0.170 0.822 1.740 0.597 0.321

3 0.371 0.350 17.300 0.074 0.855 0.720 31.129 0.198 1.491 2.357 46.015 0.390

4 0.489 0.376 204.664 0.084 1.084 0.673 491.860 0.236 1.978 2.496 312.169 0.433

5 0.587 0.408 531.604 0.089 1.449 1.063 3625.298 0.282 2.434 3.189 3087.081 0.526

10 1.242 0.147 7694.775 0.146 2.898 0.639 − 0.381 4.239 2.195 − 0.659

50 5.883 0.554 − 0.712 13.586 1.288 − 1.523 21.585 3.553 − 3.617

100 11.238 1.060 − 1.633 28.917 2.718 − 3.778 41.405 4.681 − 6.179

500 56.614 8.883 − 11.199 130.719 13.519 − 18.441 215.853 17.708 − 26.255

1000 120.067 28.493 − 33.852 316.801 38.556 − 49.188 462.043 52.427 − 73.979

5000 577.927 655.516 − 795.650 1346.546 707.249 − 743.674 2041.511 824.071 − 977.557

15

2 0.328 0.453 3.284 0.074 0.586 1.461 2.769 0.175 0.900 2.665 12.107 0.351

3 0.407 0.591 598.616 0.090 0.909 2.028 2209.236 0.245 1.422 3.477 2195.500 0.385

4 0.547 0.639 11256.692 0.112 1.151 1.842 − 0.343 1.740 3.385 − 0.461

5 0.668 0.420 − 0.111 1.447 1.223 − 0.337 2.140 3.990 − 0.502

10 1.273 0.548 − 0.190 2.839 1.572 − 0.581 4.447 3.356 − 0.752

50 6.066 0.710 − 0.673 15.486 1.073 − 1.458 26.819 1.838 − 2.150

100 13.021 1.000 − 1.381 36.128 2.308 − 2.981 45.036 2.670 − 4.088

500 69.681 10.187 − 12.077 165.870 14.892 − 20.634 264.081 16.705 − 23.343

1000 135.152 29.934 − 35.643 332.505 42.902 − 53.244 497.384 44.877 − 65.762

5000 599.005 698.254 − 727.915 1325.300 746.045 − 783.147 2226.412 1093.321 − 1343.007
(∗) : Avet1(LA) = Avet1(RA) = Avet1(HA)

Table 2.4: Partial CPU times for random networks (in seconds)

34 Algorithms for the robust shortest path problem

n = 5 n = 10 n = 15
RA HA RA HA RA HA

k Aver Stdr Aveh Stdh Aver Stdr Aveh Stdh Aver Stdr Aveh Stdh
2 1 1 1 1 8 9 2 2 63 74 3 3

3 2 2 1 1 17 19 1 1 220 322 3 2

4 3 2 1 0 25 26 2 2 407 566 4 3

5 2 2 1 0 40 62 2 1 786 1209 2 1

10 3 2 1 0 40 33 1 0 757 1072 2 2

50 3 2 1 0 64 35 1 0 1436 1352 1 0

100 4 2 1 0 86 53 1 0 1923 1906 1 0

500 4 2 1 0 67 39 1 0 1400 1112 1 0

1000 4 2 1 0 81 47 1 0 1531 1151 1 0

5000 5 3 1 0 85 72 1 0 2086 1770 1 0

Table 2.5: Number of ranked simple paths for complete networks

According to Tables 2.3 and 2.4, computing the trees T su
n (G), u ∈ Uk, was the most de-

manding step in terms of time for codes LA and HA in most of the instances, except on some

cases with many scenarios, like complete networks (k ≥ 500) or random networks with n = 250

and k = 5000. Nevertheless, LA presented other exceptions for random networks with few

scenarios (k ≤ 5).

In general, most of RA’s time was invested on the second step, namely when the number of

ranked paths or the number of path deviation costs demanded a major computational effort.

The latter cases are reflected in the results obtained for all types of networks when k ≥ 100 and

the former stand for the denser networks, like complete networks with n ∈ {10, 15} and random

networks with d = 15. In fact, the higher the density of a network, the more arcs emerge

from each node, which increases the chances of computing a large number of simple paths till a

solution is obtained, as Tables 2.5 and 2.6 show. Moreover, since Aver was always greater than

Aveh, Avet2(RA) was also always greater than Avet2(HA), even for the cases where the second

phase had a minor role in the performance of RA. This was the case for complete networks

with n = 5 and k < 100, where in average up to 3 simple paths were ranked, and for random

networks with small densities and few scenarios, as d = 5 and k ∈ {2, 3, 4} or d = 10 and k = 2.

Tables 2.7, 2.8 and 2.9 show the averages and the standard deviations of the total CPU

times for complete and for random networks, respectively. Like before, large CPU times are

omitted.

Computational experiments 35

n = 250 n = 500 n = 750
RA HA RA HA RA HA

d k Aver Stdr Aveh Stdh Aver Stdr Aveh Stdh Aver Stdr Aveh Stdh

5

2 18 15 2 2 23 17 1 0 26 22 2 1

3 42 23 2 1 75 63 3 3 108 58 4 3

4 88 54 3 3 144 82 2 2 178 105 3 1

5 162 81 1 1 192 116 3 3 265 151 3 2

10 330 193 3 2 565 379 4 2 724 534 4 4

50 1193 1105 6 10 2296 1805 16 28 3050 2329 11 27

100 1449 1526 8 14 2581 2363 25 32 3843 4212 31 38

500 2517 2786 22 38 6483 6334 36 62 7580 8616 34 47

1000 2710 2914 34 49 5629 5706 11 29 7745 7919 107 123

5000 2379 2799 54 59 6822 7334 63 90 − − 34 53

10

2 41 39 4 2 46 56 4 4 48 40 7 10

3 282 246 7 10 307 336 10 7 375 439 10 8

4 859 890 6 4 1354 989 10 11 1532 728 13 19

5 1227 1376 5 5 2431 2842 15 13 4149 2587 18 19

10 5263 5230 6 6 − − 9 10 − − 35 43

50 − − 14 40 − − 35 108 − − 134 221

100 − − 23 70 − − 74 154 − − 154 249

500 − − 24 74 − − 44 136 − − 39 120

1000 − − 23 71 − − 28 86 − − 120 253

5000 − − 41 84 − − 1 0 − − 106 236

15

2 143 139 4 5 106 144 6 3 180 224 10 12

3 1254 1125 9 7 1725 2288 15 12 2085 2669 16 9

4 5478 5008 13 10 − − 36 26 − − 23 23

5 − − 11 11 − − 26 19 − − 28 17

10 − − 12 13 − − 47 76 − − 41 22

50 − − 1 0 − − 1 0 − − 1 0

100 − − 1 0 − − 1 0 − − 1 0

500 − − 1 0 − − 1 0 − − 1 0

1000 − − 1 0 − − 1 0 − − 1 0

5000 − − 1 0 − − 1 0 − − 1 0

Table 2.6: Number of ranked simple paths for random networks

36 Algorithms for the robust shortest path problem

LA RA HA

n k Avet Stdt Avet Stdt Avet Stdt

5

2 0.010 0.002 0.012 0.003 0.009 0.001

3 0.013 0.001 0.015 0.004 0.012 0.002

4 0.021 0.002 0.025 0.019 0.020 0.002

5 0.023 0.002 0.024 0.009 0.023 0.003

10 0.033 0.005 0.034 0.007 0.032 0.006

50 0.179 0.008 0.167 0.028 0.182 0.011

100 0.377 0.011 1.147 0.018 0.387 0.011

500 4.456 0.038 3.755 0.700 4.551 0.024

1000 15.339 0.105 12.838 0.735 15.802 0.122

5000 324.095 2.694 607.536 10.618 334.249 2.183

10

2 0.028 0.008 0.047 0.047 0.032 0.030

3 0.028 0.009 0.094 0.125 0.026 0.005

4 0.049 0.016 0.154 0.189 0.040 0.018

5 0.046 0.006 0.756 2.861 0.044 0.005

10 0.082 0.022 0.340 0.420 0.077 0.009

50 0.320 0.010 0.960 0.683 0.328 0.009

100 0.635 0.006 1.653 1.508 0.654 0.022

500 6.414 0.118 7.630 2.986 6.558 0.079

1000 21.132 0.767 22.126 2.183 21.608 0.635

5000 442.405 11.154 931.242 52.261 449.391 8.616

15

2 0.049 0.019 0.874 1.459 0.030 0.008

3 0.053 0.018 21.949 75.275 0.042 0.017

4 0.062 0.024 83.955 306.722 0.052 0.010

5 0.071 0.021 366.603 895.563 0.065 0.007

10 0.098 0.010 176.008 621.275 0.099 0.014

50 0.446 0.024 616.589 1127.390 0.465 0.016

100 0.897 0.019 1142.147 2323.143 0.933 0.017

500 7.984 0.106 1053.485 2737.683 8.261 0.092

1000 26.751 0.346 1143.975 2478.878 27.524 0.247

5000 556.448 21.708 3515.185 3472.625 573.059 27.474

Table 2.7: Total CPU times for complete networks (in seconds)

Computational experiments 37

LA RA HA

n d k Avet Stdt Avet Stdt Avet Stdt

250

5

2 0.415 0.051 0.304 0.041 0.298 0.031

3 0.648 0.208 0.491 0.061 0.431 0.106

4 0.740 0.083 0.894 0.669 0.556 0.023

5 0.785 0.078 1.665 1.345 0.657 0.018

10 1.442 0.179 6.176 6.459 1.269 0.082

50 6.712 0.558 172.799 305.654 6.767 0.974

100 11.951 0.572 254.797 325.766 12.126 0.703

500 59.280 2.572 1384.129 2837.640 61.352 2.140

1000 126.985 4.327 1181.637 1818.132 131.121 6.917

5000 1036.404 54.742 3994.966 3619.199 1083.063 59.052

10

2 0.747 0.335 0.527 0.606 0.325 0.036

3 0.721 0.212 17.671 60.649 0.445 0.030

4 0.865 0.292 205.153 407.848 0.573 0.016

5 0.995 0.317 532.191 1902.340 0.676 0.023

10 1.389 0.061 7696.017 15783.047 1.388 0.023

50 6.437 0.380 − − 6.595 0.271

100 12.298 0.579 − − 12.871 1.190

500 65.497 3.159 − − 67.813 3.877

1000 148.560 11.672 − − 153.919 9.636

5000 1233.443 114.045 − − 1373.577 318.609

15

2 0.781 0.416 3.612 5.398 0.402 0.020

3 0.998 0.375 599.023 1526.844 0.497 0.036

4 1.186 0.491 11257.239 18661.837 0.659 0.061

5 1.088 0.387 − − 0.779 0.037

10 1.821 0.553 − − 1.463 0.046

50 6.776 0.828 − − 6.739 0.310

100 14.021 1.224 − − 14.402 2.065

500 79.868 7.349 − − 81.758 5.028

1000 165.086 11.056 − − 170.795 10.231

5000 1297.259 71.989 − − 1326.920 78.640

500

5

2 0.854 0.209 0.638 0.073 0.634 0.010

3 1.040 0.085 1.119 0.616 0.884 0.177

4 1.528 0.439 1.789 0.592 1.202 0.093

5 1.749 0.318 2.495 0.923 1.524 0.195

10 2.616 0.144 16.367 26.046 2.544 0.104

50 12.866 1.275 405.398 494.703 13.003 0.470

100 24.657 1.313 531.141 689.872 25.278 2.107

500 118.511 3.921 5285.447 7634.751 121.433 6.216

1000 335.001 48.053 4301.252 5678.683 341.153 30.030

5000 1822.293 77.472 11251.163 13902.215 1909.957 141.642

10

2 1.363 0.566 1.027 0.729 0.769 0.061

3 1.575 0.675 31.984 124.389 1.053 0.045

4 1.757 0.696 492.944 996.288 1.320 0.065

5 2.512 1.149 3626.747 14133.284 1.731 0.099

10 3.537 0.750 − − 3.279 0.167

50 14.874 1.741 − − 15.109 1.682

100 31.635 4.991 − − 32.695 4.511

500 144.238 19.587 − − 149.160 15.950

1000 355.357 19.211 − − 365.989 28.429

5000 2053.795 208.749 − − 2090.220 166.270

15

2 2.047 0.916 3.355 7.932 0.761 0.064

3 2.937 1.057 2210.145 8355.208 1.154 0.210

4 2.993 1.492 − − 1.494 0.179

5 2.670 0.713 − − 1.784 0.075

10 4.411 2.060 − − 3.420 0.745

50 16.559 1.803 − − 16.944 1.632

100 38.436 6.725 − − 39.109 4.862

500 180.762 17.927 − − 186.504 13.274

1000 375.407 32.030 − − 385.749 33.258

5000 2071.345 105.449 − − 2108.447 88.095

Table 2.8: Total CPU times for random networks with n ∈ {250, 500} (in seconds)

38 Algorithms for the robust shortest path problem

LA RA HA

n d k Avet Stdt Avet Stdt Avet Stdt

750

5

2 2.549 0.760 1.347 0.099 1.296 0.041

3 2.444 0.343 1.930 0.231 1.741 0.034

4 3.469 1.897 3.366 0.774 2.782 0.239

5 3.838 0.829 4.507 1.615 2.935 0.212

10 6.316 0.934 37.432 69.502 5.548 0.709

50 25.053 2.515 611.666 655.160 25.120 2.481

100 52.776 6.762 1745.850 3676.003 53.735 4.564

500 248.798 15.556 6490.455 10420.115 253.709 20.977

1000 438.370 42.543 7930.233 10162.621 448.961 31.549

5000 2501.349 144.605 − − 2586.011 220.335

10

2 2.562 1.261 1.419 0.546 1.143 0.061

3 3.848 1.298 47.506 174.138 1.881 0.356

4 4.474 1.578 314.147 389.063 2.411 0.240

5 5.623 2.014 3089.515 4193.368 2.960 0.410

10 6.434 1.929 − − 4.898 0.310

50 25.138 3.724 − − 25.202 3.183

100 46.086 4.178 − − 47.584 5.489

500 233.561 26.755 − − 242.108 21.534

1000 514.470 40.275 − − 536.022 56.891

5000 2865.582 240.516 − − 3019.068 430.135

15

2 3.565 2.051 15.672 41.596 1.251 0.062

3 4.899 2.633 2196.922 5206.206 1.807 0.070

4 5.125 2.690 − − 2.201 0.198

5 6.130 2.631 − − 2.642 0.266

10 7.803 3.498 − − 5.199 0.325

50 28.657 3.286 − − 28.969 4.180

100 47.706 3.610 − − 49.124 3.000

500 280.786 7.637 − − 287.424 21.962

1000 542.261 42.913 − − 563.146 72.547

5000 3319.733 623.843 − − 3569.419 797.726

Table 2.9: Total CPU times for random networks with n = 750 (in seconds)

Computational experiments 39

Code HA outperformed RA for all cases in terms of time, as shown in Tables 2.7, 2.8 and

2.9. Nevertheless, HA was not always the most efficient method, given that LA had the best

performance in problems with k ≥ 100. The standard deviations of the total CPU times provide

information about the variability on the results towards the averages. In this sense, LA and HA

were the most stable codes, with standard deviations generally smaller than the corresponding

averages. Instead, RA had the most irregular performance due to the high values of Stdt(RA),

usually greater than Avet(RA). This is supported by the high variability of the number of

paths ranked by RA on Tables 2.5 and 2.6. In contrast, the number of paths ranked by HA

did not vary much and the averages Aveh are quite small, especially when k ≥ 50 for denser

networks, where only one iteration was needed to obtain the optimal solution.

2 5 10 50

10
−2

10
−1

k

lo
g 10

(A
ve

t)

n=5

50 1000 5000

10
−1

10
1

10
3

k

n=5

2 5 10 50

10
−1

10
0

k

lo
g 10

(A
ve

t)

n=10

50 1000 5000
10

−1

10
1

10
3

k

n=10

2 5 10 50
10

−2

10
0

10
2

k

lo
g 10

(A
ve

t)

n=15

50 1000 5000
10

−1

10
1

10
4

k

n=15

LA RA HA

Figure 2.7: Total CPU times for complete networks

The behavior of the average CPU times can be evaluated by varying a single parameter at a

time. When n and d are fixed, Tables 2.3 and 2.4 show that the average time for computing the

trees T su
n (G), u ∈ Uk, grows when k increases, which is explained by the increase of the number

of shortest paths for the scenarios of G ending at node n. In what concerns the second phase of

the algorithms, Avet2(LA) and Avet2(HA) showed the smoothest growths. Instead, Avet2(RA)

40 Algorithms for the robust shortest path problem

increased more irregularly with k, due to the unstable variation of Aver in Tables 2.5 and 2.6.

As computing the trees T su
n (G), u ∈ Uk, is the common initial task for all algorithms, their

behavior on the second phase mimics the evolution of their average total CPU times. The plots

in Figures 2.7 and 2.8 show these growths in logarithmic scale for the three codes, when k varies

on complete networks with n fixed and on random networks with n and d fixed, respectively.

The chosen density is 5 because these problems were solved till the end for all sizes, except

when k = 5000 and n = 750 for RA.

2 5 10 50

10
0

10
1

10
2

n=250, d=5

k

lo
g 10

(A
ve

t)

50 1000 5000

10
1

10
2

10
3

n=250, d=5

k

2 5 10 50
10

0

10
1

10
2

n=500, d=5

k

lo
g 10

(A
ve

t)

50 1000 5000
10

1

10
2

10
3

10
4

n=500, d=5

k

2 5 10 50
10

0

10
1

10
2

10
3

n=750, d=5

k

lo
g 10

(A
ve

t)

50 1000 5000

10
2

10
3

10
4

n=750, d=5

k
LA RA HA

Figure 2.8: Total CPU times for random networks with d = 5

The averages Avet(LA) and Avet(HA) grew similarly with the increase of k but slower than

Avet(RA). The increase of the latter is steeper than for LA and HA and it is quite irregular

for small values of k, due to the unsteady behavior of the ranking. Moreover, all averages

increase slower when k > 1000, since all the performances become more dependent on the cost

calculations.

The obtained results may also be analyzed from the perspective of fixing the number of

scenarios. Based on Figures 2.7 and 2.8, for different values of k, Avet(LA) and Avet(HA)

become more distant from Avet(RA) when n increases. This results from the growth of the

Computational experiments 41

number of paths in G with n, which may also affect their number of arcs and, consequently, the

variety of paths, making the ranking heavier.

For random networks with fixed n and k, when d increases the number of paths and the

average number of arcs emerging from each node increases too. This leads to a global growth

on the total CPU times, specially for RA, as indicated by Tables 2.8 and 2.9, as well as by

the plots in Figure 2.9 for random networks with n = 250. The graphics for random networks

with n ∈ {500, 750} are not included because the relative behavior of the codes in such cases is

similar to those shown for n = 250.

0 5 10 15

10
0

10
1

10
2

10
3

d

lo
g 10

(A
ve

t)

n=250, LA

0 5 10 15

10
0

10
1

10
2

10
3

10
4

d

n=250, RA

0 5 10 15

10
0

10
1

10
2

10
3

d

n=250, HA

k=2

k=3

k=4

k=5

k=10

k=50

k=100

k=500

k=1000

k=5000

Figure 2.9: Total CPU times for random networks with n = 250

In general, LA and HA were the most effective methods to solve the robust shortest path

problem, showing similar behaviors. The experiments showed that HA was the fastest when the

number of scenarios did not exceed 50, solving the problem in less than half minute in average,

whereas LA was the best alternative for networks with 1000 or 5000 scenarios, running in less

than one hour in average.

42 Algorithms for the robust shortest path problem

2.6 Conclusions

Three algorithms were presented to solve the robust shortest path problem with a finite number

of scenarios. These algorithms were introduced in [39]. All of them allow to obtain a simple

optimal solution and improve the approach of Yu and Yang [50], the only exact method known.

The first is a labeling approach, the second is based on the ranking of simple paths and the

third is a hybrid version of the previous, which combines pruning techniques from both while

ranking simple paths in a specific manner. The novelty of the hybrid algorithm when compared

to a simple version of the ranking based method is twofold. On the one hand, its pruning

rules allow to skip uninteresting paths; while, on the other, it promotes the early generation

of more candidate paths than with a standard implementation, seeking to produce good cost

upper-bounds. This strengthens the elimination of bad solutions.

The developed methods have time complexity orders depending on the network parameters,

as well as on the maximum number of generated paths in each set P1i(G), i ∈ V , in the first

method, and on the number of ranked paths in the second and the third.

Implementations of the three methods were tested on randomly generated networks and

compared with the algorithm by Yu and Yang [50]. The new approaches were more efficient

than the latter, and revealed to be effective over problems handling with large cost upper-bounds

or a large number of scenarios. In spite of this progress, out of the three introduced methods,

the ranking approach was the one with the poorest performance, due to the variable number

of simple paths that had to be ranked before the robust shortest path could be obtained.

The changes introduced in the hybrid version resulted in an improvement of this step and,

thus, of the initial version of the algorithm. The labeling and the hybrid methods had similar

behaviors and showed to be quite effective for solving the robust shortest path problem with

up to 1000 scenarios. Nevertheless, the labeling algorithm stood out for problems with 1000

or 5000 scenarios, running in less than one hour in average, while the hybrid algorithm was

the best when the number of scenarios did not exceed 50, solving the problem in less than half

minute in average.

Chapter 3

Preprocessing techniques for the

robust shortest path problem

The present chapter is dedicated to the development of methods that allow to simplify a given

robust shortest path problem before it is solved, and thus making easier the search for an optimal

solution. This is achieved by means of techniques, named preprocessing techniques, aimed at

reducing the network in such a way that the result still contains all the optimal solutions in

the original network. The preprocessing techniques developed here focus two aspects: the

identification of nodes (or arcs) that belong to all optimal solutions, and the identification of

nodes (or arcs) that do not belong to any optimal solution. The application of such techniques

is based on the comparison of particular path robust deviations in specific scenarios and an

established lower-bound. Two versions of the preprocessing rules are developed, a static version

and a dynamic version. In the former, the cost lower-bound is set at the beginning of the method,

and it remains unchanged while network nodes/arcs are scanned, whereas in the latter that value

is updated as the scan is performed. The cases of nodes and arcs are studied separately. First,

the theoretical results are presented, then the pseudo-codes of the algorithms are outlined and

their complexity order in terms of the number of operations is calculated. Afterwards, the new

methods are exemplified for small networks, and the results of computational experiments are

reported and discussed.

3.1 Introduction

As mentioned above, the main purpose of this chapter is to identify parts of a network that

can be deleted, ensuring that the resulting network still contains all the robust shortest paths

of the former. With this goal in mind, a node (arc) is called robust 1-persistent if it certainly

belongs to any optimal solution, and it is called robust 0-persistent if it does not belong to any

43

44 Preprocessing techniques for the robust shortest path problem

of them.

i

i1

il

i′1

i′l′

j

j′1

j′l′

j1

jl

(a) arc (i, j) is robust 1-persistent

i

i1

il

i′1

i′l′

j

j′1

j′l′

j1

jl

(b) arc (i, j) is robust 0-persistent

i

i1

il

i′1

i′l′

(c) node i is robust 1-persistent

i

i1

il

i′1

i′l′

(d) node i is robust 0-persistent

Figure 3.1: Identification of arcs/nodes for deletion under robust 1 or 0- persistency

The two types of persistency, for nodes or for arcs, lead to different conclusions, summarized

in Figure 3.1. Because robust 1-persistent nodes (arcs) necessarily belong to any robust shortest

path, they cannot be deleted from the network. Furthermore, knowing in advance that a node

is robust 1-persistent does not make the problem easier – see Figure 3.1.(c). On the contrary, if

the arc (i, j) is robust 1-persistent, no other arcs starting in i or ending in j belong to an optimal

solution, which is simple, and therefore they can be deleted. This is shown in Figure 3.1.(a),

where the dashed lines represent arcs/nodes that can be deleted and the solid thick lines are

arcs/nodes in the optimal solutions.

Additionally, robust 0-persistent nodes (arcs) do not belong to any optimal solution and,

thus, they can be deleted from the network. For any of these nodes, i, this result can be

extended to all the arcs that emerge or end at i, as shown in Figure 3.1.(d). However, no

further conclusions can be drawn when a robust 0-persistent arc is found – Figure 3.1.(b).

Based on the remarks above, finding robust 1-persistent arcs (0-persistent nodes) is expected

to be more effective, in terms of the network reduction, than identifying robust 1-persistent

nodes (0-persistent arcs). For this reason, the rest of the chapter will focus only on the identi-

fication of robust 1-persistent arcs and robust 0-persistent nodes.

Preprocessing techniques have been addressed for the robust shortest path problem for

Identification of robust 1-persistent arcs 45

continuous models with interval data. The first of these rules were introduced by Karasan et

al. [26], for detecting and eliminating robust 0-persistent arcs in acyclic networks. One decade

later, Catanzaro et al. [13] extended the reduction of the interval robust shortest path problem

to general networks, by detecting robust 0-persistent arcs and nodes. Moreover, these authors

combined the latter strategy with the identification of robust 1-persistent arcs. The combination

of the two techniques significantly reduced the size of the problem on a set of computational

experiments.

The results presented in this chapter are inspired in [13]. They aim at identifying robust

1-persistent arcs and robust 0-persistent nodes for the robust shortest path problem in the

case of a finite set of scenarios. First, conditions that all robust 1-persistent arcs and robust 0-

persistent nodes should satisfy are established. We propose two different algorithmic approaches

for applying these tests. The first approach, introduced in [40], consists of static algorithms

that check the above conditions for the arcs and nodes in the network. The conditions are

established at the beginning of the algorithm and are based on a lower-bound for the robustness

cost obtained from the shortest paths in all scenarios. The second approach, introduced in [41],

uses a dynamic search, with the goal of identifying more robust 1-persistent arcs (or robust

0-persistent nodes). The same conditions used in the static version are tested, however, the

parameter they depend on is updated as paths are listed. The number of scenarios considered

in the comparisons when preprocessing nodes is also taken into consideration, in order to reduce

the number of tests to perform.

3.2 Identification of robust 1-persistent arcs

As said before, the identification of robust 1-persistent arcs was treated in [13], in the context

of interval data problems. This strategy was not particularly effective, according with the

computational tests. However, together with the detection of robust 0-persistent arcs or nodes,

it led to a significant reduction of the network. Under these conditions, an optimal solution could

be found more easily than without preprocessing robust 1-persistent arcs. For the new result,

these arcs were chosen among the arcs of the shortest (1, n)-path in the scenario associated

with the upper-limits of the intervals. In addition, the scenario that assigned the upper-limits

of the interval costs to the arcs of that path and the lower-limits of the interval costs to the

remaining arcs of the network was also considered. Then, the rule was derived by determining

the shortest (1, n)-path in the subnetwork resultant from removing the arc under analysis at

the original network, in case node n was still reachable from node 1.

The following result has a similar motivation and introduces a broader rule for detecting

robust 1-persistent arcs, which are restricted to the shortest (1, n)-paths for the scenarios of G.

46 Preprocessing techniques for the robust shortest path problem

Provided that a (1, n)-path and its robustness cost are known, it deals with the scenarios for

which the associate shortest (1, n)-paths of G contain the arc (i, j) under evaluation and with

the shortest (1, n)-path in the subnetwork of G resultant from the removal of (i, j), G−
(i,j).

Proposition 3.1. Let q ∈ P1n(G) be a path such that A(q)∩A(p1,su(G)) 6= ∅, for some u ∈ Uk.

Let (i, j) ∈ A(q) ∩
(

k
∪

u=1
A(p1,su(G))

)
be an arc, such that node n is reachable from node 1 in

G−
(i,j), and U(i, j) = {u ∈ Uk : (i, j) ∈ p1,su(G)} be the set of scenarios for which the shortest

(1, n)-paths of G contain arc (i, j). If

∃u′ ∈ U(i, j) : RD
su′
G (p1,su′ (G−

(i,j))) > RCG(q),

then arc (i, j) is robust 1-persistent.

Proof. Let q ∈ P1n(G), (i, j) ∈ A(q) ∩
(

k
∪

u=1
A(p1,su(G))

)
and p ∈ P1n(G

−
(i,j)). By definition

of robustness cost of a (1, n)-path and because p1,su(G−
(i,j)) is the shortest (1, n)-path in G that

does not contain arc (i, j), under scenario su, u ∈ Uk,

RCG(p) = max
u∈Uk

RDsu
G (p) ≥ max

u∈Uk

RDsu
G (p1,su(G−

(i,j))), (3.1)

with

max
u∈Uk

RDsu
G (p1,su(G−

(i,j))) = max

{
max

u∈Uk\U(i,j)
RDsu

G (p1,su(G−
(i,j))), max

u∈U(i,j)
RDsu

G (p1,su(G−
(i,j)))

}
.

For every u ∈ Uk\U(i, j), one has p1,su(G−
(i,j)) = p1,su(G), and, therefore,

RDsu
G (p1,su(G−

(i,j))) = RDsu
G (p1,su(G)) = 0.

This means that maxu∈Uk\U(i,j)RDsu
G (p1,su(G−

(i,j))) = 0. Since any robust deviation of a (1, n)-

path is non-negative, one has

max
u∈Uk

RDsu
G (p1,su(G−

(i,j))) = max
u∈U(i,j)

RDsu
G (p1,su(G−

(i,j))).

Then, (3.1) implies

RCG(p) ≥ max
u∈U(i,j)

RDsu
G (p1,su(G−

(i,j))).

Hence, if RD
su′
G (p1,su′ (G−

(i,j))) > RCG(q), for some u′ ∈ U(i, j), by hypothesis,

RCG(p) > RCG(q).

This means that any path in P1n(G) that does not contain arc (i, j) cannot be a robust shortest

path. Therefore, arc (i, j) is robust 1-persistent.

Identification of robust 1-persistent arcs 47

The condition of Proposition 3.1 can be simplified in terms of notation. Let RCmin be

a variable which sets its lower-bound, Arc denote the set of arcs to be scanned and the path

robust deviations be represented as

RDAu
(i,j) = RDsu

G (p1,su(G−
(i,j))) , (i, j) ∈ A , u ∈ U(i, j), such that p1,su(G−

(i,j)) exists.

Then, Proposition 3.1 can be rewritten, considering that, for any arc (i, j) ∈ Arc, if

∃u′ ∈ U(i, j) : RDAu′

(i,j) > RCmin, (3.2)

holds, then arc (i, j) is robust 1-persistent.

In the following, the static and dynamic algorithms to identify robust 1-persistent arcs will

be introduced, starting with their common procedures.

The variable RCmin is initialized with the minimum robustness cost of the shortest (1, n)-

paths for the scenarios of G, analogously to what was considered for the algorithms in Chapter 2.

For that, list Q is used to store only the distinct shortest (1, n)-paths and

RCmin = min{RCG(q) : q ∈ Q}.

Based on Proposition 3.1, initially, Arc contains the arcs of the paths in Q with that minimum

robustness cost, i.e.

Arc =
{
(i, j) ∈ A(q) : q ∈ Q and RCG(q) = RCmin

}
.

When an arc (i, j) is selected in Arc to be scanned, one must check if node n is reachable from

node 1 in the network G−
(i,j). In that case, the shortest (1, n)-paths in G−

(i,j) for the scenarios su,

p1,su(G−
(i,j)), with u ∈ U(i, j), have to be determined. The inequality (3.2) has to be tested for

those scenarios and the algorithm can halt the analysis of (i, j) when the inequality is satisfied.

For all the algorithms, list A1 is used to collect the robust 1-persistent arcs. For a given

scenario, determining the associate shortest (1, n)-path of G or of G−
(i,j), for some arc (i, j), and

its cost, can be done by applying any shortest path algorithm.

Static approach This method sets the initial RCmin as given above to test condition (3.2)

for all the arcs in Arc along the process. This value remains unchanged along the algorithm.

The pseudo-code that summarizes the procedure for determining the robust 1-persistent arcs

of G is presented in Algorithm 4.

48 Preprocessing techniques for the robust shortest path problem

Algorithm 4: Static version for finding robust 1-persistent arcs

1 Q← ∅;
2 for u ∈ Uk do

3 Compute p1,su(G); Q← Q ∪ {p1,su(G)};
4 LBsu

1n(G)← csuG (p1,su(G));

5 RCmin← min{RCG(q) : q ∈ Q};
6 Arc← {(i, j) ∈ A(q) : q ∈ Q and RCG(q) = RCmin};
7 A1 ← ∅;
8 while Arc 6= ∅ do

9 Choose an arc (i, j) ∈ Arc; Arc← Arc
∖
{(i, j)};

10 if node n is reachable from node 1 in G−
(i,j) then

11 U(i, j)← {u ∈ Uk : (i, j) ∈ p1,su(G)};
12 for u ∈ U(i, j) do

13 Compute p1,su(G−
(i,j));

14 RDAu
(i,j) ← csuG (p1,su(G−

(i,j)))− LBsu
1n(G);

15 if RDAu
(i,j) > RCmin then

16 A1 ← A1 ∪ {(i, j)}; break;

17 return A1;

Computational time complexity order Two phases of Algorithm 4 should be consid-

ered. The first corresponds to determining the costs LBsu
1n(G), u ∈ Uk, and the robustness

cost, RCmin. As explained in Section 2.2, this procedure is of Oa
1 = O(km+ k2n) for acyclic

networks and of Oc
1 = O(k(m+ n log n) + k2n) for general networks.

The second phase concerns the analysis of the arcs in Arc. This set only contains arcs of the

shortest (1, n)-paths, p1,su(G), u ∈ Uk, each having n−1 arcs at most. Hence, Arc has k(n−1)

elements at most. For each arc (i, j) selected in Arc and each scenario su, for u ∈ U(i, j), which

has at most k elements, the computation of the shortest (1, n)-path p1,su(G−
(i,j)) and its cost

LBsu
1n(G

−
(i,j)) are required. They are performed inO(m+n) = O(m), for acyclic networks, and in

O(m+n log n) for general networks, as seen in Section 2.2, when considering only one scenario for

the costs. Calculating RDsu
G (p1,su(G−

(i,j))) and applying test (3.2) requiresO(1) time. Therefore,

one obtains Oa
2 = O(k2mn) time for acyclic networks and Oc

2 = O(k2n(m + n log n)) time for

general networks.

In conclusion, Algorithm 4 is polynomial in time and it has a complexity of Oa
1 + Oa

2 =

O(k2mn) for acyclic networks, and of Oc
1 +Oc

2 = O(k
2mn+ k2n2 log n) for general networks.

Identification of robust 1-persistent arcs 49

Example In the following, the application of Algorithm 4 is exemplified for finding robust

1-persistent arcs in the network G4 = G4(V,A, {1, 2}) represented in Figure 3.2.

1 0, 4

2, 9

1, 3

2

3, 1

0, 3

3

3, 3

0, 3

3, 2

4 2, 2

5

1, 5

4, 7

6

5, 2

7

i
c1ij(G4) , c

2
ij(G4)

j

Figure 3.2: Network G4

1

2

2

0

3

3

4

7

5

4

6

5

7

0

j

LB1
i7(G4)

(a) under scenario 1

1

7

2

3

3

6

4

4

5

7

6

2

7

0

j

LB2
i7(G4)

(b) under scenario 2

Figure 3.3: Shortest path trees rooted at n = 7 in G4

Figure 3.3 shows the trees of the shortest paths rooted at node 7 in G4, T 1
7 (G4) and T 2

7 (G4).

After the trees calculation, the list Q is set to {p1,1(G4), p
1,2(G4)}, with p1,1(G4) = 〈1, 2, 7〉,

LB1
17(G4) = 2, and p1,2(G4) = 〈1, 4, 6, 7〉, LB2

17(G4) = 7. The robustness costs of these paths

are RCG4(p
1,1(G4)) = 5 and RCG4(p

1,2(G4)) = 6. Hence, p1,1(G4) is the best path in Q, and,

therefore, the static algorithm starts by setting

Arc = {(1, 2), (2, 7)} and RCmin = 5.

The latter value is used in every test of (3.2) and it does not change along the process. First,

the arc (1, 2) is considered and U(1, 2) = {1}. Node 7 is reachable from node 1 in (G4)
−
(1,2) and

p1,1((G4)
−
(1,2)) = 〈1, 3, 2, 7〉, with

RDA1
(1,2) = c1G4

(〈1, 3, 2, 7〉) − LB1
17(G4) = 1 ≤ RCmin.

50 Preprocessing techniques for the robust shortest path problem

Therefore, condition (3.2) is not satisfied, and nothing can be concluded about arc (1, 2). Af-

terwards, arc (2, 7) is selected and U(2, 7) = {1}. Now, node 7 is reachable from node 1 in

(G4)
−
(2,7) and p1,1((G4)

−
(2,7)) = 〈1, 3, 5, 7〉, with

RDA1
(2,7) = c1G4

(〈1, 3, 5, 7〉) − LB1
17(G4) = 5 ≤ RCmin.

Once again, condition (3.2) is not satisfied, thus, Algorithm 4 finishes without having detected

any robust 1-persistent arc, i.e.

A1 = ∅.

Consequently, preprocessing robust 1-persistent arcs with the static method is not effective for

this example.

Dynamic approach For this version, the value of variable RCmin may change along the

algorithm. The (1, n)-paths computed by the algorithm are stored in a list XP , without repe-

titions. The set of arcs Arc to scan may also change, every time a new (1, n)-path q satisfies

RCG(q) ≤ RCmin. Under this condition, Proposition 3.1 allows to test the arcs shared by

path q and by the shortest (1, n)-paths p1,su(G), u ∈ Uk, which were not identified previously

as robust 1-persistent. In case RCG(q) = RCmin, those arcs are included in set Arc for scan-

ning, while, if RCG(q) < RCmin, those arcs update Arc, since path q is a new candidate for

the optimal solution. Hence, one can write

Arc =





Arc ∪
[(

A(q) ∩
(

k
∪

u=1
A(p1,su(G))

))∖
A1

]
if RCG(q) = RCmin

(
A(q) ∩

(
k
∪

u=1
A(p1,su(G))

))∖
A1 if RCG(q) < RCmin

For a selected (i, j) ∈ Arc, path q takes the particular form

q = p1,su(G−
(i,j)) , u ∈ U(i, j).

Whenever RCG(q) < RCmin, RCmin is updated to RCG(q). Some arcs may be scanned more

than once, because the analyzed (1, n)-paths may have arcs in common. This makes that some

tests may be repeated after RCmin is updated. Hence, the variables RDAu
(i,j), (i, j) ∈ Arc,

u ∈ U(i, j), are used to store the path robust deviations. A list XA is used to store the arcs that

have already been analyzed along the process. The dynamic procedure for identifying robust

1-persistent arcs is outlined in Algorithm 5.

Identification of robust 1-persistent arcs 51

Algorithm 5: Dynamic version for finding robust 1-persistent arcs

1 Q← ∅;
2 for u ∈ Uk do

3 Compute p1,su(G); Q← Q ∪ {p1,su(G)};
4 LBsu

1n(G)← csuG (p1,su(G));

5 RCmin← min{RCG(q) : q ∈ Q};
6 Arc← {(i, j) ∈ A(q) : q ∈ Q and RCG(q) = RCmin};
7 XP ← Q ;XA ← ∅ ;A1 ← ∅;
8 while Arc 6= ∅ do

9 Choose an arc (i, j) ∈ Arc; Arc← Arc
∖
{(i, j)};

10 if (i, j) /∈ XA and node n is reachable from node 1 in G−
(i,j) then

11 XA ← XA ∪ {(i, j)};
12 U(i, j)← {u ∈ Uk : (i, j) ∈ p1,su(G)};
13 for u ∈ U(i, j) do

14 Compute p1,su(G−
(i,j)); q ← p1,su(G−

(i,j));

15 RDAu
(i,j) ← csuG (q)− LBsu

1n(G);

16 if RDAu
(i,j) > RCmin then

17 A1 ← A1 ∪ {(i, j)}; break;

18 if q /∈ XP then

19 XP ← XP ∪ {q};

20 RCG(q)← max
{
RDAu

(i,j),max
{
RD

su′

G (q) : u′ ∈ Uk\{u}
}}

;

21 if RCG(q) = RCmin then Arc← Arc ∪
[(

A(q) ∩
(

k
∪

u′=1
A(p1,su′ (G))

))∖
A1

]
;

22 if RCG(q) < RCmin then

23 RCmin← RCG(q); Arc←
(
A(q) ∩

(
k
∪

u′=1
A(p1,su′ (G))

))∖
A1;

24 else

25 for u ∈ U(i, j) do

26 if RDAu
(i,j) > RCmin then

27 A1 ← A1 ∪ {(i, j)}; break;

28 return A1;

52 Preprocessing techniques for the robust shortest path problem

Computational time complexity order Algorithm 5 performs three additional tasks,

when compared to Algorithm 4. They are the calculation of the robustness costs of the (1, n)-

paths p1,su(G−
(i,j)), (i, j) ∈ Arc, u ∈ U(i, j), the updates of set Arc, and the repetition of the

tests (3.2) after updating RCmin.

For the first task, assuming the costs LBsu
1n(G), u ∈ Uk, were previously computed, the

robustness cost of p1,su(G−
(i,j)), (i, j) ∈ Arc, u ∈ U(i, j), in G is obtained in O(kn) time.

In what concerns the second procedure, the set Arc is updated by means of intersections,

unions and differences of subsets in
k
∪

u=1
A(p1,su(G)) and set A(q), which have (k+1)(n−1) arcs

at most. An efficient way to make such operations is with indexation using hash sets [8], which

is of O(N), where N is the total number of elements. Hence, an O(kn) complexity is obtained.

For the third task, repeating the test (3.2), for a given arc (i, j) ∈ Arc, requires O(1)

operations for each scenario su, with u ∈ U(i, j), because RDAu
(i,j) was already determined.

In a worst case, the tasks described above are performed up to k2(n − 1) times, one per

each scenario in su, u ∈ Uk, and each arc selected in Arc, with up to k(n − 1) elements.

Consequently, the dynamic approach increases by O(k3n2) the number of operations performed

by Algorithm 4.

Therefore, Algorithm 5 has a time complexity of O(k2mn+ k3n2) for acyclic networks and

of O(k2mn+ k2n2 log n+ k3n2) for general networks.

Because Algorithms 4 and 5 start by using the same RCmin, it should be noted that

all the robust 1-persistent arcs identified with the former version are still identified with the

latter. In fact, let RCminIni = min{RCG(q) : q ∈ Q} be the initial cost lower-bound for both

methods. Then, every robust 1-persistent arc (i, j) detected by the static algorithm, satisfies

RDsu
G (p1,su(G−

(i,j))) > RCminIni, for some u ∈ U(i, j). Since every (1, n)-path q′ obtained

in the dynamic algorithm that sets a minimal robustness cost, satisfies RCG(q) ≤ RCminIni,

then (i, j) ∈ A(q). Otherwise, the definition of robustness cost and the fact that p1,su(G−
(i,j))

is the shortest (1, n)-path in G not containing arc (i, j), imply that RCG(q
′) ≥ RDsu

G (q′) ≥

RDsu
G (p1,su(G−

(i,j))) > RCminIni, which contradicts the latter condition. Consequently, the

arcs of A(q′) ∩
(

k
∪

u=1
A(p1,su(G))

)
, which update or are included in set Arc of Algorithm 5,

contain necessarily arc (i, j). Therefore, this arc is scanned in the dynamic version, being

identified as robust 1-persistent by a cost lower-bound not greater than RCminIni.

Example Next, Algorithm 5 is applied to preprocess robust 1-persistent arcs in network

G4 of Figure 3.2. With that goal in mind, the trees T 1
7 (G4) and T 2

7 (G4) in Figure 3.3 are taken

into consideration.

Identification of robust 1-persistent arcs 53

Analogously to Algorithm 4, the dynamic method starts with

Arc = {(1, 2), (2, 7)} and RCmin = 5,

and selects arc (1, 2) to scan. Condition (3.2) is not satisfied in this case, because RDA1
(1,2) = 1.

Additionally, the robustness cost of p1,1((G4)
−
(1,2)) = 〈1, 3, 2, 7〉 in G4 is determined by

RCG4(〈1, 3, 2, 7〉) = max
{
1, RDA2

(1,2)

}
= max

{
1, c2G4

(〈1, 3, 2, 7〉) − LB2
17(G4)

}
= 3,

which allows to improve RCmin to

RCmin = 3.

Therefore, because A1 = ∅, Arc is updated to

Arc = A(〈1, 3, 2, 7〉) ∩
(2
∪

u=1
A(p1,u(G4))

)
= {(2, 7)}.

Then, arc (2, 7) is selected, with p1,1((G4)
−
(2,7)) = 〈1, 3, 5, 7〉 satisfying

RDA1
(2,7) = 5 > RCmin,

from the calculations for the static version. This means condition (3.2) holds, and, consequently,

arc (2, 7) is robust 1-persistent, i.e.

A1 = {(2, 7)}.

Computing a robust shortest path after preprocessing After running Algorithm 5,

it is concluded that arc (2, 7) must be contained in the optimal solution, since it is robust

1-persistent. Thus, the reduced network is obtained by removing from G4 all its remaining

arcs that start in node 2, (2, 5), or that end in node 7, (5, 7) and (6, 7). Figure 3.4 depicts the

resultant network. Arc (2, 7) is marked with a thick line and the nodes and arcs which cannot

be included in any optimal (1, 7)-path are marked with a dashed line.

1 0, 4

2, 9

1, 3

2
0, 3

3

3, 3

0, 3

3, 2

4 2, 2

5

1, 5

6

7

i
c1ij(G4) , c

2
ij(G4)

j

Figure 3.4: Reduced network of G4 after preprocessing robust 1-persistent arcs with Algorithm 5

54 Preprocessing techniques for the robust shortest path problem

There are only two (1, 7)-paths in the reduced network, in which arc (2, 7) is included.

They are p1,1(G4) = 〈1, 2, 7〉, with RCG4(p
1,1(G4)) = 5, and q = 〈1, 3, 2, 7〉, with RCG4(q) = 3.

Therefore, q is the robust shortest path in G4.

It should be noted that for the same example, the dynamic method was more effective than

the static method on preprocessing robust 1-persistent arcs. In fact, with Algorithm 4, no robust

1-persistent arcs were identified, making this strategy useless to facilitate the determination of

a robust shortest path. On the contrary, with Algorithm 5, one robust 1-persistent arc was

detected, which significantly reduced the number of potentially optimal paths and, therefore,

the effort invested on solving the problem.

3.3 Identification of robust 0-persistent nodes

Karasan et al. [26] addressed the robust shortest path problem with interval data and intro-

duced preprocessing techniques to identify robust 0-persistent arcs in layered networks. Later,

Catanzaro et al. [13] developed a similar idea for the same problem and extended the previous

results to networks that may contain cycles. Besides detecting robust 0-persistent arcs, the

new rules detected robust 0-persistent nodes as well, and, consequently, the size of the problem

could be reduced further.

Both results are based on the shortest (1, n)-paths for scenarios that result from the lower

and the upper-limits of the cost intervals. In particular, the first result identifies the arcs that

are not part of any shortest (1, n)-path under the scenario that attributes the lower-limits of the

cost intervals to the arcs of that path and the upper-limits of the cost intervals to the remaining

arcs of the network. The second result evaluates the nodes which do not belong to the shortest

(1, n)-path under the scenario associated with the upper-limits of the cost intervals. A node

i is robust 0-persistent when the cost of that path is smaller than the cost of the path that

results from the concatenation of the shortest (1, i)-path with the shortest (i, n)-path under the

scenario associated with the lower-limits of the cost intervals.

For the finite multi-scenario model, the identification of robust 0-persistent nodes is moti-

vated by the latter result. In the following, a sufficient condition is provided with the same

purpose, when a (1, n)-path and its robustness cost in G are known by hypothesis. The result is

based on the robust deviations of the paths obtained from the concatenation described above,

taking into account all scenarios.

Proposition 3.2. Consider a path q ∈ P1n(G), and a node i /∈ V (q). If

∃u′ ∈ Uk : RD
su′
G (p

1,su′
1i (G) ⋄ p

1,su′
in (G)) > RCG(q),

then node i is robust 0-persistent.

Identification of robust 0-persistent nodes 55

Proof. Let i ∈ V \V (q) and q′ be any path in P1n(G)\{q} such that i ∈ V (q′). Let q′1i and

q′in represent the (1, i)-sub-path and the (i, n)-sub-path of q′, respectively. By definition of

robustness cost of a (1, n)-path in G,

RCG(q
′) = max

u∈Uk

RDsu
G (q′) = max

u∈Uk

{
csuG (q′1i) + csuG (q′in)− LBsu

1n(G)
}
.

Given that psu1i (G) and psuin(G) are the shortest (1, i)-path and the shortest (i, n)-path in scenario

su, u ∈ Uk, in G, respectively, then

RCG(q
′) ≥ max

u∈Uk

{
LBsu

1i (G) + LBsu
in (G)− LBsu

1n(G)
}
= max

u∈Uk

RDsu
G (psu1i (G) ⋄ psuin (G)).

Consequently, if RD
su′
G (p

1,su′
1i (G) ⋄ p

1,su′
in (G)) > RCG(q) is satisfied for some u′ ∈ Uk, then

max
u∈Uk

RDsu
G (psu1i (G) ⋄ psuin (G)) > RCG(q).

Therefore,

RCG(q
′) > RCG(q),

which means that any path in G that contains node i cannot be a robust shortest path. There-

fore, node i is robust 0-persistent.

An alternative strategy to find robust 0-persistent nodes can be derived when a robust 1-

persistent arc is identified in G. This technique is able to detect robust 0-persistent nodes more

easily than the result above, because it avoids the calculation of path robust deviations. The

new result, given in the following, follows from the combination of Propositions 3.1 and 3.2.

Corollary 3.3. Let (i, j) be a robust 1-persistent arc and q ∈ P1n(G) be a path, such that

(i, j) ∈ A(q) ∩
(

k
∪

u=1
A(p1,su(G))

)
. Then, any node j′ /∈ V (q) such that (i, j) /∈ p

1,su′
1j′ (G) and

(i, j) /∈ p
1,su′
j′n (G), for some u′ ∈ U(i, j), is robust 0-persistent.

Proof. If arc (i, j) is robust 1-persistent and (i, j) ∈ A(q) ∩
(

k
∪

u=1
A(p1,su(G))

)
for some q ∈

P1n(G), then, according to Proposition 3.1, there exists some u′ ∈ U(i, j), for which

RD
su′
G (p1,su′ (G−

(i,j))) > RCG(q).

Since p1,su′ (G−
(i,j)) is the shortest (1, n)-path in G that does not contain arc (i, j) in scenario su′ ,

then, any other path q′ ∈ P1n(G), such that (i, j) /∈ A(q′), satisfies c
su′
G (q′) ≥ c

su′
G (p1,su′ (G−

(i,j))).

From the condition above,

RD
su′
G (q′) ≥ RD

su′
G (p1,su′ (G−

(i,j))) > RCG(q).

56 Preprocessing techniques for the robust shortest path problem

Consequently, any node j′ /∈ V (q), such that (i, j) /∈ p
1,su′
1j′ (G) and (i, j) /∈ p

1,su′
j′n (G) makes that

p
1,su′
1j′ (G) ⋄ p

1,su′
j′n (G) does not contain arc (i, j), and, therefore, q′ can be set to that (1, n)-path.

From this fact and Proposition 3.2, one concludes that j′ is a robust 0-persistent node.

Since the search for robust 1-persistent arcs is restricted to the set of arcs of the shortest

(1, n)-paths for the scenarios of the model, their identification can be compromised for networks

with few arcs of those arcs in comparison with the total number of arcs. This fact is dependent

on the density of the network and also on the number of scenarios of the model. Because of

this limitation, techniques to deal with the rule for preprocessing robust 0-persistent nodes

are presented. The possibility of detecting the highest possible number of robust 0-persistent

nodes with the least possible computational effort is related with two aspects concerned with

the condition of Proposition 3.2. One is the number of involved scenarios and the other is how

the lower-bound decreases along the process. In order to simplify notation, let RCmin be the

variable which sets the lower-bound, Nod denote the set of nodes to be scanned and

RDV u
i = RDsu

G (p1,su1i (G) ⋄ p1,suin (G)) , i ∈ V , u ∈ Uk,

represent the path robust deviations. Then, Proposition 3.2 can be rewritten, considering that,

for any node i ∈ Nod, if

∃u′ ∈ Uk : RDV u′

i > RCmin, (3.3)

is satisfied, then node i is robust 0-persistent.

In the following, the static and the dynamic algorithmic approaches to identify robust 0-

persistent nodes will be introduced, adapted to the new notation.

The number of scenarios used to test condition (3.3) may make the robust 0-persistent nodes

test computationally demanding. In order to make this task lighter, the number of considered

scenarios can be restricted. This can be done by imposing M , M ≤ k, as the largest scenario

index used in the tests. Moreover, for each node i ∈ Nod, when the first scenario index ui,

ui ∈ Uk, for which (3.3) holds is known, then i is a robust 0-persistent node and its analysis can

halt. Hence, the tests for scenarios sui+1, . . . , sM can be skipped. Generally, if ui < M , i ∈ Nod,

the computation of the trees T su
1 (G) can be skipped for any u = max{ui : i ∈ Nod}+1, . . . ,M .

For all the algorithms, V0 is the list which collects the robust 0-persistent nodes.

Static approach The variable RCmin is initialized and set like for Algorithm 4. Since this

value is related with the minimum robustness cost of the distinct shortest (1, n)-paths in list

Q, Proposition 3.2 allows to initialize

Nod = V
∖
{i ∈ V (q) : q ∈ Q and RCG(q) = RCmin}.

Identification of robust 0-persistent nodes 57

Then, all the nodes in Nod are scanned by testing (3.3) for the initial RCmin. The pseudo-code

that summarizes the static version of the algorithm to determine robust 0-persistent nodes is

given in Algorithm 6.

Algorithm 6: Static version for finding robust 0-persistent nodes, given M

1 Q← ∅;
2 for u ∈ Uk do

3 Compute T su
n (G); Q← Q ∪ {p1,su(G)};

4 for i = 1, . . . , n− 1 do LBsu
in (G)← csuG (p1,suin (G));

5 RCmin← min{RCG(q) : q ∈ Q};

6 Nod← V
∖
{i ∈ V (q) : q ∈ Q and RCG(q) = RCmin};

7 V0 ← ∅;
8 while Nod 6= ∅ do

9 Choose a node i ∈ Nod; Nod← Nod\{i};
10 for u = 1, . . . ,M do

11 if T su
1 (G) was not determined yet then

12 Compute T su
1 (G);

13 for i = 2, . . . , n− 1 do LBsu
1i (G)← csuG (p1,su1i (G));

14 RDV u
i ← LBsu

1i (G) + LBsu
in (G)− LBsu

1n(G);
15 if RDV u

i > RCmin then

16 V0 ← V0 ∪ {i}; break;

17 return V0;

Computational time complexity order In the worst case, Algorithm 6 has the same

time complexity order as Algorithm 4 to determine RCmin. Then, the second phase is dedicated

to the search for robust 0-persistent nodes. The computation of the tree T su
1 (G) and of the

costs LBsu
1i (G) is similar to the computation of T su

n (G) and LBsu
in (G), i ∈ V , u ∈ Uk. Since such

procedure only requires the scenario where the paths are the shortest to calculate their costs,

it has time of O(m) for acyclic networks and of O(m+n log n) for general networks. Then, for

each node selected in Nod ⊆ V \{1, n}, condition (3.3) is checked in O(1) time, which means

O(n) operations are required. Since the analysis of the nodes considers at most k scenarios,

the second phase is performed in Oa
2 = O(k(m+n)) = O(km) time for acyclic networks and in

Oc
2 = O(k(m+ n log n)) time for general networks.

Consequently, Algorithm 6 has a time complexity of Oa
1 + Oa

2 = O(km + k2n) for acyclic

networks and of Oc
1 +Oc

2 = O(km+ kn log n+ k2n) for general networks.

Example The application of Algorithm 6 is now illustrated for identifying robust 0-

persistent nodes in network G4 of Figure 3.2. The trees T 1
7 (G4) and T 2

7 (G4) are given in

58 Preprocessing techniques for the robust shortest path problem

Figure 3.3 and the homologous trees rooted at node 1, T 1
1 (G4) and T 2

1 (G4), are shown in

Figure 3.5.

1

0

2

2

3

0

4

0

5

3

6

2

7

2

j

LB1
1i(G4)

(a) under scenario 1

1

0

2

7

3

4

4

3

5

6

6

5

7

7

j

LB2
1i(G4)

(b) under scenario 2

Figure 3.5: Shortest path trees rooted at node 1 in G4

In what follows, the number of scenarios tested in (3.3) is limited to M ∈ {1, 2}. Because

p1,1(G4) = 〈1, 2, 7〉 is the shortest (1, 7)-path with the least robustness cost, 5, Algorithm 6

starts with

Nod = {3, 4, 5, 6} and RCmin = 5.

The latter value is set for the tests on (3.3), applied to all the nodes in Nod along the algorithm.

• M = 1

Starting with node 3, the inequality (3.3) is not satisfied in scenario 1, given that

RDV 1
3 = LB1

13(G4) + LB1
37(G4)− LB1

17(G4) = 1 ≤ RCmin.

The same thing happens for nodes 4, 5 and 6, because

RDV 1
i = LB1

1i(G4) + LB1
i7(G4)− LB1

17(G4) = 5 ≤ RCmin , i = 4, 5, 6.

Therefore, no robust 0-persistent nodes are detected when considering only scenario 1, i.e.

V0 = ∅.

• M = 2

For scenario 2, the nodes 3, 4 and 6 still do not satisfy (3.3), given that

RDV 2
3 = LB2

13(G4) + LB2
37(G4)− LB2

17(G4) = 3 ≤ RCmin,

Identification of robust 0-persistent nodes 59

and

RDV 2
i = LB2

1i(G4) + LB2
i7(G4)− LB2

17(G4) = 0 ≤ RCmin , i = 4, 6.

Nevertheless, (3.3) holds for node 5 and scenario 2,

RDV 2
5 = LB2

15(G4) + LB2
57(G4)− LB2

17(G4) = 6 > RCmin,

therefore, node 5 is the only one identified as robust 0-persistent, i.e.

V0 = {5}.

Computing a robust shortest path after preprocessing Since node 5 was the only

node identified as robust 0-persistent, the arcs that start in node 5, (5, 6) and (5, 7), or that end

in node 5, (2, 5) and (3, 5), are removed from G4. The reduced network obtained is represented

in Figure 3.6.

1 0, 4

2, 9

1, 3

2
0, 3

3

3, 3

0, 3

4 2, 2 6

5, 2

7

i
c1ij(G4) , c

2
ij(G4)

j

Figure 3.6: Reduced network of G4 after preprocessing robust 0-persistent nodes with Algo-
rithm 6

There are four (1, 7)-paths in the reduced network, p1,1(G4) = 〈1, 2, 7〉, p1,2(G4) = 〈1, 4, 6, 7〉,

q = 〈1, 3, 2, 7〉 and q′ = 〈1, 3, 4, 6, 7〉, with robustness costs of 5, 6, 3 and 5, respectively.

Consequently, q is the robust shortest path in G4, as concluded in Section 3.1.

Dynamic approach In this algorithm, in order to spare computational effort, instead of

initializing RCmin like for the previous methods, only path p1,s1(G) is considered to set the

initial RCmin and Nod. Then, the algorithm starts with

RCmin = RCG(p
1,s1(G)) and Nod = V \V (p1,s1(G)).

The variables RCmin and Nod are updated along the method, according to the robustness

cost in G of the computed (1, n)-paths. Analogously to Algorithm 5, list XP stores these paths

without repetitions. Whenever a computed (1, n)-path q satisfies RCG(q) ≤ RCmin, set Nod

is updated as explained next.

60 Preprocessing techniques for the robust shortest path problem

When searching for robust 0-persistent nodes, Proposition 3.2 establishes that the analysis

of the nodes of path q, V (q), can be skipped. Thus, if RCG(q) = RCmin, the nodes of V (q)

can be removed from Nod, and, if RCG(q) < RCmin, the search focuses all the nodes outside

V (q) that have not already been identified as robust 0-persistent. Then,

Nod =

{
Nod\V (q) if RCG(q) = RCmin

V \(V (q) ∪ V0) if RCG(q) < RCmin

For a selected node i ∈ Nod, path q has the particular form

q = p1,su1i (G) ⋄ p1,suin (G) , u ∈ Uk.

Whenever RCG(q) < RCmin, RCmin is updated to RCG(q). As the (1, n)-paths under

analysis may have nodes in common, the scanning of some can be repeated after RCmin is

updated. In order to avoid repeating the calculation of previous path robust deviations, the

variables RDV u
i , i ∈ Nod, u ∈ Uk, are used to store such values. In addition, a list XV is used

to store the nodes that have been previously scanned. The pseudo-code is given in Algorithm 7.

Computational time complexity order In terms of the worst case computational time

complexity, the first phases of Algorithms 6 and 7 are similar. The latter initializes RCmin

by RCG(p
1,s1(G)) only, which means it is performed in Oa

1 = O(km + kn) = O(km) time for

acyclic networks and in Oc
1 = O(k(m+ n log n)) for general networks.

The second phase concerns searching for robust 0-persistent nodes, which compared to the

static version has the additional work of calculating RDV u
i , i ∈ Nod, u ∈ Uk, updating set

Nod, and repeating the tests (3.3) due to the updates of RCmin.

For the first task, assuming that the trees T su
n (G) and T su

1 (G), u ∈ Uk, and the associate

costs for all scenarios were previously computed, RDV u
i , i ∈ Nod, u ∈ Uk, is obtained in O(k)

time. The second task concerns the update of Nod and involves differences and unions of sets

with n nodes at most. These operations require an O(n) complexity, when using indexation by

hash sets [8]. The third procedure demands O(1) operations for each scenario su, u ∈ Uk, and

each node i ∈ Nod, since RDV u
i was already determined.

In a worst case, the three tasks above are performed k(n − 2) times at most, one per each

scenario su, u ∈ Uk, and each selected node in Nod, with up to n−2 nodes. Thus, an additional

work of O(kn2 + k2n) is added to the second phase of the static version.

In conclusion, Algorithm 7 has a time complexity of O(kn2+ k2n) for all types of networks,

since log n≪ n and m < n2.

Identification of robust 0-persistent nodes 61

Algorithm 7: Dynamic version for finding robust 0-persistent nodes, given M

1 for u ∈ Uk do

2 Compute T su
n (G);

3 for i = 1, . . . , n− 1 do LBsu
in (G)← csuG (p1,suin (G));

4 RCmin← RCG(p
1,s1(G)); Nod← V \V (p1,s1(G));

5 XP ← {p1,s1(G)}; XV ← ∅; V0 ← ∅;
6 while Nod 6= ∅ do

7 Choose a node i ∈ Nod; Nod← Nod\{i};
8 if i /∈ XV then

9 XV ← XV ∪ {i};
10 for u = 1, . . . ,M do

11 if T su
1 (G) was not determined yet then

12 Compute T su
1 (G);

13 for i = 2, . . . , n− 1 do LBsu
1i (G)← csuG (p1,su1i (G));

14 RDV u
i ← LBsu

1i (G) + LBsu
in (G)− LBsu

1n(G);
15 if RDV u

i > RCmin then

16 V0 ← V0 ∪ {i}; break;

17 q ← p1,su1i (G) ⋄ p1,suin (G);
18 if q /∈ XP then

19 XP ← XP ∪ {q};

20 RCG(q)← max
{
RDV u

i ,max
{
RD

su′

G (q) : u′ ∈ Uk\{u}
}}

;

21 if RCG(q) = RCmin then Nod← Nod\V (q);
22 if RCG(q) < RCmin then RCmin← RCG(q); Nod← V \(V (q) ∪ V0);

23 else

24 for u = 1, . . . ,M do

25 if RDV u
i > RCmin then

26 V0 ← V0 ∪ {i}; break;

27 return V0;

Because RCG(p
1,s1(G)) ≥ min{RCG(q) : q ∈ Q}, it should be noticed that all the robust

0-persistent nodes detected by Algorithm 6 are also detected by Algorithm 7, when the cost

lower-bound RCmin in the latter algorithm attains a value that is smaller than the minimum

path robust deviations that identified robust 0-persistent nodes in the static version. To set

such condition, let RCmins (RCmind) represent the cost lower-bound for the static (dynamic)

algorithms and V s
0 be the set of robust 0-persistent nodes identified by the static version. Then,

the RCmind set in some point of Algorithm 7 must satisfy

RCmind < min
{
RDV u

i : i ∈ V s
0 and u = min{u′ ∈ UM : RDV u′

i > RCmins}
}
.

Under this condition, one may check that all the nodes of V s
0 are scanned and identified as

robust 0-persistent by the dynamic strategy as well. In fact, every node i ∈ V s
0 , satisfies

62 Preprocessing techniques for the robust shortest path problem

RDV u
i = RDsu

G (p1,su1i (G) ⋄ p1,suin (G)) > RCmins, for some u ∈ UM . Let q′ be a (1, n)-path

computed for the tests in Algorithm 7, with the robustness cost RCmind set above, which

satisfies RCmind < RDV u
i . Then, i /∈ V (q′) holds. Otherwise, the definition of robustness

cost and the fact that p1,su1i (G) ⋄ p1,suin (G) is the shortest (1, n)-path in G containing node i,

yield RCmind = RCG(q
′) ≥ RDsu

G (psu1i (G) ⋄ p1,suin (G)) = RDV u
i , which contradicts the latter

condition. Consequently, the nodes of V \V (q) considered in Nod of Algorithm 7, necessarily

contain node i. Therefore, this node is scanned and identified as robust 0-persistent by the

dynamic version with a cost lower-bound not greater than RCmind.

The following example illustrates one of the cases which satisfies the condition set above,

since both static and dynamic methods start with the same cost lower-bound, i.e. RCG(p
1,s1(G)) =

min{RCG(q) : q ∈ Q}.

Example Next, Algorithm 7 preprocesses the robust 0-persistent nodes in network G4 of

Figure 3.2. For that, the trees of Figures 3.3 and 3.5 are considered again.

Algorithm 7 starts with

RCmin = RCG4(p
1,1(G4)) = 5 and Nod = V \V (p1,1(G4)) = {3, 4, 5, 6}.

In the following, the algorithm takes into account the maximum number M ∈ {1, 2} of

scenarios used in the tests (3.3).

• M = 1

Starting by scanning node 3, condition (3.3) is not satisfied for scenario 1. Since p1,113 (G4)⋄

p1,137 (G4) = 〈1, 3, 2, 7〉, with RCG4(〈1, 3, 2, 7〉) = 3, RCmin is updated to

RCmin = 3.

Additionally, since at this point V0 = ∅, Nod is updated to

Nod = V \V (〈1, 3, 2, 7〉) = {4, 5, 6}.

For the new RCmin, when choosing nodes 4, 5 and 6 to scan, inequality (3.3) is always

satisfied for scenario 1, given that

RDV 1
i = 5 > RCmin , i = 4, 5, 6.

Consequently, all the nodes in Nod are robust 0-persistent, i.e.,

V0 = {4, 5, 6}.

Identification of robust 0-persistent nodes 63

• M = 2

Condition (3.3) does not hold for node 3 and scenarios 1 and 2, with the initial RCmin =

5. Then, the path associated with node 3 for scenarios 1 and 2, p1,u13 (G4)⋄p
1,u
37 (G4), u ∈ U2,

is given by 〈1, 3, 2, 7〉, which has a robustness cost of 3. The remaining steps are those

presented for M = 1, thus

V0 = {4, 5, 6}.

Computing a robust shortest path after preprocessing As the nodes 4, 5 and 6

were identified as robust 0-persistent, they are removed from G4, as well as the arcs that start

or end at these nodes. Figure 3.7 represents the obtained reduced network.

1 0, 4

2, 9

2
0, 3

3

3, 3

7

i
c1ij(G4) , c

2
ij(G4)

j

Figure 3.7: Reduced network of G4 after preprocessing robust 0-persistent nodes with Algo-
rithm 7

Analogously to the network in Figure 3.4, there are only two (1, 7)-paths in the reduced

network above, p1,1(G4) = 〈1, 2, 7〉, with RCG4(p
1,1(G4)) = 5, and q = 〈1, 3, 2, 7〉, with

RCG4(q) = 3. Again, one concludes that q is the robust shortest path in G4.

Like for the robust 1-persistency of arcs, in this case the dynamic method was more effective

than the static method for the robust 0-persistency of nodes. In fact, with Algorithm 6, only

node 5 could be detected as robust 0-persistent, while, with Algorithm 7, besides that node,

nodes 4 and 6 were also detected as robust 0-persistent. This allowed to reduce more the

network, and, therefore to determine a robust shortest path faster.

For comparison with the static and dynamic approaches, the detection of robust 0-persistent

nodes in G4 is now made through application of Corollary 3.3, assuming that robust 1-persistent

arcs have been previously identified.

Application of Corollary 3.3 The arc (2, 7) was identified as robust 1-persistent, when

associated to path q = 〈1, 3, 2, 7〉, with U(2, 7) = {1}. According to Figures 3.3 and 3.5,

(2, 7) /∈ A(p1,11i (G4)) and (2, 7) /∈ A(p1,1i7 (G4)) , for any i ∈ V \V (q) = {4, 5, 6}.

Therefore, it can be concluded that nodes 4, 5 and 6 are robust 0-persistent.

64 Preprocessing techniques for the robust shortest path problem

Computing a robust shortest path after applying Corollary 3.3 The reduced net-

work of G4 is the same as in Figure 3.7, but now the arc (2, 7) should be represented by a thick

line. However, since all the (1, 7)-paths in that network contain arc (2, 7), the determination of

a robust shortest path is analogous to solving the problem after preprocessing dynamically the

robust 0-persistent nodes of G4.

To conclude, it should be noticed that, for network G4, Algorithm 7 identifies the same set

of nodes as the application of Corollary 3.3, even when M = 1. This shows that the dynamic

approach may be a good alternative method for preprocessing robust 0-persistent nodes when

Corollary 3.3 cannot be applied, that is, when no robust 1-persistent arcs have been detected.

3.4 Computational experiments

This section is dedicated to the empirical comparison between the Algorithms 6 and 7 for

preprocessing robust 0-persistent nodes and to their impact on solving the robust shortest path

problem with the labeling and the hybrid algorithms (LA and HA) introduced in Chapter 2.

The reason for not considering the empirical results for preprocessing robust 1-persistent arcs

is that the methods developed with that purpose only showed to be effective for networks with

a very small density, d ∈ {1, 2}. In fact, in these cases, the majority of the arcs of G belongs to

the paths p1,su(G), u ∈ Uk, which improves the chances of finding robust 1-persistent arcs.

Algorithms 6 and 7 were implemented in Matlab 7.12 and ran on a computer equipped

with an Intel Pentium Dual CPU T2310 1.46GHz processor and 2GB of RAM. The codes used

Dijkstra’s algorithm [1] to solve the single source and single destination shortest path problem

for a given scenario. As mentioned above, the preprocessing techniques were combined with LA

and HA. The robust shortest path problem was solved with and without preprocessing.

The benchmarks used in the experiments correspond to randomly generated directed graphs

with n ∈ {500, 1000, 2000, 5000}, d ∈ {5, 10, 20} and k ∈ {2, 3}. For each scenario, each arc is

assigned with a random integer cost in U(0, 100). For each network dimension, 10 instances were

generated. For each instance, the two preprocessing algorithms were applied, and condition (3.3)

was tested for the scenarios 1, . . . ,M , with M ∈ {1, . . . , k}. The robust shortest path problems

were solved by LA and by HA, after preprocessing. Alternatively, LA and HA solved the same

instances from scratch, with no preprocessing.

In order to analyze the performance of Algorithms 6 and 7, the average total running

times (in seconds) are calculated for each network dimension. Let P0, NP and AP0 represent

the average CPU times to preprocess robust 0-persistent nodes, to solve the robust shortest

path problem with no preprocessing, and to do the same after preprocessing, respectively. Let

Computational experiments 65

also TP0 denote the average overall CPU time for finding a robust shortest path combined with

preprocessing, i.e., TP0 = P0+AP0. Additionally, let N0 represent the average number of robust

0-persistent nodes. The application of the static and the dynamic methods is distinguished by

the indices s and d, respectively.

The average number of detected robust 0-persistent nodes and the average CPU times are

reported in Tables 3.1, 3.2 and 3.3. In Tables 3.2 and 3.3, the least total CPU time to find the

robust shortest path with HA and LA is bold typed, for each fixed n, d and k. The plots in

Figures 3.8 and 3.9 show the average CPU times for k = 2 and k = 3, respectively, depending

on the density of the network.

n = 500 n = 1000 n = 2000 n = 5000

d k M Ns
0 Nd

0 Ns
0 Nd

0 Ns
0 Nd

0 Ns
0 Nd

0

5

2
1 267 491 535 991 1518 1992 3247 4990

2 361 495 714 994 1788 1995 4110 4994

3

1 130 410 516 881 764 1730 1477 4646

2 222 479 748 972 1126 1963 2193 4966

3 279 493 834 989 1336 1992 2633 4994

10

2
1 149 430 221 903 911 1943 1260 4939

2 196 483 290 974 1144 1990 1788 4993

3

1 65 170 161 666 106 1250 353 3782

2 120 324 236 871 188 1806 661 4724

3 151 389 286 936 264 1925 900 4915

20

2
1 19 103 113 607 8 1662 119 4404

2 34 201 146 776 14 1862 208 4806

3

1 2 16 0 52 57 266 60 1383

2 4 44 0 111 138 710 108 2713

3 5 97 1 152 179 963 155 3248

Table 3.1: Number of detected robust 0-persistent nodes

Tables 3.2 and 3.3 and Figures 3.8 and 3.9 show that preprocessing robust 0-persistent nodes

can be more effective to solve the robust shortest path problem by HA or LA, rather than

without any preprocessing. Combining dynamic preprocessing with finding a robust shortest

path was the most efficient method when HA was applied for M = 1 on the biggest networks

(n = 2000, d = 5 and k = 3, or n = 5000, except for d = 20 and k = 3), as well as when LA

was applied on most of the networks (except for n = 500 and d = 20). For all these cases, in

spite of the work demanded by Algorithm 7 being heavier than the required by Algorithm 6,

P s
0 < P d

0 , the additional effort of the dynamic version leads to the detection of more robust

0-persistent nodes, N s
0 < Nd

0 – Table 3.1. This contributes for a more significant reduction of

the network and consequently of the average CPU times when finding a robust shortest path

after preprocessing, AP s
0 > AP d

0 . In conclusion, the dynamic version outperformed the static

version. Besides, preprocessing with the dynamic search was also a better alternative than

solving the problem without any preprocessing, TP d
0 < NP .

6
6

P
r
e
p
r
o
c
e
s
s
in

g
te

c
h
n
iq

u
e
s

fo
r

th
e

r
o
b
u
s
t

s
h
o
r
te

s
t

p
a
th

p
r
o
b
le

m
HA LA

n d k M P s
0 P d

0 NP AP s
0 AP d

0 TP s
0 TP d

0 NP AP s
0 AP d

0 TP s
0 TP d

0

500

5

2
1 0.713 0.772

0.596
0.042 0.001 0.755 0.773

0.859
0.221 0.005 0.934 0.777

2 0.948 0.986 0.024 0.000 0.972 0.986 0.114 0.003 1.062 0.989

3

1 1.142 1.083

0.857

0.089 0.014 1.231 1.097

1.268

0.465 0.040 1.607 1.123

2 1.384 1.308 0.059 0.003 1.443 1.311 0.304 0.010 1.688 1.318

3 1.557 1.527 0.042 0.002 1.599 1.529 0.213 0.007 1.770 1.534

10

2
1 0.877 1.060

0.696
0.089 0.010 0.966 1.070

1.763
0.528 0.033 1.405 1.093

2 0.199 1.238 0.079 0.003 1.278 1.241 0.447 0.009 1.646 1.247

3

1 1.201 1.318

1.108

0.155 0.080 1.356 1.398

1.948

0.675 0.396 1.876 1.714

2 1.520 1.584 0.110 0.032 1.630 1.616 0.558 0.139 2.078 1.723

3 1.777 1.915 0.101 0.020 1.878 1.935 0.517 0.065 2.294 1.980

20

2
1 0.856 1.572

0.772
0.194 0.127 1.050 1.699

3.389
0.824 0.603 1.680 2.175

2 1.127 1.630 0.183 0.089 1.310 1.719 0.789 0.371 1.916 2.001

3

1 1.145 1.328

1.053

0.203 0.175 1.348 1.503

3.910

0.914 0.839 2.059 2.167

2 1.481 1.723 0.198 0.157 1.679 1.880 0.883 0.761 2.364 2.484

3 1.800 1.939 0.215 0.133 2.015 2.072 0.878 0.629 2.678 2.568

1000

5

2
1 1.869 1.974

1.690
0.152 0.002 2.021 1.976

2.410
0.878 0.020 2.747 1.994

2 2.354 2.476 0.077 0.001 2.431 2.477 0.455 0.010 2.809 2.486

3

1 2.783 2.873

2.520

0.156 0.020 2.939 2.893

3.192

1.002 0.107 3.785 2.980

2 3.301 3.685 0.064 0.005 3.365 3.690 0.360 0.023 3.661 3.708

3 4.055 4.084 0.037 0.002 4.092 4.086 0.199 0.013 4.254 4.097

10

2
1 1.992 2.291

1.792
0.363 0.021 2.355 2.312

4.100
2.272 0.074 4.264 2.365

2 2.634 2.753 0.325 0.008 2.959 2.761 2.033 0.023 4.667 2.776

3

1 2.922 3.074

2.646

0.377 0.074 3.299 3.148

5.328

2.595 0.480 5.517 3.554

2 3.543 3.532 0.361 0.022 3.904 3.554 2.279 0.110 5.822 3.642

3 4.136 4.274 0.307 0.011 4.443 4.285 2.181 0.050 6.317 4.324

20

2
1 2.083 2.737

1.844
0.480 0.138 2.563 2.875

8.579
2.897 0.833 4.980 3.570

2 2.629 3.140 0.428 0.062 3.057 3.202 2.738 0.358 5.367 3.498

3

1 2.547 2.845

2.594

0.586 0.488 3.133 3.333

12.061

3.391 3.051 5.938 5.896

2 3.257 3.517 0.586 0.436 3.843 3.953 3.391 2.746 6.648 6.263

3 3.787 4.223 0.580 0.411 4.367 4.634 3.358 2.524 7.145 6.747

Table 3.2: CPU times for preprocessing robust 0-persistent nodes, n ∈ {500, 1000}

C
o
m

p
u
ta

tio
n
a
l
e
x
p
e
r
im

e
n
ts

6
7

HA LA

n d k M P s
0 P d

0 NP AP s
0 AP d

0 TP s
0 TP d

0 NP AP s
0 AP d

0 TP s
0 TP d

0

2000

5

2
1 4.744 4.872

4.837
0.267 0.007 5.011 4.879

7.522
1.807 0.045 6.551 4.917

2 6.094 6.384 0.083 0.003 6.177 6.387 0.541 0.016 6.635 6.400

3

1 5.745 5.977

6.297

0.748 0.054 6.493 6.031

10.922

5.475 0.323 11.220 6.300

2 7.150 7.353 0.455 0.009 7.605 7.362 3.206 0.049 10.356 7.402

3 8.559 8.748 0.297 0.002 8.856 8.750 2.194 0.034 10.753 8.782

10

2
1 4.315 4.632

4.634
0.763 0.009 5.078 4.641

9.164
5.160 0.102 9.475 4.734

2 5.637 5.883 0.599 0.005 6.236 5.888 3.948 0.031 9.585 5.914

3

1 6.313 6.846

6.757

1.595 0.330 7.908 7.176

19.705

11.980 2.196 18.293 9.042

2 8.047 8.431 1.509 0.047 9.556 8.478 10.839 0.234 18.886 8.665

3 9.474 10.094 1.431 0.015 10.905 10.109 10.032 0.083 19.506 10.177

20

2
1 4.823 5.845

5.086
1.950 0.127 6.773 5.972

33.345
12.860 0.833 17.683 6.678

2 6.218 7.203 1.994 0.039 8.212 7.242 13.329 0.210 19.547 7.413

3

1 7.140 8.809

7.309

2.007 1.629 9.147 10.438

42.829

12.605 10.543 19.745 19.352

2 9.802 9.774 1.813 0.915 11.615 10.689 12.132 6.474 21.934 16.248

3 11.392 11.421 1.767 0.715 13.159 12.136 11.531 4.808 22.923 16.229

5000

5

2
1 20.486 20.905

26.757
2.259 0.003 22.745 20.908

59.962
13.748 0.160 34.234 21.065

2 26.391 26.770 0.845 0.006 27.236 26.776 4.952 0.032 31.343 26.802

3

1 25.895 25.979

32.438

6.072 0.081 31.967 26.060

103.437

43.294 0.615 69.189 26.594

2 31.760 32.382 4.414 0.056 36.174 32.438 31.870 0.198 63.630 32.580

3 37.897 38.531 3.517 0.016 41.414 38.547 25.157 0.152 63.054 38.683

10

2
1 21.449 21.797

26.601
9.967 0.014 31.416 21.811

134.070
53.750 0.187 75.199 21.984

2 27.264 27.888 7.530 0.005 34.794 27.893 46.056 0.132 73.320 28.020

3

1 27.601 26.594

31.671

10.070 0.843 37.671 27.437

149.398

70.250 6.142 97.851 32.736

2 34.233 33.236 8.812 0.077 43.045 33.313 62.080 0.616 96.313 33.852

3 40.223 39.827 7.930 0.018 48.153 39.845 55.514 0.224 95.737 40.051

20

2
1 22.396 27.453

33.868
14.781 0.430 37.177 27.883

311.511
81.121 2.391 103.517 29.844

2 29.453 33.095 14.009 0.069 43.462 33.164 82.884 0.527 112.337 33.622

3

1 28.653 42.394

34.468

12.513 6.661 41.166 49.055

301.563

79.006 46.820 107.659 89.214

2 34.135 42.061 11.397 3.018 45.532 45.079 78.269 22.580 112.404 64.641

3 41.741 45.958 14.929 1.968 56.670 47.926 78.830 14.193 120.571 60.151

Table 3.3: CPU times for preprocessing robust 0-persistent nodes, n ∈ {2000, 5000}

68 Preprocessing techniques for the robust shortest path problem

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

se
c.

s 500 d s 1000 d s 2000 d s 5000 d
0

15

30

45

60

se
c.

LA, d=5, k=2

s 500 d s 1000 d s 2000 d s 5000 d
0

30

60

90

120

se
c.

LA, d=10, k=2

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

40

se
c.

HA, d=20, k=2

s 500 d s 1000 d s 2000 d s 5000 d
0

75

150

225

300

se
c.

LA, d=20, k=2

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

se
c.

HA, d=10, k=2

1 2 1 2 1 2 1 2 1 2 1 21 2 1 21 2 1 2

HA, d=5, k=2

1 2 1 21 2 1 2

1 2 1 21 2 1 2 1 2 1 2 1 2 1 2

P
0

AP
0

NP

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 21 2 1 21 2 1 2

M M

M M

 s−> static version
 d−> dynamic version

M M

Figure 3.8: CPU times for preprocessing robust 0-persistent nodes and for algorithms HA and
LA, with and without preprocessing, when k = 2

For each fixed n, d and k, the smaller the number of scenarios for testing (3.3), the less

effort is required for computing the shortest path trees rooted at node 1. Hence, small values

of M implied small preprocessing CPU times. This is valid for both the static and the dynamic

approaches. The latter is always better than the first in detecting robust 0-persistent nodes,

N s
0 < Nd

0 , when M is fixed, as shown in Table 3.1. In general, the values of M that provide the

possibility of finding a robust shortest path with preprocessing faster than solving the problem

without preprocessing, must assure that P0 < NP and that the number of detected robust

0-persistent nodes is sufficient to reduce the CPU time by not more than NP − P0. Tables 3.2

and 3.3 show that Algorithm 7 was more effective than Algorithm 6 on such task when M = 1,

except if n = 500, d = 20, k ∈ {2, 3}. When M = 2 or M = 3, the dynamic preprocessing

combined with LA was the most efficient method in very few cases.

Computational experiments 69

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

40

se
c.

HA, d=5, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

25

50

75

100

se
c.

LA, d=5, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

40

50

se
c.

HA, d=10, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

35

70

105

140

se
c.

LA, d=10, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

15

30

45

60

se
c.

HA, d=20, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

75

150

225

300

se
c.

LA, d=20, k=3

M

M

1 2 3 1 2 31 2 3 1 2 3

M

1 2 3 1 2 3 MM 1 2 3 1 2 3

M 1 2 3 1 2 31 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 31 2 3 1 2 3

1 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 31 2 3 1 2 31 2 3 1 2 3

P
0

AP
0

NP

1 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

s−> static version
d−> dynamic version

Figure 3.9: CPU times for preprocessing robust 0-persistent nodes and for algorithms HA and
LA, with and without preprocessing, when k = 3

LA was always more sensitive to preprocessing than HA, and showed the most drastic

reductions with respect to NP . This is because removing nodes from the network allows to

discard a considerable number of labels in LA, making easier the search for an optimal solution.

For HA, despite the fact that eliminating nodes reduces the effort on calculating reduced costs,

preprocessing does not have so much impact, as the search for a robust shortest path is focuses

on selecting suitable deviation arcs and this can be done in few iterations without preprocessing.

The number of detected robust 0-persistent nodes is high for the networks with the lowest

densities (d ∈ {5, 10}), particularly for Algorithm 7 – Table 3.1. Moreover, when n, d and

M are fixed, less nodes tend to be detected when k increases, since N s
0 and Nd

0 also decrease.

Globally, Figures 3.8 and 3.9 show that HA or LA have similar performances for the lowest

densities (d ∈ {5, 10}). Moreover, LA is much more sensitive to the dynamic preprocessing

than to the static preprocessing for all the densities, |NP − TP s
0 | < |NP − TP d

0 |.

70 Preprocessing techniques for the robust shortest path problem

3.5 Conclusions

In this chapter, new techniques were developed to identify robust 1-persistent arcs and robust

0-persistent nodes in G. The former are contained in all robust shortest paths and can be found

among the arcs of p1,su(G), u ∈ Uk. The latter are not part of any optimal solution and can

be any node, except 1 and n. The presented methods followed static [40] and dynamic [41]

approaches for preprocessing. Both are based on comparisons with established lower-bounds,

which are fixed along the algorithm in the static version and which are updated, according to

the least robustness cost of the computed (1, n)-paths, in the dynamic version. The set of arcs

preprocessed by the dynamic strategy contain the set of arcs identified by the static version.

However, for the nodes, the same happens if the minimum cost lower-bound in the dynamic

method becomes smaller than the minimum path robust deviations that identified robust 0-

persistent nodes in the static version. The pseudo-codes of the algorithms were presented and

they were shown to have polynomial time complexities.

Since the robust 1-persistent arcs are restricted to the arcs of p1,su(G), u ∈ Uk, the chances

of detecting them reduced drastically when dense networks were considered. Nevertheless,

when some robust 1-persistent arc can be identified, the search for robust 0-persistent nodes

becomes less demanding in terms of computational effort, as the calculation of the path robust

deviations can be avoided. For the identification of robust 0-persistent nodes, the number of

scenarios used in the tests was limited as well. The preprocessing approaches were exemplified.

The performances of the dynamic and the static procedures were empirically tested on random

instances, when combined with the labeling and hybrid algorithms introduced in Chapter 2.

For preprocessing robust 0-persistent nodes, the performed experiments revealed that, in

general, the dynamic approach is the best choice. Besides, LA was always more efficient after

preprocessing than with no preprocessing at all. The same happened with HA using the dynamic

processing for networks with a large number of nodes, even for the cases for which the static

approach was not efficient, and using only the first scenario in the tests. The improvement of the

dynamic method, when compared to the static version in terms of the number of detected robust

0-persistent nodes ranged between 11% and 20675%, when N s
0 6= 0. In general, this reduction

was also more demanding in terms of the CPU times. Nevertheless, in most of the cases, the

results showed that the total CPU time for solving the problem was still better when using

the dynamic, rather than the static approach. The algorithms HA and LA after preprocessing

with the dynamic method also outperformed the static version for almost all the cases. The

maximum overall CPU time reduction was of 71%, when using LA, and of 31% when using HA.

The biggest problems, in networks with 5000 nodes, 100 000 arcs and 3 scenarios, were solved

in less than 10 seconds by HA and in less than 50 seconds by LA, after preprocessing.

Chapter 4

Reoptimization methods for the robust

shortest path problem

Reoptimization techniques may be particularly useful when a sequence of closely related in-

stances of the same problem has to be solved, or simply when the network conditions change

after the optimal solution is known. The goal of such techniques is to reduce the cost of solving

a new problem from scratch, by using information about the optimal solution of the preceding

problem. The present chapter is dedicated to develop reoptimization methods for the robust

shortest path problem in case the set of arcs, or the set of scenarios, changes due to the deletion

or the inclusion of some elements. The first question that is raised, for any case, is whether the

optimal solution of the original problem is still optimal in the modified network. Conditions

are established in order to check if this is the case. Otherwise, reoptimization methods can be

applied. Therefore, different methods are developed, first addressing changes in the set of sce-

narios, and later addressing changes in the set of arcs. It is assumed that an optimal solution, as

well as some other related parameters, are known. The idea behind the introduced approaches

is to apply a labeling technique combined with pruning rules, which aims at constructing a tree

of paths starting from the previous information. For each of the studied cases, the algorithms

are outlined and their complexity in terms of operations is evaluated. Finally, the methods are

exemplified for small instances.

4.1 Introduction

In this chapter, reoptimization methods for the robust shortest path problem will be designed.

The reoptimization of several classic optimization problems has been the subject of research

in the literature. Such problems include both those that can be solved in polynomial time as

well as NP-hard problems. For instance, shortest path problems [17, 24, 36, 37], the minimum

71

72 Reoptimization methods for the robust shortest path problem

spanning tree problem [15], the minimum cost flow problem [37], the knapsack problem [2], or the

traveling salesman problem [4, 9], to name a few. Reoptimization algorithms for combinatorial

optimization in general were addressed in [3, 47]. The insertion or deletion of nodes or arcs in

the network, or the modification of the costs are the typical changes considered in those works.

The modifications addressed in the following concern including, and deleting, scenarios in,

and from, the network, and afterwards including, and deleting arcs. A simple robust shortest

path in G, p̃, is supposed to be known, as well as its robustness cost and the shortest (1, n)-

path costs for all scenarios. This assumption is not too strong, given that these latter values

are required for computing the robustness costs. In order to ensure that there exists an optimal

solution that is simple after the network modifications, it is considered that the new networks

still do not contain negative cost cycles for any scenario. The preceding chapter included

the identification of arcs (nodes) that are part (not part) of any optimal solution. Naturally,

changes that involve these arcs or nodes do not affect the robust shortest path. However, for

the general case, conditions are established which ensure that p̃ remains an optimal solution

after modifying the network G. If this is not so, then the next step is to reoptimize p̃, and,

therefore, methods to find a new optimal solution are developed. With that aim, a set of (1, n)-

paths in the new network, which contains the new solution, is defined. Then, the search for

that path is performed by constructing a tree of those paths. The search tree, denoted ST , is

initialized according with the known information about the previous solution. Afterwards, its

construction follows a labeling approach using cost lower-bounds to filter new labels, depending

on each reoptimization case. When a (1, n)-path is computed, the rules derived for the search

set are applied.

Like before, UB will denote an upper-bound for the least robustness cost and sol a robust

shortest path candidate. List X is used to store the (1, i)-paths computed while constructing

ST , i ∈ V , and it is managed like a FIFO list.

4.2 Variation of the number of scenarios

This section is devoted to reoptimize the robust shortest path when scenarios are deleted from,

or inserted in G. To begin, it is intended to derive the conditions under which p̃ is maintained as

the robust shortest path in the obtained reduced or extended versions of G. With this purpose,

a preliminary general result is established for two networks, such that one results from the

other by deleting or inserting scenarios. Under these conditions, both networks have the same

paths, being presented the relation between the robust deviations for the common scenarios

and between the robustness costs of the (1, n)-paths in the two networks.

Variation of the number of scenarios 73

Lemma 4.1. Let G′
S = G′

S(V,A, S
′) and G′′

S = G′′
S(V,A, S

′′) be networks, such that S′ = {s′u :

u ∈ U ′} and S′′ = S′ ∪ {s′′u : u ∈ U∗} are both finite. Then, for any p ∈ P1n(G
′
S) = P1n(G

′′
S),

1. RD
s′u
G′

S
(p) = RD

s′u
G′′

S
(p), for any u ∈ U ′.

2. RCG′′
S
(p) = max

{
RCG′

S
(p) , maxu∈U∗ RD

s′′u
G′′

S
(p)

}
.

3. RCG′
S
(p) ≤ RCG′′

S
(p).

Proof.

1. Let s′u, u ∈ U ′, be any scenario common to G′
S and G′′

S . By assumption, G′
S and G′′

S have

the same paths, therefore,

LB
s′u
1n(G

′
S) = LB

s′u
1n(G

′′
S).

Moreover, for any p ∈ P1n(G
′
S) = P1n(G

′′
S),

c
s′u
G′

S
(p) = c

s′u
G′′

S
(p)

and, consequently,

RD
s′u
G′

S
(p) = RD

s′u
G′′

S
(p).

2. Let p ∈ P1n(G
′
S) = P1n(G

′′
S). By definition of robustness cost in G′′

S ,

RCG′′
S
(p) = max

{
max
u∈U ′

RD
s′u
G′′

S
(p),max

u∈U∗
RD

s′′u
G′′

S
(p)

}
.

By 1., one has

max
u∈U ′

RD
s′u
G′′

S
(p) = max

u∈U ′
RD

s′u
G′

S
(p) = RCG′

S
(p),

where the last equality comes from the definition of robustness cost in G′
S . Then, one

may write,

RCG′′
S
(p) = max

{
RCG′

S
(p) , max

u∈U∗
RD

s′′u
G′′

S
(p)

}
.

3. The proof is immediate from 2.

Lemma 4.1 will be useful when proving results related with the determination of the optimal

solution when S is reduced or extended. In either case, the conditions under which p̃ is the

robust shortest path in the modified version of G are deduced. From this analysis, the possible

candidates, besides p̃, are restricted to specific subsets of (1, n)-paths. With this knowledge,

the reoptimization methods to search for the new robust shortest path are developed by means

of a ST . This will lead to the establishment of three extension rules, the first two, common

74 Reoptimization methods for the robust shortest path problem

to every method and concerned with the extension of paths to any node, but n, and, the

third rule, covering the extensions to node n. This rule is adapted according with the search

sets obtained. The structure of the algorithmic procedures are outlined, with the deduction

of their computational time complexities. The examples for illustrating the application of the

algorithms are also provided, in order to show all their possible steps. The removal of scenarios

from G is addressed in the following.

4.2.1 Elimination of scenarios

Assume that G is a network with k > 2, and let S∗ = {su : u ∈ U∗} ⊆ S be the set of scenarios

deleted from S, with U∗ ⊆ Uk and 1 ≤ |U∗| = k∗ < k−2. The reduced version of G, G−
S∗ , has set

of scenarios S\S∗ = {su : u ∈ Uk\U
∗} and set of (1, n)-paths P1n(G

−
S∗) = P1n(G). Corollary 4.2

is a consequence of Lemma 4.1, by considering the networks G′
S = G−

S∗ and G′′
S = G.

Corollary 4.2. For any p ∈ P1n(G
−
S∗) = P1n(G),

1. RDsu
G−

S∗
(p) = RDsu

G (p), for any u ∈ Uk\U
∗.

2. RCG(p) = max
{
RCG−

S∗
(p) , maxu∈U∗ RDsu

G (p)
}
.

3. RC
G−

S∗
(p) ≤ RCG(p).

According to this result, none of the robustness costs of the paths in P1n(G) increases in G−
S∗ .

The (1, n)-paths with a robustness cost in G−
S∗ smaller than RCG−

S∗
(p̃) belong to a particular

subset of P1n(G
−
S∗). This result is established in the following, and it provides a necessary and

sufficient condition for p̃ being a robust shortest path in G and G−
S∗ .

Proposition 4.3. Let P̂1n(G
−
S∗) ⊆ P1n(G

−
S∗) be given by

P̂1n(G
−
S∗) = {p ∈ P1n(G

−
S∗) : RDsu

G (p) ≥ RCG(p̃), for some u ∈ U∗}.

1. If p ∈ P1n(G
−
S∗) satisfies RCG−

S∗
(p) < RCG−

S∗
(p̃), then p ∈ P̂1n(G

−
S∗).

2. p̃ is a robust shortest path in G−
S∗ if and only if RC

G−
S∗
(p) ≥ RC

G−
S∗
(p̃), for any p ∈

P̂1n(G
−
S∗).

Proof.

1. Let p ∈ P1n(G
−
S∗) satisfy RCG−

S∗
(p) < RCG−

S∗
(p̃). Then, applying point 3. of Corollary 4.2

to p̃ yields

RCG−
S∗
(p) < RCG(p̃).

Variation of the number of scenarios 75

Because, by assumption, p̃ is a robust shortest path in G,

RCG(p̃) ≤ RCG(p), (4.1)

and, consequently,

RCG−
S∗
(p) < RCG(p).

Then, from 2. of Corollary 4.2, it follows that

RCG(p) = max
u∈U∗

RDsu
G (p).

Because of (4.1), one has

max
u∈U∗

RDsu
G (p) ≥ RCG(p̃),

or, equivalently,

RDsu
G (p) ≥ RCG(p̃), for some u ∈ U∗,

i.e., p ∈ P̂1n(G
−
S∗).

2. Let p̃ be a robust shortest path in G−
S∗ . Then, RCG−

S∗
(p) ≥ RCG−

S∗
(p̃), for any p ∈

P1n(G
−
S∗), and, in particular, when p ∈ P̂1n(G

−
S∗).

Assume now that RCG−
S∗
(p) ≥ RCG−

S∗
(p̃) holds, for any p ∈ P̂1n(G

−
S∗). This condition

occurs when p ∈ P1n(G
−
S∗)\P̂1n(G

−
S∗), according with 1., and, therefore, it is satisfied for

any p ∈ P1n(G
−
S∗). Consequently, p̃ is a robust shortest path in G−

S∗ .

When RC
G−

S∗
(p̃) 6= 0, the result above allows to restrict the search for a robust shortest

path in G−
S∗ to the simple paths in P̂1n(G

−
S∗) with the least robustness cost in G−

S∗ .

In the following, the reoptimization procedure for G−
S∗ is devised, according with the search

strategy described in the beginning of the chapter. The algorithm sets path p̃ as the first

candidate sol for the optimal solution and RCG−
S∗
(p̃) as the first upper-bound UB for the

optimal value. If UB = 0, p̃ is returned as the optimal solution of G−
S∗ , else ST has to be

constructed. Next, the extension rules for the paths in ST are explained for G−
S∗ .

The method is supported by assigning labels to each path in ST and those are generated by

the same rules used for the labeling algorithm in Chapter 2. Since k∗ is the number of scenarios

removed from G, the label in G−
S∗ for each p1i ∈ ST ∩ P1i(G

−
S∗), i ∈ V , is a (k − k∗)-vector

given by

zG−
S∗
(p1i) = (z1

G−
S∗
(p1i), . . . , z

k−k∗

G−
S∗

(p1i)).

76 Reoptimization methods for the robust shortest path problem

It should be noted that the position of each component in the label does not necessarily coincide

with the position of the associate scenario in S\S∗, or, equivalently, with the position of the

scenario index in Uk\U
∗. Therefore, in order to set each label, the relation between the previous

positions must be known, by means of the following function

ρ : Uk−k∗ 7−→ Uk\U
∗

u 7−→ u-th element in Uk\U
∗

Under these conditions, the first label is set for node 1 as

z
G−

S∗
(〈1〉) = (−LB

sρ(1)
1n (G), . . . ,−LB

sρ(k−k∗)

1n (G)),

since LB
sρ(u)
1n (G−

S∗) = LB
sρ(u)
1n (G), for any u ∈ Uk−k∗ .

Let p1i ∈ ST ∩P1i(G
−
S∗), i ∈ V , for which (i, j) ∈ A is added, then, the label in G−

S∗ for the

(1, j)-path p1j = p1i ⋄ 〈i, j〉, is obtained from zG−
S∗
(p1i), as follows

zG−
S∗
(p1j) = (z1

G−
S∗
(p1i) + c

sρ(1)
ij (G−

S∗), . . . , z
k−k∗

G−
S∗

(p1i) + c
sρ(k−k∗)

ij (G−
S∗)).

When j = n,

zG−
S∗
(p1n) = (RD

sρ(1)

G−
S∗

(p1n), . . . , RD
sρ(k−k∗)

G−
S∗

(p1n)),

and, consequently, the robustness cost of p1n in G−
S∗ is

RCG−
S∗
(p1n) = max

u∈Uk−k∗
zu
G−

S∗
(p1n).

The first extension rule consists in considering in ST the paths of P1i(G
−
S∗), i ∈ V \{n}, that

can be extended from node i to (1, n)-paths with robustness costs in G−
S∗ that can improve UB,

i.e. such that

max
u∈Uk−k∗

{zu
G−

S∗
(p1i) + LB

sρ(u)
in (G−

S∗)} < UB. (4.2)

By the same reason, the second extension rule considers that an arc (i, j) can be added to a

path p1i ∈ ST ∩ P1i(G
−
S∗), i ∈ V \{n}, when

max
u∈Uk−k∗

{zu
G−

S∗
(p1i) + c

sρ(u)
ij (G−

S∗) + LB
sρ(u)
jn (G−

S∗)} < UB. (4.3)

From node 1, ST starts to include the arcs of p̃ at a time, since its first until its penultimate,

that satisfy the rule above. Then, list X, which collects the paths for extension in ST , starts

with

X = {〈1〉} ∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ A(p̃), j 6= n, satisfy (4.3)}.

One stops to include the arcs of p̃ in ST , when an arc that does not satisfy (4.3) is found.

Once the part of path p̃ is set in ST , the subsequent extension must not repeat the sub-paths

Variation of the number of scenarios 77

of p̃ in ST and, besides, it must not produce loops, since it is intended to find a simple robust

shortest path in G−
S∗ . With the first goal, any arc (i, j) added to the (1, i)-sub-path of p̃, p̃1i,

i ∈ V \{n}, in ST cannot be part of p̃. With the second goal, the same extension applied to a

simple path p1i ∈ ST ∩ P1i(G
−
S∗) must assure that p1j is still simple. Hence, by knowing the

part of p̃ in ST , the set of arcs candidate to extend p1i ∈ ST ∩P1i(G
−
S∗), i ∈ V \{n}, is denoted

by Ad
G−

S∗
(p1i | p̃), and it can be determined as

AdG−
S∗
(p1i | p̃) =





{
(i, j) ∈ A\A(p̃) : j /∈ V (p1i)

}
if p1i = p̃1i

{
(i, j) ∈ A : j /∈ V (p1i)

}
if p1i 6= p̃1i

If (i, j) ∈ AdG−
S∗
(p1i | p̃), with j 6= n, then (i, j) is added to p1i, when (4.3) is satisfied. If

(i, n) ∈ AdG−
S∗
(p1i | p̃), a third extension rule concerning the arcs with head node n must apply.

Specifically, (i, n) extends p1i if it produces a (1, n)-path p1n belonging to P̂1n(G
−
S∗), according

with Proposition 4.3, and if RCG−
S∗
(p1n), denoted by RCaux, can improve UB, i.e. if





RDsu
G (p1n) ≥ RCG(p̃), for some u ∈ U∗

RCaux = maxu∈Uk−k∗
{zu

G−
S∗
(p1i) + c

sρ(u)
in (G−

S∗)} < UB.
(4.4)

When both conditions are satisfied, the new candidate for the robust shortest path of G−
S∗ , sol,

is p1n, and UB is updated to RCaux. Along the method, whenever UB is improved, all the

paths collected in X must be tested again in order to check if some can be discarded. This

happens when the path does not satisfy (4.2) for the new update.

The pseudo-code of the reoptimization method is given in Algorithm 8.

Computational time complexity order Let k = k − k∗ denote the number of scenarios

in G−
S∗ . Algorithm 8 is performed in two stages. The first consists in determining the trees

T su
n (G−

S∗), the costs LBsu
in (G

−
S∗), i ∈ V , u ∈ Uk\U

∗, and setting the initial UB. The former

task can be done in Oa
1 = O(km) time for acyclic networks and in Oc

1 = O(k(m+n log n)) time

for general networks, as seen before. These are the complexities for the first stage, because they

are not affected by the complexity for calculating RC
G−

S∗
(p̃), in order to initialize UB, which is

O(kn).

78 Reoptimization methods for the robust shortest path problem

Algorithm 8: Finding the robust shortest path in G−
S∗ , given p̃, RCG(p̃) and LBsu

1n(G), u ∈ Uk

1 for u ∈ Uk\U∗
do Compute T su

n (G−
S∗) and LBsu

in (G
−
S∗), i ∈ V ;

2 RCG−

S∗

(p̃)← maxu∈Uk\U∗ RDsu

G
−

S∗

(p̃); UB ← RCG−

S∗

(p̃); sol← p̃;

3 if UB 6= 0 then

4 X ← {〈1〉};

5 for u ∈ Uk−k∗ do ρ(u)← u-th element in Uk\U
∗; zu

G
−

S∗

(〈1〉)← −LB
sρ(u)

1n (G−
S∗);

6 for (i, j) ∈ A(p̃) and j 6= n do

7 if maxu∈Uk−k∗ {zuG−

S∗

(p̃1i) + c
sρ(u)

ij (G−
S∗) + LB

sρ(u)

jn (G−
S∗)} < UB then

8 X ← X ∪ {p̃1j};

9 for u ∈ Uk−k∗ do zu
G

−

S∗

(p̃1j)← zu
G

−

S∗

(p̃1i) + c
sρ(u)

ij (G−
S∗);

10 else break;

11 while X 6= ∅ do

12 p1i ← first path in X ; X ← X − {p1i}; Compute AdG−

S∗

(p1i | p̃);

13 for (i, j) ∈ AdG−

S∗

(p1i | p̃) do

14 p1j ← p1i ⋄ 〈i, j〉;
15 if j = n then

16 for u ∈ U∗
do

17 if RDsu
G (p1j) ≥ RCG(p̃) then

18 RCaux← maxu′∈Uk−k∗ {zu
′

G
−

S∗

(p1i) + c
sρ(u′)

ij (G−
S∗)};

19 if RCaux < UB then

20 UB ← RCaux; sol← p1j ;
21 for p1i′ ∈ X do

22 for u′ ∈ Uk−k∗ do

23 if zu
′

G
−

S∗

(p1i′) + LB
sρ(u′)

i′n (G−
S∗) ≥ UB then

24 X ← X − {p1i′}; break;

25 break;

26

27 else

28 if maxu∈Uk−k∗ {zuG−

S∗

(p1i) + c
sρ(u)

ij (G−
S∗) + LB

sρ(u)

jn (G−
S∗)} < UB then

29 X ← X ∪ {p1j};

30 for u ∈ Uk−k∗ do zu
G

−

S∗

(p1j)← zu
G

−

S∗

(p1i) + c
sρ(u)

ij (G−
S∗);

31 return sol;

Variation of the number of scenarios 79

The second stage concerns the construction of ST , which requires the generation of labels

and the application of the extension rules. In order to set the labels, function ρ is defined in

O(k) time, which is also the complexity for generating each label for the sub-paths of p̃, in

order to set the initial list X. Similarly to the labeling algorithm in Chapter 2, the maximum

number of paths generated in ST ∩ P1i(G
−
S∗), i ∈ V , denoted by W−

S , is considered. Then,

(n− 1)W−
S is the maximum number of paths in X, that is the maximum number of iterations

of the while loop in line 11, and each of them requires at most n− 1 iterations of the for loop

in line 13 for scanning the arcs for addition. In each of these iterations, the remaining labels

are generated and the extension rules are applied. The labeling and the extension rule (4.3) are

performed in O(k) time. For extension rule (4.4), O(k∗n) operations are demanded to test the

first inequality in a worst case, and O(k) operations are required to set RCaux. The extension

rule (4.2) is applied in case UB is updated and requires O(k) time to test each path in X, and,

therefore, performing the for loop in line 21 has O(knW−
S) time. Consequently, the second

stage has a complexity of O2 = O(k
∗n3W−

S + kn3(W−
S)2) = O(max{k∗, kW−

S }n
3W−

S).

In conclusion, Algorithm 8 has a total time complexity of O
(
max{k∗, kW−

S }n
3W−

S

)
, for

any type of network, since log n≪ n and m < n2. It can be noted that besides the number of

scenarios of G−
S∗ , the time complexity depends also on the number of scenarios removed from

G.

Example In the following, Algorithm 8 is applied after reducing the network G5 = G5(V,A,U4)

in Figure 4.1, with respect to its set of scenarios.

1
0, 1, 2, 4

1, 0, 0, 1

0, 2, 2, 5

2

0, 4, 5, 1

1, 4, 3, 9

3

3, 2, 3, 1

0, 1, 2, 1

1, 1, 1, 2

4

1, 2, 3, 4

3, 2, 1, 1

5
1, 2, 3, 1

0, 1, 1, 4

2, 1, 5, 5

6

1, 0, 1, 0
1, 0, 1, 1

7

i
c1ij(G5), . . . , c4ij(G5)

j

Figure 4.1: Network G5

By hypothesis, the shortest path costs

LB1
17(G5) = 2 , LB2

17(G5) = 3 , LB3
17(G5) = 3 and LB4

17(G5) = 6

80 Reoptimization methods for the robust shortest path problem

are known, as well as a simple robust shortest path of G5,

p̃ = 〈1, 4, 6, 7〉 , with RCG5(p̃) = 2.

The reduced network, (G5)
−
{2,3}, results from G5 by removing scenarios 2 and 3 – Figure 4.2.

In this example, T u
7 ((G5)

−
{2,3}) = T

u
7 (G5), u ∈ {1, 4} – Figure 4.3.

1
0, 4

1, 1

0, 5

2

0, 1

1, 9

3

3, 1

0, 1

1, 2

4

1, 4

3, 1

5
1, 1

0, 4

2, 5

6

1, 0
1, 1

7

i
c1ij(G5), c

4
ij(G5)

j

Figure 4.2: Network (G5)
−
{2,3}

1

2

2

1

3

2

4

3

5

1

6

1

7

0

i

LB1
i7(G5)

(a) T 1
7 ((G5)

−
{2,3}) = T

1
7 (G5)

1

6

2

5

3

3

4

2

5

4

6

1

7

0

i

LB4
i7(G5)

(b) T 4
7 ((G5)

−
{2,3}) = T

4
7 (G5)

Figure 4.3: Shortest path trees rooted at node 7 in G5 and (G5)
−
{2,3} for scenarios 1 and 4

The initial UB and sol are set to

UB = RC(G5)
−
{2,3}

(p̃) = max
u∈{1,4}

RDu
(G5)

−
{2,3}

(p̃) = 2 and sol = p̃ = 〈1, 4, 6, 7〉.

Since UB 6= 0, ST has to be constructed. To set the labels, the function ρ : U2 7−→ {1, 4}

satisfies ρ(1) = 1 and ρ(2) = 4. Then, the first label is set to

z(G5)
−
{2,3}

(〈1〉) = (−LB1
17(G5),−LB

4
17(G5)) = (−2,−6),

Variation of the number of scenarios 81

and ST starts with the sub-paths of p̃ in list X given by

X =
{
〈1〉

}
∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ {(1, 4), (4, 6)} satisfy (4.3)

}
.

The arc (1, 4) can extend 〈1〉, because

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1〉) + c
ρ(u)
14 ((G5)

−
{2,3}) + LB

ρ(u)
47 ((G5)

−
{2,3})} = 1 < UB.

Then, the label

z(G5)
−
{2,3}

(〈1, 4〉) = (−2,−1),

is set, and, one concludes that path 〈1, 4, 6〉 does not belong to ST , because

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1, 4〉) + c
ρ(u)
46 ((G5)

−
{2,3}) + LB

ρ(u)
67 ((G5)

−
{2,3})} = 2 ≥ UB.

Therefore, ST starts with

X = {〈1〉, 〈1, 4〉}.

Figure 4.4 shows the ST obtained when applying Algorithm 8 to (G5)
−
{2,3}. The part of p̃

which is not included is represented by a dashed line. Moreover, the label in (G5)
−
{2,3} for each

(1, i)-path in ST is attached to node i, i ∈ V .

1 (−2,−6)

2(−1,−5) 3 (−2,−2)

4 (−2,−1)5(−1,−4)

6

(−1, 0)

7

(1, 1)

4 (−2,−1)

6

7

Figure 4.4: ST produced by Algorithm 8 for (G5)
−
{2,3}

Starting to extend from node 1, one has

Ad(G5)
−
{2,3}

(〈1〉 | p̃) = {(1, j) ∈ A\A(p̃)} = {(1, 2), (1, 3)}.

All of the arcs in the previous set can be added to node 1, since

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1〉) + c
ρ(u)
12 ((G5)

−
{2,3}) + LB

ρ(u)
27 ((G5)

−
{2,3})} = 0 < UB

and

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1〉) + c
ρ(u)
13 ((G5)

−
{2,3}) + LB

ρ(u)
37 ((G5)

−
{2,3})} = 1 < UB.

82 Reoptimization methods for the robust shortest path problem

Consequently, X is updated to

X = {〈1, 4〉, 〈1, 2〉, 〈1, 3〉}

and the labels

z(G5)
−
{2,3}

(〈1, 2〉) = (−1,−5) and z(G5)
−
{2,3}

(〈1, 3〉) = (−2,−2)

are set. In the next iteration, path 〈1, 4〉 is selected for extension. In this case, the arc in

Ad(G5)
−
{2,3}

(〈1, 4〉 | p̃) = {(4, j) ∈ A\A(p̃) : j 6= 1} = {(4, 3)}

cannot be added, given that

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1, 4〉) + c
ρ(u)
43 ((G5)

−
{2,3}) + LB

ρ(u)
37 ((G5)

−
{2,3})} = 6 ≥ UB.

Path 〈1, 2〉 is the next to be extended in X, with

Ad(G5)
−
{2,3}

(〈1, 2〉 | p̃) = {(2, j) ∈ A : j 6= 1} = {(2, 5), (2, 7)}.

Arc (2, 5) is added, because

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1, 2〉) + c
ρ(u)
25 ((G5)

−
{2,3}) + LB

ρ(u)
57 ((G5)

−
{2,3})} = 0 < UB.

The label

z(G5)
−
{2,3}

(〈1, 2, 5〉) = (−1,−4),

is then obtained and X is updated to

X = {〈1, 3〉, 〈1, 2, 5〉}.

Nevertheless, when considering arc (2, 7) and the scenarios of S∗ = {2, 3}, one has

RD2
G5

(〈1, 2, 7〉) = 1 < RCG5(p̃) and RD3
G5

(〈1, 2, 7〉) = 0 < RCG5(p̃).

This means that the first condition of (4.4) is not satisfied. Consequently, 〈1, 2, 7〉 cannot be

an optimal solution in (G5)
−
{2,3} and, therefore, arc (2, 7) is not added to 〈1, 2〉. At the next

iteration, 〈1, 3〉 is evaluated, with

Ad(G5)
−
{2,3}

(〈1, 3〉 | p̃) = {(3, j) ∈ A : j 6= 1} = {(3, 2), (3, 4), (3, 5)}.

The arcs (3, 2) and (3, 5) cannot extend 〈1, 3〉, because

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1, 3〉) + c
ρ(u)
3i ((G5)

−
{2,3}) + LB

ρ(u)
i7 ((G5)

−
{2,3})} = 4 ≥ UB, i = 2, 5.

Variation of the number of scenarios 83

But, for arc (3, 4), one has

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1, 3〉) + c
ρ(u)
34 ((G5)

−
{2,3}) + LB

ρ(u)
47 ((G5)

−
{2,3})} = 1 < UB,

and, therefore, (3, 4) is added to 〈1, 3〉. The obtained path 〈1, 3, 4〉 is included in X, which is

updated to

X = {〈1, 2, 5〉, 〈1, 3, 4〉},

and the label

z(G5)
−
{2,3}

(〈1, 3, 4〉) = (−2,−1)

is set. The path 〈1, 2, 5〉 is the next to be selected. From

Ad(G5)
−
{2,3}

(〈1, 2, 5〉 | p̃) = {(5, j) ∈ A : j /∈ {1, 2}} = {(5, 3), (5, 6), (5, 7)},

only arcs (5, 6) and (5, 7) are included in ST . In fact, for arc (5, 3),

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1, 2, 5〉) + c
ρ(u)
53 ((G5)

−
{2,3}) + LB

ρ(u)
37 ((G5)

−
{2,3})} = 2 ≥ UB.

However, for arc (5, 6),

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1, 2, 5〉) + c
ρ(u)
56 ((G5)

−
{2,3}) + LB

ρ(u)
67 ((G5)

−
{2,3})} = 1 < UB,

which allows to include path 〈1, 2, 5, 6〉 in X,

X = {〈1, 3, 4〉, 〈1, 2, 5, 6〉},

and to determine the label

z(G5)
−
{2,3}

(〈1, 2, 5, 6〉) = (−1, 0).

For arc (5, 7), (4.4) is satisfied as





RD2
G5

(〈1, 2, 5, 7〉) = 2 ≥ RCG5(p̃), with 2 ∈ S∗

RCaux = maxu∈U2{z
u
(G5)

−
{2,3}

(〈1, 2, 5〉) + c
ρ(u)
57 ((G5)

−
{2,3})} = 1 < UB

Consequently, 〈1, 2, 5, 7〉 is a new candidate for the robust shortest path of (G5)
−
{2,3} and, then,

UB and sol are updated to

UB = 1 and sol = 〈1, 2, 5, 7〉.

With this update, all the paths in X,

X = {〈1, 3, 4〉, 〈1, 2, 5, 6〉},

84 Reoptimization methods for the robust shortest path problem

must be tested in order to discard those that cannot produce optimal solutions in (G5)
−
{2,3},

according to (4.2). In fact, none of them can be considered for extension, since

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1, 3, 4〉) + LB
ρ(u)
47 ((G5)

−
{2,3})} = 1 ≥ UB

and

max
u∈U2

{zu
(G5)

−
{2,3}

(〈1, 2, 5, 6〉) + LB
ρ(u)
67 ((G5)

−
{2,3})} = 1 ≥ UB.

Consequently, all the paths in X are eliminated and Algorithm 8 halts, returning 〈1, 2, 5, 7〉 as

the robust shortest path in (G5)
−
{2,3}, with RC(G5)

−
{2,3}

(〈1, 2, 5, 7〉) = 1.

Next, the reoptimization procedure for the extended version of G with respect to the set of

scenarios is devised.

4.2.2 Addition of scenarios

Let S∗ = {su : u ∈ U∗}, with U∗ = {k + 1, . . . , k + k∗}, k∗ ≥ 1, be a finite set of scenarios

added to G. The extended version of G, G+
S∗ , has set of scenarios S ∪S∗ and set of (1, n)-paths

P1n(G
+
S∗) = P1n(G). Like for the previous subsection, the results of Lemma 4.1 can be adapted,

considering now the networks G′
S = G and G′′

S = G+
S∗ .

Corollary 4.4. For any p ∈ P1n(G
+
S∗) = P1n(G),

1. RDsu
G (p) = RDsu

G+
S∗
(p), for any u ∈ Uk.

2. RC
G+

S∗
(p) = max

{
RCG(p) , maxu∈U∗ RDsu

G+
S∗
(p)

}
.

3. RCG(p) ≤ RCG+
S∗
(p).

It should be noted that none of the robustness costs of the paths in P1n(G) decreases in G+
S∗ .

The preservation of p̃ as a robust shortest path in G+
S∗ depends on the scenarios added to S

and on how they determine the relation of the associate robust deviations of p̃ with RCG(p̃). In

the following, conditions are established to assure such maintenance. Moreover, other possible

optimal solutions can be restricted to a particular subset of P1n(G
+
S∗).

Proposition 4.5. Let Û∗ ⊆ U∗ be given by

Û∗ = {u ∈ U∗ : RDsu
G+

S∗
(p̃) > RCG(p̃)}.

1. If Û∗ = ∅, then p̃ is a robust shortest path in G+
S∗, with RCG+

S∗
(p̃) = RCG(p̃).

Variation of the number of scenarios 85

2. If Û∗ 6= ∅, then RCG+
S∗
(p̃) = max

u∈Û∗ RDsu
G+

S∗
(p̃) > RCG(p̃). Let P̂1n(G

+
S∗) ⊆ P1n(G

+
S∗)

be given by

P̂1n(G
+
S∗) = {p ∈ P1n(G

+
S∗) : RCG(p) < RCG+

S∗
(p̃)}.

(a) If p ∈ P1n(G
+
S∗) satisfies RCG+

S∗
(p) < RCG+

S∗
(p̃), then p ∈ P̂1n(G

+
S∗).

(b) p̃ is a robust shortest path in G+
S∗ if and only if RC

G+
S∗
(p) ≥ RC

G+
S∗
(p̃), for any

p ∈ P̂1n(G
+
S∗).

Proof.

1. If Û∗ = ∅, then, RDsu
G+

S∗
(p̃) ≤ RCG(p̃), for any u ∈ U∗, i.e.

max
u∈U∗

RDsu
G+

S∗
(p̃) ≤ RCG(p̃).

Hence, from point 2. of Corollary 4.4 applied to p̃, one must have

RCG+
S∗
(p̃) = RCG(p̃).

Because, by assumption, p̃ is a robust shortest path in G, RCG(p) ≥ RCG(p̃), for any

p ∈ P1n(G) = P1n(G
+
S∗), and, therefore,

RCG(p) ≥ RCG+
S∗
(p̃) , for any p ∈ P1n(G

+
S∗).

Then, by point 3. of Corollary 4.4,

RCG+
S∗
(p) ≥ RCG+

S∗
(p̃) , for any p ∈ P1n(G

+
S∗),

which means p̃ is a robust shortest path in G+
S∗ and, moreover, it satisfies RC

G+
S∗
(p̃) =

RCG(p̃), as seen above.

2. If Û∗ 6= ∅, then, by definition of set Û∗,

max
u∈U∗

RDsu
G+

S∗
(p̃) = max

u∈Û∗
RDsu

G+
S∗
(p̃) > RCG(p̃).

Hence, by point 2. of Corollary 4.4 applied to p̃,

RC
G+

S∗
(p̃) = max

u∈Û∗
RDsu

G+
S∗
(p̃) > RCG(p̃).

(a) Let p ∈ P1n(G
+
S∗) satisfy RCG+

S∗
(p) < RCG+

S∗
(p̃). From point 3. of Corollary 4.4,

RCG(p) < RC
G+

S∗
(p̃),

and, therefore, p ∈ P̂1n(G
+
S∗).

86 Reoptimization methods for the robust shortest path problem

(b) The result is derived with the same reasoning applied for point 2. of Proposition 4.3,

but now considering network G+
S∗ and set P̂1n(G

+
S∗).

According with Proposition 4.5, Û∗ has to be known to evaluate the necessity of reoptimizing

the problem at G+
S∗ . In case Û∗ = ∅, the method is skipped, as p̃ is still a robust shortest path

in G+
S∗ . Otherwise, by setting the initial sol to p̃ and the initial UB to RCG+

S∗
(p̃), a search

is performed among the simple paths of P̂1n(G
+
S∗). However, this set can be modified by

considering the updates of UB as the upper-bounds of the robustness costs in G of the paths

in P1n(G
+
S∗), instead of considering RCG+

S∗
(p̃). Hence, the new search set is defined by

P̂
(UB)
1n (G+

S∗) = {p ∈ P1n(G
+
S∗) : RCG(p) < UB},

and it can be reduced whenever UB is updated. In fact, there is no need to analyze further

any path p ∈ P1n(G
+
S∗), such that UB′ ≤ RCG(p) < UB, because, by point 3. of Corollary 4.4,

under that condition, RCG+
S∗
(p) ≥ UB′. Hence, when updating UB, the search set is updated

as well by P̂
(UB)
1n (G+

S∗).

In the following, the extension rules for constructing ST for G+
S∗ are described, according

with the principles applied in the previous subsection to guide the search. For assigning labels,

since k∗ is the number of scenarios added to S, the label in G+
S∗ for each p1i ∈ ST ∩ P1i(G

+
S∗),

i ∈ V , is a (k + k∗)-vector given by

z
G+

S∗
(p1i) = (z1

G+
S∗
(p1i), . . . , z

k+k∗

G+
S∗

(p1i)).

The first label is set for node 1 by

zG+
S∗
(〈1〉) = (−LBs1

1n(G), . . . ,−LBsk
1n(G),−LB

sk+1

1n (G+
S∗), . . . ,−LB

sk+k∗

1n (G+
S∗)),

as LBsu
1n(G

+
S∗) = LBsu

1n(G), for any u ∈ Uk.

Let p1i ∈ ST ∩P1i(G
−
S∗), i ∈ V , for which (i, j) ∈ A is added, then, the label in G+

S∗ for the

(1, j)-path p1j = p1i ⋄ 〈i, j〉, is

z
G+

S∗
(p1j) = (z1

G+
S∗
(p1i) + cs1ij (G

+
S∗), . . . , z

k+k∗

G+
S∗

(p1i) + c
sk+k∗

ij (G+
S∗)).

When j = n,

zG+
S∗
(p1n) = (RDs1

G+
S∗
(p1n), . . . , RD

sk+k∗

G+
S∗

(p1n)),

and, therefore,

RC
G+

S∗
(p1n) = max

u∈Uk+k∗
zu
G+

S∗
(p1n).

Variation of the number of scenarios 87

Under these conditions, the first extension rule considers that p1i ∈ P1i(G
+
S∗), i ∈ V \{n}, is

part of ST if

max
u∈Uk+k∗

{zu
G+

S∗
(p1i) + LBsu

in (G
+
S∗)} < UB. (4.5)

The second rule considers that condition

max
u∈Uk+k∗

{zu
G+

S∗
(p1i) + csuij (G

+
S∗) + LBsu

jn(G
+
S∗)} < UB. (4.6)

must hold for any arc (i, j) that extends p1i ∈ P1i(G
+
S∗)∩ ST , i ∈ V \{n}. As explained before,

the part of p̃ included in ST is set in the initial list X, given by

X = {〈1〉} ∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ A(p̃), j 6= n, satisfy (4.6)}.

By knowing these paths, the subsequent extension technique applies to each p1i ∈ ST∩P1i(G
+
S∗),

i ∈ V \{n}, by choosing the arcs in set AdG+
S∗
(p1i | p̃), which is determined as in Algorithm 8. An

arc (i, j) ∈ AdG+
S∗
(p1i | p̃), with j 6= n, is added to p1i, when (4.6) is verified. When j = n, the

third extension rule applies to the obtained (1, n)-path, p1n, which must belong to P̂
(UB)
1n (G+

S∗)

and must satisfy RCG+
S∗
(p1n) < UB. The labels in G+

S∗ can be used to calculate RCG(p1n) and

RCG+
S∗
(p1n), denoted by aux1 and RCaux, respectively. In fact,

aux1 = max
u∈Uk

RDsu
G (p1n) = max

u∈Uk

RDsu
G+

S∗
(p1n),

taking into account point 1. of Corollary 4.4, and

RCaux = max
{
aux1,max

u∈U∗
RDsu

G+
S∗
(p1n)

}
,

according to point 2. of Corollary 4.4, with

RDsu
G+

S∗
(p1n) = zu

G+
S∗
(p1i) + csuin (G

+
S∗) , u ∈ Uk+k∗.

Hence, if 



aux1 = maxu∈Uk
{zu

G+
S∗
(p1i) + csuin (G

+
S∗)} < UB

RCaux = max
{
aux1,maxu∈U∗{zu

G+
S∗
(p1i) + csuin (G

+
S∗)}

}
< UB

(4.7)

are satisfied, the new candidate for the optimal solution, sol, is p1n and UB is updated to

RCaux. With this new value, the first extension rule must be tested for the paths in X. Only

the paths satisfying (4.5) are considered for further extension, the remaining are discarded.

The pseudo-code of the reoptimization method is given in Algorithm 9.

88 Reoptimization methods for the robust shortest path problem

Algorithm 9: Finding the robust shortest path in G+
S∗ , given p̃, RCG(p̃) and LBsu

1n(G), u ∈ Uk

1 for u ∈ U∗
do Compute T su

n (G+
S∗) and LBsu

in (G
+
S∗), i ∈ V ;

2 sol← p̃; Û∗ ← {u ∈ U∗ : RDsu

G
+
S∗

(p̃) > RCG(p̃)};

3 if Û∗ 6= ∅ then

4 RCG
+
S∗

(p̃)← max
u∈Û∗ RDsu

G
+
S∗

(p̃); UB ← RCG
+
S∗

(p̃); X ← {〈1〉};

5 for u ∈ Uk do Compute T su
n (G+

S∗) and LBsu
in (G

+
S∗), i ∈ V ;

6 for u ∈ Uk+k∗ do zu
G

+
S∗

(〈1〉)← −LBsu
1n(G

+
S∗);

7 for (i, j) ∈ A(p̃) and j 6= n do

8 if maxu∈Uk+k∗ {z
u

G
+
S∗

(p̃1i) + csuij (G
+
S∗) + LBsu

jn(G
+
S∗)} < UB then

9 X ← X ∪ {p̃1j};

10 for u ∈ Uk+k∗ do zu
G

+
S∗

(p̃1j)← zu
G

+
S∗

(p̃1i) + csuij (G
+
S∗);

11 else break;

12 while X 6= ∅ do

13 p1i ← first path in X ; X ← X − {p1i}; Compute AdG+
S∗

(p1i | p̃);

14 for (i, j) ∈ AdG+
S∗

(p1i | p̃) do

15 if j = n then

16 aux1← maxu∈Uk
{zu

G
+
S∗

(p1i) + csuij (G
+
S∗)};

17 if aux1 < UB then

18 RCaux← max{aux1,maxu∈U∗{zu
G

+
S∗

(p1i) + csuij (G
+
S∗)}};

19 if RCaux < UB then

20 UB ← RCaux; sol← p1i ⋄ 〈i, j〉;
21 for p1i′ ∈ X do

22 for u ∈ Uk+k∗ do

23 if zu
G

+
S∗

(p1i′) + LBsu
i′n(G

+
S∗) ≥ UB then

24 X ← X − {p1i′}; break;

25

26 else

27 if maxu∈Uk+k∗{zuG+
S∗

(p1i) + csuij (G
+
S∗) + LBsu

jn(G
+
S∗)} < UB then

28 p1j ← p1i ⋄ 〈i, j〉; X ← X ∪ {p1j};

29 for u ∈ Uk+k∗ do zu
G

+
S∗

(p1j)← zu
G

+
S∗

(p1i) + csuij (G
+
S∗);

30 return sol;

Variation of the number of scenarios 89

Computational time complexity order Let k̄ = k + k∗ denote the number of scenarios

in G+
S∗ and W+

S denote the maximum number of paths generated in ST ∩ P1i(G
+
S∗), i ∈ V .

Algorithm 9 has two phases. The first regards the preliminary computations to perform the

search for a robust shortest path in G+
S∗ . The second is concerned with the latter task for the

extension and labeling of the paths in ST .

In a worst case, the first phase demands the calculation of the trees T su
n (G+

S∗) and of

the costs LBsu
in (G

+
S∗), i ∈ V , u ∈ Uk̄, in Oa

1 = O(k̄m) time for acyclic networks and in Oc
1 =

O(k̄(m+n log n)) for general networks, as seen in Algorithm 8, but now considering k̄ scenarios.

To determine set Û∗ and, later, in a worst case, the initial UB, given by RCG+
S∗
(p̃), O(k∗n)

operations are required. Nevertheless, this complexity does not modify the previous.

The second phase concerns the development of ST . The generation of each label and the

application of the extension rule (4.6) demand O(k̄) time. These operations are needed to set

the part of p̃ included in ST and, later, when extending the paths by means of the while loop

in line 12, which requires (n − 1)W+
S iterations at most. Each of them, implies at most n − 1

iterations of the for loop in line 14, when selecting the arcs to be evaluated. The remaining

operations in each of those iterations are the extension rules (4.7) and (4.5). Both can be

done for each path in O(k̄) time. Whenever UB is updated, (4.5) must be repeated in the

for loop of line 21, for every path in list X, which has at most (n − 1)W+
S elements, and

therefore an O(k̄nW+
S) complexity is demanded. Consequently, the second phase is performed

in O2 = O(k̄n
3(W+

S)2).

In conclusion, Algorithm 9 has a total time complexity of O(k̄n3(W+
S)2) for any type of

network, given that log n≪ n and m < n2.

Examples Next, two examples of how to reoptimize the robust shortest path problem in

network G5 – Figure 4.1, are provided, by extending G5 with respect to its set of scenarios.

One illustrates Û∗ = ∅ and the other the opposite case. In the first example, only one scenario

is added to G5 and, in the second, another scenario is added to the first example. For each, a

simple robust shortest path is determined by Algorithm 9.

Recall that for G5, p̃ = 〈1, 4, 6, 7〉, with RCG5(p̃) = 2.

Case 1 The network obtained from G5 after the addition of scenario 5, (G5)
+
5 , is depicted

in Figure 4.5. For the new scenario, p1,5((G5)
+
5) = 〈1, 3, 5, 7〉, with LB5

17((G5)
+
5) = 2. Hence,

RD5
(G5)

+
5
(p̃) = c5

(G5)
+
5
(p̃)− LB5

17((G5)
+
5) = 2 ≤ RCG5(p̃), (4.8)

which means,

Û∗ = ∅.

90 Reoptimization methods for the robust shortest path problem

1
0, 1, 2, 4, 0

1, 0, 0, 1, 0

0, 2, 2, 5, 3

2

0, 4, 5, 1, 8

1, 4, 3, 9, 8

3

3, 2, 3, 1, 0

0, 1, 2, 1, 2

1, 1, 1, 2, 1

4

1, 2, 3, 4, 0

3, 2, 1, 1, 0

5
1, 2, 3, 1, 0

0, 1, 1, 4, 1

2, 1, 5, 5, 1

6

1, 0, 1, 0, 1

1, 0, 1, 1, 1

7

i
c1ij(G5), . . . , c4ij(G5), c5ij

(
(G5)

+
5

)
j

Figure 4.5: Network (G5)
+
5

Consequently, Algorithm 9 returns p̃ as the robust shortest path of (G5)
+
5 , for which RC(G5)

+
5
(p̃) =

RCG5(p̃) = 2, by 1. of Proposition 4.5.

Case 2 Assume now that two scenarios are added to G5 – Figure 4.6, with scenario 5

defined like in Case 1. In this example, T u
7 ((G5)

+
{5,6}) = T

u
7 (G5), u ∈ U4. For scenarios 1 and

4, these trees were already represented in Figure 4.3. For the remaining scenarios, the trees are

represented in Figure 4.7. Since scenario 5 is defined like in Case 1, condition (4.8) is satisfied

and also

RD6
(G5)

+
{5,6}

(p̃) = c6
(G5)

+
{5,6}

(p̃)− LB6
17((G5)

+
{5,6}) = 6 > RCG(p̃),

which allows to derive that

Û∗ = {6}.

As Û∗ 6= ∅, UB and sol are initialized by

UB = RC(G5)
+
{5,6}

(p̃) = max
{
RCG5(p̃), max

u∈{5,6}
RDu

(G5)
+
{5,6}

(p̃)
}
= 6 and sol = p̃ = 〈1, 4, 6, 7〉.

Consequently, ST has to be developed from node 1, with label

z(G5)
+
{5,6}

(〈1〉) = (−2,−3,−3,−6,−2,−7),

and with the sub-paths of p̃ in

X =
{
〈1〉

}
∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ {(1, 4), (4, 6)} satisfy (4.6)

}
.

Variation of the number of scenarios 91

1
0, 1, 2, 4, 0, 5

1, 0, 0, 1, 0, 5

0, 2, 2, 5, 3, 8

2

0, 4, 5, 1, 8, 0

1, 4, 3, 9, 8, 8

3

3, 2, 3, 1, 0, 4

0, 1, 2, 1, 2, 1

1, 1, 1, 2, 1, 1

4

1, 2, 3, 4, 0, 0

3, 2, 1, 1, 0, 1

5
1, 2, 3, 1, 0, 0

0, 1, 1, 4, 1, 4

2, 1, 5, 5, 1, 2

6

1, 0, 1, 0, 1, 0

1, 0, 1, 1, 1, 4

7

i
c1ij(G5), . . . , c4ij(G5), c5ij

(
(G5)

+
{5,6}

)
, c6ij

(
(G5)

+
{5,6}

)

j

Figure 4.6: Network (G5)
+
{5,6}

Path 〈1, 4〉 belongs to ST , because

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1〉) + cu14((G5)
+
{5,6}) + LBu

47((G5)
+
{5,6})} = 4 < UB,

which allows to set

z(G5)
+
{5,6}

(〈1, 4〉) = (−2,−1,−1,−1, 1, 1).

Then, arc (4, 6) can be added to 〈1, 4〉, since

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 4〉) + cu46((G5)
+
{5,6}) + LBu

67((G5)
+
{5,6})} = 4 < UB,

and the next label is

z(G5)
+
{5,6}

(〈1, 4, 6〉) = (1, 1, 0, 0, 1, 2).

Therefore, ST starts with the paths of

X = {〈1〉, 〈1, 4〉, 〈1, 4, 6〉}.

Figure 4.8 shows the ST resultant from applying Algorithm 9 to (G5)
+
{5,6}. The arcs available

for extending 〈1〉 belong to

Ad(G5)
+
{5,6}

(〈1〉 | p̃) = {(1, j) ∈ A\A(p̃)} = {(1, 2), (1, 3)}.

92 Reoptimization methods for the robust shortest path problem

1

3

2

4

3

2

4

2

5

1

6

0

7

0

i

LB2
i7(G5)

(a) T 2
7 ((G5)

+
{5,6}) = T

2
7 (G5)

1

3

2

3

3

3

4

2

5

2

6

1

7

0

i

LB3
i7(G5)

(b) T 3
7 ((G5)

+
{5,6}) = T

3
7 (G5)

1

2

2

8

3

2

4

1

5

1

6

1

7

0

i

LB5
i7((G5)

+
{5,6})

(c) T 5
7 ((G5)

+
{5,6})

1

7

2

2

3

3

4

3

5

2

6

2

7

0

i

LB6
i7((G5)

+
{5,6})

(d) T 6
7 ((G5)

+
{5,6})

Figure 4.7: Shortest path trees rooted at node 7 for scenarios 2 and 3 in G5 and (G5)
+
{5,6}, and

for scenarios 5 and 6 in (G5)
+
{5,6}

1 (−2,−3,−3,−6,−2,−7)

3 (−2,−2,−1,−2,−2,−2)

4(−2,−1, 1,−1, 0,−1) 5 (−1,−1, 0, 0,−1,−1)

6(1, 1, 2, 0, 0, 0)

7(2, 1, 3, 1, 1, 4)

6(−1, 0, 1, 4, 0, 3) 7 (1, 0, 5, 5, 0, 1)

4(−2,−1,−1,−1, 1, 1)

6(1, 1, 0, 0, 1, 2)

75(2, 1, 1, 0, 2, 2)

Figure 4.8: ST produced by Algorithm 9 for (G5)
+
{5,6}

Variation of the number of scenarios 93

For arc (1, 2),

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1〉) + cu12((G5)
+
{5,6}) + LBu

27((G5)
+
{5,6})} = 6 ≥ UB

and, for arc (1, 3),

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1〉) + cu13((G5)
+
{5,6}) + LBu

37((G5)
+
{5,6})} = 2 < UB.

Consequently, X is updated to

X = {〈1, 4〉, 〈1, 4, 6〉, 〈1, 3〉},

and the label

z(G5)
+
{5,6}

(〈1, 3〉) = (−2,−2,−1,−2,−2,−2)

is obtained. For the next iteration, path 〈1, 4〉 is selected for extension. In this case, the arc in

Ad(G5)
+
{5,6}

(〈1, 4〉 | p̃) = {(4, j) ∈ A\A(p̃) : j 6= 1} = {(4, 3)}

cannot be added to 〈1, 4〉, because

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 4〉) + cu43((G5)
+
{5,6}) + LBu

37((G5)
+
{5,6})} = 6 ≥ UB.

Afterwards, path 〈1, 4, 6〉 is selected for scanning with

Ad(G5)
+
{5,6}

(〈1, 4, 6〉) = {(6, j) ∈ A\A(p̃) : j /∈ {1, 4}} = {(6, 5)}.

The arc of this set extends 〈1, 4, 6〉, since

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 4, 6〉) + cu65((G5)
+
{5,6}) + LBu

57((G5)
+
{5,6})} = 4 < UB.

Then, X is updated to

X = {〈1, 3〉, 〈1, 4, 6, 5〉},

and the label

z(G5)
+
{5,6}

(〈1, 4, 6, 5〉) = (2, 1, 1, 0, 2, 2).

is obtained. Path 〈1, 3〉 is the next in X to be evaluated. In this case,

Ad(G5)
+
{5,6}

(〈1, 3〉 | p̃) = {(3, j) ∈ A : j 6= 1} = {(3, 2), (3, 4), (3, 5)}.

Arc (3, 2) cannot extend 〈1, 3〉, since

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 3〉) + cu32((G5)
+
{5,6}) + LBu

27((G5)
+
{5,6})} = 6 ≥ UB.

94 Reoptimization methods for the robust shortest path problem

Nevertheless, arcs (3, 4) and (3, 5) may extend 〈1, 3〉, because

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 3〉) + cu34((G5)
+
{5,6}) + LBu

47((G5)
+
{5,6})} = 3 < UB

and

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 3〉) + cu35((G5)
+
{5,6}) + LBu

57((G5)
+
{5,6})} = 4 < UB.

Now, X is updated to

X = {〈1, 4, 6, 5〉, 〈1, 3, 4〉, 〈1, 3, 5〉}

and the labels

z(G5)
+
{5,6}

(〈1, 3, 4〉) = (−2,−1, 1,−1, 0,−1) and z(G5)
+
{5,6}

(〈1, 3, 5〉) = (−1,−1, 0, 0,−1,−1)

are determined. Next, picking 〈1, 4, 6, 5〉 in X to be extended, one has

Ad(G5)
+
{5,6}

(〈1, 4, 6, 5〉 | p̃) = {(5, j) ∈ A : j /∈ {1, 4, 6}} = {(5, 7)}.

For arc (5, 7), the first condition of (4.7) is not satisfied, because

aux1 = max
u∈U4

{zu
(G5)

+
{5,6}

(〈1, 4, 6, 5〉) + cu57((G5)
+
{5,6})} = 6 ≥ UB.

Therefore, arc (5, 7) is not included in ST . Path 〈1, 3, 4〉 is the next element of X for possible

extension, with

Ad(G5)
+
{5,6}

(〈1, 3, 4〉 | p̃) = {(4, j) ∈ A : j /∈ {1, 3}} = {(4, 6)}.

The arc of this set is added to 〈1, 3, 4〉, since

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 3, 4〉) + cu46((G5)
+
{5,6}) + LBu

67((G5)
+
{5,6})} = 3 < UB.

Then, X is updated to

X = {〈1, 3, 5〉, 〈1, 3, 4, 6〉}

and the label

z(G5)
+
{5,6}

(〈1, 3, 4, 6〉) = (1, 1, 2, 0, 0, 0)

is established. Afterwards, path 〈1, 3, 5〉 is scanned, with

Ad(G5)
+
{5,6}

(〈1, 3, 5〉 | p̃) = {(5, j) ∈ A : j /∈ {1, 3}} = {(5, 6), (5, 7)}.

All the arcs in this set can be added to 〈1, 3, 5〉. In fact, for arc (5, 6),

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 3, 5〉) + cu56((G5)
+
{5,6}) + LBu

67((G5)
+
{5,6})} = 5 < UB,

Variation of the number of scenarios 95

with the label for 〈1, 3, 5, 6〉 given by

z(G5)
+
{5,6}

(〈1, 3, 5, 6〉) = (−1, 0, 1, 4, 0, 3)

and list X updated to

X = {〈1, 3, 4, 6〉, 〈1, 3, 5, 6〉}.

For arc (5, 7), the two conditions of (4.7) are satisfied since




aux1 = maxu∈U4{z
u
(G5)

+
{5,6}

(〈1, 3, 5〉) + cu57((G5)
+
{5,6})} = 5 < UB

RCaux = max
{
aux1,maxu∈{5,6}{z

u
(G5)

+
{5,6}

(〈1, 3, 5〉) + cu57((G5)
+
{5,6})}

}
= 5 < UB

Then, 〈1, 3, 5, 7〉 is a new candidate for an optimal solution in (G5)
+
{5,6}, and UB and sol are

updated to

UB = 5 and sol = 〈1, 3, 5, 7〉.

Afterwards, all the paths in X must be tested. Path 〈1, 3, 4, 6〉 cannot be discarded, as

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 3, 4, 6〉) + LBu
67((G5)

+
{5,6})} = 3 < UB.

Nevertheless, for 〈1, 3, 5, 6〉,

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 3, 5, 6〉) + LBu
67((G5)

+
{5,6})} = 5 ≥ UB,

and, therefore, 〈1, 3, 5, 6〉 is deleted from X, remaining only 〈1, 3, 4, 6〉 to analyze. One has

Ad(G5)
+
{5,6}

(〈1, 3, 4, 6〉 | p̃) = {(6, j) ∈ A : j /∈ {1, 3, 4}} = {(6, 5), (6, 7)}.

It can be concluded that arc (6, 5) cannot extend 〈1, 3, 4, 6〉, since

max
u∈U6

{zu
(G5)

+
{5,6}

(〈1, 3, 4, 6〉) + cu65((G5)
+
{5,6}) + LBu

57((G5)
+
{5,6})} = 5 ≥ UB,

however, arc (6, 7) can extend 〈1, 3, 4, 6〉, since (4.7) holds, with




aux1 = maxu∈U4{z
u
(G5)

+
{5,6}

(〈1, 3, 4, 6〉) + cu67((G5)
+
{5,6})} = 3 < UB

RCaux = max
{
aux1,maxu∈{5,6}{z

u
(G5)

+
{5,6}

(〈1, 3, 4, 6〉) + cu67((G5)
+
{5,6})}

}
= 4 < UB.

Consequently, UB and sol are updated to

UB = 4 and sol = 〈1, 3, 4, 6, 7〉.

Because there are no other paths in X to extend, Algorithm 9 returns 〈1, 3, 4, 6, 7〉 as the robust

shortest path in (G5)
+
{5,6}, with RC(G5)

+
{5,6}

(〈1, 3, 4, 6, 7〉) = 4.

In the following, the reoptimization methods for the reduced and extended versions of G in

terms of its set of arcs are going to be treated.

96 Reoptimization methods for the robust shortest path problem

4.3 Variation of the number of arcs

This section is dedicated to develop the methods for reoptimizing the robust shortest path when

arcs are deleted from, or inserted in G. Analogously to the previous section, the first goal is

to establish the conditions required for p̃ preserving its optimality in the obtained reduced and

extended versions of G. A general result is first introduced for networks that differ from each

other in terms of dimension with respect to the set of arcs and nodes. In specific, assume that

two networks have the same set of scenarios, and that the sets of nodes and arcs of one of them

is a subset of the other. Under these conditions, the set of paths common to both networks is

the set of paths in the smallest of them. Moreover, the shortest (1, n)-paths of the networks

for the same scenarios may differ and have different costs. This fact may affect the relations

between the robust deviations for the same scenarios and between the robustness costs of the

(1, n)-paths common to both networks as the next result shows.

Lemma 4.6. Let G′
A = G′

A(V
′, A′, S) and G′′

A = G′′
A(V

′′, A′′, S) be connected networks, such

that A′ ⊆ A′′, V ′ ⊆ V ′′ and S = {su : u ∈ Uk} is a finite set. Let

ÛA′′

A′ = {u ∈ Uk : LBsu
1n(G

′′
A) < LBsu

1n(G
′
A)}

be the set of scenarios indices for which the shortest (1, n)-path in G′′
A is cheaper than the

homologous path in G′
A. Then, P1n(G

′
A) ⊆ P1n(G

′′
A), and, for any p ∈ P1n(G

′
A),

1. RDsu
G′

A
(p) = RDsu

G′′
A
(p) + LBsu

1n(G
′′
A)− LBsu

1n(G
′
A), for any u ∈ Uk. In particular,

RDsu
G′

A
(p) = RDsu

G′′
A
(p), for any u ∈ Uk

∖
ÛA′′

A′ .

2. RCG′
A
(p) ≤ RCG′′

A
(p). In particular, if ÛA′′

A′ = ∅, then RCG′
A
(p) = RCG′′

A
(p).

Proof. Because A′ ⊆ A′′, P1n(G
′
A) ⊆ P1n(G

′′
A) immediately follows. Consequently,

csu
G′

A
(p) = csu

G′′
A
(p) , for any p ∈ P1n(G

′
A) and u ∈ Uk. (4.9)

Therefore, for any scenario su, u ∈ Uk, the cost of a shortest (1, n)-path in G′′
A is never worse

than the cost of the homologous path in G′
A, i.e.

LBsu
1n(G

′′
A) ≤ LBsu

1n(G
′
A) , for any u ∈ Uk. (4.10)

Let p be any path in P1n(G
′
A).

1. Let u ∈ Uk. By definition of robust deviation for scenario su in G′
A,

RDsu
G′

A
(p) = csu

G′
A
(p)− LBsu

1n(G
′
A) = csu

G′′
A
(p)− LBsu

1n(G
′
A),

Variation of the number of arcs 97

according with (4.9). Then, summing and subtracting LBsu
1n(G

′′
A) results in

RDsu
G′

A
(p) = RDsu

G′′
A
(p) + LBsu

1n(G
′′
A)− LBsu

1n(G
′
A),

by definition of robust deviation for scenario su in G′′
A. Now, from the definition of set

ÛA′′

A′ and (4.10), for any u ∈ Uk

∖
ÛA′′

A′ ,

LBsu
1n(G

′
A) = LBsu

1n(G
′′
A),

and, therefore,

RDsu
G′

A
(p) = RDsu

G′′
A
(p) , for any u ∈ Uk

∖
ÛA′′

A′ .

2. From (4.9), (4.10) and the definition of robust deviation,

RDsu
G′

A
(p) ≤ RDsu

G′′
A
(p) , for any u ∈ Uk.

Therefore, by the definition of robustness cost,

RCG′
A
(p) ≤ RCG′′

A
(p).

Now, if ÛA′′

A′ = ∅, then, by point 1.,

RDsu
G′

A
(p) = RDsu

G′′
A
(p) , for any u ∈ Uk,

and, thus,

RCG′
A
(p) = RCG′′

A
(p).

Lemma 4.6 gives auxiliary conditions to derive results for preserving, or not, the optimality

of p̃ in the reduced and extended versions of G with respect to the set of arcs. In the following,

the topics analyzed in the previous section are approached by the same order, adapted to the

new modifications. To begin, the deletion of arcs from G is studied.

4.3.1 Elimination of arcs

Let A∗ represent the set of arcs removed from A in G, such that G−
A∗ is still a connected

network. Under these conditions, some nodes of G may have to be removed as well, except

1 and n. Network G−
A∗ has set of arcs A\A∗ and set of (1, n)-paths P1n(G

−
A∗) ⊆ P1n(G).

Corollary 4.7 is a consequence of Lemma 4.6, by considering the networks G′
A = G−

A∗ and

G′′
A = G.

98 Reoptimization methods for the robust shortest path problem

Corollary 4.7. For any p ∈ P1n(G
−
A∗),

1. RDsu
G−

A∗
(p) = RDsu

G (p) + LBsu
1n(G)− LBsu

1n(G
−
A∗), for any u ∈ Uk. In particular,

RDsu
G−

A∗
(p) = RDsu

G (p), for any u ∈ Uk

∖
ÛA
A\A∗.

2. RCG−
A∗
(p) ≤ RCG(p). In particular, if ÛA

A\A∗ = ∅, then RCG−
A∗
(p) = RCG(p).

Assuming that none of the arcs of p̃ is removed from A, the next result takes into account

set ÛA
A\A∗ to derive conditions under which p̃ is a robust shortest path in G−

A∗ . Otherwise, a

subset of P1n(G
−
A∗) is provided, containing other possible optimal solutions.

Proposition 4.8. Let A(p̃) ⊆ A\A∗.

1. If ÛA
A\A∗ = ∅, then p̃ is a robust shortest path in G−

A∗, with RCG−
A∗
(p̃) = RCG(p̃).

2. If ÛA
A\A∗ 6= ∅, let P̂1n(G

−
A∗) ⊆ P1n(G

−
A∗) be given by

P̂1n(G
−
A∗) = {p ∈ P1n(G

−
A∗) : RDsu

G (p) ≥ RCG(p̃), for some u ∈ ÛA
A\A∗}.

(a) If p ∈ P1n(G
−
A∗) satisfies RC

G−
A∗
(p) < RC

G−
A∗
(p̃), then p ∈ P̂1n(G

−
A∗).

(b) p̃ is a robust shortest path in G−
A∗ if and only if RC

G−
A∗
(p) ≥ RC

G−
A∗
(p̃), for any

p ∈ P̂1n(G
−
A∗).

Proof. Let A(p̃) ⊆ A\A∗, which means that p̃ ∈ P1n(G
−
A∗). Since p̃ is a robust shortest path

in G and P1n(G
−
A∗) ⊆ P1n(G),

RCG(p) ≥ RCG(p̃) , for any p ∈ P1n(G
−
A∗). (4.11)

1. If ÛA
A\A∗ = ∅, by point 2. of Corollary 4.7, (4.11) can be rewritten as

RCG−
A∗
(p) ≥ RCG−

A∗
(p̃) , for any p ∈ P1n(G

−
A∗),

with

RCG−
A∗
(p̃) = RCG(p̃).

Consequently, p̃ is a robust shortest path in G−
A∗ satisfying the condition above.

2. Assume that ÛA
A\A∗ 6= ∅.

(a) For any p ∈ P1n(G
−
A∗) ⊆ P1n(G), the definition of robustness cost in G gives

RCG(p) = max
{

max
u∈ÛA

A\A∗

RDsu
G (p), max

u∈Uk

∖
ÛA
A\A∗

RDsu
G (p)

}
. (4.12)

Variation of the number of arcs 99

with

max
u∈Uk

∖
ÛA
A\A∗

RDsu
G (p) = max

u∈Uk

∖
ÛA
A\A∗

RDsu
G−

A∗
(p) ≤ max

u∈Uk

RDsu
G−

A∗
(p) = RCG−

A∗
(p),

by point 1. of Corollary 4.7 for the first equality and the definition of robustness

cost in G−
A∗ for the last equality. Now, assume that RCG−

A∗
(p) < RCG−

A∗
(p̃). Then,

from the condition above,

max
u∈Uk

∖
ÛA
A\A∗

RDsu
G (p) < RC

G−
A∗
(p̃).

Moreover, point 2. of Corollary 4.7 applied to p̃ and (4.11) results in

RCG−
A∗
(p̃) ≤ RCG(p).

Therefore,

max
u∈Uk

∖
ÛA
A\A∗

RDsu
G (p) < RCG(p),

which, from (4.12) and (4.11), allows to write

RCG(p) = max
u∈ÛA

A\A∗

RDsu
G (p) ≥ RCG(p̃).

Therefore,

RDsu
G (p) ≥ RCG(p̃), for some u ∈ ÛA

A\A∗ ,

i.e., p ∈ P̂1n(G
−
A∗).

(b) The proof is analogous to the presented for points 2. of Proposition 4.3 and 2.(b) of

Proposition 4.5, by considering the network G−
A∗ and the set P̂1n(G

−
A∗).

According to Proposition 4.8, if A(p̃)∩A∗ = ∅, set ÛA
A\A∗ must be determined first. In case

it is empty, p̃ is a robust shortest path of G−
A∗ , otherwise, the search for an optimal solution of

G−
A∗ must be performed over the simple paths of set P̂1n(G

−
A∗) with a robustness cost in G−

A∗

that can improve the best achieved. In this case, UB and sol can be initialized with RCG−
A∗
(p̃)

and p̃, respectively.

Instead, if A(p̃) ∩ A∗ 6= ∅, then p̃ /∈ P (G−
A∗), and, therefore, there is a different robust

shortest path in G−
A∗ . Under these conditions, like for the algorithms introduced in Chapter 2,

the first candidate to be an optimal solution of G−
A∗ is chosen among the shortest (1, n)-paths

in G−
A∗ for the scenarios of S with the least robustness cost in G−

A∗ . Therefore, UB and

100 Reoptimization methods for the robust shortest path problem

sol are initialized with min{RCG−
A∗

(p1,su(G−
A∗)) : u ∈ Uk} and with path p1,su′ (G−

A∗) such that

RCG−
A∗
(p1,su′ (G−

A∗)) = UB, for some u′ ∈ Uk, respectively. In this case, because Proposition 4.8

does not apply, the search must take into consideration the simple paths in P1n(G
−
A∗).

The construction of ST is justified when there is no guarantee that p̃ is a robust shortest

path of G−
A∗ , that is, when UB 6= 0 and ÛA

A\A∗ 6= ∅, if A(p̃) ∩ A∗ = ∅, or when UB 6= 0,

otherwise.

In the following, the extension rules for the paths in ST are described. The labels are

generated as in Algorithm 1, with k scenarios, starting with

z
G−

A∗
(〈1〉) = (−LBs1

1n(G
−
A∗), . . . ,−LB

sk
1n(G

−
A∗)).

Then, the first and the second extension rules apply analogously to Section 4.1. Namely, for

the first, a path p1i ∈ P1i(G
−
A∗), i ∈ V \{n}, belongs to ST when

max
u∈Uk

{zu
G−

A∗
(p1i) + LBsu

in (G
−
A∗)} < UB. (4.13)

For the second rule, to add an arc (i, j) to p1i ∈ ST ∩ P1i(G
−
A∗), i ∈ V \{n}, condition

max
u∈Uk

{zu
G−

A∗
(p1i) + csuij (G

−
A∗) + LBsu

jn(G
−
A∗)} < UB. (4.14)

must hold. As before, this rule allows to set the sub-paths p̃1i, i ∈ V \{n}, in ST , with arcs

that were not removed from G. Then, the initial X is set to

X = {〈1〉} ∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ A(p̃) ∩ (A\A∗), j 6= n, satisfy (4.14)}.

Afterwards, the arcs candidate to extend each p1i ∈ ST ∩ P1i(G
−
A∗), AdG−

A∗
(p1i | p̃), i ∈ V \{n},

are determined as in Algorithms 8 and 9, without considering the arcs of A∗, i.e.

AdG−
A∗

(p1i | p̃) =





{
(i, j) ∈ A\(A∗ ∪A(p̃)) : j /∈ V (p1i)

}
if p1i = p̃1i

{
(i, j) ∈ A\A∗ : j /∈ V (p1i)

}
if p1i 6= p̃1i

Rule (4.14) is required for adding (i, j) ∈ Ad
G−

A∗
(p1i | p̃), with j 6= n, to p1i. When j = n, a

third extension rule is applied, depending on the existence of an arc in A(p̃) ∩A∗.

If A(p̃) ∩ A∗ = ∅, Proposition 4.8 states that a simple path in set P̂1n(G
−
A∗) with the least

robustness cost in G−
A∗ is the robust shortest path. Aiming at searching for this path, the

produced (1, n)-path p1n must satisfy RDsu
G (p1n) ≥ RCG(p̃), for some u ∈ ÛA

A\A∗ , and have a

robustness cost in G−
A∗ , RCG−

A∗
(p1n), denoted by RCaux, that improves UB. Both conditions

can be expressed in terms of the labels in G−
A∗ . In fact, by point 1. of Corollary 4.7,

RDsu
G (p1n) = RDsu

G−
A∗

(p1n)− LBsu
1n(G) + LBsu

1n(G
−
A∗),

Variation of the number of arcs 101

and, by definition of robustness cost,

RCaux = max
u∈Uk

RDsu
G−

A∗
(p1n),

with

RDsu
G−

A∗
(p1n) = zu

G−
A∗
(p1i) + csuin (G

−
A∗) , u ∈ Uk.

Therefore,





RDsu
G (p1n) = zu

G−
A∗

(p1i) + csuin (G
−
A∗)− LBsu

1n(G) + LBsu
1n(G

−
A∗) ≥ RCG(p̃), for some u ∈ ÛA

A\A∗

RCaux = maxu∈Uk
{zu

G−
A∗

(p1i) + csuin (G
−
A∗)} < UB

(4.15)

must be fulfilled, in order to p1n be potentially optimal in G−
A∗ .

If A(p̃) ∩ A∗ 6= ∅, the search for a robust shortest path of G−
A∗ is extended to the simple

paths of the set P1n(G
−
A∗), with the least robustness cost in G−

A∗ . This means there is only need

to check the second condition of (4.15) to arc (i, n) extend p1i, i ∈ V \{n}.

In either case, if the conditions associated with the third extension rule hold, sol and UB

are updated to p1n and RCaux, respectively. Moreover, only the paths of list X satisfying

(4.13) are considered for the next iteration.

The pseudo-code of the procedure described above is presented in Algorithm 10.

Computational time complexity order Let m∗ be the number of arcs removed from G.

Then, n and m = m − m∗ denote the number of nodes and arcs in G−
A∗ , respectively, with

2 ≤ n ≤ n and n− 1 < m < m, so that G−
A∗ is connected. Let W−

A be the maximum number of

paths generated in ST ∩ P1i(G
−
A∗), i ∈ V . Like for Algorithms 8 and 9, Algorithm 10 has two

major parts, the first concerned with the procedures that precede the computation of ST , and

the second devoted to the latter task in case it is required.

Similarly to previous algorithms, in the first stage, the trees T su
n (G−

A∗) and the costs

LBsu
in (G

−
A∗), i ∈ V , u ∈ Uk, are computed in time of O(km) for acyclic networks and of

O(k(m+n log n)) for general networks. The determination of A(p̃)∩A∗ may require O(n+m∗)

operations, by using hash sets [8]. If A(p̃)∩A∗ = ∅, initializing UB implies computing set ÛA
A\A∗

in O(k) time and RC
G−

A∗
(p̃) in O(kn) time, as p̃ ∈ P1n(G

−
A∗). If A(p̃) ∩ A∗ 6= ∅, initializing

UB implies, in the worst case, the determination of the k robustness costs RCG−
A∗
(p1,su(G−

A∗)),

u ∈ Uk, in O(k2n) time. Therefore, in the worst case, the total time complexity invested

on the first stage is of Oa
1 = O(max{km,m∗} + max{k2n, n}) for acyclic networks and of

Oc
1 = O(max{km,m∗}+max{k2n+ kn log n, n}) for general networks.

102 Reoptimization methods for the robust shortest path problem

Algorithm 10: Finding the robust shortest path in G−
A∗ , given p̃, RCG(p̃) and LBsu

1n(G), u ∈ Uk

1 for u ∈ Uk do Compute T su
n (G−

A∗) and LBsu
in (G

−
A∗), i ∈ V ;

2 ÛA
A\A∗ ← ∅; UB ← 0;

3 if A(p̃) ∩ A∗ = ∅ then

4 sol← p̃;
5 for u ∈ Uk do

6 if LBsu
1n(G) < LBsu

1n(G
−
A∗) then ÛA

A\A∗ ← ÛA
A\A∗ ∪ {u};

7 if ÛA
A\A∗ 6= ∅ then RCG

−

A∗

(p̃)← maxu∈Uk
RDsu

G−

A∗

(p̃); UB ← RCG
−

A∗

(p̃);

8 else

9 UB ← min{RCG
−

A∗

(p1,su(G−
A∗)) : u ∈ Uk}; sol← p1,su′ (G−

A∗) such that

RCG
−

A∗

(p1,su′ (G−
A∗)) = UB, u′ ∈ Uk;

10 if UB 6= 0 and (ÛA
A\A∗ 6= ∅ or A(p̃) ∩ A∗ 6= ∅) then

11 X ← {〈1〉};

12 for u ∈ Uk do zu
G

−

A∗

(〈1〉)← −LBsu
1n(G

−
A∗);

13 for (i, j) ∈ A(p̃) ∩ (A\A∗) and j 6= n do

14 if maxu∈Uk
{zu

G
−

A∗

(p̃1i) + csuij (G
−
A∗) + LBsu

jn(G
−
A∗)} < UB then

15 X ← X ∪ {p̃1j};

16 for u ∈ Uk do zu
G

−

A∗

(p̃1j)← zu
G

−

A∗

(p̃1i) + csuij (G
−
A∗);

17 else break;

18 while X 6= ∅ do

19 p1i ← first path in X ; X ← X − {p1i}; Compute AdG−

A∗

(p1i | p̃);

20 for (i, j) ∈ AdG−

A∗

(p1i | p̃) do

21 p1j ← p1i ⋄ 〈i, j〉;
22 if j = n then

23 if A(p̃) ∩ A∗ = ∅ then

24 for u ∈ ÛA
A\A∗ do

25 RDsu
G (p1j)← zu

G
−

A∗

(p1i) + csuij (G
−
A∗)− LBsu

1n(G) + LBsu
1n(G

−
A∗);

26 if RDsu
G (p1j) ≥ RCG(p̃) then

27 RCaux← maxu∈Uk
{zu

G
−

A∗

(p1i) + csuij (G
−
A∗)}; break;

28 else RCaux← maxu∈Uk
{zu

G
−

A∗

(p1i) + csuij (G
−
A∗)};

29 if RCaux < UB then

30 UB ← RCaux; sol← p1j ;
31 for p1i′ ∈ X do

32 for u ∈ Uk do

33 if zu
G

−

A∗

(p1i′) + LBsu
i′n(G

−
A∗) ≥ UB then

34 X ← X − {p1i′}; break;

35

36 else

37 if maxu∈Uk
{zu

G
−

A∗

(p1i) + csuij (G
−
A∗) + LBsu

jn(G
−
A∗)} < UB then

38 X ← X ∪ {p1j};

39 for u ∈ Uk do zu
G

−

A∗

(p1j)← zu
G

−

A∗

(p1i) + csuij (G
−
A∗);

40 return sol;

Variation of the number of arcs 103

The procedure for the second stage is similar to the performed for developing ST in Algo-

rithm 9. They differ on the number of nodes, arcs and scenarios, which are now n, m and k,

respectively, and on the third extension rule. However, like for Algorithm 9, the complexity

bound of this rule depends only on the number of scenarios and requires O(k) time. With a

similar reasoning, the second stage of Algorithm 10 performs in O2 = O(kn
3(W−

A)2) time.

In conclusion, as log n ≪ n and m < n2, the total time complexity for Algorithm 10 is

O(m∗ +max{k2n + kn3(W−
A)2, n}) for any type of network. It can be noted that besides the

number of arcs and nodes in G−
A∗ , the time complexity depends also on the number of arcs and

nodes deleted from G.

Examples In the following, three networks obtained from G5 – Figure 4.1, after deleting some

of its arcs are presented. The robust shortest path in G5 is p̃ = 〈1, 4, 6, 7〉. In the first two

examples, the deleted arcs do not belong to p̃, whereas, in the third example, one arc of p̃ is

removed. Initially, A∗ = {(6, 5)}, which results in ÛA
A\A∗ = ∅. Then, A∗ = {(6, 5), (5, 3)}, which

makes that ÛA
A\A∗ 6= ∅, and, finally, A∗ = {(6, 5), (5, 3), (4, 6)}, where (4, 6) is the only deleted

arc that belongs to p̃.

Case 1 Let (G5)
−
(6,5) be the network in Figure 4.9.

1
0, 1, 2, 4

1, 0, 0, 1

0, 2, 2, 5

2

0, 4, 5, 1

1, 4, 3, 9

3

3, 2, 3, 1

0, 1, 2, 1

1, 1, 1, 2

4

1, 2, 3, 4

3, 2, 1, 1

5
1, 2, 3, 1

0, 1, 1, 4

2, 1, 5, 5

6

1, 0, 1, 1

7

i
c1ij(G5), . . . , c4ij(G5)

j

Figure 4.9: Network (G5)
−
(6,5)

Recalling Figures 4.3 and 4.7.(a),(b), (6, 5) /∈ A(p1,u(G5)), for any u ∈ U4, which means

that

LBu
17((G5)

−
(6,5)) = LBu

17(G5) , u ∈ U4.

Since A(p̃) ∩A∗ = ∅, the calculation of set ÛA
A\{(6,5)} is demanded. Then,

ÛA
A\{(6,5)} = ∅.

104 Reoptimization methods for the robust shortest path problem

Therefore, attending to 1. of Proposition 4.8, p̃ is returned by Algorithm 10 as the robust

shortest path of (G5)
−
(6,5), and RC(G5)

−
(6,5)

(p̃) = RCG5(p̃) = 2.

Case 2 Let now (G5)
−
A∗ , with A∗ = {(6, 5), (5, 3)}, be the network in Figure 4.10.

1
0, 1, 2, 4

1, 0, 0, 1

0, 2, 2, 5

2

0, 4, 5, 1

1, 4, 3, 9

3

3, 2, 3, 1

0, 1, 2, 1

1, 1, 1, 2

4

1, 2, 3, 4

3, 2, 1, 1

5

0, 1, 1, 4

2, 1, 5, 5

6

1, 0, 1, 1

7

i
c1ij(G5), . . . , c4ij(G5)

j

Figure 4.10: Network (G5)
−
A∗ , with A∗ = {(6, 5), (5, 3)}

According with Figures 4.3 and 4.7, arcs (6, 5) and (5, 3) do not belong to any tree T u
7 (G5),

u ∈ U3, which means that these trees remain unchanged in (G5)
−
A∗ , i.e.

T u
7 (G−

A∗) = T
u
7 (G5) , u ∈ U3.

Since the arc (5, 3) in T 4
7 (G5) was excluded, the tree T 4

7 ((G5)
−
A∗) is now determined – Fig-

ure 4.11.

1

7

2

6

3

3

4

2

5

5

6

1

7

0

i

LB4
i7(G

−
A)

Figure 4.11: Tree T 4
7 ((G5)

−
A∗), with A∗ = {(6, 5), (5, 3)}

As A(p̃) ∩A∗ = ∅, Algorithm 10 determines set ÛA
A\A∗ . Then,

ÛA
A\A∗ = {u ∈ U4 : LB

u
17(G5) < LBu

17((G5)
−
A∗)} = {4}.

Variation of the number of arcs 105

Because ÛA
A\A∗ 6= ∅, UB and sol are initialized with

UB = RC(G5)
−
A∗

(p̃) = max
u∈U4

RDu
(G5)

−
A∗

(p̃) = 2 and sol = p̃ = 〈1, 4, 6, 7〉.

Since UB 6= 0, ST is constructed, starting with the sub-paths of p̃ in

X =
{
〈1〉

}
∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ {(1, 4), (4, 6)} satisfy (4.14)

}
.

From the label

z(G5)
−
A∗
(〈1〉) = (−2,−3,−3,−7),

one concludes that arc (1, 4) can extend 〈1〉, because

max
u∈U4

{zu
(G5)

−
A∗
(〈1〉) + cu14((G5)

−
A∗) + LBu

47((G5)
−
A∗)} = 1 < UB,

and, then, the label

z(G5)
−
A∗

(〈1, 4〉) = (−2,−1,−1,−2)

is created. However, path 〈1, 4, 6〉 does not belong to ST , because

max
u∈U4

{zu
(G5)

−
A∗
(〈1, 4〉) + cu46((G5)

−
A∗) + LBu

67((G5)
−
A∗)} = 2 ≥ UB,

and, therefore, X is initialized with

X = {〈1〉, 〈1, 4〉}.

Figure 4.12 shows the ST obtained by means of Algorithm 10 for (G5)
−
A∗ .

1 (−2,−3,−3,−7)

2(−1,−3,−3,−6) 4 (−2,−1,−1,−2)

6

7

Figure 4.12: ST produced by Algorithm 10 for (G5)
−
A∗ , with A∗ = {(6, 5), (5, 3)}

The arcs candidate for extending 〈1〉 in ST are those in

Ad(G5)
−
A∗

(〈1〉 | p̃) = {(1, j) ∈ A\(A∗ ∪A(p̃))} = {(1, 2), (1, 3)}.

Only arc (1, 2) can be used, since

max
u∈U4

{zu
(G5)

−
A∗

(〈1〉) + cu12((G5)
−
A∗) + LBu

27((G5)
−
A∗)} = 1 < UB

106 Reoptimization methods for the robust shortest path problem

while, for arc (1, 3),

max
u∈U4

{zu
(G5)

−
A∗
(〈1〉) + cu13((G5)

−
A∗) + LBu

37((G5)
−
A∗)} = 2 ≥ UB.

When adding arc (1, 2), the label

z(G5)
−
A∗

(〈1, 2〉) = (−1,−3,−3,−6)

is determined, and X is updated to

X = {〈1, 4〉, 〈1, 2〉}.

Next, 〈1, 4〉 is chosen to be extended, with

Ad(G5)
−
A∗

(〈1, 4〉 | p̃) = {(4, j) ∈ A\(A∗ ∪A(p̃)) : j 6= 1} = {(4, 3)}.

However, arc (4, 3) cannot be used, as

max
u∈U4

{zu
(G5)

−
A∗
(〈1, 4〉) + cu43((G5)

−
A∗) + LBu

37((G5)
−
A∗)} = 5 ≥ UB.

For the path 〈1, 2〉,

Ad(G5)
−
A∗

(〈1, 2〉 | p̃) = {(2, j) ∈ A\A∗ : j 6= 1} = {(2, 5), (2, 7)},

and none of these arcs is included in ST , given that, for arc (2, 5),

max
u∈U4

{zu
(G5)

−
A∗

(〈1, 2〉) + cu25((G5)
−
A∗) + LBu

57((G5)
−
A∗)} = 4 ≥ UB

and, for arc (2, 7),





RD4
G5

(〈1, 2, 7〉) = z4
(G5)

−
A∗

(〈1, 2〉) + c427((G5)
−
A∗)− LB4

17(G5) + LB4
17((G5)

−
A∗) = 4 ≥ RCG5(p̃)

RCaux = maxu∈U4{z
u
(G5)

−
A∗
(〈1, 2〉) + cu27((G5)

−
A∗)} = 3 ≥ UB

Then, there are no other paths in X to extend. Consequently, Algorithm 10 halts, outputting

p̃ as the robust shortest path in (G5)
−
A∗ , with RC(G5)

−
A∗

(p̃) = RCG5(p̃) = 2.

Case 3 Let now (G5)
−
A∗ , with A∗ = {(6, 5), (5, 3), (4, 6)}, be the network in Figure 4.13.

Since the tree T 1
7 (G5) in Figure 4.3.(a) does not contain any of the deleted arcs from G5, then

T 1
7 ((G5)

−
A∗) = T

1
7 (G5).

Variation of the number of arcs 107

1
0, 1, 2, 4

1, 0, 0, 1

0, 2, 2, 5

2

0, 4, 5, 1

1, 4, 3, 9

3

3, 2, 3, 1

0, 1, 2, 1

1, 1, 1, 2

4

1, 2, 3, 4

5

0, 1, 1, 4

2, 1, 5, 5

6

1, 0, 1, 1

7

i
c1ij(G5), . . . , c4ij(G5)

j

Figure 4.13: Network (G5)
−
A∗ , with A∗ = {(6, 5), (5, 3), (4, 6)}

Figures 4.7 and 4.3 show that all the trees in G5 for the remaining scenarios, contain at least

one of the arcs excluded from G5. Hence, the homologous trees in (G5)
−
A∗ are determined –

Figure 4.14.

Because arc (4, 6) of p̃ is removed from G5, Algorithm 10 considers the least robustness cost

in (G5)
−
A∗ for the paths p1,su((G5)

−
A∗), u ∈ U4, to set the initial UB. As

RC(G5)
−
A∗
(p1,u((G5)

−
A∗)) = RC(G5)

−
A∗

(〈1, 2, 7〉) = 3, u = 1, 3,

RC(G5)
−
A∗

(p1,2((G5)
−
A∗)) = RC(G5)

−
A∗
(〈1, 3, 5, 7〉) = 5

and

RC(G5)
−
A∗

(p1,4((G5)
−
A∗)) = RC(G5)

−
A∗

(〈1, 2, 5, 7〉) = 7,

it follows that

UB = min{RC(G5)
−
A∗

(p1,u((G5)
−
A∗)) : u ∈ U4} = 3 and sol = 〈1, 2, 7〉.

Because UB 6= 0 and (4, 6) ∈ A∗, ST starts to consider the sub-paths of p̃ in

X =
{
〈1〉

}
∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ {(1, 4)} satisfy (4.14)

}
.

From the label,

z(G5)
−
A∗
(〈1〉) = (−2,−3,−3,−7),

one concludes that path 〈1, 4〉 does not belong to ST , as

max
u∈U4

{zu
(G5)

−
A∗
(〈1〉) + cu14((G5)

−
A∗) + LBu

47((G5)
−
A∗)} = 9 ≥ UB.

Hence, ST starts with

X = {〈1〉}.

108 Reoptimization methods for the robust shortest path problem

1

3

2

3

3

3

4

6

5

2

6

1

7

0

i

LB3
i7((G5)

−
A∗)

(b) T 3
7 ((G5)

−
A∗)

1

3

2

4

3

2

4

4

5

1

6

0

7

0

i

LB2
i7((G5)

−
A∗)

(a) T 2
7 ((G5)

−
A∗)

1

7

2

6

3

7

4

11

5

5

6

1

7

0

i

LB4
i7((G5)

−
A∗)

(c) T 4
7 ((G5)

−
A∗)

Figure 4.14: Shortest path trees rooted at node 7 for scenarios 2, 3 and 4 in (G5)
−
A∗ , with

A∗ = {(6, 5), (5, 3), (4, 6)}

The ST obtained by Algorithm 10 for (G5)
−
A∗ is shown in Figure 4.15. The arcs of

Ad(G5)
−
A∗

(〈1〉 | p̃) = {(1, j) ∈ A\(A∗ ∪A(p̃))} = {(1, 2), (1, 3)}

are analyzed for extension from node 1. Only arc (1, 2) is used, since

max
u∈U4

{zu
(G5)

−
A∗
(〈1〉) + cu12((G5)

−
A∗) + LBu

27((G5)
−
A∗)} = 1 < UB,

while, for arc (1, 3),

max
u∈U4

{zu
(G5)

−
A∗
(〈1〉) + cu13((G5)

−
A∗) + LBu

37((G5)
−
A∗)} = 4 ≥ UB.

When adding arc (1, 2) to 〈1〉, the associated label is of

z(G5)
−
A∗
(〈1, 2〉) = (−1,−3,−3,−6).

Then, X is updated to

X = {〈1, 2〉}.

Variation of the number of arcs 109

1 (−2,−3,−3,−7)

2(−1,−3,−3,−6) 4

6

7

Figure 4.15: ST produced by Algorithm 10 for G−
A∗ , with A∗ = {(6, 5), (5, 3), (4, 6)}

There are now two possibilities for extending 〈1, 2〉,

Ad(G5)
−
A∗

(〈1, 2〉 | p̃) = {(2, j) ∈ A\A∗ : j 6= 1} = {(2, 5), (2, 7)}.

However, these arcs cannot be included in ST , since, for arc (2, 5),

max
u∈U4

{zu
(G5)

−
A∗

(〈1, 2〉) + cu25((G5)
−
A∗) + LBu

57((G5)
−
A∗)} = 4 ≥ UB

and, for arc (2, 7),

RCaux = max
u∈U4

{zu
(G5)

−
A∗

(〈1, 2〉) + cu27((G5)
−
A∗)} = 3 ≥ UB,

which means that the second condition of (4.15) is not satisfied. Then, Algorithm 10 stops,

returning 〈1, 2, 7〉 as the robust shortest path in (G5)
−
A∗ , with RC(G5)

−
A∗

(〈1, 2, 7〉) = 3.

In the following, it is addressed the reoptimization procedure when the set of arcs in G is

extended.

4.3.2 Addition of arcs

Let A∗ ⊆ V × V be a finite set of arcs added to A in G. Then, network G+
A∗ has set of nodes

V , set of arcs A ∪ A∗ and set of (1, n)-paths P1n(G
+
A∗), which contains P1n(G). Like in the

previous subsection, Lemma 4.6 is adapted, but now for the networks G′
A = G and G′′

A = G+
A∗ .

Corollary 4.9. For any p ∈ P1n(G),

1. RDsu
G (p) = RDsu

G+
A∗
(p) + LBsu

1n(G
+
A∗)− LBsu

1n(G), for any u ∈ Uk. In particular,

RDsu
G (p) = RDsu

G+
A∗
(p), for any u ∈ Uk\Û

A∪A∗

A .

2. RCG(p) ≤ RCG+
A∗
(p). In particular, if ÛA∪A∗

A = ∅, then RCG(p) = RCG+
A∗
(p).

110 Reoptimization methods for the robust shortest path problem

According to Chapter 3, the arcs of A∗ identified as robust 0-persistent in G+
A∗ can be

skipped to determine a robust shortest path in G+
A∗ , which simplifies the search method. The

following result derives a condition for detecting those arcs and also conditions under which p̃ is

a robust shortest path in G+
A∗ , taking into account set ÛA∪A∗

A . Otherwise, an optimal solution

can be searched in a subset of paths in P1n(G
+
A∗), which do not contain any of the identified

robust 0-persistent arcs.

Proposition 4.10. Let

Â = {(i, j) ∈ A∗ : RDsu
G+

A∗
(p1,su1i (G+

A∗) ⋄ 〈i, j〉 ⋄ p
1,su
jn (G+

A∗)) > RC
G+

A∗
(p̃) , for some u ∈ Uk}

be the set of arcs added to A in G satisfying the condition above, and

P̄1n(G
+
A∗) = {p ∈ P1n(G

+
A∗) : A(p) ∩ Â = ∅},

represent the set of (1, n)-paths in G+
A∗ which do not contain any arc in Â. Then,

1. Any arc (i, j) ∈ Â is robust 0-persistent in G+
A∗ and

RC
G+

A∗
(p) > RC

G+
A∗
(p̃) , for any p ∈ P1n(G

+
A∗)\P̄1n(G

+
A∗).

2. If ÛA∪A∗

A = ∅, then RCG+
A∗
(p̃) = RCG(p̃). Moreover, p̃ is a robust shortest path in G+

A∗,

if and only if

RCG+
A∗
(p) ≥ RCG+

A∗
(p̃) , for any p ∈ P̄1n(G

+
A∗)\P1n(G).

3. If ÛA∪A∗

A 6= ∅, let P̂1n(G
+
A∗) ⊆ P̄1n(G

+
A∗) be given by

P̂1n(G
+
A∗) = {p ∈ P̄1n(G

+
A∗) : max

u∈Uk\Û
A∪A∗
A

RDsu
G+

A∗
(p) < RCG+

A∗
(p̃)}.

(a) If p ∈ P1n(G
+
A∗) satisfies RCG+

A∗
(p) < RCG+

A∗
(p̃), then p ∈ P̂1n(G

+
A∗).

(b) p̃ is a robust shortest path in G+
A∗ if and only if RCG+

A∗
(p) ≥ RCG+

A∗
(p̃), for any

p ∈ P̂1n(G
+
A∗).

Proof.

1. The proof is similar to the presented for Proposition 3.2. For completeness, some of its

steps are outlined in the following.

Let (i, j) ∈ Â and p ∈ P1n(G
+
A∗)\P̄1n(G

+
A∗), such that (i, j) ∈ A(p). Because p1,su1i (G+

A∗)

and p1,sujn (G+
A∗) are the shortest (1, i)-path and the shortest (j, n)-path for scenario su,

u ∈ Uk, in G+
A∗ , respectively,

RDsu
G+

A∗
(p) ≥ RDsu

G+
A∗

(p1,su1i (G+
A∗) ⋄ 〈i, j〉 ⋄ p

1,su
jn (G+

A∗)).

Variation of the number of arcs 111

Since (i, j) ∈ Â,

RDsu
G+

A∗
(p) > RCG+

A∗
(p̃), for some u ∈ Uk,

according to the definition of set Â. By definition of robustness cost,

RCG+
A∗
(p) = max

u∈Uk

RDsu
G+

A∗
(p) > RCG+

A∗
(p̃).

Hence, any path p ∈ P1n(G
+
A∗) containing (i, j) cannot be a robust shortest path in G+

A∗ .

Moreover, any path p ∈ P1n(G
+
A∗)\P̄1n(G

+
A∗) satisfies the previous condition.

2. Assume that ÛA∪A∗

A = ∅. Then, by point 2. of Corollary 4.9 for p̃,

RCG+
A∗
(p̃) = RCG(p̃).

Before proving the remain part of the result, it should be noted that, when Â = A∗,

P̄1n(G
+
A∗)\P1n(G) = ∅. This fact does not affect the validity of the following reasoning.

Let p̃ be a robust shortest path of G+
A∗ , then, by definition,

RCG+
A∗
(p) ≥ RCG+

A∗
(p̃) , for any p ∈ P1n(G

+
A∗), (4.16)

and, in particular,

RCG+
A∗
(p) ≥ RCG+

A∗
(p̃) , for any p ∈ P̄1n(G

+
A∗)\P1n(G).

Conversely, assume this condition holds. Since, by hypothesis, p̃ is a robust shortest path

of G,

RCG(p) ≥ RCG(p̃) , for any p ∈ P1n(G).

Given that ÛA∪A∗

A = ∅, point 2. of Corollary 4.9 for p and p̃ can rewrite the previous

condition as

RCG+
A∗
(p) ≥ RCG+

A∗
(p̃) , for any p ∈ P1n(G).

Consequently, by the assumption, the last condition and point 1., (4.16) follows, i.e. p̃ is

a robust shortest path in G+
A∗ .

3. Assume that ÛA∪A∗

A 6= ∅.

(a) Let p ∈ P1n(G
+
A∗) be such that RCG+

A∗
(p) < RCG+

A∗
(p̃). Then, by point 1., one must

have p ∈ P̄1n(G
+
A∗). Moreover, by definition of robustness cost,

max
u∈Uk\Û

A∪A∗
A

RDsu
G+

A∗
(p) ≤ max

u∈Uk

RDsu
G+

A∗
(p) = RCG+

A∗
(p) < RCG+

A∗
(p̃).

Hence, p ∈ P̂1n(G
+
A∗).

112 Reoptimization methods for the robust shortest path problem

(b) The result is derived as in points 2. of Proposition 4.3 and 2.(b) of Propositions 4.5

and 4.8, by considering the network G+
A∗ and the set P̂1n(G

+
A∗).

From Proposition 4.10, the determination of sets Â and ÛA∪A∗

A allows to restrict the search

for simple robust shortest paths in P1n(G
+
A∗). In fact, knowing set Â, allows to discard the

robust 0-persistent arcs of A∗, and, if set ÛA∪A∗

A is known, a subset of P1n(G
+
A∗) containing

a robust shortest path in G+
A∗ is determined. Specifically, when ÛA∪A∗

A = ∅, if Â = A∗, p̃ is

returned as the robust shortest path of G+
A∗ , because P̄1n(G

+
A∗)\P1n(G) = ∅. Otherwise, the

search is focused on the simple paths in the latter set, with the least robustness cost in G+
A∗ .

When ÛA∪A∗

A 6= ∅, the simple paths of set P̂1n(G
+
A∗) are analyzed instead.

The algorithm for reoptimizing the robust shortest path in G+
A∗ starts by determining set

ÛA∪A∗

A and then, by initializing UB and sol with RCG+
A∗
(p̃) and p̃, respectively. If UB = 0,

then p̃ is returned as the robust shortest path of G+
A∗ , else, set Â is calculated, by means of

computing the trees T su
1 (G+

A∗), u ∈ Uk. Using the strategy in Chapter 3, in order to spare

computational effort, for each (i, j) ∈ A∗, it is only necessary to compute those trees for the

scenarios indices up to the smallest Mij , Mij ≤ k, such that

RD
sMij

G+
A∗

(p
1,sMij

1i (G+
A∗) ⋄ 〈i, j〉 ⋄ p

1,sMij

jn (G+
A∗)) > UB,

noticing that, at this stage, UB = RCG+
A∗
(p̃).

After knowing sets ÛA∪A∗

A and Â, ST is built when p̃ cannot be assured as the optimal

solution, i.e. when ÛA∪A∗

A = ∅ and Â (A∗, or when ÛA∪A∗

A 6= ∅. The labeling process and the

first and second extension rules in ST are analogous to the applied in the previous subsection,

which are adapted to G+
A∗ in the following. The labeling starts with

z
G+

A∗
(〈1〉) = (−LBs1

1n(G
+
A∗), . . . ,−LB

sk
1n(G

+
A∗)).

The first extension rule considers that a path p1i ∈ P1i(G
+
A∗), i ∈ V \{n}, can be extended in

ST when

max
u∈Uk

{zu
G+

A∗
(p1i) + LBsu

in (G
+
A∗)} < UB. (4.17)

The second extension rule considers that any arc (i, j) extending p1i ∈ ST ∩ P1i(G
+
A∗), i ∈

V \{n}, must satisfy

max
u∈Uk

{zu
G+

A∗
(p1i) + csuij (G

+
A∗) + LBsu

jn(G
+
A∗)} < UB. (4.18)

Variation of the number of arcs 113

With this rule, the sub-paths p̃1i, i ∈ V \{n}, belonging to ST , are set in the initial list X,

given by

X = {〈1〉} ∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ A(p̃), j 6= n, satisfy (4.18)}.

The subsequent extension of each p1i ∈ ST ∩ P1i(G
+
A∗), i ∈ V \{n}, considers the arcs in

AdG+
A∗
(p1i | p̃). This set is determined according with the principles followed by Algorithms 8

and 9, without considering the arcs of Â, i.e.

AdG+
A∗

(p1i | p̃) =





{
(i, j) ∈ (A ∪A∗)\(Â ∪A(p̃)) : j /∈ V (p1i)

}
if p1i = p̃1i

{
(i, j) ∈ (A ∪A∗)\Â : j /∈ V (p1i)

}
if p1i 6= p̃1i

A path p1i ∈ ST ∩ P1i(G
+
A∗), i ∈ V \{n}, is extended by an arc (i, j) ∈ Ad

G+
A∗

(p1i | p̃), with

j 6= n, if rule (4.18) is satisfied. When, j = n, a third extension rule is applied to the obtained

(1, n)-path p1n, when ÛA∪A∗

A = ∅ and Â (A∗, or, when ÛA∪A∗

A 6= ∅. For the first case, a robust

shortest path in G+
A∗ is found among the paths in the set

P̄1n(G
+
A∗)\P1n(G) = {p ∈ P1n(G

+
A∗) : A(p) ∩

(
A∗\Â

)
6= ∅},

with a robustness cost in G+
A∗ , denoted by RCaux,

RCaux = max
u∈Uk

RDsu
G+

A∗
(p1n),

which can be better than UB. Since in terms of the labels in G+
A∗ ,

RDsu
G+

A∗
(p1n) = zu

G+
A∗
(p1i) + csuin (G

+
A∗) , u ∈ Uk,

the arc (i, n) ∈ AdG+
A∗

(p1i | p̃) extends p1i whenever





A(p1n) ∩
(
A∗\Â

)
6= ∅

RCaux = maxu∈Uk
{zu

G+
A∗

(p1i) + csuin (G
+
A∗)} < UB.

(4.19)

Instead, if ÛA∪A∗

A 6= ∅, the search for a robust shortest path in G+
A∗ covers the simple paths in

set P̂1n(G
+
A∗), with a robustness cost in G+

A∗ , RCaux, that can improve UB. With a reasoning

similar to the exposed in Subsection 4.2.2, the search set can be reduced whenever UB is

updated, by considering it as

P̂
(UB)
1n (G+

A∗) = {p ∈ P̄1n(G
+
A∗) : max

u∈Uk\Û
A∪A∗
A

RDsu
G+

A∗
(p) < UB}.

114 Reoptimization methods for the robust shortest path problem

Under these conditions, there is no need to analyze any path p ∈ P̄1n(G
+
A∗), such that UB′ ≤

max
u∈Uk\Û

A∪A∗
A

RDsu
G+

A∗
(p) < UB, because in this case RCG+

A∗
(p) = maxu∈Uk

RDsu
G+

A∗
(p) ≥ UB′.

Hence, when UB is updated, the search set is updated to P̂
(UB)
1n (G+

A∗) as well. Therefore, arc

(i, n) ∈ Ad
G+

A∗
(p1i | p̃) extends p1i, i ∈ V \{n}, when the obtained (1, n)-path p1n belongs to

P̂
(UB)
1n (G+

A∗), i.e. if

aux1 = max
u∈Uk\Û

A∪A∗
A

RDsu
G+

A∗
(p) < UB,

and when RCG+
A∗
(p1n), i.e. RCaux, can improve UB. In fact, RCaux can make use of aux1,

RCaux = max
{
aux1, max

u∈ÛA∪A∗
A

RDsu
G+

A∗
(p1n)

}
.

The last two equalities can be expressed in terms of labels, using them to represent the robust

deviations as above. Then, the two following conditions must hold





aux1 = max
u∈Uk\Û

A∪A∗
A

{zu
G+

A∗
(p1i) + csuin (G

+
A∗)} < UB

RCaux = max
{
aux1,max

u∈ÛA∪A∗
A

{zu
G+

A∗
(p1i) + csuin (G

+
A∗)}

}
< UB

(4.20)

As a consequence of (4.19) or (4.20), p1n is a candidate for a robust shortest path in G+
A∗ . Then,

sol and UB are updated to p1n and RCaux, respectively, and the paths in list X that do not

satisfy (4.17) for the new UB are discarded.

The pseudo-code of the method described above is given in Algorithm 11.

Computational time complexity order Let m = m+m∗ be the number of arcs in G+
A∗ ,

with m∗ the number of arcs added to G, and W+
A be the maximum number of paths generated

in ST ∩P1i(G
+
A∗), i ∈ V . Like for Algorithms 8, 9 and 10, Algorithm 11 is divided in two parts.

The first part of Algorithm 11 is devoted to compute T su
n (G+

A∗) and LBsu
in (G

+
A∗), i ∈ V ,

u ∈ Uk, in Oa
1 = O(km) time for acyclic networks and in Oc

1 = O(k(m + n log n)) time for

general networks. These bounds are not affected by the remaining tasks. In fact, set ÛA∪A∗

A is

determined in O(k) time and the initial UB is set to RCG+
A∗
(p̃) in O(kn) time. In the worst

case, the calculation of set Â demands the computation of T su
1 (G+

A∗) and LBsu
1i (G

+
A∗), i ∈ V ,

u ∈ Uk, with the same complexity for the homologous trees rooted at node n. Besides, checking

the condition that defines Â, for each arc in A∗, demands O(1) operations, and, therefore, it is

performed in O(m∗) time.

Variation of the number of arcs 115

Algorithm 11: Finding the robust shortest path in G+
A∗ , given p̃, RCG(p̃) and LBsu

1n(G), u ∈ Uk

1 ÛA∪A∗

A ← ∅; Â← ∅;
2 for u ∈ Uk do

3 Compute T su
n (G+

A∗) and LBsu
in (G

+
A∗), i ∈ V ;

4 if LBsu
1n(G

+
A∗) < LBsu

1n(G) then ÛA∪A∗

A ← ÛA∪A∗

A ∪ {u};

5 if ÛA∪A∗

A = ∅ then RCG
+
A∗

(p̃)← RCG(p̃);

6 else RCG
+
A∗

(p̃)← maxu∈Uk
RDsu

G
+
A∗

(p̃);

7 UB ← RCG
+
A∗

(p̃); sol ← p̃;

8 if UB 6= 0 then

9 for (i, j) ∈ A∗
do

10 for u ∈ Uk do

11 if T su
1 (G+

A∗) was not computed yet then Compute T su
1 (G+

A∗) and LBsu
1i (G

+
A∗), i ∈ V ;

12 if RDsu

G
+
A∗

(p1,su1i (G+
A∗) ⋄ 〈i, j〉 ⋄ p

1,su
jn (G+

A∗)) > UB then

13 Â← Â ∪ {(i, j)}; break;

14 if Â 6= A∗
or ÛA∪A∗

A 6= ∅ then

15 X ← {〈1〉};

16 for u ∈ Uk do zu
G

+
A∗

(〈1〉)← −LBsu
1n(G

+
A∗);

17 for (i, j) ∈ A(p̃) and j 6= n do

18 if maxu∈Uk
{zu

G
+
A∗

(p̃1i) + csuij (G
+
A∗) + LBsu

jn(G
+
A∗)} < UB then

19 X ← X ∪ {p̃1j};

20 for u ∈ Uk do zu
G

+
A∗

(p̃1j)← zu
G

+
A∗

(p̃1i) + csuij (G
+
A∗);

21 else break;

22 while X 6= ∅ do

23 p1i ← first path in X ; X ← X − {p1i}; Compute AdG+
A∗

(p1i | p̃);

24 for (i, j) ∈ AdG+
A∗

(p1i | p̃) do

25 if j = n then

26 if ÛA∪A∗

A 6= ∅ then

27 aux1← max
u∈Uk\ÛA∪A∗

A
{zu

G
+
A∗

(p1i) + csuij (G
+
A∗)};

28 if aux1 < UB then

RCaux← max
{
aux1,max

u∈ÛA∪A∗

A
{zu

G
+
A∗

(p1i) + csuij (G
+
A∗)}

}
;

29 else

30 if A(p1j)∩ (A∗\Â) 6= ∅ then RCaux← maxu∈Uk
{zu

G
+
A∗

(p1i) + csuij (G
+
A∗)};

31 if RCaux < UB then

32 UB ← RCaux; sol← p1i ⋄ 〈i, j〉;
33 for p1i′ ∈ X do

34 for u ∈ Uk do

35 if zu
G

+
A∗

(p1i′) + LBsu
i′n(G

+
A∗) ≥ UB then

36 X ← X − {p1i′}; break;

37

38 else

39 if maxu∈Uk
{zu

G+
A∗

(p1i) + csuij (G
+
A∗) + LBsu

jn(G
+
A∗)} < UB then

40 p1j ← p1i ⋄ 〈i, j〉; X ← X ∪ {p1j};

41 for u ∈ Uk do zu
G+

A∗

(p1j)← zu
G+

A∗

(p1i) + csuij (G
+
A∗);

42 return sol;

116 Reoptimization methods for the robust shortest path problem

The second part of Algorithm 11 concerns the construction of ST , which is analogous to

Algorithm 10 in terms of the labeling and the two first extension rules, with complexities

adapted for n nodes, m arcs and k scenarios. However, the third extension rule is different

and may require more effort than in the previous algorithm. In fact, checking (4.19) requires

the intersection A(p1n)∩ (A
∗\Â), with O(n+m∗) operations [8] and setting RCaux is done in

O(k) time. This is also the complexity for checking (4.20). Hence, the third rule is performed

in O(n +m∗ + k) time. Because repeating the tests (4.17) may require O(knW+
A) operations,

the second stage is done in O2 = O((m
∗ + knW+

A)n2W+
A) time.

In conclusion, Algorithm 11 performs in O(max{m∗, knW+
A }n

2W+
A), for any type of net-

work, given that log n≪ n and m < n2.

Examples In the following, the set of arcs of the network G5 in Figure 4.1 is extended to three

new sets. For each of them, Algorithm 11 is applied, in order to return a robust shortest path

in (G5)
+
A∗ . The first two examples cover the case ÛA∪A∗

A = ∅, while, in the third, ÛA∪A∗

A 6= ∅.

In the first example, the arc (2, 3) is inserted in G5, and it belongs to Â, while in the second,

besides (2, 3), the arc (3, 6), which is not in Â, is inserted in G5 as well. The third example

includes arc (4, 7) in the previous network, in order to have ÛA∪A∗

A 6= ∅.

Case 1 Let (G5)
+
(2,3)

be the network in Figure 4.16.

1
0, 1, 2, 4

1, 0, 0, 1

0, 2, 2, 5

2

1, 2, 6, 4

0, 4, 5, 1

1, 4, 3, 9

3

3, 2, 3, 1

0, 1, 2, 1

1, 1, 1, 2

4

1, 2, 3, 4

3, 2, 1, 1

5
1, 2, 3, 1

0, 1, 1, 4

2, 1, 5, 5

6

1, 0, 1, 0

1, 0, 1, 1

7

i
c1ij((G5)

+
(2,3)

), . . . , c4ij((G5)
+
(2,3)

)
j

Figure 4.16: Network (G5)
+
(2,3)

When arc (2, 3) is inserted in network G5, the shortest path trees rooted at node 7 do not

Variation of the number of arcs 117

change. Hence, Figures 4.3 and 4.7.(a), (b) are taken into consideration. As,

LBu
17((G5)

+
(2,3)) = LBu

17(G5) , u ∈ U4,

it follows that

Û
A∪{(2,3)}
A = ∅.

Then, UB and sol start with

UB = RC(G5)
+
(2,3)

(p̃) = RCG5(p̃) = 2 and sol = p̃ = 〈1, 4, 6, 7〉.

Since UB 6= 0, set Â is determined. For this calculation, the shortest path trees rooted at node

1 in (G5)
+
(2,3) are needed, which coincide with the homologous trees in G5. These trees are

depicted in Figure 4.17.

1

0

2

1

3

0

4

0

5

1

6

1

7

2

i

LB1
1i(G5)

(a) T 1
1 ((G5)

+
(2,3)) = T

1
1 (G5)

1

0

2

0

3

2

4

2

5

3

6

3

7

3

i

LB3
1i(G5)

(c) T 3
1 ((G5)

+
(2,3)) = T

3
1 (G5)

1

0

2

0

3

1

4

2

5

2

6

3

7

3

i

LB2
1i(G5)

(b) T 2
1 ((G5)

+
(2,3)) = T

2
1 (G5)

1

0

2

1

3

3

4

4

5

2

6

5

7

6

i

LB4
1i(G5)

(d) T 4
1 ((G5)

+
(2,3)) = T

4
1 (G5)

Figure 4.17: Shortest path trees rooted at node 1 in G5 and (G5)
+
(2,3)

The only arc added to G5, (2, 3), is now analyzed, satisfying

RD1
(G5)

+
(2,3)

(
p1,112 ((G5)

+
(2,3)) ⋄ 〈2, 3〉 ⋄ p

1,1
37 ((G5)

+
(2,3))

)
= RD1

(G5)
+
(2,3)

(〈1, 2, 3, 5, 6, 7〉) = 2 ≤ UB,

118 Reoptimization methods for the robust shortest path problem

RD2
(G5)

+
(2,3)

(p1,212

(
(G5)

+
(2,3)) ⋄ 〈2, 3〉 ⋄ p

1,2
37 ((G5)

+
(2,3))

)
= RD2

(G5)
+
(2,3)

(〈1, 2, 3, 5, 7〉) = 1 ≤ UB

and

RD3
(G5)

+
(2,3)

(
p1,312 ((G5)

+
(2,3)) ⋄ 〈2, 3〉 ⋄ p

1,3
37 ((G5)

+
(2,3))

)
= RD3

(G5)
+
(2,3)

(〈1, 2, 3, 5, 6, 7〉) = 6 > UB.

The analysis of (2, 3) halts, as Â = {(2, 3)}. Hence, since Û
A∪{(2,3)}
A = ∅ and Â = A∗, Algo-

rithm 11 returns p̃ as the robust shortest path of (G5)
+
(2,3).

Case 2 Consider now network (G5)
+
A∗ , with A∗ = {(2, 3), (3, 6)}, in Figure 4.18.

1
0, 1, 2, 4

1, 0, 0, 1

0, 2, 2, 5

2

1, 2, 6, 4

0, 4, 5, 1

1, 4, 3, 9

3

3, 2, 3, 1

0, 1, 2, 1

1, 1, 1, 2

2, 3, 1, 2

4

1, 2, 3, 4

3, 2, 1, 1

5
1, 2, 3, 1

0, 1, 1, 4

2, 1, 5, 5

6

1, 0, 1, 0

1, 0, 1, 1

7

i
c1ij((G5)

+
A∗), . . . , c4ij((G5)

+
A∗)

j

Figure 4.18: Network (G5)
+
A∗ , with A∗ = {(2, 3), (3, 6)}

The tree T 3
7 ((G5)

+
A∗) is shown in Figure 4.19, because it is different from T 3

7 (G5).

1

3

2

3

3

2

4

2

5

2

6

1

7

0

i

LB3
i7((G5)

+
A∗)

Figure 4.19: T 3
7 ((G5)

+
A∗), with A∗ = {(2, 3), (3, 6)}

Variation of the number of arcs 119

The remaining trees are still the same, as shown in Figures 4.3 and 4.7.(a). Because

p1,3((G5)
+
A∗) = p1,3(G5),

LBu
17((G5)

+
A∗) = LBu

17(G5) , u ∈ U4,

and, therefore,

ÛA∪A∗

A = ∅.

Moreover, UB and sol are initialized with

UB = RC(G5)
+
A∗
(p̃) = RCG5(p̃) = 2 and sol = p̃ = 〈1, 4, 6, 7〉.

Since UB 6= 0, set Â is determined. It can be noted that the shortest path trees rooted at node

1 in (G5)
+
A∗ and G5 are the same for all scenarios – Figure 4.17.

Analogously to Case 1, for arc (2, 3), the condition that defines Â is not satisfied for scenarios

1 and 2. Because T 3
7 ((G5)

+
A∗) 6= T 3

7 (G5), the condition is checked for scenario 3, and

RD3
(G5)

+
A∗

(
p1,312 ((G5)

+
A∗) ⋄ 〈2, 3〉 ⋄ p

1,3
37 ((G5)

+
A∗)

)
= RD3

(G5)
+
A∗

(〈1, 2, 3, 6, 7〉) = 5 > UB.

Hence, it is concluded that (2, 3) ∈ Â. For arc (3, 6),

RDu
(G5)

+
A∗

(
p1,u13 ((G5)

+
A∗) ⋄ 〈3, 6〉 ⋄ p

1,u
67 ((G5)

+
A∗)

)
= RDu

(G5)
+
A∗

(〈1, 3, 6, 7〉) = 1 ≤ UB , u ∈ U3

and

RD4
(G5)

+
A∗

(
p1,413 ((G5)

+
A∗) ⋄ 〈3, 6〉 ⋄ p

1,4
67 ((G5)

+
A∗)

)
= RD4

(G5)
+
A∗

(〈1, 2, 5, 3, 6, 7〉) = 0 ≤ UB.

Therefore, (3, 6) /∈ Â, and, consequently,

Â = {(2, 3)}.

As Â 6= A∗, Algorithm 11 starts to construct ST , by computing

X =
{
〈1〉

}
∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ {(1, 4), (4, 6)} satisfy (4.18)

}
.

From the label

z(G5)
+
A∗
(〈1〉) = (−2,−3,−3,−6),

one concludes that arc (1, 4) extends 〈1〉, because

max
u∈U4

{zu
(G5)

+
A∗
(〈1〉) + cu14((G5)

+
A∗) + LBu

47((G5)
+
A∗)} = 1 < UB,

and the label

z(G5)
+
A∗

(〈1, 4〉) = (−2,−1,−1,−1)

120 Reoptimization methods for the robust shortest path problem

is calculated. However, arc (4, 6) cannot be added to 〈1, 4〉, since

max
u∈U4

{zu
(G5)

+
A∗
(〈1, 4〉) + cu46((G5)

+
A∗) + LBu

67((G5)
+
A∗)} = 2 ≥ UB.

Therefore, the initial X is

X = {〈1〉, 〈1, 4〉}.

Figure 4.20 shows the ST obtained for (G5)
+
A∗ by Algorithm 11.

1(−2,−3,−3,−6)

2(−1,−3,−3,−5) 3 (−2,−2,−1,−2)

6 (0, 1, 0, 0)

7 (1, 1, 1, 1)

4(−2,−1,−1,−1)

6

7

Figure 4.20: ST produced by Algorithm 11 for (G5)
+
A∗ , with A∗ = {(2, 3), (3, 6)}

The possible arcs for extending 〈1〉 belong to set

Ad(G5)
+
A∗

(〈1〉 | p̃) = {(1, j) ∈ (A ∪A∗)\(Â ∪A(p̃))} = {(1, 2), (1, 3)}.

Both arcs can be added to 〈1〉, since

max
u∈U4

{zu
(G5)

+
A∗

(〈1〉) + cu1i((G5)
+
A∗) + LBu

i7((G5)
+
A∗)} = 1 < UB, i = 2, 3.

Then, the labels

z(G5)
+
A∗

(〈1, 2〉) = (−1,−3,−3,−5) and z(G5)
+
A∗

(〈1, 3〉) = (−2,−2,−1,−2)

are created, and X is updated to

X = {〈1, 4〉, 〈1, 2〉, 〈1, 3〉}.

Next, 〈1, 4〉 is selected, with

Ad(G5)
+
A∗

(〈1, 4〉 | p̃) = {(4, j) ∈ (A ∪A∗)\(Â ∪A(p̃)) : j 6= 1} = {(4, 3)}.

However,

max
u∈U4

{zu
(G5)

+
A∗
(〈1, 4〉) + cu43((G5)

+
A∗) + LBu

37((G5)
+
A∗)} = 6 ≥ UB,

which means (4, 3) cannot extend 〈1, 4〉. Afterwards, path 〈1, 2〉 is selected, with

Ad(G5)
+
A∗

(〈1, 2〉 | p̃) = {(2, j) ∈ (A ∪A∗)\Â : j 6= 1} = {(2, 5), (2, 7)},

Variation of the number of arcs 121

but, no arc in this set can extend 〈1, 2〉. In fact, for arc (2, 5),

max
u∈U4

{zu
(G5)

+
A∗
(〈1, 2〉) + cu25((G5)

+
A∗) + LBu

57((G5)
+
A∗)} = 4 ≥ UB.

For arc (2, 7), since ÛA∪A∗

A = ∅, (4.19) must be checked, but its first condition is not satisfied,

since

A(〈1, 2, 7〉) ∩ (A∗\Â) = A(〈1, 2, 7〉) ∩ {(3, 6)} = ∅.

Now, path 〈1, 3〉 remains to be extended, with

Ad(G5)
+
A∗

(〈1, 3〉 | p̃) = {(3, j) ∈ (A ∪A∗)\Â : j 6= 1} = {(3, 2), (3, 4), (3, 5), (3, 6)}.

None of the arcs above can extend 〈1, 3〉, except (3, 6). In fact, for arcs (3, 2), (3, 4) and (3, 5),

max
u∈U4

{zu
(G5)

+
A∗

(〈1, 3〉) + cu3i((G5)
+
A∗) + LBu

i7((G5)
+
A∗)} =





5 , i = 2
3 , i = 4
4 , i = 5

i.e.,

max
u∈U4

{zu
(G5)

+
A∗
(〈1, 3〉) + cu3i((G5)

+
A∗) + LBu

i7((G5)
+
A∗)} ≥ UB, i = 2, 4, 5.

Nevertheless, for arc (3, 6),

max
u∈U4

{zu
(G5)

+
A∗
(〈1, 3〉) + cu36((G5)

+
A∗) + LBu

67((G5)
+
A∗)} = 1 < UB,

Then, the label

z(G5)
+
A∗

(〈1, 3, 6〉) = (0, 1, 0, 0),

is calculated, and X is updated to

X = {〈1, 3, 6〉}.

The path above is the only one left for extension, with

Ad(G5)
+
A∗
(〈1, 3, 6〉 | p̃) = {(6, j) ∈ (A ∪A∗)\Â : j /∈ {1, 3}} = {(6, 5), (6, 7)}.

Arc (6, 5) is not added to 〈1, 3, 6〉, as

max
u∈U4

{zu
(G5)

+
A∗

(〈1, 3, 6〉) + cu65((G5)
+
A∗) + LBu

57((G5)
+
A∗)} = 4 ≥ UB,

however, arc (6, 7) extends 〈1, 3, 6〉, because it satisfies (4.19),




A(〈1, 3, 6, 7〉) ∩ (A∗\Â) = {(3, 6)} 6= ∅

RCaux = maxu∈U4{z
u
(G5)

+
A∗

(〈1, 3, 6〉) + cu67((G5)
+
A∗)} = 1 < UB.

Since there are no other paths in X to analyze, 〈1, 3, 6, 7〉 is returned as the robust shortest

path in (G5)
+
A∗ , with RC(G5)

+
A∗
(〈1, 3, 6, 7〉) = 1.

122 Reoptimization methods for the robust shortest path problem

1
0, 1, 2, 4

1, 0, 0, 1

0, 2, 2, 5

2

1, 2, 6, 4

0, 4, 5, 1

1, 4, 3, 9

3

3, 2, 3, 1

0, 1, 2, 1

1, 1, 1, 2

2, 3, 1, 2

4

1, 2, 3, 4

3, 2, 1, 1

0, 2, 3, 4

5
1, 2, 3, 1

0, 1, 1, 4

2, 1, 5, 5

6

1, 0, 1, 0

1, 0, 1, 1

7

i
c1ij((G5)

+
A∗), . . . , c4ij((G5)

+
A∗)

j

Figure 4.21: Network (G5)
+
A∗ , with A∗ = {(2, 3), (3, 6), (4, 7)}

Case 3 Consider now the network (G5)
+
A∗ , with A∗ = {(2, 3), (3, 6), (4, 7)}, in Figure 4.21.

The shortest path trees in (G5)
+
A∗ rooted at node 7 for scenarios 2, 3 and 4, in Figures 4.7.(a),

4.19 and 4.3.(b), do not change. The tree T 1
7 (G

+
A∗) is depicted in Figure 4.22.(a). Then,

ÛA∪A∗

A = {u ∈ U4 : LB
u
17((G5)

+
A∗) < LBu

17(G5)} = {1}.

Algorithm 11 sets the initial UB and sol,

UB = RC(G5)
+
A∗

(p̃) = max
u∈U4

RDu
(G5)

+
A∗

(p̃) = 4 and sol = p̃ = 〈1, 4, 6, 7〉.

Since UB 6= 0, set Â is determined. With this goal, the shortest path trees rooted at node 1 in

(G5)
+
A∗ must be considered. For scenarios 2, 3 and 4, these trees are depicted in Figures 4.17.(b),

(c) and (d). The tree T 1
1 (G

+
A∗) is represented in Figure 4.22.(b).

In the following, the condition that defines Â is tested for the arcs of A∗. Starting with arc

(2, 3), the condition is not satisfied for scenario 1, because

RD1
(G5)

+
A∗

(
p1,112 ((G5)

+
A∗) ⋄ 〈2, 3〉 ⋄ p

1,1
37 ((G5)

+
A∗)

)
= RD1

(G5)
+
A∗

(〈1, 2, 3, 4, 7〉) = 2 ≤ UB.

As in the previous cases, the condition does not hold for scenario 2, but it is satisfied for scenario

3, which means (2, 3) ∈ Â. For arc (3, 6), the condition is not satisfied for scenario 1, since

RD1
(G5)

+
A∗

(
p1,113 ((G5)

+
A∗) ⋄ 〈3, 6〉 ⋄ p

1,1
67 ((G5)

+
A∗)

)
= RD1

(G5)
+
A∗
(〈1, 3, 6, 7〉) = 3 ≤ UB.

Variation of the number of arcs 123

1

0

2

1

3

0

4

0

5

1

6

1

7 0

i

LB1
i7((G5)

+
A∗)

(a) T 1
7 ((G5)

+
A∗)

1

0

2

1

3

0

4

0

5

1

6

1

7

0

i

LB1
1i((G5)

+
A∗)

(b) T 1
1 ((G5)

+
A∗)

Figure 4.22: Shortest path trees rooted at nodes 7 and 1 in (G5)
+
A∗ for scenario 1, with A∗ =

{(2, 3), (3, 6), (4, 7)}

Like in Case 2, the condition is neither satisfied for the remaining scenarios. Hence (3, 6) /∈ Â.

The new arc (4, 7) remains to be analyzed, for which,

RDu
(G5)

+
A∗
(p1,u14

(
(G5)

+
A∗) ⋄ 〈4, 7〉

)
= RDu

(G5)
+
A∗

(〈1, 4, 7〉) =





0 , u = 1
1 , u = 2
2 , u = 3

i.e.,

RDu
(G5)

+
A∗

(
p1,u14 ((G5)

+
A∗) ⋄ 〈4, 7〉

)
≤ UB, u ∈ U3,

and

RD4
(G5)

+
A∗

(
p1,414 ((G5)

+
A∗) ⋄ 〈4, 7〉

)
= RD4

(G5)
+
A∗

(〈1, 2, 5, 3, 4, 7〉) = 2 ≤ UB.

Hence, (4, 7) /∈ Â, and one concludes that

Â = {(2, 3)}.

Since ÛA∪A∗

A 6= ∅, ST has to be developed and starts with the paths of

X =
{
〈1〉

}
∪
{
p̃1i ⋄ 〈i, j〉 : p̃1i ∈ ST and (i, j) ∈ {(1, 4), (4, 6)} satisfy (4.18)

}
.

From the label

z(G5)
+
A∗

(〈1〉) = (0,−3,−3,−6),

one concludes that path 〈1, 4〉 belongs to ST , because

max
u∈U4

{zu
(G5)

+
A∗
(〈1〉) + cu14((G5)

+
A∗) + LBu

47((G5)
+
A∗)} = 1 < UB,

124 Reoptimization methods for the robust shortest path problem

and the label

zG+
A
(〈1, 4〉) = (0,−1,−1,−1)

is calculated. However, path 〈1, 4, 6〉 does not belong to ST , because

max
u∈U4

{zu
(G5)

+
A∗
(〈1, 4〉) + cu46((G5)

+
A∗) + LBu

67((G5)
+
A∗)} = 4 ≥ UB.

Therefore, the initial X is

X = {〈1〉, 〈1, 4〉},

from which Algorithm 11 produces the ST depicted in Figure 4.23.

1(0,−3,−3,−6)

2(1,−3,−3,−5) 3 (0,−2,−1,−2)4(0,−1,−1,−1)

7 (0, 1, 2, 3)6

7

Figure 4.23: ST produced by Algorithm 11 for (G5)
+
A∗ , with A∗ = {(2, 3), (3, 6), (4, 7)}

The arcs of

Ad(G5)
+
A∗

(〈1〉 | p̃) = {(1, j) ∈ (A ∪A∗)\(Â ∪A(p̃))} = {(1, 2), (1, 3)}

extend 〈1〉, since, for arc (1, 2),

max
u∈U4

{zu
(G5)

+
A∗

(〈1〉) + cu12((G5)
+
A∗) + LBu

27((G5)
+
A∗)} = 2 < UB

and, for arc (1, 3),

max
u∈U4

{zu
(G5)

+
A∗
(〈1〉) + cu13((G5)

+
A∗) + LBu

37((G5)
+
A∗)} = 1 < UB.

Then, the labels

z(G5)
+
A∗

(〈1, 2〉) = (1,−3,−3,−5) and z(G5)
+
A∗

(〈1, 3〉) = (0,−2,−1,−2)

are calculated. Afterwards, X is updated to

X = {〈1, 4〉, 〈1, 2〉, 〈1, 3〉},

and 〈1, 4〉 is the first path picked for extension, with

Ad(G5)
+
A∗
(〈1, 4〉 | p̃) = {(4, j) ∈ (A ∪A∗)\(Â ∪A(p̃)) : j 6= 1} = {(4, 3), (4, 7)}.

Variation of the number of arcs 125

Arc (4, 3) does not extend 〈1, 4〉, since

max
u∈U4

{zu
(G5)

+
A∗
(〈1, 4〉) + cu43((G5)

+
A∗) + LBu

37((G5)
+
A∗)} = 6 ≥ UB.

Nevertheless, recalling that ÛA∪A∗

A = {1}, arc (4, 7) can extend 〈1, 4〉, since (4.20) is satisfied,





aux1 = maxu∈{2,3,4}{z
u
(G5)

+
A∗

(〈1, 4〉) + cu47((G5)
+
A∗)} = 3 < UB

RCaux = max{aux1, z1
(G5)

+
A∗

(〈1, 4〉) + c147((G5)
+
A∗)} = 3 < UB.

Then, UB and sol are updated to

UB = RCaux = 3 and sol = 〈1, 4, 7〉.

Path 〈1, 2〉 is the next to be scanned, with

Ad(G5)
+
A∗

(〈1, 2〉 | p̃) = {(2, j) ∈ (A ∪A∗)\Â : j 6= 1} = {(2, 5), (2, 7)}.

None of these arcs extends 〈1, 2〉, because, for arc (2, 5),

max
u∈U4

{zu
(G5)

+
A∗

(〈1, 2〉) + cu25((G5)
+
A∗) + LBu

57((G5)
+
A∗)} = 4 ≥ UB

and, for arc (2, 7), the first condition of (4.20) is not satisfied, since

aux1 = max
u∈{2,3,4}

{zu
(G5)

+
A∗
(〈1, 2〉) + cu27((G5)

+
A∗)} = 4 ≥ UB.

Afterwards, no extension is possible from 〈1, 3〉, with

Ad(G5)
+
A∗

(〈1, 3〉 | p̃) = {(3, j) ∈ (A ∪A∗)\Â : j 6= 1} = {(3, 2), (3, 4), (3, 5), (3, 6)}.

In fact,

max
u∈U4

{zu
(G5)

+
A∗

(〈1, 3〉) + cu3i((G5)
+
A∗) + LBu

i7((G5)
+
A∗)} =





5 , i = 2
3 , i = 4, 6
4 , i = 5

i.e.,

max
u∈U4

{zu
(G5)

+
A∗
(〈1, 3〉) + cu3i((G5)

+
A∗) + LBu

i7((G5)
+
A∗)} ≥ UB, i = 2, 4, 5, 6.

Since there are no other paths in X to scan, 〈1, 4, 7〉 is returned as the robust shortest path in

(G5)
+
A∗ , with RC(G5)

+
A∗

(〈1, 4, 7〉) = 3.

126 Reoptimization methods for the robust shortest path problem

4.4 Conclusions

Chapter 4 presented four algorithms to reoptimize the robust shortest path in G after deleting

or including some scenarios or some arcs. The introduced methods are able of computing a

simple optimal solution in the transformed network, taking into account the original optimal

solution, p̃. It is also assumed that RCG(p̃) and the costs LBsu
1n(G) are known.

For each type of perturbation introduced in G, conditions for which path p̃ maintained its

optimality in the modified network were derived. For the deletion or inclusion of scenarios,

p̃ was identified as the robust shortest path in G−
S∗ , when RCG−

S∗
(p̃) = 0, and, in G+

S∗ , when

RCG+
S∗
(p̃) = RCG(p̃). For the deletion or inclusion of arcs, RCG±

A∗
(p̃) = 0 is one condition to p̃

preserve optimality. Otherwise, the identification of the scenarios indices for which the shortest

(1, n)-path costs change from G to G±
A∗ , is initially required. If no index exists satisfying such

property, path p̃ was identified as the robust shortest path in G−
A∗ , if A(p̃) ∩ A∗ = ∅, and, in

G+
A∗ , if all of the arcs of A∗ were robust 0-persistent.

When the conditions above are not satisfied for the transformed network in cause, it is

possible to restrict the search for a new robust shortest path to a particular subset of simple

(1, n)-paths. For that, a ST is constructed by means of extension rules applied to its paths,

starting with the sub-paths of p̃ that exist in the transformed network. An upper-bound UB for

the least robustness cost is also set in the latter network. In case of G−
A∗ , with A(p̃) ∩A∗ 6= ∅,

the initial UB is set to min
{
RCG−

A∗
(p1,su(G−

A∗)) : u ∈ Uk

}
. Otherwise, it is set to the new

robustness cost of p̃. In general, the extension rules follow techniques used by the labeling and

the hybrid algorithms in Chapter 2. One is the assignment of labels to each path in ST , as

in the first, the other is the inclusion of arcs in ST that assure the simplicity of the obtained

paths, as in the second for the deviation arcs. In case of G+
A∗ , the arcs avoid the identified

robust 0-persistent arcs of A∗ as well. The common technique, based on cost lower-bounds,

is used to determine the first two extension rules. Specifically, they evaluate whether a given

path p1i, i ∈ V \{n}, in ST can produce by extension a (1, n)-path in the transformed network

with a robustness cost that can improve UB. The first rule considers path p1i itself, and the

second rule considers the addition of an arc (i, j), j 6= n, to p1i. When j = n, the same kind

of procedure applies, as a third extension rule, which, besides the latter property, is concerned

with producing a (1, n)-path in the search set of the reoptimization method in cause.

The algorithms of the developed approaches were outlined and were shown to have time

complexities depending on the modified network parameters, as well as on the maximum number

of (1, i)-paths, i ∈ V , generated in ST . Moreover, in case of G−
S∗ or G−

A∗ , they depend on the

number of scenarios or arcs and nodes removed from G. The algorithms were exemplified for

all cases.

Chapter 5

Concluding remarks

This final chapter is dedicated to summarize the main conclusions for each of the topics in this

thesis. The steps of our research are described and are complemented with possible directions

for future work.

In the first chapter, the main definitions and notation used along the thesis were introduced.

The minmax regret robust shortest path problem was defined. Some of its properties were

derived, and it was shown that it has a simple optimal solution, when G has no cycles with

negative cost in any scenario. As a consequence, in the forthcoming chapters it was assumed

that no such cycles exist in G nor in any of its modified versions.

Three algorithms for solving the robust shortest path problem were presented in Chap-

ter 2 [39]. They are based on two main strategies, the labeling of paths rooted at node 1 and

the ranking of (1, n)-paths in a particular scenario. The literature review showed that Murthy

and Her [35], with a labeling method, and Yu and Yang [50], with a dynamic programming

method, proposed to solve the problem exactly for discrete models. The first only considered

the minmax shortest path problem, presenting an effective method. It was based on labeling

paths rooted at node 1, for which dominance tests were applied and the extension to node n

was analyzed by means of cost lower-bounds. The second considered both the absolute and the

relative versions of robustness. However, their method was computationally heavy in general,

especially for networks with a large number of scenarios or large cost upper-bounds.

The previous facts motivated the adaptation of Murthy and Her’s method to the relative

version of robustness, considering regret costs as the objective functions and skipping the domi-

nance tests for (1, n)-paths, in order to spare computational effort. The new labeling algorithm,

LA, clearly outperformed Yu and Yang’s algorithm, Y A, in the first set of computational ex-

periments, even for small networks with a small number of scenarios. The next step was to

design a strategy that could compete with LA. An alternative approach was ranking (1, n)-

paths. For instance, with interval data, that method had been applied for the multicriteria

127

128 Concluding remarks

shortest path problem by Dias and Clímaco [16], and also for the robust shortest path problem

by Montemanni and Gambardella [31], through handling the lower and the upper-limits of the

cost intervals. For the discrete model, the ranking was applied, considering all possible cost

scenarios. The first algorithmic version, RA, was presented, consisting in ranking simple (1, n)-

paths by non-decreasing order of cost under a suitable scenario sr. The cost upper-bound is

reduced along the process, taking into account the best robustness cost of the ranked paths.

Moreover, the ranking halts, whenever the least maximum robust deviation occurs in scenario

sr. Empirical tests revealed that this task was unstable as well as computationally hard in

several cases.

One way to improve RA was the application of the pruning rule used in LA when rank-

ing (1, n)-paths. This combination led to a second ranking approach, denominated hybrid

algorithm, HA. The paths ranking was based on the deviation method introduced in [30],

considering in each iteration all the deviation arcs from a (1, i)-path, i ∈ V , that can lead to

optimal simple paths. This new technique allowed to skip a significant number of paths in the

ranking.

The new algorithms have time complexities depending on the maximum number of paths

generated in P1i(G), i ∈ V , for LA, and on the number of ranked paths for RA and HA.

Empirical tests have shown that the new algorithms outperform Y A, with HA and LA having

similar performances. Both algorithms were able to solve the problem for a relatively large

number of scenarios in reasonable time. Because of this fact, approximating continuous cost

models, by means of discretizing the cost functions in a significant number of scenarios can

be included in a possible future research. The study can also cover particular continuous cost

functions, for which an exact solution can be found, such as piecewise linear functions.

In Chapter 3, preprocessing tools for reducing the size of G before finding a robust shortest

path were developed and tested. These techniques aimed at identifying arcs or nodes robust

1-persistent, which belong to all optimal solutions, and robust 0-persistent, which do not belong

to any of them. The study was restricted to robust 1-persistent arcs and robust 0-persistent

nodes, as they lead to the best reduction of G. Only the case of interval data models has been

approached, first, by Karasan, Pinar and Yaman [26], and, more recently, by Catanzaro, Labbé

and Salazar-Neumann [13]. The latter work presented more efficient and more general results

than the previous.

The preprocessing rules for the discrete case were derived, setting inequalities involving

specific path robust deviations and cost lower-bounds. The first approach, denominated static

and introduced in [40], used fixed lower-bounds, which depended on the paths p1,su(G), u ∈ Uk,

with the least robustness cost in G. The arcs candidate to be robust 1-persistent belong to

those paths, while the nodes candidate to be robust 0-persistent do not. Both algorithms are

129

polynomial in terms of time. In the empirical experiments, only very few robust 1-persistent

arcs have been identified. On the contrary, the static identification of robust 0-persistent nodes

was very effective, as the problem size was significantly reduced. In addition, combining static

preprocessing with LA outperformed its application without preprocessing only for the networks

with the highest density. This did not happen for HA, because the method was able to find

optimal solutions by itself within few iterations for all the considered instances.

A new technique was explored, in order to improve the previous results. This second ap-

proach, denominated dynamic and introduced in [41], aimed to detect more arcs and nodes

than with the static version. Nevertheless, the arcs candidate to be robust 1-persistent were

still restricted to the paths p1,su(G), u ∈ Uk. The same inequalities to test arcs or nodes in

the static algorithm were used. However, the cost lower-bounds and the sets of scanned ele-

ments were updated along the process, according with the least robustness cost of the computed

(1, n)-paths. The dynamic search for robust 1-persistent arcs was as ineffective as the static.

On the contrary, the improvement of the static procedure for robust 0-persistent nodes was ac-

complished with the dynamic algorithm, by allowing to improve the reduction of the instances

in the empirical experiments. In order to further spare computational effort, the number of

scenarios used for testing nodes was limited. The results showed that LA or HA after dynamic

preprocessing run faster than after the static search. Combining dynamic preprocessing with

LA, for the majority of the instances, or with HA, for networks with a large number of nodes,

outperformed finding a robust shortest path in the original G.

The influence of robust 1-persistent arcs in detecting robust 0-persistent nodes was also

studied. In fact, when some of those arcs is identified, the calculation of the path robust devia-

tions in the test conditions for preprocessing nodes can be skipped. However, because detecting

robust 1-persistent arcs was rare in most of the networks, the new approach was not efficient.

In order to improve the reduction of G with the dynamic preprocessing, more conditions to

find robust 1-persistent arcs deserve further investigation. One possible direction is to give

priority to the dynamic detection of robust 0-persistent nodes and with the minimum lower-

bound attained in that preprocessing, test candidates besides the arcs of the paths p1,su(G),

u ∈ Uk. Another strategy is to consider an arc (i, j) robust 1-persistent in G, by identifying

the remaining arcs with tail node i and with head node j as robust 0-persistent.

The fourth chapter focused on reoptimizing the robust shortest path, assuming the deletion

or insertion of scenarios or of arcs in G. This topic was raised by Chapter 3, where the reduction

of G had been treated, in the context of preserving the original robust shortest path of G, p̃.

The purpose of Chapter 4 was to reoptimize the solution in the modified version of G, assuming

that p̃, RCG(p̃) and the costs LBsu
1n(G), u ∈ Uk, are known. First, the conditions that ensure

that p̃ is still optimal in G’s modified version, were presented. When none of the previous cases

130 Concluding remarks

is guaranteed, a simple robust shortest path in the transformed network is searched in a specific

subset of (1, n)-paths, with the least robustness cost in the modified network.

In the literature, no tools for reoptimizing the robust shortest path problem were found,

so the idea explored for the search method was to combine techniques of LA and HA, both

reported as the most efficient in Chapter 2. A strategy adopted to perform the search was to

start to add one arc at a time from node 1, so that the obtained paths can produce potentially

optimal simple paths in the transformed network. As a consequence, a search-tree, ST , was

constructed, starting with the sub-paths of p̃, except itself, in the modified network. The

labeling of the paths in ST was similar to LA, because repeating the sum of previous arc

costs could be avoided, and when adding an arc with head node n, the robustness cost in the

transformed network could be immediately obtained. The dominance tests of LA were not

considered here. Therefore, the arcs to be added to ST were chosen similarly to the deviation

arcs in HA.

The developed reoptimization algorithms have time complexities, depending on the maxi-

mum number of (1, i)-paths, i ∈ V , in ST . The complexity orders depended also on the number

of removed scenarios or arcs when G was reduced. The algorithms were exemplified for a par-

ticular instance, considering all possible situations. Future research should include empirical

tests, comparing the performances of the reoptimization algorithms with the direct application

of LA or HA over the transformed versions of G. This study is important to decide what is

the best approach to reoptimize the problem.

Bibliography

[1] R.K., Ahuja, T.L., Magnanti and J.B. Orlin. Network Flows : Theory, Algorithms and

Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] C. Archetti, L. Bertazzi and M. Speranza. Reoptimizing the 0-1 knapsack problem. Dis-

crete applied mathematics, vol. 158(17), 2010.

[3] G. Ausiello, V. Bonifaci and B. Escoffier. Complexity and approximation in reoptimization.

In B. Cooper and A. Sorbi Eds., editors, Computability in Context: Computation and Logic

in the Real World, pages 101–129. Imperial College Press/World Scientific, 2011.

[4] G. Ausiello, B. Escoffier, J. Monnot and V. Paschos. Reoptimization of minimum and

maximum traveling salesmans tours. Journal of Discrete Algorithms, 7(4):453–463, 2009.

[5] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 1:425–447, 1958.

[6] D. Bertsimas, D.B. Brown and C. Caramanis. Theory and Applications of Robust Opti-

mization. SIAM Review, 53:464–501, 2011.

[7] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Math.Program.,

Ser.B, 98:49–71, 2003.

[8] P. Bille, A. Pagh and R. Pagh. Fast evaluation of union-intersection expressions. Technical

report, IT University of Copenhagen, Denmark, 2007.

[9] H. Böckenhauer, L. Forlizzi, J. Hromkovic̆, J. Kneis, J. Kupke, G. Proietti and P. Wid-

mayer. On the approximability of TSP on local modifications of optimally solved instances.

Algorithmic Operations Research, 2(2), 2007.

[10] J. Brumbaugh-Smith and D. Shier. An empirical investigation of some bicriterion shortest

path algorithms. European Journal of Operational Research, 43(2):216–224, 1989.

[11] M.E. Bruni and F. Guerriero. An enhanced exact procedure for the absolute robust shortest

path problem. International Transactions in Operational Research, 17:207–220, 2010.

131

132 BIBLIOGRAPHY

[12] A. Candia-Véjar, E. Álvarez Miranda, and N. Maculan. Minmax regret combinatorial

optimization problems: An algorithmic perspective. RAIRO Operations Research, 45:101–

129, 2011.

[13] D. Catanzaro, M. Labbé, and M. Salazar-Neumann. Reduction approaches for robust

shortest path problems. Computers & Operations Research, 38:1610–1619, 2011.

[14] J. Clímaco and E. Martins. A bicriterion shortest path algorithm. European Journal of

Operational Research, 11:399–404, 1982.

[15] C. Demetrescu, D. Eppstein, Z. Galil, and G. Italiano. Dynamic graph algorithms. In M. J.

Atallah and M. Blanton, editors, Algorithms and theory of computation handbook: general

concepts and techniques, pages 1–25 of Chapter 9. Chapman & Hall/CRC, 2010.

[16] L. Dias and J. Clímaco. Shortest path problems with partial information: Models and

algorithms for detecting dominance. European Journal of Operational Research, 121:16–

31, 2000.

[17] M. Desrochers and F. Soumis. A reoptimization algorithm for the shortest path problem

with time windows. European Journal of Operational Research, 35(2):242–254, 1988.

[18] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing, 28:652–673, 1998.

[19] L. Ford. Network flow theory. Technical Report P-923, The Rand Corp., Santa Monica,

CA, August 1956.

[20] G. N. Frederickson. Data structures for on-line updating of minimum spanning trees, with

applications. SIAM Journal on Computing, 14(4):781–798, 1985.

[21] M. L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the Association for Computing Machinery, 34:596–

615, 1987.

[22] V. Gabrel and C. Murat. Robust shortest path problems. Technical Report 7, Annales du

LAMSADE, Paris, May 2007.

[23] V. Gabrel, C. Murat and A. Thiele. Recent advances in robust optimization and robust-

ness: An overview, July 2012. Working paper.

[24] G. Gallo. Reoptimization procedures in shortest path problem. Rivista di matematica per

le scienze economiche e sociali, 3(1):3–13, 1980.

BIBLIOGRAPHY 133

[25] F. Guerriero and R. Musmanno. Label correcting methods to solve multicriteria shortest

path problems. Journal of Optimization Theory and Application, 11:589–613, 2001.

[26] O.E. Karasan, M.C. Pinar and H. Yaman. The robust shortest path problem with interval

data. Technical Report, Bilkent University, Ankara, Turkey, 2001.

[27] P. Kouvelis and G. Yu. Robust discrete optimization and its applications. Kluwer Academic

Publishers, Boston, 1997.

[28] E. Q. V. Martins. On a multicriteria shortest path problem. European Journal of Opera-

tional Research, 16:236–245, 1984.

[29] E. Martins and M. Pascoal. A new implementation of yen’s ranking loopless paths algo-

rithm. 4OR - Quarterly Journal of the Belgian, French and Italian Operations Research

Societies, 1:121–134, 2003.

[30] E. Martins, M. Pascoal and J. Santos. Deviation algorithms for ranking shortest paths.

The International Journal of Foundations of Computer Science, 10:247–263, 1999.

[31] R. Montemanni and L. Gambardella. An exact algorithm for the robust shortest path

problem with interval data. Computers & Operations Research, 31:1667–1680, 2004.

[32] R. Montemanni and L. Gambardella. The robust shortest path problem with interval data

via Benders decomposition. 4OR - Quarterly Journal of the Belgian, French and Italian

Operations Research Societies 3:315–328, 2005.

[33] R. Montemanni, L. Gambardella and V. Donati. A branch and bound algorithm for the

robust shortest path problem with interval data. Operations Research Letters, 32:225–232,

2004.

[34] E. Moore. The shortest path through a maze. In Proceedings of the International Sympo-

sium on the Theory of Switching, Part II, volume 30, pages 285–292. Harvard University

Press, 1959.

[35] I. Murthy and S.-S. Her. Solving min-max shortest path problems on a network. Naval

Research Logistics, 39:669–683, 1992.

[36] S. Nguyen, S. Pallottino and M. Scutellà. A New Dual Algorithm for Shortest Path Re-

optimization. In M. Gendreau and P. Marcotte, editors, Series of Applied Optimization –

Transportation and Network Analysis: Current Trends, volume 63, pages 221–235, 2002.

Springer US.

134 BIBLIOGRAPHY

[37] S. Pallottino and M. Scutellà. A new algorithm for reoptimizing shortest paths when the

arc costs change. Operations Research Letters, 31(2):149–160, 2003.

[38] M. Pascoal. Implementations and empirical comparison for K shortest loopless path algo-

rithms. In Online Proc. of The Ninth DIMACS Implementation Challenge: The Shortest

Path Problem. DIMACS, USA, November 2006.

[39] M. Pascoal and M. Resende. Minmax regret robust shortest path problem in a finite

multi-scenario model. Applied Mathematics and Computation, 241:88–111, 2014.

[40] M. Pascoal and M. Resende. Reducing the minmax regret robust shortest path problem

with finite multi-scenarios. In P. Bourguignon, R. Jeltsch, A. Pinto, and M. Viana, editors,

CIM Series in Mathematical Sciences – Mathematics of Planet Earth: Energy and Climate

Change (Dynamics, Games and Science), volume 2. Springer-Verlag, to appear, 2014.

[41] M. Pascoal and M. Resende. Dynamic preprocessing for the minmax regret robust shortest

path problem with finite multi-scenarios. Technical Report 10, INESC-Coimbra, Coimbra,

September 2014. (under revision).

[42] P. Perny and O. Spanjaard. An axiomatic approach to robustness in search problems

with multiple scenarios. In Proceedings of the 19th conference on Uncertainty in Artificial

Intelligence, pages 469–476. Acapulco, Mexico, 2003.

[43] A. Pessoa, L. Pugliese, F. Guerriero and M. Poss. Robust constrained shortest path prob-

lems under budgeted uncertainty. Networks, doi: 10.1002/net.21615, April, 2015.

[44] H. Rohnert. A dynamization of the all-pairs least cost problem. In K. Mehlhorn, editor,

Proceedings 2nd Symposium on Theoretical Aspects of Computer Science, pages 279–286,

1985.

[45] B. Roy, Méthodologie multicritère d’aide à la décision. Economica, Paris, 1985.

[46] B. Roy, Robustness in operational research and decision aiding: A multi-faceted issue.

European Journal of Operational Research, 200:629–638, 2010.

[47] H. Shachnai, G. Tamir and T. Tamir. A theory and algorithms for combinatorial reop-

timization. In D. Fernández-Baca, editor, LATIN 2012: Theoretical Informatics, pages

618–630. Springer Science & Business Media, April 2012.

[48] A. J. V. Skriver and K. A. Andersen. A label correcting approach for solving bicriterion

shortest path problems. Computers & Operations Research, 27(6):507–524, 2000.

BIBLIOGRAPHY 135

[49] J. Yen. Finding the K shortest loopless paths in a network. Management Science, 17:712–

716, 1971.

[50] G. Yu and J. Yang. On the robust shortest path problem. Computers Operations Research,

25: 457–468, 1998.

136 BIBLIOGRAPHY

List of notation

Uk : {1, . . . , k}, k > 1.

G(V,A, S) : directed graph G with a set of nodes V = {1, . . . , n}, a set of arcs A s.t.
A ⊆ {(i, j) : i, j ∈ V and i 6= j}, and a set of scenarios S = {su : u ∈ Uk}.

V (p) (A(p)) : set of nodes (arcs) of path p.

p ⋄ q : concatenation of paths p and q.

Pij(G) : set of (i, j)-paths in G, i, j ∈ V .

csuij (G) : cost of arc (i, j) under scenario su, u ∈ Uk, in G.

csuG (p) : cost of a path p under scenario su, u ∈ Uk, in G.

pl,suij (G) : l-th shortest (i, j)-path of G, i, j ∈ V , in scenario su, u ∈ Uk.

pl,su(G) : l-th shortest (1, n)-path of G in scenario su, u ∈ Uk.

LBsu
ij (G) : cost of the shortest (i, j)-path of G, i, j ∈ V , in scenario su, u ∈ Uk.

T su
1 (G) (T su

n (G)) : tree of the shortest (1, i)-paths ((i, n)-paths), i ∈ V , of G.

RDsu
G (p) : robust deviation of a (1, n)-path p under scenario su, u ∈ Uk, in G.

RCG(p) : robustness cost of a (1, n)-path p in G.

UG(p) : set of scenarios indices under which RCG(p) occurs.

zG(p1i) : label associated with a (1, i)-path p1i, i ∈ V .

ZG(P1i) : set of labels for all the paths of P1i(G), i ∈ V .

137

138 BIBLIOGRAPHY

qp,srij : (1, n)-path formed by the (1, i)-sub-path of p followed by arc (i, j) ∈ A,
and, then, by the shortest (j, n)-path under scenario sr in G, r ∈ Uk.

c̄srij (G) : reduced cost of arc (i, j) in scenario sr, r ∈ Uk.

Asr
G (i) : set of arcs of G with tail node i sorted by non-decreasing order of the

reduced costs with respect to scenario sr, r ∈ Uk.

Âsr
G (p1i, j) : subset of arcs of Asr

G (i)\{(i, j)}, which extend the (1, i)-path p1i, i ∈ V ,
to a simple (1, n)-path.

U(i, j) : set of scenarios for which the shortest (1, n)-paths of G contain arc (i, j).

S∗ (A∗) : non-empty set of scenarios (arcs) removed from or added to G.

G−
S∗(G

+
S∗) : subgraph (extension) of G with set of scenarios S\S∗ (S ∪ S∗).

G−
A∗(G

+
A∗) : subgraph (extension) of G with set of arcs A\A∗ (A ∪A∗).

P̂1n(G
−
S∗) : set of (1, n)-paths of G−

S∗ , for which the robust deviation in G under
some of its removed scenarios is not smaller than the optimal value of G.

Û∗ : set of the indices of the scenarios added to G, under which the robust
deviation of the optimal solution of G exceeds its robustness cost.

P̂1n(G
+
S∗) : set of (1, n)-paths of G+

S∗ , for which the robustness cost in G is smaller
than their robustness cost in G+

S∗ .

ÛA
A\A∗ (ÛA∪A∗

A) : set of the scenarios indices of G, for which the shortest (1, n)-paths cost

change from G to G−
A∗ (G+

A∗).

P̂1n(G
−
A∗) : set of (1, n)-paths of G−

A∗ , for which the robust deviation in G under
some scenario su, u ∈ ÛA

A\A∗ , is not smaller than the optimal value of G.

Â : set of arcs added to G, which are robust 0-persistent in G+
A∗ .

P̄1n(G
+
A∗) : set of (1, n)-paths of G+

A∗ , which do not contain any arc in Â.

P̂1n(G
+
A∗) : subset of paths in P̄1n(G

+
A∗), for which the robust deviation under some

scenario su, u ∈ Uk\Û
A∪A∗

A , is smaller than their robustness cost in G+
A∗ .

AdG′(p1i | p̃) : set of arcs added to a (1, i)-path p1i, i ∈ V , in the search tree that
reoptimizes the optimal solution p̃ of G, with G′ = G±

S∗ or G′ = G±
A∗ .

