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Resumo 

A videira (Vitis vinifera) é uma das espécies mais susceptível a fitopatogéneos 

(bactérias, fungos, nematóides e vírus). Normalmente, no combate desses fitopatogéneos 

são utilizados compostos químicos. No entanto, têm-se verificado nos últimos anos um 

crescente interesse da utilização de agentes de controlo biológico como método 

alternativo para a redução ou substituição desses compostos químicos.  

Neste sentido, o objetivo deste trabalho consiste no isolamento, seleção, 

caracterização e identificação de microrganismos antagonistas endógenos isolados de 

vinhas localizadas na região da Bairrada. Foram obtidos um total de 354 microrganismos, 

isolados de amostras de solo, raiz, caule, folhas, uvas e mosto e as técnicas moleculares 

permitiram identificar 140 fungos filamentosos. Os restantes 214 isolados caracterizados 

como bactérias e leveduras foram sujeitas ao teste de antagonismo contra 8 fungos 

fitopatogéneos selecionados. E um total de 72 isolados (34%) apresentou atividade 

antagonista significativo.  

 Estes isolados foram testados quanto à sua capacidade de produção de sideróforos e 

solubilização de fosfato. Dos 72 microrganismos testados, um total de 31 isolados 

apresentaram simultaneamente reações positivas para a solubilização de fosfato e 

produção de sideróforos. E os isolados mais promissores como agentes de controlo 

biológico apresentaram ser sensíveis aos agroquímicos comerciais. Três espécies 

destacaram-se como potenciais promotores de crescimento vegetal e promissores agentes 

de controlo biológico, pois não só apresentaram uma inibição micelial significativa como 

foram capazes de solubilizar fosfato e produzir sideróforos simultaneamente. 

De um modo geral, as características moleculares, bioquímicas e metabólicas dessas 

espécies torna-as potenciais promotores de crescimento vegetal e promissores agentes de 

controlo biológico na vinha Além de contribuírem para a redução dos agroquímicos, e 

permitirem o desenvolvimento de uma viticultura sustentável e orgânica.  

Palavras-chaves: Vitis vinifera, Fitoprotetores, Biocontrolo, antagonismo, 

Agroquímicos 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Abstract 

       Grapevine is susceptible to a diverse phytopathogens attack that compromises its 

cultivation and is responsible for considerable losses of yield and therefore will affect 

wine quality. The control of these phytopathogenic microorganisms is based on the use 

of phytochemical products that are hazardous to environment and are responsible for the 

emergence of resistant strains. In order to reduce the doses of phytochemicals applied in 

viticulture, a recent interest has been focus in new ecological alternatives also known 

Biocontrol.  

In this context, the aim of this work was to isolate, identify and characterize 

endogenous microorganisms isolated from vineyards located in Bairrada, Portugal. A 

total of 354 microorganisms were isolated from soil, roots, leaves, stems, grape, and must 

samples and the molecular tools allowed to identify 140 filamentous fungi. The remaining 

214 bacterial and yeast isolated were tested for in vitro antagonism assays against 8 

pathogenic fungi. And a total of 72 isolates (34%) exhibited a significant antagonistic 

activity.  

The antagonistic isolates were also evaluated for their ability for siderophore 

producing and capacity to solubilize phosphate. Among these, 31 isolates were able to 

simultaneously produce siderophores and solubilise phosphate. And the most promising 

isolates were generally showed very sensitive towards trade formulates agrochemicals.  

Furthermore, three isolates highlighting as potential biological agents and plant-growth 

promoters by showed a significant inhibition mycelial (≥50%), and exhibited 

simultaneously a positive reaction for both production of siderophores and solubilize 

phosphate.   

Overall, due to the molecular, biochemical and metabolic characteristics of these 

species make them as potential protectors of grapevine against fungal diseases. 

Furthermore, they can also contribute to a significant reduce of agrochemicals and favor 

the production of a sustainable agriculture. 

Keywords: Vitis vinifera, Phytoprotector, Biocontrol, Antagonism, Agrochemicals 
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1 - Introduction 

1. Inside the vineyard – phytoprotectors and their importance 

for a sustainable viticulture. 

1.1. Viticulture in Portugal 

Viticulture is one of the key economic activities in Europe. In the last report of the 

International Organisation of Vine and Wine (OIV), the production of wine in Europe 

was estimated at 62,3% across 4 mHA cultivated, which represents the largest area of 

vineyards in the world (OIV, 2013).  

Of all European countries, Portugal has the largest percentage of area under vines. 

Indeed, viticulture is one of the most dynamic sectors of Portuguese agriculture and the 

species Vitis vinifera is the most cultivated due to its high quality for the production of 

wine (Ferreira et al., 2004). However, this species is highly susceptible to an array of 

pathogens as fungi, bacteria, viruses and nematodes which may cause serious problems 

to the vitality of plantations and consequently jeopardize the economy of wine sector. 

Among these microorganisms, fungal pathogens are the most damaging in vines 

cultivation. In fact, fungi pathogens cause significant losses in the wine industry because 

they could infect the plant, thus reducing its vitality and productivity, or could directly 

infect the berries. Consequently,  the yield and wine quality is compromised (Fraga et al., 

2012).  

The most threatening fungal diseases of grapevine are downy mildew (Plasmopara 

viticola), powdery mildew (Erysiphe necator) and gray mold (Botrytis cinerea) which are 

mainly controlled by the application of chemical fungicides to reduce the incidence of 

diseases (Ferreira et al., 2004; Barata et al., 2012).   
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According to the Direcção Geral da Agricultura e do Desenvolvimento Rural 

(DGADR), in 2010, more than  68 % of the agrochemicals marketed in Portugal were 

fungicides from different chemical families (DGADR, 2011). 

In the past few years, these fungicides have been successfully used for the control of 

pests and diseases in grapevine. However, they have been losing their effectiveness as 

some pathogens strains have developed genetic resistance to these compounds (Compant 

et al., 2005a).  In addition, synthetic fungicides cause an undesirable effect on the 

microbial diversity of agroecossystems affecting both phytopathogenic and beneficial 

microorganisms (Pinto et al., 2014). Furthermore, also the soil fertility is negatively 

affected, which influences the growth of plants (Cañamás et al., 2011; Furuya et al., 

2011).  

Due to the increase of awareness to sustainable practices, there has been an increasing 

interest of exploring new alternative methods for controlling diseases through the 

application of environmental friendly strategies. Thus, biological control has emerged as 

an environmental friendly alternative to chemical pesticides, to reduce the doses of 

chemicals applied and pathogens strains resistant in viticulture (Compant et al., 2005a). 

1.2. Biological control 

The biological control, also denominated as Biocontrol, can be defined as the use of 

non-pathogenic microorganism to reduce the incidence of infections caused by 

pathogenic microorganisms, to stimulate plant growth and to reduce biotic and abiotic 

stresses of plant (Ait Barka et al., 2002; Compant et al., 2010). These non-pathogenic 

microorganisms are commonly designated phytoprotectors or biological control agents 

(BCA).  

The biological control is characterized by different types of interactions between plant 

and BCAs that colonize soil, roots, tuber, stems, leaves and other plant organs. The 

mutualism, commensalism, neutralism, competition, amensalism, parasitism, predation 

and antagonism are some of the interactions that occur between plants, phytopathogen 

and phytoprotector microorganisms (Berg, 2009; Heydari and Pessarakli, 2010).  
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Regarding the control of plant’s pathogenic microorganisms, the antagonism is the 

dominant interaction. According to Heydari and Pessarakli (2010), antagonism is defined 

by the interaction of two or more species where one microorganism is harmed in relation 

to another, or even both are harmed. This interaction between species can result in a 

reduced growth, activity and fertility of the interacting microorganisms. Various authors 

have considered the mechanism of antagonism as the most common of biological control 

because the BCAs microorganisms compete for nutrients and space with the plant’s 

phytopathogens (Dardanelli et al., 2010; Figueiredo et al., 2010). 

1.3. Mechanisms involved in biological control  

The biological control can be achieved by multiple mechanism of action (Figure 1) 

which could be direct or indirect. The direct mechanisms are based on the production of 

substances which promote plant growth and increase nutrient availability in soil for plants 

by transforming these nutrients in to a simpler form of assimilation.  The indirect 

mechanisms consist in the suppression of plant pathogens (Akhatar and Siddiqui, 2010; 

Ribeiro and Cardoso, 2012). 

 

Figure 1. Vitis vinifera – microbe interactions. 

Mechanisms involved in biocontrol of plant pathogens (adapted from Berg, 2009). 

The direct promotion of plant growth requires the provision of some compounds 

synthesized by BCAs microorganisms through the production of siderophores and the 
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hormone indole-3-acetic acid (IAA). Its impact on plant growth is due to the  greater 

absorption of nutrients from the surrounding environment, in particular to the capacity of 

phosphate solubilisation or nitrogen fixation by BCAs microorganisms (Bloemberg and 

Lugtenberg, 2001; Whipps, 2001; Lodewyckx et al., 2002; Compant et al., 2005; 

Compant et al., 2005a; Ahmad et al., 2006; Adesemoye et al., 2009; Compant et al., 2010; 

Heydari and Pessarakli, 2010). 

The indirect promotion occurs when phytoprotectors inhibit the growth of plant 

pathogenic microorganisms through the diffusion of antibiotics, volatile organic 

compounds, toxins and biosurfactants for surrounding areas. This  promotes a process 

designed as antibiosis (Berg, 2009). Besides these, the competition for space and nutrients 

(Compant et al., 2005a; Correa and Soria, 2010), production of extracellular enzymes 

such as chitinase and β - 1,3 – glucanase, which degrade the cell wall of fungi (Heydari 

and Pessarakli, 2010), and the induction of systemic resistance (SR) in plants, which 

increases the defensive response, are all processes that contribute to the  inhibition of  

phytopathogenic attacks (Verhagen et al., 2010).  

1.3.1. Siderophores production 

Iron is an essential element which plays an important role in many biological 

processes such as photosynthesis, nitrogen fixation, methanogenesis, hydrogen 

production and consumption, cellular respiration, oxygen transport, gene regulation and 

DNA biosynthesis (Yuan et al., 2001; Andrews et al., 2003).  

Despite being the fourth most abundant element in the earth's crust, iron 

bioavailability is extremely limited in aerobic  environments (in the presence of oxygen 

and neutral pH), because ferric iron (Fe3+) reacts with oxygen to form insoluble ferric 

hydroxides (FeOOH) (Loper and Buyer, 1991). In a soil with an iron-limited condition, 

microorganisms produce siderophores to solubilise environmental iron, capturing and 

transporting extracellular inorganic iron to the cell or, in the case of being produced 

intracellularly, to iron storage (Johnson, 2008). 

 Siderophores are low molecular weight compounds (< 1000 Da), highly 

electronegative and with high affinity towards Fe3+ (Andrews et al., 2003). They usually 
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form hexadentate octahedral complexes with ferric iron and typically employ 

hydroxamates, α-hydroxycarboxylates and catechols as extremely effective Fe3+ ligands 

(Alexander and Zuberer, 1991).  

It has been suggested that the excretion of siderophores forming ferric ion complex 

(Fe3+ -Siderophore complex), which is transported into the cell via specific channels, 

allows the metal availability and stimulates the plant growth by improving the Fe nutrition 

of the plant, and by depriving pathogenic fungi (Alexander and Zuberer, 1991; Compant 

et al., 2005a; Akhatar and Siddiqui, 2010). 

1.3.2. Phosphate solubilisation 

Plants need several macro and micro nutrients for their growth and reproduction. 

Phosphorus (P) is a macronutrient essential for plant growth and biological development 

(Kaymak, 2010). Most agricultural soils contain high concentrations of phosphorus as a 

result of the application of phosphate fertilizers, which leads to the accumulation of this 

element. However, a large portion of soluble inorganic phosphate applied to soil, 

presented in chemical fertilizers, is rapidly immobilized  through precipitation with 

cations such as Ca2+, Mg2+, Fe3+ and Al3+ thus becoming unavailable to plants (Pradhan 

and Sukla, 2006). The phenomena of fixation of phosphate in soil are highly dependent 

on pH and soil type.  

Microbial communities have been recognized as strong candidates for solubilisation 

and subsequent absorption of phosphate, promoting the uptake of this element for plants 

(Yang et al., 2009). These beneficial microorganisms are involved in a framework of 

interactions in the soil and they convert insoluble phosphate into a soluble form by 

acidification, chelation and exchange reactions in the periplasm (Pradhan and Sukla, 

2006; Oliveira et al., 2009; Prasanna et al., 2011). Microrganisms belonging to the genera 

Acinetobacter, Archrobacter, Bacillus, Enterobacter, Erwinia, Klebsiella, 

Mesorhizobium, Microccus, Pseudomonas and Rhizobium have been reported as efficient 

phosphate solubilisers (Rodriguez and Fraga, 1999; Sridevi et al., 2007; Desai et al., 

2012).  
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1.4. Importance of the identification and characterization of 

microorganisms involved in the biological control  

The identification and characterization of phytoprotector microorganisms involves a 

phenotypic characterization obtained by morphological, physiological or biochemical 

analysis and genotypic identification through molecular methods. 

1.4.1. Phenotypic characterization 

Phenotypic characterization of microorganisms involves the analysis of their 

morphological, physiological or biochemical properties (Pinto, 2011). Traditionally, the 

morphological characterization comprises a colony morphology analysis as color, 

dimensions and form of microorganisms and microscopic appearance of the cells (shape, 

endospore, flagella, and inclusion bodies). While these tests consider the morphological 

and physiological properties of microorganisms, the biochemical characterization is 

related to the ability of microorganisms to metabolise different substrates in different 

concentrations of salinity, to grow under different pH and temperature conditions and 

their susceptibility toward different kinds of antimicrobial agents. Other factors such as 

concentration of oxygen, fermentation reactions and metabolism of nitrogen are also 

considered.  

Although these tests allow for the detailed characterization of strains, some drawbacks 

have arised from the fact that microorganisms of the same species have different 

phenotypic characteristics in different environmental conditions (Figueiredo et al., 2010). 

Thus, it becomes very important to complement these studies with other methods such as 

molecular characterization. 
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1.4.2. Molecular characterization 

The study of the interactions between plants and microorganisms (phytopathogenic 

and phytoprotectors communities) are important for a better understanding of many 

ecological processes and functioning of ecosystems (Singh et al., 2004).  

In the study of bacterial communities, the sequencing of 16S rDNA showed to be 

useful for species identification as well as determination of phylogenetic relationships. 

As 16S rDNA is a highly conserved region it has become an important tool both for 

species identification and to study bacterial phylogeny and evolution (Janda and Abbott, 

2007).   

For the identification and analysis of the phylogenetic relationships of eukaryotes, all 

genes encoding ribosomal subunits (18S, 5.8S and 26S) and non-coding regions (ITS1 

and ITS2) are used. The Internal Transcribed Spacer region (ITS) is the most applied for 

the identification of fungi and yeasts microorganisms. This region consists of the non-

coding regions ITS1 (rapid evolution) and ITS2 (suffers fewer mutations than ITS1) 

separated by the 5.8S gene (conserved region) (Nilsson et al., 2008). This region is 

located between the 18S gene (small subunit- SSU) and 28S gene ( Large Subunit- LSU) 

(Bellemain et al., 2010). The size of ITS region varies from organism to organism and 

typically ranges between 450 and 700 bp. The large number of ITS copies per cell and is 

highly conserved and variable regions, makes these region an appealing target for 

sequencing environmental substrates. 
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2 - Objectives 

The application of agrochemicals, such as fertilizers and pesticides, in viticulture can 

be considered one of the factors that influence the dynamics of microbial community in 

vineyards and contribute to the imbalance of these communities (Schmid et al., 2011; 

Martins et al., 2012). Thus, it becomes important to uncover the structure of microbial 

communities that naturally colonize the grapevine to better understand the interactions 

that occur between microorganisms (both patogenic, neutral and beneficial) with the host 

plant.   

Unveiling this microbial communities and its interactions will be a step forward to 

better understand some microbial mechanisms such those involved in plant infection, 

plant growth promotion or pathogen defense through biological control (Compant et al., 

2005a; Berg, 2009). 

In this context, the major goals of this work were to screen, identify and characterize 

endogenous microorganisms isolated from grapevines from Bairrada region. Regarding 

this, the specific goals were:  

 To Isolate and molecular identify microbial microorganisms, both phytoprotectors 

and plant pathogenic fungi, isolated from different vineyards from Bairrada 

region, during the vine campaigns of  2011 and 2012; 

 To carry out in vitro analyses of the microbial interaction between phytopathogens 

and potential antagonist microorganisms; 

 To evaluate the ability of the selected isolates to solubilize phosphate and to 

produce siderophores. 

 To evaluate the tolerance of antagonistic microorganisms to agrochemicals used 

for vineyard’s treatment through an in vitro screening with culture media supplied 

with different concentrations of the active element of each agrochemical.
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3 – Materials and Methods 

3.1. Sampling site  

The collection of biological samples was carried out in four different vineyards, 

located in the Bairrada region and selected by the Genomics Unit from Biocant. One of 

these vineyards was abandoned and vines were untreated. For each vineyard, the sampling 

points was randomly assigned and samples such as soil, roots, leaves, stems  and grapes 

of both healthy and diseased grapevine have been collected from Arinto, Baga, Bical, 

Maria Gomes, Tinta Roriz and Touriga Nacional varieties. These samples were collected 

during the vine campaign of 2011 (April to September) and September 2012. Also must 

samples were analysed. These samples were collected from different stages of wine 

fermentation performed in a laboratory-scale fermentation. For all samples collected 

microorganisms were immediately isolated, through classic microbiology techniques 

currently used in the laboratory. 

3.2. Isolation of microorganisms 

As referred above, the microorganisms were isolated from different parts of grapevine 

as roots, leaves, stems and grapes. And the soil also has been collected from the isolation. 

For the isolation of the microorganisms present in the leaves two different strategies were 

carried out. The first consisted of placing portions of the leaves (healthy and displaying 

disease symptoms) directly on the two culture medium used - Potato dextrose agar (PDA) 

and Yeast extract peptone dextrose (YEPD) (Annex I). In the second, leaves were cut in 

small sections (10 mm) followed by surface sterilization during 20s in a 2% (w/v) sodium 

hypochloride solution and washed with sterile water. The segments were then macerated 

in a sterile NaCl (0.85%) solution. Serial dilutions were performed and microorganisms 

were cultivated on the same culture medium as referred above.  The second strategy was 

also applied to roots and stems. For soil
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 samples, 0.1 g of soil from each sample was weighed, suspended in a sterile NaCl 

(0.85%) solution and shaken. Then the soil suspension was serially diluted by pipetting 1 

ml aliquots into 9 ml of NaCl (0.85%) solution and cultured in Petri dishes on potato 

dextrose agar (PDA) medium and yeast extract peptone dextrose (YEPD) (Annex I).  

Bacteria and yeast were grown at 30ºC for 48/72h and the filamentous fungi at 28ºC, for 

15 days. For each strain, a specific code was assigned according to the nomenclature 

adopted by the laboratory and cryopreserved at -80ºC in duplicate. Bacteria and yeasts 

were preserved in 40% and 80% of glycerol, respective with the corresponded broth 

growth medium. Filamentous fungi were cryopreserved in 20% of glycerol supplemented 

with potato dextrose broth (PDB) (Annex I).  

3.3. Molecular identification 

3.3.1. DNA extraction of bacteria and yeasts 

The DNA extraction of bacterial and yeasts isolates, and the consequently the 

molecular identification was carried out only for those isolates that showed the major 

biocontrol activity against the selected phytopathogenic fungi. The kit Promega Genomic 

DNA (Promega, USA) was used for DNA extraction. Isolates with approximately 48h of 

growth in PDA plates were used, and cells were removed from the plate, and added to 

480 µl of EDTA (50 mM) (Annex II) and 120 µl of lysozyme (10 mg / ml), and incubated 

at 37°C for 30-60 minutes. Samples were then centrifuged for 2 minutes at 13000 - 

16000g, the supernatant was discarded and 600 µl of Nuclei Lysis solution was added to 

the pellet and incubated at 80°C for 5 minutes. After this, samples were allowed to cool 

at room temperature and 3 µl of RNase solution was added. The solution was 

homogenized by inverting the eppendorfs 2-5 times and incubated at 37°C during 60 min. 

Samples were kept at room temperature and after cooling 200 µl of Protein Precipitation 

Solution was added and each eppendorf was  vigorously vortexed for 20s. Subsequently, 

the eppendorfs were placed on ice for 5 minutes and centrifuged at 13000 - 16000g for 3 

minutes. The supernatant was transferred to a new 1.5 ml eppendorf which contained 

already 600 µl of isopropanol at room temperature. This was mixed thoroughly by 

inversion and allowed to precipitate the DNA. The samples were centrifuged at 13000 - 
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16000g for 2 minutes and the supernatant was discarded. Then a wash was carried out 

with 600 µl of 70% ethanol and inverted gently several times and centrifuged at 13000 - 

16000g for 2 minutes. The supernatant was discarded and the pellet was dried in the speed 

vacuum (DNA 120 Speedvac concentrator, USA) or in the laminar flow chamber (Mars 

safety Class 2) for 10-15 min. The DNA pellet was ressuspended in 50-100 µL of DNA 

rehydration solution and incubated overnight at 4°C. The DNA was then quantified in 

NanoDrop (Nanodrop ND - 100) and stored at -20°C until further use. 

3.3.2. DNA extraction of filamentous fungus 

Cultures of filamentous fungus (7-15 days of culture) were used for DNA extraction. 

Eppendorfs were previously prepared with approximately 200 µl of rehydrated glass 

beads and a portion of fungi mycelium was sliced for DNA extraction. Then 400 µl of 

preheated 2x CTAB buffer at 65ºC was added and the eppendorfs were vortexed. To allow 

the mechanical breaking of fungi cells, 2 cycles of 5 minutes at maximum frequency (30 

Hz) in tissue lyser was applied. Between cycles, samples were allowed to rest on ice for 

2 minutes. Samples were centrifuged at 10000 rpm for 10 minutes at 15°C and the 

supernatant was collected to a new eppendorf. The mechanical breaking of cells was 

repeated twice with 300 µl of 2x CTAB buffer and a cycle of 60 seconds in tissue lyser. 

These samples were also centrifuged at 10000 rpm for 10 min and the supernatant was 

added to the above eppendorf. The samples were incubated at 65°C for one hour and then 

centrifuged at 13000 rpm for 5 min. The supernatant (300 µl) was transferred to another 

eppendorf and 600 µl of chloroform were added. The mixture was homogenized by 

inversion. After centrifugation at 13000 rpm for 5 min, the supernatant was carefully 

collected to a new eppendorf and 750 µl of cold isopropanol (-20ºC) were added. The 

mixture was gently homogenized by inversion. Then the eppendorfs were placed at -20°C 

for at least 2h or overnight to allow the precipitation of DNA. Samples were centrifuged 

at 13000 rpm for 30 minutes at 4°C and the supernatant was discarded. Subsequently, 200 

µl of 70% ethanol (-20°C) were added and stirred for 2 minutes. The eppendorfs were 

centrifuged at 7000 rpm for 5 minutes, the supernatant was removed and the DNA pellet 

was dried by the speed vacuum (DNA 120 Speedvac concentrator, USA) or in the laminar 

flow chamber for 10-15 min. The DNA was the ressuspended in 50-100 µl of 1X TE 
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buffer, quantified in the NanoDrop (NanoDrop ND - 100) and stored at -20°C until further 

use. 

3.3.3. Amplification, purification and sequencing of the ITS and 

16S rDNA regions 

The internal transcribed spacer (ITS) region was used to identify all eukaryotic 

isolates and the amplification of the gene 16S rDNA, which encodes the 16S subunit of 

the ribosome (Figure 2), to identify the prokaryotic isolates. The amplification of the 16S 

rDNA for prokaryotic identification was used because this gene is present in almost all 

prokaryotes, their functions have not changed over time and is large enough for 

bioinformatic analysis (Janda and Abbott, 2007). 

 

 

Figure 2: Regions of the DNA which were used to identify eukaryote and prokaryote. 

A: ITS region and commonly primers used to amplifyind the non-coding ITS1 and ITS2 regions. B: 16S 

rDNA regions. 

The polymerase chain reaction (PCR) reaction for ITS amplification contained: 1x 

Biocant buffer (Biocant, Portugal); 2 mM dNTPs (Bioron, Germany); 2 mM MgCl2 ; 0.4 

mM of each primer - ITS1 and ITS4 (Erro! A origem da referência não foi 

ncontrada.); 2.5U of Taq DNA Polymerase (Biocant); 1 or 2 µl of DNA and sterile milli-

Q water for a final reaction volume of 25 µl. 

The same reaction volume was used to amplify the 16S rDNA and the mixture 

contained: 1x Fidelity Taq buffer  (Affymetrix, USB); 1.7 mM MgCl2; 2 mM dNTPs; 0.8 

mM of each primer - 16S_R2 and 16S_F2 (Erro! A origem da referência não foi 

ncontrada.); 1.5 U Taq Fidelity (Affymetrix, USB); 2 µl of DNA and sterile milli-Q 

water. 

A 

B 
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Table I:  Primers used for the amplication of the ITS region and 16S rDNA. 

Primers 

Region Sequence 

ITS 1 
ITS 

5’- TCCGTAGGTGAACCTGCGG-3’ 

ITS 4 

5’-TCCTCCGCTTATTGATATGC-3’ 

16S_F2 

 

16S rDNA 

 5’AGAGTTTGATCCTGGCTCAG-3’ 

16S_R2 

  5’-GGYTACCTTGTTAACGACTT-3’ 

 

The PCR conditions for ITS and 16S rDNA amplification are described in detail in 

the Erro! A origem da referência não foi encontrada.. All reactions were carried out 

n an Eppendorf thermocycler AG (Eppendorf, USA). 

 

Table II: PCR amplification conditions. 

Region 
Amplification conditions 

 

ITS 

 
Initial denaturation: 95ºC – 6min 

 

X 35 cycles 

Denaturation: 94ºC – 40s 

Annealing: 53ºC – 40s 

Extension: 72ºC – 1 min 

 Final extension: 72ºC – 5 min 

 

16S rDNA 

 
Initial denaturation: 94ºC – 4min 

 

X 25 cycles 

Denaturation: 94ºC – 30s 

Annealing: 50ºC – 30s 

Extension: 72ºC – 45s 

 Final extension: 72ºC – 5min 
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To confirm the expected size and quality of PCR fragments - 4 µl of each 

amplification product was mixed with 2 µl of 6x loading buffer (0.25% w/v bromophenol 

blue, 0.25% w/v xylene cyanol, 30% v/v glycerol) and separated by electrophoresis on a 

1% agarose gel (Bioline, London, UK) in 1x TAE buffer at 90 volts and for approximately 

45 minutes.  

The agarose gel had ethidium bromide (10mg/ml), which is an intercalating agent 

commonly used in molecular biology to stain DNA. A molecular weight marker with 

100bp Plus DNA Ladder (Gene ruler TM) was used as standard.  

The PCR products were purified with the Illustra Exostar (GE HealthCare,USA) kit 

and according to the manufacturer's protocol. 

3.3.4. Sanger Sequencing 

The purified PCR products were sequenced using the ITS1 primers for eukaryotes and 

16S_R2 for prokaryotes. The sequencing reaction consisted in a 10μl volume reaction 

with 2 µl Big Dye Terminator Kit v3.1 Cycle Sequencing (Applied Biosystems, USA), 

2μl of the Big Dye Terminator v1.1 sequencing buffer, 30-50 ng of DNA, 3.2 pmol of 

primer and sterile milli-Q water. Sequencing reaction conditions are described in the 

Table III.  
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Table III: Sequencing reaction conditions. 

Primers 

Reaction condition 

ITS1 

 

Initial denaturation: 96ºC – 3min 

 

X 25 cycles 

Denaturation: 96ºC – 10min 

Annealing: 53ºC – 5s 

Extension: 60ºC – 4min 

16S_R2 

 

Initial denaturation: 96ºC – 3min 

 

X 25 cycles 

Denaturation: 96ºC – 10min  

Annealing: 50ºC – 5s 

Extension: 60ºC – 4min 

 

The products of this reaction were purified with the BigDye xTerminator Purification 

Kit (Applied Biosystems, USA) followed the manufacturer's instructions. Thereafter, 

samples were sequenced on 3500 Genetic Analyser sequencer (Applied Biosystems, 

USA). 

The ChromasPro (Technelysium Pty Ltd) software was used to visualize the 

electropherograms and to edit the DNA sequences. Then the Genbank database (NCBI), 

through the nucleotide blast (Blastn), was used to find the closest match for each sequence 

based on the maximum identity in order to identify the isolates.  

3.4. In vitro analyses for the secreening of biocontrol potential 

3.4.1. Antagonistic activity 

In vitro assays were performed to determine the biocontrol potential of bacteria and 

yeast isolates on the mycelial growth of eight fungal pathogens. For the analysis of the 
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antagonist activity two tests were applied – (1) general screening test (Figure 3A) and (2) 

co-culture (Figure 3B).  

The first test allowed for the pre-selection of microorganisms with potential antagonist 

activity against fungal pathogens through the inhibition of mycelium growth. For this 

purpose, four different bacteria or yeast strains with 48/72h of growth were inoculated 

around the fungal pathogen (3mm of mycelium agar disk) with 7/15 days old and at 2,5 

cm distance from the fungal (Figure 3A). This assay was performed in Petri dishes (9 cm) 

containing PDA medium and in triplicate.  The plates were incubated at 22ºC for 15 days 

and for this test, no mycelial inhibition was calculated.  

 

 

 

Figure 3: Scheme to evaluate the potential of antagonism.  

A: Pre-screening test of potential antagonistic microorganism. B: Co-culture test. 

    Represents the bacterial and yeast isolate.      Represents phytopathogen fungus. 

 

 

The co-culture test (Figure 3B) allowed for the individual evaluation of the potential 

antagonist activity of each isolate towards fungal plant pathogenic (Pinto, 2011). The 

phytoprotectors were inoculated at 2.5 cm distance from the border of the plate, and in 

the opposite site, at the same distance, was inoculated the phytopathogen (Figure 3B).  

The plates were incubated under the same conditions as the first antagonism assay and in 

 

A B 
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triplicate. For this assay, the mycelial growth inhibition was calculated through the 

following formula: 

% Micelial inhibition =
(𝑀𝑏 − 𝑀𝑎)

𝑀𝑏
×  100 

Where Mb corresponds to the free mycelium growth of plant pathogenic fungi and 

Ma corresponds to the mycelium growth of the fungal pathogen in the presence of the 

antagonist microorganism.  

The values obtained from the mycelial inhibition growth were used to compare the 

power effect of the antagonistic microorganisms against fungal pathogens and the 

minimum significant difference (α = 0.05) was analysed. The Mann Whitney U test was 

used to determine the minimum significant difference between the effect of antagonistic 

microorganisms in relation to the control (free growth of fungal pathogen), which the 

results failed to meet the assumption of normality. Data were analysed using SPSS® 

V17.0 (SPSS Inc., Chicago, IL, USA).  

3.4.2. Siderophore production 

The production of siderophores was analysed using the method of Chrome azurol S 

(CAS) described by Alexander and Zuberer, (1991) with slight modifications and only 

those microorganisms with significant antagonistic activity were tested. This medium 

which contains iron in limited quantities and wherein solutions composition are described 

in the Annex I, allows for the in vitro qualitative analysis of siderophores production 

through the observation of halos around bacterial colonies.  

The production and diffusion of siderophores by microorganisms is responsible for a  

color change of culture medium, as a result of the removal of iron from the complex Fe - 

siderophore. The assay was performed according to the Figure 4 and plates were 

incubated for 10 days at 30°C in triplicate.  

The color modification of the ternary complex CAS - Iron III – CTAB from blue to  

yellow halo around bacterial colonies indicate the  production of siderophores (Silva-

Stenico et al., 2005).  
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Figure 4: Scheme to evaluate the growth promoting properties.  

Position of the phytoprotetors on the plate (   ) 

3.4.3. Phosphate solubilisation 

The phosphate solubilisation by antagonistic isolates was qualitatively evaluated with  

Pikovskaya medium (Pinto, 2011) (Annex I). The assay was performed according to the 

Figure 4 and in triplicate. The plates were incubated for 10 days at 30 °C. Isolates with 

the capacity to solubilise phosphate (positive reactions) showed a halo or a translucent 

area around colonies. The diameter of the halo was measured and the solubilisation index 

was calculated using the following formula: 

 

Solubilization Index (SI) =
Halo diameter (colony + halozone)(mm)

colony diameter (mm)
 

 

Based on the solubilisation index, the isolates were classified as low (SI<2), 

intermediate (2≤SI<4) or high (SI≥4) (Marra et al., 2011). 

3.5. Effects of phytochemicals on antagonistic microorganisms  

For this test, we have selected six isolates (as Fito_S127B, Fito_S247, Fito_F251, 

Fito_F289, Fito_F290 and Fito_S341) that simultaneously inhibited the mycelia growth 

of all phytopathogens tested, four yeast species (namely, Fito_F23, Fito_45, Fito_M113 

and Fito_M141) and five isolates (Fito_M82A, Fito_F264, Fito_F271, Fito_F319 and 
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Fito_F350) that produce both siderophores and solubilize phosphate. These isolates were 

tested for their sensitive/tolerance towards trade formulates of 5 fungicides and 1 

herbicide commonly used on vineyards from Bairrada region. Commercial formulates 

and active compounds of each phytochemical are reported in Table IV. 

For each phytochemicals, three concentrations were prepared by adding stock 

phytochemical solutions, to PDA and 10 ml aliquots were poured immediately into Petri 

dishes.  

For this test, isolates were grown overnight in PDB at 28ºC and 150 rpm, then a 

concentration of 106 to 108 cells/ml was inoculated in PDA plates containing different 

concentrations of the active element of phytochemical. For each phytochemical, four 

PDA plates were prepared: 1) no phytochemical (control), 2) half of the recommended 

dose, 3) recommended dose and 4) double of the recommended dose. For the inoculation, 

a liquid handling station (Sciclone ALH 3000 Workstation) equipped with a 96 pin-tool 

was used. The plates were incubated at 28 for 72h and each experiment was performed in 

triplicate.  
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Table IV: Phytochemical used in this study. 

Commercial name principal active elements Recommended dose (µg/ml or µl/ml) Diseases 

Ridomil goldi combi Folpet + Metalaxyl -M 2000 Mildew 

Kocide 2000 Cooper  hydroxide 2000 Mildew 

Topaze Penconazol 0,35 Powdery Mildew 

Ridomil goldi combi + Topaze 
Folpet + Matalaxyl – M + 

Penconazol 
2000 + 0,35 

Mildew + 

Powdery Mildew 

Quadris max Azoxistrobin + Folpet 1,5 
Mildew + Black 

rot 

Touchdown Glyphosate 0,01 Weed 

 

 



 

23 

 

4 – Results and Discussions 

4.1. Distribution of the isolated microbial communities 

Over the 2011 and 2012 Vitis vinifera vegetative cycle, a total of 354 strains were 

isolated from soil, roots, stems, leaves, grapes and musts from symptomless and infected 

grape plants. From these, 214 isolates were bacteria or yeasts and 140 were identified as 

filamentous fungi. While most of the bacteria and yeasts were obtained from soil, must, 

and grape fruit, the filamentous fungi were mostly recovered from root, stems and petiole 

(Figure 5). 

 

 

Figure 5: Diversity of the microbial community found in soil and grapevine. 

Microbial community distribution in the different samples; others – isolates existing in the laboratory 

choose to the antagonism test.
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Indeed, this finding is in line with the previous finding that plant pathogenic 

microorganisms attack the green parts of plants (leaves) and stems, and are responsible 

for infections occurring after fruit harvesting (Blodgett and Swart, 2002; Musetti et al., 

2005). These organs usually have a high nutrient content, favouring the fungi choice to 

infect these structures and to cause plant damage (Kaymak, 2010).  

Regarding the bacterial population, they were mainly isolated from soil,which are 

known to be rich in exudates produced by plant roots (in particular the rhizosphere) 

making this restrict environment favourable for the nutrition of the bacterial community 

(Singh et al., 2004; Mendes et al., 2013). 

The grape musts samples showed a higher percentage of bacteria and yeasts than 

filamentous fungi. The acidic  pH as well as the high contents of sugar and alcohol are 

likely the main cause explaining the strong presence of these two groups of 

organisms(Barata et al., 2012).  

4.2. Diversity of isolated microbial communities 

4.2.1. Phytoprotectors species and their spatial distribution 

As referred in the previous chapter, only bacteria and yeasts showing antagonist 

capacity were identified through molecular analysis.  A PCR was carried out to identify 

both bacteria, based on the amplification of the 16S rDNA with 16S_R2 and 16S_F2 

primers and yeasts through the amplification of the ITS region with  ITS1 and ITS4 

primers (White et al., 1990).  The 16S primers amplified DNA fragments with 1600 bp 

(Figure 6A) and the ITS primers amplified DNA fragments from 600 bp (Figure 6B).  
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Figure 6: Ribossomal DNA amplification and ITS amplification. 

Eletrophoretic separation of PCR products from the 16S (A) and ITS (B) rDNA amplification in 1% 

agarose gel. MW – Molecular weight marker with 100pb.  

From the sequencing of the 72 isolates, 44 prokaryotic (61%) and 14 eukaryotic 

microorganisms (20%) were identified (Figure 7). A total of 14 isolates (19%) were not 

possible to identify due to problems related with DNA extraction or by ineffective PCR 

amplification (Figure 7).  

 

Figure 7: Diversity of microorganisms isolate. 

Percentage of prokaryotic and eukaryotic communities identified. 

The prokaryotic community was mostly dominated by bacteria of the genera Bacillus 

and Streptomyces (Figure 8). The species belonging to the Bacillus genus were Bacillus 

amyloliquefaciens (3 isolates), Bacillus cereus (6 isolates), Bacillus methylotrophicus (8 

isolates), Bacillus sp. (7 isolates), Bacillus subtilis (3 isolates), Bacillus tequilensis (3 

Prokaryotic
61%

Eukaryotic
20%

Without 
molecular 

identification

19%
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isolates) and Bacillus vallismortis (1 isolate) (Figure 8). From the Streptomyces genus, 

we have identified the Streptomyces chartreusis and Streptomyces coelicolor species.  

These bacteria are known to reside naturally in soils, which justifies our finding ( 

Figure 9). Accordingly to the literature, these microorganisms are commonly isolated 

from grape rhizosphere soils (Karagoz et al., 2012). Indeed, they are involved in some 

important processes in soil such as decomposition of organic matter, soil structure 

formation, and carbon and other elements (nitrogen, sulphur, phosphorous) cycling 

(Crawford et al., 1993; Dardanelli et al., 2010). 

 

Figure 8: Abundance of the bacterial species identified. 

Also, the genera Burkholderia, Pantoea and Paenibacillus were also found in our 

samples. However, it was not possible to distinguish different species in each one of these 

genera, as using BLAST against the Genbank, thus it were be  necessary to further 

sequencing these samples and to target different genes. 

Among the eukaryotic community, the most dominant genus identified was 

Aureobasidium, represented only by the Aureobasidium pullulans isolated from leaves 

and grape ( 
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Figure 9). This species is a dimorphic ascomycete fungus, commonly known as black-

yeast which has been widely reported both as an epiphyte and as an endophyte 

microorganism in grapevine (Pancher et al., 2012). The genus Metschnikowia, 

represented by the species Metschnikowia pulcherrima, was also identified and isolated 

from grape and must samples (Figure 10). This fermentative ascomycetous is an organism 

commonly isolated from wine grapes at the harvesting time (Prakitchaiwattana et al., 

2004) and further on at the beginning of fermentation stage (Barata et al., 2012). 

 

Figure 9: Distribution of phytoprotectors according to their isolation source. 

NID: Not identified. 

The species Cryptococcus magnus, Hanseniaspora uvarum, Saccharomyces 

cerevisiae and Ustilago cynodontis were also isolated although at lower frequencies 

(Figure 10). Cryptococcus magnus is a typical leave-colonizing microorganism (Čadež et 

al., 2010) and was isolated from must samples, whereas Hanseniaspora uvarum, an 

apiculated yeast, was isolated from grapes (Sabate et al., 2002). 

 

 

Figure 10: Abundance of yeast species identified from soil and grapevine parts. 

These results are in accordance with previous studies, where these genera were 

isolated from soil and vine (Crawford et al., 1993; Trotel-Aziz et al., 2008; Bulgari et al., 

2009; Loqman et al., 2009; Karagoz et al., 2012). However, some species of the genera 
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Arthrobacter, Azoarcus, Azospirillum, Klebsiella, and Serratia that are often considered 

antagonists and plant growth promoters (Dardanelli et al., 2010)  were not identified in 

this study. 

 

 

 

 

4.2.2. Filamentous fungi species and their spatial distribution 

The diversity of the filamentous fungi was investigated by the sequence analysis of 

the ITS region (Figure 11). From the 140 filamentous fungi isolated, 112 were identified. 

Among those, Alternaria sp. were the most abundant, accounting for 67% of the total 

microorganisms isolated from leaves (Fig. 12).  

 

Figure 11:  ITS region amplification. 

Separation of the PCR products of the ITS region using the primers ITS1 and ITS4 on 1% agarose gel.  

The specie Alternaria alternata was the most abundant species of this genus (Figure 

12). Previous reports have shown that Alternaria has been associated with endophyte 

microorganisms and latent pathogens of grapevine (Blodgett and Swart, 2002; Musetti et 

al., 2006) and recent reports indicated that Alternaria alternata complex was the most 

abundant group found in grapevine (Polizzotto et al., 2012). Other reports showed that  a 

species of this genus is responsible for the leaf spot diseases, characterized by the 

appearance of lesions on leaves leading to the collapse and cell death in Amaranthus 
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hybridus (Blodgett and Swart, 2002). Interestingly, and despite being considered a 

phytopathogen, some A. alternata strains have been demonstrated to inhibit Plasmopara 

vitcola sporulation in grapevine leaves (Musetti et al., 2006). 

 

Figure 12: Microbial diversity and abundance of the filamentous fungi identified from soil and 

grapevine. 
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NID: Not identified. 

Other fungal genera identified in our samples were Penicillium sp. namely, the species 

P. cecidicola, P. citrinum, P. corylophylu; and Aspergillus, including A. tubigensis, A. 

niger, A. ochraceus and A. versicolor (Figure 12). Both genera are quite relevant because 

they are responsible for ocratoxin_A (OTA) production, a toxic secondary metabolite that 

contaminates red wines (Sage et al., 2002; Pinto et al., 2014). Therefore, they have 

negative impact on the final quality of wine.  

 Other fungi, also responsible for Vitis vinifera diseases, were also identified. Among 

them were Botryosphaeria obtusa, a canker causing agent responsible for the black dead 

arm diseases in grapevine (Urbez-Torres et al., 2010), Pleospora herbarum, the causal 

agent of leaf spots in the leguminous alfalfa and red clover (Sadowsky et al., 2007), 

Drechslera biseptata responsible for root rot (Abu-Taleb et al., 2011) and Scytalidium 

lignicola, a phytopathogen responsible for the wilt diseases on citrus tree (Oren et al., 

2001). 

It is worthwhile to notice that, we did not identify over our samples the fungal 

pathogens Plasmopara viticola and Uncinula necator, responsible for downy mildew and 

powdery mildew, respectively. In fact, these species are obligate parasites, which means 

that it is not to possible isolate them through a culture dependent approach. 

4.3. In vitro analyses of the biocontrol potential 

4.3.1. Antagonistic activity 

A total of 214 isolates listed in the group of bacteria and yeast were screened for their 

antagonistic potential to control/ inhibit the mycelial growth of 8 fungal phytopathogens, 

through the in vitro antagonistic tests (Figure 13).  
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Figure 13: First antagonism test (pre-screening) with the phytopathogen Drechslera biseptata. 

 

In the first pre-screenning test, 67 isolates showed to be antagonistic against 

Botryosphaeria obtusa. The species with more isolates with potential antagonistic activiy 

were Pleospora herbarum, Lewia infectoria and Drechslera biseptata with 109, 106 and 

98 isolates, respectively. In contrast, the species with the lowest number of isolates with 

potential antagonist activities were Alternaria compacta (46 strains), A. brassicae (46 

isolates) A. alternata (73 isolates), and Scytalidium lignicola (79 isolates) (Figure 14).  

The isolates that inhibited phytopathogen’s mycelial in the first antagonism assay 

were further selected to be tested in the co-culture assay. The results showed that 72 

isolates had antagonistic activity. According to our results, the isolates Fito_S127B 

(Streptomyces sp.), Fito_S247 and Fito_S341 (Bacillus subtilis), Fito_F251 (not 

identified), Fito_F289 (Bacillus methylotrophicus), and Fito_F290 (Bacillus sp.) showed 

the highest antagonistic effect against the 8 fungal pathogens tested. Among these, best 

results of inhibition growth were observed with Fito_S127B (Streptomyces sp.)  (Figure 

15).  
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Figure 14: Effectiveness of the 214 isolates in inhibiting the mycelium growth of the phytopatogens 

selected in the first antagonism test. 

The species Bacillus amyloliquefaciens, Bacillus cereus, Bacillus methylotrophicus,  

Bacillus subtilis, Bacillus tequilensis and Bacillus vallismortis correspond to  the species 

belonging to  Bacillus genus with  significant antagonistic activity (ρ<0.05).  

Bacillus species are well known for their antagonistic activity and have been 

considered as good candidates as biological control agents. Due to the production of 

secondary metabolites with antifungal properties (Wulff et al., 2002).  

Although these antifungal compounds were not characterized in this study, different 

antibiotics (e.g.  iturin, fengycin, bacillopeptins and surfactin) and some hydrolytic 

enzymes (e.g. such as proteases, chitinases, cellulases, amylases and glucanases) have 

been described as being produced by the Bacillus sp. and displaying a strong antifungal 

activity against a wide range of phytopathogens (Quan et al., 2010). Wulff and 

collaborators (2002) stated that these metabolites not only antagonize the pathogens but 

also trigger host defense responses thus increasing plant protection (Wulff et al., 2002).  
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Species of Bacillus are also very attractive as potential inoculants since they can be 

easily formulated due to endospore formation, which can survive for prolonged periods 

in industrial formulations (Figueiredo et al., 2010). This explains the higher availability 

of biopesticides and biofertilizers products based on Bacillus (Berg, 2009; Figueiredo et 

al., 2010). 

 

Figure 15: Isolates with antagonistic activity showed a mycelial growth inhibition >50% against the 

8 fungal phytopathogens tested.  

For each isolate, the mean and the standard deviation of the three replicates used is considered. 

In this study, the isolates from the species Streptomyces chartreussis and S. coelicolor, 

and Streptomyces sp. Have also showed to be effective on the limitation of mycelium 

growth. This might be explained by the ability of these isolates to produce chitinases 

(Saito et al., 1999; Nazari et al., 2013), siderophores (Tierrafría et al., 2011) or other 

antifungal substances to the surrounding area. The inhibitory role of Streptomyces sp. in 

in vitro assays against other phytopathogens such as Fusarium sp., Alternaria sp., 

Curvularia sp., Colletrotrichum sp. and Aspergillus niger  has been reported by other 

authors(Evangelista-Martinez, 2014).  

According to other studies, the mycelium growth of the phytopathogens as Fusarium 

sp., Alternaria sp., Curvularia sp., Colletrotrichum sp. and Aspergillus niger was 

inhibited by Streptomyces species in in vitro tests (co-culture) (Evangelista-Martinez, 

2014).  

The bacterial isolates belonging to Burkholderia sp., Pseudomonas chlororaphis  and 

Paenibacillus sp. also showed antagonistic activities against some fungal phytopathogens 
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selected, which is in line of the reported production of several secondary metabolites with 

antifungal properties (such as antibiotics, alkaloids and siderophore) (Trotel-Aziz et al., 

2008; Quan et al., 2010; los Santos-Villalobos et al., 2012).  

Other beneficial bacteria such as Pantoea sp. have been reported as effiective 

epiphytic biocontrol agents. In this study, the isolate belonging to Pantoea sp. showed a 

significant inhibition of the mycelial growth of the phytopathogen Drechslera biseptata. 

Previous studies reported the isolation of microorganisms belonging to this genus and 

their potential as biocontrol agents against a wide spectrum of plant phytopathogens 

(Trotel-Aziz et al., 2008; Bulgari et al., 2009). 

In addition to these isolates, the yeasts Aureobasidium pullulans, Cryptococcus 

magnus, Hanseniapora uvarum, Metschnikowia pulcherrima, Saccharomyces cerevisiae 

and Ustilago cynodontis, also showed antagonist activity.  

Several possible biological mechanisms that explain the biocontrol activity have been 

suggested, but the competition for space and nutrients has been widely suggest as the 

major mode of action of the yeasts (Saravanakumar et al., 2009). Indeed, A.  pullulans 

colonizes leaves (Pinto et al., 2014) and fruits, explaining its successful use in 

postharvesting biocontrol and against foliar diseases (Schena et al., 2003; Schmid et al., 

2011).  Being naturally adapted to these niches, they are able to effectively colonize and 

compete for nutrients and space against opportunistic microorganisms (El-Tarabily and 

Sivasithamparam, 2006). 

  Recently, the yeasts Saccharomyces cerevisiae, Cryptococcus magnus and 

Metschnikowia pulcherrima, commonly associated with microbiome of grapefruit and 

wine fermentation (Barata et al., 2012), have been reported as effective biocontrol agents 

against the phytopathogens of the genus Penicillium and Aspergillus, both producers of 

mycotoxins in wheat after harvest (Petersson and Schnürer, 1995). Similar observations 

were obtained for Monilinia, which is responsible to the most important postharvest 

diseases in nectarines and peaches (Janisiewicz et al., 2010; Zhang et al., 2010). 

Interestingly, some species may have a dual role. This is the case of Ustilago 

cynodontis, referred as a phytopathogen in grapevine (Pinto et al., 2014), but  showing 



Results and Discussions 

35 

 

activity against the phytopathogens Lewia infectoria and Pleospora herbarum in our 

assays.  

The different metabolic characteristics of the antagonistic isolates developed different 

behaviours against phytopathogen microorganisms. When the phytopathogenic fungi 

were grown freely in Petri dishes (in the absence of the antagonist) they promptly 

occupied the entire surface of the culture medium and formed spores (Figure 16A). 

However, in the presence of some microbial antagonists the fungal mycelium was clearly 

inhibited and a clear zones could be seen (Figure 16B –Figure 16I).  
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Figure 16: Different aspects of the co-culture assays.  

A: Control showing the free growth of Botryosphaeria obtusa. B: Botryosphaeria obtusa and Bacillus 

amyloliquefaciens (Fito_S122). C: Lewia infectoria and Pseudomonas chlororaphis (Fito_S227). D: 

Pleospora herbarum and Bacillus cereus (Fito_S124). E: Alternaria alternata and Streptomyces sp. 

(Fito_S127B). F: Drechslera biseptata and Bacillus sp. (Fito_M83). G: Scytalidium lignicola and Bacillus 

methylotrophicus (Fito_S230). H: Alternaria brassicae and Bacillus tequilensis (Fito_F224). I: Alternaria 

compacta and Bacillus amyloliquefaciens (Fito_F317). J: Alternaria alternata and Burkholderia sp. 

(Fito_S63). K: Drechslera biseptata and Bacillus cereus (Fito_F7). L: Lewia infectoria and Bacillus cereus. 
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The results also indicated that during the co-culture test, most of the interactions 

between antagonistic and phytopathogens did not involve any physical contact between 

both microorganisms. However, whenever a contact between both microorganisms 

occurred, a destruction of fungal mycelia was observed (Figure 16J and Figure 16K). 

According to this observation, it is reasonable to assume that the inhibition of fungal 

growth may be due to antifungal substances excreted into the culture medium by the 

antagonist microorganisms. In fact, this not only interfered with the normal process of 

mycelial growth of fungi but also with the development and maturation of the spores 

(Ferreira et al., 1991) (Figure 16L).  

Among all the antagonistic microorganisms, 13 isolates were not molecularly 

identified because not enough DNA was extracted and/or a successful amplification could 

not be achieved. 

4.3.2. Siderophore production and phosphate solubilisation by 

phytoprotectors 

The capacity of the microorganisms to produce siderophores was assessed on CAS 

medium and phosphate solubilisation on Pikovskaya medium. The reactions, positive or 

negative, were defined according to the halo formed around colonies. Thus, and as 

referred on material and methods, the isolates in which  siderophore production occurred 

presented an orange/yellow halo in the CAS medium and the isolates with capacity to 

solubilise phosphate presented a clear halo around the colonies, in Pikovskaya medium 

supplemented with calcium phosphate (Figure 17).  
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Figure 17: Total of isolates analyzed for their growth promoting ability. 

The 72 isolates with  antagonist activity equal or higher than 50% of the mycelium 

inhibition growth were analysed for their ability to produce siderophores and solubilise 

phosphate. A total of 31 isolates were able to simultaneously produce siderophores and 

solubilize phosphate. Whereas, 11 isolates only showed capacity to produced 

siderophores and 15 isolates to solubilise phosphate, and 10 isolates have not grown, thus 

no data was acquires.  

The Table V shows the most promising phytoprotector isolates obtained in this study. 

Among the yeasts, Aureobasidium pullulans (Fito_F23) and Saccharomyces cerevisiae 

(Fito_M141) showed positive reactions both for the siderophore productions and 

phosphate solubilisation. Interestingly, Saccharomyces cerevisiae per si lacks the ability 

to produced siderophores (Haas, 2003), but when near  other species, can utilize the 

exogenous siderophores produces by another species and then used them to adquires iron. 

Thus, explaining our observations. Six isolates from Bacillus showed also to be able to 

produce siderophores and to solubilise phosphate. Among the Bacillus genus, two 

Bacillus subtilis were positive for these reactions thus sustaining earlier observations, 

which of siderophore production in response to iron deprivation (May et al., 2001; Hu 

and Xu, 2011).  
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Figure 18: Qualitative analysis of the growth promoting characteristics of the phytoprotector.  

A: Qualitative detection of siderophore production on CAS medium. B: Solubilisation halo of the inorganic 

phosphate in Pikovskaya medium.  

Thirteen isolates out of the fifteen tested showed ability to solubilise phosphate. The 

phosphate solubilisation index (SI) of the different isolates varied from low to 

intermediate using a Pikovskaya medium. The highest SI among all the microorganisms 

analysed in this work was obtained with Saccharomyces cerevisiae.  

The isolate Streptomyces sp. (Fito_S127B), which presented the highest percentage 

of mycelial inhibition growth, did not show the ability neither to produce siderophores 

nor to solubilise phosphate, under in vitro conditions. However, this isolate showed a 

significant antagonism against the agent associated with canker and declining in vines - 

Botryosphaeria obtusa. Therefore this isolate can be regarded as a potential biological 

control agent, but not as a plant growth promoter. 
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Table V: The most promising phytoprotector and their growth promoting ability 

Strains Species 

Siderophore  Phosphate solubilisation 

CAS medium  Pikovskaya medium SI (mm) 

Fito_F23 Aureobasidium pullulans +  + WD 

Fito_F45 Cryptococcus magnus -  + 1,17 

Fito_M82A Bacillus vallismortis -  ++ WD 

Fito_M113 Metschnikowia pulcherrima -  + 1,5 

Fito_S127B Streptomyces sp. -  - WD 

Fito_M141 Saccharomyces cerevisiae +  + 2,06 ± 0,12 

Fito_S247 Bacillus subtilis +  + 1,3 ± 0,12 

Fito_F251 NID +  + 1,3 ± 0,12 

Fito_F264 Bacillus subtilis +  + 1,17 ± 0,17 

Fito_R271 Bacillus tequilensis -  + 1,23 ± 0,22 

Fito_F289 Bacillus methylotrophicus +  - 1,05 ± 0,08 

Fito_F290 Bacillus sp. +  + GNS 

Fito_F319 Bacillus sp. +  + 1 

Fito_S341 Bacillus subtilis +  + 1,10 ± 0,08 

Fito_F350 Bacillus sp. +  + 1,16 ± 0,17 

Values indicate mean of three replicate. NID: Not identified; CAS: Chrome azurol S agar; SI: Solubilisation 

index; WD: Without data; GNS: Grew and did not solubilize (+) positive; (-) Negative reactions. 
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4.4. Effects of phytochemical in the performance of 

phytoprotectors microorganism 

The Figure 19 and Figure 20 showed the compatibility of the identified potential  

phytoprotectors towards common fungicides in vitro. Generally, all the bacteria and 

yeasts tested proved to be very sensitive to the fungicides Ridomil (Figure 19B), Topaze 

(Figure 19D), a mixture of Ridomil and Topaze (Figure 20E) and Quadris max (Figure 

20F) at all doses. Interestingly, while bacteria was very sensitivy to Touchdown at all 

doses, the yeasts were resistance to this herbicide (Figure 20G).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Growth of isolates on PDA supplemented with different concentrations of pesticides. 

A – Control Plate. B – PDA supplemented with Ridomil on different concentrations. C - PDA supplemented 

with Kocide 2000 on different concentrations. D - PDA supplemented with Topaze on different 

concentrations. 
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Figure 20: Growth of isolates on PDA supplemented with different concentrations of pesticides and 

herbicide. 

A – Control Plate. B – PDA supplemented with Ridomil + Topaze on different concentrations. C - PDA 

supplemented with Quadris Max on different concentrations. D - PDA supplemented with Touchdown on 

different concentrations. 

 

The selective effect of various fungicides on these bacteria and yeasts was observed 

by numerous researchers (Cervantes and Gutierrez-Corona, 1994; Lima et al., 2006; 

Čadež et al., 2010; Komarek et al., 2010). According, Comitini and Ciani (2008), the 

fungicides directly applied on grapevine result in a dramatic reduction of yeast 

populations on grape (Comitini and Ciani, 2008). 
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The phenylamide fungicide, metalaxyl and protectant type fungicides, folpet, both are 

the active compounds of the fungicide Ridomil Goldi Combi is used as a foliar spray 

against fungal pathogens which cause mildew in grapevine (Monkiedje and Spiteller, 

2005). The metalaxyl fungicides affect nucleic acids synthesis by inhibiting the activity 

of the RNA polymerase I systems (Yang et al., 2011), while folpet inhibits normal cell 

division (Gisi and Sierotzki, 2008). Such effects on the cell’s biochemistry can explain 

the lack of growth on the PDA supplemented with this fungicide. Indeed, such effect of 

metalaxyl and folpet on bacteria and yeasts was also observed by Moulas et al (2013), 

who demonstrated that the fungicide metalaxyl exerted a mild effects on the fungal and 

bacterial communities in pepper plants (Moulas et al., 2013). Moreover, Arce et al, (2010) 

reported the induction of gene mutations on bacteria and yeasts in the presence of folpet 

(Arce et al., 2010).  

The sensitivity or resistance to copper (Kocide 2000) was found to vary between 

bacteria and yeast species. For example, Aureobasidium pullulans (Fito_F23), 

Cryptococcus magnus (Fito_F45), Metschnikowia pulcherrima (Fito_M113) and 

Saccharomyces cerevisiae (Fito_M141) demonstrated a high level of resistance with 

increasing of copper concentration which may be linked to different mechanisms.  

In contrast, the bacteria showed to be sensity to copper (Kocide 2000) (Erro! A 

origem da referência não foi encontrada.) which consistent with the results reported by 

some authors including Martins et al (2012). In their study, they analyse the densities of 

the populations on grape berry surface, and showed a negative correlation between copper 

concentrations and cell densities, providing a clear evidence that the copper inhibited 

bacteria communities (Martins et al., 2012).  

Copper based fungicides are treatments commonly applied to control fungal diseases 

such as downy mildew, caused by Plasmopara viticola (Komarek et al., 2010). Martins 

and collaborators (2012), showed that the increase of copper concentration affect the 

number and variability of the microbial communities present in vineyard (Martins et al., 

2012), which is in accordance with our results (Figure 19C). Other studies have also 

demonstrated both the sensity and the resistance of these yeasts to copper (Mortimer, 

2000).  
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Interestingly, all the tested isolates are able to grow in presence of copper hydroxide 

(Kocide 2000), thus suggesting that these isolates could be successfully integrated with 

this fungicide in a field situations, with a minimal effect on the biocontrol agents.  

When the bacteria and yeast was grown in PDA medium supplemented with  

penconazole (Topaze) and a mixture of metalaxyl, folpet and penconazole (Ridomil and 

Topaze) it was observable a repressive effect on growth of the isolates (Figure 19D and 

Figure 20E).  Recently Jawich et al (2009), showed that penconazole was the most toxic 

fungicide for Saccharomyces cerevisiae and Metchsnikowia pulcherrima, affecting they 

growth and fermentation kinetics (Jawich et al., 2006).  

The Quadris Max is a mixture of azoxystrobin and folpet, possesses broad spectrum 

systemic activity against the four major classes of pathogenic (Adetutu et al., 2008). 

These fungicides inhibit mitochondrial respiration by preventing electron transfer from 

cytochrome b to c and inhibiting energy production via oxidative phosphorylations. This 

inhibition of ATP synthesis then results in the death of the microorganism. Since 

azoxystrobin functions by inhibiting mitochondrial respiration, it is expected not have a 

direct effect on bacteria. However, in our study this fungicide does have an effect on 

bacteria, thus we can conclude that the folpet in the formulations affected the bacteria and 

yeasts.   

We also observes that the yeasts isolates Fito_F23, Fito_45, Fito_M113 and 

Fito_M141 were more resistant to the phytochemicals than bacteria. In particular in 

medium supplemented with glyphosate (Touchdown)  this discrepancy is notorious. The 

glyphosate (Touchdown) is a broad-spectrum metal chelating herbicide that inhibits the 

enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase (EPSPS), which is necessary 

for the synthesis of aromatic amino acids in bacteria and fungi (Ratcliff et al., 2006; 

Zobiole et al., 2010). The toxicity effect of the glyphosate has been attributed to the 

inability of the organisms to synthesize aromatic amino acids. 

According to Ratcliff et al (2006) the herbicide glyphosate has a benign affect on 

microbial community structure when applied at the recommended field rate, and produces 

a non-specific, short-term stimulation of bacteria at the high concentration (Ratcliff et al., 
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2006).  However, we have observed the opposite effect, in the recommended field rate 

(Touchdown 1x), where only the yeast Saccharomyces cerevisiae (Fito_M141) grew 

(Figure 20G).  

In general, the in vitro experiment showed that applications of fungicides in any 

concentrations, even the lowest, reduced the phytoprotectors growth.  

 



  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



  

47 

 

 5 – Conclusions and future perspectives 

The complexity of the interactions involved in biological control and the better 

knowledge of the genetic and metabolic characteristics of phytoprotectors remains a 

powerful resource to unveil the mechanisms involved in plant pathogenic control and 

plant growth promotion. 

The increasing interest for microorganisms possessing phytoprotector characteristics 

and showing potential to induce plant growth lead us to use a combination of molecular 

and biochemical techniques to analyse the microbial community associated with Vitis 

vinifera. Some species representing putative antagonists were identified belonging to the 

genera Aureobasidium, Bacillus, Cryptococcus, Metschnikowia, Pantoea, Paenibacillus, 

Pseudomonas, Streptomyces, and Saccharomyces, . These yeasts species are considered 

as belonging to the flora of the vineyard and are involved in wine fermentation. Actually, 

these yeasts are involved in the biocontrol of postharvest diseases of plant products, 

especially fruit (Schena et al., 2003). Also, the species belonging to the genera Bacillus, 

Pantoea, Streptomyces and Pseudomonas have been often recognised as potential 

biocontrol agents. For this reason, they have already been marketed in some countries, 

such as biofertilizers and biopesticides (Bailey et al., 2010; Figueiredo et al., 2010; 

Kaymak, 2010). 

The most promising isolates with potential to be used as phytoprotectors, were the 

isolates of Aureobasidium pullulans, Bacillus subtilis, Bacillus tequilensis, Bacillus 

methylotrophicus, Bacillus vallismortis, Cryptococcus magnus, Metschnikowia 

pulcherrima, and Saccharomyces cerevisiae. They not only showed a significant 

inhibition of mycelia growth (≥ 50%), but also showed positive reactions to the phosphate 

solubilization and production of siderophores. 
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Furthermore, our results clearly revealed a strong impact of the agrochemicals tested 

on phytoprotetors, even when tested at low concentrations, highlighting the importance 

of the screening and studing of the biological control agents. Further research is required 

to explore the effect of these agrochemicals in the solubilization of phosphate and 

producing of siderophores. Therefore, the isolates selected in this study could be used for 

future in vivo experiments to assess their ability to contribute to increased grapevine 

productivity. 

In general, the combination of all these analyzes will allow to fully exploit the 

potential of these antagonistic microorganisms, thereby improving the knowledge of the 

interactions between plant pathogenic, phytoprotector microorganisms and Vitis vinifera. 

This work proved to be quite promising for the knowledge of potential biological control 

agents and will contribute, in the near future, to the development of sustainable and 

organic viticulture. 
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7 - Annexes 

Annex I: Culture medium 

i. Potato dextrose agar medium (PDA) 

 Potato dextrose agar (PDA): 42g/L 

Add the component to distilled water and autoclaving for 15 min at 121ºC. 

ii. Yeast extract peptone dextrose medium (YEPD) 

 Yeast extract: 10g/L 

 Dextrose: 20g/L 

 Peptone: 20g/L 

 Agar: 20g/L 

All the components were added to distilled water and autoclaving for 15 min at 

121ºC. 

iii. Potato dextrose Broth medium (PDB) 

 Potato dextrose broth (PDB): 27g/L 

Add the component to distilled water and autoclaving for 15 min at 121ºC. 

iv. Chromo azurol S agar medium (CAS) 

CAS agar was prepared from four solutions which were sterilized before mixing. 

Solution 1 – Fe-CAS solution 

 1mM FeCl3.6H2O (in 20 mM HCl): 10 ml
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 CAS: 60.5 mg in 50 ml of deionized water 

 CTAB: 72,9 mg in 40 ml of deionized water 

This solution was prepared by mixing 10 ml of the iron solution (1mM FeCl3.6H2O) 

with 50 ml of the aqueous solution of CAS. The dark purple mixture resulting was added 

slowly, with contant stirring, to 40 ml of the aqueous solution of CTAB. This yielded a 

dark blue solution which was autoclaved for 15 min at 121ºC, then cooled to 50ºC. 

Solution 2 – Buffer solution 

 PIPES: 30.24 g 

 KH2PO4: 0.3 g 

 NaCl: 0.5 g 

 NH4Cl: 1.0 g 

 Agar: 15 g 

The PIPES was dissolved in 750 ml of the solution containing the KH2PO4, NaCl and 

NH4Cl. The pH was adjusted to 6.8 with 50% KOH, and water was added to bring the 

volume to 800 ml. The solution was autoclaved after adding agar, then colled to 50ºC. 

Solution 3 – Micronutrients 

 Glucose: 2 g 

 Mannitol: 2 g 

 MgSO4.7H2O: 493 mg 

 CaCl2: 11 mg 

 MnSO4.H2O: 1.17 mg 

 H3BO3: 1.4 mg 

 CuSO4.5H2O: 0.04 mg 

 ZnSO4.7H2O: 1.2 mg 

 NaMoO4.2H2O: 1.0 mg 

 All the components were dissolved in 70 ml of distilled water and autoclaved, then 

cooled to 50ºC. 



Annexes 

61 

 

Solutions 4 – Casamino acids 

 Casamino acids (w:v) 10% 

The 30 ml of the solution was filter-sterilized. 

After all the solution cooled to 50ºC the solution 3 was added to the buffer solution 

(solution 2) along with the solution 4. The solution 1 was added last, with sufficient 

stirring to mix the ingredients without forming bubbles.  

v. Pikovskaya medium 

 Glucose: 10 g/L 

 Ca3(PO4)2: 5 g/L 

 NaCl: 0,2 g/L 

 (NH4)2SO4: 0,5 g/L 

 Extracto de levedura: 0,5 g/L 

 MnSO4: 0,1 g/L 

 Agar – Agar: 20 g/L 

 MgSO4: 0,1 g/L 

Add all the components to distilled water, except Ca3(PO4)2 (calcium phosphate)*. 

Then, autoclaved for 15 min at 121ºC. After cooling, the Ca3(PO4)2 was added to the 

solution. 

*The Ca3(PO4)2 was sterilized in stove. 

 

 

 

 

 


