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1 H9c2 cells treated with Berberine for 72 hours, co-treated with Doxorubicin in the last 24 hours.Images 
shows TMRM mitochondrial fluorescence, co-labeled with Hoechst 33342 (blue, nuclei) and calcein (green, 
viable cells). Image credit: Dr. Paulo Oliveira 
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ABSTRACT 

Doxorubicin (DOX) is a widely prescribed and effective anti-cancer agent. 

The clinical use of DOX has been associated mainly with a cumulative and dose-

specific cardiotoxicity that involves the development of congestive heart failure. 

DOX-induced delayed cardiomyopathy may occur or be aggravated through the 

decrease of cardiac progenitor cells pool in juvenile patients. In fact, has been 

reported that, DOX progressively decreases the pool of cardiac progenitor cells 

which combined with oxidative damage can lead to a progressive decrease in 

cardiomyocyte number. Oxidative stress is in fact a major event responsible for 

many alterations observed in normal cardiac cell function during DOX toxicity. 

Increased ROS generation induces alterations in ion homeostasis, alterations in 

iron metabolism, disruption of calcium homeostasis and mitochondrial dysfunc-

tion. DOX-induced free radical formation leads to pathological alterations in lipids, 

proteins, nucleic acids and biomolecules which can result in the mobilization of 

apoptotic machinery and consequent caspase activation. Autophagy may act as 

a compensatory mechanism that can control cell damage and restore energy ho-

meostasis during DOX cardiac toxicity. If autophagy becomes uncontrolled this 

might lead cardiomyocyte to apoptosis, resulting in increased DOX toxicity. Be-

cause of the importance of DOX on anti-cancer therapy, new compounds that 

can inhibit the toxicity are needed. Berberine (BER) is a natural compound used 

in traditional chinese medicine that besides it cardioprotective properties, can 

modulate DOX-induced cardiotoxicity. 

The objective of this work is to understand if BER can modulate cell death 

and autophagy in H9c2 cells treated with DOX. To understand the effect of BER 

on DOX-induced cell death and autophagy, H9c2 cells were pre-treated with BER 

48 hours before DOX administration (24 hours).  Cell viability, caspases and ca-

thepsins activity, mitochondria-lysosome co-localization and autophagy markers 

were measured in this work. 

Our results showed that BER inhibit DOX-induced caspases 9 and 3- like 

activation. In addition, BER appeared to inhibit autophagy in cells treated with 
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DOX. Moreover, BER was unable to prevent DOX-induced mitochondrial altera-

tions. Nevertheless, mitochondrial biogenesis markers were upregulated by BER 

in the presence of DOX. 

Although several mitochondrial alterations were not prevented by BER, 

apoptosis and autophagy were decreased by that alkaloid. Although more studies 

are needed, this combination could translate in future therapeutic strategies to 

allow the use of higher cumulative doses in DOX- cancer chemotherapy, proven 

that BER does not impair DOX anti-cancer efficacy. 
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RESUMO 2    

A Doxorubicina (DOX) é um fármaco eficaz contra lesões neoplásticas glo-

balmente prescrito. O uso prolongado da DOX tem sido associado a cardio-

toxicidade que é dependente da dose utilizada e da sua acumulação no coração. 

A acumulação tecidual da DOX tem sido relacionada com o desenvolvimento de 

falha cardíaca congénita. A Cardiomiopatia induzida pela DOX que anos depois 

do último tratamento poderá ocorrer ou ser agravada devido à diminuição da 

quantidade de células progenitoras cardíacas em pacientes de idade pediátrica. 

Sabe-se que a DOX leva ao decréscimo progressivo da quantidade de células 

cardíacas progenitores presentes no coração o que combinado com o dano oxi-

dativo pode levar à diminuição da quantidade de cardiomiócitos. O stresse 

oxidativo é o maior evento responsável pelas alterações na função normal em 

células cardíacas saudáveis quando exposta à toxicidade da DOX. O aumento 

da produção de espécies reactivas de oxigénio leva a alterações no metabolismo 

do ferro, alterações na homeostase iónica e à disfunção mitocondrial. A forma-

ção de radicais livres e o aumento do stresse oxidativo leva a sérias alterações 

nos lípidos, nos ácidos nucleicos e em biomoléculas importantes que resultam 

em acumulação de danos celulares e à mobilização de maquinaria apoptótica 

que culmina na activação de caspases. A autofagia pode actuar então como um 

mecanismo compensatório de controlo de danos celulares e de recuperação da 

homeostase energética durante a cardiotoxicidade induzida pela DOX. No en-

tanto, se o fluxo autofágico se torna descontrolado pode levar ao 

desencadeamento de outros processos de morte celular, podendo agravar o de-

senvolvimento de cardiomiopatias. Tornou-se então importante a procura de 

novos compostos que inibissem a toxicidade provocada pela DOX, devido à sua 

importância clinica no tratamento contra o cancro. A Berberina, composto natural 

muito utilizado na medicina tradicional chinesa, apresenta propriedades cardio-

protectoras que parecem modular a cardiotoxicidade provocada pela DOX.  

O objectivo deste trabalho foi perceber em que se a BER consegue modular 

a morte celular e a autofagia em cardiomioblastos H9c2 tratados com DOX. Para 

perceber o seu efeito, as células H9c2 foram pré-tratadas com BER 48 horas 

                                                           
2 Por decisão da autora, não foi aplicado nesta dissertação o Acordo Ortográfico da Língua Portuguesa 
de 2011 
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antes da administração com DOX (24 horas). Foi avaliado o efeito da BER na 

viabilidade celular; na actividade de caspases e catepsinas; na co-localização 

entre mitocôndrias e lisossomas; e em marcadores de autofagia. 

Os nossos resultados mostraram que a BER conseguia inibir a activação 

das caspases 3 e 9 provocada pelo tratamento com DOX em células H9c2. A 

BER também pareceu capaz de inibir a autofagia em células tratadas com DOX. 

A BER, no entanto, não pareceu induzir capaz de prevenir as alterações mito-

condriais provocadas pela DOX. Apesar disso, os marcadores de biogénese 

mitocondrial estavam aumentados em células tratadas com BER e DOX.   

Em suma, a BER não preveniu as alterações mitocondriais, apesar de ter 

prevenido a apoptose e autofagia. É interessante continuar a avaliar este efeito 

da BER e não é de descartar a hipótese da combinação de BER e DOX poder 

ter novas aplicações terapêuticas, permitindo o uso da DOX em doses cumulati-

vas mais elevadas no tratamento contra o cancro, desde que não afecte a 

eficácia anti-neoplásica da DOX.  

 

 

Palavras- chave: Berberina, Doxorubicina, Cardiotoxicidade, Apoptose, 

Autofagia 
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General Introduction 

 

 

 

 

 

 



 

 



 

 

Chapter 1 

Doxorubicin cardiotoxicity 

 

Cancer is a leading cause of deaths worldwide with 7.6 million deaths in 

2008 only. According to World Health Organization (WHO), the number of deaths 

are projected to continue rising with an expected account of 13.1 million deaths 

in 2030 (Cancer Research UK 2011, Cancer Research UK 2012, Cancer 

Research UK 2013). Anthracyclines are the most effective and widely prescribed 

cancer agents approved by the Food and Drug Administration (FDA) (Hrdina, 

Gersl et al. 2000, Wallace 2003, Carvalho, Santos et al. 2009). 

Doxorubicin (Figure 1), (7S, 9S)-7-[(2R, 4S, 5S, 6S)-4-amino-5-hydroxy-6-

methyloxan-2-yl]oxy-6, 9, 11-trihydroxy-9-(2-hydroxy-acetyl)-4-methoxy-8, 10-di-

hydro-7H-tetracene-5, 12-dione, is an antibiotic that belongs to anthracycline 

family. This compound was isolated in the late 1960s from a variant culture of 

Streptomyces peucetius var. caesius by aerobic fermentation after a mutagenic 

treatment (Arcamone, Cassinelli et al. 1969, Arcamone, Franceschi et al. 1969). 

DOX is characterized by a wide range of activity, being effective against several 

types of tumors (Hrdina, Gersl et al. 2000, Carvalho, Santos et al. 2009). 

 

Figure 1: Chemical structure of DOX. DOX is an anthracycline constituted by a tetracyclic 

aglycone and the aminosugar daunosamine. 

 

Structurally, DOX is a glycoside composed by a tetracyclic aglycone that pos-

sesses a substituted anthraquinone and the aminosugar daunosamine 
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(Arcamone, Franceschi et al. 1969). Similarly to many other anticancer agents, 

DOX specific chemical structure is responsible for the antineoplastic efficiency 

but also for its toxicity, which will be discussed further in this chapter (Carvalho, 

Santos et al. 2009, Pereira, Silva et al. 2011). In the past years, researchers have 

attempted to prevent toxicity which the development of second generation an-

thracyclines or the combined treatment with different agents including 

antioxidants have been the most studied (Minotti, Menna et al. 2004, Oliveira, 

Bjork et al. 2004, Berthiaume, Oliveira et al. 2005, Chua, Liu et al. 2006, Zhang, 

Feng et al. 2011, Chen, Hu et al. 2013). 

  

1.1. Doxorubicin as a therapeutic agent  

 

Since DOX discovery in 1960’s, the clinical use of this drug was extended 

to different types of cancers such as acute leukaemias and lymphomas, sarco-

mas, malignant neoplasms of bladder, breast, lung, ovary, stomach and thyroid 

being considered one of the most successful anticancer drugs available 

(Bonadonna, Monfardini et al. 1969, Carvalho, Santos et al. 2009). 

Doxorubicin chemotherapy is generally administrated intravenously to pa-

tients at doses between of 15 and 90 mg/m2, reaching initial DOX plasma 

concentration of approximately 1µM, until a maximum cumulative dose of 500-

550 mg/m2 (Gewirtz 1999). DOX binds to plasma proteins being widely distributed 

through tissues (Danesi, Fogli et al. 2002). Nevertheless, DOX clearance is slow 

taking almost 7 days to being totally secreted from the organism after treatment 

(Danesi, Fogli et al. 2002). 

Despite of DOX chemotherapeutical potential, this drug causes toxicity in 

several tissues. Patients undergoing DOX treatments may present side effects 

such as alopecia, mucositis, leukopenia, fever, nausea, phlesitis and the most 

hazardous of all, cardiovascular complications (Bonadonna, Monfardini et al. 

1969, Hrdina, Gersl et al. 2000). Although most clinical side effects supra-cited 

are clinically manageable, there is not a clinical available solution to prevent car-

diovascular complications derived from DOX selective cardiotoxicity. Therefore, 

DOX usage as an antineoplastic agent has been limited to lower cumulative 

doses which affect its antineoplastic efficiency.  
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1.1.1 Mechanisms for antineoplastic activity 

 

 Doxorubicin enters tumor cells through either simple diffusion or carrier-

mediated diffusion (Skovsgaard and Nissen 1982). There are two main mecha-

nisms that may be involved in the antineoplastic activity of DOX: 1) production of 

reactive oxygen species (ROS) stimulated by DOX or its metabolites and 2) the 

inhibition of DNA synthesis by intercalation of the drug in the DNA or the inhibition 

of topoisomerase II activity (Tewey, Rowe et al. 1984, Gewirtz 1999, Kiyomiya, 

Matsuo et al. 2001).  

Oxidative damage may in fact be an important mechanism that causes cel-

lular damage and further death in tumor cells. DOX has the ability to augment the 

flow of electrons from NAD(P)H to O2, generating a semiquinone radical. This 

process, that will be further discussed, is supported by a range of cellular oxi-

doreductases, including mitochondrial NADH dehydrogenase, NADPH 

cytochrome P450 reductase and xanthine oxidase. The semiquinone free radical 

then generates superoxide anion (O2
•-), which can be further dismuted to hydro-

gen peroxide (H2O2) (Bachur, Gordon et al. 1978, Doroshow 1983, Peters, 

Gordon et al. 1986, Yee and Pritsos 1997, Gewirtz 1999, Danesi, Fogli et al. 

2002). DOX semiquinone can also become oxidized resulting in the formation of 

7-deoxyaglycone that can intercalate into biologic membranes due to its in-

creased lipid solubility, generating more ROS in the process (Minotti, Menna et 

al. 2004). The semiquinone free radical may have enough stability to enter the 

nucleus and bind DNA with high affinity and either react with or generate O2
•- and 

H2O2, inducing extensive damage to DNA (Bachur, Gordon et al. 1978, Bachur, 

Gee et al. 1982). 

Importantly, DOX can interfere with DNA-related functions such as DNA 

replication and RNA synthesis in cancer cells. Due to DOX capacity to bind tightly 

to DNA, Topoisomerase II binding activity may be blocked (Tewey, Rowe et al. 

1984). On the other hand, DOX also inhibits the catalytic activity of Topoisomer-

ase II by affecting the cleavage-binding reaction due so stabilization of the 

cleavage complex Topoisomerase II-DNA. This results in double-stranded breaks 
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(DSB) that may lead to cell death in case unrepaired damage (Liu, Rowe et al. 

1983, Tewey, Rowe et al. 1984, Bodley, Liu et al. 1989, Duran, Lau et al. 1996, 

Swift, Rephaeli et al. 2006). Likewise, DOX is able to penetrate in the mitochon-

drial matrix and interact directly with mtDNA (Lebrecht, Setzer et al. 2003). 

Mitochondrial DNA-anthracycline intercalation induces nucleoid aggregation, in-

hibition of replication, cell cycle arrest and depletion which can also contribute to 

the antitumor action of this drug (Ashley and Poulton 2009). Moreover, DOX in-

creased ROS generation induce cell damage which can result in cell death. All in 

all, DOX anti-proliferative mechanisms may result from both cell cycle arrest and 

cell death.   

 

 

1.2 Doxorubicin-mediated Cardiotoxicity 

 

The clinical use of DOX has been associated with the development of tox-

icity in healthy tissues being cardiotoxicity is the most known side effect. 

Doxorubicin-induced cardiotoxicity can exert acute and chronic cardiovas-

cular complications which can occur in different phases of the treatment and in 

some cases even several years after. Acute DOX cardiotoxicity generally occurs 

during or after a few days following the treatment and affects 11% of the patients. 

DOX acute effects includes symptoms as arrhythmias, hypotension and irregular 

electrocardiogram changes that are usually reversible and clinically manageable 

(Lefrak, Pitha et al. 1973, Hrdina, Gersl et al. 2000, Takemura and Fujiwara 

2007).  Chronic DOX-induced cardiac toxicity is dose-related and the probability 

to develop cardiac complications increase with the total dose administrated. Pa-

tients that receive total cumulative doses higher than 550 mg/m2 may trigger the 

onset of congestive heart failure (CHF) and chronic cardiomyopathies (Lefrak, 

Pitha et al. 1973, Steinherz, Steinherz et al. 1991). DOX-induced cardiomyopathy 

and CHF incidence occurs in more than 4% of patients who received a total cu-

mulative dose of 500- 550 mg/m2 and increase for about 36% for doses higher 

than 600 mg/m2 (Lefrak, Pitha et al. 1973, Takemura and Fujiwara 2007). Chronic 

cardiomyopathy, that can be developed within a month or past several years after 

the treatment (Takemura and Fujiwara 2007). Chronic cardiomyopathy and CHF 
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include symptoms such as cardiac enlargement and arrhythmia which can lead 

to death in 50% of the patients to whom higher cumulative doses were adminis-

trated (Lefrak, Pitha et al. 1973, Steinherz, Steinherz et al. 1991, Takemura and 

Fujiwara 2007). 

Nevertheless, DOX cardiotoxicity appears to be more related to the peak 

plasma concentration whereas antineoplastic efficiency which is higher with the 

increased drug exposure. (Senkus and Jassem 2011) (Gharib and Burnett 2002) 

 

 

1.2.1 Why is the heart more affected? 

 

There are several reasons that explain why DOX-induced toxicity affects 

mainly the heart. On one hand,  the  heart tissue has  a  large  density of mito-

chondria  due to his high energy  demand, with DOX and its metabolites  

accumulate  mostly in nuclei and in  mitochondria  (van Asperen, van Tellingen 

et al. 1999, Anderson and Arriaga 2004, Tokarska-Schlattner, Zaugg et al. 2005). 

DOX binds with high affinity to the inner mitochondrial membrane (IMM) phos-

pholipid cardiolipin in a 2:1 molar ratio. The complex DOX-cardiolipin alters the 

membrane organization and results in the inhibition of complexes I -III and IV 

(Goormaghtigh, Huart et al. 1986, Nicolay and de Kruijff 1987, Goormaghtigh, 

Huart et al. 1990). Also, the proposed existence of a cardio-selective exogenous 

NADH dehydrogenase independent of Complex I may mediate direct reduction 

of DOX in the heart (Nohl 1987). Although, its existence is very polemic (Fraisse, 

Rey et al. 1993). Another possible explanation regards the low levels of antioxi-

dants such as glutathione peroxidase in the heart, when compared with other 

tissues. Li and colleagues demonstrated that DOX induces downregulation of the 

copper-zinc SOD while other antioxidant enzymes such as glutathione peroxi-

dase, catalase and manganese SOD were not affected.  Therefore, the 

comparatively low antioxidant content may limit the protection against oxidative 

damage induced by DOX in the heart (Odom, Hatwig et al. 1992, Li, Danelisen et 

al. 2002). On the other hand, cardiomyocytes are post-mitotic cells which make 

cardiac recovery after DOX-induced damage very difficult. DOX not only affects 

cardiac post-mitotic cells but also cardiac progenitor cells (CPC) inhibiting their 
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cell cycle which combined with oxidative damage leads to apoptosis (De Angelis, 

Piegari et al. 2010, Huang, Zhang et al. 2010). Ultimately, the decrease in the 

pool of CPCs may aggravate DOX-induced cardiomyopathy (De Angelis, Piegari 

et al. 2010). 

Cardiotoxicity appears to result from different mechanisms from the ones 

responsible for DOX antineoplastic activity.  Increased generation of ROS has 

been considered a major cause that leads to several apparently distinct events 

such as cellular loss, alterations in ion homeostasis, alterations in iron metabo-

lism, disruption of calcium homeostasis and mitochondrial dysfunction 

(Jeyaseelan, Poizat et al. 1997, Jung and Reszka 2001, Berthiaume and Wallace 

2007). The increase in ROS production results from the activation of DOX by 

reductive enzymes, especially mitochondrial NADH dehydrogenase, resulting, as 

described, in a DOX semi-quinone radical (DOX•) through one electron transfer.  

DOX• then reduces O2 regenerating the oxidized state and yielding O2
•- (Davies, 

Doroshow et al. 1983). This reaction establishes a redox cycle that significantly 

increases the amount of O2
•- generated (Bachur, Gordon et al. 1978, Berthiaume 

and Wallace 2007). The superoxide anion can still be converted by SOD in H2O2 

and the hydroxyl radical (-•OH) may be yielded from iron-catalysed Haber-Weiss 

reaction (Davies, Doroshow et al. 1983). Doxorubicin also binds directly to iron 

(Xu, Persson et al. 2005), with the DOX-iron (III) complex being reduced to DOX-

iron (II) complex by agents such as NADPH cytochrome P450 reductase, gluta-

thione, and cysteine. In these reactions, the anthracycline quinone moiety is 

converted to a semiquinone radical coupled to the formation of O2
•- (Xu, Persson 

et al. 2005). Therefore, DOX-induced free radical formation leads to pathological 

alterations in several cellular constituents such as lipids, proteins, nucleic acids 

and biomolecules, which ultimately may result in cell death (Doroshow 1983, Xu, 

Persson et al. 2005, Berthiaume and Wallace 2007). 
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1.2.2 Doxorubicin- induced Cardiotoxicity: the role of mito-

chondria  

 

Mitochondrial oxidative damage and calcium overload are events that have 

been described to occur after DOX chronic treatment (Zhou, Heller et al. 2001, 

Zhou, Starkov et al. 2001) (Solem, Henry et al. 1994). Alterations in calcium ho-

meostasis can result from the inhibition of important ionic pumps in the 

sarcoplasmic reticulum, mitochondria and sarcolemma such as the Na+/Ca2+ ex-

changer and the Na+/K+ ATPase by DOX metabolite, doxorubicinol (Olson, 

Mushlin et al. 1988, Olson, Gambliel et al. 2005, Pereira and Oliveira 2008). This 

type of alterations causes calcium dysregulation, with mitochondria accumulating 

excessive calcium in the matrix.  DOX and their metabolites also decrease the 

capacity of mitochondria to retain and accumulate calcium causing a secondary 

increase in ROS production (Pereira and Oliveira 2008). In addition, DOX induces 

stimulation of mitochondrial calcium cycling that cause energy depletion in the 

cell.  This energy consuming calcium cycling constitutes a futile cycle of mito-

chondrial calcium release and re-uptake that can result in calcium-dependent 

depolarization of the mitochondrial membrane (Solem and Wallace 1993, Solem, 

Henry et al. 1994, Zhou, Heller et al. 2001). Failure of mitochondrial function in-

creases bioenergetic stress because of the depression in ATP production (Zhou, 

Heller et al. 2001). Moreover, the enhancement of calcium release results into an 

alkalinization that is a fundamental requirement for mitochondrial permeability 

transition (MPT) induction (Solem, Henry et al. 1994). 

The MPT is characterized by a progressive permeabilization of the IMM to 

protons, ions and small proteins through non-specific pores, the MPT pore. It was 

recently proposed that the MPT pore is formed by dimmers of the ATP synthase. 

Alavian and colleagues suggested that ATP synthase sub-unit c comprises the 

MPT pore exposed during ATP synthase uncoupling, being and regulating cell 

death (Alavian, Beutner et al. 2014). DOX-induced oxidative stress, already dis-

cussed above, may induce alterations in the redox state of specific proteins and 

therefore increase the sensibility to MPT pore induction. Increased oxidation of 

adenine nucleotide translocator (ANT) thiol groups may contribute to increased 

calcium-induced MPT pore opening and inhibition of   state 3 of respiration 
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(Oliveira, Santos et al. 2006). There are evidences that ANT can also be inacti-

vated due to peroxidative damage (Pereira and Oliveira 2008). Furthermore, 

DOX-induced decrease in the pool of functional ANT can contribute to decreased 

mitochondrial respiration (Oliveira and Wallace 2006). On the other hand,  cardi-

olipin interacts  tightly  with the ANT  in a stoichiometry of three cardiolipin  

molecules  per  protein monomer which  stabilizes  the dimeric structure. This 

kind of interaction can control the conformational changes and may have a role 

in regulating ADP/ATP exchange.  DOX-induced free radical formation leads to 

damage in lipids, namely through peroxidation. Cardiolipin peroxidation provokes 

ANT conformational destabilization, leading also to MPT pore induction 

(Paradies, Petrosillo et al. 2009). In addition, cardiolipin molecules are an abun-

dant IMM phospholipid that interacts with several proteins including electron 

transport chain (ETC) proteins.  The established interactions are required for the 

optimal activity of Complex I, Complex III, Complex IV, ATP synthase as well as 

the formation and stabilization of supercomplexes (Paradies, Petrosillo et al. 

2009). Thus, it is not surprising that mitochondrial dysfunction induced by lipid 

peroxidation may also result from the destabilization of ETC complexes (Pereira 

and Oliveira 2008, Paradies, Petrosillo et al. 2009). 

Cardiac cells that are exposed to DOX chronic treatment are more suscep-

tible to agents that cause an increase in cytosolic calcium concentration, including 

caffeine, which increase the probability of induction of MPT pore and leads to 

mitochondrial depolarization, energy depletion and cell death (Berthiaume and 

Wallace 2007). 

 

1.3 H9c2 cells as a model to study Doxorubicin- induced 

Cardiotoxicity 

 

The H9c2 cell line, developed by Kimes and Brandt, is a myoblastic heart-

derived cell line and is derived from the original clonal embryonic cell line of the 

BD1X rat heart (Kimes and Brandt 1976). Morphologically, H9c2 cells present a 

spindle-to-stellate shaped form and might be mono- or multi-nucleated being sim-

ilar to embryonic cardiomyocytes (Hescheler, Meyer et al. 1991, Sardao, Oliveira 

et al. 2009). 
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The H9c2 cell line has been a recurrent model not only to study DOX toxicity 

but also several compounds in a cardiac tissue surrogate. Several authors have 

been describing damage in H9c2 induced by DOX including DNA damage 

(L'Ecuyer, Sanjeev et al. 2006), mitochondrial dysfunction (Green and 

Leeuwenburgh 2002, Sardao, Oliveira et al. 2009) and cell death (Sardao, 

Oliveira et al. 2009, Chen, Wu et al. 2011). Moreover, this cell line has also been 

object of study of others compounds that might have some protective effect over 

DOX-induced toxicity such as flavonoids (Kaiserova, Simunek et al. 2007, Chen, 

Hu et al. 2013), carvedilol (Spallarossa, Garibaldi et al. 2004, Sgobbo, Pacelli et 

al. 2007) and pifithrin-α (Chua, Liu et al. 2006). Nonetheless H9c2 cell line is 

phenotypically more homogeneous than primary cultures and the whole tissue, 

DOX treatments leads to H9c2 hypertrophy being consistent to what were ob-

served in in vivo experiments with rat adult cardiomyocytes during the 

development of the DOX-induced cardiomyopathy (Kimes and Brandt 1976, 

Lushnikova, Klinnikova et al. 2004, Merten, Jiang et al. 2006). 

Due to the studies performed in the past few years on DOX-induced dam-

age to H9c2 cells, this cell line is considered a good cellular model to perform 

studies related to DOX-induced cardiotoxicity.   

 

 

 

 

 

 

 

 

 



 

 

 



 

 

Chapter 2 

Doxorubicin-induced Cell 

Death and Autophagy 

 
Mitochondrial dysfunction, alterations in calcium homeostasis, decrease of 

oxidative phosphorylation capacity and increase of MPT pore opening suscepti-

bility are all events related with DOX-induced cardiotoxicity. These alterations to 

the normal cells function usual leads them to apoptotic cell death. However car-

dioprotective mechanisms can be activated allowing the elimination of damaged 

cellular components and the maintenance of energy homeostasis. The balance 

between cell death and protective autophagy may contribute to stop cardiomyo-

pathy progression.  

 

 

2.1 Doxorubicin-induced cell death 

 

2.1.1 Apoptosis 

Apoptosis is a “cell-suicide” mechanism in which the cell activates several 

signalling mechanisms in response to accumulated damage and culminates in 

cell death. 

Apoptosis or programed cell death is characterized by the rounding-up of the 

cell with volume reduction, chromatin condensation, nuclear fragmentation and 

plasma membrane blebbing followed by phagocytation (Elmore 2007, Taylor, 

Cullen et al. 2008, Kroemer, Galluzzi et al. 2009). These morphological altera-

tions are mainly due to the activation of a group of cysteinic proteases, caspases 

(Hengartner 2000, Kroemer, Galluzzi et al. 2009). There are over a dozen ca-

pases identified. The most relevant for apoptosis program are divided into two 

different cathegories: initiator caspases (caspases 8, 9, 10) and executioner 

caspases (caspases 3,6,7) (Elmore 2007, Taylor, Cullen et al. 2008). Caspases 
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can be involved in two different apoptosis pathways, namely intrinsic and extrin-

sic. The intrinsic pathway is directly activated by intracelular damage, especially 

in mitochondria. Intracelular damage leads to events such as ΔΨm loss which 

influence MPT pore opening, leading to the release of cytochrome c to cytosol, 

among others pro-apoptotic proteins. These events lead to the activation of 

caspase-dependent mitochondrial pathway in which cytochrome c binds to Apaf-

1 and pro-caspase 9 which forms the apoptosome. Caspase 9 then activates 

caspase 3 that propagates the apoptotic signalling (Hengartner 2000, Elmore 

2007, Taylor, Cullen et al. 2008). 

 

Figure 2: Apoptotic cell death pathways. The figure represents the extrinsic pathway which is initiated 

through the activation of death-receptors and leads to caspase 8 activation. The mechanisms that leads to 

the induction of intrinsic pathway and consequent caspase 3 activation is also represented. (Taylor, Cullen 

et al. 2008), used with permission (see annex).  

The extrinsic pathway involves the activation of death receptor by death lig-

ands, inducing the activation of death pathways. This type of mechanisms leads 

to caspase 8 activation that triggers apoptotic signalling (Hengartner 2000, 

Elmore 2007, Taylor, Cullen et al. 2008). 

Moreover, mitochondria have the ability to modulate apoptosis. The shift of 

pro-apoptotic/ anti-apoptotic proteins towards anti-apoptotic proteins leads to 
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apoptosis inhibition. Another protein that can interfere with apoptosis is p53. P53 

is known as the genome guardian, since it regulates the activation of DNA-repair 

damage mechanisms. When damage is present in a great extent, p53 can directly 

activate apoptosis, inducing the transcription of pro-apoptotic genes (Fridman 

and Lowe 2003, Elmore 2007). 

 

2.1.1.1 Doxorubicin-induced cell death 

 

As discussed in section 1.2.2, DOX-induced extensive damage leads to 

ΔΨm loss, which induces or is a consequence from MPT pore opening. These are 

key-events for the initiation of caspase-dependent mitochondrial apoptosis path-

ways. DOX treatments activate cardiomyocyte apoptosis (Arola, Saraste et al. 

2000). DOX-induced apoptosis involves cytochrome c release with following 

apoptosome formation (Konorev, Vanamala et al. 2008). More data corroborates 

the activation of intrinsic apoptosis pathway by massive activation of caspase 9 

and 3 (Konorev, Vanamala et al. 2008, Sardao, Oliveira et al. 2009, Sardao, 

Oliveira et al. 2009). Moreover, DOX-induced DNA damage leads to p53 activa-

tion and consequent cell death (L'Ecuyer, Sanjeev et al. 2006). 

 

2.2 Autophagy 

 

Autophagy is an evolutionary conserved catabolic process of cellular recy-

cling in which cytosolic components such as proteins, lipids, sugars and even 

organelles are degraded through cellular self-digestion by lysosomal acidic hy-

drolases (Chen and Debnath 2010, Tanida 2011, Dutta, Calvani et al. 2012). 

There are three types of autophagy depending on the mechanisms that deliver 

the cellular components to lysosomes: macroautophagy, microautophagy, and 

chaperone-mediated autophagy (Dutta, Calvani et al. 2012). Macroautophagy, 

simply named autophagy, is the most well described type of autophagy in mam-

malians and involves the degradation of long-lived proteins and whole cellular 

organelles through their sequestration in the autophagosome that latter fuses 
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with lysosomes (Kroemer, Marino et al. 2010, Dutta, Calvani et al. 2012). Micro-

autophagy involves the direct sequestration of cytosolic components through 

invaginations of the lysosomal membrane and may serve mostly for the turnover 

of certain proteins. The last type of autophagy, chaperone-mediated autophagy, 

is a process that specifically degrades soluble cytosolic proteins (Dutta, Calvani 

et al. 2012). Chaperone-mediated autophagy differs from the other types of au-

tophagy due to the specific mechanism of cargo selection which requires the 

targeting of the components by a cytosolic chaperone hsc70 to lysosomal degra-

dation through interaction with a conserved aminoacid sequence (Arias and 

Cuervo 2011). 

The autophagic process initiates when the cell receives a stimulus and a 

specific membrane-enclosed structure called phagophore is formed. The phago-

phore formation requires the assembly of a complex that is constituted by Beclin-

1, VPS34, VPS15 and Ambra1 (Kroemer, Marino et al. 2010, Kubli and 

Gustafsson 2012). Then, the membrane system expands and this process is me-

diated by two ubiquitin-like conjugation systems: microtubule-associated LC3-I 

and 12-ATG5 which promote the assembly between ATG16L complex and the 

conjugation of LC3-I with phosphatidylethanolamine that origins LC3-II. The au-

tophagosome is formed by a double-membrane structure resulting from the 

expansion of the phagophore. In the end, the autophagosome fuses with a lyso-

some resulting in the degradation of the cargo (Kubli and Gustafsson 2012). 

There are several molecular mechanisms that regulate the autophagic pro-

cess. Autophagy inducers modulate the interaction of mTOR complex 1 

(mTORC1) with the ULK1/2 complex (Kroemer, Marino et al. 2010, Tanida 2011).  

In normal conditions, mTORC1 possesses kinase activity and interacts with a 

complex that contains ULK1/2. When the cell receives an autophagic stimuli, 

mTORC1 is inhibited and its dissociation from ULK1/2 complex occurs. Then, the 

inhibition of mTORC1 leads to ULK1/2 activation through (de)phosphorylation 

processes (Kroemer, Marino et al. 2010). Thus, mTORC1 inhibition results in au-

tophagy induction and mTORC1 activation blocks the autophagic process 

(Kroemer, Marino et al. 2010, Tanida 2011). The ULK1/2 complex can also reg-

ulate the activity of Beclin 1/class III phosphatidylinositol 3-kinase (PI3K) complex 

through phosphorylation of Ambra1, a protein constituent of Beclin 1 complex, 

regulating the initial stages of autophagosome formation (Kroemer, Marino et al. 
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2010) (Kim, Rodriguez-Enriquez et al. 2007). Furthermore, autophagy can be in-

duced or inhibited due to the interaction of Beclin 1 with other proteins. Anti-

apoptotic family members such as Bcl-2 and Bcl-XL can downregulate autophagy 

and the disruption of autophagy inhibition may involve several steps with pro-

apopoptic proteins participating (Kim, Rodriguez-Enriquez et al. 2007, Gottlieb 

and Carreira 2010, Kroemer, Marino et al. 2010). Another important regulator of 

autophagy is AMPK. During a starvation stimulus, AMPK exerts a negative regu-

latory effect on mTOR and therefore induces autophagy (Gottlieb and Carreira 

2010). 

Several intracellular and extracellular stimuli can induce autophagic mech-

anisms including nutrient and energy stress, endoplasmatic reticulum stress, 

hypoxia, redox stress and mitochondrial damage. The stimulation of autophagy 

allows cells to eliminate components that can result in harm or damage to the cell 

(Kroemer, Marino et al. 2010, Tanida 2011). 

 

2.2.1 Stress stimuli and induction of mitophagy 

 

Mitochondria are a critical organelle from a metabolic point of view. Not only 

mitochondria perform essential cell functions such as energy production through 

oxidative phosphorylation, but are also involved in calcium homeostasis and ROS 

production. As discussed earlier, excessive ROS production can lead to oxidative 

stress and therefore to damage in several cellular constituents (Gottlieb and 

Carreira 2010, Scherz-Shouval and Elazar 2011). Nevertheless, physiological 

ROS production are usually involved in the regulation of multiple signalling path-

ways controlling intracellular ROS homeostasis. Physiologically, ROS act as 

sensors that activate redox mechanism to regulate antioxidants and other signal-

ling pathways (Gius, Botero et al. 1999, D'Autreaux and Toledano 2007). One of 

the ROS-based mechanisms is the activation of nuclear transcription factors such 

as NF-kβ in response to cell oxidation (Gius, Botero et al. 1999). 

Global or localized oxidative stress is a stimulus that promotes mitophagy 

through different mechanisms. ROS, more specifically H2O2, have the capacity to 

activate several proteins such as PERK that can stimulate other molecules. Ulti-

mately, this cascade leads to an inhibition of mTOR (Kroemer, Marino et al. 

2010). 
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Moreover, the cellular response to increased ROS may involve the activa-

tion of MAPKs which can also activate autophagy. DNA damage can also 

stimulate the expression of pro-autophagic p53-induced target genes (Kroemer, 

Marino et al. 2010, Scherz-Shouval and Elazar 2011).  

Mitochondrial damage can lead to the opening of MPT pore, as described 

above, causing a secondary release of ROS and calcium which can activate 

caspases and consequently cell death. Thus, cells may primarily remove dam-

aged mitochondria through a specific form of autophagy termed mitophagy 

(Gottlieb and Carreira 2010, Kroemer, Marino et al. 2010). Mitophagy is a highly 

selective process that has the capacity to induce the elimination of dysfunctional 

or unnecessary mitochondria (Dutta, Calvani et al. 2012). The loss of ΔΨm is one 

of the events that can trigger mitophagy. Autophagic recognition for the removal 

of depolarized mitochondria involves a refined voltage sensor that includes 

PINK1. After mitochondrial depolarization, PINK1 accumulates in the mitochon-

drial surface and is involved in the recruitment of Parkin, a cytosolic E3-ubiquitin 

ligase that is selectively recruited to dysfunctional mitochondria and assists in 

their removal by mitophagy. Parkin has the capacity to ubiquitinate OMM pro-

teins, including the VDAC and may recruit autophagy adaptor proteins such as 

p62 or NIX and BNIP3, targeting mitochondria for autophagy (Gottlieb and 

Carreira 2010, Kroemer, Marino et al. 2010, Dutta, Calvani et al. 2012).  

 

Figure 3: Overview of selected stress pathways that induce autophagy. Pro-autophagic pathways are 

represented in panel A and B, perturbation of p53 system is represented in panel C and mitophagic pathways 

are represented in panel D. From(Kroemer, Marino et al. 2010) used with permission (see annex). 



Chapter 2 – Doxorubicin-induced Cell Death and Autophagy 

 

19 
 

Mitochondria energy depletion may trigger starvation-induced autophagy. 

One of the most well studied mechanisms is the regulation of the starvation-in-

duced autophagy by mTOR, AMPK and sirtuins. The induction of autophagy by 

starvation requires sirtuin-1 (SIRT1) protein. (Kroemer, Marino et al. 2010) This 

sirtuin can deacetylate several molecules inducing the activation autophagic re-

lated proteins and is regulated by AMPK which can regulate SIRT1 activity 

(Kroemer, Marino et al. 2010). Nonetheless, Gomes and et al. reported that 

SIRT1 is also involved in mechanisms of mitochondrial biogenesis leading to an 

improvement in mitochondrial function on skeletal muscle cells (Gomes, Duarte 

et al. 2012). 

Autophagy appears to be a survival pathway, getting rid of organelles or 

structures that, because of damage, are no longer useful to the cell. Therefore, 

autophagy may serve as a cardioprotective response. Nevertheless, if this type 

of cardioprotective response is upregulated in an uncontrolled manner it may con-

tribute to disease progression (Scherz-Shouval and Elazar 2011, Dutta, Calvani 

et al. 2012). 

 

2.2.2 Doxorubicin-induced autophagy and cardiomyopathy 

 

Doxorubicin-induced cardiotoxicity is characterized by several events such 

as redox stress, energy depletion and mitochondrial damage that may induce 

autophagy.  Autophagy plays an important role in cardiomyocyte death, contrib-

uting to DOX-induced heart failure (Lu, Wu et al. 2009). Cardiac cell death 

resulting from autophagy results from autophagic degeneration, which involves 

mitochondrial damage concomitant with beclin-1 upregulation (Lu, Wu et al. 

2009). Generally, autophagy in the myocardium occurs as a protective adaptation 

to cumulative cell damage (Goswami and Das 2006, Zhang, Shi et al. 2009, Sishi, 

Loos et al. 2013). Autophagy behaves as a self-renewable mechanism of cellular 

components which allows for  the maintenance of energy homeostasis (Dutta, 

Calvani et al. 2012). In several pathologies including cardiomyopathy, autophagy 

is also substantially enhanced to eliminate protein aggregates and damaged or-

ganelles acting as a pro-survival mechanism (Zhang, Shi et al. 2009). Kawaguchi 

et al. suggested that DOX may impair autophagosome formation affecting the 

autophagic process (Kawaguchi, Takemura et al. 2012).  
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Figure 4: Doxorubicin-induced autophagy in the myocardium may act as a "double-

edge sword" in a dose-dependent    manner. Autophagy in the myocardium occurs, gener-

ally, as a pro-survival mechanism that allows cells to restore energy homeostasis. 

Nonetheless, autophagy enhancement leads cardiomyocytes to death. 

However, if autophagy becomes excessively active, cells may be committed 

to death (Dimitrakis, Romay-Ogando et al. 2012). Excessive autophagy induced 

by severe stimuli can also damage cytosol and organelles such as mitochondria 

and endoplasmatic reticulum. Then, lysosomal enzymes such as cathepsins or 

other cell death-inducing factors are released leading to apoptotic and necrotic 

cell death (Zhang, Shi et al. 2009). Progressive cell loss and impaired intracellular 

regeneration which leads to inefficient cardiomyocytes aggravates the heart con-

dition (Semenov, Lushnikova et al. 2001). The data available suggest that DOX, 

in a dose dependent-manner, can result in induction (for low concentrations) or 

inhibition (for high concentrations) of autophagy, which may lead the cell from a 

protective to a deleterious phenotype (Zhang, Shi et al. 2009). 

 



 

 

Chapter 3 

Berberine: targeting Doxorubi-

cin-induced cardiotoxicity  

 

Cardiotoxicity is the most hazardous side effect of DOX antineoplastic treat-

ments. Until today, chronic DOX-induced cardiac toxicity that lead to chronic 

cardiomyopathy and CHF does not have a suitable therapeutic approach to pre-

vent the onset of these events. In the past few years, researchers have made 

efforts to find new ways to prevent or counteract DOX-induced cardiotoxicity by 

decreasing the cumulative dose administrated or by reducing drug plasma peak 

concentration. These new therapeutic approaches include combined treatments 

with antioxidants and second generation anthracyclines. 

 

3.1 Targeting Doxorubicin-induced cardiotoxicity 

 

3.1.1 New formulations 

 

One possible solution to minimize DOX toxicity is by developing second 

generation anthracyclines. Epirubicin (EPI) is the most popular anthracycline de-

rivatives among the ones developed. EPI is a semisynthetic DOX derivative that 

results from a conformational alteration of OH group from daunosamine (Danesi, 

Fogli et al. 2002, Minotti, Menna et al. 2004). Although this alteration has little 

effect on the mechanism of action, it introduces important alterations in pharma-

cokinetics as higher total body clearance and shorter terminal half-life (Danesi, 

Fogli et al. 2002, Minotti, Menna et al. 2004). These differences settle a new 

threshold to higher cumulative dose administrated to patients (900 mg/m2) but do 

not eliminate the risk of development of cardiovascular complications (Ryberg, 

Nielsen et al. 1998). 
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3.1.1.  Combined treatments 

 

Oxidative stress is the major cause of DOX-induced cardiotoxicity. Control-

ling cellular damage induced by increased oxidative stress has been the objective 

of numerous investigations aimed at preventing or reducing the cardiotoxicity as-

sociated DOX treatments. The combination of DOX with other compounds as 

adjuvant has been extensively studied. One of them is dexrazoxane (DZX), the 

only FDA approved DOX- combined treatment. DZX has the ability to chelate free 

iron and displaces iron from DOX-iron complexes preventing iron catalysed ROS 

production (Swain, Whaley et al. 1997, Minotti, Menna et al. 2004, Carvalho, 

Santos et al. 2009, Pereira, Silva et al. 2011). Carvedilol, a β-blocker used in CHF 

treatments, also prevent cardiomyocyte apoptosis and has the ability to inhibit 

ROS formation and prevent endogenous antioxidant depletion (Oliveira, Bjork et 

al. 2004, Spallarossa, Garibaldi et al. 2004, Sgobbo, Pacelli et al. 2007). 

 Other approaches used pre-treatments with antioxidants to protect cardiac 

cells from DOX-induced damage. Akhlaghi and collegues showed that prior ex-

posure of H9c2 cells to some flavonoids can act as a protection against oxidative 

stress and cell death (Akhlaghi and Bandy 2012). Pre-treatment of mice with ber-

berine (BER), a phytoalkaloid, suggested that this drug might also protect against 

DOX-induced cardiotoxicity (Zhao, Zhang et al. 2011). Thus, preconditioning cells 

with a prior expose to brief oxidative stress allows them to regulate cell death 

pathways and endogenous antioxidant defences pathways, possibly acting as a 

pre-conditioning stimulus (Han, Wang et al. 2001, Akhlaghi and Bandy 2012). 

 

 

3.2 Berberine: in the prevention of Doxorubicin-induced 

cardiotoxicity 

 

Berberine (Figure 5), 5,6- dihydro-9,10-dimethoxy-benzo[g]- 1,3-benzodiox-

olo [5,6-α] quinolizinium, is an alkaloid isolated from plants of Berberidaceae 

family that has been extensively used in tradicional chinese medicine (Lau, Yao 

et al. 2001, Tillhon, Guaman Ortiz et al. 2012). 
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Figure 5: Chemical structure of BER. BER is quaternary ammonium salt from the protober-

berine group of isoquinoline alkaloids. 

 

Among the many pharmacological actions that have been attributed to BER 

antitumoral/antiproliferative (Letasiova, Jantova et al. 2005, Serafim, Oliveira et 

al. 2008, Tong, Zhang et al. 2012), antioxidant (Shirwaikar, Shirwaikar et al. 2006) 

and antiarrythmic (Hong, Hui et al. 2002) are the most important. These pharma-

cological properties potential led to the proposed use of BER as a cardiovascular 

agent and an antineoplastic agent.  

The effect of BER in multiple cancer cell lines have been studied. BER in-

hibits cell growth and induces cell death processes in several cell lines including: 

lung cancer (Tong, Zhang et al. 2012, Fu, Chen et al. 2013), melanoma 

(Letasiova, Jantova et al. 2005, Pereira, Branco et al. 2007, Serafim, Oliveira et 

al. 2008, Mittal, Tabasum et al. 2014), cervix carcinoma (Tong, Zhang et al. 2012) 

and liver cancer (Wang, Feng et al. 2010, Hou, Tang et al. 2011, Tong, Zhang et 

al. 2012). 

BER also demonstrated ability in reduce ventricular afterload and augment 

myocardial contractibility (Marin-Neto, Maciel et al. 1988, Lau, Yao et al. 2001). 

These properties claim BER as a cardioprotective agent that can offer a pharma-

cological advantage in the treatment of arrhythmias and heart failure. Facing this, 

one can ask whether BER can offer protection against DOX-induced toxicity and 

if such treatment can be useful in clinical practice. In fact, Zhang and colleagues 

suggested that BER offered protection against DOX-induced cardiotoxicity (Zhao, 

Zhang et al. 2011). Later Lv et al. showed that BER can impair DOX-induced 

toxicity by inhibiting apoptosis in cardiomyocyte primary cultures through modu-

lation of the Bcl-2 expression, p53 phosphorylation and AMPKα inhibition (Lv, Yu 
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et al. 2012). Still, no work so far focused on the regulation of mitophagy and au-

tophagy by DOX has been done. 

 

 



 

 

Chapter 4 

Aims and Hypothesis of this 

dissertation 

 

As discussed earlier, DOX is one of the most effective anti-cancer agents. 

Although showing large chemotherapeutic potential, DOX induces extensive 

damage in the heart, resulting in the development of cardiomyopathies. In-

creased oxidative stress is the responsible for DOX-induced heart damage. The 

accumulation of damage leads cells to activate repair mechanisms, such as au-

tophagy, whether cell death is triggered if damage is extensive.  

Autophagy behaves in a dual manner. On one hand, autophagy acts as a 

compensatory mechanism promoting energy homeostasis in cardiac cells, but if 

it becomes uncontrolled it can lead to cell death and impaired intracellular regen-

eration, leading to tissue damage. BER was already shown to have 

cardiovascular positive effects in patients with CHF. In order to counteract DOX-

induced cardiotoxicity, BER may offer a potential protection through the regula-

tion of autophagy. 

The main objective of this project was to investigate if BER modulates DOX-

induced cell death and autophagy. The effect of BER on DOX-induced cell death 

and autophagy in H9c2 cells was studied through:  

1. The evaluation of  the cellular density and cell viability in different condi-

tions by the sulforhodamine B assay; 

2. The  evaluation of caspase-like activity by colorimetric assay; 

3. The semi-quantification of  key-proteins of certain events such as mito-

chondrial biogenesis and autophagy induction by western blotting; 

4. The  evaluation of autophagy and the relationship with cell death by ly-

sosomal  cathepsins B/D  like-activity; 

5. The measurement of simultaneous co-localization of mitochondrial and 

lysosomal markers by confocal microscopy. 
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The hypothesis of this dissertation is that BER can prevent DOX-induced 

toxicity through multiple mechanisms including activation of SIRT1 which may 

lead to mitochondrial biogenesis and expression of antioxidant defences, as well 

as by promoting protective autophagy. 

Thus, this project might be relevant to consider BER as a compound able 

to counteract DOX-induced cardiotoxicity, which would then result in the use of 

this anti-cancer agent in higher cumulative dosages, that would be more effective 

as anti-cancer agents.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part II 

Experimental Results 

 



 

 

 

 

 

 
 

 

 

 

 

 

  



 

 

Chapter 5 

Materials and Methods 

 

5.1 Reagents 

 

All reagents were used at the highest grade of purity available. Aqueous solutions 

were prepared in ultra-pure water (MilliQ system, Millipore, Darmstadt, Germany). Non 

aqueous solutions were prepared in ethanol or DMSO. Doxorubicin hydrochloride, 

Berberine chloride, Sulforhodamine B, Z- Arg- Arg-N-methyl-coumarin and Hemoglo-

bin were purchased from Sigma- Aldrich, St. Louis, MO, USA. Caspases substrates 

Ac-Asp-Glu-Val-Asp-pNA and Ac-Leu-Glu-His-Asp-pNA were purchased from Calbio-

chem, Darmstadt, Germany. The fluorescent substrate ECF™ were purchased from 

Healthcare Life Sciences, Buckinghamshire, UK. TMRM, Lysotracker Green DND26 

and Hoescht were purchased from Invitrogen, Eugene, OR, USA. 

 

5.2 Methods 

 

The evaluation of the effect of BER on DOX-induced cell death and autophagy 

was performed in vitro in H9c2 cells. In order to evaluate this effect several assays 

were performed. 

 

 

5.2.1 Cell culture 

 

The H9c2 cell line, developed by Kimes and Brandt, is a sub-clone of the original 

clonal cell line derived from embryonic BD1X rat heart.(Kimes and Brandt 1976) H9c2 

cells were purchased from America Tissue Type Collection (ATTC) and cultured in 

high glucose DMEM supplemented with 10% (vol/ vol) FBS, 1% (vol/ vol) peni-

cilin/streptomycin, 1.8g/L sodium bicarbonate and 0,11 g/L sodium pyruvate at 37°C 

in a humidified atmosphere of 5% CO2. Cells were fed at every 3 days and were sub-
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cultured once they reached 70-80% confluence. Then cells were harvested with tryp-

sin/EDTA and seeded at a concentration of 35,000 cells/ mL. After 24 hours of cell 

attachment, H9c2 cells were incubated with BER for 72 hours and an equal volume of 

DMSO as a control. In the last 24 hours, cells were incubated with two different con-

centrations of DOX alone in presence of BER. Doxorubicin hydrochloride (D1515, 

Sigma- Aldrich, St. Louis, MO, USA) was prepared in an aqueous solution. Berberine 

chloride (B3251, Sigma- Aldrich, St. Louis, MO, USA) used for cell treatments was 

prepared in DMSO and total drug volume in cell media was always less than 0.1%. 

The timeline followed in all experiments is schematically represented in Figure 6.  

 

 
 

Figure 6: Timeline of the experimental design for BER/ DOX treatments. H9c2 cells were seeded and 

divided into different experimental of groups depending on the treatment that were applied: DMSO 72 hours, BER 

72 hours, DOX in the last 24 hours of the 72 hours treatment, and BER and DOX in the last 24 hours of the 72 

hours treatment. The effect of BER were measured in terms of the cell viability by SRB colorimetric assay, caspases 

activity by colorimetric assay, cathepsins activity by fluorometric and spectrophotometric detection, mitochondria-

lysosome co-localization by confocal microscopy and mitochondrial and autophagy markers content by Western 

blotting. 
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5.2.2 Sulforhodamine B colorimetric assay 

The evaluation of the cytotoxicity of BER and joint BER/ DOX treatments on H9c2 

cell was performed using the Sulforhodamine B (SRB) colorimetric assay adapted from 

Vichai and Kirtikara (Vichai and Kirtikara 2006). 

The SRB colorimetric assay was developed by Skehan et al. and allows an in 

vitro cytotoxicity screening (Skehan, Storeng et al. 1990). This method relies on the 

ability of SRB molecule to bind to protein components present in previously fixed cells. 

Structurally, SRB is an aminoxhantene dye with two sulfonic groups that allows the 

binding to basic amino acids in mild-acidic conditions and the dissociation under basic 

conditions. The amount of dye extracted from stained cells is directly proportional to 

the cell mass (Vichai and Kirtikara 2006). 

To evaluate of the cytotoxicity of BER and BER/ DOX combination, H9c2 cells 

were cultured as previously described and seeded at a 35,000 cells/ mL concentration 

in a total volume of 500 µL in 48 multi-wells plates. Once cells were adherent to the 

plate, they were drugged for 72 hours with BER (1, 5, 10, 20, 50 or 100 µM) or vehicle 

in the last 24 hours with 0.5, 1 or 20 µM DOX. The culture medium was removed, the 

cells were washed with PBS and 200 µL of methanol/1% (vol/ vol) acetic acid was 

added in order to fix the cells to the bottom surface of the well. The cells were kept 

during 24 hours at -20ºC. Then, methanol/ 1% (vol/ vol) acetic acid solution was dis-

carded and 200 µL of 0.05% (wt/ vol) of SRB in 1% (vol/ vol) of acetic acid was added 

during 1 hour at 37ºC. Stained-cells were quickly rinsed four times with 1% (vol/ vol) 

acetic acid to remove the excess of dye and were left to dry. One mL of 10 mM Tris 

pH 10.5 was added to solubilize the bound dye and the plate was maintained on a 

shaker for 10 minutes. To measure the optic density of he obtained solution, 100 µL 

of the solution was transferred to a 96 multi-well plate and the absorbance was read 

at 540 nm in a VICTOR X3 (Perkin Elmer, Inc.) microplate reader.  

 

5.2.3 Caspase 3 and 9 like-activity assay 

The evaluation of the apoptotic signalling pathway activation by BER/ DOX treat-

ments in H9c2 cells was performed by the measurement of caspase 3 and caspase 9.  
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Caspase 3 and 9-like activities were measured through the spectrophotometric detec-

tion of the cromophore p-nitroanilide (pNA) after the cleavage of the substrate Ac-Asp-

Glu-Val-Asp-pNA (Cat. #235400, Calbiochem, Darmstadt, Germany) and Ac-Leu-Glu-

His-Asp-pNA (Cat. #218805, Calbiochem, Darmstadt, Germany), respectively. 

H9c2 cells were cultured as previously described and seeded at a 35000 cells/ 

mL concentration in a total volume of 10mL at 100mm diameter dishes. After 24 hours 

of cell attachment, H9c2 cells were drugged for 72 hours with 1 µM or 10 µM of BER 

and with 0.5, 1 or 20 µM DOX in the last 24 hours. The culture medium was removed, 

the cells were washed with PBS and 200 µL of Lysis Buffer (50 mM HEPES pH 7.4, 

100 mM NaCl, 0.1% (wt/vol) CHAPS, 0.1 mM EDTA, 10% (vol/vol) glycerol and 10 mM 

DTT) was added at each dish. The dishes were scraped and total cell extracts were 

collected. Then, cell suspensions were frozen/ thawed 5 times and ruptured 30 strokes 

with a 25G needle. All samples were then centrifuged at 16 100 x g and the pellet were 

discarded.  

The protein content was quantified by the Bradford method (described in 3.2.4 

section), using BSA as standart. Caspase 3 and caspase 9 like- activities were meas-

ure in aliquots of cell extracts containing 25μg and 50μg respectively and incubated in 

Reaction Buffer containing 50mM HEPES pH 7.4, 100mM NaCl, 0.1% (wt/vol) CHAPS, 

0.1mM EDTA, 10% (vol/vol) glycerol, 10mM DTT and 100µM of caspases 3 and 9 

substrate (Ac-Asp-Glu-Val-Asp-pNA and Ac-Leu-Glu-His-Asp-pNA respectively) for 2 

hours at 37ºC. Caspase-like activities were determined by the detection of pNA at 405 

nm in VICTOR X3 (Perkin Elmer, Inc.) reader. The method was calibrated with known 

concentrations of pNA. 

 

5.2.4 Western Blotting 

 

The semi-quantification of key-proteins of mitochondrial biogenesis and autoph-

agy pathways in BER/ DOX treatments in H9c2 cell were performed by Western 

Blotting. 

 To evaluate of the cytotoxicity of BER and BER/ DOX combination, H9c2 cells 

were cultured as previously described and seeded at a 35,000 cells/ mL concentration 

in a total volume of 28 mL at 150 mm diameter dishes. Once cells were adherent to 
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the plate, they were drugged with 10µM BER for 72 hours and in the last 24 hours with 

1 or 20 µM DOX. The culture media was collected and 5 mL of extraction buffer (PBS 

supplemented with 0.1 g/ L of EDTA) was added to each dish. Cells were then scraped 

and the cell suspension was collected and added to the correspondent cultured media.  

 

a) Primary antibodies were prepared in 2% (wt/vol) milk, except for LC3 I/II and Tfam that 

were prepared in 2% (wt/vol) BSA 

b) Primary antibodies were recycled and used in a new membrane incubation for 5 times 

maximum. 

c) Secondary antibodies were prepared in TBS-T. Tfam was prepared in 2% (wt/vol) milk and 

incubated at 4ºC for 3 hour. 

 

The suspensions were centrifuged at 340 x g for 4 minutes, the pellet was 

collected and washed with PBS and centrifuged again at 340 x g for 4 minutes. 

Pellets were ressuspended in 100 µL of Cell Lysis Buffer (1x) (Cell Signalling Cat. 

#9803) supplemented with 0.01 mM PMSF. Samples were sonicated with short 

pulses and quantified by the Bradford method, using BSA as standard. Samples 

were stored at -20ºC for a short period of time until their use.   

Table I: Primary and Secondary antibodies used. Antibodies brand code, primary and secondary dilution are 
listed below. 

Antibody Brand Code Primary dilution Secondary dilution 

LC-3 I/II 
MBL 

PD014 
1:1,000 

 
Anti-rabbit 

1:2,500 

OXPHOS 
Mito profile 

MS604 
1:1,000 

Anti-mouse 

1:2,500 

p53 
Cell signalling 

2524 
1:1,000 

Anti-mouse 

1:2,500 

p62 
MBL 

PM045 
1:1,000 

Anti-rabbit 
1:2,500 

Sirt1 
Abcam 

Ab110304 
1:1,000 

Anti-rabbit 
1:2,500 

Sirt3 
Cell Signalling 

5490 
1:1,000 

Anti-rabbit 
1:2,500 

Tfam 
Santa Cruz 

sc23588 
1:500 

Anti-Goat 

1:2,500 

TOM 20 
Santa Cruz 

Sc11415 

1:1,000 

 

Anti-rabbit 
1:2,500 
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5.2.4.1 Protein quantification by the Bradford assay 

The Bradford assay was adapted from the procedure developed in 1976 by Brad-

ford and was used to quantify the total amount of protein present in the samples 

(Bradford 1976). The Bradford method relies on the binding of Coomassie Brilliant Blue 

G-250 dye to protein residues (Bradford 1976, Kruger 2009, Goldring 2012). Coo-

massie Brilliant Blue G-250 anionic form strongly binds to basic amino acids residues 

producing a blue colour with a maximum absorbance at 595 nm (Bradford 1976, 

Goldring 2012).  

The reaction was initiated by adding 1 mL of Bradford reagent (0.1% (wt/ vol) 

Comassie Brilliant Blue G-250, 8.5% (vol/vol) of phosphoric acid, 5% (vol/vol) of 95% 

ethanol) to 3 µL of sample, previously diluted in 997 µL of H2O. After 5 minutes incu-

bation at room temperature the absorbance of the samples was read in a VICTOR X3 

(Perkin Elmer, Inc.) multi-plate reach at 595nm. The standard curve was obtained from 

a BSA solution within the range 1.25 to 20 µg.mL-1. 

 

5.2.4.2 One- dimensional Sodium Dodecyl Sulphate- Polyacrylamide 

Gel Electrophoresis and Immunoblotting 

One- dimensional Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis 

(SDS- PAGE) was used to separate the proteins from cell extracts according to their 

molecular size through a discontinuous polyacrylamide gel under denaturing condi-

tions (Gallagher 2012). After sample protein separation by SDS-PAGE, they were 

transferred electroforetically to highly hydrophobic polyvinylidene difluoride (PVDF), 

membranes allowing the identification of specific antigens that can be recognized by 

polyclonal or monoclonal antibodies (Gallagher, Winston et al. 2008). 

 

Samples were prepared in Laemelli Buffer (Biorad, Hercules, CA, USA) supple-

mented with 5% (vol/vol) of β-Mercaptoethanol, in a proportion of 1:1. Samples were 

denatured for 5 min at 95ºC and 30µg of protein were loaded into 8%, 10% or 16% 

poliacrilamide gels. SDS-PAGE was performed at room temperature in Mini Protean 

Cell system (Biorad, Hercules, CA, USA) at 150V for 45 minutes. After SDS-PAGE, 

proteins were transferred to PVDF membranes at 4ºC in Mini Protean system (Biorad, 
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Hercules, CA, USA) at 100V for 1 hour and 30 minutes. The transfer of proteins to the 

membrane was monitored by Ponceau S (P3504, Sigma- Aldrich, St. Louis, MO, USA) 

staining. Membranes were blocked overnight at 4ºC with 5% (wt/vol) milk and incu-

bated overnight at 4ºC with the primary antibody (Table I). Secondary incubation was 

performed at room temperature for 1 hour. Between incubations with primary and sec-

ondary antibodies and before immunodetection, membranes were washed 3 times 

with TBS-T for 5 minutes each.   

5.2.4.3  Immunodetection 

The detection of a certain protein is performed by exposing the membranes to a 

chemifluorescent substrate that will be cleaved by alkaline phosphatase coupled to the 

secondary  antibody.(Gallagher, Winston et al. 2008) 

Band detection was performed by incubating membranes with ECF™ 

(Healthcare Life Sciences, Buckinghamshire, UK), a chemifluorescent substrate, for 5 

minutes maximum. Chemifluorescent reactive bands were visualized in Biosepctrum 

500 imaging system (UVP, Upland, CA, USA). Data were recorded and band density 

quantification was performed in Image J (version 1.48, National Institute of Health, 

USA). Protein content of the desired proteins were expressed by the ratio between 

band and Ponceau S density and were represented in % of untreated H9c2 cells (con-

trol). Ponceau S normalization of gel loading control is considered a better strategy 

than the use of housekeeping proteins. 

 

5.2.5 Cathepsin B and D- like activity assay 

The evaluation of the autophagic fluxes and lysosomes viability were performed 

by the measurement of cathepsin B and D-like activity.  Cathepsin B and D like-activity 

was measured through fluorimetric and spectrophotometric detection, respectively, 

adapted from Vega-Naredo and Coto-Montes (Vega‐Naredo and Coto‐Montes 2009).  

H9c2 cells were cultured as previously described and seeded at a 35,000 cells/ 

mL concentration in a total volume of 10 mL at 100mm diameter dishes. After 24 hours 

of cell attachment, H9c2 cells were incubated for 72 hours with 10 µM of BER and with 

1 or 20 µM DOX in the last 24 hours. The culture media was collected and 3 mL of 

extraction buffer (PBS supplemented with 0.1g/L of EDTA) were added to each dish. 
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Cells were then scraped and the cell suspension was collected and added to the cor-

respondent culture media. The suspensions were centrifuged at 340 x g for 4 minutes, 

the pellet was collected and washed with PBS and centrifuged again at 340 x g for 4 

minutes. Pellets were ressuspended in 200 µL of Lysis Buffer (50 mM HEPES pH 7.4, 

100 mM NaCl, 0.1% (wt/vol) CHAPS, 0.1 mM EDTA and 10 mM DTT). The cell sus-

pensions were kept at -80ºC until used. The protein content was quantified by the 

Bradford method, using BSA as standard. 

For Cathepsin B like-activity determination, aliquots of 50 µL of each sample were 

incubated with 40 µM of Z- Arg- Arg-N-methyl-coumarin (C5429, Sigma- Aldrich, St. 

Louis, MO, USA) in Incubation Buffer (100 mM Sodium Acetate pH 5.5, 1 mM EDTA, 

5 mM DTT and 0.1% (vol/vol) Brij-35) at 37ºC for 20 minutes. After the incubation, 150 

µL of Stopping Buffer (33mM Sodium Acetate pH 4.3, 33mM Sodium Chloroacetate) 

were used to stop the enzymatic reaction. Cathepsin B like- activity were determined 

by the detection of the N-methyl-coumarin (A9891, Sigma- Aldrich, St. Louis, MO, 

USA) fluorometrically at 360 nm excitation and 460nm emission in VICTOR X3 (Perkin 

Elmer, Inc.) reader. The method was calibrated with known concentrations of N-me-

thyl-coumarin. 

For Cathepsin D like-activity determination, aliquots of 75 µL of each sample 

were incubated with 125 µL of 3% (wt/vol) Hemoglobin (H2625, Sigma- Aldrich, St. 

Louis, MO, USA) in 200 mM Acetic acid at 37ºC for 30 minutes. After the incubation, 

125 µL of 15% (vol/vol) TCA were added to the samples and they were kept at 4ºC for 

30 minutes. Samples were then centrifuged at 13400 x g for 5 minutes. Cathepsin D 

like- activity was determined by the measurement optic density of 200 µL supernatant 

at 280 nm in a Cytation 3 (BioTek Instruments, Inc.) multi-plate reader. 

 

 

5.2.6 Evaluation of mitochondrial and lysosomal markers localization 

To evaluate the co-localization between lysosomes and mitochondria during 

BER+DOX treatments, H9c2 cells were cultured as previously described and seeded 

at a 15,000 cells/ mL concentration in a total volume of 2 mL at 6 multi-wells dishes. 

Once cells were adherent to the plate, they were incubated with 10 µM BER for 72 
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hours and with 1 or 20 µM DOX in the last 24 hours. The culture medium was removed 

and cells were incubated at 37ºC, at dark in a humidified atmosphere of 5% CO2 for 

30 minutes with 100 nM of TMRM (Invitrogen, Eugene, OR, USA), 75 nM of 

Lysotracker Green DND26 (Invitrogen, Eugene, OR, USA) and 1 µg/mL of Hoescht 

33342 (Invitrogen, Eugene, OR, USA) prepared in DMEM medium. Images were ob-

tained in Nikon C-1 laser scanning confocal microscope. 

 

5.2.7 Statistical analysis 

The results are presented as mean ± SEM of the described number of independ-

ent preparations. Statistical analyses were performed in Graph Pad Prism (version 

6.01 for Windows, GraphPad Software, La Jolla California USA) using Kolmogorov-

Smirnov test to assess normal distribution and One Way of Variance (ANOVA) fol-

lowed by the Dunett or Bonferroni post-test for multiple comparisons. Statistical 

analysis was performed in comparison with the control (untreated cells) or between 

groups, as described in figure legends. Differences that presented p value inferior to 

0.05 were considered statistically significant.  

 

 

 



 

 

 

 

 



 

 

Chapter 6 

Results 

 

In order to evaluate BER modulation in DOX-induced cell death and au-

tophagy, H9c2 cells were treated with BER and with a low (0.5 or 1µM) or with a 

high-DOX concentration (20µM DOX). The different concentrations of DOX allows 

the study of BER effects on clinically relevant concentrations (0.5 and 1µM) and 

in a supra-physiological dosage (20μM). It was previously described that highest 

DOX concentrations induce the appearance of cytosolic vacuoles possibly related 

with the blockage of autophagic processes (Sardao, Oliveira et al. 2009), allowing 

the investigation of certain mechanisms that could not be present at low concen-

trations.  

 

6.1 Berberine inhibited caspase 3 and 9-like activity induced by DOX on 

H9c2 cells. 

 

To evaluate if BER altered H9c2 cell proliferation, H9c2 cells were treated 

with several concentrations of BER (1, 5, 10, 20, 50 or 100 µM) for 72hours (Fig-

ure 7). Generally, we observed that BER induced a decrease in H9c2 cell mass. 

For lower BER concentrations (1 µM) cell mass decrease was minor compared 

with untreated H9c2 cells. For BER concentrations higher than 5 µM the decrease 

of cell viability were more pronounced and statistically relevant. For 5 µM and 10 

µM BER, alterations in cell mass were not significantly different between each 

other (92% ± 2.8% and 88% ± 2.6% relatively to control) whereas for the highest 

BER concentration (100 µM) cell mass was decreased by half. 
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Figure 7: Effect of Berberine in H9c2 cells. H9c2 cells were incubated with BER (1, 5, 10, 20, 50 and 

100µM) for 72 hours. BER cytotoxicity was measured by SRB colorimetric assay, described at section 3.2.2. 

The control (100%) was the sample which not receive BER treatment. Data were represented in mean ± 

SEM of 5 independent experiments. Most errors bars are hidden by graph plots. Comparisons were per-

formed using One way ANOVA, followed by Dunett post-test (* - p< 0.05 vs. control; ** - p< 0.001; *** - p< 

0.0001 vs. control). 

 

In order to understand which BER concentration would be more suitable to 

be administered with DOX, determination of cell mass by the SRB assay and 

caspase 3 and 9 like-activity assay were performed.   

First, H9c2 cells were treated for 72 hours with two different BER concen-

trations and in the last 24 hours with 0.5, 1 or 20 µM DOX. BER concentrations 

tested were the ones that did not decrease H9c2 cell viability: 1µM and 10µM. 

The effect of combined BER/DOX treatments in H9c2 cells is represented in 

Figure 8. We observed that 0.5, 1 or 20 µM DOX induces decrease in H9c2 cell 

viability as previously described (Vichai and Kirtikara 2006). H9c2 cells that were 

treated with 1µM BER before 0.5, 1 or 20µM DOX administration did not show a 

significant protection when compared with the correspondent DOX treatment 

alone. Nevertheless, cells treated with 10µM BER and 1 or 20µM DOX presented 

a higher amount of cell mass, when compared with cells treated with 1 or 20 µM 

DOX alone. The same did not occur in cells treated with 10µM BER and 0.5 µM 

DOX, in which no protective effect was observed.  
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Figure 8: Effect of Berberine/Doxorubicin combined treatments in H9c2 cells. H9c2 cells were 

incubated for 72 hours with 1 µM or 10 µM BER for 72 hours and with 0.5,1 or 20 µM DOX in the last 24 

hours. The evaluation of BER/ DOX cytotoxicity were measured by SRB colorimetric assay, described at 

section 3.2.2.. The control (100%) was the sample that did not receive BER and DOX treatments. Data were 

represented in mean ± SEM of 5 independent experiments. Comparisons were performed using One way 

ANOVA, followed by Bonferroni post-test (* - p< 0.01 vs. control; ** - p< 0.0001; # - p< 0.05 vs. 1µM DOX; § 

- p< 0.05 vs. 20µM DOX). 

 

As previously described, activation of caspase 3 and 9 are involved in DOX-

induced cell death in H9c2 cardiomyoblasts (Sardao, Oliveira et al. 2009, Sardao, 

Oliveira et al. 2009). To evaluate if BER decreases caspase 3 and 9 activation, 

we measured caspase 3 and 9 like-activity by using a colorimetric method, as 

described in section 3.2.3. H9c2 cells were treated for 72 hours with 1 or 10µM 

BER and with 0.5, 1 or 20µM of DOX in the last 24 hours. The effect of BER in 

caspase 3 and 9- like activity in H9c2 cells is represented in Figure 9. 

We observed that, BER treatment per se did not significantly increased 

caspase 3 and 9 activity. As described in literature, all DOX treatments (0.5, 1 and 

20µM DOX) showed increased both caspase 3 and 9-like activities (Sardao, 

Oliveira et al. 2009, Sardao, Oliveira et al. 2009). H9c2 cells treated with 1µM 

BER and DOX presented a decrease in caspase 3 and 9 activity, although that 

decrease was more evident in cells treated with 10 µM BER where a decrease in 

caspase 3-like activity after 0.5, 1 or 20µM DOX treatments was observed. 
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[A] [B]  

Figure 9:  Effect of Berberine/Doxorubicin combined treatments on caspase 3 (Panel A) and 9 (Panel 

B) activation in H9c2 cells. H9c2 cells were incubated for 72 hours with 1 µM or 10 µM BER for 72 hours 

and with 0.5, 1 or 20µM DOX in the last 24 hours. The measurement of caspase 3 and 9 like- activity were 

performed by a colorimetric assay, described at section 3.2.3. Data were represented in mean ± SEM of 6 

independent experiments. Comparisons were performed using One way ANOVA, followed by Bonferroni 

post-test (* - p< 0.05 vs. control; ** - p< 0.01 vs. control; *** - p< 0.001 vs. control; **** - p< 0.0001 vs. control; 

# - p< 0.05 vs. 20µM DOX.) 

 

Although the decrease in caspase 3-like activity in cells treated with 10µM 

BER and 0.5 or 1µM DOX were not significant when compared with 0.5 and 1µM 

DOX, the increase of caspase 3-like activity when compared with untreated cells 

was not significant either. Samples that received treatments with 10 µM BER and 

20 µM DOX had an evident and statistically significant decrease of caspase 3-like 

activity when compared to the respective DOX control. Curiously, cells treated 

with 1 µM BER and 0.5 µM DOX had an increase in caspase 3- like activity. The 

same pattern occur also in caspase 9-like activity. We observed that in general 

BER/DOX combined treatments decreased caspase- like activity when compared 

with the respective DOX treatment alone. Those results suggested that 10 µM is 

the best concentration tested to evaluate BER effects on DOX- induced cell death 

and autophagy. 

Another protein that has been described to play an important role in apopto-

sis control is the transcription factor p53, which potentiates the transcription of 

pro-apoptotic genes that lead to an increase in the ratio of pro- to anti-apoptotic 

Bcl-2 proteins. The downstream effect is caspases activation can lead to apopto-

sis (Fridman and Lowe 2003, L'Ecuyer, Sanjeev et al. 2006). In order to assess if 
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BER can modify p53 content in DOX-treated H9c2 cells, p53 content was meas-

ured by Western Blotting. BER ability to modify p53 content in BER treated cells 

is presented in Figure 10.  

 

Figure 10: Effect of BER on p53 content in DOX-treated in H9c2 cells. H9c2 cells were incubated for 72 

hours with 10µM BER and with 1 or 20µM DOX in the last 24 hours. p53 content was evaluated by Western 

blotting (section 3.2.4). Data were represented in mean ± SEM of 5 independent experiments. Comparisons 

were performed using One way ANOVA, followed by Bonferroni post-test (* - p< 0.05 vs. control; # - p< 0.05 

vs. 20µM DOX). 

 

As previously described (L'Ecuyer, Sanjeev et al. 2006, Sardao, Oliveira et 

al. 2009), DOX treatment increased p53 content in H9c2 cells, although because 

of sample variability those differences were not statistically significant. We ob-

served that BER had no effect in p53 amount in H9c2 cells when compared with 

untreated cells and cells treated with 1 µM DOX. Contrarily to our expectations, 

BER increased p53 content in 20 µM DOX- treated cells, despite caspase 3 and 

9 inhibition.   

 

6.2 Berberine blocked autophagy on DOX-treated H9c2 cells 

 

DOX-induced cell death results from apoptosis activation and autophagy im-

pairment, playing the last one an important role in the development of heart 

p53 
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conditions (Lu, Wu et al. 2009). In order to understand if BER has the capacity to 

modulate autophagy caused by DOX, we measured the content of LC3 I/II, p62 

and, as well as cathepsin B and D like activity. 

Figure 11 represent the effect of BER in LC3 I/II conversion on DOX-treated 

H9c2 cells.  

  

[A]  [B]  

 

Figure 11: Effect of BER on LC3-I (panel A) conversion to LC3-II (panel B) in DOX-treated H9c2 cells. 

H9c2 cells were incubated for 72 hours with 10µM BER and in the last 24 hours with 1 or 20µM DOX. LC3-

I/II content was evaluated by Western blotting (section 3.2.4). Data were represented in mean±SEM of 5 

independent experiments. Comparisons were performed using One way ANOVA, followed by Bonferroni 

post-test (** - p< 0.01 vs. control; ****- p< 0.001 vs. control; ## - p< 0.01 vs. 20µM DOX; ### - p< 0.001 vs. 

20µM DOX). 

This results suggests that the presence of BER did not induce any changes 

in LC3-I -LC3-II conversion when compared with untreated cells. The presence of 

BER pre-treatment in H9c2 cells incubated with 1 µM DOX appeared to induce 

an increase (21.9% ± 6.2%) in LC3-II formation. However that result was not sta-

tistically significant. We also observed that the same BER pre-treatment induced 

a relevant conversion of LC3-I into LC3-II when both are compared with untreated 

cells and cells treated with 20 µM DOX. LC3-II amount was not altered in DOX-

treated cells, but LC3-I was upregulated in the same group of cells.  

LC3-I LC3-II 
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Figure 12: Effect of BER on p62 content in DOX-treated in H9c2 cells. H9c2 cells were incubated for 72 

hours with 10 µM BER hours and in the last 24 hours with 1 or 20 µM DOX. P6 content was evaluated by 

Western blotting (section 3.2.4). Data were represented in mean±SEM of 5 independent experiments. Com-

parisons were performed using One way ANOVA, followed by Bonferroni post-test (* - p< 0.05 vs. control; 

### - p< 0.001 vs. 1µM DOX; §§ - p<0.01 vs 20µM DOX. 

 

The effect of BER in p62 content on DOX-treated H9c2 cells is represented 

in figure 12. We observed that p62 was down-regulated in both DOX-treated cells. 

Although results were not statistically significant, the decrease in p62 content was 

20.1% ± 5.4% for cells treated with 1 µM DOX and 12.5% ± 6.6% in 20 µM DOX. 

BER slightly increased p62 content when compared with untreated H9c2 cells. In 

similar way, BER also induced p62 accumulation in DOX-treated cells. p62 cellu-

lar amount in increased 29.8% ± 7.8% relatively to untreated cells and 62.4% ± 

8.9% when compared with cells treated with 1µM DOX. The increased p62 con-

tent in BER/ 20µM DOX combined treatments was also statistically significant 

when compared with the respective DOX concentration alone.   

The capacity of BER to induce Cathepsin B or D activation on DOX-treated 

H9c2 cells is shown in Figure 13.  We observed that BER appeared to have no 

effect in Cathepsin B and D activation on H9c2 cells. Despite BER or 1 µM DOX, 

alone or in combination, had no effect on cathepsin D activity, cathepsin B in-

creased when 1 µM DOX was used in H9c2 cells (figure 11B). Interestingly, the 

p62 
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ratio between cathepsin D /cathepsin B increased when 10 µM BER was incu-

bated with 20 µM DOX (figure 13C). 

 

 [A] [B]   

 

[C]  

Figure 13: Effect of BER on Cathepsin D (panel A) and B (panel B) activation in DOX-treated H9c2 

cells. The ratio between Cathepsin D and Cathepsin B is represented in panel C. The ratio between 

cathepsin D and cathepsin B is represented on panel C. H9c2 cells were incubated for 72 hours with 10µM 

BER and with 1 or 20µM DOX in the last 24 hours. The measurement of cathepsin B like- activity was meas-

ured fluorometrically while cathepsin D activity was measured spectometrically as described at section 3.2.5. 

Data were represented in mean±SEM of 5 independent experiments. Comparisons were performed using 

One way ANOVA, followed by Bonferroni post-test (* - p< 0.05 vs. control; **** - p< 0.0001 vs. control; ## - 

p< 0.01 vs. 20µM DOX). 
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6.3 Apparent modulation of DOX-induced mitophagy by BER 

 

Mitophagy is a highly selective autophagic process that has the capacity to 

eliminate damaged and dysfunctional mitochondria. The loss of ΔΨm is one of the 

events that can trigger mitophagy (Dutta, Calvani et al. 2012). 

To evaluate if BER modulates mitophagy, we observed mitochondria and 

lysosome co-localization with Lysotracker Green and TMRM (Figure 14). We ob-

served that untreated H9c2 cells presented normal cell morphology with a well-

defined and filamentous mitochondrial network, as well as some lysosomal pres-

ence. In untreated control cells, little or no co-localization between the two 

organelles was found. BER did not appear to induce alterations in cell morphol-

ogy. BER-treated H9c2 cells maintained the well-defined mitochondrial network 

and lysosome-mitochondria co-localization was minimal.  DOX treatments in-

duced changes in H9c2 cell morphology. Cells that were treated with low-DOX 

concentration manifested a mitochondrial network more fragmented and a signif-

icant increase of lysosomes. The lysosomal accumulation co-localized with 

labelled mitochondria possibly leading to their degradation through a mitophagic 

process (yellow bodies). High-DOX treated H9c2 cells presented a more frag-

mented mitochondrial network and an extensive accumulation of acidic vesicles. 

Despite that fact, we observed that lysosome- mitochondria co-localization was 

present, but in a much less extent that in low-DOX concentration. BER/DOX treat-

ments appeared to exert different effects in low and high DOX concentrations. 

We observed that BER pre-treatment before the administration of 1 µM DOX led 

to a decrease on lysosomal-mitochondria co-localization. The opposite scenario 

happened in 20 µM DOX-treated cells. BER/DOX treatments with high- DOX con-

centration appeared to increase the co-localization between mitochondria and 

acid vesicles.  
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Figure 14: Lysosomes and mitochondria co-localization in BER/DOX combined treatments in H9c2 cells. 

H9c2 cells were incubated for 72 hours with 10µM BER and with 1 and 20 µM DOX in the last 24 hours. Organelles 

staining were performed has described in section 3.2.6. Images represented have different magnification to allow 

a better identification of BER effects. 

 



Chapter 6 – Results 

49 
 

6.4 Berberine induced SIRT1 and SIRT3 upregulation on DOX-treated 

H9c2 cells.  

 

Sirtuins are described to regulate mitochondrial metabolism, mitochondrial bi-

ogenesis, autophagy and cell death (Hariharan, Maejima et al. 2010, Nogueiras, 

Habegger et al. 2012, Pereira, Lebiedzinska et al. 2012). To see if BER can alter 

SIRT1 and SIRT3 cellular content, western blotting was performed. The effect of 

BER in SIRT1 and SIRT3 on DOX-treated cells is represented in Figure 15 and 

16, respectively. 

 

 

 

Figure 15: Effect of BER on SIRT1 content in DOX-treated H9c2 cells. H9c2 cells were incubated for 72 

hours with 10µM BER and with 1 or 20µM DOX in the last 24 hours. SIRT1 content was evaluated by Western 

blotting (section 3.2.4.). Data were represented in mean ± SEM of 4 independent experiments. Comparisons 

were performed using One way ANOVA, followed by Bonferroni post-test (* - p< 0.05 vs. control; **** - p< 

0.0001 vs. control; # - p< 0.05 vs. 20µM DOX). 

 

We observed that DOX treatment increased SIRT1 amount in H9c2 cells, 

although the results were not statistically significant.  Moreover, BER appeared to 

show capacity to increase SIRT1 content in H9c2 cells treated with 1 or 20 µM 

DOX.  Despite that fact, SIRT1 increase in BER/ DOX combined treatments was 

only significant with the highest DOX concentration when compared with the re-

spective DOX treatment alone.  

SIRT1 
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Figure 16: Effect of BER on SIRT3 content in DOX-treated H9c2 cells. H9c2 cells were incubated for 72 

hours with 10µM BER and with 1 and 20 µM DOX in the last 24 hours. SIRT3 content was evaluated by 

Western blotting (section 3.2.4.). Data were represented in mean ± SEM of 4 independent experiments. 

Comparisons were performed using One way ANOVA, followed by Bonferroni post-test (** - p< 0.01 vs. 

control; **** - p< 0.0001 vs. control; # - p< 0.05 vs. 20µM DOX). 

 

We observed that 20 µM induced an increase in SIRT3 content. In addition, 

the combination of BER (10 µM) with 20 µM DOX resulted in increased SIRT3 

content when compared with DOX alone. Ten µM BER combined with 1 µM also 

resulted in increased SIRT3 content.  

 

6.5 Berberine did not protect against DOX-induced mitochondrial al-

terations on H9c2 cells. 

 

Increased oxidative stress is one of the mechanisms responsible for DOX-

induced damage. DOX capacity to inhibit complex I, III and IV and the accumula-

tion of damage is several biomolecules leads to activation of mechanisms that 

results in mitochondrial dysfunction (Goormaghtigh, Huart et al. 1986, Nicolay and 

de Kruijff 1987). In order to investigate mitochondrial oxidative phosphorylation 

SIRT3 
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components, we measured the content of Mitochondrial Complex III and ATP-

synthase α by Western Blotting. The protein content is represented in Figure 17. 

 

[A]  [B]  

Figure 17: Effect of BER on Mitochondrial Complex III (Panel A) and ATP-synthase α (Panel B) in 

DOX-treated H9c2 cells. H9c2 cells were incubated for 72 hours with 10 µM BER or with 1 and 20 µM DOX 

in the last 24 hours. Complex III and ATP-synthase α content were evaluated by Western blotting (section 

3.2.4.). Data were represented in mean ± SEM of 5 independent experiments. Comparisons were performed 

using One way ANOVA, followed by Bonferroni post-test (* - p< 0.05 vs. control; ## - p< 0.01 vs. 20µM DOX).  

 

DOX, namely the lowest concentration, induced Complex III and ATP syn-

thase α subunit downregulation. We observed that both complex III and ATP-

synthase α cellular amount were decreased on BER treatments alone (10 µM). 

Moreover, BER did not rescue the decrease in Complex III and ATP- synthase 

subunits induced by DOX.  An exception was the ATP-synthase α upregulation 

on BER/DOX treatment with 20µM DOX when compared with 20µM DOX control.  

 

6.6 Berberine increases mitochondrial biogenesis markers on DOX-

treated H9c2 cells. 

 

SIRT1 activation by BER is described to be involved in mitochondrial bio-

genesis mechanisms in skeletal muscle cells resulting in an improvement of 

mitochondrial function (Gomes, Duarte et al. 2012). To verify if mitochondrial bio-

genesis mechanisms are active in BER/ DOX combined treatments, we measured 

C. III ATP synt. 

III 
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TOM20 and Tfam protein content in H9c2 cells. Tfam is a protein which regulates 

the replication of mtDNA and is involved in biogenesis (Ventura-Clapier, Garnier 

et al. 2008, Scarpulla, Vega et al. 2012). The effect of BER in mitochondrial mass 

was measured indirectly by TOM20 content in H9c2 cells and is represented in 

Figure 18. 

 

 

 

Figure 18:  Effect of BER on TOM20 in DOX-treated H9c2 cells. H9c2 cells were incubated for 72 hours 

with 10 µM BER and with 1 or 20 µM DOX in the last 24 hours. TOM20 content was evaluated by Western 

blotting (section 3.2.4.). Data were represented in mean ± SEM of 4 independent experiments. Comparisons 

were performed using One way ANOVA, followed by Bonferroni post-test (** - p< 0.01 vs. control; **** - p< 

0.0001 vs. control; # - p< 0.05 vs. 20µM DOX). 

 

We observed that DOX induced a minor non- significant decrease in TOM20 

content. BER pre-treatment by itself did not alter TOM20 content. However, BER 

induce an increase in TOM20 content in DOX-treated cells, when compared with 

the respective DOX control.  

 

TOM20 
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Figure 19: Effect of BER on Tfam in DOX-treated H9c2 cells. H9c2 cells were incubated for 72 hours with 

10µM BER and with 1 or 20 µM DOX in the last 24 hours. Tfam content was evaluated by Western blotting 

(section 3.2.4.). Data were represented in mean ± SEM of 4 independent experiments. Comparisons were 

performed using One way ANOVA, followed by Bonferroni post-test (#- p< 0.05 vs. 1µM; § - p< 0.05 vs. 20µM 

DOX). 

 

The effect of BER on Tfam in DOX-treated H9c2 cells is represented in Fig-

ure 19. BER modulation of Tfam transcription factor followed the same pattern of 

TOM20. We observed that Tfam content suffered a minor, although non- signifi-

cant decrease on DOX-treated H9c2 cells. In another way, BER administration 

per se did not change Tfam content but when H9c2 cells were pre-treated with 

BER before DOX administration Tfam content increased significantly when com-

pared with the respectively DOX control.  

 

 

Tfam 



 

 

 

 

  



 

 

Chapter 7 

Discussion  

 

Berberine is a natural compound that presents cardioprotective and anti-

tumoral properties that afforded protection against DOX-induced cardiotoxicity 

(Marin-Neto, Maciel et al. 1988, Lau, Yao et al. 2001, Zhao, Zhang et al. 2011). It 

was demonstrated that BER protected against DOX-induced cell death and mito-

chondrial dysfunction through modulation of the Bcl-2 expression, p53 

phosphorylation and AMPKα inhibition (Lv, Yu et al. 2012). Our hypothesis was 

that BER provides protection against DOX-induced cardiotoxicity in H9c2 cells 

though SIRT1 activation and oxidative cell pre-conditioning. We observed that 

BER protected H9c2 cells against DOX-induced caspase activation, although the 

protection against the loss of cell mass was less evident. This decrease in 

caspase 9 and 3- like activity is in concordance with previously described (Lv, Yu 

et al. 2012). Caspase- dependent mitochondrial apoptosis pathway requires the 

formation of apoptosome and further caspase 9 and 3 activation, which initiates 

irreversibly apoptosis (Elmore 2007, Taylor, Cullen et al. 2008). BER capacity to 

modulate this pathway by inhibiting caspase 9 and 3 may play a role in H9c2 cells 

protection. BER may manifest capacity to inhibit the formation of apoptosome and 

therefore control caspase-dependent mitochondrial apoptosis. However, BER did 

not induce a decrease in p53 content. p53 is involved in many cellular regulation 

processes, and regulates apoptosis and autophagy (Fridman and Lowe 2003, 

Kroemer, Marino et al. 2010). p53 capacity to directly influence the transcription 

of pro-apoptotic genes leads to a control of apoptosis (Fridman and Lowe 2003). 

The results suggest that BER induces p53 upregulation in high-DOX treatments. 

p53 may participate in different mechanisms that might translate in different cell 

fates (Fridman and Lowe 2003, Brooks and Gu 2010). One of them is that p53 

may be involved in caspase-independent cell apoptosis by activating downstream 

effectors of apoptosis that can modulate ΔΨm inducing the release of the apopto-

sis-inducing factor (AIF) that causes chromatin condensation (Youn, Kim et al. 
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2005). p53 activation is due to pos-translational modifications, such as phosphor-

ylation and acetylation, which influences its transactivation capacity (Brooks and 

Gu 2010). In addition, p53 might have a role in mtDNA repair after DOX-induced 

DNA damage in order to maintain normal mitochondria function (Nithipongvanitch, 

Ittarat et al. 2007). p53, in a similar mechanism of nuclear DNA repair, might ac-

cumulate in mitochondria to rescue mtDNA from damage induce by ROS 

(Nithipongvanitch, Ittarat et al. 2007). However, if the damage is irreversible p53 

can induce pro-apoptotic gene transcription and induce apoptosis.(Nithipongvan-

itch, Ittarat et al. 2007, Brooks and Gu 2010) Cell senescence and cell cycle arrest 

may also be regulated by p53 (Brooks and Gu 2010). Activation of HSP27 can 

modulate p53 transactivation and control p53-dependent cell death in DOX-

treated H9c2 cells (Venkatakrishnan, Dunsmore et al. 2008). HSP27 can bind to 

p53, leading to p21 upregulation and the decrease of pro-apoptotic/ anti-apoptotic 

ratio leading to cell cycle arrest. Cell cycle in G2/M phase allows DNA repair and 

the promotion of cell survival (Venkatakrishnan, Dunsmore et al. 2008). p53 reg-

ulates autophagy in a sub-cellular dependent manner. Different treatments that 

induces different cellular responses will possibly have different p53 locations. p53 

localization can also act as an inducer or an inhibitor of autophagy (Kroemer, 

Marino et al. 2010, Marino, Niso-Santano et al. 2014). On one hand, cytosolic p53 

pool can repress autophagy but on the other hand p53 phosphorylation and its 

nuclear translocation decreases cytosolic p53 facilitating autophagy induction 

(Kroemer, Galluzzi et al. 2009, Marino, Niso-Santano et al. 2014). BER combined 

with low-DOX treatments may lead to autophagy inhibition, possibly resulting from 

p53 accumulation in the cytoplasm whereas in high DOX treatments it might be 

localized in the nucleus. Nuclear p53 allows the transcription of autophagy related 

genes that includes AMPK, mTORC, autophagy pathway and lysosomal proteins 

(Marino, Niso-Santano et al. 2014). To further understand, the role of p53 in the 

regulation of cell death and autophagy by BER more experiments needs to be 

done. 

Autophagy plays a role in the development of DOX-induced cardiomyopathy 

(Lu, Wu et al. 2009, Zhu, Soonpaa et al. 2009).  DOX-induced autophagy is a 

double-edged sword.  DOX induces autophagy in low concentrations and inhibits 

autophagy in higher concentrations (Zhang, Shi et al. 2009). Autophagy can act 
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as a cardioprotective mechanism allowing the elimination of damaged cellular 

components and the maintenance of energy homeostasis (Cecconi and Levine 

2008, Dutta, Calvani et al. 2012)  However, if  autophagy  becomes  excessively  

active   or uncontrolled,  cell death follows resulting  in  the  progression  of  car-

diomyopathy (Dutta, Calvani et al. 2012). Autophagy starts with the engulfment of 

the cargo targeted for degradation by the phagophore. The assembly of several 

proteins and the conversion of LC3-I to LC3-II formes the autophagosome 

(Kroemer, Marino et al. 2010). The autophagic flux goes on and the fusion of the 

lysosome with the autophasosome results in cargo degradation by lysosomal en-

zymes such as Cathepsins. (Gottlieb and Carreira 2010, Tanida 2011) Our results 

showed autophagossome and p62 accumulation in BER- treated cells for low- 

DOX treatments. Low p62 turnover and autophagosome accumulation leads to 

autophagy impairment where an inability to degrade the cargo exists (Rusten and 

Stenmark 2010). This inability is much possible to arise from the blockage of the 

fusion between the autophagosome and the lysosome. Lysosomal viability can 

be indirectly measured by cathepsin activity data and it is related to high cathepsin 

B and low cathepsin D activity (Vega-Naredo, Caballero et al. 2009). We observed 

a cathepsin B inhibition with BER administration in 1 µM DOX treatment without 

a significative increase of cathepsin D that might result in lysosomal integrity 

preservation. High-DOX concentrations also showed p62 and autophagosome 

accumulation. In addition, the huge accumulation of acidic vesicles that we ob-

served by confocal microscopy imaging may be due to an activation of a protective 

autophagy mechanism in order to eliminate protein damage that accumulates 

which cannot be predicted with the data available (Zhou, Tan et al. 2013). In some 

way, the accumulation of cellular damage was so extensive that mechanisms may 

be activated to eliminate all the damaged structures. Nevertheless, the capacity 

to eliminate that cellular damage may be inferior to the rate of its targeting ex-

plaining the apparent lysosome and autophagosome accumulation. On another 

hand, cathepsin B inhibition led to a massive increase of cathepsin D/ cathepsin 

B ratio. This might indicate that BER modulate lysosomal cathepsin B in order to 

have the capacity to degrade the cargo targeted for elimination despite the possi-

ble inability of autophagosome/ lysosome fusion. Moreover, lysosomal integrity 

may possibly be decreased due to high cathepsin D activity that may damage the 

lysosomal membrane. The loss of lysosomal integrity might results in the leakage 
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of lysosomal cathepsins to the cytosol leading to lysosomal-related cell death (Aits 

and Jaattela 2013). Lysosomal- related cell death may be caspase-independent 

and can possibly justify the modest protection afforded by BER (Aits and Jaattela 

2013). 

Although the autophagy may be blocked, mitophagy can be playing a role in 

elimination of damage mitochondria.(Kubli and Gustafsson 2012) Confocal mi-

crosocope imaging results showed some co-localization between mitochondria 

and lysosomes in DOX-treated cells, indicating that BER may apparently blocked 

mitophagy in low-DOX treatments. In high-DOX treatments, we did not see mito-

chondria-lysosome co-localization and BER pre-treatment did not apparently 

induce a significative increase in the elimination of damage mitochondria. How-

ever, this data must be interpreted carefully. It is known that Lysotracker Green 

only stains acid vesicules and TMRM only accumulates on polarized mitochon-

dria. Mitophagy is normally triggered by loss of ΔΨm and after cargo degradation 

lysosome vesicles loose acidic pH. Then our data may show initial mitophagy 

steps only. More experiments need to be done in order to fully understand which 

role BER plays in elimination of DOX-induced damaged mitochondria. 

Doxorubicin-induced damage results in mitochondrial dysfunction at an early 

state (Green and Leeuwenburgh 2002). Moreover, DOX has the capacity to inhibit 

Complex I, III and IV leading to unpaired mitochondrial respiration (Goormaghtigh, 

Huart et al. 1986, Nicolay and de Kruijff 1987). Our results suggests that BER did 

not rescue the content of Complex III and ATP- synthase in H9c2 cells. However, 

BER administration on high-DOX treatments led to upregulation of ATP-synthase 

when compared with only high-DOX treatment per se. The mitochondrial com-

plexes content in cells appears to be unaltered with BER pre-incubation, 

suggesting that BER may not rescue DOX-treated H9c2 cells from mitochondrial 

alterations at that level. However, again more experiments need to be done to 

confirm this result. Removal of dysfunctional mitochondria and the biogenesis of 

new organelles may lead to a renewable state of energy homeostasis. Mitochon-

drial biogenesis is characterized by the growth of new mitochondria or the dividing 

of the pre-existing ones leading to variations on mitochondrial size, number and 

mass (Ventura-Clapier, Garnier et al. 2008, Scarpulla, Vega et al. 2012). Our re-

sults showed an increase in mitochondrial TOM20 which suggests that increased 
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mitochondrial mass may occur with joint DOX/ BER treatments. The increase in 

mitochondrial mass by BER-treatment is possibly related with the biogenesis of 

new functional mitochondria. Still, it has to be also considered that the increase 

of mitochondrial mass might be influenced by the accumulation of the damaged 

ones that cannot be eliminated by mitophagy.  BER modulation of SIRT1 has the 

ability to activate mechanisms of mitochondrial biogenesis on skeletal muscle 

cells (Gomes, Duarte et al. 2012). BER pre-treatment in H9c2 cells resulted in 

SIRT1 and Tfam upregulation in both DOX-treatments. SIRT1 might activate mi-

tochondrial biogenesis in BER treatments in H9c2 cells and possibly lead to the 

downstream activation of PGC-1 and consequently Tfam. Tfam activation induces 

the transcription and the replication of mtDNA which translates in more functional 

mitochondria (Ventura-Clapier, Garnier et al. 2008, Scarpulla, Vega et al. 2012). 

PGC-1 has another downstream effects despite mitochondrial biogenesis. SIRT3 

can be regulated by PGC-1 activation and it may lead to upregulation of ROS-

detoxifying (Kong, Wang et al. 2010). It is possible that BER can upregulate 

SIRT3 expression in both DOX treatments. This might represent the induction of 

another ROS protective machinery to protect H9c2 cells against DOX-induced 

oxidative damage.   

 

 

 

 

 



 

 

 

 



 

 

Chapter 8 

Conclusion  

 

In this work, we evaluated the effect of BER in DOX-induced cell death and 

autophagy. BER pre-conditioning was able to confer protection against DOX-in-

duced cell death cells by inhibiting caspase-dependent mitochondrial apoptosis 

pathway. Moreover, BER might being regulating DOX-induced cell death by alter-

natives death pathways that were not considered until now such as lysosomal-

induced death. Although autophagy might represent itself as a protective mecha-

nism, its uncontrolled upregulation might led to a mal-adaptive mechanism and 

the induction of cell death. BER were able to block autophagy in DOX-treated 

cells. Nevertheless more data is necessary to evaluate the autophagic flux in high-

DOX treatments and understand if it is a protective or a deleterious mechanism 

for the cell. BER appeared to induce mitochondrial biogenesis and increased 

SIRT1 content, although it is still early to identify the relationship between both. 

The activation of SIRT1 might led to downstream events such as PGC-1 activation 

that is involved in mitochondrial biogenesis and SIRT3 activation. More experi-

ments need to be performed to understand the modulation of BER in some 

mechanisms underlying DOX-induced cell death and autophagy and whereas the 

effects on the H9c2 cell line also occur in vivo. 

In conclusion, BER appears to have a protective effect on DOX-induced car-

diotoxicity, controlling mechanisms of cellular death and autophagy. Although this 

topic needs further investigation, co-administration of BER and DOX might be a 

promising approach to counteract DOX-induced cardiotoxicty.  



 

 

 

 

 



 

 

Chapter 9 

Future Directions  
 

To understand completely how BER can modulate cell death processes and 

autophagy, more work has to be done to clarify this mechanism. On one hand, 

we observed that BER appeared to inhibit caspases-dependent cell death. More-

over, BER blocked autophagy for both low and high-DOX concentration 

treatments. It has been known that p53 has either the ability to induce apoptosis, 

autophagy or cell arrest depending of it cellular localization and it activation status.  

To understand which effect p53 upregulation induce in BER/DOX treatments it 

could be interesting to analyse p53 localization, it degree of acetylation, as well 

as p21 content.  

We also observed in this work that BER capacity to modulate autophagy 

might be dependent of DOX concentration. Although BER appears to block au-

tophagy and mitophagy in 1µM DOX-treated cells, its effect on 20µM DOX-treated 

cells appeared to slightly increase mitophagy. To complement the results ob-

tained, the quantification of ΔΨm will be a result that could corroborate confocal 

microscopy images. In addition, measurement of carbonilated protein content 

could help to understand if the autophagy that occurs in BER/DOX treatments 

with 20µM DOX is a protective or a defective mechanism.  

BER did not appear to reverse DOX-induced mitochondrial alterations. How-

ever, the decrease in ETC protein content might not translate in activity loss. To 

verify if there are a direct correlation between protein content loss and loss of 

activity the measurement of mitochondrial complexes activity or global respiration 

might be essential to fully understand that results.  

We observed that BER appears to induce mitochondrial biogenesis path-

ways. To confirm the results that we already discussed it could be important to 

quantify mtDNA copy number in BER/DOX treatments in H9c2 cells, as a direct 

measure of mitochondrial biogenesis. Moreover, the analysis of PGC-1α content 

in BER/DOX treatments will also provide a fully clarification of this mechanism.   
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Finally, it would be interesting to understand if the activation of all BER in-

duced cell mechanisms may result from AMPK activation. To evaluate this 

AMPK/AMPK phosphorylated content ratio might be a good indicator. 
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