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Abstract: 

Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder 

characterized by alternation between moments of recurrent, intrusive, and 

unwanted thoughts (obsessions) and repetitive ritualistic behaviour 

(compulsions). Besides these two main features, researchers believe that 

patients have problems in cognitive flexibility, i.e. ability to adapt behaviours in 

response to changes in the environment.  

A number of patients do not respond effectively to the current treatments, 

pharmacotherapy and psychotherapy thus, new treatments have been 

investigated. A novel and promising therapy is deep brain stimulation (DBS). In 

DBS, electrical stimulation is released through small electrodes that are 

implanted in specific targets in the brain. As stimulation indifferent areas can 

have different effects, the choice of the right target is of utmost importance. In 

particular, stimulation in the anterior internal capsule (IC) close to the nucleus 

accumbens has shown to be effective in the reduction of OCD symptoms. 

Animal models have been developed to study the neurobiology of OCD 

and its symptoms. In fact, Sapap3-/- mice are used because these mice present 

both an abnormal grooming activity (compulsion) and increased levels of 

anxiety, two main symptoms of OCD. 

This project focused on two main goals: further assess the validity of 

Sapap3-/-mice as a multidimensional model of OCD and unveil the involved 

neurobiology as well as optimize treatment for OCD. 

In order to address the first question we assessed OCD-like behaviour in 

Sapap3-/- mice, by investigating their cognitive flexibility. Unfortunately, our 
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results were inconclusive, since both Sapap3-/- and wild-type C57BL/6 mice 

were not able to reach learning plateau. 

For the second goal, we electrically stimulated Sapap3-/- mice in the IC 

and examined the effect that DBS has in some of the typical symptoms of OCD, 

such as compulsive behaviour and anxiety. Our results suggest that stimulation 

in the IC is effective in compulsive behaviour, reducing the percentage of 

grooming in both male and female Sapap3-/- mice. Regarding unconditioned 

anxiety, the conclusions are mixed: there is a clear lack of effect of DBS in 

Sapap3-/- male mice, however clear conclusions were not possible to be drawn 

from Sapap3-/- female mice due to reduced number of animals included. Finally, 

in what concerns conditioned anxiety and fear extinction, DBS seems to be 

inefficient in Sapap3-/- mice. Furthermore, our results suggest that DBS acts in 

an acute way but is not able to induce chronic changes. 

In conclusion, although DBS has shown to be effective for some OCD-

like symptoms it was not for all. In fact, more work is needed to elucidate the 

results that were not so clear. Furthermore, other targets could be assessed 

with this approach. 

 

 

Key-words: Obsessive-compulsive disorder (OCD), Deep Brain 

Stimulation (DBS), Internal Capsule (IC), Sapap3-/- mice. 
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Resumo 

O distúrbio obsessivo-compulsivo (DOC) é um distúrbio 

neuropsiquiátrico caracterizado por alternações entre momentos de 

pensamentos recorrentes, intrusivos e indesejados (obsessões) e 

comportamentos repetitivos e ritualísticos (compulsões). Para além destas 

duas características, investigadores acreditam que os pacientes têm problemas 

na flexibilidade cognitiva, isto é, na capacidade de adaptar o comportamento às 

mudanças do ambiente. 

Alguns pacientes não respondem de forma efectiva aos tratamentos 

actuais, farmacoterapia e psicoterapia, portanto, novos tratamentos têm sido 

investigados. Uma nova e promissora terapia é a estimulação cerebral 

profunda (ECP). Em ECP uma estimulação eléctrica é aplicada através de 

pequenos eléctrodos que são implantados em zonas específicas do cérebro. 

Uma vez que a estimulação em diferentes áreas pode ter efeitos diferentes, a 

escolha da área é de maior importância. Em particular, a estimulação na 

capsula interna (CI), junto ao nucleus accumbens tem-se mostrado eficaz na 

redução dos sintomas de DOC. 

Modelos animais têm sido desenvolvidos para estudar a neurobiologia e 

os sintomas de DOC. De facto, o modelo de ratinho Sapap3-/- é usado porque  

estes ratos apresentam ambos comportamentos compulsivos e aumento de 

ansiedade, dois dos sintomas mais frequentes em DOC. 

O projecto focou-se em dois objectivos principais: atestar a validez dos 

ratinhos Sapap3-/- como modelo multidimensional para DOC, e desvendar a 

neurobiologia bem como optimizar o tratamento para DOC. 
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Para abordar a primeira questão nós avaliámos aflexibilidade cognitiva, 

outro comportamento típico de DOC, em ratinhos Sapap3-/-. Infelizmente, os 

nossos resultados foram inconclusivos uma vez que ambos os Sapap3-/- e os 

C57BL/6 não foram capazes de aprender esta tarefa. 

Para o segundo objectivo, nós estimulámos electricamente os 

ratinhosSapap3-/- na CI e examinámos o seu efeito em sintomas típicos de 

DOC, tais como comportamento compulsivo e ansiedade. Os nossos 

resultados sugerem que a estimulação na CI é efectiva para comportamento 

compulsivo, reduzindo a percentagem de grooming em Sapap3-/- machos e 

fêmeas. No que diz respeito à ansiedade incondicionada as conclusões são 

mistas: existe uma clara falta de efeito da ECP nos ratinhosSapap3-/- machos, 

contudo conclusões claras não se puderam retirar dos ratinhosSapap3-/- 

fêmeas devido ao reduzido número de animais incluídos. Por fim, no que diz 

respeito à ansiedade condicionada e extinção do medo, ECP parece ser 

ineficiente para os camundongos Sapap3-/-. Para além disto, os nossos 

resultados sugerem que a acção da ECP é aguda não sendo capaz contudo de 

induzir mudanças de forma crónica. 

Em conclusão, apesar da ECP se ter mostrado eficiente para alguns 

sintomas típicos de DOC não o foi para todos. De facto, mais trabalho é 

necessário para elucidar os resultados que não são claros. Para além disso, 

esta abordagem poderia ser usada para estudar outras áreas do cérebro. 

 

 

 

Palavras-chave:Distúrbio obsessivo-compulsivo (DOC), Estimulação cerebral 

profunda (ECP), Capsula Interna (CI), ratinhosSapap3-/-. 
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- Chapter 1 -  

Introduction 



Dimension of compulsivity – on the relation between compulsive grooming, anxiety and cognitive 

flexibility, and the effect of deep brain stimulation 

 

20  Cindy Pinhal|2014 

  



Dimension of compulsivity – on the relation between compulsive grooming, anxiety and cognitive 

flexibility, and the effect of deep brain stimulation 

Cindy Pinhal|2014  21 

1.1. Clinical aspects of OCD 

Obsessive-compulsive disorder (OCD) is a psychiatric condition 

characterized by the presence of obsessions and compulsions. Formerly, OCD 

was considered to be a rare disorder as it was poorly understood. However, 

research done in the past two decades helped doctors to recognize symptoms 

and diagnose people with OCD, being nowadays the fourth most common 

mental disorder with a lifetime prevalence of 1-3%, affecting both men and 

women equally (Denys et al., 2010; Schilman et al., 2010). 

In 80% of the cases the onset lies in a young age, with an initial peak 

incidence occurring in pre-puberty, achieving a chronic and debilitating course if 

not treated (Abramowitz et al., 2009; Merlo et al., 2006). 

OCD is associated with the emergence of other diseases. Indeed, an 

epidemiological study revealed that 84% of youth diagnosed with OCD had 

comorbid disorders such as major depression (62%), social phobia (38%), 

alcohol dependence (24%) and dysthymia (22%) (Keeley et al., 2008; Overbeek 

et al., 2002). 

In the 4th edition of the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-IV), OCD was classified as an anxiety disorder once anxiety is 

the core symptom of this syndrome. However, neurobiological similarities with 

other disorders as hoarding, hair pulling disorder and skin picking, took it apart 

from anxiety disorder and clustered it together with those disorders in DSM-V 

(Pallanti et al., 2014). 
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1.1.1. Symptoms’ presentation 

OCD patients generally present an alternation between moments of 

obsessions and moments of compulsions. Obsessions are defined as recurrent 

and persistent thoughts, impulses or images that continue despite attempts to 

ignore, suppress or neutralize them. They are experienced in an intrusive and 

inappropriate way and cause high levels of anxiety and distress. Compulsions 

are defined as repetitive behaviours or mental acts that a person feels driven to 

perform in response to an obsession or according to rigid rules. This behaviour 

is always unrealistic or excessive (Marazziti et al., 2010). Tables I and II 

summarize the most common obsessions and compulsions, respectively, 

presented in OCD (Melro et al., 2006). 

 

Table I: Common obsessions in OCD 

Categories  Obsessive concerns  

Contamination 
Dirt; germs; animals/insects; illnesses; bodily waste; contaminants; 
household cleaners; “sticky” substances; spreading contamination… 
 

Aggression 
Causing harm to self or others due to thoughts or behaviours; acting upon 
aggressive impulses; saying inappropriate words/phrases; stealing or 
breaking things; frightening/violent images. 
 

Sexual 
Forbidden/perverse sexual thoughts, images; homosexuality; molestation; 
sexual acts toward others. 
 

Hoarding/saving  Losing things; throwing away objects that might be important. 

Magical thinking  Lucky/unlucky numbers, colors, names… 

Health/body 
Contracting illness (especially if fatal or rare); appearance; physical 
abnormalities (real or imagined). 
 

Mortality/religion  
Dying and not going to heaven; offending God; being sinful; 
morality/perfection; right/wrong. 
 

Miscellaneous 
Knowing/remembering certain things; saying things exactly right; not 
saying certain words/phrases; intrusive images sounds, words, music, 
numbers… 
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Table II:  Common compulsions in OCD 

Categories 
 

Compulsive rituals 

Washing/cleaning 
Excessive/ritualized hand washing, showering, bathing, tooth brushing, 
grooming, toileting; cleaning clothing/personal items; avoiding 
“contaminated” objects/places 
 

Checking 

Checking locks, alarms, school supplies, homework, toys, books; 
checking associated with washing, dressing, undressing, somatic 
concerns; checking that did/will not harm self or others; checking for 
mistakes. 
 

Repeating 
Rewriting; rereading; recopying; erasing; going in/out door; getting 
up/down from seat; repeating words/phrases. 
 

Counting 
Counting objects; mental counting (especially up to a “magic” number); 
counting steps, chewing, hair-brushing. 
 

Ordering/arranging 
Lining up objects in a certain way; arranging things in specific patterns; 
making things symmetrical; “balancing” actions. 
 

Hoarding and saving 
Keeping unimportant/unnecessary items and/ or trash. 
 

Superstitions 

Touching/tapping routines to prevent bad things from happening; 
avoiding stepping on cracks, lines, etc; avoiding “unlucky” 
objects/places. 
 

Reassurance-
seeking 

Asking a parent to repeatedly answer the same questions; asking 
parents to describe what they are doing/planning to do; forcing family 
members to do things in a certain way or at a certain time; forcing 
family members to avoid certain things/activities. 
 

Miscellaneous 
Mental rituals; needing to tell/ask/confess; ritualized eating behaviors; 
excessive list-making; needing to touch/tap/rub; needing to do things 
until it feels “just right”; hair-pulling; measures to prevent something 
bad from happening. 

 

Some authors describe that symptoms appear in a cyclic sight, with 

obsession thought to promote anxiety followed by compulsions that lead to a 

temporarily relief of anxiety until new obsessions begin (Heyman et al., 2006). 

However, other authors suggest that compulsion, rather than goal directed 

action, are a response to habit formation that fail to extinguish (Robbins et al., 

2012) 
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Although patients generally recognize obsessions or compulsions as a 

product of their imagination, they are not able to prevent this behaviour 

(Goodman et al., 2007). 

Nevertheless, obsessions and compulsions can be presented in people 

without OCD (Crye et al., 2010). Therefore, in order to distinguish OCD from 

this last situation, obsessions and/or compulsions must be time consuming 

(more than one hour per day) and interfere with daily functioning (Franklin et al., 

2011). 

Other symptoms are usually found in patients, such as impaired cognitive 

flexibility, i.e. the ability that someone has to change its behaviour in 

accordance with the environment (Fineberg et al., 2010).  

 

1.1.2. Diagnosis 

According to DSM-V criteria, in order to be diagnosed with OCD, a 

person must have either obsession or compulsion and recognize this behaviour 

as excessive or unreasonable. Children are an exception as they might not 

have sufficient cognitive awareness to make this judgment (Abramowitz et al., 

2009). These obsessions and compulsions must be “time consuming”, “interfere 

with routine” and cannot be “due to direct physiological effects of a substance 

(e.g., drug of abuse or medication) or a general medical condition”.  

There is no laboratory test to diagnose OCD; therefore it may be hard to 

identify it. Indeed, studies have demonstrated that in general, it takes 8 years 

for someone to be diagnosed as having OCD. One of the reasons for this is that 

OCD’s symptoms are often confused with other neuropsychopathies such as 

depression (Fullana et al., 2009). Due to the lack of tools to identify OCD, 
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diagnosis is made by interviews, clinician-rated measures, and self-report 

measures (Grabill et al., 2008). 

 

 

1.2. Neurobiology of OCD 

Despite the fact that OCD’s causes remain elusive; researchers have 

identified molecules and specific circuitries that might be involved in this 

disorder. 

 

1.2.1. Neuroanatomy 

Specific areas of the brain seem to be involved in the neurobiology of 

OCD as obsessions and compulsions are the main characteristics of this 

disorder. In particular the prefrontal cortex seems to be a good candidate as is 

involved in the inhibition of responses as well as planning and verification of 

previous actions (Rauch et al., 1997). Indeed, imaging studies have identified 

alterations not only in the size, but also in the activity of this and other areas 

such as dorso-lateral prefrontal cortex, inferior parietal cortex, anterior 

cingulate, thalamus, medial orbital gyrus, inferior frontal gyrus, anterior 

cerebellum, inferior frontal gyrus, caudate nucleus, nucleus accumbens, 

amygdala, ventral putamen and globus pallidus (Fig. 1) (Whiteside et al., 2004; 

MacMaster et al., 2008; Figee et al., 2013). 
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Fig.1: Brain regions presenting alteration in size and/or activity in 

OCD patients through structural and functional imaging studies. 

 

As a matter of fact, an idea that seems to be well accepted is that OCD 

patients are impaired in the cortico-striatal-thalamic-cortical (CSTC) circuit. The 

first evidence resulted from the fact that OCD patients present symptoms’ 

similarities with disorders involving striatal impairments, such as Tourette’s 

syndrome, Sydenham’s chorea, Huntington’s disorder, and Parkinson’s disorder 

(Stein, 2002). Conversely, OCD patients frequently present abnormalities in 

measures and paradigms used in neuropsychiatry, (e.g. neurological soft signs, 

olfactory identification) and neuropsychology (e.g. executive functions, visual 

memory function), which are consistent with CSTC dysfunction (Stein, 2002). 

In the CSTC the cerebral cortex projects to the striatum. Then, the 

striatum projects either to the globus pallidus pars externa (GPe) - indirect 

pathway - or to the globus pallidus pars interna (GPi) and substantia nigra pars 

reticulata (SNr) - direct pathway. Ultimately, the firing of GPi and SNrGABAergic 

cells is modulated, which in turn inhibits glutamatergic neurons of the anterior 
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thalamus. In the end, thalamic neurons project back to frontal neo-cortex to both 

anterior cingulate and the orbito-frontal cortex (Fig. 2) (Marchand, 2010). 

 

 

Fig.2: Schematic representation of the Cortico-Striatal-Thalamic-

Cortical (CSTC) circuit. 

 

In fact, the involvement of CSTC circuitry was confirmed with brain 

imaging studies. Abnormalities such as decreased volume or increased grey 

matter density in cortico-striatal-thalamic-cortical circuits were found, as well as 

an increase of activity in orbitofrontal and cingulate cortices and striatum at rest, 

especially when subjects were exposed to a feared stimulus. Moreover, 

pharmacotherapy, behavioural therapy and neurosurgical interruption currently 

used in the clinical treatment for OCD, can normalize the activity of the CSTC 

circuit (Stein, 2002). 
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1.2.2. Neurochemistry 

Obsessive-compulsive disorder has been linked to a disruption in 

serotonin, dopamine and glutamatergic systems. 

The first evidence of an involvement of serotonin system came from the 

use of clomipramine, a tricyclic antidepressant, which has been effectively used 

to treat OCD symptoms (Thorénet et al., 1980). Nowadays, selective serotonin 

reuptake inhibitors (SSRIs) are used as the first line treatment in OCD, reducing 

effectively its symptoms. Nonetheless, no specific abnormality in the serotonin 

system has been identified to date (van Dijk et al, 2010). 

Dopamine, on the other hand, has been suggested to be involved in the 

pathology of OCD as administration of dopamine antagonists leads to 

stereotypic behaviour or exacerbation of symptoms in OCD (Goodman et al., 

1990).  

Moreover, recent studies have proposed abnormalities in glutamate 

neurotransmission and homeostasis. Indeed, while no agent is yet being used 

in the clinic, increasing evidence supports the potential utility of riluzole, 

memantine, N-acetylcysteine, D-cycloserine, and other glutamate-modulating 

agents in the treatment of this disorder. Furthermore, magnetic resonance 

spectroscopy (MRS) studies have produced some evidence of glutamate 

deregulation in patients with OCD (Pittenger et al., 2011). 

 

1.2.3. Neurogenetic 

Studies have shown that the risk for OCD is higher in first-degree 

relatives than for second and second-degree relatives’ higher than third-degree. 

This effect is independent of the environment, suggesting a genetic component. 
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However, and due to its high heterogeneity, a single gene is not likely to be 

responsible for OCD. Candidate genes for OCD include genes affecting 

serotonin, dopamine and glutamate systems (Nestadt et al., 2010; Stewart et 

al., 2010). 

Serotonergic genes such as 5-HTTLPR serotonin transporter, 5HT1D 

beta receptor gene, 5HT2a serotonin receptor, and serotonin 5HT2c receptor 

have been suggested to be involved in OCD pathology (Greenberg et al, 1998; 

Meira-Lima et al., 2004).Dopamine genes have included the dopamine receptor 

type 4 (DRD4) gene and the D2 receptor gene (Billett et al., 1998; Millet et al., 

2003; Denys et al., 2004).Lastly, glutamatergic genes have also been strongly 

implicated in OCD pathology including SLC1A1glutamate transporter, SAPAP3 

gene that encodes a scaffolding protein, and GRIN2Bglutamate receptor gene 

(Chakrabarty et al., 2005; Welch et al., 2007; Arnold et al., 2006; Stewart et al., 

2007; Alonso et al., 2012). 

 

1.2.4. Neuroinflammation 

OCD in children might also be caused by a neuroinflammation process 

through the exposure to a group A beta haemolytic Streptococcus (GABHS). 

This group has been identified by the name PANDAS (paediatric autoimmune 

neuropsychiatric disorders associated with streptococcal infections). OCD’s 

pathogenesis in these patients is thought to be caused by an autoimmune 

process. The hypothesis is that the body is exposed to Streptococcus, 

developing antibodies that react with nerve tissue, damaging it. In such cases, if 

the intervention occurs early in the course of the disorder, symptoms are 
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sometimes successfully treated with antibiotics (Trifiletti et al., 1999; da Rocha 

et al., 2008). 

Although some evidences suggest the existence of an inflammatory 

component in OCD, no reliable biomarkers are currently available. 

 

 

1.3. Treatment options for OCD 

OCD remains poorly recognized and undertreated. Although the time 

between the onset of symptoms and diagnosis may be decreasing, the 

treatment starts generally just after the emergence of depressive symptoms. 

Thus, accurate and timely assessment of clinical presentation is critical to limit 

impairment and improve prognosis. Moreover, it is important to note that the 

way patients respond to treatment is highly variable, so the choice of a specific 

therapeutic approach is merely empirical. Therefore, it would be of great 

importance to homogenously group patients in order to develop more focused 

treatment strategies. With that in mind, several studies have been investigating 

predictive factors, i.e. factors that influence the way patients respond to 

treatment. For example, earlier onset of treatment is usually a good indicator of 

the treatment’s success and vice-versa (Erzegovesi et al., 2001, Skoog et al., 

1999). 

Presently, there are two main supported treatments available for OCD in 

children and adults, namely pharmacotherapy and cognitive-behavioural 

therapy. In addition, Deep Brain Stimulation (DBS) is now emerging as a novel 

and promising therapeutic approach for OCD patients. 
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1.3.1. Pharmacotherapy 

1.3.1.1. Serotonin Reuptake Inhibitors (SRIs) and S elective Serotonin 

Reuptake Inhibitors (SSRIs) 

The use of serotonergic medications in the treatment of OCD has 

received a lot of attention in the past two decades.  

Clomipramine, a tricyclic antidepressant (TCA) with a prevalent inhibitory 

activity on serotonin (5-HT) reuptake, was the first agent approved by the Food 

and Drug Administration (FDA) for the treatment of OCD. In fact, studies done 

in adults have shown a clear improvement of symptoms when patients were 

administrated with clomipramine or selective serotonin reuptake inhibitors as 

compared with placebo (Foa et al., 2005; Greist et al., 1995; Zohar et al., 1996). 

Thereafter, each of these medications has been approved by the FDA as 

treatments for adult OCD. However, the mechanisms by which SSRIs exert its 

effect remain poorly understood. 

Currently, many different SSRIs are used in the treatment of OCD. In 

fact, the choice between one SSRI and another depends mainly on personal 

preference, once these substances are very similar. It is described that female 

patients seem to respond better to SSRI treatment that male (Mundo et al., 

1999; Stein et al., 2001). Furthermore, although the mechanistic relationship is 

unknown, it is widely described that OCD patients with previous treatments 

have less chance to respond to SSRIs (Stein et al., 2001; Ackerman et al., 

1998). 

Among others, it is possible to find presently being used sertraline, 

citalopram, fluoxetine, paroxetine and fluvoxamine (Marazziti et al., 2010). 
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1.3.1.2. Antipsychotics and other drugs 

Due to the high number of OCD subjects not responding to a switch to 

another SSRI, the evaluation of additive therapeutic options has been highly 

studied. 

Many studies have examined the action of antipsychotic compounds in 

this disorder. Indeed, the combination of antipsychotics such as risperidone, 

haloperidol, olanzapine or quetiapine with an SSRI was shown to be more 

effective than SSRI monotherapy in treatment-resistant cases (Skapinakis et al., 

2007; Bloch et al., 2006). 

Several other drugs such as antagonist/agonist of glutamate receptors 

and antidepressants others than SSRIs have been studied in the treatment of 

OCD, but so far none of these approaches has reached sufficient empirical 

evidence to become recommended in treatment guidelines (Bandelow et al., 

2008). 

 

1.3.2. Cognitive-Behavioural Therapy (CBT) 

Evidence supports the usefulness of CBT as a non-pharmacological 

treatment for OCD (Foa, 2010). The exposure and response prevention 

(EX/RP) is the psychosocial intervention most used is OCD with a high efficacy 

(Abramowitz et al., 2005; Rosa-Alcazar et al., 2008). In this intervention, 

patients are exposed to obsessional cues using real life situations, and then 

forced to contact with the stimuli reported as distressing, preventing the 

compulsion and discussing mistaken beliefs. The exposure is usually done in a 

gradual way, with situations provoking moderate distress confronted before 

more upsetting ones. It is believed that repeated and prolonged exposure to 
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feared thoughts and situations will elucidate mistaken associations held by 

patients and thereby promote habituation (Foa et al., 1986). The optimal 

frequency by which patients should be exposed is not well established yet, 

being this dependent on the motivation of the patients to daily expose 

themselves to stressful situations. However, good results have been achieved 

using one session per week, two sessions per week or intensive treatment 

format, this last involving daily sessions over the course of approximately one 

month (Foa et al., 2005; Franklin et al., 2000). 

 

1.3.3. Deep Brain Stimulation 

Despite the advances done in the last years in pharmacotherapy and 

psychotherapy, about 40 to 60% of patients show no or just partial symptom 

improvement. Therefore, the search for other effective strategies is mandatory 

(Pallanti et al., 2006; Gabriels, 2003). Bearing this in mind, new approaches 

started to be developed and improved, with Deep Brain Stimulation (DBS) 

showing remarkable results (Lakhan, 2010). 

DBS was accepted for the first time as a treatment for refractory OCD by 

the FDA in 2009. It involves the delivery of electrical stimulation to specific brain 

regions, using permanently placed small electrodes, implanted through a 

neurosurgery that relies on stereotactic techniques. Electrodes are placed in 

specific areas bellow the skull and connected to a pulse generator generally 

placed under the collarbone (Fig. 3). This pulse generator can be externally 

accessed and settings can therefore be optimized to each patient individually to 

achieve better treatment and reduced side effects (Lozano et al., 2013). 
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Fig.3: Schematic representation of an implanted equipment of deep 

brain stimulation. Electrodes are placed in the brain, in a specific 

neuroanatomical target, and connected to the pulse generator 

through a lead. The pulse generator is usually situated bellow the 

collarbone. 

 

It is well accepted that DBS affects neuronal discharge patterns not only 

locally but also in distant brain areas, by conveying bioelectric impulses along 

projections (Carron et al., 2013). Despite the considerable effort to understand 

the mechanisms behind DBS-driven clinical improvements, the precise 

mechanism by which DBS works remains unclear. Nevertheless, researchers 

have hypothesized that DBS may act by one of the next four different ways: i) 

by inhibiting the target; ii) by activating the target; iii) by inhibiting and activating 

the target in a combined way; and iv) by disrupting the pathological oscillations, 

restoring the rhythmic activity and synchronization – noisy signal hypothesis 

(Karas et al., 2013). 
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Before performing DBS surgery several variables are considered. In the 

case of OCD, patients have to be treatment-resistant both with 

pharmacotherapy and psychotherapy. Furthermore, patients need to be 

screened for comorbid psychiatric disease, as certain conditions predispose 

patients to worse DBS outcomes. Additionally, patients need to be 

neurologically stable and be able to understand the dangers associated with 

this therapy (Williams et al., 2013). 

Treatment efficacy is greatly dependent on the choice of the target. As 

the brain is a complex organ, the choice of the area to stimulate should be a 

careful and rigorous process. The selection of the targets is done empirically 

and/or by the result of an understanding of the presumed pathophysiology of 

OCD. Several targets have been proposed, and the differential therapeutic 

success of these targets suggests that each may have a distinct role in OCD. 

However, only few targets are used nowadays in the clinic for the treatment of 

OCD (Fig. 4) (Figee et al., 2013). 

 

 

Fig. 4: Neuroanatomical targets used currently in the clinic for the 

treatment of OCD patients. 
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In particular, due to its efficacy, the stimulation of the internal capsule 

(IC) has been frequently used as brain target for DBS. The internal capsule is a 

structure composed mainly of glial cells and myelinated axons that are both 

ascending and descending. Localized in the frontal part of the brain, this region 

separates the caudate nucleus and the thalamus from the putamen and the 

globus pallidus. As the axons that run through it are part of the cortico-striatal-

thalamo-cortical (CSTC) networks (Lehman et al., 2011), this region has been 

highly used as a target for DBS. Indeed, clinical studies have shown a positive 

effect in the reduction of OCD symptoms when the IC was targeted with DBS 

(Greenberg et al, 2010).  

Studies performed in humans have demonstrated that DBS can 

successfully decrease OCD symptoms in a sequential order with mood 

improving first (after a few seconds), followed by anxiety (in minutes), 

obsessions (within days) and finally compulsions (can take weeks or even 

months) (Denys et al., 2010). 

Nevertheless, DBS also has some risks associated, namely related to the 

surgical procedures, application of stimulation or long-term consequences of the 

implanted hardware. Life threatening events like brain haemorrhage are rare, 

occurring only in 1-2% of patients while less severe events such as infection 

and stimulation-related side effects present in 9% of patients (Lozano et al., 

2013). 
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1.4. Animal models of OCD 

“If you are going to study a human disease you cannot, for ethical 

reasons, perform the initial work in humans; you have to develop a model. 

Some models may be in vitro - literally, in glass tubes – but as you learn more 

and more, you must eventually test ideas in vivo- in living animals. That means 

you have to have a way of producing the disease that allows you to study it.” 

(The Animal Research War by P. Michael Conn and James V. Parker) 

The use of animals in research is essential to develop new and more 

effective methods for diagnosing and treating diseases that affect both humans 

and animals. Over the past century, the mouse has been used as the major 

mammalian model system due to its genetic and physiological similarities with 

humans as well as the ease with which its genome can be manipulated and 

analysed. 

Even though it is impossible to develop an animal model that mimics a 

psychiatric condition in its full, some criteria must be satisfied depending on the 

purpose of the model (Joel et al., 2006). Although there is no consensus among 

authors, three criteria have been highly accepted to validate a specific strain of 

mice as a disease model: face validity, construct validity and predictive validity. 

The face validity concerns the similarity in symptoms and behaviour between 

mice and humans which in the case of OCD would be the repetitive and 

excessive behaviour, compulsion and the perseveration. The construct validity 

describes that there must exist the involvement of the same areas or molecules 

affected in humans and in the animal model. In the case of OCD models, 

animals should present impairment in areas such as orbito-frontal cortex, 

cingulated cortex and basal ganglia as well as deregulation in serotonergic, 
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dopaminergic and glutamatergic systems. Finally, the predictive validity 

compares the effect of the treatment used in humans with their response in 

animals. Therefore, a relief of the symptoms through the use of SRIs and SSRIs 

should be observed in an animal model of OCD. Nevertheless, these criteria are 

not always fulfilled and researchers need to adapt the criteria with the disorder 

being studied (Albelda et al., 2012). 

In what concerns OCD specifically, there are three different types of 

animal models used: genetic models, pharmacological models and behavioural 

models. Table IV summarizes the findings obtained until now in the different 

models (Wang et al., 2009; Albelda et al., 2012). 



Dimension of compulsivity – on the relation between compulsive grooming, anxiety and cognitive flexibility, and the effect of deep brain stimulation 

Cindy Pinhal|2014  39 

 

 Face validity  Predictive validity  Construct validity  

Genetic 
models  

   

Hoxb8 
� Compulsive grooming 

- � Hoxb8 is expressed in brain regions 
involved in OCD 

5-HT2c KO � Increase of compulsive behaviours 
(chewing and head-digging) 

- 

� Evidences of the involvement of 5-HT2c 
receptors in OCD; 

� Abnormalities in the mesolimbic 
dopaminergic system; 

� Dentate gyrus-specific deficit 

DAT KD � Increase of grooming with more difficulty 
to be interrupted 

- 
� Implication of the basal ganglia 

D1CT-7 

� Compulsive behaviour; repetitive leaping 
behaviour; increase of anxiety-related 
behaviours; 

� Tourette’s syndrome-like behaviours 
(tics, complexity, flurries); limbic seizures 

� Positive effect of clonidrine - 
effective in Tourette’s syndrome 
but not in OCD 

� Overlap of the cholera toxin transgene is 
expressed and neural circuitry implicated 
in OCD; 

� Evidences of glutamatergic involvement 

Estrogen-
deficient mice 

� Compulsive behaviour; 
� Decrease in inhibition (a form of 

plasticity) 

-  

Sapap3 KO � Compulsive grooming; increased anxiety-
related behaviours 

� SSRI � Evidences of cortico-striatum defects 

Table III: Current mouse models for OCD and main findings 
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Pharmacological models     

8-OHDPAT � Excessive checking; 
� Motor preservation 

� SSRI 
� Evidences of the involvement of 5-HT1a 

receptors in OCD 

Quinpirol 

 

� Excessive checking 

 

� SSRI 
� Evidences of the involvement of 5-HT 

receptors in OCD; 
� Involvement of Nucleus Accumbens 

Behavioural models  

 

 

 

  

Marble burying 
� Barbering behaviours � SSRI - 

Stereotypic behaviour in 
Deer mice � Stereotypic behaviours � Effectiveness other SSRI 

� Involvement of frontal cortex and 
striatum 

Signal attenuation 
� Compulsive behaviour � SSRI 

� Involvement of OFC and striatum; 
� Evidences of the involvement of 5-HT 
receptors, dopamine and glutamate. 
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1.4.1. Sapap3-/- mice 

Synapse-associated protein 90/postsynaptic density-95-associated 

protein (SAPAP) is a family of proteins that interacts with two other proteins, 

PSD95 and Shank, working together as postsynaptic scaffolding proteins at 

excitatory synapses (Takeuchi et al., 1997). These proteins are localized in the 

postsynaptic density (PSD) where they are responsible for controlling the 

trafficking, anchoring, and clustering of glutamate receptors and adhesion 

molecules (Fig. 5). Besides, they link postsynaptic receptors with their 

downstream signalling proteins and regulate the dynamics of cytoskeletal 

structures (Verpelli et al., 2012). Given their central role, it is not surprising that 

deletion or mutations in these genes cause severe neuropsychiatric disorders 

such as autism, mental retardation, and schizophrenia (Mameza et al., 2013; 

Yerabhamet al., 2013).  

 

Fig. 5: Schematic representation of the PSD. SAPAP/GKAP proteins 

bind directly to Shank protein and PSD95 and together they are 

responsible for the clustering and right placement of all the molecules 

present in the PSD. 

  



Dimension of compulsivity – on the relation between compulsive grooming, anxiety and cognitive 

flexibility, and the effect of deep brain stimulation 

 

42  Cindy Pinhal|2014 

SAPAPs are encoded by four genes that are widely expressed 

throughout the nervous system; however SAPAP3 is the only SAPAP that is 

highly expressed in the striatum. 

Genetic deletion of Sapap3 in mice leads to behavioural abnormalities 

consistent with OCD. In fact, this model fulfils the three criteria used to assess 

the validity of a model. In what concerns the face validity, Sapap3-/- mice 

present increased anxiety and compulsive grooming, that in the end lead to 

facial hair loss and skin lesions (Fig. 6). 

 

 

Fig. 6: Comparison of Sapap3+/- mice and Sapap3-/- mice. Sapap3-/-

mice show skin lesions, both in face and neck, due to the excessive 

grooming behaviour. 

 

The construct validity criterion is fulfilled once mice were found to have 

defects in glutamatergic transmission at cortico-striatal synapses. Indeed, 

reintroduction of Sapap3 specifically into the striatum can rescue both synaptic 

and behavioural defects, confirming the critical role of the cortico-striatal 

circuitry (Welch et al., 2007). Finally, this model is strengthened when the 

repeated administration of fluoxetine, mentioned earlier as used in OCD 

treatment, successfully alleviated compulsive grooming and anxiety– 

predicative validity (Welch et al, 2007; Ting et al, 2012). 
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Furthermore, recent studies have identified abnormalities in human gene 

that encode the SAPAP3 gene corroborating the hypothesis that it might be 

involved in OCD (Züchner et al., 2009). 

 

 

 

 

 

In summary, OCD is a non-genetic psychiatric condition that lacks a cure. 

OCD patients have very variable phenotype, being extremely challenging to 

identify the underlying neurobiological causes. Due to this lack of scientific 

knowledge about OCD, considerable effort has been put into fundamental 

studies. With that in mind, some mouse models have been developed (such as 

the Sapap3-/- mouse model) and more studies should be directed into validating 

these models for the study of this disorder. It is important to consider, though, 

that it is highly unlikely that a mouse model would ever reasonably resemble 

such complex disorder. Moreover, the testing of novel therapeutic approaches 

(as DBS) is mandatory in order to help the patients and further unravel the 

neurobiological circuitry involved. 
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Following these ideas, in this project we propose to use the Sapap3-/-

mouse model to study the neurobiology of OCD and the effect of DBS as a 

treatment option. Thus, this project has two main goals. 

1. Further assess the validity of the Sapap3-/- mouse model as an OCD 

model: In order to do that, we will investigate other symptoms that are present 

in OCD patients which, to the best of our knowledge, were never assessed in 

Sapap3-/- mice before. Specifically, we intend to investigate cognitive flexibility, 

i.e., the ability one has to change its behaviour in accordance to the 

environment. Indeed, the verification of impaired cognitive flexibility in these 

mice would strengthen their validity as a model of OCD and enable further 

studies. 

2. Study the effect of DBS in the internal capsule (IC) upon OCD-like 

behaviours present in the Sapap3-/- mouse model. For that, we will look at the 

effect of DBS versus Sham treated mice in compulsion, unconditioned and 

conditioned anxiety, as well as fear extinction. Interestingly, both acute and 

chronic effects of DBS will be evaluated using this approach. Moreover, post-

mortem analysis of these brains by histology techniques with c-Fos (a marker of 

neuronal activity) will allow us to identify the cells or circuits involved in the 

effect observed behaviourally. 

Altogether, this set of experiments will allow us to further understand the 

validity of the Sapap3-/- mouse model, the neurobiology of OCD and provide 

hints on the functioning mechanism of DBS. 
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2.1. Subjects 

The study was conducted in accordance with governmental guidelines for 

care of laboratory animals and approved by the Animal Experimentation 

Committee of the Royal Netherlands Academy of Arts and Sciences, 

Amsterdam, the Netherlands.  

Sapap3-/- mice (20-40g, NIN, the Netherlands) (Welch et al., 2007) and 

C57BL/6 mice (20-40g, Harlan, the Netherlands) were housed individually in 

standard housing conditions (8:00 to 20:00 dark phase, controlled temperature 

and humidity). Water and food were provided according to the experiments’ 

requirements. For cognitive flexibility assessment, Sapap3-/- mice had about 10 

months and C57BL/6 mice 4 months. In DBS experiments Sapap3-/- mice were 

older than 5 months. One week before the surgical procedure (mentioned later), 

mice were handled daily with a plastic tube (4.5cm of diameter) for 30 seconds. 

All experiments were performed in the dark period. 

 

 

2.2. Electrode construction 

Bipolar electrodes consisted of two twisted Teflon-coated platinum/ 

iridium wires with a diameter of 0.07 mm. On one side, tips were cut off straight, 

forming an exposed surface area. On the other side, the insulation layer was 

removed, tips were soldered in two connecting pins and epoxy glue was used to 

keep the pins parallel. Electrodes were then bent twice in an angle of 90 

degrees (around 5mm) to prevent its displacement once implanted in the brain 

(Fig. 7).  
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Fig. 7:  Bipolar electrode used to electrically stimulate the brain of mice. 

 

 

2.3. Stereotaxic surgery 

Animals were deeply anaesthetized with 2% isoflurane and placed in a 

stereotaxic frame. After skin incision and exposure of the skull surface, 

lidocaine, a local anaesthesia, was applied. Then, electrodes were placed in the 

correct place according to the stereotaxic coordinates of the internal capsule: 

Antero-posterior axis: +3.34; Medio-lateral axis: ±1.3 and Dorso-ventral axis: -

4.6 (Paxinos & Franklin, 2007). Five holes were then drilled, two for the 

electrodes and three to support the head cap (Fig. 8a). After positioning and 

holding the electrodes, dental acrylic was overlaid such that the electrodes were 

completely fixed in the correct position (Fig. 8b). After the dental acrylic had 

hardened, the electrodes were released from the micromanipulators and the 

head cap fixed with dental acrylic (Fig. 8c). The animals were then released 

from the stereotaxic frame and injected with saline to prevent dehydration, and 

with Meloxicam to alleviate pain (1mg/kg). Animals were allowed to recover for 

at least one week before further experimentation. 
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Fig. 8: Stereotaxic surgery.a)

three forscrews to fixate the head

for the electrodes; 

electrodes and prevent their displacement; 

dental acrylic to protect the skull.

 

 

2.4. Behavioural tests

2.4.1. Compulsion evaluation: quantification of grooming

One week after surgery, grooming behaviour was accessed in an open 

field. The open field consists of a box (25cm x 25cm), equipped with a motion 

sensor to analyse the amount of time spent moving. Mice were connected to the 

Deep Brain Stimulation (DBS) cable through a commutator allowing free 

unrestricted movement (WPI Digital Stimulator, model DLS8000, World 
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Fig. 8: Stereotaxic surgery.a)  Five holes were drilled in the skull; 

three forscrews to fixate the head-cape, and two centrally localized, 
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electrodes and prevent their displacement; c) head cape is fixed with 
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Precision Instruments, Sarasota, FL). All mice were connected but not 

stimulated for 20 minutes, allowing them to become familiarized with the setup, 

and then stimulated either with 0µA (Sham) or 300µA (DBS). The administered 

DBS pulses were biphasic, with a width of 80µs, at a frequency of 120 Hz. 

Mouse behaviour was recorded and analysed through Ethovision XT7 (Noldus 

Information Technology, The Netherlands) and grooming activity was assessed 

manually for 110 minutes. In short, animals were connected but not stimulated 

for 20 minutes and then stimulated (sham or DBS) for 90 minutes. 

 

 

2.4.2. Unconditioned anxiety evaluation: Elevated P lus Maze 

The unconditioned anxiety was assessed through an elevated plus maze 

task. Mice were connected to the DBS cable and stimulated for 20 minutes, as 

previously described, in their home cages. After that time, mice were placed on 

the centre section of the elevated plus maze being allowed to freely explore the 

maze for 10 minutes, while being stimulated (Sham or DBS). The maze 

consisted of four arms, two closed arms (4.5cm wide, 30cm long and 15cm 

high) and two open arms (4.5cm wide and 30cm long). Number of entries and 

time spent in each arm, latency to the first entrance, velocity and distance 

covered were calculated through Ethovision XT7 (Noldus Information 

Technology, The Netherlands) software. 
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2.4.3. Conditioned anxiety and fear extinction: Vog el Conflict Test 

2.4.3.1. Unconditioned anxiety 

The conditioned anxiety was assessed through a Vogel conflict test. 

Animals were kept on water restriction and allowed to drink water for 30 minutes 

each day, for 3 days. Daily water intake was recorded by weighing the bottles. 

In case of too low intake the bottles were placed more time, until water intake 

reach normal levels (±1.0g). On the day of the experiments, animals were 

connected to the DBS cable for 20 minutes in their home cages, either 

stimulated with 300µA or sham. On the first day, (adaptation 1) mice were 

placed in the skinner-box (with no levers/nosepoke holes and with a water bottle 

freely accessible) (19cm x 21,5cm) and allowed to drink water for 10 minutes 

after the first lick. On the second day (adaptation 2), mice were placed in the 

skinner-box and allowed to drink water for 5 minutes after the start of the test. 

On the third day (test 1), mice were placed in the same skinner-box under the 

same conditions; however a footshock (0.25 mA for Sapap3-/- males) was 

released in the grid at each 20 licks. The skinner-box was equipped with a 

sensor which allowed the assessment of the number of licks, number of bouts 

and latency to the first lick through MED-PC software (MED-PC IV). All results 

were normalized with the time of the task in each day. 

 

2.4.3.2. Extinction 

The extinction of aversive memory was assessed by placing the mice in 

the same skinnerbox used previously for the Vogel Conflict Test. The day after 

the VCT (extinction), mice were connected to the DBS cable and stimulated for 

20 minutes, as previously. Then, mice were placed in the skinner-box and 
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allowed to explore and drink water for 15 minutes. In order to consolidate the 

memory, animals were kept 30 more minutes in the skinnerbox but without the 

bottle of water. The day after (test 2), mice were directly placed in the 

skinnerbox without being connected, and water intake was allowed for 5 

minutes. As in VCT, number of licks, number of bouts and latency to the first lick 

was assessed. 

 

 

2.4.4. Cognitive flexibility 

2.4.4.1. Apparatus 

Training and testing was conducted in two identical triangular operant 

conditioning chambers (19cm x 19cm x 25cm) (Lafayette-Campden). The front 

wall of each chamber consisted of an infrared touch screen. The rear wall 

consisted of (1) a centrally mounted liquid dipper which provided access to 150 

µL of a 20% sucrose solution as reward, (2) a trial initiation stimulus light 

located above the food receptacle, and (3) a house light centrally mounted at 

the top of the chamber. Operant conditioning chambers were controlled by a 

Lafayette Instruments control unit running ABET II and Whisker software. 

 

2.4.4.2. General procedures 

Mice were trained and tested in the same chamber between 9:00 and 

14:00 daily, five days a week, until they completed the experiment. During this 

time mice were maintained at 85% of baseline weight, which was taken at the 

beginning of the experiment.  
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2.4.4.3. Training  

Before the acquisition task, mice were trained in five different stages. 

Training stages lasted for 60min, with the exception of the first stage of 

habituation that lasted 40 min, or until mice reached criterion, whichever 

occurred first. In the first stage, the house light was turned off and stimuli were 

not shown on the touch screen. A tone of 3 KHz was played and the tray-light 

was illuminated with the food-tray being primed with 150 µL of 20% sucrose. 

The reward tray light was turned off after the mouse left the reward tray and a 

10s delay was applied before the starting of a new trial. In the second stage, 

stimuli (6.5 cm × 6.5 cm frame with 0.2 cm wide) were displayed randomly on 

the right or left of the screen, one at a time. After a delay of 30s the image was 

removed, the tray light illuminated, a tone presented and the sucrose solution 

delivered. Entry to collect the food turns off the tray light and an inter-trial 

interval (ITI) of 20s starts. Mice reached criterion on this stage after having 

collected at least 30 rewards in 60 min. The third stage is similar to the previous 

with the exception that mice are now required to nose-poke the stimulus on the 

screen in order to receive the reward. The fourth stage is similar to the last one 

with the exception that the mice are required to initiate the trial by nose-poking 

and leaving the reward tray before the stimulus is being displayed on the 

screen. Finally, in the last stage of training, a punishment is added after an 

incorrect nose poke in the black side of the screen with lights inverting for a time 

out period of 5s. Mice reached criterion after nose-poking at least 23/30 times 

the stimulus in 60 min for two following days. 

  



Dimension of compulsivity – on the relation between compulsive grooming, anxiety and cognitive 

flexibility, and the effect of deep brain stimulation 

 

54  Cindy Pinhal|2014 

2.4.4.4. Acquisition of the visual discrimination 

The acquisition stage was identical to the last stage of training with the 

exception that, for the first time, two visual stimuli were randomly presented on 

the right or left side of the screen (Fig. 9). Nose-poking the correct stimulus 

resulted in food delivery while nose-poking the incorrect stimulus resulted in a 

timeout, signalled by the changing of the house light. Immediately following a 

nose-poke to either stimulus, the visual stimuli were removed from the screen. 

A 20s ITI (after reward delivery) or a timeout (after an incorrect response) 

started, followed by the illumination of the light located above the food 

receptacle, signalling that the mouse could initiate another trial. 

During each session, the second and all subsequent trials were 

considered either “correction” or “non-correction” trials depending on the 

correctness of the previous trial. Specifically, a correction trial followed an 

incorrect trial and a non-correction trial followed a correct trial. During correction 

trials, stimulus presentation was not randomized. Rather, the correct and 

incorrect stimuli were presented on the same side as in the previous trial. The 

purpose of this was to prevent the development of a strategy in which mice 

ignored the visual stimuli, choosing always the same side, and therefore 

rewarded on 50% of the trials. A non-correction trial followed a correct trial, and 

stimulus presentation was randomized. 

Mice reached criterion when they achieved 80% of correctness 

(calculated using non-correction trials) in 60 min for two days in a row. 
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Fig. 9: Stimulus pair used in visual discrimination and reversal 

learning 

 

2.4.4.5. Reversal 

Once mice reached criterion on the acquisition stage, they were tested 

on a reversal stage. Serial reversal stages were identical to the acquisition 

stage with the exception that the response contingencies were reversed relative 

to the previous stage. Specifically, mice that were rewarded for nose-poking 

stimulus A during the acquisition stage were rewarded for nose-poking stimulus 

B during reversal and vice-versa. 

 

 

2.5. Histology: 

After the completion of all the experiments, mice received a stimulation of 

20min and kept in the homecage for 1h30. After this period, mice were deeply 

anesthetized with pentobarbital and perfused transcardially, initially with 0.1M 

PBS and then with cold 4 % paraformaldehyde fixative in 0.1M PBS. Brains 

were then removed and post-fixed for 24 h and submerged in 30% sucrose in 

0.1 M PBS for approximately 48 h. Brains were then frozen and kept at -80ºC. 
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In order to undergo the staining protocol, brains were cut with a cryostat into 

30μm coronal sections and kept in TBS. 

 

2.5.1. Cresyl violet staining 

Electrode placement was confirmed using a cresyl violet staining. Briefly, 

slices were placed in coated glasses and allowed to dry for 24h. Tissue sections 

were hydrated with 95%, 70% and 50% Ethanol, washed with tap water and 

soaked into cresyl violet solution for 10 min. Then, slices were washed with 

flowing tap water, dehydrated with 50%, 70%, 95%, and 100% Ethanol and 

soaked into xylene. Finally, slides were mounted with entellan and analysed 

under a microscope. Electrode placement was determined by comparison with 

a Paxinos and Franklin atlas. 

 

2.5.2. c-Fos staining 

Endogenous peroxidase was first suppressed using a solution of 10% 

methanol in TBS with 3% hydrogen peroxide (H2O2). Free-floating sections 

were rinsed briefly with TBS and blocked with gelatine. Then, sections were 

incubated in the anti-Fos primary antibody for 2h at room temperature (Ab-6 

goat anti-serum, Santa Cruz Biotechnology; final dilution 1:1500). Sections were 

rinsed three times in TBS and incubated in the secondary biotinylated antibody 

for 1h at room temperature (BA-9500goat antiserum, Vector Laboratories, 

Burlingame, CA; final dilution 1:400). After 3 rinses in TBS, sections were 

incubated in an avidin-biotin complex (Vectastain ABC Elite Kit, Vector 

Laboratories, final dilution 1:800) and rinsed again three times. Slices were then 

incubated in 7% 3,3′-diaminobenzidine with 7% ammonium nickel sulfate and 
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0.03% hydrogen peroxide in TBS for 10 minutes. The reaction was stopped and 

slices washed with TBS. Finally, slices were mounted on gelatinized slides and 

dehydrated through soaking them in increased concentrations of ethanol 

solutions. Slices were analysed under a microscope. 

 

 

2.6. Statistical analysis 

 Data is reported as mean ± SEM. Statistical analyses of the percentage 

of time spent grooming, percentage of time and frequency spent in each arm, 

the amount of licks, licks/bouts and latency for the first lick were performed with 

repeated-measures ANOVA, with stimulation parameters (ON/OFF) as between 

subjects’ factor. Latency to the open arm, distance, velocity and number of 

shocks were determined with Student’s two-tailed t tests. Male and female data 

were combined in the % grooming results, since sex differences were not 

observed. A p value of <0.05 was considered statistically significant. 
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3.1. Characterization of Sapap3-/- mice 

Sapap3-/- mice have been highly used as a model of OCD. In fact, 

previous studies have demonstrated that Sapap3-/- present OCD-like behaviour 

such as excessive time spent in repetitive behaviour, to the point of being self-

injurious, and increased anxiety-like behaviours (Welch et al, 2007). However, 

other typical symptoms of OCD were not assessed.  

It is described that OCD patients present impairment in cognitive 

flexibility – the ability to change response strategies upon alteration of the 

environment (Fineberg et al, 2010). To the best of our knowledge, whether this 

feature is present or not in Sapap3-/- mice was never assessed and its existence 

would strengthen the value of Sapap3-/- mice as a model of OCD. 

In rodents, cognitive flexibility has been investigated through reversal-

learning tasks. In these tasks, animals learn to discriminate between two stimuli, 

one as being the correct and the other as incorrect. In order to receive a reward 

(generally a food reward), animals must choose the correct stimulus. Once the 

rule is learned in a high level, the response contingencies are reversed such 

that the previous correct response is now the incorrect and vice-versa.  

We conducted a pilot experiment aiming to assess cognitive flexibility 

behaviour in Sapap3-/- mice. In order to do that, Sapap3-/- mice were tested in a 

touchscreen chamber under a discrimination/reversal task. 

Until now, conclusions were not possible to be obtained from this study. 

Indeed, Sapap3-/- mice failed to learn this task. However, this was not due to a 

problem in reversing the previously acquired rule, but rather impairment in 

learning the discrimination task. In fact, mice failed to achieve the discrimination 

phase, staying only in the initial training phase (Table IV). 
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Table IV:  Number of 

of discrimination/reversal task

Initial Training 

 

5/5 

 

Moreover, animals who achieved discrimination phase did not show 

improvement in this task within time (Fig. 10). Of note that in figure 10 only one 

of the animals that achieved discrimination phase is shown, since the behavi

is similar between the two.

 

Fig. 10: Percentage of correct answer

discrimination task.

 

Animals were not able to continue in training for a longer period because 

they were they developed serious lesions (self

excessive grooming). 
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Number of Sapap3-/- mice that achieved the different phase 
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Discrimination phase 

1                2 

Reversal phase

1                
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These results could suggest that, rather than having deficits in cognitive 

flexibility, Sapap3-/- mice would have a learning problem. With this in mind, we 

tested wild type C57Bl/6 mice in the same task, under the same conditions. 

Contrary to what is described in the literature (Horner et al, 2013) our 

wild-type C57Bl/6 mice were not able to learn the task with the documented 

success rate. Indeed, not all the animals were able to learn the task and 

achieve discrimination phase (Table V). Once again, two out of our five animals 

achieved the discrimination phase but showed no improvement with time (Fig. 

11). Curiously, the only animal that was able to complete this step (80% correct 

answers, two days in a row) did it within 8 days, the same number of session 

described as normal in literature (Fig.12) (Homer et al, 2013). 

 

Table V:  Number of C57BL/6 mice that achieved the different phase 

of discrimination/reversal task 

Initial Training 

 

Discrimination phase 

1                2 

Reversal phase 

1                2 

5/5 3/5 1/5 

 

The animals used in this task were not naïve; on the contrary, they were 

used previously in a 5-Choice Serial Reaction Time (5CSRT) (see Mar et al, 

2013 for more details). We found that animals were not able to learn the 5CSRT 

task; however, the performance was not similar for all the animals, with some 

animals performing better than the others. Interestingly, the animals that 

presented more difficulties in the 5CSRT task were also the ones with the worst 

performance in the discrimination task. 
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Fig. 11: Percentage of correct answer by a C57BL/6 mouse in a 

discrimination task.

 

Fig. 12: Percentage of correct a

a discrimination task.

discrimination task. Criterion was achieved in the days 8 and 9

 

No conclusions could be taken from these results; however, work is still 

ongoing. Future studies might help clarifying if 

cognitive flexibility. 
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3.2. Reduction of compulsive behaviour in DBS stimu lated mice 

One of the most frequent symptoms present in OCD is the urge to 

behave compulsively. Previous studies have shown that Sapap3-/- have an 

increased compulsive behaviour, namely grooming (Welch et al, 2007). 

To determine whether DBS would have an effect on compulsive 

behaviour, animals were placed in an open field and grooming behaviour was 

manually assessed for 90 minutes. Of note that during the entire procedure (90 

min) mice were being stimulated (either DBS or Sham). 

Results show that DBS stimulated mice have a significant decrease in 

the percentage of time spent grooming when compared with Sham stimulated 

mice (DBS: 9.7 ±1.9; Sham: 20.3 ± 3.5; p<0.05)(Fig. 13). 

When time points where analysed individually, differences between the 

two stimulation conditions were not found at all-time points (Fig. 14). A repeated 

measures ANOVA analysis of the percentage of grooming during the 110 

minutes (20 minutes of habituation plus 90 minutes of stimulation) have shown 

that no significant effect was seen within time (p=0.238), a significant effect was 

seen in time versus stimulation (p=0.001) and a significant effect seen in 

stimulation (p=0.027)  

In more detail, at the beginning of the experiment, before the stimulation 

was turned on, groups seem to be homogeneous as the percentage of 

grooming in the two first 10-minute bins is the same for both groups. Indeed, a 

repeated measures ANOVA analysis over the 20 min baseline has showed no 

significant effect within time (p=0.351) neither in time versus stimulation 

(p=0.091). 
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Fig. 13: Percentage of grooming in DBS and Sham stimulated 

mice.  Dark grey, DBS stimulated mice (n=10); light gre

stimulated mice (n=13). DBS stimulated mice spent significantly less 

time grooming. *p<0.05, two

± s.e.m 

 

For this reason, the significant effect seen previously was due to an 

effect after the stimulation w

analysis performed in the 90 minutes after the stimulation was turned on has 

shown a significant effect in time versus stimulation (p<0.05) while this effect did 

not change with time (p=0.660). We then analys

difference existed. Indeed, a significant difference between the two stimulation 

condition was seen only in the data points T=30 (

4.9; p<0.05) and T=40 (

there is no significant difference in the remaining time

stimulated mice spend in average less time grooming than the Sham stimulated 

mice. 
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Percentage of grooming in DBS and Sham stimulated 
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time grooming. *p<0.05, two-tailed t-test. Data is presented as means 
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Fig. 14: Percentage of grooming within time

Sham stimulated mice.

grey, Sham stimulated mice (n=13). Time is presented in minutes. 

Significant differences were found only for T=10 (average % 

grooming of the first 10 minutes) and T=20 (average % grooming of 

10 to 20 minutes). *p<0.05, rep

presented as means ± s.e.m

 

These results suggest that DBS is capable of reducing compulsive 

grooming. 

 

 

3.3. Effect of DBS in unconditioned anxiety

Another typical symptom of OCD is the increase of anxiety behaviours.

Sapap3-/- mice have revealed increased levels of unconditioned anxiety 

when compared with wild type mice through an open field, dark

and elevated zero maze tests (Welch et al

to investigate whether DBS would have an

order to do that, we conducted an elevated plus maze task. Here, animals that 
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Sham stimulated mice.  Dark grey, DBS stimulated mice (n=10); light 

grey, Sham stimulated mice (n=13). Time is presented in minutes. 

Significant differences were found only for T=10 (average % 

grooming of the first 10 minutes) and T=20 (average % grooming of 

10 to 20 minutes). *p<0.05, repeated measures ANOVA. Data is 

presented as means ± s.e.m 
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are more anxious will tend to spend more time in the closed arms while less 

anxious animals will tend to explore both types of arms of the maze in an equal 

way. 

This test was performed both in male and female mice with results 

differing between sexes, and therefore analysed separately. 

 

3.3.1. Males 

 In what concerns males, DBS does not seem to have an effect in the 

unconditioned anxiety. Indeed, repeated measures ANOVA analysis showed no 

significant difference in the percentage of time spent in each arm influenced by 

the stimulation (p=0.244) (Fig. 15a). Both DBS and Sham stimulated mice spent 

more time in the closed arm than in the open arm or middle part, a signal of 

anxiety. In particular, a two-tailed t-test analyses has shown that DBS 

stimulated mice differed significantly in the time spent between the closed arm 

and the middle (p<0.01) and between the closed arm and the open arm 

(p<0.001), being the difference between the middle and the open arm not 

significant (p=0.05). On the other hand, a two-tailed t-test analysis performed in 

Sham stimulated mice showed a significant effect between the closed arm than 

in the middle (p<0.01), however no difference was seen between the closed 

arm and the open arm (p=0.115) and the middle and the open arm (p=0.251). 

Another way to look at the results from the elevated plus maze is through 

the number of entries that the animals do in each arm. Indeed, these results are 

in accordance with the ones obtained from the percentage of time spent in each 

arm (Fig. 15b). A repeated measures ANOVA analysis showed no difference 

between the number of entries in each arm depending on the DBS or Sham 
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stimulation (p=0.921). In particular, a two-tailed t-test showed that DBS 

stimulated mice entered significantly less often in the open arm than in the 

closed arm (p<0.05), being the difference between the closed arm and the 

middle (p=0.215) and the middle and the open arm (p=0.157) not significant. In 

what regards Sham stimulated mice, although it seems that the number of 

entries is higher in the closed arm, a two-tailed t-test showed no significant 

difference between the closed arm and the open arm (p=0.174), the closed and 

the middle arm (p=0.09) or middle and open arm (p=0.933). 

The latency to explore the open arm for the first time can also be used as 

a measure to assess the anxiety. As described above, anxious animals will tend 

to avoid open arms, and therefore, the latency to the open arm will be higher. 

Results obtained are once again in accordance with the percentage of time and 

frequency spent in each time, with a two-tailed t-test showing no significant 

difference between stimulation conditions (DBS: 107.9s ± 38.9; Sham: 77.7s ± 

45.5; p=0.639) (Fig. 15c).  

One could argue that the results above described would be dependent of 

a motor activity difference between the two stimulation conditions, so we 

assessed distance travelled and the velocity of these mice. Indeed, a two-tailed 

t-test showed no differences neither in the distance (Fig.15d) (DBS: 2200.0cm ± 

303.1; Sham: 1820.2cm ± 492.2; p=0.558) or in the velocity (DBS: 3.7cm/s± 

0.5; Sham: 3.1cm/s ± 0.8; p=0.557) (Fig.15e) 

 All together, these results suggest that DBS does not have an effect in 

unconditioned anxiety in male mice. 
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Fig. 15: Effect of DBS in unconditioned anxiety in DBS and Sham 

stimulated male mice . Dark grey, DBS stimulated mice (n=6); light 

grey, Sham stimulated mice (n=8).a, no effect of stimulation in the 

percentage of time spent in each arm, being this results confirmed 

with b, the frequency of entries in each arm; c, both DBS and Sham 

stimulated mice took about the same time (in seconds) to enter the 

open arm for the first time; this difference was no due to a motor 

effect once no difference was seen in d, the distance (in centimetres) 

and e, in the velocity (centimetres/seconds); *p<0.05, **p<0.01 and 

***p<0.001 Repeated measures ANOVA for a and b, and two-tailed t-

test for c, d  and e. Data is presented as means ± s.e.m 
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3.3.2. Females 

The same experiment was performed in female Sapap3-/- mice. A 

repeated measures ANOVA analysis was performed to assess the effect of 

stimulation in the percentage of time spent in each arm. Indeed, no significant 

effect was seen (p=0.347)(Fig. 16a). However, the pattern is different from the 

one found in males. In particular, Sham stimulated mice seem to spend more 

time in the closed arm than in the open arm, however, this value was not 

significant as analysed through a two-tailed t-test (p=0.144). Similarly, a two-

tailed t-test showed no differences between time spent in the closed arm and in 

the middle part (p=0.027) and middle and open arm (p=0.594). This pattern 

resembles the results obtained previously for the male mice. Contrarily, female 

DBS stimulated mice seem to present a different trend. A closer analyses 

performed with a two-tailed t-test showed that mice seem to equally explore the 

closed and the open arm (p=0.959) with no significant differences seen 

between the closed arm and middle (p=0.209) or middle and open arm 

(p=0.453). 

This idea was confirmed with the number of entries in the different arms 

(fig. 16b). A repeated measure ANOVA analysis performed in the number of 

entries in each arm showed no significant effect of the stimulation. Indeed, a 

two-tailed t-test showed that there is no difference in Sham stimulated mice in 

the number of entries in the closed arm and open (p=0.450), no significant 

difference between the closed and the middle arm despite the trend to spent 

more time in the closed arm than the open (p=0.053) and no difference between 

the middle and open arm (p=0.369). On the other hand, a two-tailed t-test 

showed that DBS enter nearly the same time in the closed arm and the open 
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arm  (p=0.818), with no significant effect seen between closed and middle arm 

(p=0.106) and middle and open (p=0.250). 

The strongest evidence of a different effect in females comes from the 

analysis of the latency to explore the open arm for the first time (Fig. 16c). 

Indeed, even if no significant difference between DBS and Sham stimulated 

mice was seen through a two-tailed t-test analysis (DBS: 6.61s ± 1.9; Sham: 

60.2s ± 41.3; p=0.062), a trend is visible, with Sham stimulated mice taking 

longer to enter the open arm for the first time. 

As previously seen in males, the results obtained were not influenced by 

a motor difference between the two groups. Indeed, a two-tailed t-test analysis 

showed no significant differences between stimulation groups in distance (DBS: 

1426.4cm ± 387.8; Sham: 967.9cm ±; 107.1; p=0.208)(Fig. 16d) and in the 

velocity(DBS: 2.43cm/s ± 0.6; Sham: 1.6cm/s ±; 0.16 p=0.166)(Fig.16e). 

Although we cannot conclude that DBS had an anxiolytic effect in female 

mice, once the results are not significantly different, this might be due to a high 

variability seen in both groups. We would have to increase the number of mice 

per group in order to decrease this variability, and therefore clarify this effect. 

Indeed, a power analysis was performed and a minimum of 16 animals would 

be necessary to see a significant difference.  

Interestingly, these results suggest that the unconditioned anxiety in 

males and females might be modulated by different neurobiological 

mechanisms. 
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3.4. Effect of DBS in conditioned anxiety, fear ext inction and memory 

consolidation 

Clinical studies have shown that DBS is capable of reducing anxiety 

symptoms. However, this reduction seems to be restricted to conditioned 

anxiety – anxiety acquired by a specific and traumatic event – and not affect the 

unconditioned anxiety – innate (Denys et al., 2010; Greenberg et al., 2010). On 

the other hand, previous studies suggested that DBS was effective in extinguish 

the fear conditioning in rats (Rodriguez-Romaguera et al., 2012) 

In order to assess the effect of DBS in conditioned anxiety and fear 

extinction, we tested Sapap3-/- DBS stimulated mice and Sapap3-/- Sham 

stimulated mice in a Vogel Conflict test. In this test, animals receive a 

punishment (mild electric shock) leading to conditioned (learned) suppression of 

response for reinforcement (water). Thus, less anxious animals will continue 

drinking water regardless of the shock. Our test consisted of 5 experimental 

sessions in 5 days (Fig. 17). In the two first days (adap1 and adap2) mice were 

allowed to freely explore and drink water; on the third day (test1), the 

conditioned anxiety was tested, and mice received a footshock at every20th lick; 

on the fourth day (extinction) the animals were allowed to freely drink water 

without being shocked (fear extinction); finally, on the fifth day (test2), the 

animals were again allowed to freely drink water as the consolidation of the 

memory was assessed. 
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Fig. 17: Schematic representation of the schedule u sed in 

unconditioned anxiety and fear extinction assessmen t. Animals 

were tested 5 days in a row. In all days animals were allowed to drink 

water for a certain time, depending the day. On the third day, at every 

20th lick the animal received a footshock (0.25mA Sapap3-/- male). 

During the experiments, all animals were connected and received 

DBS or Sham treatment. 

 

A two-tailed t-test analysis showed no effect of DBS in the number of 

shocks taken by each group (DBS: 18 ± 4.1; Sham: 18.6 ±5.5; p=0.930) 

(Fig.18a). 

When analysed the effect of stimulation in the number of licks (during 

adap1, adap2 and test1) through a repeated measures ANOVA analysis, no 

significant effect was seen (p=0.209) (Fig. 18b). Specifically, when analysed the 

effect of stimulation in number of licks Test1/number of licks Adap2 with a two-

tailed t-test, no significant effect was found (DBS: 0.73 ± 0.19; Sham: 0.68 ± 

0.21; p=0.872). 

Thus, results suggest that DBS was not capable to reduce the 

conditioned anxiety in DBS stimulated mice. 

A prominent feature observed in most OCD patients is repetitive 

avoidance behaviours that fail to extinguish. This feature suggests impairment 

in the circuits that regulate fear extinction (Rodriguez-Romaguera et al., 2012). 

With this in mind, we hypothesized that DBS could facilitate the extinction of 
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fear. To study this we tested the mice in the same conditions, the day after the 

Vogel Conflict test. 

In the first 3 days of the experiment DBS stimulated mice tend to take 

more time to drink for the first time when compared with Sham stimulated mice. 

However, this difference was not significant as confirmed with a repeated 

measures ANOVA analysis (p=0.209). However, this pattern changed in the 

extinction day, where the latency for the first lick in DBS stimulated mice seems 

to be lower than Sham stimulated mice (fig. 18c). However, this value was not 

significant as analysed through a two-tailed t-test (DBS: 76.4s ± 68.9; Sham: 

153.4s ± 109.2; p=0.544). Moreover, a repeated measures ANOVA analysis 

was done to analyse the effect of the stimulation in the latency for the first lick 

between Test1 and Extinction, and no significant difference was seen 

(p=0.642).  

These results were confirmed with the number of licks. In fact, when 

analysed the effect of stimulation in “number of licks Extinction/number of licks 

Test1” with a two-tailed t-test, no significant effect was found (DBS: 1.7 ± 0.72; 

Sham: 1.6 ± 0.67; p=0.892). 

Altogether, these results suggest DBS had no effect in the fear 

conditioning. 

Finally, the day after extinction, mice were tested again under the same 

conditions, to assess memory consolidation. Our results show that both DBS 

and Sham stimulated mice seem to behave in the same way. Both DBS and 

Sham stimulated mice had an increase of licks when comparing “number licks 

test2/number of licks extinction” (35% and 33% respectively)(fig.18b). However, 

these values were not significantly different from each other as analysed 
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through a two-tailed t-test (DBS: 3.08 ± 0.45; Sham: 3.46 ± 0.69; p=0.641). On 

the other hand, both groups took approximately the same time to drink for the 

first time as analysed by a two-tailed t-test (DBS: 21.4 ± 9.9; Sham: 21.3 ± 9.5; 

p=0.994) (Fig. 18c).  

To make sure that the lack of effect of DBS observed in conditioning 

anxiety, fear conditioning and memory consolidation was not due to a difference 

in the number of times the animals started to drink, i.e. the number of bouts, we 

analyzed the number of licks/bouts. A repeated measures ANOVA analysis 

showed that there is no significant difference in the number of licks/bouts 

(p=0.564)(Fig.18d).  

In conclusion, these results suggest than DBS has no effect in 

conditioned anxiety, fear extinction or memory consolidation. 

 

 

3.5. Long term effect of DBS 

The results shown above suggest that DBS decreases some of OCD-like 

behaviour in this mouse model. However, whether this effect is acute or chronic 

is still not known. In order to assess this question, we analysed the compulsive 

behaviour in both DBS and Sham stimulated mice in the end of all experiments. 

Here, none of the groups was stimulated. The aim was to evaluate whether 

DBS permanently rescued the impairment Sapap3-/- mice, or if this effect was 

only evident when DBS was ongoing. 
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Fig. 18: Conditioned anxiety, fear extinction and m emory 

consolidation in DBS and Sham stimulated mice.  Dark grey, DBS 

stimulated mice (n=7); light grey, Sham stimulated mice (n=5). a, no 

significant difference in the number of shocks, b, number of licks c, 

latency to the first lick; or d, number of licks/bouts; Two-tailed t-test 

for a, and repeated measures ANOVA for b, c and d. Data is 

presented as means ± s.e.m. 
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It is important to note that the animals used here are also the ones used 

for the first experiment, when stimulation was turned ON for DBS stimulated 

mice. However, some animals did not achieve this last stage. This was mainly 

due to two different reasons: animals were too injured and therefore had to be 

sacrificed (generally animals which the percentage of grooming was higher); or 

because the animals lost the head cap during the course of the experiments. In 

order to establish a comparison between initial and final stage, we excluded 

also from the initial experiment the animals that failed to achieve the final stage. 

Our results show that DBS and Sham stimulated mice have similar levels 

of grooming in these conditions. In fact, a two-tailed t-test analysis in the final 

experiment showed no significant difference in the percentage of grooming 

depending of the group (DBS: 12.7 ±2.1; Sham: 12.6 ± 2.1; p=0.979). 

In the first experiment we reported a significant difference in grooming 

behaviour, with DBS stimulated mice spending significantly less time grooming 

than Sham stimulated mice (p<0.05). However, we see that this effect in not 

present in the final experiment, when the stimulation was turned off (Fig. 19). 

Although there seems to be a difference between the levels of 

percentage grooming in the initial stage and the final stage, the SEMs largely 

overlap and statistical analysis shows that there is no difference. 

These results suggest that DBS acts in an acute way, i.e., when it is 

ongoing; however, it is not capable to induce chronic changes. These results 

are in accordance with the results previously described in the clinic and within 

our laboratory (Denys et al, 2010). 
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Fig. 19: Long term effect of DBS in the absence of DBS in 

previously DBS and Sham stimulated mice.  Dark grey, DBS 

stimulated mice (n=4); light grey, Sham stimulated mice (n=5). In the 

initial stage, mice were either stimulated or not depending on whether 

they were DBS or Sham mice respectively. In this condition DBS 

stimulated mice spent significantly less time grooming. In the final 

stage both DBS and Sham animals were not stimulated. Under these 

conditions no significant difference was seen between DBS and 

Sham group. *p<0.05, two-tailed t-test. Data is presented as means ± 

s.e.m. 

 

 

3.6. Electrode position 

Electrodes were implanted in the IC using the coordinates referred in the 

Paxinos and Franklin atlas.  

 After, histology was performed and the slices stained with cresyl violet. 

The position where the electrodes were implanted was checked by overlapping 

the picture of the slice, with of the same region taken from the Paxinos and 

Franklin atlas (fig. 20). 
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Fig. 20: Overlap of a slice from 

image taken from a mouse atlas. 

brain stained with a cresyl

of the electrode. 

 

The IC is of reduced size and we have learned that its targeting is highly 

technically demanding. In fact, not all the animals used in these exper

had both electrodes implanted in the IC. Thus, we had three different groups 

relative to the position of the electrode: animals with both electrodes implanted 

in the IC, animals with only one electrode implanted in the correct position, and 

animals with both electrodes nearby the IC. We are planning to include this 

information in our analysis in the future, in order to verify if this affects the 

behaviour of the animals.
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information in our analysis in the future, in order to verify if this affects the 

behaviour of the animals. 
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neuronal activity once c-Fos is often expressed when neurons fire action 
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potentials. Thus, up-regulation of c-Fos mRNA in a neuron indicates recent 

activity. 

With this in mind, we used c-Fos staining to underlie the anatomical 

mapping of neuronal circuits induced by DBS. This approach would allow us to 

clarify the anatomical areas in the brain that have been changed through DBS, 

and consequently, involved in the pathology of OCD. DBS and Sham stimulated 

mice were perfused after the last experiment and their brains were stained 

against the c-Fos, allowing the expression of c-Fos to be visible through black 

dots (fig. 21). 

Previous studies in our lab showed that also around the electrodes in the 

IC an increase in Fos immunoreactivity was visible. Our initial goal was 

therefore to quantify the expression of c-Fos around the electrode placement 

and see whether DBS would have activated the surrounding cells in addition to 

the passing fibres. Moreover, we were interested in evaluating which other brain 

areas could have been affected by DBS. However, in some of the animals, the 

placement of the electrode was not clear since an obvious tract of the 

electrodes was not visible. In this way, we were not able to do the quantification 

of c-Fos around the electrode as we could be inducing error by comparing 

slices that were differently far from the implantation place, and therefore, places 

where the intensity of the signal would be different. 

This work, however, is still ongoing and we are trying to optimize the 

process in order to clearly visualize the tips of the electrodes without affecting 

the expression of c-Fos. In fact, through expression of c-Fos we could have a 

better idea of which areas are being changed by DBS and therefore, which 

areas are possibly involved in the pathology of OCD. 
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Fig. 21: DAB- nickel immunohistochemistry of 

Slices were stained with an antibody specific for c

coronal section, arrows indicate the 

amplification of a small area from the image a, arrow 

expression of c-Fos represented through the dark dotes.
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4.1. C57BL/6 and Sapap3-/- failed to learn the discrimination task 

In order to study the neurobiological mechanisms that underlie human 

disorders and find new and more effective treatments, researchers use rodent 

models. However, it is hard to mimic the conditions of a disorder, even more 

when it comes to a psychiatric disorder, where little is known about the causes. 

The best researchers can do is to find evidence that fulfil the validity criteria for 

animals models. 

Sapap3-/- mice were developed and characterized for the first time by 

Welch et al, 2007. Indeed, mice fulfilled the three criteria, presenting OCD-like 

behaviours, impaired CSTC circuit and showing improvement of its symptoms 

when administered with fluoxetine, a SSRI effectively used in OCD patients. 

 Our goal was to find new evidences that would strengthen the value of 

Sapap3-/- mice as an OCD mouse model. Thus, we investigated a new 

behavioural feature that is known to be impaired in OCD patients, but as far as 

we know has never been assessed in Sapap3-/- mice: cognitive flexibility. For 

this purpose, we tested Sapap3-/- mice in a touch-screen chamber under a 

discrimination reversal task. 

 Our results were inconclusive as both C57BL/6 and Sapap3-/- mice failed 

to learn the discrimination task. 

Indeed, little is known about the ability of Sapap3-/- mice to learn. Our 

studies have suggested that young animals are able to learn a task in an 

operant box, while older animals present difficulties to be trained in a more 

complex task. In this project we used animals older than 5 months, period when 

they start presenting the OCD-like phenotype. However, at this age, it is likely 

that these animals are no longer able to learn the task of interest, not only due 
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to cognitive decay, but mainly because they present high levels of grooming 

which might indirectly prevent them from learning. In other words, the lack of 

“learning success” could be due to the fact that Sapap3-/- mice are too focused 

grooming, not paying attention to the task, rather than due to a cognitive 

impairment. One solution for this problem would be to start training the animals 

before the appearance of OCD-like behaviours, when excessive grooming 

would not be present. However, the reversal phase of the test would have to be 

performed after the presentation of the symptoms in order to mimic the human 

condition. 

 More surprising than the assumable difficulties of the Sapap3-/- mice to 

learn this cognitive task, was the fact that wild type C57BL/6 mice also failed, 

after several studies have shown the contrary (Mar et al, 2013; Dickson et al, 

2014; Horner et al, 2013). 

The C57BL/6 mice used in this task were not naïve but had been used 

before in an impulsivity task, also performed in the same touchscreen chamber. 

It is important to point out is that animals that had the worst performance in the 

impulsivity task also had the worst performance in the discrimination task. 

Moreover, before the impulsivity task, the same mice were used in another 

operant task in a nose-poke box (which they learnt normally). 

At the moment, we are still trying to understand the cause of this failure 

and a series of questions pop out. Is the problem related with the task itself? Is 

the food delivery not enough or should we change the reward from sucrose to 

milkshake (there is the claim that milkshake is more motivating to mice than 

sucrose)? Should we use a more intensive training schedule (usually animals 

are trained for 7 days a week, while we trained them for only 5)? Should we use 
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another task, as digging for rewards in a maze-like box (Garner et al., 2006; 

Bissonnette et al., 2008), to assess the cognitive flexibility? In this task, the 

reward is located in the place where the animal is. Thus, the animal does not 

need to make the choice and move to a different location in order to get the 

reward, which could increase the performance. Or is the problem related with 

mice themselves rather than the task? Were the mice too old and should we 

train them before the OCD-behaviour is detectable? 

In conclusion, it was not possible to draw any conclusions and work is 

still ongoing in that sense. We are testing younger wild-type C57BL/6 and we 

may try other approaches. After successfully train wild-type C57BL/6 mice we 

will train and test Sapap3-/- in order to assess cognitive flexibility in this mouse 

model of OCD. 

 

 

4.2. DBS in the IC has a positive effect on compuls ive behaviour 

DBS has shown to be effective in the reduction of compulsive grooming. 

Indeed, looking at the average of the percentage of grooming, it can be 

observed that DBS stimulated mice had a significant decrease as compared 

with the Sham stimulated mice. 

Compulsive behaviour has been linked with a disruption of coordinated 

function within the basal ganglia or between striatal and forebrain structures. 

Indeed, studies have suggested that the motor loop, as well as the prefrontal 

loop might be associated with inappropriate repetition of movement. Several 

hypotheses have been proposed to explain how basal ganglia circuitry may 

modulate repetitive behaviour but one has received special attention: authors 
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suggested that the compulsive behaviour is due to an impairment of the direct 

(striato-nigral) versus indirect (striato-pallidal) pathways (Tepper et al., 2007) 

(fig. 22). In general, the compulsive behaviour is thought to be caused by a 

suppression of the indirect pathway or activation of the direct pathway (Langen 

et al., 2010). 

Due to the localization of the internal capsule, it is not surprising that 

stimulation in this area would affect repetitive movements. In fact, all fibres 

entering and leaving the cerebral cortex from the thalamus, brainstem, and 

spinal cord pass through the internal capsule. With this in mind, it seems 

possible that stimulation in the internal capsule is able to restore the impairment 

in those circuitries. 

 No differences between male and female mice were seen in the 

percentage of time grooming. This suggests that compulsive behaviour is 

regulated by the same mechanism in both sexes.  

 It is also important to draw the attention for the fact that, as presented in 

the introduction, there is a typical order by which DBS has an effect in the clinic, 

with mood and anxiety reacting first and compulsions only later. However, our 

results show that DBS has an immediate action in compulsive behaviour. Does 

this mean that Sapap3-/-mice do not mimic entirely OCD conditions? Is this 

difference due to a distinction between humans and rodents? Indeed, this is not 

clear and therefore, more studies are required. 
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Fig. 22: Basal Ganglia Pathways involved in the con trol of 

movements.  The fibres involved in the direct pathway travel from the 

striatum to the substantia nigra pars reticulata/ globus pallidus 

internal (SNpr/GPi), then to the thalamus. The ones in the indirect 

pathway travel from the striatum to the globus pallidus external 

(GPe), the subthalamic nucleus (STN) to the SNpr/PGi, and finally to 

the thalamus. 

 

 

4.3. Is the DBS in the IC able to control unconditi oned anxiety? Is this 

behaviour controlled by different neurobiological p rocesses in 

males and females? 

Results from unconditioned anxiety show that DBS had no effect in male 

mice. However, the results related with female mice are not that clear (so far). 

In what concerns maleSapap3-/- mice, both Sham and DBS stimulated 

groups present an anxious pattern, spending more time in the closed arms than 

in the open ones. The lack of difference between the two stimulation groups 

suggests that DBS has no effect in unconditioned anxiety. 
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However, results obtained from Sapap3-/-female mice are not clear. Due 

to the low number of animals per group and to the high intra-group variability 

observed, we were not able to conclude whether DBS had an effect in 

unconditioned anxiety. For this reason, we will next discuss both possibilities. 

Firstly, if one assumes that increasing the number of animals (to number 

suggested by power analysis) will reveal an anxiolytic effect of DBS, the most 

likely explanation is that this is due to differences in sexual hormones’ levels. 

Thus, suggesting that DBS has an effect in sexual hormones. 

As far as we know, no studies were published where the levels of sexual 

hormones, depending of DBS condition, were assessed. However, we had 

access to a recent study that shows that prolactin’s levels change depending on 

whether DBS is on or off. Although often associated with the production of 

human milk, prolactin plays a wide range of other roles such as the control of 

maternal behaviour, energy balance and food intake, stress and trauma 

responses, neurogenesis, pain and anxiety. Indeed, prolactin controls these 

functions by regulating receptor potential thresholds, neuronal excitability and/or 

neurotransmission efficiency (Patil et al., 2014). Thus, our hypothesis is that 

DBS interferes with the levels of prolactin, which consequently interfere with 

levels of anxiety. 

Indeed, confirming this hypothesis would be a big step, not only in 

understanding the way DBS acts but also because this would show us that the 

neurobiology of unconditioned anxiety is different in females and males. It is 

well accepted that sex differences influence not only the symptoms as well as 

the therapeutic for OCD patients. Thus, a hormonal explanation might be 

behind this difference. 
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 Secondly, similar to males, females’ unconditioned anxiety might not be 

affected through DBS in the IC (after repetition of this experiment with a bigger 

group). Looking at the results that we have until now, we observe that, in fact, 

DBS stimulated mice seem to equally explore the closed and the open arm. 

However, no significant difference is seen also in Sham stimulated mice. 

Indeed, even if they seem to spend more time/enter a higher number of times in 

the closed than in the open arm, this effect was not significant, as it was in the 

case of males. Thus, this could suggest that Sapap3/- female mice are in 

general, less anxious than Sapap3-/- male mice. No evidence of this exists in 

literature. In fact, both cases have been shown, with some results suggesting 

that females are more anxious than males and other suggesting the opposite 

effect (Xiang et al., 2011; Belviranli et al., 2012). Whereby, no conclusion can 

be driven. 

 

 

4.4. DBS in the IC has no effect in conditioned anx iety or in fear 

extinction 

It is described that unconditioned and conditioned anxiety are regulated 

by different circuits and areas in the brain. As a matter of fact, it was suggested 

that the baso-lateral complex of the amygdala and the central nucleus of the 

amygdala are part of the neural circuitry for conditioned anxiety but not for 

unconditioned anxiety (Rosen, 2004). 

OCD is characterized by anxiety-related behaviours; however, these 

symptoms are generally related to a specific situation (obsession) rather than 

meaningless fears. 
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In order to assess the effect of DBS in the conditioned anxiety we tested 

Sapap3-/- mice in a VCT task. Our results suggest that DBS in the IC has no 

effect in conditioned anxiety. 

To the best of our knowledge, conditioned anxiety in a mouse model of 

OCD was not assessed in previous studies. Dijk et al, 2013 tested wild-type 

Wistar rats and reported an anxiolytic effect in conditioned anxiety when DBS 

was administered in the IC. However, the rodent model used by Dijk and 

colleagues makes comparisons to our study hard to establish. 

It is important to note that our study only measured DBS’ effect on 

Sapap3-/- male mice. Thus, it is only possible to establish a comparison 

between unconditioned and conditioned anxiety for Sapap3-/- males. As 

described above, no effect was seen in Sapap3-/- male mice in the 

unconditioned anxiety; however this effect is not clear for Sapap3-/- females. 

Thus, it would be of great interest to use Sapap3-/- female in order to see if the 

same pattern is kept and therefore, if both symptoms are linked. 

 

Associated with the conditioned fear is the avoidance of certain 

behaviours that fail to extinguish. This characteristic suggests that OCD patients 

have impairment in the circuits that regulate fear extinction. 

Previous studies have shown that DBS in the ventral striatum has an 

effect in the orbito-frontal cortex, prelimbic and infralimbic regions that modulate 

fear through its projections to the amygdala (McCraken et al., 2009; Sotres-

Bayon et al., 2010).This raised the hypothesis that DBS might be effective in 

extinguish fear. Indeed, stimulation in the IC seems logical as it contains fiber 

bundles interconnecting cortical areas implicated in fear extinction, such as the 
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ventromedial prefrontal cortex, the dorsal anterior cingulate cortex and the 

orbito-frontal cortex, with sub-cortical areas implicated in conditioned fear, such 

as the amygdala (Lehman et al., 2011).  

We tested this hypothesis after conditioning mice in a VCT task. 

Although the results that we obtained were not conclusive, they suggest 

that DBS had no effect in fear extinction. Contrarily, a previous study by 

Rodriguez-Romaguera and colleagues found facilitation in fear extinction when 

DBS was applied in the dorsal part of the medial striatum, whereas DBS applied 

in the ventral part impaired extinction. With this in mind, the lack of an extinction 

process might have resulted from the fact that the electrodes were implanted in 

the IC, however, not always in the same region. In fact, targeting the internal 

capsule in mice has shown to be highly technically demanding, as the IC is a 

small area. In the IC, fibres connecting different areas are topologically in 

different positions; therefore, in order to target specific fibres, the electrodes 

have to be positioned in specific sectors of this fibre bundle. Thus, our results 

might not be conclusive due to differences in the position where the electrodes 

were implanted.  

 

 

4.5. DBS in the IC is not able to induce chronic ch anges 

Little is known about the underlying neural mechanism of DBS. Whether 

DBS acts in an acute way or is capable to induce chronic changes is not clear, 

however, clinical studies done not only regarding OCD but as well as in other 

disorders have shown that DBS-induced effects are gone as soon as 
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stimulation is switched off. In other words, DBS is not capable to have an effect 

when turned off (Denys et al., 2010; Gabriels et al., 2003). 

Here we demonstrated that DBS is able to induce acute changes; as 

seen by the percentage of grooming assessed in the initial test. However, this 

effect only lasts when the stimulation is ongoing. In fact, when the same test 

was performed at the end, with stimulation off, we could observe that both 

groups behaved in a similar way. Thus, these results suggest that DBS in the IC 

is not able to induce chronic changes. 

In order to hypothesize about the reason by which DBS acts only in an 

acute way and not chronic, we would need to first understand how DBS works 

in general. We could hypothesize that DBS would be capable to induce 

changes but that this effect would not be enough to induce synaptic plasticity. 

However, there are several indications showing that some effects may appear 

or develop in time. Nevertheless, effects on clinical symptoms depend on 

continuous stimulation, suggesting that long-term plasticity does not play a 

major role in the therapeutic effects. 

 

 

4.6. Expression of c-Fos as a marker of neuronal ac tivity 

In order to underlie the areas that were activated through DBS we 

stained the brains of the Sapap3-/- mice against c-Fos, as it is a marker for 

neuronal activity. 

Although the staining was successful and c-Fos expression could be 

appreciated, we were not able to always find the tract of the electrodes. Indeed, 

the tract of the electrodes was clearer in cresyl-violet staining than in c-Fos 
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staining. This is mainly due the fact that cresyl-violet binds readily to the acidic 

components of the neuronal cytoplasm, especially to the RNA-rich ribosomes, 

which are present in large numbers in neurons, besides the nuclei and nucleoli 

of the cells. On the other hand, in the c-Fos staining, only c-Fos was marked, 

thus becoming harder the visualization of different components. 

As the quantification of c-Fos positive puncta of the areas surrounding 

the electrode was our first goal, we did not proceed with the quantification of 

any other areas. However, work is still ongoing and one idea to improve the 

visualization of the electrodes is to keep them for longer in the brain, after 

perfusion, in order to strengthen their tract. 
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The present study had two main goals: further assess the validity of 

Sapap3-/- mice as a multidimensional model of OCD and unveil the involved 

neurobiology as well as optimize treatment for OCD by testing the effects of 

DBS on these mice. 

Sapap3-/-mice present OCD-like behaviors such as compulsive behavior 

and increase levels of anxiety and we were interested if they would also show 

impaired cognitive flexibility. However, both C57BL/6 and Sapap3-/- mice were 

not able to learn the discrimination task which prevented us to draw any 

conclusion about cognitive flexibility in this model. Thus, this project did not 

allow us to find evidences that support or refute the validity of these mice as a 

model of cognitive defects in OCD. 

Regarding the effect of DBS, our results suggest that stimulation in the IC 

is effective in compulsive behaviour for both male and female Sapap3-/- mice 

and has no effect in unconditioned anxiety, conditioned anxiety, fear extinction 

and memory consolidation in males. Interestingly, results concerning females 

are not clear whereby more work is required. Furthermore, DBS seems to act in 

an acute way, not being able induce chronic changes. 

In fact, in clinical stimulation in the anterior IC at the border of the 

nucleus accumbens has shown to be effective not only in compulsion as well as 

in anxiety, contradicting our results. This might mean that either there is a 

difference between the anxiety shown by Sapap3-/-mice and the clinical anxiety, 

or that the target cannot completely mimic the target that was successfully used 

in humans and therefore, not be ideal to study the neurobiology of OCD. 

Nevertheless, we found in all experiments a high variability in the results of 
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Sapap3-/- mice. In fact, OCD is a very heterogeneous disorder, whereby this 

variability could be representative of the heterogeneity seen in humans. 

In conclusion, the use of mouse models to study such a complex disorder 

as OCD is, to say the least, challenging. Fundamental studies in OCD are 

scientifically demanding and extremely complex to be analysed from only one 

point of view. Therefore, this and more studies should be further investigated 

and discussed, in order to draw strong conclusions that can be taken to the 

clinic with the ultimate goal of helping the patients. In order to obtain that, 

scientists are working on finding an animal model that can be used to carefully 

study OCD, and then use this model to clarify the neurobiology and improve the 

treatment of OCD. Thus, in future work, we plan to target other relevant 

anatomical areas with DBS in order to determine the best brain region to be 

stimulated and therefore improve treatment for OCD patients. 
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