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Abstract 

 

The endoplasmic reticulum (ER) is the principal organelle responsible for the proper 

folding/processing of nascent proteins and perturbed ER function leads to a state 

known as ER stress. Mammalian cells try to overcome ER stress through a set of 

protein signalling pathways and transcription factors termed the unfolded protein 

response (UPR). However, under unresolvable ER stress conditions, the UPR is 

hyperactivated inducing cell dysfunction and death. The accumulation of misfolded 

proteins in the brain of Alzheimer’s disease (AD) patients suggests that alterations in 

ER homeostasis might be implicated in the neurodegenerative events that characterize 

this disorder. This review discusses the involvement of ER stress in the pathogenesis 

of AD, focusing the processing and trafficking of the AD-related amyloid precursor 

protein (APP) during disease development. The potential role of ER as a therapeutic 

target in AD will also be debated. 
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associated degradation, ERAD; DnaJ homolog 4, ERdj4; protein kinase inhibitor of 
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ribosome-associated membrane protein 4, RAMP-4;  protein disulfide isomerase P5, 

PDI-P5;   c-Jun NH(2)-terminal kinase, JNK; apoptosis signal-regulating kinase 1, 

ASK1; nuclear factor kappa-light-chain-enhancer of activated B cells, NF-kB; B-cell 

lymphoma 2, Bcl-2; p53 upregulated modulator of apoptosis, PUMA; B-cell 
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1. Endoplasmic reticulum stress  

The endoplasmic reticulum (ER) was first described in 1945 as an extensive 

network of interconnected membrane tubules that spread throughout the cytosol [1]. 

A large number of studies showed that the ER can be divided into three domains 

according to its structure and function: 1) the nuclear envelope, which controls the 

flow of information between the cytoplasm and the nucleus, 2) the sheet-like cisternae, 

also denominated rough ER due to the high content in ribosomes, and 3) the 

polygonal array of tubules, also called smooth ER [1, 2]. This highly dynamic and 

multifunctional organelle is implicated in protein quality control along the secretory 

pathway being responsible for protein folding, assembly and post-translational 

modifications (e.g. glycosylation, disulfide bond formation), among other functions.  

 

1.1. The unfolded protein response and its role in cell survival and apoptosis 

Perturbations of ER homeostasis, triggered by several factors including ER 

Ca
2+

 depletion, oxidative stress and mutated proteins that traffic through the secretory 

pathway can be responsible for the accumulation of misfolded/malfolded proteins in 

its lumen leading to ER stress. To re-establish homeostasis, the ER activates the 

unfolded protein response (UPR) [3, 4], which prevents the aggregation and facilitates 

the folding of damaged proteins, decreases translation to prevent overload of ER 

lumen with newly synthesized proteins, increases ER biogenesis and volume through 

the stimulation of lipid synthesis and activates protein degradation via the ER-

associated protein degradation (ERAD) pathway [5-7]. 

In mammals, the mechanisms implicated in the ER stress response are poorly 

understood. The most accepted hypothesis defends that the ER chaperone glucose-

regulated protein 78 (GRP78/BiP) binds the ER stress sensors protein kinase RNA 

(PKR)-like ER kinase (PERK), activating transcription factor 6 (ATF6) and inositol-

requiring enzyme-1alpha (IRE1) [4]. Under ER stress, GRP78/BiP dissociates from 

these sensors and promotes their activation, inducing phosphorylation and 

oligomerization of PERK and IRE1 and the translocation of ATF6 to the Golgi 

where it is cleaved [4]. Once activated, the ER stress sensors increase several 

transcription factors and control the expression of chaperones and other modulators of 

protein quality control within the secretory pathway [4].  After the onset of ER stress, 

the activation of the three branches of the UPR occurs in a time-dependent manner 
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(Fig. 1) [8, 9].  

Upon activation, PERK phosphorylates eIF2 on the serine 51 of its  subunit, 

which leads to the inhibition of delivery of the initiator methionyl-tRNA to the 

ribosome, resulting in general inhibition of protein translation [9, 10]. Paradoxically, 

eIF2 phosphorylation also promotes the translation of selective mRNAs that contain 

the internal entry ribosomal site (IRES), leading to the translation of genes associated 

with UPR, namely the transcription factor gene 4 (ATF4) [10, 11]. This transcription 

factor is responsible for the upregulation of genes associated with redox homeostasis, 

energy metabolism and protein folding [3, 4]. 

The activation of IRE1 triggers the selective degradation of mRNAs 

encoding for proteins with abnormal folding, induces the unconventional splicing of 

the mRNA encoding the transcription factor Xbox binding protein-1 (XBP1), which 

shifts the coding reading frame and leads to the expression of a more stable and active 

transcription factor, XBP1s. XBP1s is responsible for the regulation of a subset of 

UPR target genes related with protein folding, ER/Golgi biogenesis and ERAD, 

namely endoplasmic reticulum DnaJ homolog 4  (ERdj4), protein kinase inhibitor of 

58kDa (p58
IPK)

, ER degradation-enhancing -mannosidase-like protein (EDEM), 

ribosome-associated membrane protein 4 (RAMP-4), protein disulfide isomerase P5 

(PDI-P5) and HEDJ [12]. In addition, IRE1 interacts with several adaptor proteins, 

such as c-Jun NH(2)-terminal kinase (JNK), apoptosis signal-regulating kinase 1 

(ASK1), the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), 

and can thus trigger autophagy, apoptosis and/or an inflammatory response [4]. 

ATF6 is a membrane-spanning protein that after dissociation from GRP78/BiP 

translocates to the Golgi where it is activated through proteolytic processing. In the 

nucleus, active ATF6 induces the expression of genes associated with protein quality 

control mechanisms [13]. This transcription factor can act synergistically with XBP1s 

[3].  

Although the UPR is activated in order to restore organelle and cellular 

homeostasis, prolonged UPR activation can trigger apoptosis (Fig. 2) [4, 14]. Besides 

the pro-survival effect discussed above, the IRE1/XBP1 pathway has an important 

role in apoptosis. Indeed, the phosphorylation of IRE1 by the c-Jun-N-terminal 

inhibitory kinase leads to the recruitment of the tumor necrosis factor receptor 

associated-factor-2 (TRAF2). The complex IRE1-TRAF2 activates caspase-12 and a 
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downstream caspase cascade is activated [15]. The complex IRE1-TRAF2 also 

activates a Jun NH(2)-terminal kinase (JNK)-mediated apoptotic pathway [15]. 

IRE1 also promotes the selective degradation of mRNAs encoding proteins of the 

secretory pathway, a process called regulated IRE1-dependent decay (RIDD) [16]. 

Initially, RIDD was proposed as an adaptive mechanism to reduce the overload of 

proteins in the secretory pathway but recent studies suggested that RIDD-mediated 

degradation of mRNA that encode ER chaperones such as GRP78/BiP acts as a pro-

apoptotic stimulus. Sustained activation of PERK can induce the major pro-apoptotic 

transcription factor C/EBP homologous protein CHOP/GADD153 [17], which 

upregulates the ER oxidase 1 (ERO1), leading to excessive generation of oxidant 

species and depletion of the antioxidant glutathione [18, 19] and also to the release of 

Ca
2+

 from the ER through the IP3R [20, 21]. In addition, the ER stress-induced 

transcription factor CHOP/GADD153 can downregulate the anti-apoptotic Bcl-2 and 

upregulate the pro-apoptotic proteins Bax and Bak [21]. 

The ATF6 signalling pathway seems to predominantly play a pro-survival role 

and only few evidence links ATF6 and cell death. Recently, this transcription factor 

has been associated with the downregulation of the anti-apoptotic Mcl-1 in myoblasts 

during differentiation, however this effect has not been reported in an ER stress 

context [22, 23]. 

 

1.2. ER calcium homeostasis and crosstalk with mitochondria 

In the ER, the homeostasis of Ca
2+ 

is maintained due to the concerted action of 

Ca
2+ 

pumps that actively uptake Ca
2+

, Ca
2+

-binding proteins that allow the storage of 

Ca
2+ 

in the ER lumen and Ca
2+ 

channels that release Ca
2+ 

into the cytosol in response 

to several stimuli [4, 19, 24]. The Ca
2+

 channels associated with the ER receptors for 

IP3 (IP3R) and ryanodine (RyR) are present at the mitochondria-associated 

membrane (MAM), which is responsible for the communication between the ER and 

the mitochondria [4, 25]. MAM allows the formation of Ca
2+

 microdomains that 

ensure an efficient transfer of Ca
2+

 between ER and mitochondria, essential for 

energetic metabolism and cell survival [4]. ER-to-mitochondria Ca
2+

 transfer can be 

regulated by the ER chaperone Sigma-1 receptor (Sigma-1R) [4, 26]. Impairment of 

Ca
2+ 

coupling between the ER and mitochondria can lead to apoptosis [27] and is 

tightly modulated by members of the Bcl-2 family [28]. The induction of apoptosis 
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depends of the amount of anti- and pro-apoptotic proteins at the ER membrane [4, 28]. 

The anti-apoptotic proteins can regulate ER Ca
2+

 levels through the interaction with 

the IP3R, however the underlying mechanisms remain unknown [28]. It was shown 

that the deletion of pro-apoptotic proteins Bax and Bak promotes the interaction 

between IP3R and anti-apoptotic Bcl-2 family members, consequently decreasing 

Ca
2+

 released from ER stores [28-30].  

It was hypothesized that the presence of Bax at the ER surface under ER stress 

conditions is responsible for the release of Ca
2+

 from ER by blocking the interaction 

between Bcl-xL and the IP3R subsequently leading to the activation of the ER 

resident caspase-12 [29, 30]. In rodents, caspase-12 is an ER membrane pro-apoptotic 

cysteine protease activated under ER stress conditions. This caspase was silenced in 

humans by evolutionary mutations and it is believed that caspase-4 plays a similar 

role to caspase-12 in rodents [31]. The activation of caspase-12 occurs through 

cleavage of its prodomain and cleaved caspase-12 activates the apoptosis’ effector 

caspase-3 via caspase-9, independently of cytochrome c and Apaf-1 [31-33].  

In summary, the UPR is a stress response strategy that regulates protein 

folding/misfolding at the ER and controls cell fate. This protein quality control 

mechanism operating at the ER is able to trigger adaptive and protective pathways, 

however, chronic UPR activation in neurodegenerative diseases such as Alzheimer’s 

disease (AD) can have a negative impact on cell survival since it affects the folding 

and trafficking of proteins through the secretory pathway [34, 35]. 

 

 

2. Alzheimer’s disease and ER stress 

AD is the most common form of dementia in the elderly, which affects more 

than 30 million people worldwide and 10 million in Europe [36] and it is believed that 

AD pathogenesis is related to the synergistic interaction between ageing and a 

multitude of cellular, biochemical and genetic factors. Mutations in presenilin 1 

(PSN1), presenilin 2 (PSN2) and amyloid precursor protein (APP) lead to early-onset 

familial AD, prior to age 65. Specific polymorphisms in apolipoprotein E are 

associated with risk to develop the most frequent, late-onset form of AD, occurring 

after 65 years [37]. 

The clinical symptoms of AD are characterized by a progressive cognitive 

deterioration together with impairments in behavior, language, and visuospatial skills, 
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culminating in the premature death of the individual. These traits are accompanied by 

neuropathological features observed in postmortem AD brains, including a selective 

neuronal and synaptic loss in cortical and subcortical regions, deposition of 

extracellular senile plaques, mainly composed of amyloid β (Aβ) peptide, presence of 

intracellular neurofibrillary tangles (NFT) containing hyperphosphorylated tau protein, 

and cerebral amyloid angiopathy [38]. 

A growing number of studies suggest that A interferes with ER functioning 

leading to ER stress in early stages of AD progression [39-41]. In fact, it was shown 

that exogenous A induces ER stress in primary neuronal cultures and activates 

mitochondria- and ER-mediated cell death pathways [42-44]. In PC12 cells and 

knock-in mice expressing mutant PS1 it was shown that the upregulation of protein 

levels of CHOP/GADD153 was followed by the downregulation of the anti-apoptotic 

protein Bcl-2. Concomitantly, the authors observed that mutant PS1 sensitizes cells to 

the deleterious effects of ER stress culminating in cell death, this effect being 

attenuated by anti-sense-mediated suppression of CHOP/GADD153 production [45]. 

In the hippocampus of the triple transgenic mouse model of AD (3xTg-AD) increased 

levels of CHOP/GADD153 precede the increase in BACE and A levels [46]. 

 In AD brains, the ER stress marker GRP78/BiP is positively correlated with 

Braak staging [40]. Moreover, analysis of AD postmortem brain revealed an alteration 

in protein levels of several ER stress markers, namely GRP78/BiP, protein disulfide 

isomerase (PDI), PERK, eIF2 posphorylation and IRE1 [4, 47-54]. 

 

 

3. The Amyloid Precursor Protein  

3.1. APP structure and function 

APP is a type I transmembrane protein formed by a large extracellular N-

terminal domain, a transmembrane domain and a short C-terminal cytoplasmic 

domain composed of 59 amino acid residues [55]. Although APP can be detected in 

all tissues, it is highly expressed in the brain. In mammals, the APP gene is located in 

the long arm of the chromosome 21. There are 8 isoforms of APP, generated by 

alternative splicing, that range from 365 to 770 amino acids residues and the most 

common isoforms contain 695, 751 and 770 amino acids. The 695 isoform is highly 

expressed in the central nervous system (CNS) and the others are ubiquitously 
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expressed in all tissues.  

Since the identification of APP as the precursor protein of A a large number 

of physiological functions have been proposed to APP. In 1993, Nishimoto et al 

suggested that the cytoplasmic domain of APP is a receptor coupled to a guanosine 

triphosphate (GTP)-binding protein [56]. Studies involving APP overexpression 

demonstrated that it positively modulates cell survival and growth [57, 58]. Saitoh et 

al showed that the normal growth of fibroblasts that harbor an antisense construct of 

APP can be restored with the administration of the secreted form of APP (sAPP) [59]. 

Accordingly, sAPP was demonstrated to reduce neuronal apoptosis in models of 

traumatic brain injury [60]. However, in 2009 Oh et al. observed that in both 

transgenic mouse models with the familial AD Swedish mutation and mice carrying 

wild type APP the overexpression of APP increases the percentage of medium size 

neurons and decreases the percentage of small-sized neurons suggesting that APP 

induces the hypertrophy of neurons [61] that was believed to be a compensatory 

mechanism or a reaction to neuronal injury. Similarly, Leyssen et al. showed that 

APP promotes neurite arborization using a drosophila model of brain injury [62]. APP 

also plays an important role in the maintenance and formation of synapses, neuronal 

survival and neuritic outgrowth [63-66]. In the embryonic cortex of rodents the knock 

down of APP was found to be responsible for abnormal synaptic activity and neuronal 

migration [67-69]. Moreover, in 2009 it was proposed that APP ectodomain can act as 

a ligand for the death receptor 6 (DR6) and, according to the studies of Nikolaev et al., 

growth factor deprivation triggers APP cleavage by beta-secretase 1 (BACE1) 

resulting in the release of APP ectodomain, which binds to DRP6 and activates 

caspases -3 and -6 inducing apoptosis [70]. APP may also act as an adhesion molecule 

or adhesion receptor of growth cones [71]. Indeed, this protein is highly expressed in 

axons and has the ability to bind to extracellular matrix components such as collagen I, 

glypican, heparin and co-localize with integrins and laminin [69, 72-75]. Finally, it 

was proposed that the C-terminal domain of APP acts as a transcriptional regulator of 

its own intracellular sorting [76]. Despite the numerous studies reporting the 

relevance of APP in neuronal cells, others show that APP knockout causes only subtle 

phenotypic alterations [77-79]. These discrepancies need to be carefully examined to 

uncover the importance of APP, particularly in the CNS. 

A itself plays an important role in synaptic regulation. In addition, it was 
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suggested that neuronal activity regulates, at least in part, the production of A, 

supporting the idea that this peptide has a physiological function [80, 81]. 

Accordingly, some studies showed that small increases of A levels, within the 

physiological range, enhance the release of synaptic vesicles and increase neuronal 

activity [76, 82].  

 

3.2. Role of ER stress in APP processing and trafficking 

Despite the large number of studies devoted to clarify the mechanisms 

involved in the processing of APP, it is presently unclear if different APP isoforms 

are processed by the same metabolic pathway and if they similarly trigger the 

amyloidogenic pathway. It is known that APP protein has three main proteolytic 

cleavage sites that lead to APP processing through distinct catabolic pathways. More 

than 90% of APP is cleaved by the non-amyloidogenic pathway involving the zinc 

metalloproteinase -secretase, releasing a secreted form of APP (sAPPα). The C-

terminal fragment (C-88) that is retained in the membrane is subsequently cleaved by 

a -secretase generating a short fragment called p3 and a cytoplasmic fragment 

identified as the APP intracellular domain (AICD). In the non-amyloidogenic 

pathway, -secretase cleaves APP within the A sequence precluding A formation. 

APP can also be processed through the less common amyloidogenic pathway, which 

generates A through the sequential cleavage by -secretase (BACE) and -secretase 

(Fig. 3) [36, 76, 83]. Presently, the exact subcellular localization of APP processing 

remains unclear. Lammich et al [84] suggested that the non-amyloidogenic processing 

of APP occurs predominantly in the plasma membrane. It is believed that the majority 

of APP is processed after maturation and transport to the cell surface via the secretory 

pathway but it can also occur upon internalization of plasma membrane-located APP 

through the endocytic pathway [85].   

It has been reported that the transport of APP from ER to the plasma 

membrane occurs differently in non-polarized and polarized cells, such as neurons. 

Soma, dendrites and axons play different functions and have different sets of proteins 

and lipids that regulate protein trafficking [85]. In neurons, the delivery of proteins to 

the proper destination is ensured by microtubules, motor proteins (dinein and kinesin) 

and sorting signals. During its trafficking from the ER to the plasma membrane, APP 

undergoes several post-translational modifications. After protein synthesis in 
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membrane-bound polysomes, APP is N-glycosylated in the ER and then transported 

to the Golgi apparatus where it is O- and N-glycosylated, phosphorylated and 

sulphonated at tyrosine motifs [86]. In vitro studies have shown that only 10% of APP 

goes to the plasma membrane and that the majority of APP protein remains in the 

Golgi and trans-Golgi network (TGN). APP is transported along the axon in post 

TGN vesicles or in elongated tubular structures using kinesin 1 as a motor protein. 

According to Kaether et al. APP tubules move unidirectionally using fast axonal 

transport that can reach velocities of 10 m/s [87, 88]. The fate of APP-loaded 

vesicles transported along axons remains unknown. It was suggested that a small 

fraction of axonal APP undergoes transcytosis for transport to dendrites but no 

signaling sorting transport has been identified yet [85, 89]. Studies performed in non-

polarized cells suggest that APP inserted in the plasma membrane can be 

preferentially cleaved via the non-amyloidogenic pathway and, due to the presence of 

a “YENPTY” internalization motif near the C-terminus, APP could be internalized 

via endocytosis reaching the endosome [90]. After endocytosis, APP fragments can 

return to the cell surface, can be degraded in the lysosome or can be transported in a 

retromer-dependent manner to the TGN. Recent studies suggest that the APP retromer 

transported from the early endosome to TGN is relevant for the amyloidogenic 

processing of APP. Using HEK293 cells expressing APP695, Choy et al. [91] showed 

that depletion of the late endosomal sorting complexes required for transport of 

ESCRT components, which re-route APP from the endocytic pathway to the TGN, as 

well as the depletion of the adaptor protein AP-4 that impedes direct TGN-to-

endosome trafficking of APP, lead to the amyloidogenic processing of APP in TGN, 

enhancing A1-40 formation. These results are in contradiction with the study 

performed by Small et al. [92] showing that the depletion of VPS35, which stimulates 

the retromer-mediated recycling of APP to the TGN, increases the amyloidogenic 

processing of APP in TGN. More studies are thus required to elucidate the 

mechanisms implicated in the trafficking of APP in neurons. 

In the last few years several studies demonstrated that - and -secretases are 

present in the ER allowing APP processing [93, 94].  Recently, it was shown that 

PSN1, PSN2, and -secretase activity, are located predominantly in a specialized 

subcompartment of the ER that is physically and biochemically connected to 

mitochondria, called MAM, which is an intracellular lipid raft-like structure 
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intimately involved in cholesterol and phospholipid lipid metabolism, in Ca
2+

 

homeostasis, and in mitochondrial function and dynamics, and that is increased 

significantly in AD [95]. Taking into account numerous evidence showing that the 

amyloidogenic APP processing occurs predominately in lipid-raft domains, [96]  it 

can be hypothesized that the ER-mitochondria interface is a subcellular site of 

enhanced A generation. Shin et al reported that in COS7 cells transfected with 

APP695, - and -secretases compete with each other for the intracellular APP 

cleavage and that this competition modulates the production of A in the ER [94]. In 

vitro studies further showed that APP695 accumulates in this organelle upon ER 

stress while APP751 accumulation occurs preferentially in the Golgi [34] suggesting 

that sorting and processing of neuronal and non-neuronal APP is mediated by 

different mechanisms under stress conditions. Moreover, in HEK293 cells transfected 

with APP, it was observed that APP interacts with GRP78/BiP preventing its 

translocation to distal compartments, which leads to its sorting into COPI vesicles 

involved in retrograde transport and accumulation in the ER [97]. The co-

precipitation of APP with GRP78/BiP shows that the majority of APP is immature, 

suggesting that the retrograde transport could be part of the UPR protein quality 

control system. However, Katayama et al observed a decrease in GRP78/BiP levels in 

samples of grey matter of familial AD patients suggesting that the loss or 

dysregulation of UPR can initiate neuronal degeneration through A generation as a 

consequence of amyloidogenic APP processing upon GRP78/BiP downregulation 

[98]. We can thus hypothesize that A accumulation is not only a cause of ER stress-

induced chronic UPR but also a consequence of ER disruption. 

  Despite the different isoforms of APP and experimental models used, the 

above-mentioned studies suggest that the retention of APP in the ER leads to an 

alteration of its processing and trafficking and decreases secretion of A from the ER 

to the cytosol. It is known that the accumulation of proteins in ER triggers ER stress 

that, if prolonged, can lead to apoptosis. Recently, it was described that ER stress 

occurring in HEK293 cells overexpressing APP695 increases the levels of APP 

mRNA but decreases its protein levels, which results from the cleavage of APP at the 

-site and also from the phosphorylation at the tyrosine 687 residue that promotes the 

-secretase-mediated cleavage and the generation of the AICD fragment [99]. This 

fragment is able to increase the susceptibility to apoptosis via ER stress [99, 100]. 
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However, another study performed in PC12 cells showed that APPwt increases the 

resistance to ER stress-mediated apoptosis and mutant APPsw abolishes this 

resistance [101]. Similar effects were observed when ER stress was induced with 

brefeldin A, an inhibitor of the transport between the ER and the Golgi. The authors 

also showed that the increased resistance to apoptosis under ER stress conditions was 

not related with changes in the expression of GRP78/BiP or CHOP/GADD153 

suggesting that APP acts downstream, or independently, of ER-to-nucleus signaling 

[101].   

4. The ER as a therapeutic target for AD  

It was recently suggested that the modulation of the ER-UPR could be a 

suitable therapeutic strategy to avoid neuronal degeneration in several human diseases, 

including AD. Indeed, manipulating ER-associated quality control mechanisms 

through the stimulation of protective and/or adaptive responses or the inhibition of the 

apoptotic pathways associated with the UPR can be beneficial to treat or prevent AD. 

The use of chemical chaperones such as 4-phenylbutyric acid (PBA), 

tauroursodeoxycholic acid (TUDCA) or trimethylamine oxide (TMAO) may be 

advantageous since these compounds improve ER folding capacity and stabilize 

protein conformation [102]. In an AD mouse model, PBA was shown to enhance ER 

function, to prevent A accumulation and to avoid the loss of dendritic spines and 

memory [103]. TUDCA, a taurine-conjugated derivative from ursodeoxycholic acid, 

was found to ameliorate microglia and astrocytic activation and to prevent A 

production in the cortex and hippocampus of APP/PS1 mice through the regulation of 

APP processing [67]. In this mouse model, TUDCA rescued neurons and improved 

memory [104]. Although less used, the chemical chaperone TMAO has been shown 

to be more efficient than PBA and TUDCA to promote protein folding, to reduce 

accumulation of aggregates and to prevent apoptosis [105] and thus can be considered 

a promising therapeutic strategy for AD.  

Ca
2+

 is an important player in neurodegeneration and many chaperones do not 

work properly when Ca
2+ 

homeostasis is impaired. Targeting ER Ca
2+ 

may allow the 

restoration of ER homeostasis and increase protein folding. The RyR antagonist 

dantrolene, licensed for the treatment of spasticity, inhibits ER Ca
2+ 

release and the 

activation of PERK, eIF2a and CHOP/GADD153 [102]. In the 3xTg-AD mouse 

model, dantrolene reduced memory deficits and the burden of neuritic plaques in the 
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hippocampus, and in primary cultures of cortical neurons this compound partially 

prevented neuronal death induced by A [106, 107]. Furthermore, the selective 

inhibitor of the IP3R xestospongin C can also be considered an effective strategy for 

the treatment of AD. This inhibitor was described to reduce Ca
2+ 

levels in SHSY5Y 

cells transfected with the PS19 mutation to values similar to those observed in 

PS1wt cells and in primary cultures of cortical neurons treated with A [107, 108].  

Compounds that interact directly with UPR mediators can also be valuable 

therapeutic agents. Salubrinal (3-phenyl-N-[2,2,2-trichloro-1-[[(8-quinolinylamino) 

thioxomethyl] amino]ethyl]-2-propen amide) was reported to inhibit the 

IRE1α/ASK1/JNK signaling pathway and also the GADD34-phosphatase complex 

that dephosphorylates eIF2a. In PC12 cells it was shown that salubrinal is a protective 

agent against ER stress. Moreover, studies performed in primary cortical or 

hippocampal cultures and in the SK-N-SH human neuroblatoma cell line treated with 

salubrinal observed an increase in peIF2 and an attenuation of ER stress-mediated 

apoptosis [102, 109-111]. A recent screening has identified a selective inducer of 

GRP78/BiP [112] named BiP inducer X (BIX) (1-(3,4-dihydroxy-phenyl)-2-

thiocyanato-ethanone) that, through the induction of the ER stress-mediated element, 

is able to up-regulate GRP78/BiP in an ATF6-dependent manner, but IRE1- and 

PERK-independent manner [102]. BIX also reduces the protein levels of 

CHOP/GADD153 and cell death in mouse retina [113].  

Several studies showed that antioxidant compounds such as edaravone (3-

methyl-1-phenyl-2-pyrazolin-5-one, dibenzoylmethane (DBM) derivatives, and N-

acetyl cysteine (NAC) have beneficial effects under ER stress conditions. Edaravone 

is a free radical scavenger that provided neuroprotection in several models of disease. 

It was shown in SH-SY5Y cells that edavorene prevents A production through 

stimulation of the non-amyloidogenic APP processing [114]. In primary cultures of 

glia, edavorene attenuated ER stress induced by tunicamycin and reduced cell death 

through the inhibition of CHOP/GADD153 and XBP1 [115]. Edavorene is also 

described as an inhibitor of PERK, eIF2a, ATF4 and caspase-12 [116-118]. NAC is 

another scavenger of oxidant species that presents beneficial effects during ER stress-

mediated apoptosis, as suggested by the study of Park et al showing that NAC reverts 

the downregulation of phospho-PERK, CHOP/GADD153, ATF4, GADD34, 

GRP78/BiP, and spliced XBP1 in EBV-transformed B cells by cross-linking of CD70 
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[119]. 

 

 

5. Conclusions 

  ER has a pivotal role in many cellular processes, such as Ca
2+

 buffering, 

protein synthesis and transport and apoptotic signalling, which are known to be 

disrupted in AD. Moreover, growing evidence supports the involvement of ER stress 

in AD pathogenesis. A potential problem in understanding the pathophysiology of AD 

might arise from the difficulties in determining the subcellular localization of specific 

biochemical players under pathological conditions and how protein modifications 

affect their trafficking and sub-cellular localization. Concerning APP, it seems clear 

that ER plays a fundamental role in its trafficking and processing. APP is folded in 

this organelle and undergoes several posttranslational modifications. Therefore, we 

believe that chronic ER stress, which occurs throughout disease progression, 

interferes with trafficking of proteins within the secretory pathway, including APP 

(Fig. 3), leading to the intracellular production of A that, in turn, activates several 

synaptotoxic and neurotoxic pathways culminating in apoptotic cell death. 

Accordingly, the modulation of the ER-UPR could be a suitable therapeutic strategy 

to delay or stop neuronal degeneration in AD. Indeed, several ER stress modulators 

have emerged in the last years (Fig. 4). However, the UPR can induce both cell 

survival and death, depending of the duration and intensity of the stimuli. The 

transient induction of adaptive and protective ER stress-mediated UPR may mitigate 

neuronal dysfunction delaying the signs of AD and avoid chronic ER stress, which 

once triggered activates UPR-associated apoptotic pathways that potentiate disease 

progression. Therefore, selection of compounds that act in the multiple branches of 

UPR could represent a good strategy to prevent the abnormal processing of APP as 

well as the deleterious downstream events that characterize AD pathology.  
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Figures legends 

 

Figure 1 – The unfolded protein response (UPR). Perturbation of endoplasmic 

reticulum (ER) homeostasis triggers adaptive signaling cascades associated to the ER 

stress sensors Xbox binding protein-1 (XBP1), protein kinase RNA (PKR)-like ER 

kinase (PERK) and inositol-requiring enzyme-1alpha (IRE1). These ER sensors are 

inactivated through the interaction with the 78 kDa glucose-regulated protein 

(GRP78/BIP). However, the accumulation of incorrectly folded proteins in the ER 

lumen detaches GRP78/BIP from these transmembrane proteins, which become 

activated. Active PERK phosphorylates the eukaryotic initiation factor-2alpha 

(eIF2) at serine 51 reducing protein synthesis and, consequently, protein overload in 

the ER. eIF2 also activates the transcription factor ATF4, which upregulates UPR 

target genes encoding factors involved in amino-acid biosynthesis, the antioxidant 

stress response. The activation of IRE1 leads to non-canonical XBP1 splicing. This 

spliced form of XBP1 (sXBP1), alone or synergistically with activating transcription 

factor 6 (ATF6), activates the transcription of UPR target genes. Activated ATF6 

migrates to the nucleus to stimulate the expression of genes containing the ER stress 

response element (ERSE) and the UPR elements. 

 

 

Figure 2 - Endoplasmic reticulum (ER) stress-mediated apoptosis. Unresolved ER 

stress induces apoptotic cell death through different mechanisms. The release of Ca
2+ 

from ER causes the activation of resident caspase-12 that initiates a caspase cascade. 

Activating transcription factor 4 (ATF4) induces apoptosis through activation of the 

transcription factor CHOP/GADD153, which in turn upregulates pro-apoptotic Bcl2 

family members such as Bax and Bak and downregulates anti-apoptotic members 

namely Bcl-xL)). The pro-apoptotic members of the Bcl2 family may trigger 

apoptosis in a mitochondria-dependent pathway that involves translocation of Bax 

and Bak from the ER to the mitochondria and also activation of caspases through the 

release of cytochrome c (Cyt C) from mitochondria. The phosphorylation of c-Jun N-

terminal kinase (JNK) that occurs upon interaction of IRE1a and tumor necrosis 

factor (TNF) receptor-associated factor 2 (TRAF2) also activates the transcription 

factor CHOP/GADD153.  
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Figure 3 - Amyloid precursor protein (APP) processing and trafficking in the 

secretory pathway. After synthesis, APP is folded and undergoes several 

posttranslational modifications in the ER and Golgi and is transported to the plasma 

membrane where it can be cleavage by -secretase. This cleavage occurs within the 

A peptide sequence, which avoids the formation of A. APP can also be cleavage 

through the sequential cleavage of - and - secretases to release A. Non-processed 

APP located at the plasma membrane is rapidly internalized and trafficked via the 

endocytic pathway to the trans-Golgi network (TGN) and to the ER in a retromer-

dependent manner. Once in the ER, APP can generate A due to the action of ER 

secretases. 

 

Figure 4 - The ER stress-induced UPR signaling pathways as therapeutic targets. The 

chemical chaperones PBA, TUDCA and TMAO improve protein folding and down 

regulate the levels of GRP78/BiP. PBA is also described as an inhibitor of peIF2 

CHOP/GADD153, XBP1, caspase-12 and ATF6. TUDCA downregulates peIF2, 

CHOP/GADD153 and XBP1. The inhibitor of GADD34-phosphatase complex 

salubrinal downregulates CHOP/GADD153, caspase 12 and ATF6 and upregulates 

the ER components eIF2, GRP78/BiP, ATF4 and XBP1. Dantrolene and 

xestospongin C interfere with Ca
2+ 

signaling at the ER and regulates the activity of 

PERK and IRE1.  
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Highlights 

 

 Endoplasmic reticulum (ER) is involved in the processing and trafficking of 

amyloid precursor protein (APP) 

 Alzheimer’s disease (AD) is characterized by endoplasmic reticulum (ER) 

stress 

 ER is a potential therapeutic target in AD 


