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Abstract 10 

Growing advances in remote sensing technologies together with the widespread availability of 11 

Digital terrain models (DTM) have intensified the research into two-dimensional (2D) models. 12 

Supported by detailed DTM, 2D models can become very accurate tools yet not without an added 13 

cost on the computational effort. Floodplain inundation is characterized by a slow varying 14 

phenomenon which can last hours, days or even weeks. In this paper we aim to develop a specific 15 

parallel diffusive wave model with variable time step suitable for flood inundation. Taking advantage 16 

of up to 12 processors, speed-up times ranging from 1.7 to 5.2 and 1.2 to 1.7 are achieved with the 17 

Matlab parallel computing toolbox and Fortran OpenMP Application Programming, respectively. The 18 

variable time method and the process devised to represent Wet-Dry fronts kept the solution stable 19 

and preserved absolute mass conservation. P-DWave performed well against known analytical 20 

solutions and dynamic and diffusive models in a total of seven tests. 21 

Keywords: parallelization, diffusive wave model, Wet-Dry fronts, variable time step, absolute mass 22 

conservation 23 



  

 

1. Introduction 24 

The growing advances in remote sensing technologies led to the widespread use and development 25 

of two-dimensional (2D) inundation models (Bradbrook et al., 2013). Digital terrain models (DTM) 26 

obtained from light detection and ranging (LiDAR) data enable large areas of terrain to be precisely 27 

characterised, therefore rendering almost unlimited accuracy possibilities in numerical modelling. 28 

Unpleasantly, the use of high resolution grids (i.e. 10 m or less) for large areas can lead to 29 

unacceptable run times for 2D Models simulations, while simultaneously demanding a more 30 

complex treatment of the model flow resistance (Dottori et al., 2013). This can nonetheless be 31 

improved by coarsening the DTM’s resolution with penalty on the accuracy of the results. Herein we 32 

aim to develop a 2D Parallel Diffusive Wave Model (P-DWave) with variable time step to improve the 33 

computational efficiency of 2D diffusive wave models. 34 

Except for catastrophic scenarios of dam break where the full dynamic equations must be applied, 35 

flooding over plain areas (often termed inundation) is characterized by a slow moving phenomena 36 

whereby the inundation can be modelled by the diffusive equations (Chen et al., 2005). The diffusive 37 

wave simplification neglects the inertial terms allowing, therefore, a simplified set of equations to be 38 

solved. In general terms using a simplified set of equations leads to faster computational times, 39 

however, due to stability criterion some authors have verified that at coarser resolutions (10m or 40 

more) diffusive models were computationally less effective than dynamic models (Hunter et al., 41 

2008; and Neal et al., 2012). In urban areas, Maksimovic and Prodanović (2001) suggest values 42 

between 1 and 2m and Mark et al. (2004) between 1 and 5m as optimal grid sizes to capture all the 43 

main topographic features. 44 

Improvements on model performance have been the focus of recent research, particularly for 45 

explicit 2D diffusive wave models (2D DWM) it has been driven by two main reasons: the higher 46 

performance gain by explicit models because they use smaller time steps than their implicit 47 

counterparts due to stability considerations (Hirsch, 2007), and the fact that dynamic models require 48 



  

 

more complex numerical schemes than diffusive models (Prestininzi, 2008). Dottori & Todini (2011) 49 

enhanced the model performance of a 2D DWM by including an inertial formulation to compute 50 

discharges developed by Bates et al. (2010) and an adaptive time step developed by Zhang et al. 51 

(1994). Hunter et al. (2005) upgraded the raster-based cell model LISPFLOOD-FP using and adaptive 52 

time step (Bates and Roo, 2000).  Liang and Borthwick (2009) improved a 2D full dynamic model by 53 

using dynamically adaptive grids. Burger and Rauch (2012) implemented a parallel version of the 54 

open-source implicit 1D full dynamic EPA SWMM model (Rossman, 2005). Despite published 55 

improvements (Chen et al., 2012), the original overland flow models such as the explicit 2D DWM 56 

LISFLOOD-FP and SIRIPLAN have proven their usefulness particular for calibration purposes (Di 57 

Baldassarre et al., 2009; and Horritt, 2006) or modelling of large scale sites (da Paz et al., 2013). 58 

If a meaningful cross-comparison of model’s accuracy should use similar benchmark cases (Pender 59 

and Néelz, 2010), a meaningful cross-comparison of model performance by parallelization of 60 

algorithms ideally should use the same programming language and computational architecture as 61 

these may affect the overall performance. Judi et al. (2011) described reductions in computational 62 

time due to desktop parallelization varying from 14 to 300 times using a 16 core-processors 63 

computer while Ceyhan et al. (2007) reported 1.3 to 2 times for the same number of core-64 

processors. Apart from the different languages and speed of processors used, computer acceleration 65 

times are limited by Amdahl's law i.e. the speedup is limited by the time needed for the sequential 66 

part of the program. It is thus clear that the former extraordinary increase was not only due to the 67 

parallelization but also due to changes in the algorithm (as rightfully acknowledged by the Authors). 68 

Yu (2010) and Neal et al. (2009) reported speedups in line with Amdahl's law ranging from 1.6  to 1.8 69 

and from 3.4 to 5.2 using 2 and 8 core-processors respectively. 70 

In this paper we develop a parallelized diffusive wave (P-DWave) model with an adaptive time step. 71 

The aim is to develop an accurate flood inundation model whose efficiency can be scalable through 72 

the use of multi-processor computer architecture. The Model is developed in MatlabTM and 73 



  

 

FortranTM languages and tested in an AMD Opteron™ Processor 6276 with 12 cores 2.3GHz CPU and 74 

192GB of RAM available at the RUHR University of Bochum. Next section describes the Parallel 75 

Diffusive Wave Model (P-DWave) 76 

2. Parallel Diffusive Wave Model (P-DWave) 77 

2.1. The Diffusive Wave Model Equations 78 

The 2D Shallow Water Equations (SWE) can be written in the conservative form as: 79 

 �ℎ�� + ∇��ℎ� = 
 
(1)  

 ���� + ��∇�� + ��ℎ �ℎ∇�� + ∇�ℎ + �� = �� 
(2)  

 80 

ℎ is the water depth, � = ��� ����  is the depth-averaged flow velocity vector,  is the 81 

acceleration due to gravity, z is the bed elevation, ��  is the turbulent eddy viscosity, 
 is the 82 

source/sink term (e.g. rainfall or inflow)  and �� = ���� �����is the bed friction vector.  83 

Diffusive wave model neglects all the forces in the momentum equations except for the gravity term 84 

∇�ℎ + �� and bed friction ��.  The momentum equation Eq. (2) simplifies to: 85 

 ∇�ℎ + �� = �� (3)  

The bed friction can be approximated using Manning’s formula:  86 
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(4)  

∇�ℎ + �� = ��'� �'���  is the water-level surface-gradient vector, where �'� = ��ℎ + �� �(⁄ . The 87 

modulus of the depth-averaged flow velocity vector is given by: 88 



  

 

 |�| = ℎ� "# *+,�  
(5)  

 +,� = �'�� + �'��
 (6)  

 89 

2.2. Discretisation of the P-DWave and variable time step 90 

The continuity equation Eq. (1) is solved using an explicit first order finite volume discretization on a 91 

regular grid. The spatial domain of P-DWave is discretised in cell-centered control volumes: 92 

 ℎ-�./ − ℎ-�∆� + 13- 4ℎ-5�-56-5
!

57/ = 
 
(7)  

 93 

For the sake of simplicity all variables without the time index are evaluated at the current time (t). 3-  94 

is the cell-area,	6-5  is the contact face between cells, �-5 and ℎ-5 	are the water velocity and water-95 

depth at each of the four cell faces evaluated as following: 96 

 ℎ-5 = ℎ- + ℎ52  
(8)  

 �-5 = ℎ-5! "#
�-5�:�-5: +;,-5 

(9)  

 97 

�-5 is the velocity in the direction perpendicular to each cell face. +;,-5 = =�'��>� + �'��>�?-5 is the 98 

water-level surface-gradient vector multiplied with the face unit normal vector @A = ��>� 	�>���. 99 

Central schemes are based on local fluxes estimations. The fluxes estimation shown in Eq. (7) 100 

requires a lower number of flux evaluations compared with other schemes because the fluxes are 101 

averaged at the faces according to Eq. (8) and (9).  102 



  

 

Explicit schemes must have the time step limited in order to ensure stability. In order to study the 103 

stability of the proposed numerical scheme Eq. (7) is re-written as (for the sake of simplicity 
 will be 104 

set to zero): 105 

 ℎ-�./ = ℎ-� B1 − ∆�23- 4 C-5
!

57/ D + ∆�23- 4 C-5ℎ5�
!

57/  

(10)  

 106 

Whereby C-5 = �-56-5 , and after �-5	replacement: 107 

 C-5 = ℎ-5� "#
�-5

+;,-5*+,,-5 6-5  
(11)  

 108 

All coefficients in Eq. (10) must be positive in order to ensure that the scheme remains stable and 109 

monotonic: 110 

 1 − ∆�23- 4C-5
!

-7/ > 0 
(12)  

 111 

For a regular grid 3- = ∆(� the final expression for the variable time step for the x direction can be 112 

obtained by replacing the water-level surface gradient vector in Eq. (11): 113 

 ∆�
< 3HIC( B3HIJ� B2∆(��-5 *�'�,-5ℎ-5K "# D , ∆�,-;D 	LMH	CNN	J, O 

(13)  

 114 



  

 

A similar expression exists for the y direction. The minimum of both is taken as the final ∆�. Eq. (13) 115 

is similar to the expressions found in other diffusive models (Hunter et al., 2005; and Cea et al., 116 

2010), however herein the smallest allowable time step is twice of those models; the gain comes 117 

from the fluxes discretization at the faces (Eq. (8)). Comparing with dynamic models (SWE), the P-118 

DWave time step is proportional to ∆(� instead of ∆(, that means that as long as ∆( remains larger 119 

than 1 m the P-DWave should be more efficient than the SWE (i.e. having less computational time 120 

and increasing quadratically with the cell size).	∆�,-; is justified in order to avoid a too lengthily 121 

computational time when limST→V W2∆(�� *STXY Z# [ = 0 and still avoid instabilities when the water is at 122 

near rest (�' ≈ 0). This solution is similar to the use of tolerance parameters as discussed by Hunter 123 

et al.(2005); and Cea et al. (2010); as such this value should also be decided based on the case study 124 

in order not to compromise accuracy. Despite the setting of a ∆�,-; the presented scheme is fully 125 

conservative up to machine precision as further discussed in the next sub-section 126 

 127 

2.3. Process representation of Wet-Dry fronts 128 

During a flooding event there will be inevitably initially dry cells that will switch to a wet state, 129 

whereas others will switch from wet to dry as the flood passes. This means that in many situations 130 

one must deal with a moving boundary condition. An often found solution when dealing with fixed 131 

computational meshes is the use of a depth-threshold or also called wet/dry parameter (Hubbard 132 

and Dodd, 2002). This procedure unfortunately adds/removes water to the global system that can 133 

either be redistributed to the surrounding cells (Nikolos and Delis, 2009) or negative mass-balance 134 

checks need to be incorporate to ensure mass conservation (Liang and Borthwick, 2009). 135 

Herein a different approach is presented whereby a ] parameter is introduced into the P-DWave 136 

continuity equation Eq. (7): 137 



  

 

 ℎ-�./ − ℎ-�∆� + 13- 4]5ℎ-5�-56-5
!

57/ = 
 
(14)  

 138 

In Eq. (14) ] is always set to 1 unless the water depth in the next time step falls below zero 139 

(ℎ-�./ < 0), in that case ] will take values between 0 < ] < 1 in order to prevent the water-depths 140 

from becoming negative. The following condition is applied: 141 

 

] = ]/...! =
_̀à
b 1 LMH ℎ-�./ > 0

∆(�∆� ℎ-� + 
∆�∑ ℎ-5�-56-5!57/ LMH ℎ-�./ < 0d 
(15)  

 142 

Eq. (15) allows the model to remain fully conservative up to machine precision. This is clear since ] 143 

parameter is updated for all 4 faces belonging to the cell (]/...!) enabling neighbouring cells to use 144 

the corrected ], avoiding negative water-depths and water gains or losses. Bradbrook et al. (2013) 145 

presented a similar approach but the scaling of the fluxes was still dependent on a minimum depth 146 

greater than 0 and absolute mass conservation was not attained. 147 

 148 

2.4. Parallel implementation of the code 149 

The code is implemented in both Matlab and Fortran environment. Fortan parallelization is achieved 150 

by implementing OpenMP Application Programming Interface (API) directives. OpenMP API is 151 

preferred to an MPI approach due to its ease of implementation with minimal changes to the non-152 

parallel version. Regarding Matlab , vectorised operations are used whenever possible to improve 153 

modelling efficiency. Vectorised code is more efficient than the traditional do-loop iterations; 154 

however not all computing steps are able to be vectorised. In the latter case, we take advantage of 155 



  

 

modern multi-CPUs and multicores and adopted the built-in parallel computing toolbox in the 156 

Matlab to accelerate the computation. 157 

The Matlab parallel computing toolbox provides several functions to use multicore processors, 158 

including parfor loop, GPU computing, spmd (single program multiple data), etc. When applying 159 

parfor loops, 2D arrays need to be sliced into multiple arrays such that each WORKER
1
 can update 160 

the variable to the sliced array without causing problems in the shared memory. After each iteration 161 

the sliced arrays are gathered back into the original 2D array such that all WORKERs can compute 162 

with the correct updated array in the next iteration.  163 

It should be noted that we also tested spmd approach (Matlab) on a multicore desktop but found 164 

the benefit to be limited on the shared memory computer. The application of spmd performs better 165 

on a distributed memory framework, which requires more attention on domain decomposition to 166 

ensure the optimum balance of load among computing nodes, and the minimum data to be 167 

synchronised. In the algorithm, the calculation of a cell requires information from its neighbour cells 168 

such that addition information of cells surrounding the decomposed domain is needed, which makes 169 

the domain decomposition a more complex task. Therefore, we leave the smpd implementation for 170 

a future stage when simulations with large scale data on distributed machines are required. 171 

 172 

3. Model Testing: results and discussion 173 

To assess the model performance seven tests are selected which enable studying specific flooding 174 

aspects and verify the model accuracy. The first and second tests were first presented in Hunter et 175 

al. (2005) and allow testing the model accuracy in propagating an inundation front. Third, fourth and 176 

fifth tests are taken from the Benchmark tests carried out by the UK Environmental Agency (EA) and 177 

allow a direct comparison with existing diffusive and dynamic models (Pender and Néelz, 2010). 178 

                                                        
1
 WORKER is the terminology used in Matlab to refer to a thread, i.e. the maximum number of processes that 

can be run simultaneously during a parallel session. 



  

 

Computational times are additionally given to allow the reader to compare  them with the various 179 

models ran in the EA. The sixth test was first presented by Wasantha Lal (1998). This test aims to 180 

quantitatively assess the model’s accuracy in propagating an inundation front in a 2D space. In the 181 

original paper the Authors offered a way to obtain a solution against which numerical models can be 182 

compared to. In the seventh and last test we recover the Wasantha Lal (1998) test to verify the 183 

efficiency of the Parallel coding. Herein computational times are also disclosed. 184 

 185 

3.1. Horizontal plane wetting 186 

The horizontal plane wetting test performed in a horizontal 5km long rectangular channel (slope=0) 187 

aims to test the model accuracy in propagating an inundation front. Hunter et al. (2005) showed that 188 

by considering a constant inflow at the left boundary it is possible to simplify the SWE and obtain an 189 

analytical solution. All boundary conditions are defined as closed except for the left boundary. The 190 

left boundary condition is obtained by setting the horizontal coordinate x equal to 0 in the analytical 191 

solution. The final expression for the boundary condition is presented in Eq. (16) : 192 

 ℎ/� = �73 �0.07 + ���/"���" g# 	�h�	
�/� = 1	�h/j� 

(16)  

 193 

Five different domains are defined in order to analyse the sensitivity of the model to the number of 194 

cells, CellNo={200, 100, 50, 25} (grid resolution of ∆(={25, 50, 100, 200} m). Five corresponding 195 

smallest allowable time steps are defined to each domain ∆�,-;={0.001, 0.05, 0.5, 1.0} s such that 196 

the variable time step remains smooth and the solution free of instabilities. The Manning’s 197 

coefficient=0.01 ho/ "# /j.  198 



  

 

Figure 1 compares the evolution of the Water-surface level for eight time steps predicted by the 199 

Model and the analytical solution. The P-DWave solution produces a water level profile consistent 200 

with the analytical solution across all number of cells discretized CellNo={200, 100, 50, 25} (grid 201 

resolution of ∆(={25, 50, 100, 200} m). Naturally as the number of cells decreases the ability to 202 

represent the curved stepped front is slightly impaired. Nonetheless the front location does not 203 

show signs of overshooting or delay. As discussed in section 2.2 depending on the case study it may 204 

be required testing different ∆�,-;  in order to find a solution with the wished level of accuracy. 205 

Figure 2 shows a smooth evolution of the time step with the iteration number (it). For the finer cell 206 

resolutions CellNo={200, 100} (∆(={25, 50}) Eq. (13) controls the maximum allowable time step. For 207 

CellNo={50, 25}(∆(={100, 200})  a maximum time step of 1 sec is imposed to provide a detailed 208 

output of the solution. The latter has no effect on the accuracy of the model since 1 sec is smaller 209 

than the maximum allowable time step. Quantitatively, Table 1 presents the Root Mean Square 210 

Error (RMSE) errors statistics of the Model solution compared with the analytical solution. The errors 211 

remain small across all solutions; the error exhibits similar behaviour and magnitudes to those 212 

obtained by Hunter et al. (2005). 213 

 214 

3.2. Inundation “wetting and drying” of a planar beach S≠0 215 

The inundation “wetting and drying” test of a planar beach with S≠0 allows tesUng the model ability 216 

to simulate advancing and receding of an inundation front. The test consists of a 5 km long channel 217 

with a slope of 0.001, whereby the left boundary condition is defined by a sinusoidal wave of 218 

amplitude 4m and 3000 sec period, as seen in Eq. (17). 219 

 ℎ/� = 4 sin s� t3000u	�h�	
�/ = 1 �h/j� 

(17)  

 220 



  

 

In order to analyse the sensitivity of the Model to Manning’s coefficient, four different values are 221 

simulated n={0.01,0.02,0.04,0.08} ho/ "# j. The domain is discretised with 100 cells with ∆x=50 m, 222 

and the smallest allowable time step ∆�,-; is equal to 0.001 s. Figure 3 shows the evolution of the 223 

Water-surface level for eight time steps predicted by the Model for the four tested Manning values. 224 

Although there is no analytical solution, the shape and front propagation is intuitively correct as it 225 

shows a marked step front which is delayed with the increase of the Manning’s coefficient and its 226 

behaviour is similar to the solution found in Hunter et al. (2005). This test case is nonetheless more 227 

demanding than the previous one because a nearly flat surface appears at x=0 m and becomes more 228 

pronounced before and after the receding phase (i.e. between t=1100 s and t=1900 s). The variable 229 

time step in Figure 4 shows a controlled jerky oscillation indicating that the time step has reached 230 

the smallest allowable time step. As the Manning’s coefficient is increased the required time step 231 

becomes larger than ∆txyz (as defined in Eq. (13)) and the oscillatory behaviour disappears. 232 

In the absence of an analytical solution, and in order to decide an acceptable value for the smallest 233 

allowable time step, a sensitivity analysis of the Model to ∆�,-; is sought. Here four different 234 

∆�,-;={0.001, 0.01, 0.1,1} s are compared with ∆�,-;=0.0005 s. Table 2 shows the corresponding 235 

RMSE (m) error statistics for four instants in time. In this case the error is calculated assuming that 236 

the solution with ∆�,-;=0.0005 s is our true solution. It is clear that as Manning’s coefficient reduces 237 

the ∆�,-; required becomes smaller; this is in line with Eq. (13). It is also noteworthy that the higher 238 

errors are found between t=1100 s and t=1900 s during the rising limb of the inundation front, 239 

clearly signalling that the smallest allowable time step has been reached and it should be decreased. 240 

For ∆�,-; smaller than 0.01 s the RMSE become negligible. Finally after the receding phase (or 241 

falling limb), the model recovers and reduces its RMSE. This rather surprising result can be partially 242 

explained by the wetting and dry treatment used herein; using Eq. (15) mass conservation is always 243 

ensured such that the actual volume of water within the model remains always correct. Depending 244 



  

 

on a favourable variation of the boundary conditions (such as in this test) it is possible that the 245 

model recovers to a state closer to the correct solution. 246 

 247 

3.3. Flooding a disconnected water body test 248 

This test is retrieved from the EA benchmarking test. It allows assessing the accuracy of the model to 249 

handle disconnected water bodies, and the wetting and drying of floodplains.  The domain is defined 250 

by a rectangular channel of 100x700 m
2
 with a Manning’s coefficient=0.03 ho/ "# j and discretised 251 

into CellNo=10x70 cells (∆(=10 m). ∆�,-; is set to 0.05 s and the maximum time step is set to 10 s. 252 

The left boundary condition is an inflow hydrograph specified by water levels in Eq.(18): 253 

 

ℎ-5� +�-5� =
_̀
a
b̀ 9.7 LMH � = 09.7 + V.|K"|VV � LMH � < 360010.35 LMH � = �3600, 36960�10.35 − V.|K|�!V �� − 36960� LMH � = �36960, 43200�9.7 LMH � > 43200

d                               
(18)  

The profile of the digital elevation model and the water-surface levels predicted by P-DWave at two 254 

specific points along the channel are presented in Figure 5. In addition the results from the various 255 

models in the EA are superimposed in order to enable easy accuracy comparison. 256 

In terms of accuracy, P-DWave predicted the beginning of the flow in Point 1 starting at 257 

approximately one hour and reaching the maximum water level after approximately four hours. The 258 

water level rise and receding  (starting at hour 12) are also predicted in good agreement with all 259 

other models (see e.g. ISIS 2D dynamic model (“Wallingford Software Ltd,” 2006) or the UIM 260 

diffusive wave model (Chen et al., 2005)). It is reasonable to conclude that the inertial terms could 261 

indeed be neglected as no obvious improvement in the results is seen by the dynamic models. In 262 

terms of computating time, P-DWave run is completed after 173 s (models’ times in the EA report 263 

vary between 1 s and 349 s), with a total number of 1410303 computational time steps, the 264 



  

 

observed average time step is 0.051 s which indicated that the model is for the most of the 265 

computational time steps equal to ∆�,-; = 0.05 s. 266 

 267 

 268 

3.4. Filling of floodplain depressions 269 

This test aims to assess the model’s ability to predict the inundation extent on a complex topography 270 

and to handle disconnected water bodies. The domain is defined by a squared area of 2000x2000 m
2
 271 

with a Manning’s coefficient=0.03 ho/ "# /j and discretised into CellNo=100x100 cells (∆(=20 m). 272 

The maximum time step is set to 10 s and ∆�,-; is set to 1.0 s The boundary condition is an inflow 273 

hydrograph (�-5� ) at the top left corner defined by Eq. (19): 274 

 

�-5� =
_̀̀
a
`̀b 0 LMH � = �0, 300�0 + �V"VV �� − 300� LMH � < 60020 LMH � = �600, 5160�20 − �V"V �� − 5160� LMH � = �5160, 5460�0 LMH � > 5460

d                               
(19)  

 275 

The final distribution of the flood inundation extent is consistent with that predicted by the full 276 

dynamic models used in the B-EA (Figure 6), as well as the filling up sequence and time as can be 277 

seen in the final water level points presented in Figure 7. The travels times in Points 4 and 2 are 278 

again consistent with all models, however some delay on the flood front can be observed in the 279 

points located further away from the inflow point (e.g. Point 10) as well as a slight overshoot of the 280 

flood peak in Point 4. It should be noted that while the overshoot is more noticeable in diffusive 281 

models’s results (e.g. UIM; Chen et al., 2005) similar delays can also been seen in the dynamic 282 

models’ results (e.g. JFLOW+; Bradbrook, 2006). Point 9 is never inundated as expected. Overall, the 283 

results support that the diffusive equations are indeed sufficient to simulate this test case. P-DWave 284 



  

 

run takes 110 s to complete (EA models’ times vary between 1 s and 1130 s), with 172224 285 

computational time steps and an average time step of 1.001 s. 286 

 287 

3.5. Rainfall and point source surface flow in urban areas 288 

This test aims to assess the model’s ability to simulate shallow inundation from a point source and 289 

from rainfall.  The domain is defined by an area of 0.4x0.96 m2 with a Manning’s coefficient=0.03 290 

ho/ "# /j for roads and pavements, and 0.05	ho/ "# /j elsewhere. The domain is discretised into 291 

CellNo=483x201 cells (∆(=2 m) (Figure 8). The maximum time step is set to 10 s and ∆�,-; is set to 292 

0.03 s The point source boundary condition is an inflow hydrograph (please refer to Pender and 293 

Néelz (2010)) and a uniform rainfall of 400 mm/h with 4 min duration and starting at minute 1. Total 294 

simulation time is 5 h. 295 

In terms of the final flood inundation extent the results are consistent with that predicted by the full 296 

dynamic models (Figure 8), although there are some differences in the maximum water levels 297 

reached which remain nonetheless within 0.1m (Figure 9). The differences are more obvious during 298 

the second flood peak caused by the inflow hydrograph in Points 1 and 2. As in the previous example 299 

similar behaviour is found in other diffusive models (e.g. UIM; Chen et al., (2005) and RFSM; 300 

Jamieson et al., (2012)). Overall, the flood peak times and water levels are within the limits predicted 301 

by the models in EA. P-DWave run takes 10378 s to complete (EA models’ times vary between 1 s 302 

and 18470 s), with 596795 computational time steps and an average time step of 0.0301 s. 303 

 304 

3.6. Axisymmetric test 305 

The Axisymmetric test allows testing the accuracy of the model to propagate an inundation front in a 306 

two-dimensional space (2D).  The domain is defined by a squared area of 160.93x160.93 km2 with a 307 



  

 

Manning’s coefficient=1.0 ho/ "# /j and discretised in CellNo=50x50 cells (∆( =3218.7 m). The initial 308 

condition is a smooth cosine function as defined by Eq. (20): 309 

 310 

 ℎ-5/ = �0.4575 + 0.1525cos WtH-5H,��[� �h�					LMH					H-5 ≤ H,�� 	
ℎ-5/ = 0.305	�h�																																																	M�ℎ�H�Jj�                                              

(20)  

 311 

In Eq. (20) H-5  is the distance of each grid point from the domain centre with a H,�� = 32.188	h. 312 

Due to its symmetry around the axis it is possible to derive an axisymmetric continuity equation for 313 

shallow water flows. The modified 1D diffusion equation can then be solved using a very fine grid 314 

with fix ∆� =26s and compared with the 2D model as in Wasantha Lal (1998). The solution from this 315 

fine model is termed herein the Axisymmetric solution. 316 

The water-surface level and velocity fields are shown in Figure 10 for four time steps �={2, 3, 9, 12}  317 

(t is here represented in days (d)) predicted by the model for four different smallest allowable time 318 

steps ∆�,-;={100, 500, 2000, 8000} s and compared with the Axisymmetric solution. The model 319 

solution is in good agreement with the Axisymmetric solution with a slight smoothing of the solution 320 

for higher	∆�,-;; this can also be inferred by the RMSE error statistics in Table 3 which exhibit 321 

smaller errors than the numerical solutions obtained by Wasantha Lal (1998). The velocity fields 322 

show that the solution remains symmetric in respect to both axis with time. Also noteworthy are the 323 

velocity low values of this particular test due to the high Manning’s coefficient used
2
.  324 

It is clear that ∆�,-; is the dominant restriction in Eq. (13). Figure 11 shows that as ∆�,-; reduces, 325 

the variable time step is subsequently reduced. Despite the fact that the variable time step is often 326 

                                                        
2
 In the Author’s opinion, the Manning’s value is unrealistically high and can only be justified by the large ∆( =3218.7 m which would then encompass the added roughness by houses, roads and other overland flow 

obstructions.  



  

 

equal to ∆�,-; and not the one obtained through the stability analysis in Eq. (12), Figures 10 and 11 327 

show that it is possible that the model simulation still converges to the correct solution. There are 328 

nonetheless, some visible oscillations in the water level for the larger ∆�,-;=8000 s. This test will 329 

also be used in Section 3.7 for testing the efficiency of the parallelization coding of the model. 330 

 331 

3.7. Parallel performance test: Speed-up and efficiency  332 

The final test has the objective of verifying the parallel performance. The test in section 3.6 is here 333 

recovered because it uses a 2D mesh and it is easily scalable. In section 3.6 a mesh with 334 

CellNo=50x50 cells was used, herein we will test four different CellNo={300x300, 500x500, 700x700, 335 

900x900} (∆( ={536.4, 321.9, 229.9, 178.8} m) with ∆�,-;=500 s. In order to compare and verify the 336 

parallel performance we raise the number of cells and therefore increase the computational effort 337 

by a quadratic exponent (see Eq. (14)). The two common metrics used in this paper are speed-up 338 

and efficiency (Table 4) and follow the notation by Yu (2010). Speed up is defined as the ratio 339 

between the single processor execution time and that of the multi-processor:  340 

 �����, �� = �S-;��������,���-������, �� 
(21)  

 341 

In Eq. (21) �S-;������� is the run time of the sequential algorithm, and �,���-������, �� is the run 342 

time of the parallel algorithm using P core-processors. Efficiency is defined by Eq. (22): 343 

 ����, �� = �����, ��P  
(22)  

 344 



  

 

The total run time is set to 1 hour since we are only focusing on the computational efficiency of the 345 

model. The tests were conducted on a workstation with AMD Opteron™ Processor 6276 with 12 346 

cores 2.3GHz CPU and 192GB of RAM at RUHR University of Bochum. 347 

It is interesting to notice that although Matlab computational times are larger than Fortran, Matlab 348 

speed-up performs better than Fortran. Two possible explanations could be the highly efficient 349 

Fortran code which sees smaller gains through parallelizing than Matlab or that a more complex 350 

Fortran MPI approach is required to increase the gains in speed-up closer to Matlab performance. In 351 

any case it is clear that the model developed is indeed scalable.  It is also noteworthy that depending 352 

on the CellNo and the measure adopted to describe efficiency, the optimal use of number of 353 

processors might be different. Purely looking at the computational time it seems obvious that the 354 

maximal possible number of processers should always be selected; however once one focus on the 355 

speed-up, it becomes obvious that there is an improvement limit, simply because the 356 

communication costs between processors becomes too high (Yu, 2010). In that case Efficiency can 357 

be a simple way to decide on the number of processors to use. For example, if one selects a 358 

minimum efficiency of 0.75 and the Matlab code two processors would be the optimal choice for 359 

CellNo=300x300, four processors would only be worth it from CellNo=700x700 and for 12 processors 360 

a much larger CellNo would be necessary.  361 

Lastly, it is worth mentioning that the speedup and efficiency obtained herein with the Matlab code 362 

exhibit a behaviour similar (and magnitudes) to the ones obtained by Yu (2010) and Neal, Fewtrell, & 363 

Trigg (2009). Future work will see the implementation of the MPI approach using Fortran. 364 

 365 

4. Conclusion 366 

In this paper we presented a parallelized two-dimensional diffusive wave model (P-DWave) with 367 

adaptive time step. The parallelization was achieved in the Matlab environment with the use of the 368 

parfor loop, and using computational vectorization whenever possible, while in Fortran it was 369 



  

 

achieved using OpenMP API. The model was validated in seven tests against known analytical 370 

solutions, and diffusive and dynamic models results from an EA benchmark report. The model 371 

converged regardless of the spatial resolution as long as the selected minimum step was not too 372 

limiting (this limit is found to be case study dependent), and showed sensitivity to the changes of 373 

Manning’s roughness in a sloped planar beach.  Symmetry was kept in the test case of a horizontal 374 

plane, and the model was proven robust even in the presence of strong irregular geometries. The 375 

process devised to represent Wet-Dry fronts was effective in keeping a sharp front, while the 376 

variable time step kept the solution stable and oscillations-free in all tests 377 

The parallelization strategy was indeed effective, by improving the speed-up times from 1.7 to 5.1  378 

and from 1.2 to 1.7 respectively for Matlab and Fortran, depending on the domain size and the 379 

number of processors used. The speed-up increases as the domain size becomes larger or the 380 

number of processors progressively increases. Efficiency follows a similar trend in relation to the 381 

domain size increase, but it can half its value as the number of processors change from 2 to 12 382 

processors. Similarly to other Authors’ results this is attributed to the communication costs between 383 

processors. Future work may see the parallelization of this same code in a different programming 384 

language or using another parallelization strategy to analyse the potential benefits, and inclusion of 385 

the dynamic terms in the code developed for a thorough discussion on the differences in 386 

computational run times. 387 
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Figures 473 

 474 

Figure 1. Water-surface level for the “horizontal plane wetting”  test predicted by P-DWave and the 

analytical solution (dashed line). Sensitivity analysis to the number of cells CellNo={200, 100, 50, 25} 

(∆(={25, 50, 100, 200} m) with ∆�,-;={0.001, 0.05, 0.5, 1.0} s on the front propagation.  

 475 

 

Figure 2. Evolution of the time step solution with the iteration number (it) as a function of the 

number of cells discretised CellNo={200, 100, 50, 25} (∆(={25, 50, 100, 200} m) with ∆�,-;={0.001, 

0.05, 0.5, 1.0} s during the horizontal plane wetting simulation. 

 476 

 477 



  

 

 

Figure 3. Sensitivity analysis of the predicted water-surface level propagation to Manning’s 

coefficient for the “inundation of a planar beach” S≠0 test (∆x=50 m and ∆txyz=0.001 s). 

 478 

 

Figure 4. Evolution of the time step solution with the iteration number (it) as a function of Manning’s 

coefficient n={0.01,0.02,0.04,0.08} ho/ "# j and ∆txyz=0.001 s during the Inundation of a planar 

beach S≠0 simulation. 

 479 
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Figure 5. Profile of the digital elevation model (DEM) (left). Water-surface levels at points 1 and 2 for 

the “flooding a disconnected water body” test predicted by P-DWave and superimposed with the 

various models’ results published in the EA benchmark (Pender and Néelz, 2010) test for comparison 

(middle and right). 
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Figure 6. Map of the DEM showing the points locations where water levels are recorded (left). Final 

inundation predicted by P-DWave (right). 
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Figure 7. Water-surface level for the “filling of floodplain depressions” test predicted by P-DWave 

superimposed with the results from the models published in the EA benchmark (Pender and Néelz, 

2010) test for comparison.  

 486 

  

Figure 8. Map of the DEM showing the points locations where water levels are recorded (black 

dots) and the inflow hydrograph location (red dot) (left). Final Inundation predicted by P-DWave 

overlapped with the models’s flood extents in the EA report (Pender and Néelz, 2010) (right). 
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Figure 9. Water-surface level for the “rainfall and point source surface flow in urban areas” test 

predicted by P-DWave superimposed with the results from the models published in the B-EA test 

(Pender and Néelz, 2010).  



  

 

 488 

    

    

Figure 10. Water-surface level and velocity fields (∆�,-;=100 s) for the “Axisymmetric” test predicted by the 

P-DWave and the Axisymmetric model solution (dashed line) on the front propagation. Sensitivity analysis of 

the water-surface centre profile for  ∆�,-;={100, 500, 2000, 8000} s and CellNo=50x50 (∆( =3218.7 m).  
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Figure 11. Evolution of the time step solution with the iteration number (it) as a function of the 

smallest allowable time step ∆�,-;={100, 500, 2000, 8000} s with CellNo=50x50 (∆( =3218.7 m) 

during the Axisymmetric test. 
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Tables 492 

 493 

Table 1. RMSE (m) statistics for the “horizontal plane wetting” predicted by using CellNo={200, 100, 494 

50, 25} (grid resolution of ∆(={25, 50, 100, 200} m) with ∆�,-;={0.001, 0.05, 0.5, 1.0} s compared 495 

with the analytical solution for 8 instants in time. 496 

RMSE (m) t (s) 

CellNo 500 900 1400 1800 2300 2700 3200 3600 

200 0.005 0.007 0.009 0.010 0.012 0.013 0.015 0.016 

100 0.010 0.013 0.016 0.018 0.022 0.025 0.027 0.030 

50 0.019 0.025 0.031 0.034 0.040 0.045 0.050 0.054 

20 0.028 0.038 0.048 0.058 0.065 0.077 0.084 0.093 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 



  

 

Table 2. RMSE (m) statistics for the “inundation of a planar beach” S≠0 predicted by using 507 

∆�,-;={0.001, 0.01, 0.1,1} s and n={0.01,0.02,0.04,0.08} ho/ "# j compared with ∆�,-;=0.0005 s, for 508 

four instants in time. 509 

RMSE (m)  t = 400 s     t = 1100 s 

 

∆�,-; (s) 

 

∆�,-; (s) 

n (s/m
1/3

) 0.001 0.01 0.1 1   0.001 0.01 0.1 1 

0.01 0.000 0.000 0.000 0.245 

 

0.000 0.000 0.515 1.357 

0.02 0.000 0.000 0.000 0.016 

 

0.000 0.000 0.004 1.009 

0.04 0.000 0.000 0.000 0.002 

 

0.000 0.000 0.000 0.552 

0.08 0.000 0.000 0.000 0.000 

 

0.000 0.000 0.000 0.017 

 510 

RMSE (m) t = 1900 s     t = 3000 s 

 

∆�,-; (s) 

 

∆�,-; (s) 

n (s/m
1/3

) 0.001 0.01 0.1 1   0.001 0.01 0.1 1 

0.01 0.000 0.001 0.537 1.347 

 

0.000 0.000 0.052 0.167 

0.02 0.000 0.000 0.173 1.252 

 

0.000 0.000 0.029 0.323 

0.04 0.000 0.000 0.022 0.994 

 

0.000 0.000 0.001 0.356 

0.08 0.000 0.000 0.000 0.328 

 

0.000 0.000 0.000 0.121 

Note: RMSE >0.20m , >0.50m , >1.00m   511 

Table 3. RMSE (m) error statistics for the Axisymmetric test predicted by using ∆�,-;={100, 500, 512 

2000, 8000} s and CellNo=50x50 (∆( =3218.7 m) compared with the analytical solution, for four 513 

instants in time. 514 

RMSE (m) t (d) 

∆txyz 2 3 9 12 

100 0.004 0.004 0.004 0.004 

500 0.004 0.004 0.005 0.005 

2000 0.004 0.004 0.005 0.005 

8000 0.006 0.006 0.006 0.006 

 515 



  

 

Table 4. Efficiency statistics of the Matlab and Fortran codes for the Axisymmetric test for 516 

CellNo={300x300, 500x500, 700x700, 900x900} (∆( ={536.4, 321.9, 229.9, 178.8} m) with 517 

∆�,-;=500 s and one hour simulation time: Computational Time in seconds, Speed-up and 518 

Efficiency. 519 

 Code  Parallel Computational Time (s)  Speed-up   Efficiency 

 

Performance Number of processors  Number of processors  Number of processors 

 

CellNo (∆(	�h�� 1 2 4 12 

 

1 2 4 12  1 2 4 12 

Matlab 300x300 (536.4) 125.9 75.2 47.8 33.1 

 

1 1.7 2.6 3.8 

 

1 0.84 0.66 0.32 

 500x500 (321.9) 348.8 196.0 120.9 75.5 

 

1 1.8 2.9 4.6 

 

1 0.89 0.72 0.38 

 700x700 (229.9) 716.0 379.6 227.6 139.0 

 

1 1.9 3.1 5.2 

 

1 0.94 0.79 0.43 

 900x900 (178.8) 1171.0 625.7 373.5 230.1 

 

1 1.9 3.1 5.1 

 

1 0.94 0.78 0.42 

Fortran 300x300 (536.4) 10.7 9.4 8.8 7.3 

 

1 1.1 1.2 1.5 

 

1 0.57 0.30 0.12 

 500x500 (321.9) 34.5 28.2 25.6 20.5 

 

1 1.2 1.3 1.7 

 

1 0.61 0.34 0.14 

 700x700 (229.9) 66.0 56.3 52.5 39.8 

 

1 1.2 1.3 1.7 

 

1 0.59 0.31 0.14 

 900x900 (178.8) 108.6 89.8 82.3 72.7 

 

1 1.2 1.3 1.5 

 

1 0.60 0.33 0.12 

 520 
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Figure Caption 532 

Figure 1. Water-surface level for the “horizontal plane wetting”  test predicted by P-DWave and the 

analytical solution (dashed line). Sensitivity analysis to the number of cells CellNo={200, 100, 50, 25} 

(∆(={25, 50, 100, 200} m) with ∆�,-;={0.001, 0.05, 0.5, 1.0} s on the front propagation. 

Figure 2. Evolution of the time step solution with the iteration number (it) as a function of the 

number of cells discretised CellNo={200, 100, 50, 25} (∆(={25, 50, 100, 200} m) with ∆�,-;={0.001, 

0.05, 0.5, 1.0} s during the horizontal plane wetting simulation. 

Figure 3. Sensitivity analysis of the predicted water-surface level propagation to Manning’s 

coefficient for the “inundation of a planar beach” S≠0 test (∆x=50 m and ∆txyz=0.001 s). 

Figure 4. Evolution of the time step solution with the iteration number (it) as a function of 

Manning’s coefficient n={0.01,0.02,0.04,0.08} ho/ "# j and ∆txyz=0.001 s during the Inundation of a 

planar beach S≠0 simulation. 

Figure 5. Profile of the digital elevation model (DEM) (left). Water-surface levels at points 1 and 2 

for the “flooding a disconnected water body” test predicted by P-Dwave and superimposed with the 

various models’ results published in the EA benchmark (Pender and Néelz, 2010) test for 

comparison (middle and right). 

Figure 6. Map of the DEM showing the points locations where water levels are recorded (left). Final 

inundation predicted by P-Dwave (right). 

Figure 7. Water-surface level for the “filling of floodplain depressions” test predicted by P-Dwave 

superimposed with the results from the models published in the EA benchmark (Pender and Néelz, 

2010) test for comparison. 

Figure 8. Map of the DEM showing the points locations where water levels are recorded (black dots) 

and the inflow hydrograph location (red dot) (left). Final Inundation predicted by P-Dwave 

overlapped with the models’s flood extents in B-EA (Pender and Néelz, 2010) (right). 



  

 

Figure 9. Water-surface level for the “rainfall and point source surface flow in urban areas” test 533 

predicted by P-Dwave superimposed with the results from the models published in the B-EA test 534 

(Pender and Néelz, 2010). 535 

Figure 10. Water-surface level and velocity fields (∆�,-;=100 s) for the “Axisymmetric” test 536 

predicted by the P-Dwave and the Axisymmetric model solution (dashed line) on the front 537 

propagation. Sensitivity analysis of the water-surface centre profile for  ∆�,-;={100, 500, 2000, 538 

8000} s and CellNo=50x50 (∆( =3218.7 m). 539 

Figure 11. Evolution of the time step solution with the iteration number (it) as a function of the 

smallest allowable time step ∆�,-;={100, 500, 2000, 8000} s with CellNo=50x50 (∆( =3218.7 m) 

during the Axisymmetric test. 
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Graphical Abstract 552 

    

    
Figure 10. Water-surface level and velocity fields (∆�,-;=100 s) for the “Axisymmetric” test predicted by the 

P-DWave and the Axisymmetric model solution (dashed line) on the front propagation. Sensitivity analysis of 

the water-surface centre profile for  ∆�,-;={100, 500, 2000, 8000} s and CellNo=50x50 (∆( =3218.7 m). 

 553 

Table 4. Efficiency statistics of the Matlab and Fortran codes for the Axisymmetric test for 554 

CellNo={300x300, 500x500, 700x700, 900x900} (∆( ={536.4, 321.9, 229.9, 178.8} m) with 555 ∆�,-;=500 s and one hour simulation time: Computational Time in seconds, Speed-up and 556 

Efficiency. 557 

 Code  Parallel Computational Time (s)  Speed-up   Efficiency 

 

Performance Number of processors  Number of processors  Number of processors 

 

CellNo (∆(	�h�� 1 2 4 12 

 

1 2 4 12  1 2 4 12 

Matlab 300x300 (536.4) 125.9 75.2 47.8 33.1 
 

1 1.7 2.6 3.8 
 

1 0.84 0.66 0.32 

 500x500 (321.9) 348.8 196.0 120.9 75.5 
 

1 1.8 2.9 4.6 
 

1 0.89 0.72 0.38 

 700x700 (229.9) 716.0 379.6 227.6 139.0 
 

1 1.9 3.1 5.2 
 

1 0.94 0.79 0.43 

 900x900 (178.8) 1171.0 625.7 373.5 230.1 
 

1 1.9 3.1 5.1 
 

1 0.94 0.78 0.42 

Fortran 300x300 (536.4) 10.7 9.4 8.8 7.3 
 

1 1.1 1.2 1.5 
 

1 0.57 0.30 0.12 

 500x500 (321.9) 34.5 28.2 25.6 20.5 
 

1 1.2 1.3 1.7 
 

1 0.61 0.34 0.14 

 700x700 (229.9) 66.0 56.3 52.5 39.8 
 

1 1.2 1.3 1.7 
 

1 0.59 0.31 0.14 

 900x900 (178.8) 108.6 89.8 82.3 72.7 
 

1 1.2 1.3 1.5 
 

1 0.60 0.33 0.12 
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Highlights 568 

• We develop a parallel 2D diffusive wave model in Matlab and Fortan 569 

• We achieved speed-up times ranging from 1.2 to 5.2 using 2 to 12 processors 570 

• The variable time step method and the process for Wet-dry fronts kept the solution stable 571 

• Absolute mass conservation is obtained in all seven tests used to validate the Model 572 
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