
Accepted Manuscript

Short communication

Optimized Fast Walsh-Hadamard Transform on GPUs for Non-Binary LDPC
Decoding

Joao Andrade, Gabriel Falcao, Vitor Silva

PII: S0167-8191(14)00081-7
DOI: http://dx.doi.org/10.1016/j.parco.2014.07.001
Reference: PARCO 2196

To appear in: Parallel Computing

Please cite this article as: J. Andrade, G. Falcao, V. Silva, Optimized Fast Walsh-Hadamard Transform on GPUs
for Non-Binary LDPC Decoding, Parallel Computing (2014), doi: http://dx.doi.org/10.1016/j.parco.2014.07.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.parco.2014.07.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2014.07.001

Optimized Fast Walsh-Hadamard Transform on GPUs

for Non-Binary LDPC Decoding

Joao Andrade1,∗, Gabriel Falcao, Vitor Silva

Instituto de Telecomunicações, Department of Electrical and Computer Engineering

University of Coimbra, 3030-290 Coimbra, Portugal

Abstract

The Fourier Transform Sum-Product Algorithm (FT-SPA) used in non-binary
Low-Density Parity-Check (LDPC) decoding makes extensive use of the
Walsh-Hadamard Transform (WHT). We have developed a massively paral-
lel Fast Walsh-Hadamard Transform (FWHT) which exploits the Graphics
Processing Unit (GPU) pipeline and memory hierarchy, thereby minimizing
the level of memory bank conflicts and maximizing the number of returned
instructions per clock cycle for different generations of graphics processors,
with considerable speedup gains in FT-SPA based non-binary LDPC decod-
ing.

Keywords: Non-Binary LDPC Codes, Parallel Processing,
Walsh-Hadamard Transform

1. Introduction

Non-binary Low-Density Parity-Check (LDPC) decoding is a relatively
new area of research in digital communications. Non-binary LDPC codes are
known for having superior Bit Error Rate (BER) performance regarding to
the binary case [1]. In order to accommodate the high computational power
demanded, ASIC decoders have already been developed [2]. We propose a
new GPU-based approach that exploits the processing power of modern mul-
ticore systems. Among all the sub-kernels of the Fourier domain decoder [3],

∗Corresponding author: joao.andrade@co.it.pt.
1This work was supported by Fundação para a Ciência e Tecnologia scholarship grant

SFRH/BD/78238/2011 and project grant PEst-OE/EEI/LA0008/2013.

Preprint submitted to Parallel Computing July 7, 2014

the Walsh-Hadamard Transform (WHT) presents the highest computational
workload, occupying 45∼95% of the global processing time [4, 5], and its ef-
ficient parallelization is absolutely fundamental and represents a challenge if
the memory hierarchy of the GPU system is fully exploited, as it should be.
In particular, we analyse different radix-n factorizations [6] and address the
performance impact of memory bank conflicts occurring on the fast shared
memory of the GPU system.

2. The FWHT role in the SPA LDPC Decoding Context

The Sum-Product Algorithm (SPA), used for decoding binary LDPC
codes can be extended to deal with LDPC codes over GF(2m) [1]. Its numer-
ical complexity, however, grows non-linearly with the field’s order m which
detracts its usage as a suitable decoding algorithm over GF(2m), namely due
to the Check Node (CN) processing step [1, 3]:

m(i)
cv

(x)=
∑

v:vz=x

p(zc = 0|v)
∏

v
′
∈V (c)\c

m
v

′
c
(x),∀x ∈ GF(2m) , (1)

where dc denotes the CN degree; mcv and mvc are the messages exchanged
from CN to Variable Node (VN) and from VN to CN respectively; V (c) \
v is the set of all VNs participating in parity-check equation zc evaluated
for a given v ∈ GF(2m); and p(zc = 0|v) evaluates to one whenever the
combination of the remaining VNs verify the parity-check equation. The
complexity of equation (1), follows O(M · dc · 2dc·m) and can be ameliorated
by switching from the probability mass function (pmf) domain to the Fourier
domain [7], which transforms the convolution (1) into a product:

m(i)
cv

(x)=WHT

∏

v
′
∈V (c)\c

WHT {m
v

′
c
(x)}

. (2)

Equation (2) uses the WHT instead of the DFT since the Fourier Transform
of probability mass functions (pmfs) defined over GF(2m) consists of the
WHT, which possesses the involution property [7]. Hence, instead of utilizing
the Fast-Fourier Transform (FFT) algorithm we can interchange the domain
through the Fast Walsh-Hadamard Transform (FWHT) (2). The Walsh-
Hadamard matrix is obtained by following the Kroenecker product

⊗

[6]:

H2k=H2

⊗

H2k−1 , where H2 =

[

1 1
1 −1

]

. (3)

2

Since the numerical complexity of (2) is O(M ·dc ·m ·2m) and the FWHT fol-
lows O(2m log2 2m), the FWHT represents the highest computational burden
in (2). One of the primary challenges of the Fourier Transform Sum-Product
Algorithm (FT-SPA) decoder is to develop an efficient FWHT, as we have
identified in [4]. The LDPC decoding context favours the execution of several
WHTs in parallel, one transform per each pmf vector [7]. Thus, there are two
levels of parallelism exposed: i) intra-FWHT by assigning multiple threads
to compute the WHT; and ii) inter-FWHT by computing several transforms
per execution grid, assigning one block per transform. Other authors have
considered the probability and the log-likelihood domains to develop non-
binary LDPC decoding algorithms on GPU [8, 9, 10] that do not consider
the use of the FWHT.

3. Parallel FWHT on GPU

The Compute Unified Device Architecture (CUDA) GPU engine is a
heavily-threaded processor, capable of launching several thousands of con-
current threads which execute a kernel. It is composed of several Streaming
Processors (SPs) grouped into Stream Multiprocessors (SMs) where spawned
threads run in an execution grid. The grid defines a number of blocks with a
given pre-selected thread width. Threads belonging to the same block have
access to synchronization and memory fencing functions. Its memory hier-
archy is shown in Figure 1, and it comprises the following memory spaces:
the register file; the on-chip shared-memory space – organized in B mem-
ory banks – where threads belonging to the same thread block can exchange
data; the L1-cached read-only constant memory; and the off-chip global mem-
ory providing high latency and high bandwidth and an addressing space for
CPU-GPU communication [11].

For the GPU platform, we are interested in exploring the parallel ca-
pabilities of the hardware and also in exploiting the memory hierarchy in
order to find the best performing solution. We have analyzed transform sizes
N = {128, 256}, which are high-order finite field dimensions under the non-
binary LDPC decoding context [4, 7]. Thus, we are able to define FWHT
kernels that fully utilize the low latency, high bandwidth register file and
shared memory spaces, by developing a GPU-aware parallel FWHT with
two-levels of parallelism, as shown in Figure 1. Complementary to the work
presented in [4], we focus on the particularities of the shared memory archi-
tecture across the CUDA GPUs that enable high throughput computation

3

of the FWHT in the GPU engine.
A naive view of the FWHT computation is shown in Figure 1. Shuffling

data through the global memory would prove too slow due to high latency
accesses, but use of the shared memory space requires proper alignment of
the data elements. In the illustrated example, whenever thread ti accesses
the same bank no conflict occurs, although when ti needs to access differ-
ent banks, it creates a conflict with other threads. For instance, bank 0
is accessed conflict free on the first stage but is accessed with conflict by
threads t0 and t2 in both the second and third stage, respectively. Also,
arbitrary strided shared memory accesses on the GPU can unravel bank con-
flicts. Assuming threads access data with a stride s, threads tid and tid + n
will create a bank conflict when s×n is a multiple of B. Considering that
B={16, 32} [11], this conflict occurs whenever n is a multiple of B/d, d the
greatest common divisor of B and s, hence no conflict occurs when s is odd.

Hence, conflict free bank access can be addressed by using a proper access
ordering of the data elements for each transform stage [12], which exploit the
thread scheduler ability to mask computation with memory accesses. Defin-
ing the correct stride s requires an allocated shared memory space larger than
the dimension of the FWHT, in order to find d=1. In this case, the classical
in-place computation must be dropped in favour of out-place computation.
By ensuring that d remains 1, equivalently making the stride s odd, threads
tid and tid+n will access the same bank only when n=B, which unfolds two
distinct memory transactions, and no conflicts occur on the shared memory.
This lead to the development of a mixed radix [6] FWHT factorization based
on radix-4 and -8 for N = 128, and radix-4 for N = 256, using 64 threads
per block. This allowed us to find d = 1 for all stages in a B=32 GPU, but
not for all stages when N=256 and B=16.

4. Experimental results

The tests were run on a 12GB of RAM Intel i7 950 @ 3.07GHz 64-bit
GNU/Linux 3.4.4 platform with three GPUs: a) a Tesla C1060 (B=16); b)
a Tesla C2050 (B=32); c) and a GeForce GTX680 (B=32), using CUDA
5.0 [11]. The proposed kernels were benchmarked against the 16-bank op-
timized radix-2 FWHT [13], which computes one WHT per block for 128-
threaded blocks, and used in the LDPC decoder available at [5], computing
768 WHTs in parallel.

4

Table 1: Throughput and profiling metrics shown for the developed 16- and 32-bank opti-
mized, and for the 16-bank optimized [13] FWHT kernels. The throughput is expressed as
the number of Walsh-Hadamard Transforms computed per millisecond (WHTs/ms). The
profile metrics included are: Instructions per Clock (IPC) and bank conflict probability
handled by the memory engine.

Optimization GPU N WHTs/ms IPC
Bank Conf.
Prob. (%)

Ours, B = 16

a)
128 37434

N/A
0

256 18665 0.25

b)
128 67766 0.678 0.51
256 18783 0.578 0.69

c)
128 69521 0.731 0.44
256 17178 0.509 1.34

Ours, B = 16

a)
128 38959

N/A
0

256 27303 0.07

b)
128 75007 0.725 0
256 34035 0.938 0

c)
128 72754 0.788 0
256 51699 1.424 0

B = 16 [13]
a)

256
3531 N/A 2.01

b) 4039 0.364 5.92
c) 3138 0.278 4.85

5

The obtained results are shown in Table 1. As expected, the GPU mem-
ory engine handled the fewer bank conflicts for the versions that matched the
number of banks they were optimized for. The FWHT used to benchmark
has been developed for N = 256 using a greedy algorithm for reducing the
number of bank conflicts on B=16 bank architectures [13]. This, however,
has a bank conflict probability an order of magnitude higher than that of the
proposed B=16 bank optimized FWHT on B=32 bank architectures. In fact,
running the algorithm on the architecture for which it has been optimized,
produces speedups of 1.08 and 1.81, for N=128 and N=256, respectively, on
the compute capability 2.0 GPU device. For the same settings, on the 3.0
compute capability processor, speedups obtained were 1.04 and 3.01, also for
N=128 and N=256, respectively. In relative terms, the bank conflict prob-
ability is very low, at most 1.34% for the proposed implementations and at
most 5.92% for the FWHT proposed in [13]. However, the overall effect in
terms of IPC variation, shown in Table 1, is significant. For N=256 on the
2.0 GPU, eliminating the 0.69% bank conflict probability leads to an IPC
increase of ∼ 50%, while on the 3.0 GPU the 1.34% of conflicting accesses
leads to a three-fold increase in the achieved IPC. For N=128 on the 3.0
GPU, eliminating the 0.44% probability elevated the IPC by 1.09. The po-
tential penalization incurred with even a low probability of bank conflicts
justifies the development of proficient bank conflict-free accesses on the GPU
engine. The most efficient FWHT achieves a ∼10 times speedup when com-
pared with the benchmark FWHT in [13], being able to lower the FWHT
execution time from 45% to 95% of the total FT-SPA decoding time [4].

The impact of the variation in bank conflict probability on the throughput
can be assessed by comparing the FWHT optimized for B = 32 with the one
for B=16, since the former always yields lower conflict probabilities than the
latter. The speedup range for this comparison is represented in Figure 2,
and spans from 1.04 to 3. As expected the highest speedup occurs for point
F at 3 which experienced a 1.34% conflict probability reduction, whereas
point A sees a negligible 1.04 speedup. As observed, speedups are higher for
the larger 256-point FWHT, regardless of experiencing a lower variation in
bank conflict probability as seen with setups B and D (B=32) and C and E
(B=16), experiencing speedups of 1.46, 1.81, 1.11 and 1.05, for variations of
0.18%, 0.69%, 0.51% and 0.44%, respectively.

6

5. Conclusions

The developed parallel FWHT kernels exploit the full memory hierar-
chy of the GPU, minimizing the number of bank conflicts for shared mem-
ory accesses, and achieved very high throughput performances, one order of
magnitude higher than the benchmarked FWHT [13]. Moreover, we have
shown that even very small bank conflict probabilities on the shared memory
accesses can be dauntingly penalizing over the achieved performance. There-
fore, bank conflict elimination should be tightly connected to the develop-
ment of GPU algorithms which maximize the obtained arithmetic intensity.
The impact of the optimizations carried out can increase the throughput of
the FWHT from 45% to 95% of the total computation time for the FT-SPA
algorithm [4].

References

[1] M. Davey, D. J. C. MacKay, Low Density Parity Check Codes over
GF(q), in: Information Theory Workshop, 1998, 1998, pp. 70–71.

[2] A. Voicila, F. Verdier, D. Declercq, M. Fossorier, P. Urard, Architecture
of a Low-complexity Non-binary LDPC Decoder for High Order Fields,
in: IEEE ISCIT2007, 2007, pp. 1201–1206.

[3] L. Barnault, D. Declercq, Fast Decoding Algorithm for LDPC over
GF(2q), in: Information Theory Workshop, 2003, 2003, pp. 70–73.

[4] J. Andrade, G. Falcao, V. Silva, K. Kasai, FFT-SPA Non-binary LDPC
Decoding on GPU, in: IEEE ICASSP 2013, 2013, pp. 5099–5103.

[5] K. Kasai, Y. Fujisaka, M. Onsjo, FFT-Based Parallel Decoder of Non-
Binary LDPC Codes on GPU: KFO NBLDPC GPU, [Online; accessed
February/2014]. URL : http://www.comm.ss.titech.ac.jp/~kenta/
KFO_NBLDPC_GPU.tar.gz

[6] C. V. Loan, Computational Frameworks for the Fast Fourier Transform,
Society for Industrial and Applied Mathematics, Philadelphia, 1992.

[7] R. A. Carrasco, M. Johnston, Non-Binary Error Control Coding for
Wireless Communication and Data Storage, Wiley, Chichester, 2008.

7

[8] G. Wang, H. Shen, B. Yin, M. Wu, Y. Sun, J. Cavallaro, Parallel Non-
binary LDPC Decoding on GPU, in: IEEE ASILOMAR 2012, 2012, pp.
1277–1281.

[9] D. Romero, N. Chang, Sequential Decoding of Non-binary LDPC Codes
on Graphics Processing Units, in: IEEE ASILOMAR 2012, 2012, pp.
1267–1271.

[10] M. Beermann, E. Monro, L. Schmalen, P. Vary, High Speed Decoding
of Non-binary Irregular LDPC Codes using GPUs, in: IEEE SiPS 2013,
2013, pp. 36–41.

[11] NVIDIA, CUDA C Programming Guide 5.5, NVIDIA, 2013.

[12] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, J. Manferdelli, High
Performance Discrete Fourier Transforms on Graphics Processors, in:
ACM/IEEE SC 2008, 2008, pp. 1–12.

[13] M. Onsjo, K. Kasai, O. Watanabe, CUDA Implementation of Itera-
tive Updating: the Radix-2 Algorithm and Discrete Fourier Transforms,
Tech. Rep. C-268, Tokyo Institute of Technology (Feb. 2011).

8

+

+

+

+

-

-

-

-

+

+

-

-

+

+

-

-

+

-

+

-

+

-

+

-

bank 0

bank 1

bank 2

bank 3

bank 0

bank 1

bank 2

bank 3

bank 0

bank 1

bank 2

bank 3

bank 0

bank 1

bank 2

bank 3

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
0

x
4

x
2

x
1

x
5

x
3

x
7

Shared
Memory

Shared
Memory

t
0

t
1

t
2

t
3

t
0

t
1

t
2

t
3

t
0

t
1

t
2

t
3

x
6

GPU Engine

SM

Shared
Memory

...

...

...

...

...

Regs

SM

Shared
Memory

...

...

...

...

...

Regs

Constant Memory

SM

Shared
Memory

...

...

...

...

...

Regs

G
lo

b
a

l
M

e
m

o
ry

…

…

…

… … …

 Bank conflict on bank 0

Bank conflict free on bank 0

Figure 1: GPU architecture and corresponding memory hierarchy showing the execution of
an 8-point radix-2 factorization FWHT example with in-place computation, hypothetically
assuming B=4 shared memory banks, and assigning a GPU thread ti per butterfly. In
this case, the in-place computation of the FWHT will be conflict free for bank 0 in the
first stage – only thread t0 accesses it – but will yield conflicts in the second and third
ones – since it is accessed by threads t0 and t2 in both cases.9

0 0.18 0.44 0.5 0.69 1.34
0

1

2

3

Reduction in bank conflict probability (%)

S
p

e
e

d
u

p

A
B

E C

D

F

A - N=128 B=32 vs. B=16 on GPU a)

B - N=256 B=32 vs. B=16 on GPU a)

C - N=128 B=32 vs. B=16 on GPU b)

D - N=256 B=32 vs. B=16 on GPU b)

E - N=128 B=32 vs. B=16 on GPU c)

F - N=256 B=32 vs. B=16 on GPU c)

Figure 2: Speedup achieved for the proposed B=32 FWHT when compared to the B=16
FWHT versus the corresponding reduction in bank conflict probability in percentage.

10

We analyse the role of the FWHT under the non-binary LDPC decoding problem.

We quantify the trade-off between memory bank conflicts and the throughput on

GPUs.

The FWHT employs radix-n approaches tuned to the number of shared memory

banks.

The FWHT was tuned for both 16 and 32 shared memory bank GPU architectures.

