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Abstract 

 

Graphite-castor oil polyurethane composite electrodes with different graphite weight percentages, 

30 – 70% graphite-polyurethane w.w
-1

, were morphologically studied by atomic force 

microscopy (AFM) and voltammetry. AFM images and r.m.s. roughness measurements 

demonstrated that the polyurethane roughness decreased with increasing the graphite content, 

composites of 50 and 60% graphite-polyurethane w.w
-1

 showing the smother electrode surface. 

The electrochemical characterisation was performed in solutions of K4Fe(CN)6 by cyclic 

voltammetry and impedance spectroscopy. For compositions of 60 and 70% graphite-

polyurethane w.w
-1

, the cyclic voltammetry results showed the K4Fe(CN)6 system reversibility. 

The charge transfer resistance, determined from the EIS spectra, decreased significantly with 

increasing the graphite/polyurethane ratio, and the capacitance increased for higher graphite 

percentages. AFM and voltammetric results enable to conclude that 60% graphite-polyurethane 

w.w
-1

 was the optimal composition for the preparation of the graphite-polyurethane composite 

electrodes.  

 

 

Keywords: graphite, polyurethane, composite electrode material, AFM, voltammetry. 
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1 Introduction 

Carbon, such as glassy carbon, carbon fibers, graphite or carbon black, has received 

grown interest as electrode material because it exhibits several unique properties, including good 

electrical conductivity, chemical inertness and wide electrochemical potential window, 

particularly in the positive range, being used as the conductive phase in composite materials for 

electrochemical sensors [1, 2]. 

A composite can be defined as a material composed of at least one conducting phase 

commingled with at least one insulator phase [3], the last acting as an agglutinant. Carbon 

composite electrodes, obtained by using a mixture of particulate conductive carbon phase and an 

insulating matrix, represented an attractive approach to the fabrication of electrochemical sensors, 

whose surface can be renewed by polishing. 

Several examples of graphite composite electrodes where described in the literature, being 

used for amperometric and voltammetric determinations and quantification of different analytes, 

especially concerned with the use of polymers as agglutinants, such as epoxy [4, 5, 6], polyester 

[7], PVC [8] and polypyrrole [9, 10]. This type of solid composite graphite electrodes exhibit 

several important properties, such as polishing surface regeneration, rigidity, easiness of 

fabrication, economy and possibility of using in nonaqueous solvents.  

The use of a carbon composite material prepared from castor oil derivative polyurethane 

and graphite as an electrode material has been proposed [11–15]. The graphite-polyurethane 

composite presents a number of important advantages, such as reduced risk to the environment 

since the vegetable oil is a renewable raw material, low temperature in the curing process, 

easiness of preparation by simply mixing the polyurethane binder with carbon and eventual 

modifiers, high hydrophobicity and resistance to many nonaqueous solvents, acid and basic 
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solutions. In addition, the hydrophobic character of the polyurethane resin also prevents the 

swelling effect observed for epoxy resins composites when electrodes are used in aqueous media. 

Atomic force microscopy (AFM) is a powerful and versatile technique for imaging 

surface topography, offering the unique possibility to quantify the roughness of the surface at a 

nanometer level with high resolution. AFM allows imaging in ambient conditions without any 

additional sample preparation such as gold coating as required for scanning electron microscopy, 

which makes it an ideal technique for the investigation of the effect of surface roughness of 

carbon composite electrodes. 

The aim of this work was to perform an AFM study to enable the understanding of the 

electrode surface morphology of composite electrodes prepared by graphite agglutinated by 

castor oil derivative polyurethane at the nanometer level, and the electrochemical characterisation 

by cyclic voltammetry and electrochemical impedance spectroscopy of the electron transfer 

processes at the graphite-polyurethane composite electrode surface. Systematic AFM and 

electrochemical studies of different weight percentages of graphite, 30 – 70% graphite w.w
-1

, in 

the graphite-polyurethane composites electrodes were carried out. 

 

2 Experimental 

2.1 Materials and reagents 

Solutions of potassium ferrocyanide K4Fe(CN)6 from Merck were prepared in  

0.1 M phosphate buffer in pH = 7.0 electrolyte solution. All experiments were done at room 

temperature (25 ± 1 ºC). All solutions were prepared using analytical grade reagents and purified 

water from a Millipore Milli-Q system (conductivity  0.1 S cm
-1

).  
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2.2 Graphite-polyurethane composite preparation 

The electrodes were prepared using different weight percentages of graphite, 30 – 70% 

graphite-polyurethane w.w
-1

 [11, 12]. 

The castor oil derivative polyurethane resin (POLIQUIL Brazil) was prepared by mixing 

0.85 parts of the pre-polymer (A-249) and 1.0 part of the polyol (B-471) (w.w
-1

), according to the 

manufacturer instructions.  

The polyurethane resin was mixed with < 20 μm diameter graphite powder (Aldrich, 

USA) in order to obtain 30, 40, 50, 60 and 70% graphite–polyurethane w.w
-1

 in the composite. 

The graphite-polyurethane composites were inserted in a hand press and extruded as rods with 

 3 mm diameter and cut in 1.5 cm long pieces.  

All the graphite-polyurethane composite electrodes were polished in a 600 grit sand paper 

and again with γ-Al2O3 (1 μm) suspension with an APL-2 polishing wheel (Arotec, Brazil), and 

sonicated in water followed by isopropyl alcohol, five minutes in each solvent. 

 

2.3 Atomic force microscopy characterisation 

The surface morphological characterisation of graphite–polyurethane composites was 

performed using contact mode AFM in air. AFM was performed with a PicoSPM interfaced with 

a PicoScan controller (Agilent Technologies, USA). All the AFM experiments were performed 

with an AFM scanner with a scan range of 80 μm in x-y (Agilent Technologies, USA). Silicon 

nitride probes, V shaped cantilever configuration, of 200 μm length and 0.12 N m
-1

 spring 

constant (Agilent Technologies, USA) were used. All AFM images were taken with  

256 samples/line x 256 lines and scan rates of 0.8 – 2.0 lines s
-1

. When necessary, in order to 

remove the background slope the AFM images were processed by flattening, and the contrast and 

brightness were adjusted.  
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Section analyses were performed with PicoScan software version 5.3.3  

(Agilent Technologies, USA). The roughness measurements were performed over the entire scan 

area of 3 µm x 3 µm and 1 µm x 1 µm scan-size images, using the PicoScan software version 

5.3.3 (Agilent Technologies, USA).  

The root mean square (r.m.s.) roughness represents the standard deviation of the heights 

in the topographical image and was calculated by: 

 



selection

averagei zz
n

roughnesssmr 2)(
1

1
...  (2.1) 

Where Zi is the height value at the i point in the image, n is the number of points in the image and 

Zaverage is the average height calculated by: 


selection

iaverage z
n

z
1

 (2.2) 

The r.m.s. roughness mean values and the standard deviations presented in the paper were 

calculated using different AFM images taken at different locations on the surface of the 

polyurethane and graphite-polyurethane composite electrodes. 

 

2.4. Cyclic voltammetry and electrochemical impedance spectroscopy 

The voltammetric experiments were carried out using an Ivium CompactStat running with 

Ivium software (Ivium Technologies, The Netherlands). A system of three electrodes was used, 

which consisted of an SCE as reference electrode, a platinum wire as auxiliary and graphite-

polyurethane composite working electrodes prepared as described in Section 2.5. All 

electrochemical measurements were performed in a Faraday cage. Cyclic voltammograms (CVs) 

were recorded at different scan rates using a 2 mV step potential and scan rate 100 mV s
-1

.  
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The electrochemical impedance spectroscopy (EIS) measurements were carried out using 

a perturbation of 10 mV. The data was collected for 58 harmonic frequencies from 50 kHz to  

0.1 Hz, at 10 steps/decade, and different polarisation potentials: +0.00 V, +0.25 V and +0.40 V  

vs. SCE. The impedance spectra were analysed by fitting to a Randles-type equivalent electrical 

circuit using ZView software (Scribner Associates, USA), Scheme 1.  

The R is composed of the solution and the bulk composite resistances.  

The constant phase elements, defined as: 

CPE = - (Ci)
-α

 (2.3) 

is modelled as a non-ideal capacitor where the capacitance C describes the charge separation at 

the double layer interface and the α exponent is due to the heterogeneity of the surface.  

The Rct is the charge-transfer resistance.  

The definition of the Warburg element used is: 

ZW (WO) = Rdiff (iω)
-α

ctnh([iω]
α
) (2.4) 

Where Rdiff is a diffusion resistance of electroactive species,  is a time constant depending on the 

diffusion rate ( = l
2
/D, where l is the effective diffusion thickness, and D is the effective 

diffusion coefficient of the specie), and α = 0.50 for a perfect uniform flat interface.  

Values of α less than 0.50 correspond to a not uniform interface (as happens with CPE 

non-ideal capacitance when α < 1). 

 

2.5. Graphite-polyurethane composite electrode 

The graphite-polyurethane composite electrodes, used in the voltammetric experiments, 

were prepared gluing with silver epoxi a conductive wire to the graphite-polyurethane sample. 

After drying, the contact was isolated with epoxy resin.  
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The graphite-polyurethane composite working electrodes were polished using diamond 

(particle size 1 m) (Kemet Int., UK) before each electrochemical experiment. After polishing, 

they were rinsed thoroughly with Milli-Q water. Following this mechanical treatment, the 

electrode was placed in a buffer supporting electrolyte and voltammograms were recorded until a 

steady state baseline voltammogram was obtained. This procedure ensured very reproducible 

experimental results. 

 

3 Results and Discussions 

3.1 Atomic force microscopy characterisation 

The surface morphology of the graphite-polyurethane composite electrodes influenced 

their electrochemical properties, and was investigated by AFM in air. The AFM topographic 

images provided information on the roughness of the electrode surface and on the dimensions of 

the graphite particles. For the r.m.s. roughness statistics, different AFM images taken at different 

locations on the surface of polyurethane, and of the graphite-polyurethane composite electrodes, 

were used.  

The castor oil derivative polyurethane resin morphological characteristics were studied 

and the results were essential to explain the composite characteristics after the incorporation of 

graphite particles into the polyurethane resin. The polyurethane resin surface images of 

3 µm x 3 µm scan-size showed the occurrence of very large peaks and valleys, the images 

presenting an r.m.s. roughness of 192.90 ± 25.74 nm, Equation 2.1, Fig. 1A. However, higher 

magnification images obtained on the lateral sides of the peaks revealed a very smooth 

morphology with r.m.s. roughness of only 26.10 ± 3.34 nm, as observed in the 1 µm x 1 µm size 

images, Fig. 1B.  
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The incorporation of the graphite powder into the polyurethane resin modified the 

morphological characteristics of the polyurethane surface.  

AFM images of the graphite-polyurethane composite surface obtained after mixing a 

small percentage of graphite powder, 30% graphite-polyurethane w.w
-1

, into the polyurethane 

matrix, presented a much smoother surface of 61.30 ± 8.99 nm r.m.s. roughness, 3 µm x 3 µm 

scan-size, Fig. 1C, when compared with the polyurethane resin, Fig. 1A. However, the graphite-

polyurethane composite morphology was very inhomogeneous, showing the occurrence of small 

aggregates 30 – 200 nm in diameter, which was better observed in the higher magnification 

image, Fig. 1D. The 30% graphite-polyurethane w.w
-1

 composite surface, at the 1 µm x 1 µm 

scan-size, also presented a smaller r.m.s. roughness of 11.58 ± 0.78 nm, when compared with the 

same scan-size image for polyurethane, Fig. 1B. The morphology observed for the 30% graphite-

polyurethane w.w
-1

 composite was mainly due to a re-organisation of the polyurethane resin 

morphology in the presence of the graphite powder, since the 1 – 2 μm graphite particles 

diameter were only very rarely observed in the images.  

The AFM images of the graphite-polyurethane composite surface obtained with larger 

weight percentages of graphite powder showed areas with only polyurethane, as well as areas of 

polyurethane resin with embedded graphite particles.  

The AFM images of the graphite-polyurethane composites obtained with 40%,  

Fig. 1E, 50%, Fig. 1F, and 60%, Fig. 2A, graphite-polyurethane w.w
-1

, also showed large areas 

where only the polyurethane resin was present, with a surface morphology similar to that 

obtained for the 30% graphite-polyurethane w.w
-1

 composite electrode, Fig. 1C, formed by 

aggregates of 30 – 200 nm of diameter. The r.m.s. roughness measured in the 3 µm x 3 µm scan-

size images was: 47.67 ± 5.95nm for 40%, 27.90 ± 0.85nm for 50% and 36.72 ± 8.8 nm for 60% 

graphite-polyurethane w.w
-1

. Higher magnification AFM images of 1 µm x 1 µm scan-size also 



  

10 

presented areas with similar morphologies to the 30% graphite-polyurethane w.w
-1

 composite, 

and the r.m.s. roughness values measured were: 20.85 ± 0.92 nm for 40%, 7.46 ± 0.01 nm for 

50% and 5.97 ± 0.47 nm for 60% graphite-polyurethane w.w
-1

, consistent with the rearrangement 

of the polyurethane matrix in the presence of graphite powder.  

For the graphite-polyurethane composite containing 70% graphite-polyurethane w.w
-1

, 

areas containing only polyurethane resin, without the presence of graphite particles, 3 µm x 3 µm 

scan-size images, were observed very rarely, Fig. 2D and E. The r.m.s. roughness measured in 

the 3 µm x 3 µm size images increased slightly to 54.23 ± 6.36 nm, due to the presence of these 

graphite particles. Nevertheless, the r.m.s. roughness measured in small, 1 µm x 1 µm scan-size 

images, containing manly the polyurethane matrix, was 12.4 ± 0.64 nm, demonstrating the same 

rearrangement of the polyurethane in the presence of graphite. 

For all graphite powder weight percentages, sporadically graphite fragments and/or 

particles (marked with white arrows) could be observed in the AFM topographical images for 

60% graphite-polyurethane w.w
-1

, Fig. 2B, and for 70% graphite-polyurethane w.w
-1

 composites, 

Figs. 2D and E. The atomically smooth graphite basal planes and the sharp layered edges of the 

graphite nanosheets observed in the topographical images, Fig. 2B and Fig. 2E, are even more 

evident in the deflection images, Figs. 2C and 2F, acquired simultaneously with the 

topographical ones.  

The r.m.s. roughness calculations obtained for large 10 µm x 10 µm scan scale AFM 

images of the graphite-polyurethane composite electrodes showed similar results, not dependent 

on the weight percentage of graphite powder incorporated into the resin. Indeed, the AFM images 

of the polyurethane resin with embedded graphite powder showed similar morphologies, with 

parallel lines separation caused by the polishing process with 1 μm diameter γ-Al2O3 particles. 
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Taking into consideration all the AFM results obtained for polyurethane resin and 

graphite–polyurethane composite surfaces, it can be concluded that the r.m.s. roughness of the 

polyurethane decreased drastically after the incorporation of the graphite powder, as can be 

observed in the histogram, Fig. 3. This is due to a decrease of the polyurethane hardness after the 

mixture with soft graphite particles, the composite surface being easily and smoothly polished. 

The smoother graphite-polyurethane surfaces were obtained for 50 – 60 % graphite-polyurethane 

w.w
-1

.  

 

3.2 Electrochemical characterisation 

3.2.1 Cyclic Voltammetry 

CVs were obtained with all graphite–polyurethane composite electrodes for different scan 

rates in solutions of 1 mM K4Fe(CN)6 in 0.1 M phosphate buffer pH = 7.0.  

The 30% graphite-polyurethane w.w
-1

 electrode did not show any electrochemical 

response due to a high ohmic resistance. The ohmic resistance decreased suddenly from ~ 30 M, 

in the case of 30% graphite-polyurethane w.w
-1

, down to 35  for the 70% graphite-polyurethane 

w.w
-1

, in agreement with CVs results [11]. The oxidation and the reduction peak potentials were 

slightly shifted to more positive and more negative potentials, with increasing scan rate, Fig. 4A.  

Also, the peak width decreased with increasing graphite percentage. From the 

relationship:  

Ep – Ep/2 = 47.7 (αn’)
-1

 (3.1) 

where α is the charge transfer coefficient and n’ the number of electrons transferred in the rate-

determining step, and considering n’ = 1, the charge transfer coefficient α, calculated for each 
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graphite–polyurethane composite electrode, increased with increasing graphite/polyurethane 

ratio.  

Increasing the scan rate the peak current increased linearly with the square root of ν, 

consistent with the diffusion-limited redox reaction. The peak current in amperes for a diffusion-

controlled irreversible system is given by: 

Ip/A = ± 0.4463 (F
3
/RT)

1/2
n(αn′)

1/2
AD

1/2
Cv

1/2
 (3.2) 

where the positive sign is for anodic and negative for cathodic redox reaction.  

In Equation 3.2, n is the number of electrons transferred during the redox reaction, A is the 

electrode area in cm
2
, D is the diffusion coefficient in cm

2
 s

-1
, C is the concentration in mol cm

-3
 

and v is in V s
-1

 [2]. For T = 298 K, the term 0.4463 (F³/RT)
1/2

 = 2.69 × 105 A s/mol V
1/2

. 

Considering that n = 1, and plotting Ip vs. v
1/2

, the A for different percentages graphite-

polyurethane composite electrodes was obtained, Table 1. For this calculation, the diffusion 

coefficient of Fe(CN)6
4-

, in 0.1 M phosphate buffer pH = 7.0, was D = 7.35 × 10
-6

 cm
2
 s

-1
. 

The anodic and cathodic currents ratio for each electrode decreased with increasing 

graphite percentage, Table 1. Also, increasing the graphite/polyurethane ratio the oxidation and 

reduction peaks shifted to less positive and negative values, respectively, Fig. 4B. Thus, the peak 

potential difference between the oxidation and the reduction peaks decreased in agreement with 

the increase of the system reversibility for higher graphite-polyurethane ratio.  

Voltammetric results obtained with graphite–castor oil polyurethane composite electrode 

demonstrated that the 60 % graphite–polyurethane w.w
-1

 presented better reproducibility, 

mechanical and electric resistance, easy preparation and surface renovation [11], and the results 

for the graphite–epoxy composite electrodes showed the best electroanalytical properties for the 

60 % graphite-epoxy composition [6]. 

 



  

13 

3.2.2 Electrochemical Impedance Spectroscopy 

Electrochemical impedance spectra (EIS) in 3mM K4Fe(CN)6, in 0.1 M phosphate buffer 

pH = 7.0, at + 0.21 V fixed potential vs. SCE, which is close to the open circuit potential value 

 ~ 0.20 V, were recorded, Fig. 5A. 

The EIS obtained always included two regions: a semi-circular part at high frequencies 

corresponding to the electron transfer process and a linear part at lower frequencies 

corresponding to diffusion, Fig. 5A, and EIS showed that, increasing the graphite–polyurethane 

percentage, both real and imaginary impedance decreased. 

The EIS were fitted, Fig. 5B, C and D, using a Randles-type equivalent electrical circuit, 

Scheme 1, formed by the electrochemical cell resistance, R, and a parallel combination of a 

constant phase element, CPE, Equation 2.3, representing the interfacial capacitance, the charge 

transfer resistance, Rct, and a Warburg element, ZW, Equation 2.4, simulating the diffusion 

process.  

Data from analysis of EIS, Table 2, showed the Rct decrease in agreement with the 

increase of conductivity upon greater incorporation of graphite powder into the polyurethane 

matrix. The cell resistance, RΩ, showed small fluctuations with values between 10 and 6 Ω cm
2
. 

Also, the interfacial capacitance, C, increased with graphite percentage due to an increase of the 

electroactive surface area per cm
2
 and the formation of a more compact double-layer, whereas the 

increase of the heterogeneity parameter, α, is in agreement with the AFM results which show that 

the roughness of the polyurethane decreased after the incorporation of the graphite powder,  

Fig. 3.  

The smoother graphite–polyurethane surfaces were obtained for 60 % graphite-

polyurethane w.w
-1

. The diffusion resistance increased with the graphite powder incorporation, in 
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agreement with the increase of the interfacial capacitance, due to the difficulty of the Fe(CN)6
4-

 

ions to diffuse through a more compact double-layer. Also, the electrode roughness is responsible 

for the capacitance and consequently for the diffusion resistance changes, since the surface is not 

uniformly accessible to mass-transfer. However, the diffusion process time constant magnitude 

was maintained.  

 

4 Conclusions 

The morphology of graphite-castor oil polyurethane composite electrodes with different 

weight percentages of graphite, 30 – 70% graphite-polyurethane w.w
-1

, was investigated by 

AFM, and voltammetry.  

The AFM images and the r.m.s. roughness measurements demonstrated that the 

polyurethane roughness decreased with increasing the graphite content, for 3 µm x 3 µm and  

1 µm x 1 µm scan-size images. The 50 and 60% graphite-polyurethane w.w
-1

 composites 

presented smoother surfaces. Increasing the graphite-polyurethane content to 70% increased the 

roughness of the electrode surfaces.  

The electrochemical characterisation of the graphite-castor oil polyurethane composite 

electrodes was performed in solutions of K4Fe(CN)6 by CV and EIS. The CV showed that the 

potential difference between the oxidation and the reduction peaks decreased with increasing 

graphite-polyurethane ratio. A better peak resolution was observed for the electrode containing  

60% graphite-polyurethane w.w
-1

. The EIS spectra charge transfer resistance significant decrease 

with increasing the graphite content, and the capacitance increase due to an increase in the 

electroactive area of the electrode, was observed. 
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The AFM and voltammetric results enabled the conclusion that the 60% graphite-

polyurethane w.w
-1

 was the optimal composition for preparation of the graphite-castor oil 

polyurethane composite electrodes.  
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Table 1 – Graphite-polyurethane composite electrodes: current ratio, potential difference, 

potential variation with log v, charge transfer coefficient, current variation with v
1/2

 and  

electrode area from CVs in K4Fe(CN)6 in 0.1 M phosphate buffer pH = 7.0.  

 

 

Graphite–

polyurethane 

(% w.w
-1

) 

Ipa/Ipc 
Ep 

(mV) 

Ep – Ep/2 

(mV) 
 

dIpa/d(v
1/2

) 

A* / V
1/2

 s-
1/2

 

A 

(cm
2
) 

40 1.23 223 290 0.16 ▬ 0.016 

50 1.12 210 230 0.21 2.8  10
-5

 0.025 

60 1.01 200 130 0.36 1.8  10
-4

 0.146 

70 1.06 186 96 0.49 5.9  10
-5

 0.053 

 

*The electrode area was estimated from the currents registered at v = 50 mV s
-1

.  
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Table 2 – Graphite-polyurethane composite electrodes: EIS data fitting equivalent circuit 

(Scheme 1, Fig. 7). Spectra recorded at + 0.21V vs. SCE in 3.00 mM K4Fe(CN)6 in  

0.1 M phosphate buffer pH = 7.0.  

 

Graphite–

polyurethane 

(%) 

RΩ  

(Ω cm
2
) 

CPE 
Rct 

(Ω cm
2
) 

ZW 

C (F cm
-2

)  
Rdiff 

(Ω cm
2
) 

 (s)  

40 10.2 5.6 × 10
-4

 0.73 75.4 0.3 0.0009 0.27 

50 6.1 8.2 × 10
-4

 0.76 61.1 0.8 0.0009 0.25 

60 7.5 9.3 × 10
-4 

0.78 53.8 1.1 0.0010 0.24 

70 7.2 1.4 × 10
-3 

0.80 30.7 2.4 0.0010 0.21 
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Figures 

 

Scheme 1–Model circuit for EIS data fitting. 

 

Fig. 1 – AFM topographical images: (A, B) polyurethane and (C, D, E, F) graphite–polyurethane 

composite electrode surfaces: (C, D) 30%, (E) 40% and (F) 50% graphite–

polyurethane w.w
-1

. (A, C, E, F) scan-size 3 µm x 3 µm, z range 120 nm, and (B, D) 

scan-size 1 µm x 1 µm, z range 50 nm. 

 

Fig. 2 – AFM images of graphite–polyurethane composite electrode surfaces: (A, B, C) 60% and 

(D, E, F) 70% graphite–polyurethane w.w
-1

; (A, B, D, E) topographical, scan-size 3 

µm x 3 µm, z range 120 nm and (C, F) deflection images, scan-size 3 µm x 3 µm, z 

range 0.5 nm. 

 

Fig. 3 – Histogram of the r.m.s. roughness of polyurethane and graphite-polyurethane composite 

surfaces generated with the values measured in the AFM images of scan-sizes:  

() 3 µm x 3 µm and () 1 µm x 1 µm. 

 

Fig. 4 – CVs in 1 mM K4Fe(CN)6 in 0.1 M phosphate buffer pH = 7.0, at v = 100 mV s
-1

:  

(A) 50% graphite-polyurethane w.w
-1

composite at different scan rates. (B) 3D plot of 

different percentages graphite–polyurethane composite electrodes. 
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Fig. 5 – EIS in 3 mM K4Fe(CN)6 at + 0.21 V in 0.1 M phosphate buffer pH = 7.0: 

(A) 3D plot of the complex plane representation at different percentages graphite-

polyurethane composite electrodes, and (B, C, D) total impedance () Z and phase 

angle ()  variation with frequency f: (B) 40%, (C) 60% and (D) 70% graphite-

polyurethane w.w
-1

composite electrodes. 
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Scheme 1 - Model circuit for EIS data fitting. 
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Fig. 1 – AFM topographical images: (A, B) polyurethane and (C, D, E, F) graphite–polyurethane 

composite electrode surfaces: (C, D) 30%, (E) 40% and (F) 50% graphite–polyurethane w.w
-1

. 

(A, C, E, F) scan-size 3 µm x 3 µm, z range 120 nm,  

and (B, D) scan-size 1 µm x 1 µm, z range 50 nm.  
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Fig. 2 – AFM images of graphite–polyurethane composite electrode surfaces: (A, B, C) 60% and  

(D, E, F) 70% graphite–polyurethane w.w
-1

; (A, B, D, E) topographical, scan-size 3 µm x 3 µm, 

z range 120 nm and (C, F) deflection images, scan-size 3 µm x 3 µm, z range 0.5 nm. 
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Fig. 3 – Histogram of the r.m.s. roughness of polyurethane and graphite-polyurethane composite 

surfaces generated with the values measured in the AFM images of scan-sizes:  

() 3 µm x 3 µm and () 1 µm x 1 µm. 
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Fig. 4 – CVs in 1 mM K4Fe(CN)6 in 0.1 M phosphate buffer pH = 7.0, at v = 100 mV s
-1

:  

(A) 50% graphite-polyurethane w.w
-1

 composite at different scan rates.  

(B) 3D plot of different percentages graphite-polyurethane composite electrodes. 
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Fig. 5 – EIS in 3 mM K4Fe(CN)6 at + 0.21 V 0.1 M in phosphate buffer pH = 7.0: (A) 3D plot of 

the complex plane representation at different percentages graphite-polyurethane composite 

electrodes, and (B, C, D) total impedance () Z and phase angle ()  variation with  

frequency f: (B) 40%, (C) 60%  and (D) 70% graphite-polyurethane w.w
-1

 composite electrodes. 
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Highlights 
 

 

 

 Graphite-castor oil polyurethane composite electrodes, with different graphite weight 

percentages, 30 – 70% graphite-polyurethane w.w
-1

, were investigated 

 

 Characterisation by atomic force microscopy (AFM) and voltammetry of the graphite-

castor oil polyurethane composite electrodes. 

 

 Electrochemical impedance spectroscopy characterization of the graphite-polyurethane  

 

 Composites of 60% graphite-polyurethane w.w
-1

 showed the smother electrode surface. 

 




