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Resumo  

A Neuroimagem, nomeadamente a estrutural, constitui uma vasta área de estudo 

atualmente, uma vez que permite o diagnóstico de doenças neurodegenerativas 

através de técnicas de imagiologia da estrutura do cérebro, nomeadamente através 

da Imagem por Ressonância Magnética. 

O método usado neste trabalho para efeitos de análises morfométricas da 

estrutura do cérebro foi o Voxel-Based Morphometry (VBM), que tem como 

resultado final um mapa de parâmetros estatísticos que permite inferir sobre a 

existência de alterações a nível do volume de matéria cinzenta, comparando um 

grupo de sujeitos controlo com um grupo de sujeitos com alguma patologia que 

possa estar associada a atrofia cerebral. A implementação desta técnica implica o 

registo das imagens de diferentes sujeitos e da respetiva segmentação para 

extração da matéria cinzenta, relevante para a análise. Os resultantes segmentos 

registados de matéria cinzenta têm de ser suavizados de modo a garantir a 

distribuição Gaussiana dos voxels das imagens, para que os testes estatísticos 

paramétricos posteriores sejam válidos. O método standard de Gaussianização 

baseia-se numa suavização que “esborrata” as imagens, diminuindo a capacidade 

do VBM para detetar pequenas regiões cerebrais afetadas, perdendo resolução e 

especificidade anatómica. Surge assim a necessidade de desenvolver técnicas 

alternativas de Gaussianização, o objetivo deste trabalho. 

Para este efeito, foram desenvolvidos dois métodos principais: i) um baseado na 

manipulação dos histogramas das imagens; e ii) outro baseado na deformação 

Gaussiana das imagens. Todos os métodos foram implementados em Matlab. A 

avaliação da normalidade foi efetuada por análise de resíduos resultantes da 

aplicação do modelo linear geral, e o impacto regional e visual foi realizado com 

base em análises VBM com sujeitos em que as regiões atróficas reais eram 

conhecidas. 

Verificou-se que, em geral, os métodos desenvolvidos apresentaram resultados 

positivos tanto a nível de Gaussianização dos dados como a nível de precisão 

anatómica dos mapas estatísticos finais quando comparados com os métodos 

atualmente em uso, ainda que o uso de máscaras relativas tenha limitado a 



comparabilidade dos métodos. Esta questão, bem como a avaliação quantitativa da 

preservação da anatomia conseguida pelos novos métodos, deve ser analisada em 

trabalho futuro. 

Palavras-chave: Ressonância Magnética, Gaussianização, Voxel-Based 

Morphometry, Matéria Cinzenta. 

  



Abstract 

Neuroimaging, namely the structural, is a vast area of study currently, since it 

allows the diagnosis of neurodegenerative diseases by imaging of the brain 

structure, notably by Magnetic Resonance Imaging. 

 The method used in this work for the purpose of morphometric analysis of brain 

structure was Voxel-based Morphometry (VBM), whose final result is a map of 

statistical parameters that allows to infer about the existence of changes in grey 

matter volume, comparing a group of control subjects with a group of subjects with 

a condition that might be associated to brain atrophy. The implementation of this 

technique involves the registration of images from different subjects to a template 

and the respective segmentation for grey matter extraction, relevant to the 

analysis. The resulting grey matter registered segments must be smoothed to 

ensure Gaussian distribution of the voxels of the images, for the subsequent 

parametric statistical tests to be valid. The standard method of Gaussianization is 

based on an approach that “blurs” the images, decreasing the VBM’s ability to 

detect small brain regions affected and thus losing anatomical resolution and 

specificity. This raises the need to develop alternative Gaussianization techniques, 

the goal of this work. 

For this purpose, two main methods have been developed: i) one based on 

histogram manipulation of images; and ii) the other based on the Gaussian 

deformation of the images. All methods were implemented in Matlab. The 

assessment of normality was performed by analysis of the residuals resulting from 

the application of the general linear model, and the regional and visual impact 

assessment was based on VBM analyses with subjects where the atrophic regions 

were known. 

It was found that, in general, the developed methods showed positive results both 

in terms of data Gaussianization as in anatomical accuracy of the final statistical 

maps, when compared with the methods currently in use. The use of relative 

masks has limited the comparability of the methods though – this matter, along 

with the definition of an objective metric for anatomical detail preservation, should 

be the focus of future work. 



Key-words: Magnetic Resonance, Gaussianization, Voxel-Based Morphometry, Grey 

Matter. 
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Chapter 1 

 INTRODUCTION  1

 

Neuroimaging is a widely studied field of research that uses multiple techniques to 

image the structure as well as the function/activity of the brain. It can be divided in 

two broad categories: i) structural imaging, dealing with the structure of the brain 

and the diagnosis of neurodegenerative diseases and injury, for instance, leaning 

mostly on Magnetic Resonance Imaging (MRI); ii) functional imaging, notably 

functional MRI (fMRI), which provides invaluable information about the synaptic 

activity of the brain through measures of blood oxygenation [1] . The current thesis 

will only focus on structural MRI, notably on brain Morphometry analyses.  

Morphometry is the study of changes in the shape and volume structures. To 

perform Morphometry analyses in the brain, and thus evaluate the changes 

observed in the structural MRI images, two key methods stand out: i) region of 

interest (ROI) analyses, and ii) voxel-based Morphometry (VBM). A region of 

interest can be defined as a particular anatomical region of the brain, chosen 

according to a specific a priori hypothesis on where the alteration should be found.  

The use of ROIs can be advantageous because they can reduce the Type I error, 

diminishing the occurrence of false positives by limiting the number of statistical 

tests to a few ROIs [2]. Nonetheless, their selection process can lead to important 

biases in the analyses by casting out all other parts of the brain; moreover, ROIs 

should ideally be manually drawn, which is very time consuming and requires 

complicated logistics, and the automated solutions may be prone to errors. In 

order to bypass these fundamental barriers, while taking into account that the gold 

standard is indeed the manual ROI method, used as a tie-breaker whenever is 

required, the preferred whole brain analysis automated method is VBM. 

VBM is a neuroimaging technique that, after pre-processing the MRI scans, creates 

statistical parametric maps to infer on changes pertaining to brain parenchyma, 

notably grey matter: this allows for the identification of differences between 
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+groups (e.g. atrophy [3]) or neural correlates of e.g. a given test score [4]. In brief, 

this procedure involves the spatial normalization of all brains to the same standard 

space [5], known as template, in order to ensure that the voxels that are being 

compared correspond to the same area of the brain. This is followed by the 

segmentation of the brain into different tissue types: grey matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF), the focus being mostly on GM [5] [3]. 

The resulting tissue-specific segments are then smoothed, whereby the intensity of 

each voxel is replaced by the weighted average of the surrounding voxels, 

rendering the data normally distributed in the process [6]. This step is performed 

by using a three-dimensional (3D) Gaussian kernel that is characterized by its 

dispersion, as measured by the Full Width at Half Maximum (FWHM) [3]. The 

smoothed images are then submitted to statistical parametric t-tests, via 

implementation of the general linear model (GLM) to detect significance areas that 

reveal tissue changes. The resulting output is a statistical parametric map, 

highlighting regions of significant differences and/or correlations, also known as 

‘glass brain’ [3]. 

This thesis will focus on the smoothing step of the process described above. This 

step ensures a fundamental pre-requisite for parametric statistical analyses, which 

is the normality of the data. Furthermore, this Gaussianization also compensates 

for possible inaccuracies that may occur from the registration step, while also 

increasing the signal-to-noise ratio (SNR), thus reducing the variance across 

subjects and making the statistical analysis more sensitive.  However, this 

“blurring” of the images usually diminishes the ability to accurately locate 

significant regions in brain [3], resulting in a loss of important anatomical 

information and compromising the validity of this technique. As such, there is a 

clear motivation to explore the use of alternative techniques for smoothing. The 

point of this work is to attempt to ensure normality of the data by using non-

blurring or less blurring methods than the standard Gaussian kernel approach.  

In summary, the current work has three main goals: 

i) implement a method for the assessment of the normality of the data, 

both globally and by mapping out locations of “difficult” 

Gaussianization; 
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ii) develop and assess alternative methods of Gaussianization that could 

address the drawbacks of the smoothing method currently used, 

comparing these to the standard approach; and 

iii) visually assess the resulting statistical maps to evaluate anatomical 

accuracy gains, if any. 
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Chapter 2 

 THEORETICAL INTRODUCTION 2

 

 Magnetic Resonance Imaging 2.1

Magnetic Resonance Imaging is a medical imaging technique used to investigate 

the anatomy or function of the brain. It is based on the phenomenon of nuclear 

magnetic resonance (NMR): in the presence of an external magnetic field, and 

when a radiofrequency (RF) pulse is applied, particular nuclei suffer excitation 

followed by relaxation when the RF stimulus is removed. There are many nuclei 

that show that capability: because of the large concentration in the human body, 

hydrogen nuclei (H1) are the ones used in magnetic resonance essays [7]. 

The nuclei have some magnetic properties that are essential to the occurrence of 

the NMR phenomenon, namely angular moment or spin as well as an associated 

magnetic moment µ: as such these nuclei can be seen as behaving like tiny 

magnets, spinning around their axis. In the absence of an external magnetic field, 

the magnetic moments of all the nuclei will cancel each other out, as their 

orientations are arbitrarily aligned in space.  

Under the effect of an external magnetic field B0, defining the longitudinal 

direction, the moments of the nuclei will align with this field [8]. While the 

individual spins of all the nuclei have different orientations, the macroscopic 

magnetization M0, resulting from the superimposition of all the magnetic 

moments, in equilibrium, will have the same orientation as the external magnetic 

field [7]. Thus, the transverse magnetization MT will be zero but the longitudinal 

magnetization ML will be equal to M0. As seen in Figure 2.1, the aligned spins will 

continue to precess, albeit this time along the longitudinal axis. This precession 

will have a specific angular frequency, called the Larmor frequency: 
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    ( 2-1 ) 

 
 

where B0 is the intensity of the external magnetic field (measured in Tesla) and γ is 

the gyromagnetic ratio, which depends on the nuclear species. 

To have a measurable signal, however, the magnetization as to be forced to flip 

towards the transversal plane, where the receiving coils are while read the 

magnetization. In order to do that, another external magnetic field B1 is needed. B1 

is applied perpendicularly to B0, forcing the spins to rotate towards it if the 

frequency of this new field is that of the resonance of the system: as a result the 

magnetization M0 will start to precess around B1 [7](see Figure 2.1 b).  

 

Figure 2.1 – a) magnetization M0 at equilibrium; b) magnetization M0 after the application of the 
RF field B1 [7]. 

 
To observe an effect, the frequency of the second field has to be exactly equal to the 

Larmor frequency, which is why this is a resonance phenomenon. Given the usual 

field strengths (1.5T and 3T in the clinic), combined with the gyromagnetic 

constant associated with the hydrogen, the usual frequency used is in the RF range 

[7].  

When the B1 generating RF pulse is turned off, the magnetization M0 will go back to 

its original equilibrium state along B0. If the RF pulse has duration of τ seconds, M0 

would have flipped towards B1 by a flip angle Ɵ: 

 

  ( 2-2 ) 

0L γB

τγBωτθ 1
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After the RF pulse is removed, it is observed that the magnetization components 

ML and MT return to their equilibrium values, releasing the absorbed energy, with 

characteristic time constants T1 and T2, known as longitudinal and transversal 

relaxation times, respectively. Typical values of T1 and T2 are 300 to 600 ms and 30 

to 80 ms, respectively, and they depend on the nuclear species and on the chemical 

composition of the tissue [8]. 

Assuming that at a time t=0, ML(0) = 0 and MT(0) = M0, the evolution of the 

amplitude for each magnetization is as shown in Figure 2.2. This phenomenon will 

be further expanded on below. 

 

Figure 2.2 – a) evolution of the longitudinal component of the magnetization in time; b) evolution 
of the transversal component of the magnetization in time [7]. 

 

2.1.1 Free Induction Decay signal 

To summarize, one can say that the NMR phenomenon is characterized by an 

excitation pulse, causing the magnetization to flip by an angle Ɵ, precessing around 

the z-axis with the frequency ωL. As such, the picture shown in Figure 2.2 is not 

complete, as it ignores the characteristic oscillation of the system. In fact, the 

detected signal will also oscillate with ωL and will fall off exponentially [7]:  

 

Figure 2.3 – Free Induction Decay signal. 
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This signal is called the Free Induction Decay (FID) signal and its amplitude is 

proportional to the nuclear magnetization and thus of the amount (density) of the 

protons in the tissue [8]. The decay is defined by the relaxation of the spins, as 

described above (Figure 2.3). 

 

2.1.2 Relaxation Mechanisms 

After an excitation with a 90o RF pulse (it will be assumed that the flip angle will be 

90o for simplicity of representation, but it can be different) all the magnetization is 

oriented in the transverse direction and the individual nuclear moments µ are 

precessing in phase with each other. At this point, the longitudinal magnetization is 

equal to 0. However, after the removal of the RF pulse, ML will re-grow and revert 

to its equilibrium state. This relaxation step is divided into two different processes 

that happen simultaneously: i) longitudinal or T1 relaxation, which corresponds to 

longitudinal magnetization recovery; ii) transverse or T2 relaxation, which 

corresponds to transverse magnetization decay [8]. This relaxation process gives 

information about the environment of the nuclei during a FID as it depends on time 

constants that are related to the characteristics of the tissue. 

In the T1 relaxation, the spins with added energy given by excitation will release 

that energy excess to their surroundings, the lattice, hence the designation of spin-

lattice relaxation [7]. This recovery of the longitudinal magnetization follows an 

exponential curve and its recovery rate, T1, is a tissue-specific time constant [9]. 

The transverse relaxation results from the misalignment of the spins. As they move 

together, the magnetic fields of the spins interact randomly, slightly modifying 

their precession rate. Because this process is caused by the interaction between 

spins, it is also called spin-spin relaxation [9]. As with the recovery rate T1, the 

decay rate T2 is also a tissue-specific time constant. Given the phase cancellation 

nature of this process, T2 decay is always faster than T1 recovery. 
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2.1.3  Data acquisition and image formation 

The information obtained from an MR image is based on the macroscopic 

magnetization M0, which is proportional to the proton concentration in the tissue. 

However, the information about the location of the protons in the tissue is not 

present in the FID signal. This spatial information is essential to form an image. To 

map the volume excited in the tissue spatial encoding is needed. This is achieved 

through three steps: slice selection, phase encoding and frequency encoding [8], 

using spatial magnetic gradients in the three orthogonal directions.  

In the slice selection step, a magnetic gradient is applied through the direction of 

the main magnetic field (z-axis), leading to a spatial variation of the magnetic field. 

Thus, each nucleus will have a frequency dependent on its position and it is 

possible to selectively excite a thin slice of the sample being imaged. The phase and 

frequency encoding of the spins are used to obtain the information of a single point 

(voxel, in 3D). This is achieved by applying two additional gradients. One 

temporary gradient is applied along the y-axis between the RF pulse and the 

readout, leading to a shift in the phase of the nuclei: by varying the duration of the 

gradient, one can have signals with different phase encodings. To have the 

frequency encoding, one third gradient is applied (along the x-axis) during the 

readout signal, allowing to identify pixels within the same phase encoding. As a 

result, the pixels with the same phase shift will have the same resonance frequency 

shift. With these two encodings, one can have 2D information, which is stored in k-

space (Fourier space): each row has the information about the frequency (x-axis) 

and each column has the information about the phase (y-axis). The image is then 

built by calculating the 2D inverse Fourier Transform (FT) of the samples in the k-

space [10]. The slice selection gradient allows for 3D information, applying the 

same method but in three dimensions. 

 

2.1.4  Contrast images: T1 and T2 

Resonant Magnetic Imaging allows the creation of contrast images in order to 

identify different areas in the tissue, and the presence of pathology. This is possible 
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because different tissues have different values of T1 and T2 and, in case of disease, 

these values may be especially altered. 

In order to better explore this difference in time constants, MR images are 

acquired with specific pulse gradient sequences, called acquisition sequences. 

Insofar as they control the timing of the RF pulses, they are mainly characterized 

by two variables: i) repetition time (TR), which is the time between two excitation 

pulses; and ii) echo time (TE), the time between the RF pulse and the maximum of 

the spin echo, corresponding to the signal sampling [9]. 

The contrast T1 is achieved by varying the repetition time while keeping TE low to 

avoid contamination from T2 relaxation. Considering a region A with low T1 and a 

region B with high T1: if TR is much higher than both T1’s, the two regions will have 

time to completely recover their equilibrium state of magnetization and thus no 

contrast will be observed. However, if TR is reduced to a value between the two T1, 

region A will recover its longitudinal magnetization but the same will not happen 

with region B. This will lead to decrease in the signal from region B and 

consequently a decrease in its brightness in the image. 

Analogously, considering two regions, with different T2, to obtain a T2 contrast, one 

should use an echo time higher than the lowest T2 and lower than the highest T2. 

That way, the transverse magnetization in the region with the highest T2 will not 

decay, hence the detected signal derived from it will not decrease as much as the 

signal from the region with the lowest T2 and the correspondent image will have 

greater brightness [8]. All the while, TR should be kept high do dilute any 

contribution from T1 relaxation. 

In this work, it will only be considered the T1 contrast images. 
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Figure 2.4 – Axial MRI. T1 contrast (left) and T2 contrast (right). 

 Voxel-Based Morphometry 2.2

A number of pathologies lead to subtle changes in the grey matter structure of the 

brain, although these may elude the human eye [10] [11]. In order to assess such 

patterns of structural change, structural MRI images can be used - notably T1, given 

its high anatomical contrast - and the volume of certain brain regions, called 

regions of interest, can be extracted. Such an approach, however, fails to assess the 

overall brain structure and, by design, presents regional bias. Furthermore, the 

current gold standard for such an analysis is to manually delineate the regions, 

which is very time consuming and prone to errors; automatic ROI detection is 

currently gaining momentum, but it is still prone to errors [12]. An alternative is to 

use whole brain automated morphometry methods, notably Voxel-Based 

Morphometry, which allows us to localize regions of volumetric differences in 

brain tissue, notably in grey matter. 

Voxel-Based Morphometry is therefore a neuroimaging analysis technique based 

on statistics to identify differences in the anatomy of the brain between different 

groups of subjects, or correlated with a given score, notably allowing for inferences 

about the presence of atrophy. For the purposes of this thesis, the focus will solely 

lie on the comparison between groups for the detection of grey matter atrophy. 

In brief, MR scans are processed and analysed to produce statistical maps of 

changes in grey matter volume, comparing a group of subjects known as healthy 

(control) with a group of subjects with a pathology that may lead to cortical 
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atrophy [5]. This is a whole brain analysis and thus requires a coordinate by 

coordinate approach, i.e., it performs a voxel-by-voxel comparison, implying that 

the subjects in each groups must share the same (stereotactic) space: this is 

achieved by the first step of spatial normalization (registration), whereby all 

brains are fitted onto a standard template. Further to this step, in order to ensure 

that the analysis is only focused on the relevant parenchyma, the scans are 

segmented into different types of tissues in order to extract the grey matter. After 

this, the resulting grey matter segments are smoothed for statistical reasons and 

fed to a statistical model, using t-tests to produce statistical parametric maps of 

regions of significance (Figure 2.5).  

 

Figure 2.5 – VBM method. 

 

Although this method is simple and is known to produce reliable results [5], as 

with any fully automated method the results must be analysed with caution as 

errors could have been introduced due to poor registration or segmentation, for 

instance [3]. 

The steps to perform a VBM analysis are described below in greater detail. 

 

 



2 THEORETICAL INTRODUCTION 

 

13 

 

2.2.1  Spatial Normalization 

The spatial normalization step consists in registering all the brains in the study 

onto the same template image, so that they can share the same stereotactic space, 

thus ensuring that the subsequent statistical comparison is comparing like for like, 

i.e. any given coordinate in any brain will correspond to the same structure across 

all brains [5]. The registration step is not an easy task because of the anatomy and 

the position of the brains varies across subjects, and a perfect solution is often not 

attainable or even biologically plausible [3]. 

Given a template that defines the standard space, usually a variant of the Montreal 

Neurological Institute (MNI) 305 or the International Consortium for Brain 

Mapping (ICBM) 152, each brain needs to be fitted onto it. In order to achieve this, 

the registration is usually performed in two steps: i) first a linear registration is 

performed in order to remove global differences between the subject and the 

template: this implies the estimation and application the optimum 12-parameter 

affine transformation [5]; ii) after the global differences are accounted for, as all 

brains are different at a small scale, minute differences are dealt with by 

performing a nonlinear registration in a local scale. 

It is important that the quality of the registration is as high as possible and that the 

choice of the template is adequate to ensure an unbiased result [5]. The template 

used in the normalization step can be one specific MRI scan or the average of 

several MRI scans that have been registered in the same space, as both examples 

above are. 

 

2.2.2 Modulation 

When the registration step is performed, both linearly and non-linearly, 

expansions or contractions in regions do not affect the intensities of the voxels 

involved: if the size of a certain region decreases due to the normalization, the 

number of the corresponding voxels also decreases in the same proportion, but the 

image intensity remains the same. Thus, the information regarding the absolute 

tissue volume is not preserved. To solve this problem, each voxel of the image is 

multiplied by the local volume change given by the determinant of the Jacobian of 
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the corresponding spatial transformation [10]. Because this determinant 

quantifies the scaling applied during the registration on a given voxel, structures 

that were compressed will have a brighter intensity and the ones that were 

expanded to fit the template, pointing towards the presence of atrophy, will be 

dimmer. This happens both at a global and a local level - the former modulation 

needs to be controlled through a nuisance variable related to the size of the head, 

which will be explained below. 

 

Figure 2.6 – Effect of modulating segmented images. The Jacobian determinant in the centre 

represents the volume changes due to non-linear registration [13]. 
 

2.2.3 Segmentation 

The segmentation step enables the partition of the brain into different tissue types, 

notably into grey matter, white matter, cerebrospinal fluid and non-brain elements 

(Figure .2.7). This segmentation takes into account prior probability maps of 

healthy brain tissue and voxel intensities to produce a posteriori maps of 

probability distribution to classify the tissue, with values between 0 and 1 

(probability of a given voxel belonging to a certain tissue type given its location 

and intensity): the resulting image will therefore be a probability map, with 

intensities proportional to the amount of grey matter in a given location [3]. 
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Figure .2.7 – Segmentation of the brain into grey matter (bottom right), white matter (bottom 
middle) and cerebrospinal fluid (bottom left). 

 

In SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), the software used in this thesis, this 

segmentation step is done simultaneously with the registration and modulation in 

what is called the unified segmentation [14]. This is done because, given a 

segmentation approach that uses a priori probability maps in standard space, both 

registration and segmentation are intrinsically dependent on each other. 

Moreover, the modulation is applied directly onto the resulting probability maps, 

which will no longer have a 0 to 1 scale, but rather a 0 to Ig scale, where Ig is a 

positive number corresponding to the greatest multiple of GM probability and 

tissue contraction. This is useful insofar as the intensity of the resulting segment 

reflects not only the probability of being grey matter but also the structural 

changes of the underlying structure: the intensity of each voxel is therefore 

proportional to a broader metric of GM volume. 

 

2.2.4  Smoothing 

Before performing the statistical analysis, the registered, modulated and 

segmented images are smoothed. This smoothing is achieved by the convolution of 

the image with a 3D isotropic Gaussian kernel, which is characterized by its full 

width at half maximum and it is related to the corresponding standard deviation σ 

as per the following relationship: 
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σ8ln2FWHM    ( 2-3 ) 

 

The segments, as seen before, have intensity values between 0 and I, with most of 

the values near the extremities, which means that the data does not have a normal 

distribution. This is a fundamental prerequisite for the use of parametric statistical 

tests, which are easy to implement and very sensitive. Thus, the smoothing process 

ensures that each voxel covers the weighted average of the information contained 

in the surrounding tissue, rendering the data normally distributed by appealing to 

the Central Limit Theorem. Hence, since the data have a Gaussian distribution, the 

smoothing increases the validity of the statistical parametric tests while also 

reducing intersubject variability, which may be a remnant of the registration 

process [5]. 

The smoothing step has also other advantages, such as to increase the SNR, making 

the statistical analyses more sensitive. Furthermore, if the FWHM of the kernel is 

comparable to the size of the differences to be measured, the statistical tests will 

also be more accurate. However, excessive smoothing could reduce the ability of 

the method to localize changes in brain [3]. 

 

2.2.5 Statistical Analysis 

The smoothed images are then averaged together and contrasted. The aim of the 

statistical analysis is to detect significant anatomical differences between the two 

groups of scans under study. This statistical significance is related to a p-value, 

which can be defined as the maximum probability of a difference being detected by 

chance [10], given the observed data.  

The statistical analyses performed are parametric and make use of the General 

Linear Model. The GLM is a statistical tool that allows the detection of regions 

where the GM concentration is significantly related to the effects under study, 

controlling for the effect of covariates, namely age, gender, disease status, among 

others [5]. The standard model for an across-subjects regression analysis is: 
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  ( 2-4 ) 

 

where yj is the observed value for the jth subject; βj is a vector of regressor 

variables for the jth subject; X is a vector of parameters that varies for each voxel; εj 

is an error term. The goal is to find the best set of parameters given by X that best 

fits the model, minimizing the error [15]. In order to the statistical analysis to be 

valid, the residuals of the model, described as the error term, have to be normally 

distributed [6]. 

The parametric statistical analysis is based on a null hypothesis that, in this case, 

there are no differences in grey matter volume between the groups under study. 

The result is a statistical parametric map showing the voxels that refute the null 

hypothesis, i.e., that show significant differences. These maps can be displayed in 

several different ways: i) color map with the scale representing the t statistics of 

the test; ii) 3D surface of the brain; iii) “glass brain” in which each significant voxel 

is showed as greyscale in an essentially transparent render (Figure 2.8) [3]. 

 

Figure 2.8 – Significant voxels shown as greyscale on a “Glass brain” display. Sagittal, coronal and 

axial views are shown. 

 

As the statistical tests are performed along a large number of voxels, correction for 

multiple comparisons is needed in order to avoid the occurrence of false positives. 

The most used method is “family-wise error” (FWE) correction that controls the 

probability of any false positive along the whole brain. 
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Chapter 3 

 SMOOTHING 3

 

 Basics 3.1

Prior to the statistical analysis, smoothing is performed on the segmented images. 

The intensity values of the segments do not follow a normal distribution, thus it is 

important to smooth the data in order to ensure its Gaussianization, so that the 

subsequent parametric statistical analysis can be performed on these data. In 

general, this is done by convolving the GM images with a 3D isotropic Gaussian 

kernel [5], characterized by its FWHM. The most frequently used kernels have an 

FWHM of 4, 8 and 12mm.  

According to the matched filter theorem, the optimal smoothing kernel size should 

be related to the differences being detected [16], thus the kernel must be chosen 

accordingly to the study, as well as to the resolution of the acquired scans. As it is 

based on an arithmetic mean, by the Central Limit Theorem, smoothing renders 

the data more normally distributed. Hence, the validity of the posterior statistical 

parametric tests will be, by definition, increased.  

 

Figure 3.1 – Representation of the FWHM of a Gaussian kernel. 

 

In addition to normality issues, the smoothing step also helps to compensate the 

inexact nature of the spatial normalization of the images, while also increasing the 

SNR. Lastly, smoothing could also help to reduce the number of statistical 
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comparisons, thus making the correction for multiple comparisons less severe 

[17]. 

The convolution that characterizes the smoothing step is given by Equation   ( 3-1 

), where Is is the smoothed image, I is the original image and x and τ are 

coordinates. 

 

  ( 3-1 ) 

 

 

 

Figure 3.2 – Axial Section of a GM segment image (left); the correspondent smoothed images are 
shown on the right with a kernel with a FWHM of 4mm (top right) and with a FWHM of 8mm 

(bottom right). 

 

As seen in Figure 3.2, the convolution of the segmented image with a Gaussian 

kernel results in a blurred image, compromising the anatomical definition of the 

smoothed image. The loss in anatomical definition is related to the size of the 

kernel, i.e., a smoothed image obtained with a convolution kernel with high FWHM 

will also have low resolution. This leads to a decrease in the ability of VBM to 

accurately locate changes in brain by an amount that can be approximated by the 

FWHM of the kernel [3]. Thereby, it is important to explore alternative ways to 

smooth the images, avoiding the convolution as represented in Equation ( 3-5 ).  

The aim of this work is to develop methods capable of rendering the data normally 

distributed, without interfering with the anatomical definition, thus preserving the 

validity of the statistical analyses. Two alternatives were explored: i) 

ττGτxIs   )d()( xI()
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Gaussianization of the histogram of the images; ii) Gaussian deformation of the 

image coordinates. 

 Histogram Gaussianization 3.2

A histogram of an image is a graphical representation of the intensity distribution 

of that image, indicating the number of data points that lie within a range of values, 

called a class or a bin [18]. Hence, if the histogram is normalized, the intensities 

will also have a normal distribution, by definition. In theory, this normalization can 

be done by “equalizing” the histogram, or by using the logit transform. 

 

3.2.1 Histogram Equalization 

The histogram equalization is an image processing tool consisting in the 

adjustment of the contrast through the image histogram, i.e., it distributes the 

image intensities more uniformly along the histogram. This process approximates 

the histogram of the original image to a uniform histogram, computing its 

cumulative histogram and using it as a density function [19].  

 

Figure 3.3 – Histogram equalization. On the top image is the histogram; on the bottom image is the 
correspondent equalized histogram.  

 

Let the variable r represent the grey levels of an image, normalized to the interval 

[0,1]. For any r satisfying the aforementioned conditions, consider a 

transformation T in the form of: 
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(s)Tr 1 1r0 

10  r)(rTs           ( 3-2 ) 
 

This transformation produces a new value of level for each pixel r in the original 

image. The transformation function T(r) has to satisfy the following conditions: 

(a) T(r) is single-valued in the interval 0≤r≤1: guarantees that the inverse 

transformation is possible; 

(b) T(r) is monotonically increasing in the interval 0≤r≤1: preserves the 

ascending order of black to white in the output image; 

(c) 0≤T(r)≤1 for 0≤r≤1: guarantees that the grey levels of the output image are 

in the same range as those of the input image. 

 

Figure 3.4 – Grey level transformation function. 

 

The inverse transformation of s into r is given by: 

     ( 3-3 ) 

 

A way to describe the grey levels of an image is with the use of a probability 

density function (PDF). Let pr(r) and ps(s) be the PDF’s of the variables r and s, 

respectively. If pr(r) e T(r) are known and T-1(s) satisfies the conditions (a) and (b) 

above, the PDF of s can be computed from the PDF of the grey levels of the input 

image and from the transformation chosen function. A transformation function 

widely used in image processing is: 

  ( 3-4 ) 
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where ω is a dummy variable of integration. The integral of the equation can be 

seen as cumulative distribution function (CDF) of variable r. 

With discrete values, PDF’s and integrals turn into probabilities and summations, 

respectively. The probability of occurrence of a grey level rk in an image is: 

   ( 3-5 ) 

 

where n is the total number of pixels in the image, nk is the number of pixels with 

level rk and L is the total number of possible levels. The discrete version of the 

transformation function  is: 

   ( 3-6 ) 
 

Thus, the final image is obtained by mapping each pixel with level rk in the original 

image into the correspondent pixel with level sk in the output image, using 

Equation ( 3-6 ) [19]. 

 

3.2.2 Logit Transform 

The data can also be transformed by using the logit transformation. The logit 

transformation of a probability value p is given by [5]: 

  ( 3-7 ) 
 
 

 

 

Figure 3.5 – Logit transform. 
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Applied to the image intensities (probabilities), ranging from 0 to 1, logit 

transformation maps these values to the entire real line, spreading them evenly 

along its histogram: negative values of logit represent probabilities below half of 

the range and positive values the upper half. 

 

Figure 3.6 – representation of the histogram of a modulated image: before the logit transform (left) 
and after the logit transform (right). 

 

As it can be seen in Figure 3.6, the histogram of the image after applying the logit 

transformation has a somewhat more normal distribution, nearer to a Gaussian 

curve. 

 

 Gaussian Deformation 3.3

Another alternative approach to the standard smoothing could be to perform the 

smoothing with kernel registration, i.e. create a force field around the image with 

vectors with arbitrary (Gaussian) amplitude and direction. In this hypothesis, the 

segments suffer slight changes that are strictly controlled, minimally preserving 

the anatomical definition and avoiding the strong deformation caused by 

convolution. Therefore, instead of blurring the image, it is only being changed by 

minor anatomical alterations so that, in the end, each coordinate could have a 

Gaussian distribution resultant from a controlled (Gaussian) anatomical variation.  
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It is not immediately clear that a Gaussian change in the anatomy of the segment 

could reflect in the Gaussianization of the intensity of the image. This hypothesis is 

sensible though, as each coordinate will suffer a Gaussian shift and, as a result, any 

coordinate in the resulting deformed set of images will have contributions from a 

random set of neighboring locations. Coupled with the interpolation in the 

application of the deformations fields, each coordinate of the image will represent 

a local average of intensities – in essence, the same as the Gaussian “blurring” 

explained above. 

The alteration of the shape of the segments is made by the vector field with 

random direction and amplitude, so that a new coordinate (x’,y’,z’) is obtained by: 

  ( 3-8 ) 

 

The variable α is a scale factor representing the maximum norm of the deformation 

vectors.  

 

 

 

 

 

  

 

When the segmented image is registered in the new grid, the final coordinates may 

not correspond to the locations in the original grid. Thus, an interpolation of the 

values of the voxels belonging to the existing grid is performed in order to 

calculate the values of the voxels placed in arbitrary positions in the new grid. In 

this new transformed grid, the coordinates will have new intensities values I, 

obtained by linear interpolation. Assuming a simple one dimensional example, the 

     zy,x,randnαzy,x,z,y,x 

Figure 3.7 – Schematic of the deformation process performed by the 
vector field with random direction and amplitude (2D). 
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intensity of the arbitrary position x’ is calculated by a distance weighted average of 

the intensity of its grid neighbors: 

  ( 3-9 ) 
  

 

where x1 and x2 are the grid neighbors of x’, ω is the normalized Euclidean 

distance between x’ and x1 and I(x) is the image intensity at location x. In 3D, this 

interpolation is called trilinear interpolation and requires the use of Equation   ( 

3-9 ) in all three dimensions, leading to the concatenation of 3 linear interpolations 

[10]. 

 

Figure 3.8 – Schematic  of  how  a  trilinear  interpolation  calculates  the  value  at  the arbitrary 
location c (black dot). The vertices represent the known values (grid) and the grey dots represent 

interpolated values. 

 

This method of Gaussianization was applied to the registered and modulated 

segments of GM using two different approaches: i) making use of the Central Limit 

Theorem; ii) using an iterative Gaussian deformation of the images. 

 

3.3.1 Central Limit Theorem 

As seen above, it is hypothesized that the Gaussianization of the GM segmented 

images can be achieved through controlled, low amplitude anatomical 

deformations of the segments. One way to implement this method is to make use of 

the Central Limit Theorem (CLT): given a sufficient large number of iterates of 

independent variables with a well-defined variance, the mean of all iterates will 

follow an approximate normal distribution pattern [20]. Thus, the original segment 

)ω)I((1)ωI()I(ω)(1ω 2121 xxx'xxx' 
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can be formed n times, using a single application of a random (Gaussian) vector 

field each time, and then the average of all anatomical changes is computed (Figure 

3.9): by the Central Limit Theorem, the distribution should be more Gaussian. To 

evaluate this process, a number of iterations from 5 to 100 was considered, with 

increments of 5; the scale factor α was assumed to be 1 or 3. 

Deformed version 1 Deformed version 2 Deformed version n

Final Image

(…)

 

Figure 3.9 – Schematic of the smoothing method with Gaussian deformation, with the CLT, using n 
iterations and α = 1. 

 

As seen in Figure 3.9, at the end of each iteration, a new image is produced through 

the interpolation of the voxels of the original image into the voxels of the new grid, 

formed by the deformation vectors. When all iterations are completed, an average 

of all the images is performed and a final smoothed image is achieved. 
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3.3.2 Iterative Gaussian Deformation 

The normalization of the segments can also be achieved through a process of 

iterative deformation. This method as some similarities with the one explained in 

the previous Section as the coordinates are also deformed through a Gaussian 

vector field. In the first method, an average of all the anatomical changes is 

computed and, by the central limit theorem, the spatial distribution will be more 

Gaussian. In this second method, each coordinate is also being deformed and 

interpolated to its new arbitrary positions, but this process is repeated with the 

same image in an iterative progressive way (Figure 3.10). To evaluate this process, 

a number of iterations from 1 to 10 was considered; the scale factor α was 

assumed to be 1 or 3.  

New grid of 
coordinates

GM segment
Random Vector 

Field
Tri-linear 

Interpolation

Smoothed Image

Final smoothed Image

n = total 
number of 
iteration

 

Figure 3.10 – Flowchart of the Iterative Gaussian deformation process. 

 

As explained in Section 3.3, a random vector field is applied to the segments, 

changing its coordinates and forming a new grid: the final, smoothed image is 

obtained through tri-linear interpolation on top of the previous version of the 
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deformation image.  At the end of each iterate, the resulting altered image is 

resubmitted to the process until the whole process is completed. 

 Assessment of normality 3.4

As seen in Section 2.2.5, VBM uses parametric statistical tests and the GLM in order 

to produce the statistical parametric maps of regions of interest in brain. The 

residuals of the GLM must follow a Gaussian distribution for it to be valid though. 

Prior to smoothing, the segments usually have a highly non-normal distribution 

and, consequently, the error distribution about any group mean will have a similar 

non-normal distribution [6].   

The spatial smoothing as done with the standard method usually ensures the 

normality of the data. However, even then there can be some circumstances that 

may lead do deviations from normality, invalidating the statistical tests. One 

example concerns the designs used: in unbalanced designs (different number of 

subjects in both groups to be compared) usually the differences lead to non-

normal distributions and the consequent analysis will not conform to parametric 

assumptions [6]. Therefore, is of extreme relevance evaluate the normality of the 

data. In this thesis in particular, this statement is even truer as the alternative 

Gaussianization methods need to be assessed quantitatively. 

Statistics cannot prove that the data is normally distributed, but it is possible to 

quantify the degree of non-normality [5]. In this work, a QQ plot analysis was 

performed, followed by an ROI analysis to assess the normality of the data. 

 

3.4.1 QQ plot 

A QQ plot is a plot of the quantiles of the sample distribution vs the expected 

quantiles in case of a given (in this case, normal) distribution. When the plots lie 

very closely to a straight line, the normality assumption is acceptable. Deviations 

from this line can be computed through its correlation coefficient rQ.  
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Considerer x1, x2, …, xn the n observations of the model residuals and the q1, q2, …, 

qn their distribution quantiles. The steps to compute a QQ plot are: 

1. Sort the residuals in ascending order (x1, x2, …, xn) and get their 

correspondent probability values (1-1/2)/n, (2-1/2)/n, …, (n-1/2)/n; 

2. Estimate the standard normal quantiles q1, q2, …, qn (obtained from a lookup 

table); 

3. Plot the observation pairs (q1,x1), (q2,x2), …, (qn,xn) and examine the 

“straightness” of the output. 

 

Figure 3.11 – QQ plot for the residuals of a GLM applied to a set of 20 subjects. 
 

If the correlation coefficient (Equation  ( 3-10 )), used to test significant deviations 

from a straight line, falls below a certain value, given a sample size, non-normality 

can be inferred [6]. Hence, it is possible to compute the proportion of elements 

whose coefficient is smaller than the threshold value, i.e. it is possible to infer 

about the degree of non-normality. According to the literature, given the sample 

size used (n=20), the correlation coefficient threshold is 0.92 [15]. 

 
  ( 3-10 ) 

 

 

As the GLM is applied on a voxel-by-voxel basis (massive univariate approach in 

VBM as seen in Section 2.2), this assessment of residuals is also performed on each 

coordinate. As such, it is possible to evaluate the proportion of voxels that fall 
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below this minimum threshold out of the entire sample of voxels under analysis: 

this proportion is a measure of the non-normality of the data. 

 

3.4.2 ROI Analysis 

The method described in the previous Section gives information about the 

normality process across the whole brain. Nonetheless, it would be interesting to 

have an analysis by regions of interest to evaluate the regional impact on the 

normality of the data. This could be achieved by performing a ROI analysis on the 

proportions described above. 

For the purpose of this thesis, this analysis was used to study the non-normality 

behavior of five different regions of the brain: frontal, parietal, occipital and 

temporal lobes and cerebellum. 

 

 

Applying the previously described method to each of the regions, one can compute 

the number of voxels that violates the normality hypothesis within each region 

and, consequently, the regional degree of non-normality. 

 

Figure 3.12 - Representation of the right hemisphere of the brain divided into its main regions 
(left); sagittal, coronal and axial views of the brain mask of frontal, parietal, occipital and temporal 

lobes and cerebellum used in the ROI analyses (right). 
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Chapter 4 

 RESULTS 4

 

 Methods 4.1

4.1.1 Subjects and Imaging 

Twenty healthy controls were scanned coronally on a 1.5-T GE Signa MRI scanner 

(GE Medical Systems, Milwaukee, WI, USA) using a T1-weighted 3-D IR-FSPGR 

sequence (echo time: 4.2 ms, inversion time: 650 ms and flip angle: 20°) with voxel 

size 0.86×0.86×1.5 mm.  

Of these, a random subset of ten scans was re-sampled to 256×256×256 (1-mm 

isotropic) using sinc interpolation. The GUI tkmedit function in FreeSurfer v.3.04 

was used to manually mask GM voxels in the temporal lobe and insula of all 

subjects; the removal being more intense on the right side Figure 4.1. This served 

to create a ground truth simulated lesion or atrophy profile so that the visual 

assessment of results could be more robust. 

 

 

Figure 4.1 – Coronal, sagital and axial views of the brain of a control subject (left) and 
the correspondent edited subject (right). 
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4.1.2 Standard VBM analyses 

To visually assess the impact of the methods described in this thesis, the subset of 

ten edited scans (with their original counterparts) mentioned in the previous 

Section were subjected to a standard VBM analyses, performed in SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/). Firstly, all the images were registered and 

segmented into grey matter using the standard unified segmentation method [14]. 

The segmentation step was also performed with a modulation step. These 

registered, segmented and modulated images were used to implement and 

evaluate the developed methods, described in Section 3.  

The GM segments were smoothed with the standard method by convolving the 

grey matter segments with Gaussian kernels with FWHM of 4mm and 8mm. 

Additionally, VBMs were also performed without any smoothing and with a 

selection of "best performers" (defined below) from the methods described in 

Chapter 3 and developed in the context of this thesis.  

Finally, the parametric statistical analysis was applied to the resulting images, 

choosing a paired t-test where the aforementioned group of 10 control subjects 

was compared to their edited counterparts. A relative threshold masking of 0.2 

was used, i.e. only coordinates where over 20% of voxels included grey matter 

were included in the analysis. The t-contrast used in the model was [1 -1] (control 

vs edited) and the statistical threshold used was 0.05, FWE corrected. The extent 

threshold (minimum number of voxels included in a cluster of significance) was set 

at zero to get the full perspective of the impact of the smoothing method on the 

VBM. 

 

4.1.3 Alternative smoothing 

As referred in Sections 3.2 and 3.3, two main methods were developed as 

alternative ways to smooth the data: Histogram Gaussianization and Gaussian 

Deformation. Both techniques were applied to the segmented images mentioned in 

the previous Section. All the methods were implemented and assessed using 

Matlab 2011b (The Mathworks Inc, Natick, MA). 
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4.1.3.1 Histogram Gaussianization 

The Histogram Gaussianization method consisted in normalizing the histograms of 

the images, as explained in Section 3.2. To do that, two techniques were used: i) the 

histogram equalization was performed with histeq Matlab function; and ii) the 

Logit Transform was performed with logit Matlab function. 

4.1.3.2 Gaussian Deformation 

As seen in Section 3.3, the grey matter segments images can also be smoothed 

through the application of a force field with vectors with arbitrary amplitude and 

direction. This results in a new grid of coordinates in which, it is hypothesized, 

each coordinate has a Gaussian distribution. 

The random vectors are computed using the function randn. The new grid of 

coordinates was calculated using the function meshgrid: 

  ( 4-1 ) 
 

where X, Y and Z are 3D coordinate arrays and (1:ax), (1:ay) and (1:az) are 

coordinate vectors with lengths corresponding to the dimensions of the original 

images. This mesh was "jittered" using Gaussian vectors and the intensity of the 

voxels in the new coordinates was calculated by resorting to the interp3 function, 

using trilinear interpolation. 

This method was applied in two different ways and a different number of 

iterations was used in both approaches, as explained in Section 3.3.  

 

4.1.4 Normality assessment 

4.1.4.1 GLM 

To assess the normality of the data after smoothing, the General Linear Model was 

applied to the images. As seen in Section 2.2.5, the GLM is used in VBM to detect 

significant differences in the GM concentration between two groups being 

az):ay,1:ax,1:meshgrid(1Z][X,Y, 
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compared, controlling for covariates. The model can also be used for multilinear 

regression purposes, which was the case for this assessment: 

  ( 4-2 ) 
 

where Y is a matrix containing the intensity values of the voxels of grey matter 

segment, β1, β2 and β3 are the regressors that explain the relation between the 

independent variables and Y, while age, gender and total grey matter volume 

(TGMV) are the independent variables whose values compose the design matrix of 

the model, and ε is the vector of residuals. This is a fairly arbitrary model, but one 

that can be used for this purpose as it is known that these independent variables 

affect grey matter volume [10]. 

In order to have statistical significance, the model was applied 12 times, each time 

to a set of 10 randomly selected scans from the total of 20 scans mentioned above. 

This was done for every smoothing method in order to get a pool of residual values 

for each. 

The last part of the model, ε, is a random variable that contains the variability of Y 

that the model is unable to explain. For the model to be valid is necessary to ensure 

that this variable assumes a Gaussian distribution: it is therefore essential to 

assess the normality of its distribution. 

4.1.4.2 QQ plot and Correlation Coefficient  

To assess the normality of the residuals, a QQ plot analysis was performed. As seen 

in Section 3.4.1, by computing the correlation coefficient rQ of the QQ plot, one can 

obtain the proportion of voxels with an rQ below a certain threshold and, thus, infer 

about the degree of non-normality of the data. The correlation coefficient was 

computed with Equation  ( 3-10 ). For each time the model was applied, the 

number of voxels with rQ<0.92 was calculated and the proportion (out of the total) 

of voxels that violated the hypothesis of normality as assessed by this threshold 

was obtained and the respective mean was represented in bar graphs. 

This correlation coefficient was calculated with the images obtained with the 

standard VBM, with kernels of 4mm and 8mm and with no smoothing, making a 

εβββY 321  TGMVgenderage
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total of three (mean) proportion values. These results were compared between 

each other in order to locate significant differences between them. All statistical 

analyses were performed with SPSS (IBM Corp. Released 2011. IBM SPSS Statistics 

for Windows, Version 20.0. Armonk, NY: IBM Corp.). The non-parametric statistical 

test of Kruskal-Wallis was used due to the low number of elements in each sample 

(n=12), with Mann Whitney post-hoc tests with Bonferroni correction. The 

resulting p-values of the tests were used to evaluate the significance of the 

differences between the methods. 

The same process was repeated for the developed methods. In case of the Gaussian 

deformation, the proportion of data points violating the normality hypothesis was 

obtained for each of the iterations and scale factor α used. For each method, the 

results were compared with the ones obtained with the standard smoothing, using 

the same statistical tests mentioned before. 

4.1.4.3 ROI Analysis 

Subsequent to the QQ plot analysis, a ROI analysis was performed, as explained in 

Section 3.4.2.  The aim of the ROI analysis is to study the normality within regions 

of the brain, namely frontal, parietal, occipital and temporal lobes and cerebellum, 

and see if there is a spatial pattern of non-normality. 

Firstly, a mask of the whole brain showing the voxels with a non-normal 

distribution was computed and it was superimposed to a standard brain in MNI 

space, providing information about the normality of the data across the whole 

brain. This was achieved by coding an in-house function in Matlab. 

Secondly, the division of the brain into its regions was performed using 

WFU_PickAtlas (Version 3.0.4.). Then, the number of voxels with a non-normal 

distribution in each region was computed and the correspondent proportion (out 

of the total under actual analysis) of non-normal data points in each region was 

obtained.  
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 Standard Smoothing 4.2

The results for the standard smoothing and no smoothing VBM are shown below: 

the proportion of data points that significantly violate the assumption of normality 

can be seen in Figure 4.2, and the respective differences in Table 4.1. 

 

 

 

 

 

 

 

Table 4.1 - Differences between the three groups (no smoothing, 4mm and 8mm), given by the p-
value of the pairwise comparisons (post hoc with Bonferroni correction). 

Kruskal – Wallis 

Sample1-Sample2 p-value 

8mm-4mm 0,480 

8mm-No smoothing <0,001 

4mm-No smoothing <0,001 

 

The ROI analysis was then applied to the images with no smoothing, with 4mm and 

8mm smoothing: the regional distribution of non-normal voxels is represented in 

Figure 4.3, as well as all the voxels considered for analysis. The regional proportion 

of non-normal voxels was then obtained for each ROI under analysis (Figure 4.4). 

Finally, the VBM analysis was performed using the second group of subjects, 10 

controls and the same 10 subjects manually edited, as explained in Section 4.1.1, 
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Figure 4.2 – Proportion of data points significantly violating the assumptions of 
normality with no smoothing, with 4mm and 8mm smoothing. The bars represent 

one standard error. 
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and the resulting SPM of the images with no smoothing, with 4mm smoothing and 

8mm smoothing can be seen in Figure 4.5. 

 

Figure 4.3 - Representation of the regional distribution of non-normal voxels (red) for the images 
with no smoothing (top left), 4mm smoothing (top right) and 8mm smoothing (bottom). The blue 

regions represent the regions that were considered in the analysis. 

 

 

Figure 4.4 – Regional proportion of non-normal voxels for the images with no smoothing (green), 
4mm (blue) and 8mm (red) smoothing. 
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Figure 4.5 - Statistical parametric map resulting of the VBM analysis of the images with no 
smoothing (top left), with 4mm (top right) and 8mm (bottom) smoothing. 

 

 Histogram Gaussianization 4.3

After applying the histogram Gaussianization methods to the 20 modulated 

subjects, the GLM was applied as explained above and the normality of the data 

was assessed through the residuals of the model. The proportion of non-normal 

voxels and the respective differences are shown in Figure 4.6 and Table 4.2, 

respectively. 

 
Figure 4.6 - Proportion of data points significantly violating the assumptions of normality with no 

smoothing, with 4mm and 8mm smoothing (bold) and with histogram equalization and logit 
transform (striped). The bars represent one standard error. 
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Table 4.2 - Differences between the groups (no smoothing, 4mm and 8mm, histogram equalization 
and logit transform), given by the p-value of the pairwise comparisons (post hoc with Bonferroni 

correction). 

Kurskal-Wallis 

Sample1-Sample2 p-value Sample1-Sample2 p-value 

No smoothing-

Histeq 
1,000 4mm-Logit 1,000 

No smoothing-Logit 0,444 8mm-Histeq 0,003 

4mm-Histeq 0,153 8mm-Logit 0,575 

 

The histogram equalization method does not provide a reasonable result in terms 

of data normalization, as it can be seen in Figure 4.6. Moreover, Table 4.2 shows 

that there are significant differences between this method and the smoothing with 

the 8mm Gaussian kernel, which is not in accordance with what is intended, since 

the aim is that the developed methods provide an equivalent or improved ability to 

normalise the data when compared to the standard smoothing. Thereby, in further 

analyses, namely regional distribution and proportion of non-normal voxels and 

VBM, only the logit method will be considered. 

 

Figure 4.7 - Representation of the regional distribution of non-normal voxels (red) for the images 
smoothed with logit transform. The blue regions represent the regions that were considered in the 

analysis. 
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Figure 4.8 - Regional proportion of non-normal voxels for the images smoothed with the logit 
transform. 

 

 

Figure 4.9 - Statistical parametric map resulting of the VBM analysis of the images smoothed with 
the logit transform. 
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4.4.1 Central Limit Theorem 
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Figure 4.10 – Proportion of data points violating the assumptions of normality of the smoothed 
images as a function of the number of iterations used.  

 

The first four points of the chart (marked with the circle) shown in Figure 4.10, 

corresponding to 5, 10, 15 and 20 iterations, were chosen to evaluate this method 

and, thus, further analyses were only performed using the images obtained with 

these criteria. 

 

 

Figure 4.11 - Proportion of data points significantly violating the assumptions of normality with no 
smoothing, with 4mm and 8mm smoothing (bold) and with Gaussian deformation by the Central 

Limit Theorem, using α=1 (striped). The bars represent one standard error. 
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Table 4.3 - Differences between groups (no smoothing, 4mm and 8mm and Gaussian deformation 
for n=5, 10, 15 and 20 with α=1), given by the p-value of the pairwise comparisons (post hoc with 

Bonferroni correction). 

Kruskal - Wallis 

Sample1 – 
Sample2 

p-value 
Sample1 – 
Sample2 

p-value 

No smoothing - 5x 0,024 4mm - 15x 1,000 

No smoothing - 10x 0,024 4mm - 20x 1,000 

No smoothing - 15x 0,060 8mm - 5x 1,000 

No smoothing - 20x 0,012 8mm - 10x 0,744 

4mm - 5x 1,000 8mm - 15x 0,312 

4mm - 10x 1,000 8mm - 20x 0,516 

 

The same number of iterations was used to test the effect of using α = 3. 

 

Figure 4.12 - Proportion of data points significantly violating the assumptions of normality with no 
smoothing, with 4mm and 8mm smoothing (bold) and with Gaussian deformation by the Central 

Limit Theorem, using α=3 (striped). The bars represent one standard error. 

 

Table 4.4 - Differences between groups (no smoothing, 4mm and 8mm and Gaussian deformation 
for n=5, 10, 15 and 20 with α=3), given by the p-value of the pairwise comparisons (post hoc with 

Bonferroni correction). 

Kruskal - Wallis 

Sample1 – 
Sample2 

p-value 
Sample1 – 
Sample2 

p-value 

No smoothing - 5x 0,012 4mm - 15x 1,000 

No smoothing - 10x 0,192 4mm - 20x 1,000 

No smoothing - 15x 0,192 8mm - 5x 1,000 

No smoothing - 20x 0,072 8mm - 10x 0,180 

4mm - 5x 1,000 8mm - 15x 0,180 

4mm - 10x 1,000 8mm - 20x 0,456 

 

According to Figure 4.11 and Figure 4.12, the best result while using the scale 
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specifications were used to find the results in terms of regional distribution of non-

normality as well as for the VBM analysis. 

 

 

Figure 4.13 - Representation of the regional distribution of non-normal voxels (red) for the images 
smoothed with Gaussian deformation method (CLT), for iterations n=5 with α=1 (left) and n=5 with 

α=3 (right). The blue regions represent the regions that were considered in the analysis. 
 

 

Figure 4.14 - Regional proportion of non-normal voxels for the images smoothed with Gaussian 
deformation method (CLT), for iterations n=5 with α=1 (blue) and n=5 with α=3 (red). 
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Figure 4.15 - Statistical parametric map resulting of the VBM analysis of the images smoothed with 
Gaussian deformation method (CLT), for iterations n=5 with α=1 (left) and n=5 with α=3 (right). 

 

4.4.2 Iterative Gaussian Deformation 

As seen in Section 4.4.1, this method was also applied while varying the number of 

iterations n and scale factor α.  As before, the total number of iterations was 

performed for α = 1 and only the best results were used to test the effect of using α 

= 3. 

 

Figure 4.16 - Proportion of data points violating the assumptions of normality of the smoothed 
images as a function of the number of iterations used. 
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Figure 4.17 - Proportion of data points significantly violating the assumptions of normality with no 

smoothing, with 4mm and 8mm smoothing (bold) and with iterative Gaussian deformation, using 
α=1 (striped). The bars represent one standard error. 

 

Table 4.5 - Differences between the groups (no smoothing, 4mm and 8mm and Gaussian 
deformation for n=3, 4, 5, 6, 7, 8, 9 and 10), given by the p-value of the pairwise comparisons (post 

hoc with Bonferroni correction). 

Kruskal - Wallis 

Sample1 – 
Sample2 

p-value 
Sample1 – 
Sample2 

p-value 

No smoothing - 3x 0,024 4mm-7x 1,000 

No smoothing - 4x <0,001 4mm-8x 1,000 

No smoothing - 5x <0,001 4mm-9x 1,000 

No smoothing - 6x <0,001 4mm-10x 0,024 

No smoothing - 7x 0,792 8mm-3x 1,000 

No smoothing - 8x <0,001 8mm-4x 1,000 

No smoothing - 9x <0,001 8mm-5x 0,312 

No smoothing - 10x 1,000 8mm-6x 1,000 

4mm-3x 1,000 8mm-7x <0,001 

4mm-4x 1,000 8mm-8x 0,996 

4mm-5x 1,000 8mm-9x 1,000 

4mm-6x 1,000 8mm-10x <0,001 

 

The same number of iterations was used to test the effect of using α = 3. 
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Figure 4.18 - Proportion of data points significantly violating the assumptions of normality with no 
smoothing, with 4mm and 8mm smoothing (bold) and with iterative Gaussian deformation, using 

α=3 (striped). The bars represent one standard error. 

 

Table 4.6 - Differences between the groups (no smoothing, 4mm and 8mm and Gaussian 
deformation for n=3, 4, 5, 6, 7, 8, 9 and 10), given by the p-value of the pairwise comparisons (post 

hoc with Bonferroni correction). 

Kruskal - Wallis 

Sample1 – 
Sample2 

p-value 
Sample1 – 
Sample2 

p-value 

No smoothing - 3x 1,000 4mm-7x 1,000 

No smoothing - 4x 0,024 4mm-8x 1,000 

No smoothing - 5x <0,001 4mm-9x 1,000 

No smoothing - 6x <0,001 4mm-10x 0,504 

No smoothing - 7x 0,024 8mm-3x 0,024 

No smoothing - 8x <0,001 8mm-4x 1,000 

No smoothing - 9x <0,001 8mm-5x 1,000 

No smoothing - 10x 1,000 8mm-6x 1,000 

4mm-3x 1,000 8mm-7x 1,000 

4mm-4x 1,000 8mm-8x 1,000 

4mm-5x 1,000 8mm-9x 1,000 

4mm-6x 1,000 8mm-10x <0,001 

 

The best result while using the scale factor α=1 was found for n=9 (proportion of 

0.0404), as seen in Figure 4.17. However, for α=3, the best result was found for n=6 

(proportion of 0.0381). Hence, the images obtained with both these specifications 

were used to find the results in terms of regional distribution of non-normality as 

well as for the VBM analysis. 
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Figure 4.19 - Representation of the regional distribution of non-normal voxels (red) for the images 
smoothed with the iterative deformation method, for iterations n=9 with α=1 (left) and n=6 with 

α=3 (right). The blue regions represent the regions that were considered in the analysis. 

 

 

Figure 4.20 - Regional proportion of non-normal voxels for the images smoothed with the iterative 
Gaussian deformation method, for iterations n=9 with α=1 (blue) and n=6 with α=3 (red). 
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Figure 4.21 - Statistical parametric map resulting of the VBM analysis of the images smoothed with 
the iterative Gaussian deformation method, for iterations n=9 with α=1 (left) and n=6 with α=3 

(right). 
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Chapter 5 

 DISCUSSION AND CONCLUSIONS 5

 

 Objectives 5.1

This thesis had the following objectives:  

i)  implement a method for the assessment of the normality of the data, 

both globally and by mapping out locations of “difficult” 

Gaussianization; 

ii) develop and assess alternative methods of Gaussianization that could 

address the drawbacks of the smoothing method currently used, 

comparing these to the standard approach; and 

iii)  visually assess the resulting statistical maps to evaluate anatomical 

accuracy gains, if any. 

It can be stated that all the goals of these work have been accomplished. The 

methods developed both for assessment of normality and Gaussianization can be 

seen in Chapter 3. The visual assessment of the resulting statistical maps of all the 

methods, both standard and developed, is present in Chapter 4. 

A brief discussion of the results, as well as some conclusions and suggestions for 

future work are presented below. 

 

  Gaussianization 5.2

According to the results shown in Chapter 4, the developed Gaussianization 

methods can, in fact, render the data more normally distributed as compared to the 

standard SPM methods. Apart from the underwhelming results from the histogram 

equalization approach, which will not be further mentioned, the novel solutions 



5 DISCUSSION AND CONCLUSIONS 

 

52 

 

presented here were effective. In effect, at least in mathematical terms, it can be 

said that the developed methods are by and large not inferior to Gaussian kernel 

convolution approaches currently in use. 

However, looking at the figures representing the regional distribution of the non-

normal voxels, it can be seen that there is a spatial issue that affects the analysis: in 

fact, there is a trade-off between the Gaussianization methods and the number of 

voxels used in the analysis. This trade-off is originated by the use of relative 

masking to threshold the image analysis: this masking ensures that only voxels 

with a high probability of being grey matter in most subjects analysed are actually 

included in the model. As such, voxels where registration is less adequate and/or 

where there is a great discrepancy between subjects are discarded. What was 

observed was that this threshold method is heavily biased towards the more 

traditional smoothing methods: in the latter, segments are so heavily blurred that 

inter-subject consistency is ensured by the simple fact that all voxels become fairly 

homogeneous; this rewards the loss of anatomical accuracy and penalizes methods 

where accuracy is more preserved, as observed. 

Notice the case of the standard smoothing: the Gaussianization is performed by a 

smoothing step, as seen in Section 3.1, which blurs the image while compensating 

for the inaccuracies occurred in the registration step – this means that, during the 

statistical analysis, more voxels are included. 

In the case of the Gaussian Deformation method (especially in the iterative 

Gaussian deformation), the “blurring” effect is attenuated, resulting in a relative 

mask with a smaller number of voxels (Figure 4.13 and Figure 4.19). 

Lastly, in the logit transform method, the transformation of the image is done 

differently: only the intensity values of the images are being altered, but the 

structure of the image remains. Thereby, this method does not compensate the 

registration step or any inhomogeneity and, consequently, many non GM voxels 

are detected. Thus, the number of voxels used in the relative mask is very low, as it 

can be seen in Figure 4.7. 
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 Visual Assessment with VBM 5.3

In the Section 5.2, it was noted that the developed Gaussianization methods has the 

ability to render the data more normally distributed. However, it is necessary to 

ensure that these methods also enable an accurate detection of significant 

differences in the GM volume between groups. Therefore, it is important to 

evaluate possible accuracy gains. This can be achieved through visual assessment 

of the statistical maps resulting from the VBM analysis.  

Notice Figure 4.9, concerning the logit transformation method. The image shows a 

noisier signal when compared to the standard smoothing, albeit more specific. 

However, as referred in Section 5.2, the number of voxels used in the statistical 

analysis is very small; thus, this method is prone to false negatives and cannot be 

recommended. 

Regarding the Gaussian deformation method, signals are also noisier relative to the 

standard smoothing. Nevertheless, these signals are also more accurate, i.e. the 

regions where there are significant differences in the GM volume between groups 

are better defined and are likely true positives (given the knowledge of the ground 

truth). Hence, it can be said that these methods can, in fact, provide anatomical 

accuracy gains, when compared to the standard method. The detected regions are, 

however, less contiguous: this is expected due to the naturally variable anatomy of 

the subjects, which cannot be fully accounted for by the registration method. 

 

 Limitations and Future work 5.4

This works presents with several limitations that must be acknowledged. As 

immediate factor that stands out from the discussion above is the evaluation of the 

impact of these Gaussianization methods using threshold masking in the analyses. 

Other options exist in SPM, notably no masking or absolute threshold masking: it 

would be sensible to assess the impact of the developed methods on both cases, 

which can be done in future work. Another important limitation lies in the form of 
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assessing the preservation of anatomical “accuracy”: whereas this was done 

visually, which is in fact important in practical terms, future work should attempt 

to quantify this within a metric that can be objectively measured. Also, the small 

number of subjects used in both assessing the residuals of the GLM, and then the 

regional and visual impact of the methods, may have been detrimental to the 

inferential capability of the analyses performed. Additionally, the dependent 

variables used in the GLM in the analysis of the residuals should have been more 

thoroughly tested. Finally, it must be pointed out that the histogram equalization 

approach, which failed to present any benefit, was designed to achieve uniform 

distributions rather than Gaussian distributions, which may explain its poor 

performance. All these points should be addressed in a follow up to this work. 
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