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Abstract 

The formation of β-amyloid deposits is considered a histopathological feature of 

Alzheimer´s disease (AD). In vivo molecular imaging by means of amyloid-avid 

radiotracers will allow for an early and conclusive diagnostic of AD. Herein, we 

describe the radiosynthesis of the radiofluorinated styryl benzoxazole derivative [18F]-

[2-[N-methyl-N-(2`-fluoroethyl)-4`-aminostyryl]benzoxazole] ([18F]-1) and its pre-

clinical evaluation, including metabolic and biodistribution studies in male Wistar rat. 



The in vivo biological evaluation of [18F]-1 showed that this new radiotracer has a 

moderate brain uptake with a slow brain washout and a poor in vivo stability 

 

Highlights 

• Design of a fluorinated styryl benzoxazole derivative for detection of β-amyloid 

plaques. 

• Nucleophilic radiofluorination with readily available [18F]KF. 

• Metabolism and biodistribution studies of the radiofluorinated styryl 

benzoxazole derivative. 

 

1. Introduction 

Progressive neurodegenerative disorders such as Alzheimer´s (AD) or Parkinson´s 

(PD) disease affect millions of persons worldwide and pose a significant impact in 

public health, especially as more people approach old age. These diseases, known as 

“protein misfolding diseases” are characterized by the accumulation of insoluble protein 

deposits like β-amyloid (Aβ), neurofibrillar tangles in AD, and alpha-synuclein (αSyn) 

in PD. The molecular processes underlying these diseases are still not completely 

understood, but the deposition of the amyloid deposits is considered an early and 

specific event in their pathogenesis (Bacskai, Hickey et al. 2003; Irvine, El-Agnaf et al. 

2008). 

Being available suitable probes for in vivo targeting of Aβ deposits, the use of 

molecular imaging modalities is expected to demonstrate the locations and densities of 

such deposits in the AD brain allowing an early and assertive diagnosis of AD and/or 

the monitoring of anti-amyloidogenic therapies. Among the available molecular 

imaging modalities, positron emission tomography (PET) is the best suited to achieve 



such goal, particularly based on amyloid-avid molecules radiolabelled with the 

cyclotron produced radionuclides carbon-11 (11C) and fluorine-18 (18F) (Kung 2012; 

Lee, Choe et al. 2012; Ribeiro Morais, Paulo et al. 2012). 

A good performing PET radiotracer for in vivo imaging of amyloid deposits must 

show a high binding affinity to Aβ and a good permeability through the blood brain 

barrier (BBB), with minimal non-specific retention in the brain. Taking these requisites 

into consideration, a plethora of small-sized, planar and non-ionic 11C- and 18F-labelled 

molecules have been synthesized and evaluated as radiotracers for in vivo detection of 

Aβ deposits in AD-affected brain. From these studies, the Pittsburgh compound B 

([11C]PIB) (Fig 1) emerged as the gold standard PET radiotracer for in vivo β-amyloid 

imaging (Klunk, Engler et al. 2004). However, the short-life of 11C (t1/2 = 20.4 min) 

limits its use to centers with an on-site cyclotron. Hence, an intense research effort has 

been done to obtain alternative 18F-based radioprobes, as the longer half-life (t1/2 = 110 

min) of 18F allows for multistep radiosynthesis, longer in vivo investigation, and 

commercial distribution to other clinical PET centers. In recent years, encouraging 

results have been reported for a few 18F-labeled compounds (Fig. 1) (Liu, Kepe et al. 

2007; Choi, Golding et al. 2009; Jureus, Swahn et al. 2010; Vandenberghe, Van Laere 

et al. 2010; Barthel, Gertz et al. 2011; Clark, Schneider et al. 2011) that underwent 

clinical evaluation in humans as Aβ imaging agents. One of these agents, 18F-

Florbetapir (Amyvid) has been recently approved by the FDA for clinical use, giving in 

vivo PET images of amyloid deposits in close correlation with results from postmortem 

histopathological analysis (Clark, Schneider et al. 2011). 

Despite this success, there is still room to investigate alternative PET radioprobes 

for in vivo detection of amyloid aggregates, aiming at the finding of best performing 

compounds with augmented initial brain uptake and with reduced non-specific retention 



in the brain. For this purpose, we have designed a novel family of fluorinated styryl 

benzazole derivatives that interact in vitro with amyloid species in the same way as does 

Thioflavin T, which is a dye used to stain Aβ deposits in post-mortem histopathological 

studies. In this paper, we report on the radiosynthesis of one of these compounds, [18F]-

[2-[N-methyl-N-(2`-fluoroethyl)-4`-aminostyryl]benzoxazole] ([18F]-1), as well as on its 

in vivo evaluation that comprised biodistribution and metabolism studies in rat. 

Figure 1. 

2. Experimental Section 

2.1 Chemistry 

The tosylated precursor 2-[N-methyl-N-(2`-tosyloxyethyl)-4`-aminostyryl]benzoxazole 

(3) and the cold surrogate 2-[N-methyl-N-(2`-fluoroethyl)-4`-aminostyryl]benzoxazole 

(1) were synthesized according to previously reported (Ribeiro Morais, Miranda et al. 

2011). Briefly, 2-benzoxazolylmethyltriphenylphosphonium chloride (2.0 g, 4.6 mmol) 

in benzene (25 mL) was reacted with KtBuO (525 mg, 4.7 mmol) at rt. After 3 h, the 

reaction mixture was diluted with EtOAc (100 mL) and was extracted with water (100 

mL). The organic phase was dried over MgSO4, filtered and the filtrate was dried under 

vacuum. Then, the resulting phosphorane was refluxed overnight with N-methyl-N-(2-

tosyloxyethyl)-4 aminobenzaldehyde (590 mg, 1.8 mmol) in anhydrous THF (25 mL). 

Thereafter, the solvent was concentrated and the reaction crude was re-dissolved in 

CH2Cl2 (100 mL). The organic phase was extracted with sat. sol. of NaHCO3 (100 mL). 

The organic extract was dried over MgSO4, filtered and the filtrate was concentrated. 

Compound 3 (550 mg, 65 %) was purified by column column chromatography on silica 

gel (n-hexane/EtOAc/CHCl3 3:1:1). To a solution of 3 (250 mg, 0.55 mmol) in 

anhydrous THF (23 mL) was added anhydrous TBAF (1.8 mL, 1.8 mmol, 1.0 M in 



THF). The reaction mixture was refluxed for 30 minutes. Thereafter the solvent was 

concentrated; chloroform (50 mL) was added to the residue and was extracted with sat 

sol NaHCO3 (50 mL). The organic phase was dried over MgSO4, filtered and the filtrate 

was concentrated. Column chromatographic on silica gel (n-hexane/EtOAc 4:1) gave 

the mixture of 1-Z and 1-E (124 mg, 76%).  

 

2.2 Radiochemistry 

No-carrier-added aqueous [18F]fluoride was produced in a CYCLONE 18/9 cyclotron 

(IBA) by irradiation of [18O]H2O via the 18O(p,n)18F nuclear reaction. Resolubilization 

of the aqueous [18F]fluoride (0.8–1.0 GBq) was accomplished as described by Coenen 

et al (Coenen, Klatte et al. 1986) with Kryptofix® 2.2.2 and K2CO3 in a conical vial and 

azeotropically removing water with acetonitrile in a stream of nitrogen. Finally the dried 

[18F]KF was resolubilized in 500 µL of anhydrous acetonitrile and added to 3 (3.0 mg) 

in a conical glass vial. The vial was sealed and heated for 20 min at 90°C in an oil bath. 

After cooling the mixture was subjected to semi-preparative HPLC (Discovery C18, 4.6 

x 250 mm, 5µm, Supelco) using isocratic elution with acetonitrile/0.1%TFA (70/30) at a 

flow rate of 4 mL/min originated by a PU1580 pump (Jasco). The products were 

monitored by UV detector (UV2075, Jasco) at 254nm and by gamma-detection with a 

scintillation detector (Nuclear Interface). 

The radiolabeled product [18F]-1 eluting at 9-10 min was separated, diluted with 30mL 

of water and the whole solution was subjected to a C18 cartridge (200 mg. LiChrolut). 

The cartridge was washed with 5 mL of water, after that the radiolabeled product [18F]-

1 was eluted with 1mL of ethanol and reconstituted with 8mL of E153 electrolyte 

infusion solution (140mmol/l Na+, 5 mmol/l K+, 2.5mmol/l Ca++, 1.5mmol/l Mg++, 



50mmol/l acetate, 103mmol/l Cl-, Serumwerk Bernburg AG, Bernburg, Germany). This 

solution was used for biodistribution experiments and stability studies. 

Analytical HPLC analyses of the radiolabeled product [18F]-1 were performed by a 

Lichrograph® system (Merck-Hitachi) equipped with a L4500 UV detector, a L6200 

pump and a scintillation detector Gabi (Raytest) using a C18 column (Luna C18(2), 

4.6x250, 5µm) and the indicated isocratic eluent with a flow rate of 1.0 mL/min.  

The radiotracer [18F]-1 was synthesized in 70 min total synthesis time in 42% total 

decay corrected yield from [18F]fluoride in > 99% radiochemical purity (both isomers) 

and a specific activity 7-28 GBq/µmol at end of synthesis. 

 

2.3 Metabolite analysis 

Male Wistar-Unilever rats (n = 2; body weight 150 ± 12 g) were anesthetized with 

desflurane (9-10% v/v, 30% oxygen/air). The threshold value for breathing frequency 

was 65 breaths/min. Animals were put in supine position and placed on a heating pad to 

maintain body temperature. The spontaneously breathing rats were heparinized with 100 

units/kg heparin (Heparin-Natrium 25.000-ratiopharm®, ratiopharm GmbH, Germany) 

by subcutaneous injection to prevent blood clotting on intravascular catheters. After 

local anesthesia with lignocain (1%; Xylocitin® loc, mibe, Jena, Germany) into the right 

groin, a catheter (0.8 mm Umbilical Vessel Catheter, Tyco Healthcare, Tullamore, 

Ireland) was introduced into the right femoral artery for arterial blood sampling. A 

second needle catheter (35 G) was placed into a tail vein and was used for [18F]-1 

radiotracer injection (39 MBq in 0.5 mL of E153/10% ethanol, infusion 1 mL/min). 

Arterial blood samples were taken 1.5, 10, 30 and 60 min after injection. Arterial 

plasma was separated by centrifugation (11.000g x 3min) followed by precipitation of 

the proteins with methanol (2 volumes to 1 volume plasma) followed by 5 min storage 



at -60°C. The clear supernatant separated by centrifugation was used for analysis. The 

radio-HPLC system (Agilent 1100 series) applied for metabolite analysis was equipped 

with UV detection (254 nm) and an external radiochemical detector (RAMONA, 

Raytest GmbH, Straubenhardt, Germany). Analysis was performed on a Zorbax C18 

300SB (250 × 9.4 mm; 4 µm) column with an eluent system A (water + 0.1%TFA) and 

B (acetonitrile + 0.1% TFA) in the following gradient: 5 min 95% A, 10 min to 95% B, 

5 min at 95% B and 5 min to 95%A at a flow rate of 3 mL/min. 

 

2.4 Biodistribution studies in Wistar rats  

The animal research committee of the Regierungspräsidium Dresden approved the 

animal facilities and the experiments according to institutional guidelines and the 

German animal welfare regulations. The experimental procedure used conforms to the 

European Convention for the Protection of Vertebrate Animals used for Experimental 

and other Scientific Purposes (ETS No. 123), to the Deutsches Tierschutzgesetz, and to 

the Guide for the Care and Use of Laboratory Animals published by the US National 

Institutes of Health (DHEW Publication No. (NIH) 82-23, Revised 1996, Office of 

Science and Health Reports, DRR/NIH, Bethesda, MD 20205). The Wistar rats (Wistar 

Unilever, HsdCpb: Wu, Harlan Winkelmann GmbH, Borchen, Germany, 138±16 g 

body weight) were housed under standard conditions with free access to standard food 

and tap water. The biodistribution of [18F]-1 was studied in 7 male rats at 5 min and 8 

male rats at 60 min after tracer injection. The animals were anesthetised with Desflurane 

(Suprane, Baxter Healthcare Corporation Deerfield, IL, USA) (7.0-10.0% v/v in 30% 

oxygen) and 3-5 MBq radiotracer aliquots were administered in 500 µL electrolyte 

solution E153 (with 10% ethanol) and into a tail vein. After recovery from anaesthesia 

rats were again anaesthetized at 5 or 60 min after tracer injection, respectively. Blood 



was withdrawn by heart puncture, and the animals were euthanized. Organs and tissues 

were removed, dried, weighted, and the radioactivity was measured in a cross calibrated 

well counter (WIZARD, Automatic Gamma Counter, Perkin Elmer, Waltham, Ma, 

USA) or activimeter (Activimeter Isomed 2000; MCD Nuklear Medizintechnik, 

Dresden, Germany). The data were decay corrected and normalized to the amount of 

injected activity calculated from the activity of injection syringes before and after 

injection and expressed as percentage of injected activity (%ID) or injected activity per 

gram of tissue (%ID/g). Values are quoted as means ± standard deviation (mean ± SD) 

for a group of animals.  

 

3. Results and Discussion 

Recently, we have introduced new fluorinated styryl benzoxazole (compound 1) and 

styryl benzothiazole (compound 2) derivatives that were synthesized based on a 

multistep and convergent approach, using the Wittig reaction as a key step to introduce 

the styryl moiety (Scheme 1) (Ribeiro Morais, Miranda et al. 2011). Compounds 1 and 

2 were obtained as mixtures of geometric E and Z isomers, being the E isomer formed 

preferably in spite of the Z/E photoisomerization ability of these compounds. The 

assessment of the in vitro binding affinity of the E and Z isomers of 1 and 2 towards 

different types of amyloid fibrils (insulin, α-synuclein and β−amyloid peptide) has 

shown that compound 1 displays the highest Aβ binding affinity and selectivity. These 

studies have also proved that the Z/E geometric isomerism has almost no influence on 

the binding profile of 1 and 2 (Ribeiro Morais, Miranda et al. 2011). Altogether, these 

data led us to consider 1 the most promising compound to be further evaluated as an 

amyloid-avid probe for in vivo detection of Aβ deposits. Hence, we have studied the 



synthesis of the 18F-labelled counterpart ([18F]-1) of compound 1 and proceeded with its 

in vivo biological evaluation, as reported in here. 

 

Scheme 1. 

 

The radiosynthesis of the 18F-labelled styryl benzoxazole ([18F]-1) has been done using 

the tosylated precursor 3 as starting material, using a synthetic methodology similar to 

that previously reported to obtain the cold congener (1) (Ribeiro Morais, Miranda et al. 

2011). The optimization of the radiosynthesis involved the study of the influence of the 

temperature (80-100 ºC) and use of different solvents (dimethylformamide vs 

acetonitrile). Under optimized conditions, the synthesis of [18F]-1 was achieved by 

nucleophilic displacement of the tosylate group with dried K[18F] at 90 ºC for 20 min, 

using acetonitrile as solvent and K2.2.2/K2CO3 to catalyze the reaction (Scheme 2). 

This combination catalyst, commonly used in radiofluorination reaction, increases the 

solubility of the fluoride ion and enhances its nucleophilicity (Liu, Zhu et al. 2010). The 

radiotracer [18F]-1 has been purified by semipreparative HPLC using an isocratic 

elution with acetonitrile/0.1% TFA (70/30). After HPLC purification, [18F]-1 has been 

obtained as a mixture of the two E and Z isomers, as confirmed by HPLC (Fig. 2). No 

efforts have been made to separate the two E and Z isomers of [18F]-1 since they have 

the similar affinity towards Aβ(1-42) aggregates with binding constants of 4.48±0.38 

and 5.99±0.56 μM-1, respectively (Ribeiro Morais, Miranda et al. 2011). Prior to the 

biodistribution experiments and stability studies, [18F]-1 has been reformulated into an 

aqueous solution containing 10% of ethanol, using a solid phase extraction (SPE) C18 

cartridge to perform the reformulation. [18F]-1 was synthesized in an overall 42% 

decay-corrected radiochemical yield and high radiochemical purity (> 99%, both 



isomers) with a specific activity of 7-28 GBq/µmol at end of synthesis. The radiotracer 

[18F]-1 was synthesized in 70 min total synthesis time, which included the purification 

and reformulation. The radiochemical purity was determined based on radio-TLC and 

analytical HPLC experiments. The chemical identity of compound [18F]-1 was assessed 

by HPLC comparison with authentic samples of the E and Z isomers of the cold 

congener 1. 

 

Scheme 2. 

 

Biodistribution and metabolism studies of [18F]-1 were performed in male Wistar rats, 

in order to have a first insight into its potential relevance as a radiotracer for in vivo 

imaging of Aβ aggregates. In particular, these studies intended to elucidate if the 

compound could cross the BBB with a fast washout from the healthy brain, a crucial 

issue to reach intra cerebral amyloid deposits with minimal non-specific uptake.  

 

Figure 2. 

 

The biodistribution data of [18F]-1 in male Wistar rats are presented in Table 1. The data 

were obtained at 5 and 60 min post-injection (p.i), after intravenous bolus injection of 

the radiotracer. At early post-injection times, it was observed a moderately fast 

clearance of the 18F-radioactivity from the blood compartment with a value of 

0.49±0.20% ID/g at 5 min p.i. The percentages of injected dose (ID) that were found in 

the liver (4.83±2.16% at 5 min p.i. and 2.38±0.28% at 60 min p.i.) and intestine 



(5.30±2.63% at 5 min p.i. and 13.66±1.90% at 60 min p.i.) indicate a significant 

contribution of hepatobiliary excretion, as expected for a lipophilic compound. [18F]-1 

presents a calculated octanol/water partition coefficient (log Po/w) of 4.01, as we have 

reported previously (Ribeiro Morais, Miranda et al. 2011). [18F]-1 has shown a 

moderate initial brain uptake (0.61±0.26 %ID/g at 5 min p.i.), which is consistent with 

its lipophilicity. The activity retained in the brain was 0.45±0.04 %ID/g, 60 min after 

i.v. administration (Fig. 3). Therefore, [18F]-1 undergoes a relatively slow brain washout 

(5-to-60 min ratio = 1.36) in normal rat, which is a non favorable behavior for a specific 

radioprobe targeted at Aβ aggregates. In addition, [18F]-1 showed a significant femur 

uptake (0.50±0.21 %ID/g at 5 min p.i.; 0.75±0.13 %ID/g at 60 min p.i.) that increased 

with time (Fig. 3), indicating the ocurrence of in vivo defluorination. In vivo 

defluorination has been recently reported for related 18F-labeled styryltriazole 

derivatives carrying also the radioactive label at an aliphatic sp3 carbon atom (Lee, 

Choe et al. 2012). 

Table 1. 

Figure 3. 

Figure 4. 

The observed slow brain washout and increasing femur uptake indicated that [18F]-1 

was not stable in vivo, undergoing probably defluorination processes. To have a further 

insight into this point, we have performed radio-HPLC analysis of blood plasma from 

Wistar rats injected with [18F]-1. This study confirmed that [18F]-1 was rapidly 

metabolized into a polar metabolite (see Supporting Information), being depicted in Fig. 

4 the variation of the metabolite fraction over time. After 30 min p.i., the plasma 



activity was due almost exclusively to the metabolite, which indicates that [18F]-1 has a 

poor in vivo stability. 

 

4. Conclusions 

A novel radiofluorinated styryl-benzoxazole derivative ([18F]-1) targeted at Aβ 

aggregates has been synthesized in good yield and with high radiochemical purity and 

specific activity. Biodistribution and metabolism studies in rat have shown that this 

newly synthesized radiotracer can cross the BBB but displays a rather slow brain 

washout. Moreover, [18F]-1 suffers extensive metabolization/defluorination in vivo and, 

therefore, is not a suitable radioprobe for in vivo imaging of Aβ deposits in AD-affected 

brain. To overcome these drawbacks, we envisage to explore the use of different 

aliphatic linkers between the -CH218F group and the phenyl ring, as it has been 

reported that such linkers can strongly influence the in vivo stability of this type of 

compounds (Lee, Choe et al. 2012). 
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Figure 1. Chemical structure of relevant Aβ binding agents. 
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Scheme 2. Synthesis of [18F]-1 using aliphatic nucleophilic radiofluorination.  
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