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Abstract 

Perfusion imaging is a technique that allows the detection of regional and global 

alterations in an organ blood flow, and can help to predict the onset of many diseases 

where the organ hemodynamics is modified. The ability of image contrast manipulation 

through exogenous contrast agents makes MRI a widely used technique for the 

assessment of liver perfusion in a non-invasive way. However, accurate liver perfusion 

assessment remains controversial regarding the mathematical model-based approaches 

than can be used to quantify perfusion. In general, commercially available software 

packages determine liver perfusion based on the classic and widely used Tofts model. 

This is a compartmental model that assumes contrast agent exchange between two 

compartments – blood plasma and tissue – and that there is a single input through which 

the contrast reaches the organ, and one output. The Tofts model has to suffer 

adaptations in order to contemplate both arterial and venous blood inputs of the liver. 

This work aims to develop and implement a software for parametric quantification of 

perfusion in the liver using a dual-input one-compartment model. Software 

implementation uses Matlab and it is organized in a series of steps that go from reading 

raw MRI data to calculating liver perfusion parametric maps. Software tests were 

conducted in a patient population with hepatocellular carcinoma. Results indicate that 

the proposed model is able to determine perfusion parameters and is sensitive to the 

detection of perfusion alterations. Standard image acquisition protocols must be used in 

the future in order to extend model application to larger clinical populations. 

Keywords: magnetic resonance imaging, liver perfusion, Tofts model, dual-input 

one-compartment model, hepatocellular carcinoma 
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Resumo 

A imagem de perfusão é uma técnica que permite a deteção de alterações 

regionais e globais do fluxo sanguíneo de um órgão e pode ajudar a prever o 

aparecimento de muitas doenças, nas quais a hemodinâmica do órgão se encontra 

modificada. A capacidade de manipulação do contraste da imagem através do uso de 

agentes de contraste exógenos faz da imagem por ressonância magnética (IMR) uma 

técnica amplamente utilizada para a avaliação não-invasiva da perfusão sanguínea no 

fígado. No entanto, a avaliação precisa da perfusão hepática permanece controversa 

relativamente aos diversos modelos matemáticos que podem ser usados para quantificar 

a perfusão. A maioria dos programas comercialmente disponíveis determina a perfusão 

no fígado com base no modelo Tofts, um modelo clássico e muito utilizado. Este é um 

modelo compartimental que assume troca do agente de contraste entre dois 

compartimentos - plasma sanguíneo e tecido - e que existe apenas uma entrada através 

da qual o contraste atinge o órgão, bem como uma saída. O modelo de Tofts tem de 

sofrer adaptações de modo a contemplar tanto a entrada de sangue arterial bem como 

a de sangue venoso que se verifica no fígado. Este trabalho pretende desenvolver e 

implementar um software para quantificação paramétrica da perfusão no fígado usando 

um modelo de duas entradas e um compartimento. O software em Matlab contempla o 

algoritmo desenvolvido num conjunto de passos, começando com a leitura dos dados 

não processados de ressonância magnética, terminando no cálculo dos mapas 

paramétricos das constantes cinéticas do agente de contraste e na perfusão total do 

fígado. Os testes do software foram realizados numa população com carcinoma 

hepatocelular. Os resultados indicam que o modelo proposto é capaz de determinar os 

parâmetros de perfusão e é sensível à deteção das alterações de perfusão. Protocolos 

de aquisição padrão devem ser utilizados no futuro a fim de estender a aplicação do 

modelo para populações clínicas maiores. 

Palavras-chave: imagem por ressonância magnética, perfusão do fígado, modelo de 

Tofts, modelo de duas entradas e um compartimento 
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Chapter 1  

Introduction 

1.1 Motivation and objectives 

The liver is an organ with a well-defined vascular structure. There are many 

hepatic perfusion disorders that induce modifications to the normal liver blood supply. 

Perfusion imaging of the liver is a quantitative imaging method that reflects the 

microcirculatory status of hepatic parenchymal and hepatic lesion blood flow. It is used 

in the clinical evaluation of several hepatic disorders such as cirrhosis or hepatocellular 

carcinoma (HCC). In the latter case, perfusion studies play an important role in e.g. 

detection of the primary tumor and metastases, evaluation of tumor viability or 

assessment of the effectiveness of antiangiogenic therapies. 

One of the major advantages of magnetic resonance imaging (MRI) is its wide 

range of imaging contrasts that provide, noninvasively, valuable information over the 

anatomy and function of the human body. The use of an exogenous contrast agent (CA) 

further enhances the flexibility of MRI to detect and study perfusion conditions.  

The evaluation of perfusion with MRI is achieved through the analysis of dynamic 

imaging data with mathematical models that describe the temporal evolution of the 

contrast agent concentration. By comparing the model predictions with the 

experimental data, it is possible to calculate the kinetic parameters that describe the 

transport of the contrast agent from the vascular bed to the extravascular extracellular 

space and vive-versa. Through the calculation of kinetic parameters one can evaluate 

perfusion and thereby identify potential biomarkers of disease.  

The evaluation of hepatic perfusion with MRI is possible with commercially 

available software. However, the central question here is that the mathematical models 
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that are implemented in these software packages generally follow the classic approach 

as proposed by Tofts and co-workers [1], which assumes the exchange of contrast agent 

between two compartments with a single input. The latter does not accurate describe 

the real vascular architecture of the liver and do not take into account the input of blood 

from the portal vein and consider the blood input to the liver to be mainly arterial. 

The present work aims to develop and implement a software for parametric 

quantification of perfusion using contrast enhanced MRI (CE-MRI) data acquired at 3T 

and using a gadolinium (Gd) based contrast agent. A dual-input one-compartment model 

is considered, which takes into account the dual input from both venous and arterial 

blood vessels, thus better reflecting the real liver blood supply. 

The present thesis consists of three main parts. The first part introduces the 

main concepts of MRI - physics of signal generation, image contrast mechanisms, image 

acquisition and reconstruction and basic pulse sequences. In this section, a review of the 

existing models for hepatic perfusion is also presented. The second part of the thesis 

describes the algorithm that was created to analyze hepatic CE-MRI data with the dual-

input single compartment model and the strategy that was followed for software 

implementation. The third and last part of this work was the validation, in which the 

developed software was tested in a population with HCC. 
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1.2 Liver: a brief view of anatomy and functions 

The liver is a reddish brown tubular gland located immediately under the 

diaphragm, filling most of the right hypochondriac and epigastric regions. The under 

surface faces the stomach, the first part of the duodenum and the right side of the large 

intestine (figure 1.1) [2, 3]. It is the second largest organ in the human body (second to 

skin) and the largest internal organ weighting approximately between 1.2 𝐾𝑔 to 1.8 𝐾𝑔 

in an adult human [4]. 

 

Figure 1.1: Location of the liver. Adapted from [3]. 

Anatomically the liver has four lobes: the right, left, quadrate and caudate lobes 

but usually there is a gross division in the two main lobes (left and right) by the falciform 

ligament (figure 1.2) [3]. 

 

Figure 1.2: General anatomy of the liver. a) Anterior aspect. b) Posterior aspect. Adapted from [2]. 



Chapter 1 - Introduction   4 

 

 

 At the microscopic level, the functional units are represented by cylindrical 

structures with about 2 𝑚𝑚 long by 1 𝑚𝑚 in diameter called hepatic lobules. A lobe 

consists of a central vein passing down its core, surrounded by radiating sheets of 

cuboidal cells called hepatocytes. Each corner of the lobule usually contains a portal area, 

a complex composed of branches of the portal vein, hepatic artery, bile duct and nerve. 

Between the radiating rows of cells there are dedicated blood channels called sinusoids, 

which transport blood of the portal vein and hepatic artery. The sinusoids are lined by 

a fenestrated endothelium with fenestrations so large so that the hepatocytes are in 

direct contact with the blood. The blood flows from the portal area in the sinusoids and 

then to the central vein, which drains it from the lobule to the hepatic vein [2, 3].  

Thought it lies outside the digestive tract, the liver plays a key role not only to 

digestion but also to the proper functioning of the human organism.  Only one of the 

liver main functions contributes directly to the digestion: the secretion of bile. Other 

liver head functions are the regulation of the blood glucose levels, lipid synthesis (as 

lipoproteins, cholesterol and phospholipids), the removal of certain protein metabolism 

residues (like the NH2 groups), storage of vitamins (A, D, E, K and B12) and minerals 

(such as iron and copper) [2, 3]. 

 

1.2.1 Normal and Abnormal Liver Circulation 

The liver is a highly vascularized organ (figure 1.3) characterized by a dual blood 

supply consisting of the portal vein, which is the major supplier, contributing with about 

75% of the blood input, and the hepatic artery with the remaining 25% of blood input to 

the liver [5]. The hepatic artery supplies the liver with oxygenated arterial blood, while 

the hepatic portal vein drains venous blood from the entire gastrointestinal tract 

containing the nutrients absorbed by the small intestine. The output blood function is 

performed by the hepatic vein that drains blood from the liver into the inferior vena 

cava. There are also bile ducts which collect bile from the liver cells [2]. 
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Figure 1.3: Liver circulation network. Bile Ducts, Portal Vein and Hepatic Artery ramifications throw the liver 

parenchyma. Adapted from [6]. 

 

The arterial and venous supplies to the liver are not independent systems. Both 

of them provide blood, at different times, to the low pressure-sinusoids. These are lined 

with highly fenestrated endothelial cells, flanked by the hepatocytes in the liver cords 

(figure 1.4a). A nutrient-laden venous blood from the intestines and freshly oxygenated 

arterial blood from the celiac trunk is therefore delivered to the hepatocytes [3].  

This anatomical arrangement allows therefore the plasma to flow freely through 

the sinusoidal endothelial cells into the small interstitial space between sinusoidal 

endothelium and hepatocytes, known as the Space of Disse. Under normal conditions, 

the large size of the sinusoids’ fenestrae allows free exchange of low-molecular-weighted 

compounds between the plasma sinusoids and the interstitial Space of Disse (figure 1.4b). 

After filtering through the sinusoids, this blood collects in the central vein and drains to 

the hepatic veins which lead to the inferior vena cava [7]. 
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Figure 1.4: a) Microscopic anatomy of a six-sided lobule with arrows indication the direction of blood flow (adapted 

from [7]). b) Representative diagram of the microanatomic relationship of blood cells within sinusoid, fenestrated 

endothelial cells, plasma (p), the Space of Disse and the hepatocyte (adapted from [6]). 

In abnormal situations, more particularly in liver tumours such as hepatocellular 

carcinoma and metastases, there are relative changes in arterial and portal blood supply.  

Initially the blood supply from the liver to the tumor is due to the proliferation 

of the sinusoidal cells that become capillarized with loss of fenestrae and with the 

formation of basement membrane. As the tumor continues to grow and developing 

metastases, there is a combined process of recruitment of new blood vessels to the 

tumor region, supplied by the hepatic artery, which is called neoarteriogenesis. These 

modifications lead to a significant barrier to the free passage of low-molecular-weighted 

compounds between the plasma and the tumor region [5]. This feature is helpful in the 

way that such changes may be reflected in the hepatic enhancement kinetics of low-

molecular-weighted contrast agents used in some imaging techniques like the dynamic 

contrast-enhanced magnetic resonance imaging (CE MRI) [8]. 

 

1.2.2 Hepatocellular Carcinoma  

The Hepatocellular Carcinoma (HCC) is one of the most common, 

corresponding to approximately 70 – 80% of all liver tumors. The poor prognosis and 

late detection causes this to be the third-leading cause of cancer-related death 

worldwide. This is an aggressive cancer with a poor survival rate, being the incidence 
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almost equal to the death rate, responsible for approximately 600.000 deaths annually 

all over the world [6, 9, 10].  

1.2.2.1 Global Variation and Incidence 

HCC incidence keeps increasing with a unique geographic, sex and age 

distribution. Data analysis from large patient populations is a useful tool to study possible 

causes and trends. Looking to age-standardized incidence cases of HCC grouped by 

region and gender (figure 1.5), it is possible to notice that areas corresponding to ‘very 

high’ and ‘moderately high’ incidence include China, southeastern Asia, sub-Saharan 

western and eastern Africa. In most developed parts of the world, including Europe and 

North America, the incidence is very low with exception of Southern Europe and Japan. 

It is also noted a curious characteristic of the disease: higher incidence in men than in 

women [9, 10].  

 

Figure 1.5: Global variation in HCC incidence rates for the year of 2002. Classification was based on data in males 

being ‘Very high incidence’>20 per, ‘Moderately high incidence’ between 11 and 20, ‘Intermediate incidence’ between 

5 and 10 and ‘Low incidence’<5, all per 100.000. Adapted from [10]. 
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1.2.2.2 Risk Factors and Epidemiology 

The HCC is a complex malignancy with associated risk factors. In most cases 

there is a close relation with previous episodes of chronic infections such as viral or 

alcoholic liver disease [10, 11]. Within the main risk factors are: 

 Hepatitis Viruses: The vast majority of primary liver tumor (75 – 80 % of the 

cases) originate from viral infections: either from hepatitis B virus (HBV) or from 

hepatitis C virus, being the HBV more frequent [11]. 

 

 Alcohol:  Chronic alcohol abuse and alcoholic cirrhosis are known risk factors 

to HCC. The threshold dose and the exposure time that may lead to the disease 

are unknown. One of the hypothesis alcohol related HCC is that alcohol acts as 

a carcinogenic cofactor in the presence of HBV or HCV infection [9, 11]. 

 

 Nonalcoholic Steatohepatitis (NASH): The exact incidence of HCC in patients 

with NASH is also unknown. However there is a close positive correlation of 

the incidence of HCC with obesity and diabetes. These two conditions are 

usually related to the development of NASH, an increasingly recognised cause of 

cirrhosis, the latter representing one of the main risk factors for the development 

of HCC [11, 12]. 

 

 Chemical carcinogens: There is a close relationship between the exposure to 

aflatoxin B1 and the development of HCC. Aflatoxin is natural chemical 

carcinogen, produced by the Aspergillus fungus, which can be found in stored 

grains (such as peanuts and rice) in hot humid places. Aflatoxin contamination of 

food relates well with the incidence rates in Africa and China. There are other 

carcinogens that can also be responsible for the increased incidence of HCC like 

pesticides and insecticides seen in the middle East [6, 9]. 

 

 Other conditions: Metabolic disorders (like hemochromatosis and Wilson’s 

disease), chronic autoimmune liver diseases and several other underlying 

conditions have a less common association to de appearance of HHC.  However, 
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they should be taken into consideration since they can be considered risk 

conditions. In any case, etiology of HCC in most patients who do not have 

cirrhosis or viral infections is still unclear [6, 11]. 

  

1.2.2.3 Screening, surveillance and diagnosis 

Liver cancers may often escape clinical recognition due to the fact that they often 

arise in patients with cirrhosis. Symptoms attributed to the emergence of the disease 

are usually absent and, when present, are not specific of HCC. Among other complaints 

are: abdominal and epigastric pain, weight loss, early food satiety, nausea and abdominal 

swelling. As the evolution of the disease is usually fast and fatal, most patients are 

diagnosed at a stage when the disease is already advanced. As a consequence, the 

hypothesis of using curative therapies is precluded [11, 13]. 

Periodical surveillance is therefore recommended for those patients considered 

to be at high risk of developing HCC. The assumption is that early detection may lead 

to timely therapeutic intervention and to the decrease of associated mortality.  

The most common screening methods of HCC are the serologic evaluation of 

alpha-fetoprotein (AFP) and abdominal ultrasonography (US). Despite of the low 

sensitivity (≈ 60%), US has great specificity (>90%) in the detection of HCC nodules. 

Continuously high levels AFP (>500 ng/mL) are known to be associated with the presence 

of the disease. Due to the low sensitivity of this serologic screening test, it is often 

associated with US, to increase the reliability of the diagnosis [11]. 

The modalities of diagnosis depend both on the lesion size and on the underlying 

liver function. The detection of liver lesions that are larger than 1 𝑐𝑚, using the above 

mentioned techniques justify the requirement for cross-sectional imaging techniques. 

Blood supply of HCC lesions is different from the surrounding healthy hepatic 

parenchyma, being that the tumor is supplied by the hepatic artery whereas healthy 

parenchyma is essentially supplied by the portal vein. Based on this, the use of helical 

computed tomography (CT) and CE-MRI have been establishing a classic image profile 

of HCC lesions, through the differences between the enhancement profiles of lesions 
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and healthy parenchyma [11]. In fact, tumor regions not only have early enhancement 

relatively to the remaining hepatic parenchyma, but they also have a faster washout of 

the contrast agent. 
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Chapter 2   

Perfusion Studies of the Liver using MRI 

2.1 Magnetic Resonance Imaging 

2.1.1 Fundamentals 

MRI is a versatile imaging technique whose name derives from the Nuclear 

Magnetic Resonance physical phenomenon in which, through the combination of strong 

magnetic fields and radiofrequency signals, it is possible to manipulate the precession 

movements of atoms with intrinsic magnetic susceptibility [14]. With this imaging 

modality it is possible to create images of biologic tissues that can be used for biomedical 

purposes. 

  Atoms that have an odd number of protons or neutrons like hydrogen, carbon-

13, fluorine, sodium and phosphorus, behave like a magnetic dipole having associated a 

magnetic dipole moment, or simply magnetic moment. This non-null magnetic moment 

interacts with external magnetic fields, allowing its use in MRI. Due the fact that 

approximately 70% of the human organism is made of water, the preferred imaging 

element is the hydrogen, composed by a single proton and electron. It can be found not 

only in free water, but also in macromolecules such as proteins and lipids [14]. 

Spin is a quantic property, characteristic of sub-atomic particles like protons. It 

can be seen as the gyratory movement of the proton around its axis. This movement 

creates a current loop which, in addition to creating a magnetic field itself, is capable of 

interacting with external magnetic fields [14, 15]. In the absence of an external magnetic 

field, the proton spins behave like small magnetic dipoles, with a magnetic moment µ⃗  of 

equal magnitude and are randomly oriented in space. When exposed to a static magnetic 
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field 𝐵0, they lign-up with the field direction with either parallel or anti-parallel 

orientations. However, there is a small excess of spins aligned parallel to the magnetic 

field, when compared to those aligned anti-parallel to 𝐵0. Furthermore, the relative 

excess of spins depends on factors such as 𝐵0 magnitude and absolute temperature. As 

a consequence, at normal body temperature and for the typical values of 𝐵0 available in 

clinical scanners, the net magnetization in equilibrium 𝑀⃗⃗ 0 will be aligned parallel to 

𝐵0[14–16]. 

 

Figure 2.1: Randomly orientated spins (left) align when exposed to strong external magnetic field, presenting parallel 

or antiparallel orientations (right). Adapted from [17]. 

 

Spins describe a precession movement around the axis defined by 𝐵0. The 

precession frequency 𝜔0, also known as Larmor frequency [15], depends on the 

gyromagnetic ratio 𝛾 and on the strength of the external magnetic 𝐵0, according to: 

𝜔0 =  𝛾 𝐵0  
2.1 

As the net magnetization 𝑀⃗⃗  contains potential energy, the intentional 

perturbation of the equilibrium state generates of a measurable signal. Hence, by applying 
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energy through a radiofrequency magnetic field (𝐵1) for a short time, i.e., a 

radiofrequency (RF) pulse with frequency equal to the Larmor frequency (𝜔𝑅𝐹 = 𝜔0), 

a resonance condition is established. In this condition, spins absorb energy from the RF 

pulse which causes spins to increase their precession angle. This implies that the net 

magnetization is tipped away from the longitudinal axis, thus creating measurable 

magnetization, spinning on an axis perpendicular to 𝐵0 and to 𝐵1. In this way, two 

magnetization components are obtained: the longitudinal 𝑀⃗⃗ 𝑍 and the transverse 𝑀⃗⃗ 𝑇, 

parallel and perpendicular to 𝐵0, respectively [14, 15, 17]. 

 

Figure 2.2: Flip of the net magnetization by 900 after spin excitation with an RF pulse at the Larmor frequency. 

Adapted from [17]. 

 

Once the RF is removed, spins tend to come back to its previous equilibrium 

state through a process called relaxation, which results from the loss of the transmitted 

RF energy due to the interaction of the nucleus with the system. While 𝑀⃗⃗ 𝑍 recovers to 

its initial equilibrium state (longitudinal relaxation), 𝑀⃗⃗ 𝑇 returns to zero, at a different 

rate [14, 16]. The magnetization variation, which results from both transverse and 

longitudinal relaxations, generates the RF signal that is received by coils within the MR 

scanner. This signal will give information related to the nucleus environment and, if 

properly encoded, will also give structural information [16]. 
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2.1.2 Relaxation effects and Bloch Equation 

After excitation, spins release the absorbed energy, thus returning to the initial 

state through relaxation. The latter consists of longitudinal and transverse relaxation 

processes [18].  

Longitudinal relaxation, or spin-lattice relaxation is directly related to the 

realignment of the longitudinal magnetization with the external magnetic field by the 

liberation of energy to the surroundings. The constant 𝑇1 is defined as the time that is 

necessary for the system to recover approximately 63% of the original 𝑀⃗⃗ 𝑧. The values 

of 𝑇1 constant, which vary with 𝐵0 intensity and with the type of biologic tissue, can go 

from hundred to thousands of milliseconds. The cerebrospinal fluid (CSF), blood and 

grey matter present the highest 𝑇1 values that can be found in the human body, being 

the lower ones correspondent to fat [15–18]. 

Transverse relaxation, or spin-spin relaxation originates from the loss of phase 

coherence of precessing spins in the transverse plan. Spins have different Larmor 

frequencies induced by local field inhomogeneities which decrease transverse 

magnetization and lead to a reduction of signal intensity. This relaxation process is 

characterized by the 𝑇2  time constant, defined as the time that elapses until the signal 

originated from transverse magnetization has reached 37% of its initial value. The values 

of 𝑇2 time constants also depend on the magnetic field strength and on the biological 

tissue and are always smaller than 𝑇1 values [15–18]. 

 

Figure 2.3: Relaxation processes. Alignment of the net magnetization with the external magnetic field in longitudinal 

relaxation (upper row). Dephasing of precessing spins in transverse relaxation (lower row). Adapted from [17]. 
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The presence of local variations in the external 𝐵0 magnetic field induces a 

distinct mechanism of transverse relaxation, which is described by the time constant 

𝑇2′. As a consequence, the transverse relaxation time in this situation i.e. 𝑇2∗, results 

from the sum of the spin system contribution and that of 𝐵0and is given by [15]: 

1

𝑇2∗ 
=  

1

𝑇2
+ 

1

𝑇2′
 

2.2 

In the presence of both longitudinal and transverse relaxations, the variation of 

𝑀𝑧 and 𝑀𝑇 is respectively given by [15]: 

𝑑𝑀𝑧
𝑑𝑡

=  
1

𝑇1
 (𝑀0 − 𝑀𝑧) 

2.3 

And 

𝑑𝑀⃗⃗ T
𝑑𝑡

=   𝛾 𝑀⃗⃗ T × 𝐵⃗ 0 − 
1

𝑇2
 𝑀⃗⃗ T 

2.4 

The combination of differential equations 2.3 and 2.4, yields the temporal 

variation of net magnetization vector 𝑀⃗⃗ : 

𝑑𝑀⃗⃗ 

𝑑𝑡
= 𝛾 𝑀⃗⃗ 𝑇 × 𝐵⃗ 0  +   

1

𝑇1
 (𝑀0 − 𝑀𝑧)𝑧̂  −  

1

𝑇2
 𝑀⃗⃗ T 

2.5 

The differential equation in 2.5 is known as the Bloch equation and it describes 

the behaviour of the net magnetization vector in the presence of relaxation effects and  

for an external magnetic field 𝐵0 pointing along the 𝑧̂-axis [15]. 
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2.1.3 Spatial Encoding - Image Formation 

Spatial Encoding is the process by which the information from the detected signal, 

which varies in time, is transformed into signal variation in space. Through the application 

of field gradients, the resonance frequency changes according to: 

𝜔 (𝑥) =  𝛾 𝐵(𝑥)  
2.6 

Where 𝑥 corresponds to the spatial coordinate along the gradient field direction 

and 𝐵(𝑥) is the magnetic field in 𝑥 position [15]. 

Based on equation 2.6, spectral frequencies will represent the spatial information 

since they will vary in space according to the prescribed magnetic field gradients. Using 

a signal processing tool like the inverse Fourier Transform (FT) it is possible to 

reconstruct the signal and create images from the spectrum of detected frequencies [16, 

17]. Spatial Encoding is processed using field gradients in three orthogonal directions: 

Slice selection gradient (Gss); Phase encoding (Gpe) and Frequency encoding/Readout 

(Gro) gradient [16, 17].   

For a given slice to be imaged, a magnetic gradient is added along the slice 

direction. Due to this spatial variation of the magnetic field, each nucleus will have a 

Larmor frequency dependent of its position, making possible the selective excitation of 

a thin slice to be imaged [15–17]. To obtain information for the individual points (pixels) 

within a slice, the Gro and Gpe are used enabling the encoding of both spin frequency 

and phase, respectively. During phase encoding, a temporary gradient is applied between 

the RF excitation pulse and the readout, causing a shift in the phase of the precessing 

nuclei. Changing the amplitude of the temporary gradients, it is possible to acquire signals 

with different phase encodings [15–17]. The Gro (frequency encoding in x-direction) is 

used to distinguish pixels within the same phase encoding. This gradient is applied during 

the readout of the signal and results in a specific shift of the resonance frequency for 

pixels with the same phase shift [15–17]. The phase and frequency information are 

stored in the k-space (figure 2.4), where each row corresponds to the frequency 
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information and each column corresponds to the phase information. Image 

reconstruction is performed by calculating the 2D (or 3D, if pure three dimensional 

acquisition) inverse Fourier Transform (FT) of the samples gathered in k-space [14].    

 

Figure 2.4: K-space representation where each pixel corresponds to a specific phase and frequency combination. 

Adapted from [17]. 

 

2.1.4 Pulse Sequences 

MRI uses pulse sequences (RF pulses interleaved with gradients pulses) to obtain 

images. Through the manipulation of the type, timing and duration of the pulse sequence 

elements, it is possible to generate different image contrasts (e.g. choosing between 𝑇1  

or 𝑇2 weighting) thus potentially increasing the specificity of the study. It is therefore 

important to tune three parameters involved in the manipulation of pulses sequences: 

the time between two consecutive RF pulses, known as repetition time (𝑇𝑅), the time 

between the excitation pulse and the measurement of maximum signal, called echo time 

(𝑇𝐸) and the flip angle (𝜃) defined as the angle by which the magnetization is tipped away 

from 𝐵0 by the application of the RF pulse [15]. 

There are two main families of pulse sequences: Spin-Echo (SE) and Gradient-

Echo (GRE) [15].  

Spin-echo sequences (figure 2.5) are characterized by the application of an RF 

pulse that flips the magnetization 90o from its equilibrium direction followed by a 180o 

refocusing pulse applied at 𝑇𝐸/2 and the process is repeated after a certain 𝑇𝑅 [18, 19]. 
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Figure 2.5: Spin-echo sequence scheme made up of a series of events: 90° pulse – 180° rephasing pulse at 𝑻𝑬/𝟐 – 

signal reading at 𝑻𝑬. This series is repeated at each time interval 𝑻𝑹. Adapted from [17]. 

 

Gradient-echo sequences (figure 2.6) differ from the spin-echo sequences 

because they do not use the 180o refocusing pulse and flip angles are usually lower than 

90o. Instead of the 180o RF pulse they use a reversal of magnetic field gradients for 

magnetization refocusing and signal generation. A bipolar readout gradient (frequency-

encoding gradient) is required to create an echo. The gradient echo formation results 

from applying a dephasing gradient before the frequency-encoding or readout gradient. 

Generally these type of sequences with low-flip angle excitations are faster than the spin-

echo sequences, allow new contrasts between tissues (e.g. 𝑇1/𝑇2) and the resulting 

images can be weighted on 𝑇1 or 𝑇2 [18, 19]. 

In this work, the type of pulse sequence that is used to acquire data belongs to 

the gradient-echo type. The effects of 𝑇2∗ have to be minimized in order to obtain 𝑇1-

weightening. The choice of a very short 𝑇𝐸 reduces any 𝑇2 contrast such that: 

𝑇𝐸 ≪ 𝑇2 ⇒ 𝑒−
𝑇𝐸
𝑇2
∗ → 1  

2.7 
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Figure 2.6: 2-D spoiled gradient-echo scheme. In the absence of the 180o pulse, the polarity of Gro dephasing 

gradient pulse is opposite to the readout gradient pulse applied. Adapted from [17]. 

 

2.2 Perfusion Imaging 

Perfusion imaging can be defined as a quantitative imaging method that is used to 

evaluate regional and global modifications in the blood flow of an organ. Since 

modifications in both arterial and venous blood supplies can predict the onset of disease, 

hepatic perfusion studies are endowed with great utility as they allow the increase of 

sensitivity and specificity in disease diagnosis [7, 8].  

There are several critical points to perform perfusion studies [7]: 

 High spatial and temporal resolution to identify perfusion differences in 

small tumors and record the passage of contrast agent, respectively. 

These two demands are often conflicting. 

 Good image tracer in order to obtain accurate perfusion quantification. 

 Proper tracer kinetic modelling methods for accurate calculation of 

perfusion parameters. 
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 Whole liver imaging enabling tumor surveillance. 

 

2.2.1 CE – MRI for hepatic perfusion study 

Despite the existence of various techniques to study blood perfusion, MRI 

emerges as an interesting one. In fact, this is a high spatial and temporal resolution 

technique that provides anatomical information, does not make use of ionizing radiation, 

has good sensitivity for tumor detection and can be combined with other imaging 

techniques, like positron emission tomography (PET), in order to obtain complementary 

information [8]. 

Among several MRI methods to study blood perfusion (arterial spin labelling – 

ASL [8], for example), the technique which has been established as the gold standard for 

hepatic perfusion is CE – MRI. It involves the injection of a contrast agent with 

subsequent MR signal acquisition over time. The signal temporal variation shows the 

uptake rate of contrast in tissues and its subsequent washout [8]. 

Contrast agents used in MRI have different magnetic properties that affect 

hydrogen atoms in water molecules, causing changes to the measured signal. They are 

used in order to improve both specificity and image signal-to-noise ratio (SNR). The vast 

majority uses chelates containing paramagnetic atoms having one or more unpaired 

electrons, creating a strong electronic magnetic moment [20]. Gadolinium, a chemical 

element of symbol Gd and atomic number 64, is one of the paramagnetic agents that is 

most used in MRI contrast agents. It has large paramagnetic susceptibility and rapidly 

redistributes into the extracellular space, thus making it a good contrast agent for 

perfusion studies. The local magnetic field created by the Gd chelates can relax the 

magnetic state of the hydrogen atoms, causing modifications in their 𝑇1  relaxation times. 

Causing 𝑇1  shortening there will be enhanced signal on post-contrast 𝑇1-weighted 

images in those regions with highest contrast agent uptake. The pharmacokinetic 

behavior of the contrast agent is usually defined by the compound chelated to the 

paramagnetic atom [20]. 



Chapter 2 – Perfusion Studies of the Liver using MRI   21 

 

 

Liver imaging in CE-MRI uses a dynamic fast MRI sequence, capable of picking up 

local alterations, which results from the passage of the contrast agent through the liver. 

Since gadolinium is paramagnetic and leads to the shortening of 𝑇1, 𝑇1-weighted 

sequences are used. Usually, a fast 𝑇1-weighted spoiled gradient echo sequence is used 

to acquire the dynamic data series after contrast injection, with coronal or sagittal views 

[20]. Subsequently, acquired images will show enhancement in areas where contrast was 

delivered to the tumor [8, 20].  

2.2.2 Liver perfusion information from MRI data 

Once acquired, MRI data must be analysed in order to extract meaningful 

vascularity information. The method of analysis depends on factors such as the pulse 

sequence that is used to acquire data, and the goal of the hepatic perfusion studies. 

Dynamic MRI data can either be processed using model-free or model-based 

approaches. Whereas a model-free approach is easier to implement, the results it yields 

are site dependent as they depend on the MR scanner, the model-based method is more 

attractive because it gives quantitative information of tissue vascular properties, by using 

mathematical models that reflect the underlying pathophysiology [8]. Furthermore, the 

quantification is independent of the MR scanner that was used in data acquisition. 
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Chapter 3   

Materials and Methods 

3.1 Perfusion Models 

The calculation of perfusion parameters is accomplished through the model-

based analysis of MRI data. The use of mathematical models to study vascular leakage 

and permeability is not a new technique. It had been first used to study perfusion of the 

functional state of the blood-brain barrier (BBB) in multiple sclerosis disease and brain 

tumors, as well in retinal disease and breast tumors [1, 21]. With the increase of 

perfusion studies, several different models have been developed, based on the 

quantitative analysis of a dynamic curve of signal enhancement versus time from a specific 

ROI. The versatility of parameter extraction is based on the fact that different model 

assumptions, reflecting the underlying physiological conditions, can be made. 

The most  commonly used and well accepted model reflecting the kinetics of low 

molecular Gd-chelates is the Tofts Model [21].  This is a compartmental model based 

on the following assumptions [1, 21, 22]: 

 Compartments contain the contrast agent in a uniform concentration in all their 

extension; 

 There is an intercompartment flux, which is proportional to the difference of 

contrast concentration between the compartments; 

 Blood-Plasma compartment, characterized by a contrast concentration 𝐶𝑃 (mM 

liter-1); 
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 An Extravascular Extracellular Space (EES) compartment, with volume 𝑣𝑒  per unit 

of tissue and tracer concentration 𝐶𝑒. 

This is a two-compartment one-input compartmental model, as figure 3.1 shows. 

Tofts model assumes contrast exchange between two compartments: the Blood plasma 

and the Tissue with only one vascular input (derived only from hepatic artery, in the 

liver situation) and one output. There is a main kinetic constant, the transfer constant - 

𝐾𝑡𝑟𝑎𝑛𝑠 (𝑚𝑖𝑛−1) - that reflects the volume transfer between the plasma (of volume 𝑣𝑃) 

and the EES (of volume 𝑣𝑒). 

 

Figure 3.1: Schematic representation of the Tofts model. Based on [25]. 

Although the Tofts model is well established and used by most commercial 

software packages for perfusion assessment, the fact is that it is does not reflect the real 

vascular architecture of the liver. This work aims to implement a software for the 

calculation of liver perfusion parametric maps using a mathematical model that more 

closely reflects the real vascular architecture of the liver. The proposed model consists 

of a dual-input one-compartment model, comprising both arterial and portal blood input 

to the liver. 
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3.1.1 Dual-input one-compartment model 

The Tofts model relies on the fact that the blood input is mainly arterial. This 

assumption, proved to be wrong in the liver situation, which leads to the necessity of a 

new formulation in order to produce an accurate calculation of liver perfusion 

parameters. 

A dual-input one-compartment model [23] is presented (figure 3.2). This model 

reflects the dual input blood flow with two different first-order inflow rate constants: 

𝑘1𝑎 from the hepatic artery and 𝑘1𝑝 from the portal vein, and a single first-order outflow 

rate constant 𝑘2.  It is assumed that there is only one compartment corresponding to 

the liver. Vessels, capillaries, extravascular space hepatic cells are considered to be a 

single compartment. This assumption can be made because most diffusable contrast 

agents pass from the capillaries into the extracellular extravascular space, where it 

remains, until elimination occurs, not being absorbed by hepatocytes. It should be 

noticed however that for certain types of contrast agents, such as Gd-based contrast 

agents, this assumption does not hold because the contrast agent is taken in by the 

hepatocytes. If the purpose of the study was the assessment the functionality of liver 

cells instead of blood perfusion, a model with more than one compartment would be 

appropriate. 

 

Figure 3.2: Schematic representation of the dual-input one-compartment model for liver perfusion. Based on [23] 
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𝐶𝑎(𝑡), 𝐶𝑝(𝑡) and 𝐶𝐿(𝑡) represent the concentration of the tracer form the aorta, 

the portal vein and the liver compartments, respectively. From this model, the temporal 

variation of the contrast agent concentration in the liver is given by [23]: 

𝑑𝐶𝐿(𝑡)

𝑑𝑡
= 𝑘1𝑎𝐶𝑎(𝑡) + 𝑘1𝑝𝐶𝑝(𝑡) − 𝑘2𝐶𝐿(𝑡)  

3.1 

In this model, perfusion is quantified according to the following equations: 

 𝑃𝑎 = 
𝑘1𝑎

𝐸
 3.2 

 𝑃𝑝 = 
 𝑘1𝑝

𝐸
 3.3 

 𝑃𝐿 = 
𝑘1𝑎+ 𝑘1𝑝

𝐸
 3.4 

Where 𝑃𝑎 , 𝑃𝑝 and 𝑃𝐿 are the arterial, portal and liver perfusion usually presented 

in the literature with units of 𝑚𝑖𝑛−1and 𝐸 has no units and represents the extraction 

fraction of the contrast agent in the liver. 

 

3.2 Data acquisition 

3.2.1 Patient Selection and Image Acquisition 

CE - MRI data from 5 patients (4 male and 1 female), diagnosed with HCC, were 

used. Participants were included between September 2013 and May 2014 with data 

acquisiton performed twice: before treatment and after aproximately 3 months of a 

treatment with Sorafenib. Sorafenib is an approved drug for the treatment of HCC as 

well as renal cell and radioactive iodine resistant advanced thyroid carcinomas. It is a 

multikinase inhibitor that blocks the receptor tyrosine kinases VEGFR (Vascular 

Endothelial Growth Factor Receptor) and PDGFR (Platelet Derived Growth Factor 
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Receptor) co-marketed by Bayer and Onyx Pharmaceuticals as Nexavar. Sorafenib 

treatment induces autophagy, which is a process that may lead to tumor growth 

suppression [24]. 

Gadovist, Gd-DO3A-brutol (figure 3.3), was the nonionic paramagnetic agent 

used for tissue contrast enhancement during the signal acquisiton. It is eliminated by the 

kidneys [25]. 

 

Figure 3.3: Gadovist chemical structure. It is a macrocyclic neutral Gd-chelate [25]. 

Images were acquired on a 3T whole-body MRI scanner (Siemens MagnetomTrio, 

Erlangen, Germany). 

CE images were acquired for each patient with a 3D 𝑇1-weighted spoiled 

gradient-echo in the coronal plane. Additional pulse sequence parameters are shown in 

𝑡𝑎𝑏𝑙𝑒 1. Data from each patient consists of a set of 50 dynamics with a specific duration, 

defined by the temporal resolution, in which the first four/five correspond to the baseline 

signal from tissues without contrast and the remaining to the temporal variation of the 

signal after injection of contrast agent. In each dynamic, images of 20 slices are accquired, 

corresponding to coronal views of the abdominal region. These slices include different 

sections of the liver tumor, parenchyma and vessels. There was also the acquistion of 

pre-contrast scans with the same geometry and acquisiton plane of the dynamic scans, 

and where the flip angle was varied from scan to scan. Data acquired in the pre-contrast 

scans was used to determine the native 𝑇1 of tissues.  

Images were exported from the MR scanner in dicom format with a spatial 

resolution of 128 × 128 pixels.  
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Table 1: Pulse sequences parameters for the 3D 𝑻𝟏-weighted spoiled gradient-echo scans in both pre- and post-
treatment for all patients. 

Patient 
Nr 

Acq. Baseline 
Dynamics 

Temporal 
Resolution 

(ms) 

FOV 
(mm) 

Acq. 
Matrix 

In-plane 
spatial 

resolution 
(mm) 

Slice 
Thickness 

(mm) 

Flip 
Angle 

(o) 

TR 
(ms) 

TE 
(ms) 

1 
Pre 5 7857 320*320 128*128 2,50 3,60 25,0 5,80 1,12 

Post 10 7855 320*320 128*128 2,50 3,60 25,0 5,80 1,12 

2 
Pre 3 6433 380*380 128*128 2,97 3,60 24,0 4,75 1,68 

Post 4 6433 320*320 128*128 2,50 3,60 22,5 4,75 1,72 

3 
Pre 3 6433 400*400 128*128 3,13 3,60 24,0 4,75 1,68 

Post 4 7110 400*400 128*128 3,13 3,60 23,0 5,20 1,08 

4 
Pre 5 4850 350*350 128*128 2,73 3,60 25,0 3,58 1,10 

Post 5 5298 350*350 128*128 2,73 3,60 25,0 3,91 1,10 

5 
Pre 5 6813 320*320 128*128 2,50 3,60 25,0 5,03 1,72 

Post 5 6435 320*320 128*128 2,50 3,60 25,0 4,75 1,72 

 

3.3 Software implementation 

Software implementation was developed on Matlab R2012a® (The Math-Works, 

Inc., Natick, MA). ImageJ [26] and RadiAnt viewer [27] were auxiliary tools that were 

used to help visualizing image enhancement and defining regions of interest (ROIs). 

The algorithm for perfusion quantification was implemented as a sequential set 

of steps, starting with the images from the dynamic acquisition and ending on the 

perfusion parameters determination. The flowchart of figure 3.4 indicates the major 

steps of the implemented algorithm. 

The adopted strategy for calculating and displaying results was pixel mapping. 

This method gives perfusion information as maps spatially co-registered with the 

anatomical images on a pixel-by-pixel basis. Hence, a heterogenic appreciation of either 

the tumor regions or healthy parenchyma can be made, without losing information over 

the spatial variation of kinetic parameters, as it happens when considering a single ROI 

analysis. 
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Figure 3.4: Flowchart illustrating the major steps of the algorithm that was implemented to estimate perfusion 

parameters on a pixel-by-pixel basis, using a dual-input one compartmental model. 

 

3.3.1 ROIs definition 

One of the objectives of this work was to compute perfusion parameters as 

parametric maps, in order to be able to assess the spatial variation of kinetic parameters. 

In order to optimize computation time, ImageJ was used to draw ROIs of the structures 

of interest: hepatic artery, portal vein and liver. These ROIs were saved and imported 

to Matlab as masks. Kinetic parameter calculation was only performed in pixels within 

the masks, thus discarding pixels in structures of non-interest and in the background 

noise. 

It was necessary to determine 20 different ROIs of the liver for each patient, 

since each slice corresponds to different liver sections. Although ROI definition occurs 

with the data of a single dynamic and there are slight movements of the patient from 

dynamic to dynamic, the same ROIs were used in each of the fifty dynamics, thus 

assuming spatial correspondence over time. Although there are minor differences, these 

are minimized with the motion correction algorithm of the MR acquisition system.  
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Ideally, pre- and post-treatment acquisitions have the same geometry and cover 

the same slices. However, as can be observed from figure 3.5, in practice this situation 

does not happen and it was therefore necessary to define different ROIs for pre- and 

post-treatment.  

 

Figure 3.5: Liver ROIs of the same patient for the slice 13 drawn from the first temporal dynamic, corresponding to 

pre-treatment (left) and post-treatment (right). Differences in size, location and shape are highlighted. 

For the blood vessels, a single ROI was determined (figure 3.6), corresponding 

to the slice that would capture the best representation of ‘in-plane’ flow in the vessel.   

 

Figure 3.6: Abdominal aorta (red), used as substitute for the hepatic artery, and portal vein (blue) ROIs for the same 

patient. 

It should be stressed that the abdominal aorta was used as a surrogate for the 

hepatic artery since the latter is often difficult to visualize and segment. It is considered 

that they are similar in both 𝑇1 values and temporal variation of CA concentration. 
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Identification process of portal vein required the importation of the MRI data to 

Radiant viewer, which allowed the visualization of a fixed slice over the temporal 

dynamics and observe the contrast agent arrival to the liver. In order to precisely identify 

this structure, it was necessary to plot signal curves of pixels within the presumed ROI 

to confirm the existence of the enhancement peak after the baseline acquisitions. 

3.3.2 𝑻𝟏 Mapping 

The first step after the data has been corrected for motion is to determine the 

native 𝑇1 values of the tissues, i.e. performing 𝑇1 mapping. This is a necessary step to 

obtain parametric maps for the concentration of contrast agent for each dynamic 

acquisition. In order to perform 𝑇1 mapping, the variable flip angle method was applied. 

In this method, a series of 𝑇1-weighted scans are acquired at different flip angles but 

keeping all remaining acquisition parameters constant. In this way, it is possible to 

determine the 𝑇1 value of tissues from the image contrast variation from scan to scan 

(figure 3.7). 

 

Figure 3.7: Different signal intensities from 𝑻𝟏-weighted images with variable flip angles. For 𝑻𝟏 mapping 𝟐𝒐 (a), 𝟓𝒐 
(b), 𝟏𝟎𝒐 (c), and 𝟏𝟓𝒐 (d) were used. 
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The signal intensity in 𝑇1-weighted, considering a very small 𝑇𝐸 (𝑇𝐸 ≪ 𝑇2* 

approximation), for a given flip angle 𝜃, and 𝑇𝑅, is given by [28]: 

𝑆(𝜃) =  𝑀0sin (𝜃) 
1 −  𝑒−𝑇𝑅/𝑇1

1 − cos (𝜃)𝑒−𝑇𝑅/𝑇1
 

3.5 

Where 𝑆(𝜃) is the signal intensity for flip angle 𝜃, 𝑀0 represents the unknown 

longitudinal magnetization, and 𝑇𝑅 is the repetition time. Keeping 𝑇𝑅 constant, the signal 

intensity will only depend on 𝑇1 and 𝜃. Let  𝑎 =  𝑒−
𝑇𝑅

𝑇1 . In this case, equation 3.6 is 

rewritten as: 

𝑆(𝜃) =  𝑀0sin (𝜃) 
1 − 𝑎

1 − cos(𝜃) 𝑎
 

3.6 

Further manipulations allow the linearization of 3.7 as: 

𝑆(𝜃)

sin (𝜃)
= 𝑎 

𝑆(𝜃)

tan(𝜃)  
+  𝑀0(1 − 𝑎) 

3.7 

 

Where the independent variable is 𝑆()/𝑡𝑎𝑛() is the independent variable and 

𝑆()/𝑠𝑖𝑛() is the dependent variable.  The 𝑇1 values are straightforwardly determined 

by a linear fit of eq. 3.8 to the experimental pairs of values (𝑆()/𝑡𝑎𝑛(), 𝑆()/𝑠𝑖𝑛()): 

𝑎 =  𝑒−𝑇𝑅/𝑇1  ⇒  𝑇1 = −
𝑇𝑅

ln (𝑎)
 

3.8 

Considering a curve of signal intensity as a function of the flip angle (figure 3.8), 

keeping 𝑇𝑅 constant, for a given 𝑇1, there is an optimal flip angle to obtain the maximum 
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signal after a series of excitation pulse, called the Ernst angle [28]. In order to obtain an 

accurate 𝑇1 measurement it is important that the range of flip angles that are used in 

the measurements includes the Ernst angle (peak of the curve).  

 

Figure 3.8: Dependence of the signal intensity on the flip angle. The peak of the curve corresponds to the Ernst 

angle. Based on [28]. 

 

3.3.3 Contrast agent concentration conversion  

After the baseline 𝑇1 for a particular pixel is known, it is possible to determine 

the contrast agent concentration that led to signal enhancement in that pixel. The 

paramagnetic properties of the contrast agent accelerate the longitudinal relaxation 

process, i.e. 𝑇1 is shortened. In 𝑇1-weighted images the signal intensity is inversely 

proportional to 𝑇1 and the relaxation rate increases proportionally to the concentration 

of CA [21] according to: 

1

𝑇1
=  

1

𝑇10
+ 𝑟1𝐶 

3.9 

Where 𝑟1 is the relaxivity of the CA, a parameter that describes how 𝑇1 changes 

in the presence of a certain concentration of CA. The relaxivity of Gadovist has the 

value of 3,58 𝐿 𝑚𝑚𝑜𝑙−1𝑠−1 [29], and 𝑇1 and 𝑇10 are respectively the 𝑇1 values after 

and before contrast injection. 



Chapter 3 – Materials and Methods   34 

 

 

It was necessary to know how 𝑇1 varies over time depending on the 

concentration as a function of the variation of signal, i.e.: 

𝑇1(𝑡, 𝐶(𝑡)) =  𝑓 (
𝑆(𝑡)

𝑆(0)
) 

3.10 

Considering both the signal before - 𝑆(0) and after - 𝑆(𝑡) CA injection to be: 

𝑆(0) = 𝑀0𝑠𝑖𝑛𝜃 
1 −  𝑒−𝑇𝑅/𝑇10

1 − 𝑐𝑜𝑠𝜃𝑒−𝑇𝑅/𝑇10
 

3.11 

𝑆(𝑡) = 𝑀0𝑠𝑖𝑛𝜃 
1 −  𝑒−𝑇𝑅/𝑇1

1 − 𝑐𝑜𝑠𝜃𝑒−𝑇𝑅/𝑇1
 

3.12 

Their ratio in given by: 

𝑆(𝑡)

𝑆(0)
= 𝑀0𝑠𝑖𝑛𝜃 

1 −  𝑒−𝑇𝑅/𝑇1

1 − 𝑐𝑜𝑠𝜃𝑒−𝑇𝑅/𝑇1

×𝑀0𝑠𝑖𝑛𝜃 
1 − 𝑐𝑜𝑠𝜃𝑒−𝑇𝑅/𝑇10

1 −  𝑒−𝑇𝑅/𝑇10
 

1

𝑀0𝑠𝑖𝑛𝜃
 

3.13 

Considering  𝑦 =  
𝑆(𝑡)

𝑆(0)
 ,  𝑥 =  

1−𝑐𝑜𝑠𝜃𝑒−𝑇𝑅/𝑇10

1− 𝑒−𝑇𝑅/𝑇10
 and 𝑎 = 𝑒−𝑇𝑅/𝑇1 , the previous 

equation comes as: 

𝑦 =  
1 −  𝑎

1 − 𝑎. 𝑐𝑜𝑠𝜃
× 𝑥 

3.14 
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Isolating the ‘𝑎’ parameter: 

𝑎 =  
𝑥 −  𝑦

𝑥 − 𝑦𝑐𝑜𝑠𝜃
 

3.15 

And substituting ‘a’: 

𝑒−𝑇𝑅/𝑇1 = 
𝑥 −  𝑦

𝑥 − 𝑦𝑐𝑜𝑠𝜃
  ⇔ −

𝑇𝑅

𝑇1
= ln (

𝑥 −  𝑦

𝑥 − 𝑦𝑐𝑜𝑠𝜃
)  ⇔  𝑇1 =  

−𝑇𝑅

ln (
𝑥 −  𝑦

𝑥 − 𝑦𝑐𝑜𝑠𝜃
)

  
3.16 

There are two separate equations for 𝑇1. Combining them it is possible to have 

concentration over time given by: 

1

1
𝑇10

+ 𝑟1𝐶(𝑡)
=  

−𝑇𝑅

ln (
𝑥 −  𝑦

𝑥 − 𝑦𝑐𝑜𝑠𝜃
)

 ⇔  𝐶(𝑡) =
1

𝑟1

(

 
 
− ln(

𝑥 −  𝑦
𝑥 − 𝑦𝑐𝑜𝑠𝜃

)

𝑇𝑅
−
1

𝑇10

)

 
 
   3.17 

Substituting  ‘𝑥’ and ‘𝑦’ in the equation, the concentration in (𝑚𝑀/𝐿) is given by: 

𝐶(𝑡) =
1

𝑟1

(

 
 
 
 
 
 
 
− ln

(

 
 

1 − 𝑐𝑜𝑠𝜃𝑒−𝑇𝑅/𝑇10

1 −  𝑒−𝑇𝑅/𝑇10
−
𝑆(𝑡)
𝑆(0)

1 − 𝑐𝑜𝑠𝜃𝑒−𝑇𝑅/𝑇10

1 −  𝑒−𝑇𝑅/𝑇10
−
𝑆(𝑡)
𝑆(0)

 𝑐𝑜𝑠𝜃

)

 
 

𝑇𝑅
−
1

𝑇10

)

 
 
 
 
 
 
 

 
3.18 
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Observing equation 3.19, the concentration will only depend on known 

parameters: the temporal variation of the signal after contrast injection, the signal 𝑆(0) 

before contrast injection, flip angle , relaxivity 𝑟1 of the CA, repetition time TR and the 

𝑇1 native values 𝑇10. 

For the implementation of this method, the first step was to differentiate 

between the baseline signal from the one acquired after contrast injection. A ROI was 

plotted in an artery, usually the abdominal aorta, with in-plane flow and the signal 

intensity variation over time was used to identify the baseline more accurately. Selecting 

a pixel (figure 3.9a) it is possible from its signal temporal variation plot (figure 3.9b) to 

identify, for this patient, 3 points belonging to the baseline. 

 

Figure 3.9: a) Anatomical location of the chosen pixel in the artery region. b) Temporal variation of the signal over 

time (arbitrary units). Identification of a baseline of 3, starting the acquisition at time 4. 

 

The baseline had to be identified for each patient, and for pre- and post-

treatment data, since the baseline length varied from patient to patient and even within 
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patient. The signal intensity 𝑆(0) in equation 3.18 was determined, for each pixel, from 

the average signal intensity of the baseline. 

Having determined the baseline signal 𝑆(0), the signal variation over time 𝑆(𝑡), 

the native 𝑇1 values, and knowing the relaxivity of the contrast agent and the acquisition 

parameters 𝑇𝑅 and 𝜃, it is possible to apply 3.18 to convert signal intensity variation to 

CA concentration variation. 

 

3.3.4 Perfusion Parameters 

After the signal to contrast agent concentration conversion has been made, the 

same procedure is applied for the portal vein and hepatic artery ROIs. Both 𝑇1 and 

concentration determination for these structures were performed in a pixel-by-pixel 

basis. Although for the kinetic parameters simulation, according to the model, each pixel 

within the liver ROI is defined by a set of parameters that is used to perform the non-

linear fit. For each pixel there is the contrast agent concentration curve of that position, 

and single hepatic artery and portal vein curves. Both hepatic artery and portal vein 

concentration curves were obtained by averaging the values within the region of the 

respective ROIs. In other words, the concentration of either one of the vessels, for a 

temporal instant, is represented by a single average value that is the same for any pixel 

of the liver in the same temporal instant.  

At this point, having determined the liver concentration maps, and the portal vein 

and hepatic artery input functions, it is possible to apply the dual-input one-compartment 

model equation 3.1 to extract the physiological kinetic constants 𝑘1𝑎, 𝑘1𝑝 and 𝑘2 to 

former conversation into perfusion parameters. 

Solving the equation 3.1 for 𝐶𝐿(𝑡) and taking into account the transit time from 

the hepatic artery and portal vein to the liver by adding the τ𝑎 and τ𝑝delay parameters, 

the concentration of contrast agent over time is  
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𝐶𝐿(𝑡) =  ∫ [
𝑡

0

𝑘1𝑎𝐶𝑎(𝑡
′ − τ𝑎 ) + 𝑘1𝑝𝐶𝑝(𝑡

′ − τ𝑝)]𝑒
−𝑘2(𝑡−𝑡

′)𝑑𝑡′ 
3.19 

Where 𝑡′ represents a dummy integration variable and 𝐶𝐿(0) = 0. Knowing the 

temporal variation of contrast agent concentration in the liver and in both the hepatic 

artery and the portal vein, it is possible to calculate, the unknown kinetic parameters 

𝑘1𝑎, 𝑘1𝑝 and 𝑘2, using a non-linear fitting algorithm. 

Because the mean transit times from the aorta and portal vein regions to the 

liver ROI, respectively represented by the delay parameters τ𝑎 and τ𝑝 vary depending 

on the patient and how its concrete measurement was performed during acquisition, 

was assigned a value of 3 seconds for both [30]. 

The Levenberg-Marquart was the chosen method for the non-linear fit of the 

kinetic parameters to the data by the equation 3.20. This method is suitable to use when 

fitting a parameterized function to a set of measured data points by minimizing the sum 

of the squares of the errors between the data points and the function, where there is a 

non-linear dependence on the unknown parameters [31].  

The implementation of this method comprises an iterative procedure where the 

values of the unknowns (in our case the kinetic constants) are adjusted in order to 

minimize the sum of the squares of the errors between the values predicted by the 

model and the measured data. 

 

3.3.5 Implementation in Matlab 

Matlab scripts were created to implement each step of the algorithm. 

For the determination of the 𝑇1 values, the software proceeds as follows: 
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1. Starts a cycle that reads the dicom images corresponding to all the flip angles and 

stores the values in a multidimensional array of size 𝑛𝑥 × 𝑛𝑦 × 𝑧, where 𝑛𝑥 and 

𝑛𝑦 correspond to the number of pixels in the vertical and horizontal directions, 

and 𝑧 stands for the number of flip angles. 

2. Extracts 𝑇𝑅 and flip angle values from the dicom header and creates a flip angle 

vector ([𝜃1 𝜃2 𝜃3… 𝜃𝑍]) were each theta corresponds to the specific value of 

the flip angle. 

3. Runs a double cycle that goes through all 𝑛𝑥 and 𝑛𝑦 indexes and for each pixel 

extracts the signal values of each flip angle acquisition and stores into a vector 

([𝑆1 𝑆2 𝑆3… 𝑆𝑍])  of the same size of the flip angle. With the 𝑇𝑅, flip angle and 

signal vectors uses the polyfit function, in order to find the coefficients of the 

polynomial 𝑃(𝑋) of degree 1 that best fits equation 3.7 in a least-squares sense 

and on a pixel-by-pixel basis. 

4. Repeats of the previous process to all the slices, to obtain 20 dicom images 

containing the parametric maps of the native 𝑇1 values of the tissues. 

After 𝑇1 mapping being completed, in order to achieve the CA concentration, 

the script goes through the following steps: 

1. Receives the directories of 𝑆(0), 𝑆(𝑡) and 𝑇1 and imports its values to the 

workspace. 

2. Uses the dicom header of the dynamic scans to extract 𝑇𝑅 and 𝜃 parameters. 

5. Based on the number of dynamic scans, creates a multidimensional array of size 

𝑛𝑥 × 𝑛𝑦 × 𝑁 where 𝑛𝑥 and 𝑛𝑦 correspond to the number of pixels in the 

vertical and horizontal directions and 𝑁 stands for the number of dynamics. 

3. Initiates a cycle that goes through all 𝑛𝑥 and 𝑛𝑦 indexes of the array and for each 

position extracts the value from 𝑆(0), 𝑆(𝑡) and 𝑇1 for that position. 𝑆(𝑡) is here 

a vector of size 1 × 1 × 𝑁 containing all values of signal intensity for that specific 

pixel. Applies the 3.18 formula to these values and repeats the process for all 

image indexes and sets the concentration values, obtained also as vector, in the 

multidimensional array position (𝑥𝑖, 𝑦𝑖). 

4. Repeats the process to all slices. 
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The resulting output consists of a multidimensional array (figure 3.10) where each 

2D array corresponds to a map of contrast agent concentration at a given time. 

 

Figure 3.10: Example (with non-real values) of the type of structure obtained in the calculation of concentration. 

Choosing a pixel of coordinates (X,Y), it is possible to access the values of concentration over time (represented by 

the third dimension). Adapted from [36]. 

 

The previous steps were applied to pixels within the liver ROI but, in order to 

determine the kinetic constants referred to in equation 3.19, 𝑇1 and contrast agent 

concentration of the hepatic artery and portal vein had to be determined. 𝑇1 calculation 

was performed pixel-by-pixel at the defined ROIs for the blood vessels, but only a single 

value was considered, corresponding to an average of the 𝑇1 values inside the region. 

Only values between 900-2000 milliseconds were accepted and in cases where the 

average values were outside the range, 𝑇1 was artificially set in 1584 milliseconds for 

the portal vein and 1664 milliseconds for the hepatic artery, values estimated for the 

longitudinal relaxation of blood at 3T [32].  Same procedure was made for the contrast 

agent concentration determination at the blood vessels, where only one value for each 

instant of the dynamic study was determined, corresponding to the average values for 

the concentration at the hepatic artery and portal vein ROIs. 
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Having determined the concentration of the contrast agent in all structures 

comprised in the model, it is possible to simulate the kinetic constants and calculate the 

perfusion parameters.  

The implemented method for the perfusion parameters determination goes 

through the following steps: 

1. Receives the directories of 𝐶𝐿, 𝐶𝑎 and 𝐶𝑝 and imports its values to the 

workspace. 

2. Uses the dicom header of the dynamic scans to create a vector of times, 

correspondent to the real acquisition times. 

3. Creates an objective-function from equation 3.19 to simulate the liver contrast 

agent concentration, implemented by the cumtrapz function that computes an 

approximation of the cumulative integral of 𝐶𝐿(𝑡) via the trapezoidal method. 

4. Loads the liver ROIs to the workspace as masks to limit the number of pixels 

used in the computations of the next step. 

5. Initiates a cycle that goes through all 𝑛𝑥 and 𝑛𝑦 indexes of the liver concentration 

multidimensional array (being 𝑛𝑥, 𝑛𝑦, and 𝑁, the number of pixels in the vertical 

and horizontal directions, and the number of dynamics, respectively). For each 

index correspondent to the liver mask, gets 𝐶𝐿(𝑡), 𝐶𝑎(𝑡), and 𝐶𝑝(𝑡) values as 

vectors of size 1 × 1 × 𝑁 containing all temporal values of contrast agent 

concentration for that specific pixel. Applies the Levenberg-Marquardt algorithm 

through the lsqnonlin Matlab fitting function to the objective-function iterates until 

the sum of the squares of errors between the parameterized objective-function 

and the experimental curve obtained for 𝐶𝐿 is minimized with a maximum of 800 

iterations. 

6. From the fitted curve 𝐶𝐿(𝑡) derives the set of kinetic constants used in the 

equations 3.2, 3.3 and 3.4 to determine the perfusion parameters 𝑃𝑎 , 𝑃𝑝and 𝑃𝐿 

with the extraction fraction equal to 1. 

7. Repeats the process for all indexes and set the determined values in four 

parametric maps that are converted to dicom images. 

8. Repeats the process to all slices. 
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Chapter 4  

Results 

4.1 Signal Enhancement and and tumor identification 

Figure 4.1 presents a typical example of coronal abdominal slice acquired during 

the dynamic study. The data belongs to Patient 3 and was acquired during the post-

treatment examination. This example illustrates the expected signal enhancement after 

contrast injection at different time points. 

Figure 4.1a was acquired before contrast injection and it shows the baseline signal 

from tissues. A few seconds after CA injection (figure 4.1b), there is signal enhancement 

at the bottom of the right liver lobe, indicating the tumor location. In addition, regions 

such as the heart or arteries also shown signal enhancement. Figure 4.1c represents the 

signal from the last dynamic that was acquired for the same slice. It shows contrast wash-

out in the tumor while healthy liver parenchyma still shown signal enhancement.  

 

Figure 4.1: Contrast-enhancement in a liver MR slice from post-treatment acquisition of patient 3: a) pre-contrast; 

b) “early” contrast-enhancement; c) “late” contrast-enhancement. 

Signal enhancement of the liver parenchyma is lower compared to the 

enhancement of the hypervascularized area, where there is higher concentration of 

contrast between the plasma and the tumor region. These results are expected as tumor 
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has an earlier enhancement as it is mainly fed by arteries, while the blood input of the 

normal parenchyma is from the portal vein. From figure 4.1b, a representative pixel from 

both tumor and healthy parenchyma regions were chosen and their variation of the 

signal intensities over time was plotted (figure 4.2) in order to see enhancement 

differences. 

 

Figure 4.2: Typical enhancement signal curves (of arbitrary units) derived from pixels in the tumor and healthy 

parenchyma regions respectively. 

From figure 4.2 it is possible to notice the existence of an enhancement peak, 

correspondent to the signal from early dynamics of the tumor location with progressive 

washout over time. For the pixel from the healthy parenchyma it is possible to see that 

there is also latter signal enhancement with smaller magnitude, when compared to the 

one from the tumor. The latter and smaller enhancement from parenchyma ROIs and 

the early raising in signal enhancement from tumor ROIs are characteristic behaviors 

from both regions. 

In this way, the identification of the tumor region and boundaries from the first 

3 dynamic after contrast injection is, in general, quite straightforward. Images from the 

last dynamics are not suitable as they show the late contrast-enhancement of normal 

liver parenchyma while the tumor is already in the wash-out phase. As a consequence, 

the identification of the tumor is less obvious in these dynamics. 
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4.2 ROIs definition  

ROIs for liver, tumor, abdominal aorta and portal vein were defined in ImageJ. 

This tool was used instead of Matlab as it enables importation of all slices of each dynamic 

in a single stack, allowing very simple manipulation of the image brightness, contrast, 

color maps, drawing tools, among others functions. Given that ROIs from ImageJ were 

obtained in the .roi extension, a function to import the defined ROIs to the Matlab 

workspace was created. It transformed the defined ROI into a .mat file with values of 

0’s and 1’s, masking the pixels within the ROI into values of 1.  

The figures below show the ROIs for the liver (yellow) and for the tumor 

(magenta), corresponding with each patient. For each patient two sets of ROIs, 

corresponding with the acquisitions from pre- and post-treatment. Ideally, the same ROI 

for pre- and post-treatment analysis should be used. However, this approach could not 

be taken because the FOV in pre- and post-treatment acquisitions was often not 

positioned in exactly the same place. As a consequence, this led to changes in the 

position and orientation of the liver. Furthermore, the anatomy surrounding the tumor 

was often changed from pre- to post-treatment, which further complicated the process. 

In order to overcome this difficulty, the ROIs of pre- post-treatment were selected so 

that they would be positioned in approximately the same anatomical region. 

 

Figure 4.3: Liver (yellow) and tumor (magenta) ROIs of Patient 1 in: a) pre-treatment and b) post-treatment scans. 
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Figure 4.4: Liver (yellow) and tumor (magenta) ROIs of Patient 2 in: a) pre-treatment and b) post-treatment scans. 

 

 

Figure 4.5: Liver (yellow) and tumor (magenta) ROIs of Patient 3 in: a) pre-treatment and b) post-treatment scans. 

 

 

Figure 4.6: Liver (yellow) and tumor (magenta) ROIs of Patient 4 in: a) pre-treatment and b) post-treatment scans. 
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Figure 4.7: Liver (yellow) and tumor (magenta) ROIs of Patient 5 in: a) pre-treatment and b) post-treatment scans. 

 

It is important to refer that in order to more accurately segment the tumor, 

which is often irregular and distributed amongst different slices, the defined ROIs are 

three dimensional, therefore defined with more than one slice. 

 

4.3 𝑻𝟏 parametric maps  

𝑇1 parametric maps (PM) were obtained for all slices of every patient using the 

variable flip angle approach. Figures. 4.8-4.12 show the 𝑇1 PM of one slice per patient, 

the one where the tumor is more visible. 𝑇1 values are shown in milliseconds for pre-

treatment (left) and post-treatment (right). 

 

Figure 4.8: 𝑻𝟏 parametric maps for Patient 1. 
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Figure 4.9: 𝑻𝟏 parametric maps for Patient 2. 

 

Figure 4.10: 𝑻𝟏 parametric maps for Patient 3. 

 

Figure 4.11: 𝑻𝟏 parametric maps for Patient 4. 

 

Figure 4.12: 𝑻𝟏 parametric maps for Patient 5. 
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Results demonstrate that, for all subjects, the highest 𝑇1 values are obtained in 

blood vessels and tumor regions. For example, for Patient 5 (figure 4.12) in pre-

treatment (left), values in the range of 1500 –  1800 𝑚𝑠 are positioned in the left lobe, 

which was previously defined as the tumor zone. As there is an increased inflow of 

arterial blood to the tumor zone, it is expected for these structures to have 𝑇1 values 

from approximately 1500 to 1700 𝑚𝑠, which correspond to the values of longitudinal 

relaxation of blood in a magnetic field intensity of 3T. In the same figure, the central part 

of the liver presents 𝑇1 values between 600 − 800 𝑚𝑠, which are characteristic values 

for hepatic parenchyma with normal perfusion. Apart from the area identified as a tumor, 

it is also possible to observe a region located in the right lobe, which also shows high 

values of 𝑇1, similar to those found in tumor. In the post-treatment 𝑇1 map of the same 

patient, an overall increase of 𝑇1 values can be seen, possibly suggesting tumor growth.  

Another illustrative case is that of Patient 4, which is presented in figure 4.11. 

Here, the regional decrease in 𝑇1 values on post-treatment could suggest tumor 

regression. However, this result goes against what was shown in figure 4.6b, where there 

is a larger hepatic area of signal enhancement in post-treatment, thus suggesting the 

opposite, namely, tumor increase. This can be justified by the slice that was used to show 

the 𝑇1 map. Choosing another representative slice of the liver for the same patient in 

post-treatment (figure 4.13), it is observed that there is an increase of the area with high 

values of 𝑇1. 

 

Figure 4.13: 𝑻𝟏 map of an alternative slice of Patient 4 in post-treatment examination that shows a larger 

area of the liver with high 𝑻𝟏 values. 

For the remaining patients, a similar behavior of the spatial distribution of 𝑇1 

values was observed, i.e. highest values of 𝑇1 corresponding with either tumor, largely 
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irrigated areas or blood vessels. The exception holds for Patient 1 (fig. 4.8) where there 

is a general increase of 𝑇1 values from pre- to post-treatment maps. 

4.3 Contrast Agent Concentration 

It is possible to describe the evolution of CA concentration in tissues by 

converting the MR signal into concentration units (𝑚𝑀/𝐿). Contrast agent 

concentration, an intermediate step in the algorithm to calculate kinetic parameters, was 

stored in a multidimensional array. Thus, for each slice there is a 𝑛𝑥 × 𝑛𝑦 × 𝑁 array 

where the concentration values for each dynamic can be represented as a 2D 128 ×

128 matrix of doubles. By storing the CA concentration in a multi-dimensional array, it 

is possible to plot CA concentration-time curves on a pixel-by-pixel basis, by choosing 

pixels from desired regions. This procedure is illustrated in figure 4.14. 

 

Figure 4.14: a) to c) - Identification of the abdominal aorta), portal vein and small segments from tumor and 

parenchyma ROIs from post-treatment dynamics of Patient 3. d) Average CA concentration-time curves from the 

displayed ROIs. 
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The tumor shows a rapid increase in CA concentration, when compared to the 

behavior of healthy parenchyma, followed by a quick washout, which reflects the fact 

that the tumor is a highly irrigated region. 

Furthermore, the abdominal aorta and the portal vein concentration-time curves 

show the expected relative peak time delay, i.e. the peak of CA concentration is reached 

first in the artery and then in the portal vein. As expected, there is a rapid and greater 

accumulation of contrast in the tumor ROI compared to the parenchyma. This is a result 

of the increased local arterial blood feeding the tumor when compared to the healthy 

parenchyma, where a main portal vein blood feeding is expected. 

Similar concentration curves were obtained for the other patients using other 

sets of pixels. The concentration curves in each pixel were used to calculate the kinetic 

parameters using a non-linear fitting procedure. 

 

4.4 Perfusion Parameters  

Figures 4.15 – 4.19 show the kinetic parametric maps obtained before and after 

treatment for all patients, considering the dual-input one-compartment model. It was 

chosen to present as final results the kinetic constants (𝑘1𝑎, 𝑘1𝑝, 𝑘2) and the overall liver 

perfusion (PL), calculated according to equation 3.4. The kinetic parameters are 

presented in units of 𝑠−1 as well as the liver perfusion. The extraction fraction of the 

contrast agent in the liver, 𝐸 has no units and in this work it was assumed to be 1 for all 

cases. In order to present the results in DICOM images, it was necessary to apply a 

scaling factor of 104 to all values, so that real values can be obtained from the integers 

stored in DICOM format, divided by the scaling factor. 
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Figure 4.15: 𝒌𝟏𝒂, 𝒌𝟏𝒑, 𝒌𝟐 and PL parametric maps for Patient 1. 

 

Figure 4.16: 𝒌𝟏𝒂, 𝒌𝟏𝒑, 𝒌𝟐 and PL parametric maps for Patient 2. 

 

Figure 4.17: 𝒌𝟏𝒂, 𝒌𝟏𝒑, 𝒌𝟐 and PL parametric maps for Patient 3. 
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Figure 4.18: 𝒌𝟏𝒂, 𝒌𝟏𝒑, 𝒌𝟐 and PL parametric maps for Patient 4. 

 

Figure 4.19: 𝒌𝟏𝒂, 𝒌𝟏𝒑, 𝒌𝟐 and PL parametric maps for Patient 5. 

The success treatment of patients may be assessed qualitatively by comparing the 

perfusion status before and after treatment. According to the proposed model, it is 

possible to classify patients into categories of treatment responders and non-responders. 

Response to treatment implies an overall decrease in perfusion in the post-treatment PL 

parametric maps, which was found in Patient 1 and Patient 3. Patients 2, 4 and 5 are 

accordingly to this model non-responders since there is an increase in the overall 

perfusion after treatment. 

Even through visualization of the images of early signal enhancement, tumor 

boundaries were not easy to define for Patient 1. In the signal intensity images, no 

localized signal enhancement occurs, in fact, dispersion of high values of intensity are 

observed among the entire region of left lobe and in the upper zone of the right lobe. 
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Using the same ROI and analyzing the parametric maps from the same slice before and 

after treatment, there is a significant decrease in all kinetic parameters and consequently 

in the global perfusion. It is important to refer that pre-treatment maps present a range 

of values 8 times superior that the post-treatment ones.  

𝑘1𝑎 and 𝑘1𝑝 maps of Patient 2 after treatment show increased values when 

compared to the same parameters before treatment, resulting in an overall increase in 

liver perfusion. Increased values of perfusion on the liver outer edges may suggest new 

vessels recruitment and consequently tumor growth despite treatment. Although this 

effect may also be artifactual. It is noticed that there are many areas of the liver where 

perfusion is zero. Furthermore, 𝑘2 maps present higher values than 𝑘1𝑎 and 𝑘1𝑝 for this 

patient, suggesting high rates of contrast agent extraction from the liver by the hepatic 

vein.   

Besides the defined ROI of the tumor for Patient 3, it is possible to identify, in 

figure 4.17, other tumoral masses in the upper region of the liver, which also have 

increased kinetic constants and overall perfusion. From the comparison of the color 

maps before and after treatment it becomes evident that there is an overall decrease of 

the liver perfusion after 3 months of treatment. An interesting observation in this patient 

is the existence of an area within the defined ROI for the tumor, where all parameters 

are zero. The absence of blood perfusion in this region may suggest the presence of a 

necrotic area. Comparing 𝑘1𝑎 and 𝑘1𝑝 maps before treatment, it is possible to find 

alterations of the vascular supply of the liver. Here the blood supply to the tumor is 

mainly arterial. However, from the observation of the post-treatment maps, seems to 

be a reestablishment of the blood supply, expected to be mainly from the portal vein, by 

the decrease in 𝑘1𝑎 values and increase in the 𝑘1𝑝 ones.  

From the parametric maps of Patient 4, in figure 4.18, it is possible to see 

augmented liver perfusion after treatment. In both pre- and post-treatment maps, the 

contribution of global liver perfusion seems to be mainly arterial since the values of 𝑘1𝑎 

rate constant are relatively higher than 𝑘1𝑝 ones. Besides the increase of the perfusion, 

there is tumor migration to an upper region from its previous location. 



Chapter 4 – Results   55 

 

 

Parametric maps of the Patient 5, illustrated in figure 4.19 show a marked 

increased liver perfusion after treatment. Apart from the highest values of perfusion 

being found within the ROI defined for the tumor, it is possible to see increased blood 

perfusion also for the hepatic parenchyma surrounding the tumor. This may represent 

the process of recruitment of more vessels to the tumor region, supplied by the hepatic 

artery through neoarteriogenesis process. In fact, there is almost no blood supply 

contribution from the portal vein to the tumor. It is possible to see that there are high 

values of 𝑘1𝑝 in few points within the tumor, being mainly zero for the rest of the liver. 

Within the tumor of the post-treatment parametric maps, it is possible to see a small 

area with absence of perfusion, suggesting development of necrotic tissue. 
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Chapter 5  

Discussion 

The main goal of the present work was the implementation of a software for 

perfusion quantification in liver that better reflected the real liver blood supply. A dual 

input one-compartment model was considered, comprising both venous and arterial 

blood contributions to the liver. Using this mathematical model it was possible to 

determine the temporal evolution of the contrast agent concentration and calculate the 

kinetic parameters that described the transport of the contrast agent from the portal 

vein and hepatic artery to the liver. 

For that purpose, an algorithm composed by a series of distinct steps was 

implemented. The software implementation was not a trivial procedure as it involved 

the manipulation of complex numeric methods, handling several variables and non-linear 

equations. Several strategies were adopted during the implementing procedure, in order 

to keep model integrity and to obtain a software with suitable clinical applicability.  

One of the adopted strategies was the minimization of the total computation 

time with a view on clinical application. As already mentioned, the number of pixels that 

were used in the calculations was limited only to the structures of interest. For that 

purpose, ROIs limited to the liver and few adjacent structures were defined. This 

procedure was particularly important for the calculation of the native 𝑇1 values as well 

as that of the kinetic parameters, since these operations involve non-linear fitting 

procedures, which have long computation times. With the application of ROIs, the 

computation time decreased considerably (from approximately two hours to twenty 

minutes per patient, for the kinetic parameters determination procedure). Some 

difficulties were found in the identification of anatomical structures, especially in the case 

of tumor, portal vein and liver edge. The liver is a large organ and is therefore susceptible 

to motion artifacts and partial volume effects, hence making the identification of liver 
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boundaries sometimes hard. Furthermore, tumors are irregular structures that vary 

their position depending on the imaging slice. For that reason, tumor ROIs were defined 

not only based on a single slice, but considering other slices that included parts of the 

same tumor, i.e., 3-dimentional ROIs. The portal vein was the most difficult structure to 

identify because of its size and because sometimes it was positioned in an oblique plane 

to the acquisition plane. 

Another assumption consisted on the arterial input function measurement in the 

abdominal aorta, instead of measuring it on the hepatic artery. The proposed model 

required the definition of both an arterial and venous input functions. There were no 

problems in detecting the venous function, which was acquired over the portal vein ROI. 

However the arterial input function definition, which ideally would be acquired over the 

hepatic artery, was more difficult. The identification of this structure was practically 

impossible due to its reduced size and position within the FOV, so a ROI over the 

abdominal aorta was placed, assuming that both arteries had the same signal and 

consequently the same contrast agent concentration. 

The removal of outliers was one of the strategies that was used to keep model 

integrity and avoid the propagation of numerical instabilities. Depending on the 

orientation of the portal vein and abdominal aorta with respect to the FOV, it could be 

that the flow in these vessels was not completely in-plane. As a consequence, inflow 

effects originated native 𝑇1 values outside the expected range of values for the 

longitudinal relaxation of blood at 3T. This represented a potential source of error to 

the contrast agent concentration curves of the blood vessels. In order to minimize this 

effect, it was chosen to attribute 𝑇1 values from literature to those pixels that were 

affected by inflow effects. It was also necessary to remove outlier values when calculating 

the contrast agent concentration for the liver. In this procedure it was noticed the 

presence of negative values of concentration. Spatial localization of these pixels 

suggested that they were either from noisy regions or from regions with no contrast 

enhancement and it was chosen to set the contrast agent concentration values of these 

pixels artificially to 0. The justification for these outlier values reflects one of the major 

limitations of this work, in which all model equations were equally applied to every pixel, 

regardless of whether there was signal enhancement from contrast agent arrival or not. 
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Pixels that violated the model assumption of enhancement affected the final results and 

were a confounding factor in the interpretation of kinetic parametric maps. For that 

reason, they had to be signaled as outliers. 

One important point consisted in the assignment of values to parameters of the 

model equations, which were unknown or for which no measurements were made. The 

values of the mean transit time of the contrast agent from hepatic artery and portal vein 

to the liver were considered to be, for both parameters, equal to 3 seconds. This value 

was taken from literature, and it is not considered a potential source of error, as it is 

nearly half of the temporal resolution that was used in the acquisition of the data. In this 

situation, the transport of the contrast agent from the abdominal aorta and portal vein 

to the liver can be considered to be instantaneous. Ideally, the correct assessment of 

the perfusion parameters also takes into account the influence of the small vessel 

hematocrit and the correct measurement of the extraction fraction of the contrast agent 

in the liver, which did not occur. The hematocrit measurement represents an invasive 

procedure that could not be performed for all patients, and for the calculations, its 

influence was discarded. Due to due the lack of extraction fraction measurement, it was 

considered to be 1, as this value is referenced by literature to be used in situations 

where the contrast agent has free access to the extravascular space. These two last 

assumptions may have caused an underestimation of the rate constants and consequently 

of the overall liver perfusion. 

The validation of the software using a clinical population with HCC allowed to 

highlight the positive aspects of the dual-input one-compartment model analysis of the 

data over the traditionally used model. The parametric maps, show many differences 

between 𝑘1𝑎 and 𝑘1𝑝 constants, which proves distinct contributions for the overall liver 

perfusion from arterial and venous input. This is a very important issue when considering 

the Tofts model that only assesses perfusion through the determination of the 𝐾𝑡𝑟𝑎𝑛𝑠 

and considering a single input. Liver perfusion that previously was determined only by 

transendothelial transport of the contrast agent into de extravascular-extracellular space 

from a single vascular input function, now contemplates two distinct vascular inputs. It 

is possible to study with more accuracy and more detail, if there are different 

contributions from either one of the vascular inputs to the perfusion and quantify them. 
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From the parametric maps, not only was it possible to point differences in the 

venous and arterial contributions to the liver perfusion, but also to see that the model 

was susceptible to detect variations of perfusion after treatment. It was possible establish 

a classification of treatment responsive (Patients 1 and 3) and non-treatment responsive 

for patients (Patients 2, 4 and 5), based on, respectively, the decrease and increase of 

the global liver perfusion after three months of treatment. An interesting result was the 

ability to detect an increased venous perfusion in one of the responsive patients (Patient 

3). As the blood perfusion to the tumor is considered to be mainly arterial, in the case 

of this patient there is a reestablishment of the blood supply from the portal vein 

followed by a decrease in the arterial one, stating that treatment was effective in the 

decrease of the tumor blood perfusion. 

Values of 𝐾𝑡𝑟𝑎𝑛𝑠 from Tofts model were found in the literature for many types 

of tumors with different sizes, staging and aggressiveness. Taking for example a particular 

study [32] values of 0,11  and 0,10 𝑠−1 were found for 𝐾𝑡𝑟𝑎𝑛𝑠 respectively in a liver 

hemangioma and metastases, using a CE MRI study. A more similar case, in patients with 

HCC [8], values in the range of 0,75 − 0,90 𝑠−1 for 𝐾𝑡𝑟𝑎𝑛𝑠 were found in the tumor 

ROI. The interpretation of 𝐾𝑡𝑟𝑎𝑛𝑠 is dependent on the tissue involved and on the 

underlying physiological circumstances, although it is possible to see that the same 

orders of magnitude are found in 𝑘1𝑎 and 𝑘1𝑝 values for the patients of the present 

study.  An interesting follow-up of this study would be to perfusion results for each 

patients, obtained using both the Tofts model and the proposed model using a histogram 

analysis in order to quantify tumors’ heterogeneity. 

In general, it is possible to say that the application of the dual input single-

compartment model to clinical data yielded encouraging results and showed the 

advantages of using mathematical models that better describe the vasculature of the liver 

to analyze perfusion data. Nevertheless, this study contains some weaknesses that 

should be improved in the future: 

1 - Intra- and inter-subject variability of the acquisition parameters. The latter 

were not exactly reproduced from subject to subject and within the same patient, also 

sometimes not exactly reproduced from pre- to post-treatment acquisitions. This led to 
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different acquisition geometries that made it impossible to use e.g. the same ROIs in pre- 

and post-treatment analysis. The applied treatment and the disease evolution also 

induced anatomical changes, particularly to the tumor morphology, also requiring new 

ROIs definition. 

 2 - Artifacts due to respiratory motion caused signal dropout that made the 

identification of structures of interest difficult and invalidated many pixels to be suitable 

for the application of the model equations because of low SNR. 

3 - Limited number of patients used for the software testing.  The database, from 

where data presented in this project was extracted, included more MRI data of patients 

with hepatocellular carcinoma following the same protocol. However, for many of them, 

main structures of interest, like portal vein and abdominal aorta, were not included in 

the imaged slices, making it impossible to apply the dual-input single compartment model 

to this patients.  

Limitations of the study precluded the application of this approach to a larger 

sample of clinical data. Nevertheless, software implementation has been successfully 

accomplished and producing treatment sensitive perfusion results. 
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Chapter 6  

Conclusion 

Liver hemodynamics is a main determinant of hepatic function. The assessment 

of liver perfusion remains controversial regarding the variable model-based approaches 

than can be used.   

This work represents a “proof of concept”, i.e. the main objective of this thesis 

was not to create a perfect algorithm of perfusion parameters calculation, but to 

demonstrate that it was possible to perform the implementation of a model with 

assumptions that better describe the liver vascular system, when compared to the 

traditional Tofts model. A more accurate perfusion assessment through models that 

better reflect the real vascular architecture of the liver, may help to characterize and 

predict the onset of malignancies as well as to study the effectiveness of therapies. The 

implemented software was tested in a particular clinical case of limited data from patients 

with hepatocellular carcinoma, however patients with other liver perfusion diseases 

could have been used for the same purpose.  

Future work may focus on the clinical validation of the developed software. 

Strategies involve the development of a complete user interface for the software in 

order to extend perfusion quantification in the liver to clinical routine. Tests with more 

patients will allow longitudinal studies and statistical inference. Furthermore, standard 

operating procedures with specific set of pulse sequence parameters should to be 

established.  
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