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Chapter 1

Introduction

Since the discovery of the nucleons and, later, of a proliferation of other particles which

have come to be known collectively as hadrons, the necessity of an adequate theoretical

framework that could describe their properties and dynamics grew ever more pressing.

After several tentative models which have been developed since the early days, each

unravelling a piece of the full intricate picture, a general consensus has been established

among investigators around the theory of Quantum Chromodynamics (QCD) as being

the best candidate to a complete theory of the strong interactions, with the quark model

as one of its foundations and gauge field theory as another. Some credit for this broad

support is certainly due to the multiple successes of its older cousin in the family of gauge

theories, Quantum Electrodynamics (QED). However, it was also soon realized that

QCD was a much wilder beast to tame, and the techniques that had been so fruitfully

applied in QED, in particular the perturbative approach, were of much more limited use

in QCD. And there we were, faced with a presumedly fundamental theory and yet with

no apparent way of using it to describe a good part of the relevant physical phenomena.

Necessity, as always, is the mother of invention, and in this case it was necessary to find

new, creative ways of tackling QCD and making it produce sensible predictions. It was

not too long before a multitude of different approaches and approximations were again

on the market for application to the strong interactions.

One might ask, “But are we not back where we started?”. The observant reader would

promptly answer a resounding “No!”. It is true that we have yet to uncover some (or

many) parts of the picture and, as it often is when something new is being born, while

giving birth to new insight and more profound discernment things may get a little messy.

But all the efforts, all the right and wrong paths we have traveled in the pursuit of a

solid understanding, and all the pieces of the puzzle we have set along the way are

undeniably more than what we had when we started. Today, we may not have a full

1
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grip on the whimsical theory of QCD, and it may even come to the point when we

realize QCD was not the foremost answer after all, but we have certainly learned many

valuable things about what hadrons are and how they interact, we have aknowledged

prior difficulties and limitations and we have refined our approaches, coming out of

the journey wiser, more skilled and empowered in our ability to delve ever deeper into

nature’s inner workings.

So, what have we learned so far? We learned about the systematic ways in which

hadrons seem to be categorized according to their quantum numbers: the multiplets.

We dug more in-depth and learned how we could accomodate these features in terms

of a constituent quark model. We learned about the gluons which keep quarks strongly

bound within hadrons, about confinement. We learned about decays and interactions.

We learned about the fundamental role of symmetries. We learned many things. We

keep learning and, still, the universe seems to remain inexhaustible in elaborate richness

and detail, never dull, sometimes elusive, always alluring.

1.1 Purpose and Motivation

In the low energy regime, QCD does not admit a perturbative treatment, and alternative

approaches must be worked out in order to make predictions on physical phenomena.

Some of the available methods are mentioned in Chapter 2, but in this thesis we will

focus on NJL-type models. These models try to capture the essential features of chiral

symmetry in the light sector of QCD, modelling the strong interactions through effective

multi-quark vertices and providing a mathematically tractable tool for studying the

mechanism of dynamical mass generation through chiral symmetry breaking. The model,

originally proposed in the 60’s (thus prior to QCD itself) as an effective model for nucleon

dynamics [1] [2], has been enhanced over decades and reformulated in terms of quark

fields for two and three flavours, and also to include the effect of small current quark

masses which explicitly break chiral symmetry. The model is non-renormalizable, so all

results are explicitly dependent on some energy scale Λ which characterizes its domain

of applicability.

Recently, in line with the reasoning behind the construction of effective field theories

(EFTs), a new extension to the model has been proposed [3] [4] which includes a complete

set of current quark mass dependent interaction terms which contribute at the same order

as the U (1)A symmetry breaking interaction and other vertices that are important in

four dimensions for dynamical chiral symmetry breaking. With this, there is a whole new

set of terms whose phenomenological consequences have yet to be fully understood. This



Chapter 1. Introduction 3

fact gives us the main motivation behind this work: to study some of the phenomenology

that these new terms bring into the model.

Models like this one are oriented towards the investigation of the non-perturbative scales

of QCD, and they are specially useful to do analyses which are overly complicated to

perform through lattice calculations. One such example, and a particularly interesting

one, is the study of the QCD phase diagram at moderate temperatures and chemical

potentials. Lattice techniques, despite many recent advances, are still plagued with

problems at finite chemical potentials (known as the sign problem). Thus, model cal-

culations may be the best theoretical alternative for studying this topic. This will be

the main objective of this thesis: the construction of the phase diagram in light of the

above-mentioned model and its discussion.

In order to present a sound argument, we will spend Chapters 2 and 3 reviewing a

number of topics which are relevant for chiral dynamics, the NJL model and, of course,

the new extended version that we wish to investigate. Then, in Chapter 4, we will

perform our analysis and discuss our results.

We would like to note that natural units with c = ~ = kB = 1 are used throughout the

entire thesis.

1.2 Discussion Layout

In Chapter 2, we present a series of theoretical aspects that underly and set the grounds

for all the subsequent discussion. We start by giving a concise overview of QCD, ad-

dressing fundamental symmetry aspects with a special focus on chiral symmetry, the

problem of low energy non-perturbativity, and the construction of effective models. Ad-

ditionally, we give a brief review of some phenomenological aspects, and we end with an

exposition of the Nambu-Jona-Lasinio (NJL) model.

In Chapter 3 we aim to establish the rigorous form of the model we wish to investigate,

starting from the analysis of a preceding version of the NJL model wich includes the usual

’t Hooft determinantal interaction term in the functional bosonization framework. We

argue that this version has no stable vacuum for the three flavour case, which motivates

the inclusion of 8-quark interaction terms in order attain stability. These vertices are,

like the ’t Hooft interaction, 1/Nc suppressed with regard to the 4-quark interactions

and the mass term. The final extension that is considered at next to leading order

(NLO) includes also the 1/Nc suppressed interactions which break explicitly the chiral

symmetry through the coupling of the quark fields to an external source. We end by

reviewing some important aspects of this extension.
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In Chapter 4 we study the effects of including finite temperature and chemical potential

on the model. We derive the one-loop thermodynamical potential and find the dynamical

quark masses for several values of the thermodynamic variables. Furthermore, we build

the phase diagram and discuss its most important features. The prospect of stable

strange quark matter (SQM) is also investigated within physically reasonable conditions.

In Chapter 5 we summarize the results and the main conclusions, and we propose some

directions for further investigation.



Chapter 2

Theoretical and

Phenomenological Background

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a non-Abelian SU(3) gauge theory that describes

the strong interaction of quarks in the Standard Model (SM). [5] The generators of the

gauge symmetry group are given in terms of the well-known Gell-Mann matrices λa,

which obey the algebra

[

λa, λb
]

= 2ifabcλc, (2.1)

where the fabc are the group structure constants [see Appendix A]. The quark field

q belongs to the fundamental triplet representation of the symmetry group, and one

speaks of a colour quantum number to label each of the three members of the triplet.

Furthermore, q transforms as a spinor under Lorentz transformations, and it carries an

additional flavour quantum number underlying the distinction between different quarks

in terms of physical variables such as electrical charge or mass. As for the gluon field

Aµ = Aaµ
λa

2
, it resides in the adjoint octet representation, carrying two colour quantum

numbers. Under Lorentz transformations, it behaves as a vector.

The QCD Lagrangian density may be written as

LQCD = q̄ (iγµ∂µ −m0) q −
1

4
F aµνF

µν
a + gq̄γµAµq. (2.2)

Here, F is the gluon field tensor defined as

5
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F aµν = ∂µAν − ∂νAµ + gfabcAbµA
c
ν (2.3)

For simplicity, quark field indices are all omitted. The formal content of this Lagrangian

density is most transparent: we have a Dirac term that expresses quark kinetic and mass

terms; then there is a Yang-Mills term quadratic in F which contains the kinetic and

self-interaction terms for the gluon field; finally there is a quark-gluon coupling term,

describing quark-quark interactions by means of intermediary gluon exchange.

QCD has an important feature which is worth noting: asymptotic freedom. [6] Due

to the gauge boson self-interactions, vacuum polarization contributes an antiscreening

effect that effectively reduces the running coupling constant at large momenta. This is

in contrast with what is observed in QED, where vacuum polarization due to fermion

bubbles gives rise to an effective screening effect. Quantitatively, one can resort to the

one-loop beta function for strong interactions [7]

β (αs) = − (11Nc − 2Nf )
α2
s

6π
(2.4)

It is evident that with number of colours Nc = 3 and number of flavours Nf = 6,

β (αs) < 0, which leads to quarks being asymptotically free at sufficiently high energies,

and very strongly bound at smaller energies. Presumably, this might give rise to a

mechanism for colour confinement, i.e. the impossibility of observing colour degrees of

freedom. [5]

2.1.1 Symmetries

The QCD Lagrangian density (2.2) is manifestly Lorentz covariant, as is expected of

any realistic QFT. Additionally, the discrete symmetries of parity, time reversal and

charge conjugation are also present. Furthermore, it enjoys (by construction) an SU(3)

gauge symmetry, i.e., the Lagrangian density (2.2) is invariant under the combined

transformations

q → Ucq q̄ → q̄U †
c (2.5a)

Aµ → UcAµU
†
c −

i

g
Uc∂µU

†
c (2.5b)

where the unitary transformation Uc is given in terms of a set of eight local colour

rotation angles θa (x) as
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Uc = eiθ
a(x)λ

a

2 (2.6)

Another symmetry of (2.2) arises from the fact that gluons are flavour blind. If we

take the quark mass matrix m0 to be degenerate, it is straightforward to show that the

Lagrangian density remains invariant under a general global rotation in flavour space

q → Ufq q̄ → q̄U †
f (2.7)

with the unitary transformation given by

Uf = eiφ
a τa

2 (2.8)

where τa are the generators of the U (Nf ) flavour group (see Appendix A) and φa is

an appropriately dimensioned set of flavour rotation angles. The singlet transformation

with a = 0 is always an exact symmetry of the QCD Lagrangian, and is associated with

baryon number conservation. [5]

Besides these symmetries, one can further consider an approximate chiral symmetry,

which is related to a transformation similar to (2.7) but with

U
′
f = eiφ

′aγ5
τa

2 (2.9)

In this case, due to the Dirac algebra (see Appendix B), the adjoint spinor transforms

as

q̄ → q̄U
′
f (2.10)

This would be an exact symmetry of the Lagrangian density (2.2) for zero current quark

massesm0. Despite not being an exact symmetry as it is, it has been shown to be of great

importance for further understanding of the dynamics of quarks and hadrons, namely

by showing up as a dynamically broken symmetry in several models. This subject is

more deeply developed in section 2.2.
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2.1.2 Low Energy Non-Perturbativity

As a standard renormalization procedure in perturbation theory, one takes the inter-

action term as a small perturbation to the free Lagrangian density and expands it in

powers of the coupling constant. This procedure relies on the assumption that the cou-

pling constant is small, so that higher powers will contribute progressively less to the

calculation of physical observables. [8] This works exceedingly well in Quantum Electro-

dynamics (QED), but fails when one tries to apply it to QCD, and the reason for this

is its characteristic feature of asymptotic freedom.

At high energies, the strong coupling constant may be sufficiently small for perturbation

theory to be applicable. However, at lower energies, the coupling becomes large enough

for higher order terms in the perturbation series to be ever more important, raising

convergence issues. This theoretically unsatisfactory feature shows that, at low ener-

gies, QCD is non-perturbative and, therefore, difficult to employ directly in the actual

calculation of observables.

With this fact arises a pressing need for alternative approaches to conventional pertur-

bation theory. One such approach which has become fairly popular is Lattice QCD. Its

description falls way beyond the scope of the present work, but there is no way of going

about these topics without at least mentioning it. Very briefly, it attempts to circumvent

the infinite set of divergent diagrams crowding the continuous space version of the theory

by discretizing spacetime into a hypercubic lattice, introducing as a new parameter the

lattice spacing a. Naturally, some aspects of the original formalism, e.g. fundamental

symmetries, must be put in an adequate form for the discretized description. If a is

sufficiently small, lattice calculations constitute a very powerful approximation to the

continuous version of the theory. It has already provided some of the most accurate

predictions available today concerning strong processes. As a major setback, in the Lat-

tice QCD framework, even the simplest calculations require tremendous computational

power, which might not be widely available and be extremely time consuming. [7]

Another popular trend in the study of strong interactions comes in the shape of Effective

Field Theories (EFTs), whose general aspects we succinctly describe in the following

section.

2.1.3 Effective Models

A number of effective models and toy QFTs, either pre-QCD or post-QCD, have been

developed in an attempt to better understand physical phenomena and to overcome the

inherent difficulties of QCD. The Fermi theory of beta decay [9], for example, might be
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considered one of the first effective models, and a successful one as well. The primary

inspiration for the model we will be studying in the later sections of this thesis is the

Nambu-Jona-Lasinio (NJL) model. We shall discuss it a little further in section 2.4.

Its features are closely related to those of the Fermi model, as well as the toy models

of Thirring [10] in one dimension, Gross-Neveu [11] in two dimensions, and Soler [12]

in four dimensions. Their common feature is the description of self-interacting chiral

fermions through local quartic interaction terms.

Other models include the Chiral model [13], Sigma models [14], the Skyrme model [15],

the Vector Meson Dominance model [16], Chiral Perturbation Theory [17] [18] [19] [20] [21] [22],

Unitarized Quark Models [23], and the Heavy Quark Effective Theory [24]. From a more

contemporary perspective, we can identify some of these models as EFTs.

2.1.3.1 Effective Field Theories

The SM intends to give a dynamical description of physics based on fundamental degrees

of freedom. However, this beautiful and important framework has its own shortcomings

when it comes to the application to specific problems where calculations may become

exceedingly complex and even intractable. An example of this has already been men-

tioned, the low energy regime of QCD, but there are a number of situations where the

direct application of the SM is prohibitingly complicated. We would greatly benefit

from building approximate (effective) models that could give the same results as the SM

within a given range of applicability. Such systematic procedure for constructing EFTs

has been introduced by Weinberg in [25].

The idea is that each specific problem or system may have its own set of relevant degrees

of freedom distinct from the fundamental degrees of freedom that appear in the SM. In

the case of low energy QCD, for example, heavier quarks may be disregarded altogether,

since they are not expected to be involved in processes at energy scales significantly

lower than their own masses. The mere introduction of an explicit energy scale Λ leads

already to some simplification of the QCD Lagrangian density, discarding the heavier

quark degrees of freedom. We can still go further in identifying the truly relevant low

energy degrees of freedom as pions and nucleons. Finally, we can do an expansion in p
Λ ,

where p are momenta or masses which are lower than the effective energy scale Λ, in a

similar fashion to conventional perturbation theory.

For the construction of the effective Lagrangian density, it is suggested that “if one

writes down the most general possible Lagrangian, including all terms consistent with

the assumed symmetry principles, and then calculates matrix elements to any given

order of perturbation theory, the result will simply be the most general possible S-matrix
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(a) (b) (c)

Figure 2.1: Double-line notation for the gluon propagator (a), with the quark-gluon
vertex (b) and the three gluon vertex (c) shown.

consistent with analyticity, perturbative unitarity, cluster decomposition and the assumed

symmetry principles”. [25] This prescription emphasizes the significance of symmetry

considerations as the underlying guiding principle for the construction of EFTs. For

each term in the Lagrangian we introduce an effective low energy coupling, and the full

Lagrangian is actually an infinite sum of terms respecting the assumed symmetries. A

consistent perturbation approach then requires us to work with terms up to some power

of p
Λ . This consistency check is known as power counting.

In the context of strong interactions, this has led to what is now known as Chiral

Perturbation Theory (ChPT), which is commonly written in terms of mesonic degrees of

freedom. An underlying spontaneously broken chiral symmetry with a U (1)A anomaly

is assumed (see sections 2.2 and 2.3) and used to construct an effective Lagrangian,

usually including the three lighest flavours. Alternatively, we can build an effective

chiral Lagrangian based on quark degrees of freedom, and then bosonize the theory.

This is the approach taken in the model we will be studying.

2.1.3.2 1/Nc Expansion

It has been stated above that QCD doesn’t allow for a perturbative expansion in terms

of the coupling g, at least for sufficiently low energies, and that this feature stems from

the asymptotic freedom associated with the non-Abelian gauge group SU (3). Besides

EFTs built around mass or momentum expansions, another possible expansion scheme

based on the number of colours Nc has been suggested in the limit Nc −→ ∞. [26]

This is usually performed by considering a U (Nc) version of QCD.1 Quark fields carry

a colour index while gauge fields carry two colour indices, and a double line notation is

introduced for the gluon propagator in order to explicitly represent colour flow in the

diagrams. Examples are shown in figure 2.1.

1The same arguments are valid with SU (Nc) in the large Nc limit.
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We may rescale the coupling as g −→ g̃√
Nc

and the fields as gAµ −→ Ãµ and ψ −→
√
Ncψ̃. With this, the QCD Lagrangian (2.2) is rewritten as

LQCD = Nc

{

˜̄q (iγµ∂µ −m0) q̃ −
1

4g̃2
F̃ aµν F̃

µν
a + ˜̄qγµÃµq̃

}

(2.11)

From this it is straightforward to extract a new set of Feynman rules: vertices carry a

factor of Nc, propagators carry a factor of 1
Nc

, and colour loops introduce a factor of Nc.

We may systematically look at diagrams from a topological point of view: they consist

of glued polygons that form more or less complicated surfaces. If we view propagators as

polygon edges and colour loops as faces, then any connected diagram with no external

legs has an overall factor given by

NV−E+F
c (2.12)

where V is the number of vertices, E is the number of edges, and F is the number of faces.

This topological invariant combination is commonly known as the Euler characteristic

χ = V −E+F . For χ = 2, the diagrams are said to be planar (they have the topology of

the sphere); these give the dominant contribution in an expansion in powers of Nc. Non-

planar diagrams have χ < 2 and are thus suppressed in the expansion. For connected

orientable surfaces, we have

χ = 2− 2h− b (2.13)

where h is the number of handles and b is the number of distinct boundaries. This

provides us with a way of systematically finding the order of any diagram in Nc, enabling

us to use Nc as a perturbative expansion parameter. In figure 2.2 we can see some

examples of diagrams which contribute at different orders in Nc power counting.

The Nc power counting may be used as a tool for the construction of effective QCD

Lagrangians: we should decide which order in Nc we want to go, and then include all

effective terms up to that power. In this way, we ensure the consistency of the effective

expansion. A more complete exposition of these ideas may be found in [27].
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(a) (b) (c)

Figure 2.2: (a) An O (Nc) diagram, with one colour boundary and no handles. (b) An
O (1) diagram, with two colour boundaries and no handles. (c) An O

(

N−1

c

)

diagram,
with one colour boundary and one handle.

2.2 Chiral Symmetry

As was briefly mentioned in the previous section (subsection 2.1.1), in the limit of van-

ishing current quark masses m0 the QCD Lagrangian displays an additional invariance

property known as chiral symmetry. It should be apparent that, for the heavier quarks,

this approximation of zero current quark mass is overly crude. Therefore, it is costumary

to restrict the discussion of chiral symmetry to the three lightest quark flavours, which

are then taken as belonging to the triplet representation of an SU(3) flavour symmetry

group.

In order to clarify what is meant by chiral symmetry, we refer to the unitary flavour

transformations given in (2.7) and (2.10). We rewrite (2.8) and (2.9) respectively as

UV = eiθ
a
V

τa

2 = eiθV (2.14a)

UA = eiγ5θ
a
A

τa

2 = eiγ5θA (2.14b)

where the τa are then the generators of the U(3) group in flavour space and we define

θV,A = θaV,A
τa

2
(2.15)

The τa are closely related to the Gell-Mann matrices λa of SU (3) we had previously

introduced. There are nine τa matrices, which can be taken identical to the λa for a

between 1 and 8, and the remaining matrix is conventionally written τ0 and taken as

τ0 =
√

2
313×3.

2 (see Appendix A)

2This amounts to the realization that the group U (3) can be decomposed as U (1) ⊗ SU (3).
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Chiral symmetry is then usually defined as invariance under the combined group U (3)V⊗
U (3)A. By making use of the chiral projection operators

PR,L =
1

2
(1± γ5) (2.16)

we can define left and right-handed spinors as

qR,L = PR,Lq q̄R,L = q̄PL,R (2.17)

Since PR,L are projection operators (see Appendix B), the spinors can always be decom-

posed as

q = qR + qL q̄ = q̄R + q̄L (2.18)

With these definitions, we are led to an alternative perspective on chiral transformations

by noting that the QCD Lagrangian density (2.2) naturally decomposes in terms of left

and right handed spinors as

LQCD = q̄R (iγµ∂µ) qR + q̄L (iγ
µ∂µ) qL −

1

4
F aµνF

µν
a

+ gq̄Rγ
µAµqR + gq̄Lγ

µAµqL − q̄Lm0qR − q̄Rm0qL (2.19)

In the limit of vanishing current quark mass (i.e., m0 = 0), we see that no term remains in

(2.19) that mixes left and right-handed spinors. This means that we can independently

transform qR and qL under an UV (3) symmetry transformation. This is known as the

chiral limit.

These two ways of understanding chiral symmetry must, of course, be equivalent. We

can sketch a simple illustration of their equivalence following [5]. The effect of applying

both transformations (2.14) is given by

UV (θV )UA (θA) = UV (θV ) (UV (θA))
γ5

= (UV (θV ))
PR+PL (UV (θA))

PR−PL

= eiθV (PR+PL)eiθA(PR−PL) (2.20)
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By expanding the exponentials in (2.20) in Taylor series and using the idempotence of

PR,L, we get

UV (θV )UA (θA) =
[

PRe
iθV + PLe

iθV
] [

PRe
iθA + PLe

−iθA
]

= PRe
iθV eiθA + PLe

iθV e−iθA

= PRe
iθR + PLe

iθL (2.21)

In this way, we can see that the joint action of transformations (2.14) with parameters

θV and θA simply amounts to independently transforming left and right-handed spinors

with parameters θR and θL consistent with

eiθR,L = eiθV e±iθA (2.22)

We can say that the chiral symmetry group may equivalently be decomposed as U (3)V ⊗
U (3)A or U (3)L ⊗ U (3)R. Furthermore, each U(3) symmetry group admits a decom-

position as SU (3)⊗ U (1). Hence, the full chiral symetry group may be written as

SU (3)V ⊗ SU (3)A ⊗ U (1)V ⊗ U (1)A (2.23)

2.2.1 Chiral Currents

According to Noether’s Theorem, there should be 18 conserved currents associated with

the degrees of freedom of the chiral symmetry group (2.23). Applying the formalism

described in Appendix C to the Lagrangian density (2.19) in the chiral limit (i.e. m0 =

0), we find the conserved currents

Jµ,aR = q̄Rγ
µ τ

a

2
qR (2.24a)

Jµ,aL = q̄Lγ
µ τ

a

2
qL (2.24b)

Each of the currents in (2.24) comprises a singlet current for a = 0 and an octet for a

between 1 and 8:3

3Multiplication of these currents by a constant factor does not alter anything about the physics they
describe. We may then conveniently to drop the 1√

6
factor that would appear in the expression for the

singlet currents.
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J
µ,(s)
R,L = q̄R,Lγ

µqR,L Jµ,aR,L = q̄R,Lγ
µ τ

a

2
qR,L , a between 1 and 8 (2.25)

We can also define vector and axial vector chiral currents as

Jµ,aV = Jµ,aR + Jµ,aL = q̄γµ
τa

2
q (2.26a)

Jµ,aA = Jµ,aR − Jµ,aL = q̄γµγ5
τa

2
q (2.26b)

Furthermore, from each of these currents we can define a conserved charge as

QaX =

∫

d3xJ0,a
X (~x, t) (2.27)

2.2.2 Partial Conservation of Axial Current and Goldberger-Treiman

Relations

One good example of the success of chiral symmetry as a good (approximate) symmetry

of low energy phenomenology is given by a treatment of pion weak decay within a

simple Fermi model. [9] In such a treatment, interactions are described through the

direct coupling of the relevant currents. The decay can be summarized as π+ −→ l++νl

or π− −→ l− + ν̄l. The leptonic current consists of a sum of vector and axial vector

currents between the charged lepton and corresponding neutrino. As for the pions, which

have negative parity, the transition to the vacuum state takes place by means of some

axial current JµA,π (x). The only kinematically independent four-vector available is the

pion momentum, and so the transition amplitude must be proportional to it. If the pion

is initially in a state of definite momentum p, then the pionic transition current can be

written as [28]

〈0| ĴµA,π (x) |π (p)〉 = ifπp
µe−ix

νpν (2.28)

where fπ is the so-called pion decay constant and its empirical value is around 90 MeV.

From this expression we can now take the four-divergence to obtain

〈0| ∂µĴµA,π (x) |π (p)〉 = fπp
µpµe

−ixνpν

= fπm
2
πe

−ixνpν (2.29)
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We have here a direct connection between the four-divergence of the axial current

JµA,π and the pion mass mπ. In fact, an exact conservation of the axial current (i.e.,

∂µJ
µ
A,π (x) = 0) would lead to massless pions. In this way, the relative smallness of the

pions’ actual masses serves as a good indicator that the axial current is at least partially

conserved.

As a spin-0 particle, the pion field obeys a Klein-Gordon equation,

(

∂µ∂µ +m2
π

)

φ (x) = 0 (2.30)

and its solutions with definite momentum are simply plane waves (apart from a nor-

malization factor) φ (x) = exp (−ixµpµ). This allows us to rewrite (2.29), apart from a

constant factor, as

∂µJ
µ
A,π (x) = fπ∂

µ∂µφ (x)

⇒ JµA,π (x) = fπ∂
µφ (x) (2.31)

Another successful example of these ideas is given by the investigation of nucleon axial

currents and pion-nucleon interactions. [28] The nucleon axial currents are given by

JµA,N (x) = gaψ̄Nγ
µγ5

τ

2
ψN (2.32)

where ga is a factor due to renormalization of the nucleon axial current, and τ is an

element of the SU (2) isospin group. Using the fact that the nucleon fields obey Dirac

equations like

(iγµ∂µ −MN )ψN (x) = 0 (2.33a)

ψ̄N (x)
(

iγµ
←−
∂ µ +MN

)

= 0 (2.33b)

we can write the four-divergence of the axial current (2.32) as

∂µJ
µ
A,N (x) = igaMN ψ̄Nγ5τψN (2.34)

The high nucleon mass MN does not allow for axial current conservation. We can,

however, change the picture a bit if we recall how pions strongly interact with the
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nucleons. Perhaps if we consider the sum of both currents, we can still speak of a

partially conserved axial current. Using relation (2.2.2), we can write the total axial

current as

JµA,N+π (x) = gaψ̄Nγ
µγ5

τ

2
ψN + fπ∂

µφ (x) (2.35)

If we now require the total axial current to be conserved, we arrive at the relation

∂µ∂µφ (x) = −iga
MN

fπ
ψ̄Nγ5τψN (2.36)

This has the form of a Klein-Gordon equation for a massless pion interacting with the

nucleon. Relaxing the condition of exact axial current conservation, we can introduce

the appropriate pion mass term in the equation, which gives us

(

∂µ∂µ +m2
π

)

φ (x) = −iga
MN

fπ
ψ̄Nγ5τψN (2.37)

We now inspect the interaction term in the right-hand side of (2.37). The pion-nucleon

coupling constant arises in a simple fashion in terms of MN and fπ as

gπNN = ga
MN

fπ
(2.38)

Equation (2.38) is known as the Goldberger-Treiman relation [29], and its predicted value

of gπNN ≈ 12.5 is remarkably close to the empirical value of 13.4. Again, we were led to

this result largely based on considerations of axial current conservation. It is remarkable

that the strong interaction coupling gπNN contains information about the weak decay

process of the pion through fπ. The quantitative agreement between prediction and

experiment seems too good to be accidental.

These examples served to illustrate how a partially conserved axial current can be used as

a good assumption for the phenomenological description of some low energy phenomena

involving strongly interacting particles. Results like these have provided convincing

empirical evidence for the establishment of chiral symmetry as a useful and important

tool in the treatment of such problems.



Chapter 2. Theoretical Background 18

2.3 Spontaneous Breaking of Chiral Symmetry

In the light quark sector of QCD, chiral symmetry appears to be a good symmetry

of the system. It is, of course, explicitly broken through the quark mass terms in the

Lagrangian density, although the deviation is scaled by small current quark masses. This

can be expressed through the divergences of the chiral currents: [30]

∂µJ
µ,a
V = iq̄

[

m0,
τa

2

]

q (2.39a)

∂µJ
µ,a
A = iq̄γ5

{

m0,
τa

2

}

q (2.39b)

∂µJ
µ
V = 0 (2.39c)

∂µJ
µ
A = 2iq̄γ5m0q +

Nfg
2

32π2
ǫµνρσF

µν
a F ρσa (2.39d)

Here, the first two equations give the four-divergence of the flavour octet vector and

axial vector currents, respectively. The other two concern the singlet currents, where

the axial anomaly has been included. Thus, taking into account the finite current quark

masses, we see that the axial current is always spoiled independently of the actual values

in m0. However, the octet vector current is still conserved if we assume equal current

masses for all the quark flavours in consideration, i.e., if m0 ∝ 1.

But this is not the whole story. A small explicit breaking of chiral symmetry is not

enough to explain, for example, the hadron mass spectrum. In particular, the constituent

quark model by itself is unable to explain the huge difference between the masses of a

pion (2 up/down quarks, 150 MeV) and a nucleon (3 up/down quarks, 980 MeV). In

the following subsection, the inconsistencies are developed and more clearly exposed.
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2.3.1 Meson Mass Spectrum and Chiral Symmetry

The light mesons4 can be represented by quark bilinears with the appropriate transfor-

mation properties. Thus, one can write (see also Appendix B): [28]

sa = q̄
τa

2
q scalar states (2.40a)

pa = iq̄
τa

2
γ5q pseudoscalar states (2.40b)

vaµ = q̄
τa

2
γµq vector states (2.40c)

aaµ = q̄
τa

2
γµγ5q axial vector states (2.40d)

taµ = q̄
τa

2
σµνq tensor states (2.40e)

Under axial transformations, we find that states of different kinds mix together, or

better, are rotated unto each others. For example, if we consider an infinitesimal axial

transformation of pseudoscalar states, we get

pa −→ p
′a = iq̄

(

1 + iεb
τ b

2
γ5

)

τa

2
γ5

(

1 + iεb
τ b

2
γ5

)

q

= pa − εbq̄
{

τa

2
,
τ b

2

}

q

= pa − dabcεbsc (2.41)

Here, scalar and pseudoscalar states are rotated unto each other. We find a similar

relationship between vector and axial vector states. These connections provided by

axial transformations between different kinds of states suggest that those states which

are rotated unto each others should, in the case of an exact axial symmetry, possess the

same mass. For a small degree of asymmetry, the mass differences should be relatively

small in comparison with the value of the masses themselves. Putting it in other words,

we would expect a meson spectrum with approximately degenerate states of opposite

parity. This is, however, not even close to what is experimentally found. Comparing as

an example the masses of the ρ vector meson and the a1 axial vector meson, we see a

huge discrepancy (mρ ≈ 775MeV and ma1 ≈ 1260MeV) that cannot be explained in the

basis of a small deviation from perfect symmetry. Something else must be at play. [28]

4By light mesons we mean those that have light constituent quarks only; these can be taken to be
only up and down quarks, or extended to include the strange quark, but no further.
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The discussion in section 2.2.2 offers compelling evidence on chiral symmetry being a

good symmetry of strongly interacting systems, but the meson mass spectrum openly

contradicts this observation. The answer to this puzzle is provided on the basis of

spontaneous breaking of chiral symmetry, i.e., although the Lagrangian density is (ap-

proximately) chirally symmetric, this symmetry is spontaneously broken for the actual

physical states of the theory, in particular the vacuum state. The mechanism of sponta-

neous symmetry breaking has been well established in the literature [31], going back to

the Heisenberg theory of ferromagnetism, and dynamical versions of symmetry breaking

have greatly risen in popularity with the advent of the well-known Higgs mechanism [32].

The appearance of massless bosonic modes associated with broken symmetry degrees of

freedom is known as the Goldstone theorem. [33] The prototypical example for the

mechanism is the linear sigma model, which we briefly describe in the following section.

2.3.2 Aspects of Symmetry Breaking within a Linear Sigma Model

The Linear Sigma Model (LSM) attempts to illustrate how massless bosons can arise

starting from a formulation where all bosons are degenerate. An analogy can be made

between the fields in this model and the pion and sigma meson fields. [28] We begin by

writing an SU (2) chirally symmetric effective Lagrangian density as

LLSM =
1

2
∂µφ∂

µφ− µ2

2
φ2 − λ

4
φ4 (2.42)

Here, φ = (σ, ~π) is a composite field whose components correspond to the isosinglet

sigma meson and the isotriplet pion meson fields. We can then identify the nature of

all terms in the Lagrangian density (2.42): we have a kinetic term; a mass term; and a

quartic potential term.

We now analyze the ground state of the system. Classically, the potential density for

this Lagrangian is

VLSM =
µ2

2
φ2 +

λ

4
φ4 (2.43)

and the ground state corresponds to field expectation values that minimize this potential,

i.e., we look for solutions to

dVLSM
dφ

= 0 (2.44)

subject to the condition that
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d2VLSM
dφ2

> 0 (2.45)

Solutions to these equations are given by

|φ| = 0, µ2 > 0 (2.46)

|φ| =
√

−µ2
λ

, µ2 < 0 (2.47)

We are then confronted with two very distinct pictures. The first one is very simple and

uninteresting for the point we are trying to make here: for µ2 > 0 all field expectation

values vanish in the ground state and everything remains perfectly symmetric. This is

commonly known as the Wigner-Weyl phase. It is the second case that presents the

interesting situation: for µ2 < 0 the fields (or at least some of them) acquire some finite

expectation value in the ground state. There are, of course, many ways to realize the

condition (2.47), and as soon as we pick one of them as the true vacuum the symmetry

of the ground state is spoiled: there is a spontaneous symmetry breaking. This is known

as the Nambu-Goldstone phase.

Finally, we wish to show how the situation described in (2.47) leads to a degeneracy

lifting of the meson fields of the model. To that end, we pick the ground state expectation

values in the Nambu-Goldstone phase as

~π0 = 0 σ0 =

√

−µ2
λ

(2.48)

and rewrite the Lagrangian density (2.42) in terms of fluctuations around these ground

state values. This can be achieved through the substitution

~π −→ ~π σ −→ σ +

√

−µ2
λ

(2.49)

where the new field variables (for which we keep the same notation as the old ones) are

now representing these fluctuations around the ground state. With this, the Lagrangian

density becomes

LLSM =
1

2
∂µφ∂

µφ+ µ2σ2 − λ

4
φ4 −

√

−µ2λσφ2 + µ4

4λ
(2.50)
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Some differences have arisen in relation to the original form of the Lagrangian density.

The last term in the right-hand side of (2.50) is just an irrelevant constant, but two

new important features are clearly visible: cubic interactions have appeared (second to

last term) and there remains a mass term (second term) solely for the σ field, with a

mass mσ =
√

−2µ2, while the ~π fields are now massless. The appearance of massless

modes are related with the Nambu-Goldstone theorem; this loosely states that, for each

symmetry degree of freedom that is spontaneously broken, there exists a massless bosonic

mode in the theory. Another way of stating the theorem is through the effect of currents

in the vacuum state. If there is some symmetry with an associated conserved charge Q

that is realized in the ground state |0〉, then Q |0〉 = 0; however, if this equality is not

obeyed, the symmetry is spontaneously broken, and there appear massless poles in the

commutator 〈0| [Q,φ] |0〉. [28]

By exploring the LSM, we were able to exemplify how large mass differences can arise

within a chirally symmetric model with spontaneous symmetry breaking. We can then

be reasonably justified in attributing the meson mass spectrum discrepancies to a spon-

taneously broken chiral symmetry of the QCD Lagrangian density.

2.3.3 Axial Anomaly and the η
′
Puzzle

Besides the previous discussion on spontaneous symmetry breaking, our analysis of the

symmetries of the QCD Lagrangian (2.2) has been done essentially from a classical

point of view, i.e., we have treated the fields as classical fields. A full quantum field

theoretical treatment is usually done in a path integral formalism [34] by defining the

vacuum persistence amplitude. In the case of QCD, we can write it as

ZQCD =

∫

DqDq̄DAaµ ei
∫

d4xLQCD (2.51)

This object serves as a calculational tool for determining any correlation function of

the theory. At a quantum level, invariance considerations must then go beyond the

sole invariance of the Lagrangian density. More specifically, the functional integration

measure must also be invariant with respect to a given symmetry transformation of the

classical Lagrangian density. Whenever this is not the case, we speak of an anomalous

symmetry, i.e., a classical symmetry that is broken at the quantum level due to quantum

fluctuations. [35]

In the context of low energy chiral QCD, such an anomaly arises associated with the

U (1)A symmetry transformation. [30] The integral measure DqDq̄ transforms under

such transformations as
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DqDq̄ −→D
(

eiθ(x)γ5q
)

D
(

q̄eiθ(x)γ5
)

= J (θ)DqDq̄ (2.52)

where J (θ) 6= 1 is a transformation dependent phase.5 Even in the chiral limit, this

gives rise to an anomalous divergence for the singlet axial current of the form

∂µJ
µ
A =

Nfg
2

32π2
ǫµνρσF

µν
a F ρσa (2.53)

So, at a quantum level, the full symmetry group of the QCD Lagrangian density in the

chiral limit is

SU (3)L ⊗ SU (3)R ⊗ U (1)V (2.54)

The axial anomaly is phenomenologically connected with the so-called η
′
puzzle. The η

′

meson has a mass mη
′ ≈ 958MeV, way higher than any other meson of the pseudoscalar

nonet. On the basis of the previous discussion, it would be expected for all the nonet

mesons to arise as massless Goldstone-Nambu modes, with masses generated by the joint

effect of small current quark masses and spontaneous breaking of chiral symmetry. The

other eight modes seem to fit reasonably well within this scheme, but the η
′
meson clearly

doesn’t. It was later proposed by t’Hooft that this could be accounted for by instanton

solutions that couple with the quarks through (2.53). [36] [37] This fact has since been

shown by several authors. [38] There are other phenomenological manifestations of this

anomaly, namely in the two-photon decays of the π0 and and η mesons. [39] [40]

2.4 The NJL Model

We now summarize the picture we have been building up for the prominent and elaborate

role of chiral symmetry in the phenomenology of quarks and hadrons. We assume an

underlying chirally symmetric theory which is slightly broken through small explicit

current quark mass terms. Furthermore, chiral symmetry is spontaneously broken for

the physical states of the system, turning some of the hadronic states into massive states

while others remain massless. Of course, the small explicit symmetry breaking provides

these otherwise massless states with some small but finite masses. Finally, the chiral

5Actually, we may regard this term as the Jacobian of a coordinate transformation on the quark
fields.
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anomaly is taken into account to refine the description of the meson spectrum and decay

schemes. Qualitatively, this picture appears to be able to match the physical phenomena.

Everything that has been discussed so far motivates the introduction of the Nambu-Jona-

Lasinio (NJL) Model. What it tries to do is precisely to capture the essential role of

spontaneously broken chiral symmetry and employ it in the construction of an effective

model for strong interactions. Its original formulation goes back to the early 60’s and is

due to Yoichiro Nambu and Giovanni Jona-Lasinio. In two groundbreaking papers ([1]

and [2]), they explore an inspired analogy between the Bardeen-Cooper-Schrieffer (BCS)

theory of superconductivity [41] and nucleon dynamics. We will now briefly present the

general lines along which this analogy was made.

In the BSC theory, “elementary excitations in a superconductor can be conveniently

described by means of a coherent mixture of electrons and holes” [1] obeying a set of

coupled equations, where the coupling is given in terms of a gap parameter φ related

to electron-electron interactions. The quasi-particles possess two energy eigenstates

separated by an energy gap ∆ ≥ 2 |φ|, and all such quasi-particles should occupy the

lower level in the ground state of the system. It would then take a finite energy ∆

to excite a particle to the upper state. This picture bares a striking resemblance to

the behaviour of Dirac particles, where the ground state was viewed as consisting of a

completely filled negative Dirac sea, and the creation of excited states requiring an energy

E ≥ 2m. Just like φ arises from electron-electron interactions, we might assume that

the Dirac masses have their origin in some interaction between bare massless fermions.

Again, in the BCS theory, collective excitations of quasi-particle pairs can arise, and

if we take the analogy seriously, we would then expect a similar feature for the Dirac

particles. “If a Dirac particle is actually a quasi-particle, which is only an approximate

description of an entire system where chirality is conserved, then there must also exist

collective excitations of bound quasi-particle pairs.” [1] These collective excitations are

compatible with the mesons.

They then propose a chirally symmetric Lagrangian density for isodoublet nucleon fields

ψ in the form6

LNJL = iψ̄γµ∂µψ +G
[

(

ψ̄ψ
)2

+
(

ψ̄iγ5~τψ
)2
]

(2.55)

6We could include vector and axial vector quartic interactions, but this would just amount to making
a Fierz transformation of the given terms, which doesn’t bring about noticeable consequences for the
discussion at hand. These terms’ significance arises mainly in the discussion of collective states.
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The paper goes on to show the existence of a mass gap and, thus, that the model ex-

hibits a chirally asymmetric ground state populated with a finite condensate of nucleon-

antinucleon pairs. They also study properties of collective states (mesons) on the basis

of the Bethe-Salpeter equation.

After the advent of QCD, this Lagrangian was soon reinterpreted in terms of up and

down quark fields instead of nucleon fields. Some of the early contributions on the de-

velopment of related models and analysis techniques include [42], [43], [44], [45], [46],

[47], [48], [49], [50], [51], [52]. In these articles, topics like inclusion of strangeness,

functional integral bosonization, quark matter, meson and nuclear phenomenology, ra-

diative corrections and thermodynamical analysis have been extensively studied, setting

forth the very prolific subject of NJL-models and making way for a subsequent great deal

of work from a multitude of investigators. A more complete summary of contributions

may be found in [53].

In the next sections, we present an analysis of the model based on a mean-field approxi-

mation. The discussion is mainly based on the review articles [53] and [54]. Other useful

reviews are [55] and [56].

2.4.1 Self-Consistent Mass Gap Equation

The NJL Lagrangian (2.55) includes quartic interaction terms for the fermionic fields,

which give rise to a renormalization of fermion bare masses m0 (which we temporarily

take as finite for argument’s sake) in terms of the proper self-energy tensor Σ as

m = m0 +Σ(m,Λ) (2.56)

Σ (m,Λ) depends on the fermion’s physical massm and on some regularization parameter

Λ.

= + Σ

Figure 2.3: Dyson series for the dressed fermion propagator.

The proper self-energy tensor Σ is defined through the Dyson equation depicted dia-

grammatically in figure 2.3. It consists of all the irreducible Feynman diagrams with

no external legs that can be inserted in the propagator. Analytically, one can write the

dressed fermion propagator S in terms of the bare propagator S0 as
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S = S0 + S0ΣS ⇒ S =
1

S−1
0 − Σ

(2.57)

We can evaluate Σ using a (Hartree) mean field approximation, which can be achieved

by suitable linearization7 of the interaction term in the Lagrangian (2.55). The Euler-

Lagrange equations for ψ give the equation of motion:

{

iγµ∂µ + 2G
(

ψ̄ψ − ψ̄γ5~τψγ5~τ
)}

ψ = 0 (2.58)

This can be put in a form similar to the free Dirac equation if we make the substitutions:

ψ̄ψ −→
〈

ψ̄ψ
〉

= −iTrS (0) (2.59a)

ψ̄γ5~τψ −→
〈

ψ̄γ5~τψ
〉

= −iTrγ5~τS (0) (2.59b)

where the traces are taken over all internal indices (colour, flavour, spinor). This, to-

gether with equation (2.56) with m0 = 0, allows us then to write a self-consistent

equation as

Σ = −2G
{〈

ψ̄ψ
〉

− γ5~τ
〈

ψ̄γ5~τψ
〉}

= 2iG {TrS (0)− γ5~τTrγ5~τS (0)} (2.60)

Recall that S depends on Σ through the operator Dyson series as given in (2.57). It is

now easy to show that the second term is zero because of the traces involving γ5 (see

Appendix B). Had we included vector and axial vector terms, these would vanish as well.

We can say that only the scalar quark bilinear has a nonvanishing vacuum expectation

value.8 Following this, we can finally write

Σ = 2iGTr lim
ǫ→0

∫

d4p

(2π)4
γµpµ +Σ

p2 − Σ2 + iǫ
(2.61)

The integral in the above expression is divergent, and we need to include an adequate

regularization in order to obtain a finite result. The model is non-renormalizable and, in

7Here, we illustrate the linearization of the interaction by analogy of the equations of motion with
Dirac’s equation. Perhaps a more common alternative to perform this linearization in the context of
mean-field QFTs is by Wick contracting pairs of fermionic fields until we are left with an interaction of
the desired degree. In the present case, the two approaches are perfectly equivalent.

8And it should be so for a Lorentz and parity invariant vacuum.
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the end, all calculated observables will depend explicitly on the regularization parameter

Λ. Identifying Σ with the effective physical mass m (actually, m = Σ +m0, so we are

considering m0 = 0), we get

m = 8iGNcNfm lim
ǫ→0

∫

d4p

(2π)4
1

p2 −m2 + iǫ
ρ (p,Λ)

1 = 8iGNcNf lim
ǫ→0

∫

d4p

(2π)4
1

p2 −m2 + iǫ
ρ (p,Λ) , m 6= 0 (2.62)

where ρ (p,Λ) is a regulator. Equation (2.62) is a self-consistent mass gap equation,

which may have solutions for m 6= 0 for certain values of G. In these conditions, a

condensate
〈

ψ̄ψ
〉

appears with a finite vacuum expectation value, fermions acquire mass

m and chiral symmetry is dynamically broken.9

In order to proceed, we need to select some suitable regularization scheme. For simplicity,

we use a 3-momentum cutoff Λ just for illustration, yielding

1 =
2GNcNf

π2

∫ Λ

0
dp

p2
√

p2 +m2

=
2GNcNfΛ

2

π2

{
√

1 +
m2

Λ2
− m2

Λ2
ln

(

Λ

m
+

√

1 +
Λ2

m2

)}

⇔ π2

NcNfGΛ2
=

√

1 +
m2

Λ2
− m2

Λ2
ln

(

Λ

m
+

√

1 +
Λ2

m2

)

(2.63)

We can define the critical coupling Gcrit in the limit m→ 0 as

π2

NcNfGcritΛ2
= 1 ⇔ Gcrit =

π2

NcNfΛ2
(2.64)

Then, chiral symmetry is dynamically broken for values of the coupling G > Gcrit,

leading to a finite quark-antiquark condensate vacuum expectation value.

It should be noted that we could have included an explicit breaking of chiral symmetry

by some small current mass term ψ̄m0ψ in the Lagrangian density (2.55). This leads to

a very simple modification of the mass gap equation (2.62) to

9We speak of a dynamically broken symmetry because this effect is brought about by the very
dynamics of the fermions which are subject to strong attractive forces in the scalar channel and end
up forming a finite pair condensate in the ground state. We may wish to distinguish this from what is
commonly called a spontaneously broken symmetry due to the presence of elementary bosonic fields as
occurs, for example, in the linear sigma model.
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m = m0 + 8iGNcNfm lim
ǫ→0

∫

d4p

(2π)4
1

p2 −m2 + iǫ
ρ (p,Λ) (2.65)

2.4.2 Three-Flavour Model and the ’t Hooft Determinant

We can go on to include a third quark flavour into our Lagrangian, extending the flavour

SU (2) symmetry group of (2.55) to SU (3). The inclusion of the strange quark flavour

begs for special attention regarding the axial anomaly discussed in section 2.3.3. The

U (1)A symmetry is severely broken, and this should be expressed in the construction

of an effective Lagrangian. It has been pointed out by ’t Hooft [37], following previous

work by Kobayashi and Maskawa [57], that we can include an instanton induced effective

interaction of the form

K
[

det ψ̄ (1 + γ5)ψ + det ψ̄ (1− γ5)ψ
]

(2.66)

in our chirally symmetric Lagrangian. Here, the determinant is to be taken in flavour

space. This six-quark interaction term preserves all other symmetries in consideration

while explicitly breaking U (1)A symmetry.

It should be noted that a similar U (1)A-breaking interaction could have been included

in the two-flavour version of the model, but in that case it would have been a quartic

interaction with a structure at all similar to the term already present in (2.55). A simple

redefinition of the coupling would suffice for such a t’Hooft term to be absorbed into

the original term. However, in a three-flavour version, the t’Hooft term is a six-quark

interaction. Its identity is fundamentally different from the quartic interaction terms,

and so its separate inclusion becomes of sensitive importance.

We can then define a general Lagrangian density (with an explicit current mass term)

as

LNJL =ψ̄ (iγµ∂µ −m0)ψ +G

8
∑

a=0

[

(

ψ̄τaψ
)2

+
(

ψ̄iγ5τ
aψ
)2
]

+K
[

det ψ̄ (1 + γ5)ψ + det ψ̄ (1− γ5)ψ
]

(2.67)

where we use the flavour U (3) generators τa. We may use the mean-field approximation

again to obtain the mass gap equation. The ’t Hooft term complicates things a bit,
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requiring the contraction of four quark fields to be linearized. The mass gap equation

has been determined by Bernard, Jaffe and Meissner in [58] as

mi = mi0 + 4iGNcTrDSi −K
(

2N2
c + 3Nc + 1

)

(TrDSj) (TrDSk) , i 6= j 6= k

(2.68)

for each flavour i. Si ≡ Si (0) are the dressed propagators for quark flavour i, and the

trace TrD is taken over spinor indices. If we assume KN2
c ∼ O (1) in 1

Nc
counting, a

lowest order consistent expansion would then be

mi = mi0 + 4iGNcTrDSi − 2KN2
c (TrDSj) (TrDSk) , i 6= j 6= k (2.69)

In (2.67) we have only considered colour singlet interaction terms. Through a convenient

Fierz transformation, it is possible to also include colour octet interactions of the form

(

ψ̄Γ
λα

2
τaψ

)2

(2.70)

where λα are generators of the colour SU (3) group (see Apendix A) and Γ is some

conventional combination of Dirac matrices (see Appendix B). The most general NJL-

type Lagrangian density may be built by including all quartic interaction terms that

can be built in the form (2.70) and respect the assumed symmetries. More detailed

discussions may be found in [54] and [53].

2.4.3 Hadrons and the Bethe-Salpeter Equation

It is possible to describe hadrons within an NJL quark model, mesons being easier

to describe than baryons. The former can be treated as bound quark-antiquark pairs

through the Bethe-Salpeter equation in the ladder approximation. [59] [60] This is shown

diagrammatically in figure 2.4. There, T is a mesonic transition matrix, K is the effective

vertex function and J is a loop integral.

Analytically, the Bethe-Salpeter equation may be written as

T = K +KJT ⇔ T = (1−KJ)−1K (2.71)

The meson masses appear as poles in the transition matrix T , i.e., they are solutions to
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= +T K K J T

Figure 2.4: Bethe-Salpeter equation for mesonic states.

= +

+ +...

Sπ

J

J J

Figure 2.5: Dyson series for the pion propagator in the ladder approximation.

1−KJ = 0 (2.72)

As an example of this formalism, we will show that the transition matrix in the pseu-

doscalar channel for the two-flavour model given in (2.55) has a set of massless poles

which may be identified as the Goldstone-Nambu pions. The Bethe-Salpeter formalism

is represented again in figure 2.5, from which we can extract the pion propagator as

iSπ = K+KJK+KJKJK+ ... = K (JK + JKJK + JKJKJK + ...) =
K

1−KJ (2.73)

In this example, K = 2G. The loop integral depends on the pion we are considering,

but may be written

J
(

p2
)

= −iTr
∫

d4p′

(2π)4
iγ5T

aiS
(

p′ +
p

2

)

iγ5T
biS
(

p′ − p

2

)

(2.74)

where T a = T b = τ3 for the π0 meson and T a = T b† = τ± for the π± mesons, with

τ± = 1
2

(

τ1 ± iτ2
)

. This ensures the correct description of the pions in terms of quark
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content and the consistency of the coupling between the external quark currents and the

internal quark loop. The S represent dressed quark propagators. So, for the π0 meson

and in the isospin limit, we have

Jπ0

(

p2
)

= −iTr
∫

d4p′

(2π)4
γ5τ

3
γµ
(

p′ + p
2

)

µ
+m

(

p′ + p
2

)2 −m2
γ5τ

3
γµ
(

p′ − p
2

)

µ
+m

(

p′ − p
2

)2 −m2

= −4iNcNf

∫

d4p′

(2π)4
−p′2 + p2

4 +m2

[

(

p′ + p
2

)2 −m2
] [

(

p′ − p
2

)2 −m2
]

= 4iNcNf

∫

d4p′

(2π)4
1

p′2 −m2
− 2iNcNfp

2I
(

p2
)

(2.75)

(2.76)

with

I
(

p2
)

=

∫

d4p′

(2π)4
1

[

(

p′ + p
2

)2 −m2
] [

(

p′ − p
2

)2 −m2
] (2.77)

We can then resort to the mass gap equation (2.65) to write

Jπ0

(

p2
)

=
1

2G

(

1− m0

m

)

− 2iNcNfp
2I
(

p2
)

(2.78)

Finally, employing the pole condition (2.72), the mass of the pion is given by the condi-

tion

m0

m
+ 4iGNcNfm

2
π0I

(

m2
π0

)

= 0⇒ m2
π0 =

m0

m

1

4iGNcNfI
(

m2
π0

) (2.79)

From this expression, it is evident that, in the chiral limit m0 = 0, the pion is automati-

cally massless. It can be shown that the π± mesons masses obey the same identity. For

finite current quark masses, a pion mass is dynamically generated which is proportional

to the ratio m0
m
. This is in perfect agreement with the previous heuristic discussion on

the pseudoscalar meson masses.

If we include the strange quark, with mu0 = md0 6= ms0, the whole pseudoscalar octet is

described in reasonably good agreement with the empirical spectrum. [54] With three-

flavours, the effective vertex K needs to take into account the ’t Hooft interaction which
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is adequately reduced to an effective four-quark term by Wick contracting a pair of

quark fields. The spectra of other families of mesons are also well described, namely the

vector mesons. [55]

The description of baryons is somewhat more involved. One approach, described in [54],

is to construct a diquark bound state via the Bethe-Salpeter equation, and then couple

the diquark to a third quark. This is beyond the scope of this thesis, and more details

can be found, for example, in [61]. A description of baryons as chiral solitons may be

found in [62].

2.4.4 Functional Integral Bosonization

At low energies, the actually relevant degrees of freedom for strong interactions are

usually hadrons and not quarks, in particular the light mesons and possibly the nucleons.

In light of this, we might wish to regard the NJL model as an effective theory for mesons.

To that end, we need to somehow eliminate the quark degrees of freedom in favour

of mesonic ones. This bosonization procedure [53] is best taken in the path integral

formalism, in which we define the vacuum to vacuum transition amplitude as

Z [η, η̄] =

∫

DψDψ̄ei
∫

d4xLNJL(ψ̄,ψ)+ψ̄η+η̄ψ (2.80)

The η and η̄ serve as external sources for the quark fields. We will use here the two-

flavor Lagrangian density (2.55) to briefly describe the procedure. Since this Lagrangian

includes quartic terms, the functional integration cannot be performed exactly, but we

can still use the known Gaussian functional integral to our advantage, which is given by

∫

Dφei
∫

d4x[ 12φAφ+Jφ] = e−
i
2

∫

d4xd4yJ(x)A−1(x−y)J(y) (2.81)

Using this expression, we introduce boson fields σ and ~π and rewrite the interaction part

of the action exponential as

e
i
∫

d4xG
[

(ψ̄ψ)
2
+(ψ̄iγ5~τψ)

2
]

=

∫

DσD~πe−i
∫

d4x
[

ψ̄ψσ+ψ̄iγ5~τψ·~π+σ2+~π2

4G

]

(2.82)

With this, the functional integral in (2.80) becomes

Z [η, η̄] =

∫

DψDψ̄DσD~πei
∫

d4x
[

ψ̄(iγµ∂µ−σ−iγ5~τ ·~π)ψ+ψ̄η+η̄ψ−σ2+~π2

4G

]

(2.83)
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In this way, we now have a Gaussian integral for the fermionic sector, which we can

perform explicitly in order to eliminate the quark degrees of freedom from the functional.

The result is

Z [η, η̄] =

∫

DσD~πei
{

∫

d4x
[

−σ2+~π2

4G
+η̄(iγµ∂µ−σ−iγ5~τ ·~π)−1η

]

−iT̃r ln(iγµ∂µ−σ−iγ5~τ ·~π)
}

(2.84)

In this expression, the trace T̃r is a functional trace, which can be defined for any

operator A as

T̃rA = Tr

∫

d4x 〈x|A |x〉 (2.85)

Tr being the usual trace over internal indices. We can interpret (2.84) as giving us an

effective bosonized Lagrangian density. If we scale the boson fields by a constant factor

g0, this may be written as

Lbos = −
µ20
2

(

σ2 + ~π2
)

− iTr 〈x| ln [iγµ∂µ − g0 (σ + iγ5~τ · ~π)] |x〉 (2.86)

where µ20 =
g20
2G might be regarded as some mass parameter for the bosons. We may also

extract the dressed quark propagator as

S (x− y) = [iγµ∂µ − g0 (σ + iγ5~τ · ~π)]−1 δ(4) (x− y) (2.87)

or, in momentum space,

S (p) =
1

γµpµ − σ − iγ5~τ · ~π
(2.88)

It is possible to derive a mass gap equation from (2.86) by requiring that δS
δφ

∣

∣

∣

φ=〈φ〉
= 0

for φ = (σ, ~π).10 If we assume that only 〈σ〉 = v0 is nonvanishing, this leads to

m = 2iGT̃r
1

iγµ∂µ −m
(2.89)

with m = g0v0.

10
S is the usual action defined as the integral in four-space of the Lagrangian density.
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The form (2.86) for the bosonized Lagrangian density obscures its full dynamical content.

We would like to be able to solve T̃r ln [iγµ∂µ − g0 (σ + iγ5~τ · ~π)] explicitly. This is

actually an infinite sum of terms, some of which are actually divergent. The result

presented in [53] with only the divergent terms is:

Lbos =−
1

2

(

µ2 − 2I2g
2
0 + 2I0g

2
0 (g0v0)

2
)

(

σ2 + ~π2
)

+
1

2
I0g

2
0

[

(∂µσ)
2 + (∂µ~π)

2
]

− 1

2
I0g

4
0

(

σ2 + ~π2
)2

(2.90)

In this expression,

I0 = −4iNc

∫

d4p

(2π)4
1

(p2 −m2)2
(2.91a)

I2 = 4iNc

∫

d4p

(2π)4
1

p2 −m2
(2.91b)

which are just quark loop integrals. In this way, we can explicitly see the form of the

usual kinetic, mass and interaction terms for the meson fields. In the next chapter, we

shall use a generalized heat kernel technique to expand this functional trace in a chirally

invariant series.
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NJL Models and Multi-Quark

Interactions

The original NJL model (see section 2.4) has spawned several enhanced versions over

the years, with the introduction of new elements and considerations, namely the rein-

terpretation of nucleon fields in terms of quark fields and the inclusion of the strange

flavour, although its essential character has remained more or less intact. It works as an

effective model for strongly interacting particles below some energy scale Λ by exploiting

the dynamical breaking of chiral symmetry. The phenomenological success of this class

of models (some examples may be found in [63], [64], [65], [66], [67], [68], [69]) has

proven their usefulness as predictive tools for a number of phenomena in the context

of strongly interacting systems. We will be studying features of a particular NJL-type

model in the following sections. In this chapter, we will attempt to motivate the intro-

duction of the model under study, as well as to carefully describe its formulation and

technical features.

3.1 Analysis of the Three-Flavour Model with a ’t Hooft

Interaction Term

We will furnish an analysis of the NJL model’s version of section 2.4.2 with the La-

grangian density of the form (2.67). We rewrite it here (with a slight redefinition of the

couplings and notation) as

L = q̄ (iγµ∂µ −m) q + LNJL + LH (3.1)

35
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with the usual NJL quartic interaction term

LNJL =
G

2

[

(q̄λaq)
2 + (q̄iγ5λaq)

2
]

(3.2)

and the ’t Hooft U (1)A-breaking determinantal interaction term

LH = κ [det q̄PRq + det q̄PLq] (3.3)

Here, λa are the Gell-Mann matrices in flavour space extended to U (3) (see Appendix A).

Summation over flavour indices a is understood. PR,L are the chiral projection operators

defined in (2.16), and the quark fields are denoted by q. This Lagrangian matches the

model studied in [70], where a generalized Schwinger-DeWitt heat kernel expansion is

employed for regularization as a way of ensuring a full term by term covariance in the

presence of a non-commutative quark mass matrix. We will reproduce here the main

steps of its treatment, which will be relevant later for the full model. The analysis is

performed in the functional integral formalism at the mean-field level. [71]

3.1.1 Bosonization of the Three-Flavour Model using the SPA

The model is bosonized following the technique in [72]. We define bosonic fields σ = σaλa

and φ = φaλa and auxiliary fields s = saλa and p = paλa. Using the functional unit

1 =

∫

∏

a

DsaDpaδ (sa − q̄λaq) δ (pa − q̄iγ5λaq)

=

∫

∏

a

DsaDpaDσaDφaei
∫

d4x[σa(sa−q̄λaq)+φa(pa−q̄iγ5λaq)] (3.4)

and multiplying it by the vacuum persistence amplitude

Z =

∫

DqDq̄ei
∫

d4x[q̄(iγµ∂µ−m)q+LNJL+LH ] (3.5)

we get
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Z =

∫

∏

a

DσaDφaDqDq̄ei
∫

d4xLq(q̄,q,σ,φ)

×
∫

∏

a

DsaDpaei
∫

d4xLr(σ,φ,s,p) (3.6)

with a quark dependent Lagrangian

Lq = q̄ (iγµ∂µ −M − σ − iγ5φ) q (3.7)

and an auxiliary Lagrangian

Lr =
G

2

(

s2a + p2a
)

+ sa (σa +∆a) + paφa +
κ

32
Aabcsa (sbsc − 3pbpc) (3.8)

The symmetric constants Aabc are defined in Appendix A. ma is defined through the

relation m = maλa. We have shifted σa −→ σa +Ma so that, in the Nambu-Goldstone

phase, σ has a vanishing vacuum expectation value, and M may be interpreted as a

constituent quark mass matrix. Also, we define ∆a = Ma −ma. This prescription is in

line with the previous discussion: we expect that, in the Nambu-Goldstone phase, the

scalar channel exhibits a finite vacuum expectation value, and we shift the scalar field

in order to describe fluctuations around this vacuum.

The functional integral in the auxiliary fields sa and pa is evaluated using a station-

ary phase approximation (SPA) [73] by assuming an asymptotic expansion in bosonic

fields [74]

ssta = ha + h
(1)
ab σb + h

(1)
abcσbσc + h

(2)
abcφbφc + ... (3.9a)

psta = h
(2)
ab φb + h

(3)
abcφbσc + ... (3.9b)

and using it with δLr

δsa
= 0 and δLr

δpa
= 0 to obtain the stationary phase conditions

Gsa + (σ +∆)a +
3κ

32
Aabc (sbsc − pbpc) = 0 (3.10a)

Gpa + φa −
3κ

16
Aabcsbpc = 0 (3.10b)
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Through these relations, higher order h coefficients may be recursively expressed in

terms of lower order ones. The lowest order coefficient is given by

Gha +∆a +
3κ

32
Aabchbhc = 0 (3.11)

From the structure of this expression, it is straightforward to realize that the only non-

zero ha coefficients are those with indices 0, 3 and 8 (corresponding to the diagonal

U (3) matrices). This may be understood if we notice that ∆ is a diagonal matrix in

flavour space, so that only the components associated with diagonal U (3) matrices are

non-vanishing. Also, if the index a is either 0, 3 or 8, then the coefficients Aabc are non-

vanishing only if b and c are 0, 3 or 8 as well. By exploiting the fact that the mass matrix

is a diagonal matrix with a structure given by m = maλa = diag (mu,md,ms), one can

define transformation matrices between the set of indices a ∈ {0, 3, 8} and i ∈ {u, d, s}
as [75] (summation over repeated indices implied)

mi = ωiama , ma = eaimi (3.12)

with

ωia =
1√
3









√
2
√
3 1

√
2 −

√
3 1

√
2 0 −2









, eai =
1

2
√
3









√
2
√
2
√
2

√
3 −

√
3 0

1 1 −2









(3.13)

These matrices satisfy the identities

eai =
ωia
2

, eaieaj =
δij
2

, Aabcebjeck =
eaitijk

3
(3.14)

where tijk is a fully symmetric tensor with entries equal to 1 for i 6= j 6= k and all

other entries null. With the definition of these objects, we can rewrite (3.11) in terms

of flavour indices u, d, s as

∆i +Ghi +
κ

32
tijkhjhk = 0 (3.15)

It is evident that this equation admits the trivial solution hi = 0, corresponding to

the chirally symmetric Wigner-Weyl phase where ∆i = 0. Besides this, it also admits
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solutions for non-zero hi, which induce a finite mass shift; this corresponds to the dy-

namically broken Goldstone-Nambu phase. More about the SPA solutions and their

consequences is said in section 3.1.5.

A full algebraic manipulation of the results obtained so far allows us to write the effective

bosonized auxiliary Lagrangian as [75]

Lstr = haσa +
1

2
h
(1)
ab σaσb +

1

2
h
(2)
ab φaφb +

1

3
σa

[

h
(1)
abcσbσc +

(

h
(2)
abc + h

(3)
abc

)

φbφc

]

+ ... (3.16)

leaving us with the functional integral

Z =

∫

∏

a

DσaDφaei
∫

d4xLst
r (σ,φ)Zq [σ, φ] (3.17)

with

Zq =

∫

DqDq̄ei
∫

d4xq̄(iγµ∂µ−M−σ−iγ5φ)q

= det (iγµ∂µ −M − σ − iγ5φ)

= eln det(iγµ∂µ−M−σ−iγ5φ) (3.18)

All that remains to be done to achieve a full bosonized model is to explicitly evaluate

the functional integral over the quark fields Zq.

3.1.2 Heat Kernel Expansion

Heat kernel techniques, which are a classical subject in mathematics, have found wide

application in physical problems. [76] A very good review of the subject may be found

in [77]. The method used in [70] is a generalization of the Schwinger-DeWitt proper time

heat kernel expansion introduced in [78] and [79]. A naive version of the technique’s

fundamentals is discussed below following [77]. Another approach to the heat kernel

expansion is through the use of ζ-function regularization. [80]

The basic idea of heat kernel techniques is to rewrite the Green’s functions of some

elliptic operator D as integrals over an auxiliary variable (the proper time τ) of a heat

kernel
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K
(

τ, r, r′;D
)

= 〈r| e−τD
∣

∣r′
〉

(3.19)

satisfying the heat equation

(

∂

∂τ
+D

)

K
(

τ, r, r′;D
)

= 0 (3.20)

with initial conditions

K
(

0, r, r′;D
)

= δ
(

r − r′
)

(3.21)

It is then possible to write

D−1
(

r, r′
)

=

∫ ∞

0
dτK

(

τ, r, r′;D
)

(3.22)

For D = D0 ≡ −∇µ∇µ + m2, where ∇µ is the covariant derivative and m is some

constant (usually a mass), the heat kernel in R
n is

K
(

τ, r, r′;D0

)

= (4πτ)−
n
2 e−

(r−r′)2

4τ
−τm2

(3.23)

If D = D0 + V contains some other objects like potential terms or other fields, this

expression may be generalized to the expansion

K
(

τ, r, r′;D
)

= K
(

τ, r, r′;D0

)

F
(

τ, r, r′;V
)

(3.24)

F
(

τ, r, r′;V
)

=

∞
∑

n=0

τnan
(

r, r′;V
)

(3.25)

where ai (r, r
′;V ) are the heat kernel coefficients which, for coinciding arguments r =

r′, are just polynomials of background fields and their derivatives. This expression is

actually an asymptotic approximation to the full heat kernel [81] in the limit τ → 0,

and its convergence issues are far from being trivial. [82]

Substituting (3.24) in (3.20), we find

∂F

∂τ
=
∂2F

∂r2
− r′ − r

τ

∂F

∂r
− V (r)F (3.26)
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From this and the initial condition (3.21) which in terms of F reads F (0, r, r′) = 1 we

find a0 (r, r
′) = 1 and a recursion relation

nan
(

r, r′
)

+
(

r − r′
) ∂

∂r
an
(

r, r′
)

=
∂2

∂r2
an−1

(

r, r′
)

− V (r) an−1

(

r, r′
)

(3.27)

Another useful representation for the heat kernel may be achieved if, in some regular

domain, we expand V in Taylor series

V (r) =

∞
∑

k=0

(r − r′)k
k!

V (k)
(

r′
)

(3.28)

with V (k) (r′) = dkV (r)
drk

∣

∣

∣

r=r′
, and we rewrite F as

F
(

τ, r, r′
)

= 1 +

∞
∑

n=1

∞
∑

k=0

τn
(

r − r′
)k
bnk
(

r′
)

(3.29)

Evidently, an (r, r
′) =

∑∞
k=0 (r − r′)

k bnk (r
′) for n 6= 0, and a recursion relation can be

established for the bnk coefficients as well.

Suppose we want to evaluate a one-loop effective action of the form

W =
1

2
ln detD (3.30)

We can write an identity for each positive eigenvalue λ of D as

lnλ = −
∫ ∞

0

dτ

τ
e−τλ (3.31)

Using ln detD = Tr lnD, this allows us to write the Schwinger proper time representa-

tion of the effective action W

W = −1

2

∫ ∞

0

dτ

τ
K (τ ;D) (3.32)

with

K (τ ;D) = T̃re−τD =

∫

dnrK (τ, r, r;D) (3.33)
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Together with the expansion (3.24), (3.32) allows for an evaluation of W in terms of

the heat kernel coefficients ai. It is now patent that the asymptotic behaviour of the

heat kernel trace at τ = 0 is of special importance for the integrals in (3.32), since these

exhibit ultraviolet divergences in this limit. [83] This fact is reassuring of the validity of

the asymptotic expansion (3.24).

Application to specific physical models might require additional considerations concern-

ing symmetries and algebra, in which case expansion (3.24) might not be appropriate.

The Schwinger-DeWitt proper time expansion has been worked out to yield relativis-

tically covariant and gauge invariant coefficients, but it does not take into account the

possibility that m might be a non-degenerate mass matrix, in which case the usual

expansions do not work because m does not commute with the rest of the fields. So,

application of heat kernel techniques to the explicit evaluation of the effective action in

(3.18) requires a suitable generalization of expansion (3.24) that is algebraically sound

and that preserves the transformation pattern of the model Lagrangian.

A good account of available approches to the heat kernel expansion may be found in [84].

In what follows, we will present a generalized heat kernel technique that is suited for

the model in study. [85] [86] [87]

3.1.3 Quark Functional Integral in a Generalized Heat Kernel Expan-

sion

We wish to evaluate the quark functional integral (3.18). By performing a Wick rotation

x0 → −ix(E)
4 xi → x

(E)
i (3.34a)

γ0 → −iγ(E)
4 γi → γ

(E)
i (3.34b)

and defining the Euclidean vectors x(E) = (~x, x4) and γ
(E) = (~γ, γ4), we can rewrite the

quark integral as1

Zq = eW [σ,φ] (3.35)

with the Euclidean action defined as

W = ln det
(

iγ(E)
α ∂(E)

α −M − σ − iγ5φ
)

= ln detDE (3.36)

1Note that, in Euclidean space, we assume the definition γ
(E)
5 = γ

(E)
1 γ

(E)
2 γ

(E)
3 γ

(E)
4 = γ5.
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For the real part of this effective action we can write

W = ln det |DE | =
1

2
ln det

(

D†
EDE

)

(3.37)

with

D†
EDE =M2 − ∂2E + Y

Y = iγα (∂ασ + iγ5∂αφ) + σ2 + φ2 + {M,σ}+ iγ5 [σ +M,φ] (3.38)

Using now (3.32) and (3.33), we can write

W = −1

2
T̃r

∫ ∞

0

dτ

τ
ρ
(

τΛ2
)

e−τD
†
EDE = −1

2
Tr

∫ ∞

0

dτ

τ
ρ
(

τΛ2
)

∫

d4x(E)
〈

x(E)
∣

∣

∣
e−τD

†
EDE

∣

∣

∣
x(E)

〉

(3.39)

where T̃r denotes a functional trace as defined in (2.85), and Tr is the trace over internal

indices. We have included a regulator function ρ
(

τΛ2
)

since the τ integrals are, in

general, divergent at τ = 0. In this way, the results will be regularization dependent,

and for them to satisfy the invariance requirements of the model it is important to choose

a suitable regularization scheme. A Pauli-Villars type regularization is employed [88],

with a regulator of the form [89]

ρ
(

τΛ2
)

= 1−
(

1 + τΛ2
)

e−τΛ
2

(3.40)

This regularization procedure effectively subtracts the contributions arising from ener-

gies greater than the regularization parameter Λ in a covariant way.

At this point, we would like to take advantage of the expansion (3.24), but for that

we need to work out a suitable generalization of the heat kernel expansion (3.24) that

is valid in the case of the explicit appearance of a non-degenerate mass matrix M =

diag (Mu,Md,Ms) inDE . We then turn to the procedure described in [86] and [87], which

avoids expanding the mass dependent part of the heat kernel, performing a necessary

resummation of the series expansion of the remainder of the heat kernel fleshed out to

preserve the chiral transformation properties of the effective bosonized Lagrangian at

every order in the expansion. Of course, the presence of the current quark masses will

then break this invariance explicitly. The main steps of this procedure are laid out in [85]
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for the broken SU (2) case and may be outlined as follows (we omit for now the explicit

Euclidean notation, recovering it in the final result). We may use a fictitious Hilbert

space basis to rewrite (3.39) as

W = −1

2

∫

d4x

∫

d4p

(2π)4

∫ ∞

0

dτ

τ3
ρ
(

τΛ2
)

e−p
2
Tre−τ(M

2+A) (3.41)

with

A = −∂2 − 2ip√
τ
∂ + Y (3.42)

We then resort to a Dyson series expansion [90] for the heat kernel as

Tre−τ(M
2+A) = Tr

[

e−τM
2

(

1 +

∞
∑

n=1

fn (τ,A)

)]

(3.43)

where

fn (τ,A) =

∫ t

0
ds1

∫ s1

0
ds2...

∫ sn−1

0
dsnA (s1)A (s2) ...A (sn) (3.44)

and

A (s) = esM
2
Ae−sM

2
(3.45)

With this we can write the first few terms of expansion (3.43) explicitly, and then insert

them into (3.41). It is instrumental to exploit the cyclic property of the traces and the

properties of the Gaussian integral over p to manipulate the expression into a useful

form. The several terms of the series (3.43) end up clustering into nice new coefficients

which multiply similarly structured integrals of the form

In =
1

3

3
∑

i=0

Jn
(

M2
i

)

=
1

3

3
∑

i=0

∫ ∞

0

dτ

τ2−n
ρ
(

τΛ2
)

e−τM
2
i (3.46)

satisfying the identity

Jl
(

M2
j

)

− Jl
(

M2
i

)

=

∞
∑

n=1

∆n
ij

2nn!

[

Jl+n
(

M2
i

)

− (−1)n Jl+n
(

M2
j

)]

(3.47)
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with ∆ij = M2
i −M2

j . These Jn correspond to one-loop quark integrals with n + 1

vertices. Some explicit Jn integrals evaluated with the regulator (3.40) are

J1
(

M2
i

)

= ln

(

1− Λ2

M2
i

)

− Λ2

Λ2 +M2
i

(3.48a)

J0
(

M2
i

)

= Λ2 −M2
i ln

(

1 +
Λ2

M2
i

)

(3.48b)

After a long algebraic and analytic calculation, we may state the final result for the heat

kernel expansion as [86] [87]

W = −
∫

d4x(E)

32π2

∞
∑

n=0

In−1Tr (an) (3.49)

where the an are the new generalized Seeley-DeWitt coefficients. The first few are

a0 = 1

a1 = −Y

a2 =
Y 2

2
+

∆ud

2
λ3Y +

1

2
√
3
(∆us +∆ds)λ8Y (3.50)

In the isospin limit Mu = Md 6= Ms, a2 and higher order coefficients are considerably

simplified.

It should be remarked that the series (3.49) may be interpreted as an inverse mass

expansion, since In+1 ∼M−2n
i , and it can be shown that it is in perfect agreement with

the known Schwinger-DeWitt expansion for a degenerate mass matrix M = Mq1. It

should also be noted that the coefficients (3.50) are indeed invariant under infinitesimal

chiral transformations ω = α + βγ5 if the operator D†
EDE transforms in the adjoint

representation of the chiral group. [87]

3.1.4 Gap Equations and Quark Condensates

We proceed with the analysis of the model presented in [70]. Making use of the quark

component of the effective action W obtained above (3.49), it is possible to write an

Euclidean effective bosonized Lagrangian for the model.
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Lbos = −Lstr +
1

32π2

∞
∑

n=0

In−1Tr (an) (3.51)

An important remark is due. Our auxiliary Lagrangian (3.16) contains a linear term in

σ which behaves as a source term, and hence the overall expression multiplying σ must

be set to zero in the calculation of correlation functions from the vacuum persistence

amplitude. This condition gives rise to the mass gap equations. The infinite heat kernel

series (3.49) also contributes with its own set of tadpole terms. We truncate the series

to order n = 2 and collect the tadpole contributions from the second and third order

terms (the first one has no field dependence and can thus be discarded without concern).

With this, we get a system of gap equations of the form

hi +
Nc

6π2
Mi

[

3I0 −
(

3M2
i −M2

)

I1
]

= 0 (3.52)

Here, the index i runs over the quark flavours u, d and s, and M2 = M2
u +M2

d +M2
s .

In the isospin limit Mu =Md 6=Ms, we get

hu +
Nc

6π2
Mu [3I0 −∆usI1] = 0

hs +
Nc

6π2
Ms [3I0 + 2∆usI1] = 0 (3.53)

Remembering that the expansion (3.49) can be interpreted as an inverse mass expansion,

we can effectively neglect terms Jn of order n > 2 for large constituent quark masses, in

which case we can use (3.46) and (3.47) to rewrite the gap equation (3.52) as

hi +
Nc

2π2
MiJ0

(

M2
i

)

= 0 (3.54)

The hi coefficients are in direct connection with the chiral symmetry breaking quark

condensates 〈q̄q〉. To verify this fact, we recall the bosonization procedure in which we

used δ (sa − q̄λaq) and δ (pa − q̄iγ5λaq), effectively introducing the identities between the

auxiliary fields and the quark bilinears in the arguments of the delta functions. Then,

the SPA restricts sa and pa to the stationary values expressed through (3.9). We may

then write

q̄λaq = 2eaiq̄λaq = ssta = eais
st
i ⇔ 〈q̄iqi〉 =

〈

ssti
〉

2
(3.55)
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The fields σ and φ are defined to have zero vacuum expectation value, which results in

hi = 2 〈q̄iqi〉 (3.56)

This asserts that we can indeed identify the hi coefficients with the quark condensates

(apart from a factor of 2).

3.1.5 Effective Potential and Vacuum Stability

The physical implications and mathematical subtleties arising from the t’Hooft term

(3.3) have been meticulously studied in [91] and [75]. In particular, the issues of vacuum

stability of the NJL model extended with the t’Hooft term and the hierarchy problem of

multi-quark interactions are adressed. The two are intertwined, as is stated in [91] that

the existence or not of a hierarchy in the multi-quark interaction terms may affect the

ground state stability of the model. The main concern comes from the SPA employed

in the functional integration over auxiliary fields sa and pa in (3.6). The resulting

stationary phase conditions (3.15) may generally admit more than one real solution,

which should equally be taken into account in the SPA result from a rigorous perspective.

Furthermore, it is expected that in the limit κ → 0, i.e., if we turn off the t’Hooft

interaction, we should recover the familiar results [54] [53] of the simpler NJL model

without the six-quark term.

In [75], the effective potential V is determined from the gap equation. The rationale

is simple: the vacuum expectation value of the potential in the bosonized Lagrangian

gives us the classical effective potential V = 〈U (σ, φ)〉, or

∂V

∂ 〈σ〉 =
〈

∂U

∂σ

〉

(3.57)

This corresponds to the coefficient of the σ tadpole term. The solutions of the gap

equation then correspond to extrema of the effective potential, and we have the relation

dV =
∑

i

fidMi , fi = −
hi
2
− Nc

4π2
MiJ0

(

M2
i

)

(3.58)

From (3.15) we have

dMi = −Gdhi −
κ

16
tijkhjdhk (3.59)
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We also note that

Jn+1

(

M2
i

)

= − ∂

∂M2
i

Jn
(

M2
i

)

(3.60)

This gives an exact differential

dV = d

[

G

4

∑

i

h2i +
κ

16
huhdhs +

3Nc

8π2
I−1

]

(3.61)

from which we can define the effective potential (apart from a constant factor C) as

V =
G

4

∑

i

h2i +
κ

16
huhdhs +

3Nc

8π2
I−1 + C (3.62)

The constant C is fixed by requiring that V = 0 for Mi = 0. The quark integrals J−1

may be written as

J−1

(

M2
i

)

= −1

2

[

M2
i J0

(

M2
i

)

+ Λ4 ln

(

1 +
M2
i

Λ2

)]

(3.63)

In [75], besides studying the effect of quantum fluctuations (to first non-leading order)

that tend to restore the chiral symmetric phase, an analysis of the structure of the

vacuum and the effective potential is done. A more detailed and extended analysis is

also performed in [91], where compelling arguments are presented to support the fact

that this effective potential is unbounded from below, having at most a metastable non-

tivial vacuum. In the general case, the stationary phase conditions (3.15) have multiple

non-degenerate solutions, of which only one is regular at κ → 0; this results in an

unstable vacuum. The analysis has been conducted in perturbative expansion around

the metastable vacuum, in loop expansion and in 1/Nc expansion.

Still in [91], it is suggested that the ’t Hooft term should be 1/Nc suppressed relative

to the four-quark term, thus hinting at a hierarchy of multi-quark interactions based

on the 1/Nc expansion. The NJL model without the ’t Hooft term, which corresponds

to leading order in Nc counting, has a stable vacuum in the Nambu-Goldstone phase,

whereas the introduction of the ’t Hooft term spoils the model’s stability. However, a full

account of the next-to-leading order terms in Nc counting should not affect the stability

of the model, since their contribution is suppressed. This is good indication that same

order terms in Nc counting as the ’t Hooft term are missing from the model. Inclusion

of eight-quark interaction terms that are of the same order in Nc counting as the ’t
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Hooft term is proposed in [92] as a way to restore consistency with an Nc expansion and

vacuum stability.

3.1.6 Eight-Quark Interactions

To implement the ideas discussed above, in [92] the most general chirally symmetric

eight-quark terms are included in (2.67), so that the Lagrangian now reads

L = ψ̄ (iγµ∂µ −m)ψ + LNJL + LH + L8q (3.64)

with the new terms given by

L(1)8q = g1 [tr (q̄PRq) (q̄PLq)]
2 (3.65)

L(2)8q = g2tr [(q̄PRq) (q̄PLq)]
2 (3.66)

where tr denotes a trace in flavour space. With these new terms, the auxiliary Lagrangian

in the bosonized theory becomes

Lr = sa (σa +∆a) +
G

2

(

s2a + p2a
)

+
κ

32
Aabcsa (sbsc − 3pbpc) +

g1
8

(

s2a + p2b
)2

+
g2
8
[dabedcde (sasb + papb) (scsd + pcpd) + 4fabefcdesascpbpd] (3.67)

and the stationary phase conditions for the hi coefficients read

Ghi +∆i +
κ

32
tijkhjhk +

g1
4
h2hi +

g2
2
h3i = 0 (3.68)

where h2 = h2u + h2d + h2s.

We now study the stability of a non-trivial vacuum in this model. The analysis in [92]

and [93] shows that, if stability conditions are satisfied, the local minimum existing

before in the model without eight-quark interactions gets stabilized with the inclusion

of the new terms. A way to determine the stability constraint of the system is to study

the solutions to the stationary phase condition (3.68), which yield fifth-order equations

in the coefficients hi and generally admit more than one real solution. The general

solutions can only be found numerically, but the flavour SU (3) symmetric case is simple
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enough to solve analytically, and provides an approximate but compelling indication

that it is possible to stabilize the Goldstone-Nambu phase vacuum (even in the general

case, the values of the different hi are very close). In this simplified case, the stationary

phase conditions become

h3 +
κ

12λ
h2 +

4G

3λ
h+

4∆

3λ
= 0 (3.69)

with λ = g1 +
2
3g2. We may eliminate the quadratic term by making the substitution

h = h̄− κ
36λ , resulting in

h̄3 +Ah̄ = B (3.70)

with

A =
4

3

[

G

λ
−
( κ

24λ

)2
]

, B =
4

3

{

κ

36λ

[

G

λ
− 2

3

( κ

24λ

)2
]

− ∆

λ

}

(3.71)

Equation (3.70) has one real root if its discriminant −4A3 − 27B2 is negative, i.e., if

A > 0, or

G

λ
>
( κ

24λ

)2
(3.72)

Finally, we just state the form of the effective potential V and its stability conditions.

As in (3.62), we have

V =
G

4

∑

i

h2i +
κ

16
huhdhs +

3g1
32

(

∑

i

h2i

)2

+
3g2
16

∑

i

h4i +
3Nc

8π2
I−1 + C (3.73)

and this potential has a stable Nambu-Goldstone ground state for2

g1 > 0 , g1 + 3g2 > 0 , G >
1

g1

( κ

16

)2
(3.74)

2In the next section, the parameters are redefined as g1 → 2g1 and κ → 8κ.
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3.2 NJL Model with Mass-Dependent Multi-Quark Inter-

actions

We have thoroughly analyzed the three-flavour NJL-model with a t’Hooft six-quark

interaction (3.3) by bosonizing the Lagrangian (3.1) in the functional integral formalism,

to which end we have used the SPA and a generalized proper time heat kernel expansion.

This model exhibits an unstable vacuum which is stabilized by extending the model

with eight-quark interactions. On the basis of this entire discussion, we consider a

final extension to our model in the form of generalized chiral symmetry breaking terms,

following the material presented in [3] and [4]. In the context of chiral quark models,

such terms have been mostly overlooked in the literature, and it is of great interest to

understand their role in meson spectra and quark matter thermodynamics. In what

follows, we summarize the relevant points of the model’s formulation and manipulation.

3.2.1 External Source and Power Counting

So far, we have vehemently argued for the central role of chiral symmetry (and its

dynamical breaking) in the dynamics of strongly interacting particles, to the point that

it should be an indispensable ingredient of any effective model of QCD. However, the

presence of an explicit quark current mass is vital for the consistency of chiral models

with QCD, as well as an accurate description of light hadron spectra, and should not be

overlooked. While the bulk of the constituent mass of the quarks is generated through

the mechanism of chiral symmetry breaking native to the strong interactions, the current

quark masses have their origin someplace else, presumably in the Higgs and electroweak

sectors of the theory. In this sense, current quark masses are foreign to the strong

interactions. Current quark mass may then be seen as coming into the picture of an

exactly chirally symmetric Lagrangian by letting the quarks interact with a source field

χ extraneous to the strong interaction itself.

From an EFT perspective, we should include in our Lagrangian all such interaction

terms that can be written up to the desired order in the expansion parameter. A good

illustration of this principle that falls within the domain of QCD effective models comes

from ChPT, [94] [95] where the expansion is usually made in terms of quark masses

and hadronic degrees of freedom. In the present case, we wish to describe the dynamics

of quark degrees of freedom in an effective expansion consistent with Nc counting, and

we have argued that a consistent inclusion of the t’Hooft term requires eight-quark

interactions to be included as well. Since we are working out a low energy effective

model, there is an explicit cutoff Λ ∼ 1GeV appearing in the regularization of ultraviolet
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divergences which presents itself as a natural expansion parameter. Additionally, mass

terms must also be generalized to include all possibilities consistent with the Nc counting

order and dimensional analysis. We will then have a chiral Lagrangian which is complete

up to order N0
c in an 1/Nc expansion and also up to order in Λ0 in a mass expansion,

with explicit mass terms and mass-dependent interactions introduced as interaction

terms between quarks and the source field χ. [96] [97]

As is done in [4], we will show how to build the most general collection of effective terms

that include quark fields q and a source field χ, and which belong to an expansion on

the basis of the explicit cutoff Λ. For this purpose, it is convenient to define, as before,

scalar and pseudoscalar bilinears sa = q̄λaq and pa = iq̄λaγ5q, and also a U (3) valued

field (the λa are flavour space U (3) Gell-Mann matrices defined in Appendix A)

Σ =
1

2
(sa − ipa)λa (3.75)

which transforms under chiral transformations as Σ −→ URΣU
†
L (the unitary transfor-

mations UL and UR are defined in section 2.2). Furthermore, we assume the source field

transforms in the same way as Σ, i.e., χ −→ URχU
†
L. With this assumption, we may

build multi-quark effective interaction terms for the chiral Lagrangian by imposing chiral

invariance alongside the other exact symmetries of QCD, namely the discrete symme-

tries of charge conjugation, parity and time reversal. Also, we should not forget that the

six-quark interaction terms are of the ’t Hooft determinantal form and explicitly break

the UA (1) axial symmetry.

For a dimensional analysis of these terms, we begin by noticing the general structure of

any (non-derivative) interaction term, which may be given as

Li ∼
ḡi
Λγ

Σαχβ (3.76)

where ḡi are dimensionless couplings. Since the action must be dimensionless, the La-

grangian density must have dimension [mass]4 (in four space-time dimensions). The

dimensions of quark fields are well known [8] to be [mass]
3
2 , and both Λ and χ have

dimensions [mass]1 Thus, the effective terms are restricted to integer values of α, β and

γ obeying

3α + β − γ = 4 (3.77)
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We impose a second restriction by only keeping terms whose contribution to the ef-

fective potential survive in the limit Λ → ∞. These correspond to the relevant and

marginal operators of the EFT we are building. [98] The effective potential refers to the

bosonized Lagrangian, where the bosonic degrees of freedom may be seen as arising from

contracting pairs of quark fields in the original Lagrangian. Each of these contractions

introduces a quark loop, and each quark loop introduces an integral of a quark propa-

gator and its respective trace, wich overall diverges as [mass]2. When regularized for

ultraviolet divergences, these loops then give off a factor of Λ2. So, the overall O (Λ)

to which terms (3.76) contribute to the effective potential is 2α − γ, and the term will

survive at large Λ if

2α− γ ≥ 0 (3.78)

If we join constraints (3.77) and (3.78), we get the condition

4− α− β ≥ 0 (3.79)

This condition, together with (3.77), severely narrows the relevant terms to the following

combinations:

1. β = 0: (α, γ) = {(2, 2) , (3, 5) , (4, 8)}

2. β = 1: (α, γ) = {(1, 0) , (2, 3) , (3, 6)}

3. β = 2: (α, γ) = {(1, 1) , (2, 4)}

4. β = 3: (α, γ) = {(1, 2)}

The first group encompasses all the previously discussed four, six and eight-quark inter-

action terms which were studied together in section 3.1.6. The mass-dependent interac-

tions appear in the subsequent groups in linear, quadratic and cubic combinations. It is

then just a matter of systematically constructing chirally invariant terms following the

prescriptions above. This procedure is facilitated by first constructing the β = 0 terms

and then using them as prototypes for the mass-dependent terms by simply replacing

the appropriate number of Σ fields by χ fields (remember that Σ and χ transform in the

same fashion under chiral transformations). Also, we note that the first possibility with

β = 1 coincides with the explicit mass term we have previously considered.
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The β = 0 terms should be equivalent to those already described in the previous analysis

of the NJL model, but translated into Σ fields instead of q fields. It is useful to notice

from (3.75) that we can write the Σ field’s flavour space matrix components as

Σab = 2q̄bPRqa , Σ†
ab = 2q̄bPLqa (3.80)

Likewise, we highlight that any expression of the form trΣ†Σ is chirally invariant, where

tr is the trace in flavour space. With these features and some algebra, it can be shown

that the interaction terms may be written as

Lint =
Ḡ

Λ2
tr
(

Σ†Σ
)

+
κ̄

Λ5

(

detΣ + detΣ†
)

+
ḡ1
Λ8

[

tr
(

Σ†Σ
)]2

+
ḡ2
Λ8

tr
(

Σ†ΣΣ†Σ
)

(3.81)

and that these terms have the same structure as those in (3.2), (3.3) and (3.65). With

these prototypical terms in place, we now present a series of ten possible mass-dependent

terms:

L0 = −tr
(

Σ†χ+ χ†Σ
)

L1 = −
κ̄1
Λ
ǫijkǫlmnΣilχjmχkn + h.c.

L2 =
κ̄2
Λ3
ǫijkǫlmnΣilΣjmχkn + h.c.

L3 =
ḡ3
Λ6

tr
(

Σ†ΣΣ†χ
)

+ h.c.

L4 =
ḡ4
Λ6

tr
(

Σ†Σ
)

tr
(

Σ†χ
)

+ h.c.

L5 =
ḡ5
Λ4

tr
(

Σ†χΣ†χ
)

+ h.c.

L6 =
ḡ6
Λ4

tr
(

Σ†Σχ†χ+ΣΣ†χχ†
)

+ h.c.

L7 =
ḡ7
Λ4

[

tr
(

Σ†χ
)

+ h.c.
]2

L8 =
ḡ8
Λ4

[

tr
(

Σ†χ
)

− h.c.
]2

L9 = −
ḡ9
Λ2

tr
(

Σ†χχ†χ
)

+ h.c.

L10 = −
ḡ10
Λ2

tr
(

Σ†χ
)

tr
(

χ†χ
)

+ h.c. (3.82)

The ±h.c. appearing in the above expressions mean that we should add to the expression

to the left its hermitean conjugate. We can then write the full Lagrangian density as
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L = LD + Lint + Lχ (3.83)

where

LD = iq̄γµ∂µq (3.84)

is the free Dirac massless Lagrangian, Lint is defined in (3.81) and

Lχ =
10
∑

i=0

Li (3.85)

with Li defined in (3.82).

We now summarize the Nc dependence of the terms. The leading-order O (Nc) terms

correspond to the original NJL four-quark interaction (the first term in Lint) and the

simple current quark mass term L0. Σ fields count as Nc, since they each contribute

a quark loop to the effective potential, and thus Ḡ ∼ N−1
c . The other terms are all of

order O (1) in Nc counting, which gives us κ̄1, ḡ9, ḡ10 ∼ N−1
c , κ̄2, ḡ5, ḡ6, ḡ7, ḡ8 ∼ N−2

c ,

κ̄, ḡ3, ḡ4 ∼ N−3
c , and ḡ1, ḡ2 ∼ N−4

c . It has been further shown in [3] that the Nc

assignments match the counting rules based on arguments set by the scale Λ, i.e., the

diagrams that survive in the large Nc limit are the same that do not vanish as Λ −→∞.

3.2.2 Dirac Mass and the Kaplan-Manohar Ambiguity

To leading order, the term L0 in (3.82) should correspond to the current quark mass

term −q̄mq. It can be shown that, for hermitean χ,

− tr
(

Σ†χ+ χ†Σ
)

= −2q̄χq (3.86)

To be able to identify this as the usual mass term, we set χ = M
2 , where M =

diag (mu,md,ms). If we go beyond leading order, other linear terms in Σ will also

contribute to the Dirac mass term, i.e., L1, L9 and L10; these read
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L1 = −
κ̄1
Λ
q̄ (detM)M−1q

L9 = −
ḡ9
4Λ2

q̄M3q

L10 = −
ḡ10
4Λ2

q̄
(

trM2
)

Mq (3.87)

So, if we include next-to-leading order terms, we get a Dirac mass term −q̄mq with

m =M+
κ̄1
Λ

(detM)M−1 +
ḡ9
4Λ2
M3 +

ḡ10
4Λ2

tr
(

M2
)

M (3.88)

There is, however, a certain freedom in the definition of the parameters κ̄1, ḡ9 and ḡ10,

or better, in the definition of the current quark masses introduced through the source

field χ. This fact is related to earlier discoveries reported in [99] and other papers

about an apparent ambiguity in the definition of current quark masses. This should

not come as unexpected in light of colour confinement, which suggests that current

quark masses should be unobservable, behaving more like running coupling constants

which are explicitly dependent on the renormalization scale. Measurements of hadronic

observables are only able to probe current mass ratios, and even these cannot all be

fixed from the phenomenology, leaving the actual current masses essentially undefined.

In the present case, [3] we may address this point by first redefining the source term as

χ −→ χ′ = χ+
c1
Λ

(

detχ†
)

χ
(

χ†χ
)−1

+
c2
Λ2
χχ†χ+

c3
Λ
tr
(

χ†χ
)

χ (3.89)

where ci are three free parameters. It can be shown that χ′ transforms exactly as χ

under chiral transformations, which guarantees that the redefinition is compatible with

the symmetry requirements. Using this freedom it is possible to redefine the couplings

in the Lagrangian in such a way that m =M and the final Lagrangian becomes

L = q̄ (iγµ∂µ −m) q + Lint +
8
∑

i=2

Li (3.90)

3.2.3 Functional Integral Bosonization

The whole analysis performed in section 3.1 is directly applicable to the Lagrangian

density (3.90). We start by using the functional identity (3.4) to write the vacuum

persistence amplitude in the form (3.6). As before, we wish to describe the system in
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the Nambu-Golsdtone phase, to which end we make again the shift σ −→ σ +M so

that 〈σ〉 = 0 in the chirally broken ground state. The quark-dependent Lagrangian

Lq is the same as before (3.7), but the auxiliary Lagrangian has a series of new terms

coming from the mass-dependent part of the Lagrangian. As before, we use χ = M
2 =

1
2diag (mu,md,ms). Resorting to the U (3) algebra, we can write

Lr = sa (σa +∆a) + paφa + Lint (s, p) + Lχ (s, p) (3.91)

with

Lint (s, p) =
Ḡ

2Λ2

(

s2a + p2a
)

+
κ̄

4Λ5
Aabcsa (sbsc − 3pbpc) +

ḡ1
4Λ8

(

s2a + p2b
)2

+
ḡ2
8Λ8

[dabedcde (sasb + papb) (scsd + pcpd) + 4fabefcdesascpbpd] (3.92)

and

Lr (s, p) =
8
∑

i=2

Li (s, p)

L2 (s, p) =
3κ̄2
2Λ3

Aabcma (sbsc − pbpc)

L3 (s, p) =
ḡ3
4Λ6

ma [dabedcdesb (scsd + pcpd)− 2fabefcdepbpcsd]

L4 (s, p) =
ḡ4
2Λ6

(

s2a + p2a
)

sbmb

L5 (s, p) =
ḡ5
4Λ4

(dabedcde − fabefcde)mbmd (sasc − papc)

L6 (s, p) =
ḡ6
4Λ4

dabedcdemamb (scsd + pcpd)

L7 (s, p) =
ḡ7
Λ4

(sama)
2

L8 (s, p) =
ḡ8
Λ4

(pama)
2

(3.93)

Following along the same lines, we use the SPA to perform the functional integration

over the auxiliary fields s and p, expanding them as before (3.9) in powers of the bosonic

fields σ and φ. To simplify the notation, we redefine the couplings by absorbing into

them the explicit Λ dependence of its respective term. The stationary phase conditions
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extend the ones obtained in (3.10) now including contributions coming from the eight-

quark interactions [93] and the mass-dependent terms [3] [4],

σa +∆a +Gsa +
3κ

4
Aabc (sbsc − pbpc) + g1sa

(

s2 + p2
)

+
g2
2
sb [dabedcde (scsd + pcpd) + 2facefbdepcpd] + 3κ2Aabcsbmc

+
g3
4
[2dabedcdesbsc + dadedbce (sbsc + pbpc)− fabefcdepbpc]md

+
g4
2

[

2sasbmb +ma

(

s2 + p2
)]

+
g5
2
(dacedbde − facefbde) sbmcmd

+
g6
2
dabedcdesbmcmd + 2g7masbmb = 0 (3.94a)

φa +Gpa −
3κ

2
Aabcsbpc + g1pa

(

s2 + p2
)

+
g2
2
pb [dabedcde (pcpd + scsd) + 2facefbdescsd]

−3κ2Aabcpbmc +
g3
2
(dacedbde + fabefcde − fadefbce) sbpcmd

+g4pasbmb −
g5
2
(dacedbde − facefbde) pbmcmd

+
g6
2
dabedcdepbmcmd − 2g8mapbmb = 0 (3.94b)

Using transformations (3.13) on (3.94a) and expanding it as in (3.9), we may write the

lowest order equation for the hi parameter as

∆i +
hi
2

(

2G+ g1h
2 + g4mh

)

+
g2
2
h3i+

+
mi

4

(

3g3h
2
i + g4h

2 + (g5 + g6)mihi + 4g7mh
)

+
κ

4
tijkhjhk + κ2tijkhjmk = 0 (3.95)

Here, h2 = h2u + h2d + h2s and mh = muhu +mdhd +mshs, and there is no summation

over index i. The auxiliary Lagrangian can then be written as in (3.16) and the vacuum

persistence amplitude as in (3.17).

For the integration over the quark fields, everything is exactly as before, since the quark

dependent part of the Lagrangian is the same we had without the mass-dependent

interactions. We may then use the result (3.49) for this part of the Euclidean effective

bosonized action, so that we may write

Z =

∫

DσDφe
∫

d4x(E)Lst
r (σ,φ)+W (3.96)
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Proceeding with the analysis, the gap equations are obtained from the σ tadpole term,

yielding the exact same relation (3.54), and the effective potential is again defined from

the gap equation as in (3.58), but with

dMi = −Gdhi −
κ

2
tijkhjdhk −

g1
2



h2dhi + 2hi
∑

j

hjdhj





− 3g2
2
h2i dhi − κ2tijkmjdhk −

2g3
2
mihidhi

− g4
2



mhdhi + hi
∑

j

mjdhj +mi

∑

j

hjdhj





− g5 + g6
4

m2
i dhi − g7mi

∑

j

mjdhj (3.97)

This results in an effective potential given by

dV = d





G

4

∑

i

h2i +
κ

2
huhdhs +

3g1
16

(

∑

i

h2i

)2

+
3g2
16

∑

i

h4i

+
κ2
2

∑

i 6=j 6=k
mihjhk +

g3
4

∑

i

mih
3
i +

g4
4

∑

i

h2i
∑

j

mjhj

+
g5 + g6

8

∑

i

m2
ih

2
i +

g7
4

(

∑

i

mihi

)2

+
3Nc

8π2
I−1



 (3.98)

It is often convenient to distinguish between the stationary phase contribution to the

effective potential and the quark integral contribution. We may write

V = Vst + Vq (3.99)

with
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Vst =
1

16



4G
∑

i

h2i + 8κhuhdhs + 3g1

(

∑

i

h2i

)2

+ 3g2
∑

i

h4i

+ 8κ2
∑

i 6=j 6=k
mihjhk + 4g3

∑

i

mih
3
i + 4g4

∑

i

h2i
∑

j

mjhj

+2 (g5 + g6)
∑

i

m2
i h

2
i + 4g7

(

∑

i

mihi

)2




∣

∣

∣

∣

∣

∣

M2
i

0

(3.100)

and

Vq =
3Nc

8π2
I−1 (3.101)

3.2.4 Parameter Fitting

In [4], all the kinetic and mass terms for σ and φ fields arising in Lbos (3.51) are collected.
The kinetic terms are relatively simple,

Lkin =
NcI1
16π2

tr
[

(∂µσ)
2 + (∂µφ)

2
]

(3.102)

and a comparison with standard Lagrangian kinetic terms imply a rescaling of the fields

as

σa = gσRa , φa = gφRa , g2 =
4π2

NcI1
(3.103)

On the other hand, the collection of mass terms is bulky. We can, however, use these

terms to adjust the model’s parameters by fitting their predicted effective masses to the

physical meson spectrum. To that end, it is necessary to rewrite the flavour basis fields

σa and φa as charge basis fields

λa√
2
σa =









σu√
2

a+0 κ+

a−0
σd√
2

κ0

κ− κ̄0 σs√
2









,
λa√
2
φa =









φu√
2

π+ K+

π− φd√
2

K0

K− K̄0 φs√
2









(3.104)

with the identifications
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mπ mK mη mη′ fπ fK mκ ma0 mf0

138 494 547 958 92 113 850 980 980

Table 3.1: Empirical data used in the parameter fitting, with values given in MeV.

φu = φ3 + ηns , φd = −φ3 + ηns , φs =
√
2ηs (3.105)

and similarly for the scalar field. The physical π0, η and η′ states are related with

the above by a unitary transformation which depends on the mixing angles. [4] Finally,

interaction terms in (3.51) are computed to allow for a fitting of both mixing angles in

the scalar and pseudoscalar channels, as well as of decay constants.

There are fourteen parameters to be fixed in the isospin limit: the current masses mu =

md and ms, the couplings G, κ, κ2, g1, g2, g3, g4, g5, g6, g7, g8, and the energy scale Λ.

The current quark masses are given as input based on commonly accepted values given

in [100], with mu = md = 4MeV and ms = 100MeV. The mass ratio relation

Ms

Mu
= 2

fK
fπ
− 1 = 1.46 (3.106)

is used in conjunction with the mass gap equations (3.54) and the stationary phase

conditions (3.95) to fix Λ. The light pseudoscalar mass spectrum (π, K, η and η′) , the

respective weak decay constants (fπ and fK), and the scalar mass spectrum (a0 and f0),

which are experimentally well established, are used to fit some of the parameters as given

in table 3.1. A light strange scalar meson κ (or K∗
0 (800)) is also assumed with mass

given in the same table.3 This leaves three conditions to be able to fix all the parameters.

These are provided by the σ meson mass and the two mixing angles θs and θps in the

scalar and pseudoscalar sectors, respectively. From an empirical viewpoint, these values

are less well established, opening a considerable range of possible parameterizations

using different values and different combinations within the experimental uncertainty.

To this respect, four alternative parameterizations have been attempted in [4] for values

of mσ ranging from 550 to 600 MeV, and for mixing angles ranging from -12o to -15o

for θps and from 25o to 27.5o for θs.

The robustness of this parameterization procedure is then verified by using the fixed

parameter values in the calculation of other empirical observables, like radiative and

strong decay widths. The aforementioned paper [4] then performs a comparative study

of four distinct parameter sets and reports on a collection of rather successful predictions

3There is a great amount of controversy concerning this state. Its large width makes it hard to
pinpoint in experimental results. Moreover, there appear to be some phenomenological analyses in
which a corresponding pole emerges in the S-matrix, and others in which this state plays no part. [100]
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that are in sensible accordance with empirical data. This wide success in the description

of meson spectra and decay widths is unprecedent in NJL-type models, indicating that

the mass-dependent interactions do play an important role in the accurate modelling of

strongly interacting systems. This is crucial for establishing enough confidence in the

model’s potential for giving a useful description of the finite temperature and chemical

potential regime, which is the main goal in the following section.



Chapter 4

Thermodynamical Analysis and

Results

4.1 Finite Temperature and Chemical Potential

In order to further understand the dynamics of many quarks, the study of the response

of the system to external parameters, such as the temperature, is due. Furthermore, the

number of quarks is not constant. This is described by including chemical potentials as

coefficients of the UV (1) conserved charges’ operators q†q. The interpretation of QFT

in a thermodynamical sense is then usualy attained by an appropriate identification of

the Euclidean vacuum persistence amplitude with the grand canonical partition func-

tion. The general formalism for functional calculations at finite temperature has been

proposed in [101] by employing Matsubara frequency sums together with periodic or

antiperiodic boundary conditions for bosonic or fermionic fields, respectively. Finite-

temperature Feynman rules are developed in [102]. A good account of these matters is

given in [103] and [104].

In the context of the model described in section 3.2, thermal fluctuations arise from

the underlying, more fundamental, quark degrees of freedom. The quark content of the

mesonic fields is contained in the heat kernel part of the bosonized effective action (3.49)

or, more precisely, in the one-loop integrals Ji defined in (3.46). We follow the approach

of [105] to obtain the pertinent quark loop integrals at finite T and µ in the following.

The Jn integrals can be written in a more transparent form as Euclidean four-momentum

integrals

63
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Jn
(

M2
i

)

=

∫ ∞

0
dττnρ

(

τΛ2
)

∫

d4p

π2
e−τ(M

2
i +p

2)

= 16π2
∫

d4p

(2π)4

∫ ∞

0
dτ
[

1−
(

1 + τΛ2
)

e−τΛ
2
]

τne−τ(M
2
i +p

2) (4.1)

Keeping in mind the relationship (3.60), if suffices to determine the form of, say, J0
(

M2
i

)

;

other Jn integrals may then be found by integration or differentiation with respect to

M2
i . Thus, we have for J0

J0
(

M2
i

)

= 16π2
∫

d4p

(2π)4

∫ ∞

0
dτ
[

1−
(

1 + τΛ2
)

e−τΛ
2
]

e−τ(M
2
i +p

2)

= 16π2
∫

d4p

(2π)4

[

1

M2
i + p2

− 1

M2
i + p2 + Λ2

− Λ2

(

M2
i + p2 +Λ2

)2

]

(4.2)

The Matsubara formalism then introduces the effects of finite temperature T and chem-

ical potential µ through the substitutions [103]

∫

dp0 −→ 2πT

∞
∑

k=−∞
, p0 −→ ωn − iµ , ωn = (2n+ 1) πT (4.3)

We may then write

J0
(

M2
i , T, µ

)

= 16π2T

∫

d3~p

(2π)3

+∞
∑

n=−∞

{

1

(ωn − iµ)2 + E2
p

− 1

(ωn − iµ)2 + E2
pΛ

− Λ2

[

(ωn − iµ)2 + E2
pΛ

]2











(4.4)

with

E2
p = |~p|2 +M2

i , E2
pΛ = |~p|2 +M2

i + Λ2 (4.5)

The infinite sums in the expression above are more easily evaluated in the form



Chapter 4. Thermodynamical Analysis and Results 65

+∞
∑

n=−∞

1

(ωn − iµ)2 + E2
p(Λ)

=
1

4π2T 2

+∞
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1
(
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) (
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1
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1
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∑
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[

1

n+ a(Λ)
− 1

n+ b(Λ)

]

(4.6)

and

+∞
∑

n=−∞

Λ2

[

(ωn − iµ)2 + EpΛ

]2 =
Λ2

16π4T 4

+∞
∑
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1

(n+ aΛ)
2 (n+ bΛ)

2
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{
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1
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(4.7)

with

a(Λ) =
1

2
− i

2πT

(

µ+ Ep(Λ)
)

b(Λ) =
1

2
− i

2πT

(

µ− Ep(Λ)
)

(4.8)

We may now use the summation formulae

∞
∑

k=−∞

1

k + a
= π cot (πa) ,

∞
∑

k=−∞

1

(k + a)2
= π2 csc2 (πa) (4.9)

to evaluate (4.6) as

1

4π2T 2
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i
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(
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)
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(4.10)
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and (4.7) as
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16π4T 4
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In the last lines we have used

cot
(π

2
− θ
)

= tan θ , csc
(π

2
− θ
)

= sec θ (4.12)

Finally, using the relation between regular and hyperbolic trigonometric functions, we

may write

+∞
∑

n=−∞











1

(ωn − iµ)2 + E2
p

− 1

(ωn − iµ)2 + E2
pΛ

− Λ2

[

(ωn − iµ)2 + E2
pΛ

]2











=

=
1

4TEp

[

tanh

(

µ+ Ep
2T

)

− tanh

(

µ− Ep
2T

)]

− 1

4TEpΛ

[

tanh

(

µ+ EpΛ
2T

)

− tanh

(

µ−EpΛ
2T

)]

− Λ2

8TE3
pΛ

[

tanh

(

µ+ EpΛ
2T

)

− tanh

(

µ−EpΛ
2T

)]

+
Λ2

16T 2E2
pΛ

[

sech2
(

µ+ EpΛ
2T

)

+ sech2
(

µ−EpΛ
2T
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(4.13)

We can now use (4.13) in (4.4) to write
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with

nq̄(Λ),q(Λ) =
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2
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In expression (4.14), we can clearly distinguish the contributions arising from the vacuum

(T -independent terms) from those of the medium (T -dependent terms). We can write

J0
(

M2
i , T, µ

)

= Jvac0

(

M2
i

)

+ Jmed0

(

M2
i , T, µ

)
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(4.16)

As can be seen, Jvac0 is, as it should, exactly equivalent to the expression we have already

given for J0
(

M2
i

)

in (3.48b), confirming its identification as the vacuum contribution.

Furthermore, it is not difficult to show that

lim
T,µ→0

Jmed0

(

M2
i , T, µ

)

= 0 ⇒ lim
T,µ→0

J0
(

M2
i , T, µ

)
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M2
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)

(4.17)
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since

lim
T,µ→0

nq(Λ),q̄(Λ) = 0 , lim
T,µ→0

nq(Λ),q̄(Λ)

T
= 0 (4.18)

The distinction between vacuum and medium contributions is therefore well justified.

One should stress, however, that at finite T and µ the values of Mi vary accordingly in

the vacuum contribution.

4.1.1 Thermodynamical State Functions and the Gap Equation

We now use our results for J0
(

M2
i , T, µ

)

in order to obtain J−1

(

M2
i , T, µ

)

, which enters

the expression for the effective potential (3.99). Using (3.60) and (4.16), we can similarly

write the expressions for the vacuum and the medium contributions to J−1

(
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)

.

We have
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(4.19)

In these and subsequent expressions, the additional 0 subscript is to be understood as

an instruction to set M2
i = 0 in the original expression. Once again, using (4.18) and

lim
T,µ→0

T ln

(

nqnq̄nqΛ0nq̄Λ0
nq0nq̄0nqΛnq̄Λ

)

= −2 (Ep +EpΛ0 − Ep0 − EpΛ) (4.20)

it is easy to show that
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lim
T,µ→0

Jmed−1
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)

= 0⇒ lim
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J−1

(

M2
i , T, µ

)

= Jvac−1

(

M2
i

)

(4.21)

We have not yet explicitly shown the different chemical potentials µi, but as we have

noted already, these are associated with the conserved flavour U (1)V charges, one for

each quark flavour. Since the quark loop integrals Jn
(

M2
i

)

are defined for decoupled

flavours i, we should in fact understand the µ appearing in the previous expressions as

the i flavour chemical potential µi. The thermodynamical potential may then be written

from (3.99), (3.100), (3.101) and (4.19) as

Ω (T, µu, µd, µs) = Vst +
Nc

8π2

∑

i

J−1

(

M2
i , T, µi

)

+ C (T, µu, µd, µs) (4.22)

Here, C (T, µu, µd, µs) is an Mi-independent term (remember that V is calculated in

(3.99) as an integral over Mi of the gap equation, and is always defined up to an Mi-

independent term) that may be fixed by imposing some physical condition on the asymp-

totic behaviour of Ω or of other thermodynamical state functions. In [105], this term

is determined by requiring consistency with the standard NJL approach, in particular

by the condition that the medium contribution to the thermodynamical potential in

both approaches must coincide in the absence of a regulator; it is given in the limit of

vanishing µi as

C (T, µu, µd, µs) = C (T ) = −7Nc

60
π2T 4 (4.23)

Similarly, we can rewrite the gap equation for the case of finite temperature and chemical

potential. From (3.54) and (4.16), we get

hi +
Nc

2π2
MiJ0

(

M2
i , T, µi

)

= 0 (4.24)

The thermodynamical potential (4.22) corresponds to the grand or Landau potential of

Statistical Mechanics [103], and thermodynamical averages for the state functions are

expressible through the usual relationships. First, it should be remarked that the mean

pressure p is just −Ω. The mean entropy density s and the mean quark number densities

ρi are given by

s =
∂p

∂T
, ρi =

∂p

∂µi
(4.25)

while the mean energy density ε is given by
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ε = −p+ Ts+
∑

i

µiρi (4.26)

4.2 Dynamical Masses and Phase Transitions

We have established the main equations for the finite temperature and chemical potential

study of the model, namely the stationary phase conditions (3.95) (which remain the

same as without T or µ), the gap equations (4.24), the thermodynamical potential

(4.22) and the finite temperature quark integrals (4.16) and (4.19). With these, we

are equipped to scrutinate the thermodynamical features of the model. Such a finite

temperature study of NJL-type models has been presented or reviewed in some of the

already mentioned publications, like [53] and [55]. A review of the QCD phase diagram

may be found in [106].

Here we present for the first time the calculation of the thermodynamic potential sub-

ject to the explicit symmetry breaking terms of the extended Lagrangian discussed in

section 3.

4.2.1 Constituent Mass Profiles

We start by studying the solutions to the gap equations (4.24), with the hi determined

self-consistently through the stationary phase conditions (3.95). We assume µu = µd =

µs = µ, and we work in the isospin limit mu = md 6= ms. With these assumptions,

we have a coupled system of four equations to solve for the constituent quark masses

Mu (=Md) and Ms
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G κ κ2 g1 g2 g3 g4 g5 g6 g7 g8 Λ

9.834 -122.9 6.189 4436.7 211.0 -6647 1529 215.4 -1666 29.81 -63.20 0.8275

fπ fK θps θs mπ mK mη mη′ ma0 mK⋆ mσ mf0

92 113 -12 27.5 138 494 547 958 980 850 500 980

Table 4.1: Parameter set of the model (first row), given in the following units: [Λ] =
MeV, [G] = GeV−2, [κ2] = GeV−3, [g5] = [g6] = [g7] = [g8] = GeV−4, [κ] = GeV−5,
[g3] = [g4] = GeV−6, [g1] = [g2] = GeV−8; the current quark masses values mu = md =
4 MeV, ms = 100 MeV and the empirical input (second row) is used for their fitting
(meson masses and weak decays in MeV). From the self-consistent resolution of the gap
equations we obtain Mu = Md = 375 MeV, Ms = 546 MeV for the constituent quark
masses at T, µ = 0. θps, θs are the mixing angles in degrees in the pseudoscalar and

scalar sectors, respectively.

hu = − Nc

2π2
MuJ0

(

M2
u , T, µ

)

hs = −
Nc

2π2
MsJ0

(

M2
s , T, µ

)

Mu = mu −
hu
2

(

2G+ g1h
2 + g4mh

)

− g2
2
h3u

− mu

4

(

3g3h
2
u + g4h

2 + (g5 + g6)muhu + 4g7mh
)

− κ

2
huhs − κ2 (hums + hsmu)

Ms = ms −
hs
2

(

2G+ g1h
2 + g4mh

)

− g2
2
h3s+

− ms

4

(

3g3h
2
s + g4h

2 + (g5 + g6)mshs + 4g7mh
)

− κ

2
h2u − 2κ2humu = 0 (4.27)

with h2 = 2h2u + h2s and mh = 2muhu + mshs. As stated in section 3.1.5, where the

effective potential is obtained from the gap equations, solving the gap equation amounts

to finding the extrema of the thermodynamical potential (4.22). Of these, only those

solutions that minimize (4.22) correspond to thermodynamical equilibrium solutions,

i.e., to the stable physical states.

The system (4.27) is solved numerically for given values of T and µ. The system is

implemented in Mathematicar and the parameter set of table 4.1 is used. A series of

mass profiles at fixed chemical potential µ are shown in figures 4.2 to 4.11.

It is interesting to inspect how the mass profiles change as µ is raised. Figure 4.2 is

the starting point with µ = 0. There, the prototypical mass profile is visible, with

an essentially constant high constituent mass plateau for low T , followed by a smooth

crossover to lower mass values which becomes more pronounced at T ∼ 150MeV . This

crossover is significantly steeper for the light quark masses than it is for the strange
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Figure 4.1: Thermodynamical potential at µ = 260MeV.

quark mass, the latter decreasing more slowly and in what appears to be a two-step

transition. In other words, there seems to be a first crossover between 100 MeV and

160 Mev associated with a pronounced decrease in the light quark masses and a slight

decrease in the strange quark mass, followed closely by a second crossover in which the

most significant decrease of the strange quark mass is seen. This pattern is maintained

for higher chemical potential values, with the crossover regions progressively moving to

lower temperatures and becoming steeper.

At some point, this pattern evolves into something else: a region begins to emerge where

three solution branches overlap over some temperature domain. In order to ascertain

the physical nature of these solution branches, we need to determine to which kind of

extrema of the thermodynamical potential do they correspond. We find that the upper

and lower branches correspond to minima, while the middle branch contains solutions

that are maxima of the thermodynamical potential, and are therefore unstable. In

figure 4.1, a plot of Ω is shown in the overlap region for µ = 260MeV. The critical point

of transition between the upper and lower branches is given by the intersection of the

branches in the Ω plot. We can see that, to the left of this intersection point, the first

branch lies lower than the second branch, and that to the right of the intersection they

switch. Those portions of a branch that lie above the other branch are local minima of

the thermodynamical potential and correspond to metastable solutions, while the lower

lying portions represent the actual global minima and are, therefore, the stable physical

solutions.

This feature is first visible in figure 4.6 for µ = 200MeV, and it signals the onset of a first-

order transition in the quark masses driven by a thermal restoration of chiral symmetry.

In figures 4.6 to 4.9, we can see that the mass profiles get ever more distorted as the
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Figure 4.2: Mass profile at µ = 0.

chemical potential is increased, with the overlapping regions becoming progressively

larger. In these figures, the thick lines represent stable solutions, the thin lines represent

metastable solutions, and the dashed lines represent unstable solutions. Also, the sharp

first-order transitions are marked with a black dashed line connecting two circles which

point out the mass values for which the jump occurs.

That chiral symmetry is approximately restored1 can be understood by looking at fig-

ure 4.12, where the value of the condensates, which are the order parameters for chiral

transitions, is shown for µ = 260MeV. We can clearly see the light quark condensates

(red line) jumping to values which get rapidly close to zero. A null condensate indicates

a transition from the dynamically broken Nambu-Goldstone phase to the chirally sym-

metric Wigner-Weyl phase. Moreover, in figure 4.8, the light quark dynamical masses

are seen to drop to values increasingly close to their current masses, with almost no

dynamical contribution from the condensates.

There is yet another interesting feature: the emergence of a second first-order transition

after µ ∼ 300MeV. This is almost exclusively noticeable for the strange quark mass,

since the light quarks have already undergone a bulk decrease in mass in this chemical

potential region. This second transition is illustrated in figures 4.10 and 4.11. The quark

condensates are shown for µ = 350MeV in figure 4.13, where a large jump in the strange

quark condensate is visible.

1This restoration is only asymptotic, and it is much more significant for the light quarks than it is
for the strange.
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Figure 4.3: Mass profile at µ = 50 MeV.
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Figure 4.4: Mass profile at µ = 100 MeV.
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Figure 4.5: Mass profile at µ = 150 MeV.
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Figure 4.6: Mass profile at µ = 200 MeV.
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Figure 4.7: Mass profile at µ = 230 MeV.
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Figure 4.8: Mass profile at µ = 260 MeV.
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Figure 4.9: Mass profile at µ = 290 MeV.
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Figure 4.10: Mass profile at µ = 320 MeV.
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Figure 4.11: Mass profile at µ = 350 MeV.
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Figure 4.12: Quark condensates at µ = 260 MeV.
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Figure 4.13: Quark condensates at µ = 350 MeV.

4.2.2 Phase Diagram

Using the results from the mass profiles, we can determine the phase diagram of the

model in the µ − T plane. This is done in figure 4.14, where two first-order transition

boundaries are shown in thick lines, and with crossover regions represented as dashed

lines. The crossover curves are determined from the points of maximal slope of M (T ).

The two critical endpoints are marked with a circle. The results from the previous

section allow us to identify the first line with a transition in the light quarks and the

second line with the strange quarks. Of course, because the system is coupled, i.e., there

are flavour mixing interaction terms in the Lagrangian, the masses of all the quarks jump

down at the transition, although the jump is much more pronounced for light quarks in

the first one and for strange quarks in the second.
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Figure 4.14: Phase diagram.

Data relative to some of the noteworthy points in the phase diagram is displayed is

table 4.2. The closeness of the two CEP temperatures might catch the eye, but cal-

culations performed with slightly different parameter sets (namely those given in [4])

show different vertical spacings for the two CEPs. In view of this, no special significance

appears to exist in this feature, although it is not absolutely clear.

The existence of two first-order boundaries and hence two CEPs in this model makes it

harder to make meaningful comparisons with results from other sources. Nevertheless, it

is interesting to compare some of the values we obtained with those predicted in lattice

calculations. For instance, in the review paper [106], a range between 150 and 200 MeV

is reported as the likely range for the pseudocritical temperature at µ = 0. The values

obtained in the present work are more or less compatible with this range. For larger

values of µ, lattice methods run into several problems2 [107], and the reliability of the

results is highly debated. Still, the predictions in [108] for the CEP coordinates are often

cited: TCEP = 162 ± 2MeV and µCEP = 360 ± 40MeV. Our results are significantly

lower, which is probably related with the fact that we have used lower values for the

current quark masses in our calculations.

We may also compare our results with those found in other effective models, particularly

in what concerns the two critical lines feature. In [56], two and three flavour versions

of the NJL model are studied, and it is shown that, for the conventional four and six

quark interaction terms, two critical lines may exist only for unphysically low flavour

mixing couplings. However, the same paper shows how the existence of the two CEPs

arises in a sensible way if one introduces diquark terms. It is not clear whether there

is any relation between the diquark terms and the mass-dependent terms introduced in

2A finite chemical potential results in a generelly complex action. From a computational point of
view, this makes it hard to implement Monte Carlo importance sampling methods which are commonly
used in lattice calculations for evaluating the QCD partition function.
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µ [MeV] T [MeV] Mu1 [MeV] Mu2 [MeV] Ms1 [MeV] Ms2 [MeV]

µ = 0
0 147.0 151.8 — 484.7 —
0 191.4 19.9 — 300.5 —

CEPs
194.5 104.5 161.9 — 506.3 —
307.8 106.2 14.3 — 295.4 —

T = 0
319.2 0 365.5 26.8 577.9 504.0
425.6 0 9.1 8.6 503.7 144.6

Table 4.2: CEPs, T = 0 critical points, and µ = 0 crossover points. Masses 1 and 2
refer to the high and low values of the jump, respectively. These are equal at the CEPs

and at the µ = 0 crossover points.

the version under present study, but it surely is intriguing that they both lead to such

similarities in the phase structure.

As discussed in section 3.2.4, there is a certain freedom in the fitting of the model

parameters, largely due to a significant empirical uncertainty in the σ meson mass.

In [109] its value is given in the range 400 - 550 MeV. Also, both mixing angles in the

scalar and pseudoscalar sectors are given as rough estimations. However, the whole

scalar sector meson masses are subject to some degree of uncertainty. As presented

in [109], we have mf0 = 990 ± 20MeV and ma0 = 980 ± 20MeV, and additionally the

disputed κ meson with a mass in the range 700 - 900 MeV [100]. Several works propose

the existence of the κ as belonging to a low lying scalar nonet, e.g. [23] and [110]. The

counterintuitive aspect of this picture is the ordering mκ < ma0 , which is reversed with

respect to the corresponding members of the pseudoscalar nonet, namely the π and K

mesons.

It so appears that this ordering in the masses of the scalar mesons is paramount to the

existence of the second first-order transition boundary. If we vary the value of mκ used

in fixing the parameters while keeping all other input unchanged, we can see a huge

variation in the behaviour of the second phase transition. Increasing mκ to values close

to ma0 leads to a complete transformation of the first-order line into a smooth crossover,

which happens at mκ & 970MeV. [111] If we instead try to decrease mκ too much, the

second CEP eventually reaches the temperature axis, which is in contradiction with

lattice results indicating a smooth crossover for µ = 0 [106]. This might be used for

estimating a lower bound to the value of mκ, although such a model dependent calcula-

tion might not be actually reliable. Regarding the parameterization, this playing around

with mκ is manifested mainly in the value of g3, which corresponds to a mass-dependent

non-flavour-mixing interaction term and whose absolute value changes inversely to the

change in mκ. So, not only are mass-dependent interaction terms important for the

correct description of the meson spectra, it appears that these terms are also critical for

the thermodynamical features of quark matter.
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4.3 Strange Quark Matter

The matter structures of the universe are seemingly void of net strangeness (or charm,

beauty and truth), in contrast with the obvious net isospin of atomic nuclei. This situ-

ation is easy to accept for the heavier quark flavours, which would require very extreme

conditions, but there may be reasonable speculation about the existence of conditions

which would favour the formation of quark matter with a net strange component. As

was shown in the previous section in the context of an effective model of the strong

interaction, at a sufficiently hot or dense region of the phase diagram, strange quarks

are expected to populate quark matter. This comes about because of the relatively low

mass of the strange quark which, despite being larger than those of the light quarks,

is still small enough so that it becomes, at some point, energetically favourable for the

system to occupy strange quark states instead of just light ones, lowering the Fermi level

of the system. [56]

If this picture is correct, there are actually some physical objects or phenomena where we

could expect to find evidences of both the existence of phase transitions and a strange

quark matter (SQM) phase. For instance, in the very dense core of compact stars,

thermodynamical conditions might be able to sustain a SQM phase. There are today

several stellar objects which are plausible candidates to hosting SQM, and a number of

observational experiments have been proposed to study this possibility. [112] Another

possibility is the formation of strangelets in high energy heavy ion collisions (HIC), i.e,

small drops of SQM in a mixed phase with regular non-strange matter. Experiments at

RHIC have been unable to find such structures, but there remains a very large portion of

the QCD phase diagram to probe. [113] So, compact stars and HIC are probably the two

physical systems whose meticulous analysis can substantiate or disprove the possibility

of stable SQM. A review of some of the research effort in these areas may be found

in [114].

An even more radical view has been conjectured in [115] and later revived in [116]. The

proposal is that SQM would be the true ground state of strongly interacting matter,

with an energy per baryon lower than that of a stable system of 56Fe nuclei (∼ 930MeV)

at zero pressure. The empirical fact that matter appears to exist in stable structures

formed by nucleons seems to automatically invalidate this hypothesis, as we do not

observe nuclei transitioning to SQM as it would be naively expected if nucleons were

metastable. However, if we consider that a stable SQM phase would be possible only

for a considerable portion of strange quarks (roughly the same as up and down quarks),

then we can understand the apparent stability of nuclei, i.e., its large lifetime, as being

related with the huge unlikeliness of a large number of weak decays occurring to bring the

nuclei across the stability boundary of SQM. In other words, there is a very large energy



Chapter 4. Thermodynamical Analysis and Results 81

barrier between metastable nuclear states and stable SQM, rendering such a phenomenon

probabilistically negligeable. Thus, a stable SQM phase with roughly equal numbers of

the three lightest quark flavours is not incompatible with the existence of apparently

stable nuclei.

Some consequences arising from the hypothesis of absolutely stable SQM have been

subjected to investigation, but so far it remains conjectural. The analysis of the extended

NJL model performed in the previous section does not seem to allow for such form of

stable SQM, but it should be remarked that the model has no confinement mechanism

and, thus, it should not be expected to provide an accurate description of the hadronic

phase. Such limitation raises doubts on any attempt for rigorous comparisons between

quark and hadronic phases.

In the remainder of this section, we will investigate the possiblity of SQM as it is conjec-

tured to arise in the interior of compact stars, i.e., at high density and low temperature.

We will focus on the T = 0 limit and try to sketch an understanding of how favourable

or disfavourable our model is with respect to this possibility.

4.3.1 Beta Equilibrium and Charge Neutrality at T = 0

In order to address the prospect of stable SQM, certain sensible physical conditions must

be included for adequate modelling. These have been proposed by Farhi and Jaffe [117]

in the context of a Bag Model, but they can perfectly be taken over to the NJL model.

The quarks are assumed to be in β-equilibrium with respect to their weak electronic

decay reactions:

d⇋ u+ e− + ν̄e ⇋ s (4.28)

The equilibrium conditions may be formulated as constraints in the individual quark

chemical potentials. The neutrinos are expected to quickly escape the system, so that

their contribution is altogether discarded. Using an average baryon chemical potential

µ and the electron chemical potential µe, we can write

µu = µ− 2

3
µe , µd = µs = µ+

1

3
µe (4.29)

For the modelling of electrically neutral objects, we must further impose a charge neu-

trality condition; this is expressed in terms of quark and electron number densities ρi

as
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µcrit Mu1 Mu2 Md1 Md2 Ms1 Ms2 µe1 µe2
325 365.5 33.6 365.5 27.4 577.9 504.2 0 69.9

409 13.3 9.9 10.3 9.4 503.7 153.6 89.5 14.1

Table 4.3: Critical values at T = 0 with β-equilibrium and charge neutrality. The
values with subscripts 1 and 2 refer to the upper and lower values at each transition,

respectively. All values are given in MeV.
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Figure 4.15: Mass profiles at T = 0 with β-equilibrium and charge neutrality.

2

3
ρu −

1

3
(ρd + ρs + 3ρe) = 0 (4.30)

We now append (4.29) and (4.30) to our previous conditions (4.27), and use this modified

system of equations to solve for the dynamical quark masses and other thermodynamical

quantities of interest. Of course, the quark integrals appearing in the gap equations

should in this case be written with different chemical potentials for each quark flavour

i, J0
(

M2
i , T, µi

)

.

4.3.2 Quark Number Densities

First of all, the mass profile for fixed T = 0 is shown in figure 4.15. There, the two first-

order transitions are marked by the black dashed lines. Values of the dynamical masses

and of the baryon chemical potential at the critical points are shown in table 4.3. The

pattern is overall similar to the previous cases, now with a slight difference in the masses

of the light quarks due to the difference in their respective chemical potentials. This

difference is largest immediately after the first transition, and gradually decreases for

larger baryon chemical potentials. As before, stable solutions are shown in thick lines,

while metastable and unstable solutions are shown in thin and dashed lines, respectively.
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Figure 4.16: Quark and electron number densities at T = 0 with β-equilibrium and
charge neutrality. The electron number density is shown here multiplied by a factor of

100.

We now look at the quark and electron densities as functions of µ, which is shown in

figure 4.16. In this figure, only equilibrium solutions are displayed, and the chemical

potential domain is restricted to better illustrate the regions of interest. One striking

feature is that the electron density is 3 to 4 orders of magnitude smaller than the quark

densities. Moreover, it is zero before the first transition and it rapidly falls to zero after

the second one.3 It could be said that, overall, electrons play a very small role in the

properties of the system.

The behaviour of the quark number densities is straightforward. At the first transition,

a finite density of light quarks appears, with roughly two down quarks for each up quark.

This should be expected for negligible electron density in the face of the charge neutrality

condition. At the second transition, the light quark densities readjust to account for an

emerging finite strange quark density. These densities then rise monotonically with

µ, and they appear to get progressively close to each other for higher µ values. This

behaviour is best inspected in figure 4.17, where the density fraction of each flavour is

displayed as a function of µ. Clearly, between the first and second transitions, we have

about 1/3 up quarks and 2/3 down quarks. After the second transition, the fractions

get visibly close to 1/3 for each flavour. This feature is referred in [56] as a necessary

condition for the existence of stable SQM.

3The value of ρe after the second transition is so small that it appears to be zero for the resolution of
the graphic. However, it has a finite value at the lower end of the transition (∼ 1.2× 10−5fm−3), which
then quickly approaches zero for larger µ.
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Figure 4.17: Quark number fractions at T = 0 with β-equilibrium and charge neu-
trality. Two thin dashed horizontal lines are drawn at fraction values of 1/3 and 2/3.

4.3.3 Energy per Baryon and State Equation

We turn to the energy per baryon E/A as a function of density. The former is defined

as ε/ρB , where ε is the energy density as defined in (4.26) and ρB is the baryon number

density defined as

ρB =
ρu + ρd + ρs

3
(4.31)

In this case, we need to include the contribution arising from the electrons. This means

that there is an electronic term in the thermodynamical potential (4.22) which, in the

limit of non-interacting massless electrons at T = 0, can be simply written as [56]

Ωe = −
µ4e
12π2

(4.32)

leading to the following relations for T = 0:

ε = −Ω− Ωe +
∑

i=u,d,s,e

µiρi , ρe =
µ3e
3π2

(4.33)

Also, it is convenient to use densities normalized to the nuclear saturation density ρ0 ∼
0.17fm−3, which allows us to more easily establish comparisons.

The results are presented in figure 4.18. The thick, thin and dashed lines represent,

as before, stable, metastable and unstable solutions, respectively. The two gray areas

mark the density ranges where no stable solutions exist; they correspond to mixed phase



Chapter 4. Thermodynamical Analysis and Results 85

ρB/ρ0 1.63 3.30 4.95

E/A 973 1042 1105

Table 4.4: Boundary points for the stable solutions in figure 4.18. The energy values
are given in MeV.
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Figure 4.18: Energy per baryon as a function of the baryon density normalized to
the nuclear saturation density ρ0 at T = 0 with β-equilibrium and charge neutrality.

regions where chunks of matter from both boundary stable solutions coexist. We do not

provide a description of these regions associated with the two first-order transitions.

The boundary points for stable solutions are summarized in table 4.4 and are marked

in the figure with circles. The first of these points is actually the minimum of the curve,

and its coordinates are somewhat lower than those found in similar model calculations.

For example, in [56], the minimum is at ρB = 2.25ρ0, with E/A = 1102MeV. Still,

our results remain larger than those associated with nuclear stability (ρB = ρ0 and

E/A = 930MeV). Since this minimum is coincident with the onset of non-strange matter,

which we empirically know is unstable, this result is actually within expectations. Also

in [56], strange quarks are predicted to appear at ρB = 3.85ρ0 with E/A ∼ 1140MeV.

Again, our results are below these values (third column of table 4.4), but still above

nuclear stability values. It could then be said that, when compared with the ’t Hooft

extended NJL model, ours effectively lowers E/A and ρ across the whole plane, pushing

the values closer to the nuclear matter stability ones; nevertheless, it does not seem to

corroborate Witten’s hypothesis of absolutely stable SQM.

We might as well consider what these results might imply regarding SQM at high den-

sities, as it is speculated to exist in compact stars. The theoretical study of these stellar

objects is usually performed by means of the Tolman-Oppenheimer-Volkoff (TOV) equa-

tions. [118] [119] These equations can be written as
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dp

dr
= −Gε+ p

r

m+ 4πr3p

r − 2Gm
dM

dr
= 4πεr2 (4.34)

where r is the radial distance from the center and m (r) is the mass enclosed by a

spherical surface of radius r; ε (r) and p (r) have the same meaning as before, but are

here taken as functions of r. If we know the state equation p (ε) connecting p and ε,

equations (4.34) can be integrated numerically for some central value ε (r = 0) = εc and

with boundary conditions

M (r = 0) = 0 , p (r = 0) = p (εc) , p (r = R) = 0 (4.35)

where R is the radius of the star and m (r = R) = M is its mass. A Runge-Kutta

algorithm stepping in variable r may be employed to perform the numerical integration

until the pressure drops to zero, at which time we take the current value of r as the

radius of the sphere, and similarly with m for its mass. For each inital value of εc, we

will get a different point in the R-M plane. Together, these points trace a curve of

equilibrium combinations of R and M for stellar objects made up from matter obeying

our state equation. One then compares observational data on compact stars to check if

there might be some overlap.
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Figure 4.19: Pressure as a function of energy density at T = 0 with β-equilibrium
and charge neutrality.

The state equation of our model is shown graphically in figure 4.19. The meaning

of the lines follows precisely the conventions we have used so far. We see the first
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transition occurring at zero pressure and the stable light quarks phase beginning at

ε ∼ 270MeVfm−3. The second transition occurs at p ∼ 103MeVfm−3; the first stability

line ends at ε ∼ 584MeVfm−3 and the second stability line begins at ε ∼ 932MeVfm−3.

The gray areas correspond again to mixed phases.

However, modelling compact stars on the basis of this state equation should not be taken

very seriously, for several reasons. First of all, the model does not actually describe

hadronic phases, which are most likely present on the outer layers of these objects where

the pressure is not so high. Another issue has to do with the absence of a magnetic field

in the model; it is thought that high magnetic fields arise in the interior of compact stars,

strongly affecting both the chiral transitions (through magnetic catalysis [120]) and the

thermodynamical potential. Also, one has to deal with the singularities associated with

the mixed phases, which require an adequate treatment in order to have a reasonable

modelling.

In spite of all these issues, some crude qualitative appreciation may be carried through.

If we compare the state equation in figure 4.19 with those reported in figure 2 of [112],

ours appears to be somewhere between the RH(p,n,H,K) and the RH(p,n,H,Q) curves,

although it goes to p = 0 at a much larger value of ε. We could say that our state

equation is soft. From this we can expect a softer curve in the R-M plane with generally

lower values for both coordinates than those which are usually required for stiffer state

equations (maximum masses of around 2 solar masses and maximum radii from 8 to

12 km). In summary, we expect that our model might accomodate compact stars with

SQM cores with very small masses and radii only.
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Conclusion

Here, we recap the main points focused on the course of this thesis, including background

material and model related aspects. Also, we highlight the chief results and we make

some suggestions on directions for further work on the subject.

5.1 Summary

5.1.1 Background and Model

We have started from the QCD Lagrangian and the description of its symmetries, with

particular attention to the approximate chiral symmetry. We have compiled a series

of existing theoretical and phenomenological remarks which support the idea that the

mechanism of dynamical breaking of chiral symmetry in the light sector of QCD is a

powerful tool for the description of strong interactions below an energy scale Λ ∼ 1GeV.

We have argued that such a tool is of importance due to the non-perturbative nature of

QCD at that energy scale, and also as a more easily tractable alternative to lattice QCD

in respect to computational effort. We have also given a brief account of the construction

of EFTs, as well as of the 1/Nc expansion of QCD.

From a number of low energy models that have been proposed in roughly 70 years, we

have focused on the NJL model. It incorporates the ideas of chiral symmetry breaking (or

better, the Nambu-Goldstone realization of chiral symmetry) in a simple and elegant

fashion, providing valuable and often accurate insight into the vacuum properties of

QCD and the dynamical mass generation of quarks. Its basic features, from its original

formulation in terms of nucleon fields to its reinterpretation in terms of quark fields have

been reviewed for two flavours. Its extension to three flavours with the inclusion of the

strange quark has been explained, introducing the ’t Hooft six quark interaction term

88
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which explicitly breaks the UA (1) anomalous symmetry. We have also illustrated the

Bethe-Salpeter description of hadrons and the functional bosonization of the model.

Following reference papers, we have then presented a thorough analysis of a three-flavour

version of the model based on its functional bosonization through the introduction of

auxiliary and physical bosonic fields. We have shown how to use a SPA with an asymp-

totic expansion in terms of the physical fields for the functional integration over the

auxiliary fields, leading to a set of stationary phase conditions for the expansion coeffi-

cients. For the explicit evaluation of the quark functional integral, we have resorted to

a proper time heat kernel expansion which has been suitably generalized to the case of

a non-degenerate mass matrix. We have then obtained, through standard techniques,

the mass gap equations and the effective potential from the tadpole term of the effective

bosonized Lagrangian in the mean field approximation. These steps have been care-

fully exposed because of their relevance to the version of the model we were analyzing

afterwards.

Some additional important aspects have been taken from the literature and detailed in

order to provide a more complete picture of the developments in NJL models and also

to raise a stronger argument in favour of our later treatment. It has been argued that

the three-flavour NJL model with the ’t Hooft term has no stable ground state, and the

introduction of eight quark interaction terms has been suggested to recover the model’s

stability.

All the previous points converge into the recent formulation of an extended version of

the NJL model, which follows in the manner of an EFT and incorporates a complete set

of mass-dependent interaction terms in addition to all the other terms already present in

the former versions. These terms, which explicitly break chiral symmetry, are included

in a way which is completely consistent with dimensional analysis, Nc counting and

Λ expansion. The whole functional bosonization scheme which had been employed

before was then carried out for this new Lagrangian, determining the stationary phase

conditions, the mass gap equations and the effective potential. The procedure for fitting

the model’s parameters has been outlined as well. It has been highlighted that the

inclusion of the mass-dependent interaction terms raised the model to an unprecedented

level of accuracy in the description of empirical data, which supports the conclusion that

the explicit breaking of chiral symmetry is of paramount importance in strong dynamics.

5.1.2 Thermodynamical Analysis

In the last chapter, we have proposed to analyze the consequences of the new mass-

dependent terms for the thermodynamical properties of the model. To that end, we
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have included a model dependence on temperature and chemical potential through the

Matsubara formalism. This has essentially converted the Euclidean time quark integrals

into infinite sums over Matsubara frequencies, which have been explicitly evaluated.

Using these results, the thermodynamical potential has been determined in the mean

field approximation.

We then solved the coupled system of stationary phase conditions and gap equations

numerically for the dynamical quark masses. We have shown a series of mass profiles

for fixed values of the chemical potential and we have drawn the phase diagram in the

µ-T plane. The most striking observation was the existence of two first-order transition

boundaries. In other versions of the NJL model, this feature would only be present either

for unphysically low couplings associated with the flavour-mixing interaction terms or

with the inclusion of diquark terms. In our case, the non-flavour-mixing term with

coupling g3 was found to be crucial for the emergence of the second first-order transition,

somehow counterbalancing the flavour-mixing effects of other terms. This behaviour

could also be traced back to the ordering mκ < ma0 in the scalar meson spectrum.

We have also investigated the possibility of stable SQM existing within the model. This

study has been carried out by first imposing β-equilibrium and charge neutrality con-

ditions, and then solving the aforementioned coupled system of equations subject to

these constraints at zero temperature. We have studied the dependence of quark and

electron densities on µ and found that the electrons played almost no role; after the first

transition, finite densities of up and down quarks arise in the approximate ratio of 2

downs for each up; the strange quarks appear after the second transition, and the three

flavours quickly tend to exist in identical fractions as µ is increased.

The energy per baryon as a function of baryon density and the state equation in the

ε-p plane have also been analyzed. In general, both appear to be softer than those of

other models, although they do not appear to allow for absolutely stable SQM. Conse-

quences for dense SQM inside compact stars have also been speculated, but no conclusive

observations have been made.

5.2 Further Work

There is a large room for further investigations involving this model. Of relevance to

compact stars is the inclusion of a magnetic field in the Lagrangian, which is expected

to significantly alter the results we have obtained in this thesis. This is not a diffi-

cult task, but time constraints have precluded the development of this work. Another

possiblity is to include the Polyakov loop. The absence of confinement is probably the
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main disadvantage of this model, and the Polyakov loop is a standard way of modelling

the effects of the confining-deconfining phase at finite temperatures. These could be

specially relevant at finite temperatures. Also, it would be nice to check how chiral and

deconfinement transitions correlate with each other. Furthermore, we have not provided

a suitable description of the mixed phases associated with the first-order transitions.

This is yet another aspect that could be investigated in a deeper way.

Aside from thermodynamical considerations, we can study a number of scattering pro-

cesses, like π-π or π-K scattering, since the considered model Lagrangian is able to

account properly for the SU (3) breaking effects in the description of the weak decay

constants fπ and fK , in addition to having the correct empirical masses of the mesons.

We can also study decay processes, like the η or η′ three pion decays, that require the ex-

plicit breaking of isospin symmetry, which can easily be introduced through a parameter

refitting with mu 6= md.

Further extensions to the model Lagrangian may still be considered, namely the inclusion

of vector interaction terms, which would enable the study of a broader set of processes.

For example, the results of experiments with stopped antiprotons at LEAR (CERN)

gave unexpectedly large violation of the OZI rule by a factor of 30 - 70. The KLOE

collaboation at DAΦNE φ factory has claimed on the finding of direct OZI violation

in the φ −→ π+ + π− + π0 decay [121]. The amplitude of the direct transition turns

out to be as large as 10% of the indirect OZI violation in φ −→ ρ + π. Since the

Lagrangian contains multi-fermion vertices which break the OZI rule, one can address

this problem and find physical consequences of such interactions. Moreover, with vector

modes included in the Lagrangian, one can go beyond the η (η′) −→ γ + γ decays and

study processes like η (η′) −→ γ + V , where V could be either ρ, ω or φ.



Appendix A

SU(3) and U(3) Groups

A.1 SU(3)

The gauge symmetry associated with the strong interactions is encoded in the SU (3)

group. Its defining generators T a may be written in terms of the Gell-Mann matrices

which generalize the SU (2) Pauli matrices

λ1 =









0 1 0

1 0 0

0 0 0









λ2 =









0 −i 0

i 0 0

0 0 0









λ3 =









1 0 0

0 −1 0

0 0 0









λ4 =









0 0 1

0 0 0

1 0 0









λ5 =









0 0 −i
0 0 0

i 0 0









λ6 =









0 0 0

0 0 1

0 1 0









λ7 =









0 0 0

0 0 −i
0 i 0









λ8 =
1√
3









1 0 0

0 1 0

0 0 −2









(A.1)

with Ta = λa/2. These are traceless Hermitean matrices, which additionaly satisfy

tr (λaλb) = 2δab (A.2)
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The SU (3) Lie algebra is

[Ta, Tb] = ifabcTc (A.3)

where the completely antisymmetric fabc are the structure constants of the group. The

non-zero components are

f123 = 1 , f458 = f678 =

√
3

2

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
(A.4)

Also, we can define an anticommutator

{Ta, Tb} =
1

3
δab + dabcTc (A.5)

where the completely symmetric constants dabc have non-zero components

d118 = d228 = d338 = −d888 =
1√
3

d448 = d558 = d668 = d778 = −
1

2
√
3

d146 = d157 = −d247 = d256 = d344 = −d355 = −d366 = −d377 =
1

2
(A.6)

A.2 U(3)

We may append to the Gell-Mann matrices (A.1) a multiple of the identity matrix

λ0 =

√

2

3
1 =

√

2

3









1 0 0

0 1 0

0 0 1









(A.7)

In this way, we extend our group to U (3) with nine defining generators Ta = λa/2,

where now the index a runs from 0 to 8. For this extended set of Gell-Mann matrices,

we have
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trλa =
√
6δa0 (A.8)

and (A.2) still holds. The Lie algebra is given as in (A.3), with the same structure

constants (A.1). The anticommutator may be written as

{Ta, Tb} = dabcTc (A.9)

where in this case we have, in addition to (A.1),

d0ab =

√

2

3
δab (A.10)

The following relations are useful in calculations and manipulation of expressions

fabefcde − facefbde + fadefbce = 0

fabedcde + facedbde + fadedbce = 0

fabefcde − dacedbde + dadedbce = 0 (A.11)

dabb = 3
√
6δa0

dacddbcd = 3 (δab + δa0δb0)

facdfbcd = 3 (δab − δa0δb0) (A.12)

Another very useful expression is

(λa)ij (λa)kl = 2δilδjk (A.13)

Finally, we define the symmetric coefficients (the ǫ are Levi-Civita symbols)

Aabc =
1

3!
ǫijkǫmnl (λa)im (λb)jn (λc)kl

=
2

3
dabc +

√

2

3
(3δa0δb0δc0 − δa0δbc − δb0δac − δc0δab) (A.14)



Appendix B

Dirac Algebra

The description of point-like relativistic spin-1/2 particles is done through the Dirac

equation

(iγµ∂µ −m)ψ = 0 (B.1)

where ψ belongs to the four-spinor representation of the Lorentz group and the γµ

matrices obey a Clifford algebra

{γµγν} = 2gµν (B.2)

Here, gµν is the Minkowski metric with signature (+−−−). γµ andm are 4×4 matrices.

From (B.2) it is evident that

(γµ)2 = gµµ1 (B.3)

The algebra (B.2) has many possible realizations. In the standard Dirac representation

the γµ matrices are

γ0 =

(

1 0

0 −1

)

, γi =

(

0 σi

−σi 0

)

(B.4)

where 1 is the 2× 2 unit matrix and σi are the Pauli matrices
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σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

(B.5)

In this representation, the γµ matrices satisfy

γµ† = γ0γµγ0 ⇒
{

γ0† = γ0

γi† = −γi
(B.6)

Other common representations are the Weyl and the Majorana representations.

We can use the four matrices (B.4) and the unit matrix 1 to define a complete basis

spanning the whole space of 4× 4 matrices. We have

1 scalar 1

4 vector γµ

6 tensor σµν = i
2 [γ

µ, γν ]

4 axial vector γ5γµ

1 pseudoscalar γ5 = iγ0γ1γ2γ3

(B.7)

The γ5 matrix is of special importance because it anticommutes with all other γµ

{

γµ, γ5
}

= 0 (B.8)

and, in the Dirac representation, it satisfies

(

γ5
)2

= 1 , γ5† = γ5 (B.9)

These properties allow us to define left and right projection operators as

PR,L =
1± γ5

2
(B.10)

which obey the usual relations

PR + PL = 1 (B.11a)

P 2
R = PR , P 2

L = PL (B.11b)

PLPR = PRPL = 0 (B.11c)
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Of particular interest for calculations are the trace properties of these matrices. Some

of the useful identities are

tr (γµ) = tr
(

γ5
)

= 0 (B.12a)

the trace of any product of an odd number of γµ = 0 (B.12b)

the trace of γ5 times any product of an odd number of γµ = 0 (B.12c)

tr
(

γ5γµγν
)

= 0 (B.12d)

tr (γµγν) = 4gµν (B.12e)

tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) (B.12f)



Appendix C

Noether’s Theorem

Noether’s theorem relates the continuous symmetries of a given theory to conserved

currents. This is usually formulated on the basis of the Lagrangian of the theory (or

the Lagangian density, for field theories). Below we will sketch a simple proof of this

theorem.

Suppose that we have a Lagrangian density L (φ, ∂µφ) written in terms of the field

φ =
(

φ1, φ2, . . . φn
)

and which is invariant under the infinitesimal field transformations

φ −→ φ′ = φ+ iαaXaφ (C.1)

where the Xa are the transformation generators and the αa are continuous parameters.

If L is invariant under such transformation, then

δL =
∂L
∂φ

δφ +
∂L

∂ (∂µφ)
δ (∂µφ) = 0 (C.2)

with

δφ = φ′ − φ = iαaXaφ

δ (∂µφ) = ∂µ
(

φ′ − φ
)

= ∂µ (iα
aXaφ) (C.3)

We then have

∂L
∂φ

iαaXaφ+
∂L

∂ (∂µφ)
∂µ (iα

aXaφ) = 0 (C.4)
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We now use

∂L
∂ (∂µφ)

∂µ (iα
aXaφ) = ∂µ

(

∂L
∂ (∂µφ)

iαaXaφ

)

− ∂µ
(

∂L
∂ (∂µφ)

)

iαaXaφ (C.5)

and the Euler-Lagrange equation

∂L
∂φ

= ∂µ

(

∂L
∂ (∂µφ)

)

(C.6)

to arrive at

∂µ

(

∂L
∂ (∂µφ)

iαaXaφ

)

= 0 (C.7)

Since this must hold for arbitrary αa, it means that, to each symmetry generator Xa,

there corresponds a conserved current

Jaµ = i
∂L

∂ (∂µφ)
Xaφ (C.8)

and a respective conserved charge given by

Qa =

∫

d3xJa0 (C.9)



Bibliography

[1] Y. Nambu and G. Jona-Lasinio. Dynamical Model of Elementary Particle Based

on an Analogy with Superconductivity. I. Physical Review, 122(1):345–358, April

1961. URL doi:10.1103/PhysRev.122.345.

[2] Y. Nambu and G. Jona-Lasinio. Dynamical Model of Elementary Particle Based on

an Analogy with Superconductivity. II. Physical Review, 124(1):246–254, October

1961. URL doi:10.1103/PhysRev.124.246.

[3] A. A. Osipov, B. Hiller, and A. H. Blin. Light quark masses in multi-quark

interactions. The European Physical Journal A, 49(1), January 2013. URL

doi:10.1140/epja/i2013-13014-y.

[4] A. A. Osipov, B. Hiller, and A. H. Blin. Effective multi-quark interactions with

explicit breaking of chiral symmetry. Physical Review D, 88, September 2013. URL

doi:10.1103/PhysRevD.88.054032.

[5] R. Alkofer and H. Reinhardt. Chiral Quark Dynamics. Springer, 1995.

[6] D. J. Gross and F. Wilczek. Ultraviolet Behavior of Non-Abelian

Gauge Theories. Physical Review Letters, 30, June 1973. URL

doi:10.1103/PhysRevLett.30.1343.

[7] W. Greiner, S. Schramm, and E. Stein. Quantum Chromodynamics. Springer,

2002.

[8] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory.

Perseus Books, 1995.

[9] E. Fermi. Tentativo di una Teoria Dei Raggi β. Il Nuovo Cimento, 11(1):1–19,

January 1934. URL doi:10.1007/BF02959820.

[10] W. E. Thirring. A soluble relativistic field theory. Annals of Physics, 3(1):91–112,

January 1958. URL doi:10.1016/0003-4916(58)90015-0.

100

doi:10.1103/PhysRev.122.345
doi:10.1103/PhysRev.124.246
doi:10.1140/epja/i2013-13014-y
doi:10.1103/PhysRevD.88.054032
doi:10.1103/PhysRevLett.30.1343
doi:10.1007/BF02959820
doi:10.1016/0003-4916(58)90015-0


Bibliography 101

[11] D. J. Gross and A. Neveu. Dynamical symmetry breaking in asymptot-

ically free field theories. Physical Review D, 10, November 1974. URL

doi:10.1103/PhysRevD.10.3235.

[12] M. Soler. Classical, Stable, Nonlinear Spinor Field with Positive Rest Energy.

Physical Review D, 1, May 1970. URL doi:10.1103/PhysRevD.1.2766.

[13] F. Gürsey. On the symmetries of strong and weak interactions. Il Nuovo Cimento,

16(2):230–240, April 1960. URL doi:10.1007/BF02860276.
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