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Resumo

Neste trabalho eu aplico o método de decomposição em modos

dinâmicos para estudar: primeiro o simples problema de dinâmica

de fluidos de um escoamento dentro de uma cavidade; em se-

gundo, o escoamento no núcleo externo ĺıquido da Terra. Pri-

meiro apresento os prinćıpios do método, usado em dinâmica de

fluidos para decompor uma sequência complexa e eventualmente

perturbada por rúıdo de cartas de escoamento em componentes

onde podemos identificar as mais relevantes em termos da F́ısica

do problema. O grupo de dados para estudar o escoamento den-

tro de uma cavidade é obtido usando o software de livre acesso

OpenFOAM. Este caso de estudo é usado como teste para a im-

plementação do meu algoritmo, visto que resultados decorrentes

da aplicação do Método da Decomposição Dinâmica podem ser

encontrados na literatura. Para os escoamentos no núcleo externo

da Terra, dois grupos de escoamentos são usados, obtidos através

da inversão de dois modelos de campo geomagnético, GUFM para

o peŕıodo de 1840-1990 e COV-OBS para o peŕıodo de 1840-2010.

Os modos resultantes da decomposição são analisados e compara-

dos a um outro tipo de decomposição do mesmo grupo de dados.

Posśıveis explicações para os modos principais são apresentadas

e discutidas.
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Abstract

In this work I apply the dynamic mode decomposition method to

study: first the simple fluid dynamic problem of a flow inside a

cavity; second, the flow in the liquid outer core of the Earth. I

first present the principles of the method, used in fluid dynamics

to decompose a complex and eventually noisy sequence of snap-

shots into components where we can pinpoint those more physi-

cally meaningful. The dataset to study the fluid inside a cavity is

obtained using the open source software OpenFOAM. This case-

study is used as a test for my algorithm implementation, since

corresponding results after application of the Dynamic Decom-

position Method can be found in literature. As for the flows in

the Earth’s outer core, two sets of data are used, obtained from

inversion of two geomagnetic field models, GUFM for the period

1840-1990 and COV-OBS for the period 1840-2010. The result-

ing modes of the decomposition are analysed and compared to

another kind of decomposition of the same data. Possible expla-

nations for the principal modes are presented and discussed.
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Chapter 1

Introduction

The study of the Earth’s magnetic field has been of growing interest in recent

years, and many published articles [3], [13], [14] can be found trying to ex-

plain its trends, dynamics, variation over time. One practical reason for this

growing interest is the study of Space Weather, a field that analyses how the

variations of the Earth’s magnetic field, directly or indirectly affect our life

on Earth. It can influence communications in a world-wide scale, GPS satel-

lites by interfering with guidance and positioning instruments, and can even

disrupt electrical networks, by allowing radiation and energetic particles to

penetrate the Earth’s atmosphere. A very clear example is the South Atlantic

Anomaly (SAA), or how it is also known, the bermuda triangle of space. It’s

an area above the south atlantic region with a very weak magnetic field, and

so radiation penetrates much deeper, causing significantly more disruptions

in that area, causing a big percentage of satellites malfunctions in orbit.

The consensus over the existence of Earth’s magnetic field is that it orig-

inates in the convective flow of the Earth’s outer core, which is composed of

molten metal. The displacement of the electrically conducting fluid relative

to the magnetic field lines creates new magnetic field, which will then affect

the movement of the liquid, and so on, this theory being known as the geo-

dynamo.

The study of the magnetic field alone can provide us with some an-
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2 CHAPTER 1. INTRODUCTION

swers but to really understand the underlying magnetohydrodynamic (MHD)

mechanism, a study of the core flow is the best option. Of course there are no

direct ways to retrieve measurements from so far deep in the Earth, approxi-

mately from 2900km to 5100km from the surface [13]. The only information

we can rely on is the magnetic field produced by the interaction between the

flow and the magnetic field through the geodynamo mechanism and mea-

sured at the Earth surface or above. It is possible then to invert the data

from the magnetic field [16] to allow us to recreate the flow in the outer

core, or to be more precise, the flow at the surface of the outer core, next

to the so-called core-mantle boundary (CMB). This is not an easy process

and requires some restrictions to the allowed flows. In this thesis, I will not

be concerned with the geomagnetic field inversion to obtain the Earth core

flows. Instead, I will be using flows obtained in other studies considering a

quasi-geostrophic (QG) approximation (see section 2.1 and appendix A).

The main goal of the thesis is to create an algorithm to analyse the Earth

core flows, based on the method developed by Peter J. Schmid, called Dy-

namic Mode Decomposition (DMD) [11] [19]. The DMD method analyses

data tables of some flow system and separates the different modes that com-

pose it, and then provides for tools to interpret these modes. Using these

tools, I have tried to understand the underlying physics. I have also identi-

fied similarities with other decompositions of the same data.

Before this could be done the algorithm was implemented in GNU Octave

and tested for the system of a flow inside a cavity, in order to provide knowl-

edge of the method and fine tune the algorithm. The required data for the

flow inside a cavity was obtained using the program OpenFOAM [4].

The thesis is organized as follows: in the second chapter I make a general

introduction to the physical system of Earth core flows involved in the geo-

dynamo. In the third chapter I introduce the dynamic mode decomposition

method. The fourth chapter is about the implementation of the algorithm

in the test case of the flow inside a cavity. The fifth chapter shows the im-

plementation of the code and results for Earth’s outer core flow, and finally

in the sixth chapter I draw some conclusions.



Chapter 2

Earth core flows

In this chapter the physical system to study will be described: the flow of

molten iron in the Earth’s outer core, located between 2900km and 5100km

below the surface (see figure 2.1).✐
✐

“Chapter-” — // — : — page  — # ✐
✐

✐
✐

✐
✐

Sources of the Geomagnetic Field and the Modern Data That Enable Their Investigation  

⊡ Fig. 
Sketch of the various sources contributing to the near-Earth magnetic field

electric currents in the ionosphere (at altitudes – km) andmagnetosphere (at altitudes of
several Earth radii). On average their contribution is also relatively weak—a few percent of the
total field at ground during geomagnetic quiet conditions. However, if not properly considered,
they disturb the precise determination of the internal field. It is therefore of crucial importance
to account for external field (by data selection, data correction, and/or field coestimation) in
order to obtain reliable models of the internal fields. Finally, electric currents induced in the
Earth’s crust andmantle by the time-varying fields of external origin, and themovementof elec-
trically conducting seawater, cause magnetic field contributions that are of internal origin like
the core and crustal field; however, typically only core and crustal field is meant when speaking
about “internal sources.”

A useful way of characterizing the spatial behavior of the geomagnetic field is to make use
of the concept of spatial power spectra (e.g., Lowes  and Sect.  of Sabaka et al. in this hand-
book). > Figure  shows the spectrum of the field of internal origin, often referred to as the
Lowes–Mauersberger spectrum, which gives the mean square magnetic field at the Earth’s sur-
face due to contributions with horizontal wavelength λn corresponding to spherical harmonic
degree n. The spectrum of the observed magnetic field (based on a combination of the recent
field models derived by Olsen et al. () andMaus et al. ()) is shown by black dots, while
theoretical spectra describing core, resp. crustal, field spectra (Voorhies et al. ) are shown
as blue, resp. magenta, curves. Each of these two theoretical spectra has two free parameters

Figure 2.1: Representation of the different layers of the Earth and closer layers of the
atmosphere [13].

3



4 CHAPTER 2. EARTH CORE FLOWS

2.1 The geodynamo

As a consequence of the Earth’s rotation around its axis and physical forces

inside the fluid (mainly buoyancy, Lorentz and pressure forces), the move-

ment of the molten metal is complex, it does not simply flow around the

solid inner core, it has many different aspects, which is why it is possible to

maintain the magnetic field that we presently have.

The Earth’s outer core flow system can be studied making use of the Mag-

netohydrodynamic (MHD) equations. MHD is a field of physics introduced

by Hannes Alfvén for which he would later win the Nobel Prize in Physics

in 1970. The equations used in MHD are constructed making considerations

from both fluid dynamics and electromagnetism.

Starting from the fluid dynamics equations (mass conservation (2.1) and

momentum conservation in its simplest form (2.2)), adding the contribution

of the electromagnetic forces (Lorentz force), of gravity (buoyancy), of vis-

cosity and of inertial forces due to the rotation of the reference frame, one can

obtain equation 2.3 (see appendix A), the so called Navier-Stokes equation.

∂ρ

∂t
+∇ · (ρ~u) = 0 (2.1)

ρ
∂~u

∂t
= −∇p (2.2)

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
+ 2ρ(~Ω× ~u) = −∇p+~j × ~B + ρ′~g + µ∇2~u+ ~f (2.3)

Where ρ is the hydrostatic density, ~u is the flow velocity, p is the non-

hydrostatic part of the pressure, ~Ω (~Ω = Ωẑ) is the Earth’s rotation vector,

~j is the current density, ~B is the magnetic field, ρ′ is the departure from the

hydrostatic density (ρ), ~g is the gravitational acceleration, ν is the kinematic

viscosity and ~f accounts for other forces which may vary according to the

considerations made about the system.
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The term ~j× ~B on the right-hand-side of equation 2.3 is called the Lorentz

force, and it reflects the interaction between the magnetic field and the flow

of the electrically conductive fluid. It can be expanded, by making use of

Ampère’s law, equation 2.4, where the displacement current term was not

included, for it is negligible for non-relativistic velocities.

µ0
~j = ∇× ~B (2.4)

The Lorentz force term can then be written as in equation 2.5.

~j × ~B =
( ~B · ∇) ~B

µ0

−∇
(
B2

2µ0

)
(2.5)

Where on the right-hand-side is the magnetic tension force (first term)

and the magnetic pressure force (second term).

The magnetic field is maintained by the geodynamo mechanism, in which

the flow in the outer core, being an electrically conductive fluid because it is

composed mainly by iron and nickel, generates a magnetic field. This pro-

cess can be explained by the induction equation (2.11). Together with the

Navier-Stokes equation (2.3), the induction equation (2.11) is another impor-

tant contribution for the MHD system of equations, as they together define

the dynamic problem. The induction equation can be deduced as follows:

Using equation 2.4 and Ohm’s law (equation 2.6), one can write equation

2.7.

~j = σ( ~E + ~u× ~B) (2.6)

~E = −~u× ~B +
1

µ0σ
∇× ~B (2.7)

Where ~E is the electric field and σ is the electrical conductivity.

Introducing equation 2.7 into the Faraday’s law equation (equation 2.8)
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we can write equation 2.9.

∂ ~B

∂t
= −∇× ~E (2.8)

∂ ~B

∂t
= ∇× (~u× ~B)− 1

µ0σ
∇× (∇× ~B)

∂ ~B

∂t
= ∇× (~u× ~B) +

1

µ0σ
(∇2 ~B −∇(∇ · ~B)) (2.9)

With the Gauss’s law for magnetism (equation 2.10) where the divergence

of the magnetic field is zero, the last term on the right-hand-side of equation

2.9 is also zero, leaving us with equation 2.11, the induction equation.

∇ · ~B = 0 (2.10)

∂ ~B

∂t
= ∇× (~u× ~B) + η∇2 ~B (2.11)

Where η is the magnetic diffusivity (η = (µ0σ)−1).

The first term on the right-hand-side is an advective term, responsible

for maintaining the magnetic field due to the flow’s motion, and the second

term is a dissipative term, which accounts for the loss of energy of the field.

Besides the fluid motion generating the magnetic field, if the magnetic

field is strong enough it can affect the motion of the fluid (see equation 2.3),

which is the case of the Earth’s dynamo.

2.2 Observations on core flows

To use the dynamic mode decomposition method, data needs to be gathered

about the motion of the fluid, but this is not an easy task because of the
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depth inside the Earth where the core lies. There is no direct way to mea-

sure the velocity in the core, we have to obtain it indirectly, this is done by

inverting data from the geomagnetic field that the flow produces. One uses

the values of the geomagnetic field at the surface to calculate the flow in the

core that created that magnetic field.

One of the problems is that the geomagnetic field we can observe at the

surface is the superposition of many sources [13], some of them due to the

Sun-Earth electromagnetic interaction and it can be difficult to isolate the

contribution that originates only from the core. As we can see in figure 2.1

there are currents in the ionosphere and magnetosphere that generate their

own contributions to the geomagnetic field. Also, induced currents in the

Earth’s crust and mantle can also contribute and even magnetised materials

in the crust can affect measurements of the geomagnetic field. There are

some ways to minimise the external and the internal non-core contributions

which will not be discussed here.

Measurements are taken from onboard ships, in magnetic observatories

and most recently from satellites. After a selection of the data, to minimise

the contributions of sources others than the core, models can be created to

represent the magnetic field. Once we have the geomagnetic field models,

these are inverted to retrieve information about the outer core flow.

The Elsasser number K describes the ratio of Lorentz forces to
Coriolis forces. In Earth’s core both forces are assumed to be of
leading order. A balance in the equation of motion that is domi-
nated by these two forces plus the pressure gradient force is called
a magnetostrophic balance. The magnetostrophic state is often
associated with an Elsasser number of order one. Many present dy-
namo models match this value of K.

The Rossby number Ro describes the ratio of inertial forces to
the Coriolis force and is small in the core. In models it is less than
one, although larger than the core value. Instead of forming the
Rossby number with the global length scale D (the shell thickness),
a more appropriate measure for the ratio of the two forces may be
obtained by using the characteristic length scale of the flow. The
Rossby number formed with this length scale is introduced in
Section 6.

3. Flow pattern in the core and generation of the dipole field

In core dynamics a cylindrical region that is aligned with the
rotation axis and touches the inner core at the equator (in short
called the tangent cylinder) plays an important role. The strong
rotational constraints on the flow lead to different flow structures
in the torus outside the tangent cylinder and the two regions north
and south of the inner core inside the tangent cylinder.

3.1. Flow and field structure outside the inner core tangent cylinder

At the onset of convection in a rotating spherical shell the flow
takes the form of thin elongated columns (Busse, 1970) outside the
inner core tangent cylinder (Fig. 1). The circulation is primarily
around the axes of the columns, but superimposed is a secondary
flow along the column axis which diverges from the equatorial
plane in anticyclonic vortices (with a clockwise rotation when seen
from north) and converges towards the equator in cyclonic vorti-
ces. Near the core–mantle boundary, the secondary flow converges
horizontally towards the center of cyclonic columns. Because the
magnetic flux is approximately frozen into the moving fluid at high

magnetic Reynolds number, the convergent flow will act to con-
centrate magnetic field. Gubbins and Bloxham (1987) noted that
the concentration of magnetic flux at the core–mantle boundary
into four lobes at roughly !60" latitude, with pairs of spots aligned
approximately on the same meridian in opposite hemispheres
(Fig. 2a), can be explained by convection columns close to, but out-
side the, tangent cylinder. Some questions and problems arise with
this simple picture: (1) Do the columns persist beyond the onset of
convection, i.e., at a substantially supercritical Rayleigh number?
(2) Does the presence of a magnetic field disrupt or modify the col-
umns? (3) At the onset of convection the width of the columns is
proportional to the cubic root of the Ekman number. This means
that at a value appropriate for the Earth’s core, E # 10$15 a large
number of very thin columns is expected instead of the few col-
umns associated with the observed flux lobes.

Many geodynamo simulations over a range of Ekman numbers
and various degrees of supercriticality show a basically columnar
flow outside the tangent cylinder, or at least a strong anistropy
of flow structures that are elongated in the direction of the rotation
axis. Often the models exhibit high-latitude flux concentrations
with a pairwise alignment at similar longitudes in opposite hemi-
spheres, similar to the lobes in the geomagnetic field (Fig. 2). These
flux patches are associated with downwelling at the top of columns
with an anticyclonic sense of rotation (e.g. Christensen et al., 1998;
Kono et al., 2000). These findings suggests that inertial forces and
Lorentz forces in the Earth’s core may be insufficient to break the
basically columnar structure and strengthens the interpretation
of the observed flux lobes at the core- mantle boundary as evi-
dence for columnar flow in the core. However, in simulations
showing a few well-defined flux lobes the Ekman number is often
high enough (>10$4) to keep the diameter of convection columns
large. In these models a magnetic flux patch is connected with a
single vortex. There are several conceivable ways how the small
number of geomagnetic flux lobes can be reconciled with a very
low Ekman number flow:

(1) The magnetic field generated by the dynamo may strongly
reduce the wavenumber of convection compared to the
non-magnetic case, as an imposed field does at the onset
of magnetoconvection (Chandrasekhar, 1961). This effect of
a magnetic field has been demonstrated for plane layer
dynamos at sufficiently small Ekman number (Stellmach
and Hansen, 2004). For spherical shell dynamo simulations
with a fixed temperature condition on the outer boundary
a strong influence of the magnetic field on the azimuthal
wavenumber of the flow has not been found so far. However,
recently it has been realized that the fixed temperature con-
dition, which is unrealistic for planetary dynamos but has
often been used for convenience, can seriously affect the
wavelength of the flow. For non-magnetic convection, the
more realistic condition of imposed flux promotes larger azi-
muthal scales at onset (Gibbons et al., 2007), although this
effect is restricted to large Ekman numbers E > 10$4). Full
dynamo simulations show a significant enlargement of azi-
muthal length scales also at lower Ekman number and
strongly supercritical Rayleigh number when replacing
the fixed temperature condition by a fixed flux condition
(Sakuraba and Roberts, 2009). Hori et al. (2010) demon-
strated that a prerequisite for the widening is the presence
of a strong (dipolar) magnetic field in addition to the heat
flux condition.

(2) The observed flux lobes at the core mantle boundary may
not represent a single convective column but rather the
combined effect of a cluster of many columns. Because
the short-wavelength part of the magnetic field at the
core–mantle boundary (CMB) is not known, we only

Fig. 1. Anticipated structure of flow in the geodynamo. The inner core tangent
cylinder is shown by broken lines. Convection columns outside the tangent cylinder
are likely more numerous and much thinner than shown here.

U.R. Christensen / Physics of the Earth and Planetary Interiors 187 (2011) 157–169 159

Figure 2.2: Structure of the flow in the outer core considering a quasi-geostrophic approx-
imation. Columnar flows parallel to the rotation axis, the broken lines outline the tangent
cylinder [3].
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To invert the models, some a priori considerations have to be made about

the flows in the outer core, and for this work the flow is considered to be quasi-

geostrophic, as shown in figure 2.2. The flow is aligned in columns parallel

to the rotation axis of the Earth, this is a consequence of a balance between

the Coriolis force and the pressure gradient inside the core (see appendix A).

In this work, data from two different models of the geomagnetic field were

used, they were the GUFM model [8] for the period of 1840-1990 and the

COV-OBS model [5] for the period of 1840-2010. They were chosen for the

large time period they represent. For the later years, the COV-OBS model

uses satellite data, but even for the period for which we have data for both

models, the models are different, because the methods used to compute them

are different (but we will not discuss those methods here).



Chapter 3

DMD - formalism

The method of dynamic mode decomposition (DMD), proposed by Peter

J. Schmid [19], is simply understood as a way of separating different flow

components, hopefully due to different sources of motion that determine the

fluid dynamic behaviour. More thoroughly, it enables one to study complex

systems, where many different forces and dynamics act, and it allows the

identification of areas of interest where relevant dynamics occur. This might

be sources of disturbance, cyclic behaviour of the system, or other compo-

nents that one can then try to associate with a physical phenomenon. It does

this by decomposing the complex system in a series of modes, each capturing

a different aspect of the overall dynamics.

Having these different modes allows one to recreate the original system, ei-

ther exactly by using all the modes obtained or removing disturbance-related

modes and showing a stabler version of the system. It is also possible, to

some extent, to predict the future behaviour of the system in study using

the dynamic modes, if careful attention is taken when selecting the modes so

that disturbances do not overtake the system.

The greatest advantage in using this method over other possible meth-

ods, is the fact that the DMD does not require any knowledge about the

dynamics of the fluid in study, that is to say, one does not need to know the

9
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physical equations that govern the system. If the system in study is obtained

by numerical simulation, the prognostic equations are known and this is of

no consequence. But when utilising experimental data, measured in a real

system, one does not have this information, all that is available is the data

we can observe, and the DMD method requires only this data.

3.1 Basic equations

First one needs sequences of data, snapshots of the system at regular inter-

vals of time. Any aspect of the system can be studied, be it either velocity,

intensity, density, or any other. For the purposes of this work, the scalar

field of the stream function values was used, and later converted into veloc-

ity charts to represent the fluid’s motion (see appendix A). This is possible

for two dimensional incompressible flows.

Each of the snapshots is described by stream function values at M grid

points, arranged into a vector vi (equation 3.1). If one has N snapshots,

there will be a total of N vectors, evenly spaced in time, by an interval dt.

vi ; i = 1, 2, 3, . . . , N (3.1)

These N vectors are now concatenated to construct the matrix V N
1 (M ×

N), show in equation 3.2.

V N
1 = [v1, v2, v3, . . . , vN ] (3.2)

This can be done using either numerical data, obtained via simulation or

experimental data from observations.

Now the matrix A will be introduced, which is the matrix that regulates

the evolution of the system. It can be obtained from the evolution equations

of the system if numerical simulation results are used, but it is unknown when

using experimental data. Despite this, the next steps will be done assuming
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this matrix exists and acts on the data as shown in equation 3.3.

AvN = vN+1 (3.3)

Considering two subsets of the matrix V N
1 , one where the last snapshot

was removed (V N−1
1 ) and the other where the first one was removed (V N

2 ), as

shown in equations 3.4 and 3.5, one can expand equation 3.3 into equation

3.6.

V N−1
1 = [v1, v2, v3, . . . , vN−1] (3.4)

V N
2 = [v2, v3, v4, . . . , vN ] (3.5)

AV N−1
1 = V N

2 (3.6)

For the purposes of this decomposition, one wants an expression that does

not rely on the use of the matrix A. To achieve that, first the singular value

decomposition (SVD) of the matrix V N−1
1 is done, as in equation 3.7.

V N−1
1 = UΣW T (3.7)

Where the T denotes the transpose.

Now one has the matrix V N−1
1 written as a product of three others. The

matrix U is an orthogonal square matrix with dimension M ×M and has

stored information about the spatial structures of the system, the matrix Σ

is a rectangular diagonal matrix with dimension M × (N − 1), and W is also

an orthogonal square matrix with dimension (N−1)× (N−1), but this time

with information about temporal structures of the system.

By inserting the singular value decomposition of matrix V N−1
1 into equa-

tion 3.6, one gets the next expression, equation 3.8.

AUΣW T = V N
2 (3.8)

The term with the matrix A will now be isolated, starting from equation
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3.8 and multiplying both terms by UT on the left and WΣ−1 on the right,

where Σ−1 is the pseudo inverse of matrix Σ.

UTAUΣW TWΣ−1 = UTV N
2 WΣ−1 (3.9)

From definition of unitary matrix W , one knows that W TW is equal to

the identity matrix I, but ΣΣ−1 is not, it only has diagonal elements , but

not all equal to 1, the last values of the diagonal will be zero, this coming

from the fact that Σ is a rectangular matrix. It will look similar to the matrix

in equation 3.10 (if M > N − 1).

ΣΣ−1 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0
. . .

...
...

0 0 0 · · · 0 0

0 0 0 · · · 0 0


(3.10)

Knowing this an approximation will have to be done, which will be better

the more snapshots are used in the creation of the matrix V N
1 , because they

define the size of the matrix Σ and following that, the number of zeros in the

diagonal of the matrix ΣΣ−1. This approximation is shown in equation 3.11.

UTAU ≈ UTV N
2 WΣ−1 (3.11)

Note from equation 3.9 that, because ΣΣ−1 is not the identity matrix, the

right-hand-side of equation 3.11 involves a projection of A onto a subspace

spanned by at most (N − 1) columns of U . We can define a new matrix S:

S = UTAU (3.12)

Matrix S is an unitary transformation of A. It shares some properties

with A that will allow one to obtain valuable information about the behaviour

of the system, using only data from the snapshots provided, which normally

would only be available by using A.
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By combining equations 3.11 and 3.12 one gets the expression for the new

matrix S, in equation 3.13.

S = UTV N
2 WΣ−1 (3.13)

The main goal with these steps is to obtain the dynamic modes, which

will correspond to the eigenvectors of the matrix A. To this end, first the

eigenvectors of matrix S will be calculated, for which the expression was

obtained before and from them the modes will be derived.

Syi = µiyi ; i = 1, . . . ,M (3.14)

Equation 3.14 gives the eigenvectors (yi) and eigenvalues (µi) of matrix

S. Now the eigenvalues for matrix A will be obtained from equation 3.14,

first by multiplying on the left by U and inserting UTU , which is the identity

matrix, into the left term.

USUTUyi = Uµiyi (3.15)

From equation 3.12 one can easily see that USUT = A, and so:

AUyi = µiUyi (3.16)

From equation 3.16 one can see that the eigenvectors of the matrix A are

given by Uyi, while the eigenvalues are the same as those for matrix S.

One can now define the dynamic modes as eigenvectors φi, where,

φi = Uyi (3.17)

and we can write from equation 3.16.

Aφi = µiφi (3.18)

When analysing the dynamic modes, it is useful to define the dynamic

spectrum, which is obtained by a logarithmic mapping of the eigenvalues, as

in equation 3.19.
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λi =
ln(µi)

dt
(3.19)

The real part of λi provides information about the stability of the as-

sociated mode: if it is greater than zero it is unstable, near zero is stable

and bellow zero represents modes that decay with time. The imaginary part

represents the frequency of the mode [17] [19].

Information about the stability of the mode can also be retrieved directly

from the eigenvalue µi. If the imaginary part is plotted against the real part

of the eigenvalue, the points will loosely follow the contours of a circle of

radius |µi| = 1, with points outside being unstable (corresponding to the

modes that increase exponentially with time), points inside corresponding

to modes that decay over time and tend to disappear, and the ones on the

circle or very close corresponding to stable modes. The advantage of using

the dynamic spectrum to study the stability is an easier way to distinguish

between stable and unstable modes.

Another aspect to take into consideration is the choice of the time in-

terval dt between the snapshots. This can be any interval as long as there

are enough snapshots to represent the system, for instance, if one were to

have 20 snapshots, each separated by a time value of 1, one wouldn’t choose

dt = 10 for that would only give 2 snapshots to work with, and that would

not be a very good representation of the system. There is also a fundamen-

tal inconvenience of using a too high dt value: this decreases the (N − 1)

dimension of the subspace where matrix A is projected and as a result the

approximation 3.11 may no longer be valid.

Besides the number of snapshots available, choosing different dt values

can also affect the modes obtained. If a smaller dt is chosen, which means

data is gathered with more frequency, the modes one will obtain in the end

will correspond to higher frequency events, and most lower frequency ones

will be interpreted either as noise, or mixed together into the mean mode.

If on the other hand one chooses a higher dt, lower frequency modes will
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emerge from the calculations, the steadier aspects of the flow will be shown,

and the higher frequency ones will now be interpreted as noise.

This is easy to understand if one considers the available data for each set.

More snapshots allow one to identify quicker events, events that otherwise one

wouldn’t have enough information to even know they happened, and by using

fewer snapshots one can focus the attention on slower events, that because

the more select number of snapshots become more evident, not having to be

concerned with the higher frequency events.

3.2 Energy ranking and predictions

Decomposing a given flow into several modes, each representing a different

component is useful in identifying the different dynamical sources behind ob-

served behaviours, but something else that can be done is to use those modes

to make predictions [12], to a certain degree, about the future behaviour of

the system.

In order to recreate the flow from the dynamical modes one further needs

to calculate the coefficients of the linear expansion, and sum the different

modes taking into account their relative importance. This is done by making

a projection of each mode onto the first snapshot v1, as shown in equation

3.20. If we define Φ as the M ×M matrix with eigenvectors φi as columns,

then the vector a = Φ−1v1 gathers the projections of v1 onto different eigen-

vectors and:

ai = (Φ−1)ij(v1)j (3.20)

With these projection parameters, the norm associated with each mode

can be defined as shown in equation 3.21. The norm of the modes, although

not a proper energy by definition, will be referred also as the relative energy

of the mode, as it allows to organise the modes by importance. Analysing

the spectrum allows for a better selection of the relevant modes [18].

N = |aiφi| (3.21)
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To recreate any of the initial snapshots, equation 3.22 can be used.

vk =
M∑
i

aiφiµ
k−1
i (3.22)

Where vk is the snapshot one wants to obtain at time kdt, and µi is the

eigenvalue i, k is the time index, it can be seen has advancing the system

through the snapshots. Equation 3.22 is then the one to use for prediction.

If one chooses for example k = 1, the first snapshot will be recreated, and so

on, and these are perfectly obtained from the dynamic modes. If one chooses

a value of k greater than the number of snapshots used, a snapshot of a

prediction will be created, further away in time, but of course it has an error

associated that grows the further we go.

From equation 3.22 there is a different definition of relative energy that

can be obtained. The right-hand-side of the equation can be seen as the sum

of all the modes with their relative contribution. If one takes just one of

those terms and applies the initial idea, which was the norm of the dynamic

mode together with the projection parameter, one can write equation 3.23.

Nk = |aiφi||µi|k−1 (3.23)

It is similar to equation 3.21 but with the addition of the term containing

the µi, which accounts for the stability of the mode. If k is chosen to be one,

it equals equation 3.21, and this represents the initial norm of the mode. By

choosing a different k, for a different time, the relative energy of that mode

at that time is obtained. Modes with the eigenvalue located inside the circle

of radius 1 will decay over time, so even if they have a big initial norm they

will not be of big importance in the long run. On the other hand, modes with

small initial norm that are unstable can grow to have big relative energies

and overrun the system. It is important to analyse both aspects to have an

idea of the importance of each mode, the initial norm (N initial) and the final

norm (N final), which are obtained choosing k = 1 and k equal to the number

of snapshots (N), respectively.



Chapter 4

DMD - testing

To implement the dynamic mode decomposition method, a code was written

from scratch in GNU Octave. After some iterations and many problems

solved, the final version can be found in Appendix B.

The tests of this algorithm were not applied to the Earth’s liquid core

system, but to a simpler one with well known dynamics, and for which results

have been published [19] [20]. In this way mistakes could be easily spotted

and corrections made.

The system chosen was the flow inside a square cavity, and the results of

those tests are shown in the next section.

4.1 Flow inside a cavity

When a steady current flows over a cavity filled with liquid, a vortex starts

to develop inside that cavity, and it is this system, shown in figure 4.1, that

I will analyse.

To simulate this system and obtain the needed snapshots, an auxiliary

program was used, OpenFOAM [4]. This program solves the Navier-Stokes

equations to generate the different snapshots for the system in question.

The geometry chosen is shown in figure 4.1, a square cavity with three

fixed walls, and no-slip boundary conditions, the top wall is moving at a

17
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U = 1 , V = 0
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Figure 4.1: Flow over a cavity schematic. U represents the velocity in the x axis and V in
the y axis.

constant speed to the right and the cavity is filled with a fluid with a certain

viscosity (ν), providing an adjustable Reynolds number (Re), equation 4.1.

Re =
UL

ν
(4.1)

Where the U represent the relative velocity, L the characteristic length of

the system and ν is the kinematic viscosity.

The stream function was calculated in a 50 × 50 grid inside the cavity,

providing 2500 points per snapshot. The top lid velocity was set to U = 1,

being all values provided adimensional, and the Reynolds number of 4500

was chosen for all the calculations shown here.

Figures 4.2(a) and 4.2(b) show the flow solution obtained for one of the

snapshots from the OpenFOAM program, plotted as a vector field (left) and

as the scalar of the stream function (right).



4.2. RESULTS 19

(a) (b)

Figure 4.2: Flow inside a 1x1 cavity with a moving lid with velocity 1, and a fluid with
Re = 4500. (a) shows the vector field and (b) shows the stream function of the flow.

4.2 Results

OpenFOAM was used to generate 90 snapshots, regularly spaced in time

with a time interval (dt) of 1, and then a matrix V N
1 was created with those

snapshots. After applying the method described in chapter 3 the dynamic

modes were obtained. The method generates M eigenvectors (2500 points

each), but not all correspond to dynamic modes, first the relevant ones have

to be selected.

Each eigenvector has a corresponding eigenvalue and only eigenvalues

different from zero will give dynamic modes. This will give at most the min-

imum between M and N − 1 modes if the properties of the ΣΣ−1 matrix are

taken into account.

After obtaining the dynamic modes one thing that can be done is to anal-

yse the stability. There are some modes that reflect the stable behaviour of

the system, but others represent the instabilities, the turbulent behaviour.

This can be done by plotting the eigenvalues of each dynamic mode, the real

part versus the imaginary, as in figure 4.3.

In light gray is represented a circle of radius 1. Points that fall outside
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this circle are considered unstable and grow over time and destabilise the

system, points inside are damped and decay, and points on or near the circle

are understood as stable, and maintain their behaviour more or less as the

system evolves in time [10].

Figure 4.3: Plot of real part of eigenvalues versus imaginary part. 90 snapshots used and
Re = 4500. Color and size coding by norm of corresponding mode.

There is an obvious symmetry along the y-axis, and that is because all

the modes that have an imaginary part different from zero have a complex

conjugate. Those with imaginary part zero are located in the zero line of the

y-axis, so the symmetry is always observed.

Each point has a different colour and size, this is proportional to the rel-

ative energy of each mode, which is calculated as in equation 3.21, but in

this initial test no projection was made so it simplifies to N = |φi|.

As previously said in chapter 3, another way to determine the stability

of the dynamic modes is by calculating λ, using equation 3.19.

This time the imaginary versus the real components will be plotted, and the

stable modes will be the ones on the zero line, and the unstable ones above
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it, as shown in figure 4.4.

Figure 4.4: Plot of the dynamic spectrum, imaginary part of λ versus real part. 90
snapshots used and Re = 4500. Color and size coding by norm of corresponding mode.

The norm of the dynamic mode sets its relative importance against the

other modes. In figure 4.5 one can see the imaginary part of the dynamic

spectrum, or as said before the frequency of the mode, which from now on

we will call ω, against the norm of the mode, or relative energy.

The normalisation of the energy comes from the method of calculating the

dynamic modes, it is a consequence of the process.

The most energetic mode is the one with zero frequency, this is associ-

ated with the mean mode of the flow. A frequency of zero corresponds to an

infinite period, from the equation T = 2π
ω

.

From the 90 snapshots used in this test I obtained 88 dynamic modes,

some are represented below, in figures 4.6, 4.7 and 4.8. The corresponding

values of λ are shown in table 4.1, representing the stability of the mode, by

the real part of λ and its frequency by the imaginary part of λ (λ = λr+ iλi).
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The selected modes are not the ones with greatest norm, they were chosen

according to frequency, both high and low frequency, together with the zero

frequency modes. This because at this time the norm calculated was not the

best way to select the modes.

Figure 4.5: Plot of the relative energy of each mode, versus the frequency ω of the mode.
The energy values are normalised to 1.

Modes λr ω

4.6(a) & 4.6(b) −0.0000038 0.0
4.6(c) & 4.6(d) −0.0086285 0.0
4.7(a) & 4.7(b) −0.0111008 0.35914
4.7(c) & 4.7(d) −0.0158912 0.89608
4.8(a) & 4.8(b) −0.0007453 1.55466
4.8(c) & 4.8(d) −0.0021294 2.66447

Table 4.1: Dynamic modes λ values for 90 snapshots, Re = 4500, lid driven flow in cavity.

The two modes shown in figure 4.6 are the ones with zero frequency, which

would indicate that one of them is the mean mode. The first one is the one

associated with the mean mode, figures 4.6(a) and 4.6(b), because it reflects
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(a) (b)

(c) (d)

Figure 4.6: Modes with zero frequency, the first (top) corresponds to the mean mode and
the second (bottom) to turbulence. (a) and (c) vector field representation, (b) and (d)
stream function representation

the spiral motion inside the cavity without any abnormal behaviour. This is

the reason testing in a simple system is good, relations like these are easy to

be spotted.

The other mode with zero frequency, figures 4.6(c) and 4.6(d), represents

a turbulent behaviour, mostly located in the area where the movement of the

top lid starts to force the fluid into a spiral flow. Despite the zero frequency,

associated with a long lasting and underlying mode, this one either is very

low in energy and not very relevant to the total flow or it decays very fast,

not being of much importance in the long term.
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(a) (b)

(c) (d)

Figure 4.7: Modes with frequency 0.35914 (top) and 0.89608 (bottom). (a) and (c) vector
field representation, (b) and (d) stream function representation

In figure 4.7 one can see two other modes from the same decomposition,

they both show the circular movement in the cavity, with different inten-

sities in different areas, but showing smooth behaviours. In figures 4.8(c)

and 4.8(d) one can see that the circular movement is composed from small

vortices, which show the underlying turbulence in the movement. In figures

4.8(a) and 4.8(b) this vortices are not visible in the entirety of the cavity, but

only on the most turbulent area, as seen before in figures 4.7(c) and 4.7(d).

Figure 4.8 shows the last two modes from the decomposition that will be

shown here, they show the turbulent aspect of the flow, it is clearly visible

the vortices around the cavity, most strongly in the same upper corner near

the moving wall.
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(a) (b)

(c) (d)

Figure 4.8: Modes with frequency 1.55466 (top) and 2.66447 (bottom). (a) and (c) vector
field representation, (b) and (d) stream function representation

It is important to note that larger frequencies are associated with smaller

scale features. Figure 4.6 shows the big scale features, with zero frequency,

figure 4.7 shows smaller scale features with greater than zero frequencies,

and figure 4.8 shows even smaller scale features corresponding to even higher

frequencies.

This first decomposition was used as a test of the method. In the Earth

core system, chapter 5, the method was much improved and more information

about each individual mode was gathered and the relative importance of each

one is better understood.
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Chapter 5

DMD - application to Earth’s

core flows

In this section the results obtained by implementing the dynamic mode de-

composition code in appendix B to the Earth outer core flow charts will be

presented and interpreted, and also some explanation about the algorithm

itself will be given.

5.1 ’Data’ for core flows

The data used for the study of the outer core flow of the Earth was provided

by the output from inversions of two geomagnetic field models as previously

said: the GUFM model for the period of 1840-1990 and the COV-OBS model

for the period of 1840-2010.

The snapshots used for the study were grids of the core flow stream func-

tion for each year, amounting to 151 charts from the GUFM model and 171

from the COV-OBS model, but for the purpose of better comparing both

models only the first 151 years of the COV-OBS model were used, using in-

formation from 1840 to 1990 for both models.

27
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As discussed before in chapter 3 the choice of time interval (dt) is im-

portant, because different time intervals will give different results. As said

before, too small dt values do not properly recover the longer periods and

too large values lead to small values of N and a larger error in estimating A

through equation 3.11.

For both data sets, time intervals from 1 yr to 20 yrs were used, to test

for different behaviours. Using a time interval past 10 yrs did not provide

very interesting results, because of the low number of snapshots I had to

work with. In figures 5.1 through 5.10, the dynamic spectrum for the first 10

time intervals is shown, for both the GUFM model (red) and the COV-OBS

model (green). In figures 5.1 and 5.2, the ones with dt = 1 and dt = 2 respec-

tively, a large number of modes can be seen, as expected from a small time

interval, but these are not ideal for the study done here because they show

many unstable modes, both above and below the stability line (Re[λ] = 0).

Also, with this choice of time interval, although it made use of the maximum

information available, I could only see high frequency modes, the longer pe-

riod ones (low frequency) were lost and blurred by the high frequency ones.

The high frequency modes were commonly very chaotic, with many small

scale structures.

The scale of the dynamic spectrum figures is the same for all time in-

tervals, so the clear reduction in dynamic modes can be seen due to the

increasing time increment, dt, and the relative stability of individual modes

across figures can be seen. It is not so clear in figure 5.3 but it still represents

a bad aggregation of modes, with many unstable ones. Figure 5.4 excluding a

few damped modes, has most of the modes concentrated in the stability line.

Both the time interval of 5 yrs (figure 5.5) and of 6 yrs (figure 5.6) also show

for the most part stable modes. Figure 5.7 excluding one mode from the

COV-OBS model, has all its modes very close to the stability line. Although

with this time interval the amount of dynamic modes available is smaller,

it still provides a good amount of information. Figure 5.8 still shows sta-

ble modes, but in increasingly smaller numbers. The last two time intervals
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shown, 5.9 and 5.10 even though they seem to represent stable modes, the

small quantity of snapshots means that previously identifiable modes here

are mixed, distorting the information that could otherwise be obtained.

For the most part, a reduction of unstable modes, above Re[λ] = 0 and

fast decaying modes, below the same line, is observed the greater the time

interval shown. By calculating too many modes, the method will generate

unnecessary and unstable modes, by calculating fewer modes, the amount of

unnecessary modes decreases and so we obtain a more accurate and stabler

representation of the system. Of course, a balance must be found, otherwise

our modes will begin to mix together and information will be lost.

Figure 5.1: Dynamic spectrum for the time interval of 1 yr. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.

Figure 5.2: Dynamic spectrum for the time interval of 2 yrs. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.
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Figure 5.3: Dynamic spectrum for the time interval of 3 yrs. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.

Figure 5.4: Dynamic spectrum for the time interval of 4 yrs. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.

Figure 5.5: Dynamic spectrum for the time interval of 5 yrs. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.
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Figure 5.6: Dynamic spectrum for the time interval of 6 yrs. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.

Figure 5.7: Dynamic spectrum for the time interval of 7 yrs. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.

Figure 5.8: Dynamic spectrum for the time interval of 8 yrs. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.
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Figure 5.9: Dynamic spectrum for the time interval of 9 yrs. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.

Figure 5.10: Dynamic spectrum for the time interval of 10 yrs. The stability on the y-axis,
frequency on the x-axis. In red the values for the GUFM and green the COV-OBS model.

After my tests, two time intervals were identified as giving similar results

between them and showing correspondence to results from Principal Com-

ponent Analysis (PCA) [15]: these were dt = 4 yrs and dt = 7 yrs, and those

are the ones that will be shown below.

5.2 Results

5.2.1 Time interval of 4 yrs

Table 5.1 shows approximately half of the dynamic modes obtained in the

decomposition for the GUFM model with a time interval of 4 yrs. This is
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because for each mode associated with a complex eigenvalue, the method also

generates another mode associated with an eigenvalue which is the complex

conjugate of the previous one. In the end we have two modes with the same

aspect, same real λr but symmetric imaginary component ω. Those with

zero imaginary component of eigenvalue λi, only appear once and normally

represent the mean modes.

In the next tables as 5.1, the quantity ’stability’ is the real part of λ given

by equation 3.19 (λr). It’s unsigned reciprocal has the meaning of a mean

lifetime for negative and e-folding time for positive values of λr. The closer

the ’stability’ value is to zero, the stabler the mode is (the mean lifetime

tends to infinity). The frequency is the imaginary part of λ (ω), and the pe-

riod is obtained simply by doing T = 2π
ω

. Finally the norm (N) is obtained

from equation 3.23.

There are three different dynamic modes that I will analyse in this work,

and those are the ones shown in bold on the different tables. They are the

top three modes in relative energy (norm) if the final norm (N final) is used.

Although not shown here, they are the top three modes in this energy ranking

for most of the time intervals tested, so they are the ones that I will focus

my attention on.

The first one in table 5.1 is a zero frequency mode, which means an

infinite period. This mode can be associated with the mean flow. The two

next modes have more complicated explanations for their behaviour that will

be given ahead in this chapter. Even though they are the top three modes in

the energy ranking chosen for table 5.1, that is not always the case, as can

be seen in table 5.3.

An important parameter to take into account here is the period of the

modes.

Analysing tables 5.1 and 5.2 we can see that for a time interval of 4 yrs,

both in the GUFM and in the COV-OBS models we get one mode with a

period of around 80 yrs and another of around 160 yrs. They do not appear

in the same order for both models, on the GUFM model the ∼ 160 yrs mode
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is second and the ∼ 80 yrs is third and on the COV-OBS model it’s the

other way around. This is not so relevant as the fact that they are the most

energetic modes as a group.
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Figure 5.11: Vector field representation of two dynamic modes from the GUFM model
decomposition with a time interval of 4 yrs.

Figure 5.11 shows two examples of modes (also depicted in figure 5.12)

from the decomposition of the flows inverted from GUFM, specifically the

mode with infinite period on the left and the mode with a period of 81.45

years on the right.

These charts were obtained by using the stream function to generate the

vectors of the fluid’s flow (see appendix A). Despite indicating the direction

in which the fluid moves in the surface of the outer core (to whitin the al-

gebraic sign), the images are hard to interpret and compare to others. That

is why only the two modes in figure 5.11 will be shown in this manner and

all others using the stream function, which is much easier to analyse and

identify the different structures.

In table 5.3 both models are represented in order to show the difference

in choosing a different energy ranking. In this case equation 3.21 was used

(corresponding to the energy distribution in the initial epoch) and it can be

seen for example that in the GUFM case the second most energetic mode is

also one with zero frequency, the same as the mean mode, but in this case
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Stability Frequency(years−1) Period(years) N final

0.001399 0.000000 ∞ 71.782424
-0.000663 0.037520 167.463861 17.469653
-0.005036 0.077140 81.451726 11.954881
0.022269 0.399991 15.708310 9.429898
0.000892 0.120996 51.928821 8.804339
0.000171 0.214329 29.315584 4.457206
0.006240 0.419349 14.983180 3.840010
-0.008928 0.164022 38.307037 3.723223
0.014806 0.528952 11.878553 3.587201
0.002648 0.290993 21.592225 3.465212
0.007930 0.482869 13.012191 2.856919
0.011719 0.582143 10.793197 2.634215
-0.006251 0.253894 24.747322 2.346580
0.011158 0.732069 8.582777 1.926278
0.009014 0.634562 9.901610 1.743119
0.010086 0.679963 9.240486 1.715047
-0.007775 0.339400 18.512618 1.306748
-0.193993 0.619393 10.144104 0.000000
-0.471241 0.000000 ∞ 0.000000

Table 5.1: Dynamic modes with µi 6= 0 for the GUFM model and time interval of 4 yrs.
Stability, frequency, period and final norm, from equation 3.23 for each mode.

it is not a relevant mode because it’s energy rapidly decays, as can be seen

comparing with table 5.1 which shows the energies at the final epoch of the

snapshots time range, while in tables 5.3 the initial energy is shown.

Depending on the purposes of the study, it may be more significant to

account for the energy in the initial stage of the system, for others, in the

final stage. I will study here the modes already identified, ranked by the final

norm.

In figure 5.12 the three modes for both models that were highlighted

before are shown side by side for comparison between them. The stream

function is used to represent the flow, and a view from the north pole is used

in an orthographic projection.
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Stability Frequency(years−1) Period(years) N final

-0.002840 0.000000 ∞ 50.946225
-0.001573 0.078230 80.317332 15.470077
-0.007911 0.040645 154.586917 10.307104
0.003265 0.196369 31.996883 10.049713
0.036163 0.720273 8.723333 6.624580
0.002675 0.292175 21.504870 5.738887
0.015659 0.408708 15.373298 5.616980
-0.010304 0.121251 51.819445 4.703794
0.016493 0.568536 11.051510 4.549433
0.008839 0.471360 13.329902 3.815228
-0.004289 0.263599 23.836129 3.044376
-0.013371 0.167001 37.623603 2.908860
-0.000997 0.353026 17.798064 2.568605
0.000241 0.525481 11.957025 1.753703
-0.000372 0.619569 10.141215 1.110994
-0.006300 0.674183 9.319699 0.698976
-0.009563 0.762946 8.235423 0.529885
-0.041797 0.430931 14.580497 0.028705
-0.394328 0.333149 18.859969 0.000000

Table 5.2: Dynamic modes with µi 6= 0 for the COV-OBS model and time interval of 4
yrs. Stability, frequency, period and final norm, from equation 3.23 for each mode.

To generate the flow charts used in this work, the Generic Mapping Tools

(GMT) software was used. It is very widely used for generating maps and

projection of different geophysical fields on the Earth’s globe. The hole in the

center of the projections is there because the QG assumption used to derive

the flow information does not work well in the regions above and below the

solid inner core, known as tangent cylinder [3]. For this reason only data

from latitudes of −70◦ to 70◦ are used. In figures like 5.12 only the core

flow modes over the northern hemisphere are shown, but due to symmetry

in relation to the equator they characterise the whole flow. This is clearly

seen in figure 5.13.

It is clear in figure 5.12 that the modes have not exactly the same spatial

structure for both models, but all the key features are the same. For the

infinite period modes, the colours are switched, but that is merely a multi-
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plication by a factor of −1 that is compensated by the sign in ai (see equation

3.22) on the data set, and it is not relevant.

Period(years) N initial Period(years) N initial

∞ 133.160235 18.859969 272.748821
∞ 58.354511 ∞ 77.567043

10.144104 30.060183 154.586917 33.237421
81.451726 25.189171 51.819445 21.613331
167.463861 19.269553 37.623603 21.045807

38.307037 13.956136 80.317332 19.524163
51.928821 7.715992 14.580497 13.948146
24.747322 5.918492 31.996883 6.198941
29.315584 4.345507 23.836129 5.743337
18.512618 4.130080 21.504870 3.862480
21.592225 2.341853 17.798064 2.976997
14.983180 1.524882 8.235423 2.181916
13.012191 0.883432 9.319699 1.775910
10.793197 0.464944 11.957025 1.692132
9.901610 0.459123 10.141215 1.173835
11.878553 0.400961 13.329902 1.031335
9.240486 0.385478 15.373298 0.553404
8.582777 0.369453 11.051510 0.396160
15.708310 0.349278 8.723333 0.031388

Table 5.3: Period and energy for modes of GUFM (left) and COV-OBS (right) for time
interval of 4 yrs, ordered by their norm using the initial norm from equation 3.23

From [15], which analysed the same data sets we work with here, but did

so using the Principal Component Analysis (PCA) method, it can be seen

that similar modes emerged to those in figure 5.12, i.e., the mean flow (top)

the ∼ 160 yr period mode (middle) and the ∼ 80 yr period mode (bottom).

In [15] the mean mode was obtained by doing the average of all the snap-

shots, and so no dynamic information was obtained about it, but in my tests,

it emerges as a dynamic mode of it’s own, as a consequence of the decom-

position. In this way I have information about the stability and behaviour

of the mode, and it also serves to confirm that it is indeed the mean mode I

obtained.
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It is also worth noting that the PCA mode corresponding to the ∼ 160

yrs periodicity in this study did not appear as being periodic with PCA.

The aspect of the mean flow mode can be explained by a combination of

two mechanisms as explained in [2], where simulations of the Earth’s geody-

namo were made. First, a gravitational coupling between the inner core and

the mantle, that forces the outer core flow into a rotating shell, providing a

westward flow, close to the mantle. Second, a variation of the growth-rate of

the inner core, causes an asymmetric thermal convection and an eccentricity

of the jet. Both these effects, cause an eccentric westward gyre located be-

neath the Atlantic at low latitudes, and beneath the Pacific at high latitudes.

As it is a QG structure, one can perceive where it is closest to the core sur-

face. The mode’s aspect in figures 5.12 and 5.15 reflects this behaviour.

The two other modes represented in figures 5.12 and 5.15 are also obtained

by the method in [15]. From the PCA method a general time variation (not

necessarily periodic) can be retrieved associated to a given mode, but the

second mode obtained in [15] looks to have a periodicity of around 80 yrs,

corresponding to what I obtain here for the dynamical mode shown at the

bottom of figure 5.12. In fact, using DMD, a similar looking mode, with two

vortices, around longitude −60◦ and 30◦, and an opposite vortex around the

tangent cylinder, is obtained and its period is also around 80 yrs, for the time

increment of 4 yrs from table 5.3 and around 78 yrs for the time increment

of 7 yrs from table 5.6.

The other mode that I show here has a period of around 160 years for

most tests and it also appears in [15], although not associated with a periodic

time function. The periodicity of this mode may not be a robust feature. It

may be a consequence of the limited amount of information I have to analyse

since the time interval I have at my disposal is 151 years, which more or less

coincides with the found period.

Such a periodicity of ∼ 160 yrs has however been recently found by other
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authors (Jackson and Mound,2010) [9], suggesting that it should be consid-

ered for further studies. Here, it could show a higher performance of DMD

compared to PCA in extracting relevant superposed modes.
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Figure 5.12: Dynamic modes plotted as stream functions, in a view from the north pole,
showing latitudes between 0◦ and 70◦. GUFM model (left) and COV-OBS model (right)
for a time interval of 4 yrs. Modes represented here are highlighted in tables 5.1 and 5.2.
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5.2.2 Time interval of 7 yrs

The other case studied corresponds to choosing the time interval dt = 7 yrs,

and as can be seen in figure 5.15 the modes are quite similar, with vortices

around the same places, the small differences can be attributed to a different

amount of data.

In tables 5.4, 5.5 and 5.6 the information about each mode referred above

can be seen, and is much the same as the information in tables 5.1, 5.2 and

5.3 for the time interval of 4 yrs. In this case, the same information can be

taken by using a different time interval, so no new interpretation comes from

choosing dt = 7 yrs, but it is useful to see the similarities by choosing less

data. Some modes will of course be different, but those are not shown here

as they were not the focus of the study.

Stability Frequency(years−1) Period(years) N final

0.003439 0.000000 ∞ 81.619565
-0.000302 0.080870 77.695197 17.105231
-0.001818 0.039103 160.683381 16.231589
-0.006386 0.126560 49.645834 6.708596
-0.001486 0.206426 30.437987 4.562660
0.003629 0.332522 18.895545 3.117376
-0.004913 0.238405 26.355132 2.846390
-0.016033 0.151689 41.421523 2.446380
-0.008786 0.434024 14.476573 2.237760
-0.005667 0.295641 21.252773 1.624948
-0.007021 0.391310 16.056786 1.617192

Table 5.4: Dynamic modes with µi 6= 0 for the GUFM model and time interval of 7 yrs.
Stability, frequency, period and final norm, from equation 3.23 for each mode.

As can be seen in the tables for dt = 7 yrs, there are less modes than

for dt = 4 yrs, this is a consequence of the method, which as previously said

will give at most the minimum between M and N − 1, depending on the

eigenvalue associated to each mode. If an eigenvalue only has real part and if

it is negative, the corresponding mode will not be considered. This is because
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the study of the stability and frequency of each mode requires a logarithmic

mapping of the eigenvalues, and the values that are located on the negative

real axis of the logarithm function aren’t allowed, because there is a branch

cut in that area [1].

Stability Frequency(years−1) Period(years) N final

0.000125 0.000000 ∞ 59.702860
0.000954 0.080229 78.315392 16.915643
-0.005323 0.039165 160.428553 11.149480
0.002391 0.206277 30.459913 8.473828
0.003584 0.310965 20.205427 5.674270
-0.012694 0.139735 44.965094 4.542461
0.003313 0.348265 18.041394 4.281917
-0.011943 0.165015 38.076485 4.131215
-0.009115 0.268775 23.377152 1.974457
-0.017978 0.420892 14.928252 0.751653
-0.326478 0.000000 ∞ 0.000000

Table 5.5: Dynamic modes with µi 6= 0 for the COV-OBS model and time interval of 7
yrs. Stability, frequency, period and final norm, from equation 3.23 for each mode.

Period(years) N initial Period(years) N initial

∞ 49.234557 ∞ 440.807046

41.421523 25.829847 ∞ 58.613617

160.683381 21.205237 44.965094 29.357847

77.695197 17.882747 160.428553 24.382634

49.645834 17.151774 38.076485 23.907375

14.476573 8.141993 78.315392 14.701343

26.355132 5.860553 14.928252 10.561671

30.437987 5.676524 23.377152 7.539525

16.056786 4.539545 30.459913 5.962794

21.252773 3.737741 20.205427 3.350614

18.895545 1.828436 18.041394 2.631018

Table 5.6: Period and energy for modes of GUFM (left) and COV-OBS (right) for time
interval of 7 yrs, ordered by their norm using the initial norm form equation 3.21
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By choosing a time interval of 7 yrs there are also two modes with zero

frequency, but this time in the COV-OBS model. The same behaviour can be

seen, where for the initial epoch the two modes are at the top of the energy

ranking, but looking at the final epoch, only one of them, coinciding with

the mean flow from the PCA analysis, remains at the top and the other falls

to zero energy. In table 5.5 it can be seen that the stability of this mode

has the lowest negative value, which means it decays quite fast [10]. From

the reciprocal of the ’stability’ parameter, a decaying time of ∼ 3 yrs can

be computed. This was also the case for the mode for the GUFM model in

dt = 4 yrs, seen in table 5.1, where the decaying time was ∼ 2 yrs.
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Figure 5.13: Dynamic modes plotted as stream functions, in a view from the equator,
showing latitudes between −70◦ and 70◦, and all longitudes. GUFM model for a time
interval of 7 yrs.
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In figure 5.13 a different view of the modes is given, centering the equator,

and giving a vision of all the globe. The modes represented are from the time

interval of 7 yrs for the GUFM model, the first from the top being the mean

mode and the other the mode with period of 77.70 years. The symmetry

about the equator can clearly be seen, which was imposed by the choice

made when calculating the flows from the geomagnetic data.

Figure 5.14 shows the dynamic spectrum for the time interval of 4 yrs

in the top and the interval of 7 yrs in the bottom, using red for the GUFM

model and green for the COV-OBS model. It shows the same information

that is on figures 5.4 and 5.7, but zoomed in so it can be more clearly seen.

It can be seen that with the exception of a few modes they are all close to

the zero line, which means they are more or less stable.

The modes with zero frequency and very negative λr in both graphics

are the modes that appear to be mean modes but decay very fast over time,

consequence of the real component of λ being so low, i.e., a short decaying

time.

Figure 5.14: Dynamic spectrum for the time interval of 4 yrs (top) and 7 yrs (bottom).
On the y-axis the stability of the mode and on the x-axis the frequency. In red the values
for the GUFM model and green the COV-OBS model.



5.2. RESULTS 45

Figures 5.16 and 5.17 show the energy ranking (norm) of each mode, in

logarithmic scale because some of the values are very small and hard to see.

Figure 5.16 is for the time interval of 4 yrs, for both models, with each figure

showing the two energy rankings discussed before, the initial norm (red) and

the final norm (green) for comparison. Figure 5.17 has the same outline but

now for the time interval of 7 yrs.

One can see from these figures that the top three norms correspond to

the lowest frequency modes, the ones discussed before. Some modes show a

bigger initial norm than a final norm, and these are the damped modes, the

ones that decay quickly with time, others show the opposite, smaller initial

norm than final norm, and these correspond to the unstable modes, others

don’t vary much, meaning they are relatively stable.

It is important to note that these graphics (5.16 and 5.17) differ from the

one in figure 4.5 mainly because only half the modes are represented, the

ones with zero or greater than zero imaginary λ component.

And no graphic similar to figure 4.3 was shown for this decomposition

because the information about the stability that it provides can be obtained

from figure 5.14 and on top of that, figure 5.14 also provides the frequency

of each mode.
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(b) T = ∞
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(c) T = 160.68 years
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(d) T = 160.43 years
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(e) T = 77.70 years
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(f) T = 78.32 years

Figure 5.15: Dynamic modes plotted as stream functions, in a view from the north pole,
showing latitudes between 0◦ and 70◦. GUFM model (left) and COV-OBS model (right)
for a time interval of 7 yrs. Modes represented here are highlighted in tables 5.4 and 5.5,
from top to bottom in the same sequence as the tables.
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Figure 5.16: Energy ranking (logarithmic scale) according to frequency for the GUFM
model (top) and COV-OBS model (bottom), for the time interval of 4 yrs. Each graphic
shows both the initial energy (red) and the final energy (green) for each mode.

Figure 5.17: Energy ranking (logarithmic scale) according to frequency for the GUFM
model (top) and COV-OBS model (bottom), for the time interval of 7 yrs. Each graphic
shows both the initial energy (red) and the final energy (green) for each mode.
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5.2.3 Predictions

As discussed in chapter 3, a prediction of the future behaviour of the system

can be sought.

In figure 5.18 the reconstruction of the core flow can be seen. Using the

flow charts from 1840 to 1990 from the COV-OBS model to create the dy-

namic modes, the flow was recreated for the year 1990 using the equation

3.22. As one can see, it recreates the flow inverted from the geomagnetic

model exactly, as it is expected, since the snapshot for the year 1990 is in-

cluded in the construction of the dynamic modes. The residual norm for the

recreated flows (rec) is almost always 0, with only 3 cases, in the 10 studied

not being zero. The residual norm for the recreated flows in those cases was

between 1.4× 10−12 and 2.5× 10−11.
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(a) COV-OBS 1990
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(b) Recreation 1990

Figure 5.18: Flow obtained by the COV-OBS model (obs) for the year 1990 (left) and
recreation (rec) of the flow using the method described in 3.22 with a time interval of 5
yrs (right).

By not using all the snapshots available for the construction of the dy-

namic modes, predictions can be made and compared to the actual snapshots

for the years that were not used. The COV-OBS model was used for this

purpose, since for that model the snapshots go further until the year 2010,
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and only the time period of 1840-1990 was used to generate the dynamic

modes. The flow charts for the years 1990 to 2010 can then be used to com-

pare with the predictions made from the dynamic modes.

In the following we distinguish between the flow chart directly inverted

from geomagnetic field models and which we call ’observed’ (obs); the flow

chart ’recreated’ from all the DMD modes (rec) for an epoch lying inside the

analysed period; the flow chart ’predicted’ from DMD modes for an epoch

lying outside the time interval used to compute those modes (pre).

In figure 5.19 the residual norm (r) or prediction error is shown, it is

obtained by the norm of the difference between the prediction and the ac-

tual flow chart (observed) divided by the norm of the actual flow chart (see

equation 5.1).

rk =
|vobsk − v

pre
k |

|vobsk |
(5.1)

Figure 5.19: Residual norm for the predictions of the years 1994-1996 (red) and 2000-2002
(green) for time intervals ranging from 1 to 10 yrs.
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It was calculated using intervals between two consecutive snapshots (dt)

of 1 yr to 10 yrs , and concentrating on the ability of the method to predict

the flows in the two periods, 1994-1996 and 2000-2002. We could not test the

prediction capacity for one exact epoch, due to the nature of the equation

used to predict the flows (equation 3.22). It only allows us to make predic-

tions for years spaced by the time interval chosen, that is to say, starting

from 1840 only multiples of the time interval are allowed. For example, in

the case of the interval of 4 yrs, the last snapshot used for the decomposi-

tion is from the year 1988, while for the time interval of 5 yrs is the year 1990.

The period of 2000-2002 was the only one for each there was a prediction

when using all time intervals, but the period of 1994-1996 is also shown even

if only for the first 7 time intervals, for a more complete analysis. Despite

the fact the predictions are not all for the same year, which accounts for

some irregularities, most noticeably, the peak for the time interval of 9 yrs,

an almost monotonous decrease of r with dt is seen for the 2000-2002 period,

and a tendency for r to increase with the largest dt is seen for the 1994-1996

period.

From the information available, it is not clear if the residual norm will

decrease continuously while increasing the time interval, as the green curve

could suggest (figure 5.19). I expect that it will only decrease until a certain

point and then start increasing, due to the reduced data used to calculate

the dynamic modes.

From figure 5.19, for the period of 1994-1996 it seems that a time interval

of 3 yrs and 5 yrs gives the best results, while for the period of 2000-2002, the

intervals of 5, 7 and 10 yrs seem to give lower residual norms. In figure 5.20

results for all the time intervals from 1 to 10 yrs are shown in greater detail,

for the whole epoch available for comparison (1990-2010). For a given dt,

the further into the future the flows are calculated, the greater the residual

norm, which means the predictions are progressively worse.

The time interval dt = 5 yrs was used to show the recreated (rec) (figure

5.18) and the predicted (pre) (figure 5.21) flows. For the prediction using
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this time interval, four years are possible, 1995, 2000, 2005 and 2010, and

the first three are shown here (see figure 5.21).

Figure 5.20: Residual norm for the time intervals between 1 and 10 yrs, for the time period
of 1990-2010.

Note that not all curves in figure 5.20 start in 1990 and end in 2010, that

is due to the time interval chosen, not all years can be studied for all time

intervals, as previously said. For example, in the case of the time interval of

7 yrs, by starting the decomposition in the year 1840, the last one (within

the period 1840-1990) that will be used is 1987, therefore, the first prediction

will be for the year 1994, and the last before 2010 will be 2008. Also, the full

behaviour of the dt = 1 yr predictions is not shown. It escalates very rapidly

and would reduce the visibility of the other curves, and having such a high

residual norm value, the dt = 1 yr decomposition is not of interest for the

prediction calculations.

The first prediction in figure 5.21 is of the year 1995, and one can see

that despite it not being exactly the same as the recreation from figure 5.18,
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it is still very close. Some of the structures are the same, the vortex in the

pacific area has the same shape, even if less intense, the opposing vortex in

longitude −60◦ is also represented and the structure around longitude 60◦ is

also similar. The second prediction is for the year 2000, it shows less similar-

ity with the actual flow, the structures at longitude 60◦ are less identifiable,

the vortex seen in longitude −60◦ is not seen in the prediction as clearly,

together with the structure in the pacific area. The last image is for the year

2005, and the prediction is even more distant from the actual flow. Again,

some structures are similar but overall, the flow is not the same. There was

another prediction that could have been shown here, for the year 2010, but

the conclusions one can take would have been the same. The further into the

future one tries to predict, the greatest the error. In this case (dt = 5 yrs),

for the year 1995, the prediction seems reasonable, but after that, even using

the recreation, or the actual flow for the year 1990 would provide a better

representation of the flow.
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(a) COV-OBS 1995
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(b) Prediction 1995
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(c) COV-OBS 2000
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(d) Prediction 2000
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(e) COV-OBS 2005
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(f) Prediction 2005

Figure 5.21: Flows obtained from the COV-OBS model dynamic modes (1840-1990) for
the years of 1995 (top-left), 2000 (center-left) and 2005 (bottom-left), and the respective
reconstructions using the method described in 3.22 on the right.
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Chapter 6

Discussion and Conclusions

In this chapter I will summarise what was learnt during the thesis work and

what could be improved and done in the future.

The case in study, the Earth’s outer core flow has some dynamics that

are not yet fully understood, so with this study I can only hope to provide

another view on the problem and not solve it. To associate the dynamic

modes that were obtained to actual physical modes, which would be the

ideal ending to this study, would require the system to be well described by

physical dynamical equations. A relevant question to ask is how to obtain

these equations from a knowledge of the dynamical matrix A. There are

many attempts made at modelling the flow in the outer core, with some very

interesting results, but this identification of the modes with physical systems

was not possible in my time-frame.

Nonetheless I was able to apply the DMD method to the flow charts of

two systems with success, producing dynamic modes that can be visually

identified with components of those flows. In particular, the well-known sys-

tem of the flow inside a cavity and the case of the Earth’s core flow. With

respect to this latter case, three modes were discussed, among many others

that were obtained. Validation of these modes was possible by comparison

with results from other method (PCA) and additional dynamical information

was obtained about them, that had not yet been known, as decaying time

values or stability assessment and periodicities.

55
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The Earth’s geomagnetic field shows a very distinct westward drift [7],

[6], most predominant in the Atlantic hemisphere, and not so visible in the

Pacific. If maps of the magnetic field for different epochs are considered,

a clear westward shift of structures can be identified. It is not homogenous

around the globe, but it is still a very large component of the so called secular

variation, which is the time variation of the magnetic field along the years.

The mean mode that was obtained, shown at the top of figures 5.12 and

5.15, has a vortex at medium latitudes in the atlantic hemisphere, loosely

centred around longitude 30◦, among other relevant structures. Much less

intense structures exist on the opposite side, meaning it could be related to

this westward drift that has been observed for many centuries now. Simula-

tions of the Earth’s core flow, considering magnetic coupling between the core

and the mantle, together with an heterogeneous thermal convection from the

inner core to the mantle based on an asymmetric cooling of the inner core

generate flows that show similar aspects to the mean mode obtained here [2].

The second mode shown in figures 5.12 and 5.15, shows many vortices

around the tangent cylinder, some more defined than others. From the quasi-

geostrophic approximation (see appendix A) used for the derivation of the

flows, this mode represents the structuring of the flow into cylinders paral-

lel to the rotation axis. As said before the period associated to this mode

sorting from DMD may not be relevant due to the fact that it coincides with

our total time interval, but it can also mean that it represents a different

component of the mean mode.

The last mode shown in figures 5.12 and 5.15 shows a large scale vortex

around the tangent cylinder, together with some other smaller scale vortices

around the tangent cylinder. By analysing the results and conclusions in

[15], one can see that this mode carries most of the angular momentum of

the flow. This is an important point because of its implications with the

length of day (LOD) variation. The length of day is not constant as one

might expect, it has small variations along the years, and even though they
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are in the range of milliseconds, they are still meaningful.

The core-mantle system can be considered isolated in the time-frames

considered and so the total angular momentum variation is zero. Therefore

the angular momentum variation seen in the core is the opposite of the one

seen in the mantle, and the LOD variations are considered to have a source

in the variation of the angular momentum of the core. This closely connects

our dynamic mode with the LOD variations.

A first attempt at using the dynamic modes to predict the future of the

system was made. If more information about the dynamics behind each

mode was known, allowing for a selection of the relevant modes from the less

relevant and many times more complex modes, better predictions could have

been made.

If there was more time, the criteria for the selection of the most impor-

tant modes would have been the next step, allowing to recreate the system

without allowing for turbulent behaviours to distort our predictions. In other

words, which modes should be kept and which could be rejected in order to

reduce the flow complexity keeping the main relevant features?

The SWARM mission, composed of three satelites with sophisticated

magnetometers and launched into orbit late 2013, is providing the most

accurate and recent information about the geomagnetic field and its time

variations. It would be very interesting to apply this method to the new

models provided by the mission, particularly to study the predictive capac-

ity of DMD. This is important to identify important space weather events:

if the internal magnetic field is weakened, more space weather events are to

be expected, for example due to increased solar activity, and the ability to

predict those events would be an invaluable tool.
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Appendix A

Quasi-geostrophic

approximation and

pseudo-stream function

To analyse the constraints that the quasi-geostrophic approximation imposes,

one first must look at the governing equation, in this case the conservation of

momentum for an electrically-conducting, rotating and incompressible fluid

(∇ · ~u = 0).

ρ
∂~u

∂t
+ ρ(~u · ∇)~u+ 2ρ(~Ω× ~u) = −∇p+~j × ~B + ρ′~g + ρν∇2~u (A.1)

Where ρ is the hydrostatic density, ~u is the fluid velocity, ~Ω (~Ω = Ωẑ)

is the Earth’s rotation vector, p is the non-hydrostatic part of the pressure,

~j is the current density, ~B is the magnetic field, ρ′ is the departure from

the hydrostatic density (ρ), ~g is the gravitational acceleration and ν is the

kinematic viscosity.

The restriction made by the quasi-geostrophic approximation has effect

in the entire outer core volume, and is done considering that only the Coriolis

and pressure forces contribute to the flow (i.e., that all other terms are lower

orders of magnitude) (see equation A.2).
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2Ωρẑ × ~u = −∇p (A.2)

From equation A.2 we can deduce the Taylor-Proudman theorem (see

equation A.3) by considering an incompressible flow and by calculating the

curl of equation A.2. The Taylor-Proudman theorem shows that the flow is

invariant in the direction parallel to the rotation axis, which is what gives

the flow its columnar aspect.

∂~u

∂z
= 0 (A.3)

Noting that ẑ × ~u = ẑ × ~uE, where ~uE is the equatorial flow, one can

write:

2Ωρ(ẑ × ~uE)× ẑ = −∇p× ẑ

2Ωρ ~uE = −∇× (pẑ)

~uE = ∇×
(
−p
2Ωρ

ẑ

)
(A.4)

The constraints in equation A.2 are only to the equatorial flow, and from

equation A.4 we can see that ∇ · ~uE = 0, so to maintain an incompressible

flow (∇ · ~u = 0) and also verify equation A.3, ∂uz/∂z = 0.

The quasi-geostrophic approximation verifies equation A.3 for all the

equatorial flows, but it also has to take into account the spherical bound-

aries of the core, which means that ∂uz/∂z cannot be zero.

In this case the flow can be described by equation A.5,

~u = ∇× ψ(s, φ, t)ẑ + uz(s, φ, z, t)ẑ (A.5)

with,

uz(s, φ, z, t) = − sz
H2
c

us(s, φ, t) = − z

H2
c

∂ψ

∂φ
(s, φ, t) (A.6)
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where (s, φ, z) are cylindrical coordinates, ψ is the stream function and

Hc =
√
r2c − s2, with rc the Earth’s core radius.

The first term on the right-hand-side of equation A.5 represents the non-

divergent motion, and the second term is the axial flow, needed to satisfy the

non-penetrating boundary condition.

In this scheme, the Taylor-Proudman theorem (A.3) and the flow’s in-

compressibility are not completely verified, only approximately.

A modified QG model accounts for the mass violation induced by the

axial flow term in equation A.5, by adding a new term that cancels the uz

divergence (see equation A.7).

~u = ∇× ξ(s, φ, t)ẑ + uz(s, φ, z, t)ẑ +
s

H2
c

ξφ̂ (A.7)

Where ξ is called a pseudo-stream function.

In this work, most of the representations of the flow were done using

the pseudo-stream function (ξ) (referred in the work above only as stream

function), but the vector (~u) representation of the flow was also shown, and

based on the notes made in [15], one can be obtained from the other as in

equation A.8.

~u =
1

cos θ
∇H ∧ ξ(θ, φ)r̂ +

sin θ

rc cos2 θ
ξNZ(θ, φ)φ̂ (A.8)

where ~u is the surface flow beneath the core-mantle boundary, ξNZ is

the non-zonal part of ξ, ∇H denotes the horizontal part of the divergence

operator and (r, θ, φ) are the spherical coordinates.
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Appendix B

Algorithm

%-------------------------------------------------------------------------------%

% %

% Dynamic Mode Decomposition Code Joao Domingos %

% %

% -Applied to geomagnetic data Last change: 02/09/2014 %

% %

%-------------------------------------------------------------------------------%

%---LOAD_SNAPSHOTS----------------------------%

Vsf = load ("Vstr.dat"); %load file with snapshots ’Vstr.dat’

cols = columns(Vsf); %number of snapshots

%---------------------------------------------%

%---INPUT-------------------------------------%

disp("\n|------------------------------------------------------|")

disp( "| |")

disp( "| |\\ |\\/| |\\ |")

disp( "| |/ynamic | |ode |/ecomposition |")

disp( "| |")

disp( "|------------------------------------------------------|")

text1 = sprintf(" Use how many snapshots? (available - %3.3d) ",cols);

numsnap = input(text1);

dt = input(" Time step: ");

text2 = sprintf(" Calculate POD modes and projections? ");

pod_projection = input(text2);

predict = 0;

text3 = sprintf(" Predict future behaviour? (0-No, 1-Yes) ");

predict = input(text3);

if(predict == 1)

text4 = sprintf(" How many %2.2d year steps into the future? ",dt);

future = input(text4);

end
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directory = input(" Directory where the files will be stored: ","s");

disp("|------------------------------------------------------|")

%---------------------------------------------%

%---MATRIX_CALCULATIONS-----------------------%

V1 = Vsf(:,1:numsnap-1); %create the matrix V1

V2 = Vsf(:,2:numsnap); %create the matrix V2

[U,S,W] = svd (V1); %Single value decomposition of V1

rows = rows(Vsf); %points in the mesh

hU = U’; %Hermitian of U

iS = pinv(S); %pseudoinverse of S

FS = hU * V2 * W * iS; %create the matrix FS

[eig_vec,eig_val] = eig(FS); %get the eingenvalues and vectors of FS

L = diag(eig_val); %vector with the eigenvalues

dmd = U*eig_vec; %create the dynamic modes matrix

%---------------------------------------------%

%---OPEN_DATA_FILES---------------------------%

mkdir(directory); %make directory

cd(directory) %save into directory

fidl1 = fopen("lambda_1.dat","w"); %file with lambda_1 data

fidl2 = fopen("lambda_2.dat","w"); %file with lambda_2 data

fidf1 = fopen("files.dat","w"); %file with figure data

%---------------------------------------------%

e_proj = inv(dmd)*Vsf(:,1);

%---LAMBDA_MATRICES---------------------------%

k1 = 0;

k2 = 0;

for i = 1:rows %creates a matrix with non-zero eigenvalues

if ((real(L(i)) ~= 0.0)&&(imag(L(i)) > 0.0))||\

((real(L(i)) > 0.0)&&(imag(L(i)) == 0.0))

k1 += 1;

lambda_1(k1,1) = i; %row of the eigenvalue

lambda_1(k1,2) = real(L(i)); %eigenvalue real part

lambda_1(k1,3) = imag(L(i)); %eigenvalue imaginary part

lambda_1(k1,4) = real(log(L(i))/dt); %dynamic spectrum values real part

lambda_1(k1,5) = imag(log(L(i))/dt); %dynamic spectrum values imaginary part

lambda_1(k1,6) = norm(e_proj(i)*dmd(:,i)); %energy of mode k

if (lambda_1(k1,5) ~= 0.0) %period of the dynamic mode k

lambda_1(k1,7) = (2.0*pi)/(lambda_1(k1,5));
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else

lambda_1(k1,7) = 0.0;

end

lambda_1(k1,8) = norm(e_proj(i)*dmd(:,i)*L(i)^(cols-1));

end

if (real(L(i)) > 0.0)||(imag(L(i)) ~= 0.0)

k2 += 1;

lambda_2(k2,1) = i; %row of the eigenvalue

lambda_2(k2,2) = real(L(i)); %eigenvalue real part

lambda_2(k2,3) = imag(L(i)); %eigenvalue imaginary part

lambda_2(k2,4) = real(log(L(i))/dt); %dynamic spectrum values real part

lambda_2(k2,5) = imag(log(L(i))/dt); %dynamic spectrum values imaginary part

lambda_2(k2,6) = norm(e_proj(i)*dmd(:,i)); %energy of mode k

if (lambda_2(k2,5) ~= 0.0) %period of the dynamic mode k

lambda_2(k2,7) = (2.0*pi)/(lambda_2(k2,5));

else

lambda_2(k2,7) = 0.0;

end

lambda_2(k1,8) = norm(e_proj(i)*dmd(:,i)*L(i)^(cols-1));

end

end

%---------------------------------------------%

%---ORDER_MODES-------------------------------%

[ss,ii] = sort (lambda_1(:,8)); %re-order de modes by their energy levels

lambda_1 = lambda_1(ii,:);

[ss,ii] = sort (lambda_2(:,8));

lambda_2 = lambda_2(ii,:);

%---------------------------------------------%

%---SCREEN_PRINT------------------------------%

line1="| file | frequency | period | energy | |";

line2="|------------------------------------------------------|";

disp(line1)

disp(line2)

fputs(fidf1,line1);

fputs(fidf1,"\n");

fputs(fidf1,line2);

fputs(fidf1,"\n");

%---------------------------------------------%

%---DYNAMIC_MODES-----------------------------%

fini = k1; %final position of non-zero eigenvalues

point = 0;

for i = fini:-1:1

point += 1;

j = lambda_1(i,1); %position of non-zero eigenvalue mode in dmd
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if(lambda_1(i,4) > 0) %marks mode as stable or unstable

stability = ’(-)’;

elseif(lambda_1(i,4) <= 0)

stability = ’(+)’;

end

frase = sprintf(" %4.4d | %9f | %10f | %9f | %4s", point,lambda_1(i,5)\

,norm(lambda_1(i,7)),lambda_1(i,6),stability);

disp(frase)

fputs(fidf1,frase);

fputs(fidf1,"\n");

D(:,point) = real(dmd(:,j)); %adds dynamic mode to matrix D

file_name1 = sprintf("dmd_%s_%4.4i.txt",directory,point);

dmd_sf = D(:,point);

save(file_name1,"dmd_sf","-ascii")

end

%---------------------------------------------%

%---RE-CREATE_MODES---------------------------%

if (predict == 1)

for k = 1:future

mode_fut = 0;

for i = 1:rows

mode_e(:,i) = e_proj(i)*dmd(:,i)*eig_val(i,i)^(k+cols-1);

mode_fut = mode_fut .+ real(mode_e(:,i));

end

file_name2 = sprintf("pre_%s_%2.2i.txt",directory,k);

save(file_name2,"mode_fut","-ascii")

end

end

%---------------------------------------------%

%---POD_MODES_&_PROJECTION--------------------%

if(pod_projection == 1)

for i = 1:rows

V1n(i,:) = detrend(V1(i,:),0);

end

[U2,S2,W2] = svd (V1n);

POD = U2; %POD modes

projec = POD’*D; %projection matrix

hprojec = projec’; %inverse of projection matrix

for j = 1:fini

file_name2 = sprintf("pod_%s_%4.4i.txt",directory,j);

pod_sf = POD(:,j);
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save(file_name2,"pod_sf","-ascii")

end

end

%---------------------------------------------%

%---SCREEN_PRINT------------------------------%

disp("|------------------------------------------------------|")

disp(" period == 0.0 corresponds to infinity!")

disp("|------------------------------------------------------|")

disp(" (+) - stable , (-) - unstable")

disp("|------------------------------------------------------|")

disp(" DMD modes saved as: dmd_$directory_$file.txt")

if(pod_projection == 1)

disp(" POD modes saved as: pod_$directory_$file.txt")

end

if(predict == 1)

disp(" Predictions saved as: pre_$directory_$i.txt")

end

disp("|------------------------------------------------------|")

%---------------------------------------------%

%---EIGENVALUES-------------------------------%

ur = lambda_2(:,2); %real eigenvalue

ui = lambda_2(:,3); %imaginary eigenvalue

figure(2001,"visible","off")

plot(ur,ui,".dk") %plots eigenvalues, real vs imaginary

frase = sprintf(" eigenvalues saved as: eigen.png");

disp(frase)

file = sprintf("eigen.png");

print(file)

%---------------------------------------------%

%---DYNAMIC_SPECTRUM--------------------------%

lr = lambda_2(:,4); %real value of lambda

li = lambda_2(:,5); %imaginary value of lambda

figure(2002,"visible","off")

plot (li,lr,".dk") %plots dynamic spectrum

frase = sprintf(" dynamic modes spectrum saved as: spectrum.png");

disp(frase)

file = sprintf("spectrum.png");

print(file)

%---------------------------------------------%

%---ENERGY------------------------------------%

[ss,ii] = sort (lambda_1(:,5)); %order lambda values acording to frequency
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fr = lambda_1(ii,5); %frequency of mode

en = lambda_1(ii,8); %energy of mode

figure(2003,"visible","off")

bar(fr,en) %plots energy ranking of each mode

frase = sprintf(" energy ranking saved as: energy.png");

disp(frase)

file = sprintf("energy.png");

print(file)

%---------------------------------------------%

%---SAVE_DATA---------------------------------%

disp("|------------------------------------------------------|")

save modes.dat D %saves dynamic modes into file dmd.dat

disp(" dynamic modes saved to: modes.dat")

lambda_topline = sprintf(" %6s %14s %14s %14s %14s %14s %14s %14s \n\n"\

,"#i","eig_real","eig_imag","spec_real","spec_imag","energy"\

,"period", "last_energy");

fputs(fidl1,lambda_topline);

fputs(fidl2,lambda_topline);

for i = 1:k1

lambda_line = sprintf(" %6i %14f %14f %14f %14f %14f %14f %14f "\

,lambda_1(i,1),lambda_1(i,2),lambda_1(i,3),lambda_1(i,4),\

lambda_1(i,5),lambda_1(i,6),lambda_1(i,7),lambda_1(i,8));

fputs(fidl1,lambda_line);

fputs(fidl1,"\n");

end

disp(" short dynamic data saved to: lambda_1.dat")

for i = 1:k2

lambda_line = sprintf(" %6i %14f %14f %14f %14f %14f %14f %14f "\

,lambda_2(i,1),lambda_2(i,2),lambda_2(i,3),lambda_2(i,4),\

lambda_2(i,5),lambda_2(i,6),lambda_2(i,7),lambda_2(i,8));

fputs(fidl2,lambda_line);

fputs(fidl2,"\n");

end

disp(" complete dynamic data saved to: lambda_2.dat")

save projection.dat hprojec -ascii

if(pod_projection == 1)

disp(" projection data saved to file: projection.dat")

end

disp(" screen output saved to file: files.dat")

disp("|------------------------------------------------------|")

printf(" files saved in folder: %s\n", directory)

disp("|------------------------------------------------------|\n")

disp(asctime (localtime (time ())))

%---------------------------------------------%
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%---CLOSE_DATA_FILES--------------------------%

fclose(fidl1);

fclose(fidl2);

fclose(fidf1);

close all;

%---------------------------------------------%
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