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Abstract

The neural correlates of visual awareness are elusive because of its fleeting nature. Here we have addressed this issue by
using single trial statistical ‘‘brain reading’’ of neurophysiological event related (ERP) signatures of conscious perception of
visual attributes with different levels of saliency. Behavioral reports were taken at every trial in 4 experiments addressing
conscious access to color, luminance, and local phase offset cues. We found that single trial neurophysiological signatures of
target presence can be observed around 300 ms at central parietal sites. Such signatures are significantly related with
conscious perception, and their probability is related to sensory saliency levels. These findings identify a general neural
correlate of conscious perception at the single trial level, since conscious perception can be decoded as such independently
of stimulus salience and fluctuations of threshold levels. This approach can be generalized to successfully detect target
presence in other individuals.
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Introduction

Event related cognitive studies are in general based on the

interpretation of average responses to many repetitions of a given

stimulus or condition [1–4]. This renders the direct identification

of the neural correlates of visual awareness difficult, because levels

of awareness are often fleeting [5]. Inference from brain signals

based on global averages cannot address the significance of single

cognitive or sensory events. Investigation of perceptual awareness

phenomena at the single trial level has to overcome the issue of low

signal to noise ratios, and tools for this endeavor are now available

[6,7].

The direct identification of the neural correlates of single

perceptual representation moments would allow the understand-

ing of their neurophysiological underpinnings and if detected in a

statistically robust manner, they might even be used to predict

target presence in other individuals. In other words, then one

could generalize across subjects the neurophysiological signatures

of such representations.

Classification of single trials has traditionally been difficult,

especially because data driven methods have been rarely used in

this context. Here, we have departed from the average based

traditional model and used oddball paradigms, because they

involve rare, unpredictable perceptual events [6,7]. Although

oddball paradigms often elicit a P300 signal that is believed to

relate to perceived stimulus changes, this work is not, by its nature,

focused on this component. This is because P300 does vary across

subjects and conditions both in term of amplitude and latencies

[1–3,8–12]. Moreover the fact that average responses based on

many trials might look ‘‘always the same’’ does not imply that

single trial responses are similar. For this reason, the P300 reflects

an average measure that can only be indirectly related to

conscious, explicit perception [8,9,11,13,14]. In fact, it remains

an open question whether the P300 signals conscious perception

[15–17]. This question can only be answered at the single trial

level and represents one of the major aims of this work. Since our

approach is data driven, we could go beyond previous studies of

the neural underpinnings of the classical P300 wave and target the

identification of individual change detection events and their

relation to conscious perception. Single trial analysis is a major

undertaking given the challenge to classify neurophysiological

events and relate them with perception embedded in noise.

Directly pinpointing individual perceptual events is not possible

with average analysis.

In any case, centro-parietal average P300 components are

generated whenever a discrimination task is required between at

least two classes of events: a frequent (Standard) and an

infrequent/rare one (Target) [1,2,12,18,19], and were therefore

also measured in our study. For single trial analysis we generated

waveform templates for our data driven classification approach

[6,7]. However, this does not imply that the temporally coincident

features used to classify the signal belong to the classical P300.
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In order to ensure variations in perceptual awareness indepen-

dently of the type of visual attribute, we manipulated multiple

independent feature dimensions: color, luminance and phase

offset, at different saliency levels (Fig. 1 A).

The roles of distinct saliency levels in visual awareness were

tested and replicated in separate experimental sessions: Experi-

mental session I, testing the effects on Color/Luminance and

Phase Offset saliency levels; Experimental session II, attempting

explicit separation of Luminance and Chrominance effects.

These manipulations ensured that our stimulus conditions were

such, that at different trials, perception was above or below

threshold.

We identified a neural correlate of conscious processing of single

trial sensory events. This detectable marker of conscious access

predicted across trial neural detection of other target events with

high statistical significance and generalized for detection signifi-

cantly above chance levels across subjects and experiments.

Materials and Methods

Ethics Statement
This study and all the procedures were reviewed and approved

by the Ethics Committee of the Faculty of Medicine of the

University of Coimbra (Comissão de Ética da Faculdade de

Medicina da Universidade de Coimbra). The study was conducted

in accordance with the tenets of the Declaration of Helsinki and all

participants signed a written informed consent.

1. Subjects
In each of the 4 experiments we recruited 10 participants (4

independent replications of the main effect across visual attributes).

These were recruited within the University of Coimbra students’

population. Six males and four females participated in Experi-

mental session I, with ages between 22 and 29 years old

(Mean = 25; SD = 3.6) and normal to corrected Visual Acuity

(VA) 20/20. For Experimental session II, five males and five

females participated, with ages between 22 and 29 YO

(Mean = 25; SD = 2,3) and normal to corrected VA 20/20. One

subject was excluded from this set due to corrupted data. No

participants had history of neurological or mental disorders.

Subjects were seated comfortably in a chair with armrest to

minimize muscular artifacts.

2. Stimuli and Task
For all conditions, saliency levels were manipulated according to

three levels of intensity deviance from a standard stimulus (S0):

minimal deviance (S+); intermediate level deviance (S++); and

large saliency deviance – yielding a clearly popping out salient

stimulus (S+++), (Fig. 1 A, for details see below).

The experiments were performed in a darkened room. Stimuli

were displayed in a 19 inch Cathode Ray Tube (CRT) color

monitor (Mitsubishi Diamond Digital), with a resolution of

128061024 pixels and refresh rate of 85 Hz. Monitor calibration

of color and luminance was carried out with a SpectraColorimeter

PR-650 from Photo Research. Gamma correction of the monitor

output was achieved via software look-up tables. Cone absorptions

Figure 1. Examples of frequent standard stimuli (leftmost) and rare detection targets (3 rightmost). Manipulation of physical and
perceptual saliency was imposed in 4 different experiments: A. Mixed color/luminance (a) and phase offset (b) chrominance (c) and luminance (d).
Subjects were required to report the presence of a target as manifested by detectable categorical deviances from the standard stimuli. Stimulus
physical properties are described in the text (appearance maybe different from the actual display due to issues such as color rendering, size and
resolution). B. Experimental protocol (identical in all experiments and therefore only shown for the monotonic saliency manipulations of chrominance
and luminance). Oddball: for each experimental condition - 20 blocks of 50 trials with sequentially displayed Standards (S0) and randomly allocated
Targets (S+,S++ and S+++), with a target frequency ratio of 1:16 (47 ST/3T). Total target presentation number: 20. Stimuli were displayed for 500 ms,
with an Inter Stimulus Interval (ISI) of 1500 ms. ISI: grey blank screen with identical colorimetric properties to stimuli’s background. Task: press a
button during the ISI when Target is present.
doi:10.1371/journal.pone.0086201.g001

Single Trial Signatures of Conscious Perception

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e86201



were calculated for the phosphor spectral profiles using the Smith

& Pokorny (1972, 1975) [20,21] spectral sensitivities. Viewing

distance was of 60 cm.

At the beginning of each session, participants were instructed to

press a button on a response box whenever they would detect a

target (whether it was a change in color, luminance or phase

offset). Motor response was given during the Inter Stimuli Interval

(ISI) (to avoid P3 signal contamination by motor components).

Vertical and horizontal electrooculograms were used to monitor

and reject ocular artifacts before averaging procedures and

classification (see also our papers [6] and [7], describing how this

issue is dealt with in P300-based BCI experiments). About every

5 minutes, there was a pause for participants to rest.

Experimental Session I. Stimuli were generated with

MatLab (version 7.3.0.) and presented with the stimulation

software STIM2 (Compumedics Neuroscan, El Paso TX, USA).

Standards and Targets (10610 visual angle) consisted of colored

(experiment I) or offset phased grating squared patches (experi-

ment II), presented against a grey background with a luminance of

17.3 cd/m2, and chromaticity (x,y) = (0.285, 0.284) expressed in

the CIE 1931 color space, (Fig. 1 A).

In experiment I, Color/Luminance Targets and Standards were

displayed with the following luminance (Y) and chromaticities CIE

(x, y): (S+) Y = 26.9 cd/m2 (x,y) = (0.619, 0.338); (S++) Y = 31.3cd/

m2 (x,y) = (0.592, 0.361); (S+++) Y = 60.3cd/m2 (x,y) = (0.478,

0.450); (S0) Y = 26 cd/m2 (x,y) = (0.621, 0.337), (Fig. 1 A (a)).

In experiment II, Phase Offset Targets and Standards were

displayed manipulating patch center phase offset from standard

pi = 0: (S+) pi/200 Rad; (S++) pi/50 Rad; (S+++); pi/2Rad; (S0)

no phase offset, (Fig. 1 A (b)). The rationale for this choice of phase

offset levels is justified in previous psychophysical work [22]. The

centrally segregated offset figure subtended 262 degrees of visual

angle.

Psychometric curves vary across subjects and to have stimulus

levels identical for the whole group, we used a non-parametric

monotonic saliency increase approach based on the available

literature (as justified for example in [22] for phase offset levels).

We note that S+ was under threshold and therefore subliminal.

Manipulations of salience were made in ordinal rank steps of

increasing deviance from Standard S0. Targets featured increasing

levels of physical distance from each of the correspondent

Standards. The actual physical parameter distance was therefore

manipulated monotonically. The distance between S++ and S+++
targets was larger than between S++ and S0, although this was not

necessarily apparent in some of the behavioral data. This is to be

expected because once stimuli become supraliminal their detection

rate becomes similar but not the respective appearance and

saliency. A difference was predicted to be reflected in ERP

amplitude and ERP reaction time data (see results confirming this

prediction). We also ensured that there was not an unbalance

between standard/target classes as a function of saliency.

Conditions S+, S++, S+++, all had an equal likelihood of 20/

940 = 1/47. Models of training/classification used these ratios.

Experimental Session II. For experimental session II,

stimuli were generated and presented with Matlab (version

7.3.0), using the Psychophysics Toolbox Version 3 (PTB-3) [23–

25]. Stimuli consisted of 10610 degrees of visual angle chromatic

(experiment III) or achromatic squared patches (experiment IV),

centrally presented against a grey background of colorimetric

coordinates of Y = 30 cd/m2, (x,y) = (0.285,0.284), (Fig. 1 A).

For the chromatic feature (experiment III), saliency manipula-

tion was performed in the Macleod-Boynton (1979) isoluminant

color space, keeping a constant luminance of 30 cd/m2. Target

and Standards were assigned colorimetric coordinates in lms color space

of: (S+) lms(0.1192,0.2066,0.0911); (S++) lms(0.1002,0.1948,0.1216);

(S+++) lms(0.1161,0.1958,0.2020); (S0) lms(0.1093,0.2020,0.0888),

(Fig. 1 A (c)).

For the luminance feature (experiment IV), Targets and

Standards were displayed with the following luminance levels:

(S+) 5.8201 cd/m2; (S++) 10.2485 cd/m2; (S+++) 40.2957 cd/m2;

(S0) 5,2714 cd/m2, (Fig. 1 A (d)).

3. Protocol
In our oddball block design [1–3,12] (Fig. 1 B), series of frequent

(Standard) stimuli were interspersed with rare stimuli (Target),

with a target frequency ratio of 1:16 (target-to-target frequency

ratio that elicits larger P300 amplitudes over midline electrodes)

and associated occurrence probability of 6% [26].

20 blocks of 50 trials comprising the sequentially arranged

STANDARDS and randomly allocated TARGETS, were dis-

played for each condition. Target position within blocks was

counterbalanced and visual feature conditions were interleaved

(color/luminance and phase offset - experimental session I;

chrominance and luminance - experimental session II). Each

Target saliency level was presented 20 times (each feature

condition). Stimuli were displayed for 500 ms, with an Inter

Stimulus Interval (ISI) of 1500 ms, consisted of a grey blank slide

with identical colorimetric properties to stimuli’s background

(Fig. 1 B). Each block had duration of 1.67 min. For every 2 runs

(1 block of each experiment), there was a break for participants to

rest. Pause duration was controlled by the participants.

4. Eeg Recording and Analysis
ERPs were recorded using a SynAmps2 electrode array of 64

Ag/AgCl electrodes. Scalp electrodes were referenced to CZ and

offline recalculated to linked earlobes. Vertical and horizontal

electrooculograms were used to monitor and reject ocular artifacts.

Cortical electrode impedances did not exceed 5 kV, and signal was

digitized at a sampling rate of 1000 Hz, on-line filtered at 200 Hz

low pass.

Artifact rejection and averaging was done off-line. Analysis was

performed with Scan 4.3 Edit (Compumedics Neuroscan, USA).

Continuous EEG signals were bandpass filtered with cutoff

frequencies of 0.5 and 30 Hz. All the filtering was performed

using the Zero Phase Shift options available in Scan 4.3. Data

were segmented into epochs spanning from 2100 ms previous to

stimulus onset to 600 ms after, sorted by the stimulus target level

and baseline corrected to pre-stimulus interval (by subtraction of

the average pre-stimulus voltage). Artifact rejection levels were set

at 650 mV and automatically removed.

Epochs were averaged for each stimulus level. Peak responses

were measured on averaged waveforms by defining the amplitude

voltage as the difference between baseline and the most positive

going peak from 250 ms to 600 ms post-stimulus, at the midline

parietal electrode location (PZ), where the P300 signal is maximal

[2,12,19]. The resultant values were then exported to SPSS

software and statistical analyses were performed.

5. Single Trial Classification
Waveform detection at a single-trial level is a challenging task

that requires the use of efficient signal processing and classification

methods. We used an approach based on the combination of a

statistical spatial filter and a Fisher’s linear discriminant (FLD)

classifier [27], (as described in Pires 2011, [6]). This methodology

has been applied in the context of P300-based brain-computer

interfaces, showing performance levels above state-of-the-art [6,7].

Succinctly, consider the input space of an epoch k, represented by

Single Trial Signatures of Conscious Perception
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X(k)[<N|T , where N is the number of channels and T is the

number of time samples contained in the time window [200 600]

ms of the epoch. Based on statistical models of target and non-

target epochs, the multichannel input space is transformed into a

projection Y(k)~W
0
X(k) with a much higher signal-to-noise ratio,

where Y(k) is of dimension N 0|T , with N 0~2, and W is the

spatial filter. The two projections are concatenated and classified

with FLD. Classification performance measures for target detec-

tion were obtained through leave-one-out (LOO) cross validation

technique.

The LOO cross validation approach always uses the propor-

tional amount of data of the stimulus classes according to saliency,

covering all available samples. We have actually used S0 (standard)

as a benchmark baseline for each binary classification (standard vs.

target). The balanced accuracy measure that we used ensures that

there is no biasing effect. This effect could indeed occur if we used

the ‘‘standard accuracy’’ to measure the classification perfor-

mance. This happens because the classifier can be simply taking

advantage of the imbalance data sets transforming a chance level

into a high classification accuracy. False classification rate is taken

into account in the measures of specificity, sensitivity, and

summarized in fact in the balanced accuracy measure.

Results

1. Behavioral Results –Perceptual Events at the Single
Trial Level

Figure 2 shows group mean percentages of target detection for

each experiment (labeled S+, S++ and S+++ according to

increasing saliency levels, as defined by increasing physical

difference from a standard reference stimulus, S0 being the

standard (for details see Methods). S+ proved to be a frequently

undetectable stimulus (indistinguishable from S0, in contrast to

S++ and S+++). In order to better access the level of subjects’

awareness of target saliency manipulation, in addition to the

chance probability of detection, we estimated a ‘‘guessing rate’’ for

each experiment. This measure was calculated based on subjects’

false positive (FP) responses (detection) to standard stimuli

(Guessing rate = FP(false positive)/(FP(false positive)+TN(true negative)),

(Table S1 in File S1). These guessing rates were then used as

null hypothesis proportions in group experiment one-sample

binomial statistics, against which target detection proportions (true

positives proportion) were compared (Table S2 in File S1).

Participants detected S++ and S+++ saliency manipulations

above the guessing rate, but not for the S+ level, except for the

phase offset condition (Table S2 in File S1). S+ conditions were

therefore perceived as indistinguishable from S0 and therefore out

of participants’ awareness, except for the latter condition.

This analysis was replicated even when calculating individual

guessing rates. Within subject S+ target discrimination from

standard is shown in Table S7 in File S1. Except for the phase

offset experiment, no differences were found between S+ and

Standard S0 detection proportions (Table S7 in File S1). S+
conditions were therefore subliminal, eliciting similar perceptual

behavior to standard manipulation (absent deviant stimulation).

2. Average ERPs Reflect Mean Saliency Levels,
Irrespective Of Visual Awareness

Figures 3 and 4 depict the participants’ grand-average ERPs,

time-locked for target level at the representative PZ site, for all

experiments. We did observe average oddball ERP components to

change detection corresponding to P300-like responses. Signal

amplitudes where highest for the most salient stimuli and latencies

shorter, monotonically changing with the perceptual deviance

level from the standard.

Experimental Session I. We first analyzed responses to low

saliency (below threshold in all experiments and near in the Phase

Offset experiment) stimuli versus standard. Change detection

ERPs for S+ target stimuli were only detectable for phase offset

experiment II, which was the only one where conscious reports of

target presence were present (see Fig. 3 which shows average

waveforms, and also summary peak amplitude and latency

measures in Fig. 5, A and B). Accordingly, repeated measures

ANOVA showed significant average amplitude differences elicited

by S+ and S0 within subject responses, only for the Phase Offset

experiment [F(1,9) = 7.169, p = 0.025] (p,0.05). Concerning Col-

or/Luminance experiment I, repeated measures ANOVA for

Standard S0 and S+ peak average amplitudes showed, as expected,

no significant effects [F(1,9) = .151, p = .706] (p,0.05) in line with

the absent conscious reports of target presence (Fig. 3 and Fig. 5, A

and B).

More stringent within subject analysis effects of overall saliency

(sub and supraliminal) levels on signal amplitude relative to

Figure 2. Participant’s behavioral Target detection rates (all 4
experiments) and classification of behavioral subliminal vs.
supraliminal levels. Note that S+ (saliency level 1) is not separable
from S0 (standard reference) from the visual awareness point of view,
and can therefore be classified as a subliminal condition, except for the
phase offset experiment. Accordingly, no differences were found
between both S0 and S+ target detection proportions (binomial
distribution test) except for the latter condition. In other words S+ did
not elicit responses beyond the guessing the rate (which was very low
and similar to the probability of the rare target occurrence). Arrow
intervals depict comparisons between S0 and all other conditions
(significant at the 0.05 level). Bars depict confidence intervals for the
sample means at 95%.
doi:10.1371/journal.pone.0086201.g002
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Standard, confirmed the above mentioned pattern [Color/

Luminance (S0, S+, S++, S+++): F(3,27) = 33.1, p,0.001; Phase

offset(S0, S+, S++, S+++): F(3,27) = 29.9, p,0.001]. Bonferroni

corrected pairwise multiple comparisons confirmed the expected

supraliminal S++[(Color/Luminance p = 0.003; Phase Offset

p = 0.003) and S+++(Color/Luminance p,0.001; Phase Offset

p,0.001)] amplitude differences from standard S0. S++ and S+++
amplitudes for phase offset were also significantly different

(p = 0.009) (Fig. 5, A and B). No differences were seen for

subliminal conditions S+ (except the supraliminal phase offset

condition).

It is relevant to point out that saliency effects were corroborated

by the ranked monotonic effect of physical saliency on response

amplitude as shown by the observation of significant Spearman

Correlations between saliency levels and neural responses [Color/

Luminance rs = .777(p,0.001); Phase Offset rs = .775(p,0.001)].

Latencies were systematically shorter for S+++ level than for

S++, showing again a saliency effect. Since the ERP component is

not detectable on average responses to S+ (subliminal) Color/

Luminance condition, latency calculations cannot be obtained for

this subliminal saliency level due to the unmeasurable signal

(which justifies the bar absence in Figure 5, E, G and H). Repeated

measures ANOVA (S++, S+++) analysis of differences in peak

latencies was significant for Color/Luminance manipulations

[F(1,9) = 15.243, p = 0.004 Greenhouse-Geisser corrected]. For

Phase Offset conditions, saliency effects on latency were also

significant (S+, S++ and S+++ levels) [F(2,18) = 4.136, p = 0.033].

Bonferroni corrected pairwise multiple comparisons showed

significant differences for S++ and S+++ latencies [p = 0.034]

(Fig. 5, E and F).

Experimental Session II. As with previous experiments I

and II (Session I), we confirmed that saliency manipulations

modulate neural signal’s amplitude and latency, with supraliminal

target categories eliciting higher amplitudes at shorter latencies

(Fig. 4).

Subliminal S+ target showed no detectable average ERP

components [Chrominance within subjects’ ANOVA S0, S+:

F(1,8) = 0.006, p = 0.942; Luminance within subjects’ ANOVA S0,

S+: F(1,8) = .825, p = .390) (Fig. 5, C and D).

Analysis of peak amplitude and latencies across all levels did

indeed confirm the effects of saliency. Repeated measures

ANOVA of within subject amplitude differences was significant

for both experiments III and IV [Chrominance F(3.24) = 20.328,

p,0.001; Luminance F(3,24) = 10.185, p = 0.005 Greenhouse-

Geisser corrected]. Importantly, Bonferroni corrected pairwise

multiple comparisons showed only amplitude differences between

supraliminal and standard conditions [Chrominance S++
p = 0.016, S+++ p = 0.002; Luminance S++p = 0.07(marginally

sig); S+++ p = 0.020] (Fig. 5, C and D). Subliminal stimuli did

not elicit significant average responses, as expected.

Spearman correlation analysis confirmed again the observation

of a ranked relationship between saliency and signal amplitude:

Figure 3. Grand-average ERPs for Experimental Session I
(experiments I and II): evidence for saliency related response
modulation. Larger and faster responses are evoked by most salient
stimuli. Grand-average ERPs’, time locked for target category level, are
shown for the representative PZ electrode and referenced to earlobes.
Amplitude in microvolts (mv) is plotted against time (ms). S0 – ERPs for
Standard stimulus; S+ ERPs for minimal saliency manipulation; S++ ERPs
for intermediate saliency manipulation; S+++ ERPs for the maximal
saliency manipulation. Top: ERP average waveforms for the Color/
Luminance experiment. Bottom : ERP average waveforms for the for
Phase Offset experiment. Differences between S0 and S+ average ERPs
were found exclusively for phase offset condition, the only one where
stimuli reached conscious access, thereby matching behavioral data
(Tables S2 and S7 in File S1; and Fig. 2).
doi:10.1371/journal.pone.0086201.g003

Figure 4. Grand-average ERPs for Experimental Session II
(experiments III and IV): Larger and faster responses are
confirmed to be present for most salient stimuli. Grand-average
ERPs’, time locked for target category level are shown for the PZ
electrode. Amplitude in microvolts (mv) is plotted against time (ms). S0 –
ERPs for Standard stimulus; S+ ERPs for minimal saliency manipulation
(none reaching awareness); S++ ERPs for intermediate saliency
manipulation; S+++ ERPs for the maximal saliency manipulation. Top -
ERP average waveforms for Chrominance experiment. Bottom - ERP
average waveforms for Luminance experiment. No differences were
found between S0 and S+ evoked average ERPs which matches
behavioral data (Tables S2 and S7 in File S1; and Fig. 2).
doi:10.1371/journal.pone.0086201.g004

Single Trial Signatures of Conscious Perception
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[Chrominance rs = .772, (p,0.001); Luminance rs = .769,

(p = .002)].

Latencies within experimental session II (experiments III and

IV), as explained above for experiments I and II, could not be

calculated for subliminal saliency levels, because of the expected

failure to detect oddball average ERP signals for the S+ subliminal

level. Repeated measures ANOVA for S++, S+++ latency

differences, were marginally significant for Chrominance

[F(1,8) = 5.245, p = 0.051 Greenhouse-Geisser corrected] and

significant for the Luminance condition [F(1,8) = 6.898, p = 0.030

Greenhouse-Geisser corrected] (Fig. 5, G and H).

3. Single Trial Classification
Single trial waveform classification uncovered neural events

signaling target presence matching conscious reports of perceptual

awareness. We could classify target presence both at intraindivid-

ual and interindividual levels, and across feature as well as saliency

levels, thereby supporting the feasibility of generalization.

Classification performance measures for target detection were

obtained through a leave-one-out (LOO) cross validation tech-

nique [6,7] (see Methods). Single Trial classification results are

presented in balanced accuracy measures. As explained in the

methods section, the balanced accuracy measure is bias free,

unlike the ‘‘standard accuracy’’, which is sensitive to data set

imbalances transforming a chance level into a high classification

accuracy. This does not happen with the balanced accuracy index,

(b_accuracy), that takes into account sensitivity [True Positive(TP)/

(True Positive+False Negative(FN))] and specificity [True Negati-

ve(TN)/(True Negative+False Positive(FP))] rates independently of

the unbalanced size of the two classes (b_accuracy = (sensitivity+
specificity)/2), therefore being a robust and conservative perfor-

mance index. Nevertheless performance measures of accuracy

and precision were also computed (accuracy = (TP+TN/

TP+FN+TN+FP); precision = (TP/(TP+FP)). Tables S3, S4, S5

and S6 in File S1, show performance indexes for the two

experimental sessions in all computed measures.

Experimental Session I. Using the 200–600 ms epoch time-

window, balanced accuracy (a very conservative measure, with

lower values that simple accuracy, see above and Table S3 in File

S1) classification results for waveform target detection amounted

to at least 87% to supraliminal targets, 66% for near threshold

targets, and 57% for subliminal targets (Table S3 in File S1; and

Fig. 6 A).

We then investigated if target detection in a given individual can

be used to predict the presence of this response in other

individuals. Participants’ independent classification models were

also used - between subjects’ LOO. According to this statistical

model, the algorithm for classification is trained using ERP

features on data collected from a subset of the most ‘‘generaliz-

able’’ 3 subjects, and tests for target detection in the data of a

different subject. It is therefore a simulation of a ‘‘universal model’’

than can be applied to whoever subject’s data (model-driven

approach). The criterion for generalization was based on

classification accuracy metrics and not from the simple perspective

of P300 waveform morphology. From the between subjects LOO

cross validation, we obtained individual models for each subject,

which were tested on all the other subjects. The three models that,

on average, performed better on the other subjects, were selected.

Figure 5. Summary plots of P300 peak amplitude and latency means for averaged ERPs: larger and faster responses for most
salient stimuli. Top: A, B, C, E - mean peak amplitudes for A. Color/Luminance (exp I); B. Phase offset (exp II); C. Chrominance (Exp III); D. Luminance
(exp IV) evoked average ERPs. Bottom: E, F, G, H - mean peak latencies for E. Color/Luminance (exp I); F Phase Offset (exp II); G. Chrominance (exp III);
H. Luminance (exp IV) evoked average ERPs. Amplitudes where highest for the most salient targets, monotonically decreasing along with the physical
deviation level (see text for correlation analysis). Significant peak amplitude differences were found between S++ and S+++ saliency levels from
Standard S0. No amplitude differences were found between S+ level and Standard S0 average ERPs, except for the Phase Offset experiment (matching
behavioral data where only in the later condition a behavioral difference was found, e.g. S+ was supraliminal only in this case). Arrow intervals depict
significant difference at 0.05. Bars depict confidence intervals for the means at 95%.
doi:10.1371/journal.pone.0086201.g005
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Then, the final model was learned taking together the respective

three datasets. These results suggest that the same neural

correlates of target detection can be found not only within but

even between subjects (see also additional replication below).

Results for target detection were highest for supraliminal targets

(at least 77% balanced accuracy in Phase Offset), followed by near

threshold (at least 58%) and near chance level for subliminal

stimuli (Table S4 in File S1; and Fig. 6 B. Please note that the

apparent below level chance for S+ was a non significant effect

that was likely due to random variation).

Experimental Session II. Subject dependent (within-indi-

vidual) classification results for target detection using LOO cross

validation model within 200–600 ms epoch window, yielded, in

balanced accuracy, target detection rates superior to 87% to

supraliminal saliency, to 81% for near-threshold ones and at

chance level to subliminally salient stimuli (Table S5 in File S1;

and Fig. 7 A). Between subjects cross validation models for

classification, yielded waveform target detection rates above 80%

for salient supraliminal stimuli, above 67% (at least) for near-

threshold ones and at chance levels for subliminal stimuli, (200–

600 ms epoch) (Table S6 in File S1; and Fig. 7 B).

Two additional analyses were then made to test this general-

ization across conditions (Fig. 8). In the first one, the classification

model was built from the Color/Luminance experiment, and then

the model was used to classify Phase Offset events. In the second

one, the classification model was built from the Luminance

experiment, and then the model was used to classify Chrominance

events.

Figure 9 shows results from a model that was learned taking the

pool of S+++/S++/S+ target responses, and then used for

classification. Classification even improves using this more general

approach. We also looked for a specific decoding performance rate

by saliency level. A model was designed training for each

particular saliency level and testing over each of the others. If a

general marker of conscious perception is the most likely

hypothesis at stake, the prediction would be the classifier to fail

target detection for the S+ (feature extraction) based model, being

the learning driven by the supraliminal evoked related activity

(S++ and S+++ based models). The results matched the prediction,

the classifier being able to detect the target presence significantly

and well above chance only for the graded supraliminal saliency

levels models (with performance rates up to ,90%).

Figure 6. Behavioral and Single trial waveform statistical classification performance in terms of (conservative) balanced accuracy –
Experiments I & II - single trial statistical classification matches conscious perception and can be generalized across subjects. A.
Behavioral and Subject dependent (within subject classification) LOO (leave one out) Classification Balanced Accuracy Rates for Target detection.
Right: results for the Color/Luminance experiment. Left: results for the Phase Offset experiment. B. Subject independent (between subject
classification) LOO (leave one out) Classification Balanced Accuracy Rates for Target detection. Right: results for the Color/Luminance experiment.
Left: results for the Phase Offset experiment. Dashed lines depict chance level at 50%. Bars depict confidence intervals for the means at 95%.
doi:10.1371/journal.pone.0086201.g006
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Discussion

It this study we found evidence for a general conscious

perception signal which can be robustly ‘‘read out’’ across

experiments and even subjects. These results have implications

both concerning the potential use in brain computer interfaces and

the cognitive neuroscience of sensory awareness. Concerning the

former, the observed across-individual generalization is promising

for use in BCI applications because training of the classifier

becomes much simplified and accelerated due to the between-

subjects common neurophysiological features. Our findings

suggest that variability of individual brain signatures of each

BCI user may actually be overcome in such a way that it relieves

from the need of extensive user training [28]. This suggests that it

is possible to perform BCI experiments under our conditions with

significant reduction of calibration measurements and without loss

of classification performance. This offers the potential to surpass

methods taking advantage of knowledge collected in previous

sessions. Generalization to independent runs more safely ensures

independence of the test set, and overcomes a much more

challenging goal than generalization to novel stimuli within the

same or similar categories.

The neuroscientific implications of our findings are also

interesting because they suggest that a common neural signature

of visual awareness is present across individuals. This finding

suggests that its cortical generators are quite consistent across

subjects even upon detection of oddball visual targets of variable

saliency. This is in line on the tenet of Linden 2005, on the

consistency of the multiple generators of P300 signals [29].

The actual physical saliency of the stimulus is closely related to

the probability of conscious perception and its detection at the

single trial level. Neither detection nor perception modulation was

present for minimal deviance (subliminal) targets. The question

remains whether one can establish a relation between all or none

conscious perception and graded perceptual saliency given that the

P300 is closely related to visual awareness at the single trial level.

‘‘All or none’’ processes at the single cell level are well known to

take the form of a continuous process at the population level. In

the case of our experiment, two alternative possibilities can be

considered: 1. the ‘‘single trial P300’’ has fixed amplitude across

Figure 7. Behavioral and Single trial waveform statistical classification performance in terms of (conservative) balanced accuracy –
Experiments III & IV – we replicate the finding that single trial statistical classification matches conscious perception and can be
generalized across subjects. A. Behavioral and Subject dependent (within subject classification) LOO Classification Accuracy Rates for Target
detection. Right: results for the Chrominance experiment. Left: results for the Luminance experiment. B. Subject independent (between subject
classification) LOO Classification Accuracy Rates for Target detection. Right: results for Chrominance condition. Left: results the Luminance
experiment. Dashed lines depict chance level at 50%. Bars depict confidence intervals for the means at 95%.
doi:10.1371/journal.pone.0086201.g007
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single detection trials and is null in non detection trials (and would

therefore be an ‘‘all or none’’ in the same sense that the action

potential is classified as ‘‘all or none’’ in spite of being also a

continuous process; 2. the P300 has variable amplitude across

single trials. Our data are more in favor of the first possibility given

the tight link identified between behavioral detection and P300

detection, and virtually ‘‘null’’ average P300 for subliminal S+
stimuli (and maximal for S+++). We would like to emphasize that

this link is indirect and speculative. Although it is clear that the

P300 is virtually null together with absent detection for S+ (the

‘‘none’’ aspect of the response), it is still debatable if the maximal

response is fixed (although this is likely given that it increases

proportionally with detection rates to a maximum at S+++). In

sum, our results are consistent with the notion that saliency levels

modify the probability of all or none conscious perception events

and neural responses, in line with other accounts [30–32].

We could accurately classify well above chance single perceptual

events with across subject, across experiment, and across saliency

generalization. The ultimate approach assumed that conscious

perception can be decoded as such independently of stimulus

salience, provided it is supraliminar. We performed the decoding

procedure on all the S+/S++/S+++ data pooled together and

found a significant global decoding performance rate. We also

found that the specific decoding performance rate confirms the

expectation that the decoder fails to extract information from

subliminal stimuli (S+), the learning being largely driven by the

neurophysiological signatures of supraliminar stimuli S++ and

S+++.

These findings, as stated above, pave the way for novel brain

computer interfaces that are able to track conscious perception

and train cognitive domains such as attention. These achievements

were possible through the identification of neurophysiological

Figure 8. Classification Results Across Experiments, in Balanced Accuracy Performance Measures: classification accuracy is
proportional to saliency levels. A. Classification model fot target detection built from the Color Luminance experiment and used to classify Phase
Offset experiment events’. B. Classification modelfor target detection built from the Chrominance experiment and used to classify Luminance
experiment events’. Dashed lines depict chance level at 50%. Bars depict confidence intervals for the means at 95%.
doi:10.1371/journal.pone.0086201.g008

Figure 9. Classification Results Based on a Pooled Saliency Model, in Balanced Accuracy Performance Measures: classification
accuracy is proportional to saliency levels. A classification model was built from a pool of all S+/S++/S+++ target responses, and used to classify
the events of each experiment. Dashed lines depict chance level at 50%. Bars depict confidence intervals for the means at 95%.
doi:10.1371/journal.pone.0086201.g009
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signatures of conscious perception at the level of single sensory

events, attainable because our statistical tools were powerful

enough to be used at the single trial level. Single trial based

statistics enabled a direct access to visual awareness that cannot be

achieved by simply measuring average responses. It is important in

this respect to discuss what could be the origin of the achieved

classification performance, in particular in which concerns the

cortical origin of the P300-like signals, and the possible influence of

spatial and feature attention on variability of ‘‘cortical’’ signals.

Other issues concern the possible influence of eye movements, that

are unlikely given the correction procedures adopted (see

Methods). We recently addressed the issue of gaze independence

and covert attention by developing a novel P300-based gaze

independent paradigm and proving that subjects can effectively

control the BCI interface without moving the eyes (using covert

attention). ([33], see also [34]). It is also worth pointing out that

feature-selective modulation of P300 amplitudes tends to be

limited to the attended location [35]. In general, the pattern of

modulation may be quite complex due the known pattern of

generators concerning target-related responses including the

parietal and the cingulate cortices. Novelty-related activations

occur mainly in the inferior parietal and prefrontal regions (target

frequency modulating their amplitude) and visual modality-

specific contributions come from the inferior temporal and

superior parietal cortex (for a review see [29,36]). Importantly,

both higher visual and supramodal association areas contribute to

the visual P3b pointing to the involvement of distinct attentional

subsystems in the detection of rare events [37]. Our finding that

conscious perception is associated with modulation of the P3

component (mostly P3b) is in line with the outcomes of other

previous studies [9,14,30,31,38–44]. In sum, global decoding

performance reflects conscious perception events since at all saliency levels it

matches conscious reports.

P300, attention and visual awareness are unequivocally related

concepts, and this relation has been extensively reviewed [1,45–

48]. In any case, seen and unseen stimuli all had the same

attentional (spatial and non-spatial) and task demands.

The idea of this study was not to develop a new P300 paradigm

but rather to interrogate it at as tool to explore perceptual saliency

and conscious perception. In fact it has been controversial whether

the P300 solely reflects conscious processing because most

approaches were model driven (see introduction) and our data

driven approach now settles this question, by showing a close

match between conscious detection and P300 detection at the

single trial level. The observed reliable detection was rendered

possible by using our previously validated single trial classification

strategies that were successfully applied in BCI applications [6,7].

Using such techniques, we were able to provide a direct link

between psychophysics and neurophysiology, and to find evidence

for visual awareness, even when using conservative balanced

accuracy measures.

The power of pattern-classification methods has been shown in

the domain of fMRI, and in the vision domain it has been shown

that conscious perception of particular contexts can be detected in

brain representations of nonstimulated regions [49]. Moreover,

brain reading of fMRI signals has also been used to identify

activation patterns that encode the perceptual interpretation of

ambiguous stimuli irrespective of their physical characteristics

[50]. However temporal resolution of such pattern recognition

techniques is rather low and requires the integration of many

perceptual moments. This study is novel because it investigates

online visual awareness and conscious perception at a temporal

resolution much higher the one available using fMRI, allowing for

parsing single sensory events at different saliency levels.

In the domain of EEG to our knowledge, there are no available

studies of single trial EEG brain reading of percepts of variable

saliency and the neural correlates of visual awareness. A previous

study [51] addressed the prediction of erroneous single trial conscious

percepts. A former study on brain activity based image classification

from rapid serial visual presentation, proposed the use of this

concept for BCI applications [52]. Other studies have attempted the

prediction of EEG single trial responses from other signals such as

concomitant fMRI [53] but not predicting correct perception from

such responses. Although a single-trial analytic framework for EEG

analysis has been proposed for target detection and classification

[54], and application in BCI interfaces [6,7] no study before

searched for direct event related correlates of conscious perception

at different saliency levels.

Our findings do therefore suggest a novel approach for direct

neurophysiological detection of single sensory events irrespective

of their perceptual conspicuity. In other words, regardless of

whether a object pops out effortlessly or not in our visual

experience, it can be identified at the neural level regardless of

whether it differs markedly from the surround or not. To our

knowledge such a correlate of visual awareness irrespective of

saliency at the EEG single trial level was not reported before in the

field of conscious perception.

It is worth noting that a few previous studies using oddball

paradigms also using threshold/subtreshold stimulation [15–17]

suggested that subthreshold stimulation enhanced P300 supra-

threshold oddball responses. However, other studies suggest that

this average measure is strictly associated with conscious, explicit

perception [8,9,11,13,14,30,31,38–43]. Our study provides clear

evidence favoring the latter view because it provides direct

evidence that single trial waveforms that overlap with the timing of

P300 components are directly related to conscious detection at the

single trial level.

In sum, we identified neurophysiological evidence for single trial

sensory representations and visual awareness at different saliency

levels. This neural correlate of conscious perception is robustly

detected for these unique sensory events, both within and between

subjects, using brain reading techniques. We conclude that neural

signatures of single trial perceptual conscious perception can be

found irrespective of their perceptual strength. Indeed, conscious

perception can be decoded as such independently of stimulus

salience. This study therefore provides a new framework to study

online visual awareness and conscious perception at high temporal

resolution.

The possibility to directly undercover stimulus event’s related

conscious awareness showed surprising fidelity even when using

conservative balanced accuracy measures. The use of single trial

statistical classification showed that one can detect single fleeting

events reaching visual awareness at the intraindividual as well as at

the interindividual level, paving the way for studies of conscious

perception that are truly based on single events.
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