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Abstract 

This thesis concerns the problems of epileptic seizure prediction and detection. We 

analyzed multichannel intracranial electroencephalogram (iEEG) and surface 

electroencephalogram (sEEG) recordings of patients suffering from refractory epilepsy, to 

access the brain state in real time by using relevant EEG features and computational 

intelligence techniques, and aiming for detection of pre-seizure state (in the case of 

prediction) or seizure onset times (in the case of detection). Our main original contribution is 

the development of a novel relative bivariate spectral power feature to track gradual transient 

changes prior to ictal events for real-time seizure prediction. Furthermore a novel robust and 

generalized measure for early seizure detection is developed, aimed to be used in closed-loop 

neurostimulation systems.  

The development of a general platform embeddable on a transportable low-power-

budget device is of utmost importance, for real time warning to patients and their relatives 

about the impending seizure or beginning of an occurring seizure. The portable device can 

also be integrated to work in conjunction with a closed-loop neurostimulation or fast-acting 

drug injection mechanism to eventually disarm the impending seizure or to suppress the just-

occurring seizure. Therefore, in this thesis we try to meet the dual-objective of developing 

algorithms for seizure prediction and early seizure detection that provide high sensitivity and 

low number of false alarms, fulfilling the requirements of clinical applications, while being 

low computational cost. 

To seek the first objective, a patient-specific seizure prediction was developed based on 

the extraction of novel relative bivariate spectral power features, which were then 

preprocessed, dimensionally reduced, and classified using a machine-learning algorithm. The 

introduced feature bears low complexity, and was classified using the powerful support 

vector machine (SVM) classifier. We analyzed the preictal EEG dynamics across different 

brain regions and throughout several frequency bands, using relative bivariate features to 



reveal the transient preictal changes ending in epileptic seizures. The suggested prediction 

system was evaluated on long-term continuous sEEG and iEEG recordings of 24 patients, and 

produced statistically significant results with average sensitivity of 75.8% and false 

prediction rate of 0.1 per hour. 

Furthermore a novel statistical method was developed for proper selection of preictal 

period, and also for the evaluation of predictive capability of features, as well as for the 

predictability of seizures. The method uses amplitude distribution histograms (ADHs) of the 

features extracted from the preictal and interictal iEEG and sEEG recordings, and then 

calculates a criterion of discriminability among two classes. The method was evaluated on 

spectral power features extracted from monopolar and bipolar iEEG and sEEG recordings of 

18 patients, in overall consisting of 94 epileptic seizures. 

To approach the objective of early seizure detection, we have formulated power spectral 

density (PSD) of bipolar EEG signal in the form of a measure of neuronal potential similarity 

(NPS) between two EEG signals. This measure encompasses the phase and amplitude 

similarities of two EEG channels in a simultaneous fashion. The NPS measure was then 

studied in several narrow frequency bands to find out the most relevant sub-bands involved in 

seizure initiations, and the best performing ratio of two NPS measures for seizure onset 

detection was determined. Evaluating on long-term continuous iEEG recordings of 11 

patients with refractory partial epilepsy (overall of 1785 h and 183 seizures) the results 

showed high performance, while requiring a very low computational cost. On average, we 

could achieve a sensitivity of 86.9%, a low false detection rate (FDR) of 0.06/h, and a mean 

detection latency of 13.1s from electrographic seizure onsets, while in average preceding 

clinical onsets by 6.3s. 

Apart from the above mentioned primary objectives, we introduced two new and robust 

methods for offline or real-time labelling of epileptic seizures in long-term continuous EEG 

recordings for further studies. Methods include mean phase coherence estimated from 

bandpass filtered iEEG signals in specific frequency bands, and singular value decomposition 

(SVD) of bipolar iEEG signals. Both methods were evaluated on the same dataset employed 

in the previous study and demonstrated sensitivity of 84.2% and FDR of 0.09/h for sub-band 

mean phase coherence, and sensitivity of 84.2% and FDR of 0.05/h for bipolar SVD, on 

average.  



Most of this work was established in collaboration with the EPILEPSIAE project, 

aimed to predict of pharmacoresistant epileptic seizures. The developed methods in this thesis 

were evaluated by the accessibility of long-term continuous multichannel EEG recordings of 

more than 275 patients with refractory epilepsy, referred to as The European Epilepsy 

Database. This database was collected by the three clinical centers involved in EPILEPSIAE, 

and contains well-documented metadata.  

The results of this thesis are backing the hypothesis of the predictability of most of 

epileptic seizures using linear bivariate spectral-temporal brain dynamics. Moreover, the 

promising results of early seizure detection sustain the feasibility of integrating the proposed 

method with closed-loop neurostimulation systems. We hope the developed methods could be 

a step forward towards the clinical applications of seizure prediction and onset detection 

algorithms. 
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Resumo 

Esta tese versa os problemas de predição e de deteção de crises epiléticas. Analisa-se o 

eletroencefalograma multicanal intracraniano (iEEG) e de superfície (sEEG) de pacientes que 

sofrem de epilepsia refratária, para a estimação em tempo real do estado cerebral, usando 

características relevantes do EEG e técnicas de inteligência computacional, ambicionando a 

deteção do estado pré-ictal (no caso de previsão) ou dos instantes de início de uma crise (no 

caso de deteção). A principal contribuição original é o desenvolvimento de uma característica 

de potência espectral bivariada relativa para captar as mudanças transitórias graduais que 

levam a crises e que poderão ser usadas para previsão em tempo real. Além disso, é 

desenvolvida uma nova medida, robusta e generalizada para a deteção precoce, destinada a 

ser utilizada em sistemas de neuro estimulação em malha fechada.  

O desenvolvimento de uma plataforma geral possível de ser integrada num dispositivo 

transportável, energeticamente económico, é de grande relevância para o aviso em tempo real 

do doente e dos seus próximos sobre a eminência da ocorrência de uma crise. O dispositivo 

transportável também pode ser usado em malha fechada com um neuro estimulador ou com 

um dispositivo de injeção rápida de um fármaco que desarme eventualmente a crise em curso. 

Por isso nesta tese persegue-se o objectivo de desenvolver algoritmos para previsão mas 

também para deteção de crises. Em ambos os casos, pretende-se que os algoritmos tenham 

uma elevada sensibilidade e uma baixa taxa de falsos positivos, tornando viável a sua 

utilização clínica. 

Para o objectivo de previsão, desenvolveu-se um método de previsão personalizado 

baseado na extração de uma característica nova, denominada de potência relativa espectral 

bivariada, que foi submetida a pre-processamento, redução de dimensão e classificação com 

Máquinas de Vetores de Suporte (SVM). Esta nova característica, de baixa complexidade, é 

computacionalmente simples, mas permite a análise da dinâmica do EEG preictal em 

diferentes regiões do cérebro e ao longo de várias bandas de frequência, de modo a descobrir 



os mecanismos subjacentes às crises epiléticas. O sistema de previsão obtido foi avaliado em 

registos contínuos de sEEG e iEEG de 24 pacientes, e produziu resultados estatisticamente 

significativos com sensibilidade média de 75.8% e taxa de predição falsa de 0.1 por hora.  

Além disso, foi desenvolvido um novo método estatístico para a seleção apropriada do 

período preictal, e também para a avaliação da capacidade preditiva das características, assim 

como para a própria previsibilidade das crises. O método utiliza os histogramas de 

distribuição de amplitude (ADHS) das características extraídas nos períodos pré-ictal e ictal 

dos registos de iEEG e sEEG e, em seguida, calcula um critério de discriminabilidade entre 

as duas classes. O método foi avaliado nas características de potencia espectral extraídas de 

registos iEEG e sEEG, monopolares e bipolares de 18 pacientes, consistindo num número 

total de crises epilépticas de 94.  

O segundo objetivo, a deteção precoce de crises, foi abordado através da formulação da 

densidade de potência espectral (PSD) de canais de EEG bipolares na forma de uma medida 

da similaridade do potencial neuronal (NPS) entre dois sinais de EEG. Esta medida usa as 

similaridades entre as fases e as amplitudes de dois canais de EEG de um modo simultâneo. 

A medida NPS foi estudada em várias bandas estreitas de frequência de modo a descobrir-se 

quais as sub-bandas mais envolvidas na inicialização das crises; buscou-se assim a melhor 

razão entre duas NPS do ponto de vista da deteção precoce. Avaliadas em iEEG contínuos de 

longa duração de 11 doentes com epilepsia refratária parcial (num total de 1785 h e 183 

crises), os resultados apresentam um desempenho com sensibilidade de 86.9% e taxa de 

deteção falsa (FDR) de 0.06/h, uma latência de 13.1 s em relação ao início eletrográfico, 

sendo uma crise detetada em média 6.3 s antes da sua manifestação clínica.  

Para além dos objetivos principais referidos acima, introduziram-se dois novos 

métodos, robustos, para etiquetagem em diferido e em tempo real das crises em registos 

contínuos de EEG de longa duração para estudos posteriores. Esses métodos incluem a 

coerência de fase média (mean phase coherence) estimada a partir de registos iEEG em 

bandas de frequência específicas (usando filtros passa-banda), e a decomposição em valores 

singulares (SVD) de sinais iEEG bipolares. Ambos os métodos foram avaliados no mesmo 

conjunto de dados do estudo anterior e apresentaram, em média, uma sensibilidade de 84.2% 

e um FDR de 0.09/h para a coerência de fase média calculada para as sub-bandas, e 

sensibilidade de 84.2% e FDR de 0.05/h para a metodologia que usa a decomposição SVD 

bipolar. 



Grande parte deste trabalho foi feito no âmbito do projeto EPILEPSIAE, visando a 

previsão de crises em doentes epiléticos fármaco-resistentes. Os métodos desenvolvidos nesta 

tese aproveitaram a acessibilidade aos dados bem documentados de mais de 275 pacientes 

que constituem a Base de Dados Europeia de Epilepsia (European Epilepsy Database), 

provenientes dos três centros hospitalares participantes no projeto. 

Os resultados desta tese apoiam a hipótese da previsibilidade da maioria das crises 

epiléticas usando dinâmicas cerebrais bivariadas lineares espetrais e temporais. Além disso os 

resultados são promissores relativamente à deteção precoce de crises e sustentam a 

fazibilidade da integração desses métodos com técnicas de neuroestimulação em malha 

fechada. Esperamos que os métodos desenvolvidos resultem num avanço no que respeita à 

aplicação clínica de algoritmos de previsão e deteção de crises. 
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Notation 
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Chapter 1 Introduction 

Epilepsy is known and has attracted interests since ancient times, during which epileptic 

events were believed as originated from supernatural causes. In fact, the first records about 

epileptic events date back to around 3000 years ago in Babel and were known as miqtu. 

Ancient Greeks considered epilepsy as an extraordinary phenomena and a holy disease. In 

their belief, only god could throw the man on the floor, take his every sense, cause him 

seizure and finally return him back to the life with his normal appearances. Hippocrates was 

the first to find out that seizure was a disease and then had tried on its medication. Religious 

beliefs had by 1800s prohibited the scientific and routine study of the seizures (Magiorkinis 

et al. , 2010). Today seizures are considered as a window to the anatomy and complex 

function of the brain, and thus have been transformed into a multi-disciplinary field of study, 

and overwhelming research is directed towards them worldwide. 

Second to stroke, epilepsy is the most common brain disorder, from which nearly 0.9% 

of the world’s population is suffering. According to recent statistics, this happens with 63 

million men and women worldwide, of all conditions and ages. Epilepsy related direct and 

indirect costs in Europe were estimated as €15.5 billion (109) per year, equivalent to an 

amount of €33 per capita (Pugliatti et al. , 2007). Also in the United States, the cost of 

covering just the direct medical expenditure related to epilepsy is estimated around $9.5 

billion per year (Yoon et al. , 2009). Epilepsy is caused either by brain injuries or by out of 

balance chemicals in the brain. In fact, anything that injures the normal brain tissue can lead 

to seizures. However, in more than 50% of the epileptic cases, no certain cause can be 

identified (Sun et al. , 2001). Furthermore, the type of injury that can lead in a seizure is age-

dependent. Children for example, during the very first years are quite easily affected by 

epilepsy, through birth-related issues, by inheritance, usual infections such as meningitis and 
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even uncontrolled fevers. In the middle age however, epilepsy is mainly kicked off by 

accidents which damage brain tissue. Such accidents include but are not limited to infections, 

alcohol, and side effects of medications. Finally, strokes and traumas are main triggers of the 

epileptic seizures throughout the last years of one’s lifetime. 

Epilepsy is usually controlled by medication, but not cured. Most treatments provided 

for epilepsy are in the form of anticonvulsant drugs. However their critical side effects should 

be taken into account and for about 30%-35% of the patients, the antiepileptic drugs (AEDs) 

are not effective (Carney et al. , 2011). In such cases, brain surgery is the alternative solution, 

which tries to remove the region in the brain where seizures are generated. However surgery 

is not always possible, and many patients are not eligible for that, because of the involved 

high risks (Spencer et al. , 2008). As a consequence about 30% of patients with epilepsy can 

be treated neither by medication nor by surgery, and must live with the seizures that can 

happen anytime, anywhere. Despite medical costs associated with the treatment of epilepsy, 

the injuries resulting from uncontrolled seizures represent an even higher cost to the society 

(Strzelczyk et al. , 2013). 

Success in prediction of epileptic seizures would improve the living conditions of 

patients suffering from ictal events. Patients would have the possibility to ask for emergency 

help and early medications, therefore various interventions such as 

responsive neurostimulation (RNS) (Morrell, 2011, Sun et al. , 2014a), vagus nerve 

stimulation (VNS) using electrical impulses (Shoeb et al. , 2011b), deep brain stimulation 

(DBS) (Wu et al. , 2013), trigeminal nerve stimulation (TNS) (DeGiorgio et al. , 2006), or 

delivering fast-acting AEDs could be applied to overcome the seizures. Moreover, patients 

are enabled to take precautionary actions to preserve safety and privacy, keeping them away 

from potentially dangerous situations. In (Schulze-Bonhage et al. , 2010) some advantages 

such as avoidance of injuries, increasing the feeling of security, improved working hours, 

more fruitful leisure times, avoiding embarrassing situations, driving without fear, and 

reduction of anxiety are mentioned. 

Neurostimulation therapies could provide reduction in seizure frequency and intensity, 

and produce more effective results after several years of implantation (Fisher et al. , 2014). 
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The immediate reduction in seizure frequency using neurostimulation is approximately 40%, 

increasing to 50-69% after several years (Fisher et al. , 2014). The performance of 

neurostimulation systems would be increased significantly if they could be implanted using a 

closed-loop approach, sending the electrical stimulation pulses in proper times, e.g. prior to 

seizure onset or within few second after seizure initiation. 

During the last decade, there has been a growing progress in commercialization of the 

seizure intervention systems using neurostimulation techniques. Different USA-based 

companies have registered patents and produced devices for open-loop and closed-loop 

neurostimulation of the refractory epilepsy. At the time of writing this thesis, open-loop VNS 

(by Cyberonics, Inc.) and closed-loop RNS (by NeuroPace, Inc.) have been approved by the 

USA Food and Drug Administration (FDA), while the DBS (by Medtronic, Inc.) is awaiting 

the FDA approval. However in Europe the VNS and DBS of the anterior nucleus of thalamus 

have been already approved, and the RNS system, which is just approved in USA, will 

probably be approved in near future in Europe. Currently, the RNS system is the solo 

operational closed-loop neurostimulator for epilepsy therapy. RNS continuously monitors the 

intracranial EEG signals using four strip electrodes, and releases the electrical stimulation 

pulses upon detecting abnormal brain activities. Figure  1.1 shows the above mentioned 

commercialized products. 

In a standardized study by Schulze-Bonhage et al. (Schulze-Bonhage et al. , 2010) on 

141 epileptic outpatients, including one hundred outpatients from the tertiary epilepsy center 

at University Hospital Freiburg (Germany) and 41 outpatients from the department of 

neurology at Coimbra University Hospital, to learn the patients’ views on the importance of 

seizure prediction devices, patients expressed their interest in the development of methods for 

seizure prediction, both for warning as well as closed-loop interventions. In average, 66.6% 

of all patients feel that the unpredictability of seizures plays an important (or very important) 

role in their everyday life. According to this study, in average more than 90% of the patients 

believed that the development of special tools to predict seizures is important or very 

important (Schulze-Bonhage et al. , 2010), regardless of the severity of seizures. It is 

interesting to know that patients going through aura considered, more than other patients, 

EEG-based seizure prediction efforts to be helpful (Schulze-Bonhage et al. , 2010). 
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Deep brain stimulator (DBS) 

Medtronic, Inc. 
Responsive neurostimulator (RNS) 

NeuroPace, Inc. 
vagus nerve stimulator (VNS) 

Cyberonics, Inc. 

Figure  1.1 – Some of the current commercialized neurostimulation systems for epilepsy disease 

The first step to control epilepsy is the prediction or early detection of seizures, in a way 

that can be done anytime and anywhere. Prediction and control of seizures can be very 

difficult due to unknown exact causes, and chaotic nature of the brain. Regarding the current 

technologies, electroencephalography (EEG) is one way to measure and record brain signals, 

using some electrodes implanted inside the brain or placed on the scalp skin. Despite 

emerging technologies such as Magnetic Resonance Imaging (MRI), functional MRI, 

Magnetoencephalography (MEG), and X-ray Computed Tomography (X-ray CT), EEG 

remains yet as the most-economic and less-harmful technology for the diagnosis of this 

widespread disease, and detailed analysis of continuous EEG records can provide us with 

valuable information regarding such disorders. EEG provides a good temporal resolution for 

the measurement of instant electrical changes in the brain. Therefore, EEG is widely used as 

the most important tool in the study of epilepsy. 

1.1 Neurophysiology of epilepsy 

Epileptic seizure is the abrupt occurrence of highly coherent activity throughout large 

numbers of neurons inside the brain, which can distort normal brain activity, and which 

usually lasts from seconds to minutes. Such an activity may be just as simple as to only cause 

a partial distortion in the consciousness level, or in its severe forms can cause complex 

abnormal motor and sensory disorders. The most frequent disorders caused by seizures are 

those with repeating transient changes in the electrical functions of the brain, eventually 

causing hyperactive and highly synchronous neurons in parts of the brain cortex. These 
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highly coherent neural activities play the central role in the development of epileptic seizures, 

usually lasting from seconds to minutes. Among the earliest indications of epilepsy is the 

presence of transient waveforms (spikes and sharp waves) in the EEG signal. As the seizure 

develops, the waveforms gradually change into semi-periodic and quite orderly signals 

having high amplitudes (Figure  1.2). Appearance and magnitude of these waves vary in 

different patients, but all follow certain patterns. 

1.1.1 Seizure types 

An epileptic seizure is usually classified according to its origin or seizure onset zone 

within the brain as well as how it develops and spreads. This can be done using multichannel 

EEG recordings. Over 40 varieties of epileptic seizures are identified and categorized under 

two main groups of partial and generalized seizures.  

Partial (focal) epilepsy affects around 65% of the epileptic patients and is characterized 

by seizures which originate from a limited numbers of neuronal clusters in the brain. These 

patients will exhibit meaningless behaviors such as random walking, mumbling, head turning, 

or pulling at clothing, none of which can be remembered by the patient after the seizure. The 

most widespread form of partial epilepsy is the temporal lobe epilepsy (TLE), with mesial 

temporal lobe (MTLE) and lateral temporal lobe (LTLE) as its two main sub-categories. 

While MTLE originates from interior parts of the temporal lobe (hippocampus, the 

parahippocampal gyrus or the amygdala), LTLE originates from exterior surface of the 

temporal lobe (neocortex) and is less common (Engel, 2001). Frontal lobe epilepsy (FLE) is 

the second most common type of partial epilepsy after TLE, often occurring during sleep.  

 

Figure  1.2 – Invasive EEG recordings (30 sec) covering the initial and developed states of an epileptic seizure. 
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Partial seizures are also sub-classified into simple partial and complex partial seizures. 

Simple partial seizures (SPS) involving small temporal lobe areas are not that strong to cause 

a loss of consciousness. Contrarily, complex partial seizures (CPS), which are usually the 

result of simple partial seizures spreading to larger areas of temporal lobe, are so much strong 

that throw the patient unconscious, impairing him/her from normally interacting with the 

surrounding environment. Partial seizures can occur alone, or can be followed by a 

generalized seizure. 

In the generalized epilepsy, the seizure strikes both left/right hemispheres of the brain 

simultaneously and causes a lack of awareness. The generalized seizure is in a form that, 

from the very beginning, causes a wide range of sensing/movement changes. These changes 

can vary from simple local muscle movements in one part, to the more widespread paralyzing 

activities in the whole body. The tonic-clonic seizure (grand mal) is the most well-known 

seizure among generalized seizures, during which the patient usually falls to the floor. 

From the medical point of view, epilepsy and epileptic seizures can also be studied 

according to a larger variety of aspects such as from their order of occurrence and frequency 

to the physiological effects on patient’s body. In general, seizures can extend from hundreds 

per one day in some patients, to just a few in a whole year in some others. 

1.1.2 Predictability of seizures 

In nature every phenomenon has at least one cause, and epileptic seizure is not an 

exception. Considering the complexity of the brain, two scenarios are imaginable as the cause 

of an epileptic seizure (da Silva et al. , 2003). According to the first scenario, some 

instantaneous factors trigger the epileptic seizure. Although this scenario seems logical due to 

the sudden nature of seizures, it implicitly implies that we are accepting the unpredictability 

of the seizures, since it will not be possible to link the seizure with any long term dynamical 

changes in the brain, and consequently predict the seizure by analyzing the EEG records.  

In the second scenario, the pattern distinguishing the seizure is known to be the gradual 

change in the brain from normal state to the abnormal state, which is evident in the recorded 

EEG signals (da Silva et al. , 2003). Thus it should be possible to predict seizures before by 
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using EEG signals. Here, the studies on seizure prediction are developed based on the second 

scenario, and the results of proposed approaches are supporting the hypothesis of the 

predictability of most of epileptic seizures. The summary of our contributions in seizure 

prediction and detection are presented in the next subsection. 

1.2 Summary of contributions 

This thesis aims to contribute to the development of methodologies with appropriate 

sensitivity and specificity to be integrated in a transportable device, to alarm in real time the 

impending seizures or just occurring seizures in refractory epileptic patients. This purpose is 

approached through two solutions: seizure prediction and early seizure detection. Seizure 

prediction refers to the reliable prediction of epileptic seizures by minutes or hours in 

advance. Early seizure detection refers to the electrographic onset detection of a seizure 

within a few seconds, and preceding the clinical onset, which is the actual cause of disabling 

clinical symptoms. Several new techniques are introduced for prediction of epileptic seizures. 

Moreover a very cost-effective yet robust method is proposed for real-time early seizure 

detection. Furthermore, two novel measures are investigated for the problem of automated 

seizure event detection. All of the algorithms of this thesis were simulated using MATLAB 

software package from MathWorks Inc. The summary of our contribution to these epileptic 

seizure problems is detailed below. 

1.2.1 Seizure prediction 

Our contributions for seizure prediction can be categorized as two approaches: a 

relative bivariate prediction method and a novel statistical method for finding optimal preictal 

period. Our main contribution in seizure prediction is a novel bivariate relative measure based 

on spectral power features extracted from six EEG recordings. We aimed to improve 

sensitivity and specificity of prediction methods, and to reduce the number of false alarms. 

For this purpose, relative combinations of sub-band spectral powers of EEG recordings 

across all possible channel pairs were utilized for tracking gradual changes preceding 

seizures. Furthermore, by using a specifically developed feature selection method, a set of 
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best candidate features were selected and fed to SVM classifier with Gaussian kernel in order 

to discriminate cerebral state as preictal or non-preictal. The proposed algorithm was 

evaluated on continuous long-term multichannel surface and invasive recordings of more 

than 5 months (183 seizures, 3565 hours, for all patients). On average, the best results 

demonstrated a sensitivity of 75.8% (66 out of 87 seizures) and a false prediction rate of 0.1 

h-1 on 1537 hours of test data. Performance was validated statistically, and was superior to 

that of analytical random predictor. We have concluded that applying machine learning 

methods on a reduced subset of proposed features could predict seizure onsets with high 

performance. The number of selected features was 9.9 in average showing the efficiency of 

the introduced relative bivariate features. One of the significances of the study was evaluating 

on long-term continuous recordings of overall about 5 months, contrarily to the majority of 

previous studies using short-term fragmented and prepared data. It is of very low 

computational cost, while providing acceptable levels of alarm sensitivity and specificity. 

The second approach specifically deals with preictal period. Supervised machine 

learning based seizure prediction methods consider preictal period as an important 

prerequisite parameter during training. However the exact length of preictal state is seizure-

specific and ambiguous. The improper selection of this parameter can extensively affect the 

prediction efficiency, and thus plays a significant role. Therefore, a novel statistical method 

for finding the optimal preictal period (OPP) to be used in epileptic seizure prediction 

algorithms was developed. The proposed method uses amplitude distribution histograms of a 

candidate feature extracted from EEG signals. Additionally, the optimal preictal method can 

be helpful in two ways. First it can provide a means of measuring the efficiency of a feature, 

and second it can say whether a specific seizure has distinguishing preictal changes or not. To 

evaluate this method, spectral power features in different frequency bands were extracted 

from monopolar and space-differential EEG signals of 18 patients (94 seizures) suffering 

from pharmacoresistant epilepsy. Results indicated that OPP vary from seizure to seizure 

even for the same patient. Furthermore comparisons among monopolar with space-

differential channels, as well as intracranial EEG (iEEG) and surface EEG (sEEG) signals, 

indicated that while monopolar signals perform better in iEEG recordings, no significant 

difference is noticeable in sEEG recordings. 
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1.2.2 Seizure detection 

Nevertheless the long track of efforts on seizure prediction, the findings are still far 

beyond from being exploitable by clinical applications. Due to low sensitivities and high 

number of false alarms of the existing prediction methods, they cannot fully satisfy the 

technical requirements of closed-loop neurostimulation systems. However, thanks to the 

recent progresses of the neurostimulation systems for epilepsy, which are capable of quickly 

acting to effectively suppress a good portion of the seizures (Fisher, 2012, Fisher et al. , 

2014), one of the objectives of seizure prediction methods may eventually be fulfilled by 

more realistic approaches of early seizure detection (Jouny et al. , 2011, Kharbouch et al. , 

2011, Zheng et al. , 2014a). Therefore, several researchers are working on the early detection 

of the epileptic seizures as an alternate option, deployable in the closed-loop neurostimulation 

systems.  

In line with that evolution, we have also developed a very low complex yet robust 

method for early seizure detection using a proposed neuronal potential similarity measure. 

The power of a bipolar signal is formulated as a neuronal potential similarity criterion 

between two channels. The method then uses ratio of spectral power features in specific 

frequency bands, obtained from the bipolar iEEG signal recorded from seizure foci. A 

threshold based classifier is subsequently applied on the proposed measure to generate the 

alarms. Our proposed measure could provide high sensitivities, very low number of false 

alarms, and very short detection latencies in a group of 11 studied patients. 

The first requirement for our study was collecting adequately long-term continuous 

multichannel EEG recordings from epileptic patients, which became possible in the 

framework of the EPILEPSIAE project. The cumbersome task of visual inspection of these 

bulky recordings by epileptologists collaborating in the EPILEPSIAE project motivated us 

for developing new robust and automated seizure event detection methods for the accurate 

labelling of seizures. The state-of-the-art seizure detection methods suffer from high number 

of false detections, even when designed to be patient-specific. We have proposed two 

generalized methods for seizure event detection using a set of two iEEG channels.  
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The first approach is based on phase synchronization of neuronal activity in different 

frequency sub-bands. Mean phase coherence (MPC) as a measure of phase synchronization is 

extracted from the two immediately adjacent iEEG recordings, which were previously 

bandpass filtered within the desired frequency bands. A threshold-based classifier is applied 

to generate the alarms. The proposed method was applied on 11 invasive recordings selected 

from the European Epilepsy Database. The results are compared with the MPC measures 

extracted from wideband iEEG signals, and show significant improvement for automated 

epileptic seizure detection. On average the sub-band MPC results attains a sensitivity of 

84.2% (154 of 183 seizures in 1785 h recordings) and a false detection rate of 0.09 per hour. 

Results can be useful in two ways: for automated seizure detection, and for gaining better 

understanding of the synchronization behavior of epileptic seizures in different frequency 

bands.  

The second proposed method for seizure detection is based on the singular value 

decomposition (SVD) of bipolar iEEG recordings. The novel idea of our method is applying 

the SVD on bipolar recordings, which incredibly reduced the number of false alarms, while 

providing a high sensitivity. Two channels were selected on the foci, as a pairs of very close 

electrodes. Signals from the electrodes were then subtracted from each other to make a 

bipolar iEEG signal. The average of specific singular values achieved from SVD of this 

signal was used as measure. A threshold was subsequently applied on the measures. Results 

indicate that by using bipolar iEEG channel, one can build more robust algorithms than using 

a single channel. The method was applied on invasive recordings of 11 patients, containing 

183 seizures in 1785 h. On average, the results revealed 84.2% sensitivity and a very low 

false detection rate of 0.05 per hour in long-term continuous iEEG recordings. 
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1.3 Thesis outline 

This thesis is organized in six chapters. In chapter 2, the theoretical and technical 

aspects of seizure prediction and detection are presented. Different types of 

electroencephalography are explained with some examples. It provides a brief description of 

the prerequisite definitions and clinical issues concerning seizure prediction and detection. 

Major techniques used in the thesis, including spectral power analysis, support vector 

machine classifier, regularization using firing power method, and random predictor will be 

reviewed. Furthermore the performance metrics in seizure prediction and detection will be 

addressed.  

Chapter 3 is devoted to the reviews of the prior studies and achievements in seizure 

prediction and detection during the last four decades. This Chapter is organized by features, 

and according to linear/nonlinear and univariate/bivariate analysis. Moreover the recent 

studies using combination of various features and employing computational intelligence 

methods are summarized. Furthermore some studies on self-prediction of seizures using 

prodromal symptoms are pointed out. 

Our contributions to seizure prediction are demonstrated in chapter 4. The first section 

of this chapter covers our main contribution. The proposed method uses the ratio of spectral 

power features across six EEG channels, which are then pre-processed by normalization and 

smoothing. A feature selection scheme is developed, and applied to the resulting high 

dimensional feature space. A reduced set of these features is then fed to nonlinear SVM 

classifier, followed by a moving average window regularization stage along with some 

constraints to generate alarms. In the second section of this chapter a novel statistical 

approach for proper selection of the preictal period is presented, which can also be considered 

either as a measure of predictability of a seizure or as the prediction capability of an 

understudy feature. The method is applied on spectral power features estimated from 

monopolar/bipolar iEEG/sEEG signals of 18 patients, providing comparison between 

monopolar and bipolar EEG analysis in seizure prediction, as well as surface versus invasive 

recordings. 
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In chapter 5, three different approaches are presented for seizure onset and event 

detection. The seizure onset detection method, also referred to as early seizure detection, is 

aimed to provide high performance detection and low detection latency for closed-loop 

neurostimulation systems. The early detection method employs power spectral density of a 

single bipolar iEEG channel, and is very cost effective for implantable low-power-budget 

hardware devices. Furthermore to facilitate long-term continuous monitoring of EEG 

recordings by experts in the clinical studies, two novel approaches are introduced for 

automated labelling of seizure events. All of these three methods are applied on the same 

intracranial EEG recordings of 11 patients. 

Chapter 6 concludes the thesis with a discussion of the findings, and suggesting 

potential road plans for future researches on seizure prediction and detection. 



 

Chapter 2 Background and problem statement 

This chapter is dedicated to the theoretical and technical aspects of seizure prediction 

and detection using EEG signals. First an overview of electroencephalography and its types is 

presented, followed by the concept of moving window analysis of EEG signals. Afterwards 

some prerequisite definitions and clinical issues of seizure prediction and detection are 

summarized. Subsequently some technical methods used in this thesis are briefly described. 

Also, the final section of this chapter presents the performance evaluation metrics in seizure 

prediction and detection. 

2.1 Electroencephalography  

Human brain comprises a complex network of neurons highly interconnected through 

axons. As these interconnections are electrochemical, both electrical and magnetic fields are 

produced in the vicinity of the induced electrical currents. The electrical field can be recorded 

using electroencephalography, while the magnetic field can be recorded using 

Magnetoencephalography (MEG).  

EEG measures the electrical potentials generated by neurons of the brain over the time, 

and contains important information about its physiological and pathological state. In 

electroencephalography, the signal recorded from each individual electrode represents the 

electrical activity of bunch of neurons located in the vicinity of that electrode. By this, the 

microscopic electrical activity of neurons is translated into macroscopic recordings of 

electrodes. EEG patterns involve generic ordinary states, and any deviation from those states, 

would indicate abnormal condition in the brain. The EEG signal contains special waveforms 

with different amplitudes and frequencies, which are capable of describing various patterns 

like resting, consciousness and some neurological diseases.  
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2.1.1 Intracranial and surface EEG 

Recording electrical brain signals can be done both in an invasive or a non-invasive 

way. Electrocorticography (ECoG) is an example of invasive recording also known as 

intracranial EEG (iEEG), in which electrodes are inserted into the brain and remain in direct 

contact with the brain tissue. On the other hand, surface EEG (sEEG) recording is the non-

invasive way of electrical recording, where the electrodes are placed over the scalp. For 

surface recording there exist several standard electrode placement configurations among 

which the international 10-20 system is the most well-known. However for invasive electrode 

placement there is no unique standard and the positions of implanted electrodes depend upon 

the particular study requirements. Figure  2.1 shows the invasive and surface electrodes. 

 
(a) International 10-20 system electrode placement (Malmivuo et al. , 2002) 

  
(b) Grid (left) and strip (right) electrodes for invasive EEG recording (Voorhies et al. , 2013) 

Figure  2.1 – Surface and intracranial EEG electrodes 
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Time-frequency analysis of the signals recorded from different electrode sites would 

indicate that although the signals of distinct electrodes at any instant of time contain similar 

frequencies, the amplitudes of these frequencies vary among the different electrodes. The 

reason is that the recorded signals include the attenuated effects of the electrical activities 

from different parts of the brain (Figure  2.2). This issue is more severe in sEEG, as the 

electrodes are placed a little far away from the desired electrical source locations, and 

recorded through the skull. This is the major drawback of the non-invasive brain signal 

recording methods such as 10-20 system. As an example, electrode X1 in Figure  2.2 is used to 

measure the electrical activities of region S1. However, since electrical fields are present 

across the whole space surrounding their source, this electrode will also capture the electrical 

activities from S2, S3 and S4 regions with a weaker intensity, and will thereby contain the 

information from those parts of the brain. 

Although the sEEG recording cannot provide localized neuronal potential activities, it 

can present a more generalized spatiotemporal view of brain’s dynamical system. Among the 

advantages of the invasive methods are the high signal to noise ratio (SNR) and the localized 

recording of the brain activity by minimizing the unwanted interferences from other brain 

sites on the signals recorded from the region of interest. Figure  2.3 depicts the simultaneously 

recorded multichannel sEEG and iEEG signals of a sample seizure. 

 

Figure  2.2 – EEG recordings are mixed of electrical activities of different brain parts (Sanei et al. , 2008) 
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(a) Surface EEG recordings 

 

(b) Invasive EEG recordings 

Figure  2.3 – Multichannel sEEG and iEEG signals of a sample seizure recorded simultaneously. The vertical red 

lines indicate seizure onset and offset times. 
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2.1.2 Bipolar electroencephalogram  

EEG is an electrical potential difference measured between an electrode over the region 

of interest and a fixed reference electrode, and is therefore bipolar by nature. The positioning 

of electrodes and reference channels can both affect the nature of the recorded signal (Nunez 

et al. , 1997). By tradition however, these voltages between an electrode and the fixed 

reference are called monopolar signals or channels, and the difference of two monopolar 

signals, selected physically in close proximity, is known as bipolar signal or channel. The 

bipolar montage can also be directly derived by considering just two adjacent electrodes 

during recording, where the signals of two electrodes are being passed in to the inputs of an 

amplifier. For sufficiently close-by configurations, the bipolar signal may be considered as an 

approximation of the tangential component of brain’s electrical field (Wendel et al. , 2009). 

Contrary to the monopolar iEEG, the bipolar montage is less susceptible to artifacts 

(Aarabi et al. , 2007) and provides better spatial resolution (Srinivasan et al. , 1996, Nunez et 

al. , 1997, Tang et al. , 2007). Bipolar processing can remove common mode interferences 

mounted evenly on the two adjacent electrodes. These common mode interferences may 

include physiological artifacts, e.g. electromyogram (EMG) and eye movement artifacts, or 

non-physiological artifacts, e.g. power line noise (50 or 60 Hz and their harmonics). Bipolar 

recordings can better reduce the volume conduction effects compared to the monopolar 

recordings, by acting as a high-pass spatial filter (Nunez et al. , 1997). Moreover, 

topographical variations invisible to monopolar recordings can be identified using bipolar 

schemes (Baranov-Krylov et al. , 2005). In this thesis, bipolar iEEG channel was derived by 

subtracting the signals from two immediately adjacent iEEG electrodes, selected from a 

candidate probe array on foci. Array can be in the form of grid, strip, or depth probes. 

2.1.3 Moving window analysis 

It is common practice in detection and prediction studies, to first segment the 

continuous EEG recordings into windows of short lengths prior to feature extraction. This 

process is referred to as the moving window analysis of EEG signals, with consecutive 

windows which may or may not overlap with each other depending upon the step size. In the 
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case of overlapping, a portion of signal is shared among the two consecutive windows. 

Moreover the moving window analysis will allow performing simulations close to real-time, 

where there is no access to the future data, and the designed algorithm first has to buffer a 

sufficient amount of sampled data, e.g. 5 seconds, and then apply the desired methodology on 

this data to make decisions about the brain’s state. Then the algorithm should wait again for 

the next portion of data to be recorded and analyzed.  

In this thesis, we consider different window lengths for seizure prediction and detection. 

For prediction, since the preictal period is assumed to be of gradual changes prior to seizure 

onsets, within a time duration in a range of tens of minutes, therefore longer windows of 

either non-overlapping 5-sec (for the first study) or half-overlapped 8-sec (for the second 

study) are considered. However, for detection studies, since the ictal period is relatively short, 

and we are interested to detect seizures in their early initiation states, therefore a window 

length of 2 seconds with 50% overlap is employed, providing alarm generation every second. 

2.2 Prerequisite definitions 

Before starting the state of the art chapter on seizure detection and prediction methods, 

it is necessary to become familiar with the general concepts used by researchers of this field. 

Studies by neurologists, categorize brain activity in epileptic patients into four states 

(Figure  2.4): interictal (normal), preictal (before seizure), ictal (across seizure) and postictal 

(after seizure). Preictal is the state just before the seizure, which is to be detected in order to 

predict the proceeding seizure; depending on the starting time of seizure symptoms, the 

preictal can cover from several seconds up to several hours before the seizure (Litt et al. , 

2002, Ebersole, 2005, Mormann et al. , 2007). Ictal state is the time period in which seizure 

happens. Postictal state encompasses the moments after seizure onset. Interictal state, during 

which the patient enjoys a normal brain activity, is the interval beginning right after the 

postictal state of a seizure and ending before the preictal state of the next seizure. The prime 

goal in seizure prediction is to distinguish the preictal period against the rest of these states, 

whereas in seizure detection the adequate identification of the ictal state among these four 

states is the objective. 
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Figure  2.4 – Epileptic brain states; interictal, preictal, ictal, and postictal 

The ictal period can be identified precisely by epileptologists through the visual 

inspection of EEG recordings, as well as the video monitoring of patients during their stay in 

the hospital. A postictal state can also be estimated either by looking at EEG patterns 

following a seizure event, or by applying complex EEG based techniques. However, the 

correct identification of the preictal period is a matter of controversy, for which there is no 

clinical agreement among experts. The choice of preictal length is a major issue with seizure 

prediction algorithms, and may differ from patient to patient, and even among the seizures of 

a patient. To tackle this issue, researchers have therefore defined some common definitions. 

Also EEG patterns can change significantly according to the daily living conditions, 

such as the level of activity, awareness, sleep stage, and tiredness, further complicating 

seizure prediction and detection. Additionally demanding brain functions such as study and 

thinking would alter different levels of neuronal activities, which add up to the electrical 

fields of the brain. In presence of such interfering parameters, extraction of preictal and ictal 

patterns sometimes becomes very difficult, and can be easily mistaken by other brain 

activities.  

An epileptic seizure prediction system should ideally pinpoint the exact moment of 

seizure onsets, a goal that has not yet been practically possible. Instead, algorithms are 

developed which try to distinguish specific time periods having highest seizure occurrence 

chances. This time period is simply known as seizure occurrence period (SOP), and is a 

major prerequisite in developing prediction algorithms. Since preictal period cannot be 

defined precisely and varies among seizures and patients, it is usually a rule of thumb to use 
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the SOP time as preictal period. In this respect, a prediction is marked as true, if the alarm is 

raised inside an SOP window preceding the seizure onset. 

2.2.1 Clinical discussions 

Adequate selection of preictal interval is very important for seizure prediction methods, 

and proper choices on one hand should increase the efficiency of the prediction algorithm, 

and on the other hand should improve the physical/emotional living conditions of the patient. 

A prediction algorithm is essentially favored by the refractory epileptic patients, if it can 

satisfactorily provide them with both physical and emotional relief. An excessively long 

preictal period may expose the patients to high emotional stresses, and is psychologically 

unpleasant. Therefore it is necessary to define an upper bound value for the preictal time. In 

the study by Schulze-Bonhage et al. (Schulze-Bonhage et al. , 2010) on 141 epileptic patients, 

more than 89.9% of the patients preferred SOPs of less than 1 hour long. 47.4% of patients 

considered 10 minutes as optimal, whereas only 9.2% of patients regarded ≥3 hours a good 

prediction window. Based on two separate studies by Mormann et al. (Mormann et al. , 2006) 

and Schelter et al. (Schelter et al. , 2007), most patients preferred a relatively short seizure 

prediction window. However, the suggestion of longer but seizure-prone periods was also 

considered worthwhile (Schulze-Bonhage et al. , 2010).  

A prediction system capable of generating alarms even tens of seconds in advance of a 

seizure will be quite satisfactory to keep patients safe from dangerous situations. Apart from 

what the patients expect, the choice of preictal time is also dependent on and constrained by 

the particular prevention algorithm of interest. Although prediction is always an important 

issue for patients’ safety, however with the recent progresses in neurostimulation systems, 

early seizure detection methods have found practical applications for closed-loop fast acting 

neurostimulation systems, which require only few seconds to affect and suppress oncoming 

seizures. 

In every detection/prediction algorithm, a percent of false alarms is inevitable. Such 

errors could have various origins, both intrinsic and induced. For every false prediction, 

patient has to be prepared for the seizure, which will never occur. For the cases where closed-
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loop neurostimulation or AED injection systems are employed to prevent seizures, higher 

false alarm rates will increase the side-effects of unnecessary neurostimulation or drugs. 

Also, accumulated side-effects of the neurostimulation or drugs can themselves cause other 

neural disorders. Moreover, for such excessive false prediction rates, patients may either not 

consider generated alarms seriously even those of true predictions, or would go through 

intensive psychological stresses. Depending upon preventing methods, the acceptable range 

for false detection/prediction rates could be different and has to be determined and validated 

clinically. 

2.3 Technical background 

2.3.1 Spectral analysis of electroencephalogram signals 

Power spectral density (PSD) indicates the distribution of power of a signal or time 

series within frequencies (Dressler et al. , 2004). The PSD is calculated based on the 

assumption that the EEG signal is statistically stationary, thus the raw EEG signal is first 

segmented into short windows to minimize nonstationarity effects. The length of window was 

selected by a tradeoff between two extremes: it should be long enough to cover the trends 

related to brain’s current state, and short enough to be considered as quasistationary. 

Normally the PSD has a dimension of watts per hertz (W.Hz-1). It is also common to use units 

of V2.Hz-1 for the PSD of voltage (V) signals (Norton et al. , 2003). To compute the spectral 

power of desired sub-bands, an integration/summation over PSD values is the only required 

operation. Spectral power of sub-bands can be expressed in the form of absolute or 

normalized values. The absolute values are calculated by ( 2.1), 

 ( )i i
P PSD x=∑  ( 2.1) 

where ip  is the spectral power of i-th sub-band, x is the windowed raw EEG signal, i indexes 

the i-th frequency sub-band, and ( )PSD x  is the PSD of the signal. The normalized spectral 

power feature for a given sub-band was computed by dividing the spectral power of the sub-

band by the total power as in ( 2.2). 
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Compared with using absolute values, normalized values decrease the effect of total 

power changes on spectral power of sub-bands (Van Laar et al. , 2011). Absolute values are 

completely dependent upon the overall power of the signal. Since the power of the signal 

changes with different daily life parameters of the patient, such as sleep state, consciousness 

level, physical or mental activities, absolute values can easily change. In contrast, normalized 

values are more robust (with respect to the fluctuations in the patient’s daily life) for 

revealing the preictal state. 

Furthermore the computational cost for PSD estimation is very low. For instance, Parhi 

et al. (Parhi et al. , 2014) proposed a low-complexity Welch’s PSD computation mechanism 

using 65nm technology and 1-Volt supplying power. The power consumption and hardware 

area of their method was around 210 nJ and 176 um2 respectively, for PSD calculation of 8 

overlapping segments of length 1024 samples each.  

2.3.2 Mean phase coherence 

Neuronal signal synchrony is an indication of phase synchrony between the two signals 

recorded from two brain regions. During epileptic seizure development, neurons in the focus 

start firing up in a synchronous fashion. Therefore quantization, measurement and detection 

of the phase synchrony provide a mechanism of detecting seizures. Mean Phase Coherence 

(MPC) has been considered as the most prominent statistical tool for measuring phase 

synchrony (Mormann et al. , 2000).  

The MPC measure is explained here. Suppose two real time series 1( )x t  and 2 ( )x t , 

having amplitude and phase differences. In every instant of time, the instantaneous phases of 

1( )x t  and 2 ( )x t  are determined as 
1
( )x tφ  and 

2
( )x tφ  respectively. Based on the analytic signal 

processing approach, one can first start from the analytic form of ( )x t  as ( 2.3), 

 ( )( ) ( ) ( )
H
xi tH

x xZ t x t ix t A e φ= + =  ( 2.3) 
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where ( )x t  is the Hilbert transform of ( )x t , 

 1 ( ')( ) . . '
( ')
x tx t p v dt
t t

+∞

−∞
=
p −∫  ( 2.4) 

where . .p v  stands for the Cauchy principal value. Now it is possible to obtain the Hilbert 

phase ( )H
x tφ  using the analytic signal ( 2.5), 
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Hence, if 1( )x t  and 2 ( )x t  are two real signals with instantaneous phases of 
1
( )H

x tφ  and 
2
( )H

x tφ , 

they are said to be phase locked in case the following restriction holds ( 2.6), 

 
1 2

. ( ) . ( )H H
x xm t n t cteφ − φ =  ( 2.6) 

where m and n are integers, and cte is a constant value. For real life signals however, this is 

hard to hold and is usually replaced by much loose criterions such as in phase entrainment 

measure ( 2.7). 

 
1 2

. ( ) . ( )H H
x xm t n t cteφ − φ <  ( 2.7) 

MPC is an special case of phase entrainment where m n= , and is obtained 

mathematically by averaging on absolute instantaneous phase differences of two signals 

(Mormann et al. , 2000) as ( 2.8), 
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φ −φ
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where N is length of the signals. Also, M is a value falling in the interval [0 1], where M=1 

and M=0 indicate complete synchrony and complete asynchrony respectively. 
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2.3.3 Minimum redundancy maximum relevance feature selection 

Feature selection refers to finding a subset of features which can retain enough 

discriminative information for clustering or classification methods, while improving the 

overall performance. Most of the feature selection approaches attempt to find those features 

with highest relevance to the target classes, and possessing the maximum discriminative 

capability (Saeys et al. , 2007). However, there may exist many features which have duplicate 

information within the selected subset. To further reduce from the dimension of the selected 

features, one approach may try to remove from those redundant features in the selected 

subset. Minimum redundancy maximum relevance (mRMR) feature selection method was 

developed to approach this dual objective optimization problem (Peng et al. , 2005). The first 

objective is to find a subset of features, among which the mutual information is minimized. 

This leads to minimum redundancy between the features of the subset. The second objective 

is the maximum relevancy of the selected features to the target classes.  

2.3.4 Support vector machine classifier 

Support vector machines (SVM) are commonly used supervised classifiers (Schölkopf 

et al. , 2002, Lopes et al. , 2015), and were adopted for our classification problems because 

they have good generalization capabilities. They exploit the statistical learning theory 

(Vapnik, 1998). SVM classifiers in their simplest form use linear boundaries to classify two-

class data. To classify more complex datasets with nonlinear boundaries (i.e. datasets that are 

not linearly separable, as is the case in this thesis), SVM use a special transformation of the 

features space into a higher order space where linear boundaries may eventually separate the 

data into two classes. We can say that the transformation linearizes the space. This 

transformation may be done implicitly by using special functions (the so-called kernel 

functions) and vector operations. The Gaussian radial basis function (RBF) kernel is one of 

the most used kernels for nonlinear classification problems, and is defined by ( 2.9), 

 2

2( , ) exp( )
2
i j

i j

x x
K x x

− −
=

σ
 ( 2.9) 
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where σ  is the scale parameter (openness of the Gaussian), and ix  is feature vector in the 

original input space; it replaces each point in the feature space by the Gaussian of its squared 

Euclidean distance from support vectors. With the Gaussian kernel, there are two parameters 

to control the classification performance: the scale parameter σ  and the soft margin 

parameter of C. The parameter C controls the tradeoff between maximization of the margin 

width (with respect to the classification boundary) and the minimization of the number of 

misclassified samples in the training set (Schölkopf et al. , 2002); the larger the margin, the 

higher misclassified samples. In turn, the scale parameter σ  controls the width of the 

Gaussian surface of the RBF kernel. 

2.3.5 Alarm generation using firing power method 

Classifiers are essentially defined to generate independent outputs for the input test 

samples, and not all samples are usually correctly classified. This issue becomes severe with 

EEG prediction where sample feature lengths are in the range of few seconds. As a result, 

pure hard classification schemes may eventually lead to a significant number of false alarms. 

The regularization methods are therefore designed to reduce the number of false alarms by 

taking the most recent classifications into account by making some corrective manipulations 

on the classifier outputs. 

Kalman filter and moving average window methods are two common approaches for 

regularization of classifier outputs. In this thesis we investigated a modified version of 

moving average window with some conditions for the regularization of the SVM outputs, 

called the firing power (FP) method and proposed in (Teixeira et al. , 2011). In a comparative 

study, we observed the superiority of FP method over Kalman filter (Teixeira et al. , 2012). 

Using a sliding window with a size equal to the preictal period, the FP measure is computed 

by ( 2.10), 

 
[ ]

[ ]

n
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O k

FP n = −τ=
τ

∑
 

( 2.10) 
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where [ ]FP n  is the FP at the discrete time n, τ is the number of samples during one preictal 

period, and O[k] is the output of the two-class SVM classifier for the k-th test sample. If 

O[k]=1, the k-th sample is classified as preictal and if O[k]=0 as non-preictal. Non-preictal 

state covers the three states of ictal, postictal, and interictal. The FP measure quantifies the 

relative number of samples classified as preictal class inside a moving window with a length 

equal to the preictal period. Suppose a preictal period of 30 minutes covering 360 feature 

samples, each extracted from a 5-sec window. The FP is calculated at every moment based on 

the past 360 samples (τ =360). A firing power of one indicates that all of the samples from the 

past preictal period have been classified as preictal.  

Furthermore, the regularized output of [ ]FP n  is normalized between zero and one, and 

some decision-making is necessary as the final step to generate alarm. The threshold 0.5 is 

selected here: if the regularized output is equal or greater than 0.5 then 50% or more of the 

samples are classified as preictal and the methodology decides that we are in face of a preictal 

situation, raising an alarm. After an alarm is raised, there are two limitations on raising other 

alarms, which should hold together: (i) generation of more alarms is inhibited during a time 

interval equal to the preictal period. This constraint guarantees the generation of only one 

single true alarm per seizure; (ii) after a preictal period is passed the [ ]FP n  must first fall 

below the threshold level, resetting the normal alarm generation, before another alarm is 

raised by another threshold overpassing. This prevents false alarms. 

2.4 Performance evaluation 

2.4.1 Performance metrics in seizure prediction 

Two parameters of sensitivity (SS) and false prediction rate (FPR) are more commonly 

used in comparing prediction methods. Sensitivity is the measure of the system’s ability for 

correct prediction of seizures and is defined as the fraction of correctly predicted seizures 

within the total number of seizures ( 2.11). 
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In practice, false predictions are inevitable and represented by the false prediction rate 

(FPR) parameter. The FPR is the number of false predictions per time interval, here per hour. 

Unfortunately, both parameters cannot be optimally set simultaneously, as improving one 

means worsening the other. Therefore a tradeoff has to be made in their selection. As an 

example, during preictal period where amplitude of the signals increases significantly, one 

can make predictions choosing a threshold level. For a relatively low threshold level, all 

100% of seizures will be correctly predicted while FPR will increase. In contrast higher 

thresholds will decrease FPR while decreasing sensitivity.  

2.4.2 Performance metrics in seizure onset/event detection 

The performance of the proposed methods for seizure event detection usually is 

evaluated in terms of sensitivity (SS) and false detection rate (FDR), whereas for early 

seizure detection (onset detection) is evaluated using SS, FDR, and mean detection latency 

from electrographic onset (MDLE). Sensitivity is the fraction of correctly detected seizures 

within the total seizures. A seizure is detected correctly if the alarm is raised inside the ictal 

period, as marked by epileptologists. FDR is the number of false detections per time unit 

(here per hour). A false detection is a raised alarm outside the ictal period. MDLE refers to 

the average of time gaps between the actual electrographic seizure onset occurrence times 

and the times of raising the corresponding true alarms. Unfortunately, the three parameters of 

SS, FDR, and MDLE cannot be simultaneously set optimally. Again, as improving one leads 

to worsening of others, a tradeoff has to be made in their selection. 

2.4.3 Statistical validation of performance 

The performance of a proposed seizure prediction methods should naturally exceed that 

of a random predictor, which is not aware of any information contained in the studied EEG 

signals (Winterhalder et al. , 2003). To verify the superiority of the proposed methods for 

seizure prediction, we have compared our results with those achieved from the analytical 

random predictor (RP) introduced by (Schelter et al. , 2006). The probability of a random 
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seizure predictor to raise at least one alarm during a preictal period (SOP), for a maximum 

false prediction rate (FPRmax), is given by ( 2.12). 

 max1 FPR SOPP e− ×= −  ( 2.12) 

Moreover, it is usually necessary to study more than one seizure to ensure sensitivity 

reliability. Therefore, assuming that all seizures occur independently from each other, the 

probability of predicting by chance the n out of N seizures will follow a binomial distribution 

and can be written as ( 2.13) (Schelter et al. , 2006, Feldwisch-Drentrup et al. , 2011b). 
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Some parameters of prediction algorithms such as preictal period, localization and 

number of selected channels can be optimized to improve the prediction performance 

(Schelter et al. , 2006, Feldwisch-Drentrup et al. , 2011b). Accordingly, the random predictor 

(RP) should be updated to incorporate the optimization effect, and improvement of 

performance. If d independent optimizations are applied on the method, the probability to 

randomly predict at least n out of N seizures by at least one of the d optimizations is obtained 

as ( 2.14). 
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In this study we examined four different preictal periods to find the optimized one, thus 

we considered d=4. The critical sensitivity of the corresponding analytical random predictor 

is ( 2.15), 

 { }{ },arg max ; ;
100%n Binom d RP
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P n N P
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= ×  ( 2.15) 

where RPα  is a significance level. Any sensitivity above this RPSS  value could be regarded as 

statistically significant. A significant cutoff of 0.05RPα =  was selected in this thesis. 



 

Chapter 3 The last 40 years of seizure prediction 

and detection 

In this chapter we review the past efforts on seizure prediction and detection. We start 

from the first studies on seizure prediction reported around 40 years ago, and then move on to 

the current findings. Recently there is a growing research interest on these problems, 

especially considering the last 10 years. We attempted to cover as many important studies as 

possible, reported by different groups and using different methods. Furthermore a literature 

review of seizure detection methods will be presented.  

3.1 Past efforts in seizure prediction 

The objective of seizure predicting algorithms is to find patterns appearing during 

preictal state, i.e. a transition state between interictal and ictal states. Prediction methods are 

possible if one can find features that will change in the preictal state, and if one can find a set 

of features that change throughout all preictal states, then the epileptic seizure prediction 

problem may be solved. Up to now, many researches have been made on epileptic seizure 

prediction, most of which believe and show results indicating that seizure is predictable (Le 

Van Quyen et al. , 2001, D'Alessandro et al. , 2003, Iasemidis, 2003, Le Van Quyen et al. , 

2005, Lehnertz et al. , 2005, Mormann et al. , 2005, Mormann et al. , 2007, Park et al. , 2011, 

Stacey et al. , 2011, Rasekhi et al. , 2013, Howbert et al. , 2014). 

In spite of the recent progresses and the state of the art knowledge on epilepsy, the 

prediction and control of epileptic seizures is still a hard problem to tackle. In fact, although 

around 40 years have passed from the first published study on physiology of seizures 

(Viglione et al. , 1975), and after the development of numerous prediction methods, 
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researchers are still far from a complete and reliable approach which can practically be used 

in real medical applications. The main drawback with most of these studies is that they were 

not properly evaluated, i.e., they were not applied for long-term continuous situations close to 

the real conditions, making impossible to evaluate the clinical validity of the proposed 

approaches (Mormann et al. , 2007, Andrzejak et al. , 2009, Stacey et al. , 2011).  

Epileptic seizure prediction was exercised traditionally either by simply applying 

threshold to a given measure extracted from the EEG (Schelter et al. , 2006), or by nonlinear 

analysis (Le Van Quyen et al. , 2001, Lehnertz et al. , 2003). More recently, classification 

methods based on high-dimensional feature spaces were used to detect the preictal state 

(Chisci et al. , 2010, Park et al. , 2011, Cabrerizo et al. , 2012, Rasekhi et al. , 2013, Teixeira 

et al. , 2014b).  

A univariate measure refers to the quantization of single-channel electrical activities. In 

univariate seizure prediction, preictal activities are identified based on this quantization, and 

can be obtained using linear or nonlinear approaches. Similar to univariate measures, the 

bivariate measures can also be divided to linear and nonlinear measures. Linear bivariate 

measures represent linear relations between different parts of the brain, while the main goal 

of a nonlinear bivariate measure is to extract the nonlinear spatiotemporal synchronization 

patterns existing in different parts of the brain. In the next sub-sections, a vast range of 

linear/nonlinear univariate/bivariate features investigated for seizure prediction are reported. 

3.1.1 Linear univariate analysis 

Linear measures are the mathematical techniques using phase/frequency and amplitude 

information of signal. Under assumption of quasistationarity of EEG signal for short periods 

of time, linear measures can be estimated. By segmentation of EEG into time-windows, as 

one of the preliminary processing stages, this estimation is possible and reliable. 

3.1.1.1 Statistical moments 

The four statistical moments of mean, variance, skewness and kurtosis, also known as 

first, second, third and fourth moments respectively, provide information about the amplitude 
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distribution of the time series. Skewness and kurtosis reveal information on the shape of the 

distribution, whereas mean and variance provide information on the location and variability 

(spread, dispersion). Ideally, skewness is zero for symmetric amplitude distributions, and 

kurtosis measures the relative peakedness or flatness. Studies have been made in (Mormann 

et al. , 2005) employing these statistical measures to verify their ability to distinguish 

between the inter-ictal and preictal periods using iEEG data. Also variance and kurtosis have 

shown significant changes in preictal period in comparison to the inter-ictal period (a 

decrease for variance and an increase for kurtosis).  

3.1.1.2 Spectral power analysis 

The EEG signal is traditionally expressed in terms of particular frequency bands: Delta 

‘δ’ (less than 4 Hz), Theta ‘θ’ [4-8 Hz), Alpha ‘α’ [8-13 Hz), Beta ‘β’ [13-30 Hz), and 

Gamma ‘γ’ (equal or greater than 30 Hz). Mormann et al. (Mormann et al. , 2005) have 

indicated the relative decrease in the power of the Delta band in preictal period in comparison 

with the interictal period, which was accompanied by a relative increase of the power in other 

bands. The spectral power of raw EEG signal has been investigated by several studies, and 

proved the ability to track the transient changes from interictal to ictal states (Cerf et al. , 

2000, Mormann et al. , 2005, Park et al. , 2011, Direito et al. , 2012, Bandarabadi et al. , 

2013, Rasekhi et al. , 2013).  

Park et al. (Park et al. , 2011) proposed a patient-specific seizure prediction algorithm 

using four different methods to compute spectral power of the iEEG. They had extracted 

spectral power features from raw, bipolar, time-differential, bipolar/time-differential iEEG 

signals. Also, to achieve better resolution in high frequencies and improve results, they had 

considered gamma band as four narrower sub-bands of (30-50 Hz], (50-70 Hz], (70-90 Hz], 

(90 Hz-Nyquist frequency]. The proposed algorithm was applied on 80 seizures, and a total 

of 433.2-hour of interictal data from FSPEEG dataset. The best results obtained from bipolar 

approach were 97.5% sensitivity and 0.27 false positives per hour in out-of-sample data. 

They also argued that the spectral power in certain sub-bands of the iEEG, specifically in 

high gamma bands, may play a key role in seizure prediction. In a recent study by Rasekhi et 
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al. (Rasekhi et al. , 2013), the spectral power of gamma band also has shown significant 

changes prior to seizure onsets. 

3.1.1.3 Accumulated energy 

The accumulated energy (AE) is computed by applying a moving average window on 

the squared values of a time series. Applied on the focus channels, this measure has been 

reported in (Litt et al. , 2001) to show promising results for seizure prediction for all the 

patients analyzed, however in that report asleep and awake records were solely utilized for 

predictions in their relevant states. Esteller et al. (Esteller et al. , 2005) investigated a long-

term AE reference to eliminate the constraints such as the requirement of asleep and awake 

staging in the study by (Litt et al. , 2001). They compared short-term and long-term AEs for 

window lengths of 1 and 20 min, and using an adaptive decision threshold. However they 

argued that AE alone is not sufficient for predicting seizures. Accumulated energy calculated 

from wavelet coefficients in a multiresolution approach were also reported to predict 12 out 

of 13 epileptic seizures for different types of epilepsy (Gigola et al. , 2004). However, the 

results of these reports were questioned by other studies (Maiwald et al. , 2004, Harrison et 

al. , 2005a). 

3.1.1.4 Hjorth parameters 

The three time domain measures of activity, mobility and complexity are defined by 

Hjorth (Hjorth, 1970) to quantitatively describe EEG signals, and have been used in seizure 

prediction. Activity is defined as the variance of the signal. Mobility is the root of variance of 

the slopes of the signal divided by variance of the amplitude, and provides an estimation of 

the mean frequency. Complexity measures the variance of the rate of slope changes with 

reference to an ideal possible curve, and is an estimation of the signal bandwidth. In a 

comparative study on seizure prediction by Mormann et al. (Mormann et al. , 2005), the 

Hjorth mobility and complexity parameters showed significant increase during preictal, and 

performed best among a vast range of competing univariate features. The predicting ability of 

mobility and complexity features were also reported in (Rasekhi et al. , 2013). 
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3.1.1.5 Decorrelation time 

Autocorrelation, a measure usually used to detect the whiteness or stationarity of time 

series, is defined as the temporal correlation between values of the same signal at different 

points. The first zero-crossing of the autocorrelation function is an important feature known 

as decorrelation time (Box et al. , 2008). Mormann et al. (Mormann et al. , 2005) examined 

epileptic EEG signals and distinguished preictal from interictal periods by looking for a 

decrease in the decorrelation time. However in (Rasekhi et al. , 2013), this measure showed 

poor changes prior to seizure onsets compared to a vast range of univariate linear features. 

3.1.1.6 Autoregressive modeling 

In autoregressive (AR) modeling the current value of a given time series is determined 

only according to the weighted sum of previous values of the same time series as well as 

noise. The method assumes the signal to be stationary or at least to be quasistationary, 

something that is implicitly achieved by the moving window analysis of EEG signals. 

Autoregressive modeling has been reported to locate the preictal changes (Rogowski et al. , 

1981, Salant et al. , 1998, Chisci et al. , 2010).  

Chisci et al. (Chisci et al. , 2010) proposed a seizure prediction methodology based on 

order-6 AR coefficients of 6 iEEG channels as features classified by SVM, and a Kalman 

regularization on the SVM outputs to attenuate the chattering noise, and produce lower FPRs. 

They reported 100% sensitivity, 60 minutes anticipation time, and with no false alarm on 21 

patients from the Freiburg Seizure Prediction EEG (FSPEEG) database (Aschenbrenner‐

Scheibe et al. , 2003). They also found that applying Kalman filter on the SVM outputs 

significantly improves the results. More recently Rasekhi et al. (Rasekhi et al. , 2013) 

investigated mean square error (MSE) between the original EEG signal and the synthesized 

output from the related order-10 AR model as a feature. Statistical comparison of this 

measure between preictal and interictal samples has not proved a significant capability for 

this feature in seizure prediction. 
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3.1.1.7 Wavelet coefficients 

Considering multiresolution nature of the wavelet transform, it has found a significant 

role in processing of EEG signals. Applied recurrent neural networks in combination with 

wavelet coefficients, demonstrated the feasible prediction of seizures some minutes in 

advance of clinical onsets (Petrosian et al. , 2000). In a comparative study (Direito et al. , 

2011) on 22 univariate features, and using feature selection methods, the selected features 

highlighted the significance of wavelet coefficients energy especially within low frequency 

bands, which also was confirmed by a recent study of Rasekhi et al. (Rasekhi et al. , 2013). 

We have also developed patient-specific orthogonal mother wavelets for seizure prediction, 

called Wepilet (Bandarabadi et al. , 2011), using parameterization of mother wavelets and 

optimizing them by Genetic algorithm.  

3.1.1.8 Spectral edge frequency and spectral edge power 

The spectral power of EEG signal distributes across a range of frequencies. However, a 

good part of this power is contained under 40 Hz. A useful quantization of how the power is 

actually scattered within these frequencies is to calculate the features known as spectral edge 

frequency and spectral edge power. Spectral edge frequency stands for the frequency below 

which x percent of the overall power of the signal is located. x can hold any percentage values 

ranging from zero to 100. In the context of seizure prediction however, a x value of 50% has 

been successfully employed, describing the minimum frequency up to which 50% of the 

overall power of the 0-40 Hz band is contained. Also the power covered under spectral edge 

frequency is called spectral edge power (Stanski et al. , 1984). These features were 

investigated in (Rasekhi et al. , 2013) and proved predictive capability for spectral edge 

power. 

3.1.1.9 Spike rate 

Spike wave discharges are the main characteristics of ictal period. Yet isolated spike 

waves can also be observed as well throughout interictal periods of epileptic patients. Several 

studies have examined the spike rate as a measure for seizure prediction, which would 
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quantify distribution of the spikes during interictal/preictal periods. A decreased focal spike 

rate coinciding with an increased bilateral spike rate was reported preceding the seizures 

(Lange et al. , 1983). However, some studies using more sophisticated EEG recordings, have 

questioned the predictive capability of spike rates (Gotman et al. , 1985, Gotman et al. , 1989, 

Katz et al. , 1991). More recently, Li et al. (Li et al. , 2013) extracted spikes from the low-

pass filtered iEEG signals using a morphology filter, and used the smoothed spike rate as a 

measure. Predictions with this method were reported to achieve a sensitivity of 75.8% and a 

FDR of 0.09 h-1 on 21 patients from FSPEEG dataset. 

3.1.2 Nonlinear univariate analysis 

Throughout the years, and in search for better prediction methods, researchers have 

moved from linear to nonlinear signal processing methods, which are capable of describing 

the more complex dynamics such as EEG signals. According to the nonlinear modeling, any 

system or signal can be described using two key terms namely state and dynamic, state 

defining the system at a given time, and dynamics describing the rules for evolving of system 

over the time (Sprott et al. , 2003). The system state is generally described by a point in an m-

dimensional space known as state (phase) space, where m is called embedding dimension. 

3.1.2.1 Largest Lyapunov exponent 

One of the first and most famous measures extracted from the EEG signal in epilepsy is 

Lyapunov exponent, a measure of system’s chaotic behavior, which was noticed to reduce 

several minutes prior to the seizures, and was a sign of reduction in signal’s chaosness 

(Iasemidis et al. , 1990). Lyapunov exponents are the measure of predictability of a 

dynamical system, and mathematically quantify the exponential divergence of two state-

space trajectories starting close to each other. The separation rate of these trajectories can be 

different for different orientations of the initial separation. The largest Lyapunov exponent is 

usually used to detect existence of chaos in dynamical systems, usually yielding a negative 

value in the case of converging trajectories (e.g. stability), and positive vice versa.  
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In (Iasemidis et al. , 1990) premonitory events were reported several minutes before the 

seizure onsets in several datasets using this measure. Corsini et al. (Corsini et al. , 2006) 

investigated largest Lyapunov exponent measure extracted from preprocessed sEEG and 

iEEG data. They initially applied blind source separation on the raw EEG data to separate 

underlying sources in the brain. Evaluating on simultaneous iEEG and sEEG recordings of 20 

patients, they concluded that similar results could be achieved for sEEG and iEEG 

recordings. Mammone et al. (Mammone et al. , 2010) investigated the brain topography 

based on the short-term maximum Lyapunov exponents (STLmax) extracted from EEG 

recordings, and pointed out a relationship between changes in spatial distribution of STLmax 

and dynamical changes leading to the seizure. For 3 out of 4 studied patients, they reported 

reduction in STLmax extracted from focal electrodes long before seizures. Nevertheless of 

the high hopes raised by the above mentioned studies, there also exist several studies 

claiming that Lyapunov exponents may lack the sufficient prediction capability (Lai et al. , 

2003, 2004, Mormann et al. , 2006). 

3.1.2.2 Correlation dimension and integral 

Correlation dimension of a signal measures the space dimension occupied by signal 

samples (Grassberger et al. , 1983), and is one of various methods of calculating fractal 

dimension. From the mathematical point of view, this measure estimates the complexity of 

the attractors related to non-linear systems. The correlation integral is defined as the 

probability by which any two randomly selected points on the state space are located within a 

given distance from each other. It can be used to verify if a time series is random 

deterministic(Grassberger et al. , 1983). The suitability of the correlation dimension for 

seizure prediction had been proved by (Elger et al. , 1998, Lehnertz et al. , 1998). They 

showed significant decreases in correlation dimension 5–25 min before seizure onset, for 

features extracted from selected focal channels. Later in (Aschenbrenner‐Scheibe et al. , 

2003) and (Maiwald et al. , 2004) it was indicated that the correlation dimension cannot 

satisfactorily be used in clinical applications. But Mormann et al. (Mormann et al. , 2005) 

found a discrepancy with previous reports, by observing an increase in the correlation 

dimension during preictal by analyzing 46 seizures in 311 h of iEEG recordings of five 
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patients. However a subsequent report (Harrison et al. , 2005b) strongly rejected the ability of 

correlation dimension and correlation integral to predict seizures in a comprehensive work, 

using over 2000 hours of iEEG recording from twenty patients with intractable epilepsy. 

They argued that the earlier results obtained from correlation dimension and integral were not 

reproducible since they had failed to validate on long-term interictal recordings, and on 

sufficient number of patients. 

3.1.2.3 Correlation density 

Correlation density is a statistical spatiotemporal complexity measure that can detect 

both linear and nonlinear correlations, which can be computed by counting the fraction of 

pairs of points having distances less than a certain value of r (McSharry et al. , 2003). Lerner 

(Lerner, 1996) compared correlation density and correlation dimension for tracking preictal 

changes, and found that correlation density was more robust with respect to the changes in 

embedding dimension, time delay, and more specifically to the value of r. In (Martinerie et al. 

, 1998) it was demonstrated that seizures could be anticipated well in advance in most cases 

by a preictal decrease in the correlation density. Later however, McSharry et al. (McSharry et 

al. , 2003) questioned the ability of correlation density to predict seizures, by re-evaluating 

the data from (Martinerie et al. , 1998). They found that this measure just reflected the 

variance of the EEG signal. 

3.1.2.4 Entropy 

Entropy measures the uncertainty of the samples in a time series, and quantifies the 

expected value of the information within that time series. Entropy can detect preictal changes 

developing towards synchronous or coherent brain state by quantizing EEG signal’s 

complexity. A feasibility study by (Drongelen et al. , 2003) in five patients on Kolmogorov 

entropy demonstrated prediction capability in 3 out of 5 patients for iEEG and 2 out of 5 

patients using sEEG recording 2~40 minutes in advance. In a study by (Li et al. , 2007) 

sample entropy and permutation entropy were investigated for predicting the absence seizures 

in rats, and permutation entropy could better distinguish preictal dynamical changes. Blanco 

et al. (Blanco et al. , 2013) extracted spectral entropies extracted from low, median, and high 
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frequency bands in iEEG recordings, to find the optimum frequency range for seizure 

prediction. Spectral entropy is calculated by applying Shannon entropy to the spectral density 

of EEG signal, followed by a proper normalization. The results indicated that the entropy 

obtained from high frequency band is a better criterion. Zhang et al. (Zhang et al. , 2014) 

utilized approximate entropy, and reported improved prediction accuracy by combining 

statistically relevant theory and nonlinear dynamics, using an optimized set of five electrodes. 

3.1.2.5 Marginal predictability 

Marginal predictability (MP) is a measure based on the correlation integral (Savit et al. , 

1991), that measures the probability of two length-d time series being similar to each other, 

within a certain distance. In (Drury et al. , 2003) and (Li et al. , 2003) the difference of 

marginal predictabilities extracted from remote and adjacent electrodes to the seizure focus, 

have shown robust prediction ability by decreasing several tens of minutes before seizures, in 

patients with TLE. Furthermore, distinguishable difference in MPs between epileptic and 

healthy subjects throughout interictal was reported in (Drury et al. , 2003). A later study (Li 

et al. , 2006a) on 33 preictal periods of 14 patients revealed that the differences between 

marginal predictabilities were apparently consciousness state independent, but dependent on 

the time remaining to the seizure. 

3.1.2.6 Dynamical similarity index 

Dynamical similarity index (DSI) is a quantized feature introduced by (Le Van Quyen 

et al. , 1999) which measures the dynamical similarity of moving test window with respect to 

a long reference window usually selected very far from any seizure, and possessing the 

common characteristics of the interictal activity, including isolated spikes. The DSI is 

quantified by estimating cross-correlation integral between desired EEG segment and the 

reference window. DSI yields values between 0 and 1, and can be regarded as the degree of 

stationarity, one representing a completely stationary EEG signal, that is having uniform 

dynamical properties. Any increase in the dynamical content of a signal, will further shift this 

measure below 1 (Le Van Quyen et al. , 1999). 
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Quyen’s group (Le Van Quyen et al. , 1999, Le Van Quyen et al. , 2000) studied the 

capability of DSI on iEEG recordings and found a reduction trend starting before the seizure 

onset. Later in two other separate studies using more comprehensive data, they evaluated DSI 

measure on two groups of patients with mesial TLE and neocortical TLE respectively (Le 

Van Quyen et al. , 2001, Navarro et al. , 2002). The first study was carried out on 26 scalp 

recording from 23 patients with mesial TLE, whereas the second study was performed on 11 

patients with neocortical TLE. By choosing a 300s reference window, a transitional state 

dynamically differing from the interictal and ictal states was identified. On average the 25 out 

of 26 seizures (from mesial TLE), and 34 out of 41 seizures (from neocortical TLE) were 

predictable with the anticipation time of 7~7.5 minutes. Very soon however, several studies 

started questioning the early optimistic prediction capability reports using DSI measure and 

argued that its performance was much far from sufficient to be used in clinical applications 

(De Clercq et al. , 2003, Winterhalder et al. , 2003, Maiwald et al. , 2004).  

An improved version of DSI was proposed in (Li et al. , 2006b) by replacing the 

Heaviside function within the correlation integral by Gaussian function to eliminate sharp 

boundaries, and found that the new measure was insensitive to the choice of the Gaussian 

function’s radius and segmentation length. Evaluation on EEG recordings of 12 rats, 

indicated that the improved DSI could achieve better predictions compared to the original 

DSI proposed by (Le Van Quyen et al. , 1999). In the subsequent year, Ouyang et al. (Ouyang 

et al. , 2007) introduced wavelet-based nonlinear similarity index (WNSI) for real time 

seizure prediction, which combined wavelet techniques and nonlinear dynamics. The test 

results both on rats and humans indicated its ability for tracking hidden dynamical changes in 

brain, specifically using beta (10–30 Hz) frequency band. 

3.1.2.7 Average angular frequency 

In 2002, Iasemidis (Iasemidis et al. , 2002) defined a new criterion called average 

angular frequency which is comparable to Lyapunov index. Compared to Lyapunov index 

which is a measure of local stability of the system, the average angular frequency represents 

the changing rate of local states of a dynamic system, in average. The maximum value of this 

feature appears during of a seizure and decreases after the seizure even below its preictal 
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value. Furthermore as their objective was to locate the seizure focus, they had employed a 

criterion for choosing electrodes having the largest variations of this feature. The method 

however, even in best conditions, results in more false predictions in contrast to Lyapunov 

index (Iasemidis et al. , 2002, Iasemidis et al. , 2003a). In a later effort by Iasemidis et al. 

(Iasemidis et al. , 2005) they demonstrated that angular frequency measures obtained from 

specific intracranial electrodes placed over the foci converge progressively during preictal 

period.  

3.1.2.8 Loss of recurrence 

Loss of recurrence quantifies the degree of non-stationarity based on the analysis of 

distributions of temporal distances of neighboring state space vectors (Rieke et al. , 2002). 

This measure does not require a partitioning of the time series. Additionally, the deviation of 

mean recurrence times from frequency distributions obtained for the stationary conditions, 

allows for estimating of the statistical significance of this method. Mormann et al. (Mormann 

et al. , 2005) demonstrated the ability of this measure to predict epileptic seizures. 

3.1.3 Linear bivariate measures 

3.1.3.1 Maximum linear cross-correlation 

Maximum linear cross-correlation measure indicates whether two systems are linearly 

synchronized, that is their characteristic variables evolve identically over the time (Mormann 

et al. , 2003a). In order to quantify the similarity of two signals x and y, one can use the 

maximum of the linear cross-correlation function, as a measure for lag synchronization 

(Rosenblum et al. , 1997). The maximum linear cross-correlation is confined to the interval 

[0, 1] with high values indicating that the two signals have a similar profile in time (though 

possibly shifted by a time lag t), while dissimilar signals will result in values close to zero. 

Mormann et al. (Mormann et al. , 2003a) studied this measure on iEEG recordings of 10 TLE 

patients, and reported preictal decrease for 12 out of 14 seizures, achieving very high 

specificity on non-seizure intervals. A preictal decrease of this measure estimated from 
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simultaneous EEG recordings from different brain sites has also been observed in their later 

study (Mormann et al. , 2005). 

3.1.3.2 Multivariate autoregressive model 

In multivariate autoregressive model, each point is described as a linear combination of 

the previous values from all selected channels. The goodness of fit (GOF) of the model shows 

how best that model is fitted into the channels. Jouny et al. (Jouny et al. , 2005) considered 

that a better GOF of multivariate AR model describes a higher degree of synchrony between 

channels. Using this measure, no significant preictal changes were reported. 

3.1.4 Nonlinear bivariate measures 

3.1.4.1 Mean phase coherence 

Mean phase coherence (MPC) is the most used measure for capturing the level of phase 

synchronization, in seizure prediction studies. The detailed mathematics of MPC was 

explained in chapter 2. Early studies had reported loss of synchronization prior to seizure 

onsets (Mormann et al. , 2000, Chavez et al. , 2003, Mormann et al. , 2003a, Mormann et al. , 

2003b). Mormann et al. (Mormann et al. , 2003a) reported preictal decreases in the MPC 

measure in 12 out of 14 seizures in iEEG recordings of 10 TLE patients, and a similar 

decrease later in 26 out of 32 seizures from the iEEG recordings of 18 patients with partial 

epilepsy (Mormann et al. , 2003b). Significant preictal drops in MPC measure extracted from 

bandpass filtered EEG signals in 10-25 Hz frequency were also reported for two patients 

suffering from neocortical TLE within 30 min of onsets (Chavez et al. , 2003).  

Interestingly however, a later study by Quyen et al. (Le Van Quyen et al. , 2005) 

involved both increases and decreases of this measure several hours before the seizure onsets, 

often localized to the neighborhood of dominant epileptogenic zone. Moreover, a quite recent 

study (Zheng et al. , 2014b) estimated MPC measure from intrinsic mode functions (IMFs) 

obtained by bivariate empirical mode decomposition, and reported both decreases and 

increases of this measure prior to seizure onset. Evaluated on 10 patients selected from the 
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overall 21 available patients of the FSPEEG dataset, their method exhibited superior results 

in comparison with original MPC method and the random predictor. 

Despite promising results reported and backed by several groups, the predictive 

performance of phase synchronization measures could not however be replicated by some 

others (Jerger et al. , 2005, Schelter et al. , 2006, Winterhalder et al. , 2006, Schelter et al. , 

2007, Kuhlmann et al. , 2010). Jerger et al. (Jerger et al. , 2005) constructed a linear 

discriminator by aggregating two synchronization measures of MPC and cross-correlation in 

a single vector, and applied it to over of 6-days iEEG recordings of a patient. Results 

indicated that these measures of synchronization did not reveal a reliable seizure prediction 

capability, and failed to predict 7 out of 9 seizures. Schelter et al. (Schelter et al. , 2006) 

employed MPC and could only predict seizures in 2 out of 4 patients with performances 

better than random predictor. Similar results (SS=60%, FPR=0.15/h) were also reported from 

the same group (Winterhalder et al. , 2006), by analyzing of MPC and lag synchronization 

measures on 21 patients from FSPEEG dataset. Furthermore, Kuhlmann et al. (Kuhlmann et 

al. , 2010) studied MPC measure on long-term continuous iEEG recordings of 6 patients with 

focal epilepsy, and concluded that even by using the optimized set of channel pairs for 

extracting MPC measures, the resulting patient-specific seizure prediction system could be 

random in general. 

3.1.4.2 Dynamical entrainment 

Dynamical entrainment quantifies the convergence and divergence of short-term largest 

Lyapunov exponents in certain selected channels, and is estimated by statistical comparison 

among STLmax measures extracted from selected EEG channels (Iasemidis et al. , 2001). A 

growing trend of this measure was reported between the foci and non-foci areas prior to 

seizure onset, indicating that brain evolves from chaotic to less chaotic states, which is a 

known property of the epileptic seizures (Iasemidis et al. , 2001).  

Iasemidis et al. (Iasemidis et al. , 2003b) developed an adaptive algorithm for real-time 

seizure prediction using convergence and divergence of short-term maximum Lyapunov 

exponents (dynamical entrainment) across some adaptively selected channels. Testing on 
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long-term continuous iEEG recordings of 5 patients with TLE, they reported on average a SS 

of 82%, a FDR of 0.16 h-1, and the anticipation time of 71.7 min. Another study by same 

group (Chaovalitwongse et al. , 2005), also reported the predictive performance of dynamical 

entrainment measure through a similar method on continuous recordings of 10 patients with 

TLE, as SS of 76.12% and FPR of 0.17 h-1 on average. However, several studies have 

questioned a sufficient prediction performance for this measure (Lai et al. , 2003, 2004, 

Mormann et al. , 2007).  

3.1.5 Combination of features 

Combinational methods were employed to achieve improved predictions, by bringing 

together the advantages of various linear/nonlinear and univariate/bivariate features and 

techniques. Combinational methods are simply realized using machine learning algorithms, 

which are capable of handling high dimensional feature spaces. By doing so, the decision 

about brain’s state is actually made by incorporating several viewpoints, making final 

predictions more robust to failures in traditional non-combinational techniques. In recent 

years such methods have attracted huge interest from scientists (Feldwisch-Drentrup et al. , 

2010, Rasekhi et al. , 2013, Teixeira et al. , 2014b).  

Alessandro et al. (D'Alessandro et al. , 2003) combined linear and nonlinear measures, 

and defined a hybrid system for seizure prediction, based on linear features such as curve 

length, accumulated energy, variance and nonlinear features such as estimated entropy and 

largest Lyapunov coefficient. By evaluating this predictor on 4 patients suffering from TLE, 

they reported 90% sensitivity and over 62% accuracy, and a prediction time of 3.45 minutes 

on average. 

Feldwisch-Drentrup et al. (Feldwisch-Drentrup et al. , 2010) combined the measures of 

MPC and DSI using logical AND and OR operators. They statistically evaluated the 

predictive performance of each feature separately and also their combination by logical 

operators on long-term continuous iEEG recordings of 8 patients. A 30 minutes time interval 

was selected as the combination window to apply the logical operators. Using the AND 

combination, an alarm is raised when both measures pass the threshold, whereas by using the 
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OR combination an alarm is generated even if one of the measures crosses the threshold 

inside a predefined combination window. According to their study, although both individual 

methods (MPC, DSI) separately, had statistically significant performances in only few 

patients, however improvements were achieved for all patients using the AND combination. 

Furthermore, combination by OR could provide prediction performance somewhere between 

individual methods and the AND combination. Technically, they could improve the mean 

sensitivity from about 25% for the individual methods to 43.2% for the AND operator and to 

35.2% for the OR combination, for a maximum false prediction rate of 0.15/h. 

Soleimani et al. (Soleimani-B et al. , 2012) proposed a simple adaptive online method 

which could adaptively learn a combination of features. Technically this method was an 

evolving neuro-fuzzy classifier model starting with a simple structure with patient-

independent parameters, and gradually being tuned by recursive methods to achieve a 

personal seizure predictor. The variance, curve length, average energy, nonlinear energy, 

sixth power, kurtosis, and skewness were extracted from raw iEEG signals. Moreover a five 

level Daubechies-4 (db4) discrete wavelet decomposition was applied on raw iEEG data, and 

the following features were then calculated from the wavelet coefficients of each 

decomposition level: the average power, mean of the absolute values, standard deviation, and 

relative absolute mean of sub-bands. By testing their online method on intracranial recordings 

of 21 epileptic patients from the FSPEEG dataset, they could demonstrate that seizure 

prediction was improved compared to the offline non-adaptive techniques.  

In (Rasekhi et al. , 2013), a set of 22 linear univariate features were extracted from 

scalp/invasive recordings of 10 patients (1388 hours, 86 seizures), and fed them to the SVM 

classifier with Gaussian kernel. Features of mean, variance, skewness, and kurtosis, five 

standard spectral power features, Hjorth mobility and complexity parameters, accumulated 

energy, autoregressive modelling error, decorrelation time, Spectral edge frequency and 

spectral edge power, and energy of wavelet coefficients of five level db4 decomposition were 

extracted using 5-sec non-overlapped windows. Afterwards, different feature preprocessing 

approaches as well as different preictal periods were investigated to find out proper ones. 

They concluded that outlier removal and smoothing of features could improve prediction 



 3.1 Past efforts in seizure prediction 51 

 

results. On average, they reported a sensitivity of 73.9% (34 out of 46 seizures in 737.9 h of 

test data) with a false prediction rate of 0.15 h−1. 

Teixeira et al. (Teixeira et al. , 2014b) carried out the most extensive comparative study 

using the same 22 univariate linear features as in (Rasekhi et al. , 2013), on 278 patients and 

observed that the parameters such as epileptic focus localization, data sampling frequency, 

testing duration, number of seizures in testing, type of machine learning, and preictal time 

significantly affect the prediction performance. For a considerable number of patients it was 

possible to find a patient-specific predictor with an acceptable performance. Their findings 

could be helpful in the feasibility study of patient-specific prospective alarming system using 

machine learning techniques and utilizing a combination of univariate features. 

3.1.6 Self-prediction of epileptic seizures 

Contrary to most advances achieved in seizure prediction using EEG processing 

methods, limited number of studies has investigated clinical epileptic precursors (Scaramelli 

et al. , 2009). A number of recent studies have interestingly reported that some patients were 

able to self-predict their seizures. Seizure self-prediction is some kind of awareness of 

prodromal symptoms (PS) (Haut et al. , 2013). Most studies have used diary questionnaires 

asking patients to write down any changes they would experience in their subjective 

perception or behavior.  

The prodromal symptoms of impending seizures can be categorized as behavioral or 

cognitive changes in patients. The most frequently reported prodromal symptoms include 

mood change, blurred vision, hypersensitivity to light/noise, dizziness, feeling emotional, 

concentration difficulty, hunger/food cravings, tired/weary, thirst, difficulty with thoughts, 

difficulty reading/writing/speaking, clumsiness, feeling of loss, headaches, polyuria, diarrhea, 

pallor, and coldness (Petitmengin et al. , 2006, Scaramelli et al. , 2009, Haut et al. , 2012). 

Depressive mood changes are more frequently noticed compared to joyful changes of mood. 

Prodromal symptoms were identifiable several hours before impending seizures, and usually 

would last until the seizure occurred. 
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In a study reported by Scaramelli et al. (Scaramelli et al. , 2009), on 100 randomly 

selected patients, PS were found in 39% of patients, and mostly included behavioral, 

cognitive and mood changes. Although PS is noticeable both in focal and generalized 

epilepsies, it mostly precede complex partial and generalized tonic-clonic seizures. However, 

due to the delicate nature of PS, they have not been practically used in seizure prediction, but 

they represent new hopes for seizure prediction, and may find a role in preventive and 

therapeutic instruments. 

Furthermore, precipitants of seizures are important factors both in treatment of patients, 

as well as during seizure diagnosis procedure. Nakken et al. (Nakken et al. , 2005) 

investigated an epilepsy population of 1677 individuals, to determine which seizure 

precipitants were most often reported by patients. According to this study, 53% of the 

patients reported at least one factor, whereas 30% of the questioned would mention two or 

more of such precipitants factors. The three most reported factors were emotional stress, 

sleep shortage (disturbance), and tiredness. Those with generalized seizures were apparently 

more susceptible to sleep problems and flickering light, than patients suffering from partial 

epilepsy. Depression, anxiety, menstruation, and alcohol were also reported among the most 

commonly seizure precipitants (Schulze-Bonhage et al. , 2011). Precipitants are thought to 

provide patients with kind of awareness about the risk levels of impending seizures. 

3.2 Past efforts in seizure detection 

Currently, there is a growing need for dependable automated seizure detection 

algorithms with high sensitivity and specificity, and short detection latency, to be used in 

closed-loop neurostimulation systems for suppressing of just-occurring seizures (Shoeb et al. 

, 2009, Colic et al. , 2011, Kharbouch et al. , 2011), or to alarm doctors and relatives about 

the hazardous situation of the patient. Moreover, the automated detection methods can be 

used by researchers and neurologists to label long-term continuous scalp and intracranial 

EEG recordings for further studies such as pre-surgical evaluation of epilepsy and 

localization of the seizure onset zone (Lesser, 2009, Nanobashvili et al. , 2011). Apart from 

having high detection performances, detection algorithms should also satisfy extra 
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requirements set by implantable devices, such as low power budget and the miniaturized size. 

Therefore, detection algorithms should be of low complexity and fast enough for online 

processing of huge amounts of data. The number and type of the considered features, number 

of the channels monitored, sampling rate, and decision-making algorithm determine the 

power consumption of detection algorithm. In general, nonlinear features consume more 

power than linear ones because they require more computations. 

There are many existing seizure detection algorithms. They usually seek to optimize 

one of two competing goals; (1) early seizure detection: the real-time detection of epileptic 

seizures without or with a negligible delay from electrographic onset initiation, and (2) 

seizure event detection: the accurate labeling of the occurrence of seizures with high 

sensitivity and specificity. The first approach is best suitable for closed-loop therapeutic as 

well as for patient care systems, where only onset detection delay times of few seconds can 

be tolerated. The second approach is much appropriate for offline labeling of recorded EEGs 

for future studies, thus are allowed to undergo longer detection delay times. Either of these 

two methods may process EEG data using one of the four processing schemes of time 

domain, frequency domain, both time and frequency domains, and finally time-frequency 

domain. Although most of the methods employ EEG signals (Adeli et al. , 2010), there are 

also few studies using other less common approaches such as electrocardiogram signal 

(Zijlmans et al. , 2002, Greene et al. , 2007, Malarvili et al. , 2009, Osorio, 2014). 

3.2.1 Early seizure detection 

Although the prime goal of automatic seizure detection has been to facilitate EEG-

based long term monitoring, diagnosis and treatment of patients, it may also eventually 

become the essential part of closed-loop therapeutic solutions currently being developed for 

containing epileptic seizures (Shoeb et al. , 2009, Shoeb et al. , 2011b). The main issue for 

developing an applicable algorithm for closed-loop therapeutic systems is the detection 

latency from start of the electrographic seizure onset, so that the system should have enough 

time to influence on the impending clinical seizure. 
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Various studies are found for the early detection of seizure onsets (Schindler et al. , 

2001, Shoeb et al. , 2004, Grewal et al. , 2005, Saab et al. , 2005, Meier et al. , 2008, Schad et 

al. , 2008, Shoeb, 2009, Shoeb et al. , 2009, Zhang et al. , 2010, Kharbouch et al. , 2011, 

Hunyadi et al. , 2012, Rabbi et al. , 2012, Schindler et al. , 2012, Ayoubian et al. , 2013, 

Zheng et al. , 2014a). Saab et al. (Saab et al. , 2005) proposed an automatic onset detection 

using wavelet decomposition and Bayesian formulation, which could estimate the probability 

of the occurring seizures. Grewal et al. (Grewal et al. , 2005) considered spectral power 

features of iEEG recordings, and on average obtained a sensitivity of 89.7%, a false detection 

rate (FDR) of 0.22/h, and a mean detection latency (MDLE) of 17.3 s, on test data including 

100 seizures in 389 h recordings of 19 patients.  

Meier et al. (Meier et al. , 2008) developed a machine learning approach to detecting 

seizures by categorizing morphological ictal rhythms into six categories based on the 

frequency of the dominant rhythm and then training a multi-class support vector machine 

(SVM) to detect the different types of seizure onsets. Shoeb et al. (Shoeb et al. , 2009) 

studied the feasibility of a patient-specific onset detection using surface EEG and 

electrocardiogram (ECG) signals for closed-loop triggering of VNS system, and concluded 

that closed-loop VNS system may suppress early detected seizures in some patients. They 

investigated the energies of frequency bands selected from 0-24 Hz, extracted from each of 

recorded channels. The spectral and spatial relations between channels were captured 

simultaneously and fed to the SVM classifier.  

Kharbouch et al. (Kharbouch et al. , 2011) proposed a patient-specific onset detection 

using spectral powers of 17 frequency bands extracted from whole recording channels, and 

classified by linear SVM. Testing on 67 seizures in more than 875 h of iEEG recordings of 10 

patients, they reported on average a sensitivity of 97%, a FDR of 0.025/h, and a MDLE of 

6.9s. Hunyadi et al. (Hunyadi et al. , 2012) introduced a patient-specific algorithm using a set 

of time domain (zero crossings, skewness, kurtosis, root mean square amplitude) and 

frequency domain (total power, peak frequency, mean and normalized power in delta, theta, 

alpha, and beta frequency bands) features, and classified by SVM. On average, they 

demonstrated a sensitivity of 74.2%, a FDR of 0.34/h, and a MDLE of 10.2 s, on 131 seizures 

in 892 h of surface EEG from 22 pediatric patients.  
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Ayoubian et al. (Ayoubian et al. , 2013) investigated the feasibility of high frequency 

activities (80–500 Hz) in seizure detection using wavelet decomposition and adaptive 

thresholding. Applying the trained algorithm on 18 seizures in 36h iEEG test data from 15 

patients, they could achieve on average a sensitivity of 72%, a FDR of 0.7/h and a MDLE of 

10.9s. Zheng et al. (Zheng et al. , 2014a) proposed a multichannel patient-specific onset 

detection method using variances of intrinsic mode functions (IMFs) as features, and 

classifying them through SVM. Evaluating on 51 seizures in 463 h of iEEG recordings of 17 

patients from FSPEEG database, they reported, on average, a sensitivity of 92%, a FDR of 

0.17/h, and a MDLE of 12 s. 

3.2.2 Seizure event detection 

Long-term continuous multichannel recordings produce huge amounts of data, 

sometimes up to several hundred of megabytes just for a single recording site. Real-time 

monitoring of these bulky recordings by EEG experts can therefore be sometimes impossible, 

whereas offline analysis can become very costly, tedious and tiresome. The first efforts for 

automatic detection of epileptic seizures go back to early 1970s (Gotman et al. , 1976), and 

afterwards several works were published for detection of seizure events (Gotman, 1982, Liu 

et al. , 1992, Adeli et al. , 2003, Hassanpour et al. , 2004, Wilson, 2006, Adeli et al. , 2007, 

Ghosh-Dastidar et al. , 2007, Acharya et al. , 2011, Liu et al. , 2012, Martis et al. , 2012, 

Acharya et al. , 2013, Martis et al. , 2013, Sharma et al. , 2014, Yuan et al. , 2014).  

Gotman (Gotman, 1982) studied EEG signals for the presence of rhythmic activity with 

a dominant frequency between 3 and 20 Hz to detect seizure onsets. Liu et al. (Liu et al. , 

1992) investigated the degree of periodicity in the autocorrelation function of 30-sec epochs 

of EEG signals, and then used this parameter to classify those epochs as seizure or non-

seizure. Hassanpour et al. (Hassanpour et al. , 2004) studied a time-frequency distribution 

approach, performing singular value decomposition of all epochs. The resulting SVs are then 

used to train artificial neural networks and to detect seizures. Wilson et al. (Wilson, 2006) 

extracted the so-called atoms using the matching pursuit algorithm from EEG channels, and 

used hand-coded and neural network rules to determine whether the features extracted from 

those atoms indicated a seizure taking place on that channel or not.  
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Adeli et al. (Adeli et al. , 2007) applied the four level Daubechies-4 wavelet 

decomposition on EEG signals to obtain four sub-bands of delta (0–4 Hz), theta (4–8 Hz), 

alpha (8–15 Hz), beta (15–30 Hz), and gamma (30–60 Hz), and then estimated nonlinear 

measures of correlation dimension and largest Lyapunov exponent (LLE) from each sub-

band. By examining these measures for categorizing of EEG segments in three groups of 

healthy, ictal, and interictal, they concluded that correlation dimension measure extracted 

from beta and gamma bands as well as LLE estimated from alpha band could better 

distinguish the three groups from each other. Ghosh-Dastidar et al. (Ghosh-Dastidar et al. , 

2007) employed a similar methodology and incorporated four different supervised and 

unsupervised machine learning algorithms to automatically classify the three groups.  

Martis et al. (Martis et al. , 2012) investigated empirical mode decomposition, and then 

extracted spectral peaks, spectral entropy and spectral energy features from intrinsic mode 

functions, and classified them by decision tree classifiers. In their later study (Martis et al. , 

2013), the features of energy, fractal dimension and sample entropy were extracted from 

intrinsic time-scale decomposition of EEG signal, and then classified using decision tree 

method. In a comparative study, Acharya et al. (Acharya et al. , 2013) employed continuous 

wavelet transform, higher order spectra and textures to classify EEG signals using four types 

of classifiers into normal, interictal and ictal states, which indicated SVM as the best 

classifier among all. 

3.3 Summary 

In this chapter we reviewed a vast range of measures and methods for epileptic seizure 

prediction and detection. In the early attempts for seizure prediction, the results usually 

indicated good capability of the introduced features in discriminating preictal/interictal 

classes. Most prediction algorithms have been evaluated mainly using short-term fragmented 

recordings, and not validated by satisfactorily long-term continuous recordings, lasting over 

weeks. However, later with the availability of long-term continuous EEG recordings, new 

approaches were proposed for evaluating the prediction capability of the earlier introduced 
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criteria. In most cases, new studies were challenging the brilliant and dazzling findings of the 

previous works. 

Furthermore, algorithms proposed for seizure prediction and detection mostly suffer 

from low sensitivities, high false prediction/detection rates, and relatively long detection 

delays (in the early detection approaches), which makes them clinically unacceptable to be 

used in closed-loop neurostimulation systems and clinical applications. Also, since the 

patterns of preictal and ictal activities usually vary from patient to patient, most of methods 

were only developed as patient-specific solutions. Moreover, complexity of the current 

algorithms can be further reduced by utilizing a fewer number of channels, lower-cost 

features, as well as cost-effective classification schemes. 

For seizure prediction, the advantages of bivariate and multivariate measures over 

univariate ones have been pointed out in several studies (Lehnertz et al. , 2005, Mormann et 

al. , 2005, Mormann et al. , 2007). In 2005, various groups published the results from a series 

of their studies generated for the first seizure prediction workshop held on 2002 in Bonn, and 

the results of these studies demonstrated the advantages of bivariate and multivariate criteria 

in contrast to week functionality of univariate criteria (Lehnertz et al. , 2005). A 

comprehensive study (Mormann et al. , 2005) was also carried out to compare most of the 

linear and nonlinear methods involving univariate and bivariate features, concluding that 

univariate measures such as effective correlation dimension, Lyapunov exponents, and 

accumulated energy of the signal could not produce better results than a random predictor. In 

contrast, they reported some evidences showing that the measures quantifying the relations 

between recording electrodes and representing the interaction between different regions of 

brain exhibit a promising capability, beyond the chance level demonstrated by statistical 

validation. For synchronization criteria such as phase synchronization and lag 

synchronization, a distinctively better functionality could be obtained, also supporting the 

importance of bivariate features. 

Moreover, the most recent studies have mainly focused on using combination of 

features to achieve better prediction results. Since all criteria bear some extent of unreliability 



58 The last 40 years of seizure prediction and detection 

 

in correctly predicting seizures, thus if a combination of the features is used, the overall 

percentage of system unreliability will apparently be decreased. 



 

Chapter 4 Novel seizure prediction approaches 

This chapter presents our main contribution to seizure prediction, which is using ratio of 

spectral power features across different channels. This method compares spectral powers 

within different sub-bands of different electrodes, and exploits relations between them to be 

used as features. An approach was also introduced for selection of the best features from the 

high dimensional relative bivariate features space. Selected features can reflect the 

relationships between different frequency bands in the different regions of the brain. For 

instance, if spectral power of gamma band of a focal channel divided by spectral power of 

theta band of an opposite channel achieves the highest rank, one may conclude that this 

measure can better track the transient changes. Therefore, the selection of the most 

discriminative features plays an important role in this study, and a feature selection method 

was developed. The seizure prediction is faced as a binary classification problem between 

preictal and non-preictal states. Non-preictal state covers the three states of ictal, postictal, 

and interictal. The identification of preictal state is made using the computational intelligence 

SVM classifier and its output regularization by firing power (FP) method. Results from both 

scalp and intracranial recordings were compared in order to examine whether the iEEG 

prevails over sEEG predictions or not. The advantages of the proposed approaches have been 

evidenced by the comparison of the results. 

In the first study reported in this chapter, we investigate four different preictal periods, 

and train classifiers to find the one providing the best results. However the proper length of 

preictal period is unclear and varies from seizure to seizure. In the second part of this chapter, 

we present a novel criterion to overcome the problem of selecting the most discriminative 

preictal period to be used in seizure predictors. The proposed criterion is based on a 

modification of the feature selection method introduced in the first section of this chapter. 
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4.1 Seizure prediction using ratio of spectral powers 

4.1.1 Dataset description 

Long-term continuous multichannel EEG recordings of twenty-four patients (19 males 

and 5 females, aged 15–57 years, median 35.5 years) with refractory partial epilepsy from the 

European Epilepsy Database (Klatt et al. , 2012) were used. From among the high number of 

available patients in the database, we selected randomly from those patients with partial 

epilepsy and having at least three recorded epileptic seizures. Recordings were obtained at the 

epilepsy units of the University Hospitals of Coimbra, Portugal, the Pitié-Salpêtrière Hospital 

of Paris, France, and the University Clinic of Freiburg, Germany. Sixteen patients were 

monitored through scalp electrodes whereas the other eight were monitored through 

intracranial electrodes. The 10-20 electrode montage was used for scalp recordings.  

The onset times were marked by epileptologists by visual inspection of sEEG/iEEG 

recordings and using the video recordings of the patient during his/her stay in the hospital. 

Information of both electrographic and clinical onsets is available in the database, and we 

considered electrographic onsets for this study, as they usually start earlier than clinical 

onsets. Just in two epileptic seizures of one patient (subject 15) the electrographic onsets 

could not be identified unequivocally, and thus the clinical onset times were used instead. 

The European Epilepsy Database includes other details about the seizures, also annotated by 

epileptologists. Patient characteristics are summarized in Table  4.1.  

For each patient, six channels were selected, three close to the foci and the other three 

far from the foci. The three focal electrodes were selected using prior knowledge on seizure 

propagation information. The initialization and propagation of the seizures on the electrodes 

were annotated in the database by epileptologists. Three non-focal channels were also chosen 

on the opposite side of focal electrodes. The continuous long-term raw iEEG/sEEG data were 

first segmented into non-overlapping 5 seconds windows and then were filtered using an 

infinite impulse response (IIR) forward-backward Butterworth 50 Hz notch filter to eliminate 

sinusoidal distortion of the ac power supply without introducing phase shift. No additional 

artifact suppression methods were employed. 
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Table  4.1 – Information of the 24 studied patients 

ID Gender Patient 
age (y) 

Onset 
age (y) 

Recording 
type 

Recording 
time (h) 

No. of 
seizures Seizure type Localization 

of seizures 
Sampling 
rate Hospital 

1 M 57 6 Scalp 110.2 8 CP(7), UC(1) Right T 512 Coimbra 

2 F 38 23 Scalp 103.8 7 CP(5), UC(2) Left T 512 Coimbra 

3 M 42 32 Scalp 104.6 6 CP(3), SP(3) Left T 512 Coimbra 

4 M 33 12 Scalp 101 7 CP(6), UC(1) Left T 512 Coimbra 

5 M 20 no info Scalp 89.8 13 CP(12), UC(1) Left T 512 Coimbra 

6 M 34 12 Scalp 92.8 5 CP(5) Right T 1024 Coimbra 

7 M 15 3 Scalp 113.5 7 CP(6), UC(1) Right T 512 Coimbra 

8 M 57 17 Scalp 109 6 CP(2), UC(4) Bilateral T 512 Coimbra 

9 F 27 13 Scalp 106.6 7 CP(4), UC(3) Right T 1024 Coimbra 

10 M 16 12 Scalp 91.9 7 SG(1), UC(6) Left T 512 Coimbra 

11 M 35 1 Scalp 141.5 4 CP(3), UC(1) Right T 512 Paris 

12 M 41 19 Scalp 140.6 6 CP(4), SP(1), UC(1) Right T 400 Paris 

13 M 45 14 Scalp 246 6 CP(2), SP(3), UC(1) Right P 512 Paris 

14 M 28 18 Scalp 164.5 3 CP(1), SP(1), UC(1) Right P 400 Paris 

15 M 51 3 Scalp 120 6 SG(4), SP(2) Right T 256 Freiburg 

16 F 29 18 Scalp 138.4 6 CP(2), SG(3), UC(1) Left T 250 Freiburg 

17 M 55 no info Invasive 188.8 6 CP(6) Right F 1024 Coimbra 

18 M 27 16 Invasive 234.9 8 SP(2), SG(2), CP(1), UC(3) Left T 400 Paris 

19 F 31 10 Invasive 159.2 7 CP(2), SG(2), SP(1), UC(2) Left T 400 Paris 

20 M 40 12 Invasive 221.2 8 CP(4), SG(1), UC(3) Left T 400 Paris 

21 M 36 1 Invasive 211.7 12 UC(12) Right F 400 Paris 

22 F 32 8 Invasive 151.6 9 CP(2), SP(2), UC(5) Right F 1024 Freiburg 

23 M 21 5 Invasive 170.6 22 CP(19), UC(3) Right T 1024 Freiburg 

24 M 42 16 Invasive 252.4 7 SG(2),SP(2),CP(1),UC(2) Right T 1024 Freiburg 

mean -- 35.5 12.3 -- 148.56 7.62 -- -- -- -- 

sum -- -- -- -- 3565.4 183 CP(97),SP(17),SG(15),UC(54) -- -- -- 

 Localization of seizures; T: Temporal lobe, F: Frontal lobe, P: Parietal lobe (between frontal and occipital). 
 Seizure type: Type of the clinical seizures; SP: Simple Partial, CP: Complex Partial, SG: Secondarily Generalized, UC: 

Unclassified. 



62 Novel seizure prediction approaches 

 

4.1.2 Methods 

The block diagram of the utilized seizure predictor is depicted in Figure  4.1, where 

prediction relies on the SVM classifier trained to discriminate different states in the incoming 

EEG signal. The diagram also includes a relative bivariate feature extraction stage using 5-

sec windows, a preprocessing unit, as well as a regularization operation for decision-making 

on alarming. As seen in Figure  4.1, the feature extractor is first applied to the windowed raw 

EEG signal, and the resulting relative bivariate feature vector is further processed by feature 

selection methods to reduce the dimension of the feature space. The features are subsequently 

fed to the SVM classifier to discriminate the resulting sequence into the two predefined brain 

states (preictal, non-preictal). The outputs of the SVM are submitted to a moving average to 

regularize the output signal in order to reduce the number of false alarms.  

Segmentation 
and 

filtering
EEG data Relative spectral 

power features  AlarmClassification and 
regularization

Feature 
selection

 

Figure  4.1 – Overall diagram of the proposed method for seizure prediction 

4.1.2.1 Relative spectral power feature 

Around 65% of the epileptic patients suffer from partial seizures which are related to a 

specific brain region (Téllez-Zenteno et al. , 2012). The most common epileptogenic region 

of the brain is the temporal lobe. Comparing the EEG of the focal region with the EEG of the 

other regions it is more likely to find significant differences, at least during the ictal phase 

before the propagation of the seizure. Hence, the features that explore this spatial dependence 

should be considered. Multivariate features developed in this way have extra advantages, 

such as the rejection of common mode interferences that are not related with ictogenesis. 

With the previous assumptions, a relative bivariate approach based on spectral power in 

different sub-bands was developed.  
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The EEG signal was considered in terms of well-known frequency sub-bands: Delta ‘δ’ 

(0.5-4 Hz], Theta ‘θ’ (4-8 Hz], Alpha ‘α’ (8-15 Hz], Beta ‘β’ (15-30 Hz], and Gamma ‘γ’ (30 

Hz - Nyquist frequency]. Due to the different equipment used in the three centers that 

contributed to the European Epilepsy Database, the sampling rate was not unique for the 24 

studied patients. The minimum sampling rate was 256 Hz, corresponding to a bandwidth of 

128 Hz. This puts a constraint on the definition of a unified range for all subjects in higher 

frequencies.  

We considered that almost of the power in a non-synthesized EEG signal is located 

below 100 Hz, as reported in (Sanei et al. , 2008). Therefore the amount of energy in the 

frequencies higher than 128 Hz would be negligible in comparison with the frequency range 

of 30-128 Hz, which is common for all patients. As a reasonable choice, the range of Gamma 

band was varied among patients, depending on the Nyquist frequency of the recorded signals. 

Figure  4.2 represents the spectrogram of 10 minutes of hippocampal iEEG signal sampled at 

1024 Hz, corresponding to one of the studied patients.  

 

Figure  4.2 – Time-frequency representation of 10 min of raw hippocampal iEEG signal. The sampling rate for 

this patient was 1024 Hz. Most of the spectral energy is limited to <100 Hz frequencies, showing that the power 

within the frequencies higher than 128 Hz is negligible in comparison to the frequency range of 30-128 Hz. 
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Spectral power of raw EEG was obtained using Welch’s PSD function applied to the 

non-overlapping 5-sec windowed EEG signal. The normalized spectral power feature for 

each sub-band was used, which is computed by dividing the spectral power of the sub-band 

by the total power. The advantages of normalized spectral power over original ones were 

mentioned in the chapter 2. The five normalized spectral power features of 6 channels 

n n n n n(α , β , γ , θ , and δ , n=1,…, 6)  were computed in 5-sec epochs and produced 30 

normalized spectral power features per epoch. Then the new relative spectral power features 

were described by ( 4.1), 
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where ak stands for relative normalized spectral power, given by the ratio between the 

normalized spectral power for the i1-th band in the j1-th channel, and the normalized spectral 

power for the i2-th band in the j2-th channel. n is the number of considered frequency sub-

bands and m is the number of selected channels for the study. This feature gives the cross-

power information not just between two channels but also between two frequency bands. 

These new features were targeted to find preictal trends that can be used to predict seizures. If 

m channels and n sub-bands are considered independently, k m n= ×  features will be 

obtained. The combination of the k features set by the proposed relative bivariate approach 

would lead to a total of 2
kC  new features ( 4.2). 

 

( )2
!

2 2!  2 !
k k kC

k
 

= =  × − 
 ( 4.2) 

The relative bivariate features were computed for the 30 normalized spectral power 

features extracted from 6 channels. The pairwise combinations of the 30 features led to a total 

of 30
2 435C =  new features. 
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4.1.2.2 Normalization and smoothing of features 

By long-term monitoring of the elements of each extracted feature vector, it is found 

that they are highly changing around a gradually varying long-term average value. This 

behavior is mostly resulting from noise and other interfering sources such as eye movement 

or EMG signals, and other artifacts. In order to reduce this effect, each feature was processed 

using a 12-epochs (1-min length) moving average window (Figure  4.3). As noticed from 

( 4.3), the time series of feature vector “a” is smoothed by averaging each current value with 

its 11 past values, 
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k k j
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a a l
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=

= =
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where ka is k-th sample of feature vector, and ka  is its smoothed feature value. Furthermore 

each feature vector was normalized into the interval [0 1] by dividing by the maximum range 

of that feature across the whole data set as in ( 4.4). 

 min( )
max( ) min( )norm

a aa
a a
−

=
−

 ( 4.4) 

Since the number of features is very high, a feature reduction method was developed to 

select the most promising feature subset, and is presented in the next sub-section. 

 
Figure  4.3 – Raw feature and its preprocessed version ( 6 1/ORFRG AMYGGα δ for patient 18). The feature was 

extracted from 100 minutes of iEEG signals of patient 18. Each smoothed sample was obtained by averaging on 

current and past 11 raw feature samples. Non-preprocessed features are highly vibrant around the smoothed 

feature values, indicating that preprocessing has reduced the effects of artifacts. 
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4.1.2.3 Feature selection based on discrepancy of amplitude 

distributions 

The selection of a subset of relevant features among a high number of candidate 

features based on a certain criterion is a very challenging problem (Fukunaga, 1990), and 

plays an important role in building robust learning and decision making models. We 

developed a features selection method and compared the results with the minimum 

Redundancy Maximum Relevance (mRMR) (Peng et al. , 2005) feature selection method. 

Two selection methods were applied on the features labeled with predefined preictal periods, 

to rank the features. 

The proposed supervised feature selection method is based on amplitude distribution 

histograms (ADHs) of preictal and non-preictal samples. An ADH is the representation of the 

samples of a given feature corresponding to a specified class, in which the feature axis is 

discretized into a number of equal smaller bins, each representing the number of features with 

amplitudes falling within that interval. For a two-class problem, two different ADHs were 

considered. The basic idea of the method is the selection of the features that have the 

maximum difference between normalized ADHs (MDAD) of preictal and non-preictal 

samples. To achieve the normalized ADHs of each class, ADHnorm, the original histograms 

were divided by the number of samples in each class, as in ( 4.5), 

 j
normj

ADH
ADH

ns w
=

×
 ( 4.5) 

where ADHj is the original histogram of class j, ns is the number of feature samples of class j, 

and w is the bin-width. The features were normalized to fall inside the interval [0 1], and the 

feature axis was discretized into 100 equally spaced bins (n=100, w=0.01), as required for 

calculating ADHs. The net area under each normalized ADH is therefore one. The common 

area between two normalized ADHs of a two-class problem, CADHs (Figure  4.4), can thus be 

calculated as ( 4.6), 
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where n is the number of bins, and i indexes the bins where the values of two classes are 

distributed. The CADHs has a value in the real interval [0 1]. The difference of normalized 

ADHs for a two-class problem is defined by ( 4.7), 

 1ADHs ADHsD C= −  ( 4.7) 

where DADHs is the difference between normalized ADHs and has a value in the real interval 

[0 1]. To be able to properly compare different features using MDAD method, all features 

were normalized to the real interval [0 1]. In summary, higher DADHs values represent higher 

separability between samples of different classes, for a given feature. So, features with high 

DADHs are more likely to improve seizure prediction performances. Figure  4.4 presents ADH 

of the first and last selected features using the proposed method for one of the studied 

patients. Since each sample is labeled, this method is a supervised method, and it was 

developed for two-class problems such as in seizure prediction (preictal and non-preictal 

classes). 

 

  
(a) (b) 

Figure  4.4 – The normalized ADHs of relative spectral features for patient 19; (a) highest rank: DADHs =0.70, (b) 

lowest rank: DADHs =0.06. The dotted black histogram represents the ADH of non-preictal samples, while the 

blue histogram represents the ADH of preictal samples. For maximum discrepancy of the features (maximum 

DADHs), the common area under two histograms (highlighted area) should be minimized. 
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4.1.2.4 Patient specific classification and alarm generation 

The patient specific SVM classifiers with Gaussian kernel were trained for prediction of 

seizures within the predefined preictal periods. The two kernel parameters of scale (σ) and 

cost (C) were optimized through a grid search method. Classification was carried out using 

LibSVM toolbox (Chang et al. , 2011). SVMs were trained with part of the data (the training 

set) and were tested with the remaining data (the testing set).  

Among the consecutive seizures with less than 40 minutes interval, only the first seizure 

was considered for training or testing the classifier. By this consideration, we make sure that 

no residual postictal activity remains from a previous seizure. The total number of considered 

seizures was 159. For each patient, the first three seizures and their corresponding recordings 

were considered for training and the last ones for testing. This leads to 72 seizures used for 

training, and 87 for testing. As the proper length of preictal period is not known and is 

patient-specific phenomenon, four different preictal periods -10, 20, 30, and 40 minutes- were 

considered for training and testing the SVM classifier. The remaining samples outside the 

preictal periods were labeled as non-preictal samples.  

Since the number of non-preictal samples was much higher than the preictal ones, and 

usually classifiers tend to produce higher accuracy over the class with more training samples 

(Chawla et al. , 2004), the number of non-preictal samples of the training set was reduced by 

resampling to achieve a balanced number of samples for the two classes. However for the 

testing phase all of the samples were considered and no resampling was carried out. 

Afterward, the firing power regularization method, which was introduced in chapter 2, was 

applied on the SVM classifier outputs. The threshold level for decision making and alarm 

generation was set to 0.5. Figure  4.5 shows an interval of five hours data illustrating the 

application of FP method on SVM outputs, for generating alarms. 
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Figure  4.5 – Decision making on the outputs of the SVM classifier for alarm generation using FP method. 

Highlighted area depicts a 30 min preictal period, and the black, blue and red lines represent the SVM outputs, 

regularization output and the generated alarm respectively. By upward passing of regularization output across 

the threshold value (0.5), and fulfilling two constraints of the FP method, an alarm is generated. Alarms outside 

this preictal window are considered as false alarms. Seizure onset is marked by the longer vertical black line. 

4.1.3 Results 

Sensitivity (SS) and false prediction rate (FPR) of the raised alarms were used to 

evaluate the proposed approaches. Unfortunately, both parameters cannot be simultaneously 

optimally set, as improving one leads to worsening the other, and a tradeoff has to be made in 

their selection. Therefore the Euclidean distance between the points (in the plane) defined by 

the pair (sensitivity, normalized FPR) of the raised alarms and the optimal performance point 

(SS=100, FPR=0) was used to find the best trained SVM model for each patient. The best 

model would be selected so that this distance is minimized. The normalized FPR values were 

used instead of the actual FPR in order to limit the effect of narrow range and very low FPR 

(whose obtained values are easily near 0). The normalized FPR of each alarm series (i) is 

defined as ( 4.8), 
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where the ( )FPR i  is the false prediction rate of the i-th SVM model, and n is the number of 

SVM used. The Euclidean distance is calculated as ( 4.10), 

 ( )2 2( ) ( ) 100 ,      , ,  ( ) 1  normEd i ss i FPR ii n= − + = …  ( 4.10) 

where the ( )ss i  is the sensitivity of raised alarms by the i-th model. The SVM model which 

provides the minimum Ed is selected as the best. The seizure prediction performance was 

evaluated for different sizes of the feature subset: 3, 5, 10, 20 and 40, to find the best 

performing dimension of feature space. Discriminative features were selected by the 

proposed method (MDAD) and by the mRMR method. 

Table  4.2 reports the best results for each patient in terms of alarm sensitivity and FPR, 

obtained from the two feature selection methods. The best results were selected so that the SS 

and FPR be close to the optimal performance condition, i.e., SS=100% and FPR=0 h-1. Using 

the MDAD method, in average 75.8% of the seizures in the testing set were successfully 

predicted (66 out of overall 87 seizures within 1537 hours of recording data) with an average 

FPR of 0.1 h-1. Figure  4.6 illustrates the SS and FPR results of 24 studied patients using 

MDAD and mRMR feature selection methods to provide visual comparison. 

To verify the efficiency of the proposed method, statistical validation was employed, 

and results were compared with those achieved from the analytical random predictor. As four 

different preictal periods of 10, 20, 30, 40 min were considered to find the proper one, 

therefore the value of parameter d for random predictor was set to 4. Also the significant 

level was kept at 0.05RPα = . The results are also presented in Table  4.2. For all patients 

(except one patient, number 20), the observed sensitivities exceed the critical sensitivities of 

analytical random predictor. On average, the upper critical sensitivity of analytical random 

predictor was 33.3%, while the sensitivity of the proposed method reached 75.8%. 
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Table  4.2 – Results for the 24 studied patients 

Pat. 
ID 

Test 
rec.(h) 

N. test 
seiz. 

 MDAD feature selection  mRMR feature selection 

 SS FPR N.S.F. SOP SSRP p-value  SS FPR N.S.F. SOP SSRP p-value 
1 62 4  100 0.13 3 30 50 0.004  75 0.19 10 40 50 0.024 
2 84 4  50 0.01 10 40 25 0.001  50 0 5 40 0 0 
3 65 3  66.7 0.08 3 10 33.3 0.002  66.7 0.11 10 20 33.3 0.015 
4 37 4  75 0.24 40 40 50 0.045  75 0.24 10 30 50 0.021 
5 46 5  80 0.06 10 30 20 0.032  60 0.06 10 30 20 0.032 
6 17 2  50 0 10 40 0 0  50 0 3 30 0 0 
7 23 3  100 0.04 10 40 33.3 0.008  100 0.13 10 40 66.7 0.002 
8 64 3  66.7 0.08 3 10 33.3 0.002  66.7 0.11 10 20 33.3 0.015 
9 76 4  25 0.01 20 10 0 0.026  50 0.26 10 10 25 0.040 
10 82 4  75 0.04 20 30 25 0.009  75 0.06 10 30 25 0.020 
11 65 1  100 0 10 30 0 0  100 0 20 40 0 0 
12 40 3  100 0.04 10 40 33.3 0.008  100 0.17 10 40 66.7 0.005 
13 61 3  100 0 20 40 0 0  100 0.01 10 40 33.3 0.000 
14 43 1  100 0.02 3 10 0 0.013  100 0.07 10 40 100 0.001 
15 68 3  66.7 0.24 3 10 33.3 0.018  66.7 0.04 3 40 33.3 0.008 
16 40 3  66.7 0.07 10 40 33.3 0.024  66.7 0.04 40 40 33.3 0.008 
Mean 54.6 3.125  73.98 0.06 11.5 28.1 26 0.012  71.98 0.09 11.3 33.12 34 0.012 
Sum 873 50               
17 43 3  100 0.09 10 40 33.3 0.038  66.7 0.04 5 40 33.3 0.008 
18 110 3  100 0.17 5 40 66.7 0.005  100 0.10 3 30 33.3 0.027 
19 18 4  75 0.22 3 40 50 0.036  50 0.06 40 40 25 0.034 
20 80 5  40 0.23 10 40 60 0.007  40 0.19 5 40 60 0.004 
21 157 9  77.8 0.24 5 40 44.4 0.021  22.2 0.09 3 30 22.2 0.023 
22 50 5  80 0.16 5 20 40 0.005  80 0.18 40 40 40 0.048 
23 55 5  80 0.07 5 20 20 0.020  60 0.16 3 30 40 0.016 
24 151 3  100 0.06 10 30 33.3 0.010  66.7 0.03 5 30 33.3 0.003 
Mean 83 4.625  78.36 0.15 6.6 33.7 43.2 0.018  54.04 0.09 13 35 35.13 0.020 
Sum 664 37               

                 
Mean 64 3.625  75.8 0.10 9.9 30 33.3 0.014  64.4 0.09 11.9 33.7 34.48 0.015 
Sum 1537 87               

 SS: Sensitivity of the raised alarms in percentage 
 FPR: False prediction rate per hour 
 N.S.F.: Number of selected features 
 SOP: The seizure occurrence period (preictal period) in minute 
 SSRP: The sensitivity of the random predictor 
 p-value: The p-value of the random predictor 
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(a) MDAD feature selection 

 
(b) mRMR feature selection 

Figure  4.6 – Sensitivity and FPR results achieved by the proposed seizure prediction method for 24 studied 

patients using both MDAD and mRMR feature selection methods. 
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The optimal number of features obtained was 9.9 in average, which indicates the 

discriminative potential of the proposed relative features. In this study long-term continuous 

recordings have been used, contrasting with short-term discontinuous recordings used in most 

of the previous studies (Mormann et al. , 2003b, Winterhalder et al. , 2006, Chisci et al. , 

2010, Park et al. , 2011, Soleimani-B et al. , 2012, Li et al. , 2013, Zheng et al. , 2014b). 

Results are in good comparison with other seizure prediction studies using long-term 

continuous recordings (Feldwisch-Drentrup et al. , 2010, Feldwisch-Drentrup et al. , 2011c, 

Rasekhi et al. , 2013, Teixeira et al. , 2014b, Rasekhi et al. , 2015). Furthermore, as the 

awake-asleep cycles have been considered both in the training and testing phases, it is 

expected that this effect is embedded in the predictor. Figure  4.7 illustrates the output of the 

proposed approach for entire recordings of test set for one of the studied patients.  

On average, for the scalp recordings, the best predictors provided sensitivity of 73.98% 

and FPR of 0.06 per hour. In contrast iEEG based predictions showed sensitivity of 78.36% 

and FPR of 0.15 h-1. The results therefore surprisingly indicate comparable prediction 

performances both for sEEG and iEEG data using the proposed features. Furthermore, it can 

be argued that the superior performance of the sEEG in terms of FPR has been achieved at 

the cost of using more features (11.5 in average) compared to that of iEEG (6.6 in average).  

 

Figure  4.7 – The output of the FP method for 42 h continuous recordings of test data for one of the studied 

patients. The highlighted areas show 30 min preictal periods, and the vertical red lines are the alarms raised by 

the firing power method. The five vertical black lines indicate the seizure onsets. 
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The introduced feature selection method has shown improved performance in 

comparison to the well-known mRMR feature selection method. The superior performance of 

the proposed feature selection method was demonstrated in two ways: firstly, referring to 

Table  4.2, MDAD method is showing higher seizure prediction performance (SS of 75.8%, 

FPR of 0.1 h-1), using in average a lower number of features (9.9) in comparison to the 

mRMR method (SS of 64.4%, FPR of 0.09 h-1, for 11.9 features in average). Secondly, if the 

obtained results from using only three highest ranked features are compared, as presented in 

Table  4.3, it becomes clear that the MDAD method is also performing better with respect to 

SS and FPR for the same number of features. The highest ranked features are tabulated in 

Table  4.4. 

Table  4.3 – Results obtained using the three highest ranked features 

Patient 
ID 

Total test 
record. (h) 

No. test 
seizures 

 MDAD  mRMR 
 SS% FPR (h-1) SOP (min)  SS% FPR (h-1) SOP (min) 

1 62 4  100 0.13 30  50 0.08 40 
2 84 4  25 0.01 40  25 0.11 40 
3 65 3  66.67 0.08 10  33.33 0.07 40 
4 37 4  75 0.38 30  75 0.26 20 
5 46 5  60 0.07 40  40 0.09 40 
6 17 2  50 0.23 40  50 0 30 
7 23 3  66.66 0.04 40  100 0.4 30 
8 64 3  66.66 0.08 10  33.33 0.06 20 
9 76 4  25 0.06 10  25 0.06 10 
10 82 4  75 0.42 10  50 0.04 30 
11 65 1  100 0.05 20  100 0.08 30 
12 40 3  66.66 0.2 40  66.66 0.25 10 
13 61 3  100 0.05 40  66.66 0.03 30 
14 43 1  100 0.02 10  100 0.26 20 
15 68 3  66.66 0.25 10  66.66 0.04 40 
16 40 3  66.66 0.22 40  33.33 0.15 30 
17 43 3  100 0.21 40  66.66 0.09 40 
18 110 3  50 0.16 20  100 0.1 30 
19 18 4  75 0.23 40  25 0.06 40 
20 80 5  60 0.49 20  20 0.17 40 
21 157 9  44.44 0.19 30  22.22 0.09 30 
22 50 5  100 0.38 30  20 0.04 10 
23 55 5  80 0.13 20  60 0.16 30 
24 151 3  100 0.11 20  66.66 0.26 30 
M./S. 1537 87  68.39 0.17 26.6  47.12 0.12 29.6 
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4.1.4 Discussion 

The proposed relative bivariate features are derived from the normalized spectral power 

and resulted in an improved performance. Moreover, using the new feature selection method, 

further improves performance of the predictor. By combining the relative bivariate features 

with original normalized spectral power features in one feature space, and then ranking the 

features using the MDAD method, the efficiency of features were compared. Table  4.4 

presents the best five features resulting from application of MDAD feature selection method. 

As seen from this table, for 90% of the cases, relative bivariate features are selected as the 

best. In Table  4.4 the value under each focal channel represents the ratio of observed seizure 

initiations on that channel. For example if a patient experiences 8 seizures, four of which 

initiating in the vicinity of channel F3, the value under F3 will be 0.5. 

Two reasons could be pointed out for this superior performance: firstly, doubling effect 

is achieved in some bivariate features, for which the two building univariate features have 

opposite up/down trends during preictal state. Therefore preictal transient changes are 

highlighted. Secondly, univariate features are very dependent upon general status of the brain 

and patient’s daily life, and could not guarantee high preictal discrimination. For example 

during preictal state the spectral power of Delta band is known to decrease, in conjunction 

with an increase of the spectral power of Gamma band (Mormann et al. , 2005). However 

decrease in the power of Delta band occurs in other non-preictal situations as well, possibly 

not related to epileptogenic activity. This also holds for the increase in the power of Gamma 

band. Overall the bivariate measure will tend to reject the common mode interferences that 

are not related with ictogenesis. 
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Table  4.4 – The five highest ranked features for each of the 24 patients 
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Comparing the results of sEEG and iEEG recordings, they showed similar 

performances, where the iEEG data could provide slightly higher SS and FPR than the sEEG 

signals in average. However, the lower FPR of sEEG data has been reached at the cost of 

using more features (11.5 in average) compared to that of iEEG (6.6 in average), which will 

increase the computational cost and power consumption of the implemented method. The 

need for less number of features (channels) suggests that iEEG data carry more clear but 

localized epileptogenic information than sEEG. The scalp level sEEG present a more 

generalized spatial view of the brain activity, whereas the iEEG are restricted to the region 

where surgery was performed and where electrodes are placed. This spatial view of the sEEG 

may reinforce the capture of the different dynamics in the different regions of the brain 

during the preictal phase, leading to a slightly better performance in seizure prediction. But 

further investigation is needed. 

Concerning the artifacts’ issue, especially with sEEG recordings, there are several 

opinions about how to solve it. Because there are no techniques to eliminate them without 

any elimination of good information, several recent studies (Gadhoumi et al. , 2012, 

Williamson et al. , 2012) seem to consider the raw signal, including the artifacts, and this was 

also done in the present study. The question is if this fact influences in a significant way the 

performance of the predictors. There are two stages in our methodology that reduce the 

influence of the artifacts to a level that we consider satisfactory: (i) by smoothing the feature 

vector by a moving average with 12 epochs in (5); (ii) the regularization of the classifier 

output further reduces the effect of artifacts. 

Moreover, the choice of six channels, three from the focal area and the remaining three 

far away from that area can be a questionable decision. We adopted this approach by the 

following three reasons: (i) a subset of channels close to the seizure onset zone are more 

discriminative in most patients (Gadhoumi et al. , 2012); (ii) remote areas contain much 

weaker seizure traces, but may possess richer information about general brain state, which in 

turn can aid detecting gradual preictal changes; (ii) the use of a higher number of channels is 

avoided here, because the long-term aim of the work is the development of a portable device 

to warn the patients and this recommends the use of a low number of scalp channels or 

recording implants (comfort of the patient). By considering these trade-offs, six channels 
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were considered adequate to profit from the spatially embedded information. This number 

has also been suggested by other authors (Mirowski et al. , 2009, Feldwisch-Drentrup et al. , 

2010, Park et al. , 2011, Williamson et al. , 2012). 
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4.2 On the proper selection of preictal period 

This section addresses the proper selection of preictal period using a novel statistical 

approach. The proposed seizure prediction method in the previous section labelled preictal 

samples using 10, 20, 30, and 40 min preictal periods, and it was found that the proper 

preictal periods differ from patient to patient. Therefore we developed a new approach to deal 

with this issue using an optimal preictal criterion. Additionally, the optimal preictal criterion 

can be helpful in two ways. First it can provide a means of measuring the efficiency of a 

feature, and second it can say whether a specific seizure has distinguishing preictal changes 

or not. 

In the context of present neuroscience knowledge, the length of preictal period is 

unclear and varies from seizure to seizure. For some seizures, the epileptogenic transient 

changes develop very late close to the onset, whereas for some others appear much earlier 

several tens of minutes prior to the onset. Recently, several studies were proposed for seizure 

prediction using the combination of different univariate/bivariate and linear/nonlinear 

features, which lead to higher performances compared to using a single measure (Mirowski et 

al. , 2009, Park et al. , 2011, Valderrama et al. , 2012, Williamson et al. , 2012, Rasekhi et al. 

, 2013, Moghim et al. , 2014, Teixeira et al. , 2014b, Bandarabadi et al. , 2015). For this 

purpose, we need to use machine learning approaches, which are mostly supervised. 

Therefore, the accurate labeling of feature samples in preictal and non-preictal classes 

becomes very important issue for the proper training of a model. In fact, the improper choice 

of preictal intervals can affect prediction results drastically. Preictal periods larger than the 

optimal value will increase false predictions, while smaller values can decrease the sensitivity 

of prediction (Mormann et al. , 2005). 

The optimal preictal period (OPP) of each seizure for the training set should be 

separately computed, and then be considered for the proper labelling of the training samples. 

However, as there exist no straightforward method for finding the appropriate preictal 

interval, previous machine-learning-based approaches have considered a fixed preictal period 

or examined different preictal periods to train/test the classifier in order to find a proper 

period (Mirowski et al. , 2009, Park et al. , 2011, Valderrama et al. , 2012, Williamson et al. , 
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2012, Rasekhi et al. , 2013, Moghim et al. , 2014, Teixeira et al. , 2014b, Bandarabadi et al. , 

2015). 

Mormann et al. (Mormann et al. , 2005) used statistical analysis of several univariate 

and bivariate features to prove the existence of such a transient preictal period. They used the 

amplitude distributions histograms (ADHs) of preictal and interictal samples achieved from 

four predefined preictal periods of 5, 30, 120, and 240 min, and then calculated the receiver 

operating characteristic (ROC) curve of these two distributions to find out the predictability 

of epileptic seizures. Here we propose a new criterion which is statistically superior to ROC 

analysis, and also examine a wide range of preictal periods to find the OPP value for each 

seizure. The OPP can maximize the separability of training samples, and the maximum 

separability will boost the classification results by building a more accurate trained model. 

The resulting model is thus expected to provide the highest success rate with unseen data (test 

data), which is a fundamental hypothesis of classification and pattern recognition theories. 

The method is evaluated on 470 hours of iEEG and sEEG recordings related to 94 epileptic 

seizures. 

4.2.1 Dataset description 

In order to evaluate the proposed method, the long-term continuous iEEG and sEEG 

recordings of 18 patients (12 females and 6 males, aged 11–63 years, mean 28.5 years) with 

refractory partial epilepsy from the European Epilepsy Database (Klatt et al. , 2012) were 

considered. Recordings were obtained from eleven patients using intracranial electrodes with 

a sampling rate of 1024 Hz, and from seven patients through surface electrodes at 2500 Hz. 

The international 10-20 electrode montage was used for surface recordings. The overall 

length of recordings is 2692.6 hours and contains 239 epileptic seizures. The electrographic 

onsets were considered in this study, as they usually precede the clinical onsets. For each 

patient, two channels located on the foci were selected using prior knowledge on seizure 

initiation and propagation information, also available in the database. Patients’ characteristics 

are summarized in Table  4.5. 
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Table  4.5 – Characteristics of 18 studied patients and their EEG recordings 

ID Rec. 
type Gender Age Onset 

age (y) 
Localization of 
seizure onsets Seizure type Recording 

duration (h) 
N. of 
seizure 

N. studied 
seizures 

1 Inv. F 29 10 RMT, RLT CP1, SP7, UC1 183 9 7 

2 Inv. F 32 1 LMT CP8, UC1 162.6 9 4 

3 Inv. F 11 3 RMT CP4, SP4, UC6 155 14 2 

4 Inv. F 32 8 RBF, RMT, LMT CP2, SP2, UC5 151.6 9 4 

5 Inv. F 18 6 L-T, L-F CP13 127.8 13 10 

6 Inv. M 21 5 RLT, RMT CP19, UC3 170.6 22 4 

7 Inv. M 17 1 LMT, LLT, L-T SP25, SG6 142 31 5 

8 Inv. M 18 11 LBT, LLT, RBT CP4, SP4, SG4, UC1 246.2 13 7 

9 Inv. F 63 30 LMT, R-T CP15, UC4 118.9 19 5 

10 Inv. M 39 8 L-F, L-C CP2, SP3, UC25 110.6 30 5 

11 Inv. F 14 13 L-T, LLT CP6, SG4, UC4 217.1 14 6 

12 Scalp F 46 14 R-T, L-T CP7, UC1 204.2 8 4 

13 Scalp M 18 17 RPT SG4, SP3, CP2, UC5 165.1 14 9 

14 Scalp F 28 no info no info SP5, SG3 111.2 8 4 

15 Scalp F 31 20 R-T, L-T SP3, SG2, CP1, UC2 93.6 8 4 

16 Scalp F 18 18 R-T SP3, SG1, SP1, UC1 100.3 6 5 

17 Scalp F 46 no info no info CP3, SP1, UC2 73.1 6 5 

18 Scalp M 32 28 L-T, R-T SG4, CP1, UC1 159.7 6 4 

Mean   28.5 12.1   149.6 13.3 5.2 

 Localization of seizure onsets: ABC; A (R: right, L: left), B (-: none, B: basal, L: lateral, M: mesial, P: 
polar), C (F: frontal, T: temporal, C: central). E.g. RMT (right mesial temporal lobe), L-F (left frontal lobe), 
RBF (right basal frontal lobe). 

 Seizure type: type of clinical seizures; CP: complex partial, SP: simple partial, SG: secondarily generalized, 
UC: unclassified. Numbers following the abbreviations represent the number of seizures of that type.  

For this study, instead of the whole recordings, we have used only 5 hours of the 

recording before each seizure. For a proper evaluation of the method, we have considered 

only those seizures that occur following at least 6 hours of seizure-free data. Doing so ensures 

that every seizure activity completely fades out during the 5 hours preceding the candidate 

seizures. With this limitation 470 h recordings of 94 epileptic seizures were considered. 

Afterwards and prior to feature extraction, the selected EEG data was segmented into 8 

seconds windows with 50% overlap. We chose overlapped windows to provide more feature 

samples for each class, so that we could have a better estimation of ADHs, and also to obtain 

more smoothed ADHs especially for shorter preictal periods. 
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4.2.2 Optimal preictal criterion 

The proposed method encompasses an optimal preictal criterion, which is calculated 

using ADHs of preictal and interictal samples. To find the proper preictal, we considered a 

two-class preictal/interictal problem as well as their corresponding ADHs. The optimal 

preictal criterion is defined as the common area between two normalized ADHs (CADHs), and 

the proposed method relies on the idea that the optimum preictal period should increase 

discriminability among two classes and minimize this criterion (Figure  4.8).  

To obtain the normalized ADHs, feature samples of each feature vector was normalized 

to fall inside the interval [0 1] by ( 4.4). Each feature vector contains the interictal and preictal 

feature samples of a seizure. Also the feature axis is discretized into 50 equally spaced bins, 

as required for calculating ADHs. The net area under each normalized ADH is therefore one, 

and the common area between two normalized ADHs (CADHs), which was explained in the 

previous chapter, can be achieve by ( 4.6).  

Lower CADHs values represent higher separability between samples of the two classes 

for a given feature. Therefore, the preictal period having the lowest CADHs represents an 

adequate choice, and is more likely to improve the seizure prediction performance. Figure  4.8 

presents a sample feature corresponding to one of the studied seizures and the resulted 

normalized ADHs for preictal values of 10, 30, 50 and 70 minutes. The lowest CADHs is 

obtained for the preictal period of 30 minutes among the four preictal periods. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure  4.8 – Finding the proper preictal period for a feature/seizure. (a) Spectral power of 102-125 Hz extracted 

from 5.5 hours of iEEG recordings, including a seizure onset at 5h (seizure 4, patient 1). (b, c, d, e) The 

normalized ADHs of preictal and interictal samples using four preictal periods of 10, 30, 50, and 70min, 

respectively. Among these four preictal periods, the 30min preictal period provided less CADHs. 

To find the OPP, CADHs is calculated for various preictal periods sweeping between 5 

and 180 min, with constant increments. Finally, by studying the resulting CADHs curve, the 

preictal period providing the lowest CADHs could be empirically found. Figure  4.9 illustrates 

the CADHs curve obtained for the same seizure of Figure  4.8, and the OPP is obtained as 32 

min. 
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Figure  4.9 – The graph presents the CADHs of preictal and interictal classes with respect to different preictal 

periods for the same feature and seizure as in Figure  4.8. The OPP is located at 32min. 

4.2.2.1 Studied features 

To evaluate the proposed method for finding the OPP, the spectral power features were 

extracted from the windowed EEG signals. The spectral power features are computationally 

very cost effective, which make them suitable candidates for implantable and portable 

warning systems. Furthermore, these features recently have demonstrated promising results 

for seizure prediction (Jacobs et al. , 2009, Park et al. , 2011, Bandarabadi et al. , 2013, 

Pearce et al. , 2013, Rasekhi et al. , 2013, Alvarado-Rojas et al. , 2014, Bandarabadi et al. , 

2015), specifically in the high gamma frequency bands (Jacobs et al. , 2009, Park et al. , 

2011, Bandarabadi et al. , 2013, Pearce et al. , 2013, Alvarado-Rojas et al. , 2014).  

Therefore, we investigated high quality iEEG and sEEG recordings (with the sampling 

rates of 1024 Hz and 2500 Hz), and divided the gamma band into several narrower sub-bands 

to study the spectral behavior more precisely. Instead of using the well-known frequency 

bands, the sub-bands were selected as (0.5-4], (4-8], (8-15], (15-30], (30-48], (52-75], (75-

98], (102 125], (125-148], (152-198], (202-248], (252-348], (352-512] Hz, for the iEEG 

signals sampled at 1024 Hz. However, for the sEEG signals sampled at 2500 Hz, the highest 

sub-band of (352-512] Hz was replaced with four new sub-bands of (352-548], (552-748], 

(752-948], (952-1248] Hz. Furthermore, the spectral power of the whole bandwidth was also 

considered. 
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The spectral powers were obtained using PSD estimated through Welch method 

(Welch, 1967). The PSD is extracted using a rectangular moving window of length 8s and 

50% overlap, providing a feature sample every four seconds. Prior to calculation of the 

ADHs, the extracted features were preprocessed by outlier removal and normalization. The 

outlier samples which are usually the result of physiological interferences, e.g. EMG, eye 

movement, and blinking artifacts, were removed by eliminating the values above percentile 

98 of each class. Subsequently, each feature vector (a) was normalized to the interval of [0 1] 

by ( 4.4). 

4.2.3 Results 

OPP was calculated for each of the 94 individual seizures separately, including 59 from 

iEEG and 35 from sEEG recordings. The extracted features from the 5 hours of EEG data 

preceding each seizure were investigated. By choosing various preictal periods starting from 

5 min and ending at 180 min, with 1 min increments, and calculating their corresponding 

CADHs, the OPP was found for each seizure. To evaluate the feature dependency of OPPs, they 

were initially presumed different among the features obtained for each seizure. By calculating 

the OPPs for all individual features, we found that OPPs are similar for discriminative 

features of each seizure. 

Table  4.6 and Table  4.7 present the OPP and CADHs results of different electrode 

montages for iEEG and sEEG signals respectively, obtained from the three highest ranked 

features of each seizure. The resulting OPPs varied significantly among the seizures, even for 

the same patient. The OPPs range from 5 min up to 173 min, with an average value of 44.3 

min. Furthermore, for 31 (22 from iEEG, 9 from sEEG) out of the 94 studied seizures, no 

OPP was found. An example is demonstrated in Figure  4.10, where CADHs of all spectral 

power features are traced with respect to different preictal periods for two seizures. The first 

seizure is depicted in Figure  4.10.a which was found to be predictable. The second seizure is 

also shown in Figure  4.10.b with no predictability using the studied features.  
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Table  4.6 – OPPs of 59 seizures recorded using iEEG signals and the three high ranked features for each seizure 

   Monopolar       Bipolar       

Pat. 
ID 

Sz. 
ID 

 OPP 
(minute) 

1st feature 2nd feature 3rd feature  OPP 
(minute) 

1st feature 2nd feature 3rd feature 
 CADHs Frq. Hz CADHs Frq. Hz CADHs Frq. Hz  CADHs Frq. Hz CADHs Frq. Hz CADHs Frq. Hz 

1 

1  - - - - - - -  - - - - - - - 
2  159 0.04 202-248 0.05 152-198 0.06 102-125  160 0.34 0.5-4 0.35 0.5-512 0.49 15-30 
3  - - - - - - -  - - - - - - - 
4  32 0.13 202-248 0.21 102-125 0.22 75-98  46 0.46 0.5-512 0.47 0.5-4 0.51 8-15 
5  17 0.37 352-512 0.41 52-75 0.42 75-98  - - - - - - - 
6  16 0.34 75-98 0.35 52-75 0.37 102-125  15 0.65 202-248 0.72 252-348 0.78 152-198 
7  - - - - - - -  - - - - - - - 

2 

8  - - - - - - -  - - - - - - - 
9  151 0.1 8-15 0.13 4-8 0.16 0.5-4  151 0.3 202-248 0.31 252-348 0.32 102-125 
10  149 0.08 8-15 0.08 4-8 0.11 15-30  149 0.19 102-125 0.21 75-98 0.22 52-75 
11  - - - - - - -  - - - - - - - 

3 
12  - - - - - - -  - - - - - - - 
13  54 0.1 152-198 0.11 252-348 0.12 202-248  52 0.3 0.5-512 0.32 0.5-4 0.37 15-30 

4 

14  - - - - - - -  - - - - - - - 
15  - - - - - - -  - - - - - - - 
16  - - - - - - -  - - - - - - - 
17  72 0.04 252-348 0.05 352-512 0.05 202-248  9 0.22 75-98 0.25 52-75 0.27 102-125 

5 

18  105 0.47 125-148 0.48 152-198 0.56 202-248  37 0.2 0.5-512 0.24 0.5-4 0.33 4-8 
19  62 0.49 8-15 0.5 15-30 0.54 4-8  62 0.43 15-30 0.56 8-15 0.59 4-8 
20  59 0.46 0.5-4 0.46 0.5-512 0.65 4-8  61 0.47 152-198 0.48 125-148 0.49 75-98 
21  - - - - - - -  - - - - - - - 
22  22 0.08 352-512 0.19 252-348 0.34 202-248  15 0.61 52-75 0.62 0.5-4 0.63 75-98 
23  42 0.19 102-125 0.19 125-148 0.19 202-248  42 0.3 52-75 0.31 75-98 0.32 0.5-512 
24  17 0.6 0.5-512 0.63 0.5-4 0.68 52-75  17 0.58 102-125 0.59 0.5-4 0.59 52-75 
25  24 0.08 102-125 0.08 125-148 0.1 75-98  58 0.06 0.5-4 0.07 0.5-512 0.08 30-48 
26  22 0.55 15-30 0.56 30-48 0.57 125-148  22 0.73 52-75 0.75 75-98 0.76 102-125 
27  15 0.06 202-248 0.08 252-348 0.09 102-125  15 0.04 0.5-4 0.05 0.5-512 0.07 52-75 

6 

28  173 0.13 102-125 0.15 75-98 0.18 125-148  173 0.18 0.5-4 0.2 0.5-512 0.34 75-98 
29  73 0.41 0.5-4 0.45 4-8 0.52 352-512  73 0.33 152-198 0.35 125-148 0.4 202-248 
30  - - - - - - -  - - - - - - - 
31  - - - - - - -  - - - - - - - 

7 

32  16 0.56 152-198 0.58 202-248 0.63 252-348  - - - - - - - 
33  10 0.27 75-98 0.28 30-48 0.34 52-75  10 0.29 75-98 0.39 202-248 0.48 252-348 
34  28 0.34 75-98 0.42 152-198 0.47 202-248  28 0.33 75-98 0.57 4-8 0.59 0.5-4 
35  7 0.38 202-248 0.4 125-148 0.43 152-198  7 0.55 0.5-4 0.6 252-348 0.64 352-512 
36  - - - - - - -  - - - - - - - 

8 

37  - - - - - - -  - - - - - - - 
38  - - - - - - -  - - - - - - - 
39  46 0.36 15-30 0.41 8-15 0.44 0.5-4  48 0.18 152-198 0.19 125-148 0.24 0.5-4 
40  32 0.11 252-348 0.15 202-248 0.16 75-98  27 0.06 0.5-4 0.08 0.5-512 0.23 15-30 
41  36 0.43 102-125 0.43 75-98 0.45 125-148  32 0.12 52-75 0.12 30-48 0.13 75-98 
42  21 0.11 202-248 0.12 125-148 0.15 102-125  - - - - - - - 
43  15 0.32 125-148 0.49 152-198 0.62 102-125  - - - - - - - 

9 

44  6 0.37 252-348 0.4 202-248 0.43 152-198  6 0.54 52-75 0.58 125-148 0.6 102-125 
45  - - - - - - -  - - - - - - - 
46  - - - - - - -  - - - - - - - 
47  22 0.44 252-348 0.51 202-248 0.56 125-148  - - - - - - - 
48  9 0.34 0.5-4 0.38 15-30 0.52 8-15  9 0.32 8-15 0.33 15-30 0.37 4-8 

10 

49  65 0.35 202-248 0.36 152-198 0.44 252-348  65 0.35 252-348 0.37 352-512 0.38 202-248 
50  20 0.42 15-30 0.46 0.5-4 0.52 30-48  20 0.43 0.5-4 0.45 15-30 0.51 30-48 
51  148 0.09 152-198 0.1 75-98 0.1 102-125  148 0.08 75-98 0.08 152-198 0.09 102-125 
52  16 0.14 15-30 0.19 30-48 0.22 0.5-4  16 0.16 30-48 0.21 15-30 0.22 52-70 
53  9 0.1 125-148 0.11 102-125 0.14 75-98  14 0.44 352-512 0.46 252-348 0.48 202-248 

11 

54  - - - - - - -  - - - - - - - 
55  - - - - - - -  - - - - - - - 
56  - - - - - - -  - - - - - - - 
57  - - - - - - -  - - - - - - - 
58  - - - - - - -  - - - - - - - 
59  46 0.28 8-15 0.31 4-8 0.32 30-48  46 0.3 8-15 0.33 4-8 0.34 15-30 

Mean   49.1 0.27  0.30  0.35   49.7 0.34  0.37  0.41  



 4.2 On the proper selection of preictal period 87 

 
Table  4.7 – OPPs of 35 seizures recorded using sEEG signals and the three high ranked features for each seizure 

   Monopolar       Bipolar       

Pat. 
ID 

Sz. 
ID 

 OPP 
(minute) 

1st feature 2nd feature 3rd feature  OPP 
(minute) 

1st feature 2nd feature 3rd feature 
 CADHs Frq. Hz CADHs Frq. Hz CADHs Frq. Hz  CADHs Frq. Hz CADHs Frq. Hz CADHs Frq. Hz 

12 

60  103 0.14 15-30 0.14 30-48 0.15 125-148  103 0.12 15-30 0.15 30-48 0.17 152-198 
61  62 0.13 15-30 0.14 252-348 0.16 202-248  62 0.1 15-30 0.12 252-348 0.12 202-248 
62  126 0.09 352-548 0.1 252-348 0.12 202-248  126 0.12 352-548 0.13 252-348 0.13 202-248 
63  37 0.35 30-48 0.35 75-98 0.36 52-75  37 0.38 75-98 0.39 102-125 0.39 30-48 

13 

64  9 0.16 15-30 0.17 30-48 0.17 252-348  9 0.12 15-30 0.12 75-98 0.12 30-48 
65  9 0.03 52-75 0.04 102-125 0.05 125-148  9 0.02 102-125 0.03 52-75 0.03 75-98 
66  10 0.12 15-30 0.13 52-75 0.14 102-125  10 0.12 15-30 0.12 52-75 0.13 102-125 
67  - - - - - - -  - - - - - - - 
68  - - - - - - -  - - - - - - - 
69  - - - - - - -  - - - - - - - 
70  29 0.05 75-98 0.05 102-125 0.06 52-75  29 0.04 75-98 0.04 52-75 0.05 102-125 
71  34 0.08 352-548 0.07 15-30 0.08 75-98  34 0.06 352-548 0.07 102-125 0.07 75-98 
72  - - - - - - -  - - - - - - - 

14 

73  5 0.13 152-198 0.13 202-248 0.14 125-148  5 0.12 152-198 0.12 125-148 0.13 202-248 
74  92 0.07 102-125 0.08 125-148 0.08 75-98  92 0.06 30-48 0.11 52-75 0.16 75-98 
75  - - - - - - -  - - - - - - - 
76  71 0.02 125-148 0.02 252-348 0.02 102-125  71 0.02 125-148 0.03 102-125 0.03 202-248 

15 

77  - - - - - - -  - - - - - - - 
78  13 0.31 8-15 0.33 4-8 0.35 52-75  13 0.28 8-15 0.28 15-30 0.29 30-48 
79  28 0.1 152-198 0.1 102-125 0.1 125-148  28 0.1 152-198 0.1 102-125 0.1 125-148 
80  58 0.21 4-8 0.22 8-15 0.22 352-548  58 0.21 8-15 0.26 4-8 0.27 352-548 

16 

81  9 0.2 30-48 0.22 52-75 0.24 125-148  9 0.24 52-75 0.25 30-48 0.27 75-98 
82  20 0.21 30-48 0.23 15-30 0.28 75-98  20 0.27 15-30 0.29 75-98 0.3 52-75 
83  8 0.3 202-248 0.34 352-548 0.35 152-198  8 0.28 152-198 0.35 202-248 0.36 252-348 
84  18 0.49 15-30 0.52 202-248 0.53 252-348  18 0.51 202-248 0.52 152-198 0.54 125-148 
85  18 0.1 75-98 0.12 102-125 0.12 152-198  18 0.11 102-125 0.16 75-98 0.18 152-198 

17 

86  7 0.22 8-15 0.29 0.5-4 0.36 4-8  7 0.24 8-15 0.43 0.5-4 0.51 4-8 
87  78 0.36 30-48 0.48 552-748 0.5 15-30  78 0.38 30-48 0.48 15-30 0.49 352-548 
88  49 0.28 52-75 0.3 75-98 0.34 352-548  49 0.33 75-98 0.36 352-548 0.38 102-125 
89  - - - - - - -  - - - - - - - 
90  8 0.1 15-30 0.11 552-748 0.12 102-125  8 0.12 15-30 0.14 552-748 0.15 202-248 

18 

91  - - - - - - -  - - - - - - - 
92  42 0.55 0.5-4 0.55 4-8 0.57 8-15  42 0.49 0.5-4 0.5 4-8 0.57 8-15 
93  32 0.31 8-15 0.47 4-8 0.58 15-30  31 0.34 8-15 0.47 4-8 0.51 52-75 
94  - - - - - - -  - - - - - - - 

Mean   37.5 0.20  0.22  0.24   37.5 0.20  0.23  0.25  
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(a) 

 
(b) 

Figure  4.10 – The CADHs of interictal and preictal classes with respect to different preictal periods, and for the 14 

features of two studied seizures. (a) A seizure with an identifiable OPP using monopolar spectral power features 

(seizure 22, patient 5): the OPP is located around 22min, with spectral powers of 352-512, 252-348, and 202-

248 Hz providing lower CADHs in OPP. (b) A seizure with no distinguishable preictal period using the monopolar 

spectral power features (seizure 12, patient 3). 

4.2.4 Discussion 

The results reveal that the OPPs corresponding to different features and extracted for a 

same particular seizure are very close. More specifically, for a set of features extracted from a 

common domain, e.g. spectral power features, the OPPs corresponding to different features 

were found to be similar. However OPPs vary significantly from one seizure to another, 

demonstrating the seizure-specific nature of OPPs (Figure  4.11).  
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Figure  4.11 – Histogram of OPPs for 63 epileptic seizures with distinguishable preictal period 

As a practical outcome of these findings, the OPP values obtained from the training set 

can be used for building a more consistent model for seizure prediction, through the correct 

labeling of training feature samples. Figure  4.12 demonstrates distribution of feature samples 

for three cases of preictal periods for a sample seizure. According to the Figure  4.12, the best 

separability can be achieved for a preictal period equal to the OPP. 

The prediction performance on the unseen data is completely dependent on the trained 

model. However, for test data (unseen data), the exact length of OPP for each seizure cannot 

be estimated until the seizure occurs. Therefore, by considering the minimum and maximum 

of OPP values obtained from the training set, we can define the seizure prediction horizon 

(SPH), and the seizure occurrence period (SOP) for evaluating the raised alarms on the test 

set. The SPH can be considered smaller than the minimum of the OPPs, with a safe margin to 

account for those test seizures whose OPPs are even less than the obtained OPP during the 

training. Similarly, the SOP can be defined as a value larger than the difference between the 

maximum of the training OPPs and the assigned SPH, while considering a safe margin to 

account for the test seizures having OPPs larger than the maximum of the training OPPs 

(Figure  4.13). In practice, in specifying these safe margin values one should also consider the 

further delays introduced from the post-processing of the classifier outputs, e.g. by Kalman 

filter or the moving average (Teixeira et al. , 2012). 
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Figure  4.12 – Distribution of training feature samples in a two-dimensional feature space (patient 5, seizure No. 

22, spectral powers of 252-348 Hz and 352-512 Hz) using (a) 5 min preictal period, (b) 10 min preictal period, 

(c) 15 min preictal period, (d) optimal preictal period of 22 min, (e) 30 min preictal period, and (f) 40 min 

preictal period. The overlap between the preictal and interictal feature samples increases when using preictal 

periods smaller or larger than the OPP (a, b, c, e, f). As a result, separability of the features is maximal when 

preictal period is selected equal to the OPP (d). The performance of a trained model would be decreased 

significantly, if the preictal samples are mislabeled as the interictal samples, or vice versa. 
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Figure  4.13 – Determining of the seizure prediction horizon (SPH) and the seizure occurrence period (SOP) 

according to the obtained OPPs from the training set. The SPH can be defined using the minimum OPP, whereas 

the SOP can be specified using the maximum OPP and this SPH. 

4.2.4.1 Prediction capability of spectral powers 

The spectral power features of different frequency bands extracted from monopolar and 

bipolar iEEG/sEEG signals were studied with the aim of choosing the proper preictal periods. 

However as mentioned earlier, the proposed method can also be used as a criterion to identify 

the prediction capability of features, and was investigated for the extracted spectral power 

features. On average, CADHs values of highest ranked feature in the OPP point were 0.24 and 

0.28 for monopolar and bipolar montages respectively, demonstrating very good separability 

between the samples of preictal and interictal classes.  

Table  4.8 presents the five most relevant frequently bands for seizure prediction. These 

results were obtained by counting how many times each frequency band has appeared among 

the three highest ranked features of monopolar iEEG, bipolar iEEG, monopolar sEEG, and 

bipolar sEEG montages. The three highest ranked features for each seizure/montage were 

presented in Table  4.6 and Table  4.7. For the case of monopolar iEEG, the higher frequency 

bands in the range of 75-348 Hz provided lower CADHs. More specifically the frequency bands 

of 202-248 Hz (16x) and 102-125 Hz (12x) were most repeated among the selected bands. 

For the case of bipolar iEEG, however, the bands of 0.5-4 Hz (14x) and 75-98 Hz (11x) 

demonstrated lower CADHs in most of studied seizures. With respect to sEEG recordings, 

similar bands were selected for monopolar and bipolar montages, where the bands of 15-30 

Hz, 75-98 Hz, and 102-125 Hz were the most repeated among the three best bands. 
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Table  4.8 – The five most relevant spectral power features for seizure prediction 

Channel montage 
and recording type 

1st feature 2nd feature 3rd feature 4th feature 5th feature 

Freq. Hz Repetition Freq. Hz Repetition Freq. Hz Repetition Freq. Hz Repetition Freq. Hz Repetition 

Monopolar iEEG 202-248 16 102-125 12 75-98 11 125-148 11 152-198 10 

Bipolar iEEG 0.5-4 14 75-98 11 52-75 9 0.5-512 9 15-30 8 

Monopolar sEEG 15-30 10 102-125 8 52-75 7 75-98 7 125-148 7 

Bipolar sEEG 15-30 8 75-98 10 102-125 9 52-75 7 30-48 7 

 Repetition: the number of times that the spectral power feature appeared in the three highest ranked features. 

 

4.2.4.2 Surface versus intracranial EEG 

In order to compare the results of scalp versus invasive recordings, the method was 

applied on both surface and intracranial recordings. While 74% (26 out of 35) of the seizures 

recorded using sEEG could provide distinguishing preictal periods, only 63% (37 out of 59) 

of the seizures captured using intracranial electrodes could provide discriminative preictal 

periods. Also the spectral power features estimated from sEEG recordings provided slightly 

lower CADHs, in overall compared to the iEEG signals (Table  4.9). The average value of CADHs 

in the OPP points for the highest ranked feature was 0.2 for sEEG recordings (35 seizures), 

and 0.27 for iEEG recordings (59 seizures). Although iEEG recordings showed lower 

separability (higher CADHs), however they provided higher OPPs, which is preferable for 

prediction algorithms. Furthermore, comparing the standard deviations of OPPs among scalp 

and invasive recordings, variation of the OPPs using sEEG is less than iEEG recordings for 

different seizures (Table  4.9).  

Although we have not compared the simultaneous iEEG and sEEG recordings of each 

seizure, but the results of a large number of seizures indicate that sEEG recordings in general 

perform better for seizure prediction purpose. This could be the result of recording natures of 

sEEG and iEEG. Surface EEG is able to capture a more generalized view of the brain, and is 

more likely to reveal the transient preictal changes within the global state of the brain. In 

contrast, invasive EEG is strongly localized on a limited region of the brain, probably 

providing higher CADHs for the seizures developed far from the implanted region. 
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Table  4.9 – The average of OPP and CADHs results of the 94 studied seizures 

Channel montage and 
recording type 

OPP (minute)   CADHs (1st feature) CADHs (2nd feature) CADHs (3rd feature) 

mean std min max mean std mean std mean std 

Monopolar iEEG 49.1 48.3 6 173 0.27 0.17 0.30 0.17 0.35 0.2 
Bipolar iEEG 49.7 49.8 6 173 0.34 0.18 0.37 0.20 0.41 0.19 
Monopolar sEEG 37.5 33.4 5 126 0.20 0.14 0.22 0.16 0.24 0.17 
Bipolar sEEG 37.5 33.4 5 126 0.20 0.14 0.23 0.16 0.25 0.17 
Monopolar sEEG/iEEG 44.3 42.9 5 173 0.24 0.16 0.27 0.17 0.3 0.19 
Bipolar sEEG/iEEG 44.3 43.4 5 173 0.28 0.18 0.31 0.19 0.34 0.20 

 

4.2.4.3 Monopolar against bipolar analysis 

The method was applied on monopolar and bipolar signals of both sEEG and iEEG 

recordings, to find the proper channel configuration in seizure prediction. It was found that 

the computed OPPs for monopolar and bipolar montages were equal, the difference being in 

their prediction capability (CADHs values) only (Table  4.9). When dealing with sEEG 

recordings, no significant difference in CADHs values was observed among monopolar and 

bipolar recordings. However with respect to iEEG recordings, the spectral power features 

extracted from monopolar channel provided a better discrepancy between preictal and 

interictal samples. The average value of CADHs in the OPP points for the highest ranked 

feature was 0.27 and 0.34 for monopolar and bipolar iEEG recordings respectively. 

Furthermore, in five seizures recorded using iEEG, a distinguishing OPP was only found for 

monopolar montage and none for bipolar. Figure  4.14 shows the CADHs diagrams for different 

preictal periods of a seizure using monopolar and bipolar iEEG recordings, and Figure  4.15 

depicts the CADHs diagrams for a seizure from monopolar and bipolar sEEG recordings. 

The reason for imperfection of bipolar montage in iEEG could be the loss of 

information by subtraction of two very close iEEG recordings (in the range of few 

millimeters). With this subtraction, the electrical brain activities that are induced evenly on 

two neighboring electrodes could be lost. Such activities may contain critical epileptogenic 

information. In contrast, bipolar montage in sEEG recordings is obtained by subtracting the 

signals of two electrodes located in the range of few centimeters, and are not affected with 

this issue. 



94 Novel seizure prediction approaches 

 

 

(a) CADHs achieved from monopolar iEEG 

 

(b) CADHs achieved from bipolar iEEG 

Figure  4.14 – The CADHs with respect to different preictal periods obtained from (a) monopolar and (b) bipolar 

iEEG recordings, and for the four highest ranked features of a studied seizure (seizure 13, patient 3). As seen 

from the graphs, the monopolar montage provided significantly lower CADHs than bipolar montage using iEEG 

recordings. 
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(a) CADHs achieved from monopolar sEEG 

 

(b) CADHs achieved from bipolar sEEG 

Figure  4.15 – The CADHs with respect to different preictal periods obtained from (a) monopolar and (b) bipolar 

sEEG recordings, and for the four highest ranked features of a studied seizure (seizure 71, patient 13). As seen 

from the curves, there is no significant difference between CADHs of monopolar and bipolar montages. 

4.2.4.4 Computational cost of the method 

The method is very fast, since it computes the ADHs of the features using different 

preictal periods, which impose very low computational costs. The ADHs were obtained using 

176 different preictal periods, starting at 5min, ending at 180min, and with one minute 

increments. On an ordinary desktop computer, it required around 2 seconds for each 
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feature/seizure to calculate the criterion for 176 distinct preictal periods, and to find the OPP. 

The overall computation time for the 14/17 spectral power features and for all 94 studied 

seizures was about 40 min. 

4.3 Conclusion 

In this chapter we introduced a novel approach for seizure prediction based on a new 

proposed relative bivariate feature and a specifically developed feature selection method. 

Features were calculated from the PSD of the six EEG channels, requiring a very low 

computational power, thus making the method very fast, of relatively low complexity, and 

suitable for real-time low-power-budget portable devices with recent multicore 

microprocessors. We believe that the proposed method is a step forward for designing a 

robust and real-time portable seizure prediction device, suitable to be employed in clinical 

applications. 

Furthermore, the problem of OPP selection, which plays a key role on the efficiency of 

supervised machine learning algorithms, was approached by a novel yet simple statistical 

methodology. By examining different preictal periods, and through the investigation of the 

proposed method, we could find the best discriminative preictal periods for each seizure. We 

have also found that the OPPs vary significantly from seizure to seizure, even for the seizures 

of a same patient. This suggests that for building a robust model, the OPP value of each 

seizure should be obtained separately and considered during the training phase of the model. 

The proposed statistical approach could also provide a means for quantifying the 

predictability of a seizure or the prediction capability of a feature. For the particular case 

study of spectral power features, it was found that the high frequency features were more 

discriminative. Furthermore, comparing the monopolar and bipolar iEEG/sEEG recordings 

indicated that monopolar signals perform better in iEEG recordings, whereas no significant 

difference was observed when using sEEG recordings. This work studied the linear univariate 

spectral power features, concluding that OPPs of different spectral powers are very close for 

a specific seizure. However this finding should also be studied for other types of features, 

such as nonlinear or bivariate ones, and require further researches. 



 

Chapter 5 New seizure detection algorithms 

In this chapter a new method for early seizure detection and two novel approaches for 

seizure detection are proposed. The early seizure detection method is aimed towards the 

closed-loop neurostimulation systems, whereas seizure event detection methods are 

introduced for automated labelling of continuous iEEG recordings for future studies. The 

reasons behind developing new methods are to improve the parameters of sensitivity, false 

detection rate, and detection latency, the latter parameter being approached by the proposed 

early seizure detection method.  

Early seizure detection refers to the electrographic seizure onset detection without or 

with a negligible delay, and before the seizure reaches to its clinical phase (Figure  5.1). 

However in the seizure event detection, an alarm inside the ictal period is considered as a true 

detection regardless of the detection latency. All proposed methods are applied on the same 

dataset and channels, in order to achieve comparative conclusions. Also for the proper 

performance evaluation of the methods, long-term continuous iEEG recordings of 11 

patients, with an overall length around two and a half months, are considered. 

 

Figure  5.1 – Two states of an epileptic seizure. An early seizure detection method would be suitable for closed-

loop neurostimulation systems, if it could detect the seizure during its electrographic phase. 

EEG onset  Clinical onset Seizure offset 

  Electrographic phase Clinical phase 
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5.1 Dataset description 

Long-term continuous multichannel intracranial EEG recordings of 11 patients with 

refractory partial epilepsy from the European Epilepsy Database (Ihle et al. , 2012, Klatt et al. 

, 2012) were used to evaluate the efficiency of proposed seizure detection algorithms. 

Subjects of this study were selected randomly among invasive recordings which were 

sampled at 1024 Hz. Although there were also numerous patients in the database with lower 

sampling rates, we confined our selection only to those recorded at higher sampling rates in 

order to retain a high quality study. The overall length of recordings is 1785 h and contains 

183 epileptic seizure events, on average around 2.5 seizures per day. Recordings were 

obtained at the epilepsy unit of the University Hospital of Freiburg, Germany, with patients 

being monitored through invasive electrodes during long-term pre-surgical evaluations of the 

patients. The pre-surgical evaluations were part of the assessments of risks and benefits of 

those surgeries. Throughout the pre-surgical monitoring of the patients the use of AEDs was 

very limited (Klatt et al. , 2012). 

The invasive electrodes were implanted intracranially as depth, grid, and/or strip 

electrodes. Seizure onset/offset times were annotated in the database by experienced 

epileptologists using iEEG recordings and video monitoring of patients. Information of both 

electrographic and clinical onset/offset times is available in the database, and we considered 

both in this study for comparison. Electrographic onsets usually start earlier than clinical 

ones. Information on seizures’ origins and their spatial propagation as well as the localization 

of electrodes is also available in this database. Characteristics of patients and their recordings 

are summarized in Table  5.1. 
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Table  5.1 – Characteristics of studied patients and iEEG recordings 
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1 F 29 10 Depth (1x12) 4.1 RMT, RLT CP1, SP7, UC1 183 9 82.3 13 172 

2 F 32 1 Depth (1x10) 5.9 LMT CP8, UC1 162.6 9 121.9 74 157 

3 F 11 3 Depth (1x14) 5.8 RMT CP4, SP4, UC6 155 14 122.7 56 171 

4 F 32 8 Depth (1x16) 4.4 RBF, RMT, LMT CP2, SP2, UC5 151.6 9 122.5 38 210 

5 F 18 6 Depth (1x15) 3.2 L-T, L-F CP13 127.8 13 86.5 68 105 

6 M 21 5 Strip (1x4) 9.8 RLT, RMT CP19, UC3 170.6 22 131.6 19 199 

7 M 17 1 Depth (1x10) 5 LMT, LLT, L-T SP25, SG6 142 31 118.4 33 274 

8 M 18 11 Depth (1x10) 5.7 LBT, LLT, RBT CP4, SP4, SG4, UC1 246.2 13 100.2 36 137 

9 F 63 30 Depth (1x14) 6.7 LMT, R-T CP15, UC4 118.9 19 102.8 8 156 

10 M 39 8 Grid (8x8) 10 L-F, L-C CP2, SP3, UC25 110.6 30 15.4 6 43 

11 F 14 13 Strip (1x6) 7.3 L-T, LLT CP6, SG4, UC4 217.1 14 52.5 7 123 

Sum 7F/4M - - D8, S2, G1 - - CP74, SP45, SG14, UC50 1785.4 183 - - - 

Mean - 26.7 8.7 - 6.2 - - 162.3 16.6 91.8 32.5 159 

 Euclidean distance: Euclidean distance between the three-dimensional MNI coordinates (x, y, z) of two selected electrodes 
from the array. 

 Localization of seizure onsets: ABC; A (R: right, L: left), B (-: none, B: basal, L: lateral, M: mesial), C (F: frontal, T: 
temporal, C: central). E.g. RMT (right mesial temporal lobe), L-F (left frontal lobe), RBF (right basal frontal lobe). 

 Seizure type: type of the clinical seizures; CP: Complex Partial, SP: Simple Partial, SG: Secondarily Generalized, UC: 
Unclassified. Numbers following the abbreviations represent the number of seizures of that type.  

 Seizure duration: mean, minimum, and maximum values of seizure durations, considering electrographic onsets and 
offsets of the seizures.  

For seizure detection studies in this thesis, and for each patient, two immediately 

adjacent electrodes were selected from a candidate electrode array on the foci (Figure  5.2). 

For the methods using bipolar signal, the voltage difference between these two monopolar 

electrodes was considered as a bipolar channel. Afterward the continuous raw iEEG signals 

were segmented into 2-sec windows with 50% overlap, to provide seizure detections every 

second. The epochs were selected long enough so as to still carry meaningful brain data, 

meanwhile ensuring quasistationary iEEG signal. For wideband feature extraction (wideband 

MPC), each segment was filtered using an infinite impulse response (IIR) forward-backward 

Butterworth 50 Hz notch filter to eliminate sinusoidal distortion of the ac power supply 

without introducing phase shift. No additional artifact suppression methods were employed in 

the studies of this chapter. 
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Figure  5.2 – Four minutes multichannel iEEG recordings of a seizure from patient 1. The vertical red lines 

indicate electrographic onset and offset times. HAR1 and HAR2 electrodes were selected for this patient. 

5.2 Methods 

In this section we describe a method for early seizure detection and two approaches for 

seizure event detection in details. The all three methods almost use the same block diagram 

for seizure event/onset detection, and their difference is just in the extracted features. 

Figure  5.3 presents the general block diagram of the proposed methods for automated seizure 

event/onset detection, including a manual channel selection, a segmentation stage, feature 

extraction, and a threshold box for decision-making. 

11 pat. 
with iEEG

Two adjacent
electrodes on foci

Segmentation 
2-sec windows

50% overlap 

Feature 
extraction Threshold

 
Figure  5.3 – General block diagram of the proposed methods for seizure onset/event detection 
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5.2.1 Early seizure detection using neuronal potential similarity  

During epileptic seizure initiation, development, and termination, neuronal potentials in 

the vicinity of focus demonstrate different levels of coherency, and usually reach their 

maximum synchrony prior to seizure termination (Schindler et al. , 2007a, Schindler et al. , 

2007b, Jiruska et al. , 2013). As a result of this synchronized firing, electric potentials 

induced on recording electrodes within close proximity of focus will become quite similar. 

Quantization, measurement and detection of this electric potential similarity can provide a 

mechanism for detecting seizures. Neuronal potential similarity is an indication of strong 

relationship between the two signals recorded from two brain regions. It can be investigated 

both in terms of amplitude (the intensity of neuronal activities) similarity and phase 

synchrony of the neural firings occurring in different frequencies.  

Several approaches have been proposed for measuring the level of phase synchrony 

between two time series such as linear cross-correlation and mean phase coherence 

(Mormann et al. , 2000, Kreuz et al. , 2004, Mirowski et al. , 2009, Feldwisch-Drentrup et al. 

, 2010, Feldwisch-Drentrup et al. , 2011a, Jiruska et al. , 2013). Here we proposed bipolar 

spectral power features as a measure of neuronal potential similarity between two signals, 

which capture both amplitude similarity and phase synchronization in different frequency 

bands. Suppose two real periodic signals 1( ) x t  and 2 ( ) x t with zero mean, and composed of N 

sinusoidal waveforms having different amplitudes and phases, 

 
1 1
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where ka  and kb  indicate the amplitudes of the Fourier series representation of 1( ) x t  and 

2 ( ) x t  time series, and 1kϕ  and 2kϕ  denote their corresponding phase shifts. The difference 

of two signals, 1 2( ) ( ) ( )dx t x t x t= − , also known as bipolar signal, can be written as ( 5.3), 
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The average power of the ( )dx t  is obtained as ( 5.4), 
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where 
dxP  is the average power of bipolar signal. Eq. ( 5.4) indicates that the average power of 

a bipolar signal is dependent both upon the amplitude and phase differences across all 

frequencies. The first and second terms of the Eq. ( 5.4) represent the amplitude and the phase 

similarities of two stationary time series respectively. Therefore Eq. ( 5.4) can be considered 

as a measure of neuronal potential similarity in terms of both amplitude and phase for 

stationary neural activities. 

Although iEEG signals are nonstationary, they can be regarded as quasistationary time 

series for satisfactorily short periods of time, e.g. 1~2 seconds. As a result of this equation, 

the power of the difference of two purely sinusoidal signals in particular and two non-

sinusoidal EEG signals in general with equal amplitudes and frequencies will become zero, if 

completely phase synchronized ( 1 2k kϕ = ϕ ), and will hold the maximum value when 

completely out of phase ( 1 2k kϕ ϕ− = p ). The similarity criterion could also be used as a 

measure of neuronal potential similarity in the specific frequency bands [i j], hence, 
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where ijNPS  holding the neuronal potential similarity (NPS) measure of two iEEG signals 

inside the frequency range of [i j]. In fact, the NPS measures would decrease by 

amplitude/phase similarity among two adjacent iEEG signals in the frequency range of [i j], 

and would increase by loss of this similarity. The power of a signal in different frequency 

bands was calculated using power spectral density (PSD) of bipolar iEEG signal. The PSD 

indicates the distribution of power of a time series at different frequencies, and was estimated 
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using Welch’s function (Welch, 1967) of MATLAB, which first applies a Hamming window 

on the segmented bipolar iEEG, and then calculates the PSD. To quantify the neuronal 

potential similarity between two iEEG signals within desired sub-bands ( ijNPS ), the spectral 

power of sub-bands was calculated by an integration over PSD components within those sub-

bands, which has been explained in chapter 2. 

5.2.1.1 Relative NPS measure 

The main idea of the method is to find two frequency sub-bands providing opposite 

similarity behaviors by seizure initiation, and then using the ratio among NPS measures of 

these two sub-bands for highlighting of the changes, thus building a more robust measure. To 

find the most relevant bands, the NPS measure was studied in different frequency bands and 

for all patients individually. Instead of the well-known frequency bands, twenty eight narrow 

sub-bands were considered to boost the resolution of the study: (0.5-3], (3-5], (5-8], (8-10], 

(10-12], (12-14], (14-16], (16-18], (18-22], (22-26], (26-30], (30-35], (35-40], (40-48], (52-

60], (60-70], (70-80], (80-90], (90-98], (102-125], (125-148], (152-175], (175-198], (202-

248], (252-298], (302-348], (352-398], (402-512] Hz. Since the EEG signals contain 

predominantly low frequency oscillations, narrower and wider bandwidths were assigned in 

lower (0.5-40 Hz) and higher (40-512 Hz) frequencies respectively. Furthermore most of the 

seizure and non-seizure activities fall in the frequency range below 40Hz, which previously 

has been divided into very narrow bandwidths, e.g. 2~3 Hz, by some power spectral based 

seizure detection approaches (Shoeb, 2009, Shoeb et al. , 2011a). The NPS indices were 

extracted using a 2-sec rectangular moving window with 50% overlap, and could provide 

seizure onset detections every second. 

Studying the seizures of 11 patients indicated that the NPS in low frequency band of 

0.5-3 Hz (delta band) usually decreases by seizure initiation with respect to interictal period, 

which is probably resulting from the two adjacent iEEG signals getting increasingly similar, 

and in turn reflected as decreased bipolar power in Delta band. Contrary to this finding, the 

NPS measures extracted from some particular patient-specific frequency bands increase by 

seizure initiation, indicating a decreasing similarity in these frequencies on seizure initiation. 
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For the sake of generalization, the bandwidth of 12-26 Hz can be considered which covers 

almost all of these particular frequency bands, to capture most of the decreasing similarity 

trends. Figure  5.4 shows the bandpass filtered bipolar iEEG signals of a studied seizure from 

patient 3.  

 

Figure  5.4 – Bandpass filtered bipolar iEEG signals into 0.5-3 Hz and 12-26 Hz (patient 3). (a) four minutes of 

bandpass filtered signals including a seizure onset at 120s. (b, c) bandpass filtered signals from highlighted non-

ictal and ictal periods of figure (a) respectively. As seen from the figures, the average power of 0.5-3 Hz is 

higher than 12-26 Hz during non-preictal periods, while is less during seizure initiation. 
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Based on these reverse similarity behaviors in different frequency bands, posing with 

seizure initiation, the NPS of 12-26 Hz divided by NPS of 0.5-3 Hz is proposed as the 

generalized candidate measure for the detection of seizure onsets as early as possible ( 5.6), 

 12 26

0.5 3

Hz

Hz

NPS
NPS

RNPS −

−

=  ( 5.6) 

where RNPS is relative NPS measure. The relative measure acts adaptively, and will not 

reflect if the NPSs of both frequency bands change in similar direction either decrease or 

increase. Figure  5.5 shows the NPS measures for a seizure from patient 5, extracted from the 

closest-to-the-focus bipolar channel (TPL1-TPL2). Seizure onset clearly coincides with an 

increase in the NPS of 12-26 Hz sub-band, and with a decrease in the NPS of 0.5-3 Hz sub-

band. Referring to Figure  5.5, the seizure can be detected within few seconds after the 

electrographic onset time using the proposed measure (ratio between NPSs of 12-26 Hz and 

of 0.5-3 Hz). Subsequently, the extracted measure was normalized. In order to obtain a 

normalization factor for the measure, the average value of the feature extracted from the 

initial 60 minutes of recordings was evaluated for each patient separately. The feature vector 

was then normalized by dividing this normalization factor, and fed to the next stages for 

feature preprocessing (smoothing by a moving average window) and alarm generation using a 

threshold based classifier. 

 

Figure  5.5 – The proposed measure for early seizure detection for one seizure from patient 5. The left and right 

vertical dotted red lines indicate the electrographic seizure onset and offset times, respectively. 
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5.2.2 Phase synchronization in frequency sub-bands 

Linear cross-correlation and mean phase coherence (MPC) have been widely used as 

the quantitative measures of the extent of phase synchronization for studying seizure 

dynamics (Schindler et al. , 2007b, Jiruska et al. , 2013, Zubler et al. , 2014) and also seizure 

prediction purposes (Mormann et al. , 2000, Mirowski et al. , 2009, Feldwisch-Drentrup et al. 

, 2010, Feldwisch-Drentrup et al. , 2011a). Schindler et al. (Schindler et al. , 2007a) reported 

a high level of phase synchronization prior to seizure termination, and a low level of 

synchronization by seizure initiation. Here MPC measure extracted from frequency sub-

bands was used to study seizure dynamics and detect epileptic seizure events.  

In order to study the synchrony of two iEEG signals in frequency sub-bands, the raw 

EEG signals sampled at a rate of 1024 Hz, were first filtered using band-pass filters into 

thirteen frequency sub-bands of 0.5-4, 4-8, 8-12, 12-18, 18-28, 28-36, 36-48, 52-65, 65-80, 

80-98, 102-148, 152-198, and 202-248 Hz. Moreover, the wideband frequency of 0.5-98 Hz 

was achieved using a high-pass filter (fc = 0.5 Hz) and a low-pass filter (fc = 98 Hz). Band-

pass, high-pass, and low-pass filtering were realized using forward-backward Butterworth 

method, which is preferred due to eliminating the phase distortion side-effect in contrast to 

the ordinary filtering scheme.  

As a preprocessing stage in the wideband feature extraction, a 50 Hz notch filter is also 

applied to eliminate strong power line interferences. For sub-band feature extraction 

however, no artifact preprocessing was applied, as they don’t cover power line frequency and 

its harmonics. The MPC features were subsequently extracted from the band-pass filtered 

signals and the wideband signals. By examining the MPC behaviors of several epileptic 

seizures of different patients, we found that the estimated MPC measures usually reach their 

maximum prior to seizure termination in almost all studied frequency bands. Furthermore, 

desynchronization was also observable with seizure initiation in several frequency bands, 

varying from seizure to seizure. Figure  5.6 illustrated the sub-band and wideband MPC 

measures extracted from a sample seizure from patient 5. 
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Figure  5.6 – Smoothed MPC measures extracted from bandpass filtered iEEG signals including a studied 

epileptic seizure (patient 5, seizure 1). The vertical dotted red lines indicate the electrographic onset and offset 

times. The MPC measure reaches its maximum prior to seizure termination in almost all studied frequency 

bands. Desynchronization is also observable with seizure initiation.  
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5.2.3 Singular value decomposition of bipolar EEG 

SVD as a common computational tool employed in signal processing and pattern 

recognition, acts as a mathematical factorization of data matrices obtained from the patients, 

to highlight the dominant properties of their underlying patterns. The core idea of SVD is to 

take a collection of data, find the patterns having the highest correlation with that data, and 

then sort these patterns in a descending order based on their importance. In fact, SVD 

decomposes data to its correlated parts, with the larger singular values (SVs) corresponding 

to those parts with more energy (Bandarabadi et al. , 2010). The process decomposes the 

original matrix T into the product of three sparse matrices ( 5.7), 

 *
, , , ,m n m m m n n nT U V= Σ  ( 5.7) 

whereΣ is singular value matrix, U and V are left and right singular vector matrices 

respectively. U and V are orthogonal matrices, and Σ is a rectangular diagonal matrix with its 

nonnegative real elements sorted in a descending way ( 5.8), ( 5.9). 
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The singular values ( iσ ) indicate the significance of the corresponding left/right 

singular vectors. The pair of singular vectors related to the highest singular value, contain 

more information about the dominant patterns than other singular vector pairs (Hassanpour et 

al. , 2004). The proposed methodology is based on singular values (SVs) extracted from 

windowed bipolar iEEG signal, and the phenomena of unique bipolar signal manifestations 

during a seizure event. By highlighting the dominant epileptic activities within a bipolar 

iEEG data, SVD can be used as a tool for detecting epileptic events.  
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5.2.3.1 SVD of one-dimensional EEG signal 

In order to apply SVD, the raw EEG data should be first expressed in the form of a 

square matrix. Hankel operator is a square matrix with constant skew diagonals, and was 

employed here to build such a matrix. Suppose 1 2[ , , ..., ]nx x xX =  a segment of EEG signal, 

and n being a positive even integer. Then the Hankel matrix of X can be written as ( 5.10). 
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Since the computational cost of SVD is high, the iEEG signal was downsampled from 

1024 to 512 Hz to boost the computation time. The iEEG signal was segmented into 2 

seconds windows with 50% overlap prior to feature extraction. The Hankel matrix of the 

bipolar iEEG was first built, after which SVD was calculated to obtain the singular values. 

Considering a downsampled 2-sec window with 1024 samples, the Hankel matrix would be a 

square matrix of order 512. The SVD operator will thus produce 512 SVs (  ,  1,...,512i iσ = ) 

ordered in a descending way.  

5.2.3.2 Proposed measure 

The main characteristic of an epileptic seizure is the highly coherent activity of the 

neurons, generating nearly the same electrical voltages by two very close bunches of neurons. 

This highly coherent state during seizure events, especially at the end of seizures, leads to a 

significant increase in the level of common mode signal of the adjacent channels, taking more 

similar waveforms. SVs represent the level and importance of the energies contained within 

the correlated parts of signal. As a result of excessive coherency during seizure termination, 

the energy of the resulting bipolar signal and its correlated parts will decrease. Figure  5.7 

shows the SVs of a seizure from patient 2. 
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Figure  5.7 – Singular values (65-128) extracted from 10 minutes of bipolar iEEG signal contains one seizure. 

Vertical red lines indicate electrographic onset and offset times. The SVs first start to increase by seizure 

development, and then suddenly decrease approaching the seizure termination. 

The SVs of the bipolar iEEG signal start to increase by seizure initiation and 

development and then suddenly decrease approaching the seizure termination. Therefore we 

could look for both decrease and increase in singular values for detection. Although tracing 

increases in SVs provides less detection delays, yet it generates higher numbers of false 

alarms than considering decreases in SVs. As the goal of this method was just seizure 

detection, and the detection latency is of minor importance, therefore tracing of decreases in 

SVs was only investigated. For each patient, the average of each SV for the first hour of the 

recording was calculated as ,m iσ  and each iσ  sequence was normalized by dividing to ,m iσ  

as ( 5.11). 

 , ,    ,   1, 2,...,512n i i m i iσ σ σ= =  ( 5.11) 

Where the ,m iσ  is the average of i-th SV sequence extracted from the first hour of 

recording, and ,n iσ  is the i-th normalized SV sequence obtained from the whole recording of 

the patient. The ranges of all 512 SVs are almost equalized by normalizing SVs obtained 

from each data segment (Figure  5.8). Subsequently 32 best performing SVs were selected 

through trial and error, and averaged to build a single unified measure. Specifically the SVs 

from 9 to 40 were found to perform better in the detection challenge. 
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Figure  5.8 – The normalized SVs (1-128) extracted from seizure 7 of patient 2. After normalization by 

information of first hour of iEEG recording, the range of all SVs is almost equalized. 

5.2.4 Preprocessing of features 

During long-term recordings, EEG segments may be affected by environmental or 

physiological interfering sources, which induce high amplitude random spikes in the 

extracted measure. This may cause the extracted measures to easily pass thresholds, when 

they should not. Duration of these noisy spikes is usually very short, e.g. less than two 

seconds. Moreover the synchronous and coherent epileptic neuronal activities last for several 

seconds, sometimes up to tens of seconds. Therefore smoothing of the feature samples by a 

proper rectangular moving average window can suppress these undesired short events and 

would decrease the likelihood of ictal-free segments from being wrongly classified as ictal 

activities. Smoothing of each measure was carried out by averaging four consecutive feature 

samples, including the current and three past values ( 5.12),  
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where ak is the k-th sample of feature vector, and a�k is its smoothed value. This 

preprocessing however increases detection latency (for onset detection purpose) by about 2 

seconds, while greatly reducing the number of false alarms. 
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In this chapter we deal with three different measures; similarity measure, sub-band 

MPC, and bipolar SVD. Since a threshold based classifier is applied on the measures, there 

would be need to transform the measures so that to they are increased during the seizure 

onset/event. The proposed relative NPS and the sub-band MPC measures would naturally 

increase during seizure initiation or event, however the bipolar SVD is decreasing by seizure 

development. Hence, for the bipolar SVD measure, the inverse of its smoothed version was 

calculated and fed to the next stage for classification. 

5.2.5 Threshold based classifier 

As the last stage of the seizure detection algorithms, threshold-based classifiers were 

investigated to discriminate the extracted measures obtained from each algorithm. As the 

optimum threshold values vary from patient to patient, therefore threshold values were 

chosen individually. An alarm is generated when the features exceed this threshold; alarm 

generation is then blocked for 4 minutes. This limitation guarantees the raising of just a single 

true alarm per seizure. For NPS and bipolar SVD methods, various threshold values starting 

from 1.5 and ending at 100 were applied with non-uniform increments, spanning from 0.5 for 

low values up to 10 for higher values of threshold. For sub-band MPC and wideband MPC 

measures however threshold values from 0.6 to 0.99 with 0.01 increments were applied.  

Afterwards, the three parameters of sensitivity (SS), FDR, and MDLE of the raised 

alarms were used to evaluate the methods (SS and FDR for seizure event detection methods). 

Since the three parameters of SS, FDR, and MDLE cannot be simultaneously set optimally, 

as improving one leads to worsening of others, a tradeoff has to be made in their selection. 

Therefore the Euclidean distance between the resulting point (SS, normalized FDR, 

normalized MDLE) and the optimal performance point ( 100,  0,  0SS FDR MDLE= = = ) of 

the raised alarms was used to optimize the threshold level for each patient ( 5.13). The 

threshold value was chosen so that this distance is minimized. 

 ( )2 2 2100  norm normEd SS F MDLEDR += − +  ( 5.13) 
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To limit the effect of narrow range and small values of FDR - which are very close to 

zero - on the proper selection of threshold, normalized FDRs obtained by multiplying of 

FDRs with 100 were considered here. Also the MDLE values (in sec) were normalized by 

dividing by 2, in order to balance and reduce their effects when seeking optimal threshold. 

This gives more priority to SS and FDR values, since our primary goal in seizure detection is 

to detect more onsets, not less seizures with the lowest possible MDLE. The above 

normalization factors were optimized through extensive trial and error efforts. For the seizure 

event detection studies however, the MDLE parameter was set to zero in Eq. ( 5.13). 

5.2.6 Improved performance metrics for early seizure detection 

The performance of the proposed early seizure detection method was evaluated using 

five parameters. In addition to SS, FDR, and MDLE as the common performance metrics, we 

also investigated the mean detection latency from clinical onsets (MDLC). Furthermore a 

new criterion was proposed for the evaluation of detection latency as mean relative detection 

latency from electrographic onset (MRDLE). To calculate MRDLE, first the ratio between 

detection latency of each seizure and the length of that seizure was obtained for all seizures of 

a patient, followed by an averaging on all of these relative values. In our belief, the MRDLE 

parameter is the most adequate criterion to measure the detection latency of an onset 

detection algorithm. For instance, if a seizure of very short length could be detected even on 

its termination, the detection algorithm still would provide very small detection latency. This 

condition is easily identified by the MRDLE measure being almost 1, indicating that there is 

no time for neurostimulator. 

5.3 Results 

The methods were applied on the continuous long-term iEEG recordings of 11 patients, 

selected from European database on epilepsy. The iEEG data was also segmented into 2 

seconds windows having 50% overlap prior to feature extraction. Performance of the 

proposed method for early seizure detection was evaluated in terms of sensitivity (SS), FDR, 

MDLE, MDLC, and MRDLE, whereas the performance of the proposed methods for seizure 
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event detection was evaluated in terms of SS and FDR only. The results presented in this 

section were achieved by having a tradeoff between the above mentioned parameters. 

Although higher detection sensitivities are preferred with seizure detectors, which may easily 

be achieved by choosing a lower threshold value, yet a low FDR is also essential when it 

comes to clinical application which contradicts with lower threshold levels. 

5.3.1 Results of early seizure detection 

The early seizure detection method was evaluated using 2-fold cross-validation. For 

each patient, the first half of the seizures (or rounded half for the odd number of seizures) and 

their corresponding interictal recordings were considered as set d1, while the remaining data 

was assigned as set d2. The method was then trained on set d1 and tested on set d2, followed 

by training on set d2 and testing on set d1. Using 2-fold cross-validation, the method was 

evaluated on all seizures in a realistic manner. In each fold, the training set was used to 

optimize the classifier’s threshold value. Various values starting from 1 and ending at 100 

with increments of one were applied, and the resulting parameters of sensitivity (SS), FDR, 

and MDLE of the raised alarms were used to evaluate each threshold. The threshold value 

was chosen so that the Ed, obtained from Eq. ( 5.13), is minimized.  

The optimum threshold obtained from the train set was then applied on the test set to 

generate alarms. The five parameters of SS, FDR, MDLE, MDLC, and MRDLE were 

subsequently calculated for the generated alarms of the test set. The arithmetic averages of 

results obtained from both folds are presented in Table  5.2. On average, the proposed method 

could achieve a high sensitivity of 86.9% (159 out of 183), a very low FDR of 0.06 per hour 

(total 107 false alarms in 1785 h), and a MDLE of 13.1 s from electrographic onsets, while in 

average preceding clinical onsets by 6.3 s. MRDLE parameter, which can act as an improved 

criterion for evaluation of detection latency, demonstrated a value of 0.17, indicating that the 

seizures were detected averagely within a time period about one-sixth of their lengths. 

Furthermore, the results achieved from patient-specific measures are also provided in 

Table  5.2. On average, the patient-specific results demonstrated a SS of 88.5%, a FDR of 

0.046 h-1, a MDLE of 11.9 s, a MDLC of -7.24 s, and a MRDLE of 0.16. Compared to the 

result of generalized measure, all performance metrics show slight improvements. 
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Table  5.2 – Results of proposed early seizure detection for 11 studied patients 

ID 
 Generalized measure  Patient-specific measure 

 SS% FDR     
(h-1) 

MDLE 
(sec) 

MDLC 
(sec) MRDLE Thresh 

(F1, F2)  SS% FDR     
(h-1) 

MDLE 
(sec) 

MDLC 
(sec) MRDLE Thresh 

(F1, F2) 
Up. band 
(Hz) 

1  100 0.027 15.6 -7 0.19 31, 35  100 0.044 13.7 -8.9 0.2 28, 35 16-22 

2  100 0.098 24.9 -5.3 0.28 31, 18  100 0.049 25.6 -4.7 0.22 23, 24 16-26 

3  85.7 0.058 16 -5.6 0.14 26, 25  85.7 0.052 16.3 -5.2 0.15 31, 33 12-18 

4  88.9 0.092 15 -2.5 0.18 27, 23  88.9 0.079 8.7 -8.7 0.09 23, 19 18-26 

5  100 0.031 5.8 -3.4 0.07 10, 8  100 0.039 2.5 -6.7 0.03 9, 8 14-18 

6  95.4 0.105 16.8 0.6 0.11 14, 24  100 0.018 14 -1.9 0.08 26, 28 18-26 

7  93.5 0.119 16 -24.4 0.15 21, 20  93.5 0.119 16 -24.4 0.15 21, 20 12-26 

8  61.5 0.016 9.5 0 0.10 44, 46  61.5 0.016 9.5 0 0.10 44, 46 12-26 

9  84.2 0.016 14.1 -1.6 0.13 21, 20  84.2 0.017 12.4 -3.2 0.12 27, 21 14-22 

10  83.3 0.108 3.8 -2.8 0.24 11, 10  90 0.072 4.2 -2.3 0.27 21, 15 22-26 

11  64.3 0.032 13.1 3.7 0.29 74, 84  64.3 0.032 13.1 3.7 0.29 74, 84 12-26 

Mean  86.9 0.060 13.1 -6.3 0.17   88.5 0.046 11.9 -7.24 0.16   

 MDLE/MDLC: mean detection latency from electrographic/clinical onsets for each patient in second. 
 MRDLE: mean of relative detection latency from electrographic onsets. 
 Thresh: optimum thresholds obtained from 2-fold cross-validation; F1and F2 from the training set of the 1st and 2nd fold. 
 Up. band (Hz): the patient-specific frequency bands selected for the upper band of proposed measure. 

The plot in Figure  5.9 represents the proposed generalized measure for the whole 

recordings of patient 5, containing 13 seizure onsets within 127.8 h of data. The proposed 

measure could detect all of the seizure onsets successfully with negligible detection latencies. 

 

Figure  5.9 – The proposed measure (RNPS) for early seizure detection for whole recordings of patient 5. The 

vertical dotted red lines indicate the seizures. 
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5.3.2 Results of seizure event detection 

The sensitivity is of much higher value in seizure event detections, where the high 

detection delays can be tolerated. Table  5.3 presents the sensitivity and FDR results for 11 

patients obtained from best sub-band MPC measure as well as the wideband iEEG signals. 

Moreover the results achieved from bipolar SVD are presented in the same table to provide a 

generalized comparison between different proposed methods for seizure event detection. 

Using the sub-band MPC method, the best results provided on average a sensitivity of 

84.2% with a FDR of 0.09 h-1, whereas the average results obtained from the wideband 

signals provided a sensitivity of 62.8% with a FDR of 0.28 h-1. Findings revealed that both 

parameters of SS and FDR would improve significantly by extracting MPC measure from 

specific frequency band. Also bipolar singular values provided on average, a sensitivity of 

84.2% and a FDR of 0.05 h-1 (83 false alarms in 1785h). 

Table  5.3 – Results of proposed seizure event detection methods for 11 studied patients 

 Sub-band MPC  Wideband MPC  Bipolar SVD  

Pat. ID SS% FDR (h-1) Thresh SS% FDR (h-1) Thresh SS% FDR (h-1) Thresh 

1 100 0.12 0.90 66.7 0.58 0.88 100 0.02 2 

2 88.9 0.01 0.93 55.6 0.26 0.90 100 0.01 2 

3 78.6 0.10 0.89 57.1 0.06 0.86 71.4 0.08 2.5 

4 77.8 0.02 0.98 44.4 0.30 0.90 66.7 0.01 2 

5 100 0.04 0.96 92.3 0.48 0.96 100 0 1.5 

6 100 0.04 0.92 90.9 0.13 0.87 95.4 0.02 5 

7 74.2 0.15 0.88 29 0.43 0.83 77.4 0.04 1.5 

8 100 0.14 0.84 84.6 0.32 0.75 84.6 0.07 2 

9 84.2 0.07 0.96 73.7 0.03 0.91 84.2 0.08 2.5 

10 63.3 0.13 0.87 43.3 0.16 0.86 73.3 0.11 3.5 

11 92.9 0.12 0.79 92.9 0.23 0.69 92.9 0.07 3.5 

Mean 84.2 0.09 0.90 62.8 0.28 0.85 84.2 0.05 2.5 

 Thresh: optimal threshold value 
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5.4 Discussion 

In this chapter three automated seizure detection algorithms were developed based on 

the two iEEG channels. The main idea behind all of these three methods was to capture 

correlation, similarity or synchrony changes between two adjacent iEEG electrodes located 

over the seizure onset zone. During seizure initiation, development and termination, the two 

immediately adjacent iEEG recordings demonstrate different levels of correlation, synchrony 

or similarity across different frequency sub-bands. 

5.4.1 Early seizure detection 

This study evaluated the efficiency of bipolar spectral power feature as a measure of 

neuronal potential similarity for automated early seizure detection. Technically, the NPS 

measure captures both phase and amplitude similarities of two immediately adjacent iEEG 

signals located over the seizure onset zone, simultaneously. During seizure initiation, 

development and termination, the two immediately adjacent iEEG recordings demonstrate 

different levels of similarity across different frequency sub-bands. To find possible similarity 

patterns appearing during initiation of the ictal state, the NPS measure was studied in several 

narrow bands of 11 patients. We found that similarity patterns in the higher frequency bands 

are patient-specific, and decreasing. In contrast, for the lower frequency band of delta the 

similarity patterns are increasing, and in general are not patient-specific. Therefore seizure 

initiation accompanies dissimilarity in middle frequency bands and similarity in the low 

frequency of delta band. 

Although the NPS measures exhibited patient-specific patterns, we proposed a measure 

with a limited sacrifice on performance. Evaluation of NPS measures indicates that most of 

the relevant higher frequency bands with increasing NPS trends are covered inside the 

frequency range of 12-26Hz. Therefore, the ratio between NPS measures extracted from 12-

26Hz and 0.5-3Hz frequency bands is the most relevant feature for the generalization purpose 

of seizure onset detection measure. On average, the results demonstrated very high 

sensitivity, low FDR, and short detection latency. 
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5.4.1.1 Comparison with other approaches 

Comparing to other published works, the current work represents the most 

comprehensive study among seizure detection methods in terms of recording length and the 

number of seizures studied. The average length of recording per patient was about one week, 

and was the first study of the kind to consider both electrographic and clinical onsets, and 

also to compare their results. By average, seizures were detected in advance of the clinical 

phase, which is important for the effective seizure suppression through neurostimulation. 

Moreover, our method provides the lowest complexity compared to the currently available 

approaches, by only using two EEG channels, performing PSD analysis on a single bipolar 

signal, and discriminating through a threshold based classifier. 

The results of some important studies on early seizure detection, which also provided 

numerical results, are tabulated in Table  5.4. Although comparison of the results obtained 

using different datasets would seem inappropriate, yet our method was evaluated on long-

term continuous recordings, and is expected to achieve higher performances (specifically 

lower FDRs) on short-term fragmented data employed in most of those studies. Results 

reported by Shoeb (Shoeb, 2009) and Kharbouch et al. (Kharbouch et al. , 2011) demonstrate 

the best overall performances among these methods, considering a tradeoff between the three 

parameters of SS, FDR, and MDLE. Shoeb’s method achieved a 9% higher sensitivity than 

ours, while raising around twice more false alarms, using 18 surface channels which is 

impractical for implantable devices. Kharbouch’s method which provides slightly better 

performances, also suffers from extreme complexity, as it uses 69 electrodes per patient on 

average that is a clear limitation for the implantable systems. Furthermore, none of these 

reports are providing information concerning the clinical onset detection time. 
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Table  5.4 – Reported results for early seizure detection by other researches 

Group Method Record. 
Len. (h) 

No. of 
Patient 

No. of 
Seizure SS% FDR  

(h-1) 
MDLE 
(sec) 

(Saab et al. , 2005) Wavelet decomposition and Bayesian 
formulation 652 28 126 76 0.34 10 

(Grewal et al. , 2005) Spectral power features 389 19 100 89.7 0.22 17.3 

(Meier et al. , 2008) Categorizing morphological ictal rhythms 1403 57 91 96 0.45 1.6 

(Aarabi et al. , 2009) Fuzzy rule-based seizure detection system 302.7 21 78 98.7 0.27 11 

(Shoeb, 2009) Spectral power features and SVM classifier 844 23 163 96 0.13 4.6 

(Zhang et al. , 2010) Incremental nonlinear dimensionality 
reduction 193.8 21 83 98.8 0.49 10.8 

(Kharbouch et al. , 2011) Spectral power features and SVM classifier 875 10 67 97 0.025 6.9 

(Hunyadi et al. , 2012) Time and frequency domain features 892 22 131 74.2 0.34 10.2 

(Rabbi et al. , 2012) Fuzzy rule-based algorithm 112.45 20 56 95.8 0.26 15.8 

(Ayoubian et al. , 2013) High frequency activities (80–500 Hz) 36 15 18 72 0.7 10.9 

(Zheng et al. , 2014a) Variances of intrinsic mode functions 463 17 51 92 0.17 12 

This work Ratio of neuronal potential similarities  1785.4 11 183 86.9 0.06 13.1* 

 The mean detection latency for the clinical onsets (MDLC) was obtained as ‘-6.3 s’. 

To evaluate the detection latency of the algorithm three measures of MDLE, MDLC, 

and MRDLE were provided. This is the first study that considered two last criteria. Regarding 

to the slightly higher MDLE results obtained from our method compared to some of other 

studies, it should be noted that the seizure duration has a direct effect on the detection 

latency. To better highlight this, consider Figure  5.10 which represents the boxplot of 

durations of the studied seizures for each patient. Comparing Figure  5.10 with the results of 

patient 10 in Table  5.2 for example, it is observed that while the mean of seizure durations is 

15.4 s, all being of short ranges, our method could provide a small MDLE of 3.8 s for this 

patient. Therefore it is suggested to compare the detection latency results of methods 

according to the seizure duration. The proposed method could detect the seizures on average 

within their initial one-sixth lengths and 6.3 s in advance of clinical phase, and therefore still 

saves a good portion of time for the responsive neurostimulator to suppress the seizure. 
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Figure  5.10 – Boxplot representation of seizure durations for 11 studied patients 

5.4.1.2 Complexity of the early seizure detection approach 

The method is based on a single bipolar signal, as well as a threshold-based classifier. 

The proposed relative NPS measure was calculated from the PSD of this bipolar iEEG signal, 

which exposes a very low computational cost, thus making the method very fast, and of low 

complexity. For instance, as we also mentioned in the second chapter, Parhi et al. (Parhi et al. 

, 2013) proposed a low-complexity Welch PSD computation mechanism using 65nm 

technology and 1-Volt power supply. The power consumption and hardware area of their 

method was around 210nJ and 176um2 respectively, for PSD calculation of 8 overlapping 

segments of length 1024 samples each. In this regard, the proposed method is suitable for 

implantable low-power-budget closed-loop neurostimulation systems, which are extensively 

restricted to limited power budgets. A main current limitation is the necessity of surgery for 

battery replacement in implantable devices, which may be resolved by recent progresses in 

inductive charging technology (Libbus et al. , 2014). Moreover, a significant space/weight of 

the implantable products is occupied by their battery, which can be further compacted by 

using more efficient and lower computational cost algorithms. 
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5.4.2 Seizure event detection 

It has been justified that seizure termination usually accompanies highly coherent and 

synchronous brain activities (Schindler et al. , 2007a, Zubler et al. , 2014). The basic idea was 

to highlight the states of highly synchronous and coherence activities of neurons using 

bipolar SVD and sub-band MPC measures respectively, when seizures are well-developed 

and reaching their terminations. Extracting MPC measure from band-pass filtered iEEG 

signals and investigating its trends as the most prominent measure for phase synchrony, we 

could effectively detect epileptic seizures.  

The level of synchrony was augmented in most of the studied seizures and for different 

frequency bands. Depending on the length of ictal period, this high level of synchrony would 

last for about few up to tens of seconds. Although MPC measures of different frequency 

bands are usually increasing, however the measures extracted from wideband iEEG signals 

and some frequency bands were not robust for seizure detection, and generated relatively 

higher number of false alarms (Figure  5.11). More specifically, for the patients under study, 

the MPC measures obtained from particular sub-bands of 12-18 Hz, and 18-28 Hz could 

provide more detection capability in 10 out of 11 patients. Subject 2 was an exceptional case 

however, where the MPC measure extracted from 4-8 Hz could detect epileptic seizures with 

better sensitivity and specificity.  

For the bipolar SVD, when the two adjacent iEEG signals become increasingly 

correlated, difference of those signals (bipolar iEEG) will contain less energy, causing the 

SVs of bipolar signal to decrease. Therefore the observation of sudden decreases in the SVs 

would coincide with seizure termination. Moreover, according to the results, the SVs 

extracted from bipolar iEEG signals were apparently robust to the changes in the state of the 

iEEG data throughout the patient’s daily life, producing just 83 false alarms in 1785 hours of 

iEEG recordings (Figure  5.12). Furthermore, we observed that patterns of coherency are 

recurring evenly for all of the seizures for each particular patient. This indicates that the 

build-up, propagation, and termination of the seizures for a specific patient follow a common 

neuronal mechanism. 
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Figure  5.11 – Sub-band and wideband MPC measures extracted from 2 hours of iEEG recordings of patient 5, 

containing two epileptic seizures. The vertical dotted red lines indicate onset times. The sub-band MPC 

measures extracted from 12-18 Hz and 18-28 Hz were more robust than wideband MPC measure, and generated 

lower number of false alarms.  

 

 
Figure  5.12 – Proposed measure using singular values extracted from bipolar iEEG signals (patient 5). Black 

line is the measure, and the vertical dotted red lines are seizure onsets. The horizontal dotted blue line is the 

threshold value. 
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5.4.3 Channel selection 

The two adjacent electrodes placed on the foci were selected using prior knowledge on 

spatial propagation of seizures, available in the dataset (Figure  5.13). The method was not 

applied on the whole set of bipolar channels to select the best pair of electrodes, and only 

benefited from the propagation information. Propagation information and seizure foci were 

identified by epileptologists using multichannel iEEG recordings and magnetic resonance 

imaging (MRI) data. Since our method was developed towards using with implantable 

devices, therefore this prerequisite knowledge should be extracted during the clinical 

evaluation of implantable system for each candidate patient. This pre-evaluation of patients is 

an essential part for implantation surgery. 

Concerning channel selection, sensitivity and detection latency of the algorithm are 

both affected. If the selected channel is not placed close enough to the foci, the seizure spread 

may not reach that channel, inducing a decrease in average sensitivity. On the other hand, if 

the seizure spreads to the extent enough to reach a remote electrode, it would be detectable 

with longer detection latency. Overall, both placement and number of selected EEG channels 

can substantially affect detection sensitivity and delays and therefore had to be taken into 

consideration.  

The selection of one bipolar channel is suggested and satisfactorily works here, as the 

methods was applied on patients with partial epilepsy, and is quite logical if we are aware of 

the epileptic onset zone. As a counterexample, eight out of 11 studied subjects developed 

seizures on either right or left parts of their brain only, whereas the patients 4, 8, and 9 had 

seizure onset zones on both sides. Therefore the selection of one bipolar channel could not 

provide acceptable results for subject 8. However, in patients with more than one seizure 

onset zone, several bipolar channels can be considered to cover different possible onset 

zones. In turn, decision making can be carried out by incorporating logical channel fusion 

methods to effectively detect epileptic seizures. Moreover, the current responsive 

neurostimulation system (RNS) is approved by FDA for the partial epilepsy patients who are 

diagnosed with no more than two foci (Sun et al. , 2014b). 
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(a) 

 
(b) 

Figure  5.13 – Seizure propagation information for patient 1, available in dataset. (a) Channels placed over the 

foci, where the seizures originated, (b) channels involved during early states of seizure propagation. HAR1 and 

HAR2 electrodes were selected for this patient. 

Concerning channel selection, sensitivity and detection latency of the algorithms are 

affected. If the selected channel is not placed close enough to the foci, the seizure spread may 

not reach that channel, inducing a decrease in average sensitivity. On the other hand, if the 

seizure spreads to the extent enough to reach a remote electrode, it would be detectable with 

longer detection latency. Overall, both placement and number of selected EEG channels can 

substantially affect detection sensitivity and delays and therefore had to be taken into 

consideration.  
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5.4.4 Robustness of algorithms 

EEG patterns can change significantly according to the daily living conditions, such as 

the level of activity, awareness, and sleep stages, that further complicate the detection of 

seizures. Figure  5.14 represents the histogram of seizure occurrence times with respect to 

different day/night times. Although seizures are distributed almost evenly across different 

hours of the day and night (106 night and 77 day seizures), yet the proposed methods could 

provide a high sensitivity and specificity, showing robustness to the patients’ circadian 

cycles. Daytime and nighttime hours were considered as 9am-9pm and 9pm-9am 

respectively. Furthermore, there were a few number false alarms raised by the proposed 

algorithms. By visual inspection of iEEG recordings of these false alarms, it was found that 

many of them exhibited ictal-like activities, presumably due to the subclinical seizures not 

been marked in the database as clinical seizures. 

 

Figure  5.14 – Histogram of seizure occurrence times across circadian cycle, with almost a uniform distribution 

Technically, there are several physiological interfering sources such as ECG, blinking, 

eye movement, electromyogram (EMG) signals, and other environmental artifacts, which can 

affect the detection performance. However as the invasive recordings were investigated here, 

the signal to noise ratio (SNR) is very high around 20-100 times better than scalp EEG 

recordings (Ball et al. , 2009). Furthermore, since most of these interfering noises mount 

evenly on the immediately adjacent channels, their possible side effects can be largely 

reduced by considering a bipolar montage (in NPS and SVD methods), in which the common 

mode of the two neighboring signals is eliminated by subtraction. Moreover the extracted 
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feature was processed using a 4-epochs (5-sec length) moving average window to further 

reduce the influence of the artifacts, and as a result of this smoothing the number of false 

alarms were significantly reduced. For instance, using the relative NPS measure, the number 

of false alarms was increased from 16 to 23 for the subject 2 without applying smoothing, 

and reduced detection latency by 1.8 s. 

5.5 Conclusion 

A novel approach using neuronal potential similarity measures obtained from spectral 

powers of a bipolar channel was introduced for early seizure detection. The method provided 

very high performance results and could detect clinical onsets averagely by 6.3 s in advance. 

Considering the PSD-based nature of the proposed measure, it is much suited to be used in 

the closed-loop implantable neurostimulation devices. Such a low complexity measure is an 

essential part of the early seizure detection algorithms, required to continuously monitor 

electrical activities of the brain and to deliver electrical stimulation in the proper times. As 

battery replacement in the implantable devices necessitates a surgery, commercialized 

products needs to introduce devices which can last for several years. A significant 

space/weight of the implantable products is occupied by its battery, which can be further 

compacted by using more efficient and lower computational cost algorithms. 

Moreover, the SVD and MPC measures were modified to provide higher performance 

results for seizure event detection. Both of these measures were previously investigated, 

however in this thesis higher level of sensitivity and lower number of false alarms was 

obtained by the modified versions of these measures. Although the SVD and MPC measures 

are of relatively high computational cost, they were proposed only for clinical long-term 

monitoring, and not to be used in portable devices. Computational cost of these measures is 

therefore not an important issue in real-time or offline labeling in clinic. 

Furthermore, it was essential to justify the efficiency of the proposed methods in 

practical situations. This issue was approached by the evaluation of proposed methods on 

long-term iEEG recordings of several months, contrary to most previous studies which have 

considered short and segmented recordings. 



 

Chapter 6 Conclusions and perspectives 

6.1 Conclusions on seizure prediction approaches 

In this thesis, two novel approaches were investigated for epileptic seizure prediction. 

Firstly we introduced a new relative bivariate measure based on spectral power features to 

detect the preictal state. A specific feature selection method was developed to find the best 

discriminative features and to reduce the dimension of the resulting feature space. The 

performance of the method was demonstrated in two ways. The number of selected features 

was 9.9 in average, showing the efficiency of the introduced bivariate features as well as the 

feature selection method. By ranking the original normalized spectral power features and 

relative bivariate features together, relative bivariate features achieved the highest ranks. The 

proposed method could provide a good performance for seizure prediction. In average 75.8% 

of the test onsets (out-of-sample) were predicted across 1537 hours of test data with an 

average FPR of 0.1 h-1.  

Compared with other studies, the developed prediction algorithm presented good results 

considering the long-term continuous recordings (total of 183 ictal events in 3565 h 

recording). The number of non-preictal training samples was reduced to achieve a balanced 

number of samples for training of the SVM classifier. However, this might lead to an increase 

in the number of false alarms. In future investigation, it is suggested to use a cost-sensitive 

SVM, allowing to use all of the non-preictal samples in the train set, by which it is expected 

to achieve a lower number of false alarms. However the computational cost of training phase, 

which is an offline process, will be significantly increased using the cost-sensitive SVM. 

Furthermore, the EEG bandwidth can be subdivided into narrower sub-bands, which can 

better highlight the gradual preictal changes, by providing higher spectral resolutions. Finally, 

here we have followed an empirical method of selecting subsets as 3, 5, 10, 20 or 40 features. 
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A future study can use sequential feature elimination starting from the complete feature set or 

start from the best ranked feature and apply sequential feature increments, to find the optimal 

dimension for the feature space. 

Secondly, the problem of optimal preictal period selection, which plays a key role on 

the efficiency of supervised machine learning algorithms, was approached by a novel yet 

simple statistical methodology. By examining different preictal periods, and through the 

investigation of the proposed method, we could find the best discriminative preictal periods 

for each seizure/feature. We have also found that the optimal preictal periods vary 

significantly from seizure to seizure, even for the seizures of a same patient. This suggests 

that for building a robust model, the OPP value of each seizure should be separately obtained 

and considered during the training phase of the model. After the training stage, the minimum 

and maximum values of resulting OPPs can be used to define the SPH and SOP parameters 

for proper evaluation of the model on the test data. Furthermore, the spectral power features 

of high frequency gamma activities were found to be more discriminative among the features. 

One of our conclusions is that the seizure predictor has to be personalized to each 

patient. In our view the patient will come to a clinical environment where EEG data will be 

collected, processed, many predictors trained (with optimal preictal periods, different 

channels, etc.), and the best one will be embedded in the transportable device with high 

processing power (Teixeira et al. , 2013, Teixeira et al. , 2014a). Then the patient will go to 

his normal life and the performance of the transportable device will be analyzed after some 

time; if needed, a new training phase can be performed (not necessarily in clinic). This plan 

needs that clinics have access to good computational infrastructures and have computer 

engineers. With the cloud developments it will not be a difficult task. It is the author’s 

opinion that the future medicine will need many personalized computerized studies, not only 

in seizure prediction. 
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6.2 Conclusions on seizure detection approaches 

An automated early seizure detection algorithm was developed using a novel measure 

obtained from the ratio of neuronal potential similarities, which in turn were extracted from 

the PSD of one bipolar channel. The proposed relative NPS method could detect clinical 

onsets averagely by 6.3 s in advance, and could provide a mean detection latency of 13.1 s 

from electrographic onsets, with a high sensitivity of 86.9% and a very low FDR of 0.06 h-1. 

This is an important issue for closed-loop neurostimulation systems which require detection 

of seizure onsets either immediately or with negligible delays, while achieving high 

sensitivity and specificity. Additionally, considering the PSD-based nature of the proposed 

measure it is much suited to be used as an essential detection sub-system in the implantable 

closed-loop neurostimulation devices, for clinical applications. Such a low complexity 

measure is an essential part of seizure onset detection algorithms, required to continuously 

monitor electrical activities of the brain and to deliver electrical stimulation pulses in proper 

times for efficient seizure suppression. A future investigation may further improve the 

sensitivity of the algorithm by extracting the proposed NPS measure from several bipolar 

montages in patients with two or more foci, to cover all epileptic zones, and then applying 

decision fusion approaches. Furthermore, the relative NPS measure can be examined on the 

whole set of pairwise combinations of adjacent electrodes, to uncover the spatial propagation 

information of seizures across brain regions. This is based on the hypothesis that the measure 

extracted from the focal channels would increase in advance of the measure extracted from 

other electrodes. 

Furthermore, phase synchronization of neural activity in different frequency sub-bands 

was studied for automated detection of epileptic seizures, as well as for its synchronous 

behavior during seizures. Mean phase coherence (MPC) was considered as a measure of the 

phase locking level between two iEEG signals, and was extracted for different sub-bands, 

using windowed and bandpass filtered signals. The results indicated that the MPC measures 

extracted from specific frequency bands, especially 12-18 Hz and 18-28 Hz, could 
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significantly improve both parameters of sensitivity and specificity in comparison to the MPC 

measure extracted from wideband signals. Additionally, it was observed that the highest level 

of synchrony in all frequency bands occur mostly prior to seizure termination, whereas the 

seizure initiation usually coincides with loss of synchronization.  

Moreover, the SVD was applied on the bipolar iEEG signal, for studying of the 

coherency patterns in seizures. Since SVD decomposes data into its correlated parts, therefore 

when two adjacent electrodes become highly coherent, the correlated components inside their 

difference signal contain less energy. This phenomenon induced a sudden decrease in the 

singular values of SVD decomposition, and emerged with the seizure termination. The 

bipolar SVD approach also provided high level of sensitivity combined with very low 

number of false alarms.  

Furthermore, it was preferable to justify the performance of the proposed detection 

methods in practical situations. This issue was approached by the evaluation of the proposed 

methods on long-term continuous iEEG recordings for each patient, averagely around one 

week recordings per patient and overall several months, contrary to most previous studies 

which have considered short and segmented recordings prior to seizure onsets only. 
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